Science.gov

Sample records for epoxidized novolac resin

  1. Aqueous Developable, Negative Working Resist Made Of Chlorinated Novolac Resin

    NASA Astrophysics Data System (ADS)

    Hiraoka, H.; Patlach, A.; Chiong, Kaolin N.; Seligson, Daniel; Pianetta, Piero

    1988-01-01

    Recently, three approaches to sub-micron imaging using negative working, aqueous developable, novolac resin or poly(hydroxystyrene)-based resists have been reported: (1) Image reversal of positive working photoresists (2) Acid hardenable resist with post-bake process, and (3) Contrast enhanced-resist with deep uv flood exposure. Negative working resists with high resolution are important for fabrication of advanced devices. In the present study we examine a simple two component system consisting of a chlorinated novolac resin and an aromatic bisazide suitable for uv, electron and x-ray exposure. The resist is conventionally processed in aqueous developer, and provides negative working resist images with 0.25 μm space and line resolution without swelling or scum.

  2. Sub-70 nm resolution patterning of high etch-resistant epoxy novolac resins using gas permeable templates in ultraviolet nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Takei, Satoshi; Hanabata, Makoto

    2016-05-01

    This study aimed to expand the resolution limits of epoxy novolac resins that have enhanced etch resistance as one of the desirable resist properties for next-generation devices. Epoxy novolac resins have high etch resistance. However, because epoxy novolac resins are either solid or semisolid at room temperature, and because the use of volatile solvents in resist can be a cause of pattern failure in nanoimprint lithography, epoxy novolac resins have been of limited utility as resist. Excellent sub-70 nm resolution patterning can be achieved by diluting 15 wt % acetone in an ultraviolet nanoimprint lithography using gas-permeable templates.

  3. 40 CFR 721.2673 - Aromatic epoxide resin (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aromatic epoxide resin (generic). 721... Substances § 721.2673 Aromatic epoxide resin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aromatic epoxide resin (PMN...

  4. 40 CFR 721.2673 - Aromatic epoxide resin (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aromatic epoxide resin (generic). 721... Substances § 721.2673 Aromatic epoxide resin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aromatic epoxide resin (PMN...

  5. 40 CFR 721.2673 - Aromatic epoxide resin (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Aromatic epoxide resin (generic). 721... Substances § 721.2673 Aromatic epoxide resin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aromatic epoxide resin (PMN...

  6. 40 CFR 721.2673 - Aromatic epoxide resin (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aromatic epoxide resin (generic). 721... Substances § 721.2673 Aromatic epoxide resin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aromatic epoxide resin (PMN...

  7. Lithographic performance and dissolution behavior of novolac resins for various developer surfactant systems

    NASA Astrophysics Data System (ADS)

    Flores, Gary E.; Loftus, James E.

    1992-06-01

    The use of surfactants in today's society ranges over a wide variety of technologies, from soaps and detergents to house paints and electronic materials. In the semiconductor industry, surfactants are commonly used as coating additives in photoresists, as additives in wet chemical etchants, as additives in developer solutions, and in other areas where surface activity is desirable. In most applications, the mechanisms of surfactant chemistry are well established, yet there has been only a limited amount of published literature pertaining to characterizing the behavior of surfactants in developer systems for photoresists. This project explores the application of surfactants in an aqueous tetramethyl ammonium hydroxide (TMAH) based developer for two optical resists, one incorporating a 2,1,4- diazonaphthoquinone (DNQ) sensitizer, while the other incorporates a 2,1,5-DNQ sensitizer. In addition, each optical resist is based on different positive novolac resins with distinct structural properties. This feature aids in illustrating the improtance of matching the developer surfactant with the photoresist resin structure. Four distinct non-ionic surfactants with well published physical and chemical properties are examined. Properties of the surfactants explored include differences in structure, surfactant concentration, various degrees of hydrophilic versus lipophilic content (known as the HLB, or hydrophilic - lipophilic balance), and the differences in reported critical micelle concentration (CMC). Previous research investigated the performance characteristics of the 2,1,5-DNQ for these four surfactants. This investigation is an extension of the previous project by next considering a significantly different photoresist. A discussion of potential mechanisms of the solubilization and wetting effects is utilized to promote an understanding of surfactant effects in resist/developer systems. Also, because of the extensive characterization involved in screening surfactants, a

  8. Expanded graphite/Novolac phenolic resin composite as single layer electromagnetic wave absorber for x-band applications

    NASA Astrophysics Data System (ADS)

    Gogoi, Jyoti P.; Bhattacharyya, Nidhi Saxena

    2013-01-01

    Expanded graphite/novolac phenolic resin (EG/NPR) composites are developed as dielectric absorbers with 4mm thickness and its microwave absorption ability studied in the frequency range 8.4 to 12.4 GHz. A high reflection loss ~ -43 dB is observed at 12.4 GHz for 5 wt. % EG/NPR composites. With the increase in EG concentration in the composite the reflection loss decreases and the absorption peak shifts towards lower frequency. 7 wt. %, 8 wt. % and 10 wt. % composites shows a 10dB absorption bandwidth of order of 1GHz. Light weight EG/NPR composite shows potential to be used as cost-effective broadband microwave absorber over the X-band.

  9. 40 CFR 721.2673 - Aromatic epoxide resin (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aromatic epoxide resin (generic). 721.2673 Section 721.2673 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2673 Aromatic...

  10. Toughening of epoxy resins by epoxidized soybean oil

    SciTech Connect

    Frischinger, I.; Dirlikov, S.

    1993-12-31

    Homogeneous mixtures of a liquid rubber based on prepolymers of epoxidized soybean oil with amines, diglycidyl ether of bisphenol A epoxy resins, and commercial diamines form, under certain conditions, two-phase thermosetting materials that consist of a rigid epoxy matrix and randomly distributed small rubbery soybean particles (0.1-5 {mu}m). These two-phase thermosets have improved toughness, similar to that of other rubber-modified epoxies, low water absorption, and low sodium content. In comparison to the unmodified thermosets, the two-phase thermosets exhibit slightly lower glass-transition temperatures and Young`s moduli, but their dielectric properties do not change. The epoxidized soybean oil is available at a price below that of commercial epoxy resins and appears very attractive for epoxy toughening on an industrial scale. 15 refs., 17 figs., 6 tabs.

  11. Production of carbonaceous adsorbents from agricultural by-products and novolac resin under a continuous countercurrent flow type pyrolysis operation.

    PubMed

    Ioannou, Z; Simitzis, J

    2013-02-01

    Carbonaceous adsorbents based on novolac resin (N) and olive stone biomass (B) in a proportion of 20/80 and 40/60 w./w. N/O were produced. The specimens were cured (c) and pyrolyzed/carbonized (C) up to 1000 °C under a continuous countercurrent flow type pyrolysis operation (N20B-cC, N40B-cC). Commercial activated carbon (AC) was used for comparison reasons. Methylene blue adsorption from its aqueous solutions onto the adsorbents and kinetic analysis were investigated. The specific surface area of adsorbents and the gross calorific values (GCV) of cured materials were determined. The results show that N40B-cC presents lower weight loss and shrinkage but higher methylene blue adsorption than N20B-cC. Pseudo-second order mechanism describes better methylene blue adsorption onto all adsorbents. The specific surface area of carbonaceous and the gross calorific values of cured materials follow the order: AC>N20B-cC>N40B-cC and N100-c>N40B-c>N20B-c>B respectively. Olive stone biomass may constitute a suitable precursor for the production of carbonaceous materials.

  12. Production of carbonaceous adsorbents from agricultural by-products and novolac resin under a continuous countercurrent flow type pyrolysis operation.

    PubMed

    Ioannou, Z; Simitzis, J

    2013-02-01

    Carbonaceous adsorbents based on novolac resin (N) and olive stone biomass (B) in a proportion of 20/80 and 40/60 w./w. N/O were produced. The specimens were cured (c) and pyrolyzed/carbonized (C) up to 1000 °C under a continuous countercurrent flow type pyrolysis operation (N20B-cC, N40B-cC). Commercial activated carbon (AC) was used for comparison reasons. Methylene blue adsorption from its aqueous solutions onto the adsorbents and kinetic analysis were investigated. The specific surface area of adsorbents and the gross calorific values (GCV) of cured materials were determined. The results show that N40B-cC presents lower weight loss and shrinkage but higher methylene blue adsorption than N20B-cC. Pseudo-second order mechanism describes better methylene blue adsorption onto all adsorbents. The specific surface area of carbonaceous and the gross calorific values of cured materials follow the order: AC>N20B-cC>N40B-cC and N100-c>N40B-c>N20B-c>B respectively. Olive stone biomass may constitute a suitable precursor for the production of carbonaceous materials. PMID:23246760

  13. Epoxidized natural rubber toughened aqueous resole type liquefied EFB resin: Physical and chemical characterization

    NASA Astrophysics Data System (ADS)

    Amran, Umar Adli; Zakaria, Sarani; Chia, Chin Hua

    2013-11-01

    A preliminary study on the reaction between aqueous resole type resinified liquefied palm oil empty fruit bunches fibres (RLEFB) with epoxidized natural rubber (ENR). Liquefaction of empty fruit bunches (EFB) is carried out at different ratio of phenol to EFB (P:EFB). Resole type phenolic resin is prepared using sodium hydroxide (NaOH) as the catalyst with the ratio of liquefied EFB (LEFB) to formaldehyde (LEFB:F) of 1:1.8. 50% epoxidation of epoxidized natural rubber (ENR-50) is used to react with resole resin by mixing with ENR with aqueous resole resin. The cured resin is characterized with FT-IR and SEM. Aqueous system have been found to be unsuitable medium in the reaction between resin and ENR. This system produced a highly porous product when RLEFB/ENR resin is cured.

  14. Pilot scale production, characterization, and optimization of epoxidized vegetable oil-based resins

    NASA Astrophysics Data System (ADS)

    Monono, Ewumbua Menyoli

    Novel epoxidized sucrose soyate (ESS) resins perform much better than other vegetable oil-based resins; thus, they are of current interest for commercial scale production and for a wide range of applications in coatings and polymeric materials. However, no work has been published that successfully scaled-up the reaction above a 1 kg batch size. To achieve this goal, canola oil was first epoxidized at a 300 g scale to study the epoxidation rate and thermal profile at different hydrogen peroxide (H2O2) addition rates, bath temperatures, and reaction times. At least 83% conversion of double bonds to oxirane was achieved by 2.5 h, and the reaction temperature was 8-15 °C higher than the water bath temperature within the first 30-40 min of epoxidation. A 38 L stainless steel kettle was modified as a reactor to produce 10 kg of ESS. Twenty 7-10 kg batches of ESS were produced with an overall 87.5% resin yield and > 98% conversion after batch three. The conversion and resin quality were consistent across the batches due to the modifications on the reaction that improved mixing and reaction temperature control within 55-65 oC. The total production time was reduced from 8 to 4 days due to the fabrication of a 40 L separatory funnel for both washing and filtration. A math model was developed to optimize the epoxidation process. This was done by using the Box-Behnken design to model the conversion at various acetic acid, H2O2, and Amberlite ratios and at various reaction temperatures and times. The model had an adjusted R2 of 97.6% and predicted R2 of 96.8%. The model showed that reagent amounts and time can be reduced by 18% without compromising the desired conversion value and quality.

  15. Novel bio-based thermoset resins based on epoxidized vegetable oils for structural adhesives

    NASA Astrophysics Data System (ADS)

    Sivasubramanian, Shivshankar

    Conventional engineered wood composites are bonded for the most part through formaldehyde-based structural adhesives such as urea formaldehyde (UF), melamine formaldehyde (MF), phenol formaldehyde (PF) and resorcinol formaldehyde (RF). Formaldehyde is a known human carcinogen; the occupational exposure and emission after manufacturing of these binders is raising more and more concern. With increasing emphasis on environmental issues, there is clear incentive to replace these hazardous conventional formaldehyde-based binders with cco-friendly resins having similar properties but derived from renewable sources, bearing in mind the economics of the structural wood composite industry. In this thesis, the curing reaction of bio-derived epoxy thermosets with inexpensive, low-toxicity precursors, including polyimines and amino acids was investigated. Epoxidized linseed oil (ELO) and epoxidized soybean oil (ESO) were successfully crosslinked with both branched polyethyleneimine (PEI) and triethylenetetramine (fETA). Epoxidized castor oil (ECO) was crosslinked with polyethyleneimine (PEI), having different molecular weights. Curing conditions were optimized through solvent uptake and soluble fraction analysis. Finally, the mechanical properties of the optimized compositions of rigid bioepoxies were evaluated using dynamic mechanical rheological testing (DMRT). While not as stiff as conventional materials, optimized materials have sufficient room temperature moduli to show promise for coatings and as binders in engineered wood products.

  16. Synthesis of improved phenolic resins

    NASA Technical Reports Server (NTRS)

    Delano, C. B.; Mcleod, A. H.

    1979-01-01

    Twenty seven addition cured phenolic resin compositions were prepared and tested for their ability to give char residues comparable to state-of-the-art phenolic resins. Cyanate, epoxy, allyl, acrylate, methacrylate and ethynyl derivatized phenolic oligomers were investigated. The novolac-cyanate and propargyl-novolac resins provided anaerobic char yields at 800 C of 58 percent. A 59 percent char yield was obtained from modified epoxy novolacs. A phosphonitrilic derivative was found to be effective as an additive for increasing char yields. The novolac-cyanate, epoxy-novolac and methacrylate-epoxy-novolac systems were investigated as composite matrices with Thornel 300 graphite fiber. All three resins showed good potential as composite matrices. The free radical cured methacrylate-epoxy-novolac graphite composite provided short beam shear strengths at room temperature of 93.3 MPa (13.5 ksi). The novolac-cyanate graphite composite produced a short beam shear strength of 74 MPa (10.7 ksi) and flexural strength of 1302 MPa (189 ksi) at 177 C. Air heat aging of the novolac-cyanate and epoxy novolac based composites for 12 weeks at 204 C showed good property retention.

  17. Thermochemical tests on resins: Char resistance of selected phenolic cured epoxides

    NASA Technical Reports Server (NTRS)

    Keck, F. L.

    1982-01-01

    Curing epoxy resins with novalac phenolic resins is a feasible approach for increasing intact char of the resin system. Char yields above 40% at 700 C were achieved with epoxy novalac (DEN 438)/novalac phenolic (BRWE 5833) resin systems with or without catalyst such as ethyl tri-phenyl phosphonium iodide. These char yields are comparable to commercially used epoxy resin systems like MY-720/DDS/BF3. Stable prepregs are easily made from a solvent solution of the epoxy/phenolic system and this provides a feasible process for fabrication of same into commercial laminates.

  18. Jute fiber composites from coal, super clean coal, and petroleum vacuum residue-modified phenolic resin

    SciTech Connect

    Ahmaruzzaman, M.; Sharma, D.K.

    2005-07-01

    Jute fiber composites were prepared with novolac and coal, phenolated-oxidized super clean coal (POS), petroleum vacuum residue (XVR)-modified phenol-formaldehyde (novolac) resin. Five different type of resins, i.e., coal, POS, and XVR-modified resins were used by replacing (10% to 50%) with coal, POS, and XVR. The composites thus prepared have been characterized by tensile strength, hardness, thermogravimetric analysis (TGA), Fourier-transfer infrared (FT-IR), water absorption, steam absorption, and thickness swelling studies. Twenty percent POS-modified novolac composites showed almost the same tensile strength as that of pure novolac composites. After 30% POS incorporation, the tensile strength decreased to 25.84MPa from 33.96MPa in the case of pure novolac resin composites. However, after 50% POS incorporation, the percent retention of tensile strength was appreciable, i.e., 50.80% retention of tensile strength to that of pure novolac jute composites. The tensile strength of coal and XVR-rnodified composites showed a trend similar to that shown by POS-modified novolac resin composites. However, composites prepared from coal and XVR-modified resin with 50% phenol replacement showed 25.4% and 42% tensile strength retention, respectively, compared to that of pure novolac jute composites. It was found that the hardness of the modified composites slightly decreased with an increase in coal, POS, and XVR incorporation in the resin. The XVR-modified composites showed comparatively lower steam absorption than did coal or POS-modified composites. The thermal stability of the POS-modified composites was the highest among the composites studied. The detailed results obtained are being reported.

  19. Heptachlor epoxide

    Integrated Risk Information System (IRIS)

    Heptachlor epoxide ; CASRN 1024 - 57 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogen

  20. Synthesis of improved phenolic and polyester resins

    NASA Technical Reports Server (NTRS)

    Delano, C. B.

    1980-01-01

    Thirty-seven cured phenolic resin compositions were prepared and tested for their ability to provide improved char residues and moisture resistance over state of the art epoxy resin composite matrices. Cyanate, epoxy novolac and vinyl ester resins were investigated. Char promoter additives were found to increase the anaerobic char yield at 800 C of epoxy novolacs and vinyl esters. Moisture resistant cyanate and vinyl ester compositions were investigated as composite matrices with Thornel 300 graphite fiber. A cyanate composite matrix provided state of the art composite mechanical properties before and after humidity exposure and an anaerobic char yield of 46 percent at 800 C. The outstanding moisture resistance of the matrix was not completely realized in the composite. Vinyl ester resins showed promise as candidates for improved composite matrix systems.

  1. Preparation and cured properties of novel cycloaliphatic epoxy resins

    SciTech Connect

    Tokizawa, Makoto; Okada, Hiroyoshi; Wakabayashi, Nobukatsu; Kimura, Tomiaki . Research Center)

    1993-10-20

    Preparation and characterization of novel cycloaliphatic epoxy resins, which are derived from octadienyl compounds, were studied. From a model peracetic acid epoxidation reaction using 2,7-octadienyl acetate-1, the structure of the liquid resins is estimated to be mainly terminal epoxides and some amount of inner epoxide depending on the epoxide content. The epoxy resins offer lower toxicity and lower vapor pressure. The reactivity of the resin with acid anhydrides is moderate but faster than that of traditional cyclohexane epoxide-type resins and slower than that of the glycidyl ester-type resins. This reactivity was also examined using model compounds. The heat deflection temperature of the hexahydro-phthalic anhydride-cured resins is shown to be directly proportional to the number of epoxy groups in the molecules. The flexural strength of the cured resins is nearly equivalent to that of the commercial resins, although the flexural elongation of the resins is larger than that of the rigid cyclohexane epoxide-type resins. The thermal stability of the cured resins is compared to typical rigid cycloaliphatic resins; furthermore, high water resistance of the cured resins is suggested to be attributed to the hydrophobic character of the C[sub 8] chain by cross-linking.

  2. Pyrolysis of foundry sand resins: a determination of organic products by mass spectrometry.

    PubMed

    Dungan, Robert S; Reeves, James B

    2005-01-01

    Pyrolysis-gas chromatography-mass spectrometry (MS) was used to identify the major organic products produced by pyrolysis of three foundry sand resins: (i) Novolac and (ii) phenolic urethane (PU) (both phenol-formaldehyde based resins) and (iii) furan (furfuryl alcohol based resin). These resins are used in the metal casting industry as a "sand binder" for making cores (used to produce cavities in molds) and molds for nonferrous castings. During the casting process, the cores and molds are subjected to intense heat from the molten metal. As a result, the organic resins undergo thermal decomposition and produce a number of complex organic compounds. In this study, the organics were tentatively identified by MS after pyrolysis of the resins at 750 degrees C. The major thermal decomposition products from the Novolac, PU, and furan resins were derivatives of phenol, benzene, and furan, respectively. Compounds identified that are of potential environmental concern were benzene, toluene, phenol, o- and p-xylene, o- and m-cresol, and polycyclic aromatic hydrocarbons. Pyrolysis of the Novolac resin resulted in the generation of the most compounds of environmental concern. Because there is interest in beneficially using foundry molding sands in manufactured soils and other agricultural products, it is necessary that organic thermal decomposition products be identified to ensure environmental protection. PMID:15991723

  3. Electrochemical epoxidation of olefins

    SciTech Connect

    van der Eijk, J.M. )

    1987-08-01

    Direct epoxidation of an olefin, using oxygen and a catalyst, only proceeds with a high yield in the case of ethene. All commercial processes for the epoxidation of higher olefins therefore make use of an indirect route, yielding a co-product besides the desired epoxide. From an economic point of view this is an unfavorable situation since it couples the manufacture of two products. Recently, we have made a comprehensive study of a non-conventional method involving the electrochemical oxidation of olefins to epoxides. The major technical challenge posed by the electrochemical route to epoxides is the identification of conditions under which the desired reaction proceeds selectively. An exploratory study had indicated that the direct oxidation of olefins at the surface of catalytically active anodes (Pt, silver oxide, nickel oxide, lead ruthenates (1)) proceeds either slowly or non-selectively. A more promising approach was expected to be electrochemical (re)generation of an epoxidation agent at the anode of an electrochemical cell and carrying out the epoxidation in the anolyte solution. Epoxidation agents of interest included thallium (III) acetate complexes, hypobromite and silver(II)-pyridine complexes. Here we report on the electrochemical oxidation of olefins as mediated by silver-pyridine complexes. Subjects to be dealt with include the chemical efficacy of the process as well as the kinettics and mechanism of the olefin-Ag(II) reaction.

  4. Epoxidation catalyst and process

    DOEpatents

    Linic, Suljo; Christopher, Phillip

    2010-10-26

    Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

  5. Succinic anhydrides from epoxides

    SciTech Connect

    Coates, Geoffrey W.; Rowley, John M.

    2013-07-09

    Catalysts and methods for the double carbonylation of epoxides are disclosed. Each epoxide molecule reacts with two molecules of carbon monoxide to produce a succinic anhydride. The reaction is facilitated by catalysts combining a Lewis acidic species with a transition metal carbonyl complex. The double carbonylation is achieved in single process by using reaction conditions under which both carbonylation reactions occur without the necessity of isolating or purifying the product of the first carbonylation.

  6. Succinic anhydrides from epoxides

    SciTech Connect

    Coates, Geoffrey W; Rowley, John M

    2014-12-30

    Catalysts and methods for the double carbonylation of epoxides are disclosed. Each epoxide molecule reacts with two molecules of carbon monoxide to produce a succinic anhydride. The reaction is facilitated by catalysts combining a Lewis acidic species with a transition metal carbonyl complex. The double carbonylation is achieved in single process by using reaction conditions under which both carbonylation reactions occur without the necessity of isolating or purifying the product of the first carbonylation.

  7. Phenolic dyes as nonbleachable absorbers compatible with novolac resins for linewidth control in photoresists

    DOEpatents

    Renschler, C.L.

    1986-11-25

    Photoresist techniques and compositions are provided employing curcumin as an absorptive dye for the purpose of reducing linewidth non-uniformity caused by scattered and reflective light from the substrate-resist interface. The photoresist compositions containing curcumin as the absorptive dye are used in the production of microelectronic circuitry by both single layer and multilayer photoresist techniques.

  8. Phenolic dyes as nonbleachable absorbers compatible with novolac resins for linewidth control in photoresists

    SciTech Connect

    Renschler, C.L.

    1988-10-17

    Photoresist techniques and compositions are provided employing curcumin as an absorptive dye for the purpose of reducing linewidth non-uniformity caused by scattered and reflective light from the substrate-resist interface. The photoresist compositions containing curcumin as the absorptive dye are used in the production of microelectronic circuitry by both single layer and multilayer photoresist techniques. 2 figs.

  9. Novel combination of photoactive species: photoresists formed from selectively esterified novolacs and polyfunctional photoactive compounds

    NASA Astrophysics Data System (ADS)

    Jeffries, Alfred T., III; Brzozowy, David J.; Naiini, Ahmad A.; Gallagher-Wetmore, Paula M.

    1997-07-01

    The addition of selected PACs to resists comprised of selectively esterified DNQ novolacs improves their performance in terms of side wall angle and resolution compared to resists whose photoactive component is composed of entirely selectively esterified DNQ novolacs. The performance gain is particularly evident for the resists with two selectively esterified fractions. A conventional 60/40 m-cresol/p-cresol novolac was synthesized and fractionated into five nearly equal weight fractions using supercritical fluids (SCF) fractionation technique. Resists were made from either a single esterified fraction [fraction Two, esterification level (EL), 42%] or dual esterified fractions (fractions Two and Four, EL 21% each), a selection of PACs and the remaining unesterified fractions. They were compared to a control containing only the corresponding esterified fraction(s). The PACs A and B were effective at increasing the resist profile angle for 0.50 (mu) features in the singly esterified novalacs in comparison to the control material and exhibited flat tops. The resolution and profiles of dual esterified fraction resists improved significantly when low levels of PACs were added to dual esterified fraction control resist. The comparison was made from 0.40 (mu) features. The resist made using PAC C is the best candidate for photospeed although its profile angle is less in comparison to PACs A and B.

  10. Microbial production of epoxides

    SciTech Connect

    Clark, Thomas R.; Roberto, Francisco F.

    2003-06-10

    A method for microbial production of epoxides and other oxygenated products is disclosed. The method uses a biocatalyst of methanotrophic bacteria cultured in a biphasic medium containing a major amount of a non-aqueous polar solvent. Regeneration of reducing equivalents is carried out by using endogenous hydrogenase activity together with supplied hydrogen gas. This method is especially effective with gaseous substrates and cofactors that result in liquid products.

  11. Fabrication and physical testing of graphite composite panels utilizing woven graphite fabric with current and advanced state-of-the-art resin systems

    NASA Technical Reports Server (NTRS)

    Lee, S. C. S.

    1979-01-01

    Three weaves were evaluated; a balanced plain weave, a balanced 8-harness satin weave, and a semiunidirectional crowfoot satin weave. The current state-of-the-art resin system selected was Fiberite's 934 Epoxy; the advanced resin systems evaluated were Phenolic, Phenolic/Novolac, Benzyl and Bismaleimide. The panels were fabricated for testing on NASA/Ames Research Center's Composites Modification Program. Room temperature mechanical tests only were performed by Hitco; the results are presented.

  12. Array of Love-wave sensors based on quartz/Novolac to detect CWA simulants.

    PubMed

    Matatagui, D; Fontecha, J; Fernández, M J; Aleixandre, M; Gràcia, I; Cané, C; Horrillo, M C

    2011-09-15

    An array of Love-wave sensors based on quartz and Novolac has been developed to detect chemical warfare agents (CWAs). These weapons are a risk for human health due to their efficiency and high lethality; therefore an early and clear detection is of enormous importance for the people safety. Love-wave devices realized on quartz as piezoelectric substrate and Novolac as guiding layer have been used to make up an array of six sensors, which have been coated with specific polymers by spin coating. The CWAs are very dangerous and for safety reasons their well known simulants have been used: dimethylmethyl phosphonate (DMMP), dipropyleneglycol methyl ether (DPGME), dimethylmethyl acetamide (DMA), dichloroethane (DCE), dichloromethane (DCM) and dichloropentane (DCP). The array has been exposed to these CWA simulants detecting very low concentrations, such as 25 ppb of DMMP, a simulant of nerve agent sarin. Finally, principal component analysis (PCA) as data pre-processing and discrimination technique, and probabilistic neural networks (PNN) as patterns classification technique have been applied. The performance of the sensor array has shown stability, accuracy, high sensitivity and good selectivity to these simulants. PMID:21807207

  13. Microwave absorption properties of graphite flakes-phenolic resin composite

    NASA Astrophysics Data System (ADS)

    Gogoi, Jyoti P.; Gogoi, Pragyan J.; Bhattacharyya, Nidhi S.

    2013-01-01

    In the present investigation, microwave absorption properties of a conductor back single layer designed on graphite flakes (GF)-novolac phenolic resin (NPR) composites is studied. The complex permittivity of the developed composite enhance for higher GF percentages. The reflection loss(RL) measured using E8362C VNA shows a maximum RL values -25 dB at 9.8 GHz for 7 wt. % composition with -10 dB bandwidth of 0.3 GHz. The developed composites are being light weight and cost effective shows potential to be used as dielectric absorber.

  14. Process for improving moisture resistance of epoxy resins by addition of chromium ions

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; Stoakley, D. M.; St.clair, T. L.; Singh, J. J. (Inventor)

    1985-01-01

    A process for improving the moisture resistance properties of epoxidized TGMDA and DGEBA resin system by chemically incorporating chromium ions is described. The addition of chromium ions is believed to prevent the absorption of water molecules.

  15. Organocatalytic asymmetric hydrolysis of epoxides.

    PubMed

    Monaco, Mattia Riccardo; Prévost, Sébastien; List, Benjamin

    2014-07-28

    The hydrolytic ring opening of epoxides is an important biosynthetic transformation and is also applied industrially. We report the first organocatalytic variant of this reaction, exploiting our recently discovered activation of carboxylic acids with chiral phosphoric acids via heterodimerization. The methodology mimics the enzymatic mechanism, which involves an enzyme-bound carboxylate nucleophile. A newly designed phosphoric acid catalyst displays high stereocontrol in the desymmetrization of meso-epoxides. The methodology shows wide generality with cyclic, acylic, aromatic, and aliphatic substrates. We also apply our method in the first highly enantioselective anti-dihydroxylation of simple olefins.

  16. A New Class Of Resins For Deep Ultraviolet Photoresists

    NASA Astrophysics Data System (ADS)

    Osuch, C. E.; Brahim, K.; Hopf, F. R.; McFarland, M. J.; Mooring, A.; Wu, C. J.

    1986-07-01

    As Bowden has pointed out in his recent discussion on high resolution lithography, conventional photoresists are not particularly suitable for use in the deep ultraviolet (DUV) regime.' The reasons for this are: (1) the novolac resin is a strong absorber at wavelengths shorter than 300 nm;2 and (2) the products produced upon irradiation of the photoactive compound (PAC) absorb in this region (which prevents the phenomenon known as "photobleaching" from occurring). Of these two difficulties the first appeared, to us, to be the more restrictive. Therefore we chose to investigate alternate resins, more transparent in the DUV region, to substitute for novolac. We initially sought to remain within the realm of the dissolution inhibition mechanism and to utilize conventional PAC's. Although it was possible to prepare resins having improved UV absorbtion characteristics (a maleimidestyrene copolymer will be discussed here) and to formulate positive acting resists from them, we found that the resists were not able to adequately form high resolution images with vertical wall profiles. Examples of this behavior are presented. Because of the apparent inability to obtain satisfactory wall profiles, we abandoned the methods based on the dissolution inhibition mechanism. We then elected to explore the so-called "chemical amplification" approach pioneered by Wilson, Ito, Frechet, and their coworkers. To this end, maleimide styrene copolymer was substituted on the nitrogen atom with the tertbutyloxy carbonyl group. This resin, upon application of heat, reverts to maleimide styrene via a process which is apparently catalyzed in the presence of acid. These observations led us to develop a photoresist based on a mixture of a photoacid and the N-blocked maleimide/styrene resin. Details of the performance of this resist are presented.

  17. Occurrence of bisphenols, bisphenol A diglycidyl ethers (BADGEs), and novolac glycidyl ethers (NOGEs) in indoor air from Albany, New York, USA, and its implications for inhalation exposure.

    PubMed

    Xue, Jingchuan; Wan, Yanjian; Kannan, Kurunthachalam

    2016-05-01

    Bisphenols, bisphenol A diglycidyl ethers (BADGEs), and novolac glycidyl ethers (NOGEs) are used in the production of epoxy resins and polycarbonate plastics. Despite the widespread application of these chemicals in household products, studies on their occurrence in indoor air are limited. In this study, 83 indoor air samples were collected in 2014 from various locations in Albany, New York, USA, to determine the concentrations of bisphenols, BADGEs (refer to BADGE and its derivatives), and NOGEs (refer to NOGE and its derivatives) and to calculate inhalation exposure to these compounds. Among eight bisphenols measured, BPA, BPF, and BPS were found in bulk air (i.e., vapor plus particulate phases), at geometric mean (GM) concentrations of 0.43, 0.69 and 0.09 ng m(-3), respectively. Among 11 BADGEs and NOGEs determined, BADGE·2H2O was the predominant compound found in indoor air (detection rate [DR]: 85.5%), at concentrations as high as 6.71 ng m(-3). Estimation of inhalation exposure to these chemicals for various age groups showed that teenagers had the highest exposure doses to BPA, BPF, BPS, and BADGE·2H2O at 5.91, 9.48, 1.24, and 3.84 ng day(-1), respectively. The body weight-normalized estimates of exposure were the highest for infants, with values at 0.24, 0.39, 0.05, and 0.16 ng kg bw(-1) day(-1) for BPA, BPF, BPS, and BADGE·2H2O, respectively. This is the first survey to report inhalation exposure to bisphenols, BADGEs, and NOGEs. PMID:26923236

  18. Occurrence of bisphenols, bisphenol A diglycidyl ethers (BADGEs), and novolac glycidyl ethers (NOGEs) in indoor air from Albany, New York, USA, and its implications for inhalation exposure.

    PubMed

    Xue, Jingchuan; Wan, Yanjian; Kannan, Kurunthachalam

    2016-05-01

    Bisphenols, bisphenol A diglycidyl ethers (BADGEs), and novolac glycidyl ethers (NOGEs) are used in the production of epoxy resins and polycarbonate plastics. Despite the widespread application of these chemicals in household products, studies on their occurrence in indoor air are limited. In this study, 83 indoor air samples were collected in 2014 from various locations in Albany, New York, USA, to determine the concentrations of bisphenols, BADGEs (refer to BADGE and its derivatives), and NOGEs (refer to NOGE and its derivatives) and to calculate inhalation exposure to these compounds. Among eight bisphenols measured, BPA, BPF, and BPS were found in bulk air (i.e., vapor plus particulate phases), at geometric mean (GM) concentrations of 0.43, 0.69 and 0.09 ng m(-3), respectively. Among 11 BADGEs and NOGEs determined, BADGE·2H2O was the predominant compound found in indoor air (detection rate [DR]: 85.5%), at concentrations as high as 6.71 ng m(-3). Estimation of inhalation exposure to these chemicals for various age groups showed that teenagers had the highest exposure doses to BPA, BPF, BPS, and BADGE·2H2O at 5.91, 9.48, 1.24, and 3.84 ng day(-1), respectively. The body weight-normalized estimates of exposure were the highest for infants, with values at 0.24, 0.39, 0.05, and 0.16 ng kg bw(-1) day(-1) for BPA, BPF, BPS, and BADGE·2H2O, respectively. This is the first survey to report inhalation exposure to bisphenols, BADGEs, and NOGEs.

  19. Optical properties and indentation hardness of thin-film acrylated epoxidized oil

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammad Syuhaimi Ab.; Shaktur, Khaled Mohamed; Mohammad, Rahmah; Zalikha, Wan Aimi; Nawi, Norwimie; Mohd, Ahmad Faiza

    2012-02-01

    Epoxy acrylate has been widely used as optical resin for applications such as cladding, the core of a waveguide, and other photonic devices. In this study, sustainable resin from edible oil was used as an alternative to epoxy acrylate. Structural features and the transmission of planar thin-film resin from an ultraviolet-visible spectroscopy (UV-VIS) spectrometer were investigated upon UV exposure. It was found that high transmission still persists for all samples with and without an UV absorber for exposed and unexposed samples. The film was found to absorb strongly below 400 nm. A change in the cut-off wavelength was observed upon exposure. Thin-film hardness and its dynamic indentation in the load-unload mode with different test forces were evaluated. Vickers hardness and the elastic modulus were determined for unacrylated epoxidized soybean oil (ESO) and acrylated epoxidized soybean oil (AESO). It was found that the AESO has a higher Vickers hardness and elastic modulus than those of unacrylated thin film. The Vickers hardness and elastic modulus were found to increase as the applied test force increased. The refractive index, thickness, and modes present were characterized from a spin-coated planar thin film. The refractive index in the transverse electric mode (TE) and transverse magnetic mode (TM) were determined and compared for unacrylated and acrylated epoxidized oil.

  20. Industrially relevant epoxy-acrylate hybrid resin photopolymerizations

    NASA Astrophysics Data System (ADS)

    Ajiboye, Gbenga I.

    Photopolymerization of epoxy-acrylate hybrid resins takes advantages of inherent properties present in the free-radical and cationic reactions to reduce oxygen inhibition problems that plague free-radical reactions. Similarly, the combined reaction mechanisms reduce moisture sensitivity of the cationic reactions. Despite the advantages of epoxy-acrylate hybrid resins, problems persist that need to be addressed. For example, low conversion and polymerization rate of the epoxides are a problem, because the fast acrylate conversion prevents the epoxide from reaching high conversion. Controlling phase separation is challenging, since two moieties with different properties are reacting. The physical properties of the polymer will be impacted by the availability of different moieties. High shrinkage stress results from the acrylate moiety, causing buckling and cracking in film and coating applications. The overall goal of this study is to use the fundamental knowledge of epoxy-acrylate hybrid resins to formulate industrially viable polymers. In order to achieve this goal, the study focuses on the following objectives: (I) determine the apparent activation energy of the hybrid monomer METHB, (II) increase epoxide conversion and polymerization rate of hybrid formulations, and (III) control physical properties in epoxy-acrylate hybrid resins. In order to increase the epoxide conversion and rate of polymerization, the sensitivity of epoxides to alcohol is used to facilitate the activated monomer (AM) mechanism and induce a covalent bond between the epoxide and acrylate polymers through the hydroxyl group. It is hypothesized that if the AM mechanism is facilitated, epoxide conversion will increase. As a result, the resins can be tailored to control phase separation and physical properties, and shrinkage stress can be reduced. In pursuit of these objectives, the hybrid monomer METHB was polymerized at temperatures ranging from 30°C to 70°C to obtain apparent activation

  1. Organocatalyzed enantioselective desymmetrization of aziridines and epoxides

    PubMed Central

    2013-01-01

    Summary Enantioselective desymmetrization of meso-aziridines and meso-epoxides with various nucleophiles by organocatalysis has emerged as a cutting-edge approach in recent years. This review summarizes the origin and recent developments of enantioselective desymmetrization of meso-aziridines and meso-epoxides in the presence of organocatalysts. PMID:24062828

  2. Alkene epoxidations catalysed by Mo(VI) supported on imidazole-containing polymers I. Synthesis, characterisation, and activity of catalysts in the epoxidation of cyclohexene

    SciTech Connect

    Miller, M.M.; Sherrington, D.C.

    1995-04-01

    Polystyrene resins functionalised with hydroxylpropyl aminomethyl pyridine, pyridyl imidazole, and carboxybenzimidazole, polyglycidyl methacrylate resins functionalised with aminomethyl pyridine and pyridyl imidazole, and polybenzimidazole resin have all been loaded with Mo(VI). The resulting polymer metal complexes have been activated by treatment with t-butylhydroperoxide, then used as catalysts in the liquid-phase epoxidation of cyclohexene using t-butylhydroperoxide. Polymers containing the imidazole group were particularly active, and unlike the other species did not require preactivation to induce high activity. The complexes formed with the imidazole-containing polymers appear to be monometallic species, whereas the other polymer ligands yield oxybridged bimetallic species. This accounts for the major difference in activity recorded. Possible structures for the catalysts are proposed based on information in the literature. 30 refs., 10 figs., 6 tabs.

  3. Toughening mechanism in elastomer-modified epoxy resins, part 2

    NASA Technical Reports Server (NTRS)

    Yee, A. F.; Pearson, R. A.

    1984-01-01

    The role of matrix ductility on the toughenability and toughening mechanism of elastomer-modified DGEBRA epoxies was investigated. Matrix ductility was varied by using epoxide resins of varying epoxide monomer molecular weights. These epoxide resins were cured using 4,4' diaminodiphenyl sulfone (DDS) and, in some cases, modified with 10% HYCAR(r)CTBN 1300X8. Fracture roughness values for the neat epoxies were found to be almost independent on the monomer molecular weight of the epoxide resin used. However, it was found that the fracture toughness of the elastomer-modified epoxies was very dependent upon the epoxide monomer molecular weight. Tensile dilatometry indicated that the toughening mechanism, when present, is similar to the mechanisms found for the piperidine cured epoxies in Part 1. SEM and OM corroborate this finding. Dynamic mechanical studies were conducted to shed light on the toughenability of the epoxies. The time-dependent small strain behavior of these epoxies were separated into their bulk and shear components. The bulk component is related to brittle fracture, whereas the shear component is related to yielding. It can be shown that the rates of shear and bulk strain energy buildup for a given stress are uniquely determined by the values of Poisson's ratio, nu. It was found that nu increases as the monomer molecular weight of the epoxide resin used increases. This increase in nu can be associated with the low temperature beta relaxation. The effect of increasing cross-link density is to shift the beta relaxation to higher temperatures and to decrease the magnitude of the beta relaxation. Thus, increasing cross-link density decreases nu and increases the tendency towards brittle fracture.

  4. Process for improving mechanical properties of epoxy resins by addition of cobalt ions

    NASA Technical Reports Server (NTRS)

    Stoakley, D. M.; St.clair, A. K. (Inventor)

    1984-01-01

    A resin product useful as an adhesive, composite or casting resin is described as well as the process used in its preparation to improve its flexural strength mechanical property characteristics. Improved flexural strength is attained with little or no change in density, thermal stability or moisture resistance by chemically incorporating 1.2% to 10.6% by weight Co(3) ions in an epoxidized resin system.

  5. Epoxides and Soluble Epoxide Hydrolase in Cardiovascular Physiology

    PubMed Central

    Imig, John D.

    2013-01-01

    Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites that importantly contribute to vascular and cardiac physiology. The contribution of EETs to vascular and cardiac function is further influenced by soluble epoxide hydrolase (sEH) that degrades EETs to diols. Vascular actions of EETs include dilation and angiogenesis. EETs also decrease inflammation and platelet aggregation and in general act to maintain vascular homeostasis. Myocyte contraction and increased coronary blood flow are the two primary EET actions in the heart. EET cell signaling mechanisms are tissue and organ specific and provide significant evidence for the existence of EET receptors. Additionally, pharmacological and genetic manipulations of EETs and sEH have demonstrated a contribution for this metabolic pathway to cardiovascular diseases. Given the impact of EETs to cardiovascular physiology, there is emerging evidence that development of EET-based therapeutics will be beneficial for cardiovascular diseases. PMID:22298653

  6. Epoxides and soluble epoxide hydrolase in cardiovascular physiology.

    PubMed

    Imig, John D

    2012-01-01

    Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites that importantly contribute to vascular and cardiac physiology. The contribution of EETs to vascular and cardiac function is further influenced by soluble epoxide hydrolase (sEH) that degrades EETs to diols. Vascular actions of EETs include dilation and angiogenesis. EETs also decrease inflammation and platelet aggregation and in general act to maintain vascular homeostasis. Myocyte contraction and increased coronary blood flow are the two primary EET actions in the heart. EET cell signaling mechanisms are tissue and organ specific and provide significant evidence for the existence of EET receptors. Additionally, pharmacological and genetic manipulations of EETs and sEH have demonstrated a contribution for this metabolic pathway to cardiovascular diseases. Given the impact of EETs to cardiovascular physiology, there is emerging evidence that development of EET-based therapeutics will be beneficial for cardiovascular diseases.

  7. Mechanism of dissolution inhibition in phenolic resins

    NASA Astrophysics Data System (ADS)

    Lin, Chen-Chy; Yeh, Tung-Feng; Reiser, Arnost; Honda, Kenji; Beauchemin, Bernard T., Jr.

    1993-09-01

    It was suggested in an earlier communication that dissolution inhibition in phenolic resins comes about through the blocking of some of the hydrophilic OH-groups by a hydrophobic effect of the inhibitors. Honda et al. have shown that the hydrophobicity of the additive is not a sufficient condition, and that the polar groups of the inhibitor, such as the diazoquinone function, play an important role in the inhibition effect. They found that additives with very similar skeletal structures, but differing in the polar anchor group, have very different inhibition efficiencies in a common novolac resin. In this study we investigate the interaction between phenols and the anchor groups of the inhibitors by determining the equilibrium constants of their association reaction. From this, the fraction of bound acceptor groups (inhibitors) can be estimated for the casting solution of the films at the point of solidification. It can be shown that this fraction correlates quite satisfactorily with the inhibition effect of the additives used in Honda's study.

  8. Rheology Analysis of Thermosetting Resin Candidates for Use in Fuel Compacting

    SciTech Connect

    Trammell, Michael P.

    2012-06-01

    The AGR-1 and AGR-2 overcoating and compacting method utilized a wet mixing process where liquid resin (Hexion Durite SC-1008) was blended with natural and synthetic graphite to produce a graphite/resin matrix for overcoating. The matrix production method specified in the scale-up plan is a co-grinding jet mill process where powdered resin and graphite are fed at the same time into a jet mill. Because of the change in matrix production style, SC-1008 cannot be used in the jet milling process because it is a liquid. Also, attempts to dry out matrix made with SC-1008 for use in the overcoating process at B&W had mixed results. The SC-1008 resin became tacky when dried which caused the matrix to build up inside the overcoater. The scale- up jet milling/mixing and overcoating processes required that a suite of solid or powdered resins be identified. Suitable resins candidates were down selected to two resins, specifically Plenco 14838 and Hexion SD-1708. These resins are referred to as novolac or “two-stage” resins because they require the addition of a curing agent such as hexamethylenetetramine (Hexa) to promote an increased level of cross linking. The overcoating matrix is made of 3 components; natural graphite, synthetic graphite, and resin. The most influential component of the compacting process is the resin component and how it behaves with regards to time, temperature, and pressure. The selected scale-up resins are considered fast curing which means that the increase in molecular weight (curing) occurs over a relatively short period of time, ranging from a few seconds to several minutes depending on the temperature. To find the optimal compacting conditions it is useful to quantify this behavior. In this report, rheology is used to investigate viscosity as a function of time at specific temperatures for the previously mentioned resins.

  9. Kinetic Resolution in Asymmetric Epoxidation using Iminium Salt Catalysis

    PubMed Central

    2013-01-01

    The first reported examples of kinetic resolution in epoxidation reactions using iminium salt catalysis are described, providing up to 99% ee in the epoxidation of racemic cis-chromenes. PMID:23862687

  10. 40 CFR 721.10233 - Linear alkyl epoxide (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Linear alkyl epoxide (generic). 721... Substances § 721.10233 Linear alkyl epoxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as linear alkyl epoxide (PMN...

  11. 40 CFR 721.10233 - Linear alkyl epoxide (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Linear alkyl epoxide (generic). 721... Substances § 721.10233 Linear alkyl epoxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as linear alkyl epoxide (PMN...

  12. 40 CFR 721.10233 - Linear alkyl epoxide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Linear alkyl epoxide (generic). 721... Substances § 721.10233 Linear alkyl epoxide (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as linear alkyl epoxide (PMN...

  13. Asymmetric Epoxidation Using Hydrogen Peroxide as Oxidant.

    PubMed

    Wang, Chuan; Yamamoto, Hisashi

    2015-10-01

    Asymmetric epoxidation is one of the most important transformations in organic synthesis. Although tremendous progress was achieved in this field in the 1980s and 1990s, it is still desirable from both economical and ecological views to develop environmentally friendly catalytic epoxidation with a broad substrate scope. Hydrogen peroxide is a safe and cheap oxidant, which is easy to handle and generates water as the sole byproduct. Therefore, asymmetric epoxidation of olefins using hydrogen peroxide as oxidant has been a very active research field and has been investigated by many research groups in recent years. In this review, the exciting very recent developments of this rapidly growing area are surveyed and organized according to the catalyst systems.

  14. Organocatalytic Asymmetric Reactions of Epoxides: Recent Progress.

    PubMed

    Meninno, Sara; Lattanzi, Alessandra

    2016-03-01

    In this Minireview recent advances in the asymmetric reactions of meso and racemic epoxides promoted by organocatalysts is reviewed. Organic promoters, such as chiral phosphoric acids, amino- and peptidyl thioureas, and sulfinamides, have been successfully used for a variety of enantioselective transformations of epoxides under catalytic conditions, involving direct nucleophilic attack at the oxirane ring, base-catalysed β-eliminations and Brønsted acid catalysed 1,2-rearrangements. Accordingly, highly valuable enantioenriched 1,2-functionalised alcohols, carbonyl compounds and nitroepoxides are attainable. Dual activation of the reagents, provided by the organocatalysts, appears to be the most recurrent strategy, potentially suitable to face other unmet challenges in asymmetric ring-opening reactions of epoxides.

  15. Heterogeneous reactions of epoxides in acidic media.

    PubMed

    Lal, Vinita; Khalizov, Alexei F; Lin, Yun; Galvan, Maria D; Connell, Brian T; Zhang, Renyi

    2012-06-21

    Epoxides have recently been identified as important intermediates in the gas phase oxidation of hydrocarbons, and their hydrolysis products have been observed in ambient aerosols. To evaluate the role of epoxides in the formation of secondary organic aerosols (SOA), the kinetics and mechanism of heterogeneous reactions of two model epoxides, isoprene oxide and α-pinene oxide, with sulfuric acid, ammonium bisulfate, and ammonium sulfate have been investigated using complementary experimental techniques. Kinetic experiments using a fast flow reactor coupled to an ion drift-chemical ionization mass spectrometer (ID-CIMS) show a fast irreversible loss of the epoxides with the uptake coefficients (γ) of (1.7 ± 0.1) × 10(-2) and (4.6 ± 0.3) × 10(-2) for isoprene oxide and α-pinene oxide, respectively, for 90 wt % H(2)SO(4) and at room temperature. Experiments using attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) reveal that diols are the major products in ammonium bisulfate and dilute H(2)SO(4) (<25 wt %) solutions for both epoxides. In concentrated H(2)SO(4) (>65 wt %), acetals are formed from isoprene oxide, whereas organosulfates are produced from α-pinene oxide. The reaction of the epoxides with ammonium sulfate is slow and no products are observed. The epoxide reactions using bulk samples and Nuclear Magnetic Resonance (NMR) spectroscopy reveal the presence of diols as the major products for isoprene oxide, accompanied by aldehyde formation. For α-pinene oxide, organosulfate formation is observed with a yield increasing with the acidity. Large yields of organosulfates in all NMR experiments with α-pinene oxide are attributed to the kinetic isotope effect (KIE) from the use of deuterated sulfuric acid and water. Our results suggest that acid-catalyzed hydrolysis of epoxides results in the formation of a wide range of products, and some of the products have low volatility and contribute to SOA growth under ambient conditions

  16. Variation of Resin Properties Through the Thickness of Cured Samples

    NASA Technical Reports Server (NTRS)

    1984-01-01

    It is the purpose of this work to gain knowledge of the glassy materials used as matrices in composites and to study the homogeneity resulting from the curing process. An attempt is made to link the glass transition quantitatively with the presence of a given material. Expoxy resins containing various amounts of hardener (TGDDM/DDS system) were cured in a muffle furnace at 473 K for seven hours. The glass transition temperature, T sub g versus weight minus percent of hardener in the epoxy resin were measured. A limit was rapidly reached in T sub g at only two percent hardener. Thus, the glass transition of the fully cured epoxy-amine matrix seems not much different from the epoxide-epoxide cure. The T sub g versus cure-time for the epoxide-epoxide reaction was also studied. My 720 was cured by itself in an oil bath at 473 K for different lengths of time. The T sub g was found to increase exponentially with the cure time, and a maximum T sub g of about 450 K was reached after eleven hours. The reaction was found to be inhibited by running the sample under argon.

  17. Polymerization of epoxidized triglycerides with fluorosulfonic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of triglycerides as agri-based renewable raw materials for the development of new products is highly desirable in view of uncertain future petroleum prices. A new method of polymerizing epoxidized soybean oil has been devised with the use of fluorosulfonic acid. Depending on the reaction con...

  18. Alkene epoxidation employing metal nitro complexes

    DOEpatents

    Andrews, M.A.; Cheng, C.W.; Kelley, K.P.

    1982-07-15

    Process for converting alkenes to form epoxides utilizes transition metal nitro complexes of the formula: M(RCN)/sub 2/XNO/sub 2/ wherein M is palladium or platinum, R is an alkyl or aryl group containing up to 12 carbon atoms, and X is a monoanionic, monodentate ligand such as chlorine, optionally in the presence of molecular oxygen.

  19. Epoxidation of Methyl Oleate using Heterogeneous Catalyst

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work we studied the catalytic activity of commercial alumina, and laboratory synthesized alumina doped with Lewis acid metals, in the epoxidation of methyl oleate with aqueous hydrogen peroxide. It was observed that the reaction yields increased when the amount of catalyst, the quantity of ...

  20. Limonene-1,2-Epoxide Hydrolase from Rhodococcus erythropolis DCL14 Belongs to a Novel Class of Epoxide Hydrolases

    PubMed Central

    van der Werf, Mariët J.; Overkamp, Karin M.; de Bont, Jan A. M.

    1998-01-01

    An epoxide hydrolase from Rhodococcus erythropolis DCL14 catalyzes the hydrolysis of limonene-1,2-epoxide to limonene-1,2-diol. The enzyme is induced when R. erythropolis is grown on monoterpenes, reflecting its role in the limonene degradation pathway of this microorganism. Limonene-1,2-epoxide hydrolase was purified to homogeneity. It is a monomeric cytoplasmic enzyme of 17 kDa, and its N-terminal amino acid sequence was determined. No cofactor was required for activity of this colorless enzyme. Maximal enzyme activity was measured at pH 7 and 50°C. None of the tested inhibitors or metal ions inhibited limonene-1,2-epoxide hydrolase activity. Limonene-1,2-epoxide hydrolase has a narrow substrate range. Of the compounds tested, only limonene-1,2-epoxide, 1-methylcyclohexene oxide, cyclohexene oxide, and indene oxide were substrates. This report shows that limonene-1,2-epoxide hydrolase belongs to a new class of epoxide hydrolases based on (i) its low molecular mass, (ii) the absence of any significant homology between the partial amino acid sequence of limonene-1,2-epoxide hydrolase and amino acid sequences of known epoxide hydrolases, (iii) its pH profile, and (iv) the inability of 2-bromo-4′-nitroacetophenone, diethylpyrocarbonate, 4-fluorochalcone oxide, and 1,10-phenanthroline to inhibit limonene-1,2-epoxide hydrolase activity. PMID:9748436

  1. Sub-micrometer Novolac-Derived Carbon Beads for High Performance Supercapacitors and Redox Electrolyte Energy Storage.

    PubMed

    Krüner, Benjamin; Lee, Juhan; Jäckel, Nicolas; Tolosa, Aura; Presser, Volker

    2016-04-13

    Carbon beads with sub-micrometer diameter were produced with a self-emulsifying novolac-ethanol-water system. A physical activation with CO2 was carried out to create a high microporosity with a specific surface area varying from 771 (DFT) to 2237 m(2)/g (DFT) and a total pore volume from 0.28 to 1.71 cm(3)/g. The carbon particles conserve their spherical shape after the thermal treatments. The controllable porosity of the carbon spheres is attractive for the application in electrochemical double layer capacitors. The electrochemical characterization was carried out in aqueous 1 M Na2SO4 (127 F/g) and organic 1 M tetraethylammonium tetrafluoroborate in propylene carbonate (123 F/g). Furthermore, an aqueous redox electrolyte (6 M KI) was tested with the highly porous carbon and a specific energy of 33 W·h/kg (equivalent to 493 F/g) was obtained. In addition to a high specific capacitance, the carbon beads also provide an excellent rate performance at high current and potential in all tested electrolytes, which leads to a high specific power (>11 kW/kg) with an electrode thickness of ca. 200 μm. PMID:26996252

  2. Plastic casting resin poisoning

    MedlinePlus

    Epoxy poisoning; Resin poisoning ... Epoxy and resin can be poisonous if they are swallowed or their fumes are breathed in. ... Plastic casting resins are found in various plastic casting resin products.

  3. Fungal epoxide hydrolases: new landmarks in sequence-activity space.

    PubMed

    Smit, Martha S

    2004-03-01

    Epoxide hydrolases are useful catalysts for the hydrolytic kinetic resolution of epoxides, which are sought after intermediates for the synthesis of enantiopure fine chemicals. The epoxide hydrolases from Aspergillus niger and from the basidiomycetous yeasts Rhodotorula glutinis and Rhodosporidium toruloides have demonstrated potential as versatile, user friendly biocatalysts for organic synthesis. A recombinant A. niger epoxide hydrolase, produced by an overproducing A. niger strain, is already commercially available and recombinant yeast epoxide hydrolases expressed in Escherichia coli have shown excellent results. Within the vast body of activity information on the one hand and gene sequence information on the other hand, the epoxide hydrolases from the Rhodotorula spp. and A. niger stand out because we have sequence information as well as activity information for both the wild-type and recombinant forms of these enzymes.

