Sample records for epoxy compounds

  1. Occupational dermatoses from exposure to epoxy resin compounds in a ski factory.

    PubMed

    Jolanki, R; Tarvainen, K; Tatar, T; Estlander, T; Henriks-Eckerman, M L; Mustakallio, K K; Kanerva, L

    1996-06-01

    Of 22 workers in a ski factory, occupational allergic contact dermatitis was found in 8. 6 were sensitive to epoxy resin compounds, i.e., epoxy resins, hardeners or diluents, 1 to cobalt in glass-fiber reinforcements, and 1 to formaldehyde in a urea-formaldehyde glue and a lacquer. 4 workers had irritant contact dermatitis from epoxy resin compounds, lacquers, sanding dust, or glass-fiber dust. 3 had contact allergy from a new sensitizer, diethyleneglycol diglycidyl ether, in a reactive diluent. Immediate transfer of workers sensitized to epoxy resin from epoxy exposure prevents aggravation of their dermatitis and broadening of the sensitization to epoxy hardeners, diluents and other compounds.

  2. Effect of pretreatment with epoxy compounds on the mechanical properties of bovine pericardial bioprosthetic materials.

    PubMed

    Xi, T; Liu, F; Xi, B

    1992-07-01

    Early failures of bovine pericardial heart valves are due to leaflet perforation, tearing and calcification. Since glutaraldehyde fixation has been shown to produce marked changes in leaflet mechanics and has been linked to development of calcification, bovine pericardium fixed with the four hydrophilic epoxy formulations and their mechanical properties are studied in this paper. We measured the thicknesses, shrinkage temperatures, stress relaxations and stress-strain curves of bovine pericardiums after different treatments with (1) non-treatment (fresh), (2) glutaraldehyde (GA), (3) epoxy compounds followed by the posttreatment with GA (EP 1#, EP 2#), and (4) epoxy compounds (EP 3# and EP 4#). Results of this study showed that the hydrophilic epoxy compounds are good crosslinking agents. There are no significant differences of shrinkage temperature and ultimate tensile stress among all tissue samples pretreated with GA, EP 1# and EP 2#. However, the stress relaxations of tissue-samples pretreated with epoxy compounds followed by the posttreatment with GA (EP 1# and EP 2#) are significantly slower than that pretreated with GA, and the strains at fracture of EP 1# and EP 2# are also significantly larger than that of GA or epoxy compounds. These facts show that the bovine pericardium pretreated with the epoxy compound followed by the posttreatment with GA (EP 1# and EP 2#) possesses greater tenacity and potential durability in dynamic stress.

  3. Evaluation of epoxy compounds as a material for patching and protecting concrete : final report.

    DOT National Transportation Integrated Search

    1971-01-01

    The final report summarizes the results of a study of the use of epoxy compounds in the shallow surface repair and sealing of concrete bridge decks. The research effort concentrated on the use of epoxy resin systems as bonded overlays and included ev...

  4. Method of making thermally removable epoxies

    DOEpatents

    Loy, Douglas A.; Wheeler, David R.; Russick, Edward M.; McElhanon, James R.; Saunders, Randall S.

    2002-01-01

    A method of making a thermally-removable epoxy by mixing a bis(maleimide) compound to a monomeric furan compound containing an oxirane group to form a di-epoxy mixture and then adding a curing agent at temperatures from approximately room temperature to less than approximately 90.degree. C. to form a thermally-removable epoxy. The thermally-removable epoxy can be easily removed within approximately an hour by heating to temperatures greater than approximately 90.degree. C. in a polar solvent. The epoxy material can be used in protecting electronic components that may require subsequent removal of the solid material for component repair, modification or quality control.

  5. Process for epoxy foam production

    DOEpatents

    Celina, Mathias C [Albuquerque, NM

    2011-08-23

    An epoxy resin mixture with at least one epoxy resin of between approximately 60 wt % and 90 wt %, a maleic anhydride of between approximately 1 wt % and approximately 30 wt %, and an imidazole catalyst of less than approximately 2 wt % where the resin mixture is formed from at least one epoxy resin with a 1-30 wt % maleic anhydride compound and an imidazole catalyst at a temperature sufficient to keep the maleic anhydride compound molten, the resin mixture reacting to form a foaming resin which can then be cured at a temperature greater than 50.degree. C. to form an epoxy foam.

  6. Introducing cellulose nanocrystals in sheet molding compounds (SMC)

    Treesearch

    Amir Asadi; Mark Miller; Sanzida Sultana; Robert J. Moon; Kyriaki Kalaitzidou

    2016-01-01

    The mechanical properties of short glass fiber/epoxy composites containing cellulose nanocrystals (CNC) made using sheet molding compound (SMC) manufacturing method as well as the rheological and thermomechanical properties of the CNC-epoxy composites were investigated as a function of the CNC content. CNC up to 1.4 wt% were dispersed in the epoxy to produce the resin...

  7. Occupational skin hazards from synthetic plastics.

    PubMed

    Tosti, A; Guerra, L; Vincenzi, C; Peluso, A M

    1993-01-01

    Epoxy and acrylic resins have numerous industrial applications but are also widely used in the household environment. These compounds are presently one of the most important sources of occupational contact dermatitis. Contact sensitization to epoxy resins is usually caused by the resin itself but hardeners or other additives, such as reactive diluents, plasticizers, fillers and pigments, can occasionally be responsible. Since completely cured epoxy resins are not sensitizers, epoxy resin sensitization is always due to the presence, in the final polymer, of uncured allergenic low molecular weight oligomers. Acrylates are now considered the fourth most common cause of contact sensitization due to resins. Unpolymerized monomers of acrylic compounds are known to be responsible for the contact allergy. Accelerators, inhibitors and catalysts, which are usually added to the acrylates to promote the polymerization process, can also sensitize. Both allergic and irritant contact dermatitis may be caused by exposure to epoxy or acrylic resins and their additives. Contact urticaria, allergic or irritant airborne contact dermatitis caused by volatile compounds, onychia and paronychia can also occur. From January of 1984 to May of 1992 we detected 39 cases of occupational allergic contact dermatitis to epoxy resin system substances and 11 cases of occupational contact sensitization to acrylic compounds. In our experience, the electronics industry as well as paint and glue related activities were the most important sources of epoxy sensitization. Dental materials and anaerobic sealants were found to be the most frequent acrylate sensitizers.

  8. Process for Preparing Epoxy-Reinforced Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B (Inventor)

    2016-01-01

    One-pot reaction process for preparing epoxy-reinforced monolithic silica aerogels comprising the reaction of at least one silicon compound selected from the group consisting of alkoxysilanes, orthosilicates and combination thereof in any ratio with effective amounts of an epoxy monomer and an aminoalkoxy silane to obtain an epoxy monomer-silica sol in solution, subsequently preparing an epoxy-monomer silica gel from said silica sol solution followed by initiating polymerization of the epoxy monomer to obtain the epoxy-reinforced monolithic silica aerogel.

  9. Method for chemically inactivating energetic materials and forming a nondetonable product therefrom

    DOEpatents

    Tadros, Maher E.

    2002-01-01

    A method for rendering nondetonble energetic materials, such as are contained in or removed from decommissioned ordnance. The energetic materials are either combined with epoxy hardener or are combined with other compounds, preferably amine compounds, to form a substance that functions as an epoxy hardener. According to the invention, energetic materials (including TNT, RDX and Composition B) that are treated according to the invention method yield a reaction product that is non-explosive, that serves to harden or cure conventional epoxy resin to form a stable, nonexplosive waste product. Epoxy hardener made using the method of the invention is also described.

  10. Insulating Materials Comprising Polysilazane, Methods of Forming Such Insulating Materials, and Precursor Formulations Comprising Polysilazane

    NASA Technical Reports Server (NTRS)

    Larson, Robert S. (Inventor); Fuller, Michael E. (Inventor)

    2013-01-01

    Methods of forming an insulating material comprising combining a polysilazane, a cross-linking compound, and a gas-generating compound to form a reaction mixture, and curing the reaction mixture to form a modified polysilazane. The gas-generating compound may be water, an alcohol, an amine, or combinations thereof. The cross-linking compound may be an isocyanate, an epoxy resin, or combinations thereof. The insulating material may include a matrix comprising one of a reaction product of a polysilazane and an isocyanate and a reaction product of a polysilazane and an epoxy resin. The matrix also comprises a plurality of interconnected pores produced from one of reaction of the polysilazane and the isocyanate and from reaction of the polysilazane and the epoxy resin. A precursor formulation that comprises a polysilazane, a cross-linking compound, and a gas-generating compound is also disclosed.

  11. Biotransformation of 20(R)-panaxatriol by Mucor racemosus and the anti-hepatic fibrosis activity of some products.

    PubMed

    Chen, Guangtong; Li, Jie; Yan, Sensen; Lin, Haijun; Wu, Juanjuan; Zhai, Xuguang; Song, Yan; Li, Jianlin

    2017-08-01

    Biocatalysis of 20(R)-panaxatriol (PT) was performed by the fungus Mucor racemosus. Six metabolites (1-6) including five new compounds were obtained, and their structures were elucidated as 20(R),25-epoxy-12β,24β-dihydroxydammaran-3,6-dione (2), 20(R),25-epoxy-12β,22β-dihydroxydammaran-3,6-dione (3), 20(R),25-epoxy-23β-hydroxydammaran-3,6,12-trione (4), 20(R),25-epoxy-12β,23α- dihydroxydammaran-3,6-dione (5), and 20(R),25-epoxy-12β-hydroxydammaran-3,6,23-trione (6) by spectroscopic analysis. Pharmacological studies revealed that compounds 2, 3 and 5 exhibited significant antihepatic fibrosis activity, while 4 and 6 showed cytotoxicity against HSC-T6 cells.

  12. Epoxy-α-Lapachone Has In Vitro and In Vivo Anti-Leishmania (Leishmania) amazonensis Effects and Inhibits Serine Proteinase Activity in This Parasite

    PubMed Central

    Souza-Silva, Franklin; Bourguignon, Saulo Cabral; Pereira, Bernardo Acácio Santini; Côrtes, Luzia Monteiro de Castro; de Oliveira, Luiz Filipe Gonçalves; Henriques-Pons, Andrea; Finkelstein, Lea Cysne; Ferreira, Vitor Francisco; Carneiro, Paula Fernandes; de Pinho, Rosa Teixeira; Caffarena, Ernesto Raul

    2015-01-01

    Leishmania (Leishmania) amazonensis is a protozoan that causes infections with a broad spectrum of clinical manifestations. The currently available chemotherapeutic treatments present many problems, such as several adverse side effects and the development of resistant strains. Natural compounds have been investigated as potential antileishmanial agents, and the effects of epoxy-α-lapachone on L. (L.) amazonensis were analyzed in the present study. This compound was able to cause measurable effects on promastigote and amastigote forms of the parasite, affecting plasma membrane organization and leading to death after 3 h of exposure. This compound also had an effect in experimentally infected BALB/c mice, causing reductions in paw lesions 6 weeks after treatment with 0.44 mM epoxy-α-lapachone (mean lesion area, 24.9 ± 2.0 mm2), compared to untreated animals (mean lesion area, 30.8 ± 2.6 mm2) or animals treated with Glucantime (mean lesion area, 28.3 ± 1.5 mm2). In addition, the effects of this compound on the serine proteinase activities of the parasite were evaluated. Serine proteinase-enriched fractions were extracted from both promastigotes and amastigotes and were shown to act on specific serine proteinase substrates and to be sensitive to classic serine proteinase inhibitors (phenylmethylsulfonyl fluoride, aprotinin, and antipain). These fractions were also affected by epoxy-α-lapachone. Furthermore, in silico simulations indicated that epoxy-α-lapachone can bind to oligopeptidase B (OPB) of L. (L.) amazonensis, a serine proteinase, in a manner similar to that of antipain, interacting with an S1 binding site. This evidence suggests that OPB may be a potential target for epoxy-α-lapachone and, as such, may be related to the compound's effects on the parasite. PMID:25583728

  13. Poly(arylene ether-co-imidazole)s as toughness modifiers for epoxy resins

    NASA Technical Reports Server (NTRS)

    Mcdaniel, Patricia D. (Inventor); Connell, John W. (Inventor)

    1994-01-01

    A toughened epoxy was prepared by reacting an epoxy resin with a poly(arylene ether-co-imidazole)s (PAEI). The epoxy resin comprises N,N,N',N'tetraglycidyl-4,4'- methylenebisbenzenamine and 4-aminophenyl sulfone. The PAEI was prepared by reacting an aromatic bisphenol, a bisphenol imidazole, and an activated aromatic dihalide or dinitro compound in the presence of potassium carbonate in a polar aprotic solvent at an elevated temperature. The epoxies which were modified with these particular PAEI's showed a significant increase in toughness with only a 10 weight percent loading of the PAEI into the epoxy. These toughened epoxies were used to prepare composites and molded parts.

  14. Lightweight sheet molding compound (SMC) composites containing cellulose nanocrystals

    Treesearch

    Amir Asadi; Mark Miller; Arjun V. Singh; Robert J. Moon; Kyriaki Kalaitzidou

    2017-01-01

    A scalable technique was introduced to produce high volume lightweight composites using sheet molding compound (SMC) manufacturing method by replacing 10 wt% glass fibers (GF) with a small amount of cellulose nanocrystals (CNC). The incorporation of 1 and 1.5 wt% CNC by dispersing in the epoxy matrix of short GF/epoxy SMC composites with 25 wt% GF content (25GF/CNC-...

  15. Characterization of epoxy carotenoids by fast atom bombardment collision-induced dissociation MS/MS.

    PubMed

    Maoka, Takashi; Fujiwara, Yasuhiro; Hashimoto, Keiji; Akimoto, Naoshige

    2004-02-01

    The characterization and structure of epoxy carotenoids possessing 5,6-epoxy, 5,8-epoxy and 3,6-epoxy end groups conjugated to the polyene chain were investigated using high-energy fast atom bombardment collision-induced dissociation MS/MS methods. In addition to [M - 80](+*), a characteristic fragment ion of an epoxy carotenoid, product ions resulting from the cleavage of C-C bonds in the polyene chain from the epoxy end group, such as m/z 181 (b ion) and 121 (c ion), were detected. On the other hand, diagnostic ions of m/z 286 (e-H ion) and 312 (f-H ion) were observed, not in the 5,6-epoxy or 5,8-epoxy carotenoid but in the 3,6-epoxy carotenoid. These fragmentation patterns can be used to distinguish 3,6-epoxy carotenoids from 5,6-epoxy or 5,8-epoxy carotenoids. The structure of an epoxy carotenoid, 3,6-epoxy-5,6-dihydro-7',8'-didehydro-beta,beta-carotene-5,3'-diol (8), isolated from oyster, was characterized using FAB CID-MS/MS by comparing fragmentation patterns with those of related known compounds.

  16. An investigation of chemically-induced improvement in saturation moisture characteristics of epoxies

    NASA Technical Reports Server (NTRS)

    Singh, J. J.; St.clair, T. L.; Stoakley, D. M.

    1984-01-01

    MY-720/DDS epoxy samples were treated with three selected chemical compounds to render the active H-sites inactive for moisture absorption. Treating the epoxy castings with acetyl chloride and dichlorodimethyl silane leads only to surface changes indicating that these molecules are too large to penetrate the epoxy castings. Boron trifluoride, on the other hand, does penetrate the epoxy chain as is indicated by the formation of green domains in the interior of the castings. However, the process of saturating the specimens with moisture appears to leach out the chemical additives--thereby nullifying their possible ameliorative effects.

  17. Liquid monobenzoxazine based resin system

    DOEpatents

    Tietze, Roger; Nguyen, Yen-Loan; Bryant, Mark

    2014-10-07

    The present invention provides a liquid resin system including a liquid monobenzoxazine monomer and a non-glycidyl epoxy compound, wherein the weight ratio of the monobenzoxazine monomer to the non-glycidyl epoxy compound is in a range of about 25:75 to about 60:40. The liquid resin system exhibits a low viscosity and exceptional stability over an extended period of time making its use in a variety of composite manufacturing methods highly advantageous.

  18. Treatment of high-latency microcapsules containing an aluminium complex with an epoxy-functionalised trialkoxysilane.

    PubMed

    Kamiya, Kazunobu; Suzuki, Noboru

    2016-12-01

    Some aluminium complexes are excellent catalysts of cationic polymerisation and are used for low-temperature and fast-curing adhesive, used in electronic part mounting. Microencapsulation is a suitable technique for getting high latency of the catalysts and long shelf life of the adhesives. For the higher latency in a cycloaliphatic epoxy compound, the microcapsule surface which retained small amount of aluminium complex was coated with epoxy polymer and the effect was examined. From the X-ray photoelectron spectroscopic results, the surface was recognised to be sufficiently coated and the differential scanning calorimetric analyses showed that the coating did not significantly affect the low-temperature and fast-curing properties of adhesive. After storing the mixture of cycloaliphatic epoxy compound, coated microcapsules, triphenylsilanol and silane coupling agent for 48 h at room temperature, the increase in viscosity was only 0.01 Pa s, resulting in the excellent shelf life.

  19. Phthalocyanine Tetraamine Epoxy-Curing Agents

    NASA Technical Reports Server (NTRS)

    Fohlen, G. M.; Achar, B. N.; Parker, J. A.

    1986-01-01

    Tough fire- and chemical-resistant epoxies produced by using metalphthalocyanine tetraamines (MPT's) of copper, cobalt, or nickel as curing agents. Synthesis of MPT's commercially realizable and gives pure compounds with almost 90-percent yield. Synthesis applicable for metals with atomic radii of about 1.35 angstroms, including Cu, Co, Ni, Zn, Fe, Pt, Al, and V. Possible to use metal phthalocyanines to cure epoxy resins in homogeneous reaction.

  20. Fire-retardant epoxy polymers

    NASA Technical Reports Server (NTRS)

    Akawie, R. I.; Bilow, N.; Giants, T. W.

    1978-01-01

    Phosphorus atoms in molecular structure of epoxies make them fire-retardant without degrading their adhesive strength. Moreover, polymers are transparent, unlike compounds that contain arsenic or other inorganics. They have been used to bond polyvinylfluoride and polyether sulfone films onto polyimide glass laminates.

  1. Production development of organic nonflammable spacecraft potting encapsulating and conformal coating compounds. Volume 2: Tables

    NASA Technical Reports Server (NTRS)

    Lieberman, S. L.

    1974-01-01

    Tables are presented which include: material properties; elemental analysis; silicone RTV formulations; polyester systems and processing; epoxy preblends and processing; urethane materials and processing; epoxy-urethanes elemental analysis; flammability test results, and vacuum effects.

  2. Durability of MWCNT Composites under Electron and Neutron Irradiation

    DTIC Science & Technology

    2012-03-22

    atoms to form a hexagonal network. The covalent bond or σ-bond is a strong chemical bond and plays a vital role in the mechanical properties of...amine molecule. The “resin” or “ compound “ consist of monomers or short chain polymers with an epoxy group at either end. The “hardener or “activator...consists of polyamine monomers. When these two compounds are mixed together, the amine groups react with an epoxy group. The resulting polymer

  3. Solid-phase extraction element based on epoxy polymer monolith for determination of polar organic compounds in aqueous media.

    PubMed

    Takahashi, Tadashi; Odagiri, Kayo; Watanabe, Atsushi; Watanabe, Chuichi; Kubo, Takuya; Hosoya, Ken

    2011-10-01

    A solid-phase extraction element based on epoxy polymer monolith was fabricated for sorptive enrichment of polar compounds from liquid and gaseous samples. After ultrasonication of the element in an aqueous solution for a given period of time, the thermal desorption (TD) using a pyrolyzer with gas chromatography/mass spectrometry (GC/MS), in which TD temperature was programmed from 50 to 250 °C for the analytes absorbed in the element, was used to evaluate the element for basic extraction performance using the aqueous standard mixtures consisting of compounds having varied polarities such as hexanol, isoamyl acetate, linalool, furfural and decanoic acid, in concentrations ranging from 10 μg/L to 1 mg/L. Excellent linear relationships were observed for all compounds in the standard mixture, except decanoic acid. In the extraction of beverages such as red wine, the extraction element showed stronger adsorption characteristics for polar compounds such as alcohols and acids than a non-polar polydimethylsiloxane-based element. This feature is derived from the main polymer structure along with hydroxyl and amino groups present in the epoxy-based monolith polymer matrix. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Method for epoxy foam production using a liquid anhydride

    DOEpatents

    Celina, Mathias [Albuquerque, NM

    2012-06-05

    An epoxy resin mixture with at least one epoxy resin of between approximately 50 wt % and 100 wt %, an anhydride cure agent of between approximately 0 wt % and approximately 50 wt %, a tert-butoxycarbonyl anhydride foaming agent of between proximately 0.1-20 wt %, a surfactant and an imidazole or similar catalyst of less than approximately 2 wt %, where the resin mixture is formed from at least one epoxy resin with a 1-10 wt % tert-butoxycarbonyl anhydride compound and an imidazole catalyst at a temperature sufficient to keep the resin in a suitable viscosity range, the resin mixture reacting to form a foaming resin which in the presence of an epoxy curative can then be cured at a temperature greater than 50.degree. C. to form an epoxy foam.

  5. High performance UV and thermal cure hybrid epoxy adhesive

    NASA Astrophysics Data System (ADS)

    Chen, C. F.; Iwasaki, S.; Kanari, M.; Li, B.; Wang, C.; Lu, D. Q.

    2017-06-01

    New type one component UV and thermal curable hybrid epoxy adhesive was successfully developed. The hybrid epoxy adhesive is complete initiator free composition. Neither photo-initiator nor thermal initiator is contained. The hybrid adhesive is mainly composed of special designed liquid bismaleimide, partially acrylated epoxy resin, acrylic monomer, epoxy resin and latent curing agent. Its UV light and thermal cure behavior was studied by FT-IR spectroscopy and FT-Raman spectroscopy. Adhesive samples cured at UV only, thermal only and UV + thermal cure conditions were investigated. By calculated conversion rate of double bond in both acrylic component and maleimide compound, satisfactory light curability of the hybrid epoxy adhesive was confirmed quantitatively. The investigation results also showed that its UV cure components, acrylic and bismalimide, possess good thermal curability too. The initiator free hybrid epoxy adhesive showed satisfactory UV curability, good thermal curability and high adhesion performance.

  6. Fracture behavior of polypropylene/clay nanocomposites.

    PubMed

    Chen, Ling; Wang, Ke; Kotaki, Masaya; Hu, Charmaine; He, Chaobin

    2006-12-01

    Polypropylene (PP)/clay nanocomposites have been prepared via a reactive compounding approach with an epoxy based masterbatch. Compared with PP and common PP/organoclay nanocomposites, the PP/clay nanocomposites based on epoxy/clay masterbatch have higher impact strength. The phenomenon can be attributed to the epoxy phase dispersed uniformly in the PP matrix, which may act as impact energy absorber and helps to form a large damage zone, thus a higher impact strength value is achieved.

  7. Contact allergy to epoxy hardeners.

    PubMed

    Aalto-Korte, Kristiina; Suuronen, Katri; Kuuliala, Outi; Henriks-Eckerman, Maj-Len; Jolanki, Riitta

    2014-09-01

    Diglycidylether of bisphenol A resin is the most important sensitizer in epoxy systems, but a minority of patients develop concomitant or solitary contact allergy to epoxy hardeners. At the Finnish Institute of Occupational Health, several in-house test substances of epoxy hardeners have been tested in a special epoxy compound patch test series. To analyse the frequency and clinical relevance of allergic reactions to different epoxy hardeners. Test files (January 1991 to March 2013) were screened for contact allergy to different epoxy hardeners, and the clinical records of patients with allergic reactions were analysed for occupation, concomitant allergic reactions, and exposure. The most commonly positive epoxy hardeners were m-xylylenediamine (n = 24), 2,4,6-tris-(dimethylaminomethyl)phenol (tris-DMP; n = 14), isophorone-diamine (n = 12), and diethylenetriamine (n = 9). Trimethylhexamethylenediamine (n = 7), tetraethylenepentamine (n = 4), and triethylenetetramine (n = 2) elicited some reactions, although most patients were found to have no specific exposure. Allergic reactions to hexamethylenetetramine, dimethylaminopropylamine and ethylenediamine dihydrochloride were not related to epoxy products. Tris-DMP is an important sensitizer in epoxy hardeners, and should be included in the patch test series of epoxy chemicals. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Synthesis and Antimicrobial Activity of Long-Chain 3,4-Epoxy-2-alkanones

    PubMed Central

    Wood, William F.

    2010-01-01

    3,4-Epoxy-2-dodecanone, a major component in the preorbital gland of the African grey duiker (Sylvicapra grimmia), showed antimicrobial activity in preliminary tests. The C11 to C17 homologues of this compound were prepared and their activity against several pathogenic dermal bacteria and fungi was tested. 3,4-Epoxy-2-dodecanone and 3,4-epoxy-2-tridecanone inhibited the growth of Trichophyton mentagrophytes at 25 μg/mL. Moderate inhibition of the growth of the bacteria Propionibacterium acnes and the lipophilic yeast, Pityrosporum ovale, was seen for several of the homologues. PMID:21179314

  9. Synthesis and antimicrobial activity of long-chain 3,4-Epoxy-2-alkanones.

    PubMed

    Wood, William F

    2010-01-01

    3,4-Epoxy-2-dodecanone, a major component in the preorbital gland of the African grey duiker (Sylvicapra grimmia), showed antimicrobial activity in preliminary tests. The C(11) to C(17) homologues of this compound were prepared and their activity against several pathogenic dermal bacteria and fungi was tested. 3,4-Epoxy-2-dodecanone and 3,4-epoxy-2-tridecanone inhibited the growth of Trichophyton mentagrophytes at 25 Îg/mL. Moderate inhibition of the growth of the bacteria Propionibacterium acnes and the lipophilic yeast, Pityrosporum ovale, was seen for several of the homologues.

  10. Increasing Fire Safety of Epoxies

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Mikroyannidis, J. A.

    1985-01-01

    Epoxy with increased resistance to fire made by reacting any of three commercial epoxide monomers with curing agent consisting of mixture of isomers called "DCEPD". Curing agent incorporates phosphorus and chlorine directly into crosslinking part of polymer. DCEPD produced by nitrating precursor phosphonylmethyl benzene, then reducing resulting isomeric mixture of dinitro compounds.

  11. Quantitative characterization of solid epoxy resins using comprehensive two dimensional liquid chromatography coupled with electrospray ionization-time of flight mass spectrometry.

    PubMed

    Julka, Samir; Cortes, Hernan; Harfmann, Robert; Bell, Bruce; Schweizer-Theobaldt, Andreas; Pursch, Matthias; Mondello, Luigi; Maynard, Shawn; West, David

    2009-06-01

    A comprehensive multidimensional liquid chromatography system coupled to Electrospray Ionization-Mass Spectrometry (LCxLC-ESI-MS) was developed for detailed characterization and quantitation of solid epoxy resin components. The two orthogonal modes of separation selected were size exclusion chromatography (SEC) in the first dimension and liquid chromatography at critical conditions (LCCC) in the second dimension. Different components present in the solid epoxy resins were separated and quantitated for the first time based on the functional groups and molecular weight heterogeneity. Coupling LCxLC separations with mass spectrometry enabled the identification of components resolved in the two-dimensional space. Several different functional group families of compounds were separated and identified, including epoxy-epoxy and epoxy-alpha-glycol functional oligomers, and their individual molecular weight ranges were determined. Repeatability obtained ranged from 0.5% for the main product to 21% for oligomers at the 0.4% concentration level.

  12. Four new neolignans isolated from Eleutherococcus senticosus and their protein tyrosine phosphatase 1B inhibitory activity (PTP1B).

    PubMed

    Zhang, Le; Li, Ban-Ban; Li, Hao-Ze; Meng, Xiao; Lin, Xin; Jiang, Yi-Yu; Ahn, Jong-Seog; Cui, Long

    2017-09-01

    Four new compounds, erythro-7'E-4-hydroxy-3,3'-dimethoxy-8,5'-oxyneoligna-7'-ene-7,9-diol-9'-al (1), (7S,8S)-4-hydroxy-3,1',3'-trimethoxy-4',7-epoxy-8,5'-neolign-9-ol (5), (7S,8S,7'E)-5-hydroxy-3,3'-dimethoxy-4',7-epoxy-8,5'-neolign-7'-ene-9,9'-diol (6) and (7S,8S,7'E)-5-hydroxy-3,3',9'-trimethoxy-4'-7-epoxy-8,5'-neolign-7'-ene-9-ol (7). Along with four known compounds (2-4, 8) were isolated from the EtOAc-soluble extract of Eleutherococcus senticosus. Their structures were elucidated on the basis of spectroscopic and physicochemical analyses. All the compounds were evaluated for in vitro inhibitory activity against PTP1B, VHR and PP1. Among them, compounds 1-4 and 6-8 were found to exhibit selective inhibitory activity on PTP1B with IC 50 values ranging from 17.2±1.6 to 32.7±1.2μM. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Neuroinhibitory meroterpenoid compounds from Cordia oncocalyx.

    PubMed

    Matos, Taynara S; Silva, Ana Karine O; Quintela, Amanda L; Francisco das Chagas Pinto, L; Canuto, Kirley M; Braz-Filho, Raimundo; Fonseca, Maria Júlia S; Luna-Costa, Angélica Maria; Paz, Iury A; Nascimento, Nilberto Robson F; Silveira, Edilberto R; Pessoa, Otilia Deusdênia L

    2017-11-01

    Five new meroterpenoid compounds designed as rel-10β,11β-epoxy-2,11-dimethoxy-8α-hydroxy-8aβ-methyl-5α,6,7,8,8a,9,10,10aβ-octahydro-1,4-anthracendione (1), rel-10β,11β-epoxy-8α,5-dihydroxy-2-methoxy-8aβ-methyl-5,6,7,8,8a,9,10,10aβ-octahydro -1.4-anthracendione (2), rel-1,4,8α-trihydroxy-5-furanyl-2-methoxy-8aβ-methyl-6,7,8, 8a,9,10-hexahydro-10-anthracenone (3), rel-10α,11α-epoxy-8α,11β-dihydroxy-8aβ-methyl-5β,6,7,8,8a,9,10,10aβ-octahydro-1,4-anthracenediol (4) and rel-1,4,8α-trihydroxy-5-carboxyethyl-2-methoxy-8aβ-methyl-6,7,8,8a,9,10-hexahydro-10-anthra-cenone (5), besides seven (6-12) known compounds were isolated from the heartwood and sapwood ethanol extracts of Cordia oncocalyx. Moreover, the main isolated compounds were screened using the electrically driven mice vas deferens bioassay, which has a rich pharmacological receptors diversity. Published by Elsevier B.V.

  14. Preparation of well-controlled three-dimensional skeletal hybrid monoliths via thiol-epoxy click polymerization for highly efficient separation of small molecules in capillary liquid chromatography.

    PubMed

    Lin, Hui; Chen, Lianfang; Ou, Junjie; Liu, Zhongshan; Wang, Hongwei; Dong, Jing; Zou, Hanfa

    2015-10-16

    Two kinds of hybrid monoliths were first prepared via thiol-epoxy click polymerization using a multi-epoxy monomer, octaglycidyldimethylsilyl POSS (POSS-epoxy), and two multi-thiols, trimethylolpropanetris(3-mercaptopropionate) (TPTM) and pentaerythritoltetrakis(3-mercaptopropionate) (PTM), respectively, as the precursors. The resulting two hybrid monoliths (assigned as POSS-epoxy-TPTM and POSS-epoxy-PTM) not only possessed high thermal, mechanical and chemical stabilities, but also exhibited well-controlled 3D skeletal microstructure and high efficiency in capillary liquid chromatography (cLC) separation of small molecules. The highest column efficiency reached 182,700N/m (for butylbenzene) on the monolith POSS-epoxy-PTM at the velocity of 0.75mm/s. Furthermore, the hybrid monolith POSS-epoxy-PTM was successfully applied for cLC separations of various samples, not only standard compounds such as alkylbenzenes, PAHs, phenols and dipeptides, as well as intact proteins, but also complex samples of EPA 610 and BSA digest. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Assessment of cross-reactivity of new less sensitizing epoxy resin monomers in epoxy resin-allergic individuals.

    PubMed

    Hagvall, Lina; Niklasson, Ida B; Rudbäck, Johanna; O'Boyle, Niamh M; Niklasson, Eva; Luthman, Kristina; Karlberg, Ann-Therese

    2016-09-01

    Measures to prevent occupational exposure to epoxy resins, including education, medical examination, and voluntary agreements between employers and workers, have not been effective enough to protect against skin sensitization. Therefore, alternatives to the major epoxy resin haptens that have been found to be less sensitizing in the local lymph node assay have been developed. To study the cross-reactivity of two newly designed epoxy resin monomers, with decreased skin-sensitizing potency and good technical properties as compared with diglycidyl ether of bisphenol A (DGEBA), in subjects with known contact allergy to epoxy resin of DGEBA type. Eleven individuals with previous positive patch test reactions to epoxy resin of DGEBA participated in the study. The two alternative epoxy resin monomers were synthesized and patch tested in dilution series in parallel with epoxy resin of DGEBA from the baseline series (containing 92% DGEBA). All participants reacted to epoxy resin of DGEBA on retesting. Three participants reacted to monomer 1. No reactions were seen to monomer 2. The alternative monomers studied showed little or no cross-reactivity with epoxy resin of DGEBA. Decreasing the risk of sensitization by using less sensitizing compounds is important, as contact allergy to epoxy resins is common in spite of thorough preventive measures. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. 40 CFR 129.4 - Toxic pollutants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... by the chemical name 1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-1,4-endo-5,8-exo...—Endrin means the compound endrin as identified by the chemical name 1,2,3,4,10,10-hexachloro-6,7-epoxy-1...

  17. 40 CFR 129.4 - Toxic pollutants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... by the chemical name 1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-1,4-endo-5,8-exo...—Endrin means the compound endrin as identified by the chemical name 1,2,3,4,10,10-hexachloro-6,7-epoxy-1...

  18. 40 CFR 129.4 - Toxic pollutants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... by the chemical name 1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-1,4-endo-5,8-exo...—Endrin means the compound endrin as identified by the chemical name 1,2,3,4,10,10-hexachloro-6,7-epoxy-1...

  19. Epoxy hydantoins as matrix resins

    NASA Technical Reports Server (NTRS)

    Weiss, J.

    1983-01-01

    Tensile strength and fracture toughness of castings of the hydantoin resins cured with methylenedianiline are significantly higher than MY 720 control castings. Water absorption of an ethyl, amyl hydantoin formulation is 2.1 percent at equilibrium and Tg's are about 160 C, approximately 15 deg below the final cure temperature. Two series of urethane and ester-extended hydantoin epoxy resins were synthesized to determine the effect of crosslink density and functional groups on properties. Castings cured with methylenedianiline or with hexahydrophthalic anhydride were made from these compounds and evaluated. The glass transition temperatures, tensile strengths and moduli, and fracture toughness values were all much lower than that of the simple hydantoin epoxy resins. Using a methylene bishydantoin epoxy with a more rigid structure gave brittle, low-energy fractures, while a more flexible, ethoxy-extended hydantoin epoxy resin gave a very low Tg.

  20. Reduced sensitizing capacity of epoxy resin systems: a structure-activity relationship study.

    PubMed

    Niklasson, Ida B; Broo, Kerstin; Jonsson, Charlotte; Luthman, Kristina; Karlberg, Ann-Therese

    2009-11-01

    Epoxy resins can be prepared from numerous chemical compositions. Until recently, alternatives to epoxy resins based on diglycidyl ethers of bisphenol A (DGEBA) or bisphenol F (DGEBF) monomers have not received commercial interest, but are presently doing so, as epoxy resins with various properties are desired. Epoxy resin systems are known to cause allergic contact dermatitis because of contents of uncured monomers, reactive diluents, and hardeners. Reactive diluents, for example, glycidyl ethers, which also contain epoxide moieties, are added to reduce viscosity and improve polymerization. We have investigated the contact allergenic properties of a series of six analogues to phenyl glycidyl ether (PGE), all with similar basic structures but with varying carbon chain lengths and degrees of saturation. The chemical reactivity of the compounds in the test series toward the hexapeptide H-Pro-His-Cys-Lys-Arg-Met-OH was investigated. All epoxides were shown to bind covalently to both cysteine and proline residues. The percent depletion of nonreacted peptide was also studied resulting in 88% depletion when using PGE and 46% when using butyl glycidyl ether (5) at the same time point, thus revealing a large difference between the fastest and the slowest reacting epoxide. The skin sensitization potencies of the epoxides using the murine local lymph node assay (LLNA) were evaluated in relation to the observed physicochemical and reactivity properties. To enable determination of statistical significance between structurally closely related compounds, a nonpooled LLNA was performed. It was found that the compounds investigated ranged from strong to weak sensitizers, congruent with the reactivity data, indicating that even small changes in chemical structure result in significant differences in sensitizing capacity.

  1. Impact of a heteroatom in a structure-activity relationship study on analogues of phenyl glycidyl ether (PGE) from epoxy resin systems.

    PubMed

    Niklasson, Ida B; Delaine, Tamara; Luthman, Kristina; Karlberg, Ann-Therese

    2011-04-18

    Epoxy resins are among the most common causes of occupational contact dermatitis. They are normally used in so-called epoxy resin systems (ERS). These commercial products are combinations of epoxy resins, curing agents, modifiers, and reactive diluents. The most frequently used resins are diglycidyl ethers based on bisphenol A (DGEBA) and bisphenol F (DGEBF). In this study, we have investigated the contact allergenic properties of a series of analogues to the reactive diluent phenyl glycidyl ether (PGE), all with similar basic structures but with varying heteroatoms or with no heteroatom present. The chemical reactivity of the compounds in the test series toward the hexapeptide H-Pro-His-Cys-Lys-Arg-Met-OH was investigated. All epoxides were shown to bind covalently to both cysteine and proline residues. The percent depletion of nonreacted peptide was also studied resulting in ca. 60% depletion when using either PGE, phenyl 2,3-epoxypropyl sulfide (2), or N-(2,3-epoxypropyl)aniline (3), and only 15% when using 1,2-epoxy-4-phenylbutane (4) at the same time point. The skin sensitization potencies of the epoxides using the murine local lymph node assay (LLNA) were evaluated in relation to the observed physicochemical and reactivity properties. To enable determination of statistical significance between structurally closely related compounds, a nonpooled LLNA was performed. It was found that all investigated compounds containing a heteroatom in the α-position to the epoxide were strong sensitizers, congruent with the reactivity data, indicating that the impact of a heteroatom is crucial for the sensitizing capacity for this type of epoxides.

  2. Monomers for thermosetting and toughening epoxy resins. [glycidyl amine derivatives, propargyl-containing amines, and mutagenic testing of aromatic diamines

    NASA Technical Reports Server (NTRS)

    Pratt, J. R.

    1981-01-01

    Eight glycidyl amines were prepared by alkylating the parent amine with epichlorohydrin to form chlorohydrin, followed by cyclization with aqueous NaOH. Three of these compounds contained propargyl groups with postcuring studies. A procedure for quantitatively estimating the epoxy content of these glycidyl amines was employed for purity determination. Two diamond carbonates and several model propargly compounds were prepared. The synthesis of three new diamines, two which contain propargyloxy groups, and another with a sec-butyl group is in progress. These materials are at the dinitro stage ready for the final hydrogenation step. Four aromatic diamines were synthesized for mutagenic testing purposes. One of these compounds rapidly decomposes on exposure to air.

  3. [Contact allergy to epoxy resins plastics based on materials collected by the Nofer Institute of Occupational Medicine].

    PubMed

    Kieć-Swierczyńska, Marta; Krecisz, Beata

    2003-01-01

    Of the 5604 patients examined in 1984-2001 for suspected occupational dermatitis, 160 persons (2.8%) showed allergy to epoxy resins plastics. Allergy was more frequent in men (4.9%) than in women (1.2%); in 154 persons, allergy was of occupational etiology (in a group of 160 patients with allergy to epoxy resins, the following proportions were observed: bricklayers, platelayers--17.5%; fitters, turners, machinist millers--13.8%; plastics molders--13.1%; laminators--11.3%; electrical equipment assemblers--10.6%; painters--10.0%). Having compared the frequency of allergy to components of epoxy resins in the years 1984-1993 and 1994-2001, it was found that allergy to resin, reactive diluents and plasticizers was on increase, whereas allergy to amines and acid anhydrides hardeners was on decrease. In a group of 13 chemical compounds entering into the composition of epoxy resins, epoxy resin contributed to the largest number of positive patch tests (77.5% of epoxy-allergic persons). This was followed by triethylenetetramine (23.1%), ethylenediamine (13.1%), phthalic anhydride (8.1%), diethylenetetramine (6.9%) and phenylglycidylether (6.2%). In addition, three patients reacted to both epoxy resin and cycloaliphatic resin.

  4. Contact allergy to reactive diluents and related aliphatic epoxy resins.

    PubMed

    Aalto-Korte, Kristiina; Kuuliala, Outi; Henriks-Eckerman, Maj-Len; Suuronen, Katri

    2015-06-01

    Diglycidyl ether of bisphenol A resin (DGEBA-R) is the most common sensitizer in epoxy systems, but a minority of patients also develop contact allergy to reactive diluents. To analyse the frequency and clinical relevance of allergic reactions to different epoxy reactive diluents and related aliphatic epoxy resins. Test files (January 1991 to June 2014) were screened, and the clinical records of patients with allergic reactions were analysed for occupation, concomitant allergic reactions, and exposure. A total of 67 patients reacted to at least one of the compounds. The largest numbers of allergic reactions were to phenyl glycidyl ether (PGE; n = 41), 1,4-butanediol diglycidyl ether (BDDGE; n = 34), and p-tert-butylphenyl glycidyl ether (PTBPGE; n = 19). Ten of the patients did not have contact allergy to DGEBA-R. The reactions of 5 of these were related to the use of BDDGE-containing products. We found no significant exposure to PGE or PTBPGE in patients sensitized to them, but some of the patients had used cresyl glycidyl ether-containing products. Allergic reactions to reactive diluents and related aliphatic epoxy resins usually occurred together with reactions to DGEBA-R. BDDGE was the clinically most significant compound, and was the sole cause of occupational allergic contact dermatitis in 3 patients. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. A self-crosslinking thermosetting monomer with both epoxy and anhydride groups derived from tung oil fatty acids: Synthesis and properties

    USDA-ARS?s Scientific Manuscript database

    A self-crosslinking compound with epoxy groups and anhydride groups (GEMA) has been successfully synthesized from tung oil fatty acid by reacting with maleic anhydride via the Diels-Alder reaction. GEMA has very good storage stability and could be cured with trace amounts of tertiary amine. This ad...

  6. A self-crosslinking thermosetting monomer with both epoxy and anhydride groups derived from Tung oil fatty acids: Synthesis and properties

    USDA-ARS?s Scientific Manuscript database

    A self-crosslinking compound with epoxy groups and anhydride groups (GEMA) has been successfully synthesized from Tung oil fatty acid by reacting with maleic anhydride via the Diels-Alder reaction. GEMA has very good storage stability and can be cured with trace amounts of tertiary amine. This advan...

  7. Synthesis, Characterization, and Cross-Linking Strategy of a Quercetin-Based Epoxidized Monomer as a Naturally-Derived Replacement for BPA in Epoxy Resins.