  4. Thermochemical Studies of Epoxides and Related Compounds

    PubMed Central

    Morgan, Kathleen M.; Ellis, Jamie A.; Lee, Joseph; Fulton, Ashley; Wilson, Shavonda L.; Dupart, Patrick S.; Dastoori, Rosanna

    2013-01-01

    Gas phase heats of formation for the our butene oxide isomers are reported. They were obtained by measuring the condensed-phase heat of reduction to the corresponding alcohol using reaction calorimetry. Heats of vaporization were determined, and allow gas-phase heats of formation to be obtained. The experimental measurements are compared to calculations obtained using a variety of computational methods. Overall, the G3 and CBS-APNO methods agree quite well with the experimental data. The influence of alkyl substituents on epoxide stability is discussed. Comparisons to alkenes, cyclopropanes, aziridines, thiiranes and phosphiranes are also made. Isodesmic-type reactions were used to determine strain energies of the epoxides and related compounds with various substituents. PMID:23551240

  5. Simple Epoxide Formation for the Organic Laboratory Using Oxone

    ERIC Educational Resources Information Center

    Broshears, Williams C.; Esteb, John J.; Richter, Jeremy; Wilson, Anne M.

    2004-01-01

    Epoxide chemistry is widely used in organic synthesis and regularly discussed in organic chemistry textbooks. An experiment to generate dimethyldioxirane in situ from acetone using Oxone is explained.

  6. Composite resins.

    PubMed

    Leinfelder, K F

    1985-04-01

    The interest in posterior composite resins has grown rapidly during the last several years. Much of the interest has been initiated by a demand for esthetic dentistry. Some has developed as a result of a concern by some for mercury sensitivity. Despite their growing popularity, a number of major problems persist. Some of these deal with the restorative material, whereas others relate to the clinical techniques associated with their use. Before the clinician considers the use of composite resins in posterior teeth, he or she should be familiar with conditions that strongly influence clinical behavior.

  7. Photobleachable Diazonium Salt-Phenolic Resin Two-Layer Resist System

    NASA Astrophysics Data System (ADS)

    Uchino, Shou-ichi; Iwayanagi, Takao; Hashimoto, Michiaki

    1988-01-01

    This article describes a new negative two-layer photoresist system formed by a simple, successive spin-coating method. An aqueous acetic acid solution of diazonium salt and poly(N-vinylpyrrolidone) is deposited so as to contact a phenolic resin film spin-coated on a silicon wafer. The diazonium salt diffuses into the phenolic resin layer after standing for several minutes. The residual solution on the phenolic resin film doped with diazonium salt is spun to form the diazonium salt-poly(N-vinylpyrrolidone) top layer. This forms a uniform two-layer resist without phase separation or striation. Upon UV exposure, the diazonium salt in the top layer bleaches to act as a CEL dye, while the diazonium salt in the bottom layer decomposes to cause insolubilization. Half μm line-and-space patterns are obtained with an i-line stepper using 4-diazo-N,N-dimethylaniline chloride zinc chloride double salt as the diazonium salt and a cresol novolac resin for the bottom polymer layer. The resist formation processes, insolubilization mechanism, and the resolution capability of the new two-layer resist are discussed.

  8. Effect of Monomer Structure on Curing Behavior, CO2 Solubility, and Gas Permeability of Ionic Liquid-Based Epoxy-Amine Resins and Ion-Gels

    SciTech Connect

    McDanel, WM; Cowan, MG; Barton, JA; Gin, DL; Noble, RD

    2015-04-29

    New imidazolium- and pyrrolidinium-based bis(epoxide)-functionalized ionic liquid (IL) monorners were synthesized: and reacted with multifunctional amine monomers to produce cross-linked, epoxy-amine poly(ionic liquid) (PIL) resins and PIL/IL ion-gel membranes. The length and chemical nature (i.e., alkyl versus ether) between the irrildazolium group and epokitie groups were studied to determine their effects on CO2 affinity. The CO2 uptake (millimoles per gram) of the epoxy amine resins (between 0.1 and 1 mmol/g) was found to depend predominately on the epoxide-to-amine ratio and the bis(epoxide) IL molecular weight. The effect of using a primary versus a secondary amine-containing multifunctional monoiner was also assessed for the resin-synthesis. Secondary amines can increase CO2 permeability but also increase the iime required for biS(epoxide) coriversion. When either the epoxide or athine monomer structure is changed, the CO2 solubility and permeability of the resulting PIL resins and ion-sel membranes can be tuned.

  9. Curing agent for polyepoxides and epoxy resins and composites cured therewith. [preventing carbon fiber release

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P.; Vannucci, R. D. (Inventor)

    1981-01-01

    A curing for a polyepoxide is described which contains a divalent aryl radical such as phenylene a tetravalent aryl radical such as a tetravalent benzene radical. An epoxide is cured by admixture with the curing agent. The cured epoxy product retains the usual properties of cured epoxides and, in addition, has a higher char residue after burning, on the order of 45% by weight. The higher char residue is of value in preventing release to the atmosphere of carbon fibers from carbon fiber-epoxy resin composites in the event of burning of the composite.

  10. Epoxide ring-opening and Meinwald rearrangement reactions of epoxides catalyzed by mesoporous aluminosilicates.

    PubMed

    Robinson, Mathew W C; Davies, A Matthew; Buckle, Richard; Mabbett, Ian; Taylor, Stuart H; Graham, Andrew E

    2009-06-21

    Mesoporous aluminosilicates efficiently catalyze the ring-opening of epoxides to produce beta-alkoxyalcohols in high yields under extremely mild reaction conditions. These materials also catalyze the corresponding Meinwald rearrangement in non-nucleophilic solvents to give aldehydes which can be trapped in situ to provide the corresponding acetals in an efficient tandem process.

  11. Functionalized oxepines via fragmentation of highly strained epoxides.

    PubMed

    Leyhane, Andrew J; Snapper, Marc L

    2006-11-01

    [Structure: see text] Epoxidation of highly strained cyclobutenes followed by thermal rearrangement provides a new entry into oxepine-containing bicyclo[5.3.0] ring systems. In contrast to the rearrangement of the corresponding cyclopropanated systems, the strained epoxides in this study are believed to fragment through two competing pathways leading to a mixture of diastereomeric 5-7 ring systems.

  12. Epoxides--is there a human health problem?

    PubMed Central

    Manson, M M

    1980-01-01

    The purpose of this review is to consider whether epoxides represent a hazard to human health. Possible means of occupational and non-occupational exposure are discussed with reference to the production and uses of industrially important compounds and other epoxides, such as naturally occurring plant and fungal products. In addition to epoxides themselves, unsaturated compounds that may be metabolised in vivo to epoxides are included, since this appears to be a further important means of exposure. The toxicology, in particular carcinogenicity and mutagenicity, is discussed, along with a brief outline of the biochemistry such as metabolism, binding to cell constituents, and DNA repair mechanisms. The question of interactions between different epoxides in vivo is also raised. PMID:7004476

  13. Identification of Epoxide-Derived Metabolite(s) of Benzbromarone.

    PubMed

    Wang, Kai; Wang, Hui; Peng, Ying; Zheng, Jiang

    2016-04-01

    Benzbromarone (BBR) is a benzofuran derivative that has been quite useful for the treatment of gout; however, it was withdrawn from European markets in 2003 because of reported serious incidents of drug-induced liver injury. BBR-induced hepatotoxicity has been suggested to be associated with the formation of a quinone intermediate. The present study reported epoxide-derived intermediate(s) of BBR. An N-acetylcysteine (NAC) conjugate derived from epoxide metabolite(s) was detected in both microsomal incubations of BBR and urine samples of mice treated with BBR. The NAC conjugate was identified as 6-NAC BBR. Ketoconazole suppressed the bioactivation of BBR to the epoxide intermediate(s), and the CYP3A subfamily was the primary enzyme responsible for the formation of the epoxide(s). The present study provided new information on metabolic activation of BBR. PMID:26792818

  14. NMR studies on epoxidations of allenamides. Evidence for formation of nitrogen-substituted allene oxide and spiro-epoxide via trapping experiments.

    PubMed

    Rameshkumar, C; Xiong, Hui; Tracey, Michael R; Berry, Craig R; Yao, Letitia J; Hsung, Richard P

    2002-02-22

    Two epoxidations of chiral allenamides are described here. While treatment with m-CPBA led to highly stereoselective formation of an alpha-keto aminal that can be useful synthetically, DMDO oxidation led to conclusive evidence for both nitrogen-substituted allene oxide (via mono-epoxidation) and spiro-epoxide (via bis-epoxidation) using intramolecular nucleophilic trapping experiments. NMR studies provide reliable evidence for a 3-oxetanone that can be derived from the spiro-epoxide and also suggest the presence of an allene oxide. Despite a facile second epoxidation as evidenced by the predominant formation of the 3-oxetanone, in the presence of furan, [4 + 3] cycloaddition of the nitrogen-substituted allene oxide or oxyallyl cation with furan occurs faster than the second epoxidation efficiently leading to cycloadducts. This rate difference plays an invaluable role for the success of a stereoselective sequential epoxidation-[4 + 3] cycloaddition reaction via DMDO epoxidations of chiral allenamides.

  15. Regiospecific Epoxidation of Carvone: A Discovery-Oriented Experiment for Understanding the Selectivity and Mechanism of Epoxidation Reactions

    ERIC Educational Resources Information Center

    Mak, Kendrew K. W.; Lai, Y. M.; Siu, Yuk-Hong

    2006-01-01

    This article describes a discovery-oriented experiment for demonstrating the selectivity of two epoxidation reactions. Peroxy acids and alkaline H[subscript 2]O[subscript 2] are two commonly used reagents for alkene epoxidation. The former react preferentially with electron-rich alkenes while the latter works better with alpha,beta-unsaturated…

  16. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate

    PubMed Central

    Miao, Shida; Zhu, Wei; Castro, Nathan J.; Nowicki, Margaret; Zhou, Xuan; Cui, Haitao; Fisher, John P.; Zhang, Lijie Grace

    2016-01-01

    Photocurable, biocompatible liquid resins are highly desired for 3D stereolithography based bioprinting. Here we solidified a novel renewable soybean oil epoxidized acrylate, using a 3D laser printing technique, into smart and highly biocompatible scaffolds capable of supporting growth of multipotent human bone marrow mesenchymal stem cells (hMSCs). Porous scaffolds were readily fabricated by simply adjusting the printer infill density; superficial structures of the polymerized soybean oil epoxidized acrylate were significantly affected by laser frequency and printing speed. Shape memory tests confirmed that the scaffold fixed a temporary shape at −18 °C and fully recovered its original shape at human body temperature (37 °C), which indicated the great potential for 4D printing applications. Cytotoxicity analysis proved that the printed scaffolds had significant higher hMSC adhesion and proliferation than traditional polyethylene glycol diacrylate (PEGDA), and had no statistical difference from poly lactic acid (PLA) and polycaprolactone (PCL). This research is believed to significantly advance the development of biomedical scaffolds with renewable plant oils and advanced 3D fabrication techniques. PMID:27251982

  17. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate.

    PubMed

    Miao, Shida; Zhu, Wei; Castro, Nathan J; Nowicki, Margaret; Zhou, Xuan; Cui, Haitao; Fisher, John P; Zhang, Lijie Grace

    2016-06-02

    Photocurable, biocompatible liquid resins are highly desired for 3D stereolithography based bioprinting. Here we solidified a novel renewable soybean oil epoxidized acrylate, using a 3D laser printing technique, into smart and highly biocompatible scaffolds capable of supporting growth of multipotent human bone marrow mesenchymal stem cells (hMSCs). Porous scaffolds were readily fabricated by simply adjusting the printer infill density; superficial structures of the polymerized soybean oil epoxidized acrylate were significantly affected by laser frequency and printing speed. Shape memory tests confirmed that the scaffold fixed a temporary shape at -18 °C and fully recovered its original shape at human body temperature (37 °C), which indicated the great potential for 4D printing applications. Cytotoxicity analysis proved that the printed scaffolds had significant higher hMSC adhesion and proliferation than traditional polyethylene glycol diacrylate (PEGDA), and had no statistical difference from poly lactic acid (PLA) and polycaprolactone (PCL). This research is believed to significantly advance the development of biomedical scaffolds with renewable plant oils and advanced 3D fabrication techniques.

  18. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate.

    PubMed

    Miao, Shida; Zhu, Wei; Castro, Nathan J; Nowicki, Margaret; Zhou, Xuan; Cui, Haitao; Fisher, John P; Zhang, Lijie Grace

    2016-01-01

    Photocurable, biocompatible liquid resins are highly desired for 3D stereolithography based bioprinting. Here we solidified a novel renewable soybean oil epoxidized acrylate, using a 3D laser printing technique, into smart and highly biocompatible scaffolds capable of supporting growth of multipotent human bone marrow mesenchymal stem cells (hMSCs). Porous scaffolds were readily fabricated by simply adjusting the printer infill density; superficial structures of the polymerized soybean oil epoxidized acrylate were significantly affected by laser frequency and printing speed. Shape memory tests confirmed that the scaffold fixed a temporary shape at -18 °C and fully recovered its original shape at human body temperature (37 °C), which indicated the great potential for 4D printing applications. Cytotoxicity analysis proved that the printed scaffolds had significant higher hMSC adhesion and proliferation than traditional polyethylene glycol diacrylate (PEGDA), and had no statistical difference from poly lactic acid (PLA) and polycaprolactone (PCL). This research is believed to significantly advance the development of biomedical scaffolds with renewable plant oils and advanced 3D fabrication techniques. PMID:27251982

  19. Remote cure monitoring of polymeric resins by laser Raman spectroscopy

    SciTech Connect

    Hong, K.C.; Vess, T.M.; Lyon, R.E.; Myrick, M.L.

    1993-05-01

    The validity of using Raman spectroscopy to monitor the cure chemistries of amine-cured epoxy is demonstrated by correlating NIR absorbance measurements with Raman measurements for a concentration series of bisphenol-A diglycidylether in its own reaction product with diethylamine. The intensity of a normalized Raman peak at 1240 cm{sup {minus}l}, assigned to the epoxide functionality, was found to be linearly related to the concentration of epoxide groups in the resin mixtures. Also, it is shown that the Ciba-Geigy Matrimid 5292 system can be monitored by ex-situ FT-Raman spectroscopy by observing changes in the carbonyl stretching (1773 cm{sup {minus}1}) or the C=C stretching of maleimide (1587 cm{sup {minus}1}) during the cure reaction.

  20. Inhibiting an epoxide hydrolase virulence strategy protects CFTR**

    PubMed Central

    Bahl, Christopher D.; Hvorecny, Kelli L.; Bomberger, Jennifer M.; Stanton, Bruce A.; Hammock, Bruce D.; Morisseau, Christophe; Madden, Dean R.

    2015-01-01

    Opportunistic pathogens exploit diverse strategies to sabotage host defenses. Pseudomonas aeruginosa secretes the CFTR inhibitory factor Cif and thus triggers loss of CFTR, an ion channel required for airway mucociliary defense. However, Cif's mechanism of action has remained unclear. It catalyzes epoxide hydrolysis, but there is no known role for natural epoxides in CFTR regulation. Here, we show that Cif's hydrolase activity is strictly required for its effects on CFTR. We also uncover a small-molecule inhibitor that protects this key component of the mucociliary defense system. Our results provide a basis for targeting Cif's distinctive virulence chemistry and suggest an unanticipated role of physiological epoxides in intracellular protein trafficking. PMID:26136396

  1. Orally Bioavailable Potent Soluble Epoxide Hydrolase Inhibitors

    PubMed Central

    Hwang, Sung Hee; Tsai, Hsing-Ju; Liu, Jun-Yan; Morisseau, Christophe; Hammock, Bruce D.

    2008-01-01

    A series of N,N′-disubstituted ureas having a conformationally restricted cis- or trans-1,4-cyclohexane α to the urea were prepared and tested as soluble epoxide hydrolase (sEH) inhibitors. This series of compounds showed low nanomolar to picomolar activities against recombinant human sEH. Both isomers showed similar potencies, but the trans isomers were more metabolically stable in human hepatic microsomes. Furthermore, these new potent inhibitors show a greater metabolic stability in vivo than previously described sEH inhibitors. We demonstrated that trans-4-[4-(3-adamantan-1-ylureido)cyclohexyloxy]benzoic acid 13g (t-AUCB, IC50 = 1.3 ± 0.05 nM) had excellent oral bioavailability (98%, n = 2) and blood area under the curve in dogs and was effective in vivo to treat hypotension in lipopolysaccharide challenged murine models. PMID:17616115

  2. Investigation of copper(II) tetrafluoroborate catalysed epoxide opening

    PubMed Central

    Capes, Amy S.; Crossman, Arthur T.; Webster, Lauren A.; Ferguson, Michael A.J.; Gilbert, Ian H.

    2011-01-01

    We report the extension of the copper(II) tetrafluoroborate catalysed opening of epoxides with alcohols to include a wider variety of alcohols, a range of solvents and a method to purify the products from the reaction. PMID:22505782

  3. Molecular Epoxidation Reactions Catalyzed by Rhenium, Molybdenum, and Iron Complexes.

    PubMed

    Kück, Jens W; Reich, Robert M; Kühn, Fritz E

    2016-02-01

    Epoxidations are of high relevance in many organic syntheses, both in industry and academia. In this personal account, the development of rhenium, molybdenum, and iron complexes in molecular epoxidation catalysis is presented. Methyltrioxorhenium (MTO) is the benchmark catalyst for these reactions, with a thoroughly investigated mechanism and reactivity profile. More recently, highly active molecular molybdenum and iron catalysts have emerged, challenging the extraordinary role of MTO in epoxidation catalysis with high turnover frequencies (TOFs). This development is highlighted in its use of cheaper, more readily available metals, and the challenges of using base metals in catalysis are discussed. These results show the promise that relatively cheap and abundant metals, such as molybdenum and iron, hold for the future of epoxidation catalysis. PMID:26776087

  4. Genotoxicity characteristics of reverse diol-epoxides of chrysene.

    PubMed

    Glatt, H; Wameling, C; Elsberg, S; Thomas, H; Marquardt, H; Hewer, A; Phillips, D H; Oesch, F; Seidel, A

    1993-01-01

    Trans-3,4-dihydroxy-3,4-dihydrochrysene (chrysene-3,4-diol), a major metabolite of chrysene, is further metabolized by rat liver enzymes to products which effectively revert the his- Salmonella typhimurium strain TA98 to histidine prototrophy, but are only weakly mutagenic in strain TA100 and in Chinese hamster V79 cells (acquisition of resistance to 6-thioguanine). The liver enzyme mediated mutagenicity of chrysene-3,4-diol is substantially enhanced in the presence of 1,1,1-trichloropropene 2,3-oxide, an inhibitor of microsomal epoxide hydrolase. The predominant metabolites of chrysene-3,4-diol, namely the anti- and syn-isomers of its 1,2-oxide (termed reverse diol-epoxides), proved to be extraordinarily effective mutagens in S.typhimurium strain TA98, but were only moderately active in strains TA100 and TA104, and in the SOS induction in Escherichia coli PQ37. These genotoxicity spectra in bacteria are completely different from those observed with the bay-region diol-epoxides of chrysene and 3-hydroxychrysene. In V79 cells, the reverse diol-epoxides formed low levels of DNA adducts and were very weak inducers of gene mutations. In M2 mouse prostate cells, however, high numbers of transformed foci were induced by chrysene-3,4-diol and its diastereomeric 1,2-oxides. Chrysene-3,4-diol was somewhat more potent than chrysene-1,2-diol. The potency of both reverse diol-epoxides was similar to that of the syn-diastereomers of the bay-region diol-epoxides of chrysene and 3-hydroxychrysene, but lower than that of their anti-diastereomers. The reverse diol-epoxides of chrysene, unlike the bay-region diol-epoxides, were inactivated by purified microsomal epoxide hydrolase. Noteworthy findings were also made with regard to the chemical stability of the diol-epoxides in buffer, determined from the decline in mutagenicity after preincubation in the absence of the target cells. Despite its lower delta Edeloc/beta value for the formation of the benzylic carbocation, anti

  5. Imide modified epoxy matrix resins

    NASA Technical Reports Server (NTRS)

    Scola, D. A.

    1984-01-01

    The results of a program designed to develop tough imide modified epoxy resins cured by bisimide amine (BIA) hardeners are described. State-of-the-art epoxides MY720 and DER383 were used, and four bismide amines were evaluated. These were the BIA's derived from the 6F anhydride (4,4'-(hexafluoroisopropylidene) bis(phthalic anhydride) and the diamines 3,3'-diaminodiphynyl sulfone, 4,4'-oxygianiline, 4,4'-methylene dianiline, and 1,12-dodecane diamine. A key intermediate, designated 6F anhydride, is required for the synthesis of the bisimide amines. Reaction parameters to synthesize a precursor to the 6F anhydride (6FHC) in high yields were investigated. The catalyst trifluoromethane sulfonic acid was studied. Although small scale runs yielded the 6FHC in 50 percent yield, efforts to ranslate these results to a larger scale synthesis gave the 6FHC in only 9 percent yield. Results show that the concept of using bisimide amine as curing agents to improve the toughness properties of epoxies is valid.

  6. Immunohistochemical study of epoxide hydrolase induced by trichloroethylene in rat liver

    SciTech Connect

    Kawamoto, T.; Hobara, T.; Ogino, K.; Takemoto, T.; Nakamura, K.; Imamura, A.; Koshiro, A.; Kobayashi, H.; Iwamoto, S.; Sakai, T.

    1987-10-01

    Epoxide hydrolase catalyzes the hydrolation of potentially toxic, electrophilic epoxides that are often generated during cytochrome P-450 catalyzed monooxigenation, forming the corresponding transdihydrodiols. It is well-known that trichloroethylene is metabolized by cytochrome P-450 containing mixed-function oxidase systems to trichloroethylene oxide, which decomposes to other metabolites. As trichloroethylene is an epoxide, epoxide hydrolase is suspected to catalyze the hydrolation of trichloroethylene oxide. No reports have appeared about the relationship between trichloroethylene and epoxide hydrolase. In this report, the authors studied the effect of trichloroethylene on epoxide hydrolase immunohistochemically.

  7. Formation of furan fatty alkyl esters from their bis-epoxide fatty esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epoxidation of vegetable oils and consecutive epoxide ring-opening reaction is a widely investigated path for producing biobased lubricants and polymers. The reaction mechanism and products are considered well-studied and known. In the current study, the reactions of epoxidized alkyl soyate with fou...

  8. 40 CFR 721.10210 - Soybean oil, epoxidized, reaction products with diethanolamine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Soybean oil, epoxidized, reaction... Significant New Uses for Specific Chemical Substances § 721.10210 Soybean oil, epoxidized, reaction products... chemical substance identified as soybean oil, epoxidized, reaction products with diethanolamine (PMN...

  9. 40 CFR 721.10210 - Soybean oil, epoxidized, reaction products with diethanolamine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Soybean oil, epoxidized, reaction... Significant New Uses for Specific Chemical Substances § 721.10210 Soybean oil, epoxidized, reaction products... chemical substance identified as soybean oil, epoxidized, reaction products with diethanolamine (PMN...

  10. 40 CFR 721.10210 - Soybean oil, epoxidized, reaction products with diethanolamine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Soybean oil, epoxidized, reaction... Significant New Uses for Specific Chemical Substances § 721.10210 Soybean oil, epoxidized, reaction products... chemical substance identified as soybean oil, epoxidized, reaction products with diethanolamine (PMN...

  11. 40 CFR 721.10210 - Soybean oil, epoxidized, reaction products with diethanolamine.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Soybean oil, epoxidized, reaction... Significant New Uses for Specific Chemical Substances § 721.10210 Soybean oil, epoxidized, reaction products... chemical substance identified as soybean oil, epoxidized, reaction products with diethanolamine (PMN...

  12. Cu-catalyzed cross-coupling reactions of epoxides with organoboron compounds.

    PubMed

    Lu, Xiao-Yu; Yang, Chu-Ting; Liu, Jing-Hui; Zhang, Zheng-Qi; Lu, Xi; Lou, Xin; Xiao, Bin; Fu, Yao

    2015-02-11

    A copper-catalyzed cross-coupling reaction of epoxides with arylboronates is described. This reaction is not limited to aromatic epoxides, because aliphatic epoxides are also suitable substrates. In addition, N-sulfonyl aziridines can be successfully converted into the products. This reaction provides convenient access to β-phenethyl alcohols, which are valuable synthetic intermediates. PMID:25564373

  13. Sulfuric acid as a catalyst for ring-opening of biobased bis-epoxides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetable oils can be relatively and easily transformed into bio-based epoxides. Because of this, the acid-catalyzed epoxide ring-opening has been explored for the preparation of bio-based lubricants and polymers. Detailed model studies are carried out only with mono-epoxide made from methyl oleate,...

  14. Soluble epoxide hydrolase: Gene structure, expression and deletion

    PubMed Central

    Harris, Todd R.; Hammock, Bruce D.

    2013-01-01

    Mammalian soluble epoxide hydrolase (sEH) converts epoxides to their corresponding diols through the addition of a water molecule. sEH readily hydrolyzes lipid signaling molecules, including the epoxyeicosatrienoic acids (EETs), epoxidized lipids produced from arachidonic acid by the action of cytochrome p450s. Through its metabolism of the EETs and other lipid mediators, sEH contributes to the regulation of vascular tone, nociception, angiogenesis and the inflammatory response. Because of its central physiological role in disease states such as cardiac hypertrophy, diabetes, hypertension, and pain sEH is being investigated as a therapeutic target. This review begins with a brief introduction to sEH protein structure and function. sEH evolution and gene structure are then discussed before human small nucleotide polymorphisms and mammalian gene expression are described in the context of several disease models. The review ends with an overview of studies that have employed the sEH knockout mouse model. PMID:23701967

  15. Epoxide Chemistry: Guided Inquiry Experiment Emphasizing Structure Determination and Mechanism

    NASA Astrophysics Data System (ADS)

    Krishnamurty, H. G.; Jain, Niveta; Samby, Kiran

    2000-04-01

    This paper presents an operationally simple three-step synthesis of an a-hydroxy acid based on epoxide chemistry. The focus of the experiment is on the preparation of the chalcone epoxide and its reaction with hot alcoholic alkali. The experiment leads to an unpredicted reaction product. Its structure is established as 2-benzyl-2-phenylglycollic acid by chemical and spectroscopic analysis. The hydroxyacid is a good example to bring home an important NMR principle: the nonequivalence of hydrogens adjacent to a stereogenic center. The formation of the alpha-hydroxy acid is a mechanistic puzzle. A stepwise mechanism can be developed applying lecture-based organic chemistry concepts. On the other hand, acid-catalyzed (H2SO4, BF3) reaction of the chalcone epoxide gives benzoylphenylacetaldehyde. The exercise can be used as a multistep organic chemistry experiment. It also gives students a research-type experience.

  16. Soluble epoxide hydrolase: gene structure, expression and deletion.

    PubMed

    Harris, Todd R; Hammock, Bruce D

    2013-09-10

    Mammalian soluble epoxide hydrolase (sEH) converts epoxides to their corresponding diols through the addition of a water molecule. sEH readily hydrolyzes lipid signaling molecules, including the epoxyeicosatrienoic acids (EETs), epoxidized lipids produced from arachidonic acid by the action of cytochrome p450s. Through its metabolism of the EETs and other lipid mediators, sEH contributes to the regulation of vascular tone, nociception, angiogenesis and the inflammatory response. Because of its central physiological role in disease states such as cardiac hypertrophy, diabetes, hypertension, and pain sEH is being investigated as a therapeutic target. This review begins with a brief introduction to sEH protein structure and function. sEH evolution and gene structure are then discussed before human small nucleotide polymorphisms and mammalian gene expression are described in the context of several disease models. The review ends with an overview of studies that have employed the sEH knockout mouse model. PMID:23701967

  17. The oxidation of copper catalysts during ethylene epoxidation.

    PubMed

    Greiner, M T; Jones, T E; Johnson, B E; Rocha, T C R; Wang, Z J; Armbrüster, M; Willinger, M; Knop-Gericke, A; Schlögl, R

    2015-10-14

    The oxidation of copper catalysts during ethylene epoxidation was characterized using in situ photoemission spectroscopy and electron microscopy. Gas chromatography, proton-transfer reaction mass spectrometry and electron-ionization mass spectrometry were used to characterize the catalytic properties of the oxidized copper. We find that copper corrodes during epoxidation in a 1 : 1 mixture of oxygen and ethylene. The catalyst corrosion passes through several stages, beginning with the formation of an O-terminated surface, followed by the formation of Cu2O scale and eventually a CuO scale. The oxidized catalyst exhibits measurable activity for ethylene epoxidation, but with a low selectivity of <3%. Tests on pure Cu2O and CuO powders confirm that the oxides intrinsically exhibit partial-oxidation activity. Cu2O was found to form acetaldehyde and ethylene epoxide in roughly equal amounts (1.0% and 1.2% respectively), while CuO was found to form much less ethyl aldehyde than ethylene epoxide (0.1% and 1.0%, respectively). Metallic copper catalysts were examined in extreme dilute-O2 epoxidation conditions to try and keep the catalyst from oxidizing during the reaction. It was found that in feed of 1 part O2 to 2500 parts C2H4 (PO2 = 1.2 × 10(-4) mbar) the copper surface becomes O-terminated. The O-terminated surface was found to exhibit partial-oxidation selectivity similar to that of Cu2O. With increasing O2 concentration (>8/2500) Cu2O forms and eventually covers the surface.

  18. A strategy for position-selective epoxidation of polyprenols.

    PubMed

    Gnanadesikan, Vijay; Corey, E J

    2008-06-25

    An effective strategy has been developed for the efficient site-selective epoxidation of poylolefinic isoprenoid alcohols, based on the use of an internal control element for intramolecular reaction. The approach is illustrated by application to a series of polyisoprenoid alcohols (polyprenols) at substrate concentration of 0.5 mM. With polyprenol substrates having the hydroxyl function at one terminus, the internal epoxidation can be directed at the double bond of the polyprenol, which is either four or five away from the terminal hydroxyprenyl subunit.

  19. DEVELOPMENT OF METABOLICALLY STABLE INHIBITORS OF MAMMALIAN MICROSOMAL EPOXIDE HYDROLASE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The microsomal epoxide hydrolase (mEH) plays a significant role in the metabolism of xenobiotics such as polyaromatic toxicants. Additionally, polymorphism studies have underlined a potential role of this enzyme in relation to a number of diseases, such as emphysema, spontaneous abortion, eclampsia ...

  20. Stability and friction reducing properties of epoxidized oleochemical methyl esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of oleochemicals as biobased replacements for petrochemical lubricants is an important area of study. Physical properties of the epoxidized fatty esters derived from vegetable oil are reported and compared to their olefinic counterparts. Overall the frictional behavior of epoxy methyl olea...

  1. A Photorhabdus natural product inhibits insect juvenile hormone epoxide hydrolase.

    PubMed

    Nollmann, Friederike I; Heinrich, Antje K; Brachmann, Alexander O; Morisseau, Christophe; Mukherjee, Krishnendu; Casanova-Torres, Ángel M; Strobl, Frederic; Kleinhans, David; Kinski, Sebastian; Schultz, Katharina; Beeton, Michael L; Kaiser, Marcel; Chu, Ya-Yun; Phan Ke, Long; Thanwisai, Aunchalee; Bozhüyük, Kenan A J; Chantratita, Narisara; Götz, Friedrich; Waterfield, Nick R; Vilcinskas, Andreas; Stelzer, Ernst H K; Goodrich-Blair, Heidi; Hammock, Bruce D; Bode, Helge B

    2015-03-23

    Simple urea compounds ("phurealipids") have been identified from the entomopathogenic bacterium Photorhabdus luminescens, and their biosynthesis was elucidated. Very similar analogues of these compounds have been previously developed as inhibitors of juvenile hormone epoxide hydrolase (JHEH), a key enzyme in insect development and growth. Phurealipids also inhibit JHEH, and therefore phurealipids might contribute to bacterial virulence. PMID:25711603

  2. ULTRASOUND-ASSISTED ORGANIC SYNTHESIS: ALCOHOL OXIDATION AND OLEFIN EPOXIDATION

    EPA Science Inventory

    Ultrasound-assisted Organic Synthesis: Alcohol Oxidation and Olefin Epoxidation

    Unnikrishnan R Pillai, Endalkachew Sahle-Demessie , Vasudevan Namboodiri, Quiming Zhao, Juluis Enriquez
    U.S. EPA , 26 W. Martin Luther King Dr. , Cincinnati, OH 45268
    Phone: 513-569-773...

  3. Cure reaction of epoxy resins catalyzed by graphite-based nanofiller

    NASA Astrophysics Data System (ADS)

    Corcione, C. Esposito; Acocella, Maria Rosaria; Giuri, Antonella; Maffezzoli, Alfonso; Guerra, Gaetano

    2015-12-01

    A significant effort was directed to the synthesis of graphene stacks/epoxy nanocomposites and to the analysis of the effect of a graphene precursor on cure reaction of a model epoxy matrix. A comparative thermal analysis of epoxy resins filled with an exfoliated graphite oxide eGO were conducted. The main aim was to understand the molecular origin of the influence of eGO on the Tg of epoxy resins. The higher Tg values previously observed for low curing temperatures, for epoxy resins with graphite-based nanofillers, were easily rationalized by a catalytic activity of graphitic layers on the reaction between the epoxy and amine groups of the resin, which leads to higher crosslinking density in milder conditions. A kinetic analysis of the cure mechanism of the epoxy resin associated to the catalytical activity of the graphite based filler was performed by isothermal DSC measurements. The DSC results showed that the addition of graphite based filler greatly increased the enthalpy of epoxy reaction and the reaction rate, confirming the presence of a catalytic activity of graphitic layers on the crosslinking reaction between the epoxy resin components (epoxide oligomer and di-amine). A kinetic modelling analysis, arising from an auto-catalyzed reaction mechanism, was finally applied to isothermal DSC data, in order to predict the cure mechanism of the epoxy resin in presence of the graphite based nanofiller.

  4. Effect of epoxidation level on thermal properties and ionic conductivity of epoxidized natural rubber solid polymer nanocomposite electrolytes

    SciTech Connect

    Harun, Fatin; Chan, Chin Han; Winie, Tan; Sim, Lai Har; Zainal, Nurul Fatahah Asyqin

    2015-08-28

    Effect of epoxide content on the thermal and conductivity properties of epoxidized natural rubber (ENR) solid polymer nanocomposite electrolytes was investigated. Commercial available epoxidized natural rubber having 25 (ENR25) and 50 mole% (ENR50) epoxide, respectively were incorporated with lithium perchlorate (LiClO{sub 4}) salt and titanium dioxide (TiO{sub 2}) nanofiller via solution casting method. The solid polymer nanocomposite electrolytes were characterized by differential scanning calorimetry (DSC) and impedance spectroscopy (IS) for their thermal properties and conductivity, respectively. It was evident that introduction of LiClO{sub 4} causes a greater increase in glass transition temperature (T{sub g}) and ionic conductivity of ENR50 as compared to ENR25. Upon addition of TiO{sub 2} in ENR/LiClO{sub 4} system, a remarkable T{sub g} elevation was observed for both ENRs where ENR50 reveals a more pronounced changes. It is interesting to note that they exhibit different phenomenon in ionic conductivity with TiO{sub 2} loading where ENR25 shows enhancement of conductivity while ENR50 shows declination.

  5. Effect of epoxidation level on thermal properties and ionic conductivity of epoxidized natural rubber solid polymer nanocomposite electrolytes

    NASA Astrophysics Data System (ADS)

    Harun, Fatin; Chan, Chin Han; Sim, Lai Har; Winie, Tan; Zainal, Nurul Fatahah Asyqin

    2015-08-01

    Effect of epoxide content on the thermal and conductivity properties of epoxidized natural rubber (ENR) solid polymer nanocomposite electrolytes was investigated. Commercial available epoxidized natural rubber having 25 (ENR25) and 50 mole% (ENR50) epoxide, respectively were incorporated with lithium perchlorate (LiClO4) salt and titanium dioxide (TiO2) nanofiller via solution casting method. The solid polymer nanocomposite electrolytes were characterized by differential scanning calorimetry (DSC) and impedance spectroscopy (IS) for their thermal properties and conductivity, respectively. It was evident that introduction of LiClO4 causes a greater increase in glass transition temperature (Tg) and ionic conductivity of ENR50 as compared to ENR25. Upon addition of TiO2 in ENR/LiClO4 system, a remarkable Tg elevation was observed for both ENRs where ENR50 reveals a more pronounced changes. It is interesting to note that they exhibit different phenomenon in ionic conductivity with TiO2 loading where ENR25 shows enhancement of conductivity while ENR50 shows declination.

  6. [Radiopacity of composite resins].

    PubMed

    Tamburús, J R

    1990-01-01

    The author studied the radiopacity of six composite resins, submitted to radiographic examination in standardized conditions, only with kilovoltage variations. Along with resins it was radiographed an aluminium penetrometer, to compare their optical densities. The results showed that kilovoltagem variations interfered in optical densities of the resins, being more pronounced in 50-55, 55-60 and 60-65 kilovoltages. Despite this, the relations of optical densities as compared with that of penetrometer steps kept unaltered most fo the kilovoltages used.

  7. Polyester Resin Hazards

    PubMed Central

    Bourne, L. B.; Milner, F. J. M.

    1963-01-01

    Polyester resins are being increasingly used in industry. These resins require the addition of catalysts and accelerators. The handling of polyester resin system materials may give rise to skin irritations, allergic reactions, and burns. The burns are probably due to styrene and organic peroxides. Atmospheric pollution from styrene and explosion and fire risks from organic peroxides must be prevented. Where dimethylaniline is used scrupulous cleanliness and no-touch technique must be enforced. Handling precautions are suggested. Images PMID:14014495

  8. Modeling Epoxidation of Drug-like Molecules with a Deep Machine Learning Network.

    PubMed

    Hughes, Tyler B; Miller, Grover P; Swamidass, S Joshua

    2015-07-22

    Drug toxicity is frequently caused by electrophilic reactive metabolites that covalently bind to proteins. Epoxides comprise a large class of three-membered cyclic ethers. These molecules are electrophilic and typically highly reactive due to ring tension and polarized carbon-oxygen bonds. Epoxides are metabolites often formed by cytochromes P450 acting on aromatic or double bonds. The specific location on a molecule that undergoes epoxidation is its site of epoxidation (SOE). Identifying a molecule's SOE can aid in interpreting adverse events related to reactive metabolites and direct modification to prevent epoxidation for safer drugs. This study utilized a database of 702 epoxidation reactions to build a model that accurately predicted sites of epoxidation. The foundation for this model was an algorithm originally designed to model sites of cytochromes P450 metabolism (called XenoSite) that was recently applied to model the intrinsic reactivity of diverse molecules with glutathione. This modeling algorithm systematically and quantitatively summarizes the knowledge from hundreds of epoxidation reactions with a deep convolution network. This network makes predictions at both an atom and molecule level. The final epoxidation model constructed with this approach identified SOEs with 94.9% area under the curve (AUC) performance and separated epoxidized and non-epoxidized molecules with 79.3% AUC. Moreover, within epoxidized molecules, the model separated aromatic or double bond SOEs from all other aromatic or double bonds with AUCs of 92.5% and 95.1%, respectively. Finally, the model separated SOEs from sites of sp(2) hydroxylation with 83.2% AUC. Our model is the first of its kind and may be useful for the development of safer drugs. The epoxidation model is available at http://swami.wustl.edu/xenosite. PMID:27162970

  9. Modeling Epoxidation of Drug-like Molecules with a Deep Machine Learning Network

    PubMed Central

    2015-01-01

    Drug toxicity is frequently caused by electrophilic reactive metabolites that covalently bind to proteins. Epoxides comprise a large class of three-membered cyclic ethers. These molecules are electrophilic and typically highly reactive due to ring tension and polarized carbon–oxygen bonds. Epoxides are metabolites often formed by cytochromes P450 acting on aromatic or double bonds. The specific location on a molecule that undergoes epoxidation is its site of epoxidation (SOE). Identifying a molecule’s SOE can aid in interpreting adverse events related to reactive metabolites and direct modification to prevent epoxidation for safer drugs. This study utilized a database of 702 epoxidation reactions to build a model that accurately predicted sites of epoxidation. The foundation for this model was an algorithm originally designed to model sites of cytochromes P450 metabolism (called XenoSite) that was recently applied to model the intrinsic reactivity of diverse molecules with glutathione. This modeling algorithm systematically and quantitatively summarizes the knowledge from hundreds of epoxidation reactions with a deep convolution network. This network makes predictions at both an atom and molecule level. The final epoxidation model constructed with this approach identified SOEs with 94.9% area under the curve (AUC) performance and separated epoxidized and non-epoxidized molecules with 79.3% AUC. Moreover, within epoxidized molecules, the model separated aromatic or double bond SOEs from all other aromatic or double bonds with AUCs of 92.5% and 95.1%, respectively. Finally, the model separated SOEs from sites of sp2 hydroxylation with 83.2% AUC. Our model is the first of its kind and may be useful for the development of safer drugs. The epoxidation model is available at http://swami.wustl.edu/xenosite. PMID:27162970

  10. Novel spirocyclic phosphazene-based epoxy resin for halogen-free fire resistance: synthesis, curing behaviors, and flammability characteristics.

    PubMed

    Sun, Jian; Wang, Xiaodong; Wu, Dezhen

    2012-08-01

    A novel halogen-free fire resistant epoxy resin with pendent spiro-cyclotriphosphazene groups was designed and synthesized via a three-step synthetic pathway. The chemical structures and compositions of spiro-cyclotriphosphazene precursors and final product were confirmed by (1)H, (13)C, and (31)P NMR spectroscopy, mass spectroscopy, elemental analysis, and Fourier transform infrared spectroscopy. The thermal curing behaviors of the synthesized epoxy resin with 4,4'-diamino-diphenylmethane, 4,4'-diamino-diphenyl sulfone, and novolac as hardeners were investigated by differential scanning calorimetry (DSC), and the curing kinetics were also studied under a nonisothermal condition. The evaluation of the thermal properties demonstrated that these thermosets achieved a good thermal resistance due to their high glass transition temperatures more than 150 °C, and also gained high thermal stabilities with high char yields. The flammability characteristics of the spirocyclic phosphazene-based epoxy thermosets cured with these three hardeners were investigated on the basis of the results obtained from the limiting oxygen index (LOI) and UL-94 vertical burning experiments as well as the analysis of the residual chars collected from the vertical burning tests. The high LOI values and UL-94 V-0 classification of these epoxy thermosets indicated that the incorporation of phosphazene rings into the backbone chain imparts nonflammability to the epoxy resin owing to the unique combination of phosphorus and nitrogen following by a synergistic effect on flame retardancy. The epoxy resin obtained in this study is a green functional polymer and will become a potential candidate for fire- and heat-resistant applications in electronic and microelectronic fields with more safety and excellent performance. PMID:22833687

  11. Delayed cure bismaleimide resins

    DOEpatents

    Not Available

    1982-08-12

    Prior art polybismaleimides begin to polymerize at or just above the melting point of the monomer. This patent describes new bismaleimide resins which have an increased pot life and provide longer time periods in which the monomer remains fluid. The resins can be polymerized into molded articles with a high uniformity of properties. (DLC)

  12. Erosion of composite resins.

    PubMed

    Powers, J M; Fan, P L

    1980-05-01

    The surface degradation of composite resins caused by accelerated aging was studied. Accelerated aging for 900 hours caused erosion of the resin matrices and exposure of filler particles. Differences in surface profiles after aging suggest that the materials eroded at different rates. Accelerated aging may model erosive wear of composites.

  13. Incombustible resin composition

    NASA Technical Reports Server (NTRS)

    Akima, T.

    1982-01-01

    Incombustible resin compositions composed of aromatic compounds were obtained through (1) combustion polymer material and (2) bisphenol A or halogenated bisphenol A and bisphenol A diglycidl ether or halogenated bisphenol A diglycidyl ether. The aromatic compound is an adduct of bifunctional phenols and bifunctional epoxy resins.

  14. Expanded graphite—Phenolic resin composites based double layer microwave absorber for X-band applications

    NASA Astrophysics Data System (ADS)

    Gogoi, Jyoti Prasad; Bhattacharyya, Nidhi Saxena

    2014-11-01

    In this investigation, double layer microwave absorbers are designed and developed with paired combination of 5 wt. %, 7 wt. %, 8 wt. %, and 10 wt. % expanded graphite-novolac phenolic resin (EG-NPR) composites, in the frequency range of 8.2-12.4 GHz. The thickness and compositional combination of the two layers constituting the absorber are optimized to achieve minimum value of reflection loss (dB) and a broad microwave absorption bandwidth. Double layer combinations showing -25 dB absorption bandwidth >2 GHz and -30 dB absorption bandwidth >1 GHz are chosen for fabrication. The total thickness of the fabricated double layer microwave absorber is varied from 3 mm to 3.4 mm. Absorption bandwidths at -10 dB, -20 dB, -25 dB and -30 dB are determined for the fabricated structure. The maximum -25 dB and -30 dB absorption bandwidth of 2.47 GHz and 1.77 GHz, respectively, are observed for the double layer structure with (5 wt. %-8 wt. %) EG-NPR composites with total thickness of 3.2 mm, while -10 dB bandwidth covers the entire X-band range.

  15. The conformations of cyclooctene: consequences for epoxidation chemistry.

    PubMed

    Neuenschwander, Ulrich; Hermans, Ive

    2011-12-16

    The conformational space of cyclooctene has been explored computationally in order to rationalize its high epoxidation selectivity. Four different conformations were identified. Each conformation is chiral and has two enantiomeric forms. The degeneracy is further increased by a ring-inversion process, yielding a total of 16 conformers. The potential energy surface for the interconversion of these conformers was characterized via intrinsic reaction coordinate analyses. Furthermore, an evaluation of the microcanonical partition functions allowed for a quantification of the entropy contributions and hence the calculation of the equilibrium composition at different temperatures. The results strongly suggest that the high epoxidation selectivity, typically observed for cyclooctene, is related to a poor σ(C-αH)-π(C═C) orbital overlap in the predominant conformation, disfavoring αH-abstraction by radical species and thus allylic byproduct formation via undesired homolytic side-reactions.

  16. Ionic Liquid Epoxy Resin Monomers

    NASA Technical Reports Server (NTRS)

    Paley, Mark S. (Inventor)

    2013-01-01

    Ionic liquid epoxide monomers capable of reacting with cross-linking agents to form polymers with high tensile and adhesive strengths. Ionic liquid epoxide monomers comprising at least one bis(glycidyl) N-substituted nitrogen heterocyclic cation are made from nitrogen heterocycles corresponding to the bis(glycidyl) N-substituted nitrogen heterocyclic cations by a method involving a non-nucleophilic anion, an alkali metal cation, epichlorohydrin, and a strong base.

  17. Markedly Elevated Carbamazepine-10,11-epoxide/Carbamazepine Ratio in a Fatal Carbamazepine Ingestion

    PubMed Central

    Russell, Jason L.; Spiller, Henry A.; Baker, Daniel D.

    2015-01-01

    Carbamazepine is a widely used anticonvulsant. Its metabolite, carbamazepine-10,11-epoxide, has been found to display similar anticonvulsant and neurotoxic properties. While the ratio of parent to metabolite concentration varies significantly, at therapeutic doses the epoxide concentration is generally about 20% of the parent. We report a case of fatal carbamazepine overdose in which the epoxide metabolite concentration was found to be 450% higher than the parent compound, suggesting a potential role for metabolite quantification in severe toxicity. PMID:26550016

  18. Direct Epoxidation of Propylene over Stabilized Cu+ Surface Sites on Ti Modified Cu2O

    DOE PAGESBeta

    Yang, X.; Kattel, S.; Xiong, K.; Mudiyanselage, K.; Rykov, S.; Senanayake, S. D.; Rodriguez, J. A.; Liu, P.; Stacchiola, D. J.; Chen, J. G.

    2015-07-17

    Direct propylene epoxidation by O2 is a challenging reaction because of the strong tendency for complete combustion. Results from the current study demonstrate the feasibility to tune the epoxidation selectivity by generating highly dispersed and stabilized Cu+ active sites in a TiCuOx mixed oxide. The TiCuOx surface anchors the key surface intermediate, oxametallacycle, leading to higher selectivity for epoxidation of propylene.

  19. Isolation and characterization of Xenopus soluble epoxide hydrolase.

    PubMed

    Purba, Endang R; Oguro, Ami; Imaoka, Susumu

    2014-07-01

    Soluble epoxide hydrolase (sEH) contributes to cell growth, but the contribution of sEH to embryonic development is not well understood. In this study, Xenopus sEH cDNA was isolated from embryos of Xenopus laevis. The Xenopus sEH was expressed in Escherichia coli and was purified. The epoxide hydrolase and phosphatase activities of purified sEH were investigated. The Xenopus sEH did not show phosphatase activity toward 4-methylumbelliferyl phosphate or several lysophosphatidic acids although it had EH activity. The amino acid sequence of Xenopus sEH was compared with that reported previously. We found amino acid substitutions of the 29th Thr to Asn and the 146th Arg to His and prepared a sEH mutant (N29T/H146R), designed as mutant 1. Neither wild-type sEH nor mutant 1 had phosphatase activity. Additional substitution of the 11th Gly with Asp was found by comparison with human sEH which has phosphatase activity, but the Xenopus sEH mutant G11D prepared as mutant 2 did not have phosphatase activity. The epoxide hydrolase activity of sEH seemed to be similar to that of human sEH, while Xenopus sEH did not have phosphatase activity toward several substrates that human sEH metabolizes. PMID:24681163

  20. Development of resins for composites by resin transfer molding

    NASA Technical Reports Server (NTRS)

    Woo, Edmund P.; Puckett, Paul M.; Maynard, Shawn J.

    1991-01-01

    Designed to cover a wide range of resin technology and to meet the near-term and long-term needs of the aircraft industry, this research has three objectives: to produce resin transfer molding (RES) resins with improved processability, to produce prepreg systems with high toughness and service temperature, and to produce new resin systems. Progress on reaching the objectives is reported.

  1. Biocidal quaternary ammonium resin

    NASA Technical Reports Server (NTRS)

    Janauer, G. E.

    1983-01-01

    Activated carbon (charcoal) and polymeric resin sorbents are widely used in the filtration and treatment of drinking water, mainly to remove dissolved organic and inorganic impurities and to improve the taste. Earlier hopes that activated carbon might "disinfect' water proved to be unfounded. The feasibility of protecting against microbial infestation in charcoal and resin beds such as those to be incorporated into total water reuse systems in spacecraft was investigated. The biocidal effect of IPCD (insoluable polymeric contact disinfectants) in combination with a representative charcoal was assessed. The ion exchange resins (IPCD) were shown to adequately protect charcoal and ion exchange beds.

  2. Thermally stable laminating resins

    NASA Technical Reports Server (NTRS)

    Jones, R. J.; Vaughan, R. W.; Burns, E. A.

    1972-01-01

    Improved thermally stable laminating resins were developed based on the addition-type pyrolytic polymerization. Detailed monomer and polymer synthesis and characterization studies identified formulations which facilitate press molding processing and autoclave fabrication of glass and graphite fiber reinforced composites. A specific resin formulation, termed P10P was utilized to prepare a Courtaulds HMS reinforced simulated airfoil demonstration part by an autoclave molding process.

  3. Acetylene terminated matrix resins

    NASA Technical Reports Server (NTRS)

    Goldfarb, I. J.; Lee, Y. C.; Arnold, F. E.; Helminiak, T. E.

    1985-01-01

    The synthesis of resins with terminal acetylene groups has provided a promising technology to yield high performance structural materials. Because these resins cure through an addition reaction, no volatile by-products are produced during the processing. The cured products have high thermal stability and good properties retention after exposure to humidity. Resins with a wide variety of different chemical structures between the terminal acetylene groups are synthesized and their mechanical properties studied. The ability of the acetylene cured polymers to give good mechanical properties is demonstrated by the resins with quinoxaline structures. Processibility of these resins can be manipulated by varying the chain length between the acetylene groups or by blending in different amounts of reactive deluents. Processing conditions similar to the state-of-the-art epoxy can be attained by using backbone structures like ether-sulfone or bis-phenol-A. The wide range of mechanical properties and processing conditions attainable by this class of resins should allow them to be used in a wide variety of applications.

  4. 40 CFR 414.50 - Applicability; description of the thermosetting resins subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... *Epoxy Resins *Fumaric Acid Polyesters *Furan Resins Glyoxal-Urea Formaldehyde Textile Resin *Ketone-Formaldehyde Resins *Melamine Resins *Phenolic Resins *Polyacetal Resins Polyacrylamide *Polyurethane Prepolymers *Polyurethane Resins *Urea Formaldehyde Resins *Urea Resins...

  5. 40 CFR 414.50 - Applicability; description of the thermosetting resins subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... *Epoxy Resins *Fumaric Acid Polyesters *Furan Resins Glyoxal-Urea Formaldehyde Textile Resin *Ketone-Formaldehyde Resins *Melamine Resins *Phenolic Resins *Polyacetal Resins Polyacrylamide *Polyurethane Prepolymers *Polyurethane Resins *Urea Formaldehyde Resins *Urea Resins...

  6. 40 CFR 414.50 - Applicability; description of the thermosetting resins subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... *Epoxy Resins *Fumaric Acid Polyesters *Furan Resins Glyoxal-Urea Formaldehyde Textile Resin *Ketone-Formaldehyde Resins *Melamine Resins *Phenolic Resins *Polyacetal Resins Polyacrylamide *Polyurethane Prepolymers *Polyurethane Resins *Urea Formaldehyde Resins *Urea Resins...

  7. 40 CFR 414.50 - Applicability; description of the thermosetting resins subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... *Epoxy Resins *Fumaric Acid Polyesters *Furan Resins Glyoxal-Urea Formaldehyde Textile Resin *Ketone-Formaldehyde Resins *Melamine Resins *Phenolic Resins *Polyacetal Resins Polyacrylamide *Polyurethane Prepolymers *Polyurethane Resins *Urea Formaldehyde Resins *Urea Resins...

  8. Asymmetric Epoxidation: A Twinned Laboratory and Molecular Modeling Experiment for Upper-Level Organic Chemistry Students

    ERIC Educational Resources Information Center

    Hii, King Kuok; Rzepa, Henry S.; Smith, Edward H.

    2015-01-01

    The coupling of a student experiment involving the preparation and use of a catalyst for the asymmetric epoxidation of an alkene with computational simulations of various properties of the resulting epoxide is set out in the form of a software toolbox from which students select appropriate components. At the core of these are the computational…

  9. Towards a General Understanding of Carbonyl-Stabilised Ammonium Ylide-Mediated Epoxidation Reactions.

    PubMed

    Novacek, Johanna; Roiser, Lukas; Zielke, Katharina; Robiette, Raphaël; Waser, Mario

    2016-08-01

    The key factors for carbonyl-stabilised ammonium ylide-mediated epoxidation reactions were systematically investigated by experimental and computational means and the hereby obtained energy profiles provide explanations for the observed experimental results. In addition, we were able to identify the first tertiary amine-based chiral auxiliary that allows for high enantioselectivities and high yields for such epoxidation reactions. PMID:27381752

  10. 40 CFR 721.7210 - Epoxidized copolymer of phenol and substituted phenol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Epoxidized copolymer of phenol and substituted phenol. 721.7210 Section 721.7210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.7210 Epoxidized copolymer of phenol and substituted phenol. (a)...

  11. 40 CFR 721.7210 - Epoxidized copolymer of phenol and substituted phenol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Epoxidized copolymer of phenol and substituted phenol. 721.7210 Section 721.7210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.7210 Epoxidized copolymer of phenol and substituted phenol. (a)...

  12. Fluorinated Alcohols as Activators for the Solvent-Free Chemical Fixation of Carbon Dioxide into Epoxides.

    PubMed

    Gennen, Sandro; Alves, Margot; Méreau, Raphaël; Tassaing, Thierry; Gilbert, Bernard; Detrembleur, Christophe; Jerome, Christine; Grignard, Bruno

    2015-06-01

    The addition of fluorinated alcohols to onium salts provides highly efficient organocatalysts for the chemical fixation of CO2 into epoxides under mild experimental conditions. The combination of online kinetic studies, NMR titrations and DFT calculations allows understanding this synergistic effect that provides an active organocatalyst for CO2 /epoxides coupling.

  13. Towards a General Understanding of Carbonyl-Stabilised Ammonium Ylide-Mediated Epoxidation Reactions.

    PubMed

    Novacek, Johanna; Roiser, Lukas; Zielke, Katharina; Robiette, Raphaël; Waser, Mario

    2016-08-01

    The key factors for carbonyl-stabilised ammonium ylide-mediated epoxidation reactions were systematically investigated by experimental and computational means and the hereby obtained energy profiles provide explanations for the observed experimental results. In addition, we were able to identify the first tertiary amine-based chiral auxiliary that allows for high enantioselectivities and high yields for such epoxidation reactions.

  14. 40 CFR 721.7210 - Epoxidized copolymer of phenol and substituted phenol.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Epoxidized copolymer of phenol and substituted phenol. 721.7210 Section 721.7210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.7210 Epoxidized copolymer of phenol and substituted phenol. (a)...

  15. 40 CFR 721.7210 - Epoxidized copolymer of phenol and substituted phenol.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Epoxidized copolymer of phenol and substituted phenol. 721.7210 Section 721.7210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.7210 Epoxidized copolymer of phenol and substituted phenol. (a)...