    PubMed

    Kristufek, Samantha L; Yang, Guozhen; Link, Lauren A; Rohde, Brian J; Robertson, Megan L; Wooley, Karen L

    2016-08-23

    The natural polyphenolic compound quercetin was functionalized and cross-linked to afford a robust epoxy network. Quercetin was selectively methylated and functionalized with glycidyl ether moieties using a microwave-assisted reaction on a gram scale to afford the desired monomer (Q). This quercetin-derived monomer was treated with nadic methyl anhydride (NMA) to obtain a cross-linked network (Q-NMA). The thermal and mechanical properties of this naturally derived network were compared to those of a conventional diglycidyl ether bisphenol A-derived counterpart (DGEBA-NMA). Q-NMA had similar thermal properties [i.e., glass transition (Tg ) and decomposition (Td ) temperatures] and comparable mechanical properties (i.e., Young's Modulus, storage modulus) to that of DGEBA-NMA. However, it had a lower tensile strength and higher flexural modulus at elevated temperatures. The application of naturally derived, sustainable compounds for the replacement of commercially available petrochemical-based epoxies is of great interest to reduce the environmental impact of these materials. Q-NMA is an attractive candidate for the replacement of bisphenol A-based epoxies in various specialty engineering applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. 5,6-de-epoxy-5-en-7-one-17-hydroxy withaferin A, a new cytotoxic steroid from Withania somnifera L. Dunal leaves.

    PubMed

    Siddique, Amreen A; Joshi, Pallavi; Misra, Laxminarain; Sangwan, Neelam S; Darokar, Mahendra P

    2014-01-01

    From the leaves of Withania somnifera L. Dunal, a new withasteroid named as 5,6-de-epoxy-5-en-7-one-17-hydroxy withaferin A (6) was isolated along with several known compounds, namely 16β-acetoxy-6α,7α-epoxy-5α-hydroxy-1-oxowitha-2,17(20),24-trienolide (1), withanone (2), 16-en-27-deoxy withaferin A (3), 27-deoxy withaferin A (4), withaferin A (5), withanolide D (7) and 27-hydroxy withanone (8). Its structure was determined using spectroscopic methods, namely IR, (1)H NMR, (13)C NMR, COSY, HMBC and HRMS. Among the known compounds, 16β-acetoxy-6α,7α-epoxy-5α-hydroxy-1-oxowitha-2,17(20),24-trienolide (1) was previously reported from the roots of W. somnifera. Now, it has been isolated from the leaves, as well. The cytotoxic activity of the new steroid was carried out using the MTT assay against a panel of cancer cell lines, namely MCF-7 (breast), WRL-68 (liver), PC-3 (prostate) and CACO-2 (colon). The results showed that the new compound possesses strong cytotoxic activity against liver and breast cancer with an IC50 of 1.0 μg/mL and a moderate activity against colon (IC50 3.4 μg/mL) and prostate (IC50 7.4 μg/mL) cancer cells.

  9. Comprehensive quantum chemical and spectroscopic (FTIR, FT-Raman, 1H, 13C NMR) investigations of (1,2-epoxyethyl)benzene and (1,2-epoxy-2-phenyl)propane

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Anitha, R.; Devi, L.; Mohan, S.; Yang, Haifeng

    2015-01-01

    Aromatic epoxides are causative factors for mutagenic and carcinogenic activity of polycyclic arenes. The 1,2- or 2,3-epoxy compounds are widely used to a considerable extent in the textile, plastics, pharmaceutical, cosmetics, detergent and photochemical industries. The FTIR and FT-Raman spectra of (1,2-epoxyethyl)benzene and (1,2-epoxy-2-phenyl)propane are recorded in the regions 4000-400 cm-1 and 4000-100 cm-1, respectively. The observed fundamentals are assigned to different normal modes of vibration. The structure of the compound has been optimised with B3LYP method using 6-311++G** and cc-pVTZ basis sets. The IR and Raman intensities are determined. The total electron density and molecular electrostatic potential surfaces of the molecule are constructed by using B3LYP/6-311++G(d,p) method to display electrostatic potential (electron + nuclei) distribution. The electronic properties HOMO and LUMO energies were measured. Natural bond orbital analysis of the compounds has been performed to indicate the presence of intramolecular charge transfer. The 1H and 13C NMR chemical shifts of the molecules have been analysed.

  10. Chromatographic assessment of two hybrid monoliths prepared via epoxy-amine ring-opening polymerization and methacrylate-based free radical polymerization using methacrylate epoxy cyclosiloxane as functional monomer.

    PubMed

    Wang, Hongwei; Ou, Junjie; Lin, Hui; Liu, Zhongshan; Huang, Guang; Dong, Jing; Zou, Hanfa

    2014-11-07

    Two kinds of hybrid monolithic columns were prepared by using methacrylate epoxy cyclosiloxane (epoxy-MA) as functional monomer, containing three epoxy moieties and one methacrylate group. One column was in situ fabricated by ring-opening polymerization of epoxy-MA and 1,10-diaminodecane (DAD) using a porogenic system consisting of isopropanol (IPA), H2O and ethanol at 65°C for 12h. The other was prepared by free radical polymerization of epoxy-MA and ethylene dimethacrylate (EDMA) using 1-propanol and 1,4-butanediol as the porogenic solvents at 60°C for 12h. Two hybrid monoliths were investigated on the morphology and chromatographic assessment. Although two kinds of monolithic columns were prepared with epoxy-MA, their morphologies looked rather different. It could be found that the epoxy-MA-DAD monolith possessed higher column efficiencies (25,000-34,000plates/m) for the separation of alkylbenzenes than the epoxy-MA-EDMA monolith (12,000-13,000plates/m) in reversed-phase nano-liquid chromatography (nano-LC). Depending on the remaining epoxy or methacrylate groups on the surface of two pristine monoliths, the epoxy-MA-EDMA monolith could be easily modified with 1-octadecylamine (ODA) via ring-opening reaction, while the epoxy-MA-DAD monolith could be modified with stearyl methacrylate (SMA) via free radical reaction. The chromatographic performance for the separation of alkylbenzenes on SMA-modified epoxy-MA-DAD monolith was remarkably improved (42,000-54,000 plates/m) when compared with that on pristine epoxy-MA-DAD monolith, while it was not obviously enhanced on ODA-modified epoxy-MA-EDMA monolith when compared with that on pristine epoxy-MA-EDMA monolith. The enhancement of the column efficiency of epoxy-MA-DAD monolith after modification might be ascribed to the decreased mass-transfer resistence. The two kinds of hybrid monoliths were also applied for separations of six phenols and seven basic compounds in nano-LC. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Incombustible resin composition

    NASA Technical Reports Server (NTRS)

    Akima, T.

    1982-01-01

    Incombustible resin compositions composed of aromatic compounds were obtained through (1) combustion polymer material and (2) bisphenol A or halogenated bisphenol A and bisphenol A diglycidl ether or halogenated bisphenol A diglycidyl ether. The aromatic compound is an adduct of bifunctional phenols and bifunctional epoxy resins.

  12. A novel polishing technology for epoxy resin based on 355 nm UV laser

    NASA Astrophysics Data System (ADS)

    Meng, Xinling; Tao, Luqi; Liu, Zhaolin; Yang, Yi; Ren, Tianling

    2017-06-01

    The electromagnetic shielding film has drawn much attention due to its wide applications in the integrated circuit package, which demands a high surface quality of epoxy resin. However, gaseous Cu will splash and adhere to epoxy resin surface when the Cu layer in PCB receives enough energy in the process of laser cutting, which has a negative effect on the quality of the shielding film. Laser polishing technology can solve this problem and it can effectively improve the quality of epoxy resin surface. The paper studies the mechanism of Cu powder spraying on the compound surface by 355 nm ultraviolet (UV) laser, including the parameters of laser polishing process and the remains of Cu content on compound surface. The results show that minimal Cu content can be realized with a scanning speed of 700 mm/s, a laser frequency of 50 kHz and the distance between laser focus and product top surface of -1.3 mm. This result is important to obtain an epoxy resin surface with high quality. Project supported by the National Natural Science Foundation of China (Nos. 61574083, 61434001), the National Basic Research Program (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002), the Special Fund for Agroscientic Research in the Public Interest of China (No 201303107), the support of the Independent Research Program of Tsinghua University (No. 2014Z01006), and Advanced Sensor and Integrated System Lab of Tsinghua University Graduate School at Shenzhen (No. ZDSYS20140509172959969).

  13. A Process for Preparing 1,3-Diamino-5-Pentafluorosulfanylbenzene and Polymers Therefrom

    NASA Technical Reports Server (NTRS)

    St.clair, Anne K. (Inventor); St.clair, Terry L. (Inventor); Thrasher, Joseph S. (Inventor)

    1991-01-01

    Diamines have shown their utility in the formation of many polymers. Examples of these polymers include polyimides, polyamides, and epoxies. The properties of these polymers are often dependent on the diamine which is used to make the polymer. By the present invention, a process was developed to make a diamine containing pentafluorosulfanylbenzene moiety. This process involves two steps: the preparation of a dinitro precursor and the reduction of the dinitro compound to form the diamine. This diamine was then reacted with various dianhydrides, diacidchlorides, and epoxy resins to yield the corresponding polyimide, polyamide, and epoxy polymers. These polymers were then used to make films, a wire coating enamel, and a semi-permeable membrane. The novelty of this invention resides in the process to make the diamine. Traditionally, dinitro compounds are reduced with hydrazine or a catalyst such as palladium on charcoal. The catalyst which is used in this invention is platinum oxide. When this catalyst is used, it makes it possible to form a polymer-grade diamine.

  14. Identification of non-heme diiron proteins that catalyze triple bond and epoxy group formation.

    PubMed

    Lee, M; Lenman, M; Banaś, A; Bafor, M; Singh, S; Schweizer, M; Nilsson, R; Liljenberg, C; Dahlqvist, A; Gummeson, P O; Sjödahl, S; Green, A; Stymne, S

    1998-05-08

    Acetylenic bonds are present in more than 600 naturally occurring compounds. Plant enzymes that catalyze the formation of the Delta12 acetylenic bond in 9-octadecen-12-ynoic acid and the Delta12 epoxy group in 12,13-epoxy-9-octadecenoic acid were characterized, and two genes, similar in sequence, were cloned. When these complementary DNAs were expressed in Arabidopsis thaliana, the content of acetylenic or epoxidated fatty acids in the seeds increased from 0 to 25 or 15 percent, respectively. Both enzymes have characteristics similar to the membrane proteins containing non-heme iron that have histidine-rich motifs.

  15. The effect of zirconium-based surface treatment on the cathodic disbonding resistance of epoxy coated mild steel

    NASA Astrophysics Data System (ADS)

    Ghanbari, A.; Attar, M. M.

    2014-10-01

    The effect of zirconium-based surface treatment on the cathodic disbonding resistance and adhesion performance of an epoxy coated mild steel substrate was investigated. The obtained data from pull-off, cathodic disbonding test and electrochemical impedance spectroscopy (EIS) indicated that the zirconium conversion layer significantly improved the adhesion strength and cathodic disbonding resistance of the epoxy coating. This may be attributed to formation of some polar zirconium compounds on the surface and increment of surface roughness, that were evident in the results of field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM), respectively.

  16. Increase of tensile strength and toughness of bio-based diglycidyl ether of bisphenol A with chitin nanowhiskers

    PubMed Central

    Wang, Mian; Xue, Han; Feng, Zhiwei; Cheng, Binfeng; Yang, Haijie

    2017-01-01

    It is challenging to reinforce and toughen thermoset epoxy resins. We describe a slurry-compounding technique to transfer a uniform dispersion of chitin nanowhiskers (CW) in ethanol into an epoxy matrix. The incorporation of the hydrophilic CW reinforces the oil-soluble diglycidyl ether of bisphenol A (DGEBA). The resultant CW/epoxy bionanocomposites were transparent and showed considerably enhanced thermal and mechanical properties with tensile strength, modulus, toughness, and elongation at break being increased by 49%, 16%, 457%, and 250%, with only 2.5 wt.% CW. This improvement in strength and toughness is rare for thermoset epoxy/rigid nanofiller systems. We hypothesize that CW with many free amine groups could function not only as a nanofiller but also as a macromolecular polyamine hardener that participates in epoxy curing. The strong covalent interaction between the filler and the matrix allowed for efficient load transfer across the interfaces, which accounted for the greater strength and toughness. PMID:28604774

  17. Increase of tensile strength and toughness of bio-based diglycidyl ether of bisphenol A with chitin nanowhiskers.

    PubMed

    Wang, Mian; Xue, Han; Feng, Zhiwei; Cheng, Binfeng; Yang, Haijie

    2017-01-01

    It is challenging to reinforce and toughen thermoset epoxy resins. We describe a slurry-compounding technique to transfer a uniform dispersion of chitin nanowhiskers (CW) in ethanol into an epoxy matrix. The incorporation of the hydrophilic CW reinforces the oil-soluble diglycidyl ether of bisphenol A (DGEBA). The resultant CW/epoxy bionanocomposites were transparent and showed considerably enhanced thermal and mechanical properties with tensile strength, modulus, toughness, and elongation at break being increased by 49%, 16%, 457%, and 250%, with only 2.5 wt.% CW. This improvement in strength and toughness is rare for thermoset epoxy/rigid nanofiller systems. We hypothesize that CW with many free amine groups could function not only as a nanofiller but also as a macromolecular polyamine hardener that participates in epoxy curing. The strong covalent interaction between the filler and the matrix allowed for efficient load transfer across the interfaces, which accounted for the greater strength and toughness.

  18. Effect of Epoxy on Mechanical Property of SAC305 Solder Joint with Various Surface Finishes Under 3-Point Bend Test.

    PubMed

    Jeong, Haksan; Myung, Woo-Ram; Sung, Yong-Gue; Kim, Kyung-Yeol; Jung, Seung-Boo

    2018-09-01

    Microstructures and mechanical property of Sn-3.0Ag-0.5Cu (SAC305) and epoxy Sn-3.0Ag-0.5Cu (epoxy SAC) solder joints were investigated with various surface finishes; organic solderability preservative (OSP), electroless nickel immersion gold (ENIG) and electroless nickel electroless palladium immersion gold (ENEPIG). Bending property of solder joints was evaluated by 3-point bend test method. Microstructure and chemical composition of solder joints was characterized by scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX), respectively. Epoxy did not effect on intermetallic compound (IMC) morphology. Scalloped shaped Cu6Sn5 IMC was observed at OSP surface finish. Chunky-like shaped and needle-like shaped (Ni,Cu)6Sn5 IMC were observed at the solder/ENIG joint and solder/ENEPIG joint, respectively. The bending cycles of SAC305/OSP joint, SAC305/ENIG joints and SAC305/ENEPIG joints were 720, 440 and 481 cycle numbers. The bending cycles of epoxy SAC and three types surface finished solder joints were over 1000 bending cycles. Under OSP surface finish, bending cycles of epoxy SAC solder was approximately 1.5 times higher than those of SAC305 solder joint. Bending cycles of epoxy SAC solder was over twice times higher than those of SAC305 solder with ENIG and ENEPIG surface finishes. The bending property of epoxy solder joint was enhanced due to epoxy fillet held the solder joint.

  19. Influence of reaction condition on viscosity of polyurethane modified epoxy based on glycerol monooleate

    NASA Astrophysics Data System (ADS)

    Triwulandari, Evi; Ramadhan, Mohammad Kemilau; Ghozali, Muhammad

    2017-01-01

    Polyurethane modified epoxy based on glycerol monooleate (PME-GMO) was synthesized. GMO as polyol for synthesis of PME-GMO was synthesized via Fisher Esterification between oleic acid from palm oil and glycerol by using sulfuric acid as catalyst with time variation i.e. 3, 4, 5 and 6 hours at 160°C. Characterizations of GMO were carried out by analysis of acid number, hydroxyl value and FTIR. The data show that the conversion of oleic acid to ester compound is directly proportional with the increasing of reaction time but the enhancement is not significant after 3 hours. Furthermore, GMO product was used as polyol for modification of epoxy with polyurethane. Modification of epoxy with polyurethane was performed by reacted epoxy, tolonate and GMO simultaneously in one step. In this research, the reaction condition was varied i.e. time reaction (0.5; 1; 1.5; 2; 2.5 hours), composition of polyurethane used (10%, 20% toward epoxy) and rasio of tolonate and GMO (NCO/OH ratio) as component of polyurethane (1.5 and 2.5). Characterization of polyurethane modified epoxy based on glycerol (PME-GMO) was conducted by viscosity and FTIR analysis. The viscosity of PME-GMO increased with increasing of reaction time, polyurethane composition and NCO/OH ratio.

  20. Drinking water contaminants from epoxy resin-coated pipes: A field study.

    PubMed

    Rajasärkkä, Johanna; Pernica, Marek; Kuta, Jan; Lašňák, Jonáš; Šimek, Zdenĕk; Bláha, Luděk

    2016-10-15

    Rehabilitation of aged drinking water pipes is an extensive renovation and increasingly topical in many European cities. Spray-on-lining of drinking water pipes is an alternative cost-effective rehabilitation technology in which the insides of pipes are relined with organic polymer. A commonly used polymer is epoxy resin consisting of monomer bisphenol A (BPA). Leaching of BPA from epoxy lining to drinking water has been a concern among public and authorities. Currently epoxy lining is not recommended in some countries. BPA leaching has been demonstrated in laboratory studies but the behavior and ageing process of epoxy lining in situ is not well known. In this study 6 locations with different age epoxy linings of drinking water pipes done using two distinct technologies were studied. While bisphenol F, 4-n-nonylphenol, and 4-t-octylphenol were rarely found and in trace concentrations, BPA was detected in majority of samples. Pipes lined with the older technology (LSE) leached more BPA than those with more recent technology (DonPro): maxima in cold water were 0.25 μg/L and 10 ng/L, respectively. Incubation of water in pipes 8-10 h prior to sampling increased BPA concentration in cold water 1.1-43-fold. Hot water temperature caused even more BPA leaching - at maximum 23.5 μg/L. The influence of ageing of epoxy lining on BPA leaching on could be shown in case of LSE technology: locations with 8-9 years old lining leached 4-20-fold more BPA compared to a location with 2-year-old lining. Analysis of metals showed that epoxy lining can reduce especially iron concentration in water. No significant burden to water could be shown by the analyzed 72 volatile organic compounds, including epichlorhydrin, precursor used in epoxy resin. Estrogenicity was detected in water samples with the highest BPA loads. Comparable responses of two yeast bioreporters (estrogen receptor α and BPA-targeted) indicated that bisphenol-like compounds were the main cause of estrogenicity. Compared to the estimated average daily BPA exposure, additional BPA load via cold drinking water in the studied locations was low, maximum 8.7%. However, hot water should also be considered as exposure source due to higher BPA concentrations. Epoxy lined locations should be monitored in future in order to evaluate ageing process and control increasing leaching of potentially harmful chemicals. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Comprehensive quantum chemical and spectroscopic (FTIR, FT-Raman, (1)H, (13)C NMR) investigations of (1,2-epoxyethyl)benzene and (1,2-epoxy-2-phenyl)propane.

    PubMed

    Arjunan, V; Anitha, R; Devi, L; Mohan, S; Yang, Haifeng

    2015-01-25

    Aromatic epoxides are causative factors for mutagenic and carcinogenic activity of polycyclic arenes. The 1,2- or 2,3-epoxy compounds are widely used to a considerable extent in the textile, plastics, pharmaceutical, cosmetics, detergent and photochemical industries. The FTIR and FT-Raman spectra of (1,2-epoxyethyl)benzene and (1,2-epoxy-2-phenyl)propane are recorded in the regions 4000-400 cm(-1) and 4000-100 cm(-1), respectively. The observed fundamentals are assigned to different normal modes of vibration. The structure of the compound has been optimised with B3LYP method using 6-311++G(**) and cc-pVTZ basis sets. The IR and Raman intensities are determined. The total electron density and molecular electrostatic potential surfaces of the molecule are constructed by using B3LYP/6-311++G(d,p) method to display electrostatic potential (electron+nuclei) distribution. The electronic properties HOMO and LUMO energies were measured. Natural bond orbital analysis of the compounds has been performed to indicate the presence of intramolecular charge transfer. The (1)H and (13)C NMR chemical shifts of the molecules have been analysed. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Aging Effects of Environmentally-Friendly Cleaners on Adhesive Bond Integrity

    NASA Technical Reports Server (NTRS)

    Biegert, L. L.; Anderson, G. L.; Evans, K. B.; Olsen, B. D.; Weber, B. L.; McCool, A. A. (Technical Monitor)

    2000-01-01

    Because of the 1990 Clean Air Act Amendment many chlorinated solvents are being phased out of use in manufacturing industries. Replacement of the ODC (ozone- depleting chemicals) with less volatile, non-ozone depleting cleaners has been extensively studied over the past nine years at Thiokol Propulsion, Cordant Technologies. Many of the non-ODC cleaners contain compounds that can potentially degrade over time under conditions of high temperature, humidity and exposure to light. The chemical composition of environmentally conditioned cleaners and the subsequent effect on aluminum/amine-cured epoxy bond integrity as measured by Tapered Double Cantilever Beam were evaluated. From this study it is observed that moisture content increases for those cleaners containing polar compounds. Non-volatile residue content increases as stabilizers are depleted and the chemical compound limonene is oxidized. A change in aluminum/ amine-cured epoxy bond fracture toughness is observed as some of these cleaners age with increases in moisture and NVR content.

  3. Spectroscopic and microbiological characterization of labdane diterpene 15,16-epoxy-4-hydroxy-labda-13(16),14-dien-3,12-dione isolated from the stems of Croton jacobinensis

    NASA Astrophysics Data System (ADS)

    Bernardino, A. C. S. S.; Teixeira, A. M. R.; de Menezes, J. E. S. A.; Pinto, C. C. C.; Santos, H. S.; Freire, P. T. C.; Coutinho, H. D. M.; Sena Junior, D. M.; Bandeira, P. N.; Braz-Filho, R.

    2017-11-01

    In the present study, the natural product named 15,16-epoxy-4-hydroxy-labda-13(16),14-dien-3,12-dione (C20H28O4), a labdane-type diterpene was isolated from the stems of Croton jacobinensis for the first time. This new compound was characterized by infrared and Raman spectroscopy combined with Density Functional Theory calculation. Additionally, the antimicrobial and modulatory antibiotic activities of the compound towards Escherichia coli and Pseudomonas aeruginosa strains were assessed. The labdane diterpene demonstrated a modulatory effect when combined with the antibiotics assayed against both bacteria. A synergistic effect against Escherichia coli can be observed when the compound is associated with gentamicin, reducing the concentration of this antibiotic that is required to inhibit bacterial growth. Other synergistic effects can be observed with gentamicin and cephalothin antibiotics against P. aeruginosa.

  4. Production development of organic nonflammable spacecraft potting, encapsulating and conformal coating compounds. Volume 1: Discussion, figures, and references

    NASA Technical Reports Server (NTRS)

    Lieberman, S. L.

    1974-01-01

    Based upon extensive contacts with vendors, a broad array of non-flammable polymeric specie, and additives generally noted to have flame retarding properties, were considered. The following polymeric matrices were examined: modified silicone and fluorosilicone RTV's polyesters, epoxies, urethanes, and epoxy-urethanes. Optimization of formulations to obtain a suitable balance between the various properties and flammability resistance led to the final selection of a silicone RTV/additive-loaded compound which meets almost all program requirements. The very low valued properties found are within a realistic level of design toleration. Complete formulation, processing, and test data is provided for this compound, EPOCAST 87517-A/B, and the other formulations prepared by the project. Details of those test methods are presented along with procedures utilized in the program. In addition, a description of the special flammability facility previously designed and then modified for this program is also presented.

  5. Hearing loss in workers exposed to epoxy adhesives and noise: a cross-sectional study

    PubMed Central

    Yang, Hsiao-Yu; Shie, Ruei-Hao; Chen, Pau-Chung

    2016-01-01

    Objectives Epoxy adhesives contain organic solvents and are widely used in industry. The hazardous effects of epoxy adhesives remain unclear. The objective of this study was to investigate the risk of hearing loss among workers exposed to epoxy adhesives and noise. Design Cross-sectional study. Methods For this cross-sectional study, we recruited 182 stone workers who were exposed to both epoxy adhesives and noise, 89 stone workers who were exposed to noise only, and 43 workers from the administrative staff who had not been exposed to adhesives or noise. We obtained demographic data, occupational history and medical history through face-to-face interviews and arranged physical examinations and pure-tone audiometric tests. We also conducted walk-through surveys in the stone industry. A total of 40 representative noise assessments were conducted in 15 workplaces. Air sampling was conducted at 40 workplaces, and volatile organic compounds were analysed using the Environmental Protection Agency (EPA) TO-15 method. Results The mean sound pressure level was 87.7 dBA (SD 9.9). The prevalence of noise-induced hearing loss was considerably increased in the stone workers exposed to epoxy adhesives (42%) compared with the stone workers who were not exposed to epoxy adhesives (21%) and the administrative staff group (9.3%). A multivariate logistic regression analysis revealed that exposure to epoxy adhesives significantly increased the risk of hearing loss between 2 and 6 kHz after adjusting for age. Significant interactions between epoxy adhesives and noise and hearing impairment were observed at 3, 4 and 6 kHz. Conclusions Epoxy adhesives exacerbate hearing impairment in noisy environments, with the main impacts occurring in the middle and high frequencies. PMID:26892792

  6. New structure of diamine curing agent for epoxy resins with self-restoration ability: Synthesis and spectroscopy characterization

    NASA Astrophysics Data System (ADS)

    Raimondo, Marialuigia; Guadagno, Liberata; Naddeo, Carlo; Longo, Pasquale; Mariconda, Annaluisa; Agovino, Anna

    2017-02-01

    The development of smart materials in aeronautical structures consisting of compounds based on epoxy resins having self-repair capability has been hampered by some criticalities. One of the main critical points is related to the impossibility to use primary amines (e.g.: 4,4‧-diaminodiphenyl sulfone, DDS) as hardeners, because they can poison the catalyst responsible for the healing mechanisms. In this paper, the synthesis, characterization and some tests of applicability of a new hardener, the tetramethylated diaminodiphenyl sulfone (tm-DDS), are shown. The tm-DDS is able to rapidly react with epoxy resin, giving a composite material having some characteristics significantly better than composites hardened with different tertiary amines. The new hardener is able to increase the glass transition temperature (Tg) of about 90 °C with respect to the more common hardener, ancamine K54, already used in self-healing epoxy formulations.

  7. Tunable Thermosetting Epoxies Based on Fractionated and Well-Characterized Lignins.

    PubMed

    Gioia, Claudio; Lo Re, Giada; Lawoko, Martin; Berglund, Lars

    2018-03-21

    Here we report the synthesis of thermosetting resins from low molar mass Kraft lignin fractions of high functionality, refined by solvent extraction. Such fractions were fully characterized by 31 P NMR, 2D-HSQC NMR, SEC, and DSC in order to obtain a detailed description of the structures. Reactive oxirane moieties were introduced on the lignin backbone under mild reaction conditions and quantified by simple 1 H NMR analysis. The modified fractions were chemically cross-linked with a flexible polyether diamine ( M n ≈ 2000), in order to obtain epoxy thermosets. Epoxies from different lignin fractions, studied by DSC, DMA, tensile tests, and SEM, demonstrated substantial differences in terms of thermo-mechanical properties. For the first time, strong relationships between lignin structures and epoxy properties could be demonstrated. The suggested approach provides unprecedented possibilities to tune network structure and properties of thermosets based on real lignin fractions, rather than model compounds.

  8. Quantitation of buried contamination by use of solvents. Part 1: Solvent degradation of amine cured epoxy resins

    NASA Technical Reports Server (NTRS)

    Rheineck, A. E.; Heskin, R. A.; Hill, L. W.

    1972-01-01

    The solubility and/or swelling of cured epoxy resins was studied using the solubility parameter method. Determination of solubility parameters were found in order to select solvents for solvent-assisted degradation of cured epoxy polymers used in spacecraft. A method for improving recovery of seeded spores is suggested for assay of buried contaminants. Three commercial epoxy resins were cured using four different alkyl amines. For each resin-amine combination, three levels of amine were used, corresponding to 1/3, 2/3, and all of the amine required to react with the oxirane groups of the resin. The solubility parameters of the 36 resulting model compounds were determined in poorly and moderately hydrogen-bonded solvents. No strongly hydrogen-bonded solvents caused dissolution or swelling. The tolerance of cured resins is discussed in terms of polymer structure.

  9. An investigation of the use of cerium and polyhedral oligomeric silsesquioxanes for the protection of polymeric epoxy compounds in the low Earth orbit environment

    NASA Astrophysics Data System (ADS)

    Piness, Jessica Miriam

    Low Earth orbit presents many hazards for composites including atomic oxygen, UV radiation, thermal cycling, micrometeoroids, and high energy protons. Atomic oxygen and vacuum ultraviolet radiation are of concern for space-bound polymeric materials as they degrade the polymers used as matrices for carbon fiber composites, which are used in satellites and space vehicles due to their high strength to weight ratios. Epoxy-amine thermosets comprise a common class of matrix due to processability and good thermal attributes. Polyhedral oligomeric silsesquioxanes (POSS) have shown the ability to reduce erosion in polyimides, polyurethanes, and other polymers when exposed to atomic oxygen. The POSS particle is composed of a SiO1.5 cage from which up to eight organic pendant groups are attached at the silicon corners of the cage. POSS reduced atomic oxygen impact on polymers by a process known as glassification wherein the organic pendants are removed from the cage upon atomic oxygen exposure and then the cage rearranges to a passive silica network. In addition, POSS shows good UV absorbance in the UVb and UVc ranges and POSS can aid dispersion of titanium dioxide in a nanocomposite. In this work, Chapter I focuses on hazards in low Earth orbit, strategies for protecting organic material in orbit, and the capabilities of POSS. Chapter II details the experimental practices used in this work. Chapter III focuses on work to induce POSS phase separation and layering at the surface of an epoxy-amine thermoset. Generally, POSS is dispersed throughout a nanocomposite, and in the process of erosion by atomic oxygen, some polymer mass loss is lost before enough POSS is exposed to begin glassification. Locating POSS at a surface of composite could possibly reduce this mass loss and the objective of this research was to investigate the formation of POSS-rich surfaces. Three POSS derivatives with different pendant groups were chosen. The POSS derivatives had a range of miscibilities with the epoxy-amine matrix. A sedimented layer of the most incompatible POSS moiety was observed at the bottom of bars at the highest loading level of 5 wt% POSS. It was concluded that POSS could form a sedimented layer in this epoxy during cure. Epoxy amine materials containing POSS derivatives were tested by exposure to atomic oxygen at NASA Glenn Research Center with each POSS derivative present in separate samples at 2.5 wt% loading levels. Mass loss did not decrease against an unfilled control and glassification was not observed, leading to the conclusion that POSS could not be effectively concentrated at a surface to reduce degradation given the methods used. Taking this into account, the study transitioned into seeking ways to integrate highly UV absorbent cerium compounds with POSS. This part of the study is reported in Chapter IV. It was anticipated that POSS with a polar pendant group would interact through intermolecular forces with cerium (IV) oxide and produce a suspension that could be cured at the surface of polymers. However, in every experiment, the cerium (IV) oxide was not dispersed. However, a homogeneous dispersion of a cerium-containing compound was achieved by combining trisilanol phenyl POSS with cerium (III) nitrate hexahydrate. NMR and mass spectrometry showed that the mixture of Cerium nitrate and trisilanol phenyl POSS did not result in the formation of a chemical compound but FTIR studies indicated the presence of hydrogen bonding between the POSS silanols and cerium-associated water. The resulting material was termed "CePOSS". CePOSS was more UV absorbent in the UVc region than POSS or other cerium compounds as measured by solution UV-vis spectroscopy. In addition, CePOSS could be mixed into a POSS-epoxy coating, after pre-blending with poly(ethylene glycol) POSS, to produce films that were essentially opaque in the UV region below a wavelength of about 300 nm, and transparent in the visible region above 300 nm. The discovery of a 'window of transparency' in the visible region is significant in view of the fact that the epoxy-amine polymers, sans the POSS and cerium additives, were opaque across the entire UV/ visible range. The investigation of the UV transmittance and glassification response of these CePOSS-POSS-epoxy films is described in Chapter V. UV transmittance of the POSS-epoxy coating was predicted to decrease below 275 nm with the presence of CePOSS given the solution UV-vis spectroscopy results. However, there was no difference seen in transmittance between coatings with and without CePOSS below 275 nm. The transparent region above 300 nm was seen in all samples with any type of POSS. In addition, UV/ozone exposure was completed on epoxy, POSS-epoxy, and CePOSS-POSS-epoxy coatings to examine the effect of cerium on POSS glassification. Oxidation was achieved even in the presence of CePOSS as verified by x-ray photoelectron spectroscopy, scanning electron microscopy, and contact angle. Finally, UV transmittance was done on pre and post exposed materials.

  10. Synthesis of cuprous oxide epoxy nanocomposite as an environmentally antimicrobial coating.

    PubMed

    M El Saeed, Ashraf; Abd El-Fattah, M; Azzam, Ahmed M; Dardir, M M; Bader, Magd M

    2016-08-01

    Cuprous oxide is commonly used as a pigment; paint manufacturers begin to employ cuprous oxide as booster biocides in their formulations, to replace the banned organotins as the principal antifouling compounds. Epoxy coating was reinforced with cuprous oxide nanoparticles (Cu2O NPs). The antibacterial as well as antifungal activity of Cu2O epoxy nanocomposite (Cu2O EN) coating films was investigated. Cu2O NPs were also experimented for antibiofilm and time-kill assay. The thermal stability and the mechanical properties of Cu2O EN coating films were also investigated. The antimicrobial activity results showed slowdown, the growth of organisms on the Cu2O EN coating surface. TGA results showed that incorporating Cu2O NPs into epoxy coating considerably enhanced the thermal stability and increased the char residue. The addition of Cu2O NPs at lower concentration into epoxy coating also led to an improvement in the mechanical resistance such as scratch and abrasion. Cu2O NPs purity was confirmed by XRD. The TEM photograph demonstrated that the synthesized Cu2O NPs were of cubic shape and the average diameter of the crystals was around 25nm. The resulting perfect dispersion of Cu2O NPs in epoxy coating revealed by SEM ensured white particles embedded in the epoxy matrix. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Bio-Based Aromatic Epoxy Monomers for Thermoset Materials.

    PubMed

    Ng, Feifei; Couture, Guillaume; Philippe, Coralie; Boutevin, Bernard; Caillol, Sylvain

    2017-01-18

    The synthesis of polymers from renewable resources is a burning issue that is actively investigated. Polyepoxide networks constitute a major class of thermosetting polymers and are extensively used as coatings, electronic materials, adhesives. Owing to their outstanding mechanical and electrical properties, chemical resistance, adhesion, and minimal shrinkage after curing, they are used in structural applications as well. Most of these thermosets are industrially manufactured from bisphenol A (BPA), a substance that was initially synthesized as a chemical estrogen. The awareness on BPA toxicity combined with the limited availability and volatile cost of fossil resources and the non-recyclability of thermosets implies necessary changes in the field of epoxy networks. Thus, substitution of BPA has witnessed an increasing number of studies both from the academic and industrial sides. This review proposes to give an overview of the reported aromatic multifunctional epoxide building blocks synthesized from biomass or from molecules that could be obtained from transformed biomass. After a reminder of the main glycidylation routes and mechanisms and the recent knowledge on BPA toxicity and legal issues, this review will provide a brief description of the main natural sources of aromatic molecules. The different epoxy prepolymers will then be organized from simple, mono-aromatic di-epoxy, to mono-aromatic poly-epoxy, to di-aromatic di-epoxy compounds, and finally to derivatives possessing numerous aromatic rings and epoxy groups.

  12. Occupational contact dermatitis caused by aniline epoxy resins in the aircraft industry.

    PubMed

    Pesonen, Maria; Suuronen, Katri; Jolanki, Riitta; Aalto-Korte, Kristiina; Kuuliala, Outi; Henriks-Eckerman, Maj-Len; Valtanen, Ilona; Alanko, Kristiina

    2015-08-01

    Tetraglycidyl-4,4'-methylenedianiline (TGMDA) is an aniline epoxy resin used in, for example, resin systems of pre-impregnated composite materials (prepregs) of the aircraft industry. Allergic contact dermatitis caused by TGMDA in prepregs has been described previously. To report on 9 patients with occupational allergic contact dermatitis caused by TGMDA in epoxy glues used in helicopter assembly. The patients were examined with patch testing at the Finnish Institute of Occupational Health in 2004-2009. The first patient was diagnosed by testing both components of two epoxy glues from the workplace, and was also tested with glue ingredients, including TGMDA. The following patients were tested with the glues and TGMDA. The resin parts of the glues were analysed for their epoxy compounds, including TGMDA. All of the patients had a patch test reaction to one or both of the resin parts of the TGMDA-containing glues. Eight of them had a strong allergic reaction to TGMDA, and one had a doubtful reaction to TGMDA. Two of the patients also had an allergic reaction to triglycidyl-p-aminophenol (TGPAP), another aniline epoxy resin, which was not present in the TGMDA-containing glues. In aircraft industry workers with suspected occupational dermatitis, aniline epoxy resins should be considered and patch tested as possible contact allergens. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker, J.M.

    The physical properties: mechanical, electrical, and thermal of a general purpose epoxy potting compound, filled with either glass microspheres, aluminum oxide or beta-eucryptite and catalyzed with either an aliphatic amine, a liquid aromatic amine eutectic blend, or a liquid anhydride are discussed. The properties of a CTBN modified epoxy are also included. Twelve formulation-cure cycle combinations were chosen for evaluation. The temperature dependent properties from -65/sup 0/ to 400/sup 0/F (-54/sup 0/ to 204/sup 0/C) for the 12 combinations are given.

  14. Evaluation of anti-melanoma activities of (1S,2E,4R,6E,8R,11S,12R)-8,12-epoxy-2,6-cembradiene-4,11-diol, (1S,2E,4R,6E,8S,11R,12S)-8,11-epoxy-4,12-epoxy-2,6-cembradiene and (1S,4R,13S)-cembra-2E,7E,11E-trien-4,13-diol from the Red Sea soft coral Sarcophyton glaucum.

    PubMed

    Szymanski, Pawel T; Ahmed, Safwat A; Radwan, Mohamed M; Khalifa, Sherief I; Fahmy, Hesham

    2014-08-01

    Three natural cembranoids from the Red Sea soft coral Sarcophyton glaucum namely (1S,2E,4R,6E,8R,11S,12R)-8,12-epoxy-2,6-cembradiene-4,11-diol, (1S,2E,4R,6E,8S,11R,12S)-8,11-epoxy-4,12-epoxy-2,6-cembradiene and (1S,4R,13S)-cembra-2E,7E,11E-trien-4,13-diol were evaluated for their inhibitory effects on mouse melanoma B16F10 cell growth. Results show that all the cembranoids strongly inhibit viability of melanoma cells particularly during 48 -72 hrs treatment and also inhibit de novo DNA synthesis and PARP activity and stimulate fragmentation of DNA. (1S,2E,4R,6E,8R,11S,12R)-8,12-epoxy-2,6-cembradiene-4,11-diol was not cytotoxic to monkey kidney CV-1 cells at the concentration that produces the anti-melanoma effects which indicates that this compound may be a good candidate for further development. (1S,2E,4R,6E,8S,11R,12S)-8,11-epoxy-4,12-epoxy-2,6-cembradiene and (1S,4R,13S)-cembra-2E,7E,11E-trien-4,13-diol were found to be cytotoxic to healthy cells.

  15. A systems approach for discovering linoleic acid derivatives that potentially mediate pain and itch

    PubMed Central

    Ramsden, Christopher E.; Domenichiello, Anthony F.; Yuan, Zhi-Xin; Sapio, Matthew R.; Keyes, Gregory S.; Mishra, Santosh K.; Gross, Jacklyn R.; Majchrzak-Hong, Sharon; Zamora, Daisy; Horowitz, Mark S.; Davis, John M.; Sorokin, Alexander V.; Dey, Amit; LaPaglia, Danielle M.; Wheeler, Joshua J.; Vasko, Michael R.; Mehta, Nehal N.; Mannes, Andrew J.; Iadarola, Michael J.

    2018-01-01

    Chronic pain and itch are common hypersensitivity syndromes that are affected by endogenous mediators. We applied a systems-based, translational approach to predict, discover, and characterize mediators of pain and itch that are regulated by diet and inflammation. Profiling of tissue-specific precursor abundance and biosynthetic gene expression predicted that inflamed skin would be abundant in four previously unknown 11-hydroxy-epoxy-or 11-keto-epoxy-octadecenoate linoleic acid derivatives and four previously identified 9- or 13-hydroxy-epoxy- or 9- or 13-keto-epoxy-octadecenoate linoleic acid derivatives. All of these mediators were confirmed to be abundant in rat and human skin by mass spectrometry. However, only the two 11-hydroxy-epoxy-octadecenoates sensitized rat dorsal root ganglion neurons to release more calcitonin gene–related peptide (CGRP), which is involved in pain transmission, in response to low pH (which mimics an inflammatory state) or capsaicin (which activates ion channels involved in nociception). The two 11-hydroxy-epoxy-octadecenoates share a 3-hydroxy-Z-pentenyl-E-epoxide moiety, thus suggesting that this substructure could mediate nociceptor sensitization. In rats, intradermal hind paw injection of 11-hydroxy-12,13-trans-epoxy-(9Z)-octadecenoate elicited C-fiber–mediated sensitivity to thermal pain. In a randomized trial testing adjunctive strategies to manage refractory chronic headaches, reducing the dietary intake of linoleic acid was associated with decreases in plasma 11-hydroxy-12,13-trans-epoxy-(9Z)-octadecenoate, which correlated with clinical pain reduction. Human psoriatic skin had 30-fold higher 9-keto-12,13-trans-epoxy-(10E)-octadecenoate compared to control skin, and intradermal injection of this compound induced itch-related scratching behavior in mice. Collectively, these findings define a family of endogenous mediators with potential roles in pain and itch. PMID:28831021

  16. Hearing loss in workers exposed to epoxy adhesives and noise: a cross-sectional study.

    PubMed

    Yang, Hsiao-Yu; Shie, Ruei-Hao; Chen, Pau-Chung

    2016-02-18

    Epoxy adhesives contain organic solvents and are widely used in industry. The hazardous effects of epoxy adhesives remain unclear. The objective of this study was to investigate the risk of hearing loss among workers exposed to epoxy adhesives and noise. Cross-sectional study. For this cross-sectional study, we recruited 182 stone workers who were exposed to both epoxy adhesives and noise, 89 stone workers who were exposed to noise only, and 43 workers from the administrative staff who had not been exposed to adhesives or noise. We obtained demographic data, occupational history and medical history through face-to-face interviews and arranged physical examinations and pure-tone audiometric tests. We also conducted walk-through surveys in the stone industry. A total of 40 representative noise assessments were conducted in 15 workplaces. Air sampling was conducted at 40 workplaces, and volatile organic compounds were analysed using the Environmental Protection Agency (EPA) TO-15 method. The mean sound pressure level was 87.7 dBA (SD 9.9). The prevalence of noise-induced hearing loss was considerably increased in the stone workers exposed to epoxy adhesives (42%) compared with the stone workers who were not exposed to epoxy adhesives (21%) and the administrative staff group (9.3%). A multivariate logistic regression analysis revealed that exposure to epoxy adhesives significantly increased the risk of hearing loss between 2 and 6 kHz after adjusting for age. Significant interactions between epoxy adhesives and noise and hearing impairment were observed at 3, 4 and 6 kHz. Epoxy adhesives exacerbate hearing impairment in noisy environments, with the main impacts occurring in the middle and high frequencies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  17. New Tirucallane-Type Triterpenoids from Guarea guidonia.

    PubMed

    Hernandez, Vanessa; De Leo, Marinella; Cotugno, Roberta; Braca, Alessandra; De Tommasi, Nunziatina; Severino, Lorella

    2018-01-16

    The aerial parts of Guarea guidonia afforded three new tirucallane-type triterpenoids: 3,4- seco -tirucalla-4(28),8(9),24(25)-trien-7α,11α-dihydroxy-21,23-epoxy-3,11-olide, named guareolide (1: ), 3,4- seco -tirucalla-4(28),7(8),24(25)-trien-21-hydroxy-21,23-epoxy-3-oic acid, named guareoic acid A (2: ), and 3,4- seco -tirucalla-4(28),7(8),24(25)-trien-21,23-epoxy-3-oic acid, named guareoic acid B (3: ), of which 1: possessed an unusual seven-membered lactone ring. Seven known terpenes were also isolated and characterized as flindissone, 7-acetyldihydronomilin, picroquassin E, boscartol C, and cneorubins A, B, and X. Their structures were determined by spectroscopic methods including one-dimensional and two-dimensional nuclear magnetic resonance analysis and high-resolution mass spectrometry. The isolates were investigated for their potential cytotoxic activity on Jurkat, HeLa, and MCF7 cancer cell lines. Flindissone and compound 2: showed an antiproliferative activity in all cell lines. Further studies revealed that flindissone, the most active compound, induced in Jurkat and HeLa cells both cytostatic and cytotoxic responses. Georg Thieme Verlag KG Stuttgart · New York.

  18. Synthesis of liquid crystalline epoxy monomers

    NASA Astrophysics Data System (ADS)

    Fabia, J.; Galina, H.; Mossety-Leszczak, B.; Ulanski, J.; Wojciechowski, Piotr; Wlochowicz, Andrzej

    2002-06-01

    A two-stage method of synthesis of liquid-crystalline diepoxy monomers has been developed. In the first stage, esterification of 4-hydroxyphenyl-4-hydroxybenzoate or 4,4'- biphenol or 4,4'-dihydroxyazobenzene was carried out using 4-penetenoic acid. The resulting olefinic precursors were oxidized with m-chloroperoxybenzoic acid to introduce the epoxy groups. The structure of products was confirmed by FT- IR and 1H NMR. Examinations on a polarization microscope with a hot plate confirmed the presence of mesomorphic phases in both the precursors and monomers. The phase transition temperatures were in the range of 73.5 (at cooling) to 128.0 degree(s)C for olefinic precursors and in the range 57.1 (at cooling) to 143 degree(s)C for epoxy compounds, as determined by DSC and thermo-optical analysis (TOA).

  19. Novel cucurbitane triterpenoids and anti-cholinesterase activities of constituents from Momordica charantia L.

    PubMed

    Kuanhuta, Wichut; Aree, Thammarat; Pornpakakul, Surachai; Sawasdee, Pattara

    2014-06-01

    The C-19 epimers of 5beta,19-epoxycucurbita-6,23(E),25(26)-triene-3f,19-diol (1) and 5/,19-epoxy-25-methoxycucurbita-6,23-diene-3beta,19-diol (2) along with (19R,23E)-5beta,19-epoxy-19-methoxycucurbita-6,23,25-trien-3beta-ol (3), (23E)-5beta,19-epoxycucurbita-6,23-diene-3beta,25-diol (4), ligballinol (5), charantin (6) and momordicoside K(7) were isolated from the green fruits of Momordica charantia. The (S)-epimers of 1 and 2 are the first reports in nature. The acetyl- and butyryl-cholinesterase inhibitory activities of the isolated compounds were evaluated, and 5 showed the highest activity of these compounds against butyrylcholinesterase (IC50 = 32.20 microM) with a reversible and non-competitive inhibition mode.

  20. Cucurbitane-type triterpenoids from the fruit pulp of Momordica charantia.

    PubMed

    Liao, Yun-Wen; Chen, Chiy-Rong; Kuo, Yueh-Hsiung; Hsu, Jue-Liang; Shih, Wen-Ling; Cheng, Hsueh-Ling; Huang, Tzou-Chi; Chang, Chi-I

    2012-12-01

    Three new cucurbitane-type triterpenoids, 5beta,19-epoxy-23(R)-methoxycucurbita-6,24-dien-3beta-ol (1), 5beta,19-epoxy-23(S)-methoxycucurbita-6,24-dien-3beta-ol (2), and 3beta-hydroxy-23(R)-methoxycucurbita-6,24-dien-5beta,19-olide (3), were isolated from the fruit pulp of Momordica charantia. Their structures were established on the basis of extensive NMR (1H, 13C, COSY, HMQC, HMBC, and NOESY) and EI-MS studies. Compound 1 exhibited cytotoxic activity against the SK-Hep 1 cell line.

  1. Epoxy resin monomers with reduced skin sensitizing potency.

    PubMed

    O'Boyle, Niamh M; Niklasson, Ida B; Tehrani-Bagha, Ali R; Delaine, Tamara; Holmberg, Krister; Luthman, Kristina; Karlberg, Ann-Therese

    2014-06-16

    Epoxy resin monomers (ERMs), especially diglycidyl ethers of bisphenol A and F (DGEBA and DGEBF), are extensively used as building blocks for thermosetting polymers. However, they are known to commonly cause skin allergy. This research describes a number of alternative ERMs, designed with the aim of reducing the skin sensitizing potency while maintaining the ability to form thermosetting polymers. The compounds were designed, synthesized, and assessed for sensitizing potency using the in vivo murine local lymph node assay (LLNA). All six epoxy resin monomers had decreased sensitizing potencies compared to those of DGEBA and DGEBF. With respect to the LLNA EC3 value, the best of the alternative monomers had a value approximately 2.5 times higher than those of DGEBA and DGEBF. The diepoxides were reacted with triethylenetetramine, and the polymers formed were tested for technical applicability using thermogravimetric analysis and differential scanning calorimetry. Four out of the six alternative ERMs gave polymers with a thermal stability comparable to that obtained with DGEBA and DGEBF. The use of improved epoxy resin monomers with less skin sensitizing effects is a direct way to tackle the problem of contact allergy to epoxy resin systems, particularly in occupational settings, resulting in a reduction in the incidence of allergic contact dermatitis.

  2. Cure Kinetics of Epoxy Nanocomposites Affected by MWCNTs Functionalization: A Review

    PubMed Central

    Saeb, Mohammad Reza; Bakhshandeh, Ehsan; Khonakdar, Hossein Ali; Mäder, Edith; Scheffler, Christina; Heinrich, Gert

    2013-01-01

    The current paper provides an overview to emphasize the role of functionalization of multiwalled carbon nanotubes (MWCNTs) in manipulating cure kinetics of epoxy nanocomposites, which itself determines ultimate properties of the resulting compound. In this regard, the most commonly used functionalization schemes, that is, carboxylation and amidation, are thoroughly surveyed to highlight the role of functionalized nanotubes in controlling the rate of autocatalytic and vitrification kinetics. The current literature elucidates that the mechanism of curing in epoxy/MWCNTs nanocomposites remains almost unaffected by the functionalization of carbon nanotubes. On the other hand, early stage facilitation of autocatalytic reactions in the presence of MWCNTs bearing amine groups has been addressed by several researchers. When carboxylated nanotubes were used to modify MWCNTs, the rate of such reactions diminished as a consequence of heterogeneous dispersion within the epoxy matrix. At later stages of curing, however, the prolonged vitrification was seen to be dominant. Thus, the type of functional groups covalently located on the surface of MWCNTs directly affects the degree of polymer-nanotube interaction followed by enhancement of curing reaction. Our survey demonstrated that most widespread efforts ever made to represent multifarious surface-treated MWCNTs have not been directed towards preparation of epoxy nanocomposites, but they could result in property synergism. PMID:24348181

  3. Sensory aspects of drinking water in contact with epoxy lined copper pipe.

    PubMed

    Heim, T H; Dietrich, A M

    2007-01-01

    Pipe relining via in situ epoxy lining is used to remediate corroded plumbing or distribution systems. This investigation examined the effects on odour, TOC, THM formation and disinfectant demand in water exposed to epoxy-lined copper pipes used for home plumbing. The study was conducted in accordance with the Utility Quick Test, a migration/leaching method for utilities to conduct sensory analysis of materials in contact with drinking water. The test was performed using water with no disinfectant and levels of chlorine and monochloramines representative of those found in the distribution system. Panelists repeatedly and consistently described a "plastic/adhesive/putty" odour in the water from the pipes. The odour intensity remained relatively constant for each of two subsequent flushes. Water samples stored in the epoxy-lined pipes showed a significant increase in the leaching of organic compounds (as TOC), and this TOC was demonstrated to react with free chlorine to form trichloromethane. Water stored in the pipes also showed a marked increase in disinfectant demand relative to the water stored in glass control flasks. A study conducted at a full scale installation at an apartment demonstrated that after installation and regular use, the epoxy lining did not yield detectable differences in water quality.

  4. Diabetes, Obesity, and Other Insulin-Related Diseases | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Cancer Institute’s Urologic Oncology Branch seeks partners interested in collaborative research to co-develop small molecule epoxy-guaiane derivative englerin A and related compounds for diseases associated with insulin resistance.

  5. A cytotoxic and apoptosis-inducing sesquiterpenoid isolated from the aerial parts of Artemisia princeps PAMPANINI (Sajabalssuk).

    PubMed

    Bang, Myun-Ho; Han, Min-Woo; Song, Myoung-Chong; Cho, Jin-Gyeong; Chung, Hae-Gon; Jeong, Tae-Sook; Lee, Kyung-Tae; Choi, Myung-Sook; Kim, Se-Young; Baek, Nam-In

    2008-08-01

    Repeated silica gel and octadecyl silica gel (ODS) column chromatography of the aerial parts of Artemisia princeps PAMPANINI (Sajabalssuk) led to the isolation of a new sesquiterpenoid, 3-((S)-2-methylbutyryloxy)-costu-1(10),4(5)-dien-12,6 alpha-olide (2), along with two previously reported sesquiterpenoids: 8 alpha-angeloyloxy-3beta,4 beta-epoxy-6 beta H,7 alpha H,8 beta H-guaia-1(10),11(13)-dien-12,6 alpha-olide (1, carlaolide B) and 3beta,4 beta-epoxy-8 alpha-isobutyryloxy-6 beta H,7 alpha H,8 beta H-guaia-1(10),11(13)-dien-12,6 alpha-olide (3, carlaolide A). The structure of compound 2 was elucidated by spectroscopic data analysis, including one dimensional (1D) and two dimensional (2D) nuclear magnetic resonance (NMR) experiments. Of the isolates, compound 2 exhibited potent cytotoxicity against human cervix adenocarcinoma cells and induced apoptosis.

  6. Cytotoxic effect of triterpenoids from the root bark of Hibiscus syriacus.

    PubMed

    Shi, Li-Shian; Wu, Chao-Hsuan; Yang, Te-Chun; Yao, Chen-Wen; Lin, Hang-Ching; Chang, Wen-Liang

    2014-09-01

    In this study, 4 new triterpenoids-3β- acetoxy-olean-11-en,28,13β-olide (1), 3β- acetoxy-11α,12α-epoxy-olean-28,13β-olide (2), 19α-epi-betulin (3), and 20, 28-epoxy-17β,19β-lupan-3β-ol (4)-and 12 known compounds, were isolated from the root bark of Hibiscus syriacus L. by using acetone extraction. Their structures were characterized by extensive spectroscopic analysis. To investigate cytotoxicity, A549 human lung cancer cells were exposed to the extract and the compounds identified from it. Significantly reduced cell viability was observed with betulin-3-caffeate (12) (IC50, 4.3 μM). The results of this study indicate that betulin-3-caffeate (12) identified from H. syriacus L. may warrant further investigation for potential as anticancer therapies. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Adhesives from modified soy protein

    DOEpatents

    Sun, Susan [Manhattan, KS; Wang, Donghai [Manhattan, KS; Zhong, Zhikai [Manhattan, KS; Yang, Guang [Shanghai, CN

    2008-08-26

    The present invention provides useful adhesive compositions having similar adhesive properties to conventional UF and PPF resins. The compositions generally include a protein portion and modifying ingredient portion selected from the group consisting of carboxyl-containing compounds, aldehyde-containing compounds, epoxy group-containing compounds, and mixtures thereof. The composition is preferably prepared at a pH level at or near the isoelectric point of the protein. In other preferred forms, the adhesive composition includes a protein portion and a carboxyl-containing group portion.

  8. Sensitization to reactive diluents and hardeners in epoxy resin systems. IVDK data 2002-2011. Part I: reaction frequencies.

    PubMed

    Geier, Johannes; Lessmann, Holger; Hillen, Uwe; Skudlik, Christoph; Jappe, Uta

    2016-02-01

    Epoxy resin systems (ERSs), consisting of resins, reactive diluents, and hardeners, are indispensable in many branches of industry. In order to develop less sensitizing ERS formulations, knowledge of the sensitizing properties of single components is mandatory. To analyse the frequency of sensitization in the patients concerned, as one integral part of a research project on the sensitizing potency of epoxy resin compounds (FP-0324). A retrospective analysis of data from the Information Network of Departments of Dermatology (IVDK), 2002-2011, and a comparison of reaction frequencies with (surrogate) exposure data, were performed. Almost half of the patients sensitized to epoxy resin were additionally sensitized to reactive diluents or hardeners. Among the reactive diluents, 1,6-hexanediol diglycidyl ether was the most frequent allergen, followed by 1,4-butanediol diglycidyl ether, phenyl glycidyl ether, and p-tert-butylphenyl glycidyl ether. Among the hardeners, m-xylylene diamine (MXDA) and isophorone diamine (IPDA) were the most frequent allergens. According to the calculated exposure-related frequency of sensitization, MXDA seems to be a far more important sensitizer than IPDA. Up to 60% of the patients sensitized to hardeners and 15-20% of those sensitized to reactive diluents do not react to epoxy resin. In cases of suspected contact allergy to an ERS, a complete epoxy resin series must be patch tested from the start. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Two new compounds from the flowers of Rhododendron molle.

    PubMed

    Chen, Shao-Nong; Bao, Guan-Hu; Wang, Li-Quan; Qin, Guo-Wei

    2013-09-01

    To study the chemical constituents of the flowers of Rhododendron molle. Compounds were isolated by repeated chromatography over silica gel and Sephadex LH-20. Structures were elucidated based on spectral techniques, mainly 1D- and 2D-NMR and mass spectrometric analyses. Two compounds (1 and 2) were isolated. Compounds 1 and 2 were identified as two new compounds: 2α, 10α-epoxy-3β, 5β, 6β, 14β, 16α-hexahydroxy-grayanane and benzyl 2, 6-dihydroxybenzoate-6-O-α-L-rhamnopyranosyl-(1→3)-β-D-glucopyranoside, respectively. Copyright © 2013 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  10. Phenolics from Ageratina adenophora roots and their phytotoxic effects on Arabidopsis thaliana seed germination and seedling growth.

    PubMed

    Zhou, Zhong-Yu; Liu, Wan-Xue; Pei, Gang; Ren, Hui; Wang, Jing; Xu, Qiao-Lin; Xie, Hai-Hui; Wan, Fang-Hao; Tan, Jian-Wen

    2013-12-04

    A bioassay-directed phytochemical study was conducted to investigate potential allelochemicals in the roots of the invasive plant Ageratina adenophora. Eleven phenolic compounds, including seven new ones, 7-hydroxy-8,9-dehydrothymol 9-O-trans-ferulate (1), 7-hydroxythymol 9-O-trans-ferulate (2), 7,8-dihydroxythymol 9-O-trans-ferulate (3), 7,8-dihydroxythymol 9-O-cis-ferulate (4), methyl (7R)-3-deoxy-4,5-epoxy-D-manno-2-octulosonate 8-O-trans-p-coumarate (5), methyl (7R)-3-deoxy-4,5-epoxy-D-manno-2-octulosonate 8-O-cis-p-coumarate (6), and 3-(2-hydroxyphenyl)propyl methyl malonate (7), were isolated from a bioactive subfraction of the ethanol extract of the roots of A. adenophora. The new structures were established on the basis of detailed spectroscopic analysis. The potential phytotoxic effects of these compounds on the germination of Arabidopsis thaliana seeds were tested by a filter paper assay. Compound 7 and known compounds 3-(2-hydroxyphenyl)-1-propanol (8) and o-coumaric acid (9) remarkably showed inhibition activity against Arabidopsis seed germination at a concentration of 1.0 mM. Compounds 1, 2, 5, 6, and 10 showed slight inhibitory activity at the test concentration after treatment for 3 days, while the other compounds showed no obvious inhibitory effects. Moreover, 7-9 were further found to show obvious inhibitory activity on retarding the seedling growth of Ar. thaliana cultured in soil medium.

  11. Synthesis of a Novel Phosphorus-Containing Flame Retardant Curing Agent and Its Application in Epoxy Resins.

    PubMed

    Zhang, Hongkun; Xu, Miaojun; Li, Bin

    2016-03-01

    A novel phosphorus-containing compound diphenyl-(2,5-dihydroxyphenyl)-phosphine oxide defined as DPDHPPO was synthesized and used as flame retardant and curing agent for epoxy resins (EP). The chemical structure was well characterized by Fourier transform infrared (FTIR) spectroscopy, 1H, 13C and 31P nuclear magnetic resonance. The flame retardant properties, combusting performances and thermal degradation behaviors of the cured epoxy resins were investigated by limiting oxygen index (LOI), vertical burning tests (UL-94), cone calorimeter and thermogravimetric analysis (TGA) tests. The morphologies and chemical compositions of char residues for cured epoxy resins were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The water resistant properties were evaluated by putting the samples into distilled water at 70 degrees C for 168 h. The results revealed that the EP/40 wt% DPDHPPO/60 wt% PDA thermosets successfully passed UL-94 V-0 flammability rating and the LOI value was as high as 31.9%. The cone tests results revealed that the incorporation of DPDHPPO efficiently reduced the combustion parameters of epoxy resins thermosets, such as heat release rate (HRR), total heat release (THR) and so on. The TGA results indicated that the introduction of DPDHPPO promoted epoxy resins matrix decomposed ahead of time compared with that of pure EP and led to a higher char yield and thermal stability at high temperature. The morphological structures and analysis of XPS of char residues revealed that DPDHPPO benefited to the formation of a sufficient, compact and homogeneous char layer with rich flame retardant elements on the epoxy resins materials surface during combustion. After water resistance tests, EP/40 wt% DPDHPPO/60 wt% PDA thermosets still remained excellent flame retardancy, the moisture absorption of epoxy resins thermosets decreased with the increase of DPDHPPO contents in the thermosets due to the existing of P-C bonds and the rigid aromatic hydrophobic structure.

  12. A Visible Light Initiating System for Free Radical Promoted Cationic Polymerization

    DTIC Science & Technology

    1994-02-02

    identify the end groups in the polymer of cyclohexene oxide. N,N-Dimethylnaphthyl amine (DNA), a compound with high fluorescence quantum yield, was used...candidates to be polymerized via a cationic mechanism include cyclic ethers, cyclic formals and acetals, vinyl ethers, and epoxy compounds . Of these...reported sensitizer, bears two dimethylamino groups, is direct evidence that an aromatic amine can be present in a cationically photopolymerizable system

  13. DEVELOPING A NO-VOC WOOD TOPCOAT

    EPA Science Inventory

    The paper reports an evaluation of a new low-VOC (volatile organic compound) wood coating technology, its performance characteristics, and its application and emissions testing. The low-VOC wood coating selected for the project was a two-component, water-based epoxy coating. Poly...

  14. Crystal structures of five new substituted tetrahydro-1-benzazepines with potential antiparasitic activity.

    PubMed

    Macías, Mario A; Acosta, Lina M; Sanabria, Carlos M; Palma, Alirio; Roussel, Pascal; Gauthier, Gilles H; Suescun, Leopoldo

    2016-05-01

    Tetrahydro-1-benzazepines have been described as potential antiparasitic drugs for the treatment of chagas disease and leishmaniasis, two of the most important so-called `forgotten tropical diseases' affecting South and Central America, caused by Trypanosoma cruzi and Leishmania chagasi parasites, respectively. Continuing our extensive work describing the structural characteristics of some related compounds with interesting biological properties, the crystallographic features of three epoxy-1-benzazepines, namely (2SR,4RS)-6,8-dimethyl-2-(naphthalen-1-yl)-2,3,4,5-tetrahydro-1H-1,4-epoxy-1-benzazepine, (1), (2SR,4RS)-6,9-dimethyl-2-(naphthalen-1-yl)-2,3,4,5-tetrahydro-1H-1,4-epoxy-1-benzazepine, (2), and (2SR,4RS)-8,9-dimethyl-2-(naphthalen-1-yl)-2,3,4,5-tetrahydro-1H-1,4-epoxy-1-benzazepine, (3), all C22H21NO, and two 1-benzazepin-4-ols, namely 7-fluoro-cis-2-[(E)-styryl]-2,3,4,5-tetrahydro-1H-1-benzazepin-4-ol, C18H18FNO, (4), and 7-fluoro-cis-2-[(E)-pent-1-enyl]-2,3,4,5-tetrahydro-1H-1-benzazepin-4-ol, C15H20FNO, (5), are described. Some peculiarities in the crystallization behaviour were found, involving significant variations in the crystalline structures as a result of modest changes in the peripheral substituents in (1)-(3) and the occurrence of discrete disorder due to the molecular overlay of enantiomers with more than one conformation in (5). In particular, an interesting phase change on cooling was observed for compound (5), accompanied by an approximate fourfold increase of the unit-cell volume and a change of the Z' value from 1 to 4. This transition is a consequence of the partial ordering of the pentenyl chains in half of the molecules breaking half of the -3 symmetry axes observed in the room-temperature structure of (5). The structural assembly in all the title compounds is characterized by not only (N,O)-H...(O,N) hydrogen bonds, but also by unconventional C-H...O contacts, resulting in a wide diversity of packing.

  15. Compounds containing meta-biphenylenedioxy moieties and polymers therefrom

    NASA Technical Reports Server (NTRS)

    St.clair, Terry L. (Inventor); Pratt, John Richard (Inventor)

    1993-01-01

    Two monomers containing meta-biphenylenedioxy moieties were prepared. One monomer, a diamine, is used to prepare polyimide, polyamide, and epoxy polymers. The other monomer, a dianhydride, was used to prepare polyimide polymers. These polymers are used to make films, coatings, and selective membranes.

  16. Affinity adsorption of glucose degradation products improves the biocompatibility of conventional peritoneal dialysis fluid.

    PubMed

    Ishikawa, Naoyoshi; Miyata, Toshio; Ueda, Yasuhiko; Inagi, Reiko; Izuhara, Yuko; Yuzawa, Hiroko; Onogi, Hiroshi; Nishina, Makoto; Nangaku, Masaomi; Van Ypersele De Strihou, Charles; Kurokawa, Kiyoshi

    2003-01-01

    Reactive carbonyl compounds (RCOs) present in peritoneal dialysis (PD) fluid have been incriminated in the progressive deterioration of the peritoneal membrane in long-term PD patients. They are initially present in fresh conventional heat-sterilized glucose PD fluid and are supplemented during dwell time by the diffusion of blood RCOs within the peritoneal cavity. In the present study, RCO entrapping agents were immobilized on affinity beads to adsorb RCOs both in fresh PD fluid and in PD effluent. The RCO trapping potential of various compounds was assessed in vitro first by dissolving them in the tested fluid and subsequently after coupling with either epoxy- or amino-beads. The tested fluids include fresh heat-sterilized glucose and non-glucose PD fluids, and PD effluent. Their RCOs contents, that is, glyoxal (GO), methylglyoxal (MGO), 3-deoxyglucosone (3-DG), formaldehyde, 5-hydroxymethylfuraldehyde, acetaldehyde, and 2-furaldehyde were monitored by reverse-phase high-pressure liquid chromatography. The biocompatibility of PD fluid was assessed by a cytotoxic assay with either human epidermoid cell line A431 cells or with primary cultured human peritoneal mesothelial cells. Among the tested RCO entrapping agents, hydrazine coupled to epoxy-beads proved the most efficient. It lowered the concentrations of three dicarbonyl compounds (GO, MGO, and 3-DG) and those of aldehydes present in fresh heat-sterilized glucose PD fluid toward the low levels observed in filter-sterilized glucose PD fluid. It did not change the glucose and electrolytes concentration of the PD fluid but raised its pH from 5.2 to 5.9. Hydrazine-coupled epoxy-bead also lowered the PD effluent content of total RCOs, measured by the 2,4-dinitrophenylhydrazone (DNPH) method. The cytotoxicity of heat-sterilized PD fluid incubated with hydrazine-coupled epoxy-beads was decreased to the level observed in filter-sterilized PD fluid as the result of the raised pH and the lowered RCOs levels. Hydrazine-coupled epoxy-beads reduce the levels of a variety of dicarbonyls and aldehydes present in heat-sterilized glucose PD fluid to those in filter-sterilized PD fluid, without altering glucose, lactate, and electrolytes contents but with a rise in pH. Incubated with PD effluents, it is equally effective in reducing the levels of serum-derived RCOs. RCO entrapping agents immobilized on affinity beads improve in vitro the biocompatibility of conventional heat-sterilized glucose PD fluid. Their clinical applicability requires further studies.

  17. Results of tests of K5NA and a revised formulation of EPDM/cork patch material in MSFC Hot Gas Facility

    NASA Technical Reports Server (NTRS)

    Dean, W. G.

    1982-01-01

    During prelaunch procedures at Kennedy Space Center some of the EPDM Thermal Protection System material was damaged on the Solid Rocket Booster stiffener stubs. The preferred solution was to patch the damaged areas with a cork-filled epoxy patching compound. Before this was done, however, it was requested that this patching technique be checked out by testing it in the MSFC Hot Gas Facility. Two tests were run in the HFG in 1980. The results showed the patch material to be adequate. Since that time, the formulation of the cork-filled epoxy material has been changed. It became necessary to retest this concept to be sure that the new material is as good as or better than the original material. In addition to the revised formulation material, tests were also made using K5NA as the patch material. The objectives of the tests reported herein were to: (1) compare the thermal performance of the original and the new cork-filled epoxy formulations, and (2) compare the K5NA closeout material to these epoxy materials. Material specifications are also discussed.

  18. Composite electrochemical biosensors: a comparison of three different electrode matrices for the construction of amperometric tyrosinase biosensors.

    PubMed

    Serra, B; Jiménez, S; Mena, M L; Reviejo, A J; Pingarrón, J M

    2002-03-01

    A comparison of the behaviour of three different rigid composite matrices for the construction of amperometric tyrosinase biosensors, which are widely used for the detection of phenolic compounds, is reported. The composite electrode matrices were, graphite-Teflon; reticulated vitreous carbon (RVC)-epoxy resin; and graphite-ethylene/propylene/diene (EPD) terpolymer. After optimization of the experimental conditions, different aspects regarding the stability of the three composite tyrosinase electrode designs were considered and compared. A better reproducibility of the amperometric responses was found with the graphite-EPD electrodes, whereas a longer useful lifetime was observed for the graphite-Teflon electrodes. The kinetic parameters of the tyrosinase reaction were calculated for eight different phenolic compounds, as well as their corresponding calibration plots. The general trend in sensitivity was graphite-EPD>graphite-Teflon>RVC-epoxy resin. A correlation between sensitivity and the catalytic efficiency of the enzyme reaction for each phenolic substrate was found. Furthermore, differences in the sensitivity order for the phenolic compounds were observed among the three biocomposite electrodes, which suggests that the nature of the electrode matrix influences the interactions in the tyrosinase catalytic cycle.

  19. Investigation of low glass transition temperature on COTS PEM's reliability for space applications

    NASA Technical Reports Server (NTRS)

    Sandor, M.; Agarwal, S.; Peters, D.; Cooper, M. S.

    2003-01-01

    Plastic Encapsulated Microelectronics (PEM) reliability is affected by many factors. Glass transition temperature (Tg) is one such factor. In this presentation issues relating to PEM reliability and the effect of low glass transition temperature epoxy mold compounds are presented.

  20. Theoretical studies of radiation effects in composite materials for space use. [graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Chang, C. K.; Kamaratos, E.

    1982-01-01

    Tetraglycidyl 4,4'-diamino diphenyl methane epoxy cured with diamino diphenyl sulfone was used as a model compound. Computer programs were developed to calculate (1) energy deposition coefficients of protons and electrons of various energies at different depths of the material; (2) ranges of protons and electrons of various energies in the material; and (3) cumulative doses received by the composite in different geometric shapes placed in orbits of various altitudes and inclination. A preliminary study on accelerated testing was conducted and it was found that an elliptical equitorial orbit of 300 km perigee by 2750 km apogee can accumulate, in 2 years or less, enough radiation dose comparable to geosynchronous environment for 30 years. The local plasma model calculated the mean excitation energies for covalent and ionic compounds. Longitudinal and lateral distributions of excited species by electron and proton impact as well as the probability of overlapping of two tracks due to two charged particles within various time intervals were studied.

  1. Four anti-protozoal and anti-bacterial compounds from Tapirira guianensis.

    PubMed

    Roumy, Vincent; Fabre, Nicolas; Portet, Bénédicte; Bourdy, Geneviève; Acebey, Lucia; Vigor, Claire; Valentin, Alexis; Moulis, Claude

    2009-01-01

    Tapirira guianensis is a common tree used in traditional medicine in French Guiana against several infectious diseases (malaria, leishmaniasis, bacteria, etc.). The bioassay-guided purification of CH(2)Cl(2) bark extract led to the isolation of four cyclic alkyl polyol derivatives: 4,6,2'-trihydroxy-6-[10'(Z)-heptadecenyl]-1-cyclohexen-2-one (1a), 1,4,6-trihydroxy-1,2'-epoxy-6-[10'(Z)-heptadecenyl]-2-cyclohexene (1b), 1,4,5,2'-tetrahydroxy-1-[10'(Z)-heptadecenyl]-2-cyclohexene (2), and 1,3,4,6-tetrahydroxy-1,2'-epoxy-6-[10'(Z)-heptadecenyl]-cyclohexane (3). The structures were established on the basis of 1D and 2D NMR analyses. The anti-leishmanial, anti-plasmodial, anti-bacterial (on Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli), and anti-fungal (on Candida albicans) activities of the extracts and of these original compounds were evaluated. Two showed medicinal interest supporting the traditional uses of the plant. The structures were established through spectral analyses of the isolates and their derivatives.

  2. Phytotoxic activity of Salvia x jamensis.

    PubMed

    Bisio, Angela; Fraternale, Daniele; Damonte, Gianluca; Millo, Enrico; Lanteri, Anna Paola; Russo, Eleonora; Romussi, Giovanni; Parodi, Brunella; Ricci, Donata; De Tommasi, Nunziatina

    2009-12-01

    A study has been carried out on the surface exudate of Salvia x jamensis, which showed a significant phytotoxic activity against Papaver rhoeas L. and Avena sativa L.. Bioguided separation of the exudate yielded active fractions from which 3 beta-hydroxy-isopimaric acid (1), hautriwaic acid (2), betulinic acid (3), 7,8 beta-dihydrosalviacoccin (4), isopimaric acid (5), 14 alpha-hydroxy-isopimaric acid (7), 15,16-epoxy-7 alpha, 10 beta-dihydroxy-clerod-3,13(16),14-trien-17,12;18,19-diolide (8), cirsiliol (5,3',4'-trihydroxy-6,7-dimethoxyflavone, 9) and two new neoclerodane diterpenes (6 and 10) were isolated. The structures of 6 and 10 were identified as 15,16-epoxy-10 beta-hydroxy-clerod-3,13(16),14-trien-17,12;18,19-diolide and 15,16-epoxy-7 alpha,10-dihydroxy-clerod-2,13(16),14-trien-17,12;18,19-diolide respectively on the basis of spectroscopic data analysis. All compounds, but 7, 8 and 10, were active in inhibiting the germination of the tested species.

  3. Study optoelectronic properties for polymer composite thick film

    NASA Astrophysics Data System (ADS)

    Jobayr, Mahmood Radhi; Al Razak, Ali Hussein Abd; Mahdi, Shatha H.; Fadhil, Rihab Nassr

    2018-05-01

    Coupling the epoxy with cadmium oxide particles are important for optical properties that may be affected by various mixing proportions. The aim of this experimental study was to evaluate the effect of different mixing proportions on these properties of reinforced epoxy with cadmium oxide particles. The ultrasonic techniques were used to mix and prepared samples of composites. The surfaces topographic of the 50 µm thick reinforced epoxy films were studied using atomic force microscopy (AFM) and microscopy technique (FTIR) Spectroscopy. AFM imaging and quantitative characterization of the films showed that for all samples the root mean square of the surface roughness increases monotonically with increasing the CdO concentrations (from 0% to 15%). The observed effects of CdO concentrations on surface roughness can be explained by two things: the first reason is that the atoms of additives are combined with the original material to form a new compound that is smoother, more homogeneity and smaller in particle size. The second reason is due to high mixing due to ultrasonic mixing. It is clear also, AFM examination of the prepared samples of reinforced epoxy resin shown that topographical contrast and the identification of small structural details critically depend on hardness of epoxy resin, which in turn depended on the ratio of material (CdO) added. We show that the AFM imaging of the films showed that the mean diameter (104.8nm) of films for all of the samples decreased from 135.50 nm to 83.20 nm with the increase of CdO concentrations.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, D.A.

    The carboxyl-terminated butadiene/acrylonitrile copolymer (CTBN)/epoxy adduct, BKC 20102, which is used for encapsulating electronic devices, was studied to improve its quality and reliability. The average chemical, physical, and mechanical properties were obtained by testing 16 batches of adduct prepared from 13 separate lots of CTBN. Three methods were determined to prepare a clear, soluble liquid adduct that does not separate in storage or transit. Two of these methods also produce a clear epoxy casting and a filled potting compound with improved impact and flexural, compressive, and tensile strengths. Study of the temperature-viscosity profile during the cure of the liquid adductmore » has shown that a slight change in the degassing time can significantly reduce foaming during degassing.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, D.A.; Smith, C.H.

    A carboxyl-terminated butadiene/acrylonitrile (CTBN)/epoxy resin adduct, used to encapsulate electronic devices, was studied to improve its quality and reliability. The average physical and mechanical properties of the amine-cured product were obtained by testing 16 batches of adduct prepared from 13 separate lots of CTBN. It was found that by using a CTBN with a higher acrylonitrile content (or one in which the chemical structure includes carboxyl groups in the chain backbone, in addition to end termination), a clear, soluble liquid adduct that does not separate in storage or transit could be prepared. These materials also produced clear epoxy castings andmore » filled potting compounds with improved impact, flexural, compressive, and tensile strengths.« less

  6. Mechanical Reliability of the Epoxy Sn-58wt.%Bi Solder Joints with Different Surface Finishes Under Thermal Shock

    NASA Astrophysics Data System (ADS)

    Sung, Yong-Gue; Myung, Woo-Ram; Jeong, Haksan; Ko, Min-Kwan; Moon, Jeonghoon; Jung, Seung-Boo

    2018-04-01

    The effect of thermal shock on the mechanical reliability of epoxy Sn-58wt.%Bi composite (epoxy Sn-58wt.%Bi) solder joints was investigated with different surface-finished substrates. Sn-58wt.%Bi-based solder has been considered as a promising candidate for low-temperature solder among various lead-free solders. However, Sn-58wt.%Bi solder joints can be easily broken under impact conditions such as mechanical shock, drop tests, and bending tests because of their poor ductility. Therefore, previous researchers have tried to improve the mechanical property of Sn-58wt.%Bi solder by additional elements and mixtures of metal powder and epoxy resin. Epoxy Sn-58wt.%Bi solder paste was fabricated by mixing epoxy resin and Sn-58wt.%Bi solder powder to enhance the mechanical reliability of Sn-58wt.%Bi solder joints. The epoxy Sn-58wt.%Bi solder paste was screen-printed onto various printed circuit board surfaces finished with organic solder preservatives (OSP), electroless nickel immersion gold (ENIG), and electroless nickel electroless palladium immersion gold (ENEPIG). The test components were prepared by a reflow process at a peak temperature of 190°C. The thermal shock test was carried out under the temperature range of - 40 to 125°C to evaluate the reliability of Sn-58wt.%Bi and epoxy Sn-58wt.%Bi solder joints. The OSP-finished sample showed a relatively higher mechanical property than those of ENIG and ENEPIG after thermal shock. The average number of cycles for epoxy Sn-58wt.%Bi solder with the OSP surface finish were 6 times higher than that for Sn-58wt.%Bi solder with the same finish. The microstructures of the solder joints were investigated by scanning electron microscopy, and the composition of the intermetallic compound (IMC) layer was analyzed by using energy dispersive spectrometry. Cu6Sn5 IMC was formed by the reaction between Sn-58wt.%Bi solder and a OSP surface-finished Cu after the reflow process. Ni3Sn4 IMC and (Ni, Pd)3Sn4 IMC were formed at the solder joints between the ENIG and solder, and between ENEPIG surface finish and solders, respectively.

  7. Mechanical Reliability of the Epoxy Sn-58wt.%Bi Solder Joints with Different Surface Finishes Under Thermal Shock

    NASA Astrophysics Data System (ADS)

    Sung, Yong-Gue; Myung, Woo-Ram; Jeong, Haksan; Ko, Min-Kwan; Moon, Jeonghoon; Jung, Seung-Boo

    2018-07-01

    The effect of thermal shock on the mechanical reliability of epoxy Sn-58wt.%Bi composite (epoxy Sn-58wt.%Bi) solder joints was investigated with different surface-finished substrates. Sn-58wt.%Bi-based solder has been considered as a promising candidate for low-temperature solder among various lead-free solders. However, Sn-58wt.%Bi solder joints can be easily broken under impact conditions such as mechanical shock, drop tests, and bending tests because of their poor ductility. Therefore, previous researchers have tried to improve the mechanical property of Sn-58wt.%Bi solder by additional elements and mixtures of metal powder and epoxy resin. Epoxy Sn-58wt.%Bi solder paste was fabricated by mixing epoxy resin and Sn-58wt.%Bi solder powder to enhance the mechanical reliability of Sn-58wt.%Bi solder joints. The epoxy Sn-58wt.%Bi solder paste was screen-printed onto various printed circuit board surfaces finished with organic solder preservatives (OSP), electroless nickel immersion gold (ENIG), and electroless nickel electroless palladium immersion gold (ENEPIG). The test components were prepared by a reflow process at a peak temperature of 190°C. The thermal shock test was carried out under the temperature range of - 40 to 125°C to evaluate the reliability of Sn-58wt.%Bi and epoxy Sn-58wt.%Bi solder joints. The OSP-finished sample showed a relatively higher mechanical property than those of ENIG and ENEPIG after thermal shock. The average number of cycles for epoxy Sn-58wt.%Bi solder with the OSP surface finish were 6 times higher than that for Sn-58wt.%Bi solder with the same finish. The microstructures of the solder joints were investigated by scanning electron microscopy, and the composition of the intermetallic compound (IMC) layer was analyzed by using energy dispersive spectrometry. Cu6Sn5 IMC was formed by the reaction between Sn-58wt.%Bi solder and a OSP surface-finished Cu after the reflow process. Ni3Sn4 IMC and (Ni, Pd)3Sn4 IMC were formed at the solder joints between the ENIG and solder, and between ENEPIG surface finish and solders, respectively.

  8. Toughening of Epoxy Adhesives by Combined Interaction of Carbon Nanotubes and Silsesquioxanes

    PubMed Central

    Barra, Giuseppina; Vertuccio, Luigi; Vietri, Umberto; Naddeo, Carlo; Guadagno, Liberata

    2017-01-01

    The extensive use of adhesives in many structural applications in the transport industry and particularly in the aeronautic field is due to numerous advantages of bonded joints. However, still many researchers are working to enhance the mechanical properties and rheological performance of adhesives by using nanoadditives. In this study the effect of the addition of Multi-Wall Carbon Nanotubes (MWCNTs) with Polyhedral Oligomeric Silsesquioxane (POSS) compounds, either Glycidyl Oligomeric Silsesquioxanes (GPOSS) or DodecaPhenyl Oligomeric Silsesquioxanes (DPHPOSS) to Tetraglycidyl Methylene Dianiline (TGMDA) epoxy formulation, was investigated. The formulations contain neither a tougher matrix such as elastomers nor other additives typically used to provide a closer match in the coefficient of thermal expansion in order to discriminate only the effect of the addition of the above-mentioned components. Bonded aluminium single lap joints were made using both untreated and Chromic Acid Anodisation (CAA)-treated aluminium alloy T2024 adherends. The effects of the different chemical functionalities of POSS compounds, as well as the synergistic effect between the MWCNT and POSS combination on adhesion strength, were evaluated by viscosity measurement, tensile tests, Dynamic Mechanical Analysis (DMA), single lap joint shear strength tests, and morphological investigation. The best performance in the Lap Shear Strength (LSS) of the manufactured joints has been found for treated adherends bonded with epoxy adhesive containing MWCNTs and GPOSS. Carbon nanotubes have been found to play a very effective bridging function across the fracture surface of the bonded joints. PMID:28946691

  9. Labdane diterpenes from Juniperus communis L. berries.

    PubMed

    Martin, Anne Marie; Queiroz, Emerson Ferreira; Marston, Andrew; Hostettmann, Kurt

    2006-01-01

    A phytochemical study of the methanol extract of Juniperus communis berries was undertaken. The crude extract was analysed by HPLC-UV and the isolation of the minor compounds was performed by centrifugal partition chromatography. By this means, five diterpenes were isolated, one of which was a new labdane diterpene 15,16-epoxy-12-hydroxy-8(17),13(16),14-labdatrien-19-oic acid. The structures of the isolated compounds were elucidated by spectroscopic methods, including UV, NMR, MS and HR-MS.

  10. A Study of the Curing and Flammability Properties of Bisphenol A Epoxy Diacrylate Resin Utilizing a Novel Flame Retardant Monomer, bis[di-acryloyloxyethyl]-p-tert-butyl-phenyl Phosphate

    PubMed Central

    Rwei, Syang-Peng; Chen, Yu-Ming; Chiang, Whe-Yi; Ting, Yi-Tien

    2017-01-01

    A UV-curable, flame-retardant monomer, DAPP (bis[di-acryloyloxyethyl]-p-tert-butyl-phenyl-phosphate), was synthesized based on BPDCP (4-tert-butylphenyl-dichloro phosphate) and HEA (2-hydroxy ethyl acrylate). DAPP was blended with regular bisphenol A epoxy acrylate (BAEA) in various ratios to yield various phosphorus contents. The TGA-IR (thermogravimetric analyzer interface with an infrared spectrometer) results demonstrate that compounding 30 mol % DAPP with BAEA significantly reduced the amount of released CO gas. In contrast, the peak intensity of CO2 is independent of phosphorus content. The limiting oxygen index (LOI), reaching the saturated value of 26, and the heat release rate (HRR) measured using a cone-calorimeter, 156.43 KW/m2, confirm the saturation point when 30 mol % DAPP was compounded into BAEA. A study of the kinetics of pyrolysis reveals that Ea decreases as the phosphorus content increases. Both the TGA-IR and pyrolysis results reveal that the phosphorus compound DAPP is easily decomposed during the initial stage of burning to form an insulating layer, which inhibits further burning of the resin and the consequent release of other flammable gases. PMID:28772562

  11. A fiber optic temperature sensor based on the combination of epoxy and glass particles with different thermo-optic coefficients

    NASA Astrophysics Data System (ADS)

    Wildner, Wolfgang; Drummer, Dietmar

    2016-12-01

    This paper describes the development and function of an optical fiber temperature sensor made out of a compound of epoxy and optical glass particles. Because of the different thermo-optic coefficients of these materials, this compound exhibits a strong wavelength and temperature dependent optical transmission, and it therefore can be employed for fiber optic temperature measurements. The temperature at the sensor, which is integrated into a polymer optical fiber (POF), is evaluated by the ratio of the transmitted intensity of two different light-emitting diodes (LED) with a wavelength of 460 nm and 650 nm. The material characterization and influences of different sensor lengths and two particle sizes on the measurement result are discussed. The temperature dependency of the transmission increases with smaller particles and with increasing sensor length. With glass particles with a diameter of 43 μm and a sensor length of 9.8 mm, the intensity ratio of the two LEDs decreases by 60% within a temperature change from 10°C to 40°C.