  16. 40 CFR 721.7210 - Epoxidized copolymer of phenol and substituted phenol.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Epoxidized copolymer of phenol and substituted phenol. 721.7210 Section 721.7210 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.7210 Epoxidized copolymer of phenol and substituted phenol. (a)...

  17. COMPARATIVE STUDIES OF THE EFFECT OF POLYCYCLIC AROMATIC HYDROCARBON GEOMETRY ON THE HYDROLYSIS OF DIOL EPOXIDES

    EPA Science Inventory

    Comparative studies of the effect of polycyclic aromatic hydrocarbon geometry on the hydrolysis of diol epoxides

    The interaction of the diol epoxides (DEs) of both planar and non-planar PAHs with water have been examined using quantum mechanical and molecular dynamics. Th...

  18. Towards a General Understanding of Carbonyl-Stabilised Ammonium Ylide-Mediated Epoxidation Reactions

    PubMed Central

    Robiette, Raphaël; Waser, Mario

    2016-01-01

    The key factors for carbonyl-stabilised ammonium ylide-mediated epoxidation reactions were systematically investigated by experimental and computational means and the hereby obtained energy profiles provide explanations for the observed experimental results. In addition, we were able to identify the first tertiary amine-based chiral auxiliary that allows for high enantioselectivities and high yields for such epoxidation reactions. PMID:27381752

  19. General, Highly Selective Synthesis of 1,3- and 1,4-Difunctionalized Building Blocks by Regiodivergent Epoxide Opening.

    PubMed

    Funken, Nico; Mühlhaus, Felix; Gansäuer, Andreas

    2016-09-19

    We describe a regiodivergent epoxide opening (REO) featuring a catalyst-controlled synthesis of enantiomerically and diastereomerically highly enriched or pure syn- and anti- 1,3- and 1,4-difunctionalized building blocks from a common epoxide precursor. The REO is attractive for natural product synthesis and as a branching reaction for diversity-oriented synthesis with epoxides.

  20. General, Highly Selective Synthesis of 1,3- and 1,4-Difunctionalized Building Blocks by Regiodivergent Epoxide Opening.

    PubMed

    Funken, Nico; Mühlhaus, Felix; Gansäuer, Andreas

    2016-09-19

    We describe a regiodivergent epoxide opening (REO) featuring a catalyst-controlled synthesis of enantiomerically and diastereomerically highly enriched or pure syn- and anti- 1,3- and 1,4-difunctionalized building blocks from a common epoxide precursor. The REO is attractive for natural product synthesis and as a branching reaction for diversity-oriented synthesis with epoxides. PMID:27600090

  1. 40 CFR 63.1427 - Process vent requirements for processes using extended cookout as an epoxide emission reduction...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... constant, 1/hr. t = Time, hours. Note: This equation assumes a first order reaction with respect to epoxide... epoxide concentration using 40 CFR part 60, appendix A, Method 18. (ii) Determine the epoxide concentration in the vapor space using Raoult's Law or another appropriate phase equilibrium equation and...

  2. Retinoic acid 5,6-epoxidation by hemoproteins.

    PubMed

    Iwahashi, H; Ikeda, A; Negoro, Y; Kido, R

    1986-01-01

    Retinoic acid 5,6-epoxidase activity was found in several hemoproteins such as human oxy- and methemoglobin (HbO2 and MetHb), equine skeletal muscle oxy- and metmyoglobin (MbO2 and MetMb), bovine liver catalase, and horseradish peroxidase. Hematin also catalyzed retinoic acid 5,6-epoxidation. The results suggest that the heme moiety participates in the epoxidation. However, neither horse heart cytochrome c, nor free ferrous ion nor free ferric ion exhibited the epoxidase activity. Some hemoproteins (HbO2, MetHb, MbO2, MetMb, catalase, peroxidase, and hematin) exhibited characteristic individual pH dependences of the activity, suggesting that the epoxidase activities of the hemoproteins are influenced by the apoenzymes to some degree. This view is also supported by the finding that preincubation of an HbO2 preparation at various temperatures (37-70 degrees C) reduced its epoxidase activity with increasing temperature, whereas the activity of hematin was unaffected. Active oxygen scavengers such as mannitol, catalase, and superoxide dismutase exhibited no effect on the epoxidase activities of HbO2, MetHb, MbO2, and MetMb. A ligand of heme, CN- (100 mM), inhibited the epoxidase activities but N3- (100 mM) did not. The epoxidase activities were completely inhibited by NADPH, NADH, and/or 2-mercaptoethanol but not by NADP+ and/or NAD+. An intermediate in the epoxidation may be reduced by NADPH, NADH and/or 2-mercaptoethanol. Radical species can be considered as plausible candidates for the intermediate. PMID:3957898

  3. Biodegradation of heptachlor and heptachlor epoxide-contaminated soils by white-rot fungal inocula.

    PubMed

    Purnomo, Adi Setyo; Putra, Surya Rosa; Shimizu, Kuniyoshi; Kondo, Ryuichiro

    2014-10-01

    The ability of certain white-rot fungi (WRF) inocula to transform heptachlor and heptachlor epoxide and its application in artificially contaminated soil were investigated. Fungal inoculum of Pleurotus ostreatus eliminated approximately 89 % of heptachlor after 28 days of incubation, and chlordene was detected as the primary metabolite. The fungal inoculum of Pleurotus ostreatus had the highest ability to degrade heptachlor epoxide; approximately 32 % were degraded after 28 days of incubation, and heptachlor diol was detected as the metabolite product. Because Pleurotus ostreatus transformed heptachlor into a less toxic metabolite and could also effectively degrade heptachlor epoxide, it was then selected to be applied to artificially contaminated soil. The spent mushroom waste (SMW) of Pleurotus ostreatus degraded heptachlor and heptachlor epoxide by approximately 91 and 26 %, respectively, over 28 days. This finding indicated that Pleurotus ostreatus SMW could be used to bioremediate heptachlor- and heptachlor epoxide-contaminated environments.

  4. Photoaffinity labeling of opioid receptor with morphine-7,8-oxide (morphine epoxide)

    SciTech Connect

    Takayanagi, I.; Shibata, R.; Miyata, N.; Hirobe, M.

    1982-05-01

    The opioid receptor mediating inhibitory action of morphine in the electrically stimulated guinea pig ileum was irreversibly photoinactivated by morphine epoxide (3 X 10(-6) M). Morphine epoxide (up to 3 X 10(-5) M) did not influence the responses of rat vas deferens (epsilon-receptor) or rabbit vas deferens (kappa-receptor) to electrical stimulation. Effective concentrations of morphine epoxide were much lower in the guinea pig ileum (mu-receptor) than in the mouse vas deference (delta-receptor). The inhibitory action of (Met)-enkephalin on the twitch responses of the rat vas deferens and mouse vas deferens to electrical stimulation were not influenced after irradiation in the presence of morphine epoxide (3 X 10(-6) M). Therefore, morphine epoxide is probably a useful probe for photoaffinity labeling of the mu-receptor in vitro.

  5. Catalysts for CO2/epoxide ring-opening copolymerization

    PubMed Central

    Trott, G.; Saini, P. K.; Williams, C. K.

    2016-01-01

    This article summarizes and reviews recent progress in the development of catalysts for the ring-opening copolymerization of carbon dioxide and epoxides. The copolymerization is an interesting method to add value to carbon dioxide, including from waste sources, and to reduce pollution associated with commodity polymer manufacture. The selection of the catalyst is of critical importance to control the composition, properties and applications of the resultant polymers. This review highlights and exemplifies some key recent findings and hypotheses, in particular using examples drawn from our own research. PMID:26755758

  6. Graphite fiber reinforced thermoplastic resins

    NASA Technical Reports Server (NTRS)

    Novak, R. C.

    1975-01-01

    Mechanical properties of neat resin samples and graphite fiber reinforced samples of thermoplastic resins were characterized with particular emphasis directed to the effects of environmental exposure (humidity, temperature and ultraviolet radiation). Tensile, flexural, interlaminar shear, creep and impact strengths were measured for polysulfone, polyarylsulfone and a state-of-the-art epoxy resin samples. In general, the thermoplastic resins exhibited environmental degradation resistance equal to or superior to the reference epoxy resin. Demonstration of the utility and quality of a graphite/thermoplastic resin system was accomplished by successfully thermoforming a simulated compressor blade and a fan exit guide vane.

  7. Epoxide hydrolase of Trichoderma reesei: Biochemical properties and conformational characterization.

    PubMed

    de Oliveira, Gabriel Stephani; Adriani, Patricia Pereira; Borges, Flavia Garcia; Lopes, Adriana Rios; Campana, Patricia T; Chambergo, Felipe S

    2016-08-01

    Epoxide hydrolases (EHs) are enzymes that are present in all living organisms and catalyze the hydrolysis of epoxides to the corresponding vicinal diols. EHs have biotechnological potential in chiral chemistry. We report the cloning, purification, enzymatic activity, and conformational analysis of the TrEH gene from Trichoderma reesei strain QM9414 using circular dichroism spectroscopy. The EH gene has an open reading frame encoding a protein of 343 amino acid residues, resulting in a molecular mass of 38.2kDa. The enzyme presents an optimum pH of 7.2, and it is highly active at temperatures ranging from 23 to 50°C and thermally inactivated at 70°C (t1/2=7.4min). The Michaelis constants (Km) were 4.6mM for racemic substrate, 21.7mM for (R)-(+)-styrene oxide and 3.0mM for (S)-(-)-styrene oxide. The kcat/Km analysis indicated that TrEH is enantioselective and preferentially hydrolyzes (S)-(-)-styrene oxide. The conformational stability studies suggested that, despite the extreme conditions (high temperatures and extremely acid and basic pHs), TrEH is able to maintain a considerable part of its regular structures, including the preservation of the native cores in some cases. The recombinant protein showed enantioselectivity that was distinct from other fungus EHs, making this protein a potential biotechnological tool. PMID:27177457

  8. Peripheral FAAH and soluble epoxide hydrolase inhibitors are synergistically antinociceptive.

    PubMed

    Sasso, Oscar; Wagner, Karen; Morisseau, Christophe; Inceoglu, Bora; Hammock, Bruce D; Piomelli, Daniele

    2015-07-01

    We need better medicines to control acute and chronic pain. Fatty acid amide hydrolase (FAAH) and soluble epoxide hydrolase (sEH) catalyze the deactivating hydrolysis of two classes of bioactive lipid mediators--fatty acid ethanolamides (FAEs) and epoxidized fatty acids (EpFAs), respectively--which are biogenetically distinct but share the ability to attenuate pain responses and inflammation. In these experiments, we evaluated the antihyperalgesic activity of small-molecule inhibitors of FAAH and sEH, administered alone or in combination, in two pain models: carrageenan-induced hyperalgesia in mice and streptozocin-induced allodynia in rats. When administered separately, the sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidine-4-yl)urea (TPPU) and the peripherally restricted FAAH inhibitor URB937 were highly active in the two models. The combination TPPU plus URB937 was markedly synergistic, as assessed using isobolographic analyses. The results of these experiments reveal the existence of a possible functional crosstalk between FAEs and EpFAs in regulating pain responses. Additionally, the results suggest that combinations of sEH and FAAH inhibitors might be exploited therapeutically to achieve greater analgesic efficacy. PMID:25882247

  9. Integrated process and dual-function catalyst for olefin epoxidation

    DOEpatents

    Zhou, Bing; Rueter, Michael

    2003-01-01

    The invention discloses a dual-functional catalyst composition and an integrated process for production of olefin epoxides including propylene oxide by catalytic reaction of hydrogen peroxide from hydrogen and oxygen with olefin feeds such as propylene. The epoxides and hydrogen peroxide are preferably produced simultaneously in situ. The dual-functional catalyst comprises noble metal crystallites with dimensions on the nanometer scale (on the order of <1 nm to 10 nm), specially dispersed on titanium silicalite substrate particles. The dual functional catalyst catalyzes both the direct reaction of hydrogen and oxygen to generate hydrogen peroxide intermediate on the noble metal catalyst surface and the reaction of the hydrogen peroxide intermediate with the propylene feed to generate propylene oxide product. Combining both these functions in a single catalyst provides a very efficient integrated process operable below the flammability limits of hydrogen and highly selective for the production of hydrogen peroxide to produce olefin oxides such as propylene oxide without formation of undesired co-products.

  10. Method for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-12-09

    A resin recycling method that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The method includes receiving the resin in container form. The containers are then ground into resin particles. The particles are exposed to a solvent, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. After separating the particles and the resin, a solvent removing agent is used to remove any residual solvent remaining on the resin particles after separation.

  11. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1995-09-12

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  12. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1995-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  13. New ¹H NMR-Based Technique To Determine Epoxide Concentrations in Oxidized Oil.

    PubMed

    Xia, Wei; Budge, Suzanne M; Lumsden, Michael D

    2015-06-24

    A new method to determine epoxide concentrations in oxidized oils was developed and validated using (1)H NMR. Epoxides derived from lipid oxidation gave signals between 2.90 and 3.24 ppm, well separated from the signals of other lipid oxidation products. To calibrate, soybean oils with a range of epoxide concentrations were synthesized and analyzed using (1)H NMR by taking the sn-1,3 glycerol protons (4.18, 4.33 ppm) as internal references. The (1)H NMR signals were compared to the epoxide content determined by titration with hydrogen bromide (HBr)-acetic acid solution. As expected, the signal response increased with concentration linearly (R(2) = 99.96%), and validation of the method gave results comparable to those of the HBr method. A study of the oxidative stability of soybean oil was performed by applying this method to monitor epoxides during thermal lipid oxidation. The epoxide content increased over time and showed a different trend compared to peroxide value (PV). A phenomenological model was suggested to model epoxides derived from lipid oxidation. PMID:26035119

  14. Aminoacylase 1-catalysed deacetylation of bioactives epoxides mycotoxin-derived mercapturates; 3,4-epoxyprecocenes as models of cytotoxic epoxides.

    PubMed

    Stocker, Pierre; Brunel, Jean Michel; de Rezende, Leandro; do Amaral, Antonia Tavares; Morelli, Xavier; Roche, Phillipe; Vidal, Nicolas; Giardina, Thierry; Perrier, Josette

    2012-08-01

    The mycotoxin aflatoxin B1 (AFB1) is a carcinogenic food contaminant which is metabolically activated by epoxydation. The metabolism of mycotoxins via the mercapturate metabolic pathway was shown, in general, to lead to their detoxication. Mercapturic acids thus formed (S-substitued-N-acetyl-l-cysteines) may be accumulated in the kidney and either excreted in the urine or desacetylated by Acylase 1 (ACY1) to yield cysteine S-conjugates. To be toxic, the N-acetyl-l-cysteine-S-conjugates first have to undergo deacetylation by ACY 1. The specificity and rate of mercapturic acid deacetylation may determine the toxicity, however the exact deacetylation processes involved are not well known. The aim of this study was to investigate the role of ACY1 in the toxicity of some bioactive epoxides from Aflatoxin B1. We characterized the kinetic parameters of porcine kidney and human recombinant aminoacylase-1 towards some aromatic and aliphatic-derived mercapturates analogue of mycotoxin-mercapturic acids and 3,4-epoxyprecocene, a bioactive epoxide derivated from aflatoxin. The deacetylation of mercapturated substrates was followed both by reverse phase HPLC and by TNBS method. Catalytic activity was discussed in a structure-function relationship. Ours results indicate for the first time that aminoacylase-1 could play an important role in deacetylating mercapturate metabolites of aflatoxin analogues and this process may be in relation with their cyto- and nephrotoxicity in human.

  15. Primary structure and catalytic mechanism of the epoxide hydrolase from Agrobacterium radiobacter AD1.

    PubMed

    Rink, R; Fennema, M; Smids, M; Dehmel, U; Janssen, D B

    1997-06-01

    The epoxide hydrolase gene from Agrobacterium radiobacter AD1, a bacterium that is able to grow on epichlorohydrin as the sole carbon source, was cloned by means of the polymerase chain reaction with two degenerate primers based on the N-terminal and C-terminal sequences of the enzyme. The epoxide hydrolase gene coded for a protein of 294 amino acids with a molecular mass of 34 kDa. An identical epoxide hydrolase gene was cloned from chromosomal DNA of the closely related strain A. radiobacter CFZ11. The recombinant epoxide hydrolase was expressed up to 40% of the total cellular protein content in Escherichia coli BL21(DE3) and the purified enzyme had a kcat of 21 s-1 with epichlorohydrin. Amino acid sequence similarity of the epoxide hydrolase with eukaryotic epoxide hydrolases, haloalkane dehalogenase from Xanthobacter autotrophicus GJ10, and bromoperoxidase A2 from Streptomyces aureofaciens indicated that it belonged to the alpha/beta-hydrolase fold family. This conclusion was supported by secondary structure predictions and analysis of the secondary structure with circular dichroism spectroscopy. The catalytic triad residues of epoxide hydrolase are proposed to be Asp107, His275, and Asp246. Replacement of these residues to Ala/Glu, Arg/Gln, and Ala, respectively, resulted in a dramatic loss of activity for epichlorohydrin. The reaction mechanism of epoxide hydrolase proceeds via a covalently bound ester intermediate, as was shown by single turnover experiments with the His275 --> Arg mutant of epoxide hydrolase in which the ester intermediate could be trapped.

  16. Data set of optimal parameters for colorimetric red assay of epoxide hydrolase activity.

    PubMed

    de Oliveira, Gabriel Stephani; Adriani, Patricia Pereira; Borges, Flavia Garcia; Lopes, Adriana Rios; Campana, Patricia T; Chambergo, Felipe S

    2016-09-01

    The data presented in this article are related to the research article entitled "Epoxide hydrolase of Trichoderma reesei: Biochemical properties and conformational characterization" [1]. Epoxide hydrolases (EHs) are enzymes that catalyze the hydrolysis of epoxides to the corresponding vicinal diols. This article describes the optimal parameters for the colorimetric red assay to determine the enzymatic activity, with an emphasis on the characterization of the kinetic parameters, pH optimum and thermal stability of this enzyme. The effects of reagents that are not resistant to oxidation by sodium periodate on the reactions can generate false positives and interfere with the final results of the red assay. PMID:27366781

  17. Mechanism of olefin epoxidation in the presence of a titanium-containing zeolite

    NASA Astrophysics Data System (ADS)

    Danov, S. M.; Krasnov, V. L.; Sulimov, A. V.; Ovcharova, A. V.

    2013-11-01

    The effect of the nature of a solvent on the liquid-phase epoxidation of olefins with an aqueous solution of hydrogen peroxide over a titanium-containing zeolite is studied. Butanol-1, butanol-2, propanol-1, isopropanol, methanol, ethanol, water, acetone, methyl ethyl ketone, isobutanol, and tert-butanol are examined as solvents. A mechanism of olefin epoxidation with hydrogen peroxide in an alcohol medium over a titanium-containing zeolite is proposed. Epoxidation reactions involving hydrogen peroxide and different olefins are studied experimentally.

  18. Methods of producing epoxides from alkenes using a two-component catalyst system

    DOEpatents

    Kung, Mayfair C.; Kung, Harold H.; Jiang, Jian

    2013-07-09

    Methods for the epoxidation of alkenes are provided. The methods include the steps of exposing the alkene to a two-component catalyst system in an aqueous solution in the presence of carbon monoxide and molecular oxygen under conditions in which the alkene is epoxidized. The two-component catalyst system comprises a first catalyst that generates peroxides or peroxy intermediates during oxidation of CO with molecular oxygen and a second catalyst that catalyzes the epoxidation of the alkene using the peroxides or peroxy intermediates. A catalyst system composed of particles of suspended gold and titanium silicalite is one example of a suitable two-component catalyst system.

  19. Resin impregnation process for producing a resin-fiber composite

    NASA Technical Reports Server (NTRS)

    Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)

    1994-01-01

    Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.

  20. Nontoxic Resins Advance Aerospace Manufacturing

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The 2008 NASA Commercial Invention of the Year, PETI-330, is a polyimide matrix resin that performs well at high temperatures and is easily processed into composites in a simple, short curing cycle. Invented by scientists at Langley Research Center, PETI-330 is now licensed to Ube Industries, based in Japan with its American headquarters in New York. In addition to being durable and lightweight, the resin is also nontoxic, which makes it safe for workers to handle. PETI-330 was created specifically for heat-resistant composites formed with resin transfer molding and resin infusion, which formerly could only be used with low temperature resin systems.

  1. Antitermite activity of beta-caryophyllene epoxide and episulfide.

    PubMed

    Ashitani, Tatsuya; Kusumoto, Norihisa; Borg-Karlson, Anna-Karin; Fujita, Koki; Takahashi, Koetsu

    2013-01-01

    Caryophyllene-6,7-epoxide and caryophyllene-6,7-episulfide can be easily synthesized from beta-caryophyllene by autoxidation or episulfidation. The bioactivities of beta-caryophyllene and its derivatives were investigated against the subterranean termite Reticulitermes speratus Kolbe. The antifeedant, feeding, and termiticidal activities of each compound were tested using no-choice, dual-choice, and non-contact methods. Antitermitic activities were not shown by beta-caryophyllene, but were observed for the oxide and sulfide derivatives. Caryophyllene-6,7-episulfide showed especially high antifeedant and termiticidal activities. Thus, naturally abundant, non-bioactive beta-caryophyllene can be easily converted into an antitermite reagent via a non-biological process. PMID:24066515

  2. Olefin Epoxidation in Aqueous Phase Using Ionic-Liquid Catalysts.

    PubMed

    Cokoja, Mirza; Reich, Robert M; Wilhelm, Michael E; Kaposi, Marlene; Schäffer, Johannes; Morris, Danny S; Münchmeyer, Christian J; Anthofer, Michael H; Markovits, Iulius I E; Kühn, Fritz E; Herrmann, Wolfgang A; Jess, Andreas; Love, Jason B

    2016-07-21

    Hydrophobic imidazolium-based ionic liquids (IL) act as catalysts for the epoxidation of unfunctionalized olefins in water using hydrogen peroxide as oxidant. Although the catalysts are insoluble in both the substrate and in water, surprisingly, they are very well soluble in aqueous H2 O2 solution, owing to perrhenate-H2 O2 interactions. Even more remarkably, the presence of the catalyst also boosts the solubility of substrate in water. This effect is crucially dependent on the cation design. Hence, the imidazolium perrhenates enable both the transfer of hydrophobic substrate into the aqueous phase, and serve as actual catalysts, which is unprecedented. At the end of the reaction and in absence of H2 O2 the IL catalyst forms a third phase next to the lipophilic product and water and can easily be recycled.

  3. Structure of a bacterial homologue of vitamin K epoxide reductase

    SciTech Connect

    Li, Weikai; Schulman, Sol; Dutton, Rachel J.; Boyd, Dana; Beckwith, Jon; Rapoport, Tom A.

    2010-03-19

    Vitamin K epoxide reductase (VKOR) generates vitamin K hydroquinone to sustain {gamma}-carboxylation of many blood coagulation factors. Here, we report the 3.6 {angstrom} crystal structure of a bacterial homologue of VKOR from Synechococcus sp. The structure shows VKOR in complex with its naturally fused redox partner, a thioredoxin-like domain, and corresponds to an arrested state of electron transfer. The catalytic core of VKOR is a four transmembrane helix bundle that surrounds a quinone, connected through an additional transmembrane segment with the periplasmic thioredoxin-like domain. We propose a pathway for how VKOR uses electrons from cysteines of newly synthesized proteins to reduce a quinone, a mechanism confirmed by in vitro reconstitution of vitamin K-dependent disulphide bridge formation. Our results have implications for the mechanism of the mammalian VKOR and explain how mutations can cause resistance to the VKOR inhibitor warfarin, the most commonly used oral anticoagulant.

  4. Characteristics of polyaniline cobalt supported catalysts for epoxidation reactions.

    PubMed

    Kowalski, Grzegorz; Pielichowski, Jan; Grzesik, Mirosław

    2014-01-01

    A study of polyaniline (PANI) doping with various cobalt compounds, that is, cobalt(II) chloride, cobalt(II) acetate, and cobalt(II) salen, is presented. The catalysts were prepared by depositing cobalt compounds onto the polymer surface. PANI powders containing cobalt ions were obtained by one- or two-step method suspending PANI in the following acetonitrile/acetic acid solution or acetonitrile and then acetic acid solution. Moreover different ratios of Co(II) : PANI were studied. Catalysts obtained with both methods and at all ratios were investigated using various techniques including AAS and XPS spectroscopy. The optimum conditions for preparation of PANI/Co catalysts were established. Catalytic activity of polyaniline cobalt(II) supported catalysts was tested in dec-1-ene epoxidation with molecular oxygen at room temperature. The relationship between the amount of cobalt species, measured with both AAS and XPS techniques, and the activity of PANI-Co catalysts has been established.

  5. Olefin Epoxidation in Aqueous Phase Using Ionic-Liquid Catalysts.

    PubMed

    Cokoja, Mirza; Reich, Robert M; Wilhelm, Michael E; Kaposi, Marlene; Schäffer, Johannes; Morris, Danny S; Münchmeyer, Christian J; Anthofer, Michael H; Markovits, Iulius I E; Kühn, Fritz E; Herrmann, Wolfgang A; Jess, Andreas; Love, Jason B

    2016-07-21

    Hydrophobic imidazolium-based ionic liquids (IL) act as catalysts for the epoxidation of unfunctionalized olefins in water using hydrogen peroxide as oxidant. Although the catalysts are insoluble in both the substrate and in water, surprisingly, they are very well soluble in aqueous H2 O2 solution, owing to perrhenate-H2 O2 interactions. Even more remarkably, the presence of the catalyst also boosts the solubility of substrate in water. This effect is crucially dependent on the cation design. Hence, the imidazolium perrhenates enable both the transfer of hydrophobic substrate into the aqueous phase, and serve as actual catalysts, which is unprecedented. At the end of the reaction and in absence of H2 O2 the IL catalyst forms a third phase next to the lipophilic product and water and can easily be recycled. PMID:27219852

  6. Identification of potent inhibitors of the chicken soluble epoxide hydrolase

    PubMed Central

    Shihadih, Diyala S.; Harris, Todd R.; Yang, Jun; Merzlikin, Oleg; Lee, Kin Sing S.; Hammock, Bruce D.; Morisseau, Christophe

    2014-01-01

    In vertebrates, soluble epoxide hydrolase (sEH) hydrolyzes natural epoxy-fatty acids (EpFAs), which are chemical mediators modulating inflammation, pain, and angiogenesis. Chick embryos are used to study angiogenesis, particularly its role in cardiovascular biology and pathology. To find potent and bio-stable inhibitors of the chicken sEH (chxEH) a library of human sEH inhibitors was screened. Derivatives of 1(adamantan-1-yl)-3-(trans-4-phenoxycyclohexyl) urea were found to be very potent tight binding inhibitors (KI < 150 pM) of chxEH while being relatively stable in chicken liver microsomes, suggesting their usefulness to study the role of EpFAs in chickens. PMID:25479771

  7. Conformational diversity and enantioconvergence in potato epoxide hydrolase 1.

    PubMed

    Bauer, P; Carlsson, Å Janfalk; Amrein, B A; Dobritzsch, D; Widersten, M; Kamerlin, S C L

    2016-06-28

    Potato epoxide hydrolase 1 (StEH1) is a biocatalytically important enzyme that exhibits rich enantio- and regioselectivity in the hydrolysis of chiral epoxide substrates. In particular, StEH1 has been demonstrated to enantioconvergently hydrolyze racemic mixes of styrene oxide (SO) to yield (R)-1-phenylethanediol. This work combines computational, crystallographic and biochemical analyses to understand both the origins of the enantioconvergent behavior of the wild-type enzyme, as well as shifts in activities and substrate binding preferences in an engineered StEH1 variant, R-C1B1, which contains four active site substitutions (W106L, L109Y, V141K and I155V). Our calculations are able to reproduce both the enantio- and regioselectivities of StEH1, and demonstrate a clear link between different substrate binding modes and the corresponding selectivity, with the preferred binding modes being shifted between the wild-type enzyme and the R-C1B1 variant. Additionally, we demonstrate that the observed changes in selectivity and the corresponding enantioconvergent behavior are due to a combination of steric and electrostatic effects that modulate both the accessibility of the different carbon atoms to the nucleophilic side chain of D105, as well as the interactions between the substrate and protein amino acid side chains and active site water molecules. Being able to computationally predict such subtle effects for different substrate enantiomers, as well as to understand their origin and how they are affected by mutations, is an important advance towards the computational design of improved biocatalysts for enantioselective synthesis. PMID:27049844

  8. Expanding the Catalytic Triad in Epoxide Hydrolases and Related Enzymes

    PubMed Central

    2015-01-01

    Potato epoxide hydrolase 1 exhibits rich enantio- and regioselectivity in the hydrolysis of a broad range of substrates. The enzyme can be engineered to increase the yield of optically pure products as a result of changes in both enantio- and regioselectivity. It is thus highly attractive in biocatalysis, particularly for the generation of enantiopure fine chemicals and pharmaceuticals. The present work aims to establish the principles underlying the activity and selectivity of the enzyme through a combined computational, structural, and kinetic study using the substrate trans-stilbene oxide as a model system. Extensive empirical valence bond simulations have been performed on the wild-type enzyme together with several experimentally characterized mutants. We are able to computationally reproduce the differences between the activities of different stereoisomers of the substrate and the effects of mutations of several active-site residues. In addition, our results indicate the involvement of a previously neglected residue, H104, which is electrostatically linked to the general base H300. We find that this residue, which is highly conserved in epoxide hydrolases and related hydrolytic enzymes, needs to be in its protonated form in order to provide charge balance in an otherwise negatively charged active site. Our data show that unless the active-site charge balance is correctly treated in simulations, it is not possible to generate a physically meaningful model for the enzyme that can accurately reproduce activity and selectivity trends. We also expand our understanding of other catalytic residues, demonstrating in particular the role of a noncanonical residue, E35, as a “backup base” in the absence of H300. Our results provide a detailed view of the main factors driving catalysis and regioselectivity in this enzyme and identify targets for subsequent enzyme design efforts. PMID:26527505

  9. Synthesis and characterization of molybdenum/phenolic resin composites binding with aluminum nitride particles for diamond cutters

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Te; Lee, Hsun-Tsing; Chen, Jem-Kun

    2013-11-01

    Novolac-type bisphenol-F based molybdenum-phenolic resins/silane-modified aluminum nitride (Mo-BPF/m-AlN) composites were successfully prepared. In the preparation process, molybdate reacted with bisphenol-F based phenolic resins (BPF) to form a low cross-linked Mo-BPF with new Mosbnd O bonds which were confirmed by the FTIR and XPS spectra. Simultaneously, a special silane-modified aluminum nitride (m-AlN) was prepared with 3-aminopropyltriethoxysilane (APTES) modifier. Then, this m-AlN was fully mixed with Mo-BPF to form Mo-BPF/m-AlN which can be further cured with hexamethylenetetramine at 200 °C. The structure and characterization of BPF, Mo-BPF and Mo-BPF/m-AlN were determined by using FTIR, DSC, DMA, TGA, SEM, mechanical properties and contact angle measurements. SEM photographs show that m-AlN particles are uniformly distributed in the Mo-BPF/m-AlN composites. Also there are no gaps or void between m-AlN and Mo-BPF phases, which implies a strong physical bonding between the two phases. The glass transition temperature, thermal resistance, flexural strength, and hardness of Mo-BPF are respectively higher than those of BPF. This is due to the presence of Mosbnd O cross-linking bonds in Mo-BPF. When the m-AlN was additionally incorporated into Mo-BPF, the well-dispersed and well-adhered m-AlN can further promote all the above-mentioned properties of the composites. Typically, the glass transition temperature, decomposition temperature at 5% weight loss and flexural strength of Mo-BPF/m-AlN are 245 °C, 428 °C and 82.7 MPa respectively, which are much higher than the corresponding values of 184 °C, 358 °C and 58.2 MPa for BPF. In addition, the hygroscopic nature of BPF can be inhibited by treating with molybdate or incorporating with m-AlN. This is due to that the m-AlN is hydrophobic and Mosbnd O groups in Mo-BPF are more hydrophobic than OH groups in BPF. Furthermore, Mo-BPF/m-AlN was compared with BPF in the performance as a binder for diamond cutting

  10. Biobased composites from thermoplastic polyurethane elastomer and cross-linked acrylated-epoxidized soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil is an important sustainable material. Crosslinked acrylated epoxidized soybean oil (AESO) is brittle without flexibility and the incorporation of thermoplastic polyurethane improves its toughness for industrial applications. The hydrophilic functional groups from both oil and polyurethan...

  11. A Computational Study of Acid Catalyzed Aerosol Reactions of Atmospherically Relevant Epoxides

    EPA Science Inventory

    Epoxides are important intermediates of atmospheric isoprene oxidation. Their subsequent reactions in the particle phase lead to the production of organic compounds detected in ambient aerosols. We apply density functional theory to determine the important kinetic factors that ...

  12. Epoxidation of trans-cyclooctene by Methyltrioxorhenium/H(2)O(2): reaction of trans-epoxide with the monoperoxo complex

    PubMed

    Adam; Saha-Moller; Weichold

    2000-08-11

    The epoxidation of trans-cyclooctene (trans-1) with the MTO/H(2)O(2), MTO/UHP, and NaY/MTO/H(2)O(2) oxidants leads to a mixture of trans/cis-olefins 1, trans/cis-epoxides 2, and the cis-diol 3. While the oxygen transfer proceeds stereoselectively, the monoperoxo rhenium complex A, which is generated in situ during the catalytic cycle, is responsible for the facile deoxygenation, isomerization, and hydrolysis of the trans-epoxide. In the case of the homogeneous MTO/H(2)O(2) system, rapid decomposition of the catalytically active rhenium species into HReO(4) circumvents the formation of such side products. In contrast, for the heterogeneous oxidants MTO/UHP and NaY/MTO/H(2)O(2), the catalytically active rhenium species are sufficiently stabilized and survive long enough to promote the observed side reactions.

  13. Discovery of Potent Non-urea Inhibitors of Soluble Epoxide Hydrolase

    PubMed Central

    Xie, Yuli; Liu, Yidong; Gong, Gangli; Smith, Deborah H.; Yan, Fang; Rinderspacher, Alison; Feng, Yan; Zhu, Zhengxiang; Li, Xiangpo; Deng, Shi-Xian; Branden, Lars; Vidović, Dušica; Chung, Caty; Schürer, Stephan; Morisseau, Christophe; Hammock, Bruce D.; Landry, Donald W.

    2009-01-01

    Soluble epoxide hydrolase (sEH) is a novel target for the treatment of hypertension and vascular inflammation. A new class of potent non-urea sEH inhibitors was identified via high throughput screening (HTS) and chemical modification. IC50s of the most potent compounds range from micromolar to low nanomolar. A Class of potent non-Urea inhibitors of soluble epoxide hydrolase was discovered via high throughput screening and SARs-guided modification. PMID:19303288

  14. Hydroxyl-Substituted Ladder Polyethers via Selective Tandem Epoxidation/Cyclization Sequence

    PubMed Central

    Czabaniuk, Lara C.; Jamison, Timothy F.

    2015-01-01

    A new and highly selective method for the synthesis of hydroxyl-substituted tetrahydropyrans is described. This method utilizes titanium(IV) iso-propoxide and diethyl tartrate to perform a diastereoselective epoxidation followed by in situ epoxide activation and highly selective endo-cyclization to form the desired tetrahydropyran ring. The HIJ ring fragment of the marine ladder polyether yessotoxin was synthesized using this two-stage tactic that proceeds with high efficiency and excellent regioselectivity. PMID:25647091

  15. Highly Active Titanocene Catalysts for Epoxide Hydrosilylation: Synthesis, Theory, Kinetics, EPR Spectroscopy.

    PubMed

    Henriques, Dina Schwarz G; Zimmer, Katharina; Klare, Sven; Meyer, Andreas; Rojo-Wiechel, Elena; Bauer, Mirko; Sure, Rebecca; Grimme, Stefan; Schiemann, Olav; Flowers, Robert A; Gansäuer, Andreas

    2016-06-27

    A catalytic system for titanocene-catalyzed epoxide hydrosilylation is described. It features a straightforward preparation of titanocene hydrides that leads to a reaction with low catalyst loading, high yields, and high selectivity of radical reduction. The mechanism was studied by a suite of methods, including kinetic studies, EPR spectroscopy, and computational methods. An unusual resting state leads to the observation of an inverse rate order with respect to the epoxide.

  16. The Epoxidation of Carbonyl Compounds with a Benzyne-Triggered Sulfur Ylide.

    PubMed

    Lou, Mei-Mei; Wang, Han; Song, Li; Liu, Hong-Yi; Li, Zhong-Qiu; Guo, Xiao-Shuang; Zhang, Fu-Geng; Wang, Bin

    2016-07-15

    An efficient method for the synthesis of epoxides from carbonyl compounds, sulfoxides, and benzyne is presented. The strategy involved an epoxidation by a sulfur ylide which is formed in situ from sulfoxide and benzyne through the S-O bond insertion and deprotonation. This one-pot reaction proceeds under mild and base-free conditions, providing a convenient way to introduce the substituted methylene groups onto the carbonyl carbon.

  17. Highly Active Titanocene Catalysts for Epoxide Hydrosilylation: Synthesis, Theory, Kinetics, EPR Spectroscopy.

    PubMed

    Henriques, Dina Schwarz G; Zimmer, Katharina; Klare, Sven; Meyer, Andreas; Rojo-Wiechel, Elena; Bauer, Mirko; Sure, Rebecca; Grimme, Stefan; Schiemann, Olav; Flowers, Robert A; Gansäuer, Andreas

    2016-06-27

    A catalytic system for titanocene-catalyzed epoxide hydrosilylation is described. It features a straightforward preparation of titanocene hydrides that leads to a reaction with low catalyst loading, high yields, and high selectivity of radical reduction. The mechanism was studied by a suite of methods, including kinetic studies, EPR spectroscopy, and computational methods. An unusual resting state leads to the observation of an inverse rate order with respect to the epoxide. PMID:27125466

  18. Bromine-catalyzed conversion of CO2 and epoxides to cyclic carbonates under continuous flow conditions.

    PubMed

    Kozak, Jennifer A; Wu, Jie; Su, Xiao; Simeon, Fritz; Hatton, T Alan; Jamison, Timothy F

    2013-12-11

    A continuous method for the formation of cyclic carbonates from epoxides and carbon dioxide (CO2) is described. The catalysts used are inexpensive and effective in converting the reagents to the products in a residence time (t(R)) of 30 min. The cyclic carbonate products are obtained in good to excellent yield (51-92%). On the basis of a series of kinetics experiments, we propose a reaction mechanism involving epoxide activation by electrophilic bromine and CO2 activation by an amide.

  19. Alkylation of 2-substituted (6-methyl-2-pyridyl)methyllithium species with epoxides

    PubMed Central

    Vyvyan, James R.; Brown, Rebecca C.; Woods, Brian P.

    2009-01-01

    Substituted (6-methyl-2-pyridyl)methyllithium species were reacted with 1,2-epoxyoctane and 2-methyl-2,3-epoxynonane. The monosubstituted epoxide reacted efficiently with lutidyllithium and a number of 2-substituted-(6-methyl-2-pyridyl)methyllithium derivatives. The trisubstituted epoxide gave low yields of adducts with all (2-pyridyl)methyllithium species studied. These results are discussed in the context of a proposed synthesis of cananodine. PMID:19113936

  20. Enantioselective epoxidation and carbon-carbon bond cleavage catalyzed by Coprinus cinereus peroxidase and myeloperoxidase.

    PubMed

    Tuynman, A; Spelberg, J L; Kooter, I M; Schoemaker, H E; Wever, R

    2000-02-01

    We demonstrate that myeloperoxidase (MPO) and Coprinus cinereus peroxidase (CiP) catalyze the enantioselective epoxidation of styrene and a number of substituted derivatives with a reasonable enantiomeric excess (up to 80%) and in a moderate yield. Three major differences with respect to the chloroperoxidase from Caldariomyces fumago (CPO) are observed in the reactivity of MPO and CiP toward styrene derivatives. First, in contrast to CPO, MPO and CiP produced the (S)-isomers of the epoxides in enantiomeric excess. Second, for MPO and CiP the H(2)O(2) had to be added very slowly (10 eq in 16 h) to prevent accumulation of catalytically inactive enzyme intermediates. Under these conditions, CPO hardly showed any epoxidizing activity; only with a high influx of H(2)O(2) (300 eq in 1.6 h) was epoxidation observed. Third, both MPO and CiP formed significant amounts of (substituted) benzaldehydes as side products as a consequence of C-alpha-C-beta bond cleavage of the styrene derivatives, whereas for CPO and cytochrome c peroxidase this activity is not observed. C-alpha-C-beta cleavage was the most prominent reaction catalyzed by CiP, whereas with MPO the relative amount of epoxide formed was higher. This is the first report of peroxidases catalyzing both epoxidation reactions and carbon-carbon bond cleavage. The results are discussed in terms of mechanisms involving ferryl oxygen transfer and electron transfer, respectively.

  1. Flame Retardant Epoxy Resins

    NASA Technical Reports Server (NTRS)

    Thompson, C. M.; Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.; Lyon, R. E.

    2004-01-01

    As part of a program to develop fire resistant exterior composite structures for future subsonic commercial aircraft, flame retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured epoxies were characterized by thermogravimetric analysis, propane torch test, elemental analysis and microscale combustion calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness of plaques of several cured formulations was determined on single-edge notched bend specimens. The chemistry and properties of these new epoxy formulations are discussed.

  2. System for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2010-11-23

    A resin recycling system that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The system includes receiving the resin in container form. A grinder grinds the containers into resin particles. The particles are exposed to a solvent in one or more solvent wash vessels, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. A separator is used to separate the resin particles and the solvent. The resin particles are then placed in solvent removing element where they are exposed to a solvent removing agent which removes any residual solvent remaining on the resin particles after separation.

  3. Indirect posterior composite resins.

    PubMed

    Leinfelder, Karl F

    2005-07-01

    The use of indirect posterior composite restorations has facilitated the generation of ideal anatomic form, marginal adaptation, and appropriate proximal contact and contour. Unfortunately, however, the use of post-cure heat treatments has done little to enhance the overall clinical performance of the restoration. The development of new curing techniques in conjunction with modifications of the formulae have contributed to a substantial improvement in both the mechanical characteristics and long-term clinical performance of indirect posterior composite resins.

  4. Advanced thermoplastic resins, phase 1

    NASA Technical Reports Server (NTRS)

    Hendricks, C. L.; Hill, S. G.; Falcone, A.; Gerken, N. T.

    1991-01-01

    Eight thermoplastic polyimide resin systems were evaluated as composite matrix materials. Two resins were selected for more extensive mechanical testing and both were versions of LaRC-TPI (Langley Research Center - Thermoplastic Polyimide). One resin was made with LaRC-TPI and contained 2 weight percent of a di(amic acid) dopant as a melt flow aid. The second system was a 1:1 slurry of semicrystalline LaRC-TPI powder in a polyimidesulfone resin diglyme solution. The LaRC-TPI powder melts during processing and increases the melt flow of the resin. Testing included dynamic mechanical analysis, tension and compression testing, and compression-after-impact testing. The test results demonstrated that the LaRC-TPI resins have very good properties compared to other thermoplastics, and that they are promising matrix materials for advanced composite structures.

  5. Vitrification of ion exchange resins

    DOEpatents

    Cicero-Herman, Connie A.; Workman, Rhonda Jackson

    2001-01-01

    The present invention relates to vitrification of ion exchange resins that have become loaded with hazardous or radioactive wastes, in a way that produces a homogenous and durable waste form and reduces the disposal volume of the resin. The methods of the present invention involve directly adding borosilicate glass formers and an oxidizer to the ion exchange resin and heating the mixture at sufficient temperature to produce homogeneous glass.

  6. Dry PMR-15 Resin Powders

    NASA Technical Reports Server (NTRS)

    Vannucci, Raymond D.; Roberts, Gary D.

    1988-01-01

    Shelf lives of PMR-15 polymides lengthened. Procedure involves quenching of monomer reactions by vacuum drying of PRM-15 resin solutions at 70 to 90 degree F immediately after preparation of solutions. Absence of solvent eliminates formation of higher esters and reduces formation of imides to negligible level. Provides fully-formulated dry PMR-15 resin powder readily dissolvable in solvent at room temperature immediately before use. Resins used in variety of aerospace, aeronautical, and commercial applications.

  7. Epoxidation Activities of Human Cytochromes P450c17 and P450c21

    PubMed Central

    2015-01-01

    Some cytochrome P450 enzymes epoxidize unsaturated substrates, but this activity has not been described for the steroid hydroxylases. Physiologic steroid substrates, however, lack carbon–carbon double bonds in the parts of the pregnane molecules where steroidogenic hydroxylations occur. Limited data on the reactivity of steroidogenic P450s toward olefinic substrates exist, and the study of occult activities toward alternative substrates is a fundamental aspect of the growing field of combinatorial biosynthesis. We reasoned that human P450c17 (steroid 17-hydroxylase/17,20-lyase, CYP17A1), which 17- and 16α-hydroxylates progesterone, might catalyze the formation of the 16α,17-epoxide from 16,17-dehydroprogesterone (pregna-4,16-diene-3,20-dione). CYP17A1 catalyzed the novel 16α,17-epoxidation and the ordinarily minor 21-hydroxylation of 16,17-dehydroprogesterone in a 1:1 ratio. CYP17A1 mutation A105L, which has reduced progesterone 16α-hydroxylase activity, gave a 1:5 ratio of epoxide:21-hydroxylated products. In contrast, human P450c21 (steroid 21-hydroxylase, CYP21A2) converted 16,17-dehydroprogesterone to the 21-hydroxylated product and only a trace of epoxide. CYP21A2 mutation V359A, which has significant 16α-hydroxylase activity, likewise afforded the 21-hydroxylated product and slightly more epoxide. CYP17A1 wild-type and mutation A105L do not 21- or 16α-hydroxylate pregnenolone, but the enzymes 21-hydroxylated and 16α,17-epoxidized 16,17-dehydropregnenolone (pregna-5,16-diene-3β-ol-20-one) in 4:1 or 12:1 ratios, respectively. Catalase and superoxide dismutase did not prevent epoxide formation. The progesterone epoxide was not a time-dependent, irreversible CYP17A1 inhibitor. Our substrate modification studies have revealed occult epoxidase and 21-hydroxylase activities of CYP17A1, and the fraction of epoxide formed correlated with the 16α-hydroxylase activity of the enzymes. PMID:25386927

  8. Phosphorus-containing bisimide resins

    NASA Technical Reports Server (NTRS)

    Varma, I. K.; Fohlen, G. M.; Parker, J. A. (Inventor)

    1981-01-01

    The production of fire-resistant resins particularly useful for making laminates with inorganic fibers such as graphite fibers is discussed. The resins are by (1) condensation of an ethylenically unsaturated cyclic anhydride with a bis(diaminophenyl) phosphine oxide, and (2) by addition polymerization of the bisimide so obtained. Up to about 50%, on a molar basis, of benzophenonetetracarboxylic acid anhydride can be substituted for some of the cyclic anhydride to alter the properties of the products. Graphite cloth laminates made with these resins show 800 C char yields greater than 70% by weight in nitrogen. Limiting oxygen indexes of more than 100% are determined for these resins.

  9. Epoxide-Mediated Differential Packaging of Cif and Other Virulence Factors into Outer Membrane Vesicles

    PubMed Central

    Ballok, Alicia E.; Filkins, Laura M.; Bomberger, Jennifer M.; Stanton, Bruce A.

    2014-01-01

    Pseudomonas aeruginosa produces outer membrane vesicles (OMVs) that contain a number of secreted bacterial proteins, including phospholipases, alkaline phosphatase, and the CFTR inhibitory factor (Cif). Previously, Cif, an epoxide hydrolase, was shown to be regulated at the transcriptional level by epoxides, which serve as ligands of the repressor, CifR. Here, we tested whether epoxides have an effect on Cif levels in OMVs. We showed that growth of P. aeruginosa in the presence of specific epoxides but not a hydrolysis product increased Cif packaging into OMVs in a CifR-independent fashion. The outer membrane protein, OprF, was also increased under these conditions, but alkaline phosphatase activity was not significantly altered. Additionally, we demonstrated that OMV shape and density were affected by epoxide treatment, with two distinct vesicle fractions present when cells were treated with epibromohydrin (EBH), a model epoxide. Vesicles isolated from the two density fractions exhibited different protein profiles in Western blotting and silver staining. We have shown that a variety of clinically or host-relevant treatments, including antibiotics, also alter the proteins packaged in OMVs. Proteomic analysis of purified OMVs followed by an analysis of transposon mutant OMVs yielded mutants with altered vesicle packaging. Finally, epithelial cell cytotoxicity was reduced in the vesicles formed in the presence of EBH, suggesting that this epoxide alters the function of the OMVs. Our data support a model whereby clinically or host-relevant signals mediate differential packaging of virulence factors in OMVs, which results in functional consequences for host-pathogen interactions. PMID:25112474

  10. Patulin biosynthesis: Epoxidation of toluquinol and gentisyl alcohol by particulate preparations from Penicillium patulum

    SciTech Connect

    Priest, J.W.; Light, R.J. )

    1989-11-14

    A crude extract that catalyzes the epoxidation of toluquinol and gentisyl alcohol was isolated from cultures of Penicillium patulum. About 60% of the activity sedimented from crude extract upon centrifugation at 105000g for 2 h, and at 30000g for 30 min after precipitation with 30% ammonium sulfate and resuspension in buffer. The quinone epoxide phyllostine, a product of gentisyl alcohol epoxidation, has previously been shown to be an intermediate in the biosynthesis of patulin and was shown to be further converted to neopatulin by the extract. The epoxide product of toluquinol, desoxyphyllostine (2-methyl-5,6-epoxy-1,4-benzoquinone), has not been reported previously from fungal cultures. Its structure was confirmed by GC-mass spectrometry and proton and {sup 13}C NMR. Its CD spectrum showed the same shape and signs as that of phyllostine, indicating that it too is an enzymatic product with a similar absolute configuration. Whereas chemical epoxidation of toluquinone and gentisly quinone occurs with hydrogen peroxide, the enzymatic epoxidation utilized oxygen and the hydroquinone. The epoxidation was inhibited by 1,10-phenanthroline, EDTA, and {rho}-(chloromercuri)benzenesulfonic acid and by degassing with nitrogen, but no inhibition was observed with KCN, catalase, or CO. The apparent K{sub m}'s were similar for the two substrates with both substrates showing inhibition at 1.0 mM. The rate of desoxyphyllostine formation was more than 10 times that of phyllostine formation at equivalent substrate concentrations. Gentisaldehyde was not a substrate for the enzyme. The epoxidase was induced in late fermentor cultures of P. patulum with the same kinetics as m-hydroxybenzyl alcohol dehydrogenase, another enzyme associated with the induction of patulin biosynthesis.

  11. Final Report: Experimental and Theoretical Studies of Surface Oxametallacycles - Connections to Heterogeneous Olefin Epoxidation

    SciTech Connect

    Mark A. Barteau

    2009-09-15

    This project has aimed at the rational design of catalysts for direct epoxidation of olefins. This chemistry remains one of the most challenging problems in heterogeneous catalysis. Although the epoxidation of ethylene by silver catalysts to form ethylene oxide (EO) has been practiced for decades, little progress has been made in expanding this technology to other products and processes. We have made significant advances through the combination of surface science experiments, Density Functional Theory (DFT) calculations, and catalytic reactor experiments, toward understanding the mechanism of this reaction on silver catalysts, and to the rational improvement of selectivity. The key has been our demonstration of surface oxametallacycle intermediates as the species that control reaction selectivity. This discovery permits the influence of catalyst promoters on selectivity to be probed, and new catalyst formulations to be developed. It also guides the development of new chemistry with potential for direct epoxidation of more complex olefins. During the award period we have focused on 1. the formation and reaction selectivity of complex olefin epoxides on silver surfaces, and 2. the influence of co-adsorbed oxygen atoms on the reactions of surface oxametallacycles on silver, and 3. the computational prediction, synthesis, characterization and experimental evaluation of bimetallic catalysts for ethylene epoxidation. The significance of these research thrusts is as follows. Selective epoxidation of olefins more complex than ethylene requires suppression of not only side reactions available to the olefin such as C-H bond breaking, but it requires formation and selective ring closure of the corresponding oxametallacycle intermediates. The work carried out under this grant has significantly advanced the field of catalyst design from first principles. The combination of computational tools, surface science, and catalytic reactor experiments in a single laboratory has few

  12. A short synthesis of (+)-narciclasine via a strategy derived from stereocontrolled epoxide formation and SnCl(4)-catalyzed arene-epoxide coupling.

    PubMed

    Elango, Shanmugham; Yan, Tu-Hsin

    2002-10-01

    A facile construction of the typical framework of narcissus alkaloids has been realized by virtue of the development of a practical route involving stereocontrolled epoxide formation and SnCl(4)-catalyzed arene-epoxide coupling. To achieve this goal, it proved to be necessary to devise a strategy that would enable chemical transformations to install an epoxy moiety in a congested environment. The successful preparation of a hindered epoxide from O-isopropylidene-protected 4-aminocyclohexenol required three steps consisting principally of controlled bromohydration and base-promoted closure and N-alkylation. It was found that a catalytic amount of SnCl(4) not only maintained the catalytic cycle but also effected clean arylation to form a fused BC ring system. Several tactics that ultimately proved to be unsatisfactory are also discussed in an effort to set important boundary limits on arene-epoxide coupling. The requisite enantiopure 4-aminocyclohexenol was available via an asymmetric cycloaddition of diene to camphor-based chloronitroso. The total synthesis of (+)-narciclasine was realized in nine steps with an overall yield of 19%.

  13. [Determination of epoxidized soybean oil in bottled foods].

    PubMed

    Kawamura, Yoko; Kanno, Shinji; Mutsuga, Motoh; Tanamoto, Kenichi

    2006-12-01

    A determination method for epoxidized soybean oil (ESBO) in bottled foods was developed and used to survey bottled foods on the Japanese market. The amount of sample required was decreased to 20 g and the standard addition method was adopted for the quantification, because lipid in foods interrupted the hydrolysis of ESBO. The recoveries were 87.1 and 98.9% and the determination limit was 5.0 microg/g for a 20 g sample, be cause lipid in foods interupted the hydrolysis of ESBO. The recoveries using the internal standard method varied widely, because hydrolysis of the internal standard, cis-11,14-eicosadienoic acid ethyl ester, was affected more than that of ESBO by coexisting lipid in the sample. ESBO was not detected in any of the bottled baby food samples examined (14 samples), though it had been frequently detected in previous European surveys. This difference may be related to the low fat content and low fluidity of the bottled baby foods retailed in Japan. On the other hand, ESBO was detected at levels of 25.7-494.0 microg/g in liver paste, pasta sauce, Sungan in spicy oil, and spicy oil. These foods had higher fat content and higher fluidity. However, ESBO intake from these foods appears unlikely to exceed the TDI in the EU (1 mg/kg bw/day). PMID:17228787

  14. Grignard Reaction of an Epoxide: A Mechanistic Study

    NASA Astrophysics Data System (ADS)

    Ciaccio, James A.; Volpi, Sabrina; Clarke, Ransford

    1996-12-01

    Addition of PhMgBr to styrene oxide (1) affords a mixture of 2,2-diphenylethanol (3) and 1,2-diphenylethanol (6) (3:6 = 1:3); reversing the order of addition inverts the ratio of 3 to 6 formed (3:6 = 2:1). Students identify 3 and 6 by TLC comparison with authentic samples which they prepare by independent synthesis (hydride reduction of the corresponding carbonyl compounds), and establish the ratios of 3 to 6 by a combination of 1H and 13C NMR spectroscopies. This undergraduate experiment serves as an interesting alternative to more traditional Grignard experiments and is an excellent vehicle for a "discovery-based" experiment in which students are introduced to epoxide chemistry, share their laboratory data and make mechanistic conclusions from their experimental results. Unlike most undergraduate Grignard experiments which are performed merely for the sake of illustrating a textbook reaction, this Grignard synthesis is performed to probe the reactivity of styrene oxide. Students are required to analyze their products by TLC and NMR spectroscopy (instead of just submitting them for a grade) in order to obtain the data necessary for making mechanistic conclusions.

  15. Pharmacokinetic Screening of Soluble Epoxide Hydrolase Inhibitors in Dogs

    PubMed Central

    Tsai, Hsing-Ju; Hwang, Sung Hee; Morisseau, Christophe; Yang, Jun; Jones, Paul D.; Kasagami, Takeo; Kim, In-Hae; Hammock, Bruce D.

    2012-01-01

    Epoxyeicosatrienoic acids that have anti-hypertensive and anti-inflammatory properties are mainly metabolized by soluble epoxide hydrolase (sEH, EC 3.3.2.3). Therefore, sEH has emerged as a therapeutic target for treating various cardiovascular diseases and inflammatory pain. N,N’-Disubstituted ureas are potent sEH inhibitors in vitro. However, in vivo usage of early sEH inhibitors has been limited by their low bioavailability and poor physiochemical properties. Therefore, a group of highly potent compounds with more drug-like physiochemical properties were evaluated by monitoring their plasma profiles in dogs treated orally with sEH inhibitors. Urea compounds with an adamantyl or a 4-trifluoromethoxyphenyl group on one side and a piperidyl or a cyclohexyl ether group on the other side of the urea function showed pharmacokinetic profiles with high plasma concentrations and long half lives. In particular, the inhibitor trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB) not only is very potent with good physiochemical properties, but also shows high oral bioavailability for doses ranging from 0.01 to 1 mg/kg. This compound is also very potent against the sEH of several mammals, suggesting that t-AUCB will be an excellent tool to evaluate the biology of sEH in multiple animal models. Such compounds may also be a valuable lead for the development of veterinary therapeutics. PMID:20359531

  16. Terreic Acid, a Quinone Epoxide Inhibitor of Bruton's Tyrosine Kinase

    NASA Astrophysics Data System (ADS)

    Kawakami, Yuko; Hartman, Stephen E.; Kinoshita, Eiji; Suzuki, Hidefumi; Kitaura, Jiro; Yao, Libo; Inagaki, Naoki; Franco, Alessandra; Hata, Daisuke; Maeda-Yamamoto, Mari; Fukamachi, Hiromi; Nagai, Hiroichi; Kawakami, Toshiaki

    1999-03-01

    Bruton's tyrosine kinase (Btk) plays pivotal roles in mast cell activation as well as in B cell development. Btk mutations lead to severe impairments in proinflammatory cytokine production induced by cross-linking of high-affinity IgE receptor on mast cells. By using an in vitro assay to measure the activity that blocks the interaction between protein kinase C and the pleckstrin homology domain of Btk, terreic acid (TA) was identified and characterized in this study. This quinone epoxide specifically inhibited the enzymatic activity of Btk in mast cells and cell-free assays. TA faithfully recapitulated the phenotypic defects of btk mutant mast cells in high-affinity IgE receptor-stimulated wild-type mast cells without affecting the enzymatic activities and expressions of many other signaling molecules, including those of protein kinase C. Therefore, this study confirmed the important roles of Btk in mast cell functions and showed the usefulness of TA in probing into the functions of Btk in mast cells and other immune cell systems. Another insight obtained from this study is that the screening method used to identify TA is a useful approach to finding more efficacious Btk inhibitors.

  17. Mutagenic and cell-transforming activities of triol-epoxides as compared to other chrysene metabolites.

    PubMed

    Glatt, H; Seidel, A; Bochnitschek, W; Marquardt, H; Marquardt, H; Hodgson, R M; Grover, P L; Oesch, F

    1986-09-01

    The syn- and anti-isomers of the bay-region diol-epoxides of chrysene and of 3-hydroxychrysene and their metabolic precursors have been investigated for mutagenicity in Salmonella typhimurium (reversion to histidine prototrophy) and V79 Chinese hamster cells (acquirement of resistance to 6-thioguanine) and for transforming activity in M2 mouse prostate cells. Other known and potential chrysene metabolites have been included in mutagenicity experiments. Direct mutagenic activity in S. typhimurium TA 100 exhibited, in order of potency, anti-triol-epoxide greater than syn-triol-epoxide greater than anti-diol-epoxide greater than syn-diol-epoxide greater than chrysene 5,6-oxide much greater than chrysene-1,2-quinone, chrysene-3,4-quinone, and chrysene 5,6-quinone. Chrysene, the six isomeric chrysenols, and the trans-dihydrodiols [trans-1,2-dihydroxy-1,2-dihydrochrysene (chrysene-1,2-diol), trans-3,4-dihydroxy-3,4-dihydrochrysene, trans-5,6-dihydroxy-5,6-dihydrochrysene, and 9-hydroxy-trans-1,2-dihydroxy-1,2-dihydrochrysene (9-hydroxychrysene-1,2-diol)] were inactive per se but were activated to mutagens in the presence of reduced nicotinamide adenine dinucleotide phosphate-fortified postmitochondrial fraction (S9 mix) of liver homogenate from Arochlor 1254-treated rats. Chrysene, 3-hydroxychrysene, chrysene-1,2-diol, and 9-hydroxychrysene-1,2-diol were activated efficiently; the other compounds were activated weakly. In S. typhimurium TA 98, the mutagenic activities of the chrysene derivatives were weak in comparison with those in the strain TA 100. trans-3,4-Dihydroxy-3,4-dihydrochrysene (in the presence of S9 mix) was the most efficacious mutagen in strain TA 98. The relative mutagenic potencies of the directly active compounds differed from the results obtained in strain TA 100, in that in strain TA 98 the anti-diol-epoxide was more mutagenic than the triol-epoxides and chrysene 5,6-oxide was more mutagenic than syn-diol-epoxide and syn-triol-epoxide. In V79 cells

  18. Imide modified epoxy matrix resins

    NASA Technical Reports Server (NTRS)

    Scola, D. A.; Pater, R. H.

    1981-01-01

    High char yield epoxy using novel bisimide amines (BIA's) as curing agents with a state of the art epoxy resin was developed. Stoichiometric quantities of the epoxy resin and the BIA's were studied to determine the cure cycle required for preparation of resin specimens. The bisimide cured epoxies were designated IME's (imide modified epoxy). The physical, thermal and mechanical properties of these novel resins were determined. The levels of moisture absorption exhibited by the bisimide amine cured expoxies (IME's) were considerably lower than the state of the art epoxies. The strain-to-failure of the control resin system was improved 25% by replacement of DDS with 6F-DDS. Each BIA containing resin exhibited twice the char yield of the control resin MY 720/DDS. Graphite fiber reinforced control (C) and IME resins were fabricated and characterized. Two of the composite systems showed superior properties compared to the other Celion 6000/IME composite systems and state of the art graphite epoxy systems. The two systems exhibited excellent wet shear and flexural strengths and moduli at 300 and 350 F.

  19. Metatungstate and tungstoniobate-containing LDHs: Preparation, characterisation and activity in epoxidation of cyclooctene

    NASA Astrophysics Data System (ADS)

    Carriazo, D.; Lima, S.; Martín, C.; Pillinger, M.; Valente, A. A.; Rives, V.

    2007-10-01

    Polyoxometalates (POMs) H2W12O406- and W4Nb2O194- have been intercalated between the brucite-like layers of Mg, Al and Zn, Al hydrotalcites by anion exchange, starting from the corresponding nitrate precursors. The solids have been characterised by Powder X-ray Diffraction (PXRD), Fourier Transform infrared (FT-IR) spectroscopy, N2 adsorption desorption at -196 °C and thermogravimetric (TG) and differential thermal analyses (DTA), and have been tested in the epoxidation of cyclooctene using H2O2 or t-BuOOH as oxidants. The results show that both anions are effectively located in the interlayer space maintaining their pristine structures without depolymerisation. Upon intercalation of such large anions microporosity is developed and subsequently an increase in the specific surface areas is also observed. In general, the prepared materials possess catalase and epoxidation activity, with ZnAl-intercalated H2W12O406- giving the best results in terms of epoxide yield (17% at 24 h). Product selectivity is different for the intercalated and free POMs, the latter yielding 1,2-cyclooctanediol as the only product, whereas the former produces only the epoxide. The epoxidation reaction seems to be catalysed in homogeneous phase by the POM.

  20. Synthesis and physicochemical properties of epoxidized Tmp trioleate by in situ method

    SciTech Connect

    Samidin, Salma; Salimon, Jumat

    2014-09-03

    Tmp trioleate was initially synthesized via esterification of trimetilolprapane and oleic acid (90%) using 1.5% of H{sub 2}SO{sub 4} as a catalyst. The production of Tmp trioleate was observed at 98% (w/w). The iodine value of Tmp trioleate was analyzed for further reaction of epoxidation. Epoxide was important reaction as an intermediate for preparation of chemical modified lubricants from vegetable oils. Finding the best way of epoxidation process will give high quality for further modification of oil instead of reduce the cost and time for the preparation process during reaction of epoxidation. In this study, the epoxidation of unsaturation Tmp trioleate with peroxyformic acid generated in-situ from hydrogen peroxide 30% in H{sub 2}O{sub 2} with formic acid was studied. 95% conversion to oxygen oxirane content (OOC) ring was obtained. The derivatization showed an improvement of the compound's oxidative stability evidenced from pressurized differential scanning calorimetry (PDSC) data which are 177°C to 200°C. Physicochemical properties showed increasing of temperature of flash point from 280°C to 300°C and viscosity index (VI) from 146 to 154. However, the pour point showed increasing temperature which was −58.81°C to −17.32°C. From the data obtained, these derivatives have shown better performance of lubricity properties. Overall, the data indicates that these performances are compatible to the commercial lubricants.

  1. Synthesis and physicochemical properties of epoxidized Tmp trioleate by in situ method

    NASA Astrophysics Data System (ADS)

    Samidin, Salma; Salimon, Jumat

    2014-09-01

    Tmp trioleate was initially synthesized via esterification of trimetilolprapane and oleic acid (90%) using 1.5% of H2SO4 as a catalyst. The production of Tmp trioleate was observed at 98% (w/w). The iodine value of Tmp trioleate was analyzed for further reaction of epoxidation. Epoxide was important reaction as an intermediate for preparation of chemical modified lubricants from vegetable oils. Finding the best way of epoxidation process will give high quality for further modification of oil instead of reduce the cost and time for the preparation process during reaction of epoxidation. In this study, the epoxidation of unsaturation Tmp trioleate with peroxyformic acid generated in-situ from hydrogen peroxide 30% in H2O2 with formic acid was studied. 95% conversion to oxygen oxirane content (OOC) ring was obtained. The derivatization showed an improvement of the compound's oxidative stability evidenced from pressurized differential scanning calorimetry (PDSC) data which are 177°C to 200°C. Physicochemical properties showed increasing of temperature of flash point from 280°C to 300°C and viscosity index (VI) from 146 to 154. However, the pour point showed increasing temperature which was -58.81°C to -17.32°C. From the data obtained, these derivatives have shown better performance of lubricity properties. Overall, the data indicates that these performances are compatible to the commercial lubricants.

  2. A biotechnological approach to the synthesis of epoxides: bioconversion of hydrocarbons by Pseudomonas oleovorans during growth in a multiphase system

    SciTech Connect

    De Smet, M.J.

    1983-04-01

    This communication examines the oxidation of alkanes and alkenes by Pseudomonas oleovorans. A variety of substrates were tested in order to extend the practical use of P. oleovorans for the synthesis of chiral epoxides. Concludes that hydrocarbon fermentations of P. oleovorans might be an important tool not only in the production of epoxides but also in the production of aliphatic polyesters and biosurfactants.

  3. 40 CFR 63.1427 - Process vent requirements for processes using extended cookout as an epoxide emission reduction...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... epoxide in the reactor liquid at the beginning of the time period, weight percent. k = Reaction rate... directly measuring the concentration of the unreacted epoxide, or by using process knowledge, reaction... accordance with paragraph (f)(1)(i) of this section, or reaction kinetics in accordance with paragraph...

  4. [(Salcen)Cr(III) + Lewis base]-catalyzed synthesis of N-aryl-substituted oxazolidinones from epoxides and aryl isocyanates.

    PubMed

    Paddock, Robert L; Adhikari, Debashis; Lord, Richard L; Baik, Mu-Hyun; Nguyen, SonBinh T

    2014-12-14

    [(Salcen)Cr(III) + Lewis base] was found to be a highly active and selective catalyst system in the [2+3] cycloaddition between epoxides and isocyanates to form 5-oxazolidinones. The reaction proceeds to high yield under mild reaction conditions and is applicable to a variety of terminal epoxides and aryl isocyanates.

  5. Highly Selective Olefin Epoxidation with Aqueous H₂O₂ Over Surfacemodified TaSBA15 Prepared via the TMP Method

    SciTech Connect

    Ruddy, Daniel A.; Tilley, T. D.

    2007-07-17

    Trialkylsiloxy-modified Ta(V) centers on mesoporous silica exhibit excellent selectivity for epoxide formation (>98% after 2 h) in the oxidation of cyclohexene using aqueous H₂O₂ as the oxidant; the modified catalysts exhibit an increased lifetime, retaining high selectivity after 6 h of reaction (>95% epoxide).

  6. 40 CFR 63.1427 - Process vent requirements for processes using extended cookout as an epoxide emission reduction...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... at the beginning of the time period, weight percent. k = Reaction rate constant, 1/hr. t = Time... epoxide concentration using 40 CFR part 60, appendix A, Method 18. (ii) Determine the epoxide concentration in the vapor space using Raoult's Law or another appropriate phase equilibrium equation and...

  7. 40 CFR 63.1427 - Process vent requirements for processes using extended cookout as an epoxide emission reduction...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... at the beginning of the time period, weight percent. k = Reaction rate constant, 1/hr. t = Time... epoxide concentration using 40 CFR part 60, appendix A, Method 18. (ii) Determine the epoxide concentration in the vapor space using Raoult's Law or another appropriate phase equilibrium equation and...

  8. Resin composite repair: Quantitative microleakage evaluation of resin-resin and resin-tooth interfaces with different surface treatments

    PubMed Central

    Celik, Cigdem; Cehreli, Sevi Burcak; Arhun, Neslihan

    2015-01-01

    Objective: The aim was to evaluate the effect of different adhesive systems and surface treatments on the integrity of resin-resin and resin-tooth interfaces after partial removal of preexisting resin composites using quantitative image analysis for microleakage testing protocol. Materials and Methods: A total of 80 human molar teeth were restored with either of the resin composites (Filtek Z250/GrandioSO) occlusally. The teeth were thermocycled (1000×). Mesial and distal 1/3 parts of the restorations were removed out leaving only middle part. One side of the cavity was finished with course diamond bur and the other was air-abraded with 50 μm Al2O3. They were randomly divided into four groups (n = 10) to receive: Group 1: Adper Single Bond 2; Group 2: All Bond 3; Group 3: ClearfilSE; Group 4: BeautiBond, before being repaired with the same resin composite (Filtek Z250). The specimens were re-thermocycled (1000×), sealed with nail varnish, stained with 0.5% basic fuchsin, sectioned mesiodistally and photographed digitally. The extent of dye penetration was measured by image analysis software (ImageJ) for both bur-finished and air-abraded surfaces at resin-tooth and resin-resin interfaces. The data were analyzed statistically. Results: BeautiBond exhibited the most microleakage at every site. Irrespective of adhesive and initial composite type, air-abrasion showed less microleakage except for BeautiBond. The type of initial repaired restorative material did not affect the microleakage. BeautiBond adhesive may not be preferred in resin composite repair in terms of microleakage prevention. Conclusions: Surface treatment with air-abrasion produced the lowest microleakage scores, independent of the adhesive systems and the pre-existing resin composite type. Pre-existing composite type does not affect the microleakage issue. All-in-one adhesive resin (BeautiBond) may not be preferred in resin composite repair in terms of microleakage prevention. PMID:25713491

  9. Pharmacokinetics: time-dependent changes--autoinduction of carbamazepine epoxidation

    SciTech Connect

    Bertilsson, L.; Tomson, T.; Tybring, G.

    1986-07-01

    Drugs labeled with stable isotopes have been useful to study time-dependent changes in kinetics. Early studies suggested that carbamazepine (CBZ) may induce its own metabolism, but this could not be proved until tetradeuterium-labeled CBZ (CBZ-D4) was synthesized and then given to patients. CBZ-D4 was administered to three children during long-term treatment of epilepsy with CBZ. After 17 to 32 days of treatment, the plasma clearance of CBZ-D4 was doubled, but during the next four months, there was no further increase, indicating that autoinduction was complete within one month. Two patients with chronic alcoholism were treated with CBZ for five days. Half of the first dose of 600 mg was comprised of CBZ-D4. The half-life of this CBZ-D4 dose in the two patients (20 and 26 hr, respectively) was similar to the post-steady-state half-life of CBZ (23 hr in both patients) measured later. A single dose of CBZ given one week after the last maintenance dose had a longer half-life (46 and 45 hr, respectively), which probably is close to the disposition of the drug before starting the treatment with CBZ. This shows that autoinduction of CBZ metabolism was completed during the very first doses of CBZ. Autoinduction also disappeared rapidly after stopping the treatment. We have shown that it is mainly the epoxide-diol pathway that is induced, both during autoinduction and after induction with other antiepileptic agents.

  10. Microbial metabolism of steviol and steviol-16alpha,17-epoxide.

    PubMed

    Yang, Li-Ming; Hsu, Feng-Lin; Chang, Shwu-Fen; Cheng, Juei-Tang; Hsu, Ju-Yin; Hsu, Chung-Yi; Liu, Pan-Chun; Lin, Shwu-Jiuan

    2007-02-01

    Steviol (2) possesses a blood glucose-lowering property. In order to produce potentially more- or less-active, toxic, or inactive metabolites compared to steviol (2), its microbial metabolism was investigated. Incubation of 2 with the microorganisms Bacillus megaterium ATCC 14581, Mucor recurvatus MR 36, and Aspergillus niger BCRC 32720 yielded one new metabolite, ent-7alpha,11beta,13-trihydroxykaur-16-en-19-oic acid (7), together with four known related biotransformation products, ent-7alpha,13-dihydroxykaur-16-en-19-oic acid (3), ent-13-hydroxykaur-16-en-19-alpha-d-glucopyranosyl ester (4), ent-13,16beta,17-trihydroxykauran-19-oic acid (5), and ent-13-hydroxy-7-ketokaur-16-en-19-oic acid (6). The preliminary testing of antihyperglycemic effects showed that 5 was more potent than the parent compound (2). Thus, the microbial metabolism of steviol-16alpha,17-epoxide (8) with M. recurvatus MR 36 was continued to produce higher amounts of 5 for future study of its action mechanism. Preparative-scale fermentation of 8 yielded 5, ent-11alpha,13,16alpha,17-tetrahydroxykauran-19-oic acid (10), ent-1beta,17-dihydroxy-16-ketobeyeran-19-oic acid (11), and ent-7alpha,17-dihydroxy-16-ketobeyeran-19-oic acid (13), together with three new metabolites: ent-13,16beta-dihydroxykauran-17-acetoxy-19-oic acid (9), ent-11beta,13-dihydroxy-16beta,17-epoxykauran-19-oic acid (12), and ent-11beta,13,16beta,17-tetrahydroxykauran-19-oic acid (14). The structures of the compounds were fully elucidated using 1D and 2D NMR spectroscopic techniques, as well as HRFABMS. In addition, a GRE (glucocorticoid responsive element)-mediated luciferase reporter assay was used to initially screen the compounds 3-5, and 7 as glucocorticoid agonists. Compounds 4, 5 and 7 showed significant effects. PMID:17207824

  11. Naphthalene cytotoxicity in microsomal epoxide hydrolase deficient mice.

    PubMed

    Carratt, S A; Morin, D; Buckpitt, A R; Edwards, P C; Van Winkle, L S

    2016-03-30

    Naphthalene (NA) is a ubiquitous pollutant to which humans are widely exposed. 1,2-Dihydro-1,2-dihydroxynaphthalene (NA-dihydrodiol) is a major metabolite of NA generated by microsomal epoxide hydrolase (mEH). To investigate the role of the NA-dihydrodiol and subsequent metabolites (i.e. 1,2-naphthoquinone) in cytotoxicity, we exposed both male and female wild type (WT) and mEH null mice (KO) to NA by inhalation (5, 10, 20 ppm for 4h). NA-dihydrodiol was ablated in the KO mice. High-resolution histopathology was used to study site-specific cytotoxicity, and formation of naphthalene metabolites was measured by HPLC in microdissected airways. Swollen and vacuolated airway epithelial cells were observed in the intra- and extrapulmonary airways of all mice at and below the current OSHA standard (10 ppm). Female mice may be more susceptible to this acute cytotoxicity. In the extrapulmonary airways, WT mice were more susceptible to damage than KO mice, indicating that the metabolites associated with mEH-mediated metabolism could be partially responsible for cytotoxicity at this site. The level of cytotoxicity in the mEH KO mice at all airway levels suggests that non-mEH metabolites are contributing to NA cellular damage in the lung. Our results indicate that the apparent contribution of mEH-dependent metabolites to toxicity differs by location in the lung. These studies suggest that metabolites generated through the mEH pathway may be of minor importance in distal airway toxicity and subsequent carcinogenesis from NA exposure.

  12. A broadly applicable and practical oligomeric (salen) Co catalyst for enantioselective epoxide ring-opening reactions

    PubMed Central

    White, David E.; Tadross, Pamela M.; Lu, Zhe

    2014-01-01

    The (salen) Co catalyst (4a) can be prepared as a mixture of cyclic oligomers in a short, chromatography-free synthesis from inexpensive, commercially available precursors. This catalyst displays remarkable enhancements in reactivity and enantioselectivity relative to monomeric and other multimeric (salen) Co catalysts in a wide variety of enantioselective epoxide ring-opening reactions. The application of catalyst 4a is illustrated in the kinetic resolution of terminal epoxides by nucleophilic ring-opening with water, phenols, and primary alcohols; the desymmetrization of meso epoxides by addition of water and carbamates; and the desymmetrization of oxetanes by intramolecular ring opening with alcohols and phenols. The favorable solubility properties of complex 4a under the catalytic conditions facilitated mechanistic studies, allowing elucidation of the basis for the beneficial effect of oligomerization. Finally, a catalyst selection guide is provided to delineate the specific advantages of oligomeric catalyst 4a relative to (salen) Co monomer 1 for each reaction class. PMID:25045188

  13. Inhibiting an Epoxide Hydrolase Virulence Factor from Pseudomonas aeruginosa Protects CFTR.

    PubMed

    Bahl, Christopher D; Hvorecny, Kelli L; Bomberger, Jennifer M; Stanton, Bruce A; Hammock, Bruce D; Morisseau, Christophe; Madden, Dean R

    2015-08-17

    Opportunistic pathogens exploit diverse strategies to sabotage host defenses. Pseudomonas aeruginosa secretes the CFTR inhibitory factor Cif and thus triggers loss of CFTR, an ion channel required for airway mucociliary defense. However, the mechanism of action of Cif has remained unclear. It catalyzes epoxide hydrolysis, but there is no known role for natural epoxides in CFTR regulation. It was demonstrated that the hydrolase activity of Cif is strictly required for its effects on CFTR. A small-molecule inhibitor that protects this key component of the mucociliary defense system was also uncovered. These results provide a basis for targeting the distinctive virulence chemistry of Cif and suggest an unanticipated role of physiological epoxides in intracellular protein trafficking. PMID:26136396

  14. Increased silver activity for direct propylene epoxidation via subnanometer size effects.

    PubMed

    Lei, Y; Mehmood, F; Lee, S; Greeley, J; Lee, B; Seifert, S; Winans, R E; Elam, J W; Meyer, R J; Redfern, P C; Teschner, D; Schlögl, R; Pellin, M J; Curtiss, L A; Vajda, S

    2010-04-01

    Production of the industrial chemical propylene oxide is energy-intensive and environmentally unfriendly. Catalysts based on bulk silver surfaces with direct propylene epoxidation by molecular oxygen have not resolved these problems because of substantial formation of carbon dioxide. We found that unpromoted, size-selected Ag3 clusters and approximately 3.5-nanometer Ag nanoparticles on alumina supports can catalyze this reaction with only a negligible amount of carbon dioxide formation and with high activity at low temperatures. Density functional calculations show that, relative to extended silver surfaces, oxidized silver trimers are more active and selective for epoxidation because of the open-shell nature of their electronic structure. The results suggest that new architectures based on ultrasmall silver particles may provide highly efficient catalysts for propylene epoxidation. PMID:20378815

  15. Increased Silver Activity for Direct Propylene Epoxidation via Subnanometer Size Effects

    SciTech Connect

    Lei, Y.; Mehmood, Faisal; Lee, Sang Soo; Greeley, Jeffrey P.; Lee, Byeongdu; Seifert, Soenke; Winans, R. E.; Elam, J. W.; Meyer, R. J.; Redfern, Paul C.; Teschner, D.; Schlogl, Robert; Pellin, M. J.; Curtiss, Larry A.; Vajda, S.

    2010-04-09

    Production of the industrial chemical propylene oxide is energy-intensive and environmentally unfriendly. Catalysts based on bulk silver surfaces with direct propylene epoxidation by molecular oxygen have not resolved these problems because of substantial formation of carbon dioxide. We found that unpromoted, size-selected Ag3 clusters and ~3.5-nanometer Ag nanoparticles on alumina supports can catalyze this reaction with only a negligible amount of carbon dioxide formation and with high activity at low temperatures. Density functional calculations show that, relative to extended silver surfaces, oxidized silver trimers are more active and selective for epoxidation because of the open-shell nature of their electronic structure. The results suggest that new architectures based on ultrasmall silver particles may provide highly efficient catalysts for propylene epoxidation.

  16. Increased silver activity for direct propylene epoxidation via subnanometer size effects.

    SciTech Connect

    Lei, Y.; Mehmood, F.; Lee, S.; Greeley, J. P.; Lee, B.; Seifert, S.; Winans, R. E.; Elam, J. E.; Meyer, R. J.; Redfern, P. C.; Teschner, D.; Schlogl, R.; Pellin, M. J.; Curtiss, L. A.; Vajda, S.; Univ. of Illinois at Chicago; Fritz-Haber Inst. der Max-Planck-Gesellschaft; Yale Univ.

    2010-04-09

    Production of the industrial chemical propylene oxide is energy-intensive and environmentally unfriendly. Catalysts based on bulk silver surfaces with direct propylene epoxidation by molecular oxygen have not resolved these problems because of substantial formation of carbon dioxide. We found that unpromoted, size-selected Ag{sub 3} clusters and {approx}3.5-nanometer Ag nanoparticles on alumina supports can catalyze this reaction with only a negligible amount of carbon dioxide formation and with high activity at low temperatures. Density functional calculations show that, relative to extended silver surfaces, oxidized silver trimers are more active and selective for epoxidation because of the open-shell nature of their electronic structure. The results suggest that new architectures based on ultrasmall silver particles may provide highly efficient catalysts for propylene epoxidation.

  17. [Acrylic resin removable partial dentures].

    PubMed

    de Baat, C; Witter, D J; Creugers, N H J

    2011-01-01

    An acrylic resin removable partial denture is distinguished from other types of removable partial dentures by an all-acrylic resin base which is, in principle, solely supported by the edentulous regions of the tooth arch and in the maxilla also by the hard palate. When compared to the other types of removable partial dentures, the acrylic resin removable partial denture has 3 favourable aspects: the economic aspect, its aesthetic quality and the ease with which it can be extended and adjusted. Disadvantages are an increased risk of caries developing, gingivitis, periodontal disease, denture stomatitis, alveolar bone reduction, tooth migration, triggering of the gag reflex and damage to the acrylic resin base. Present-day indications are ofa temporary or palliative nature or are motivated by economic factors. Special varieties of the acrylic resin removable partial denture are the spoon denture, the flexible denture fabricated of non-rigid acrylic resin, and the two-piece sectional denture. Furthermore, acrylic resin removable partial dentures can be supplied with clasps or reinforced by fibers or metal wires.

  18. 21 CFR 177.1655 - Polysulfone resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polysulfone resins. 177.1655 Section 177.1655 Food... of Single and Repeated Use Food Contact Surfaces § 177.1655 Polysulfone resins. Polysulfone resins... purpose of this section, polysulfone resins are: (1)...

  19. 21 CFR 178.3930 - Terpene resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Terpene resins. 178.3930 Section 178.3930 Food and... and Production Aids § 178.3930 Terpene resins. The terpene resins identified in paragraph (a) of this... the terpene resins identified in paragraph (b) of this section may be safely used as components...

  20. 21 CFR 177.1680 - Polyurethane resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyurethane resins. 177.1680 Section 177.1680... Contact Surfaces § 177.1680 Polyurethane resins. The polyurethane resins identified in paragraph (a) of..., polyurethane resins are those produced when one or more of the isocyanates listed in paragraph (a)(1) of...

  1. 21 CFR 178.3930 - Terpene resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Terpene resins. 178.3930 Section 178.3930 Food and... and Production Aids § 178.3930 Terpene resins. The terpene resins identified in paragraph (a) of this... the terpene resins identified in paragraph (b) of this section may be safely used as components...

  2. 21 CFR 177.1655 - Polysulfone resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polysulfone resins. 177.1655 Section 177.1655 Food... of Single and Repeated Use Food Contact Surfaces § 177.1655 Polysulfone resins. Polysulfone resins... purpose of this section, polysulfone resins are: (1)...

  3. 21 CFR 872.3140 - Resin applicator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Resin applicator. 872.3140 Section 872.3140 Food... DEVICES DENTAL DEVICES Prosthetic Devices § 872.3140 Resin applicator. (a) Identification. A resin applicator is a brushlike device intended for use in spreading dental resin on a tooth during application...

  4. 21 CFR 178.3930 - Terpene resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Terpene resins. 178.3930 Section 178.3930 Food and... and Production Aids § 178.3930 Terpene resins. The terpene resins identified in paragraph (a) of this... the terpene resins identified in paragraph (b) of this section may be safely used as components...

  5. 21 CFR 178.3930 - Terpene resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Terpene resins. 178.3930 Section 178.3930 Food and... and Production Aids § 178.3930 Terpene resins. The terpene resins identified in paragraph (a) of this... the terpene resins identified in paragraph (b) of this section may be safely used as components...

  6. 21 CFR 178.3930 - Terpene resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Terpene resins. 178.3930 Section 178.3930 Food and... Terpene resins. The terpene resins identified in paragraph (a) of this section may be safely used as components of polypropylene film intended for use in contact with food, and the terpene resins identified...

  7. Novel Finding of Widespread Occurrence and Accumulation of Bisphenol A Diglycidyl Ethers (BADGEs) and Novolac Glycidyl Ethers (NOGEs) in Marine Mammals from the United States Coastal Waters.

    PubMed

    Xue, Jingchuan; Kannan, Kurunthachalam

    2016-02-16

    Bisphenol A diglycidyl ether (BADGE)- and bisphenol F diglycidyl ether (BFDGE)-based epoxy resins have a broad range of applications, including serving as inner coatings of food and beverage cans and as protective coatings in marine construction. Prior to this study, no studies had examined the occurrence and bioaccumulation of BADGEs or BFDGEs in aquatic organisms. In this study, BADGE, BFDGE, and nine of their derivatives were determined in 121 tissue (liver, kidney, blubber, and brain) samples from eight species of marine mammals collected from the U.S. coastal waters of Florida, California, Washington, and Alaska. BADGE·2HCl was the predominant compound found in the majority (78.5%) of the marine mammal tissues analyzed, at concentrations of up to 2950 ng/g (wet weight (wt)) found in the liver of a sea otter from Kachemak Bay, Alaska. The measured concentrations of BADGE·2HCl in marine mammals were on the order of hundreds of nanograms per gram tissue, which are some of the highest concentrations ever reported for this compound in biota. Males contained greater concentrations of BADGE·2HCl than did females. BADGE·2HCl also was found in the brain tissues of sea otters. Trace levels of BADGE·2HCl were found in the livers of polar bears from Alaska, which suggested that BADGEs are widely distributed in the oceanic environment. PMID:26800265

  8. Novel Finding of Widespread Occurrence and Accumulation of Bisphenol A Diglycidyl Ethers (BADGEs) and Novolac Glycidyl Ethers (NOGEs) in Marine Mammals from the United States Coastal Waters.

    PubMed

    Xue, Jingchuan; Kannan, Kurunthachalam

    2016-02-16

    Bisphenol A diglycidyl ether (BADGE)- and bisphenol F diglycidyl ether (BFDGE)-based epoxy resins have a broad range of applications, including serving as inner coatings of food and beverage cans and as protective coatings in marine construction. Prior to this study, no studies had examined the occurrence and bioaccumulation of BADGEs or BFDGEs in aquatic organisms. In this study, BADGE, BFDGE, and nine of their derivatives were determined in 121 tissue (liver, kidney, blubber, and brain) samples from eight species of marine mammals collected from the U.S. coastal waters of Florida, California, Washington, and Alaska. BADGE·2HCl was the predominant compound found in the majority (78.5%) of the marine mammal tissues analyzed, at concentrations of up to 2950 ng/g (wet weight (wt)) found in the liver of a sea otter from Kachemak Bay, Alaska. The measured concentrations of BADGE·2HCl in marine mammals were on the order of hundreds of nanograms per gram tissue, which are some of the highest concentrations ever reported for this compound in biota. Males contained greater concentrations of BADGE·2HCl than did females. BADGE·2HCl also was found in the brain tissues of sea otters. Trace levels of BADGE·2HCl were found in the livers of polar bears from Alaska, which suggested that BADGEs are widely distributed in the oceanic environment.

  9. Chromatography resin support

    DOEpatents

    Dobos, James G.

    2002-01-01

    An apparatus and method of using an improved chromatography resin support is disclosed. The chromatography support platform is provided by a stainless steel hollow cylinder adapted for being inserted into a chromatography column. An exterior wall of the stainless steel cylinder defines a groove for carrying therein an "O"-ring. The upper surface of the stainless steel column is covered by a fine stainless steel mesh welded to the edges of the stainless steel cylinder. When placed upon a receiving ledge defined within a chromatography column, the "O"-ring provides a fluid tight seal with the inner edge wall of the chromatography cylinder. The stainless steel mesh supports the chromatography matrix and provides a back flushable support which is economical and simple to construct.

  10. Indirect resin composites

    PubMed Central

    Nandini, Suresh

    2010-01-01

    Aesthetic dentistry continues to evolve through innovations in bonding agents, restorative materials, and conservative preparation techniques. The use of direct composite restoration in posterior teeth is limited to relatively small cavities due to polymerization stresses. Indirect composites offer an esthetic alternative to ceramics for posterior teeth. This review article focuses on the material aspect of the newer generation of composites. This review was based on a PubMed database search which we limited to peer-reviewed articles in English that were published between 1990 and 2010 in dental journals. The key words used were ‘indirect resin composites,’ composite inlays,’ and ‘fiber-reinforced composites.’ PMID:21217945

  11. Synthesis of Marine Polycyclic Polyethers via Endo-Selective Epoxide-Opening Cascades

    PubMed Central

    Vilotijevic, Ivan; Jamison, Timothy F.

    2010-01-01

    The proposed biosynthetic pathways to ladder polyethers of polyketide origin and oxasqualenoids of terpenoid origin share a dramatic epoxide-opening cascade as a key step. Polycyclic structures generated in these biosynthetic pathways display biological effects ranging from potentially therapeutic properties to extreme lethality. Much of the structural complexity of ladder polyether and oxasqualenoid natural products can be traced to these hypothesized cascades. In this review we summarize how such epoxide-opening cascade reactions have been used in the synthesis of ladder polyethers and oxasqualenoid natural products. PMID:20411125

  12. Zirconium(IV)- and hafnium(IV)-catalyzed highly enantioselective epoxidation of homoallylic and bishomoallylic alcohols.

    PubMed

    Li, Zhi; Yamamoto, Hisashi

    2010-06-16

    In this report, zirconium(IV)- and hafnium(IV)-bishydroxamic acid complexes were utilized in the highly enantioselective epoxidation of homoallylic alcohols and bishomoallylic alcohols, which used to be quite difficult substrates for other types of asymmetric epoxidation reactions. The performance of the catalyst was improved by adding polar additive and molecular sieves. For homoallylic alcohols, the reaction could provide epoxy alcohols in up to 83% yield and up to 98% ee, while, for bishomoallylic alcohols, up to 79% yield and 99% ee of epoxy alcohols rather than cyclized tetrahydrofuran compounds could be obtained in most cases.

  13. The selection reaction of homogeneous catalyst in soy-epoxide hydroxylation

    NASA Astrophysics Data System (ADS)

    Elvistia Firdaus, Flora

    2014-04-01

    Hydroxylation reaction of soy-epoxide has resulted soy-polyol; a prepolymeric material for polyurethane. The conversion and selectivity of soy-epoxide butanol based to hydroxylation was found higher than soy-ethylene glycol (EG) based. These reactions were performed by sulfur acid which commonly known as homogeneous catalyst. Conversion and selectivity of homogeneous catalyst compared to bentonite; a heteregeneous catalyst was lower as in fact the mixtures were more viscous. The catalysis were significantly effected to cell morphology. Foams were conducted by heterogeneous catalyst resulted an irregular form of windows while homogeneous catalyst are more ordered.

  14. Asymmetric epoxidation of allylic alcohols catalyzed by vanadium-binaphthylbishydroxamic Acid complex.

    PubMed

    Noji, Masahiro; Kobayashi, Toshihiro; Uechi, Yuria; Kikuchi, Asami; Kondo, Hisako; Sugiyama, Shigeo; Ishii, Keitaro

    2015-03-20

    A vanadium-binaphthylbishydroxamic acid (BBHA) complex-catalyzed asymmetric epoxidation of allylic alcohols is described. The optically active binaphthyl-based ligands BBHA 2a and 2b were synthesized from (S)-1,1'-binaphthyl-2,2'-dicarboxylic acid and N-substituted-O-trimethylsilyl (TMS)-protected hydroxylamines via a one-pot, three-step procedure. The epoxidations of 2,3,3-trisubstituted allylic alcohols using the vanadium complex of 2a were easily performed in toluene with a TBHP water solution to afford (2R)-epoxy alcohols in good to excellent enantioselectivities.

  15. Cross metathesis of unsaturated epoxides for the synthesis of polyfunctional building blocks

    PubMed Central

    Abderrezak, Meriem K; Šichová, Kristýna; Dominguez-Boblett, Nancy; Dupé, Antoine; Kabouche, Zahia; Bruneau, Christian

    2015-01-01

    Summary The cross metathesis of 1,2-epoxy-5-hexene (1) with methyl acrylate and acrylonitrile was investigated as an entry to the synthesis of polyfunctional compounds. The resulting cross metathesis products were hydrogenated in a tandem fashion employing the residual ruthenium from the metathesis step as the hydrogenation catalyst. Interestingly, the epoxide ring remained unreactive toward this hydrogenation method. The saturated compound resulting from the cross metathesis of 1 with methyl acrylate was transformed by means of nucleophilic ring-opening of the epoxide to furnish a diol, an alkoxy alcohol and an amino alcohol in high yields. PMID:26664605

  16. Ternary liquid-liquid equilibria measurement for epoxidized soybean oil + acetic acid + water.

    PubMed

    Cai, Shuang-Fei; Wang, Li-Sheng; Yan, Guo-Qing; Li, Yi; Feng, Yun-Xia; Linghu, Rong-Gang

    2012-01-01

    Liquid-liquid equilibria (LLE) data were measured for ternary system epoxidized soybean oil (ESO) + acetic acid + water at 313.15, 323.15 and 333.15 K, respectively. The consistency of the measured LLE data was tested, using Othmer-Tobias correlation and root-mean-square deviation (sigma) in mass fraction of water in the lower phase and average value of the absolute difference (AAD) between experimental mass fraction of epoxidized soybean oil in the upper phase and that calculated using Othmer-Tobias correlation.

  17. Regioselective and Stereospecific Copper-Catalyzed Deoxygenation of Epoxides to Alkenes.

    PubMed

    Yu, Jingxun; Zhou, Yu; Lin, Zhenyang; Tong, Rongbiao

    2016-09-16

    Two copper salts (Cu(CF3CO2)2 and IMesCuCl) were identified as earth-abundant, inexpensive, but effective metal catalysts together with diazo malonate for chemo-/regioselective and stereospecific deoxygenation of various epoxides with tolerance of common functional groups (alkene, ketone, ester, p-methoxybenzyl, benzyl, tert-butyldimethylsilyl, and triisopropylsilyl). In particular, the unprecedented regioselectivity allowed for the first time monodeoxygenation of diepoxides to alkenyl epoxides. Density functional theory mechanistic studies showed that the deoxygenation occurred by collapsing the free ylide, unfavoring the possible intuitive pathway via cycloreversion of possible oxetane. PMID:27596225

  18. Microsomal Epoxide Hydrolase 1 (EPHX1): Gene, Structure, Function, and Role in Human Disease

    PubMed Central

    Václavíková, Radka; Hughes, David J; Souček, Pavel

    2015-01-01

    Microsomal epoxide hydrolase (EPHX1) is an evolutionarily highly conserved biotransformation enzyme for converting epoxides to diols. Notably, the enzyme is able to either detoxify or bioactivate a wide range of substrates. Mutations and polymorphic variants in the EPHX1 gene have been associated with susceptibility to several human diseases including cancer. This review summarizes the key knowledge concerning EPHX1 gene and protein structure, expression pattern and regulation, and substrate specificity. The relevance of EPHX1 for human pathology is especially discussed. PMID:26216302

  19. Green chemistry: Efficient epoxides ring-opening with 1-butanol under microwave irradiation

    NASA Astrophysics Data System (ADS)

    García-Vidal, Jesús A.; Durán-Valle, Carlos J.; Ferrera-Escudero, Santiago

    2006-06-01

    Two activated carbons treated with mineral acids (HNO 3 and sulfonitric mixture) have been tested as acid catalysts in the epoxides (1,2-epoxyhexane and styrene oxide) ring-opening reaction with 1-butanol under microwave (MW) irradiation. The mayor obtained product is that resulting of the alcohol addition to the most substituted carbon in the epoxide ring. The most active catalyst is that treated with sulfonitric mixture. The use of a MW oven allows achieving to the complete conversion of styrene oxide in only 2 min.

  20. Resin polymerization problems--are they caused by resin curing lights, resin formulations, or both?

    PubMed

    Christensen, R P; Palmer, T M; Ploeger, B J; Yost, M P

    1999-01-01

    Negative effects of rapid, high-intensity resin curing have been predicted for both argon lasers and plasma-arc curing lights. To address these questions, six different resin restorative materials were cured with 14 different resin curing lights representing differences in intensities ranging from 400 mW/cm2 to 1,900 mW/cm2; delivery modes using constant, ramped, and stepped methods; cure times ranging from 1 second to 40 seconds; and spot sizes of 6.7 mm to 10.9 mm. Two lasers, five plasma-arc lights, and seven halogen lights were used. Shrinkage, modulus, heat generation, strain, and physical changes on the teeth and resins during strain testing were documented. Results showed effects associated with lights were not statistically significant, but resin formulation was highly significant. Microfill resins had the least shrinkage and the lowest modulus. An autocure resin had shrinkage and modulus as high as or higher than the light-cured hybrid resins. Lasers and plasma-arc lights produced the highest heat increases on the surface (up to 21 degrees C) and within the resin restorations (up to 14 degrees C), and the halogen lights produced the most heat within the pulp chamber (up to 2 degrees C). Strain within the tooth was least with Heliomolar and greatest with Z100 Restorative and BISFIL II autocure resin. Clinical effects of strain relief were evident as white lines at the tooth-resin interface and cracks in enamel adjacent to the margins. This work implicates resin formulation, rather than light type or curing mode, as the important factor in polymerization problems. Lower light intensity and use of ramped and stepped curing modes did not provide significant lowering of shrinkage, modulus, or strain, and did not prevent enamel cracking adjacent to margins and formation of "white line" defects at the margins. Until materials with lower shrinkage and modulus are available, use of low-viscosity surface sealants as a final step in resin placement is suggested to

  1. Flammability screening tests of resins

    NASA Technical Reports Server (NTRS)

    Arhart, R. W.; Farrar, D. G.; Hughes, B. M.

    1979-01-01

    Selected flammability characteristics of glass cloth laminates of thermosetting resins are evaluated. A protocol for the evaluation of the flammability hazards presented by glass cloth laminates of thermosetting resins and the usefulness of that protocol with two laminates are presented. The glass laminates of an epoxy resin, M-751 are evaluated for: (1) determination of smoke generation from the laminates; (2) analysis of products of oxidative degradation of the laminates; (3) determination of minimum oxygen necessary to maintain flaming oxidation; (4) evaluation of toxicological hazards.

  2. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip

    1997-01-01

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

  3. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, A.W.; Gatrone, R.C.; Alexandratos, S.; Horwitz, E.P.

    1997-04-08

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorus. The pendent groups have the formula as shown in the patent wherein R is hydrogen, a cation or mixtures thereof; and R{sup 1} is hydrogen or an C{sub 1}-C{sub 2} alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

  4. Resin/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Jones, R. J.; Vaughan, R. W.

    1972-01-01

    High temperature resin matrices suitable for use in advanced graphite fiber composites for jet engine applications were evaluated. A series of planned, sequential screening experiments with resin systems in composite form were performed to reduce the number of candidates to a single A-type polyimide resin that repetitively produced void-free, high strength and modulus composites acceptable for use in the 550 F range for 1000 hours. An optimized processing procedure was established for this system. Extensive mechanical property studies characterized this single system, at room temperature, 500 F, 550 F and 600 F, for various exposure times.

  5. Grafted methylenediphosphonate ion exchange resins

    SciTech Connect

    Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip

    1998-01-27

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange-resin are also disclosed.

  6. Oxygen inhibition in dental resins.

    PubMed

    Gauthier, M A; Stangel, I; Ellis, T H; Zhu, X X

    2005-08-01

    Oxygen inhibits free radical polymerization and yields polymers with uncured surfaces. This is a concern when thin layers of resin are being polymerized, or in circumstances where conventional means of eliminating inhibition are inappropriate. In this study, we tested the hypothesis that viscosity, filler content, and polymerization temperature modify oxygen diffusion in the resin or the reactivity of radical species, and affect the degree of conversion near the surface. Confocal Raman micro-spectroscopy was used to measure monomer conversion from the surface to the bulk of cured resins. Increased viscosity was shown to limit oxygen diffusion and increase conversion near the surface, without necessarily modifying the depth of inhibition. The filler material was shown to increase, simultaneously, oxygen diffusivity and the viscosity of the resin, which have opposite effects on conversion. Polymerization at a temperature above approximately 110 degrees C was shown to eliminate oxygen inhibition.

  7. Epoxy hydantoins as matrix resins

    NASA Technical Reports Server (NTRS)

    Weiss, J.

    1983-01-01

    Tensile strength and fracture toughness of castings of the hydantoin resins cured with methylenedianiline are significantly higher than MY 720 control castings. Water absorption of an ethyl, amyl hydantoin formulation is 2.1 percent at equilibrium and Tg's are about 160 C, approximately 15 deg below the final cure temperature. Two series of urethane and ester-extended hydantoin epoxy resins were synthesized to determine the effect of crosslink density and functional groups on properties. Castings cured with methylenedianiline or with hexahydrophthalic anhydride were made from these compounds and evaluated. The glass transition temperatures, tensile strengths and moduli, and fracture toughness values were all much lower than that of the simple hydantoin epoxy resins. Using a methylene bishydantoin epoxy with a more rigid structure gave brittle, low-energy fractures, while a more flexible, ethoxy-extended hydantoin epoxy resin gave a very low Tg.

  8. Inhibition of insect juvenile hormone epoxide hydrolase: asymmetric synthesis and assay of glycidol-ester and epoxy-ester inhibitors of trichoplusia ni epoxide hydrolase.

    PubMed

    Linderman, R J; Roe, R M; Harris, S V; Thompson, D M

    2000-01-01

    Juvenile hormone (JH) undergoes metabolic degradation by two major pathways involving JH esterase and JH epoxide hydrolase (EH). While considerable effort has been focussed on the study of JH esterase and the development of inhibitors for this enzyme, much less has been reported on the study of JH-EH. In this work, the asymmetric synthesis of two classes of inhibitors of recombinant JH-EH from Trichoplusia ni, a glycidol-ester series and an epoxy-ester series is reported. The most effective glycidol-ester inhibitor, compound 1, exhibited an I(50) of 1.2x10(-8) M, and the most effective epoxy-ester inhibitor, compound 11, exhibited an I(50) of 9.4x10(-8) M. The potency of the inhibitors was found to be dependent on the absolute configuration of the epoxide. In both series of inhibitors, the C-10 R-configuration was found to be significantly more potent that the corresponding C-10 S-configuration. A mechanism for epoxide hydration catalyzed by insect EH is also presented.

  9. Regenerating Water-Sterilizing Resins

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Putnam, D. F.

    1982-01-01

    Iodine-dispensing resin can be regenerated after iodine content has been depleted, without being removed from water system. Resin is used to make water potable by killing bacteria, fungi, and viruses. Regeneration technique may be come basis of water purifier for very long space missions. Enough crystalline iodine for multiple regenerations during mission can be stored in one small cartridge. Cartridge could be inserted in waterline as necessary on signal from iodine monitor or timer.

  10. Liquid monobenzoxazine based resin system

    SciTech Connect

    Tietze, Roger; Nguyen, Yen-Loan; Bryant, Mark

    2014-10-07

    The present invention provides a liquid resin system including a liquid monobenzoxazine monomer and a non-glycidyl epoxy compound, wherein the weight ratio of the monobenzoxazine monomer to the non-glycidyl epoxy compound is in a range of about 25:75 to about 60:40. The liquid resin system exhibits a low viscosity and exceptional stability over an extended period of time making its use in a variety of composite manufacturing methods highly advantageous.

  11. Sultones and Sultines via a Julia-Kocienski Reaction of Epoxides.

    PubMed

    Smith, Geoffrey M T; Burton, Paul M; Bray, Christopher D

    2015-12-01

    The development of the homologous Julia-Kocienski reaction has led to the discovery of two new reaction modes of epoxides with sulfones. These pathways allow rapid and direct access to a range of γ-sultones and γ-sultines.

  12. EXPRESSION AND CHARACTERIZATION OF THE RECOMBINANT JUVENILE HORMONE EPOXIDE HYDROLASE (JHEH) FROM MANDUCA SEXTA. (R825433)

    EPA Science Inventory

    The cDNA of the microsomal Juvenile Hormone Epoxide Hydrolase (JHEH) from Manduca sexta was expressed in vitro in the baculovirus system. In insect cell culture, the recombinant enzyme (Ms-JHEH) was produced at a high level (100 fold over background EH catalytic activit...

  13. Synthesis of an Epoxide Carbonylation Catalyst: Exploration of Contemporary Chemistry for Advanced Undergraduates

    ERIC Educational Resources Information Center

    Getzler, Yutan D. Y. L.; Schmidt, Joseph A. R.; Coates, Geoffrey W.

    2005-01-01

    A class of highly active, well-defined compounds for the catalytic carbonylation of epoxides and aziridines to beta-lactones and beta-lactams are introduced. The synthesis of one of the catalysts involves a simple imine condensation to form the ligand followed by air-sensitive metalation and salt metathesis steps.

  14. Enzymatic epoxidation of soybean oil using ionic liquid as reaction media.

    PubMed

    Sun, Shangde; Li, Ping; Bi, Yanlan; Xiao, Fugang

    2014-01-01

    An ionic liquid (IL) system for the enzymatic epoxidation of soybean oil was studied. The effects of active oxygen carriers (different fatty acids) and ILs ([Bmim]PF6 and [Bmim]BF4) on the enzymatic epoxidation were investigated. Response surface methodology (RSM) was used to study and optimize the effects of variables (reaction time, reaction temperature, molar ratio of H2O2/C=C-bonds, and molar ratio of fatty acid/C=C-bonds) on the epoxy oxygen group content (EOC) of epoxidized soybean oil (ESO). Results showed that the enzymatic epoxidation of soybean oil can be enhanced using tetradecanoic acid (C13H27COOH) as active oxygen carrier and [Bmim]PF6 as reaction medium. The optimum EOC of ESO was 5.9 ± 0.3% under the following conditions: reaction temperature 46°C, reaction time 11 h, enzyme load 3% (w/w, relative to the weight of soybean oil), molar ratio of H2O2/C=C-bonds 1.8:1, and molar ratio of C13H27COOH/C=C-bonds 0.5:1.

  15. INTERACTION OF BENZO(A)PYRENE DIOL EPOXIDE WITH SVAO MINICHROMOSOMES

    SciTech Connect

    Gamper, Howard B.; Yokota, Hisao A.; Bartholomew, James C.

    1980-03-01

    SV40 minichromosomes were reacted with (+)7{beta},8{alpha}-dihydroxy-9{alpha},10{alpha}-epoxy- 7,8,9,10-tetrahydrobenzo[a]pyrene (BaP diol epoxide). Low levels of modification (< 5 DNA adducts/minichromosome) did not detectably alter the structure of the minichromosomes but high levels (> 200 DNA adducts/minichromosome) led to extensive fragmentation. Relative to naked SV40 DNA BaP diol epoxide induced alkylation and strand scission of minichromosomal DNA was reduced or enhanced by factors of 1.5 and 2.0, respectively. The reduction in covalent binding was attributed to the presence of histones, which competed with DNA for the hydrocarbon and reduced the probability of BaP diol epoxide intercalation by tightening the helix. The enhancement of strand scission was probably due to the catalytic effect of histones on the rate of S-elimination at apurinic sites, although an altered adduct profile or the presence of a repair endonuclease were not excluded. Staphylococcal nuclease digestion indicated that BaP dial epoxide randomly alkylated the minichromosomal DNA. This is in contrast to studies with cellular chromatin where internucleosomal DNA was preferentially modified. Differences in the minichromosomal protein complement were responsible for this altered susceptibility.

  16. Catalytic epoxidation by perrhenate through the formation of organic-phase supramolecular ion pairs.

    PubMed

    Cokoja, Mirza; Markovits, Iulius I E; Anthofer, Michael H; Poplata, Saner; Pöthig, Alexander; Morris, Danny S; Tasker, Peter A; Herrmann, Wolfgang A; Kühn, Fritz E; Love, Jason B

    2015-02-25

    Organic-phase supramolecular ion pair (SIP) host-guest assemblies of perrhenate anions (ReO4(-)) with ammonium amide receptor cations are reported. These compounds act as catalysts for the epoxidation of alkenes by aqueous hydrogen peroxide under biphasic conditions and can be recycled several times with no loss in activity.

  17. Signature motifs identify an Acinetobacter Cif virulence factor with epoxide hydrolase activity.

    PubMed

    Bahl, Christopher D; Hvorecny, Kelli L; Bridges, Andrew A; Ballok, Alicia E; Bomberger, Jennifer M; Cady, Kyle C; O'Toole, George A; Madden, Dean R

    2014-03-14

    Endocytic recycling of the cystic fibrosis transmembrane conductance regulator (CFTR) is blocked by the CFTR inhibitory factor (Cif). Originally discovered in Pseudomonas aeruginosa, Cif is a secreted epoxide hydrolase that is transcriptionally regulated by CifR, an epoxide-sensitive repressor. In this report, we investigate a homologous protein found in strains of the emerging nosocomial pathogens Acinetobacter nosocomialis and Acinetobacter baumannii ("aCif"). Like Cif, aCif is an epoxide hydrolase that carries an N-terminal secretion signal and can be purified from culture supernatants. When applied directly to polarized airway epithelial cells, mature aCif triggers a reduction in CFTR abundance at the apical membrane. Biochemical and crystallographic studies reveal a dimeric assembly with a stereochemically conserved active site, confirming our motif-based identification of candidate Cif-like pathogenic EH sequences. Furthermore, cif expression is transcriptionally repressed by a CifR homolog ("aCifR") and is induced in the presence of epoxides. Overall, this Acinetobacter protein recapitulates the essential attributes of the Pseudomonas Cif system and thus may facilitate airway colonization in nosocomial lung infections. PMID:24474692

  18. Formation of furan fatty alkyl esters from their bis-epoxide fatty esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reactions of epoxidized alkyl soyate with four different alcohols: ethanol, isopropyl alcohol, 2-ethylhexanol, benzyl alcohol, in the presence of Bronsted acid catalyst, were investigated. Products that were not reported in prior studies of similar reactions were found. These were furan fatty acid a...

  19. (Salen)Mn(III) Catalyzed Asymmetric Epoxidation Reactions by Hydrogen Peroxide in Water: A Green Protocol

    PubMed Central

    Ballistreri, Francesco Paolo; Gangemi, Chiara M. A.; Pappalardo, Andrea; Tomaselli, Gaetano A.; Toscano, Rosa Maria; Trusso Sfrazzetto, Giuseppe

    2016-01-01

    Enantioselective epoxidation reactions of some chosen reactive alkenes by a chiral Mn(III) salen catalyst were performed in H2O employing H2O2 as oxidant and diethyltetradecylamine N-oxide (AOE-14) as surfactant. This procedure represents an environmentally benign protocol which leads to e.e. values ranging from good to excellent (up to 95%). PMID:27420047

  20. Formation of furan fatty alkyl esters from their bis-epoxide fatty esters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reactions of epoxidized alkyl soyate with four different alcohols: ethanol, isopropyl alcohol, 2-ethylhexanol, and benzyl alcohol were investigated in the presence of Bronsted acid catalyst. Products not reported in prior studies of similar reactions were found. These were furan fatty acid alkyl est...