  12. Effecting aging time of epoxy molding compound to molding process for integrated circuit packaging

    NASA Astrophysics Data System (ADS)

    Tachapitunsuk, Jirayu; Ugsornrat, Kessararat; Srisuwitthanon, Warayoot; Thonglor, Panakamon

    2017-09-01

    This research studied about effecting aging time of epoxy molding compound (EMC) that effect to reliability performance of integrated circuit (IC) package in molding process. Molding process is so important of IC packaging process for protecting IC chip (or die) from temperature and humidity environment using encapsulated EMC. For general molding process, EMC are stored in the frozen at 5°C and left at room temperature at 25 °C for aging time on self before molding of die onto lead frame is 24 hours. The aging time effect to reliability performance of IC package due to different temperature and humidity inside the package. In experiment, aging time of EMC were varied from 0 to 24 hours for molding process of SOIC-8L packages. For analysis, these packages were tested by x-ray and scanning acoustic microscope to analyze properties of EMC with an aging time and also analyzed delamination, internal void, and wire sweep inside the packages with different aging time. The results revealed that different aging time of EMC effect to properties and reliability performance of molding process.

  13. Effect of tannin from Rhizophora apiculate as corrosion inhibitor for epoxy paint on mild steel

    NASA Astrophysics Data System (ADS)

    Idora, M. S. Noor; Quen, L. K.; Kang, H. S.

    2017-09-01

    There is a great concern to protect the steel surfaces from corrosion phenomenon in seawater environment. Several approaches have been proposed to introduce alternative new compounds in the paint which are green sources that can reduce environmental risks. The aim of this investigation was to enhance the protection properties of epoxy paint by providing an anticorrosive inhibitor for the paint. In this approach, the abilities of mangrove tannins, extracted from Rhizophora apiculata bark were studied. The inhibitive properties of mangrove tannins were evaluated by weight loss measurement, electrochemical impedance spectroscopy (EIS) and scanning electron microscope (SEM). Results shows the addition of mangrove tannin in the coating boosted the anticorrosive properties of the paint and represents valuable environmentally friendly of inhibitor.

  14. Organo-modified bentonites as new flame retardant fillers in epoxy resin nanocomposites

    NASA Astrophysics Data System (ADS)

    Benelli, Tiziana; D'Angelo, Emanuele; Mazzocchetti, Laura; Saraga, Federico; Sambri, Letizia; Franchini, Mauro Comes; Giorgini, Loris

    2016-05-01

    The present work deals with two organophilic bentonites, based on nitrogen-containing compounds: these organoclays were synthesized via an ion exchange process starting from pristine bentonite with 6-(4-butylphenyl)-1,3,5-triazine-2,4-diamine (BFTDA) and 11-amino-N-(pyridine-2yl)undecanamide (APUA) and then used for the production of epoxy-based flame retardant nanocomposites. The amount of organic modifier in the organoclays Bento-BFTDA and Bento-APUA was determined with a TGA analysis and is around 0.4mmol/g for both samples. The effect of the organoclays on a commercial epoxy resin nanocomposite's thermo-mechanical and flammability properties was investigated. Composites containing 3wt% and 5wt% of the nanofillers were prepared by solventless addition of each organoclay to the epoxy resin, followed by further addition of the hardener component. For the sake of comparison a similar nanocomposite with the plain unmodified bentonite was produced in similar condition. The nanocomposites's thermo-mechanical properties of all the produced samples were measured and they resulted slightly improved or practically unaffected. On the contrary, when the flame behaviour was assessed in the cone-calorimeter, an encouraging decrease of 17% in the peak heat released rate (pHRR) was obtained at 3wt% loading level with Bento-APUA. This is a promising result, assessing that the APUA modified organoclay might act as flame retardant.

  15. [Production technology and use of composite materials in the aeronautics industry, risks and pathology in the manufacturing workers].

    PubMed

    Franco, G; Candura, F

    1985-01-01

    The type and applications of composite materials have increased greatly during the last forty years, particularly in the aircraft and aerospace industries. The foreseeable increase of the employment of composite materials in future needs an adequate engagement in finding out health risks involved with technological processes. Composite materials - considered as a close union between a continuous glass, aramid or carbon reinforcing fibre and a epoxy matrix - present several advantages over traditional materials. Structural epoxy adhesives are defined as complex formulated systems. By mixing a large number of ingredients a formulated resin is obtained, which represents the start of the production process for adhesive manufacture. The most important ingredients such as catalysts, accelerators, the groups of epoxy monomers and oligomers, additives most used and their role into the epoxy matrices are illustrated. Of the various technologies existing for the fabrication of aircraft structures the one so called "vacuum bag" is described. The knowledge of the chemical composition of the substances used in the production of composite materials and epoxy adhesives allows to verify the possible existence of hazard for workers health. Among the potentially dangerous chemicals, epoxy monomers and oligomers, catalysts, accelerators are to be considered. The metabolism and the mechanisms of toxicity of epoxides are summarized. However the toxic effects of most epoxides are far from being wholly investigated. In man epoxides ingestion, inhalation or absorption through the skin can lead to several toxic effects: irritation and sensitisation, alterations of liver and nervous function. Finally some epoxides are considered to be carcinogenic in animals and in man; however for many compounds, the results are not yet conclusive. From what it is said above come out the necessity of a careful sanitary control of the workers exposed to these hazards, control that is made difficult by the lack of adequate biological indices for the risks found.

  16. High-Performance Synthetic Fibers for Composites

    DTIC Science & Technology

    1992-04-01

    under evaluation today include polyether ether ketone , polyamide, 23 polyamideimide, polyimide, polysulfone, and polyphenylene sulfide. Epoxy resins...shrinkage under intense neutron radiation . This attribute, together with other properties of high-temperature strength, toughness, and low nuclear...and (2) liquid or solid resins cross-linked with other esters in chopped-fiber and mineral-filled molding compounds. Polyether ether ketone (PEEK) A

  17. Cytotoxic 20,24-epoxywithanolides from Physalis angulata.

    PubMed

    Maldonado, Emma; Hurtado, Norma E; Pérez-Castorena, Ana L; Martínez, Mahinda

    2015-12-01

    A new withanolide, physangulide B (1), was isolated from calyxes of Physalis angulata. This compound was also present in the aerial parts along with the known physangulide (4), which was isolated as the acetonide 3, and 24,25-epoxywithanolide D (6). Structures of these compounds were determined by analysis of their spectroscopic data, which indicated the presence of a 20,24-epoxy group in both physangulides. The structures of compounds 1 and 6 were confirmed by X-ray analysis of their corresponding acetyl derivatives 2 and 7. The structure of physangulide was originally described as the 22S withanolide 5, now its structure and configuration are revised to 4. Evaluation of the cytotoxic activity of compounds 1-3 against two human cancer cell lines indicated a potent activity of compound 1 and its derivative 2. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. New Triterpenoid Saponins from Green Vegetable Soya Beans and Their Anti-Inflammatory Activities.

    PubMed

    Lan, Xiuhua; Deng, Kejun; Zhao, Jianping; Chen, Yiyi; Xin, Xuhui; Liu, Yanli; Khan, Ikhlas A; Yang, Shilin; Wang, Taoyun; Xu, Qiongming

    2017-12-20

    Ten compounds were isolated and identified from green vegetable soya beans, of which five are new triterpenoid saponins (1-5) and five are known compounds (6-10). The chemical structures of the five triterpenoid saponins (1-5) were elucidated to be 3β,24-dihydroxy-22β,30-epoxy-30-oxoolean-12-en 3-O-α-l-rhamnopyranosyl-(1 → 2)-β-d-xylopyranosyl-(1 → 2)-β-d-glucuronopyranoside, 1; 3β,24-dihydroxy-22β,30-epoxy-30-oxoolean-12-en 3-O-α-l-rhamnopyranosyl-(1 → 2)-β-d-(3″-O-formyl)-galactopyranosyl-(1 → 2)-β-d-glucuronopyranoside, 2; 22-keto-3β,24-dihydroxy oleanane-12-ene 3-O-α-l-rhamnopyranosyl-(1 → 2)-β-d-(3″-O-formyl)-galactopyranosyl-(1 → 2)-β-d-glucuronopyranoside, 3; 3β,22β,24-trihydroxy oxyolean-18(19)-ene-29-acid 3-O-α-l-rhamnopyranosyl-(1 → 2)-β-d-galactopyranosyl-(1 → 2)-β-d-glucuronopyranoside, 4; and punicanolic acid 3-O-α-l-rhamnopyranosyl-(1 → 2)-β-d-galactopyranosyl-(1 → 2)-β-d-glucuronopyranoside, 5 from the spectroscopic data (IR, GTC/FID, HR-ESI-MS, and 1D and 2D NMR). The nitric oxide release inhibitions of compounds 1-10 in LPS-stimulated RAW264.7 cells were evaluated, and the data suggested that compounds 1, 2, and 5 might possess moderate anti-inflammatory activities, with IC 50 values of 18.8, 16.1, and 13.2 μM, respectively.

  19. Nafuredin, a novel inhibitor of NADH-fumarate reductase, produced by Aspergillus niger FT-0554.

    PubMed

    Ui, H; Shiomi, K; Yamaguchi, Y; Masuma, R; Nagamitsu, T; Takano, D; Sunazuka, T; Namikoshi, M; Omura, S

    2001-03-01

    A novel compound, nafuredin, was isolated as an inhibitor of anaerobic electron transport (NADH-fumarate reductase). It was obtained from culture broth of Aspergillus niger FT-0554 isolated from a marine sponge. The structure was elucidated as an epoxy-delta-lactone with an attached methylated olefinic side chain on the basis of spectral analysis.

  20. Summer research fellowship program

    NASA Technical Reports Server (NTRS)

    Darden, G. C. (Compiler)

    1979-01-01

    Significant accomplishments reported include uniaxial compression tests of high strength graphite-epoxy laminates. The results show that Young's modulus and fracture stress depend upon the specimen's dimensions. Also presented are: an investigation of robot vision; estimation of spectral signatures of algae from the airborne lidar oceanographic probing equipment; impact tests on polymeric compounds; calibration of quartz crystal microbalance; and a profile of naturally occurring hydrocarbons.

  1. Exploring the effect of oxygen-containing functional groups on the water-holding capacity of lignite.

    PubMed

    Liu, Jie; Jiang, Xiangang; Cao, Yu; Zhang, Chen; Zhao, Guangyao; Zhao, Maoshuang; Feng, Li

    2018-05-07

    Graphene oxide with different degrees of oxidation was prepared and selected as a model compound of lignite to study quantitatively, using both experiment and theoretical calculation methods, the effect on water-holding capacity of oxygen-containing functional groups. The experimental results showed that graphite can be oxidized, and forms epoxy groups most easily, followed by hydroxyl and carboxyl groups. The prepared graphene oxide forms a membrane-state as a single layer structure, with an irregular surface. The water-holding capacity of lignite increased with the content of oxygen-containing functional groups. The influence on the configuration of water molecule clusters and binding energy of water molecules of different oxygen-containing functional groups was calculated by density functional theory. The calculation results indicated that the configuration of water molecule clusters was totally changed by oxygen-containing functional groups. The order of binding energy produced by oxygen-containing functional groups and water molecules was as follows: carboxyl > edge phenol hydroxyl >epoxy group. Finally, it can be concluded that the potential to form more hydrogen bonds is the key factor influencing the interaction energy between model compounds and water molecules.

  2. 5Beta,6beta-epoxy-17-oxoandrostan-3beta-yl acetate and 5beta,6beta-epoxy-20-oxopregnan-3beta-yl acetate.

    PubMed

    Pinto, Rui M A; Salvador, Jorge A R; Paixão, José A

    2008-05-01

    In the title compounds, C(21)H(30)O(4), (I), and C(23)H(34)O(4), (II), respectively, which are valuable intermediates in the synthesis of important steroid derivatives, rings A and B are cis-(5beta,10beta)-fused. The two molecules have similar conformations of rings A, B and C. The presence of the 5beta,6beta-epoxide group induces a significant twist of the steroid nucleus and a strong flattening of the B ring. The different C17 substituents result in different conformations for ring D. Cohesion of the molecular packing is achieved in both compounds only by weak intermolecular interactions. The geometries of the molecules in the crystalline environment are compared with those of the free molecules as given by ab initio Roothan Hartree-Fock calculations. We show in this work that quantum mechanical ab initio methods reproduce well the details of the conformation of these molecules, including a large twist of the steroid nucleus. The calculated twist values are comparable, but are larger than the observed values, indicating a possible small effect of the crystal packing on the twist angles.

  3. Determination of partition coefficients n-octanol/water for treosulfan and its epoxy-transformers: an example of a negative correlation between lipophilicity of unionized compounds and their retention in reversed-phase chromatography.

    PubMed

    Główka, Franciszek K; Romański, Michał; Siemiątkowska, Anna

    2013-04-01

    For the last decade an alkylating agent treosulfan (TREO) has been successfully applied in clinical trials in conditioning prior to hematopoietic stem cell transplantation. Pharmacological activity of the pro-drug depends on its epoxy-transformers, monoepoxide (S,S-EBDM) and diepoxide (S,S-DEB), which are formed in a non-enzymatic consecutive reaction accompanied by a release of methanesulfonic acid. In the present study partition coefficient n-octanol/water (POW) of TREO as well as its biologically active epoxy-transformers was determined empirically (applying a classical shake-flask method) and in silico for the first time. In vitro the partition was investigated at 37°C in the system composed of the pre-saturated n-octanol and 0.05 M acetate buffer pH 4.4 adjusted with sodium and potassium chloride to ionic strength of 0.16 M. Concentration of the analytes was quantified by reversed-phase high performance liquid chromatography (RP-HPLC) method in which retention time increased from S,S-DEB to TREO. It was shown that neither association nor dissociation of the tested compounds in the applied phases occurred. Calculated logPOW (TREO: -1.58±0.04, S,S-EBDM: -1.18±0.02, S,S-DEB: -0.40±0.03) indicate the hydrophilic character of the all three entities, corresponding to its pharmacokinetic parameters described in the literature. Experimentally determined logPOW of the compounds were best comparable to the values predicted by algorithm ALOGPs. Interestingly, the POW values determined in vitro as well as in silico were inversely correlated with the retention times observed in the endcapped RP-HPLC column. It might be explained by the fact that a cleavage of methansulfonic acid from a small molecule of TREO generates significant changes in the molecular structure. Consequently, despite the common chemical origin, TREO, S,S-EBDM and S,S-DEB do not constitute a 'congeneric' series of compounds. We concluded that this might occur in other low-weight species, therefore measurement of their POW by RP-HPLC had to be applied with a special care. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Design of Heterogeneous Hoveyda-Grubbs Second-Generation Catalyst-Lipase Conjugates.

    PubMed

    Neville, Anthony; Iniesta, Javier; Palomo, Jose M

    2016-12-06

    Heterogeneous catalysts have been synthesi zed by the conjugation of Hoveyda-Grubbs second-generation catalyst with a lipase. The catalytic properties of the organometallic compound in solution were firstly optimized, evaluating the activity of Ru in the ring-closing metathesis of diethyldiallymalonate at 25 °C at different solvents and in the presence of different additives. The best result was found using tetrahydrofuran as a solvent. Some additives such as phenylboronic acid or polyetheneglycol slightly improved the activity of the Ru catalyst whereas others, such as pyridine or dipeptides affected it negatively. The organometallic compound immobilized on functionalized-surface materials activated with boronic acid or epoxy groups (around 50-60 µg per mg support) and showed 50% conversion at 24 h in the ring-closing metathesis. Cross-linked enzyme aggregates (CLEA's) of the Hoveyda-Grubbs second-generation catalyst with Candida antarctica lipase (CAL-B) were prepared, although low Ru catalyst was found to be translated in low conversion. Therefore, a sol-gel preparation of the Hoveyda-Grubbs second-generation and CAL-B was performed. This catalyst exhibited good activity in the metathesis of diethyldiallymalonate in toluene and in aqueous media. Finally, a new sustainable approach was used by the conjugation lipase-Grubbs in solid phase in aqueous media. Two strategies were used: one using lipase previously covalently immobilized on an epoxy-Sepharose support (hydrophilic matrix) and then conjugated with grubbs; and in the second, the free lipase was incubated with organometallic in aqueous solution and then immobilized on epoxy-Sepharose. The different catalysts showed excellent conversion values in the ring-closing metathesis of diethyldiallymalonate in aqueous media at 25 °C.

  5. Microscope using an x-ray tube and a bubble compound refractive lens

    NASA Astrophysics Data System (ADS)

    Piestrup, M. A.; Gary, C. K.; Park, H.; Harris, J. L.; Cremer, J. T.; Pantell, R. H.; Dudchik, Y. I.; Kolchevsky, N. N.; Komarov, F. F.

    2005-03-01

    We present x-ray images of grid meshes and biological material obtained using an unfiltered x-ray tube and a compound refractive lens composed of microbubbles embedded in epoxy inside a glass capillary. Images obtained using this apparatus are compared with those using a synchrotron source and the same lens. We find that the field of view is larger than that obtained using the synchrotron source, whereas the contrast and resolution are reduced. Geometrical distortion around the edges of the field of view is also reduced. The experiments demonstrate the usefulness of the apparatus in a modest laboratory setting.

  6. Rational design of polymer-based absorbents: application to the fermentation inhibitor furfural.

    PubMed

    Nwaneshiudu, Ikechukwu C; Schwartz, Daniel T

    2015-01-01

    Reducing the amount of water-soluble fermentation inhibitors like furfural is critical for downstream bio-processing steps to biofuels. A theoretical approach for tailoring absorption polymers to reduce these pretreatment contaminants would be useful for optimal bioprocess design. Experiments were performed to measure aqueous furfural partitioning into polymer resins of 5 bisphenol A diglycidyl ether (epoxy) and polydimethylsiloxane (PDMS). Experimentally measured partitioning of furfural between water and PDMS, the more hydrophobic polymer, showed poor performance, with the logarithm of PDMS-to-water partition coefficient falling between -0.62 and -0.24 (95% confidence). In contrast, the fast setting epoxy was found to effectively partition furfural with the logarithm of the epoxy-to-water partition coefficient falling between 0.41 and 0.81 (95% confidence). Flory-Huggins theory is used to predict the partitioning of furfural into diverse polymer absorbents and is useful for predicting these results. We show that Flory-Huggins theory can be adapted to guide the selection of polymer adsorbents for the separation of low molecular weight organic species from aqueous solutions. This work lays the groundwork for the general design of polymers for the separation of a wide range of inhibitory compounds in biomass pretreatment streams.

  7. Two new triterpenoids from fruiting bodies of fungus Ganoderma lucidum.

    PubMed

    Zhao, Zhen-Zhu; Yin, Rong-Hua; Chen, He-Ping; Feng, Tao; Li, Zheng-Hui; Dong, Ze-Jun; Cui, Bao-Kai; Liu, Ji-Kai

    2015-01-01

    Two new triterpenoids, (24E)-9α,11α-epoxy-3β-hydroxylanosta-7,24-dien-26-al (1) and (22Z,24Z)-13-hydroxy-3-oxo-14(13 → 12)abeo-lanosta-8,22,24-trien-26,23-olide (2) were isolated from dried fruiting bodies of fungus Ganoderma lucidum. The structures of these two new compounds were elucidated on the basis of extensive spectroscopic analyses. Compound 1 possessed a lanostane skeleton, while compound 2 was based on a rare 14 (13 → 12)abeo-lanostane skeleton with a 26,23-olide moiety. Both of them were evaluated for their antifungal and cytotoxic activities. Neither of them displayed obvious inhibition on Candida albicans and five human cancer cell lines.

  8. Corrosion Preventative Compounds (CPCs) Effect on Aircraft Electrical Wiring Components

    DTIC Science & Technology

    2011-08-01

    NOTES Focused Workshop on Cadmium Plating Alternatives, August 30-31, 2011, Baltimore, MD. Sponsored by SERDP/ESTCP. 14. ABSTRACT 15. SUBJECT...prepared by the Wiring Interconnections Laboratory of the Raytheon Technical Services Company LLC, Indianapolis, Indiana . Support of this investigation...MIL-DTL-38999 Series III, Class W A Cadmium (over suitable underplate) plated aluminum, silicone grommets and epoxy inserts MIL-DTL-38999 Series

  9. Quantitative Analysis of Bisphenol A Leached from Household Plastics by Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry (SPME-GC-MS)

    ERIC Educational Resources Information Center

    Johnson, Bettie Obi; Burke, Fernanda M.; Harrison, Rebecca; Burdette, Samantha

    2012-01-01

    The measurement of trace levels of bisphenol A (BPA) leached out of household plastics using solid-phase microextraction (SPME) with gas chromatography-mass spectrometry (GC-MS) is reported here. BPA is an endocrine-disrupting compound used in the industrial manufacture of polycarbonate plastic bottles and epoxy resin can liners. This experiment…

  10. Determination of Hydrophobic Contact Angle of Epoxy Resin Compound Silicon Rubber and Silica

    NASA Astrophysics Data System (ADS)

    Syakur, Abdul; Hermawan; Sutanto, Heri

    2017-04-01

    Epoxy resin is a thermosetting polymeric material which is very good for application of high voltage outdoor insulator in electrical power system. This material has several advantages, i.e. high dielectric strength, light weight, high mechanical strength, easy to blend with additive, and easy maintenance if compared to that of porcelain and glass outdoor insulators which are commonly used. However, this material also has several disadvantages, i.e. hydrophilic property, very sensitive to aging and easily degraded when there is a flow of contaminants on its surface. The research towards improving the performance of epoxy resin insulation materials were carried out to obtain epoxy resin insulating material with high water repellent properties and high surface tracking to aging. In this work, insulating material was made at room temperature vulcanization, with material composition: Diglycidyl Ether Bisphenol A (DGEBA), Metaphenylene Diamine (MPDA) as hardener with stoichiometric value of unity, and nanosilica mixed with Silicon Rubber (SiR) with 10% (RTV21), 20% (RTV22), 30% (RTV23), 40% (RTV24) and 50% (RTV25) variation. The usage of nanosilica and Silicon Rubber (SIR) as filler was expected to provide hydrophobic properties and was able to increase the value of surface tracking of materials. The performance of the insulator observed were contact angle of hydrophobic surface materials. Tests carried out using Inclined Plane Tracking procedure according to IEC 60-587: 1984 with Ammonium Chloride (NH4Cl) as contaminants flowed using peristaltic pumps. The results show that hydrophobic contact angle can be determined from each sample, and RTV25 has maximum contact angle among others.

  11. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajau, Rida; Mahmood, Mohd Hilmi; Salleh, Mek Zah

    The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-basedmore » compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough.« less

  12. Method of making thermally removable adhesives

    DOEpatents

    Aubert, James H.

    2004-11-30

    A method of making a thermally-removable adhesive is provided where a bismaleimide compound, a monomeric furan compound, containing an oxirane group an amine curative are mixed together at an elevated temperature of greater than approximately 90.degree. C. to form a homogeneous solution, which, when cooled to less than approximately 70.degree. C., simultaneously initiates a Diels-Alder reaction between the furan and the bismaleimide and a epoxy curing reaction between the amine curative and the oxirane group to form a thermally-removable adhesive. Subsequent heating to a temperature greater than approximately 100.degree. C. causes the adhesive to melt and allows separation of adhered pieces.

  13. Photoimageable composition

    DOEpatents

    Simison, Kelby Liv; Dentinger, Paul

    2003-11-11

    The use of selected buffering amines in a photoimageable composition prevents process bias which with conventional photoresists causes designed features to be distorted, especially in corners and high resolution features. It is believed that the amines react with the catalysts, e.g., photoacids, generated to create an inert salt. The presence of the amines also increases resolution. Suitable photoimageable compositions includes: (a) a multifunctional polymeric epoxy resin that is dissolved in an organic solvent wherein the epoxy resin comprises oligomers of bisphenol A that is quantitatively protected by glycidyl ether and wherein the oligomers have an average functionality that ranges from about 3 to 12; (b) a photoactive compound; and (c) an amine that is selected from the group consisting of triisobutylamine, 1,8-bis(dimethylamino)naphthalene (also known as PROTON SPONGET.TM.), 2,2'-diazabicyclo[2.2.2] octane and mixtures thereof. The photoimageable composition is particularly suited for producing high aspect ratio metal microstructures.

  14. Cucurbitane-type triterpenoids from the stems and leaves of Momordica charantia.

    PubMed

    Zhao, Gao-Ting; Liu, Jie-Qing; Deng, Yuan-Yuan; Li, Hai-Zhou; Chen, Jian-Chao; Zhang, Zhi-Run; Zhou, Lin; Qiu, Ming-Hua

    2014-06-01

    Six new cucurbitane-type triterpenoids, karavilagenin F (1), karavilosides XII and XIII (2, 3), momordicines VI, VII, and VIII (4, 5 and 6), along with four known ones, 5β,19-epoxy-25-methoxycucurbita-6,23-diene-3β,19-diol (7), 5β,19-epoxycucurbita-6, 23-diene-3β,19,25-triol (8), kuguacin R (9), and (19R,23E)-5β,19-epoxy-19-methoxycucurbita-6,23,25-trien-3β-ol (10), were isolated from the stems and leaves of Momordica charantia L. Their chemical structures were elucidated by extensive 1D NMR and 2D NMR (HSQC, HMBC, COSY, and ROESY), MS experiments, and CD spectrum. Compound 6 showed weak cytotoxicity against five human cancer cells lines with IC50 values of 14.3-20.5μmol/L. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Elucidation of the opening of the epoxidic ring of the 3beta-acetoxy-14alpha,15alpha-epoxy-5alpha-cholest-8-en-7-one by methanol, using NMR techniques assisted by a conformational study through theoretical calculations.

    PubMed

    Anastasia, Mario; Allevi, Pietro; Colombo, Raffaele; Giannini, Elios

    2007-10-01

    This paper demonstrates that the crystallization of 3beta-acetoxy-14alpha,15alpha-epoxy-5alpha-cholest-8-en-7-one from methanol affords the 3beta-acetoxy-9alpha-methoxy-15alpha-hydroxycholest-8(14)-en-7-one. The structure of this steroid, which shows an apparently anomalous UV absorption maximum, is determined by high field NMR experiments, supporting the coupling constant values assignments and the NOE contacts by a conformational study through theoretical calculations at the B3LYP/6-31G* level. The computational study also justifies the observed UV absorption of the steroid, thus demonstrating the usefulness of computer chemistry in providing support for the identification of unknown compounds.

  16. Fiber optic strain measurements using an optically-active polymer

    NASA Astrophysics Data System (ADS)

    Buckley, Leonard J.; Neumeister, Gary C.

    1992-03-01

    A study encompassing the use of an optically-active polymer as the strain-sensing medium in an organic matrix composite was performed. Several compounds were synthesized for use as the inner cladding material for silica fiber-optic cores. These materials include a diacetylene containing polyamide. It is possible to dynamically modify the optical properties of these materials through changes in applied strain or temperature. By doing so the characteristic absorption in the visible is reversibly shifted to a higher energy state. The polymer-coated fiber-optic cores were initially studied in epoxy resin. Additionally, one of the polyamide/diacetylene polymers was studied in a spin-fiber form consisting of 15 micron filaments assembled in multifilament tows. The most promising configuration and materials were then investigated further by embedding in graphite/epoxy composite laminates. In each case the shift in the visible absorption peak was monitored as a function of applied mechanical strain.

  17. Aerobic granular sludge inoculated microbial fuel cells for enhanced epoxy reactive diluent wastewater treatment.

    PubMed

    Cheng, Kai; Hu, Jingping; Hou, Huijie; Liu, Bingchuan; Chen, Qin; Pan, Keliang; Pu, Wenhong; Yang, Jiakuan; Wu, Xu; Yang, Changzhu

    2017-04-01

    Microbial consortiums aggregated on the anode surface of microbial fuel cells (MFCs) are critical factors for electricity generation as well as biodegradation efficiencies of organic compounds. Here in this study, aerobic granular sludge (AGS) was assembled on the surface of the MFC anode to form an AGS-MFC system with superior performance on epoxy reactive diluent (ERD) wastewater treatment. AGS-MFCs successfully shortened the startup time from 13d to 7d compared to the ones inoculated with domestic wastewater. Enhanced toxicity tolerance as well as higher COD removal (77.8% vs. 63.6%) were achieved. The higher ERD wastewater treatment efficiency of AGS-MFC is possibly attributed to the diverse microbial population on MFC biofilm, as well as the synergic degradation of contaminants by both the MFC anode biofilm and AGS granules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A new diarylheptanoid from Alpinia officinarum promotes the differentiation of 3T3-L1 preadipocytes.

    PubMed

    Zhang, Xuguang; Zhang, Xiaopo; Wang, Yong; Chen, Feng; Li, Youbin; Li, Yonghui; Tan, Yinfeng; Gong, Jingwen; Zhong, Xia; Li, Hailong; Zhang, Junqing

    2018-03-01

    A new diarylheptanoid, namely trans-(4R,5S)-epoxy-1,7-diphenyl-3-heptanone (1), and a new natural product, 7-(4″-hydroxy-3″-methoxyphenyl)-1-phenyl-hepta-4E,6E-dien-3-one (2), were obtained from the aqueous extract of Alpinia officinarum Hance, together with three other diarylheptanoids, 5-hydroxy-1,7-diphenyl-3-heptanone (3), 1,7-diphenyl-4E-en-3-heptanone (4) and 5-methoxy-1,7-diphenyl-3-heptanone (5). The structures were characterised mainly by analysing their physical data including IR, NMR and HRMS. This study highlights that the 4,5-epoxy moiety in 1 is rarely seen in diarylheptanoids. In addition, the five isolates were tested for their differentiation activity of 3T3-L1 preadipocytes. The results showed that these compounds could dose-dependently promote adipocyte differentiation without cytotoxicity (IC 50  > 100 μM).

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Brad Howard; Alam, Todd M.; Black, Hayden T

    This report catalogues the results of a project exploring the incorporation of organometallic compounds into thermosetting polymers as a means to reduce their residual stress. Various syntheses of polymerizable ferro cene derivatives were attempted with mixed success. Ultimately, a diamine derivative of ferrocene was used as a curing agen t for a commercial epoxy resin, where it was found to give similar cure kinetics and mechanical properties in comparison to conventional curing agents. T he ferrocen e - based material is uniquely able to relax stress above the glass transition, leading to reduced cure stress. We propose that this behaviormore » arises from the fluxional capacity of ferrocene. In support of this notion, nuclear magnetic resonance spectroscopy indicates a substantial increase in chain flexibility in the ferrocene - containing network. Although t he utilization of fluxionality is a novel approach to stress management in epoxy thermosets, it is anticipated to have greater impact in radical - cured ther mosets and linear polymers.« less

  20. Electronics Manufacturing Seminar Proceedings. 17th Annual

    DTIC Science & Technology

    1992-12-01

    a CFC Solvent Cleaning Alternative Page 3 In operation dirty parts are immersed in the boil cham- ber where they contact the agitated mixture of...component. Some glycol ethers have an uncertain regulatory future due to a variety of health concerns. Semi-aqueous solvents can have a strong odor . Proper...thermoset 5 materials, elastomers, marking inks, sealants, and locking compounds after repeated exposure to the selected cleaners. Epoxy and polyimide PWBs

  1. Flammability Characteristics of Some Epoxy Resins and Composites.

    DTIC Science & Technology

    1983-09-01

    MACHIONE ET AL. SEP 83 UNCLASSIFIED AMMRC-TR-83-53 F/6 ii/9 N 1.0 M2 MICROCOP RESOUTIn TMST CHAT NiTOM BIJWfA OV SIAROPMC-1W3-A AMMRC TR 83-53 [111h do...resin systems. The increase in the oxygen index of these resin systems in the 100OC- 2000 C range could be caused by the release of some compound in the

  2. The individual and cumulative effect of brominated flame retardant and polyvinylchloride (PVC) on thermal degradation of acrylonitrile-butadiene-styrene (ABS) copolymer.

    PubMed

    Brebu, Mihai; Bhaskar, Thallada; Murai, Kazuya; Muto, Akinori; Sakata, Yusaku; Uddin, Md Azhar

    2004-08-01

    Acrylonitrile-butadiene-styrene (ABS) copolymers without and with a polybrominated epoxy type flame retardant were thermally degraded at 450 degrees C alone (10 g) and mixed with polyvinylchloride (PVC) (8 g/2 g). Gaseous and liquid products of degradation were analysed by various gas chromatographic methods (GC with TCD, FID, AED, MSD) in order to determine the individual and cumulative effect of bromine and chlorine on the quality and quantity of degradation compounds. It was found that nitrogen, chlorine, bromine and oxygen are present as organic compounds in liquid products, their quantity depends on the pyrolysed polymer or polymer mixture. Bromophenol and dibromophenols were the main brominated compounds that come from the flame retardant. 1-Chloroethylbenzene was the main chlorine compound observed in liquid products. It was also determined that interactions appear at high temperatures during decomposition between the flame retardant, PVC and the ABS copolymer.

  3. Chemical characterization of a commercial Commiphora wightii resin sample and chemical profiling to assess for authenticity.

    PubMed

    Ahmed, Rida; Ali, Zulfiqar; Wu, Yunshan; Kulkarni, Swapnil; Avery, Mitchell A; Choudhary, Muhammed Iqbal; Khan, Ikhlas A

    2011-06-01

    The gum resin of Commiphora wightii [(Hook. ex Stocks) Engl.] is an ayurvedic medicine for the treatment of arthritis, inflammation, obesity, lipid disorders, and cardiovascular diseases and is known as guggul. Morphologically, it is not easy to distinguish guggul from closely related gum resins of other plants. Reliability of the commercially available guggul is critical due to the high risk of adulteration. To check authenticity, a commercial guggul sample was investigated for its chemical markers and 17 metabolites were identified, including three new, 20(S),21-epoxy-3-oxocholest-4-ene (1), 8 β-hydroxy-3,20-dioxopregn-4,6-diene (2), and 5-(13' Z-nonadecenyl)resorcinol (17) from the ethyl acetate soluble part. During the current study, compounds 14- 17 were identified as constituents of Mangifera indica gum, as an adulterant in the commercial guggul sample. This discovery highlighted the common malpractices in the trade of medicinal raw material in the developing world. The structures of the compounds were deduced by the spectroscopic technique and chemical methods, as well as by comparison with the reported data. The structure of 20(S),21-epoxy-3-oxocholest-4-ene (1) was also unambiguously deduced by single-crystal X-ray diffraction technique. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Chemistry of green encapsulating molding compounds at interfaces with other materials in electronic devices

    NASA Astrophysics Data System (ADS)

    Scandurra, A.; Zafarana, R.; Tenya, Y.; Pignataro, S.

    2004-07-01

    The interface chemistry between encapsulating epoxy phenolic molding compound (EMC) containing phosphorous based organic flame retardant (the so called "green materials") and copper oxide-hydroxide and aluminum oxide-hydroxide surfaces have been studied in comparison with "conventional" EMC containing bromine and antimony as flame retardant. These green materials are designed to reduce the presence of toxic elements in the electronic packages and, consequently, in the environment. For the study were used a Scanning Acoustic Microscopy for delamination measurements, a dynamometer for the pull strength measurements and an ESCA spectrometer for chemical analysis of the interface. The general behavior of the green compound in terms of delamination, adhesion, and corrosion is found better or at least comparable than that of the conventional EMC.

  5. Cross-reactivity among epoxy acrylates and bisphenol F epoxy resins in patients with bisphenol A epoxy resin sensitivity.

    PubMed

    Lee, Han N; Pokorny, Christopher D; Law, Sandra; Pratt, Melanie; Sasseville, Denis; Storrs, Frances J

    2002-09-01

    The study's objective was 2-fold: first, to evaluate the potential cross-reactivity between Bis-A epoxy resins and epoxy acrylates and second, to study the cross reactivity between Bis-A epoxy resins and newer Bis-F epoxy resins in patients with allergic contact dermatitis to epoxy resins and had positive patch test to the standard epoxy resin based on bisphenol A. Forty-one patients were patch tested to 23 chemicals including epoxy acrylates, Bis-A epoxy resins, and Bis-F epoxy resins, as well as reactive diluents and nonbisphenol epoxy resins. Questions concerning exposure to epoxy resins, occupational history, and problems with dental work were completed. All patients included in the study had positive reactions to the standard Bis-A epoxy resin. Twenty percent (8 of 41) of the patients reacted to at least one of the epoxy acrylates; the most common reaction was to Bis-GMA. Five of 8 patients who reacted to the epoxy acrylates had dental work, but only one patient had problems from her dental work. Six of 8 patients (75%) who reacted to epoxy resins and epoxy acrylates did not react to aliphatic acrylates. Thirty-two percent (13 of 41) reacted to tosylamide epoxy resin, and none reacted to triglycidyl isocyanurate resin. In addition, all patients (100%) had positive reactions to at least one of the Bis-F epoxy resins that were tested. Most patients with sensitivity to Bis-A epoxy resins do not cross-react with epoxy acrylates. Patients with positive patch test reactions to epoxy acrylates used in dentistry usually do not have symptoms from their dental work. To our knowledge, this is the largest series of patients with sensitivity to the standard Bis-A epoxy resin that have been patch tested with the more recently introduced Bis-F epoxy resins. There is significant cross-reactivity between Bis-A and Bis-F epoxy resins, which can be explained by their structural similarity. Copyright 2002, Elsevier Science (USA). All rights reserved.

  6. Synthesis of a Nano-Silver Metal Ink for Use in Thick Conductive Film Fabrication Applied on a Semiconductor Package

    PubMed Central

    Yung, Lai Chin; Fei, Cheong Choke; Mandeep, JS; Binti Abdullah, Huda; Wee, Lai Khin

    2014-01-01

    The success of printing technology in the electronics industry primarily depends on the availability of metal printing ink. Various types of commercially available metal ink are widely used in different industries such as the solar cell, radio frequency identification (RFID) and light emitting diode (LED) industries, with limited usage in semiconductor packaging. The use of printed ink in semiconductor IC packaging is limited by several factors such as poor electrical performance and mechanical strength. Poor adhesion of the printed metal track to the epoxy molding compound is another critical factor that has caused a decline in interest in the application of printing technology to the semiconductor industry. In this study, two different groups of adhesion promoters, based on metal and polymer groups, were used to promote adhesion between the printed ink and the epoxy molding substrate. The experimental data show that silver ink with a metal oxide adhesion promoter adheres better than silver ink with a polymer adhesion promoter. This result can be explained by the hydroxyl bonding between the metal oxide promoter and the silane grouping agent on the epoxy substrate, which contributes a greater adhesion strength compared to the polymer adhesion promoter. Hypotheses of the physical and chemical functions of both adhesion promoters are described in detail. PMID:24830317

  7. Curing and toughening of epoxy resins with phosphorus containing monomers and polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Y.R.; Park, I.Y.; Yoon, T.H.

    1996-12-31

    Epoxy resins have been utilized in many areas, from house holds to airplanes, for the past several decades due to some exceptional properties such as low cost, good mechanical properties and excellent adhesive properties. However, low fracture toughness and flame resistance of epoxy resins have limited their applicability. Therefore, enhancing those properties have been of great interest to many researchers and scientists. As introduced by McGrath and co-workers in 1980s, the reactive thermoplastic polymers have proven to be an excellent toughener for improving not only fracture toughness but also adhesive properties without sacrificing thermo-mechanical properties and chemical resistance. Flame retardencymore » could be improved by adding flame retardent additives which are divided into two groups; additives and reactives. However, among the additives, halogen compounds are known to be toxic gas generator and ozone depleter. Moreover, additives could be potentially leached out of the material, while reactives are inferior to additives. Recently, a reactive type phosphine oxide containing flame retardants have been introduced by McGrath and co-workers and proven to be an excellent flame retardant. In this paper, phospine oxide containing monomers were prepared and utilized as curing agents for expoxy resins, and starting materials for the polymers.« less

  8. From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites.

    PubMed

    Zaman, Izzuddin; Kuan, Hsu-Chiang; Dai, Jingfei; Kawashima, Nobuyuki; Michelmore, Andrew; Sovi, Alex; Dong, Songyi; Luong, Lee; Ma, Jun

    2012-08-07

    In spite of extensive studies conducted on carbon nanotubes and silicate layers for their polymer-based nanocomposites, the rise of graphene now provides a more promising candidate due to its exceptionally high mechanical performance and electrical and thermal conductivities. The present study developed a facile approach to fabricate epoxy-graphene nanocomposites by thermally expanding a commercial product followed by ultrasonication and solution-compounding with epoxy, and investigated their morphologies, mechanical properties, electrical conductivity and thermal mechanical behaviour. Graphene platelets (GnPs) of 3.57 ± 0.50 nm in thickness were created after the expanded product was dispersed in tetrahydrofuran using 60 min ultrasonication. Since epoxy resins cured by various hardeners are widely used in industries, we chose two common hardeners: polyoxypropylene (J230) and 4,4'-diaminodiphenylsulfone (DDS). DDS-cured nanocomposites showed a better dispersion and exfoliation of GnPs, a higher improvement (573%) in fracture energy release rate and a lower percolation threshold (0.612 vol%) for electrical conductivity, because DDS contains benzene groups which create π-π interactions with GnPs promoting a higher degree of dispersion and exfoliation of GnPs during curing. This research pointed out a potential trend where GnPs would replace carbon nanotubes and silicate layers for many applications of polymer nanocomposites.

  9. Synthesis of a nano-silver metal ink for use in thick conductive film fabrication applied on a semiconductor package.

    PubMed

    Yung, Lai Chin; Fei, Cheong Choke; Mandeep, Js; Binti Abdullah, Huda; Wee, Lai Khin

    2014-01-01

    The success of printing technology in the electronics industry primarily depends on the availability of metal printing ink. Various types of commercially available metal ink are widely used in different industries such as the solar cell, radio frequency identification (RFID) and light emitting diode (LED) industries, with limited usage in semiconductor packaging. The use of printed ink in semiconductor IC packaging is limited by several factors such as poor electrical performance and mechanical strength. Poor adhesion of the printed metal track to the epoxy molding compound is another critical factor that has caused a decline in interest in the application of printing technology to the semiconductor industry. In this study, two different groups of adhesion promoters, based on metal and polymer groups, were used to promote adhesion between the printed ink and the epoxy molding substrate. The experimental data show that silver ink with a metal oxide adhesion promoter adheres better than silver ink with a polymer adhesion promoter. This result can be explained by the hydroxyl bonding between the metal oxide promoter and the silane grouping agent on the epoxy substrate, which contributes a greater adhesion strength compared to the polymer adhesion promoter. Hypotheses of the physical and chemical functions of both adhesion promoters are described in detail.