  1. Differences in Catalytic Sites for CO Oxidation and Propylene Epoxidation on Au Nanoparticles

    SciTech Connect

    Lee, W.S.; Stach, E.; Zhang, R.; Akatay, M.C.; Baertsch, C.D.; Ribeiro, F.H.; Delgass, W.N.

    2011-08-29

    Sintering and increased Au loading of Au/TS-1 causes the rate of CO oxidation per mole of Au to increase, whereas that for epoxidation of propylene in O{sub 2} and H{sub 2} decreases. This opposite trend in rate behavior shows that the catalytic sites for the two reactions must be different.

  2. EPOXIDATION OF SMALL ORGANIC MOLECULES USING A SPINNING TUBE-IN-TUBE REACTOR

    EPA Science Inventory

    The commodity-scale epoxidation of several organic molecules has been carried out using a Spinning Tube-in-Tube (STTr) reactor (manufactured by Kreido Laboratories). This reactor, which embodies and facilitates the use of Green Chemistry principles and Process Intensification, a...

  3. Highly selective oxidative cleavage of beta-cyclodextrin-epoxide/aziridine complexes with IBX in water.

    PubMed

    Surendra, K; Krishnaveni, N Srilakshmi; Reddy, M Arjun; Nageswar, Y V D; Rao, K Rama

    2003-11-14

    Water, an environmentally friendly reaction medium, has been utilized for the reaction of IBX with various epoxides 1 and aziridines 2 as their beta-cyclodextrin complexes to afford for the first time alpha-hydroxyketones 3 and alpha-aminoketones 4, respectively.

  4. Synthesis of epoxidized cardanol and its antioxidative properties for vegetable oils and biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel antioxidant epoxidized cardanol (ECD), derived from cardanol, was synthesized and characterized by FT-IR, 1H-NMR and 13C-NMR. Oxidative stability of ECD used in vegetable oils and biodiesel was evaluated by pressurized differential scanning calorimetry (PDSC) and the Rancimat method, respect...

  5. Diastereoselective synthesis of CF3-substituted, epoxide-fused heterocycles with β-(trifluoromethyl)vinylsulfonium salts.

    PubMed

    Fritz, Sven P; West, Thomas H; McGarrigle, Eoghan M; Aggarwal, Varinder K

    2012-12-21

    CF(3)-substituted vinyl diphenylsulfonium triflate is an effective annulation reagent for the formation of α-CF(3) substituted, epoxide-fused heterocycles (pyrrolidines, piperidines, and tetrahydrofurans). This simple method affords a variety of valuable heterocyclic building blocks in a highly diastereoselective manner (dr >20:1). PMID:23231752

  6. Deep eutectic solvents (DESs) are viable cosolvents for enzyme-catalyzed epoxide hydrolysis.

    PubMed

    Lindberg, Diana; de la Fuente Revenga, Mario; Widersten, Mikael

    2010-06-01

    A special group of ionic liquids, deep eutectic solvents (DESs) have been tested as cosolvents in enzyme-catalyzed hydrolysis of a chiral (1,2)-trans-2-methylstyrene oxide. The choline chloride:ethane diol (ET), choline chloride:glycerol (GLY) and choline:chloride:urea (REL) DESs were included in the reaction mixtures with epoxide and the potato epoxide hydrolase StEH1. The effect of the DESs on enzyme function was primarily elevations of K(M) (up to 20-fold) and with lesser effects on turnover numbers (twofold variation). The regioselectivity in hydrolysis of the (1R,2R)-2-trans-methylstyrene oxide was altered in the presence of GLY or ET to favor epoxide ring opening at the benzylic carbon (R=2.33), enhancing the regioselectivity observed in buffer-only systems (R=1.35). The DES solutions dissolved 1.5-fold higher epoxide concentrations as compared to phosphate buffer. The total conversion of high concentration (40 g/l) of (1S,2S)-MeSO was not negatively affected by addition of 40% GLY. PMID:20438773

  7. Metabolism of methaqualone by the epoxide-diol pathway in man and the rat.

    PubMed

    Stillwell, W G; Gregory, P A; Horning, M G

    1975-01-01

    The metabolism of methaqualone (2-methyl-3-o-tolyl-4(3H)-quinazolinone) has been studied in man and the rat using gas phase analytical methods. Seven new metabolites formed by the epoxide-diol pathway were detected in human urine after methaqualone administration. Five of these compounds were characterized as dihydrodiols and two as hydroxydihydrodiols. The seven dihydrodiol metabolites were present in the nonhydrolyzed fraction isolated from urine. After intraperitoneal administration of methaqualone to the rat (40 mg/kg) the major monohydroxyl metabolites of the drug in hydrolyzed urine were identified as 2-methyl-3-(2'-hydroxymethylphenyl)-4(3H)-quinazolinone (I) and 2-hydroxymethyl-3-o-tolyl-4(3H)-quinazolinone (II). Two dihydroxyl metabolites were also present, but only trace amounts of a dihydrodiol were detected. The major monohydroxyl metabolites of methaqualone detected in human urine after enzymic hydrolysis were I, II, 2-methyl-3-(3'-hydroxy-2'-methylphenyl)-4(3H)-quinazolinone (III), and 2-methyl-3-(4'-hydroxy-2'-methylphenyl)-4(3H)-quinazolinone (IV). Hydroxylation of the tolyl moiety of methaqualone probably occurs by way of an epoxide intermediate. The phenols, III and IV, may be formed from an epoxide or from the dihydrodiol(s) by enzymic or nonenzymic reactions. The results obtained suggest that epoxidation of methaqualone represents a major pathway of metabolism in the human.

  8. Application of hydrated and anhydrous fluroantimonic acids in the polymerization of epoxidized soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Polymerizations of epoxidized soybean oil (ESO) were catalyzed by the superacids, fluroantimonic acid hexahydrate (HSbF6•6H2O) and anhydrous fluroantimonic acid (HSbF6) using ethyl acetate solvent. This work was conducted in an effort to develop useful biodegradable polymers from renewable resources...

  9. Development of epoxidized soybean oil and soy fibre composites with Polyhedral Oligomeric Silsesquioxane (POSS) nano reinforcement

    NASA Astrophysics Data System (ADS)

    de Boer, Ryan Sietze

    Soy fibre and soybean oil were utilized to produce a bio-composite targeted as a substitute for conventional petroleum-based materials. The study was divided into two parts; the first was the development of a bio-epoxy that consisted of conventional epoxy, epoxidized soybean oil, and two types of functionalized POSS. The second part of the study involved blending of the bio-epoxy with titanate treated soy fibre. Combined incorporation of epoxide and amine functionalized POSS in the bio-epoxy matrix resulted in a 29% impact strength improvement compared to the petroleum-based epoxy. Incorporation of the epoxide functionalized POSS resulted in improvements in tensile strength by 8%, tensile modulus by 2%, and an increase in the glass transition temperature by 4% compared to the petroleum-based epoxy and epoxidized soybean oil hybrid. The coupling of titanate to soy fibre in comparison to the soy fibre without titanate treatment resulted in an impact strength improvement of 37%. Furthermore, the coupling of titanate increased the tensile strength and tensile modulus by 24% and 22% respectively, and reduced the water absorption by 70%.

  10. Genes encoding vitamin-K epoxide reductase are present in Drosophila and trypanosomatid protists.

    PubMed

    Robertson, Hugh M

    2004-10-01

    Vitamin-K epoxide reductase is encoded by the VKORC1 gene in mammals and other vertebrates, which also have a paralog, VKORC1L1. Single homologs are present in basal deuterostome and insect genomes, including Drosophila, and three trypanosomatid protists. VKOR is therefore an ancient gene/protein that can be studied in the Drosophila model system.

  11. Engineering of an epoxide hydrolase for efficient bioresolution of bulky pharmaco substrates

    PubMed Central

    Kong, Xu-Dong; Yuan, Shuguang; Li, Lin; Chen, She; Xu, Jian-He; Zhou, Jiahai

    2014-01-01

    Optically pure epoxides are essential chiral precursors for the production of (S)-propranolol, (S)-alprenolol, and other β-adrenergic receptor blocking drugs. Although the enzymatic production of these bulky epoxides has proven difficult, here we report a method to effectively improve the activity of BmEH, an epoxide hydrolase from Bacillus megaterium ECU1001 toward α-naphthyl glycidyl ether, the precursor of (S)-propranolol, by eliminating the steric hindrance near the potential product-release site. Using X-ray crystallography, mass spectrum, and molecular dynamics calculations, we have identified an active tunnel for substrate access and product release of this enzyme. The crystal structures revealed that there is an independent product-release site in BmEH that was not included in other reported epoxide hydrolase structures. By alanine scanning, two mutants, F128A and M145A, targeted to expand the potential product-release site displayed 42 and 25 times higher activities toward α-naphthyl glycidyl ether than the wild-type enzyme, respectively. These results show great promise for structure-based rational design in improving the catalytic efficiency of industrial enzymes for bulky substrates. PMID:25331869

  12. Discovery and characterization of thermophilic limonene-1,2-epoxide hydrolases from hot spring metagenomic libraries.

    PubMed

    Ferrandi, Erica Elisa; Sayer, Christopher; Isupov, Michail N; Annovazzi, Celeste; Marchesi, Carlotta; Iacobone, Gianluca; Peng, Xu; Bonch-Osmolovskaya, Elizaveta; Wohlgemuth, Roland; Littlechild, Jennifer A; Monti, Daniela

    2015-08-01

    The epoxide hydrolases (EHs) represent an attractive option for the synthesis of chiral epoxides and 1,2-diols which are valuable building blocks for the synthesis of several pharmaceutical compounds. A metagenomic approach has been used to identify two new members of the atypical EH limonene-1,2-epoxide hydrolase (LEH) family of enzymes. These two LEHs (Tomsk-LEH and CH55-LEH) show EH activities towards different epoxide substrates, differing in most cases from those previously identified for Rhodococcus erythropolis (Re-LEH) in terms of stereoselectivity. Tomsk-LEH and CH55-LEH, both from thermophilic sources, have higher optimal temperatures and apparent melting temperatures than Re-LEH. The new LEH enzymes have been crystallized and their structures solved to high resolution in the native form and in complex with the inhibitor valpromide for Tomsk-LEH and poly(ethylene glycol) for CH55-LEH. The structural analysis has provided insights into the LEH mechanism, substrate specificity and stereoselectivity of these new LEH enzymes, which has been supported by mutagenesis studies.

  13. Thermal behavior of epoxidized cardanol diethyl phosphate as novel renewable plasticizer for poly(vinyl chloride)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel plasticizer, epoxidized cardanol diethyl phosphate (ECEP), based on cardanol was synthesized. Chemical structure of ECEP was characterized by fourier transform infrared (FTIR), 1H-nuclear magnetic resonance(1H NMR) and 13C-nuclear magnetic resonance(13C NMR) spectroscopy. Effects of ECEP sub...

  14. Oxodiperoxo molybdenum modified mesoporous MCM-41 materials for the catalytic epoxidation of cyclooctene.

    PubMed

    Jia, Mingjun; Thiel, Werner R

    2002-10-21

    A hybrid heterogeneous catalyst system, which has been synthesized by covalently anchoring oxodiperoxo molybdenum chelate complexes onto the surface of mesoporous MCM-41, is highly active and truly heterogeneous for the liquid-phase epoxidation of cyclooctene with tBuOOH as the oxygen source.

  15. Surface Tension Studies of Alkyl Esters and Epoxidized Alkyl Esters Relevant to Oleochemically Based Fuel Additives

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report the surface tension of several epoxidized oleochemicals and their comparable fatty esters at temperatures between 25 and 60 deg C. Surface tensions of the olefins measured at 40 deg C range from 25.9 mN m-1, for isobutyl oleate, to 28.4 mN m-1 for methyl linoleate. The epoxy versions of ...

  16. Graphene oxide as an acid catalyst for the room temperature ring opening of epoxides.

    PubMed

    Dhakshinamoorthy, Amarajothi; Alvaro, Mercedes; Concepción, Patricia; Fornés, Vicente; Garcia, Hermenegildo

    2012-06-01

    The minute amount of hydrogen sulfate groups introduced into the graphene oxide (GO) obtained by Hummers oxidation of graphite renders this material as a highly efficient, recyclable acid catalyst for the ring opening of epoxides with methanol and other primary alcohols as nucleophile and solvent. PMID:22534622

  17. 40 CFR 63.1431 - Process vent annual epoxides emission factor plan requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... factor plan requirements. 63.1431 Section 63.1431 Protection of Environment ENVIRONMENTAL PROTECTION... Polyether Polyols Production § 63.1431 Process vent annual epoxides emission factor plan requirements. (a) Applicability of emission factor plan requirements. An owner or operator electing to comply with an...

  18. Boron Trifluoride Catalized Ring-Opening Polymerization of Epoxidized Soybean Oil in Liquid Carbon Dioxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Boron trifluoride diethyl etherate (BF3.OEt2) catalyzed ring-opening polymerization of epoxidized soybean oil (ESO), in liquid carbon dioxide, was conducted in an effort to develop useful biobased biodegradable polymers. The resulting polymers (RPESO) were characterized by FTIR spectroscopy, differ...

  19. Lewis Acid Catalyzed Ring-opening Polymerization of Epoxidized Soybean Oil in Liquid Carbon Dioxide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ring-opening polymerization of epoxidized soybean oil (ESO) catalyzed by boron trifluoride diethyl etherate (BF3•OEt2), in liquid carbon dioxide, was conducted in an effort to develop useful biobased biodegradable polymers. The resulting polymers (RPESO) were characterized by FTIR spectroscopy, diff...

  20. Preferential Glutathione Conjugation of a Reverse Diol Epoxide Compared to a Bay Region Diol Epoxide of Phenanthrene in Human Hepatocytes: Relevance to Molecular Epidemiology Studies of Glutathione-S-Transferase Polymorphisms and Cancer

    PubMed Central

    Hecht, Stephen S.; Berg, Jeannette Zinggeler; Hochalter, J. Bradley

    2009-01-01

    Bay region diol epoxides are recognized ultimate carcinogens of polycyclic aromatic hydrocarbons (PAH), and in vitro studies have demonstrated that they can be detoxified by conjugation with glutathione, leading to the widely investigated hypothesis that individuals with low activity forms of glutathione-S-transferases are at higher risk of PAH induced cancer, a hypothesis that has found at most weak support in molecular epidemiology studies. A weakness in this hypothesis was that the mercapturic acids resulting from conjugation of PAH bay region diol epoxides had never been identified in human urine. We recently analyzed smokers’ urine for mercapturic acids derived from phenanthrene, the simplest PAH with a bay region. The only phenanthrene diol epoxide-derived mercapturic acid in smokers’ urine was produced from the reverse diol epoxide, anti-phenanthrene-3,4-diol-1,2-epoxide (11), not the bay region diol epoxide, anti-phenanthrene-1,2-diol-3,4-epoxide (10), which does not support the hypothesis noted above. In this study, we extended these results by examining the conjugation of phenanthrene metabolites with glutathione in human hepatocytes. We identified the mercapturic acid N-acetyl-S-(r-4,t-2,3-trihydroxy-1,2,3,4-tetrahydro-c-1-phenanthryl)-L-cysteine (14a), (0.33–35.9 pmol/mL at 10 µM 8, 24h incubation, N = 10) in all incubations with phenanthrene-3,4-diol (8) and the corresponding diol epoxide 11, but no mercapturic acids were detected in incubations with phenanthrene-1,2-diol (7) and only trace amounts were observed in incubations with the corresponding bay region diol epoxide 10. Taken together with our previous results, these studies clearly demonstrate that glutathione conjugation of a reverse diol epoxide of phenanthrene is favored over conjugation of a bay region diol epoxide. Since reverse diol epoxides of PAH are generally weakly or non-mutagenic/carcinogenic, these results, if generalizable to other PAH, do not support the widely held

  1. Dual ambroxal and chlorpheniramine resinate as an alternative carrier in concurrent resinate administration.

    PubMed

    Akkaramongkolporn, P; Ngawhirunpat, T

    2003-03-01

    Two classical resinates, ambroxal (AMX) resinate and chlorpheniramine (CPM) resinate, and a novel formulation of dual AMX and CPM resinate were prepared by the batch method. The dissolution behavior of the drug from the classical resinates, a mixture of two classical resinates, and the dual-drug resinate in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF) was examined and compared. The equilibrium of drug on to the resin and the re-exchange of the drug on to the resinate were also investigated. The drug release pattern from the resinate followed the particle diffusion process. The type of dissolution medium affected the amount of drug released from the resinate. The amount of drug released from the dual AMX and CPM resinate was not significantly different from that from the classical AMX resinate or CPM resinate (p < 0.05), but was considerably higher than that from the concurrent administration of two classical resinates (p > 0.05). These results indicated that the concurrent administration of the resinates affected drug release from the resinate, and the dual-drug resinate can be used as an alternative carrier for an ion-exchange delivery system.

  2. Mononuclear Nonheme High-Spin Iron(III)-Acylperoxo Complexes in Olefin Epoxidation and Alkane Hydroxylation Reactions.

    PubMed

    Wang, Bin; Lee, Yong-Min; Clémancey, Martin; Seo, Mi Sook; Sarangi, Ritimukta; Latour, Jean-Marc; Nam, Wonwoo

    2016-02-24

    Mononuclear nonheme high-spin iron(III)-acylperoxo complexes bearing an N-methylated cyclam ligand were synthesized, spectroscopically characterized, and investigated in olefin epoxidation and alkane hydroxylation reactions. In the epoxidation of olefins, epoxides were yielded as the major products with high stereo-, chemo-, and enantioselectivities; cis- and trans-stilbenes were oxidized to cis- and trans-stilbene oxides, respectively. In the epoxidation of cyclohexene, cyclohexene oxide was formed as the major product with a kinetic isotope effect (KIE) value of 1.0, indicating that nonheme iron(III)-acylperoxo complexes prefer C═C epoxidation to allylic C-H bond activation. Olefin epoxidation by chiral iron(III)-acylperoxo complexes afforded epoxides with high enantioselectivity, suggesting that iron(III)-acylperoxo species, not high-valent iron-oxo species, are the epoxidizing agent. In alkane hydroxylation reactions, iron(III)-acylperoxo complexes hydroxylated C-H bonds as strong as those in cyclohexane at -40 °C, wherein (a) alcohols were yielded as the major products with high regio- and stereoselectivities, (b) activation of C-H bonds by the iron(III)-acylperoxo species was the rate-determining step with a large KIE value and good correlation between reaction rates and bond dissociation energies of alkanes, and (c) the oxygen atom in the alcohol product was from the iron(III)-acylperoxo species, not from molecular oxygen. In isotopically labeled water (H2(18)O) experiments, incorporation of (18)O from H2(18)O into oxygenated products was not observed in the epoxidation and hydroxylation reactions. On the basis of mechanistic studies, we conclude that mononuclear nonheme high-spin iron(III)-acylperoxo complexes are strong oxidants capable of oxygenating hydrocarbons prior to their conversion into iron-oxo species via O-O bond cleavage.

  3. Discovery of a Novel Microsomal Epoxide Hydrolase-Catalyzed Hydration of a Spiro Oxetane.

    PubMed

    Li, Xue-Qing; Hayes, Martin A; Grönberg, Gunnar; Berggren, Kristina; Castagnoli, Neal; Weidolf, Lars

    2016-08-01

    Oxetane moieties are increasingly being used by the pharmaceutical industry as building blocks in drug candidates because of their pronounced ability to improve physicochemical parameters and metabolic stability of drug candidates. The enzymes that catalyze the biotransformation of the oxetane moiety are, however, not well studied. The in vitro metabolism of a spiro oxetane-containing compound AZD1979 [(3-(4-(2-oxa-6-azaspiro[3.3]heptan-6-ylmethyl)phenoxy)azetidin-1-yl)(5-(4-ethoxyphenyl)-1,3,4-oxadiazol-2-yl)methanone] was studied and one of its metabolites, M1, attracted our interest because its formation was NAD(P)H independent. The focus of this work was to elucidate the structure of M1 and to understand the mechanism(s) of its formation. We established that M1 was formed via hydration and ring opening of the oxetanyl moiety of AZD1979. Incubations of AZD1979 using various human liver subcellular fractions revealed that the hydration reaction leading to M1 occurred mainly in the microsomal fraction. The underlying mechanism as a hydration, rather than an oxidation reaction, was supported by the incorporation of (18)O from H2 (18)O into M1. Enzyme kinetics were performed probing the formation of M1 in human liver microsomes. The formation of M1 was substantially inhibited by progabide, a microsomal epoxide hydrolase inhibitor, but not by trans-4-[4-(1-adamantylcarbamoylamino)cyclohexyloxy]benzoic acid, a soluble epoxide hydrolase inhibitor. On the basis of these results, we propose that microsomal epoxide hydrolase catalyzes the formation of M1. The substrate specificity of microsomal epoxide hydrolase should therefore be expanded to include not only epoxides but also the oxetanyl ring system present in AZD1979. PMID:27256986

  4. Titania-silica mixed oxides. II. Catalytic behaviour in olefin epoxidation

    SciTech Connect

    Hutter, R.; Mallat, T.; Baiker, A.

    1995-04-15

    Various titania-silica aerogels prepared by an alkoxide-sol-gel route have been tested in the epoxidation of bulky olefins using cumene hydroperoxide as oxidant. The drying method, the titanium content between 2 and 20 wt%, and the calcination temperature between 473 and 1073 K were the most important preparation parameters, influencing the catalytic behaviour of the aerogels. The aerogels dried by semicontinuous extraction with supercritical CO{sub 2} at low temperature (LT aerogel) were found to be much more efficient epoxidation catalysts than aerogels prepared by high-temperature supercritical drying and conventionally dried xerogels. The reaction rate of cyclohexene epoxidation over LT aerogels increased monotonically with increasing Ti content. In the range of 333-363 K the catalysts containing 20 wt% TiO{sub 2} (20LT) showed high activity and selectivity (79-93% to peroxide and 87-100% to epoxide) in the oxidation of various cyclic olefins, including cyclododecene, norbornene, cyclohexene, and limonene. Catalytic experiments, FTIR, and UV-vis spectroscopy indicated that the LT aerogels consist of two different types of active species: titanium well-dispersed in the silica matrix and titania nanodomains. The key factors determining the activity and selectivity of sol-gel titania-silica catalysts are the morphology (surface area and pore size) and the relative proportions of Ti-O-Si and Ti-O-Ti structural parts. A comparative study of the epoxidation of cyclohexene, cyclododecene, and norbornene over structurally different titania-silica catalysts, indicates that 20LT shows better catalytic behaviour in these reactions than Ti zeolites and silica-supported titania. 46 refs., 12 figs., 3 tabs.

  5. Reusable manganese compounds containing pyrazole-based ligands for olefin epoxidation reactions.

    PubMed

    Manrique, Ester; Poater, Albert; Fontrodona, Xavier; Solà, Miquel; Rodríguez, Montserrat; Romero, Isabel

    2015-10-28

    We describe the synthesis of new manganese(ii) and manganese(iii) complexes containing the bidentate ligands 2-(3-pyrazolyl)pyridine, pypz-H, and 3(5)-(2-hydroxyphenyl)pyrazole, HOphpz-H, with formula [MnX2(pypz-H)2] (X = Cl(-), 1, CF3SO3(-), 2, OAc(-), 3 or NO3(-) (4)), [MnCl2(pypz-H)(H2O)2], 5, or [MnCl(Ophpz-H)2], 6. All the complexes have been characterized through analytical, spectroscopic and electrochemical techniques. Single X-ray structure analysis revealed a six-coordinated Mn(ii) ion in complexes 1-5, and a five-coordinated Mn(iii) ion in complex 6. Compound 5 is the first co-crystal of Mn(ii) containing Cl and H2O ligands together with bidentate nitrogen ligands. The catalytic activity of complexes 1-6 has been tested with regard to the epoxidation of styrene and, in the case of 1, 5 and 6, other alkenes have been epoxidized using peracetic acid as oxidant in different media, among which glycerol, a green solvent never used in epoxidation reactions using peracetic acid as oxidant. The catalysts show moderate to high conversions and selectivities towards the corresponding epoxides. For complexes 1, 5 and 6, a certain degree of cis→trans isomerization is observed in the case of cis-β-methylstyrene. These observations have been explained through computational calculations. The reutilization of catalysts 1 and 6 for the epoxidation of alkenes has been evaluated in [bmim] : acetonitrile mixture (bmim = 1-butyl-3-methylimidazolium), allowing the effective recyclability of the catalytic system and keeping high conversion and selectivity values up to 12 successive runs, in all cases.

  6. Reusable manganese compounds containing pyrazole-based ligands for olefin epoxidation reactions.

    PubMed

    Manrique, Ester; Poater, Albert; Fontrodona, Xavier; Solà, Miquel; Rodríguez, Montserrat; Romero, Isabel

    2015-10-28

    We describe the synthesis of new manganese(ii) and manganese(iii) complexes containing the bidentate ligands 2-(3-pyrazolyl)pyridine, pypz-H, and 3(5)-(2-hydroxyphenyl)pyrazole, HOphpz-H, with formula [MnX2(pypz-H)2] (X = Cl(-), 1, CF3SO3(-), 2, OAc(-), 3 or NO3(-) (4)), [MnCl2(pypz-H)(H2O)2], 5, or [MnCl(Ophpz-H)2], 6. All the complexes have been characterized through analytical, spectroscopic and electrochemical techniques. Single X-ray structure analysis revealed a six-coordinated Mn(ii) ion in complexes 1-5, and a five-coordinated Mn(iii) ion in complex 6. Compound 5 is the first co-crystal of Mn(ii) containing Cl and H2O ligands together with bidentate nitrogen ligands. The catalytic activity of complexes 1-6 has been tested with regard to the epoxidation of styrene and, in the case of 1, 5 and 6, other alkenes have been epoxidized using peracetic acid as oxidant in different media, among which glycerol, a green solvent never used in epoxidation reactions using peracetic acid as oxidant. The catalysts show moderate to high conversions and selectivities towards the corresponding epoxides. For complexes 1, 5 and 6, a certain degree of cis→trans isomerization is observed in the case of cis-β-methylstyrene. These observations have been explained through computational calculations. The reutilization of catalysts 1 and 6 for the epoxidation of alkenes has been evaluated in [bmim] : acetonitrile mixture (bmim = 1-butyl-3-methylimidazolium), allowing the effective recyclability of the catalytic system and keeping high conversion and selectivity values up to 12 successive runs, in all cases. PMID:26389716

  7. Capsanthone 3,6-epoxide, a new carotenoid from the fruits of the red paprika Capsicum annuum L.

    PubMed

    Maoka, T; Fujiwara, Y; Hashimoto, K; Akimoto, N

    2001-08-01

    The structure of a new carotenoid, isolated from the fruits of the red tomato-shaped paprika Capsicum annuum L., was elucidated to be (3S,5R,6S,5'R)-3,6-epoxy-5,6-dihydro-5-hydroxy-beta,kappa-carotene-3',6'-dione by spectroscopic analyses, including fast atom bombardment collision-induced dissociation-mass spectrometry/mass spectrometry (FAB CID-MS/MS) and was designated capsanthone 3,6-epoxide. Capsanthone 3,6-epoxide is assumed to be an oxidative metabolite of capsanthin 3,6-epoxide in paprika.

  8. FB-Line resin testing final report

    SciTech Connect

    Bannochie, C.J.

    1992-01-23

    The Dowex 50W-X8 and 50W-Xl2 resin samples are both strong acid cation materials in the hydrogen form. Each material has a water retention capacity characteristic of its respective marketed degree of cross-linking. Dowex 21K gives confirmatory responses to tests for a strong anion exchange resin in the nitrate form. All three resins have the manufacturer's specified ionic type and form, and the Dowex 50W resins have characteristic water retention capacities. These tests conclude that the ion exchange resins in use in FB-Line meet the approved safety document criteria for cross-linking, ionic form, and resin type.

  9. FB-Line resin testing final report

    SciTech Connect

    Bannochie, C.J.

    1992-01-23

    The Dowex 50W-X8 and 50W-Xl2 resin samples are both strong acid cation materials in the hydrogen form. Each material has a water retention capacity characteristic of its respective marketed degree of cross-linking. Dowex 21K gives confirmatory responses to tests for a strong anion exchange resin in the nitrate form. All three resins have the manufacturer`s specified ionic type and form, and the Dowex 50W resins have characteristic water retention capacities. These tests conclude that the ion exchange resins in use in FB-Line meet the approved safety document criteria for cross-linking, ionic form, and resin type.

  10. Disposal of bead ion exchange resin wastes

    SciTech Connect

    Gay, R.L.; Granthan, L.F.

    1985-12-17

    Bead ion exchange resin wastes are disposed of by a process which involves spray-drying a bead ion exchange resin waste in order to remove substantially all of the water present in such waste, including the water on the surface of the ion exchange resin beads and the water inside the ion exchange resin beads. The resulting dried ion exchange resin beads can then be solidified in a suitable solid matrix-forming material, such as a polymer, which solidifies to contain the dried ion exchange resin beads in a solid monolith suitable for disposal by burial or other conventional means.

  11. Low Melt Viscosity Resins for Resin Transfer Molding

    NASA Technical Reports Server (NTRS)

    Harris, Frank W.

    2002-01-01

    In recent years, resin transfer molding (RTM) has become one of the methods of choice for high performance composites. Its cost effectiveness and ease of fabrication are major advantages of RTM. RTM process usually requires resins with very low melt viscosity (less than 10 Poise). The optimum RTM resins also need to display high thennal-oxidative stability, high glass transition temperature (T(sub g)), and good toughness. The traditional PMR-type polyimides (e.g. PMR-15) do not fit this requirement, because the viscosities are too high and the nadic endcap cures too fast. High T(sub g), low-melt viscosity resins are highly desirable for aerospace applications and NASA s Reusable Launch Vehicle (RLV) program. The objective of this work is to prepare low-melt viscosity polyimide resins for RTM or resin film infusion (RFI) processes. The approach involves the synthesis of phenylethynyl-terminated imide oligomers. These materials have been designed to minimize their melt viscosity so that they can be readily processed. During the cure, the oligomers undergo both chain extension and crosslinking via the thermal polymerization of the phenylethynyl groups. The Phenylethynyl endcap is preferred over the nadic group due to its high curing temperature, which provides broader processing windows. This work involved the synthesis and polymerization of oligomers containing zig-zag backbones and twisted biphenyl structures. Some A-B type precursors which possessed both nitro and anhydride functionality, or both nitro and amine functionality, were also synthesized in order to obtain the well defined oligomers. The resulting zig-zag structured oligomers were then end-capped with 4-phenylethynylphthalic anhydride (PEPA) for further cure. The properties of these novel imide oligomers are evaluated.

  12. Stereoselective formations of K-region and non-K-region epoxides in the metabolism of chrysene by rat liver microsomal cytochrome P-450 isozymes.

    PubMed

    Yang, S K; Bao, Z P

    1987-07-01

    The K-region 5,6-epoxide and non-K-region 1,2- and 3,4-epoxides of chrysene were isolated by normal phase high performance liquid chromatography (HPLC) from a mixture of products formed in the metabolism of chrysene by liver microsomes from untreated (control), phenobarbital-treated, or 3-methylcholanthrene-treated rats in the presence of an epoxide hydrolase inhibitor, 3,3,3-trichloropropylene 1,2-oxide. Epoxides were characterized by ultraviolet, mass, and circular dichroism spectral and chiral stationary phase HPLC analyses. Each of the metabolically formed epoxides was hydrated by rat liver microsomal epoxide hydrolase to a trans-dihydrodiol. The metabolically formed chrysene 5,6-epoxides were determined by chiral stationary phase HPLC and were found to contain (5S,6R):(5R,6S) enantiomer ratios of 68:32 (control), 71:29 (phenobarbital), and 5:95 (3-methylcholanthrene), respectively. The enantiomers of chrysene 1,2-epoxide and 3,4-epoxide were also resolved by chiral stationary phase HPLC. However, the enantiomeric compositions of the metabolically formed chrysene 1,2- and 3,4-epoxides, which racemized rapidly at room temperature, could not be directly determined. By using molecular oxygen-18 in the in vitro incubation of chrysene and by mass spectral analyses of the resulting oxygen-18-containing dihydrodiol metabolites and their acid-catalyzed dehydration (phenolic) products, both 1,2-epoxide and 3,4-epoxide were found to be converted by microsomal epoxide hydrolase-catalyzed water attack at predominantly (greater than or equal to 97%) the allylic carbons.

  13. Volume shrinkage and rheological studies of epoxidised and unepoxidised poly(styrene-block-butadiene-block-styrene) triblock copolymer modified epoxy resin-diamino diphenyl methane nanostructured blend systems.

    PubMed

    George, Sajeev Martin; Puglia, Debora; Kenny, Josè M; Parameswaranpillai, Jyotishkumar; Vijayan P, Poornima; Pionteck, Jűrgen; Thomas, Sabu

    2015-05-21

    Styrene-block-butadiene-block-styrene (SBS) copolymers epoxidised at different epoxidation degrees were used as modifiers for diglycidyl ether of the bisphenol A-diamino diphenyl methane (DGEBA-DDM) system. Epoxy systems containing modified epoxidised styrene-block-butadiene-block-styrene (eSBS) triblock copolymer with compositions ranging from 0 to 30 wt% were prepared and the curing reaction was monitored in situ using rheometry and pressure-volume-temperature (PVT) analysis. By controlling the mole percent of epoxidation, we could generate vesicles, worm-like micelles and core-shell nanodomains. At the highest mole percent of epoxidation, the fraction of the epoxy miscible component in the triblock copolymer (epoxidised polybutadiene (PB)) was maximum. This gave rise to core-shell nanodomains having a size of 10-15 nm, in which the incompatible polystyrene (PS) becomes the core, the unepoxidised PB becomes the shell and the epoxidised PB interpenetrates with the epoxy phase. On the other hand, the low level of epoxidation gave rise to bigger domains having a size of ∼1 μm and the intermediate epoxidation level resulted in a worm-like structure. This investigation specifically focused on the importance of cure rheology on nanostructure formation, using rheometry. The reaction induced phase separation of the PS phase in the epoxy matrix was carefully explored through rheological measurements. PVT measurements during curing were carried out to understand the volume shrinkage of the blend, confirming that shrinkage behaviour is related to the block copolymer phase separation process during curing. The volume shrinkage was found to be maximum in the case of blends with unmodified SBS, where a heterogeneous morphology was observed, while a decrease in the shrinkage was evidenced in the case of SBS epoxidation. It could be explained by two effects: (1) solubility of the epoxidised block copolymer in the DGEBA leads to the formation of nanoscopic domains upon

  14. Volume shrinkage and rheological studies of epoxidised and unepoxidised poly(styrene-block-butadiene-block-styrene) triblock copolymer modified epoxy resin-diamino diphenyl methane nanostructured blend systems.

    PubMed

    George, Sajeev Martin; Puglia, Debora; Kenny, Josè M; Parameswaranpillai, Jyotishkumar; Vijayan P, Poornima; Pionteck, Jűrgen; Thomas, Sabu

    2015-05-21

    Styrene-block-butadiene-block-styrene (SBS) copolymers epoxidised at different epoxidation degrees were used as modifiers for diglycidyl ether of the bisphenol A-diamino diphenyl methane (DGEBA-DDM) system. Epoxy systems containing modified epoxidised styrene-block-butadiene-block-styrene (eSBS) triblock copolymer with compositions ranging from 0 to 30 wt% were prepared and the curing reaction was monitored in situ using rheometry and pressure-volume-temperature (PVT) analysis. By controlling the mole percent of epoxidation, we could generate vesicles, worm-like micelles and core-shell nanodomains. At the highest mole percent of epoxidation, the fraction of the epoxy miscible component in the triblock copolymer (epoxidised polybutadiene (PB)) was maximum. This gave rise to core-shell nanodomains having a size of 10-15 nm, in which the incompatible polystyrene (PS) becomes the core, the unepoxidised PB becomes the shell and the epoxidised PB interpenetrates with the epoxy phase. On the other hand, the low level of epoxidation gave rise to bigger domains having a size of ∼1 μm and the intermediate epoxidation level resulted in a worm-like structure. This investigation specifically focused on the importance of cure rheology on nanostructure formation, using rheometry. The reaction induced phase separation of the PS phase in the epoxy matrix was carefully explored through rheological measurements. PVT measurements during curing were carried out to understand the volume shrinkage of the blend, confirming that shrinkage behaviour is related to the block copolymer phase separation process during curing. The volume shrinkage was found to be maximum in the case of blends with unmodified SBS, where a heterogeneous morphology was observed, while a decrease in the shrinkage was evidenced in the case of SBS epoxidation. It could be explained by two effects: (1) solubility of the epoxidised block copolymer in the DGEBA leads to the formation of nanoscopic domains upon

  15. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1994-01-25

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 9 figures.

  16. Soluble high molecular weight polyimide resins

    NASA Technical Reports Server (NTRS)

    Jones, R. J.; Lubowitz, H. R.

    1970-01-01

    High molecular weight polyimide resins have greater than 20 percent /by weight/ solubility in polar organic solvents. They permit fabrication into films, fibers, coatings, reinforced composite, and adhesive product forms. Characterization properties for one typical polyimide resin are given.

  17. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1996-07-23

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  18. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1994-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene disphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  19. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1996-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  20. Trends in predicted chemoselectivity of cytochrome P450 oxidation: B3LYP barrier heights for epoxidation and hydroxylation reactions.

    PubMed

    Rydberg, Patrik; Lonsdale, Richard; Harvey, Jeremy N; Mulholland, Adrian J; Olsen, Lars

    2014-07-01

    Prediction of epoxide formation in drug metabolism is a difficult but important task, as epoxide formation is linked to drug toxicity. A comparison of the energy barriers for cytochrome P450 mediated epoxidation of alkenes to the barriers for the hydroxylation of an aliphatic carbon atom next to a double bond has been performed using B3LYP and B3LYP-D3. Relevant experimental data on oxidation selectivity has also been assessed. The results show that density functional theory, when using B3LYP-D3, does well in reproducing the experimental trends. Considering that the comparison involves chemical steps with quite different features this is remarkable. We also find that B3LYP consistently underestimates the hydrogen abstraction barriers relative to the epoxidation barriers, and that including a dispersion correction reduces this problem.

  1. Isolation of β-Cryptoxanthin-epoxides, Precursors of Cryptocapsin and 3'-Deoxycapsanthin, from Red Mamey (Pouteria sapota).

    PubMed

    Turcsi, Erika; Murillo, Enrique; Kurtán, Tibor; Szappanos, Ádám; Illyés, Tünde-Zita; Gulyás-Fekete, Gergely; Agócs, Attila; Avar, Péter; Deli, József

    2015-07-01

    From an extract of red mamey (Pouteria sapota) β-cryptoxanthin-5,6-epoxide, β-cryptoxanthin-5',6'-epoxide, 3'-deoxycapsanthin, and cryptocapsin were isolated and characterized by UV-vis spectroscopy, electronic circular dichroism (ECD), nuclear magnetic resonance (NMR) spectroscopy, and mass spectrometry (MS). Epoxidation of β-cryptoxanthin delivered the β-(5'R,6'S)- and (5'S,6'R)-cryptoxanthin-5',6'-epoxides, which were identified by HPLC-ECD analysis. These carotenoids among others are quite common in the fruits of Central America, and as they are natural provitamins A, they should play an important role in the diet of the mostly vitamin A deficient population of this region. PMID:26057604

  2. Isolation of β-Cryptoxanthin-epoxides, Precursors of Cryptocapsin and 3'-Deoxycapsanthin, from Red Mamey (Pouteria sapota).

    PubMed

    Turcsi, Erika; Murillo, Enrique; Kurtán, Tibor; Szappanos, Ádám; Illyés, Tünde-Zita; Gulyás-Fekete, Gergely; Agócs, Attila; Avar, Péter; Deli, József

    2015-07-01

    From an extract of red mamey (Pouteria sapota) β-cryptoxanthin-5,6-epoxide, β-cryptoxanthin-5',6'-epoxide, 3'-deoxycapsanthin, and cryptocapsin were isolated and characterized by UV-vis spectroscopy, electronic circular dichroism (ECD), nuclear magnetic resonance (NMR) spectroscopy, and mass spectrometry (MS). Epoxidation of β-cryptoxanthin delivered the β-(5'R,6'S)- and (5'S,6'R)-cryptoxanthin-5',6'-epoxides, which were identified by HPLC-ECD analysis. These carotenoids among others are quite common in the fruits of Central America, and as they are natural provitamins A, they should play an important role in the diet of the mostly vitamin A deficient population of this region.

  3. Epoxide pathways improve model predictions of isoprene markers and reveal key role of acidity in aerosol formation

    EPA Science Inventory

    Isoprene significantly contributes to organic aerosol in the southeastern United States where biogenic hydrocarbons mix with anthropogenic emissions. In this work, the Community Multiscale Air Quality model is updated to predict isoprene aerosol from epoxides produced under both ...

  4. Generation of CF3-containing epoxides and aziridines by visible-light-driven trifluoromethylation of allylic alcohols and amines.

    PubMed

    Kim, Eunjin; Choi, Sungkyu; Kim, Heejeong; Cho, Eun Jin

    2013-05-10

    Radical reactions! Efficient methods for the generation of CF3-containing epoxides and aziridines have been developed (see scheme). A variety of allylic alcohols and allylic amines were transformed into the corresponding epoxides and aziridines by using [Ru(bpy)3]Cl2 (bpy = 2,2'-bipyridine), CF3 I, and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (or N,N,N',N'-tetramethylethylenediamine, TMEDA) under visible-light irradiation.

  5. A New Biocatalyst for Production of Optically Pure Aryl Epoxides by Styrene Monooxygenase from Pseudomonas fluorescens ST

    PubMed Central

    Di Gennaro, Patrizia; Colmegna, Andrea; Galli, Enrica; Sello, Guido; Pelizzoni, Francesca; Bestetti, Giuseppina

    1999-01-01

    We developed a biocatalyst by cloning the styrene monooxygenase genes (styA and styB) from Pseudomonas fluorescens ST responsible for the oxidation of styrene to its corresponding epoxide. Recombinant Escherichia coli was able to oxidize different aryl vinyl and aryl ethenyl compounds to their corresponding optically pure epoxides. The results of bioconversions indicate the broad substrate preference of styrene monooxygenase and its potential for the production of several fine chemicals. PMID:10347083

  6. Tensile strength of restorative resins.

    PubMed

    Zidan, O; Asmussen, E; Jørgensen, K D

    1980-06-01

    The purpose of the present work was to measure the tensile strength of restorative resins and to study the effect of the method of measurement on the recorded results. A direct pull method using dumb-bell shaped specimens was used. The tensile strength of the resins was also tested using the diametral compression method suggested by the A.D.A. It was found that the method of testing affects the results. Although the diametral compression method is a simple method, it cannot be considered reliable for all types of material. The tensile strength of the conventional composites was significantly higher than the tensile strength of the microfilled composites.

  7. Method of removing contaminants from plastic resins

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-11-18

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  8. Method of removing contaminants from plastic resins

    DOEpatents

    Bohnert,George W.; Hand,Thomas E.; Delaurentiis,Gary M.

    2007-08-07

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  9. Method for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-12-30

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  10. 21 CFR 177.1555 - Polyarylate resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyarylate resins. 177.1555 Section 177.1555 Food... of Single and Repeated Use Food Contact Surfaces § 177.1555 Polyarylate resins. Polyarylate resins... contact with food in accordance with the following prescribed conditions: (a) Identity. Polyarylate...

  11. 21 CFR 177.1595 - Polyetherimide resin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyetherimide resin. 177.1595 Section 177.1595... Components of Single and Repeated Use Food Contact Surfaces § 177.1595 Polyetherimide resin. The polyetherimide resin identified in this section may be safely used as an article or component of an...

  12. 21 CFR 172.280 - Terpene resin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Terpene resin. 172.280 Section 172.280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN..., Films and Related Substances § 172.280 Terpene resin. The food additive terpene resin may be safely...

  13. 21 CFR 177.1680 - Polyurethane resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyurethane resins. 177.1680 Section 177.1680... Components of Single and Repeated Use Food Contact Surfaces § 177.1680 Polyurethane resins. The polyurethane resins identified in paragraph (a) of this section may be safely used as the food-contact surface...

  14. 21 CFR 177.1556 - Polyaryletherketone resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyaryletherketone resins. 177.1556 Section 177... Components of Single and Repeated Use Food Contact Surfaces § 177.1556 Polyaryletherketone resins. The poly...) resins (CAS Reg. No. 55088-54-5 and CAS Reg. No. 60015-05-6 and commonly referred to...

  15. 40 CFR 721.9495 - Acrylosilane resins.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acrylosilane resins. 721.9495 Section... Substances § 721.9495 Acrylosilane resins. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified as acrylosilane resins (PMNs P-95-1024/1040) are...

  16. 21 CFR 177.1680 - Polyurethane resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Polyurethane resins. 177.1680 Section 177.1680... Components of Single and Repeated Use Food Contact Surfaces § 177.1680 Polyurethane resins. The polyurethane...) For the purpose of this section, polyurethane resins are those produced when one or more of...

  17. 21 CFR 177.1680 - Polyurethane resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Polyurethane resins. 177.1680 Section 177.1680... Components of Single and Repeated Use Food Contact Surfaces § 177.1680 Polyurethane resins. The polyurethane...) For the purpose of this section, polyurethane resins are those produced when one or more of...

  18. 21 CFR 177.1580 - Polycarbonate resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polycarbonate resins. 177.1580 Section 177.1580... Components of Single and Repeated Use Food Contact Surfaces § 177.1580 Polycarbonate resins. Polycarbonate resins may be safely used as articles or components of articles intended for use in...

  19. 40 CFR 721.9495 - Acrylosilane resins.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylosilane resins. 721.9495 Section... Substances § 721.9495 Acrylosilane resins. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified as acrylosilane resins (PMNs P-95-1024/1040) are...

  20. 21 CFR 177.1585 - Polyestercarbonate resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyestercarbonate resins. 177.1585 Section 177... Components of Single and Repeated Use Food Contact Surfaces § 177.1585 Polyestercarbonate resins. Polyestercarbonate resins may be safely used as articles or components of articles intended for use in...

  1. 21 CFR 177.1556 - Polyaryletherketone resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyaryletherketone resins. 177.1556 Section 177... Components of Single and Repeated Use Food Contact Surfaces § 177.1556 Polyaryletherketone resins. The poly...) resins (CAS Reg. No. 55088-54-5 and CAS Reg. No. 60015-05-6 and commonly referred to...

  2. 21 CFR 177.1680 - Polyurethane resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyurethane resins. 177.1680 Section 177.1680 Food... of Single and Repeated Use Food Contact Surfaces § 177.1680 Polyurethane resins. The polyurethane resins identified in paragraph (a) of this section may be safely used as the food-contact surface...

  3. 21 CFR 177.1550 - Perfluorocarbon resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Perfluorocarbon resins. 177.1550 Section 177.1550... Components of Single and Repeated Use Food Contact Surfaces § 177.1550 Perfluorocarbon resins. Perfluorocarbon resins identified in this section may be safely used as articles or components of...

  4. 21 CFR 177.1595 - Polyetherimide resin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyetherimide resin. 177.1595 Section 177.1595... Components of Single and Repeated Use Food Contact Surfaces § 177.1595 Polyetherimide resin. The polyetherimide resin identified in this section may be safely used as an article or component of an...

  5. 21 CFR 177.1555 - Polyarylate resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyarylate resins. 177.1555 Section 177.1555 Food... of Single and Repeated Use Food Contact Surfaces § 177.1555 Polyarylate resins. Polyarylate resins... contact with food in accordance with the following prescribed conditions: (a) Identity. Polyarylate...

  6. 21 CFR 172.280 - Terpene resin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Terpene resin. 172.280 Section 172.280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN..., Films and Related Substances § 172.280 Terpene resin. The food additive terpene resin may be safely...

  7. 21 CFR 172.280 - Terpene resin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Terpene resin. 172.280 Section 172.280 Food and... Terpene resin. The food additive terpene resin may be safely used in accordance with the following prescribed conditions: (a) The food additive is the betapinene polymer obtained by polymerizing...

  8. 21 CFR 172.280 - Terpene resin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Terpene resin. 172.280 Section 172.280 Food and..., Films and Related Substances § 172.280 Terpene resin. The food additive terpene resin may be safely used... polymer obtained by polymerizing terpene hydrocarbons derived from wood. It has a softening point of...

  9. 21 CFR 172.280 - Terpene resin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Terpene resin. 172.280 Section 172.280 Food and..., Films and Related Substances § 172.280 Terpene resin. The food additive terpene resin may be safely used... polymer obtained by polymerizing terpene hydrocarbons derived from wood. It has a softening point of...

  10. In Vivo Anti-Tumor Activity and Toxicological Evaluations of Perillaldehyde 8,9-Epoxide, a Derivative of Perillyl Alcohol

    PubMed Central

    Andrade, Luciana Nalone; Amaral, Ricardo Guimarães; Dória, Grace Anne Azevedo; Fonseca, Cecília Santos; da Silva, Tayane Kayane Mariano; Albuquerque Júnior, Ricardo Luiz Cavalcante; Thomazzi, Sara Maria; do Nascimento, Lázaro Gomes; Carvalho, Adriana Andrade; de Sousa, Damião Pergentino

    2016-01-01

    Recent studies have revealed the high cytotoxicity of p-menthane derivatives against human tumor cells. In this study, the substance perillaldehyde 8,9-epoxide, a p-menthane class derivative obtained from (S)-(−)-perillyl alcohol, was selected in order to assess antitumor activity against experimental sarcoma 180 tumors. Toxicological effects related to the liver, spleen, kidneys and hematology were evaluated in mice submitted to treatment. The tumor growth inhibition rate was 38.4%, 58.7%, 35.3%, 45.4% and 68.1% at doses of 100 and 200 mg/kg/day for perillaldehyde 8,9-epoxide, perillyl alcohol and 25 mg/kg/day for 5-FU intraperitoneal treatments, respectively. No toxicologically significant effect was found in liver and kidney parameters analyzed in Sarcoma 180-inoculated mice treated with perillaldehyde 8,9-epoxide. Histopathological analyses of the liver, spleen, and kidneys were free from any morphological changes in the organs of the animals treated with perillaldehyde 8,9-epoxide. In conclusion, the data suggest that perillaldehyde 8,9-epoxide possesses significant antitumor activity without systemic toxicity for the tested parameters. By comparison, there was no statistical difference for the antitumor activity between perillaldehyde 8,9-epoxide and perillyl alcohol. PMID:26742032

  11. Epoxidation of allyl alcohol to glycidol over the microporous TS-1 catalyst.

    PubMed

    Wróblewska, Agnieszka; Fajdek, Anna

    2010-07-15

    The results of the epoxidation of allyl alcohol with 30% hydrogen peroxide over the TS-1 catalyst have been presented. The studies were carried out under the atmospheric pressure and at the presence of methanol as a solvent. The influence of the following technological parameters on the course of epoxidation was examined: the temperature of 20-60 degrees C, the molar ratio of AA/H(2)O(2) 1:1-5:1, the methanol concentration of 5-90 wt%, the catalyst content of 0.1-5.0 wt% and the reaction time 5-300 min. The main functions describing the process were the selectivity to glycidol in relation to allyl alcohol consumed, the conversion of substrates, and the selectivity of transformation to organic compounds in relation to hydrogen peroxide consumed. The parameters at which the functions describing the process reached the highest values were determined.

  12. Block Copolymerization of Lactide and an Epoxide Facilitated by a Redox Switchable Iron-Based Catalyst.

    PubMed

    Biernesser, Ashley B; Delle Chiaie, Kayla R; Curley, Julia B; Byers, Jeffery A

    2016-04-18

    A cationic iron(III) complex was active for the polymerization of various epoxides, whereas the analogous neutral iron(II) complex was inactive. Cyclohexene oxide polymerization could be "switched off" upon in situ reduction of the iron(III) catalyst and "switched on" upon in situ oxidation, which is orthogonal to what was observed previously for lactide polymerization. Conducting copolymerization reactions in the presence of both monomers resulted in block copolymers whose identity can be controlled by the oxidation state of the catalyst: selective lactide polymerization was observed in the iron(II) oxidation state and selective epoxide polymerization was observed in the iron(III) oxidation state. Evidence for the formation of block copolymers was obtained from solubility differences, GPC, and DOSY-NMR studies. PMID:26991820

  13. Spectrofluorometric determination of common epoxides with sodium sulfide and o-phthalaldehyde and taurine reagents

    SciTech Connect

    Sano, A.; Takitani, S.

    1985-07-01

    A spectrofluorometric method has been developed for the determination of common epoxides. Epoxides in ethanol solution gave an intense blue fluorescence (lambda/sub ex/ ca. 345 nm and lambda/sub em/ ca. 440 nm), after the first reaction with aqueous sodium sulfide at 55/sup 0/C for 20 min and followed by the second reaction with taurine and o-phthalaldehyde reagents at pH 8.3. By the proposed method, 1,2-epoxy-3-phenoxypropane and 1,2-epoxyoctane can be determined in the ranges 0.05-3 nmol/100 ..mu..L and 0.1-8 nmol/100 ..mu..L, respectively, with coefficients of variation of 1.6-2.9%. Some other alkylating agents also showed fluorescence by this method. 16 references, 8 figures, 3 tables.

  14. CO2 copolymers from epoxides: catalyst activity, product selectivity, and stereochemistry control.

    PubMed

    Lu, Xiao-Bing; Ren, Wei-Min; Wu, Guang-Peng

    2012-10-16

    The use of carbon dioxide as a carbon source for the synthesis of organic chemicals can contribute to a more sustainable chemical industry. Because CO(2) is such a thermodynamically stable molecule, few effective catalysts are available to facilitate this transformation. Currently, the major industrial processes that convert CO(2) into viable products generate urea and hydroxybenzoic acid. One of the most promising new technologies for the use of this abundant, inexpensive, and nontoxic renewable resource is the alternating copolymerization of CO(2) and epoxides to provide biodegradable polycarbonates, which are highly valuable polymeric materials. Because this process often generates byproducts, such as polyether or ether linkages randomly dispersed within the polycarbonate chains and/or the more thermodynamically stable cyclic carbonates, the choice of catalyst is critical for selectively obtaining the expected product. In this Account, we outline our efforts to develop highly active Co(III)-based catalysts for the selective production of polycarbonates from the alternating copolymerization of CO(2) with epoxides. Binary systems consisting of simple (salen)Co(III)X and a nucleophilic cocatalyst exhibited high activity under mild conditions even at 0.1 MPa CO(2) pressure and afforded copolymers with >99% carbonate linkages and a high regiochemical control (∼95% head-to-tail content). Discrete, one-component (salen)Co(III)X complexes bearing an appended quaternary ammonium salt or sterically hindered Lewis base showed excellent activity in the selectively alternating copolymerization of CO(2) with both aliphatic epoxides and cyclohexene oxide at high temperatures with low catalyst loading and/or low pressures of CO(2). Binary or one-component catalysts based on unsymmetric multichiral Co(III) complexes facilitated the efficient enantioselective copolymerization of CO(2) with epoxides, providing aliphatic polycarbonates with >99% head-to-tail content. These

  15. Block Copolymerization of Lactide and an Epoxide Facilitated by a Redox Switchable Iron-Based Catalyst.

    PubMed

    Biernesser, Ashley B; Delle Chiaie, Kayla R; Curley, Julia B; Byers, Jeffery A

    2016-04-18

    A cationic iron(III) complex was active for the polymerization of various epoxides, whereas the analogous neutral iron(II) complex was inactive. Cyclohexene oxide polymerization could be "switched off" upon in situ reduction of the iron(III) catalyst and "switched on" upon in situ oxidation, which is orthogonal to what was observed previously for lactide polymerization. Conducting copolymerization reactions in the presence of both monomers resulted in block copolymers whose identity can be controlled by the oxidation state of the catalyst: selective lactide polymerization was observed in the iron(II) oxidation state and selective epoxide polymerization was observed in the iron(III) oxidation state. Evidence for the formation of block copolymers was obtained from solubility differences, GPC, and DOSY-NMR studies.

  16. Synthesis, characterization and catalytic activities towards epoxidation of olefins of dinuclear copper(II) complexes

    NASA Astrophysics Data System (ADS)

    Halder, Shibashis; Mukherjee, Aparajita; Ghosh, Koushik; Dey, Sudipto; Nandi, Mahasweta; Roy, Partha

    2015-12-01

    Two copper(II) complexes, [Cu2(L1)Cl3].2H2O (1) and [Cu2(L2)(N3)Cl2] (2) where HL1 = 4-methyl-2,6-bis((2-morpholinoethylimino)methyl)phenol and HL2 = 4-methyl-2,6-bis((3-morpholinopropylimino)methyl)phenol have been synthesized and characterized by elemental analysis, various spectroscopic methods, TGA and single crystal X-ray diffraction analysis. Single crystal X-ray diffraction analysis reveals that in both the complexes, two copper atoms are linked by phenoxo oxygen atom and a bridging ligand, namely chloride and azide, respectively. These complexes have been used as catalyst for the epoxidation of cyclohexene, styrene, α-methyl styrene, trans-stilbene and norbornene using tert-butyl hydroperoxide as the oxidant in acetonitrile under mild conditions. All of the substrates undergo conversion to produce respective epoxide as the major product.

  17. Synthesis of cyclic sulfites from epoxides and sulfur dioxide with silica-immobilized homogeneous catalysts.

    PubMed

    Takenaka, Yasumasa; Kiyosu, Takahiro; Mori, Goro; Choi, Jun-Chul; Fukaya, Norihisa; Sakakura, Toshiyasu; Yasuda, Hiroyuki

    2012-01-01

    Quaternary ammonium- and amino-functionalized silica catalysts have been prepared for the selective synthesis of cyclic sulfites from epoxides and sulfur dioxide, demonstrating the effects of immobilizing the homogeneous catalysts on silica. The cycloaddition of sulfur dioxide to various epoxides was conducted under solvent-free conditions at 100 °C. The quaternary ammonium- and amino-functionalized silica catalysts produced cyclic sulfites in high yields (79-96 %) that are comparable to those produced by the homogeneous catalysts. The functionalized silica catalysts could be separated from the product solution by filtration, thereby avoiding the catalytic decomposition of the cyclic sulfite products upon distillation of the product solution. Heterogenization of a homogeneous catalyst by immobilization can, therefore, improve the efficiency of the purification of crude reaction products. Despite a decrease in catalytic activity after each recycling step, the heterogeneous pyridine-functionalized silica catalyst provided high yields after as many as five recycling processes.

  18. Process for curing bismaleimide resins

    NASA Technical Reports Server (NTRS)

    Parker, John A. (Inventor); OTHY S.imides alone. (Inventor)

    1986-01-01

    This invention relates to vinyl pyridine group containing compounds and oligomers, their advantageous copolymerization with bismaleimide resins, and the formation of reinforced composites based on these copolymers. When vinyl pyridines including vinyl stilbazole materials and vinyl styrylpyridine oligomer materials are admixed with bismaleimides and cured to form copolymers the cure temperatures of the copolymers are substantially below the cure temperatures of the bismaleimides alone.

  19. Mechanistic study of secondary organic aerosol components formed from nucleophilic addition reactions of methacrylic acid epoxide

    NASA Astrophysics Data System (ADS)

    Birdsall, A. W.; Miner, C. R.; Mael, L. E.; Elrod, M. J.

    2014-08-01

    Recently, methacrylic acid epoxide (MAE) has been proposed as a precursor to an important class of isoprene-derived compounds found in secondary organic aerosol (SOA): 2-methylglyceric acid (2-MG) and a set of oligomers, nitric acid esters and sulfuric acid esters related to 2-MG. However, the specific chemical mechanisms by which MAE could form these compounds have not been previously studied. In order to determine the relevance of these processes to atmospheric aerosol, MAE and 2-MG have been synthesized and a series of bulk solution-phase experiments aimed at studying the reactivity of MAE using nuclear magnetic resonance (NMR) spectroscopy have been performed. The present results indicate that the acid-catalyzed MAE reaction is more than 600 times slower than a similar reaction of an important isoprene-derived epoxide, but is still expected to be kinetically feasible in the atmosphere on more acidic SOA. The specific mechanism by which MAE leads to oligomers was identified, and the reactions of MAE with a number of atmospherically relevant nucleophiles were also investigated. Because the nucleophilic strengths of water, sulfate, alcohols (including 2-MG), and acids (including MAE and 2-MG) in their reactions with MAE were found to be of a similar magnitude, it is expected that a diverse variety of MAE + nucleophile product species may be formed on ambient SOA. Thus, the results indicate that epoxide chain reaction oligomerization will be limited by the presence of high concentrations of non-epoxide nucleophiles (such as water); this finding is consistent with previous environmental chamber investigations of the relative humidity-dependence of 2-MG-derived oligomerization processes and suggests that extensive oligomerization may not be likely on ambient SOA because of other competitive MAE reaction mechanisms.

  20. Mechanistic study of secondary organic aerosol components formed from nucleophilic addition reactions of methacrylic acid epoxide

    NASA Astrophysics Data System (ADS)

    Birdsall, A. W.; Miner, C. R.; Mael, L. E.; Elrod, M. J.

    2014-12-01

    Recently, methacrylic acid epoxide (MAE) has been proposed as a precursor to an important class of isoprene-derived compounds found in secondary organic aerosol (SOA): 2-methylglyceric acid (2-MG) and a set of oligomers, nitric acid esters, and sulfuric acid esters related to 2-MG. However, the specific chemical mechanisms by which MAE could form these compounds have not been previously studied with experimental methods. In order to determine the relevance of these processes to atmospheric aerosol, MAE and 2-MG have been synthesized and a series of bulk solution-phase experiments aimed at studying the reactivity of MAE using nuclear magnetic resonance (NMR) spectroscopy have been performed. The present results indicate that the acid-catalyzed MAE reaction is more than 600 times slower than a similar reaction of an important isoprene-derived epoxide, but is still expected to be kinetically feasible in the atmosphere on more acidic SOA. The specific mechanism by which MAE leads to oligomers was identified, and the reactions of MAE with a number of atmospherically relevant nucleophiles were also investigated. Because the nucleophilic strengths of water, sulfate, alcohols (including 2-MG), and acids (including MAE and 2-MG) in their reactions with MAE were found to be of similar magnitudes, it is expected that a diverse variety of MAE + nucleophile product species may be formed on ambient SOA. Thus, the results indicate that epoxide chain reaction oligomerization will be limited by the presence of high concentrations of non-epoxide nucleophiles (such as water); this finding is consistent with previous environmental chamber investigations of the relative humidity dependence of 2-MG-derived oligomerization processes and suggests that extensive oligomerization may not be likely on ambient SOA because of other competitive MAE reaction mechanisms.

  1. Dichlorodioxomolybdenum(VI) complexes bearing oxygen-donor ligands as olefin epoxidation catalysts.

    PubMed

    Oliveira, Tânia S M; Gomes, Ana C; Lopes, André D; Lourenço, João P; Almeida Paz, Filipe A; Pillinger, Martyn; Gonçalves, Isabel S

    2015-08-21

    Treatment of the solvent adduct [MoO2Cl2(THF)2] with either 2 equivalents of N,N-dimethylbenzamide (DMB) or 1 equivalent of N,N'-diethyloxamide (DEO) gave the dioxomolybdenum(vi) complexes [MoO2Cl2(DMB)2] () and [MoO2Cl2(DEO)] (). The molecular structures of and were determined by single-crystal X-ray diffraction. Both complexes present a distorted octahedral geometry and adopt the cis-oxo, trans-Cl, cis-L configuration typical of complexes of the type [MoO2X2(L)n], with either the monodentate DMB or bidentate DEO oxygen-donor ligands occupying the equatorial positions trans to the oxo groups. The complexes were applied as homogeneous catalysts for the epoxidation of olefins, namely cis-cyclooctene (Cy), 1-octene, trans-2-octene, α-pinene and (R)-(+)-limonene, using tert-butylhydroperoxide (TBHP) as oxidant. In the epoxidation of Cy at 55 °C, the desired epoxide was the only product and turnover frequencies in the range of ca. 3150-3200 mol molMo(-1) h(-1) could be reached. The catalytic production of cyclooctene oxide was investigated in detail, varying either the reaction temperature or the cosolvent. Complexes and were also applied in liquid-liquid biphasic catalytic epoxidation reactions by using an ionic liquid of the type [C4mim][X] (C4mim = 1-n-butyl-3-methylimidazolium; X = NTf2, BF4 or PF6] as a solvent to immobilise the metal catalysts. Recycling for multiple catalytic runs was achieved without loss of activity. PMID:26174418

  2. Association of DDT and heptachlor epoxide in human blood with diabetic nephropathy.

    PubMed

    Everett, Charles J; Thompson, Olivia M

    2015-01-01

    Six organochlorine pesticides and pesticide metabolites in human blood were tested to determine their relationships with diabetic nephropathy. The data were derived from the National Health and Nutrition Examination Survey (NHANES) 1999-2004 (unweighted, n=2992, population estimate=133,088,752). The six chemicals were p,p'-DDT (dichlorodiphenyltrichloroethane), p,p'-DDE (dichlorodiphenyltrichloroethylene), beta-hexachlorocyclohexane, oxychlordane, trans-nonachlor and heptachlor epoxide. In this research, total diabetes included diagnosed and undiagnosed diabetes (glycohemoglobin, A1c ≥6.5%), and nephropathy was defined as a urinary albumin to creatinine ratio >30 mg/g, representing microalbuminuria and macroalbuminuria. The pesticide p,p'-DDT and pesticide metabolite heptachlor epoxide were significantly associated with total diabetes with nephropathy, with odds ratios of 2.08 (95% CI 1.06-4.11) and 1.75 (95% CI 1.05-2.93), respectively. Organochlorine pesticides are thought to act through the constitutive androstane receptor/pregnane X receptor disease pathway, but this is not well established. When p,p'-DDT and heptachlor epoxide were both elevated, the odds ratio for diabetic nephropathy was 2.76 (95% CI 1.31-5.81), and when six of six organochlorine pesticides and pesticide metabolites, were elevated, the odds ratio for diabetic nephropathy was 3.00 (95% CI 1.08-8.36). The differences in the odds ratios for these groups appear to be due to differences in the mean heptachlor epoxide concentration of each category. Organochlorine pesticides and pesticide metabolites are known to have estrogenic, antiestrogenic or antiandrogenic activity. The constitutive androstane receptor/pregnane X receptor pathway is thought to interact with the aryl hydrocarbon receptor pathway, and the associations noted may be due to that interaction. PMID:25822320

  3. Technological Aspects of Chemoenzymatic Epoxidation of Fatty Acids, Fatty Acid Esters and Vegetable Oils: A Review.

    PubMed

    Milchert, Eugeniusz; Malarczyk, Kornelia; Kłos, Marlena

    2015-12-02

    The general subject of the review is analysis of the effect of technological parameters on the chemoenzymatic epoxidation processes of vegetable oils, fatty acids and alkyl esters of fatty acids. The technological parameters considered include temperature, concentration, amount of hydrogen peroxide relative to the number of unsaturated bonds, the amounts of enzyme catalysts, presence of solvent and amount of free fatty acids. Also chemical reactions accompanying the technological processes are discussed together with different technological options and significance of the products obtained.

  4. A non-canonical caleosin from Arabidopsis efficiently epoxidizes physiological unsaturated fatty acids with complete stereoselectivity.

    PubMed

    Blée, Elizabeth; Flenet, Martine; Boachon, Benoît; Fauconnier, Marie-Laure

    2012-10-01

    In plants, epoxygenated fatty acids (EFAs) are constituents of oil seeds as well as defence molecules and components of biopolymers (cutin, suberin). While the pleiotropic biological activities of mammalian EFAs have been well documented, there is a paucity of information on the physiological relevance of plant EFAs and their biosynthesis. Potential candidates for EFA formation are caleosin-type peroxygenases which catalyze the epoxidation of unsaturated fatty acids in the presence of hydroperoxides as co-oxidants. However, the caleosins characterized so far, which are mostly localized in seeds, are poor epoxidases. In sharp contrast, quantitative RT-PCR analysis revealed that PXG4, a class II caleosin gene, is expressed in roots, stems, leaves and flowers of Arabidopsis. Expressed in yeast, PXG4 encodes a calcium-dependent membrane-associated hemoprotein able to catalyze typical peroxygenase reactions. Moreover, we show here that purified recombinant PXG4 is an efficient fatty acid epoxygenase, catalyzing the oxidation of cis double bonds of unsaturated fatty acids. Physiological linoleic and linolenic acids proved to be the preferred substrates for PXG4; they are oxidized into the different positional isomers of the monoepoxides and into diepoxides. An important regioselectivity was observed; the C-12,13 double bond of these unsaturated fatty acids being the least favored unsaturation epoxidized by PXG4, linolenic acid preferentially yielded the 9,10-15,16-diepoxide. Remarkably, PXG4 catalyzes exclusively the formation of (R),(S)-epoxide enantiomers, which is the absolute stereochemistry of the epoxides found in planta. These findings pave the way for the study of the functional role of EFAs and caleosins in plants. PMID:22913587

  5. Association of DDT and heptachlor epoxide in human blood with diabetic nephropathy.

    PubMed

    Everett, Charles J; Thompson, Olivia M

    2015-01-01

    Six organochlorine pesticides and pesticide metabolites in human blood were tested to determine their relationships with diabetic nephropathy. The data were derived from the National Health and Nutrition Examination Survey (NHANES) 1999-2004 (unweighted, n=2992, population estimate=133,088,752). The six chemicals were p,p'-DDT (dichlorodiphenyltrichloroethane), p,p'-DDE (dichlorodiphenyltrichloroethylene), beta-hexachlorocyclohexane, oxychlordane, trans-nonachlor and heptachlor epoxide. In this research, total diabetes included diagnosed and undiagnosed diabetes (glycohemoglobin, A1c ≥6.5%), and nephropathy was defined as a urinary albumin to creatinine ratio >30 mg/g, representing microalbuminuria and macroalbuminuria. The pesticide p,p'-DDT and pesticide metabolite heptachlor epoxide were significantly associated with total diabetes with nephropathy, with odds ratios of 2.08 (95% CI 1.06-4.11) and 1.75 (95% CI 1.05-2.93), respectively. Organochlorine pesticides are thought to act through the constitutive androstane receptor/pregnane X receptor disease pathway, but this is not well established. When p,p'-DDT and heptachlor epoxide were both elevated, the odds ratio for diabetic nephropathy was 2.76 (95% CI 1.31-5.81), and when six of six organochlorine pesticides and pesticide metabolites, were elevated, the odds ratio for diabetic nephropathy was 3.00 (95% CI 1.08-8.36). The differences in the odds ratios for these groups appear to be due to differences in the mean heptachlor epoxide concentration of each category. Organochlorine pesticides and pesticide metabolites are known to have estrogenic, antiestrogenic or antiandrogenic activity. The constitutive androstane receptor/pregnane X receptor pathway is thought to interact with the aryl hydrocarbon receptor pathway, and the associations noted may be due to that interaction.

  6. Monolithic Nickel (II) Oxide Aerogels Using an Organic Epoxide: The Importance of the Counter Ion

    SciTech Connect

    Gash, A E; Satcher, J H; Simpson, R L

    2004-01-13

    The synthesis and characterization of nickel (II) oxide aerogel materials prepared using the epoxide addition method is described. The addition of the organic epoxide propylene oxide to an ethanolic solution of NiCl{sub 2} 6H{sub 2}O resulted in the formation of an opaque light green monolithic gel and subsequent drying with supercritical CO{sub 2} gave a monolithic aerogel material of the same color. This material has been characterized using powder X-ray diffraction, electron microscopy, elemental analysis, and nitrogen adsorption/desorption analysis. The results indicate that the nickel (II) oxide aerogel has very low bulk density (98 kg/m{sup 3} ({approx}98 %porous)), high surface area (413 m{sup 2}/g), and has a particulate-type aerogel microstructure made up of very fine spherical particles with an open porous network. By comparison, a precipitate of Ni{sub 3}(NO{sub 3}){sub 2}(OH){sub 4} is obtained when the same preparation is attempted with the common Ni(NO{sub 3}){sub 2} 6H{sub 2}O salt as the precursor. The implications of the difference of reactivity of the two different precursors are discussed in the context of the mechanism of gel formation via the epoxide addition method. The synthesis of nickel (II) oxide aerogel, using the epoxide addition method, is especially unique in our experience. It is our first example of the successful preparation of a metal oxide aerogel using a metal divalent metal ion and may have implications for the application of this method to the preparation of aerogels or nanoparticles of other divalent metal oxides. To our knowledge this is the first report of a monolithic pure nickel (II) oxide aerogel materials.

  7. The stability of the three transmembrane and the four transmembrane human vitamin K epoxide reductase models

    NASA Astrophysics Data System (ADS)

    Wu, Sangwook

    2016-04-01

    The three transmembrane and the four transmembrane helix models are suggested for human vitamin K epoxide reductase (VKOR). In this study, we investigate the stability of the human three transmembrane/four transmembrane VKOR models by employing a coarse-grained normal mode analysis and molecular dynamics simulation. Based on the analysis of the mobility of each transmembrane domain, we suggest that the three transmembrane human VKOR model is more stable than the four transmembrane human VKOR model.

  8. Dichlorodioxomolybdenum(VI) complexes bearing oxygen-donor ligands as olefin epoxidation catalysts.

    PubMed

    Oliveira, Tânia S M; Gomes, Ana C; Lopes, André D; Lourenço, João P; Almeida Paz, Filipe A; Pillinger, Martyn; Gonçalves, Isabel S

    2015-08-21

    Treatment of the solvent adduct [MoO2Cl2(THF)2] with either 2 equivalents of N,N-dimethylbenzamide (DMB) or 1 equivalent of N,N'-diethyloxamide (DEO) gave the dioxomolybdenum(vi) complexes [MoO2Cl2(DMB)2] () and [MoO2Cl2(DEO)] (). The molecular structures of and were determined by single-crystal X-ray diffraction. Both complexes present a distorted octahedral geometry and adopt the cis-oxo, trans-Cl, cis-L configuration typical of complexes of the type [MoO2X2(L)n], with either the monodentate DMB or bidentate DEO oxygen-donor ligands occupying the equatorial positions trans to the oxo groups. The complexes were applied as homogeneous catalysts for the epoxidation of olefins, namely cis-cyclooctene (Cy), 1-octene, trans-2-octene, α-pinene and (R)-(+)-limonene, using tert-butylhydroperoxide (TBHP) as oxidant. In the epoxidation of Cy at 55 °C, the desired epoxide was the only product and turnover frequencies in the range of ca. 3150-3200 mol molMo(-1) h(-1) could be reached. The catalytic production of cyclooctene oxide was investigated in detail, varying either the reaction temperature or the cosolvent. Complexes and were also applied in liquid-liquid biphasic catalytic epoxidation reactions by using an ionic liquid of the type [C4mim][X] (C4mim = 1-n-butyl-3-methylimidazolium; X = NTf2, BF4 or PF6] as a solvent to immobilise the metal catalysts. Recycling for multiple catalytic runs was achieved without loss of activity.

  9. A stable epoxide as a potential endogenous estrogen metabolite: Possible significance in breast cancer?

    PubMed

    Raeside, James I

    2016-06-01

    Epoxides as reactive intermediates of estrogen metabolism have been considered to be potential precursors of the 2- and 4-hydroxy, catechol estrogens and even to be mutagenic/carcinogenic agents themselves. The labile nature of the intermediates has made proof of their existence difficult in natural biological conditions. In our studies on estrogen metabolism in vitro, in various tissues from several laboratory and domestic species, there was chromatographic evidence of formation of a stable estrogen metabolite that could be seen after incubation with radiolabeled estrone, but not with unlabeled substrate. Investigation with acid treatment of the metabolite yielded material detected as 6-hydroxy-estrone-suggesting the presence of an additional oxygen atom in the molecule. An identification of the "unknown compound" has not yet been made but, with this evidence, the properties revealed so far can best be met by assuming the presence of 5,6-epoxy-estrone. The recent favorable reports on the role of 5α,6α-epoxy-cholesterol in breast cancer has led to the hypothesis that the formation of a similar, stable epoxide of an estrogen could potentially be a compound of interest. If a metabolic pathway from estrone to 6-hydroxy-estrone through a stable epoxide has indeed been observed, it would suggest that identifying and screening for the enzymes responsible for its production, as opposed to those generating the catecholestrogens, could provide valuable information in relation to breast cancer. The balance in production of estrogen epoxides could be a key factor in determining normal health or risk of tumor development. PMID:27142140

  10. Fiber reinforced composite resin systems.

    PubMed

    Giordano, R

    2000-01-01

    The Targis/Vectris and Sculpture/FibreKor systems were devised to create a translucent maximally reinforced resin framework for fabrication of crowns, bridges, inlays, and onlays. These materials are esthetic, have translucency similar to castable glass-ceramics such as OPC and Empress, and have fits that are reported to be acceptable in clinical and laboratory trials. These restorations rely on proper bonding to the remaining tooth structure; therefore, careful attention to detail must be paid to this part of the procedure. Cementation procedures should involve silane treatment of the cleaned abraded internal restoration surface, application of bonding agent to the restoration as well as the etched/primed tooth, and finally use of a composite resin. Each manufacturer has a recommended system which has been tested for success with its resin system. These fiber reinforced resins are somewhat different than classical composites, so not all cementation systems will necessarily work with them. Polishing of the restoration can be accomplished using diamond or alumina impregnated rubber wheels followed by diamond paste. The glass fibers can pose a health risk. They are small enough to be inhaled and deposited in the lungs, resulting in a silicosis-type problem. Therefore, if fibers are exposed and ground on, it is extremely important to wear a mask. Also, the fibers can be a skin irritant, so gloves also should be worn. If the fibers become exposed intraorally, they can cause gingival inflammation and may attract plaque. The fibers should be covered with additional composite resin. If this cannot be accomplished, the restoration should be replaced. The bulk of these restorations are formed using a particulate filled resin, similar in structure to conventional composite resins. Therefore, concerns as to wear resistance, color stability, excessive expansion/contraction, and sensitivity remain until these materials are proven in long-term clinical trials. They do hold the

  11. Oxygen index tests of thermosetting resins

    NASA Technical Reports Server (NTRS)

    Gilwee, W. J., Jr.; Parker, J. A.; Kourtides, D. A.

    1980-01-01

    The flammability characteristics of nine thermosetting resins under evaluation for use in aircraft interiors are described. These resins were evaluated using the Oxygen Index (ASTM 2863) testing procedure. The test specimens consisted of both neat resin and glass reinforced resin. When testing glass-reinforced samples it was observed that Oxygen Index values varied inversely with resin content. Oxygen values were also obtained on specimens exposed to temperatures up to 300 C. All specimens experienced a decline in Oxygen Index when tested at an elevated temperature.

  12. Fractionation and utilization of gossypol resin

    SciTech Connect

    Tursunov, A.K.; Dzhailov, A.T.; Fatkhullaev, E.; Sadykov, A.A.

    1985-10-01

    Gossypol resin is formed as a secondary waste product during distillation of fatty acides isolated from cottonseed oil soap stocks; it is insoluble in water but soluble in products of petroleum distillation. For fractionation, gossypol resin was saponified with caustic soda or caustic potash. Using this method, the resin was separated into unsaponifiable (21-24%) and saponifiable (76-79%) parts. Details of the individual fractions of gossypol resin are presented. The unsaponifiable fraction contains hydrocarbons, alcohols, beta-sito-sterol, beta-amyrin, and vitamin E. The fatty acid fraction of the resin is a mixture of fatty acids and lactones.

  13. A Method for Characterizing PMR-15 Resin

    NASA Technical Reports Server (NTRS)

    Roberts, G. D.; Lauver, R. W.

    1986-01-01

    Quantitative analysis technique based on reverse-phase, highperformance liquid chromatography (HPLC) and paired-ion chromatography (PIC) developed for PMR-15 resins. In reverse-phase HPLC experiment, polar solvent containing material to be analyzed passed through column packed with nonpolar substrate. Composition of PMR-15 Resin of 50 weight percent changes as resin ages at room temperature. Verification of proper resin formulation and analysis of changes in resin composition during storage important to manufacturers of PMR-15 polymer matrix composite parts. Technique especially suitable for commercial use by manufacturers of high-performance composite components.

  14. Direct Epoxidation of Propylene over Stabilized Cu+ Surface Sites on Ti Modified Cu2O

    SciTech Connect

    Yang, X.; Kattel, S.; Xiong, K.; Mudiyanselage, K.; Rykov, S.; Senanayake, S. D.; Rodriguez, J. A.; Liu, P.; Stacchiola, D. J.; Chen, J. G.

    2015-07-17

    Direct propylene epoxidation by O2 is a challenging reaction because of the strong tendency for complete combustion. Results from the current study demonstrate the feasibility to tune the epoxidation selectivity by generating highly dispersed and stabilized Cu+ active sites in a TiCuOx mixed oxide. The TiCuOx surface anchors the key surface intermediate, oxametallacycle, leading to higher selectivity for epoxidation of propylene.

  15. Characterization of an epoxide hydrolase from the Florida red tide dinoflagellate, Karenia brevis.

    PubMed

    Sun, Pengfei; Leeson, Cristian; Zhi, Xiaoduo; Leng, Fenfei; Pierce, Richard H; Henry, Michael S; Rein, Kathleen S

    2016-02-01

    Epoxide hydrolases (EH, EC 3.3.2.3) have been proposed to be key enzymes in the biosynthesis of polyether (PE) ladder compounds such as the brevetoxins which are produced by the dinoflagellate Karenia brevis. These enzymes have the potential to catalyze kinetically disfavored endo-tet cyclization reactions. Data mining of K. brevis transcriptome libraries revealed two classes of epoxide hydrolases: microsomal and leukotriene A4 (LTA4) hydrolases. A microsomal EH was cloned and expressed for characterization. The enzyme is a monomeric protein with molecular weight 44kDa. Kinetic parameters were evaluated using a variety of epoxide substrates to assess substrate selectivity and enantioselectivity, as well as its potential to catalyze the critical endo-tet cyclization of epoxy alcohols. Monitoring of EH activity in high and low toxin producing cultures of K. brevis over a three week period showed consistently higher activity in the high toxin producing culture implicating the involvement of one or more EH in brevetoxin biosynthesis.

  16. Isolation and Characterization of the Epoxide Hydrolase-Encoding Gene from Xanthophyllomyces dendrorhous

    PubMed Central

    Visser, Hans; de Bont, Jan A. M.; Verdoes, Jan C.

    1999-01-01

    The epoxide hydrolase (EH)-encoding gene (EPH1) from the basidiomycetous yeast Xanthophyllomyces dendrorhous was isolated. The genomic sequence has a 1,236-bp open reading frame which is interrupted by eight introns that encode a 411-amino-acid polypeptide with a calculated molecular mass of 46.2 kDa. The amino acid sequence is similar to that of microsomal EH and belongs to the α/β hydrolase fold family. The EPH1 gene was not essential for growth of X. dendrorhous in rich medium under laboratory conditions. The Eph1-encoding cDNA was functionally expressed in Escherichia coli. A sixfold increase in specific activity was observed when we used resting cells rather than X. dendrorhous. The epoxides 1,2-epoxyhexane and 1-methylcyclohexene oxide were substrates for both native and recombinant Eph1. Isolation and characterization of the X. dendrorhous EH-encoding gene are essential steps in developing a yeast EH-based epoxide biotransformation system. PMID:10584004

  17. Epoxide group relationship with cytotoxicity in withanolide derivatives from Withania somnifera.

    PubMed

    Joshi, Pallavi; Misra, Laxminarain; Siddique, Amreen A; Srivastava, Monica; Kumar, Shiv; Darokar, Mahendra P

    2014-01-01

    Withania somnifera is one of the highly reputed medicinal plants of India. Its steroidal constituents exist in the form of two major substitution patterns, viz. withaferin A (1) and withanone (5). Withaferin A with oxidation at carbons 4, 5, and 6 is considered as an active type, especially as anticancer, whereas the withanones with oxidation at carbons 5, 6, and 7 rarely show any activity. We prepared a series of derivatives with modifications at carbons 5, 6, and 7 in ring B of these withanolides to study the role of the epoxide group towards the cytotoxic property of these bioactive steroids. We have converted withanolides into the respective thiiranes, amino alcohols and alcohols by selective reactions at the epoxide ring and were evaluated for in vitro anticancer activity against four cancer cell lines to study the structure activity relationships. The transformations of the epoxide group in withanolides of the withaferin A type showed moderate reduction in their cytotoxicity whereas the almost inactive withanones have shown some improvements in their alcohol derivatives.

  18. Efficient epoxidation of a terminal alkene containing allylic hydrogen atoms: trans-methylstyrene on Cu{111}.

    PubMed

    Cropley, Rachael L; Williams, Federico J; Urquhart, Andrew J; Vaughan, Owain P H; Tikhov, Mintcho S; Lambert, Richard M

    2005-04-27

    The selective oxidation of trans-methylstyrene, a phenyl-substituted propene that contains labile allylic hydrogen atoms, has been studied on Cu{111}. Mass spectrometry and synchrotron fast XPS were used to detect, respectively, desorbing gaseous products and the evolution of surface species as a function of temperature and time. Efficient partial oxidation occurs yielding principally the epoxide, and the behavior of the system is sensitive to the order in which reactants are adsorbed. The latter is understandable in terms of differences in the spatial distribution of oxygen adatoms; isolated adatoms lead to epoxidation, while islands of "oxidic" oxygen do not. NEXAFS data taken over a range of coverages and in the presence and absence of coadsorbed oxygen indicate that the adsorbed alkene lies essentially flat with the allylic hydrogen atoms close to the surface. The photoemission results and comparison with the corresponding behavior of styrene on Cu{111} strongly suggest that allylic hydrogen abstraction is indeed a critical factor that limits epoxidation selectivity. An overall mechanism consistent with the structural and reactive properties is proposed.

  19. Reduction of epoxidized vegetable oils: a novel method to prepare bio-based polyols for polyurethanes.

    PubMed

    Zhang, Chaoqun; Ding, Rui; Kessler, Michael R

    2014-06-01

    A novel method, epoxidation/reduction of vegetable oils, is developed to prepare bio-based polyols for the manufacture of polyurethanes (PUs). These polyols are synthesized from castor oil (CO), epoxidized soybean oil, and epoxidized linseed oil and their molecular structures are characterized. They are used to prepare a variety of PUs, and their thermomechanical properties are compared to those of PU made with petroleum-based polyol (P-450). It is shown that PUs made with polyols from soybean and linseed oil exhibit higher glass transition temperatures, tensile strength, and Young's modulus and PU made with polyol from CO exhibits higher elongation at break and toughness than PU made with P-450. However, PU made with P-450 displays better thermal resistance because of tri-ester structure and terminal functional groups. The method provides a versatile way to prepare bio-polyols from vegetable oils, and it is expected to partially or completely replace petroleum-based polyols in PUs manufacture.

  20. Persistence and changes in bioavailability of dieldrin, DDE and heptachlor epoxide in earthworms over 45 years

    USGS Publications Warehouse

    Beyer, W. Nelson; Gale, Robert W.

    2013-01-01

    The finding of dieldrin (88 ng/g), DDE (52 ng/g), and heptachlor epoxide (19 ng/g) in earthworms from experimental plots after a single moderate application (9 kg/ha) 45 years earlier attests to the remarkable persistence of these compounds in soil and their continued uptake by soil organisms. Half-lives (with 95 % confidence intervals) in earthworms, estimated from exponential decay equations, were as follows: dieldrin 4.9 (4.3-5.7) years, DDE 5.3 (4.7-6.1) years, and heptachlor epoxide 4.3 (3.8-4.9) years. These half-lives were not significantly different from those estimated after 20 years. Concentration factors (dry weight earthworm tissue/dry weight soil) were initially high and decreased mainly during the first 11 years after application. By the end of the study, average concentration factors were 1.5 (dieldrin), 4.0 (DDE), and 1.8 (heptachlor epoxide), respectively.

  1. Effect of the synthetic method on the catalytic activity of alumina: Epoxidation of cyclohexene

    SciTech Connect

    Valderruten, N.E.; Peña, W.F.; Ramírez, A.E.; Rodríguez-Páez, J.E.

    2015-02-15

    Graphical abstract: Temperature influence on percent conversion and selectivity in the epoxidation of cyclohexene using commercial alumina as a catalyst. - Highlights: • Aluminum oxide was synthesized using Pechini method. • The alumina obtained showed a mix of boehmite and γ-alumina phases. • We research an economically feasible method to obtain alumina for use as a catalyst. • Alumina obtained by Pechini showed high percent conversion and/or selectivity. • The best results were 78% conversion and 78% selectivity to epoxidation reactions. - Abstract: Al{sub 2}O{sub 3} was prepared from different inorganic precursors via the Pechini method and compared with Al{sub 2}O{sub 3} prepared by the sol–gel method. Structural characterization of these materials was carried out by FTIR, X-ray diffraction (XRD), N{sub 2} adsorption at −196 °C and transmission electron microscopy (TEM). The solids were tested in the epoxidation of cyclohexene and a difference in their catalytic activities was observed. The characterization results indicate that the samples prepared by Pechini have a mixture of γ-alumina and boehmite, a condition favoring catalytic activity, whereas the sol–gel sample is less crystalline due to higher boehmite content. These results indicate that both the nature of the precursor and the method of synthesis strongly affect the catalytic activity of Al{sub 2}O{sub 3}.

  2. Rate-Enhancing Roles of Water Molecules in Methyltrioxorhenium-Catalyzed Olefin Epoxidation by Hydrogen Peroxide.

    PubMed

    Goldsmith, Bryan R; Hwang, Taeho; Seritan, Stefan; Peters, Baron; Scott, Susannah L

    2015-08-01

    Olefin epoxidation catalyzed by methyltrioxorhenium (MTO, CH3ReO3) is strongly accelerated in the presence of H2O. The participation of H2O in each of the elementary steps of the catalytic cycle, involving the formation of the peroxo complexes (CH3ReO2(η(2)-O2), A, and CH3ReO(η(2)-O2)2(H2O), B), as well as in their subsequent epoxidation of cyclohexene, was examined in aqueous acetonitrile. Experimental measurements demonstrate that the epoxidation steps exhibit only weak [H2O] dependence, attributed by DFT calculations to hydrogen bonding between uncoordinated H2O and a peroxo ligand. The primary cause of the observed H2O acceleration is the strong co-catalytic effect of water on the rates at which A and B are regenerated and consequently on the relative abundances of the three interconverting Re-containing species at steady state. Proton transfer from weakly coordinated H2O2 to the oxo ligands of MTO and A, resulting in peroxo complex formation, is directly mediated by solvent H2O molecules. Computed activation parameters and kinetic isotope effects, in combination with proton-inventory experiments, suggest a proton shuttle involving one or (most favorably) two H2O molecules in the key ligand-exchange steps to form A and B from MTO and A, respectively.

  3. Complex Cure Kinetics of the Hydroxyl-Epoxide Reaction in DGEBA Epoxy Hardened with Diethanolamine

    NASA Astrophysics Data System (ADS)

    Ancipink, Windy; McCoy, John; Kropka, Jamie; Celina, Mathias

    The curing of a diglycidyl ether of bisphenol-A Epoxy (Epon 828) with diethanolamine (DEA) involves a fast amine-epoxide reaction followed by a slower hydroxyl-epoxide reaction. At curing temperatures below 100°C, the time scales of these two reactions are well separated, and the hydroxyl addition can be studied as an ''isolated'' reaction. The hydroxyl-epoxide reaction is of great interest due to the complex kinetics involved, which are brought about by competing reactions. The reaction kinetics are believed to be tertiary amine catalyzed and are well fit to a modified form of the Kamal-type equation. Here we study the complex long term reaction kinetics at various temperatures, by using isothermal modulated differential scanning calorimetry, micro calorimetry, and infrared spectroscopy. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  4. Epoxides, cyclic sulfites, and sulfate from natural pentacyclic triterpenoids: theoretical calculations and chemical transformations.

    PubMed

    García-Granados, Andrés; López, Pilar E; Melguizo, Enrique; Moliz, Juan N; Parra, Andrés; Simeó, Yolanda; Dobado, José A

    2003-06-13

    Several triterpenic derivatives, with the A-ring functionalized, were semisynthesized from oleanolic and maslinic acids. The reactivities of sulfites, sulfate, and epoxides in these triterpene compounds were investigated under different reaction conditions. Moreover, contracted A-ring triterpenes (five-membered rings) were obtained, by different treatments of the sulfate 7. From the epoxide 8, deoxygenated and halohydrin derivatives were semisynthesized with several nucleophiles. Ozonolysis and Beckmann reactions were used to yield 4-aza compounds, from five-membered ring olanediene triterpenes. The X-ray structure of sulfate 7 is given and compared with density functional theory geometries. Theoretical (13)C and (1)H chemical shifts (gauge-invariant atomic orbital method at the B3LYP/6-31G*//B3LYP/6-31G* level) and (3)J(H,H) coupling constants were calculated for compounds 5-9 and 34-36, identifying the (R)- or (S)-sulfur and alpha- or beta-epoxide configurations together with 4-aza or 3-aza structures.

  5. Phenoxy resins containing pendent ethynyl groups

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.; Jensen, B. J.; Havens, S. J.

    1984-01-01

    As part of an effort on tougher/solvent resistant matrix resins for composites, research was directed towards exploring methods to improve the solvent resistance of linear amorphous thermoplastics. Ethyl reactive groups were placed on the ends of oligomers and pendent along the polymer chain and subsequently thermally reacted to provide crosslinking and thus improvement in solvent resistance. This concept is extended to another thermoplastic, a phenoxy resin. A commercially available phenoxy resin (PKHH) was systematically modified by reaction of the pendent hydroxyl groups on the phenoxy resin with various amounts of 4-ethynylbenzoyl chloride. As the pendent ethynyl group content in the phenoxy resin increased, the cured resin exhibited a higher glass transition temperature, better solvent resistance and less flexibility. The solvent resistance was further improved by correcting a low molecular weight diethynyl compound, 2,2-bis(4-ethynylbenzoyloxy-4'-phenyl)propane, with a phenoxy resin containing pendent ethynyl groups.

  6. Photoacoustic analysis of dental resin polymerization

    NASA Astrophysics Data System (ADS)

    Coloiano, E. C. R.; Rocha, R.; Martin, A. A.; da Silva, M. D.; Acosta-Avalos, D.; Barja, P. R.

    2005-06-01

    In this work, we use the photoacoustic technique to monitor the curing process of diverse dental materials, as the resins chemically activated (RCA). The results obtained reveal that the composition of a determined RCA significantly alters its activation kinetics. Photoacoustic data also show that temperature is a significant parameter in the activation kinetics of resins. The photoacoustic technique was also applied to evaluate the polymerization kinetics of photoactivated resins. Such resins are photoactivated by incidence of continuous light from a photodiode. This leads to the polymerization of the resin, modifying its thermal properties and, consequently, the level of the photoacoustic signal. Measurements show that the polymerization of the resin changes the photoacoustic signal amplitude, indicating that photoacoustic measurements can be utilized to monitor the polymerization kinetic and the degree of polymerization of photoactivated dental resins.

  7. Expression and characterization of an epoxide hydrolase from Anopheles gambiae with high activity on epoxy fatty acids

    PubMed Central

    Xu, Jiawen; Morisseau, Christophe; Hammock, Bruce D.

    2014-01-01

    In insects, epoxide hydrolases (EHs) play critical roles in the metabolism of xenobiotic epoxides from the food resources and in the regulation of endogenous chemical mediators, such as juvenile hormones. Using the baculovirus expression system, we expressed and characterized an epoxide hydrolase from Anopheles gambiae (AgEH) that is distinct in evolutionary history from insect juvenile hormone epoxide hydrolases (JHEHs). We partially purified the enzyme by ion exchange chromatography and isoelectric focusing. The experimentally determined molecular weight and pI were estimated to be 35kD and 6.3 respectively, different than the theoretical ones. The AgEH had the greatest activity on long chain epoxy fatty acids such as 14,15-epoxyeicosatrienoic acids (14,15-EET) and 9,10-epoxy-12Z-octadecenoic acids (9,10-EpOME or leukotoxin) among the substrates evaluated. Juvenile hormone III, a terpenoid insect growth regulator, was the next best substrate tested. The AgEH showed kinetics comparable to the mammalian soluble epoxide hydrolases, and the activity could be inhibited by AUDA [12-(3-adamantan-1-yl-ureido) dodecanoic acid], a urea-based inhibitor designed to inhibit the mammalian soluble epoxide hydrolases. The rabbit serum generated against the soluble epoxide hydrolase of Mus musculus can both cross-react with natural and denatured forms of the AgEH, suggesting immunologically they are similar. The study suggests there are mammalian sEH homologs in insects, and epoxy fatty acids may be important chemical mediators in insects. PMID:25173592

  8. Foam, Foam-resin composite and method of making a foam-resin composite

    NASA Technical Reports Server (NTRS)

    Cranston, John A. (Inventor); MacArthur, Doug E. (Inventor)

    1995-01-01

    This invention relates to a foam, a foam-resin composite and a method of making foam-resin composites. The foam set forth in this invention comprises a urethane modified polyisocyanurate derived from an aromatic amino polyol and a polyether polyol. In addition to the polyisocyanurate foam, the composite of this invention further contains a resin layer, wherein the resin may be epoxy, bismaleimide, or phenolic resin. Such resins generally require cure or post-cure temperatures of at least 350.degree. F.

  9. Pharmaceutical Applications of Ion-Exchange Resins

    NASA Astrophysics Data System (ADS)

    Elder, David P.

    2005-04-01

    The historical uses of ion-exchange resins and a summary of the basic chemical principles involved in the ion-exchange process are discussed. Specific applications of ion-exchange resins are provided. The utility of these agents to stabilize drugs are evaluated. Commonly occurring chemical and physical incompatibilities are reviewed. Ion-exchange resins have found applicability as inactive pharmaceutical constituents, particularly as disintegrants (inactive tablet ingredient whose function is to rapidly disrupt the tablet matrix on contact with gastric fluid). One of the more elegant approaches to improving palatability of ionizable drugs is the use of ion-exchange resins as taste-masking agents. The selection, optimization of drug:resin ratio and particle size, together with a review of scaleup of typical manufacturing processes for taste-masked products are provided. Ion-exchange resins have been extensively utilized in oral sustained-release products. The selection, optimization of drug:resin ratio and particle size, together with a summary of commonly occurring commercial sustained-release products are discussed. Ion-exchange resins have also been used in topical products for local application to the skin, including those where drug flux is controlled by a differential electrical current (ionotophoretic delivery). General applicability of ion-exchange resins, including ophthalmic delivery, nasal delivery, use as drugs in their own right (e.g., colestyramine, formerly referred to as cholestyramine), as well as measuring gastrointestinal transit times, are discussed. Finally, pharmaceutical monographs for ion-exchange resins are reviewed.

  10. High Temperature Transfer Molding Resins

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    2000-01-01

    High temperature resins containing phenylethynyl groups that are processable by transfer molding have been prepared. These phenylethynyl containing oligomers were prepared from aromatic diamines containing phenylethynyl groups and various ratios of phthalic anhydride and 4-phenylethynlphthalic anhydride in glacial acetic acid to form a mixture of imide compounds in one step. This synthetic approach is advantageous since the products are a mixture of compounds and consequently exhibit a relatively low melting temperature. In addition, these materials exhibit low melt viscosities which are stable for several hours at 210-275 C, and since the thermal reaction of the phenylethynyl group does not occur to any appreciable extent at temperatures below 300 C, these materials have a broad processing window. Upon thermal cure at approximately 300-350 C, the phenylethynyl groups react to provide a crosslinked resin system. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.

  11. Advanced thermoplastic resins, phase 2

    NASA Technical Reports Server (NTRS)

    Brown, A. M.; Hill, S. G.; Falcone, A.

    1991-01-01

    High temperature structural resins are required for use on advanced aerospace vehicles as adhesives and composite matrices. NASA-Langley developed polyimide resins were evaluated as high temperature structural adhesives for metal to metal bonding and as composite matrices. Adhesive tapes were prepared on glass scrim fabric from solutions of polyamide acids of the semicrystalline polyimide LARC-CPI, developed at the NASA-Langley Research Center. Using 6Al-4V titanium adherends, high lap shear bond strengths were obtained at ambient temperature (45.2 MPa, 6550 psi) and acceptable strengths were obtained at elevated temperature (14.0 MPa, 2030 psi) using the Pasa-Jell 107 conversion coating on the titanium and a bonding pressure of 1.38 MPa (200 psi). Average zero degree composite tensile and compressive strengths of 1290 MPa (187 ksi) and 883 MPa (128 ksi) respectively were obtained at ambient temperature with unsized AS-4 carbon fiber reinforcement.

  12. Phosphorus-containing imide resins

    NASA Technical Reports Server (NTRS)

    Varma, I. K.; Fohlen, G. M.; Parker, J. A. (Inventor)

    1984-01-01

    Flame-resistant reinforced bodies are disclosed which are composed of reinforcing fibers, filaments or fabrics in a cured body of bis- and tris-imide resins derived from tris(m-aminophenyl) phosphine oxides by reaction with maleic anhydride or its derivatives, or of addition polymers of such imides, including a variant in which a mono-imide is condensed with a dianhydride and the product is treated with a further quantity of maleic anhydride.

  13. 21 CFR 177.2510 - Polyvinylidene fluoride resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Polyvinylidene fluoride resins. 177.2510 Section... Repeated Use § 177.2510 Polyvinylidene fluoride resins. Polyvinylidene fluoride resins may be safely used... fluoride resins consist of basic resins produced by the polymerization of vinylidene fluoride. (b)...

  14. Synthesis of improved polyester resins

    NASA Technical Reports Server (NTRS)

    Mcleod, A. H.; Delano, C. B.

    1979-01-01

    Eighteen aromatic unsaturated polyester prepolymers prepared by a modified interfacial condensation technique were investigated for their solubility in vinyl monomers and ability to provide high char yield forming unsaturated polyester resins. The best resin system contained a polyester prepolymer of phthalic, fumaric and diphenic acids reacted with 2,7-naphthalene diol and 9,9-bis(4-hydroxyphenyl)fluorene. This prepolymer is very soluble in styrene, divinyl benzene, triallyl cyanurate, diallyl isophthalate and methylvinylpyridine. It provided anaerobic char yields as high as 41 percent at 800 C. The combination of good solubility and char yield represents a significant improvement over state-of-the-art unsaturated polyester resins. The majority of the other prepolymers had only low or no solubility in vinyl monomers. Graphite composites from this prepolymer with styrene were investigated. The cause for the observed low shear strengths of the composites was not determined, however 12-week aging of the composites at 82 C showed that essentially no changes in the composites had occurred.

  15. ELUTION OF URANIUM FROM RESIN

    DOEpatents

    McLEan, D.C.

    1959-03-10

    A method is described for eluting uranium from anion exchange resins so as to decrease vanadium and iron contamination and permit recycle of the major portion of the eluats after recovery of the uranium. Diminution of vanadium and iron contamination of the major portion of the uranium is accomplished by treating the anion exchange resin, which is saturated with uranium complex by adsorption from a sulfuric acid leach liquor from an ore bearing uranium, vanadium and iron, with one column volume of eluant prepared by passing chlorine into ammonium hydroxide until the chloride content is about 1 N and the pH is about 1. The resin is then eluted with 8 to 9 column volumes of 0.9 N ammonium chloride--0.1 N hydrochloric acid solution. The eluants are collected separately and treated with ammonia to precipitate ammonium diuranate which is filtered therefrom. The uranium salt from the first eluant is contaminated with the major portion of ths vanadium and iron and is reworked, while the uranium recovered from the second eluant is relatively free of the undesirable vanadium and irons. The filtrate from the first eluant portion is discarded. The filtrate from the second eluant portion may be recycled after adding hydrochloric acid to increase the chloride ion concentration and adjust the pH to about 1.

  16. Reaction with DNA and mutagenic specificity of syn-benzo[g]chrysene 11,12-dihydrodiol 13,14-epoxide

    SciTech Connect

    Szeliga, J.; Page, J.E.; Ross, H.L.; Routledge, M.N.; Dipple, A.; Lee, H.; Harvey, R.G.; Hilton, B.D.

    1994-05-01

    The spectroscopic characterization of purine deoxyribonucleoside adducts derived from the fjord-region syn-benzo[g]chrysene 11,12-dihydrodiol 13,14-epoxide and the mutagenic specificity of the latter compound for the supF gene in the pSP189 shuttle vector are described. This dihydrodiol epoxide preferentially forms adducts with deoxyadenosine residues in DNA and is preferentially opened trans in reactions with DNA or with deoxyribonucleotides. In common with other fjord-region syn-dihydrodiol epoxides, the most frequently observed mutational changes were A {yields} T and G {yields} T changes. This hydrocarbon dihydrodiol epoxide is structurally similar to syn-benzo[c]phenanthrene 3,4-dihydrodiol 1,2-epoxide but has an additional benzene ring annelated distant from the reaction center. As anticipated, there were some common features in the chemistry and mutagenicities of these two compounds, but there were also substantive differences which indicate factors of importance in controlling reactions of these kinds of compounds with DNA. 38 refs., 11 figs., 2 tabs.

  17. UV-assisted removal of inactive peroxide species for sustained epoxidation of cyclooctene on anatase TiO2.

    PubMed

    Yang, Changjun; Lang, Xianjun; Ma, Wanhong; Chen, Chuncheng; Ji, Hongwei; Zhao, Jincai

    2014-05-19

    Epoxidation of olefins with H2O2 is one of the most important reactions in organic synthesis. We found that anatase TiO2 can be a good catalyst for the epoxidation of cyclooctene with H2O2 at room temperature. However, the catalyst deactivated quickly in the presence of excess amount of H2O2 because of the formation of inactive side-on Ti-η(2)-peroxide species on the surface of TiO2, the presence of which was confirmed by isotope-labelled resonance UV Raman spectroscopy and kinetics studies. Interestingly, the epoxidation reaction could be dramatically accelerated under irradiation of UV light with λ≥350 nm. This phenomenon is attributed to the photo-assisted removal of the inactive peroxide species, through which the active sites on the surface of anatase TiO2 are regenerated and the catalytic epoxidation of cyclooctene with H2O2 is resumed. This finding provides an alternative for sustained epoxidation reactions on TiO2 at room temperature. Moreover, it also has significant implications on the deactivation pathway and possible solutions in Ti-based heterogeneous catalysis or photocatalysis.

  18. Evaluation of adhesion of reline resins to the thermoplastic denture base resin for non-metal clasp denture.

    PubMed

    Kim, Ji Hye; Choe, Han Cheol; Son, Mee Kyoung

    2014-01-01

    This study aimed to evaluate the tensile and transverse bond strength of chairside reline resins (Tokuyama Rebase II, Mild Rebaron LC) to a thermoplastic acrylic resin (Acrytone) used for non metal clasp denture. The results were compared with those of a conventional heat polymerized acrylic resin (Paladent 20) and a thermoplastic polyamide resin (Biotone). The failure sites were examined by scanning electron microscopy to evaluate the mode of failure. As results, the bond strength of reline resins to a thermoplastic acrylic resin was similar to the value of a conventional heat polymerized acrylic resin. However, thermoplastic polyamide resin showed the lowest value. The results of this study indicated that a thermoplastic acrylic resin for non metal clasps denture allows chairside reline and repair. It was also found that the light-polymerized reline resin had better bond strength than the autopolymerizing reline resin in relining for a conventional heat polymerized acrylic resin and a thermoplastic acrylic resin.

  19. New modified hydrocarbon resins; An alternative to styrenated terpene resins in hot melts

    SciTech Connect

    Carper, J.D. )

    1990-06-01

    This paper reports on the development of two hydrocarbon-based resin formulations that could be used with different thermoplastic block copolymers to formulate pressure-sensitive adhesives. Results are examined with one of these resins in formulations with styrene-isoprene-styrene (SIS) and styrene-butadiene (SB) compounds. The new modified hydrocarbon resin, with a softening point of 98{degrees} C, matches the adhesive performance of a terpene resin with a softening point of 105{degrees} C. The resin performs as well as the modified terpene in SIS-, SB-, and EVA-based adhesives. The new hydrocarbon resin is especially well suited for hot-melt adhesives. It exhibits low volatility, good color stability, and excellent melt viscosity stability. Since the new resin is based on petroleum hydrocarbon feedstocks, it should be available at moderate, stable prices. The other hydrocarbon resin, with a softening point of 85{degrees} C, produced comparable results.

  20. Scintillating 99Tc Selective Ion Exchange Resins

    SciTech Connect

    Mitchell Greenhalgh; Richard D. Tillotson

    2012-07-01

    Scintillating technetium (99Tc) selective ion exchange resins have been developed and evaluated for equilibrium capacities and detection efficiencies. These resins can be utilized for the in-situ concentration and detection of low levels of pertechnetate anions (99TcO4-) in natural waters. Three different polystyrene type resin support materials were impregnated with varying amounts of tricaprylmethylammonium chloride (Aliquat 336) extractant, several different scintillating fluors and wavelength shifters. The prepared resins were contacted batch-wise to equilibrium over a wide range of 99TcO4- concentrations in natural water. The measured capacities were used to develop Langmuir adsorption isotherms for each resin. 99Tc detection efficiencies were determined and up to 71.4 ± 2.6% was achieved with some resins. The results demonstrate that a low level detection limit for 99TcO4- in natural waters can be realized.

  1. Development of tough, moisture resistant laminating resins

    NASA Technical Reports Server (NTRS)

    Brand, R. A.; Harrison, E. S.

    1982-01-01

    Tough, moisture resistant laminating resins for employment with graphite fibers were developed. The new laminating resins exhibited cost, handleability and processing characteristics equivalent to 394K (250 F) curing epoxies. The laminating resins were based on bisphenol A dicyanate and monofunctional cyanates with hydrophobic substituents. These resins sorb only small quantities of moisture at equilibrium (0.5% or less) with minimal glass transition temperature depression and represent an improvement over epoxies which sorb around 2% moisture at equilibrium. Toughening was accomplished by the precipitation of small diameter particles of butadiene nitrile rubber throughout the resin matrix. The rubber domains act as microcrack termini and energy dissipation sites, allowing increased stress accommodation prior to catastrophic failure. A unique blend of amine terminated butadiene nitrile elastomer (MW 2,000) and a high nitrile content butadiene nitrile rubber yielded the desired resin morphology.

  2. Resin selection criteria for tough composite structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Smith, G. T.

    1983-01-01

    Resin selection criteria are derived using a structured methodology consisting of an upward integrated mechanistic theory and its inverse (top-down structured theory). These criteria are expressed in a "criteria selection space" which are used to identify resin bulk properties for improved composite "toughness". The resin selection criteria correlate with a variety of experimental data including laminate strength, elevated temperature effects and impact resistance.

  3. Porous Ceramic Spheres from Ion Exchange Resin

    NASA Technical Reports Server (NTRS)

    Dynys, Fred

    2005-01-01

    A commercial cation ion exchange resin, cross-linked polystyrene, has been successfully used as a template to fabricate 20 to 50 micron porous ceramic spheres. Ion exchange resins have dual template capabilities. Pore architecture of the ceramic spheres can be altered by changing the template pattern. Templating can be achieved by utilizing the internal porous structure or the external surface of the resin beads. Synthesis methods and chemical/physical characteristics of the ceramic spheres will be reported.

  4. Strategic use of nickel(0)-catalyzed enyne-epoxide reductive coupling towards the synthesis of (−)-cyatha-3,12-diene

    PubMed Central

    Sparling, Brian A.; Simpson, Graham L.; Jamison, Timothy F.

    2009-01-01

    Various situations are explored in which the nickel(0)-catalyzed enyne-epoxide reductive coupling was utilized to access key intermediates towards the total synthesis of (−)-cyatha-3,12-diene (1). Enantioenriched 3,5-dien-1-ols with a variety of functionality were obtained in a straightforward manner from easily accessible 1,3-enynes and terminal epoxides. PMID:20161213

  5. Advanced resin systems for graphite epoxy composites

    NASA Technical Reports Server (NTRS)

    Gilwee, W. J.; Jayarajan, A.

    1980-01-01

    The value of resin/carbon fiber composites as lightweight structures for aircraft and other vehicle applications is dependent on many properties: environmental stability, strength, toughness, resistance to burning, smoke produced when burning, raw material costs, and complexity of processing. A number of woven carbon fiber and epoxy resin composites were made. The epoxy resin was commercially available tetraglycidylmethylene dianiline. In addition, composites were made using epoxy resin modified with amine and carboxyl terminated butadiene acrylonitrile copolymer. Strength and toughness in flexure as well as oxygen index flammability and NBS smoke chamber tests of the composites are reported.

  6. Conservative full-mouth resin renewal.

    PubMed

    Morgan, M J

    1999-12-01

    The treatment of this patient involved the coordination of periodontal, orthodontic, restorative, and aesthetic considerations. It was unique because it involved only resin as the primary restorative material, which allowed for conservative preparations and restorations. In the posterior, the use of direct and indirect resins resulted in the removal of little or no healthy tooth structure. In the anterior, the use of direct resin veneers required minimal removal of enamel, while still achieving proper function and aesthetics. Resin restorations in this particular case allowed for an acceptable clinical result and a highly satisfied patient.

  7. Resin composites in minimally invasive dentistry.

    PubMed

    Jacobsen, Thomas

    2004-01-01

    The concept of minimally invasive dentistry will provide favorable conditions for the use of composite resin. However, a number of factors must be considered when placing composite resins in conservatively prepared cavities, including: aspects on the adaptation of the composite resin to the cavity walls; the use of adhesives; and techniques for obtaining adequate proximal contacts. The clinician must also adopt an equally conservative approach when treating failed restorations. The quality of the composite resin restoration will not only be affected by the outline form of the preparation but also by the clinician's technique and understanding of the materials.