  10. Biosynthesis of 3-acetyldeoxynivalenol and sambucinol. Identification of the two oxygenation steps after trichodiene.

    PubMed

    Zamir, L O; Nikolakakis, A; Huang, L; St-Pierre, P; Sauriol, F; Sparace, S; Mamer, O

    1999-04-30

    The first two oxygenation steps post-trichodiene in the biosyntheses of the trichothecenes 3-acetyldeoxynivalenol and sambucinol were investigated. The plausible intermediates 2-hydroxytrichodiene (2alpha- and 2beta-) and 12,13-epoxytrichodiene and the dioxygenated compounds 12,13-epoxy-9,10-trichoene-2-ol (2alpha- and 2beta-) were prepared specifically labeled with stable isotopes. They were then fed separately and/or together to Fusarium culmorum cultures, and the derived trichothecenes were isolated, purified, and analyzed. The stable isotopes enable easy localization of the labels in the products by 2H NMR, 13C NMR, and mass spectrometry. We found that 2alpha-hydroxytrichodiene is the first oxygenated step in the biosynthesis of both 3-acetyldeoxynivalenol and sambucinol. The stereoisomer 2beta-hydroxytrichodiene and 12,13-epoxytrichodiene are not biosynthetic intermediates and have not been isolated as metabolites. We also demonstrated that the dioxygenated 12, 13-epoxy-9,10-trichoene-2alpha-ol is a biosynthetic precursor to trichothecenes as had been suggested in a preliminary work. Its stereoisomer was not found in the pathway. A further confirmation of our results was the isolation of both oxygenated trichodiene derivatives 2alpha-hydroxytrichodiene and 12,13-epoxy-9, 10-trichoene-2alpha-ol as natural metabolites in F. culmorum cultures.

  11. Liquid chromatography method to determine polyamines in thermosetting polymers.

    PubMed

    Dopico-García, M S; López-Vilariño, J M; Fernández-Martínez, G; González-Rodríguez, M V

    2010-05-14

    A simple, robust and sensitive analytical method to determine three polyamines commonly used as hardeners in epoxy resin systems and in the manufacture of polyurethane is reported. The studied polyamines are: one tetramine, TETA (triethylenetetramine), and two diamines, IPDA (Isophorone diamine) and TCD-diamine (4,7-methano-1H-indene-5,?-dimethanamine, octahydro-). The latter has an incompletely defined structure, and, as far as we know, has not been previously determined by other methods. All three polyamines contain primary amines; TETA also contains secondary amines. The analytical method involves derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, used for the first time for these compounds, followed by high performance liquid chromatography (HPLC) analysis with a fluorescence (FL) detector (lambda excitation 248nm, lambda emision 395nm). The HPLC-DAD-LTQ Orbitrap MS was used in order to provide structural information about the obtained derivatized compounds. The hybrid linear ion trap LTQ Orbitrap mass spectrometer has been introduced in recent years and provides a high mass accuracy. The structures of the derivatized analytes were identified from the protonated molecular ions [M+H](+) and corresponded to the fully labelled analytes. The following analytical parameters were determined for the method using the HPLC-FL: linearity, precision (2.5-10%), instrumental precision intraday (0.8-1.5%) and interday (2.9-6.3%), and detection limits (0.02-0.14mgL(-1)). The stability of stock solutions and derivatized compounds was also investigated. The method was applied to determine the amine free content in epoxy resin dust collected in workplaces. Copyright 2010 Elsevier B.V. All rights reserved.

  12. CYP109E1 is a novel versatile statin and terpene oxidase from Bacillus megaterium.

    PubMed

    Putkaradze, Natalia; Litzenburger, Martin; Abdulmughni, Ammar; Milhim, Mohammed; Brill, Elisa; Hannemann, Frank; Bernhardt, Rita

    2017-12-01

    CYP109E1 is a cytochrome P450 monooxygenase from Bacillus megaterium with a hydroxylation activity for testosterone and vitamin D3. This study reports the screening of a focused library of statins, terpene-derived and steroidal compounds to explore the substrate spectrum of this enzyme. Catalytic activity of CYP109E1 towards the statin drug-precursor compactin and the prodrugs lovastatin and simvastatin as well as biotechnologically relevant terpene compounds including ionones, nootkatone, isolongifolen-9-one, damascones, and β-damascenone was found in vitro. The novel substrates induced a type I spin-shift upon binding to P450 and thus permitted to determine dissociation constants. For the identification of conversion products by NMR spectroscopy, a B. megaterium whole-cell system was applied. NMR analysis revealed for the first time the ability of CYP109E1 to catalyze an industrially highly important reaction, the production of pravastatin from compactin, as well as regioselective oxidations generating drug metabolites (6'β-hydroxy-lovastatin, 3'α-hydroxy-simvastatin, and 4″-hydroxy-simvastatin) and valuable terpene derivatives (3-hydroxy-α-ionone, 4-hydroxy-β-ionone, 11,12-epoxy-nootkatone, 4(R)-hydroxy-isolongifolen-9-one, 3-hydroxy-α-damascone, 4-hydroxy-β-damascone, and 3,4-epoxy-β-damascone). Besides that, a novel compound, 2-hydroxy-β-damascenone, produced by CYP109E1 was identified. Docking calculations using the crystal structure of CYP109E1 rationalized the experimentally observed regioselective hydroxylation and identified important amino acid residues for statin and terpene binding.

  13. Evaluation of the Potential Health Hazards Associated with the Machining of Carbon Fiber Composites.

    DTIC Science & Technology

    1987-01-01

    34 British Journal of Industrial Medicine , Vol. 35, pp. 146-153 (1978) 32. Bernstein, D.M., Drew, R.T. and Kuschner, M. "Experimental Approaches for...adjacent cAO% carbon atoms. The resultant structure (C --- C) is a highly strained, therefore very reactive functional group. Epoxy resin compounds...characterized by an eczema accompanied by considerable itchiness, usually extending beyond the original point of contact (18). Following an

  14. Comparative acute toxicity of leachates from plastic products made of polypropylene, polyethylene, PVC, acrylonitrile-butadiene-styrene, and epoxy to Daphnia magna.

    PubMed

    Lithner, Delilah; Nordensvan, Ildikó; Dave, Göran

    2012-06-01

    The large global production of plastics and their presence everywhere in the society and the environment create a need for assessing chemical hazards and risks associated with plastic products. The aims of this study were to determine and compare the toxicity of leachates from plastic products made of five plastics types and to identify the class of compounds that is causing the toxicity. Selected plastic types were those with the largest global annual production, that is, polypropylene, polyethylene, and polyvinyl chloride (PVC), or those composed of hazardous monomers (e.g., PVC, acrylonitrile-butadiene-styrene [ABS], and epoxy). Altogether 26 plastic products were leached in deionized water (3 days at 50°C), and the water phases were tested for acute toxicity to Daphnia magna. Initial Toxicity Identification Evaluations (C18 filtration and EDTA addition) were performed on six leachates. For eleven leachates (42%) 48-h EC50s (i.e the concentration that causes effect in 50 percent of the test organisms) were below the highest test concentration, 250 g plastic/L. All leachates from plasticized PVC (5/5) and epoxy (5/5) products were toxic (48-h EC50s ranging from 2 to 235 g plastic/L). None of the leachates from polypropylene (5/5), ABS (5/5), and rigid PVC (1/1) products showed toxicity, but one of the five tested HDPE leachates was toxic (48-h EC50 17-24 g plastic/L). Toxicity Identification Evaluations indicated that mainly hydrophobic organics were causing the toxicity and that metals were the main cause for one leachate (metal release was also confirmed by chemical analysis). Toxic chemicals leached even during the short-term leaching in water, mainly from plasticized PVC and epoxy products.

  15. Behavioral responses to mammalian blood odor and a blood odor component in four species of large carnivores.

    PubMed

    Nilsson, Sara; Sjöberg, Johanna; Amundin, Mats; Hartmann, Constanze; Buettner, Andrea; Laska, Matthias

    2014-01-01

    Only little is known about whether single volatile compounds are as efficient in eliciting behavioral responses in animals as the whole complex mixture of a behaviorally relevant odor. Recent studies analysing the composition of volatiles in mammalian blood, an important prey-associated odor stimulus for predators, found the odorant trans-4,5-epoxy-(E)-2-decenal to evoke a typical "metallic, blood-like" odor quality in humans. We therefore assessed the behavior of captive Asian wild dogs (Cuon alpinus), African wild dogs (Lycaon pictus), South American bush dogs (Speothos venaticus), and Siberian tigers (Panthera tigris altaica) when presented with wooden logs that were impregnated either with mammalian blood or with the blood odor component trans-4,5-epoxy-(E)-2-decenal, and compared it to their behavior towards a fruity odor (iso-pentyl acetate) and a near-odorless solvent (diethyl phthalate) as control. We found that all four species displayed significantly more interactions with the odorized wooden logs such as sniffing, licking, biting, pawing, and toying, when they were impregnated with the two prey-associated odors compared to the two non-prey-associated odors. Most importantly, no significant differences were found in the number of interactions with the wooden logs impregnated with mammalian blood and the blood odor component in any of the four species. Only one of the four species, the South American bush dogs, displayed a significant decrease in the number of interactions with the odorized logs across the five sessions performed per odor stimulus. Taken together, the results demonstrate that a single blood odor component can be as efficient in eliciting behavioral responses in large carnivores as the odor of real blood, suggesting that trans-4,5-epoxy-(E)-2-decenal may be perceived by predators as a "character impact compound" of mammalian blood odor. Further, the results suggest that odorized wooden logs are a suitable manner of environmental enrichment for captive carnivores.

  16. Effects of Nanofillers on the Thermo-Mechanical Properties and Chemical Resistivity of Epoxy Nanocomposites.

    PubMed

    Atchudan, Raji; Pandurangan, Arumugam; Joo, Jin

    2015-06-01

    MWCNTs was synthesized using Ni-Cr/MgO by CVD method and were purified. The purified MWCNT was used as a filler material for the fabrication of epoxy nanocomposites. The epoxy nanocomposites with different amount (wt% = 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0) of nanofillers (CB, SiO2 and MWCNTs) were prepared by casting method. The effects of nanofillers on the properties of neat epoxy matrix were well studied. The thermal properties of nanocomposites were studied using DSC, TGA and flame retardant, and also the mechanical properties such as tensile strength, flexural strength, compressive strength, impact strength, determination of hardness and chemical resistance were studied extensively. Based on the experiment's results, 2 wt% MWCNTs loading in epoxy resin showed the highest improvement in tensile strength, as compared to neat epoxy and to other epoxy systems (CB/epoxy, SiO2/epoxy). Improvements in tensile strength, glass transition temperature and decomposition temperature were observed by the addition of MWCNTs. The mechanical properties of the epoxy nanocomposites were improved due to the interfacial bonding between the MWCNTs and epoxy resin. Strain hardening behavior was higher for MWCNT/epoxy nanocomposites compared with CB/epoxy and SiO2/epoxy nanocomposites. The investigation of thermal and mechanical properties reveals that the incorporation of MWCNTs into the epoxy nanocomposites increases its thermal stability to a great extent. Discrete increase of glass transition temperature of nanocomposites is linearly dependent on MWCNTs content. Due to strong interfacial bonding between MWCNTs and epoxy resin, the chemical resistivity of MWCNT/epoxy nanocomposites is superior to neat epoxy and other epoxy systems.

  17. A new bioactive diterpenoid from pestalotiopsis adusta, an endophytic fungus from clerodendrum canescens.

    PubMed

    Xu, Ming-Feng; Jia, Ou-Ya; Wang, Sheng-Jia; Zhu, Qin

    2016-02-02

    Bioassay-guided fractionation of the culture extract of Pestalotiopsis adusta, an endophytic fungus isolated from the medicinal plant Clerodendrum canescens, led to the isolation of one new, (10S)-12,16-epoxy-17(15→16)-abeo-3,5,8,12,15-abietapentaen-2,7,11,14-tetraone (1), and four known diterpenoids, teuvincenone F (2), uncinatone (3), coleon U (4), coleon U-12-methyl ether (5). These structures were identified by using spectroscopic methods, including UV, MS, 1D and 2D NMR experiments. This is the first report of these compounds being isolated from a Pestalotiopsis species. The cytotoxic activities of the compounds were evaluated, and compounds 1 and 3 demonstrated cytotoxic activities against the HL-60 tumour cell line (IC 50  < 20 μM).

  18. Technology and optical characterization of luminophore coordination compounds Eu(o-MBA)3Phen and NC PEPC/Eu(o-MBA)3Phen

    NASA Astrophysics Data System (ADS)

    Bordian, Olga; Verlan, Victor; Culeac, Ion; Iovu, Mihail; Zubareva, Vera

    2016-12-01

    Were obtained a new nanocomposite (NC) based on poly N-epoxy prolyl carbazol (PEPC) and the coordination compound luminophore Eu(o-MBA)3Phen, where o-MBA is o- methylbenzoic acid and Phen - phenanthroline. Nanocrystals of Eu(o-MBA)3Phen with the dimensions 50 nm were uniformly incorporated into the PEPC polymer matrix with various concentrations. The absorption spectra of coordination compounds and thin layers of NC PEPC/Eu(o-MBA)3Phen revealed 1 intensive absorption bands at 2.02 eV. Photoluminescence (PL) spectra showed an intense red luminescence at 578 - 699 nm, which is assigned to the transitions 4D0->7Fi (i= 0,1,2 3 4) in the 4f-shell of the Eu3+ ion.

  19. Sesquiterpenes from the essential oil of Curcuma wenyujin and their inhibitory effects on nitric oxide production.

    PubMed

    Xia, Guiyang; Zhou, Li; Ma, Jianghao; Wang, Ying; Ding, Liqin; Zhao, Feng; Chen, Lixia; Qiu, Feng

    2015-06-01

    Three new sesquiterpenes including a new elemane-type sesquiterpene, 5βH-elem-1,3,7,8-tetraen-8,12-olide (1), and two new carabrane-type sesquiterpenes, 7α,11-epoxy-6α-methoxy-carabrane-4,8-dione (2) and 8,11-epidioxy-8-hydroxy-4-oxo-6-carabren (3), together with eight known sesquiterpenes (4-11) were isolated from Curcuma wenyujin Y. H. Chen et C. Ling. Their structures were elucidated based on extensive spectroscopic analyses. A possible biogenetic scheme for the related compounds was postulated. All of the isolated compounds were tested for inhibitory activity against LPS-induced nitric oxide production in RAW 264.7 macrophages. Meanwhile, preliminary structure-activity relationships for these compounds are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. [Studies on the chemical constituents of Pharbitis purpurea].

    PubMed

    Wang, Jin-Lan; Hua, Zhun; Zhao, Bao-Ying; Tang, Wan-Xia; Zhang, Shu-Jun

    2010-10-01

    To study the chemical constituents of Pharbitis purpurea. The constituents were isolated by silica gel column chromatography, HPLC and recrystallization and their structures were elucidated on the basis of spectral analysis. Fourteen compounds were isolated and identified as daucosterol (1), umbelliferone (2), ursolic acid (3), N-p-hydroxy-cis-coumaroyltyramine (4), N-p-hydroxy-trans-coumaroyltyramine (5), N-cis-feruloyltyramine (6), N-trans-feruloyltyramine (7), (3R, 5R, 6S, 7E, 9S)-megastigman-5,6-epoxy-7-ene-3,9-diol (8), (6S,9R)-vomifoliol (9), (+)-syringaresinol (10), isovitexin (11), syringopicroside( 12), uricil (13), (6S,9R)-roseoside (14). Compounds 3, 8-2,14 are isolated from the genus for the first time.

  1. Sesquiterpenes from Curcuma wenyujin with their inhibitory activities on nitric oxide production in RAW 264.7 cells.

    PubMed

    Gao, Suyu; Xia, Guiyang; Wang, Liqing; Zhou, Li; Zhao, Feng; Huang, Jian; Chen, Lixia

    2017-03-01

    One new sesquiterpene, 7α,11-epoxy-6α-hydroxy-carabrane-4,8-dione, along with 10 known ones were isolated from the essential oil of Curcuma wenyujin Y.H. Chen et C. Ling. Their structures were established based on extensive spectroscopic analysis. The absolute configuration of compound 1 was determined by the CD analysis of the insitu formed [Rh 2 (OCOCF 3 ) 4 ] complex, and the CD data analysis based on the octane rule of cyclohexanone. The inhibitory effects of these sesquiterpenes on nitric oxide production in lipopolysaccharide-activated macrophages were also evaluated. Furthermore, the biosynthesis pathway of the isolated compounds was proposed.

  2. Spectroscopy of carotenoids and its application to the investigation of autoxidation

    NASA Astrophysics Data System (ADS)

    Finkelshtein, E. I.; Krasnokutskaya, I. S.; Vakulova, L. A.

    1999-05-01

    The electronic and attenuated total reflection IR spectra of β-carotene, canthaxanthin, lycopene, axerophtene, retinyl acetate, methyl retinoate, and retinal were recorded and investigated. The main specimens were thin (thickness of about 0.1 μ) amorphous films on the optically transparent supports. In most cases the electronic spectra of the films differ from the solution ones. Alterations of the spectra during the exposing of the films to oxygen permit to propose the sequence of the oxidation products formation. The compounds with short polyenic chains conjugated with β-ionone ring are formed. Polyperoxides are the primary oxidation products, and they gradually transform firstly into epoxy and then into carbonyl compounds.

  3. An Investigation of DC-DC Converter Power Density Using Si and SiC MOSFETS

    DTIC Science & Technology

    2010-05-07

    submarine or small surface combatant, volumetric constraints quickly become extremely prohibitive. Dedicating generators for high power loads takes...thermal compounds were applied to the MOSFET-heat sink interface. For the Si APT26F120B2, MG Chemicals TC-450ML thermal epoxy was used to connect the... submarines , bus converter modules must be made optimally power dense in order to decrease volumetric requirements of the modules for a rated throughput

  4. The Effect of Epoxy Molding Compound Floor Life to Reliability Performance and mold ability for QFN Package

    NASA Astrophysics Data System (ADS)

    Peanpunga, Udom; Ugsornrat, Kessararat; Thorlor, Panakamol; Sumithpibul, Chalermsak

    2017-09-01

    This research studied about an epoxy molding compound (EMC) floor life to reliability performance of integrated circuit (IC) package. Molding is the process for protecting the die of IC package form mechanical and chemical reaction from external environment by shaping EMC. From normal manufacturing process, the EMC is stored in the frozen at 5oC and left at around room temperature for aging time or floor life before molding process. The EMC floor life effect to its properties and reliability performance of IC package. Therefore, this work interested in varied the floor life of EMC before molding process to analyze properties of EMC such as spiral flow length, gelation time, and viscosity. In experiment, the floor life of EMC was varied to check the effect of its property to reliability performance. The EMC floor life were varied from 0 hours to 60 hours with a step of 12 hours and observed wire sweep, incomplete EMC, and delamination inside the packages for 3x3, 5x5 and 8x8 mm2 of QFN packages. The evaluation showed about clearly effect of EMC floor life to IC packaging reliability. EMC floor life is not any concern for EMC property, moldabilty, and reliability from 0 hours to 48 hours for molding process of 3x3,5x5 and 8x8 mm2 QFN packaging manufacturing

  5. Natural Products from Antarctic Colonial Ascidians of the Genera Aplidium and Synoicum: Variability and Defensive Role

    PubMed Central

    Núñez-Pons, Laura; Carbone, Marianna; Vázquez, Jennifer; Rodríguez, Jaime; Nieto, Rosa María; Varela, María Mercedes; Gavagnin, Margherita; Avila, Conxita

    2012-01-01

    Ascidians have developed multiple defensive strategies mostly related to physical, nutritional or chemical properties of the tunic. One of such is chemical defense based on secondary metabolites. We analyzed a series of colonial Antarctic ascidians from deep-water collections belonging to the genera Aplidium and Synoicum to evaluate the incidence of organic deterrents and their variability. The ether fractions from 15 samples including specimens of the species A. falklandicum, A. fuegiense, A. meridianum, A. millari and S. adareanum were subjected to feeding assays towards two relevant sympatric predators: the starfish Odontaster validus, and the amphipod Cheirimedon femoratus. All samples revealed repellency. Nonetheless, some colonies concentrated defensive chemicals in internal body-regions rather than in the tunic. Four ascidian-derived meroterpenoids, rossinones B and the three derivatives 2,3-epoxy-rossinone B, 3-epi-rossinone B, 5,6-epoxy-rossinone B, and the indole alkaloids meridianins A–G, along with other minoritary meridianin compounds were isolated from several samples. Some purified metabolites were tested in feeding assays exhibiting potent unpalatabilities, thus revealing their role in predation avoidance. Ascidian extracts and purified compound-fractions were further assessed in antibacterial tests against a marine Antarctic bacterium. Only the meridianins showed inhibition activity, demonstrating a multifunctional defensive role. According to their occurrence in nature and within our colonial specimens, the possible origin of both types of metabolites is discussed. PMID:23015772

  6. Cutin composition of five finnish berries.

    PubMed

    Kallio, Heikki; Nieminen, Riikka; Tuomasjukka, Saska; Hakala, Mari

    2006-01-25

    The raw cutin (i.e., extractive-free isolated cuticular membrane) fraction from Finnish berries, sea buckthorn (Hippophaë rhamnoides), black currant (Ribes nigrum), cranberry (Vaccinium oxycoccos), lingonberry (Vaccinium vitis-idaea), and bilberry (Vaccinium myrtillus), was depolymerized by NaOMe-catalyzed methanolysis. The composition of cutin monomers was determined by GC-(EI)MS analysis either as methyl esters or as TMSi esters, with OH groups derivatized to TMSi ethers. There was a notable difference in the degree of depolymerization, ranging from 6 to 47%. The extractive-free berry cuticle, that is, raw cutin, thus contains <50% polyester polymer cutin. The predominant cutin monomers were C(16) and C(18) omega-hydroxy acids with midchain functionalities, mainly epoxy and hydroxyl groups. Typically, the major compounds were 9,10-epoxy-18-hydroxyoctadecanoic acid, 10,16-dihydroxyhexadecanoic acid, 9,10,18-trihydroxyoctadecanoic acid, 9,10-epoxy-18-hydroxyoctadec-12-enoic acid, and 18-hydroxyoctadec-9-enoic acid. The amount of epoxyacids was rather high in sea buckthorn ( approximately 70%) and cranberry ( approximately 60%), compared with the other berries. The black currant cutin differed from that of the other berries with a significant portion of hydroxyoxohexadecanoic acid ( approximately 12% of total monomers). This investigation of the cuticular hydroxy acids of five Finnish berries is part of the exploitation of the northern natural resources related to the chemical composition, nutritional value, and sensory properties.

  7. Sex pheromone chemistry and field trapping studies of the elm spanworm Ennomos subsignaria (Hübner) (Lepidoptera:Geometridae)

    NASA Astrophysics Data System (ADS)

    Ryall, Krista; Silk, Peter J.; Wu, Junping; Mayo, Peter; Lemay, Matthew A.; Magee, David

    2010-08-01

    The elm spanworm, Ennomos subsignaria (Hübner), occurs throughout Canada and the eastern United States and can be a destructive forest pest on a wide range of deciduous trees. Gas chromatography/mass spectrometry (GC/MS) and coupled gas chromatographic-electroantennographic detection (GC/EAD) analysis of pheromone gland extracts, in combination with chemical synthesis and field trapping studies have identified (2 S, 3 R)-2-(( Z)-oct-2'-enyl)-3-nonyl oxirane (hereafter Z6-9 S, 10 R-epoxy-19:H) as the female-produced sex pheromone. Significantly more male moths were captured between 1-100 μg loadings of this compound on red rubber septa in sticky traps compared to blank (unbaited) traps; catches then declined at higher dosages (500-1000 μg). The other isomeric enantiomer, (2 R, 3 S)-2-[( Z)-oct-2'-enyl]-3-nonyl oxirane ( Z6-9 R, 10 S-epoxy-19:H), at a 10-μg dosage did not elicit trap capture. The likely precursor to the active epoxide, ( Z, Z)-6, 9-nonadecadiene (( Z, Z)-6, 9-19:H), identified in virgin female sex pheromone glands, did not elicit trap capture either, and inhibited trap capture when combined with the active epoxide. Racemic 2-((Z)-oct-2'-enyl)-3-nonyl oxirane showed no significant difference in trap capture compared with Z6-9 S, 10 R-epoxy-19:H, indicating that the opposite enantiomer was not antagonistic. The addition of the EAD-active diene epoxide enantiomers (2 S, 3 R)-2-[( Z, Z)-octa-2', 5'-dienyl]-3-nonyl oxirane or (2 R, 3 S)-2-[( Z, Z)-octa-2', 5'-dienyl]-3-nonyl oxirane in admixture with Z6-9 S, 10 R-epoxy-19:H (at 10% of the latter) did not enhance or decrease trap capture compared to Z6-9 S, 10 R-epoxy-19:H oxirane alone, so they are not likely pheromone components. This pheromone, impregnated in rubber septa at less than 100-μg dosage, can now be used as a trap bait to develop detection and monitoring strategies for this insect.

  8. Three Novel Triterpenoids from Taraxacum officinale Roots.

    PubMed

    Kikuchi, Takashi; Tanaka, Ayaka; Uriuda, Mayu; Yamada, Takeshi; Tanaka, Reiko

    2016-08-27

    Three novel lupane-, bauerane-, and euphane-type triterpenoids (1-3), in addition to seven known triterpenoids (4-10)-18β,19β-epoxy-21β-hydroxylupan-3β-yl acetate (4), 21-oxolup-18-en-3β-yl acetate (5), betulin (6), officinatrione (7), 11α-methoxyolean-12-en-3-one (8), eupha-7,24-dien-3-one (9), and 24-oxoeupha-7,24-dien-3β-yl acetate (10)-were isolated from the roots of Taraxacum officinale. Their structures were elucidated on the basis of spectroscopic analyses using 1D and 2D-NMR spectra and electron ionization mass spectrometry (EIMS). The effects of compounds 1-10 on the production of nitric oxide (NO) in lipopolysaccharide (LPS)-activated mouse peritoneal macrophages were evaluated. Compounds 4, 6, and 10 exhibited similar NO inhibitory activities to N(G)-monomethyl-l-arginine acetate (l-NMMA). These compounds did not exhibit cytotoxicity at an effective concentration. The results of present study suggest that compounds 4, 6, and 10 have potential as anti-inflammatory disease agents.

  9. Quantum chemical investigations on the molecular structure, FTIR, UV-Vis and HOMO-LUMO analysis of 15-16-epoxy-7b, 9a dihydroxylabdane 13(16), 14-dien-6-one

    NASA Astrophysics Data System (ADS)

    Uppal, Anshul; Pathania, Kamni; Khajuria, Yugal

    2018-05-01

    The structural, spectroscopic (Fourier Transform Infrared (FT-IR), Ultra-Violet Visible (UV-VIS)) and thermodynamic properties of 15, 16-epoxy-7b, 9a dihydroxylabdane-13(16), 14-dien-6-one were studied by using both experimental techniques and theoretical methods. The FTIR spectrum of the title compound was recorded in the spectral range 4000-400 cm-1. The UV-VIS spectrum was measured in the spectral range 190-800 nm. The quantum chemistry calculations have been performed to compute optimized geometry, molecular parameters, vibrational frequencies along with intensities using Hartree Fock (HF) theory and Density Functional Theory (DFT) with 6-31G basis set. The calculated HOMO-LUMO energies show that the charge transfer occurs within the molecule. The temperature dependence of the thermodynamic properties like heat capacity, entropy and enthalpy of the optimized structure were obtained. Finally, a comparison between the experimental data and the calculated results presented a good agreement.

  10. The application of epoxy resin coating in grounding grid

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Chen, Z. R.; Xi, L. J.; Wang, X. Y.; Wang, H. F.

    2018-01-01

    Epoxy resin anticorrosion coating is widely used in grounding grid corrosion protection because of its wide range of materials, good antiseptic effect and convenient processing. Based on the latest research progress, four kinds of epoxy anticorrosive coatings are introduced, which are structural modified epoxy coating, inorganic modified epoxy coating, organic modified epoxy coating and polyaniline / epoxy resin composite coating. In this paper, the current research progress of epoxy base coating is analyzed, and prospected the possible development direction of the anti-corrosion coating in the grounding grid, which provides a reference for coating corrosion prevention of grounding materials.

  11. Is drinking water a major route of human exposure to alkylphenol and bisphenol contaminants in France?

    PubMed

    Colin, Adeline; Bach, Cristina; Rosin, Christophe; Munoz, Jean-François; Dauchy, Xavier

    2014-01-01

    The main objective of this study was to evaluate potential exposure of a significant part of the French population to alkylphenol and bisphenol contaminants due to water consumption. The occurrence of 11 alkylphenols and bisphenols was studied in raw water and treated water samples from public water systems. One sampling campaign was performed from October 2011 to May 2012. Sampling was equally distributed across 100 French departments. In total, 291 raw water samples and 291 treated water samples were analyzed in this study, representing approximately 20 % of the national water supply flow. The occurrence of the target compounds was also determined for 29 brands of bottled water (polyethylene terephthalate [PET] bottles, polycarbonate [PC] reusable containers, and aluminum cans [ACs]) and in 5 drinking water networks where epoxy resin has been used as coating for pipes. In raw water samples, the highest individual concentration was 1,430 ng/L for bisphenol A (BPA). Of the investigated compounds, nonylphenol (NP), nonylphenol 1-carboxylic acid (NP1EC), BPA, and nonylphenol 2-ethoxylate (NP2EO) predominated (detected in 18.6, 18.6, 14.4, and 10 % of samples, respectively). Geographical variability was observed with departments crossed by major rivers or with high population densities being more affected by contamination. In treated water samples, the highest individual concentration was 505 ng/L for NP. Compared with raw water, target compounds were found in lower amounts in treated water. This difference suggests a relative effectiveness of certain water treatments for the elimination of these pollutants; however, there is also their possible transformation by reaction with chlorine. No target compounds were found in drinking water pipes coated with epoxy resin, in PET bottled water, or in water from ACs. However, levels of BPA in PC bottled water ranged from 70 to 4,210 ng/L with greater level observed in newly manufactured bottles. 4-Tert-butylphenol was only detected in recently manufactured bottles. The values observed for the monitored compounds indicate that drinking water is most likely not the main source of exposure.

  12. Diterpenes from buds of Wikstroemia chamaedaphne showing anti-hepatitis B virus activities.

    PubMed

    Li, Shi-Fei; Jiao, Ying-Ying; Zhang, Zhi-Qiang; Chao, Jian-Bin; Jia, Jie; Shi, Xun-Long; Zhang, Li-Wei

    2018-07-01

    Phytochemical study of the buds of Wikstroemia chamaedaphne Meisn. led to the isolation of seven previously undescribed diterpenes, including one tigliane diterpene (wikstchalide A), two daphnane diterpenes (wikstroelides W-X), and four lathyrane diterpenes (laurifoliosides A-B and 2-epi-laurifoliosides A-B), along with four known diterpenes. The structures of these compounds were established by extensive spectroscopic evidence and electronic circular dichroism (ECD) calculations. Wikstchalide A possesses a 5,6-epoxy ring in the tigliane skeleton. Two compounds exhibited potential anti-hepatitis B virus activities, with IC 50 values of 46.5 and 88.3 μg/mL against hepatitis B virus (HBV) surface antigen (HBsAg), and six compounds showed certain inhibitory effects on HBV-DNA replication with the inhibition ratios ranging from 2.0% to 33.0% at the concentrations ranging from 0.39 to 6.25 μg/mL. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Characterization of Aronia melanocarpa volatiles by headspace-solid-phase microextraction (HS-SPME), simultaneous distillation/extraction (SDE), and gas chromatography-olfactometry (GC-O) methods.

    PubMed

    Kraujalytė, Vilma; Leitner, Erich; Venskutonis, Petras Rimantas

    2013-05-22

    The profiles of volatile constituents of berry fruit of two Aronia melanocarpa genotypes were evaluated by headspace-solid-phase microextraction (HS-SPME), simultaneous distillation and extraction (SDE), and gas chromatography-olfactometry (GC-O). In total, 74 volatile compounds were identified in chokeberry juice, 3-penten-2-one, 3,9-epoxy-p-menth-1-ene, and benzaldehyde being the most abundant constituents; however, their percentage concentrations were remarkably different in the HS-SPME and SDE profiles. Twenty two aroma-active compounds were detected and characterized by the trained panelists in HS-SPME using GC-O detection frequency analysis. Olfactometry revealed that ethyl-2-methyl butanoate, ethyl-3-methyl butanoate, ethyl decanoate ("fruity" aroma notes), nonanal ("green" notes), unidentified compound possessing "moldy" odor, and some other volatiles may be very important constituents in formation of chokeberry aroma of both analyzed plant cultivars.

  14. Synthesis of polyoxometalate-loaded epoxy composites

    DOEpatents

    Anderson, Benjamin J

    2014-10-07

    The synthesis of a polyoxometalate-loaded epoxy uses a one-step cure by applying an external stimulus to release the acid from the polyoxometalate and thereby catalyze the cure reaction of the epoxy resin. Such polyoxometalate-loaded epoxy composites afford the cured epoxy unique properties imparted by the intrinsic properties of the polyoxometalate. For example, polyoxometalate-loaded epoxy composites can be used as corrosion resistant epoxy coatings, for encapsulation of electronics with improved dielectric properties, and for structural applications with improved mechanical properties.

  15. Determination of Young's modulus of epoxy coated polyethylene micro-cantilever using phase-shift shadow moiré method

    NASA Astrophysics Data System (ADS)

    Lim, J. H.; Ratnam, M. M.; Azid, I. A.; Mutharasu, D.

    2011-11-01

    Young's moduli of various epoxy coated polyethylene terephthalate (PET) micro-cantilevers were determined from the deflection results obtained using the phase-shift shadow moiré (PSSM) method. The filler materials for epoxy coatings were aluminum and graphite powders that were mixed with epoxy at various percentages. Young's moduli were calculated from theory based on the deflection results. The PET micro-cantilever coated with aluminum-epoxy coating showed increasing value of Young's modulus when the ratios of the aluminum-epoxy were increased. The graphite-epoxy coating on the PET micro-cantilever also showed the same trend. The experimental results also show that Young's modulus of the graphite-epoxy coating is higher than aluminum-epoxy coating in comparison at the same mixing ratio.

  16. Evaluation of composite flattened tubular specimen. [fatigue tests

    NASA Technical Reports Server (NTRS)

    Liber, T.; Daniel, I. M.

    1978-01-01

    Flattened tubular specimens of graphite/epoxy, S-glass/epoxy, Kevlar-49/epoxy, and graphite/S-glass/epoxy hybrid materials were evaluated under static and cyclic uniaxial tensile loading and compared directly with flat coupon data of the same materials generated under corresponding loading conditions. Additional development for the refinement of the flattened specimen configuration and fabrication was required. Statically tested graphite/epoxy, S-glass/epoxy, and Kevlar 49/epoxy flattened tube specimens exhibit somewhat higher average strengths than their corresponding flat coupons. Flattened tube specimens of the graphite/S-glass/epoxy hybrid and the graphite/epoxy flattened tube specimens failed in parasitic modes with consequential lower strength than the corresponding flat coupons. Fatigue tested flattened tube specimens failed in parasitic modes resulting in lower fatigue strengths than the corresponding flat coupons.

  17. Mechanical Properties and Morphologies of Carboxyl-Terminated Butadiene Acrylonitrile Liquid Rubber/Epoxy Blends Compatibilized by Pre-Crosslinking.

    PubMed

    Xu, Shiai; Song, Xiaoxue; Cai, Yangben

    2016-07-29

    In order to enhance the compatibilization and interfacial adhesion between epoxy and liquid carboxyl-terminated butadiene acrylonitrile (CTBN) rubber, an initiator was introduced into the mixture and heated to initiate the cross-linking reaction of CTBN. After the addition of curing agents, the CTBN/epoxy blends with a localized interpenetrating network structure were prepared. The mechanical properties and morphologies of pre-crosslinked and non-crosslinked CTBN/epoxy blends were investigated. The results show that the tensile strength, elongation at break and impact strength of pre-crosslinked CTBN/epoxy blends are significantly higher than those of non-crosslinked CTBN/epoxy blends, which is primarily due to the enhanced interfacial strength caused by the chemical bond between the two phases and the localized interpenetrating network structure. Both pre-crosslinked and non-crosslinked CTBN/epoxy blends show a bimodal distribution of micron- and nano-sized rubber particles. However, pre-crosslinked CTBN/epoxy blends have smaller micron-sized rubber particles and larger nano-sized rubber particles than non-crosslinked CTBN/epoxy blends. The dynamic mechanical analysis shows that the storage modulus of pre-crosslinked CTBN/epoxy blends is higher than that of non-crosslinked CTBN/epoxy blends. The glass transition temperature of the CTBN phase in pre-crosslinked CTBN/epoxy blends increases slightly compared with the CTBN/epoxy system. The pre-crosslinking of rubber is a promising method for compatibilization and controlling the morphology of rubber-modified epoxy materials.

  18. Mechanical Properties and Morphologies of Carboxyl-Terminated Butadiene Acrylonitrile Liquid Rubber/Epoxy Blends Compatibilized by Pre-Crosslinking

    PubMed Central

    Xu, Shiai; Song, Xiaoxue; Cai, Yangben

    2016-01-01

    In order to enhance the compatibilization and interfacial adhesion between epoxy and liquid carboxyl-terminated butadiene acrylonitrile (CTBN) rubber, an initiator was introduced into the mixture and heated to initiate the cross-linking reaction of CTBN. After the addition of curing agents, the CTBN/epoxy blends with a localized interpenetrating network structure were prepared. The mechanical properties and morphologies of pre-crosslinked and non-crosslinked CTBN/epoxy blends were investigated. The results show that the tensile strength, elongation at break and impact strength of pre-crosslinked CTBN/epoxy blends are significantly higher than those of non-crosslinked CTBN/epoxy blends, which is primarily due to the enhanced interfacial strength caused by the chemical bond between the two phases and the localized interpenetrating network structure. Both pre-crosslinked and non-crosslinked CTBN/epoxy blends show a bimodal distribution of micron- and nano-sized rubber particles. However, pre-crosslinked CTBN/epoxy blends have smaller micron-sized rubber particles and larger nano-sized rubber particles than non-crosslinked CTBN/epoxy blends. The dynamic mechanical analysis shows that the storage modulus of pre-crosslinked CTBN/epoxy blends is higher than that of non-crosslinked CTBN/epoxy blends. The glass transition temperature of the CTBN phase in pre-crosslinked CTBN/epoxy blends increases slightly compared with the CTBN/epoxy system. The pre-crosslinking of rubber is a promising method for compatibilization and controlling the morphology of rubber-modified epoxy materials. PMID:28773762

  19. Method of making a cyanate ester foam

    DOEpatents

    Celina, Mathias C.; Giron, Nicholas Henry

    2014-08-05

    A cyanate ester resin mixture with at least one cyanate ester resin, an isocyanate foaming resin, other co-curatives such as polyol or epoxy compounds, a surfactant, and a catalyst/water can react to form a foaming resin that can be cured at a temperature greater than 50.degree. C. to form a cyanate ester foam. The cyanate ester foam can be heated to a temperature greater than 400.degree. C. in a non-oxidative atmosphere to provide a carbonaceous char foam.

  20. MSXA packaging

    NASA Technical Reports Server (NTRS)

    Mcleod, A.

    1977-01-01

    Marshall Experimental Sprayable Ablator (MXSA) ingredients were compounded into a two part system which requires a minimum of handling by the user. Preweighed two part kits were developed which require that the user supply only the solvent. The kits consist of all of the powdery materials in Part A, and the epoxy resin (AA397) in Part B. Recent aging data on the kits indicates that they are useable for at least 6 months. The acronym MXSA has recently been replaced with MSA (Marshall sprayable ablator).

  1. Investigation of the fiber/matrix interphase under high loading rates

    NASA Astrophysics Data System (ADS)

    Tanoglu, Metin

    2000-10-01

    This research focuses on characterization of the interphases of various sized E-glass-fiber/epoxy-amine systems under high loading rates. The systems include unsized, epoxy-amine compatible, and epoxy-amine incompatible glass fibers. A new experimental technique (dynamic micro-debonding technique) was developed to directly characterize the fiber/matrix interphase properties under various loading rates. Displacement rates of up to 3000 mum/sec that induce high-strain-rate interphase loading were obtained using the rapid expansion capability of the piezoelectric actuators (PZT). A straightforward data reduction scheme, which does not require complex numerical solutions, was also developed by employing thin specimens. This method enables quantification of the strength and specific absorbed energies due to debonding and frictional sliding. Moreover, the technique offers the potential to obtain the shear stress/strain response of the interphases at various rates. A new methodology was also developed to independently investigate the properties of the fiber/matrix interphase. This methodology is based on the assumption that the portion of sizing bound to the glass fiber strongly affects the interphase formation. Conventional burnout and acetone extraction experiments in conjunction with nuclear magnetic spectroscopy were used to determine the composition of the bound sizing. Using the determined composition, model interphase compounds were made to replicate the actual interphase and tested utilizing dynamic mechanical analyzer (DMA) and differential scanning calorimeter (DSC) techniques. The rate-dependent behavior of the model interphase materials and the bulk epoxy matrix were characterized by constructing storage modulus master curves as a function of strain rate using the time-temperature superposition principle. The results of dynamic micro-debonding experiments showed that the values of interphase strength and specific absorbed energies vary dependent on the sizing and exhibited significant sensitivity to loading rates. The unsized fibers exhibit greater energy-absorbing capability that could provide better ballistic resistance while the compatible sized fibers show higher strength values that improve the structural integrity of the polymeric composites. The calculated interphase shear modulus values from micro-debonding experiments increase with the loading rate consistent with DMA results. In addition, significantly higher amounts of energy are absorbed within the frictional sliding regime compared to debonding. Characterization of model interphase compounds revealed that the interphase formed due to the presence of bound sizing has a Tg below room temperature, a modulus more compliant than that of the bulk matrix, and a thickness of about 10 nm. The results showed that the properties of the interphases are significantly affected by the interphase network structure.