  8. Novel silica-based ion exchange resin

    SciTech Connect

    1997-11-01

    Eichrom`s highly successful Diphonixo resin resembles a conventional ion exchange resin in its use of sulfonic acid ligands on a styrene- divinylbenzene matrix. Diphonix resin exhibits rapid exchange kinetics that allow economical operation of ion exchange systems. Unlike conventional resins, Diphonix resin contains chelating ligands that are diphosphonic acid groups that recognize and remove the targeted metals and reject the more common elements such as sodium, calcium and magnesium. This latter property makes Diphonix ideal for many industrial scale applications, including those involving waste treatment. For treatment of low-level, transuranic (TRU) and high- level radioactive wastes, Diphonix`s polystyrene backbone hinders its application due to radiolytic stability of the carbon-hydrogen bonds and lack of compatibility with expected vitrification schemes. Polystyrene-based Diphonix is approximately 60% carbon- hydrogen. In response to an identified need within the Department of Energy for a resin with the positive attributes of Diphonix that also exhibits greater radiolytic stability and final waste form compatibility, Eichrom has successfully developed a new, silica-based resin version of Diphonix. Target application for this new resin is for use in environmental restoration and waste management situations involving the processing of low-level, transuranic and high-level radioactive wastes. The resin can also be used for processing liquid mixed waste (waste that contains low level radioactivity and hazardous constituents) including mixed wastes contaminated with organic compounds. Silica-based Diphonix is only 10% carbon-hydrogen, with the bulk of the matrix silica.

  9. Characterization of PMR polyimide resin and prepreg

    NASA Technical Reports Server (NTRS)

    Lindenmeyer, P. H.; Sheppard, C. H.

    1984-01-01

    Procedures for the chemical characterization of PMR-15 resin solutions and graphite-reinforced prepregs were developed, and a chemical data base was established. In addition, a basic understanding of PMR-15 resin chemistry was gained; this was translated into effective processing procedures for the production of high quality graphite composites. During the program the PMR monomers and selected model compounds representative of postulated PMR-15 solution chemistry were acquired and characterized. Based on these data, a baseline PMR-15 resin was formulated and evaluated for processing characteristics and composite properties. Commercially available PMR-15 resins were then obtained and chemically characterized. Composite panels were fabricated and evaluated.

  10. Sand control with resin and explosive

    SciTech Connect

    Dees, J.M.; Begnaud, W.J.; Sahr, N.L.

    1992-09-08

    This patent describes a method for treating a well having perforated casing to prevent solids movement through the perforations and into the wellbore. It comprises positioning a quantity of liquid resin solution such that the solution occupies the interval of the casing having perforations; positioning an explosive in proximity with the liquid resin solution; detonating the explosive; displacing the liquid resin solution remaining in the wellbore after step (c) through the perforations with a displacing fluid; and injecting a chemical solution through the perforations to cause the resin to polymerize to form a consolidated permeable matrix.

  11. Bending rigidity of composite resin coating clasps.

    PubMed

    Ikebe, K; Kibi, M; Ono, T; Nokubi, T

    1993-12-01

    The purpose of this study is to examine the bending profiles of composite resin coating cast clasps. The cobalt-chromium alloy cast clasps were made using tapered wax pattern. Silane coupling method (Silicoater MD, Kulzer Co.) was used to attach composite resin to metal surface. The breakage and the bending rigidity of composite resin coating clasps were evaluated. Results were as follows: 1) After the repeated bending test to the tips of clasp arm at 10,000 times in 0.25 mm deflection, neither crack on composite resin surface nor separation at resin/metal interface was observed in any specimen. 2) There was no significant difference in the bending rigidity of clasp arms between before and after composite resin coating. From these results, it was demonstrated that the composite resin coating cast clasp was available in clinical cases and coating with composite resin had little influence on the bending rigidity of clasp arms. Therefore, it was suggested that our clasp designing and fabricating system to control the bending rigidity of clasp arms could be applied to composite resin coating clasps. PMID:8935086

  12. Mononuclear Nonheme Iron(III)-Iodosylarene and High-Valent Iron-Oxo Complexes in Olefin Epoxidation Reactions.

    PubMed

    Wang, Bin; Lee, Yong-Min; Seo, Mi Sook; Nam, Wonwoo

    2015-09-28

    High-spin iron(III)-iodosylarene complexes are highly reactive in the epoxidation of olefins, in which epoxides are formed as the major products with high stereospecificity and enantioselectivity. The reactivity of the iron(III)-iodosylarene intermediates is much greater than that of the corresponding iron(IV)-oxo complex in these reactions. The iron(III)-iodosylarene species-not high-valent iron(IV)-oxo and iron(V)-oxo species-are also shown to be the active oxidants in catalytic olefin epoxidation reactions. The present results are discussed in light of the long-standing controversy on the one oxidant versus multiple oxidants hypothesis in oxidation reactions.

  13. The Molecular Structure of Epoxide Hydrolase B From And Its Complex With Urea-Based Inhibitor

    SciTech Connect

    Biswal, B.K.; Morisseau, C.; Garen, G.; Cherney, M.M.; Garen, C.; Niu, C.; Hammock, B.D.; James, M.N.G.

    2009-05-11

    Mycobacterium tuberculosis (Mtb), the intracellular pathogen that infects macrophages primarily, is the causative agent of the infectious disease tuberculosis in humans. The Mtb genome encodes at least six epoxide hydrolases (EHs A to F). EHs convert epoxides to trans-dihydrodiols and have roles in drug metabolism as well as in the processing of signaling molecules. Herein, we report the crystal structures of unbound Mtb EHB and Mtb EHB bound to a potent, low-nanomolar (IC(50) approximately 19 nM) urea-based inhibitor at 2.1 and 2.4 A resolution, respectively. The enzyme is a homodimer; each monomer adopts the classical alpha/beta hydrolase fold that composes the catalytic domain; there is a cap domain that regulates access to the active site. The catalytic triad, comprising Asp104, His333 and Asp302, protrudes from the catalytic domain into the substrate binding cavity between the two domains. The urea portion of the inhibitor is bound in the catalytic cavity, mimicking, in part, the substrate binding; the two urea nitrogen atoms donate hydrogen bonds to the nucleophilic carboxylate of Asp104, and the carbonyl oxygen of the urea moiety receives hydrogen bonds from the phenolic oxygen atoms of Tyr164 and Tyr272. The phenolic oxygen groups of these two residues provide electrophilic assistance during the epoxide hydrolytic cleavage. Upon inhibitor binding, the binding-site residues undergo subtle structural rearrangement. In particular, the side chain of Ile137 exhibits a rotation of around 120 degrees about its C(alpha)-C(beta) bond in order to accommodate the inhibitor. These findings have not only shed light on the enzyme mechanism but also have opened a path for the development of potent inhibitors with good pharmacokinetic profiles against all Mtb EHs of the alpha/beta type.

  14. Assessing the oxidative potential of isoprene-derived epoxides and secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Kramer, Amanda J.; Rattanavaraha, Weruka; Zhang, Zhenfa; Gold, Avram; Surratt, Jason D.; Lin, Ying-Hsuan

    2016-04-01

    Fine particulate matter (PM2.5) is known to contribute to adverse health effects, such as asthma, cardiopulmonary disease, and lung cancer. Secondary organic aerosol (SOA) is a major component of PM2.5 and can be enhanced by atmospheric oxidation of biogenic volatile organic compounds in the presence of anthropogenic pollutants, such as nitrogen oxides (NOx) and sulfur dioxide. However, whether biogenic SOA contributes to adverse health effects remains unclear. The objective of this study was to assess the potential of isoprene-derived epoxides and SOA for generating reactive oxygen species (ROS) in light of the recent recognition that atmospheric oxidation of isoprene in the presence of acidic sulfate aerosol is a major contributor to the global SOA burden. The dithiothreitol (DTT) assay was used to characterize the ROS generation by the isoprene-derived epoxides, trans-β-isoprene epoxydiol (trans-β-IEPOX) and methacrylic acid epoxide (MAE), and their hydrolysis products, the 2-methyltetrol diastereomers (2-MT), 2-methylglyceric acid (2-MG), their organosulfate derivatives, as well as an isoprene-derived hydroxyhydroperoxide (ISOPOOH). In addition, ROS generation potential was evaluated for total SOA produced from photooxidation of isoprene and methacrolein (MACR) as well as from the reactive uptake of trans-β-IEPOX and MAE onto acidified sulfate aerosol. The high-NOx regime, which yields 2-MG-, MAE- and MACR-derived SOA has a higher ROS generation potential than the low-NOx regime, which yields 2-MT, IEPOX- and isoprene-derived SOA. ISOPOOH has an ROS generation potential similar to 1,4-naphthoquinone (1,4-NQ), suggesting a significant contribution of aerosol-phase organic peroxides to PM oxidative potential. MAE- and MACR-derived SOA show equal or greater ROS generation potential than reported in studies on diesel exhaust PM, highlighting the importance of a comprehensive investigation of the toxicity of isoprene-derived SOA.

  15. Oxorhenium(V) complexes with ketiminato ligands: coordination chemistry and epoxidation of cyclooctene.

    PubMed

    Schröckeneder, Albert; Traar, Pedro; Raber, Georg; Baumgartner, Judith; Belaj, Ferdinand; Mösch-Zanetti, Nadia C

    2009-12-21

    Rhenium(V) oxo complexes of the type [ReOX(L)(2)] (1-7; X = Cl, Br) containing beta-ketiminate ligands (L = CH(3)C(O)CH(2)C(NAr)CH(3): Ar = Ph (APOH), 2-MePh (MPOH), 2,6-Me(2)Ph (DPOH), 2,6-(i)Pr(2)Ph (DiPOH)) have been prepared by reaction of [ReOX(3)(OPPh(3))(SMe(2))] (X = Cl, Br) with the lithium salts of the corresponding ligands. All compounds have been spectroscopically characterized, showing [ReOX(DiPO)(2)] (X = Cl (1), Br (5)), [ReOX(DPO)(2)] (X = Cl (2), Br (6)), and [ReOX(APO)(2)] (X = Cl (4), Br (7)) to be isomerically pure, in contrast to complex [ReOCl(MPO)(2)] (3), which exhibits a mixture of isomers. Compounds 2, 3, 5, and 7 were crystallographically characterized, showing similar octahedral coordination spheres with trans O horizontal lineRe-O and cis O horizontal lineRe-Cl bonds. However, the coordination of the nitrogen atoms vs each other is found to be cis or trans. Compounds 2 and 5 showed a trans-N,N configuration, for compound 3 both isomers (trans-N,N 3 and cis-N,N 3) were structurally characterized, and 7 gave a cis-N,N configuration. Compounds 1-6 are catalyst precursors for the epoxidation of cis-cyclooctene with 3 equiv of tert-butyl hydroperoxide (TBHP). Yields of the formed epoxide were up to 55% with all precursors, except with 2 and 6, where only up to 13% of epoxide was obtained under analogous conditions.

  16. Living carbocationic polymerization of isobutylene by epoxide/Lewis acid systems: The mechanism of initiation

    NASA Astrophysics Data System (ADS)

    Hayat Soytas, Serap

    The objective of the work presented in this dissertation was to generate a fundamental understanding of the synthesis of star-branched polyisobutylenes (PIBs) arising from hexaepoxysqualene (HES)/Lewis acid (LA) initiating systems, using BCl3 and TiCl4 as LAs. The understanding of initiation and propagation mechanisms by HES is crucial to control the number of arms and arm lengths of star PIBs expected from this initiator. The initiation by monofunctional epoxides, such as alpha-methylstyrene epoxide (MSE), 1,2-epoxy-2,4,4-trimethylpentane (TMPO-1), and 2,3-epoxy-2,4,4-trimethylpentane (TMPO-2), was investigated. In situ FTIR spectroscopy, which was highly utilized in this research, provided valuable information. Most importantly, the ability to identify the head group by in situ FTIR of growing PIB chains initiated by an epoxide, i.e. the --C--O--LA complex, contributed significantly to the understanding of initiation of IB polymerization. This technique allowed the monitoring of the rate of initiation with the multifunctional epoxy initiator. Previous research showed that TiCl4 gave 40% initiating efficiency in conjunction with the aromatic epoxy initiator MSE, whereas the aliphatic initiators TMPO-1 and TMPO-2 gave only 3 and 10% efficiency, respectively. In this research it was found that BCl3 is more efficient with the aliphatic initiator, TMPO-1, yielding an asymmetric telechelic PIB carrying an alpha-primary OH and an o-tertiary Cl functional group with 70% initiator efficiency, while MSE gave only 1--4% efficiency. The TMPO-2/BCl3 system gave 20% initiator efficiency. The various initiation mechanisms were discussed. IB polymerization was successfully initiated by HES in the presence of excess BCl3 and monitored by in situ FTIR spectroscopy. The gradual increase of the IR band assigned to the --C--O--BCl 2 group demonstrated that slow initiation was occurring. Chain extension with the HES/BCl3 initiated PIB was achieved leading to high molecular weight PIBs

  17. Quantum chemical study of the mechanism of action of vitamin K epoxide reductase (VKOR)

    NASA Astrophysics Data System (ADS)

    Deerfield, David, II; Davis, Charles H.; Wymore, Troy; Stafford, Darrel W.; Pedersen, Lee G.

    Possible model, but simplistic, mechanisms for the action of vitamin K epoxide reductase (VKOR) are investigated with quantum mechanical methods (B3LYP/6-311G**). The geometries of proposed model intermediates in the mechanisms are energy optimized. Finally, the energetics of the proposed (pseudo-enzymatic) pathways are compared. We find that the several pathways are all energetically feasible. These results will be useful for designing quantum mechanical/molecular mechanical method (QM/MM) studies of the enzymatic pathway once three-dimensional structural data are determined and available for VKOR.

  18. Dioxygenase- and monooxygenase-catalysed synthesis of cis-dihydrodiols, catechols, epoxides and other oxygenated products.

    PubMed

    Nolan, Louise C; O'Connor, Kevin E

    2008-11-01

    Oxidoreductases are an emerging class of biotechnologically relevant enzymes due to their regio- and stereo-specificity. The selective oxygenation of aromatic compounds by oxidoreductases has received much attention and a wide range of reactions have been documented using these enzymes from various microbial sources. This review gives an overview of various dioxygenase, monooxygenase and oxidase enzymes that have been manipulated for the synthesis of products such as cis-dihydrodiols, catechols, epoxides and other oxygenated products. The use of protein engineering and its advancement in the synthesis of recombinant enzymes is also discussed.

  19. Alloy Catalyst in a Reactive Environment: The Example of Ag-Cu Particles for Ethylene Epoxidation

    SciTech Connect

    Piccinin, Simone; Zafeiratos, Spiros; Stampfl, Catherine; Hansen, Thomas W.; Haevecker, Michael; Teschner, Detre; Girgsdies, Frank; Knop-Gericke, Axel; Schloegl, Robert; Scheffler, Matthias; Bukhtiyarov, Valerii I.

    2010-01-22

    Combining first-principles calculations and in situ photoelectron spectroscopy, we show how the composition and structure of the surface of an alloy catalyst is affected by the temperature and pressure of the reagents. The Ag-Cu alloy, recently proposed as an improved catalyst for ethylene epoxidation, forms a thin Cu-O surface oxide, while a Ag-Cu surface alloy is found not to be stable. Several possible surface structures are identified, among which the catalyst surface is likely to dynamically evolve under reaction conditions.

  20. Direct gas-phase epoxidation of propylene to propylene oxide through radical reactions: A theoretical study

    NASA Astrophysics Data System (ADS)

    Kizilkaya, Ali Can; Fellah, Mehmet Ferdi; Onal, Isik

    2010-03-01

    The gas-phase radical chain reactions which utilize O 2 as the oxidant to produce propylene oxide (PO) are investigated through theoretical calculations. The transition states and energy profiles were obtained for each path. The rate constants were also calculated. The energetics for the competing pathways indicate that PO can be formed selectively due to its relatively low activation barrier (9.3 kcal/mol) which is in a good agreement with the experimental value (11 kcal/mol) of gas-phase propylene epoxidation. The formation of the acrolein and combustion products have relatively high activation barriers and are not favored. These results also support the recent experimental findings.

  1. Function-Oriented Investigations of a Peptide-Based Catalyst that Mediates Enantioselective Allylic Alcohol Epoxidation

    PubMed Central

    Abascal, Nadia C.; Lichtor, Phillip A.; Giuliano, Michael W.

    2014-01-01

    We detail an investigation of a peptide-based catalyst 6 that is effective for the site- (>100:1:1) and enantioselective epoxidation (86% ee) of farnesol. Studies of the substrate scope exhibited by the catalyst are included, along with an exploration of optimized reaction conditions. Mechanistic studies are reported, including relative rate determinations for the catalyst and propionic acid, a historical perspective, truncation studies, and modeling using NMR data. Our compiled data advances our understanding of the inner workings of a catalyst that was identified through combinatorial means. PMID:25386335

  2. Synthesis and characterization of new magnetically recoverable molybdenum nanocatalyst for epoxidation of olefins

    NASA Astrophysics Data System (ADS)

    Masteri-Farahani, M.; Kashef, Z.

    2012-04-01

    New heterogeneous molybdenum catalyst was prepared through covalent attachment of a Schiff base ligand on the surface of silica coated magnetite nanoparticles via aminopropyl spacer and subsequent complexation with MoO2(acac)2. The prepared nanocatalyst was characterized with Fourier transform infrared spectroscopy, X-ray diffraction, scanning and transmission electron microscopies and vibrating sample magnetometry. Catalytic epoxidation of some olefins and allylic alcohols by prepared nanocatalyst using tert-butyl hydroperoxide and cumene hydroperoxide as oxidants was achieved with good activities and selectivities.

  3. How the Proximal Pocket May Influence the Enantiospecificities of Chloroperoxidase-Catalyzed Epoxidations of Olefins

    PubMed Central

    Morozov, Alexander N.; Chatfield, David C.

    2016-01-01

    Chloroperoxidase-catalyzed enantiospecific epoxidations of olefins are of significant biotechnological interest. Typical enantiomeric excesses are in the range of 66%–97% and translate into free energy differences on the order of 1 kcal/mol. These differences are generally attributed to the effect of the distal pocket. In this paper, we show that the influence of the proximal pocket on the electron transfer mechanism in the rate-limiting event may be just as significant for a quantitatively accurate account of the experimentally-measured enantiospecificities. PMID:27517911

  4. Enantioselective Cross-Coupling of meso-Epoxides with Aryl Halides

    PubMed Central

    2016-01-01

    The first enantioselective cross-electrophile coupling of aryl bromides with meso-epoxides to form trans-β-arylcycloalkanols is presented. The reaction is catalyzed by a combination of (bpy)NiCl2 and a chiral titanocene under reducing conditions. Yields range from 57 to 99% with 78–95% enantiomeric excess. The 30 examples include a variety of functional groups (ether, ester, ketone, nitrile, ketal, trifluoromethyl, sulfonamide, sulfonate ester), both aryl and vinyl halides, and five- to seven-membered rings. The intermediacy of a carbon radical is strongly suggested by the conversion of cyclooctene monoxide to an aryl [3.3.0]bicyclooctanol. PMID:25716775

  5. Manganese(II)/Picolinic Acid Catalyst System for Epoxidation of Olefins.

    PubMed

    Moretti, Ross A; Du Bois, J; Stack, T Daniel P

    2016-06-01

    An in situ generated catalyst system based on Mn(CF3SO3)2, picolinic acid, and peracetic acid converts an extensive scope of olefins to their epoxides at 0 °C in <5 min, with remarkable oxidant efficiency and no evidence of radical behavior. Competition experiments indicate an electrophilic active oxidant, proposed to be a high-valent Mn = O species. Ligand exploration suggests a general ligand sphere motif contributes to effective oxidation. The method is underscored by its simplicity and use of inexpensive reagents to quickly access high value-added products. PMID:27191036

  6. Imide modified epoxy matrix resins

    NASA Technical Reports Server (NTRS)

    Scola, D. A.

    1982-01-01

    Results of a program designed to develop tough imide modified epoxy (IME) resins cured by bisimide amine (BIA) hardeners are presented. State of the art epoxy resin, MY720, was used. Three aromatic bisimide amines and one aromatic aliphatic BIA were evaluated. BIA's derived from 6F anhydride (3,3 prime 4,4 prime-(hexafluoro isopropyl idene) bis (phthalic anhydride) and diamines, 3,3 prime-diam nodiphenyl sulfone (3,3 prime-DDS), 4,4 prime-diamino diphenyl sulfone (4,4 prime-DDS), 1.12-dodecane diamine (1,12-DDA) were used. BIA's were abbreviated 6F-3,3 prime-DDS, 6F-4,4 prime-DDS, 6F-3,3 prime-DDS-4,4 prime DDS, and 6F-3,3 prime-DDS-1,12-DDA corresponding to 6F anhydride and diamines mentioned. Epoxy resin and BIA's (MY720/6F-3,3 prime-DDS, MY720/6F-3,3 prime-DDS-4,4 prime-DDS, MY720/6F-3,3 prime-DDS-1,12-DDA and a 50:50 mixture of a BIA and parent diamine, MY720/6F-3,3 prime-DDS/3,3 prime-DDS, MY720/6F-3,3 prime-DDS-4,4 prime-DDS/3,3 prime-DDS, MY720/6F-3,3 prime-DDS-1,12-DDA/3,3 prime-DDS were studied to determine effect of structure and composition. Effect of the addition of two commercial epoxies, glyamine 200 and glyamine 100 on the properties of several formulations was evaluated. Bisimide amine cured epoxies were designated IME's (imide modified epoxy). Physical, thermal and mechanical properties of these resins were determined. Moisture absorption in boiling water exhibited by several of the IME's was considerably lower than the state of the art epoxies (from 3.2% for the control and state of the art to 2.0 wt% moisture absorption). Char yields are increased from 20% for control and state of the art epoxies to 40% for IME resins. Relative toughness characteristics of IME resins were measured by 10 deg off axis tensile tests of Celion 6000/IME composites. Results show that IME's containing 6F-3,3 prime-DDS or 6F-3,3 prime-DDS-1,12-DDA improved the "toughness" characteristics of composites by about 35% (tensile strength), about 35% (intralaminar shear

  7. Synthesis and Structure-activity Relationship of piperidine-derived non-urea soluble epoxide hydrolase inhibitors

    PubMed Central

    Pecic, Stevan; Pakhomova, Svetlana; Newcomer, Marcia E.; Morisseau, Christophe; Hammock, Bruce D.; Zhu, Zhengxiang; Rinderspacher, Alison; Deng, Shi-Xian

    2012-01-01

    A series of potent amide non-urea inhibitors of soluble epoxide hydrolase (sEH) is disclosed. The inhibition of soluble epoxide hydrolase leads to elevated levels of epoxyeicosatrienoic acids (EETs), and thus inhibitors of sEH represent one of a novel approach to the development of vasodilatory and anti-inflammatory drugs. Structure-activities studies guided optimization of a lead compound, identified through high-throughput screening, gave rise to sub-nanomolar inhibitors of human sEH with stability in human liver microsomal assay suitable for preclinical development. PMID:23237835

  8. Synthesis and structure-activity relationship of piperidine-derived non-urea soluble epoxide hydrolase inhibitors

    SciTech Connect

    Pecic, Stevan; Pakhomova, Svetlana; Newcomer, Marcia E.; Morisseau, Christophe; Hammock, Bruce D.; Zhu, Zhengxiang; Rinderspacher, Alison; Deng, Shi-Xian

    2013-09-27

    A series of potent amide non-urea inhibitors of soluble epoxide hydrolase (sEH) is disclosed. The inhibition of soluble epoxide hydrolase leads to elevated levels of epoxyeicosatrienoic acids (EETs), and thus inhibitors of sEH represent one of a novel approach to the development of vasodilatory and anti-inflammatory drugs. Structure–activities studies guided optimization of a lead compound, identified through high-throughput screening, gave rise to sub-nanomolar inhibitors of human sEH with stability in human liver microsomal assay suitable for preclinical development.

  9. Synthesis of 2-Nickela(II)oxetanes from Nickel(0) and Epoxides: Structure, Reactivity, and a New Mechanism of Formation.

    PubMed

    Desnoyer, Addison N; Bowes, Eric G; Patrick, Brian O; Love, Jennifer A

    2015-10-14

    2-Nickelaoxetanes have been frequently invoked as reactive intermediates in catalytic reactions of epoxides using nickel, but have never been isolated or experimentally observed in these transformations. Herein, we report the preparation of a series of well-defined nickelaoxetanes formed via the oxidative addition of nickel(0) with epoxides featuring ketones. The stereochemistry of the products is retained, which has not yet been reported for nickelaoxetanes. Theoretical calculations support a bimetallic ring-opening/closing pathway over a concerted oxidative addition. Initial reactivity studies of a nickelaoxetane demonstrated protonolysis, oxidatively induced reductive elimination, deoxygenation, and elimination reactions when treated with the appropriate reagents.

  10. Robust bifunctional aluminium–salen catalysts for the preparation of cyclic carbonates from carbon dioxide and epoxides

    PubMed Central

    Rulev, Yuri A; Gugkaeva, Zalina; Maleev, Victor I

    2015-01-01

    Summary Two new one-component aluminium-based catalysts for the reaction between epoxides and carbon dioxide have been prepared. The catalysts are composed of aluminium–salen chloride complexes with trialkylammonium groups directly attached to the aromatic rings of the salen ligand. With terminal epoxides, the catalysts induced the formation of cyclic carbonates under mild reaction conditions (25–35 °C; 1–10 bar carbon dioxide pressure). However, with cyclohexene oxide under the same reaction conditions, the same catalysts induced the formation of polycarbonate. The catalysts could be recovered from the reaction mixture and reused. PMID:26664580

  11. 21 CFR 175.380 - Xylene-formaldehyde resins condensed with 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... condensation of xylene-formaldehyde resin and 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins, to... include resins produced by the condensation of allyl ether of mono-, di-, or trimethylol phenol and...

  12. Input to Resin Column Structural Analysis if Autocatalytic Resin Reaction Occurs in HB-Line Phase II

    SciTech Connect

    Hallman, D.F.

    2001-07-10

    Solutions of plutonium in nitric acid are purified and concentrated using anion resin prior to precipitation. There have been instances of resin column explosions caused by autocatalytic reactions of anion resins in nitric acid within the DOE complex

  13. Effect of resin rheology on macro- and micro-flows in resin transfer molding

    SciTech Connect

    Chih-Hsin Shih; Lee, L.J.; Koelling, K.

    1996-12-31

    Resin transfer molding (RTM) is a relatively new and high potential process for near net shape composite manufacturing because of its short cycle time, low labor requirements and low equipment cost. The major material variables in the RTM process are the resin rheology and the fiber reinforcement structure. The presence of low profile additives or fillers tends to change the resin mixture from a Newtonian fluid to a Non-Newtonian fluid. Different fiber architectures may result in different flow patterns that will influence the mold filling and curing processes. This paper will discuss how the resin rheology and fiber structure effect the resin transfer molding process.

  14. Flexure fatigue of 10 commonly used denture base resins.

    PubMed

    Johnston, E P; Nicholls, J I; Smith, D E

    1981-11-01

    The flexure fatigue properties of 10 denture base resins (four different types) were tested. Each specimen underwent two-way testing in a water bath maintained at 37 degrees +/- 1 degree C. A load of 3,650 gm was applied a 342 flexures per minute until the specimen broke. The resin types listed in order of increasing resistance to flexure fatigue are polymethylmethacrylate (PMM) pour resins, PMM thermosetting resins, vinyl resins, and a PMM grafted resin. Although small samples size and scatter of results limit broad application of this data, it is of some significance that the grafted resin Lucitone 199 tended to withstand repeated flexure when compared to the other resins.

  15. Phosphorus-containing imide resins

    NASA Technical Reports Server (NTRS)

    Varma, I. K.; Fohlen, G. M.; Parker, J. A. (Inventor)

    1985-01-01

    Cured polymers of bis and tris-imides derived from tris(m-aminophenyl) phosphine oxides by reaction with maleic anhydride or its derivatives, and addition polymers of such imides, including a variant in which a monoimide is condensed with a dianhydride and the product is treated with a further quantity of maleic anhydride prior to curing are disclosed and claimed. Such polymers are flame resistant. Also disclosed are an improved method of producing tris(m-aminophenyl) phosphine oxides from the nitro analogues by reduction with hydrazine hydrate using palladized charcoal or Raney nickel as the catalyst and fiber reinforced cured resin composites.

  16. Polyimide Resins Resist Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Spacecraft and aerospace engines share a common threat: high temperature. The temperatures experienced during atmospheric reentry can reach over 2,000 F, and the temperatures in rocket engines can reach well over 5,000 F. To combat the high temperatures in aerospace applications, Dr. Ruth Pater of Langley Research Center developed RP-46, a polyimide resin capable of withstanding the most brutal temperatures. The composite material can push the service temperature to the limits of organic materials. Designed as an environmentally friendly alternative to other high-temperature resins, the RP-46 polyimide resin system was awarded a 1992 "R&D 100" award, named a "2001 NASA Technology of the Year," and later, due to its success as a spinoff technology, "2004 NASA Commercial Invention of the Year." The technology s commercial success also led to its winning the Langley s "Paul F. Holloway Technology Transfer Award" as well as "Richard T. Whitcom Aerospace Technology Transfer Award" both for 2004. RP-46 is relatively inexpensive and it can be readily processed for use as an adhesive, composite, resin molding, coating, foam, or film. Its composite materials can be used in temperatures ranging from minus 150 F to 2,300 F. No other organic materials are known to be capable of such wide range and extreme high-temperature applications. In addition to answering the call for environmentally conscious high-temperature materials, RP-46 provides a slew of additional advantages: It is extremely lightweight (less than half the weight of aluminum), chemical and moisture resistant, strong, and flexible. Pater also developed a similar technology, RP-50, using many of the same methods she used with RP-46, and very similar in composition to RP-46 in terms of its thermal capacity and chemical construction, but it has different applications, as this material is a coating as opposed to a buildable composite. A NASA license for use of this material outside of the Space Agency as well as

  17. Optical and color stabilities of paint-on resins for shade modification of restorative resins.

    PubMed

    Arikawa, Hiroyuki; Kanie, Takahito; Fujii, Koichi; Ban, Seiji; Homma, Tetsuya; Takahashi, Hideo

    2004-06-01

    The purpose of this study was to examine the optical and color stabilities of the paint-on resin used for shade modification of restorative resins. Three shades of paint-on resin and two crown and bridge resins were used. The light transmittance characteristics of the materials during accelerated aging tests such as water immersion, toothbrush abrasion, ultraviolet (UV) light irradiation, and staining tests were measured. Discolorations of materials resulting from tests were also determined. There were no significant effects of water immersion, toothbrush abrasion and UV light irradiation on the light transmittance and visible color change of paint-on resins, whereas the staining tests significantly decreased the light transmittance and increased color change of the translucent shades of materials. Our results indicate that the paint-on resins exhibit stable optical properties and color appearance, which are at least as good as the crown and bridge resins.

  18. Fluorinated diamond bonded in fluorocarbon resin

    DOEpatents

    Taylor, Gene W.

    1982-01-01

    By fluorinating diamond grit, the grit may be readily bonded into a fluorocarbon resin matrix. The matrix is formed by simple hot pressing techniques. Diamond grinding wheels may advantageously be manufactured using such a matrix. Teflon fluorocarbon resins are particularly well suited for using in forming the matrix.

  19. TMI-2 purification demineralizer resin study

    SciTech Connect

    Thompson, J D; Osterhoudt, T R

    1984-05-01

    Study of the Makeup and Purification System demineralizers at TMI-2 has established that fuel quantities in the vessels are low, precluding criticality, that the high radioactive cesium concentration on the demineralizer resins can be chemically removed, and that the demineralizer resins can probably be removed from the vessels by sluicing through existing plant piping. Radiation measurements from outside the demineralizers establishing that there is between 1.5 and 5.1 (probably 3.3) lb of fuel in the A vessel and less than that amount in the B vessel. Dose rates up to 2780 R per hour were measured on contact with the A demineralizer. Remote visual observation of the A demineralizer showed a crystalline crust overlaying amber-colored resins. The cesium activity in solid resin samples ranged from 220 to 16,900 ..mu..Ci/g. Based on this information, researchers concluded that the resins cannot be removed through the normal pathway in their present condition. Studies do show that the resins will withstand chemical processing designed to rinse and elute cesium from the resins. The process developed should work on the TMI-2 resins.

  20. VOLUMETRIC POLYMERIZATION SHRINKAGE OF CONTEMPORARY COMPOSITE RESINS

    PubMed Central

    Nagem, Halim; Nagem, Haline Drumond; Francisconi, Paulo Afonso Silveira; Franco, Eduardo Batista; Mondelli, Rafael Francisco Lia; Coutinho, Kennedy Queiroz

    2007-01-01

    The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire) to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (á=0.05) was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01) and Definite (1.89±0.01) shrank significantly less than the other composite resins. SureFil (2.01±0.06), Filtek Z250 (1.99±0.03), and Fill Magic (2.02±0.02) presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation. PMID:19089177

  1. 21 CFR 177.1555 - Polyarylate resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...-4′-(1-methylethylidine) bis(phenol)) are formed by melt polycondensation of bisphenol-A with... contact with food in accordance with the following prescribed conditions: (a) Identity. Polyarylate resins... of polymer units derived from diphenylterephthalate. (2) Polyarylate resins shall have a...

  2. 21 CFR 177.1555 - Polyarylate resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...-4′-(1-methylethylidine) bis(phenol)) are formed by melt polycondensation of bisphenol-A with... contact with food in accordance with the following prescribed conditions: (a) Identity. Polyarylate resins... of polymer units derived from diphenylterephthalate. (2) Polyarylate resins shall have a...

  3. 21 CFR 872.3140 - Resin applicator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Resin applicator. 872.3140 Section 872.3140 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3140 Resin applicator. (a) Identification. A...

  4. 21 CFR 177.1500 - Nylon resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... percent by weight of resin) Water 95percent ethyl alcohol Ethyl acetate Benzene 1. Nylon 66 resins 1.14... chapter, except those containing more than 8 percent alcohol, under conditions of use B through H... percent alcohol (by volume) at temperatures not to exceed 49 °C (120 °F) (conditions of use E, F, and G...

  5. 21 CFR 177.1500 - Nylon resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... percent by weight of resin) Water 95percent ethyl alcohol Ethyl acetate Benzene 1. Nylon 66 resins 1.14... chapter, except those containing more than 8 percent alcohol, under conditions of use B through H... percent alcohol (by volume) at temperatures not to exceed 49 °C (120 °F) (conditions of use E, F, and G...

  6. 21 CFR 177.1500 - Nylon resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... percent by weight of resin) Water 95percent ethyl alcohol Ethyl acetate Benzene 1. Nylon 66 resins 1.14... chapter, except those containing more than 8 percent alcohol, under conditions of use B through H... percent alcohol (by volume) at temperatures not to exceed 49 °C (120 °F) (conditions of use E, F, and G...

  7. 21 CFR 177.1500 - Nylon resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... percent by weight of resin) Water 95percent ethyl alcohol Ethyl acetate Benzene 1. Nylon 66 resins 1.14... chapter, except those containing more than 8 percent alcohol, under conditions of use B through H... percent alcohol (by volume) at temperatures not to exceed 49 °C (120 °F) (conditions of use E, F, and G...

  8. Modified resins for solid-phase extraction

    DOEpatents

    Fritz, James S.; Sun, Jeffrey J.

    1991-12-10

    A process of treating aqueous solutions to remove organic solute contaminants by contacting an aqueous solution containing polar organic solute contaminants with a functionalized polystyrene-divinyl benzene adsorbent resin, with the functionalization of said resin being accomplished by organic hydrophilic groups such as hydroxymethyl, acetyl and cyanomethyl.

  9. Modified resins for solid-phase extraction

    DOEpatents

    Fritz, James S.; Sun, Jeffrey J.

    1993-07-27

    A process of treating aqueous solutions to remove organic solute contaminants by contacting an aqueous solution containing polar organic solute contaminants with a functionalized polystyrene-divinyl benzene adsorbent resin, with the functionalization of said resin being accomplished by organic hydrophilic groups such as hydroxymethyl, acetyl and cyanomethyl.

  10. Novel silica-based ion exchange resin

    SciTech Connect

    Gula, M.; Harvey, J.

    1996-12-31

    Shortcomings of chelating resins have been addressed by a new class of ion exchange resins called dual mechanism bifunctional polymers (DMBPs). DMBPs use hydrophilic cation exchange ligands with rapid uptake kinetics and use chelating ligands for selectivity for one or more metals; result is a resin that quickly recognizes and removes targeted metals from waste, remediation, and process streams. Eichrom`s Diphonix {reg_sign} resin is the first DMBP to be widely released as a commercial product; it is polystyrene based. Objective of this work is to synthesize commercial quantities of a silica-based ion exchange resin with the same or better metal ion selectivity, metal uptake kinetics, and acid stability as Diphonix. Feasibility was determined, however the process needs to be optimized. Studies at Eichrom and ANL of the performance of Diphonix resin over a broad range of HNO3 and HCl conditions and inorganic salt loadings are discussed together with the proposed method of incorporating similar characteristics into a silica-based resin. The new, silica-based resin functionalized with diphosphonic acid ligands can be used in environmental restoration and waste management situations involving processing of low-level, transuranic, and high-level radioactive wastes; it can also be used for processing liquid mixed waste including wastes contaminated with organic compounds.

  11. 40 CFR 721.9495 - Acrylosilane resins.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylosilane resins. 721.9495 Section 721.9495 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9495 Acrylosilane resins. (a)...

  12. 40 CFR 721.9495 - Acrylosilane resins.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acrylosilane resins. 721.9495 Section 721.9495 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9495 Acrylosilane resins. (a)...

  13. 40 CFR 721.9495 - Acrylosilane resins.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylosilane resins. 721.9495 Section 721.9495 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9495 Acrylosilane resins. (a)...

  14. Dental resin cure monitoring by inherent fluorescence

    NASA Astrophysics Data System (ADS)

    Li, Qun; Zhou, Jack X.; Li, Qingxiong; Wang, Sean X.

    2008-02-01

    It is demonstrated that the inherent fluorescence of a dental composite resin can be utilized to monitor the curing status, i.e. degree of conversion of the resin. The method does not require any sample preparation and is potentially very fast for real time cure monitoring. The method is verified by Raman spectroscopy analysis.

  15. Detection and characterization of human serum antibodies to polycyclic aromatic hydrocarbon diol-epoxide DNA adducts

    SciTech Connect

    Newman, M.J.; Light, B.A.; Weston, A.; Tollurud, D.; Clark, J.L.; Mann, D.L.; Blackmon, J.P.; Harris, C.C.

    1988-07-01

    The presence of serum antibodies to the diol-epoxide DNA adducts of representative polycyclic aromatic hydrocarbons (PAH), chrysene, benz(a)anthracene and benzo(a)pyrene, was determined by ELISA using serum samples obtained from normal healthy individuals. Antibodies that reacted against PAH adducted-DNA, but not against PAH-adducted protein, were found in the serum of approximately 40% of the test individuals. Specificity analysis of the antibodies demonstrated that serological cross-reactions between the benzo(a)pyrene and the chrysene diol-epoxide adducts were present. Similar cross-reactivity between the benz(a)anthracene and the chrysene adducts was observed. Sera containing antibodies that were apparently specific for each of the three PAH-DNA adducts were also identified. The presence of antibodies to PAH-DNA adducts indicates both past exposure to these carcinogenic PAH and their metabolic activation to the DNA damaging metabolites. These antibodies may prove to be useful in both retrospective and prospective epidemiological studies of various diseases associated with PAH exposure.

  16. Seasonal changes of violaxanthin cycle pigment de-epoxidation in wintergreen and evergreen plants.

    PubMed

    Dymova, Olga; Golovko, Tamara

    2012-01-01

    We studied carotenoids composition and the activities of the xanthophylls pigments in evergreen conifers (Abies sibirica, Juniperus communis, Picea obovata) and dwarf-shrub (Vaccinium vitis-idaea), and in wintergreen herbaceous plants (Ajuga reptans, Pyrola rotundifolia) growing near Syktyvkar (61°67(/) N 50°77(/) E). The carotenoid pool consisted mainly of following xanthophylls: lutein (70%), neoxanthin (7-10%) and a xanthophylls cycle component - violaxanthin (3-15%). Zeaxanthin and antheraxanthin were found in conifer samples collected in December-March while in other species - during all year. A direct connection between xanthophyll pigment de-epoxidation level and light energy thermal dissipation was shown only for boreal conifer species. It is proposed that zeaxanthin plays a central role in the dissipation of excess excitation energy (nonphotochemical quenching) in the antenna of photosystem II (PSII). We conclude that the increase in the extent of de-epoxidation is beneficial for the retention of PSII activity for conifers in early spring and for herbs in summer.

  17. Soluble epoxide hydrolase as an anti-inflammatory target of the thrombolytic stroke drug SMTP-7.

    PubMed

    Matsumoto, Naoki; Suzuki, Eriko; Ishikawa, Makoto; Shirafuji, Takumi; Hasumi, Keiji

    2014-12-26

    Although ischemic stroke is a major cause of death and disability worldwide, only a small fraction of patients benefit from the current thrombolytic therapy due to a risk of cerebral hemorrhage caused by inflammation. Thus, the development of a new strategy to combat inflammation during thrombolysis is an urgent demand. The small molecule thrombolytic SMTP-7 effectively treats ischemic stroke in several animal models with reducing cerebral hemorrhage. Here we revealed that SMTP-7 targeted soluble epoxide hydrolase (sEH) to suppress inflammation. SMTP-7 inhibited both of the two sEH enzyme activities: epoxide hydrolase (which inactivates anti-inflammatory epoxy-fatty acids) and lipid phosphate phosphatase. SMTP-7 suppressed epoxy-fatty acid hydrolysis in HepG2 cells in culture, implicating the sEH inhibition in the anti-inflammatory mechanism. The sEH inhibition by SMTP-7 was independent of its thrombolytic activity. The simultaneous targeting of thrombolysis and sEH by a single molecule is a promising strategy to revolutionize the current stroke therapy. PMID:25361765

  18. Improving the cytochrome P450 enzyme system for electrode-driven biocatalysis of styrene epoxidation.

    PubMed

    Mayhew, M P; Reipa, V; Holden, M J; Vilker, V L

    2000-01-01

    Cytochrome P450 enzymes catalyze a vast array of oxidative and reductive biotransformations that are potentially useful for industrial and pharmaceutical syntheses. Factors such as cofactor utilization and slow reaction rates for nonnatural substrates limit their large-scale usefulness. This paper reports several improvements that make the cytochrome P450cam enzyme system more practical for the epoxidation of styrene. NADH coupling was increased from 14 to 54 mol %, and product turnover rate was increased from 8 to 70 min(-1) by introducing the Y96F mutation to P450cam. Styrene and styrene oxide mass balance determinations showed different product profiles at low and high styrene conversion levels. For styrene conversion less than about 25 mol %, the stoichiometry between styrene consumption and styrene oxide formation was 1:1. At high styrene conversion, a second doubly oxidized product, alpha-hydroxyacetophenone, was formed. This was also the exclusive product when Y96F P450cam acted on racemic, commercially available styrene oxide. The alpha-hydroxyacetophenone product was suppressed in reactions where styrene was present at saturating concentrations. Finally, styrene epoxidation was carried out in an electroenzymatic reactor. In this scheme, the costly NADH cofactor and one of the three proteins (putidaredoxin reductase) are eliminated from the Y96F P450cam enzyme system. PMID:10933836

  19. Chloroperoxidase-Catalyzed Epoxidation of Cis-β-Methylstyrene:Distal Pocket Flexibility Tunes Catalytic Reactivity

    PubMed Central

    Morozov, Alexander N.; Chatfield, David C.

    2012-01-01

    Chloroperoxidase, the most versatile heme protein, has a hybrid active site pocket that shares structural features with peroxidases and cytochrome P450s. The simulation studies presented here show that the enzyme possesses a remarkable ability to efficiently utilize its hybrid structure, assuming structurally different peroxidase-like and P450-like distal pocket faces and thereby enhancing the inherent catalytic capability of the active center. We find that during epoxidation of cis-β-methylstyrene (CBMS), the native peroxidase-like aspect of the distal pocket is diminished as the polar Glu183 side chain is displaced away from the active center and the distal pocket takes on a more hydrophobic, P450-like, aspect. The P450-like distal pocket provides a significant enthalpic stabilization of ~4 kcal/mol of the 14 kcal/mol reaction barrier for gas-phase epoxidation of CMBS by an oxyferryl heme-thiolate species. This stabilization comes from breathing of the distal pocket. As until recently the active site of chloroperoxidase was postulated to be inflexible, these results suggest a new conceptual understanding of the enzyme’s versatility: catalytic reactivity is tuned by flexibility of the distal pocket. PMID:23020548

  20. Detection and characterization of human serum antibodies to polycyclic aromatic hydrocarbon diol-epoxide DNA adducts.

    PubMed Central

    Newman, M J; Light, B A; Weston, A; Tollurud, D; Clark, J L; Mann, D L; Blackmon, J P; Harris, C C

    1988-01-01

    The presence of serum antibodies to the diol-epoxide DNA adducts of representative polycyclic aromatic hydrocarbons (PAH), chrysene, benz[a]anthracene and benzo[a]pyrene, was determined by ELISA using serum samples obtained from normal healthy individuals. Antibodies that reacted against PAH adducted-DNA, but not against PAH-adducted protein, were found in the serum of approximately 40% of the test individuals. Specificity analysis of the antibodies demonstrated that serological cross-reactions between the benzo[a]pyrene and the chrysene diol-epoxide adducts were present. Similar cross-reactivity between the benz[a]anthracene and the chrysene adducts was observed. Sera containing antibodies that were apparently specific for each of the three PAH-DNA adducts were also identified. The presence of antibodies to PAH-DNA adducts indicates both past exposure to these carcinogenic PAH and their metabolic activation to the DNA damaging metabolites. These antibodies may prove to be useful in both retrospective and prospective epidemiological studies of various diseases associated with PAH exposure. PMID:3392204

  1. MWCNTs-Reinforced Epoxidized Linseed Oil Plasticized Polylactic Acid Nanocomposite and Its Electroactive Shape Memory Behaviour

    PubMed Central

    Alam, Javed; Alam, Manawwer; Raja, Mohan; Abduljaleel, Zainularifeen; Dass, Lawrence Arockiasamy

    2014-01-01

    A novel electroactive shape memory polymer nanocomposite of epoxidized linseed oil plasticized polylactic acid and multi-walled carbon nanotubes (MWCNTs) was prepared by a combination of solution blending, solvent cast technique, and hydraulic hot press moulding. In this study, polylactic acid (PLA) was first plasticized by epoxidized linseed oil (ELO) in order to overcome the major limitations of PLA, such as high brittleness, low toughness, and low tensile elongation. Then, MWCNTs were incorporated into the ELO plasticized PLA matrix at three different loadings (2, 3 and 5 wt. %), with the aim of making the resulting nanocomposites electrically conductive. The addition of ELO decreased glass transition temperature, and increased the elongation and thermal degradability of PLA, as shown in the results of differential scanning calorimetry (DSC), tensile test, and thermo gravimetric analysis (TGA). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to observe surface morphology, topography, and the dispersion of MWCNTs in the nanocomposite. Finally, the electroactive-shape memory effect (electroactive-SME) in the resulting nanocomposite was investigated by a fold-deploy “U”-shape bending test. As per the results, the addition of both ELO and MWCNTs to PLA matrix seemed to enhance its overall properties with a great deal of potential in improved shape memory. The 3 wt. % MWCNTs-reinforced nanocomposite system, which showed 95% shape recovery within 45 s at 40 DC voltage, is expected to be used as a preferential polymeric nanocomposite material in various actuators, sensors and deployable devices. PMID:25365179

  2. MWCNTs-reinforced epoxidized linseed oil plasticized polylactic acid nanocomposite and its electroactive shape memory behaviour.

    PubMed

    Alam, Javed; Alam, Manawwer; Raja, Mohan; Abduljaleel, Zainularifeen; Dass, Lawrence Arockiasamy

    2014-10-31

    A novel electroactive shape memory polymer nanocomposite of epoxidized linseed oil plasticized polylactic acid and multi-walled carbon nanotubes (MWCNTs) was prepared by a combination of solution blending, solvent cast technique, and hydraulic hot press moulding. In this study, polylactic acid (PLA) was first plasticized by epoxidized linseed oil (ELO) in order to overcome the major limitations of PLA, such as high brittleness, low toughness, and low tensile elongation. Then, MWCNTs were incorporated into the ELO plasticized PLA matrix at three different loadings (2, 3 and 5 wt. %), with the aim of making the resulting nanocomposites electrically conductive. The addition of ELO decreased glass transition temperature, and increased the elongation and thermal degradability of PLA, as shown in the results of differential scanning calorimetry (DSC), tensile test, and thermo gravimetric analysis (TGA). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to observe surface morphology, topography, and the dispersion of MWCNTs in the nanocomposite. Finally, the electroactive-shape memory effect (electroactive-SME) in the resulting nanocomposite was investigated by a fold-deploy "U"-shape bending test. As per the results, the addition of both ELO and MWCNTs to PLA matrix seemed to enhance its overall properties with a great deal of potential in improved shape memory. The 3 wt. % MWCNTs-reinforced nanocomposite system, which showed 95% shape recovery within 45 s at 40 DC voltage, is expected to be used as a preferential polymeric nanocomposite material in various actuators, sensors and deployable devices.

  3. Epoxidized Soybean Oil: Evaluation of Oxidative Stabilization and Metal Quenching/Heat Transfer Performance

    NASA Astrophysics Data System (ADS)

    Simencio Otero, Rosa L.; Canale, Lauralice C. F.; Said Schicchi, Diego; Agaliotis, Eliana; Totten, George E.; Sánchez Sarmiento, Gustavo

    2013-07-01

    Vegetable and animal oils as a class of fluids have been used for hundreds of years, if not longer, as quenchants for hardening steel. However, when petroleum oils became available in the late 1800s and early 1900s, the use of these fluids as quenchants, in addition to their use in other industrial oil applications, quickly diminished. This was primarily, but not exclusively, due to their generally very poor thermal-oxidative instability and the difficulty for formulating fluid analogs with varying viscosity properties. Interest in the use of renewable fluids, such as vegetable oils, has increased dramatically in recent years as alternatives to the use of relatively non-biodegradable and toxic petroleum oils. However, the relatively poor thermal-oxidative stability has continued to be a significant reason for their general non-acceptance in the marketplace. Soybean oil (SO) is one of the most highly produced vegetable oils in Brazil. Currently, there are commercially produced epoxidized versions of SO which are available. The objective of this paper is to discuss the potential use of epoxidized SO and its heat transfer properties as a viable alternative to petroleum oils for hardening steel.

  4. Epoxidized soybean oil/ZnO biocomposites for soft tissue applications: preparation and characterization.

    PubMed

    Díez-Pascual, Ana M; Díez-Vicente, Angel L

    2014-10-01

    Biocompatible and biodegradable nanocomposites comprising epoxidized soybean oil (ESO) as matrix, zinc oxide (ZnO) nanoparticles as reinforcements, and 4-dimethylaminopyridine (DMAP) as a catalyst have been successfully prepared via epoxidization of the double bonds of the vegetable oil, ultrasonication, and curing without the need for interfacial modifiers. Their morphology, water uptake, thermal, mechanical, barrier, tribological, and antibacterial properties have been investigated. FT-IR analysis revealed the existence of strong ESO-ZnO hydrogen-bonding interactions. The nanoparticles acted as mass transport barriers, hindering the diffusion of volatiles generated during the decomposition process and leading to higher thermal stability, and also reduced the water absorption and gas permeability of the bioresin. Significant improvements in the static and dynamic mechanical properties, such as storage and Young's moduli, tensile strength, toughness, hardness, glass transition, and heat distortion temperature, were attained on reinforcement. A small drop in the nanocomposite stiffness and strength was found after exposure to several cycles of steam sterilization or to simulated body fluid (SBF) at physiological temperature. Extraordinary reductions in the coefficient of friction and wear rate were detected under both dry and SBF conditions, confirming the potential of these nanoparticles for improving the tribological performance of ESO. The nanocomposites displayed antimicrobial action against human pathogen bacteria with and without UV illumination, which increased progressively with the ZnO content. These sustainable, ecofriendly, and low-cost biomaterials are very promising for use in biomedical applications, like structural tissue engineering scaffolds. PMID:25222018

  5. Epoxidation of olefins catalysed by vanadium-salan complexes: a theoretical mechanistic study.

    PubMed

    Kuznetsov, Maxim L; Pessoa, João Costa

    2009-07-28

    Plausible mechanisms of olefin epoxidation catalysed by a V-salan model complex [VIV(=O)(L)(H2O)] (1, L=(CH2NHCH2CH=CHO-)2) in the presence of H2O2 are investigated and compared by theoretical methods using density functional theory. Three main routes, i.e. the Mimoun, Sharpless and biradical mechanisms, were examined in detail, and the Sharpless pathway was found to be the most favourable one. The reaction starts from the formation of an active catalytic species [VV(=O)(OO)(LH)] (3c) upon interaction of 1 with H2O2, then concerted, highly synchronous attack of the olefin to 3c occurs yielding the epoxide and catalyst [VV(=O)2(LH)], the latter being oxidized by H2O2 to 3c. The activation barrier strongly depends on the proton location in the catalyst molecule and is the lowest when one of the oxygen atoms of the salan ligand is protonated and the vanadium atom is penta-coordinated with one vacant coordination position (complex 3c). The olefin in this reaction acts as an electron donor (nucleophile) rather than as an electron acceptor (electrophile). PMID:19587988

  6. Polypyrrole-functionalized ruthenium carbene catalysts as efficient heterogeneous systems for olefin epoxidation.

    PubMed

    Dakkach, Mohamed; Fontrodona, Xavier; Parella, Teodor; Atlamsani, Ahmed; Romero, Isabel; Rodríguez, Montserrat

    2014-07-14

    New Ru complexes containing the bpea-pyr ligand (bpea-pyr stands for N,N-bis(pyridin-2-ylmethyl)-3-(1H-pyrrol-1-yl)propan-1-amine), with the formula [RuCl2(bpea-pyr)(dmso)] (isomeric complexes 2a and 2b) or [Ru(CN-Me)(bpea-pyr)X)](n+) (CN-Me = 3-methyl-1-(pyridin-2-yl)-1H-imidazol-3-ium-2-ide; X = Cl, 3, or X = H2O, 4), have been prepared and fully characterized. Complexes 3 and 4 have been anchored onto an electrode surface through electropolymerization of the attached pyrrole group, yielding stable polypyrrole films. The electrochemical behaviour of 4, which displays a bielectronic Ru(IV/II) redox pair in solution, is dramatically affected by the electropolymerization process leading to the occurrence of two monoelectronic Ru(IV/III) and Ru(III/II) redox pairs in the heterogeneous system. A carbon felt modified electrode containing complex 4 (C-felt/poly-4) has been evaluated as a heterogeneous catalyst in the epoxidation of various olefin substrates using PhI(OAc)2 as an oxidant, displaying TON values of several thousands in all cases and good selectivity for the epoxide product.

  7. Epoxidized soybean oil/ZnO biocomposites for soft tissue applications: preparation and characterization.

    PubMed

    Díez-Pascual, Ana M; Díez-Vicente, Angel L

    2014-10-01

    Biocompatible and biodegradable nanocomposites comprising epoxidized soybean oil (ESO) as matrix, zinc oxide (ZnO) nanoparticles as reinforcements, and 4-dimethylaminopyridine (DMAP) as a catalyst have been successfully prepared via epoxidization of the double bonds of the vegetable oil, ultrasonication, and curing without the need for interfacial modifiers. Their morphology, water uptake, thermal, mechanical, barrier, tribological, and antibacterial properties have been investigated. FT-IR analysis revealed the existence of strong ESO-ZnO hydrogen-bonding interactions. The nanoparticles acted as mass transport barriers, hindering the diffusion of volatiles generated during the decomposition process and leading to higher thermal stability, and also reduced the water absorption and gas permeability of the bioresin. Significant improvements in the static and dynamic mechanical properties, such as storage and Young's moduli, tensile strength, toughness, hardness, glass transition, and heat distortion temperature, were attained on reinforcement. A small drop in the nanocomposite stiffness and strength was found after exposure to several cycles of steam sterilization or to simulated body fluid (SBF) at physiological temperature. Extraordinary reductions in the coefficient of friction and wear rate were detected under both dry and SBF conditions, confirming the potential of these nanoparticles for improving the tribological performance of ESO. The nanocomposites displayed antimicrobial action against human pathogen bacteria with and without UV illumination, which increased progressively with the ZnO content. These sustainable, ecofriendly, and low-cost biomaterials are very promising for use in biomedical applications, like structural tissue engineering scaffolds.