  2. Synthesis and characterization of fluorinated polyaminoquinones and fluorinated polyimides

    NASA Astrophysics Data System (ADS)

    Vaccaro, Eleonora

    Phenolic and quinonoid compounds are widely studied in biological sciences because of their ability to chelate heavy metals like iron and copper and recently have found new applications in synthetic macromolecules. Amino- p-benzoquinone polymers, poly[(2,5-hexamethylenediamino)-1,4-benzoquinone] and poly {[2,5-(2,2'-bistrifluoromethyl)-4,4' -biphenylenediamino]1,4-benzoquinone}, were synthesized and evaluated as adhesion promoters for steel/epoxy joints. An improvement in the torsional shear strength of these joints was observed when these polymers were used as adhesion promoters. The durability of the adhesive bond was also improved after boiling water treatment, relative to untreated and silane treated joints. The improvement in adhesion could be attributed to the formation of a chelate between the polyaminoquinone (PAQ) and the iron surface and a chemical reaction between the PAQ and the epoxy resin. A low molecular weight model compound, bis[2,5-(4-methylanilido)]-1,4-benzoquinone was also used to study coupling between the epoxy adhesive and the steel surface. Electron spin resonance (ESR), atomic absorption spectroscopy and infrared spectroscopy were used to document the epoxy-coupling agent reaction and the chelate formation. Polyimides have acquired importance in the last twenty years as the most promising macromolecules for high technology applications in new materials. Their good thermo-oxidative stability is well known, as well as their high glass transition temperature. Polyimides are versatile polymers, which can be utilized for a wide range of applications: i.e., as matrices for high performance advanced composite materials, as thin films in electronic applications, as structural adhesives and sealants and as membranes for gas separation. A novel anhydride, 1,1,1-trifluoromethyl-1-pentafluorophenylethylidene-2,2-diphthalic anhydride, 8FDA, was synthesized. Five diamines were used in the synthesis of polyimides, namely p-phenylene diamine, 3,4'-oxydianiline, 2,2-bis(3-aminophenyl)hexafluoropropane, 2,2'-bis(trifluoromethyl)benzidine and 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. A variety of structures was achieved, allowing for a thorough determination of the structure/properties relationship. The presence of the pentafluorophenyl substituent in the polyimide backbone imparted more flexibility to the 8F polyimides, as demonstrated by the low glass transition temperatures. The dielectric constant of these 8F polyimides was the lowest ever reported for polyimides. It is believed that the pentafluorophenyl group may increase the free volume and hydrophobicity of the 8F polyimides. The thermo- and thermo-oxidative stability of these 8F polyimides was also studied and appeared to be adequate for high temperature applications.

  3. Molding compound trends in a denser packaging world: Qualification tests and reliability concerns

    NASA Astrophysics Data System (ADS)

    Nguyen, L. T.; Lo, R. H. Y.; Chen, A. S.; Belani, J. G.

    1993-12-01

    Molding compound development has traditionally been driven by the memory market, then subsequent applications filter down to other IC technologies such as logic, analog, and ASIC. However, this strategy has changed lately with the introduction of thin packages such as PQFP & TSOP. Rather than targeting a compound for a family of IC such as DRAM or SRAM, compound development efforts are now focused at specific classes of packages. The configurations of these thin packages impose new functional requirements that need to be revisited to provide the optimized combination of properties. The evolution of qualification tests mirrors the advances in epoxy and compounding technologies. From the first standard novolac-based epoxies of the 1970s to the latest 3(sup rd)-generation ultra-low stress materials, longer test times at increasingly harsher environments were achieved. This paper benchmarks the current reliability tests used by the electronic industry, examines those tests that affect and are affected by the molding compounds, discusses the relevance of accelerated testing, and addresses the major reliability issues facing current molding compound development efforts. Six compound-related reliability concerns were selected: moldability, package stresses, package cracking, halogen-induced intermetallic growth at bond pads, moisture-induced corrosion, and interfacial delamination. Causes of each failure type are surveyed and remedies are recommended. Accelerated tests are designed to apply to a limited quantity of devices, bias, or environmental conditions larger than usual ratings, to intensify failure mechanisms that would occur under normal operating conditions. The observed behavior is then extrapolated from the lot to the entire population. Emphasis is on compressing the time necessary to obtain reliability data. This approach has two main drawbacks. With increasingly complex devices, even accelerated tests are expensive. And with new technologies, it becomes difficult to ascertain that the applied stress 1) induces the failure phenomenon linked with usual field conditions, and 2) does not create any new ones. Technology evolution and reliability testing are interdependent. Devices get larger with increasingly smaller features and more complex geometries. Molding compounds have evolved considerably over the past decade to provide ultra-low stress levels and moldability for thin packages.

  4. Allergic contact dermatitis from a nonbisphenol A epoxy in a graphite fiber reinforced epoxy laminate.

    PubMed

    Mathias, C G

    1987-09-01

    An employee of the Composites Division of an aircraft engine manufacturing firm developed dermatitis associated with the handling of a graphite fiber reinforced epoxy laminate (epoxy prepreg). Patch test investigation demonstrated that the responsible causal agent was the nonbisphenol A epoxy binder, 4-glycidyloxy-N, N-diglycidylaniline. A patch test with bisphenol A epoxy from a standard patch test screening series was negative. Subsequent interviews with employees of the Composites Division suggested that a relative lack of awareness of the cutaneous hazards of fiber reinforced epoxy laminates, compared with liquid epoxy resin systems, may be an important risk factor for allergic sensitization to these composite materials.

  5. Strain rate effects on mechanical properties of fiber composites, part 3

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Liber, T.

    1976-01-01

    An experimental investigation was conducted to determine the strain rate effects in fiber composites. Unidirectional composite specimens of boron/epoxy, graphite/epoxy, S-glass/epoxy and Kevlar/epoxy were tested to determine longitudinal, transverse and intralaminar (in-plane) shear properties. In the Longitudinal direction the Kevlar/epoxy shows a definite increase in both modulus and strength with strain rate. In the transverse direction, a general trend toward higher strength with strain rate is noticed. The intralaminar shear moduli and strengths of boron/epoxy and graphite/epoxy show a definite rise with strain rate.

  6. Testing Tensile and Shear Epoxy Strength at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Alberts, S. J.; Doehne, C. J.; Johnson, W. L.

    2017-01-01

    This paper covers cryogenic, tensile testing and research completed on a number of epoxies used in cryogenic applications. Epoxies are used in many different applications; however, this research focused on the use of epoxy used to bond MLI standoffs to cryogenic storage tanks and the loads imparted to the tank through the MLI. To conduct testing, samples were made from bare stainless steel, aluminum and primed aluminum. Testing involved slowly cooling test samples with liquid nitrogen then applying gradually increasing tensile loads to the epoxy. The testing evaluated the strength and durability of epoxies at cryogenic temperatures and serves as a base for future testing. The results of the tests showed that some epoxies withstood the harsh conditions while others failed. The two epoxies yielding the best results were Masterbond EP29LPSP and Scotch Weld 2216. For all metal surfaces tested, both epoxies had zero failures for up to 11.81 kg of mass..

  7. Testing Tensile and Shear Epoxy Strength at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Alberts, S. J.; Doehne, C. J.; Johnson, W. L.

    2017-01-01

    This paper covers cryogenic, tensile testing and research completed on a number of epoxies used in cryogenic applications. Epoxies are used in many different applications; however, this research focused on the use of epoxy used to bond MLI standoffs to cryogenic storage tanks and the loads imparted to the tank through the MLI. To conduct testing, samples were made from bare stainless steel, aluminum and primed aluminum. Testing involved slowly cooling test samples with liquid nitrogen then applying gradually increasing tensile loads to the epoxy. The testing evaluated the strength and durability of epoxies at cryogenic temperatures and serves as a base for future testing. The results of the tests showed that some epoxies withstood the harsh conditions while others failed. The two epoxies yielding the best results were Masterbond EP29LPSP and Scotch Weld 2216. For all metal surfaces tested, both epoxies had zero failures for up to 11.81 kg of mass.

  8. Atomistic modeling of thermomechanical properties of SWNT/Epoxy nanocomposites

    NASA Astrophysics Data System (ADS)

    Fasanella, Nicholas; Sundararaghavan, Veera

    2015-09-01

    Molecular dynamics simulations are performed to compute thermomechanical properties of cured epoxy resins reinforced with pristine and covalently functionalized carbon nanotubes. A DGEBA-DDS epoxy network was built using the ‘dendrimer’ growth approach where 75% of available epoxy sites were cross-linked. The epoxy model is verified through comparisons to experiments, and simulations are performed on nanotube reinforced cross-linked epoxy matrix using the CVFF force field in LAMMPS. Full stiffness matrices and linear coefficient of thermal expansion vectors are obtained for the nanocomposite. Large increases in stiffness and large decreases in thermal expansion were seen along the direction of the nanotube for both nanocomposite systems when compared to neat epoxy. The direction transverse to nanotube saw a 40% increase in stiffness due to covalent functionalization over neat epoxy at 1 K whereas the pristine nanotube system only saw a 7% increase due to van der Waals effects. The functionalized SWNT/epoxy nanocomposite showed an additional 42% decrease in thermal expansion along the nanotube direction when compared to the pristine SWNT/epoxy nanocomposite. The stiffness matrices are rotated over every possible orientation to simulate the effects of an isotropic system of randomly oriented nanotubes in the epoxy. The randomly oriented covalently functionalized SWNT/Epoxy nanocomposites showed substantial improvements over the plain epoxy in terms of higher stiffness (200% increase) and lower thermal expansion (32% reduction). Through MD simulations, we develop means to build simulation cells, perform annealing to reach correct densities, compute thermomechanical properties and compare with experiments.

  9. Effects of mechanical and thermal cycling on composite and hybrid laminates with residual stresses

    NASA Technical Reports Server (NTRS)

    Daniel, I. M.; Liber, T.

    1977-01-01

    The effects of tensile load cycling and thermal cycling on residual stiffness and strength properties of the following composite and hybrid angle-ply laminates were studied: boron/epoxy, boron/polyimide, graphite/low-modulus epoxy, graphite/high-modulus epoxy, graphite/polyimide, S-glass/epoxy, graphite/Kevlar 49/epoxy, and graphite/S-glass/epoxy. Specimens of the first six types were mechanically cycled up to 90% of static strength. Those that survived 10 million cycles were tested statically to failure, and no significant changes in residual strength and modulus were noted. Specimens of all types were subjected to thermal cycling between room temperature and 411 K for the epoxy-matrix composites and 533 K for the polyimide-matrix composites. The residual strength and stiffness remained largely unchanged, except for the graphite/low-modulus epoxy, which showed reductions in both of approximately 35%. When low-temperature thermal cycling under tensile load was applied, there was a noticeable reduction in modulus and strength in the graphite/low-modulus epoxy and some strength reduction in the S-glass/epoxy.

  10. Magnetocaloric effect, thermal conductivity, and magnetostriction of epoxy-bonded La(Fe0.88Si0.12)13 hydrides

    NASA Astrophysics Data System (ADS)

    Matsumoto, K.; Murayama, D.; Takeshita, M.; Ura, Y.; Abe, S.; Numazawa, T.; Takata, H.; Matsumoto, Y.; Kuriiwa, T.

    2017-09-01

    Magnetic materials with large magnetocaloric effect are significantly important for magnetic refrigeration. La(Fe0.88Si0.12)13 compounds are one of the promising magnetocaloric materials that have a first order magnetic phase transition. Transition temperature of hydrogenated La(Fe0.88Si0.12)13 increased up to room temperature region while keeping metamagnetic transition properties. From view point of practical usage, bonded composite are very attractive and their properties are important. We made epoxy bonded La(Fe0.88Si0.12)13 hydrides. Magnetocaloric effect was studied by measuring specific heat, magnetization, and temperature change in adiabatic demagnetization. The composite had about 20% smaller entropy change from the hydrogenated La(Fe0.88Si0.12)13 powder in 2 T. Thermal conductivity of the composite was several times smaller than La(Fe,Si)13. The small thermal conductivity was explained due to the small thermal conductivity of epoxy. Thermal conductivity was observed to be insensitive to magnetic field in 2 T. Thermal expansion and magnetostriction of the composite material were measured. The composite expanded about 0.25% when it entered into ferromagnetic phase. Magnetostriction of the composite in ferromagnetic phase was about 0.2% in 5 T and much larger than that in paramagnetic phase. The composite didn’t break after about 100 times magnetic field changes in adiabatic demagnetization experiment even though it has magnetostriction.

  11. Investigation of the impedance modulation of thin films with a chemically-sensitive field-effect transistor

    NASA Astrophysics Data System (ADS)

    Wiseman, John M.

    1988-12-01

    This study resulted in the design and fabrication of a Chemically-Sensitive Field-Effect Transistor (CHEMFET) with an interdigitated gate electrode structure. The electrical performance of the CHEMFET, both in the time-domain and frequency domain, was evaluated for detecting changes in the molecular structure and chemical composition in three thin films: an epoxy, copper phthalocyanine (CuPc), and acetylcholinesterase (ACHE). The change in the chemical state of a film was manifested as a change in the electrical impedance of the interdigitated gate electrode structure. For the epoxy, its molecular structure changed as a result of the curing reaction. To induce a change in the chemical state of the CuPc and ACHE films they were exposed to part-per billion concentrations of a challenge gas, either nitrogen dioxide (NO2) or the the organophosphorus compound, diisopropyl methylphosphonate (DIMP). The results clearly show that the CHEMFET can detect chemical and structural changes in an epoxy and CuPc film. The sensitivity of the ACHE film was not unequivocally determined due to long term drift in the ACHE film's electrical properties. The most remarkable result of this effort was the demonstration of a unique selectivity feature in the CHEMFET's frequency dependent response to a challenge gas. The examination of the relative changes in the electrical properties of the CHEMFET at different frequencies showed that the CHEMFET can be used to distinguish between NO2 and Dimp EXPOSURE.

  12. Bisphenol diglycidyl ethers and bisphenol A and their hydrolysis in drinking water.

    PubMed

    Lane, R F; Adams, C D; Randtke, S J; Carter, R E

    2015-04-01

    Epoxy coatings are commonly used to protect the interior (and exterior) surfaces of water mains and storage tanks and can be used on the interior surfaces of water pipes in homes, hospitals, hotels, and other buildings. Common major components of epoxies include bisphenols, such as bisphenol A (BPA) or bisphenol F (BPF), and their reactive prepolymers, bisphenol A diglycidyl ether (BADGE) and bisphenol F diglycidyl ether (BFDGE), respectively. There currently are health concerns about the safety of BPA and BPF due to known estrogenic effects. Determination of key bisphenol leachates, development of a hydrolysis model, and identification of stable hydrolysis products will aid in assessment of human bisphenol exposure through ingestion of drinking water. Liquid chromatography/mass spectrometry (LC/MS/MS) was used for quantitation of key analytes, and a pseudo-first order kinetic approach was used for modeling. In fill-and-dump studies on epoxy-coated pipe specimens, BADGE and a BPA-like compound were identified as leachates. The BADGE hydrolysis model predicts BADGE half-lives at pH 7 and 15, 25, 35, and 40 °C to be 11, 4.6, 2.0, and 1.4 days respectively; the BFDGE half-life was 5 days at pH 7 and 25 °C. The two identified BADGE hydrolysis products are BADGE-H2O and BADGE 2H2O, with BADGE 2H2O being the final end product under the conditions studied. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Moisture effect on interfacial integrity of epoxy-bonded system: a hierarchical approach

    NASA Astrophysics Data System (ADS)

    Tam, Lik-ho; Lun Chow, Cheuk; Lau, Denvid

    2018-01-01

    The epoxy-bonded system has been widely used in various applications across different scale lengths. Prior investigations have indicated that the moisture-affected interfacial debonding is the major failure mode of such a system, but the fundamental mechanism remains unknown, such as the basis for the invasion of water molecules in the cross-linked epoxy and the epoxy-bonded interface. This prevents us from predicting the long-term performance of the epoxy-related applications under the effect of the moisture. Here, we use full atomistic models to investigate the response of the epoxy-bonded system towards the adhesion test, and provide a detailed analysis of the interfacial integrity under the moisture effect and the associated debonding mechanism. Molecular dynamics simulations show that water molecules affect the hierarchical structure of the epoxy-bonded system at the nanoscale by disrupting the film-substrate interaction and the molecular interaction within the epoxy, which leads to the detachment of the epoxy thin film, and the final interfacial debonding. The simulation results show good agreement with the experimental results of the epoxy-bonded system. Through identifying the relationship between the epoxy structure and the debonding mechanism at multiple scales, it is shown that the hierarchical structure of the epoxy-bonded system is crucial for the interfacial integrity. In particular, the available space of the epoxy-bonded system, which consists of various sizes ranging from the atomistic scale to the macroscale and is close to the interface facilitates the moisture accumulation, leading to a distinct interfacial debonding when compared to the dry scenario.

  14. Additive value of patch testing custom epoxy materials from the workplace at the occupational disease specialty clinic in Toronto.

    PubMed

    Houle, Marie-Claude; Holness, D Linn; Dekoven, Joel; Skotnicki, Sandy

    2012-01-01

    Allergic contact dermatitis (ACD) to epoxy resins is one of the major causes of occupationally induced ACD. Testing of custom epoxy materials from the workplace is often performed to diagnose ACD. The objective of this study was to investigate the additive value of patch testing custom-made epoxy materials. We retrospectively analyzed outcomes of 24 patients who were tested to custom epoxy resin materials between January 2002 and July 2011. For 11 patients (46%), the testing of their materials from work had no additional value (negative results). For 13 patients (54%), there was an additional value of testing custom allergens. Of those, 7 patients (54%) had positive reactions to custom epoxy materials that reinforced the test results found with the commercially available allergens, and 6 (46%) patients had positive reactions only to custom epoxy materials. Therefore, for 6 patients (25%), there was a definite additive value of testing custom epoxy materials because the allergy was discovered with custom testing and not with the commercially available allergens. Because of the high percentage (54%) of patients with additive value of patch testing custom epoxy materials, we think that the inclusion of actual workplace epoxy materials should be strongly considered when patch testing patients with occupational epoxy exposure.

  15. Study on the Pulsed Flashover Characteristics of Solid-Solid Interface in Electrical Devices Poured by Epoxy Resin

    NASA Astrophysics Data System (ADS)

    Li, Manping; Wu, Kai; Yang, Zhanping; Ding, Man; Liu, Xin; Cheng, Yonghong

    2014-09-01

    In electrical devices poured by epoxy resin, there are a lot of interfaces between epoxy resin and other solid dielectrics, i.e. solid-solid interfaces. Experiments were carried out to study the flashover characteristics of two typical solid-solid interfaces (epoxy-ceramic and epoxy-PMMA) under steep high-voltage impulse for different electrode systems (coaxial electrodes and finger electrodes) and different types of epoxy resin (neat epoxy resin, polyether modified epoxy resin and polyurethane modified epoxy resin). Results showed that, the flashover of solid-solid interface is similar to the breakdown of solid dielectric, and there are unrecoverable carbonated tracks after flashover. Under the same distance of electrodes, the electric stress of coaxial electrodes is lower than that of finger electrodes; and after the flashover, there are more severe breakdown and larger enhanced surface conductivity at interface for coaxial electrodes, as compared with the case of finger electrode. The dielectric properties are also discussed.

  16. Wettability of nano-epoxies to UHMWPE fibers.

    PubMed

    Neema, S; Salehi-Khojin, A; Zhamu, A; Zhong, W H; Jana, S; Gan, Y X

    2006-07-01

    Ultra high molecular weight polyethylene (UHMWPE) fibers have a unique combination of outstanding mechanical, physical, and chemical properties. However, as reinforcements for manufacturing high performance composite materials, UHMWPE fibers have poor wettability with most polymers. As a result, the interfacial bonding strength between the fibers and polymer matrices is very low. Recently, developing so-called nano-matrices containing reactive graphitic nanofibers (r-GNFs) has been proposed to promote the wetting of such matrices to certain types of fiber reinforcements. In this work, the wettability of UHMWPE fibers with different epoxy matrices including a nano-epoxy, and a pure epoxy was investigated. Systematic experimental work was conducted to determine the viscosity of the epoxies, the contact angle between the epoxies and the fibers. Also obtained are the surface energy of the fibers and the epoxies. The experimental results show that the wettability of the UHMWPE fibers with the nano-epoxy is much better than that of the UHMWPE fibers with the pure epoxy.

  17. Mono-epoxy-tocotrienol-α enhances wound healing in diabetic mice and stimulates in vitro angiogenesis and cell migration.

    PubMed

    Xu, Cheng; Bentinger, Magnus; Savu, Octavian; Moshfegh, Ali; Sunkari, Vivekananda; Dallner, Gustav; Swiezewska, Ewa; Catrina, Sergiu-Bogdan; Brismar, Kerstin; Tekle, Michael

    2017-01-01

    Diabetes mellitus is characterized by hyperglycemia and capillary hypoxia that causes excessive production of free radicals and impaired antioxidant defense, resulting in oxidative stress and diabetes complications such as impaired wound healing. We have previously shown that modified forms of tocotrienols possess beneficial effects on the biosynthesis of the mevalonate pathway lipids including increase in mitochondrial CoQ. The aim of this study is to investigate the effects of mono-epoxy-tocotrienol-α on in vitro and in vivo wound healing models as well as its effects on mitochondrial function. Gene profiling analysis and gene expression studies on HepG2 cells and human dermal fibroblasts were performed by microarray and qPCR, respectively. In vitro wound healing using human fibroblasts was studied by scratch assay and in vitro angiogenesis using human dermal microvascular endothelial cells was studied by the tube formation assay. In vivo wound healing was performed in the diabetic db/db mouse model. For the study of mitochondrial functions and oxygen consumption rate Seahorse XF-24 was employed. In vitro, significant increase in wound closure and cell migration (p<0.05) both in normal and high glucose and in endothelial tube formation (angiogenesis) (p<0.005) were observed. Microarray profiling analysis showed a 20-fold increase of KIF26A gene expression and 11-fold decrease of lanosterol synthase expression. Expression analysis by qPCR showed significant increase of the growth factors VEGFA and PDGFB. The epoxidated compound induced a significantly higher basal and reserve mitochondrial capacity in both HDF and HepG2 cells. Additionally, in vivo wound healing in db/db mice, demonstrated a small but significant enhancement on wound healing upon local application of the compound compared to treatment with vehicle alone. Mono-epoxy-tocotrienol-α seems to possess beneficial effects on wound healing by increasing the expression of genes involved in cell growth, motility and angiogenes as well as on mitochondrial function. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Thermal and Mechanical Characteristics of Polymer Composites Based on Epoxy Resin, Aluminium Nanopowders and Boric Acid

    NASA Astrophysics Data System (ADS)

    Nazarenko, O. B.; Melnikova, T. V.; Visakh, P. M.

    2016-01-01

    The epoxy polymers are characterized by low thermal stability and high flammability. Nanoparticles are considered to be effective fillers of polymer composites for improving their thermal and functional properties. In this work, the epoxy composites were prepared using epoxy resin ED-20, polyethylene polyamine as a hardener, aluminum nanopowder and boric acid fine powder as flame-retardant filler. The thermal characteristics of the obtained samples were studied using thermogravimetric analysis and differential scanning calorimetry. The mechanical characteristics of epoxy composites were also studied. It was found that an addition of all fillers enhances the thermal stability and mechanical characteristics of the epoxy composites. The best thermal stability showed the epoxy composite filled with boric acid. The highest flexural properties showed the epoxy composite based on the combination of boric acid and aluminum nanopowder.

  19. Determinants of epoxy allergy in the construction industry: a case-control study.

    PubMed

    Spee, Ton; Timmerman, Johan G; Rühl, Reinhold; Kersting, Klaus; Heederik, Dick J J; Smit, Lidwien A M

    2016-05-01

    Workers exposed to epoxy products are at risk of developing allergic contact dermatitis. To compare workers throughout the German construction industry with and without skin allergy to epoxy resins, hardeners, and/or reactive diluents, and to investigate which determinants are related to the development of epoxy allergy. A questionnaire was completed by 179 epoxy allergy cases, and 151 epoxy workers as controls. Crude and adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by the use of backwards stepwise logistic regression analysis. A multiple imputation approach was used to deal with missing data. Epoxy allergy was associated with an unusually high level of exposure to epoxy products [OR 2.13 (95%CI: 1.01-4.51)], wearing short sleeves or short trousers [OR 2.38 (95%CI: 1.03-5.52)], and not always using the correct type of gloves [OR 2.12 (95%CI: 1.12-4.01)]. A monotonic increasing risk was found with increasing exposure hours per week [OR 1.72 (95%CI: 1.39-2.14)]. Not using skin cream was inversely associated with epoxy allergy [OR 0.22 (95%CI: 0.08-0.59)]. Years working with epoxy products were inversely associated with epoxy allergy [OR 0.41 (95%CI: 0.27-0.61) per 10-year increase], suggesting a healthy worker survivor effect. Occupational epoxy allergy may be prevented by improving occupational hygiene behaviour and personal protection. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Four new steroids from the endophytic fungus Chaetomium sp. M453 derived of Chinese herbal medicine Huperzia serrata.

    PubMed

    Yu, Fei-Xue; Li, Zhe; Chen, Yao; Yang, Yin-He; Li, Guo-Hong; Zhao, Pei-Ji

    2017-03-01

    An endophytic fungus, Chaetomium sp. M453, was isolated from Huperzia serrata (Thunb. ex Murray) Trev. and subjected to phytochemical investigation. Three unusual C25 steroids, neocyclocitrinols E-G (1-3), and 3β-hydroxy-5,9-epoxy-(22E,24R)-ergosta-7,22-dien-6-one (4) together with three known steroids were isolated from solid fermentation products of the fungus, which were elucidated by extensive spectroscopic analyses, including 1D-, 2D-NMR, and HR-ESI-MS experiments. The absolute configuration of 1 was determined by X-ray crystallographic analysis and CD analyses. The acetylcholinesterase inhibitory activities of compounds 1-4 were tested in vitro. Compound 4 showed weak acetylcholinesterase inhibitory activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Antiproliferative constituents in plants 14. Coumarins and acridone alkaloids from Boenninghausenia japonica NAKAI.

    PubMed

    Chaya, Norihito; Terauchi, Kazuko; Yamagata, Yuriko; Kinjo, Junei; Okabe, Hikaru

    2004-08-01

    The MeOH extracts of the ground part and the root of Boenninghausenia japonica NAKAI showed inhibitory activity against tumor cell growth. Fractionation of the extracts has resulted in isolation of 1,3-dihydroxy-4-(2'-hydroxy-3'-hydroxymethyl-3',4'-epoxy-butyl)-N-methylacridone, 1,3-dihydroxy-4-[(Z)-3'-hydroxy-3'-methyl-buten-1'-yl]-N-methylacridone, 3-(1',1'-dimethylallyl)-7-hydroxy-8-methoxy-2H-1-benzopyran-2-one, casegravol, cis-casegravol, and edgeworin in addition to 9 compounds reported from B. japonica and B. albiflora. The isolates from this plant and some related compounds were tested for antiproliferative activity against human gastric adenocarcinoma (MK-1), human uterus carcinoma (HeLa), and murine melanoma (B16F10) cells.

  2. Epoxy resins in the construction industry.

    PubMed

    Spee, Ton; Van Duivenbooden, Cor; Terwoert, Jeroen

    2006-09-01

    Epoxy resins are used as coatings, adhesives, and in wood and concrete repair. However, epoxy resins can be highly irritating to the skin and are strong sensitizers. Some hardeners are carcinogenic. Based on the results of earlier Dutch studies, an international project on "best practices,"--Epoxy Code--with epoxy products was started. Partners were from Denmark, Germany, the Netherlands, and the UK. The "Code" deals with substitution, safe working procedures, safer tools, and skin protection. The feasibility of an internationally agreed "ranking system" for the health risks of epoxy products was studied. Such a ranking system should inform the user of the harmfulness of different epoxies and stimulate research on less harmful products by product developers.

  3. Flame Retardant Epoxy Resins

    NASA Technical Reports Server (NTRS)

    Thompson, C. M.; Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.; Lyon, R. E.

    2004-01-01

    As part of a program to develop fire resistant exterior composite structures for future subsonic commercial aircraft, flame retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured epoxies were characterized by thermogravimetric analysis, propane torch test, elemental analysis and microscale combustion calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness of plaques of several cured formulations was determined on single-edge notched bend specimens. The chemistry and properties of these new epoxy formulations are discussed.

  4. Development of AlN/Epoxy Composites with Enhanced Thermal Conductivity.

    PubMed

    Xu, Yonggang; Yang, Chi; Li, Jun; Mao, Xiaojian; Zhang, Hailong; Hu, Song; Wang, Shiwei

    2017-12-18

    AlN/epoxy composites with high thermal conductivity were successfully prepared by infiltrating epoxy into AlN porous ceramics which were fabricated by gelcasting of foaming method. The microstructure, mechanical, and thermal properties of the resulting composites were investigated. The compressive strengths of the AlN/epoxy composites were enhanced compared with the pure epoxy. The AlN/epoxy composites demonstrate much higher thermal conductivity, up to 19.0 W/(m·K), compared with those by the traditional particles filling method, because of continuous thermal channels formed by the walls and struts of AlN porous ceramics. This study demonstrates a potential route to manufacture epoxy-based composites with extremely high thermal conductivity.

  5. Development of AlN/Epoxy Composites with Enhanced Thermal Conductivity

    PubMed Central

    Xu, Yonggang; Yang, Chi; Li, Jun; Zhang, Hailong; Hu, Song; Wang, Shiwei

    2017-01-01

    AlN/epoxy composites with high thermal conductivity were successfully prepared by infiltrating epoxy into AlN porous ceramics which were fabricated by gelcasting of foaming method. The microstructure, mechanical, and thermal properties of the resulting composites were investigated. The compressive strengths of the AlN/epoxy composites were enhanced compared with the pure epoxy. The AlN/epoxy composites demonstrate much higher thermal conductivity, up to 19.0 W/(m·K), compared with those by the traditional particles filling method, because of continuous thermal channels formed by the walls and struts of AlN porous ceramics. This study demonstrates a potential route to manufacture epoxy-based composites with extremely high thermal conductivity. PMID:29258277

  6. Enhanced Flexural Strength of Tellurium Nanowires/epoxy Composites with the Reinforcement Effect of Nanowires

    NASA Astrophysics Data System (ADS)

    Balguri, Praveen Kumar; Harris Samuel, D. G.; Aditya, D. B.; Vijaya Bhaskar, S.; Thumu, Udayabhaskararao

    2018-02-01

    Investigating the mechanical properties of polymer nanocomposite materials has been greatly increased in the last decade. In particular, flexural strength plays a major role in resisting bending and shear loads of a composite material. Here, one dimensional (1D) tellurium nanowires (TeNWs) reinforced epoxy composites have been prepared and the flexural properties of resulted TeNWs/epoxy nanocomposites are studied. The diameter and length of the TeNWs used to make TeNWs/epoxy nanocomposites are 21±2.5 nm and 697±87 nm, respectively. Plain and TeNWs/epoxy nanocomposites are characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential thermal analysis (DTA). Furthermore, significant enhancement in the flexural strength of TeNWs/epoxy nanocomposite is observed in comparison to plain epoxy composite, i.e. flexural strength is increased by 65% with the addition of very little amount of TeNWs content (0.05 wt.%) to epoxy polymer. Structural details of plain and TeNWs/epoxy at micrometer scale were examined by scanning electron microscopy (SEM). We believe that our results provide a new type of semiconductor nanowires based high strength epoxy polymer nanocomposites.

  7. Quantitative Study of Interface/Interphase in Epoxy/Graphene-Based Nanocomposites by Combining STEM and EELS.

    PubMed

    Liu, Yu; Hamon, Ann-Lenaig; Haghi-Ashtiani, Paul; Reiss, Thomas; Fan, Benhui; He, Delong; Bai, Jinbo

    2016-12-14

    A quantitative study of the interphase and interface of graphene nanoplatelets (GNPs)/epoxy and graphene oxide (GO)/epoxy was carried out by combining scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy (EELS). The interphase regions between GNPs and epoxy matrix were clearly identified by the discrepancy of the plasmon peak positions in the low energy-loss spectra due to different valence electron densities. The spectrum acquisitions were carried out along lines across the interface. An interphase thickness of 13 and 12.5 nm was measured for GNPs/epoxy and GO/epoxy, respectively. The density of the GNPs/epoxy interphase was 2.89% higher than that of the epoxy matrix. However, the density of the GO/epoxy interphase was 1.37% lower than that of the epoxy matrix. The interphase layer thickness measured in this work is in good agreement with the transition layer theory, which proposed an area with modulus linearly varying across a finite width. The results provide an insight into the interphase for carbon-based polymer composites that can help to design the functionalization of nanofillers to improve the composite properties.

  8. Mechanical Properties of Epoxy Resin Mortar with Sand Washing Waste as Filler.

    PubMed

    Yemam, Dinberu Molla; Kim, Baek-Joong; Moon, Ji-Yeon; Yi, Chongku

    2017-02-28

    The objective of this study was to investigate the potential use of sand washing waste as filler for epoxy resin mortar. The mechanical properties of four series of mortars containing epoxy binder at 10, 15, 20, and 25 wt. % mixed with sand blended with sand washing waste filler in the range of 0-20 wt. % were examined. The compressive and flexural strength increased with the increase in epoxy and filler content; however, above epoxy 20 wt. %, slight change was seen in strength due to increase in epoxy and filler content. Modulus of elasticity also linearly increased with the increase in filler content, but the use of epoxy content beyond 20 wt. % decreased the modulus of elasticity of the mortar. For epoxy content at 10 wt. %, poor bond strength lower than 0.8 MPa was observed, and adding filler at 20 wt. % adversely affected the bond strength, in contrast to the mortars containing epoxy at 15, 20, 25 wt. %. The results indicate that the sand washing waste can be used as potential filler for epoxy resin mortar to obtain better mechanical properties by adding the optimum level of sand washing waste filler.

  9. Mechanical Properties of Epoxy Resin Mortar with Sand Washing Waste as Filler

    PubMed Central

    Yemam, Dinberu Molla; Kim, Baek-Joong; Moon, Ji-Yeon; Yi, Chongku

    2017-01-01

    The objective of this study was to investigate the potential use of sand washing waste as filler for epoxy resin mortar. The mechanical properties of four series of mortars containing epoxy binder at 10, 15, 20, and 25 wt. % mixed with sand blended with sand washing waste filler in the range of 0–20 wt. % were examined. The compressive and flexural strength increased with the increase in epoxy and filler content; however, above epoxy 20 wt. %, slight change was seen in strength due to increase in epoxy and filler content. Modulus of elasticity also linearly increased with the increase in filler content, but the use of epoxy content beyond 20 wt. % decreased the modulus of elasticity of the mortar. For epoxy content at 10 wt. %, poor bond strength lower than 0.8 MPa was observed, and adding filler at 20 wt. % adversely affected the bond strength, in contrast to the mortars containing epoxy at 15, 20, 25 wt. %. The results indicate that the sand washing waste can be used as potential filler for epoxy resin mortar to obtain better mechanical properties by adding the optimum level of sand washing waste filler. PMID:28772603

  10. Salt exclusion in silane-laced epoxy coatings.

    PubMed

    Wang, Peng; Schaefer, Dale W

    2010-01-05

    The corrosion protection mechanism of a one-step silane-laced epoxy coating system was investigated using neutron reflectivity. Pure epoxy and silane-laced epoxy films were examined at equilibrium with saturated NaCl water solution. The results demonstrate that the addition of silane introduces a salt-exclusion effect to epoxy coating. Specifically, the addition of silane densifies the epoxy network, which leads to exclusion of hydrated salt ions by a size effect. The effect is particularly significant at the metal-coating interface. Exclusion of ions improves the corrosion resistance, particularly for metals susceptible to pitting.

  11. Sesquiterpenes from Neurolaena lobata and their antiproliferative and anti-inflammatory activities.

    PubMed

    Lajter, Ildikó; Vasas, Andrea; Béni, Zoltán; Forgo, Peter; Binder, Markus; Bochkov, Valery; Zupkó, István; Krupitza, Georg; Frisch, Richard; Kopp, Brigitte; Hohmann, Judit

    2014-03-28

    Five new sesquiterpenes, neurolobatin A (1), neurolobatin B (2), 5β-hydroxy-8β-isovaleroyloxy-9α-hydroxycalyculatolide (3), 3-epi-desacetylisovaleroylheliangine (4), and 3β-acetoxy-8β-isovaleroyloxyreynosin (5), were isolated from the aerial parts of Neurolaena lobata. The structures were established by means of a combined spectroscopic data analysis, including ESIMS, APCI-MS, and 1D- and 2D-NMR techniques. Neurolobatin A (1) and B (2) are unusual isomeric seco-germacranolide sesquiterpenes with a bicyclic acetal moiety, compounds 3 and 4 are unsaturated epoxy-germacranolide esters, and compound 5 is the first eudesmanolide isolated from the genus Neurolaena. The isolated compounds (1-5) were shown to have noteworthy antiproliferative activities against human tumor cell lines (A2780, A431, HeLa, and MCF7). The anti-inflammatory effects of 1-5, evaluated in vitro using LPS- and TNF-α-induced IL-8 expression inhibitory assays, revealed that all these compounds strongly down-regulated the LPS-induced production of IL-8 protein, with neurolobatin B (2) and 3-epi-desacetylisovaleroylheliangine (4) being the most effective.

  12. Sesquiterpenes from Neurolaena lobata and Their Antiproliferative and Anti-inflammatory Activities

    PubMed Central

    2014-01-01

    Five new sesquiterpenes, neurolobatin A (1), neurolobatin B (2), 5β-hydroxy-8β-isovaleroyloxy-9α-hydroxycalyculatolide (3), 3-epi-desacetylisovaleroylheliangine (4), and 3β-acetoxy-8β-isovaleroyloxyreynosin (5), were isolated from the aerial parts of Neurolaena lobata. The structures were established by means of a combined spectroscopic data analysis, including ESIMS, APCI-MS, and 1D- and 2D-NMR techniques. Neurolobatin A (1) and B (2) are unusual isomeric seco-germacranolide sesquiterpenes with a bicyclic acetal moiety, compounds 3 and 4 are unsaturated epoxy-germacranolide esters, and compound 5 is the first eudesmanolide isolated from the genus Neurolaena. The isolated compounds (1–5) were shown to have noteworthy antiproliferative activities against human tumor cell lines (A2780, A431, HeLa, and MCF7). The anti-inflammatory effects of 1–5, evaluated in vitro using LPS- and TNF-α-induced IL-8 expression inhibitory assays, revealed that all these compounds strongly down-regulated the LPS-induced production of IL-8 protein, with neurolobatin B (2) and 3-epi-desacetylisovaleroylheliangine (4) being the most effective. PMID:24476550

  13. Submerged Cultivation of Pleurotus sapidus with Molasses: Aroma Dilution Analyses by Means of Solid Phase Microextraction and Stir Bar Sorptive Extraction.

    PubMed

    Trapp, Tobias; Zajul, Martina; Ahlborn, Jenny; Stephan, Alexander; Zorn, Holger; Fraatz, Marco Alexander

    2018-03-14

    The basidiomycete Pleurotus sapidus (PSA) was grown in submerged cultures with molasses as substrate for the production of mycelium as a protein source for food applications. The volatilomes of the substrate, the submerged culture, and the mycelia were analyzed by gas chromatography-tandem mass spectrometry-olfactometry. For compound identification, aroma dilution analyses by means of headspace solid phase microextraction and stir bar sorptive extraction were performed via variation of the split vent flow rate. Among the most potent odorants formed by PSA were arylic compounds (e.g., p-anisaldehyde), unsaturated carbonyls (e.g., 1-octen-3-one, ( E)-2-octenal, ( E, E)-2,4-decadienal), and cyclic monoterpenoids (e.g., 3,9-epoxy- p-menth-1-ene, 3,6-dimethyl-3a,4,5,7a-tetrahydro-1-benzofuran-2(3 H)-one). Several compounds from the latter group were described for the first time in Pleurotus spp. After separation of the mycelia from the medium, the aroma compounds were mainly enriched in the culture supernatant. The sensory analysis of the mycelium correlated well with the instrumental results.

  14. Can simultaneous contact allergies to phenyl glycidyl ether and epoxy resins of the bisphenol A/F-types be explained by contamination of the epoxy resins?

    PubMed

    Pontén, Ann; Zimerson, Erik; Bruze, Magnus

    2008-11-01

    Simultaneous contact allergies to epoxy resins based on diglycidyl ether of bisphenol A (DGEBA-R) or epoxy resins of the bisphenol F-type and the reactive diluent phenyl glycidyl ether (PGE) have been reported. The reason might be cross-reactivity, exposure to an epoxy resin system with PGE as a component, or contamination by PGE in the epoxy resin. To study contamination by PGE, 20 commercial epoxy resins were analysed for the presence of PGE. To study contact allergy to PGE and its relation to epoxy resins by inserting PGE in the standard series. Among 2227 patients, 7 reacted to PGE. Of 23 (30%) patients, 7 with contact allergy to DGEBA-R and 7/19 (37%) with contact allergy to an epoxy resin of the bisphenol F-type reacted to PGE. All 7 patients with contact allergy to PGE reacted both to the DGEBA-R and to the epoxy resin of the bisphenol F-type. PGE was found in 90% of the investigated resins. The amounts of PGE ranged between 0.004% w/w and 0.18% w/w. Most probably, the presence of PGE as a contaminant in epoxy resins is of minor importance for the sensitization, but possibly the contamination of PGE might elicit contact dermatitis in individuals with a high reactivity to PGE.

  15. Contact allergy to epoxy resin: risk occupations and consequences.

    PubMed

    Bangsgaard, Nannie; Thyssen, Jacob Pontoppidan; Menné, Torkil; Andersen, Klaus Ejner; Mortz, Charlotte G; Paulsen, Evy; Sommerlund, Mette; Veien, Niels Kren; Laurberg, Grete; Kaaber, Knud; Thormann, Jens; Andersen, Bo Lasthein; Danielsen, Anne; Avnstorp, Christian; Kristensen, Berit; Kristensen, Ove; Vissing, Susanne; Nielsen, Niels Henrik; Johansen, Jeanne Duus

    2012-08-01

    Epoxy resin monomers are strong skin sensitizers that are widely used in industrial sectors. In Denmark, the law stipulates that workers must undergo a course on safe handling of epoxy resins prior to occupational exposure, but the effectiveness of this initiative is largely unknown. To evaluate the prevalence of contact allergy to epoxy resin monomer (diglycidyl ether of bisphenol A; MW 340) among patients with suspected contact dermatitis and relate this to occupation and work-related consequences. The dataset comprised 20 808 consecutive dermatitis patients patch tested during 2005-2009. All patients with an epoxy resin-positive patch test were sent a questionnaire. A positive patch test reaction to epoxy resin was found in 275 patients (1.3%), with a higher proportion in men (1.9%) than in women (1.0%). The prevalence of sensitization to epoxy resin remained stable over the study period. Of the patients with an epoxy resin-positive patch test, 71% returned a questionnaire; 95 patients had worked with epoxy resin in the occupational setting, and, of these, one-third did not use protective gloves and only 50.5% (48) had participated in an educational programme. The 1% prevalence of epoxy resin contact allergy is equivalent to reports from other countries. The high occurrence of epoxy resin exposure at work, and the limited use of protective measures, indicate that reinforcement of the law is required. © 2012 John Wiley & Sons A/S.

  16. Advanced Design Composite Aircraft

    DTIC Science & Technology

    1976-02-01

    been selected for ADCA applications. These are graphite (PAN)/ epoxy, graphite (PAN)/polyimide, Kevlar /epoxy, f ibergl ass/epoxy, and quartz...Aluminum Alloy Aluminum Alloy ACG (commercial grade) Nomex HRP Fiberglass/ Phenolic HRH Fiberglass/Polyimide Graphite/epoxy Graphi te/Polyimide

  17. Heat Loads Due to Small Penetrations in Multilayer Insulation Blankets

    NASA Technical Reports Server (NTRS)

    Johnson, W. L.; Heckle, K. W.; Fesmire, J. E.