  8. Epoxidation of soybean oil catalyzed by peroxo phosphotungstic acid supported on modified halloysite nanotubes

    NASA Astrophysics Data System (ADS)

    Jiang, Junqing; Zhang, Yanwu; Yan, Liwei; Jiang, Pingkai

    2012-06-01

    {PO4[W(O)(O2)2]4}3- was supported onto modified halloysite nanotubes (HNTs) to prepare heterogeneous catalysts and these catalysts were applied in epoxidation of soybean oil. To enhance the cohesive force between {PO4[W(O)(O2)2]4}3- and HNTs, quaternary amino groups were anchored onto HNTs through silylation of N-(2-aminoethyl)-3-aminopropyl trimethoxysilane and alkylation of amino groups. Further {PO4[W(O)(O2)2]4}3- was supported onto HNTs by ion exchange. The heterogeneous catalysts were characterized by FTIR, TGA, XRF and TEM-EDS. Then the catalytic behaviour to epoxidation of soybean oil was studied in detail. The results show that the introduction of phase transfer agent during preparation of the catalysts is very effective to improve catalytic activity and mechanical agitation combining with ultrasonic agitation is the best agitation way. The catalytic reactivity increased as reaction time increased. Moreover, the catalysts can be easily recovered from the reaction system by centrifugation as deposit and recycled three times without obviously decreasing the catalytic activity. Through re-exchange of {PO4[W(O)(O2)2]4}3-, the heterogeneous catalyst can be regenerated without catalytic activity loss.

  9. Improved catalytic performance of Bacillus megaterium epoxide hydrolase in a medium containing Tween-80.

    PubMed

    Gong, Peng-Fei; Xu, Jian-He; Tang, Yan-Fa; Wu, Hui-Yuan

    2003-01-01

    A new epoxide hydrolase with high enantioselectivity toward (R)-glycidyl phenyl ether (R-GPE) was partially purified from Bacillus megaterium strain ECU1001. The maximum activity of the isolated enzyme was observed at 30 degrees C and pH 6.5 in a buffer system with 5% (v/v) of DMSO as a cosolvent. The enzyme was quite stable at pH 7.5 and retained full activity after incubation at 40 degrees C for 6 h. Interestingly, when the cosolvent DMSO was replaced by an emulsifier (Tween-80, 0.5% w/v) as an alternative additive to help disperse the water-insoluble substrate, the apparent activity of the epoxide hydrolase significantly increased by about 1.8-fold, while the temperature optimum shifted from 30 to 40 degrees C and the half-life of the enzyme at 50 degrees C increased by 2.5 times. The enzymatic hydrolysis of rac-GPE was highly enantioselective, with an E-value (enantiomeric ratio) of 69.3 in the Tween-80 emulsion system, which is obviously higher than that (41.2) observed in the DMSO-containing system. PMID:12675611

  10. A novel activity of microsomal epoxide hydrolase: metabolism of the endocannabinoid 2-arachidonoylglycerol

    PubMed Central

    Nithipatikom, Kasem; Endsley, Michael P.; Pfeiffer, Adam W.; Falck, John R.; Campbell, William B.

    2014-01-01

    Microsomal epoxide hydrolase (EPHX1, EC 3.3.2.9) is a highly abundant α/β-hydrolase enzyme that is known for its catalytical epoxide hydrolase activity. A wide range of EPHX1 functions have been demonstrated including xenobiotic metabolism; however, characterization of its endogenous substrates is limited. In this study, we present evidence that EPHX1 metabolizes the abundant endocannabinoid 2-arachidonoylglycerol (2-AG) to free arachidonic acid (AA) and glycerol. The EPHX1 metabolism of 2-AG was demonstrated using commercially available EPHX1 microsomes as well as PC-3 cells overexpressing EPHX1. Conversely, EPHX1 siRNA markedly reduced the EPHX1 expression and 2-AG metabolism in HepG2 cells and LNCaP cells. A selective EPHX1 inhibitor, 10-hydroxystearamide, inhibited 2-AG metabolism and hydrolysis of a well-known EPHX1 substrate, cis-stilbene oxide. Among the inhibitors studied, a serine hydrolase inhibitor, methoxy-arachidonyl fluorophosphate, was the most potent inhibitor of 2-AG metabolism by EPHX1 microsomes. These results demonstrate that 2-AG is an endogenous substrate for EPHX1, a potential role of EPHX1 in the endocannabinoid signaling and a new AA biosynthetic pathway. PMID:24958911

  11. Heavy chain single-domain antibodies to detect native human soluble epoxide hydrolase.

    PubMed

    Cui, Yongliang; Li, Dongyang; Morisseau, Christophe; Dong, Jie-Xian; Yang, Jun; Wan, Debin; Rossotti, Martín A; Gee, Shirley J; González-Sapienza, Gualberto G; Hammock, Bruce D

    2015-09-01

    The soluble epoxide hydrolase (sEH) is a potential pharmacological target for treating hypertension, vascular inflammation, pain, cancer, and other diseases. However, there is not a simple, inexpensive, and reliable method to estimate levels of active sEH in tissues. Toward developing such an assay, a polyclonal variable domain of heavy chain antibody (VHH) sandwich immunoassay was developed. Ten VHHs, which are highly selective for native human sEH, were isolated from a phage-displayed library. The ten VHHs have no significant cross-reactivity with human microsomal epoxide hydrolase, rat and mouse sEH, and denatured human sEH. There is a high correlation between protein levels of the sEH determined by the enzyme-linked immunosorbent assay (ELISA) and the catalytic activity of the enzyme in S9 fractions of human tissues (liver, kidney, and lung). The VHH-based ELISA appears to be a new reliable method for monitoring the sEH and may be useful as a diagnostic tool for diseases influenced by sEH. This study also demonstrates the broad utility of VHH in biochemical and pharmacological research.

  12. Heavy Chain Single Domain Antibodies to Detect Native Human Soluble Epoxide Hydrolase

    PubMed Central

    Cui, Yongliang; Li, Dongyang; Morisseau, Christophe; Yang, Jun; Wan, Debin; Rossotti, Martín A.; Gee, Shirley J.; González-Sapienza, Gualberto G.; Hammock, Bruce D.

    2015-01-01

    The soluble epoxide hydrolase (sEH) is a potential pharmacological target for treating hypertension, vascular inflammation, pain, cancer and other diseases. However, there is not a simple, inexpensive and reliable method to estimate levels of active sEH in tissues. Toward developing such an assay, a polyclonal-variable domain of heavy chain antibody (VHH) sandwich immunoassay was developed. Ten VHHs, which are highly selective for native human sEH, were isolated from a phage displayed library. The ten VHHs have no significant cross-reactivity with human microsomal epoxide hydrolase, rat and mouse sEH, and denatured human sEH. There is a high correlation between protein levels of the sEH determined by the ELISA and the catalytic activity of the enzyme in S9 fractions of human tissues (liver, kidney and lung). The VHH based ELISA appears to be a new reliable method for monitoring the sEH, and may be useful as a diagnostic tool for diseases influenced by sEH. This study also demonstrates the broad utility of VHH in biochemical and pharmacological research. PMID:26229025

  13. LDRD final report on new homogeneous catalysts for direct olefin epoxidation (LDRD 52591).

    SciTech Connect

    Goldberg, Karen; Smythe, Nicole A.; Moore, Joshua T.; Stewart, Constantine A.; Kemp, Richard Alan; Miller, James Edward; Kornienko, Alexander (New Mexico Institute of Mining and Technology); Denney, Melanie C. (University of Washington); Cetto, Kara L.

    2006-02-01

    This report summarizes our findings during the study of a novel homogeneous epoxidation catalyst system that uses molecular oxygen as the oxidant, a ''Holy Grail'' in catalysis. While olefins (alkenes) that do not contain allylic hydrogens can be epoxidized directly using heterogeneous catalysts, most olefins cannot, and so a general, atom-efficient route is desired. While most of the work performed on this LDRD has been on pincer complexes of late transition metals, we also scouted out metal/ligand combinations that were significantly different, and unfortunately, less successful. Most of the work reported here deals with phosphorus-ligated Pd hydrides [(PCP)Pd-H]. We have demonstrated that molecular oxygen gas can insert into the Pd-H bond, giving a structurally characterized Pd-OOH species. This species reacts with oxygen acceptors such as olefins to donate an oxygen atom, although in various levels of selectivity, and to generate a [(PCP)Pd-OH] molecule. We discovered that the active [(PCP)Pd-H] active catalyst can be regenerated by addition of either CO or hydrogen. The demonstration of each step of the catalytic cycle is quite significant. Extensions to the pincer-Pd chemistry by attaching a fluorinated tail to the pincer designed to be used in solvents with higher oxygen solubilities are also presented.

  14. Release and toxicity of dental resin composite

    PubMed Central

    Gupta, Saurabh K.; Saxena, Payal; Pant, Vandana A.; Pant, Aditya B.

    2012-01-01

    Dental resin composite that are tooth-colored materials have been considered as possible substitutes to mercury-containing silver amalgam filling. Despite the fact that dental resin composites have improved their physico-chemical properties, the concern for its intrinsic toxicity remains high. Some components of restorative composite resins are released in the oral environment initially during polymerization reaction and later due to degradation of the material. In vitro and in vivo studies have clearly identified that these components of restorative composite resins are toxic. But there is a large gap between the results published by research laboratories and clinical reports. The objective of this manuscript was to review the literature on release phenomenon as well as in vitro and in vivo toxicity of dental resin composite. Interpretation made from the recent data was also outlined. PMID:23293458

  15. Physical Properties of Synthetic Resin Materials

    NASA Technical Reports Server (NTRS)

    Fishbein, Meyer

    1939-01-01

    A study was made to determine the physical properties of synthetic resins having paper, canvas, and linen reinforcements, and of laminated wood impregnated with a resin varnish. The results show that commercial resins have moduli of elasticity that are too low for structural considerations. Nevertheless, there do exist plastics that have favorable mechanical properties and, with further development, it should be possible to produce resin products that compare favorably with the light-metal alloys. The results obtained from tests on Compound 1840, resin-impregnated wood, show that this material can stand on its own merit by virtue of a compressive strength four times that of the natural wood. This increase in compressive strength was accomplished with an increase of density to a value slightly below three times the normal value and corrected one of the most serious defects of the natural product.

  16. Chemoviscosity modeling for thermosetting resins, 2

    NASA Technical Reports Server (NTRS)

    Hou, T. H.

    1985-01-01

    A new analytical model for simulating chemoviscosity of thermosetting resin was formulated. The model is developed by modifying the Williams-Landel-Ferry (WLF) theory in polymer rheology for thermoplastic materials. By assuming a linear relationship between the glass transition temperature and the degree of cure of the resin system under cure, the WLF theory can be modified to account for the factor of reaction time. Temperature dependent functions of the modified WLF theory constants were determined from the isothermal cure data of Lee, Loos, and Springer for the Hercules 3501-6 resin system. Theoretical predictions of the model for the resin under dynamic heating cure cycles were shown to compare favorably with the experimental data reported by Carpenter. A chemoviscosity model which is capable of not only describing viscosity profiles accurately under various cure cycles, but also correlating viscosity data to the changes of physical properties associated with the structural transformations of the thermosetting resin systems during cure was established.

  17. Release and toxicity of dental resin composite.

    PubMed

    Gupta, Saurabh K; Saxena, Payal; Pant, Vandana A; Pant, Aditya B

    2012-09-01

    Dental resin composite that are tooth-colored materials have been considered as possible substitutes to mercury-containing silver amalgam filling. Despite the fact that dental resin composites have improved their physico-chemical properties, the concern for its intrinsic toxicity remains high. Some components of restorative composite resins are released in the oral environment initially during polymerization reaction and later due to degradation of the material. In vitro and in vivo studies have clearly identified that these components of restorative composite resins are toxic. But there is a large gap between the results published by research laboratories and clinical reports. The objective of this manuscript was to review the literature on release phenomenon as well as in vitro and in vivo toxicity of dental resin composite. Interpretation made from the recent data was also outlined.

  18. Resin/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.

    1974-01-01

    Techniques were developed that provided thermo-oxidatively stable A-type polyimide/graphite fiber composites using the approach of in situ polymerization of monomeric reactants directly on reinforcing fibers, rather than employing separately prepared prepolymer varnish. This was accomplished by simply mixing methylene dianiline and two ester-acids and applying this solution to the fibers for subsequent molding. Five different formulated molecular weight resins were examined, and an optimized die molding procedure established for the 1500 formulated molecular weight system. Extensive ultrasonic inspection of composites was successfully utilized as a technique for monitoring laminate quality. Composite mechanical property studies were conducted with this polyimide resin at room temperature and after various time exposures in a thermo-oxidative environment at 561 K (550 F), 589 K (600 F) and 617 K (650 F). It was determined that such composites have a long term life in the temperature range of 561 K to 589 K. The final phase involved the fabrication and evaluation of a series of demonstration airfoil specimens.

  19. Solidification of ion exchange resin wastes

    SciTech Connect

    Not Available

    1982-08-01

    Solidification media investigated included portland type I, portland type III and high alumina cements, a proprietary gypsum-based polymer modified cement, and a vinyl ester-styrene thermosetting plastic. Samples formulated with hydraulic cement were analyzed to investigate the effects of resin type, resin loading, waste-to-cement ratio, and water-to-cement ratio. The solidification of cation resin wastes with portland cement was characterized by excessive swelling and cracking of waste forms, both after curing and during immersion testing. Mixed bed resin waste formulations were limited by their cation component. Additives to improve the mechanical properties of portland cement-ion exchange resin waste forms were evaluated. High alumina cement formulations dislayed a resistance to deterioration of mechanical integrity during immersion testing, thus providing a significant advantage over portland cements for the solidification of resin wastes. Properties of cement-ion exchange resin waste forms were examined. An experiment was conducted to study the leachability of /sup 137/Cs, /sup 85/Sr, and /sup 60/Co from resins modified in portland type III and high alumina cements. The cumulative /sup 137/Cs fraction release was at least an order of magnitude greater than that of either /sup 85/Sr or /sup 60/Co. Release rates of /sup 137/Cs in high alumina cement were greater than those in portland III cement by a factor of two.Compressive strength and leach testing were conducted for resin wastes solidified with polymer-modified gypsum based cement. /sup 137/Cs, /sup 85/Sr, and /sup 60/Co fraction releases were about one, two and three orders of magnitude higher, respectively, than in equivalent portland type III cement formulations. As much as 28.6 wt % dry ion exchange resin was successfully solidified using vinyl ester-styrene compared with a maximum of 25 wt % in both portland and gypsum-based cement.

  20. Structure Property Relationships of Biobased Epoxy Resins

    NASA Astrophysics Data System (ADS)

    Maiorana, Anthony Surraht

    The thesis is about the synthesis, characterization, development, and application of epoxy resins derived from sustainable feedstocks such as lingo-cellulose, plant oils, and other non-food feedstocks. The thesis can be divided into two main topics 1) the synthesis and structure property relationship investigation of new biobased epoxy resin families and 2) mixing epoxy resins with reactive diluents, nanoparticles, toughening agents, and understanding co-curing reactions, filler/matrix interactions, and cured epoxy resin thermomechanical, viscoelastic, and dielectric properties. The thesis seeks to bridge the gap between new epoxy resin development, application for composites and advanced materials, processing and manufacturing, and end of life of thermoset polymers. The structures of uncured epoxy resins are characterized through traditional small molecule techniques such as nuclear magnetic resonance, high resolution mass spectrometry, and infrared spectroscopy. The structure of epoxy resin monomers are further understood through the process of curing the resins and cured resins' properties through rheology, chemorheology, dynamic mechanical analysis, tensile testing, fracture toughness, differential scanning calorimetry, scanning electron microscopy, thermogravimetric analysis, and notched izod impact testing. It was found that diphenolate esters are viable alternatives to bisphenol A and that the structure of the ester side chain can have signifi-cant effects on monomer viscosity. The structure of the cured diphenolate based epoxy resins also influence glass transition temperature and dielectric properties. Incorporation of reactive diluents and flexible resins can lower viscosity, extend gel time, and enable processing of high filler content composites and increase fracture toughness. Incorpora-tion of high elastic modulus nanoparticles such as graphene can provide increases in physical properties such as elastic modulus and fracture toughness. The synthesis

  1. Regioselective ring opening of polycyclic aromatic hydrocarbon epoxides by polymer-supported N sub 3 sup minus anion

    SciTech Connect

    Lakshman, M.; Nadkarni, D.V.; Lehr, R.E. )

    1990-08-03

    The benzylic ring opening of some polycyclic aromatic hydrocarbon (PAH) tetrahydro epoxides and one diol epoxide has been achieved by Amberlite supported N{sub 3}{sup {minus}} ion, in a regio- and stereoselective manner. The resulting azidohydrins have been converted to the corresponding {beta}-acyloxy amines and/or amino alcohols. The {beta}-acyloxy amino compounds are suitable for incorporation into synthetic oligonucleotides, whereas the amino alcohols were synthesized in order to establish the regiochemistry of the ring-opening step. The tetrahydro models studied were the naphthalene (Np), benz(c)acridine (BcAr), benzo(a)pyrene (BaP), and benzo(e)pyrene (BeP) epoxides. In the Np and BcAr cases, the amino group is equatorial whereas in the BaP and BeP cases, it is axial. In the final stage of these ring-opening reactions, the racemic diol epoxide of benzo(a)pyrene (BaPDE) 24 was converted to the corresponding amines. In each of the cases studied, the attack by N{sub 3}{sup {minus}} ion occurred at the benzylic site. The relative stereochemistry of the azido and hydroxyl groups in every case was trans. No other regio- or stereoisomer was observed in any of these compounds in the ring-opening step.

  2. Alternating copolymerization of dihydrocoumarin and epoxides catalyzed by chromium salen complexes: a new route to functional polyesters.

    PubMed

    Van Zee, Nathan J; Coates, Geoffrey W

    2014-06-18

    We report the alternating ring-opening copolymerization of dihydrocoumarin with epoxides catalyzed by chromium(III) salen complexes. This process provides access to a range of perfectly alternating polyesters with high molecular weights and narrow molecular weight distributions. Atactic poly(cyclohexene dihydrocoumarate) and poly(cyclopentene dihydrocoumarate) were found to be semi-crystalline by differential scanning calorimetry.

  3. Expression and characterization of styrene monooxygenases of Rhodococcus sp. ST-5 and ST-10 for synthesizing enantiopure (S)-epoxides.

    PubMed

    Toda, Hiroshi; Imae, Ryouta; Komio, Tomoko; Itoh, Nobuya

    2012-10-01

    Styrene monooxygenase (StyA, SMOA)- and flavin oxidoreductase (StyB, SMOB)-coding genes of styrene-assimilating bacteria Rhodococcus sp. ST-5 and ST-10 were successfully expressed in Escherichia coli. Determined amino acid sequences of StyAs and StyBs of ST-5 and ST-10 showed more similarity with those of Pseudomonas than with self-sufficient styrene monooxygenase (StyA2B) of Rhodococcus. Recombinant enzymes were purified from E. coli cells as functional proteins, and their properties were characterized in detail. StyBs (flavin oxidoreductase) of strains ST-5 and ST-10 have similar enzymatic properties to those of Pseudomonas, but StyB of strain ST-10 exhibited higher temperature stability than that of strain ST-5. StyAs of strains ST-5 and ST-10 catalyzed the epoxidation of vinyl side-chain of styrene and its derivatives and produced (S)-epoxides from styrene derivatives and showed high stereoselectivity. Both StyAs showed higher specific activity on halogenated styrene derivatives than on styrene itself. Additionally, the enzymes could catalyze the epoxidation of short-chain 1-alkenes to the corresponding (S)-epoxides. Aromatic compounds including styrene, 3-chlorostyrene, styrene oxide, and benzene exhibited marked inhibition of SMO reaction, although linear 1-alkene showed no inhibition of SMO activity at any concentration. PMID:22258641

  4. 40 CFR 63.1427 - Process vent requirements for processes using extended cookout as an epoxide emission reduction...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... epoxide in the reactor liquid at the beginning of the time period, weight percent. k = Reaction rate... process knowledge, reaction kinetics, and engineering knowledge, in accordance with paragraph (a)(2)(i) of... accordance with paragraph (f)(1)(i) of this section, or reaction kinetics in accordance with paragraph...

  5. 40 CFR 721.10145 - Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified reaction products of alkyl... Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino compound... identified generically as modified reaction products of alkyl alcohol, halogenated alkane,...

  6. 40 CFR 721.10145 - Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified reaction products of alkyl... Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino compound... identified generically as modified reaction products of alkyl alcohol, halogenated alkane,...

  7. 40 CFR 721.10145 - Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Modified reaction products of alkyl... Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino compound... identified generically as modified reaction products of alkyl alcohol, halogenated alkane,...

  8. 40 CFR 721.10145 - Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Modified reaction products of alkyl... Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino compound... identified generically as modified reaction products of alkyl alcohol, halogenated alkane,...

  9. 40 CFR 721.10145 - Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Modified reaction products of alkyl... Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino compound... identified generically as modified reaction products of alkyl alcohol, halogenated alkane,...

  10. SYNTHESIS OF TETRAHYDROPYRAN DERIVATIVES VIA A NOVEL INDIUM TRICHLORIDE MEDIATED CROSS-CYCLIZATION BETWEEN EPOXIDES AND HOMOALLYL ALCOHOLS. (R822668)

    EPA Science Inventory

    Abstract

    A cross-cyclization between epoxides and homoallyl alcohols catalyzed by indium chloride generates tetrahydropyran derivatives in high yields.

    Graphical Abstract


    3-D QSAR ANALYSIS OF INHIBITION OF MURINE SOLUBLE EPOXIDE HYDROLASE (MSEH) BY BENZOYLUREAS, ARYLUREAS, AND THEIR ANALOGUES. (R825433)

    EPA Science Inventory

    Two hundred and seventy-one compounds including benzoylureas, arylureas and related compounds were assayed using recombinant murine soluble epoxide hydrolase (MsEH) produced from a baculovirus expression system. Among all the insect growth regulators assayed, 18 benzoylphenylu...

  11. Ingestion of the epoxide hydrolase inhibitor AUDA modulates immune responses of the mosquito, Culex quinquefasciatus during blood feeding.

    PubMed

    Xu, Jiawen; Morisseau, Christophe; Yang, Jun; Lee, Kin Sing Stephen; Kamita, Shizuo G; Hammock, Bruce D

    2016-09-01

    Epoxide hydrolases (EHs) are enzymes that play roles in metabolizing xenobiotic epoxides from the environment, and in regulating lipid signaling molecules, such as juvenile hormones in insects and epoxy fatty acids in mammals. In this study we fed mosquitoes with an epoxide hydrolase inhibitor AUDA during artificial blood feeding, and we found the inhibitor increased the concentration of epoxy fatty acids in the midgut of female mosquitoes. We also observed ingestion of AUDA triggered early expression of defensin A, cecropin A and cecropin B2 at 6 h after blood feeding. The expression of cecropin B1 and gambicin were not changed more than two fold compared to controls. The changes in gene expression were transient possibly because more than 99% of the inhibitor was metabolized or excreted at 42 h after being ingested. The ingestion of AUDA also affected the growth of bacteria colonizing in the midgut, but did not affect mosquito longevity, fecundity and fertility in our laboratory conditions. When spiked into the blood, EpOMEs and DiHOMEs were as effective as the inhibitor AUDA in reducing the bacterial load in the midgut, while EETs rescued the effects of AUDA. Our data suggest that epoxy fatty acids from host blood are immune response regulators metabolized by epoxide hydrolases in the midgut of female mosquitoes, inhibition of which causes transient changes in immune responses, and affects growth of microbes in the midgut. PMID:27369469

  12. INVESTIGATION OF THE SURFACE PROPERTIES OF POLYMERIC SOAPS OBTAINED BY RING-OPENING POLYMERIZATION OF EPOXIDIZED SOYBEAN OIL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epoxidized soybean oil (ESO) was converted to a polysoap via a two-step synthetic procedure of catalytic ring-opening polymerization (PESO), followed by hydrolysis with a base (HPESO). Various molecular weights of PESO and HPESO were prepared by varying the reaction temperature and/or catalyst conc...

  13. Facile preparation of silica-supported Ti catalysts effective for the epoxidation of cyclooctene using Ti-bridged silsesquioxanes.

    PubMed

    Wada, Kenji; Sakugawa, Shuko; Inoue, Masashi

    2012-08-18

    When used as additives, silicas strongly promoted the epoxidation of cyclooctene by (t)BuOOH in the presence of Ti-silsesquioxane (Ti-POSS), where Ti species were found to be bound to the silica surface. Based on this observation, highly-active silica-supported Ti catalysts were prepared by the thermal treatment of mixtures of Ti-POSS and silica.

  14. Covalent binding of benzo(a)pyrene diol epoxide to DNA of mouse skin: in vivo persistence of adducts formation

    SciTech Connect

    Shugart, L.

    1985-01-01

    In the first 9 d after topical application of a single dose of benzo(a)pyrene to the dorsal skin of C/sub 3/H mice, the half-lives of benzo(a)pyrene diol epoxide-DNA adducts and of DNA were determined to be approximately 5 d. These data indicate that, in proliferating mouse skin, benzo(a)pyrene diol epoxide-DNA lesions are not repaired, but are diluted from the genome at a rate equivalent to DNA turnover (i.e., replication versus degradation). Subsequent to this initial period, benzo(a)pyrene diol epoxide-DNA adduct removal continues, but at a much reduced rate. At 30 d posttreatment with benzo(a)pyrene, approximately 15% of the adducts are still detectable; however, their half-lives had increased to 30 d. Similar experiments with a hairless mouse showed that, although the amount of adduct formation was lower initially, the kinetics of aduct disappearance and persistence were essentially the same as found with the C/sub 3/H mouse. The data obtained in this work are consistent with the hypothesis that benzo(a)pyrene diol epoxide adducts persist in a subpopulation of skin cells long after their disappearance by DNA turnover would predict.

  15. Efficient alkene epoxidation catalyzed by molybdenyl acetylacetonate supported on aminated UiO-66 metal−organic framework

    SciTech Connect

    Kardanpour, Reihaneh; Tangestaninejad, Shahram; Mirkhani, Valiollah; Moghadam, Majid; Mohammadpoor-Baltork, Iraj; Zadehahmadi, Farnaz

    2015-03-15

    Metal–organic frameworks (MOFs) containing Mo Schiff base complexes were prepared by post-synthesis method and applied as efficient catalysts in the epoxidation of alkenes with tert-BuOOH. In this manner, UiO-66-NH{sub 2} (UiO=University of Oslo) MOF was reacted with salicylaldehyde and thiophene-2-carbaldehyde to produce bidentate Schiff bases. Then, the Schiff base ligands were used for immobilization of molybdenyl acetylacetonate. These new catalysts were characterized by FT-IR, UV–vis spectroscopic techniques, X-ray diffraction (XRD), BET, inductively coupled plasma atomic emission spectroscopy (ICP-AES) and field emission scanning electron microscopy (FE-SEM). These catalytic systems showed excellent activity in the epoxidation of alkenes such as cyclic and linear ones with tert-butyl hydroperoxide (TBHP) in 1,2-dichloroethane, and reused several times without any appreciable loss of their activity. - Graphical abstract: Efficient alkene epoxidation with TBHP catalyzed by heterogeneous and reusable molybdenum base catalysts is reported. - Highlights: • UiO-66-NH{sub 2} was modified with salicylaldehyde and thiophene-2-carbaldehyde. • The Schiff base groups were used for immobilization of MoO{sub 2}(acac){sub 2}. • The heterogeneous catalysts were prepared. • The prepared catalysts were used for epoxidation of alkenes. • Compared to other catalyst, our catalysts were more efficient and forceful.

  16. Changes in antioxidant capacity and colour associated with the formation of β-carotene epoxides and oxidative cleavage derivatives.

    PubMed

    Gurak, Poliana D; Mercadante, Adriana Z; González-Miret, M L; Heredia, Francisco J; Meléndez-Martínez, Antonio J

    2014-03-15

    In this study HPLC-DAD-MS/MS was applied for the identification of compounds derived from (all-E)-β-carotene following epoxidation and oxidative cleavage. The consequences on the CIELAB colour parameters and antioxidant capacity (AC) were also evaluated. Five apocarotenoids, three secocarotenoids, seven Z isomers and two epoxides were detected as a result of the oxidative cleavage. Four epoxides and three Z isomers were detected as a consequence of the epoxidation reaction. Some compounds were detected for the first time as a result of oxidation reactions. Both treatments led to a marked decrease in b(∗) and Cab(∗) values, indicating that these colour parameters can be used for the rapid assessment of β-carotene oxidation. The oxidative cleavage of β-carotene resulted in increased capacity to both scavenge ABTS(+) and quench singlet oxygen. These results suggest that the study of the AC of these oxidative derivatives and their possible usefulness as food ingredients deserves further attention.

  17. Friction and wear behavior of nanosilica-filled epoxy resin composite coatings

    NASA Astrophysics Data System (ADS)

    Kang, Yingke; Chen, Xinhua; Song, Shiyong; Yu, Laigui; Zhang, Pingyu

    2012-06-01

    Hydrophilic silica nanoparticles (abridged as nano-SiO2) surface-capped with epoxide were dispersed in the solution of epoxy resin (abridged as EP) in tetrahydrofuran under magnetic stirring. Resultant suspension of nano-SiO2 in EP was then coated onto the surface of glass slides and dried at 80 °C in a vacuum oven for 2 h, generating epoxy resin-nanosilica composite coatings (coded as EP/nano-SiO2). EP coating without nano-SiO2 was also prepared as a reference in the same manner. A water contact angle meter and a surface profiler were separately performed to measure the water contact angles and surface roughness of as-prepared EP/nano-SiO2 composite coatings. The friction and wear behavior of as-prepared EP/nano-SiO2 composite coatings sliding against steel in a ball-on-plate contact configuration under unlubricated condition was evaluated. Particularly, the effect of coating composition on the friction and wear behavior of the composite coatings was highlighted in relation to their microstructure and worn surface morphology examined by means of scanning electron microscopy. Results indicate that EP/nano-SiO2 composite coatings have a higher surface roughness and water contact angle than EP coating. The EP-SiO2 coatings doped with a proper amount of hydrophilic SiO2 nanoparticles show lower friction coefficient than EP coating. However, the introduction of surface-capped nanosilica as the filler results in inconsistent change in the friction coefficient and wear rate of the filled EP-matrix composites; and it needs further study to achieve well balanced friction-reducing and antiwear abilities of the composite coatings for tribological applications.

  18. Modeling of Toxicity-Relevant Electrophilic Reactivity for Guanine with Epoxides: Estimating the Hard and Soft Acids and Bases (HSAB) Parameter as a Predictor.

    PubMed

    Zhang, Jing; Wang, Chenchen; Ji, Li; Liu, Weiping

    2016-05-16

    According to the electrophilic theory in toxicology, many chemical carcinogens in the environment and/or their active metabolites are electrophiles that exert their effects by forming covalent bonds with nucleophilic DNA centers. The theory of hard and soft acids and bases (HSAB), which states that a toxic electrophile reacts preferentially with a biological macromolecule that has a similar hardness or softness, clarifies the underlying chemistry involved in this critical event. Epoxides are hard electrophiles that are produced endogenously by the enzymatic oxidation of parent chemicals (e.g., alkenes and PAHs). Epoxide ring opening proceeds through a SN2-type mechanism with hard nucleophile DNA sites as the major facilitators of toxic effects. Thus, the quantitative prediction of chemical reactivity would enable a predictive assessment of the molecular potential to exert electrophile-mediated toxicity. In this study, we calculated the activation energies for reactions between epoxides and the guanine N7 site for a diverse set of epoxides, including aliphatic epoxides, substituted styrene oxides, and PAH epoxides, using a state-of-the-art density functional theory (DFT) method. It is worth noting that these activation energies for diverse epoxides can be further predicted by quantum chemically calculated nucleophilic indices from HSAB theory, which is a less computationally demanding method than the exacting procedure for locating the transition state. More importantly, the good qualitative/quantitative correlations between the chemical reactivity of epoxides and their bioactivity suggest that the developed model based on HSAB theory may aid in the predictive hazard evaluation of epoxides, enabling the early identification of mutagenicity/carcinogenicity-relevant SN2 reactivity.

  19. Mineralogy of fossil resins in Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Bogdasarov, M. A.

    2007-12-01

    The investigation is focused on identification and origin of fossil resins from the Cretaceous, Tertiary, and Quaternary sediments of Northern Eurasia on the basis of detailed study of their physical and chemical characteristics: morphology; size; mass; density; optical, mechanical, and thermal properties; chemical composition; etc. The composition of amorphous organic minerals with polymeric structure, fossil resins included, is studied with IR spectrometry, the EPR method, derivatography at low heating rates, XRD, chemical analysis, emission spectrometry, etc. The results of investigation summarized for the Baltic-Dnieper, North Siberian, and Far East amber-bearing provinces show some similarity of fossil resins in combination with specific features inherent to each province. Resins from the Baltic-Dnieper province should be termed as amber (succinite). Their variety is the most characteristic of Northern and Eastern Europe. Amber-like fossil resins from the North Siberian and Far East provinces are irrelevant to succinite. They usually occur as brittle resins, namely, retinite and gedanite, without jewelry value. Viscous fossil resin rumänite with an expected high economic value occurs in the Far East, on the shore of Sakhalin Island.

  1. 49 CFR 173.165 - Polyester resin kits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Polyester resin kits. 173.165 Section 173.165... Polyester resin kits. (a) Except for transportation by aircraft, polyester resin kits consisting of a base.... Additionally, unless otherwise excepted in this subchapter, polyester resin kits must be packaged...

  2. 76 FR 4936 - Granular Polytetrafluoroethylene Resin From Italy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    ... on granular PTFE resin from Italy and Japan (75 FR 67082-67083 and 67105-67108, November 1, 2010... COMMISSION Granular Polytetrafluoroethylene Resin From Italy AGENCY: United States International Trade... antidumping duty order on granular polytetrafluoroethylene resin (``granular PTFE resin'') from Italy....

  3. 21 CFR 181.32 - Acrylonitrile copolymers and resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylonitrile copolymers and resins. 181.32 Section... Ingredients § 181.32 Acrylonitrile copolymers and resins. (a) Acrylonitrile copolymers and resins listed in... of the vinyl chloride resin) resin—for use only in contact with oleomargarine. (iv)...

  4. 21 CFR 177.2490 - Polyphenylene sulfide resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyphenylene sulfide resins. 177.2490 Section 177... Components of Articles Intended for Repeated Use § 177.2490 Polyphenylene sulfide resins. Polyphenylene sulfide resins (poly(1,4-phenylene sulfide) resins) may be safely used as coatings or components...

  5. 21 CFR 177.2260 - Filters, resin-bonded.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Filters, resin-bonded. 177.2260 Section 177.2260... Components of Articles Intended for Repeated Use § 177.2260 Filters, resin-bonded. Resin-bonded filters may... of this section. (a) Resin-bonded filters are prepared from natural or synthetic fibers to which...

  6. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be...) Acrylamide-acrylic acid resins are produced by the polymerization of acrylamide with partial hydrolysis or...

  7. Cross-linked enzyme aggregates of Mung bean epoxide hydrolases: a highly active, stable and recyclable biocatalyst for asymmetric hydrolysis of epoxides.

    PubMed

    Yu, Chun-Yang; Li, Xiao-Feng; Lou, Wen-Yong; Zong, Min-Hua

    2013-06-20

    A highly active and stable cross-linked enzyme aggregates (CLEAs) of epoxide hydrolases (EHs) from Mung bean, which plays a crucial role in synthesis of valuable enantiopure diols, were successfully prepared and characterized. Under the optimum preparation conditions, the activity recovery of CLEAs recorded 92%. The CLEAs were more efficient than the free enzyme in catalyzing asymmetric hydrolysis of styrene oxide to (R)-1-phenyl-1,2-ethanediol in organic solvent-containing biphasic system. The biocatalytic reaction performed in n-hexane/buffer biphasic system had a clearly faster initial reaction rate, much higher product yield and product e.e. value than that in aqueous medium. Moreover, the optimal volume ratio of n-hexane to buffer, reaction temperature, buffer pH value and substrate concentration for the enzymatic hydrolysis were found to be 1:1, 40 °C, 7.5 and 30 mM, respectively, under which the initial reaction rate, product yield and product e.e. value were 13.26 mM/h, 46% and 93.5%, respectively. The CLEAs retained more than 50% of their initial activity after 8 batches of re-use in phosphate buffer and maintained 53% of their original activity after 8 reaction cycle in biphasic system. The efficient biocatalytic process with CLEAs proved to be feasible on a 250-mL preparative scale, exhibiting great potential for asymmetric synthesis of chiral diols.

  8. BENZO[a]PYRENE DIOL EPOXIDE PERTURBATION OF CELL CYCLE KINETICS OF SYNCHRONIZED MOUSE LIVER EPITHELIAL CELLS

    SciTech Connect

    Pearlman, A.L.; Navsky, B.N.; Bartholomew, J.C

    1980-07-01

    A cell cycle synchronization system is described for the analysis of the perturbation of cell cycle kinetics and the cycle-phase specificity of chemicals and other agents. We used the system to study the effects of ({+-})r-7, t-8-dihydroxy-t-9, 10-oxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BaP diol epoxide) upon the cell cycle of mouse liver epithelial cells(NMuLi). BaP diol epoxide(0.6 uM) was added to replated cultures of NMuLi cells that had been synchronized in various stages of the cell cycle by centrifugal elutriation. DNA histograms were obtained by flow cytometry as a function of time after replating. The data were analyzed by a computer modeling routine and reduced to a few graphs illustrating the 'net effects' of the BaP diol epoxide relative to controls. BaP diol epoxide slowed S-phase traversal in all samples relative to their respective control. Traversal through G{sub 2}M was also slowed by at least 50%. BaP diol epoxide had no apparent effect upon G{sub 1} traversal by cycling cells, but delayed the recruitment of quiescent G{sub 0} cells by about 2 hrs. The methods described constitute a powerful new approach for probing the cell cycle effects of a wide variety of agents. The present system appears to be extremely sensitive and capable of characterizing the action of agents on each phase of the cell cycle. The methods are automatable and would allow for the assay and possible differential characterization of mutagens and carcinogens.

  9. Reaction Mechanism for Direct Propylene Epoxidation by Alumina-Supported Silver Aggregates. The Role of the Particle / Support Interface

    SciTech Connect

    Cheng, Lei; Yin, Chunrong; Mehmood, Faisal; Liu, Bin; Greeley, Jeffrey P.; Lee, Sungsik; Lee, Byeongdu; Seifert, Soenke; Winans, R. E.; Teschner, D.; Schlogl, Robert; Vajda, S.; Curtiss, Larry A.

    2013-11-21

    Sub-nanometer Ag aggregates on alumina supports have been found to be active toward direct propylene epoxidation to propylene oxide by molecular oxygen at low temperatures, with a negligible amount of carbon dioxide formation (Science 328, p. 224, 2010). In this work, we computationally and experimentally investigate the origin of the high reactivity of the sub-nanometer Ag aggregates. Computationally, we study O2 dissociation and propylene epoxidation on unsupported Ag19 and Ag20 clusters, as well as alumina-supported Ag19. The O2 dissociation and propylene epoxidation apparent barriers at the interface between the Ag aggregate and the alumina support are calculated to be 0.2 and 0.2~0.4 eV, respectively. These barriers are somewhat lower than those on sites away from the interface. The mechanism at the interface is similar to what was previously found for the silver trimer on alumina and can account for the high activity observed for the direct oxidation of propylene on the Ag aggregates. The barriers for oxygen dissociation on these model systems both at the interface and on the surfaces are small compared to crystalline surfaces, indicating that availability of oxygen will not be a rate limiting step for the aggregates, as in the case of the crystalline surfaces. Experimentally, we investigate Ultrananocrystalline Diamond (UNCD)-supported silver aggregates under reactive conditions of propylene partial oxidation. The UNCD-supported Ag clusters are found to be not measurably active toward propylene oxidation, in contrast to the alumina supported Ag clusters. This suggests that the lack of metal-oxide interfacial sites of the Ag-UNCD catalyst, limits the epoxidation catalytic activity. This combined computational and experimental study shows the importance of the metal-oxide interface as well as the non-crystalline nature of the alumina-supported sub-nanometer Ag aggregate catalysts for propylene epoxidation.

  10. Effect of structure and composition on epoxidation of hexene catalyzed by microporous and mesoporous Ti-Si mixed oxides

    SciTech Connect

    Liu, Z.; Crumbaugh, G.M.; Davis, R.J.

    1996-03-01

    A series of microporous titania-silica mixed oxides were characterized and tested as catalysts for the liquid-phase epoxidation of 1-hexene with t-butyl hydroperoxide. Results from {sup 29}Si MAS NMR spectroscopy verified results from earlier characterization studies that indicated cohydrolysis of alkoxide precursors produced well-mixed oxide samples. The catalytic activity of the samples for hexene epoxidation at 353 K increased with increasing silica content. Since the fraction of tetrahedral Ti atoms in the samples also increased with silica content, the active site for the reaction is proposed to be a tetrahedrally coordinated Ti atom in a silica matrix. Polar solvents like water, acetone, and methanol inhibited the epoxidation reaction. To investigate the effect of pore size on activity, mesoporous Ti-Si mixed oxides analogous to MCM-41 were synthesized. The mesoporous samples were the most active and selective catalysts for epoxidation with TBHP, presumably due to the ease of access of the reactants to the active Ti sites. Results from EXAFS and UV reflectance spectroscopy indicated that Ti atoms in the mesoporous mixed oxides are tetrahedrally coordinated to oxygen atoms with the same Ti-O bond distance as TS-1. However, the activities of mesoporous samples are orders of magnitude lower than that of TS-1 for hexene epoxidation with aqueous hydrogen peroxide. Lower hydrophobicity of a silica mesopore (2-4 nm) compared to a TS-1 micropore (0.6 nm) may account for the difference in activity observed in reactions with aqueous hydrogen peroxide. 26 refs., 5 figs., 5 tabs.

  11. Distribution of soluble and microsomal epoxide hydrolase in the mouse brain and its contribution to cerebral epoxyeicosatrienoic acid metabolism.

    PubMed

    Marowsky, A; Burgener, J; Falck, J R; Fritschy, J-M; Arand, M

    2009-10-01

    Epoxide hydrolases comprise a family of enzymes important in detoxification and conversion of lipid signaling molecules, namely epoxyeicosatrienoic acids (EETs), to their supposedly less active form, dihydroxyeicosatrienoic acids (DHETs). EETs control cerebral blood flow, exert analgesic, anti-inflammatory and angiogenic effects and protect against ischemia. Although the role of soluble epoxide hydrolase (sEH) in EET metabolism is well established, knowledge on its detailed distribution in rodent brain is rather limited. Here, we analyzed the expression pattern of sEH and of another important member of the EH family, microsomal epoxide hydrolase (mEH), in mouse brain by immunohistochemistry. To investigate the functional relevance of these enzymes in brain, we explored their individual contribution to EET metabolism in acutely isolated brain cells from respective EH -/- mice and wild type littermates by mass spectrometry. We find sEH immunoreactivity almost exclusively in astrocytes throughout the brain, except in the central amygdala, where neurons are also positive for sEH. mEH immunoreactivity is abundant in brain vascular cells (endothelial and smooth muscle cells) and in choroid plexus epithelial cells. In addition, mEH immunoreactivity is present in specific neuronal populations of the hippocampus, striatum, amygdala, and cerebellum, as well as in a fraction of astrocytes. In freshly isolated cells from hippocampus, where both enzymes are expressed, sEH mediates the bulk of EET metabolism. Yet we observe a significant contribution of mEH, pointing to a novel role of this enzyme in the regulation of physiological processes. Furthermore, our findings indicate the presence of additional, hitherto unknown cerebral epoxide hydrolases. Taken together, cerebral EET metabolism is driven by several epoxide hydrolases, a fact important in view of the present targeting of sEH as a potential therapeutic target. Our findings suggest that these different enzymes have

  12. Resin/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.

    1974-01-01

    Processing techniques were developed for the fabrication of both polyphenylquinoxaline and polyimide composites by the in situ polymerization of monomeric reactants directly on the graphite reinforcing fibers, rather than using previously prepared prepolymer varnishes. Void-free polyphenylquinoxaline composites were fabricated and evaluated for room and elevated flexure and shear properties. The technology of the polyimide system was advanced to the point where the material is ready for commercial exploitation. A reproducible processing cycle free of operator judgment factors was developed for fabrication of void-free composites exhibiting excellent mechanical properties and a long time isothermal life in the range of 288 C to 316 C. The effects of monomer reactant stoichiometry and process modification on resin flow were investigated. Demonstration of the utility and quality of this polyimide system was provided through the successful fabrication and evaluation of four complex high tip speed fan blades.

  13. Mutagenicity and tumorigenicity of the four enantiopure bay-region 3,4-diol-1,2-epoxide isomers of dibenz[a,h]anthracene.

    PubMed

    Chang, Richard L; Wood, Alexander W; Huang, Mou Tuan; Xie, Jian Guo; Cui, Xiao Xing; Reuhl, Kenneth R; Boyd, D R; Lin, Yong; Shih, Weichung Joe; Balani, Suresh K; Yagi, Haruhiko; Jerina, Donald M; Conney, Allan H

    2013-09-01

    Each enantiomer of the diastereomeric pair of bay-region dibenz[a,h]anthracene 3,4-diol-1,2-epoxides in which the benzylic 4-hydroxyl group and epoxide oxygen are either cis (isomer 1) or trans (isomer 2) were evaluated for mutagenic activity. In strains TA 98 and TA 100 of Salmonella typhimurium, the diol epoxide with (1S,2R,3S,4R) absolute configuration [(-)-diol epoxide-1] had the highest mutagenic activity. In Chinese hamster V-79 cells, the diol epoxide with (1R,2S,3S,4R) absolute configuration [(+)-diol epoxide-2] had the highest mutagenic activity. The (1R,2S,3R,4S) diol epoxide [(+)-diol epoxide-1] also had appreciable activity, whereas the other two bay-region diol epoxide enantiomers had very low activity. In tumor studies, the (1R,2S,3S,4R) enantiomer was the only diol epoxide isomer tested that had strong activity as a tumor initiator on mouse skin and in causing lung and liver tumors when injected into newborn mice. This stereoisomer was about one-third as active as the parent hydrocarbon, dibenz[a,h]anthracene as a tumor initiator on mouse skin; it was several-fold more active than dibenz[a,h]anthracene as a lung and liver carcinogen when injected into newborn mice. (-)-(3R,4R)-3β,4α-dihydroxy-3,4-dihydro-dibenz[a,h]anthracene [(-)-3,4-dihydrodiol] was slightly more active than dibenz[a,h]anthracene as a tumor initiator on mouse skin, whereas (+)-(3S,4S)-3α,4β-dihydroxy-3,4-dihydro-dibenz[a,h]anthracene [(+)-3,4-dihydrodiol] had only very weak activity. The present investigation and previous studies with the corresponding four possible enantiopure bay-region diol epoxide enantiomers/diastereomers of benzo[a]pyrene, benz[a]anthracene, chrysene, benzo[c]phenanthrene, dibenz[c,h]acridine, dibenz[a,h]acridine and dibenz[a,h]anthracene indicate that the bay-region diol epoxide enantiomer with [R,S,S,R] absolute stereochemistry has high tumorigenic activity on mouse skin and in newborn mice.

  14. Combination of natural fiber Boehmeria nivea (ramie) with matrix epoxide for bullet proof vest body armor

    NASA Astrophysics Data System (ADS)

    Anggoro, Didi Dwi; Kristiana, Nunung

    2015-12-01

    Ballistic protection equipment, such as a bulletproof vest, is a soldier's most important means of preserving life and survivability in extreme combat conditions. The bulletproof vests are designed to protect the user's chest from injury without disturbing the ability to perform his duties. Aromatic polyamide or aramid fibers known under the trade name Kevlar, Trawon and so is synthetic fiber materials commonly used in the manufacture of bulletproof vests. This synthetic fibers have high tensile strength and ductility. Kevlar is expensive and imported material. In this study, will introduce local natural raw materials, ramie fiber (Boehmeria nivea) which is cheaper and environmentally friendly. It has enough tenacity and tensile strength as a bulletproof vest. This experiment uses two panels, there are Panel A as front surface of Panel B. Panel A is a combination of ramie and epoxide matrix, while panel B is only ramie. From several variations of experimental combinations between Panel A and Panel B, optimal combination obtained with 16 layers of panel A and 31-34 layers of panel B which is able to protect againts cal. 7.65 mm × 17 mm (.32 ACP) bullet fired through pistol .32 Pindad from a distance of 20 meters. Panel with a size of 20 cm × 20 cm has a total thickness between 12,922 to13,745 mm and a total weight between 506,26 to 520,926gram. Scanning electron microscopy (SEM) observations indicated that the porosity and surface area of the ramie fiber is smooth, fiber surfaces showed topography with micropores. SEM also showed well-arranged structure of fibers bonding. Energy Dispersive X-ray (EDX) analysis indicated 100 % carbon contents in ramie fiber. Test result indicates that panel from composite ramie-epoxide can reach the level 1of International Standard of NIJ - 010104. Compared to panel from polyester fiber, the panel from composite ramie-epoxide (0,50-0,52 kg) is lighter weight than panel polyester fiber (1,642 kg).

  15. The use of cycloaliphatic epoxides in latex and ultraviolet-curable coatings

    NASA Astrophysics Data System (ADS)

    Nash, Heather April

    The use of more environmentally friendly coating technology continues to grow as more stringent EPA regulations demand their usage. Two types of coatings commonly employed for addressing these issues are latex and UV-curable systems. In this dissertation, the use of cycloaliphatic epoxides was investigated in both crosslinkable core-shell latex formulations as well as the major component in cationic UV-curable coatings. In order to reduce the heat required for latex synthesis, redox initiators were studied as an alternative to the thermal initiator commonly used. It was found that using such initiators gave similar properties to the latexes prepared with the thermal initiator, as well as some enhanced properties. In addition, the base used for neutralizing the carboxyl-functional latexes was studied. It was found that the base used can have an effect on particle size as well as mechanical properties. The UV-curable formulations were studied in terms of the effect of composition variables on the mechanical properties as well as on the UV-curing kinetics. The introduction of more mobile species into cycloaliphatic epoxide formulations resulted in an increase in the cure rate during UV irradiation and an enhancement in coating properties. The effect of introducing different components into the formulations was also studied in terms of cure kinetics and coatings properties. By using model alcohols and a model epoxide monomer, the UV cure rate was enhanced as the concentration of these materials was increased. The effect of post-cure treatment on the films was also investigated to determine both physical and chemical changes in the films as a function of treatment. The treatments studied included annealing, solvent treatment, and acid treatment. These treatments were found to have both physical and chemical effects on the films. In addition, the effect of post-cure humidity was evaluated for the effect on the dark cure reactions in the films. High humidity had a greater

  16. Combination of natural fiber Boehmeria nivea (ramie) with matrix epoxide for bullet proof vest body armor

    SciTech Connect

    Anggoro, Didi Dwi Kristiana, Nunung

    2015-12-29

    Ballistic protection equipment, such as a bulletproof vest, is a soldier’s most important means of preserving life and survivability in extreme combat conditions. The bulletproof vests are designed to protect the user’s chest from injury without disturbing the ability to perform his duties. Aromatic polyamide or aramid fibers known under the trade name Kevlar, Trawon and so is synthetic fiber materials commonly used in the manufacture of bulletproof vests. This synthetic fibers have high tensile strength and ductility. Kevlar is expensive and imported material. In this study, will introduce local natural raw materials, ramie fiber (Boehmeria nivea) which is cheaper and environmentally friendly. It has enough tenacity and tensile strength as a bulletproof vest. This experiment uses two panels, there are Panel A as front surface of Panel B. Panel A is a combination of ramie and epoxide matrix, while panel B is only ramie. From several variations of experimental combinations between Panel A and Panel B, optimal combination obtained with 16 layers of panel A and 31-34 layers of panel B which is able to protect againts cal. 7.65 mm × 17 mm (.32 ACP) bullet fired through pistol .32 Pindad from a distance of 20 meters. Panel with a size of 20 cm × 20 cm has a total thickness between 12,922 to13,745 mm and a total weight between 506,26 to 520,926gram. Scanning electron microscopy (SEM) observations indicated that the porosity and surface area of the ramie fiber is smooth, fiber surfaces showed topography with micropores. SEM also showed well-arranged structure of fibers bonding. Energy Dispersive X-ray (EDX) analysis indicated 100 % carbon contents in ramie fiber. Test result indicates that panel from composite ramie-epoxide can reach the level 1of International Standard of NIJ - 010104. Compared to panel from polyester fiber, the panel from composite ramie-epoxide (0,50-0,52 kg) is lighter weight than panel polyester fiber (1,642 kg)

  17. Further characterization of benzo[a]pyrene diol-epoxide (BPDE)-induced comet assay effects.

    PubMed

    Bausinger, Julia; Schütz, Petra; Piberger, Ann Liza; Speit, Günter

    2016-03-01

    The present study aims to further characterize benzo[a]pyrene diol-epoxide (BPDE)-induced comet assay effects. Therefore, we measured DNA effects by the comet assay and adduct levels by high-performance liquid chromatography (HPLC) in human lymphocytes and A549 cells exposed to (±)-anti-benzo[a]pyrene-7,8-diol 9,10-epoxide [(±)-anti-BPDE] or (+)-anti-benzo[a]pyrene-7,8-diol 9,10-epoxide [(+)-anti-BPDE]. Both, the racemic form and (+)-anti-BPDE, which is the most relevant metabolite with regard to mutagenicity and carcinogenicity, induced DNA migration in cultured lymphocytes in the same range of concentrations to a similar extent in the alkaline comet assay after exposure for 2h. Nevertheless, (+)-anti-BPDE induced significantly enhanced DNA migration after 16 and 18h post-cultivation which was not seen in response to (±)-anti-BPDE. Combination of the comet assay with the Fpg (formamidopyrimidine-DNA glycosylase) protein did not enhance BPDE-induced effects and thus indicated the absence of Fpg-sensitive sites (oxidized purines, N7-guanine adducts, AP-sites). The aphidicolin (APC)-modified comet assay suggested significant excision repair activity of cultured lymphocytes during the first 18h of culture after a 2 h-exposure to BPDE. In contrast to these repair-related effects measured by the comet assay, HPLC analysis of stable adducts did not reveal any significant removal of (+)-anti-BPDE-induced adducts from lymphocytes during the first 22h of culture. On the other hand, HPLC measurements indicated that A549 cells repaired about 70% of (+)-anti-BPDE-induced DNA-adducts within 22h of release. However, various experiments with the APC-modified comet assay did not indicate significant repair activity during this period in A549 cells. The conflicting results obtained with the comet assay and the HPLC-based adduct analysis question the real cause for BPDE-induced DNA migration in the comet assay and the reliability of the APC-modified comet assay for the

  18. Cobalt Ions Improve the Strength of Epoxy Resins

    NASA Technical Reports Server (NTRS)

    Stoakley, D. M.; St. Clair, A. K.

    1986-01-01

    Technique developed for improving mechanical strength of epoxy resins by adding cobalt ions in form of tris(acetylacetonato)cobalt (III) complex. Solid cast disks prepared from cobalt ion-containing epoxy resins tested for flexural strength and stiffness. Incorporation of cobalt ions into epoxies increased flexural strength of resins by 10 to 95 percent. Suitable resins for this technique include any liquid or solid TGMDA resins. Improved epoxy formulation proves useful as composite matrix resin, adhesive, or casting resin for applications on commercial and advanced aircraft.

  19. Chemical Characterization of Phenol/Formaldehyde Resins

    NASA Technical Reports Server (NTRS)

    Brayden, T. H.

    1986-01-01

    Report discusses tests of commercial phenol/formaldehyde resins to establish relationships among composition before use, behavior during curing, and strength after curing. Resin used in carbon/carbon laminates. In curing process, two molecules of phenol joined together in sequence of reactions involving molecule of formaldehyde. Last step of sequence, molecule of water released. Sequence repeats until one of ingredients used up, leaving solidified thermoset plastic. Issues to be resolved: number and relative abundances of ingredients, presence of certain chemical groups, heat-producing ability of resin, and range of molecular weights present.

  20. Improved microbial-check-valve resins

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Putnam, D. F.

    1980-01-01

    Improved microbial-check-valve resins have been tested for their microbicidal effectiveness and long-term stability. Resins give more-stable iodine concentrations than previous preparations and do not impart objectionable odor or taste to treated water. Microbial check valve is small cylindrical device, packed with iodide-saturated resin, that is installed in water line where contamination by micro-organisms is to be prevented. Prototype microbial check valve was tested for stability and performance under harsh environmental conditions. Effectiveness was 100 percent at 35 deg, 70 deg, and 160 deg F (2 deg, 21 deg, and 71 deg C).