    2017-01-01

    Abstract: This paper covers cryogenic, tensile testing and research completed on a number of epoxies used in cryogenic applications. Epoxies are used in many different applications; however, this research focused on the use of epoxy used to bond MLI standoffs to cryogenic storage tanks and the loads imparted to the tank through the MLI. To conduct testing, samples were made from bare stainless steel, aluminum and primed aluminum. Testing involved slowly cooling test samples with liquid nitrogen then applying gradually increasing tensile loads to the epoxy. The testing evaluated the strength and durability of epoxies at cryogenic temperatures and serves as a base for future testing. The results of the tests showed that some epoxies withstood the harsh conditions while others failed. The two epoxies yielding the best results were Masterbond EP29LPSP and Scotch Weld 2216. For all metal surfaces tested, both epoxies had zero failures for up to 11.81 kg of mass.

  18. Rubber-Modified Epoxies. I. Cure, Transitions, and Morphology.

    DTIC Science & Technology

    1984-10-01

    thermosetting systems has been developed. An aromatic tetrafunctional diamine-cured diglycidyl ether of bis- phenol A epoxy resin [maximum glass transition...systems has been developed. An aromatic tetrafunctional diamine-cured digly- cidyl ether of bisphenol A epoxy resin [maximum glass transition...epoxy resins are brittle materials. The crack resistance can be improved by the addition of reactive liquid rubber to uncured neat epoxy systems (1-3

  19. Flammability of Epoxy Resins Containing Phosphorus

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.; Thompson, C. M.; Smith, J. G.; Connell, J. W.; Hinkley, J. A.

    2005-01-01

    As part of a program to develop fire-resistant exterior composite structures for future subsonic commercial and general aviation aircraft, flame-retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured neat epoxy formulations were characterized by thermogravimetric analysis, propane torch test, elemental analysis, microscale combustion calorimetry, and fire calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness and compressive strength of several cured formulations showed no detrimental effect due to phosphorus content. The chemistry and properties of these new epoxy formulations are discussed.

  20. Microbial transformation of resibufogenin by Curvularia lunata AS 3.4381.

    PubMed

    Xin, Xiu-Lan; Sun, Jiang-Hao; Wang, Xiao-Bo; Xi, Rong-Gang; Wang, Gang; Lan, Rong; Su, Dong-Hai; Li, Hua; Huo, Xiao-Kui; Wang, Chao

    2014-01-01

    In this paper, the microbial transformation of resibufogenin by Curvularia lunata AS 3.4381 was investigated, and four transformed products were isolated and characterized as 3-epi-resibufogenin (2), 12α-hydroxy-3-epi-resibufogenin (3), 12-oxo-16β-hydroxy-3-epi-resibufogenin (4), and 12β,15-epoxy-3-epi-bufalin-14,15-ene (5). Among them, 4 and 5 are new compounds, and isomerization, hydroxylation, and oxidation reactions in microbial transformation process were observed. Additionally, the cytotoxicities of transformed products (2-5) were also investigated.

  1. (3aRS,4SR,7RS,7aSR)-2-(Tricyclo­[3.3.1.13,7]decan-1-yl)-4,5,6,7-tetra­hydro-4,7-epoxy­isoindoline-1,3-dione

    PubMed Central

    Tan, Zaiyou; Luo, Lin; Zhu, Erjia; Yan, Ruisi; Lin, Zhuohui

    2010-01-01

    The title compound, C18H23NO3, the adamantane derivative of norcantharidin, which is itself derived from cantharidin, crystallized with three independent mol­ecules in the asymmetric unit. In the crystal, mol­ecules are linked by inter­molecular C—H⋯O inter­actions, leading to the formation of a supra­molecular two-dimensional network. PMID:21579455

  2. Selective Clay Placement Within a Silicate-Clay Epoxy Blend Nanocomposite

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G (Inventor)

    2013-01-01

    A clay-epoxy nanocomposite may be prepared by dispersing a layered clay in an alkoxy epoxy, such as a polypropylene oxide based epoxide before combining the mixture with an aromatic epoxy to improve the nanocomposite's thermal and mechanical properties.

  3. Evaluation of epoxy systems for use in SBASI

    NASA Technical Reports Server (NTRS)

    Coultas, T. J.

    1971-01-01

    The purpose of the test program was to evaluate the performance of different epoxy systems as replacements for existing epoxy systems in the SBASI. The three areas of investigation were the connector shell potting, the epoxy tape under the charge cup, and the epoxy impregnated fiberglass over the output charge. Factors considered, in addition to performance, were availability, shelf life, pot life, and effect on producibility and cost.

  4. Regeneration efficiency, shuttle heat loss and thermal conductivity in epoxy-composite annualr gap regenerators from 4K to 80K

    NASA Technical Reports Server (NTRS)

    Myrtle, K.; Cygax, S.; Plateel, C.; Winter, C.

    1983-01-01

    A test apparatus designed to simulate a section of a Stirling cycle cryocooler was built. Measurements of regeneration efficiency, shuttle heat loss and thermal conductivity reported for several regenerator test sections. The test composites were epoxy glass, epoxy glass with lead particles, epoxy glass with activated charcoal and epoxy graphite. Losses measured for these materials were approximately the same. Losses are in good agreement with those calculated theoretically for an epoxy glass (C-10) composite. The implications of these results on cryocooler design are discussed.

  5. Cross-Sectional Study of Respiratory Symptoms, Spirometry, and Immunologic Sensitivity in Epoxy Resin Workers.

    PubMed

    Hines, Stella E; Barker, Elizabeth A; Robinson, Maura; Knight, Vijaya; Gaitens, Joanna; Sills, Michael; Duvall, Kirby; Rose, Cecile S

    2015-12-01

    An epoxy resin worker developed hypersensitivity pneumonitis requiring lung transplantation and had an abnormal blood lymphocyte proliferation test (LPT) to an epoxy hardener. We assessed the prevalence of symptoms, abnormal spirometry, and abnormal epoxy resin LPT results in epoxy resin workers compared to unexposed workers. Participants completed questionnaires and underwent spirometry. We collected blood for epoxy resin LPT and calculated stimulation indices for five epoxy resin products. We compared 38 exposed to 32 unexposed workers. Higher exposed workers were more likely to report cough (OR 10.86, [1.23-infinity], p = 0.030) or wheeze (OR 4.44, [1.00-22.25], p = 0.049) than unexposed workers, even controlling for smoking. Higher exposed workers were more likely to have abnormal FEV1 than unexposed workers (OR 10.51, [0.86-589.9], p = 0.071), although not statistically significant when adjusted for smoking. There were no differences in proportion of abnormal epoxy resin system LPTs between exposed and unexposed workers. In summary, workers exposed to epoxy resin system chemicals were more likely to report respiratory symptoms and have abnormal FEV1 than unexposed workers. Use of epoxy resin LPT was not helpful as a biomarker of exposure and sensitization. © 2015 Wiley Periodicals, Inc.

  6. Cross‐Sectional Study of Respiratory Symptoms, Spirometry, and Immunologic Sensitivity in Epoxy Resin Workers

    PubMed Central

    Barker, Elizabeth A.; Robinson, Maura; Knight, Vijaya; Gaitens, Joanna; Sills, Michael; Duvall, Kirby; Rose, Cecile S.

    2015-01-01

    Abstract Objectives An epoxy resin worker developed hypersensitivity pneumonitis requiring lung transplantation and had an abnormal blood lymphocyte proliferation test (LPT) to an epoxy hardener. We assessed the prevalence of symptoms, abnormal spirometry, and abnormal epoxy resin LPT results in epoxy resin workers compared to unexposed workers. Methods Participants completed questionnaires and underwent spirometry. We collected blood for epoxy resin LPT and calculated stimulation indices for five epoxy resin products. Results We compared 38 exposed to 32 unexposed workers. Higher exposed workers were more likely to report cough (OR 10.86, [1.23‐infinity], p = 0.030) or wheeze (OR 4.44, [1.00‐22.25], p = 0.049) than unexposed workers, even controlling for smoking. Higher exposed workers were more likely to have abnormal FEV1 than unexposed workers (OR 10.51, [0.86‐589.9], p = 0.071), although not statistically significant when adjusted for smoking. There were no differences in proportion of abnormal epoxy resin system LPTs between exposed and unexposed workers. Conclusions In summary, workers exposed to epoxy resin system chemicals were more likely to report respiratory symptoms and have abnormal FEV1 than unexposed workers. Use of epoxy resin LPT was not helpful as a biomarker of exposure and sensitization. PMID:26553118

  7. Mechanical, morphological and structural properties of cellulose nanofibers reinforced epoxy composites.

    PubMed

    Saba, N; Mohammad, F; Pervaiz, M; Jawaid, M; Alothman, O Y; Sain, M

    2017-04-01

    Present study, deals about isolation and characterization of cellulose nanofibers (CNFs) from the Northern Bleached Softwood Kraft (NBSK) pulp, fabrication by hand lay-up technique and characterization of fabricated epoxy nanocomposites at different filler loadings (0.5%, 0.75%, 1% by wt.). The effect of CNFs loading on mechanical (tensile, impact and flexural), morphological (scanning electron microscope and transmission electron microscope) and structural (XRD and FTIR) properties of epoxy composites were investigated. FTIR analysis confirms the introduction of CNFs into the epoxy matrix while no considerable change in the crystallinity and diffraction peaks of epoxy composites were observed by the XRD patterns. Additions of CNFs considerably enhance the mechanical properties of epoxy composites but a remarkable improvement is observed for 0.75% CNFs as compared to the rest epoxy nanocomposites. In addition, the electron micrographs revealed the perfect distribution and dispersion of CNFs in the epoxy matrix for the 0.75% CNFs/epoxy nanocomposites, while the existence of voids and agglomerations were observed beyond 0.75% CNFs filler loadings. Overall results analysis clearly revealed that the 0.75% CNFs filler loading is best and effective with respect to rest to enhance the mechanical and structural properties of the epoxy composites. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Effect of Montmorillonite Nanogel Composite Fillers on the Protection Performance of Epoxy Coatings on Steel Pipelines.

    PubMed

    Atta, Ayman M; El-Saeed, Ashraf M; Al-Lohedan, Hamad A; Wahby, Mohamed

    2017-06-02

    Montmorillonite (MMT) clay mineral is widely used as filler for several organic coatings. Its activity is increased by exfoliation via chemical modification to produce nanomaterials. In the present work, the modification of MMT to form nanogel composites is proposed to increase the dispersion of MMT into epoxy matrices used to fill cracks and holes produced by the curing exotherms of epoxy resins. The dispersion of MMT in epoxy improved both the mechanical and anti-corrosion performance of epoxy coatings in aggressive marine environments. In this respect, the MMT surfaces were chemically modified with different types of 2-acrylamido-2-methyl propane sulfonic acid (AMPS) nanogels using a surfactant-free dispersion polymerization technique. The effect of the chemical structure, nanogel content and the interaction with MMT surfaces on the surface morphology, surface charges and dispersion in the epoxy matrix were investigated for use as nano-filler for epoxy coatings. The modified MMT nanogel epoxy composites showed excellent resistance to mechanical damage and salt spray resistance up to 1000 h. The interaction of MMT nanogel composites with the epoxy matrix and good response of AMPS nanogel to sea water improve their ability to act as self-healing materials for epoxy coatings for steel.

  9. Cytotoxic Triterpenoids from the Stalks of Microtropis triflora.

    PubMed

    Zhang, Xiao-Wei; Wang, Kui-Wu; Zhou, Man-Qing

    2017-07-01

    Bioassay-guided phytochemical investigation of the stalks of Microtropis triflora Merr. & F.L. Freeman led to the isolation of ten triterpenes 1 - 10, including one novel compound 3,24-epoxy-2α,24-dihydroxyfriedelan-29-oic acid (1). Their chemical structures were identified on the basis of spectroscopic analysis, including HR-ESI mass spectrometry, 1D- and 2D-NMR ( 1 H, 13 C, 1 H, 1 H-COSY, HSQC, HMBC, and NOESY), and by comparison with the data reported. The cytotoxicities of compounds 1 - 10 against a panel of cultured human tumor cell lines (Bcap37, SMMC7721, HeLa, CNE) were evaluated. The new compound 1 showed moderate anti-tumor activities with IC 50 values of 39.22, 29.24, 23.28, and 68.81 μm/ml, respectively. These results might be helpful for explaining the use of M. triflora in traditional medicine. Triterpenes are characteristic of Microtropis genus and could be useful as potential chemotaxonomic markers. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  10. Biobased Epoxy Nanocomposites Derived from Lignin-Based Monomers.

    PubMed

    Zhao, Shou; Abu-Omar, Mahdi M

    2015-07-13

    Biobased epoxy nanocomposites were synthesized based on 2-methoxy-4-propylphenol (dihydroeugenol, DHE), a molecule that has been obtained from the lignin component of biomass. To increase the content of hydroxyl groups, DHE was o-demethylated using aqueous HBr to yield propylcatechol (DHEO), which was subsequently glycidylated to epoxy monomer. Optimal conditions in terms of yield and epoxy equivalent weight were found to be 60 °C with equal NaOH/phenolic hydroxyl molar ratio. The structural evolution from DHE to cured epoxy was followed by (1)H NMR and Fourier transform infrared spectroscopy. The nano-montmorillonite modified DHEO epoxy exhibited improved storage modulus and thermal stability as determined from dynamic mechanical analysis and thermogravimetric analysis. This study widens the synthesis routes of biobased epoxy thermosets from lignin-based molecules.

  11. Epoxy thermoset networks derived from vegetable oils and their blends

    NASA Astrophysics Data System (ADS)

    Ryu, Chang; Ravalli, Matthew

    2015-03-01

    Epoxidized vegetable oils (EVOs), such as epoxidized soybean oil and linseed oils were prepared by the partial oxidation of the unsaturated double bonds in vegetable oils and used as monomers for preparing epoxy thermoset materials based on the cationic polymerization. These EVOs have been used to prepare epoxy thermosets of different network densities by cationic polymerization using onium salt catalyst. The crosslinked epoxy thermosets provide an ideal platform to study the structure-property-relationships of networked polymers. In particular, rheological studies on the epoxidized vegetable oil thermosets have been performed to measure the molecular weights between crosslinks (Mx) in the epoxy thermosets and to ultimately elucidate the role of functionality of epoxy groups in EVO on the mechanical and thermophysical properties of the epoxy thermoset materials. NSF DMR POLYMERS 1308617.

  12. The Effect of High Concentration and Small Size of Nanodiamonds on the Strength of Interface and Fracture Properties in Epoxy Nanocomposite

    PubMed Central

    Haleem, Yasir A.; Song, Pin; Liu, Daobin; Wang, Changda; Gan, Wei; Saleem, Muhammad Farooq; Song, Li

    2016-01-01

    The concentration and small size of nanodiamonds (NDs) plays a crucial role in the mechanical performance of epoxy-based nanocomposites by modifying the interface strength. Herein, we systemically analyzed the relation between the high concentration and small size of ND and the fracture properties of its epoxy-based nanocomposites. It was observed that there is a two-fold increase in fracture toughness and a three-fold increase in fracture energy. Rationally, functionalized-NDs (F-NDs) showed a much better performance for the nanocomposite than pristine NDs (P-NDs) because of additional functional groups on its surface. The F-ND/epoxy nanocomposites exhibited rougher surface in contrast with the P-ND/epoxy, indicating the presence of a strong interface. We found that the interfaces in F-ND/epoxy nanocomposites at high concentrations of NDs overlap by making a web, which can efficiently hinder further crack propagation. In addition, the de-bonding in P-ND/epoxy nanocomposites occurred at the interface with the appearance of plastic voids or semi-naked particles, whereas the de-bonding for F-ND/epoxy nanocomposites happened within the epoxy molecular network instead of the interface. Because of the strong interface in F-ND/epoxy nanocomposites, at high concentrations the de-bonding within the epoxy molecular network may lead to subsequent cracks, parallel to the parent crack, via crack splitting which results in a fiber-like structure on the fracture surface. The plastic void growth, crack deflection and subsequent crack growth were correlated to higher values of fracture toughness and fracture energy in F-ND/epoxy nanocomposites. PMID:28773628

  13. Atomistic Modeling of Thermal Conductivity of Epoxy Nanotube Composites

    NASA Astrophysics Data System (ADS)

    Fasanella, Nicholas A.; Sundararaghavan, Veera

    2016-05-01

    The Green-Kubo method was used to investigate the thermal conductivity as a function of temperature for epoxy/single wall carbon nanotube (SWNT) nanocomposites. An epoxy network of DGEBA-DDS was built using the `dendrimer' growth approach, and conductivity was computed by taking into account long-range Coulombic forces via a k-space approach. Thermal conductivity was calculated in the direction perpendicular to, and along the SWNT axis for functionalized and pristine SWNT/epoxy nanocomposites. Inefficient phonon transport at the ends of nanotubes is an important factor in the thermal conductivity of the nanocomposites, and for this reason discontinuous nanotubes were modeled in addition to long nanotubes. The thermal conductivity of the long, pristine SWNT/epoxy system is equivalent to that of an isolated SWNT along its axis, but there was a 27% reduction perpendicular to the nanotube axis. The functionalized, long SWNT/epoxy system had a very large increase in thermal conductivity along the nanotube axis (~700%), as well as the directions perpendicular to the nanotube (64%). The discontinuous nanotubes displayed an increased thermal conductivity along the SWNT axis compared to neat epoxy (103-115% for the pristine SWNT/epoxy, and 91-103% for functionalized SWNT/epoxy system). The functionalized system also showed a 42% improvement perpendicular to the nanotube, while the pristine SWNT/epoxy system had no improvement over epoxy. The thermal conductivity tensor is averaged over all possible orientations to see the effects of randomly orientated nanotubes, and allow for experimental comparison. Excellent agreement is seen for the discontinuous, pristine SWNT/epoxy nanocomposite. These simulations demonstrate there exists a threshold of the SWNT length where the best improvement for a composite system with randomly oriented nanotubes would transition from pristine SWNTs to functionalized SWNTs.

  14. Rodent Biocompatibility Test Using the NASA Foodbar and Epoxy EP21LV

    NASA Technical Reports Server (NTRS)

    Tillman, J.; Steele, M.; Dumars, P.; Vasques, M.; Girten, B.; Sun, S. (Technical Monitor)

    2002-01-01

    Epoxy has been used successfully to affix NASA foodbars to the inner walls of the Animal Enclosure Module for past space flight experiments utilizing rodents. The epoxy used on past missions was discontinued, making it necessary to identify a new epoxy for use on the STS-108 and STS-107 missions. This experiment was designed to test the basic biocompatibility of epoxy EP21LV with male rats (Sprague Dawley) and mice (Swiss Webster) when applied to NASA foodbars. For each species, the test was conducted with a control group fed untreated foodbars and an experimental group fed foodbars applied with EP21LV. For each species, there were no group differences in animal health and no statistical differences (P<0.05) in body weights throughout the study. In mice, there was a 16% increase in heart weight in the epoxy group; this result was not found in rats. For both species, there were no statistical differences found in other organ weights measured. In rats, blood glucose levels were 15% higher and both total protein and globulin were 10% lower in the epoxy group. Statistical differences in these parameters were not found in mice. For both species, no statistical differences were found in other blood parameters tested. Food consumption was not different in rats but water consumption was significantly decreased 10 to 15% in the epoxy group. The difference in water consumption is likely due to an increased water content of the epoxy-treated foodbars. Finally, both species avoided consumption of the epoxy material. Based on the global analysis of the results, the few parameters found to be statistically different do not appear to be a physiologically relevant effect of the epoxy material, We conclude that the EP21LV epoxy is biocompatible with rodents.

  15. The Effect of High Concentration and Small Size of Nanodiamonds on the Strength of Interface and Fracture Properties in Epoxy Nanocomposite.

    PubMed

    Haleem, Yasir A; Song, Pin; Liu, Daobin; Wang, Changda; Gan, Wei; Saleem, Muhammad Farooq; Song, Li

    2016-06-23

    The concentration and small size of nanodiamonds (NDs) plays a crucial role in the mechanical performance of epoxy-based nanocomposites by modifying the interface strength. Herein, we systemically analyzed the relation between the high concentration and small size of ND and the fracture properties of its epoxy-based nanocomposites. It was observed that there is a two-fold increase in fracture toughness and a three-fold increase in fracture energy. Rationally, functionalized-NDs (F-NDs) showed a much better performance for the nanocomposite than pristine NDs (P-NDs) because of additional functional groups on its surface. The F-ND/epoxy nanocomposites exhibited rougher surface in contrast with the P-ND/epoxy, indicating the presence of a strong interface. We found that the interfaces in F-ND/epoxy nanocomposites at high concentrations of NDs overlap by making a web, which can efficiently hinder further crack propagation. In addition, the de-bonding in P-ND/epoxy nanocomposites occurred at the interface with the appearance of plastic voids or semi-naked particles, whereas the de-bonding for F-ND/epoxy nanocomposites happened within the epoxy molecular network instead of the interface. Because of the strong interface in F-ND/epoxy nanocomposites, at high concentrations the de-bonding within the epoxy molecular network may lead to subsequent cracks, parallel to the parent crack, via crack splitting which results in a fiber-like structure on the fracture surface. The plastic void growth, crack deflection and subsequent crack growth were correlated to higher values of fracture toughness and fracture energy in F-ND/epoxy nanocomposites.

  16. Thermal Characterization and Flammability of Structural Epoxy Adhesive and Carbon/Epoxy Composite with Environmental and Chemical Degradation (Postprint)

    DTIC Science & Technology

    2012-01-01

    this study). TGA scans show the thermal degradation of carbon/ epoxy composite by fuel additive at room temperature. Through Microscale Combustion...concerns regarding the durability of structural epoxy adhesive contaminated by hydraulic fluid or fuel additive , under simplified test conditions (no...higher than room tem- perature) or fuel additive (at all temperatures of this study). TGA scans show the thermal degradation of carbon/ epoxy composite

  17. 40 CFR 721.2755 - Cycloaliphatic epoxy resin (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Cycloaliphatic epoxy resin (generic... Substances § 721.2755 Cycloaliphatic epoxy resin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as cycloaliphatic epoxy resin (PMN...

  18. 40 CFR 721.2755 - Cycloaliphatic epoxy resin (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cycloaliphatic epoxy resin (generic... Substances § 721.2755 Cycloaliphatic epoxy resin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as cycloaliphatic epoxy resin (PMN...

  19. 40 CFR 721.2755 - Cycloaliphatic epoxy resin (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Cycloaliphatic epoxy resin (generic... Substances § 721.2755 Cycloaliphatic epoxy resin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as cycloaliphatic epoxy resin (PMN...

  20. 40 CFR 721.2755 - Cycloaliphatic epoxy resin (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cycloaliphatic epoxy resin (generic... Substances § 721.2755 Cycloaliphatic epoxy resin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as cycloaliphatic epoxy resin (PMN...

  1. 40 CFR 721.2755 - Cycloaliphatic epoxy resin (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Cycloaliphatic epoxy resin (generic... Substances § 721.2755 Cycloaliphatic epoxy resin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as cycloaliphatic epoxy resin (PMN...

  2. Effect of electron beam irradiation on thermal and mechanical properties of aluminum based epoxy composites

    NASA Astrophysics Data System (ADS)

    Visakh, P. M.; Nazarenko, O. B.; Sarath Chandran, C.; Melnikova, T. V.; Nazarenko, S. Yu.; Kim, J.-C.

    2017-07-01

    The epoxy resins are widely used in nuclear and aerospace industries. The certain properties of epoxy resins as well as the resistance to radiation can be improved by the incorporation of different fillers. This study examines the effect of electron beam irradiation on the thermal and mechanical properties of the epoxy composites filled with aluminum nanoparticles at percentage of 0.35 wt%. The epoxy composites were exposed to the irradiation doses of 30, 100 and 300 kGy using electron beam generated by the linear electron accelerator ELU-4. The effects of the doses on thermal and mechanical properties of the aluminum based epoxy composites were investigated by the methods of thermal gravimetric analysis, tensile test, and dynamic mechanical analysis. The results revealed that the studied epoxy composites showed good radiation resistance. The thermal and mechanical properties of the aluminum based epoxy composites increased with increasing the irradiation dose up to 100 kGy and decreased with further increasing the dose.

  3. Enhancing the Heat Transfer Efficiency in Graphene-Epoxy Nanocomposites Using a Magnesium Oxide-Graphene Hybrid Structure.

    PubMed

    Du, Fei-Peng; Yang, Wen; Zhang, Fang; Tang, Chak-Yin; Liu, Sheng-Peng; Yin, Le; Law, Wing-Cheung

    2015-07-08

    Composite materials, such as organic matrices doped with inorganic fillers, can generate new properties that exhibit multiple functionalities. In this paper, an epoxy-based nanocomposite that has a high thermal conductivity and a low electrical conductivity, which are required for the use of a material as electronic packaging and insulation, was prepared. The performance of the epoxy was improved by incorporating a magnesium oxide-coated graphene (MgO@GR) nanomaterial into the epoxy matrix. We found that the addition of a MgO coating not only improved the dispersion of the graphene in the matrix and the interfacial bonding between the graphene and epoxy but also enhanced the thermal conductivity of the epoxy while preserving the electrical insulation. By adding 7 wt % MgO@GR, the thermal conductivity of the epoxy nanocomposites was enhanced by 76% compared with that of the neat epoxy, and the electrical resistivity was maintained at 8.66 × 10(14) Ω m.

  4. Epoxy composite dusts with and without carbon nanotubes cause similar pulmonary responses, but differences in liver histology in mice following pulmonary deposition.

    PubMed

    Saber, Anne Thoustrup; Mortensen, Alicja; Szarek, Józef; Koponen, Ismo Kalevi; Levin, Marcus; Jacobsen, Nicklas Raun; Pozzebon, Maria Elena; Mucelli, Stefano Pozzi; Rickerby, David George; Kling, Kirsten; Atluri, Rambabu; Madsen, Anne Mette; Jackson, Petra; Kyjovska, Zdenka Orabi; Vogel, Ulla; Jensen, Keld Alstrup; Wallin, Håkan

    2016-06-29

    The toxicity of dusts from mechanical abrasion of multi-walled carbon nanotube (CNT) epoxy nanocomposites is unknown. We compared the toxic effects of dusts generated by sanding of epoxy composites with and without CNT. The used CNT type was included for comparison. Mice received a single intratracheal instillation of 18, 54 and 162 μg of CNT or 54, 162 and 486 μg of the sanding dust from epoxy composite with and without CNT. DNA damage in lung and liver, lung inflammation and liver histology were evaluated 1, 3 and 28 days after intratracheal instillation. Furthermore, the mRNA expression of interleukin 6 and heme oxygenase 1 was measured in the lungs and serum amyloid A1 in the liver. Printex 90 carbon black was included as a reference particle. Pulmonary exposure to CNT and all dusts obtained by sanding epoxy composite boards resulted in recruitment of inflammatory cells into lung lumen: On day 1 after instillation these cells were primarily neutrophils but on day 3, eosinophils contributed significantly to the cell population. There were still increased numbers of neutrophils 28 days after intratracheal instillation of the highest dose of the epoxy dusts. Both CNT and epoxy dusts induced DNA damage in lung tissue up to 3 days after intratracheal instillation but not in liver tissue. There was no additive effect of adding CNT to epoxy resins for any of the pulmonary endpoints. In livers of mice instilled with CNT and epoxy dust with CNTs inflammatory and necrotic histological changes were observed, however, not in mice instilled with epoxy dust without CNT. Pulmonary deposition of epoxy dusts with and without CNT induced inflammation and DNA damage in lung tissue. There was no additive effect of adding CNT to epoxies for any of the pulmonary endpoints. However, hepatic inflammatory and necrotic histopathological changes were seen in mice instilled with sanding dust from CNT-containing epoxy but not in mice instilled with reference epoxy.

  5. Preparation, Characterization, and Enhanced Thermal and Mechanical Properties of Epoxy-Titania Composites

    PubMed Central

    Rubab, Zakya; Siddiqi, Humaira M.; Saeed, Shaukat

    2014-01-01

    This paper presents the synthesis and thermal and mechanical properties of epoxy-titania composites. First, submicron titania particles are prepared via surfactant-free sol-gel method using TiCl4 as precursor. These particles are subsequently used as inorganic fillers (or reinforcement) for thermally cured epoxy polymers. Epoxy-titania composites are prepared via mechanical mixing of titania particles with liquid epoxy resin and subsequently curing the mixture with an aliphatic diamine. The amount of titania particles integrated into epoxy matrix is varied between 2.5 and 10.0 wt.% to investigate the effect of sub-micron titania particles on thermal and mechanical properties of epoxy-titania composites. These composites are characterized by X-ray photoelectron (XPS) spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric (TG), and mechanical analyses. It is found that sub-micron titania particles significantly enhance the glass transition temperature (>6.7%), thermal oxidative stability (>12.0%), tensile strength (>21.8%), and Young's modulus (>16.8%) of epoxy polymers. Epoxy-titania composites with 5.0 wt.% sub-micron titania particles perform best at elevated temperatures as well as under high stress. PMID:24578638

  6. 40 CFR 721.10209 - Epoxy terminated, hydrolyzed trialkoxysilane and glycidyl ether of phenol-formaldehyde resin...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Epoxy terminated, hydrolyzed... Epoxy terminated, hydrolyzed trialkoxysilane and glycidyl ether of phenol-formaldehyde resin (generic... identified generically as epoxy terminated, hydrolyzed trialkoxysilane and glycidyl ether of phenol...

  7. 40 CFR 721.10209 - Epoxy terminated, hydrolyzed trialkoxysilane and glycidyl ether of phenol-formaldehyde resin...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Epoxy terminated, hydrolyzed... Epoxy terminated, hydrolyzed trialkoxysilane and glycidyl ether of phenol-formaldehyde resin (generic... identified generically as epoxy terminated, hydrolyzed trialkoxysilane and glycidyl ether of phenol...

  8. 40 CFR 721.320 - Acrylamide-substituted epoxy.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylamide-substituted epoxy. 721.320... Substances § 721.320 Acrylamide-substituted epoxy. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acrylamide-substituted epoxy (PMN P-92-660...

  9. 40 CFR 721.320 - Acrylamide-substituted epoxy.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acrylamide-substituted epoxy. 721.320... Substances § 721.320 Acrylamide-substituted epoxy. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acrylamide-substituted epoxy (PMN P-92-660...

  10. 40 CFR 721.320 - Acrylamide-substituted epoxy.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylamide-substituted epoxy. 721.320... Substances § 721.320 Acrylamide-substituted epoxy. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acrylamide-substituted epoxy (PMN P-92-660...

  11. 40 CFR 721.320 - Acrylamide-substituted epoxy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acrylamide-substituted epoxy. 721.320... Substances § 721.320 Acrylamide-substituted epoxy. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acrylamide-substituted epoxy (PMN P-92-660...

  12. 40 CFR 721.320 - Acrylamide-substituted epoxy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylamide-substituted epoxy. 721.320... Substances § 721.320 Acrylamide-substituted epoxy. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acrylamide-substituted epoxy (PMN P-92-660...

  13. 40 CFR 721.10209 - Epoxy terminated, hydrolyzed trialkoxysilane and glycidyl ether of phenol-formaldehyde resin...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Epoxy terminated, hydrolyzed... Epoxy terminated, hydrolyzed trialkoxysilane and glycidyl ether of phenol-formaldehyde resin (generic... identified generically as epoxy terminated, hydrolyzed trialkoxysilane and glycidyl ether of phenol...

  14. 40 CFR 721.10209 - Epoxy terminated, hydrolyzed trialkoxysilane and glycidyl ether of phenol-formaldehyde resin...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Epoxy terminated, hydrolyzed... Epoxy terminated, hydrolyzed trialkoxysilane and glycidyl ether of phenol-formaldehyde resin (generic... identified generically as epoxy terminated, hydrolyzed trialkoxysilane and glycidyl ether of phenol...

  15. Mechanical testing of a steel-reinforced epoxy resin bar and clamp for external skeletal fixation of long-bone fractures in cats.

    PubMed

    Leitch, B J; Worth, A J

    2018-05-01

    To provide veterinarians with confidence when using a commercially available epoxy resin in external skeletal fixators (ESF), testing was conducted to determine exothermia during curing of the epoxy resin compared to polymethylmethacrylate (PMMA), the hardness of the epoxy resin as a bar over 16 weeks, and the strength of the epoxy resin bar compared with metal clamps in similarly constructed Type 1a ESF constructs simulating the repair of feline long bone fractures. Exothermia of the epoxy resin during curing was tested against PMMA with surface temperatures recorded over the first 15 minutes of curing, using four samples of each product. The hardness of 90 identical epoxy resin bars was tested by subjecting them to cyclic loads (1,000 cycles of 20.5 N, every 7 days) over a 16-week period and impact testing 10 bars every 2 weeks. Ten bars that were not subjected to cyclic loads were impact tested at 0 weeks and another 10 at 16 weeks. Strength of the epoxy resin product, as a bar and clamp composite, was tested against metal SK and Kirschner-Ehmer (KE) clamps and bars in Type 1a, tied-in intramedullary pin, ESF constructs with either 90° or 75° pin placement, subjected to compressive and bending loads to 75 N. The maximum temperature during curing of the epoxy resin (min 39.8, max 43.0)°C was less than the PMMA (min 85.2, max 98.5)°C (p<0.001). There was no change in hardness of the epoxy resin bars over the 16 weeks of cyclic loading (p=0.58). There were no differences between the median strength of the epoxy resin, SK or KE ESF constructs in compression or bending when tested to 75 N (p>0.05). Stiffness of constructs with 75° pin placement was greater for SK than epoxy resin constructs in compression (p=0.046), and was greater for KE than epoxy resin constructs in bending (p=0.033). The epoxy resin tested was found to be less exothermic than PMMA; bars made from the epoxy resin showed durability over an expected fracture healing timeframe and had mechanical strength characteristics comparable to metal bar and clamp ESF constructs. The epoxy resin ESF construct tested in this study can be considered a suitable replacement for SK or KE ESF constructs in the treatment of feline long-bone fractures, in terms of mechanical strength.

  16. Effect on mechanical properties of glass reinforced epoxy (GRE) pipe filled with different geopolymer filler molarity for piping application

    NASA Astrophysics Data System (ADS)

    Hashim, M. F. Abu; Abdullah, M. M. A.; Ghazali, C. M. R.; Hussin, K.; Binhussain, M.

    2017-04-01

    This study investigated the use of a novel white clay geopolymer as a filler to produce high strength glass reinforced epoxy pipe. It was found that using white clay geopolymer as filler gives better compressive strength to the glass reinforced epoxy pipe. The disadvantages of current glass reinforced epoxy pipes such low compressive strength which can be replaced by the composite pipes. Geopolymerization is an innovative technology that can transform several aluminosilicate materials into useful products called geopolymers or inorganic polymers. A series of glass reinforced epoxy pipe and glass reinforced epoxy pipe filled with 10 - 40 weight percentages white clay geopolymer filler with 4 Molarity and 8 Molarity were prepared. Morphology of white clay geopolymer filler surface was indicates using scanning electron microscopy. The additions of white clay geopolymer filler for both 4 Molarity and 8 Molarity show higher compressive strength than glass reinforced epoxy pipe without any geopolymer filler. The compressive test of these epoxy geopolymer pipe samples was determined using Instron Universal Testing under compression mode. Nonetheless, the compressive strength of glass reinforced epoxy pipe with white clay geopolymer filler continues to drop when added to 40 wt% of the geopolymer filler loading for both 4 Molarity and 8 Molarity. These outcomes showed that the mixing of geopolymer materials in epoxy system can be attained in this research.

  17. Effect of electron beam irradiation on thermal and mechanical properties of epoxy polymer

    NASA Astrophysics Data System (ADS)

    Nguyen, A. T.; Visakh, P. M.; Nazarenko, O. B.; Chandran, C. S.; Melnikova, T. V.

    2017-01-01

    This study investigates the thermal and mechanical properties of epoxy polymer after exposure to different doses of electron beam irradiation. The epoxy polymer was prepared using epoxy-diane resin ED-20 cured by polyethylenepolyamine. The irradiation of the samples was carried out with doses of 30, 100 and 300 kGy. The effects of doses on thermal and mechanical properties of the epoxy polymer were investigated by the methods of thermal gravimetric analysis, tensile test, and dynamic mechanical analysis. The thermal properties of the epoxy polymer slightly increased after irradiation at the heating in air. The tensile strength and Young’s modulus of the epoxy polymer increased by the action of electron beam up to dose of 100 kGy and then decreased. The elongation at break decreased with increasing the irradiation dose.

  18. Fracture behavior of nano-scale rubber-modified epoxies

    NASA Astrophysics Data System (ADS)

    Bacigalupo, Lauren N.

    The primary focus of the first portion of this study is to compare physical and mechanical properties of a model epoxy that has been toughened with one of three different types of rubber-based modifier: a traditional telechelic oligomer (phase separates into micro-size particles), a core-shell latex particle (preformed nano-scale particles) and a triblock copolymer (self-assembles into nano-scale particles). The effect of modifier content on the physical properties of the matrix was determined using several thermal analysis methods, which provided insight into any inherent alterations of the epoxy matrix. Although the primary objective is to study the role of particle size on the fracture toughness, stiffness and strength were also determined since these properties are often reduced in rubber-toughened epoxies. It was found that since the CSR- and SBM-modified epoxies are composed of less rubber, thermal and mechanical properties of the epoxy were better maintained. In order to better understand the fracture behavior and mechanisms of the three types of rubber particles utilized in this study, extensive microscopy analysis was conducted. Scanning transmission electron microscopy (STEM) was used to quantify the volume fraction of particles, transmission optical microscopy (TOM) was used to determine plastic damage zone size, and scanning electron microscopy (SEM) was used to assess void growth in the plastic zone after fracture. By quantifying these characteristics, it was then possible to model the plastic damage zone size as well as the fracture toughness to elucidate the behavior of the rubber-modified epoxies. It was found that localized shear yielding and matrix void growth are the active toughening mechanisms in all rubber-modified epoxies in this study, however, matrix void growth was more prevalent. The second portion of this study investigated the use of three acrylate-based triblocks and four acrylate-based diblocks to modify a model epoxy system. By varying block lengths and the polarity of the epoxy-miscible blocks, a variety of morphologies were generated (such as spherical micelles, layer particles and worm-like micelles). It was found that in some cases, the epoxy-miscible block did not yield domains substantial enough to facilitate increases in toughness. Overall, the thermal and mechanical properties of the acrylate-based triblock- and diblock-modified epoxies were found to be similar to CTBN-modified epoxy, which was used as a control. However, there were properties that were improved with the acrylate-based diblock-modified epoxies when compared to the acrylate-based triblock modified epoxies. Specifically, the viscosity penalty of the diblock-modified epoxies was shown to be a marked improvement over the triblock-modified epoxies, especially given that the fracture toughness values are similar. This reduction in the viscosity penalty becomes an important criterion when considering processing procedures and applications. Additionally, comparing the morphology of the resulting modified-epoxies utilizing atomic force microscopy (AFM) and scanning electron microscopy (SEM) led to a better understanding of the relationship between the particle morphology obtained and the physical properties of the acrylate-based rubber-modified epoxy systems in this research.

  19. 21 CFR 175.380 - Xylene-formaldehyde resins condensed with 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...-isopropylidenediphenol-epichlorohydrin epoxy resins. 175.380 Section 175.380 Food and Drugs FOOD AND DRUG ADMINISTRATION...,4′-isopropylidenediphenol-epichlorohydrin epoxy resins. The resins identified in paragraph (a) of... condensation of xylene-formaldehyde resin and 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins, to...

  20. 40 CFR 721.3135 - Phosphorous modified epoxy resin (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphorous modified epoxy resin... Specific Chemical Substances § 721.3135 Phosphorous modified epoxy resin (generic). (a) Chemical substance... phosphorous modified epoxy resin (PMNs P-00-992 and P-01-471) is subject to reporting under this section for...

  1. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under this...

  2. 40 CFR 721.3140 - Vinyl epoxy ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Vinyl epoxy ester. 721.3140 Section... Substances § 721.3140 Vinyl epoxy ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance vinyl epoxy ester (PMN P-85-527) is subject to reporting under this...

  3. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under this...

  4. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for the...

  5. 40 CFR 721.3140 - Vinyl epoxy ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Vinyl epoxy ester. 721.3140 Section... Substances § 721.3140 Vinyl epoxy ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance vinyl epoxy ester (PMN P-85-527) is subject to reporting under this...

  6. 40 CFR 721.10113 - Thioether epoxy (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Thioether epoxy (generic). 721.10113... Substances § 721.10113 Thioether epoxy (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as thioether epoxy (PMN P-04-547) is subject to...

  7. 40 CFR 721.3135 - Phosphorous modified epoxy resin (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phosphorous modified epoxy resin... Specific Chemical Substances § 721.3135 Phosphorous modified epoxy resin (generic). (a) Chemical substance... phosphorous modified epoxy resin (PMNs P-00-992 and P-01-471) is subject to reporting under this section for...

  8. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under this...

  9. 40 CFR 721.10113 - Thioether epoxy (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Thioether epoxy (generic). 721.10113... Substances § 721.10113 Thioether epoxy (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as thioether epoxy (PMN P-04-547) is subject to...

  10. 40 CFR 721.10113 - Thioether epoxy (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Thioether epoxy (generic). 721.10113... Substances § 721.10113 Thioether epoxy (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as thioether epoxy (PMN P-04-547) is subject to...

  11. 40 CFR 721.10113 - Thioether epoxy (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Thioether epoxy (generic). 721.10113... Substances § 721.10113 Thioether epoxy (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as thioether epoxy (PMN P-04-547) is subject to...

  12. 40 CFR 721.3140 - Vinyl epoxy ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Vinyl epoxy ester. 721.3140 Section... Substances § 721.3140 Vinyl epoxy ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance vinyl epoxy ester (PMN P-85-527) is subject to reporting under this...

  13. 40 CFR 721.10603 - Epoxy modified alkyd resin, partially neutralized (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Epoxy modified alkyd resin, partially... Specific Chemical Substances § 721.10603 Epoxy modified alkyd resin, partially neutralized (generic). (a... generically as epoxy modified alkyd resin, partially neutralized (PMN P-11-280) is subject to reporting under...

  14. 40 CFR 721.3135 - Phosphorous modified epoxy resin (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphorous modified epoxy resin... Specific Chemical Substances § 721.3135 Phosphorous modified epoxy resin (generic). (a) Chemical substance... phosphorous modified epoxy resin (PMNs P-00-992 and P-01-471) is subject to reporting under this section for...

  15. 40 CFR 721.10113 - Thioether epoxy (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Thioether epoxy (generic). 721.10113... Substances § 721.10113 Thioether epoxy (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as thioether epoxy (PMN P-04-547) is subject to...

  16. 40 CFR 721.1850 - Toluene sulfonamide bis-phe-nol A epoxy adduct.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... epoxy adduct. 721.1850 Section 721.1850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.1850 Toluene sulfonamide bis-phe-nol A epoxy adduct. (a) Chemical... as toluene sulfonamide bisphenol A epoxy adduct (PMN P-90-113) is subject to reporting under this...

  17. 40 CFR 721.3140 - Vinyl epoxy ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Vinyl epoxy ester. 721.3140 Section... Substances § 721.3140 Vinyl epoxy ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance vinyl epoxy ester (PMN P-85-527) is subject to reporting under this...

  18. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for the...

  19. 40 CFR 721.3140 - Vinyl epoxy ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Vinyl epoxy ester. 721.3140 Section... Substances § 721.3140 Vinyl epoxy ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance vinyl epoxy ester (PMN P-85-527) is subject to reporting under this...

  20. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for the...

  1. 40 CFR 721.3135 - Phosphorous modified epoxy resin (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphorous modified epoxy resin... Specific Chemical Substances § 721.3135 Phosphorous modified epoxy resin (generic). (a) Chemical substance... phosphorous modified epoxy resin (PMNs P-00-992 and P-01-471) is subject to reporting under this section for...

  2. 40 CFR 721.3135 - Phosphorous modified epoxy resin (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphorous modified epoxy resin... Specific Chemical Substances § 721.3135 Phosphorous modified epoxy resin (generic). (a) Chemical substance... phosphorous modified epoxy resin (PMNs P-00-992 and P-01-471) is subject to reporting under this section for...

  3. 40 CFR 721.10603 - Epoxy modified alkyd resin, partially neutralized (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Epoxy modified alkyd resin, partially... Specific Chemical Substances § 721.10603 Epoxy modified alkyd resin, partially neutralized (generic). (a... generically as epoxy modified alkyd resin, partially neutralized (PMN P-11-280) is subject to reporting under...

  4. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for the...

  5. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for the...

  6. Degradation effect of diepoxide fixation on porcine endogenous retrovirus DNA in heart valves: molecular aspects.

    PubMed

    Cyganek-Niemiec, Aleksandra; Strzalka-Mrozik, Barbara; Pawlus-Lachecka, Lucyna; Wszolek, Jolanta; Adamska, Jolanta; Kudrjavtseva, Julia; Zhuravleva, Irina; Kimsa, Malgorzata; Okla, Hubert; Kimsa, Magdalena; Gudek, Agnieszka; Mazurek, Urszula

    2012-01-01

    Xenotransplantations of porcine cells, tissues, and organs involve a risk of zoonotic viral infections in recipients, including by porcine endogenous retroviruses (PERVs), which are embedded the genome of all pigs. An appropriate preparation of porcine heart valves for transplantation can prevent retroviral infection. Therefore, the present study focuses on the effect of epoxy compounds and glutaraldehyde on the PERV presence in porcine heart valves prepared for clinical use. Porcine aortic heart valves were fixed with ethylene glycol diglycidyl ether (EDGE) at 5 °C and 25 °C as well as with glutaraldehyde (GA) for 4 weeks. Salting out was used to isolate genomic DNA from native as well as EDGE- and GA-fixed fragments of valves every week. Quantification of PERV-A, PERV-B, and PERV-C DNA was performed by real-time quantitative polymerase chain reaction (QPCR). All subtypes of PERVs were detected in native porcine aortic heart valves. The reduction of the PERV-A, PERV-B, and PERV-C DNA copy numbers was observed in the heart valves which were EDGE-fixed at both temperatures, and in GA-fixed ones in the following weeks. After 7 and 14 days of EDGE cross-linking, significant differences between the investigated temperatures were found for the number of PERV-A and PERV-B copies. PERV DNA was completely degraded within the first week of EDGE fixation at 25 °C. EDGE fixation induces complete PERV genetic material degradation in porcine aortic heart valves. This suggests that epoxy compounds may be alternatively used in the preparation of bioprosthetic heart valves in future.

  7. Chromium Ions Improve Moisure Resistance of Epoxy Resins

    NASA Technical Reports Server (NTRS)

    St. Clair, A. K.; St. Clair, T. L.; Stoakley, D. M.; Singh, J. J.; Sprinkle, D. R.

    1986-01-01

    Broad spectrum of thermosetting epoxy resins used on commercial and military aircraft, primarily as composite matrices and adhesives. In new technique, chromium-ion containing epoxy with improved resistance to moisture produced where chromium ions believed to prevent absorption of water molecules by coordinating themselves to hydroxyl groups on epoxy chain. Anticipated that improved epoxy formulation useful as composite matrix resin, adhesive, or casting resin for applications on commercial and advanced aircraft. Improvement made without sacrifice in mechanical properties of polymer.

  8. Synthesis and Structure Property Studies of Toughened Epoxy Resins via Functionalized Polysiloxanes. Friction and Wear Studies.

    DTIC Science & Technology

    1987-03-30

    TFP) siloxane and of ATBN and CTBN rubber modified epoxies were previously reported,,[1]. There was no significant evidence that the low surface energy...siloxane- modified epoxies reduced friction compared with the unmodified epoxy or the ATBN and CTBN modified epoxies. The reduction in wear noted for...is for the control, but their elastic moduli are lower. The CTBN samples from the previous work also had higher wear rates at the 5 percent level. It

  9. Effect of nanoparticles dispersion on viscoelastic properties of epoxy-zirconia polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Singh, Sushil Kumar; Kumar, Abhishek; Jain, Anuj

    2018-03-01

    In the present work zirconia-nanoparticles were dispersed in epoxy matrix to form epoxy-zirconia polymer nanocomposites using ultrasonication and viscoelastic properties of nanocomposites were investigated. For the same spherical zirconia-nanoparticles (45 nm) were dispersed in weight fraction of 2, 4, 6 and 8 % to reinforce the epoxy. DMA results show the significant enhancement in viscoelastic properties with the dispersion of zirconia nanoparticles in the epoxy matrix. The value of storage modulus and glass transition temperature increases from 179 MPa (pristine) to 225 MPa (6 wt.% ZrO2) and 61 °C (pristine) to 70 °C (6 wt.% ZrO2) respectively with the dispersion of zirconia nanoparticles in the epoxy.

  10. Technology of civil usage of composites. [in commercial aircraft structures

    NASA Technical Reports Server (NTRS)

    Kemp, D. E.

    1977-01-01

    The paper deals with the use of advanced composites in structural components of commercial aircraft. The need for testing the response of a material system to service environment is discussed along with methods for evaluating design and manufacturing aspects of a built-up structure under environmental conditions and fail-safe (damage-tolerance) evaluation of structures. Crashworthiness aspects, the fire-hazard potential, and electrical damage of composite structures are considered. Practical operational experience with commercial aircraft is reviewed for boron/epoxy foreflaps, Kevlar/epoxy fillets and fairings, graphite/epoxy spoilers, graphite/polysulfone spoilers, graphite/epoxy floor posts, boron/aluminum aft pylon skin panels, graphite/epoxy engine nose cowl outer barrels, and graphite/epoxy upper aft rudder segments.

  11. Adhesion at the interface in cured graphite fiber epoxy-amine resin composites

    NASA Technical Reports Server (NTRS)

    Needles, Howard L.; Alger, Kenneth W.; Okamoto, Robert

    1987-01-01

    The effect of high temperature curing on the interface between unsized or epoxy-sized graphite fiber tow and epoxy-amine resin was examined by scanning electron microscopy of compression and freeze fractured specimens. Little or no adhesion was found between the unsized graphite fiber tows and the epoxy-amine resin on curing at 165 C for 17 hrs. Epoxy-sized graphite fibers showed a similar lack of adhesion between the fiber tows and the epoxy-amine resin at 3 and 17 hr cures, although good penetration of the resin into the sized fiber tows had occurred. Interfacial bond strengths for the composites could not be effectively measured by compression fracture of specimens.

  12. Epoxy based nanocomposites with fully exfoliated unmodified clay: mechanical and thermal properties.

    PubMed

    Li, Binghai; Zhang, Xiaohong; Gao, Jianming; Song, Zhihai; Qi, Guicun; Liu, Yiqun; Qiao, Jinliang

    2010-09-01

    The unmodified clay has been fully exfoliated in epoxy resin with the aid of a novel ultrafine full-vulcanized powdered rubber. Epoxy/rubber/clay nanocomposites with exfoliated morphology have been successfully prepared. The microstructures of the nanocomposites were characterized by means of X-ray diffraction and transmission electron microscopy. It was found that the unmodified clay was fully exfoliated and uniformly dispersed in the resulting nanocomposite. Characterizations of mechanical properties revealed that the impact strength of this special epoxy/rubber/clay nanocomposite increased up 107% over the neat epoxy resin. Thermal analyses showed that thermal stability of the nanocomposite was much better than that of epoxy nanocomposite based on organically modified clay.

  13. A study of the effects of long-term exposure to fuels and fluids on the behavior of advanced composite materials

    NASA Technical Reports Server (NTRS)

    Tanimoto, E. Y.

    1981-01-01

    The periodic testing and evaluation of graphite/epoxy and Kevlar/epoxy material systems after subjecting test specimens to prolonged exposure to several laboratory-controlled environments deemed typical of normal aircraft operations is discussed. It is noted that specimen immersion in water or water-based fluids resulted in the greatest effect on the mechanical properties tested. Also, the environmental fluids showed a tendency to affect Kevlar/epoxy systems at an earlier exposure period than the graphite/epoxy systems. Results also indicate mechanical property strength retention generally being lower for the Kevlar/epoxy systems when compared to the corresponding graphite/epoxy systems in similar environments, after prolonged exposure.

  14. Mechanical and thermal properties of MoS2 reinforced epoxy nanocomposites

    NASA Astrophysics Data System (ADS)

    Madeshwaran, S. R.; Jayaganthan, R.; Velmurugan, R.; Gupta, N. K.; Manzhirov, A. V.

    2018-04-01

    The effects of molybdenum disulfide (MoS2) on thermal expansion and mechanical properties of epoxy composites were investigated. MoS2 nanosheets were exfoliated by ultra-sonication and reinforced into epoxy as nanofiller by mechanical stirring. Transmission electron microscopy observations demonstrated that MoS2 exhibited better dispersion in epoxy matrix. Thermal expansion measured by dilatometer has revealed that increasing MoS2 fractioninepoxy matrix significantly reduced the coefficient of thermal expansion (CTE). The 0.5wt% MoS2 incorporated epoxy composites shows 35.8% reduction in CTE as compared to neat epoxy. The addition of small fraction of MoS2(0.1wt%) in the composites increased the tensile and flexural strength 39.2% and 9.0% respectively. The glass transition temperature (Tg ) of 0.1wt% MoS2 incorporated epoxy composites shows 7.39% increase in Tg .

  15. Enhancing Mechanical and Thermal Properties of Epoxy Nanocomposites via Alignment of Magnetized SiC Whiskers.

    PubMed

    Townsend, James; Burtovyy, Ruslan; Aprelev, Pavel; Kornev, Konstantin G; Luzinov, Igor

    2017-07-12

    This research is focused on the fabrication and properties of epoxy nanocomposites containing magnetized SiC whiskers (MSiCWs). To this end, we report an original strategy for fabrication of magnetically active SiCWs by decorating the whiskers with magnetic (iron oxide) nanoparticles via polymer-polymer (poly(acrylic acid)/poly(2-vinyl pyridine)) complexation. The obtained whiskers demonstrated a substantial magnetic response in the polymerizing epoxy resin, with application of only a 20 mT (200 G) magnetic field. We also found that the whiskers chemically reacted with the epoxy resin, causing formation of an extended interphase near the boundary of the whiskers. The SiC whiskers oriented with the magnetic field demonstrated positive effects on the behavior of epoxy-based nanocomposites. Namely, the aligned MSiCWs enhanced the thermomechanical properties of the materials significantly above that of the neat epoxy and epoxy nanocomposite, with randomly oriented whiskers.

  16. Physical aging and its influence on the reliability of network epoxies and epoxy-matrix composites

    NASA Technical Reports Server (NTRS)

    Heinemann, K.

    1983-01-01

    The matrix-dominated physical and mechanical properties of a carbon fiber reinforced epoxy composite and a neat epoxy resin were found to be affected by sub-Tg annealing in nitrogen and dark atmosphere. Postcured specimens of Thornel 300 carbon-fiber/Fiberite 934 epoxy as well as Fiberite 934 epoxy resin were quenched from above Tg and given annealing at 140 C, 110 C, or 80 C, for time up to one-hundred thousand minutes. No weight loss was observed during annealing at these temperatures. Significant variations were found in density, modulus, hardness, damping, moisture absorption ability, thermal expansivity. Moisture-epoxy interactious were also studied. The kinetics of aging as well as the molecular aggregation during this densification process were monitored by differential scanning calorimetry, dynamic mechanical analysis, density gradient column, microhardness tester, Instron, and solid-state nuclear magnetic resonance spectroscopy.

  17. [The research of biodegradation of a composite material used in reconstructive and reparative surgery of maxillofacial area].

    PubMed

    Malanchuk, V O; Astapenko, O O; Halatenko, N A; Rozhnova, R A

    2013-09-01

    Dates about the research of biodegradation of epoxy-polyurethane composite material used in reconstructive and reparative surgery of maxillofacial area are reflected in the article. Was founded: 1) notable biodegradation of species from epoxy-polyurethane composition in the term of observation up to 6 months was not founded. That testifies their preservation of physical and mechanical properties. 2) founded, that in species from epoxy-polyurethane composition, which contain levamisole, processes of biodegradation are faster then in species from pure epoxy-polyurethane composition and in species from epoxy-polyurethane composition with hydroxyapatite; 3) material from epoxy-polyurethane composition, which contains levamisole and hydroxyapatite, stays in biological environment in small quantity of petty fragments during the incubation in term of 2 years. So, it biodegrades practically totally. Authors suggest on the basis of achieved information, that the use of epoxy-polyurethane constructions that biodegrade, is pertinently in reconstructive maxillofacial surgery.

  18. 21 CFR 177.2280 - 4,4′-Isopropyl-idenedi-phenol-epichloro-hydrin thermo-setting epoxy resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... thermo-setting epoxy resins. 177.2280 Section 177.2280 Food and Drugs FOOD AND DRUG ADMINISTRATION...,4′-Isopropyl-idenedi-phenol-epichloro-hydrin thermo-setting epoxy resins. 4,4′-Isopropylidenediphenol-epichlo-rohydrin thermosetting epoxy resins may be safely used as articles or components of...

  19. 21 CFR 175.380 - Xylene-formaldehyde resins condensed with 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-isopropylidenediphenol-epichlorohydrin epoxy resins. 175.380 Section 175.380 Food and Drugs FOOD AND DRUG ADMINISTRATION... Xylene-formaldehyde resins condensed with 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins. The...′-isopropylidenediphenol-epichlorohydrin epoxy resins, to which may have been added certain optional adjuvant substances...

  20. 21 CFR 177.2280 - 4,4′-Isopropyl-idenedi-phenol-epichloro-hydrin thermo-setting epoxy resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... thermo-setting epoxy resins. 177.2280 Section 177.2280 Food and Drugs FOOD AND DRUG ADMINISTRATION...,4′-Isopropyl-idenedi-phenol-epichloro-hydrin thermo-setting epoxy resins. 4,4′-Isopropylidenediphenol-epichlo-rohydrin thermosetting epoxy resins may be safely used as articles or components of...

  1. 21 CFR 177.2280 - 4,4′-Isopropyl-idenedi-phenol-epichloro-hydrin thermo-setting epoxy resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... thermo-setting epoxy resins. 177.2280 Section 177.2280 Food and Drugs FOOD AND DRUG ADMINISTRATION...-epichloro-hydrin thermo-setting epoxy resins. 4,4′-Isopropylidenediphenol-epichlo-rohydrin thermosetting epoxy resins may be safely used as articles or components of articles intended for repeated use in...

  2. 21 CFR 177.2280 - 4,4′-Isopropyl-idenedi-phenol-epichloro-hydrin thermo-setting epoxy resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... thermo-setting epoxy resins. 177.2280 Section 177.2280 Food and Drugs FOOD AND DRUG ADMINISTRATION...,4′-Isopropyl-idenedi-phenol-epichloro-hydrin thermo-setting epoxy resins. 4,4′-Isopropylidenediphenol-epichlo-rohydrin thermosetting epoxy resins may be safely used as articles or components of...

  3. 21 CFR 175.380 - Xylene-formaldehyde resins condensed with 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...-isopropylidenediphenol-epichlorohydrin epoxy resins. 175.380 Section 175.380 Food and Drugs FOOD AND DRUG ADMINISTRATION... Xylene-formaldehyde resins condensed with 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins. The...′-isopropylidenediphenol-epichlorohydrin epoxy resins, to which may have been added certain optional adjuvant substances...

  4. 21 CFR 177.2280 - 4,4′-Isopropyl-idenedi-phenol-epichloro-hydrin thermo-setting epoxy resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... thermo-setting epoxy resins. 177.2280 Section 177.2280 Food and Drugs FOOD AND DRUG ADMINISTRATION...,4′-Isopropyl-idenedi-phenol-epichloro-hydrin thermo-setting epoxy resins. 4,4′-Isopropylidenediphenol-epichlo-rohydrin thermosetting epoxy resins may be safely used as articles or components of...

  5. 21 CFR 175.380 - Xylene-formaldehyde resins condensed with 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...-isopropylidenediphenol-epichlorohydrin epoxy resins. 175.380 Section 175.380 Food and Drugs FOOD AND DRUG ADMINISTRATION... Xylene-formaldehyde resins condensed with 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins. The...′-isopropylidenediphenol-epichlorohydrin epoxy resins, to which may have been added certain optional adjuvant substances...

  6. 21 CFR 175.380 - Xylene-formaldehyde resins condensed with 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...-isopropylidenediphenol-epichlorohydrin epoxy resins. 175.380 Section 175.380 Food and Drugs FOOD AND DRUG ADMINISTRATION... Xylene-formaldehyde resins condensed with 4,4′-isopropylidenediphenol-epichlorohydrin epoxy resins. The...′-isopropylidenediphenol-epichlorohydrin epoxy resins, to which may have been added certain optional adjuvant substances...

  7. Heat-Conducting Anchors for Thermocouples

    NASA Technical Reports Server (NTRS)

    Macdavid, Kenton S.

    1987-01-01

    Metal particles in adhesive aid heat transfer. Aluminum caps containing silver-filled epoxy used as high-thermal-conductance anchors for thermocouples, epoxy providing thermal path between mounting surfaces and thermocouple measuring junctions. Normally, epoxy-filled aluminum caps used when measuring steady-state temperatures. Silver-filled epoxy used when thermocouple not isolated electrically from surface measured.

  8. Carbon nanotube modification using gum arabic and its effect on the dispersion and tensile properties of carbon nanotubes/epoxy nanocomposites.

    PubMed

    Kim, Man Tae; Park, Ho Seok; Hui, David; Rhee, Kyong Yop

    2011-08-01

    In this study, the effects of a MWCNT treatment on the dispersion of MWCNTs in aqueous solution and the tensile properties of MWCNT/epoxy nanocomposites were investigated. MWCNTs were treated using acid and gum arabic, and MWCNT/epoxy nanocomposites were fabricated with 0.3 wt.% unmodified, oxidized and gum-treated MWCNTs. The dispersion states of the unmodified, oxidized, and Gum-treated MWCNTs were characterized in distilled water. The tensile strengths and elastic modulus of the three nanocomposites were determined and compared. The results indicated that the gum treatment produced better dispersion of the MWCNTs in distilled water and that gum-treated MWCNT/epoxy nanocomposites had a better tensile strength and elastic modulus than did the unmodified and acid-treated MWCNT/epoxy nanocomposites. Scanning electron microscope examination of the fracture surface showed that the improved tensile properties of the gum-treated MWCNT/epoxy nanocomposites were attributed to the improved dispersion of MWCNTs in the epoxy and to interfacial bonding between nanotubes and the epoxy matrix.

  9. Incorporation of Fe3O4/CNTs nanocomposite in an epoxy coating for corrosion protection of carbon steel

    NASA Astrophysics Data System (ADS)

    Pham, Gia Vu; Truc Trinh, Anh; To, Thi Xuan Hang; Duong Nguyen, Thuy; Trang Nguyen, Thu; Hoan Nguyen, Xuan

    2014-09-01

    In this study Fe3O4/CNTs composite with magnetic property was prepared by attaching magnetic nanoparticles (Fe3O4) to carbon nanotubes (CNTs) by hydrothermal method. The obtained Fe3O4/CNTs composite was characterized by Fourier transform infrared (FTIR) spectroscopy, powder x-ray diffraction and transmission electron microscopy. The Fe3O4/CNTs composite was then incorporated into an epoxy coating at concentration of 3 wt%. Corrosion protection of epoxy coating containing Fe3O4/CNTs composite was evaluated by electrochemical impedance spectroscopy and adhesion measurement. The impedance measurements show that Fe3O4/CNTs composite enhanced the corrosion protection of epoxy coating. The corrosion resistance of the carbon steel coated by epoxy coating containing Fe3O4/CNTs composite was significantly higher than that of carbon steel coated by clear epoxy coating and epoxy coating containing CNTs. FE-SEM photographs of fracture surface of coatings showed good dispersion of Fe3O4/CNTs composite in the epoxy matrix.

  10. Characterization and Curing Kinetics of Epoxy/Silica Nano-Hybrids

    PubMed Central

    Yang, Cheng-Fu; Wang, Li-Fen; Wu, Song-Mao; Su, Chean-Cheng

    2015-01-01

    The sol-gel technique was used to prepare epoxy/silica nano-hybrids. The thermal characteristics, curing kinetics and structure of epoxy/silica nano-hybrids were studied using differential scanning calorimetry (DSC), 29Si nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM). To improve the compatibility between the organic and inorganic phases, a coupling agent was used to modify the diglycidyl ether of bisphenol A (DGEBA) epoxy. The sol-gel technique enables the silica to be successfully incorporated into the network of the hybrids, increasing the thermal stability and improving the mechanical properties of the prepared epoxy/silica nano-hybrids. An autocatalytic mechanism of the epoxy/SiO2 nanocomposites was observed. The low reaction rate of epoxy in the nanocomposites is caused by the steric hindrance in the network of hybrids that arises from the consuming of epoxide group in the network of hybrids by the silica. In the nanocomposites, the nano-scale silica particles had an average size of approximately 35 nm, and the particles were well dispersed in the epoxy matrix, according to the TEM images. PMID:28793616

  11. Improvement of Mechanical and Dielectric Properties of Epoxy Resin Using CNTs/ZnO Nanocomposite.

    PubMed

    Vu, Pham Gia; Truc, Trinh Anh; Chinh, Nguyen Thuy; Tham, Do Quang; Trung, Tran Huu; Oanh, Vu Ke; Hang, To Thi Xuan; Olivier, Marjorie; Hoang, Thai

    2018-04-01

    In this study, carbon nanotubes (CNTs)/ZnO composites had been prepared using the sol-gel method and then incorporated into an epoxy resin for reinforcement of mechanical and electrical properties. Fourier Transform Infrared (FTIR), X-ray diffraction (XRD) Field Emission Scanning Electron Microscope (FE-SEM) analyses show that the ZnO nanoparticles deposited on CNTs were crystallized in a hexagonal wurtzite structure. Average particle size of ZnO deposited on the CNT was about 8 nm. The mechanical and dielectric properties of epoxy containing CNTs/ZnO were investigated in comparison to epoxy resin and epoxy resin containing only CNT or ZnO nanoparticles. The results indicated that tensile strength and elongation at break of the nanocomposite were substantially improved with the presence of CNTs/ZnO at the equal volume. The DSC analysis associate with the dielectric results shows that the behavior of epoxy/CNTs/ZnO is identical to epoxy/ZnO composite, and the CNTs is essential to the distributed arrangement of ZnO in the epoxy resin.

  12. Ultrasound aided smooth dispensing for high viscoelastic epoxy in microelectronic packaging.

    PubMed

    Chen, Yun; Li, Han-Xiong; Shan, Xiuyang; Gao, Jian; Chen, Xin; Wang, Fuliang

    2016-01-01

    Epoxy dispensing is one of the most critical processes in microelectronic packaging. However, due its high viscoelasticity, dispensing of epoxy is extremely difficult, and a lower viscoelasticity epoxy is desired to improve the process. In this paper, a novel method is proposed to achieve a lowered viscoelastic epoxy by using ultrasound. The viscoelasticity and molecular structures of the epoxies were compared and analyzed before and after experimentation. Different factors of the ultrasonic process, including power, processing time and ultrasonic energy, were studied in this study. It is found that elasticity is more sensitive to ultrasonic processing while viscosity is little affected. Further, large power and long processing time can minimize the viscoelasticity to ideal values. Due to the reduced loss modulus and storage modulus after ultrasonic processing, smooth dispensing is demonstrated for the processed epoxy. The subsequently color temperature experiments show that ultrasonic processing will not affect LED's lighting. It is clear that the ultrasonic processing will have good potential to aide smooth dispensing for high viscoelastic epoxy in electronic industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Imide modified epoxy matrix resins

    NASA Technical Reports Server (NTRS)

    Scola, D. A.; Pater, R. H.

    1981-01-01

    High char yield epoxy using novel bisimide amines (BIA's) as curing agents with a state of the art epoxy resin was developed. Stoichiometric quantities of the epoxy resin and the BIA's were studied to determine the cure cycle required for preparation of resin specimens. The bisimide cured epoxies were designated IME's (imide modified epoxy). The physical, thermal and mechanical properties of these novel resins were determined. The levels of moisture absorption exhibited by the bisimide amine cured expoxies (IME's) were considerably lower than the state of the art epoxies. The strain-to-failure of the control resin system was improved 25% by replacement of DDS with 6F-DDS. Each BIA containing resin exhibited twice the char yield of the control resin MY 720/DDS. Graphite fiber reinforced control (C) and IME resins were fabricated and characterized. Two of the composite systems showed superior properties compared to the other Celion 6000/IME composite systems and state of the art graphite epoxy systems. The two systems exhibited excellent wet shear and flexural strengths and moduli at 300 and 350 F.

  14. Performance of 2G-HTS REBCO undulator coils impregnated epoxies mixed with different fillers

    DOE PAGES

    Kesgin, Ibrahim; Hasse, Quentin; Ivanyushenkov, Yury; ...

    2016-12-12

    The use of second-generation high-temperature superconducting-coated conductors enables an enhancement of the performance of undulator magnets. However, preventing the motion of the wire and providing sufficient conduction cooling to the winding stacks have remained challenges. In this study, we have evaluated epoxy impregnation techniques to address these issues. Epoxy resin was prepared with different nanopowders and the effect on the performance of the undulator coil pack was investigated. All epoxy impregnated coils showed smaller n values and some degree of deterioration of the critical current I c. The I c degradation was most pronounced for epoxy mixed with high aspectmore » ratio multiwalled carbon nanotubes (MWCNTs). It has been found that the crack formation in the epoxy results in plastic deformation of the copper stabilizer layer, which causes the underlying ceramic REBCO superconducting layer to crack resulting in degradation of the superconducting tape performance. As a result, careful adjustment of epoxy thickness surrounding the superconductor and the powder ratio in the epoxy eliminate the performance degradation.« less

  15. Thermal properties of oil palm nano filler/kenaf reinforced epoxy hybrid nanocomposites

    NASA Astrophysics Data System (ADS)

    Saba, N.; Paridah, M. T.; Abdan, K.; Ibrahim, N. A.

    2016-11-01

    The aim of this research study was to fabricate nano oil palm empty fruit bunch (OPEFB)/kenaf/epoxy hybrid nanocomposites and to make comparative study on the thermal properties of nano OPEFB/kenaf/epoxy hybrid nanocomposites with the montmorillonite (MMT)/kenaf/epoxy hybrid nanocomposites and organically modified MMT (OMMT)/kenaf/epoxy hybrid nanocomposites. Epoxy based kenaf hybrid nanocomposites was prepared by dispersing the nano filler (nano OPEFB filler, MMT, OMMT) at 3% loading through high speed mechanical stirrer followed by hand lay-up technique. Thermal properties of hybrid nanocomposites were analyzed through thermogravimetry analyzer (TGA), and differential scanning calorimetry (DSC). Obtained results specified that addition of nano OPEFB filler improves the thermal stability and char yield of kenaf/epoxy composites. Furthermore, the increase in decomposition temperature by the nano OPEFB filler was quite comparable to the MMT/kenaf/epoxy but relatively less than OMMT/kenaf/epoxy hybrid nanocomposites. We concluded from overall consequences that the nano OPEFB filler can be used as the promising and innovative alternative of existing expensive nano filler, with relatively lesser impact on the environment having marked pronounced impact on the construction, automotive, aerospace, electronics and semiconducting sectors as future industries based on bio-wastes with satisfactory light weight and thermal stability on other side.

  16. Preparation and optical properties of indium tin oxide/epoxy nanocomposites with polyglycidyl methacrylate grafted nanoparticles.

    PubMed

    Tao, Peng; Viswanath, Anand; Schadler, Linda S; Benicewicz, Brian C; Siegel, Richard W

    2011-09-01

    Visibly highly transparent indium tin oxide (ITO)/epoxy nanocomposites were prepared by dispersing polyglycidyl methacrylate (PGMA) grafted ITO nanoparticles into a commercial epoxy resin. The oleic acid stabilized, highly crystalline, and near monodisperse ITO nanoparticles were synthesized via a nonaqueous synthetic route with multigram batch quantities. An azido-phosphate ligand was synthesized and used to exchange with oleic acid on the ITO surface. The azide terminal group allows for the grafting of epoxy resin compatible PGMA polymer chains via Cu(I) catalyzed alkyne-azide "click" chemistry. Transmission electron microscopy (TEM) observation shows that PGMA grafted ITO particles were homogeneously dispersed within the epoxy matrix. Optical properties of ITO/epoxy nanocomposites with different ITO concentrations were studied with an ultraviolet-visible-near-infrared (UV-vis-NIR) spectrometer. All the ITO/epoxy nanocomposites show more than 90% optical transparency in the visible light range and absorption of UV light from 300 to 400 nm. In the near-infrared region, ITO/epoxy nanocomposites demonstrate low transmittance and the infrared (IR) transmission cutoff wavelength of the composites shifts toward the lower wavelength with increased ITO concentration. The ITO/epoxy nanocomposites were applied onto both glass and plastic substrates as visibly transparent and UV/IR opaque optical coatings.

  17. Fabrication of tough epoxy with shape memory effects by UV-assisted direct-ink write printing.

    PubMed

    Chen, Kaijuan; Kuang, Xiao; Li, Vincent; Kang, Guozheng; Qi, H Jerry

    2018-03-07

    3D printing of epoxy-based shape memory polymers with high mechanical strength, excellent thermal stability and chemical resistance is highly desirable for practical applications. However, thermally cured epoxy in general is difficult to print directly. There have been limited numbers of successes in printing epoxy but they suffer from relatively poor mechanical properties. Here, we present an ultraviolet (UV)-assisted 3D printing of thermally cured epoxy composites with high tensile toughness via a two-stage curing approach. The ink containing UV curable resin and epoxy oligomer is used for UV-assisted direct-ink write (DIW)-based 3D printing followed by thermal curing of the part containing the epoxy oligomer. The UV curable resin forms a network by photo polymerization after the 1st stage of UV curing, which can maintain the printed architecture at an elevated temperature. The 2nd stage thermal curing of the epoxy oligomer yields an interpenetrating polymer network (IPN) composite with highly enhanced mechanical properties. It is found that the printed IPN epoxy composites enabled by the two-stage curing show isotropic mechanical properties and high tensile toughness. We demonstrated that the 3D-printed high-toughness epoxy composites show good shape memory properties. This UV-assisted DIW 3D printing via a two-stage curing method can broaden the application of 3D printing to fabricate thermoset materials with enhanced tensile toughness and tunable properties for high-performance and functional applications.

  18. Green Preparation of Epoxy/Graphene Oxide Nanocomposites Using a Glycidylamine Epoxy Resin as the Surface Modifier and Phase Transfer Agent of Graphene Oxide.

    PubMed

    Tang, Xinlei; Zhou, Yang; Peng, Mao

    2016-01-27

    In studies of epoxy/graphene oxide (GO) nanocomposites, organic solvents are commonly used to disperse GO, and vigorous mechanical processes and complicated modification of GO are usually required, increasing the cost and hindering the development and application of epoxy nanocomposites. Here, we report a green, facile, and efficient method of preparing epoxy/GO nanocomposites. When triglycidyl para-aminophenol (TGPAP), a commercially available glycidyl amine epoxy resin with one tertiary amine group per molecule, is used as both the surface modifier and phase transfer agent of GO, GO can be directly and rapidly transferred from water to diglycidyl ether of bisphenol A and other types of epoxy resins by manual stirring under ambient conditions, whereas GO cannot be transferred to these epoxy resins in the absence of TGPAP. The interaction between TGPAP and GO and the effect of the TGPAP content on the dispersion of GO in the epoxy matrix were investigated systematically. Superior dispersion and exfoliation of GO nanosheets and remarkably improved mechanical properties, including tensile and flexural properties, toughness, storage modulus, and microhardness, of the epoxy/GO nanocomposites with a suitable amount of TGPAP were demonstrated. This method is organic-solvent-free and technically feasible for large-scale preparation of high-performance nanocomposites; it opens up new opportunities for exploiting the unique properties of graphene or even other nanofillers for a wide range of applications.

  19. The effects of MWNT on thermal conductivity and thermal mechanical properties of epoxy

    NASA Astrophysics Data System (ADS)

    Ismadi, A. I.; Othman, R. N.

    2017-12-01

    Multiwall nanotube (MWNT) was used as filler in various studies to improve thermal conductivity and mechanical properties of epoxy. Present study varied different weight loading (0, 0.1 %, 0.5 %, 1 %, 1.5 %, 3 % and 5 %) of MWNT in order to observe the effects on the epoxy. Nanocomposite was analyzed by dynamic-mechanical thermal analyser (DMTA) and KD2 pro analyzer. DMTA measured storage modulus (E') and glass transition temperature (Tg) of the nanocomposite. Result showed that Tg value of neat epoxy is higher than all MWNT epoxy nanocomposite. Tg values drop from 81.55 °C (neat epoxy) to 65.03 °C (at 0.1 wt%). This may happen due to the agglomeration of MWNT in the epoxy. However, Tg values increases with the increase of MWNT wt%. Tg values increased from 65.03 °C to 78.53 °C at 1 wt%. Increment of storage modulus (E') at 3 °C (glassy region) was observed as the MWNT loading increases. Maximum value of E' during glassy region was observed to be at 5 wt% with (7.26±0.7) E+08 Pa compared to neat epoxy. On the contrary, there is slight increased and slight decreased with E' values at 100 °C (rubbery region) for all nanocomposite. Since epoxy exhibits low thermal conductivity properties, addition of MWNT has enhanced the properties. Optimum value of thermal conductivity was observed at 3 wt%. The values increased up to 9.03 % compared to neat epoxy. As expected, the result showed decrease value in thermal conductivity at 5 wt% as a result of agglomeration of MWNT in the epoxy.

  20. Three-Dimensional Graphene Foam Induces Multifunctionality in Epoxy Nanocomposites by Simultaneous Improvement in Mechanical, Thermal, and Electrical Properties.

    PubMed

    Embrey, Leslie; Nautiyal, Pranjal; Loganathan, Archana; Idowu, Adeyinka; Boesl, Benjamin; Agarwal, Arvind

    2017-11-15

    Three-dimensional (3D) macroporous graphene foam based multifunctional epoxy composites are developed in this study. Facile dip-coating and mold-casting techniques are employed to engineer microstructures with tailorable thermal, mechanical, and electrical properties. These processing techniques allow capillarity-induced equilibrium filling of graphene foam branches, creating epoxy/graphene interfaces with minimal separation. Addition of 2 wt % graphene foam enhances the glass transition temperature of epoxy from 106 to 162 °C, improving the thermal stability of the polymer composite. Graphene foam aids in load-bearing, increasing the ultimate tensile strength by 12% by merely 0.13 wt % graphene foam in an epoxy matrix. Digital image correlation (DIC) analysis revealed that the graphene foam cells restrict and confine the deformation of the polymer matrix, thereby enhancing the load-bearing capability of the composite. Addition of 0.6 wt % graphene foam also enhances the flexural strength of the pure epoxy by 10%. A 3D network of graphene branches is found to suppress and deflect the cracks, arresting mechanical failure. Dynamic mechanical analysis (DMA) of the composites demonstrated their vibration damping capability, as the loss tangent (tan δ) jumps from 0.1 for the pure epoxy to 0.24 for ∼2 wt % graphene foam-epoxy composite. Graphene foam branches also provide seamless pathways for electron transfer, which induces electrical conductivity exceeding 450 S/m in an otherwise insulator epoxy matrix. The epoxy-graphene foam composite exhibits a gauge factor as high as 4.1, which is twice the typical gauge factor for the most common metals. Simultaneous improvement in thermal, mechanical, and electrical properties of epoxy due to 3D graphene foam makes epoxy-graphene foam composite a promising lightweight and multifunctional material for aiding load-bearing, electrical transport, and motion sensing in aerospace, automotive, robotics, and smart device structures.

  1. 40 CFR 721.9270 - Reaction product of epoxy with anhydride and glycerol and glycol.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reaction product of epoxy with... Significant New Uses for Specific Chemical Substances § 721.9270 Reaction product of epoxy with anhydride and... substance identified generically as reaction product of epoxy with anhydride and glycerol and glycol (PMN P...

  2. 40 CFR 721.9270 - Reaction product of epoxy with anhydride and glycerol and glycol.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reaction product of epoxy with... Significant New Uses for Specific Chemical Substances § 721.9270 Reaction product of epoxy with anhydride and... substance identified generically as reaction product of epoxy with anhydride and glycerol and glycol (PMN P...

  3. 40 CFR 721.9270 - Reaction product of epoxy with anhydride and glycerol and glycol.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reaction product of epoxy with... Significant New Uses for Specific Chemical Substances § 721.9270 Reaction product of epoxy with anhydride and... substance identified generically as reaction product of epoxy with anhydride and glycerol and glycol (PMN P...

  4. 40 CFR 721.9270 - Reaction product of epoxy with anhydride and glycerol and glycol.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction product of epoxy with... Significant New Uses for Specific Chemical Substances § 721.9270 Reaction product of epoxy with anhydride and... substance identified generically as reaction product of epoxy with anhydride and glycerol and glycol (PMN P...

  5. 40 CFR 721.9270 - Reaction product of epoxy with anhydride and glycerol and glycol.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of epoxy with... Significant New Uses for Specific Chemical Substances § 721.9270 Reaction product of epoxy with anhydride and... substance identified generically as reaction product of epoxy with anhydride and glycerol and glycol (PMN P...

  6. Are epoxy-wood bonds durable enough?

    Treesearch

    Charles R. Frihart

    2005-01-01

    An important aspect of any adhesive bond is that the bond maintains its integrity during its end use. Epoxies form highly durable bonds with many substrates but are usually not considered capable of forming completely durable bonds with wood by standard accelerated tests. However, epoxies are sold for wood boat construction, and some data have indicated that epoxies...

  7. Toughened epoxy resin system and a method thereof

    DOEpatents

    Janke, C.J.; Dorsey, G.F.; Havens, S.J.; Lopata, V.J.

    1998-03-10

    Mixtures of epoxy resins with cationic initiators are curable under high energy ionizing radiation such as electron beam radiation, X-ray radiation, and gamma radiation. The composition of this process consists of an epoxy resin, a cationic initiator such as a diaryliodonium or triarylsulfonium salt of specific anions, and a toughening agent such as a thermoplastic, hydroxy-containing thermoplastic oligomer, epoxy-containing thermoplastic oligomer, reactive flexibilizer, rubber, elastomer, or mixture thereof. Cured compositions have high glass transition temperatures, good mechanical properties, and good toughness. These properties are comparable to those of similar thermally cured epoxies.

  8. Toughened epoxy resin system and a method thereof

    DOEpatents

    Janke, Christopher J.; Dorsey, George F.; Havens, Stephen J.; Lopata, Vincent J.

    1998-01-01

    Mixtures of epoxy resins with cationic initiators are curable under high energy ionizing radiation such as electron beam radiation, X-ray radiation, and gamma radiation. The composition of this process consists of an epoxy resin, a cationic initiator such as a diaryliodonium or triarylsulfonium salt of specific anions, and a toughening agent such as a thermoplastic, hydroxy-containing thermoplastic oligomer, epoxy-containing thermoplastic oligomer, reactive flexibilizer, rubber, elastomer, or mixture thereof. Cured compositions have high glass transition temperatures, good mechanical properties, and good toughness. These properties are comparable to those of similar thermally cured epoxies.

  9. Mechanical Reinforcement of Epoxy Composites with Carbon Fibers and HDPE

    NASA Astrophysics Data System (ADS)

    He, R.; Chang, Q.; Huang, X.; Li, J.

    2018-01-01

    Silanized carbon fibers (CFs) and a high-density polyethylene with amino terminal groups (HDPE) were introduced into epoxy resins to fabricate high-performance composites. A. mechanical characterization of the composites was performed to investigate the effect of CFs in cured epoxy/HDPE systems. The composites revealed a noticeable improvement in the tensile strength, elongation at break, flexural strength, and impact strength in comparison with those of neat epoxy and cured epoxy/HDPE systems. SEM micrographs showed that the toughening effect could be explained by yield deformations, phase separation, and microcracking.

  10. Antibacterial activities effectuated by co-continuous epoxy-based polymer materials.

    PubMed

    Kubo, Takuya; Yasuda, Koji; Tominaga, Yuichi; Otsuka, Koji; Hosoya, Ken

    2013-07-01

    We report antibacterial activities of the epoxy-resin-based monolithic media (epoxy monoliths) having macroporous co-continuous structure as well as hydrophobic and/or hydrophilic surface. Utilizing epoxy monoliths containing ammonium groups, the antibacterial experiments were examined using Escherichia coli. As the results, the monolithic media prepared with an epoxy monomer having nitrogen atoms clearly showed antibacterial activities, while those prepared using the monomer without nitrogen atom showed less antibacterial activities. Additionally, the quaternization of the epoxy polymers were expressed significant antibacterial activities. Further studies elucidated that the observed antibacterial activities involved the steep effect based on pH changing of solution and hydrophobic interactions by the quaternary ammonium. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Fiber-optic epoxy composite cure sensor. II. Performance characteristics

    NASA Astrophysics Data System (ADS)

    Lam, Kai-Yuen; Afromowitz, Martin A.

    1995-09-01

    The performance of a fiber-optic epoxy composite cure sensor, as previously proposed, depends on the optical properties and the reaction kinetics of the epoxy. The reaction kinetics of a typical epoxy system are presented. It is a third-order autocatalytic reaction with a peak observed in each isothermal reaction-rate curve. A model is derived to describe the performance characteristics of the epoxy cure sensor. If a composite coupon is cured at an isothermal temperature, the sensor signal can be used to predict the time when the gel point occurs and to monitor the cure process. The sensor is also shown to perform well in nonstoichiometric epoxy matrices. In addition the sensor can detect the end of the cure without calibration.

  12. Mechanical and Thermal Properties of Epoxy Composites Containing Zirconia-Impregnated Halloysite Nanotubes with Different Loadings.

    PubMed

    Kim, Suhyun; Kim, Moon Il; Shon, Minyoung; Seo, Bongkuk; Lim, Choongsun

    2018-09-01

    Epoxy resins are widely used in various industrial fields due to their low cost, good workability, heat resistance, and good mechanical strength. However, they suffer from brittleness, an issue that must be addressed for further applications. To solve this problem, additional fillers are needed to improve the mechanical and thermal properties of the resins; zirconia is one such filler. However, it has been reported that aggregation may occur in the epoxy composites as the amount of zirconia increases, preventing enhancement of the mechanical strength of the epoxy composites. Herein, to reduce the aggregation, zirconia was well dispersed on halloysite nanotubes (HNTs), which have high thermal and mechanical strength, by a conventional wet impregnation method. The HNTs were impregnated with zirconia at different loadings using zirconyl chloride octahydrate as a precursor. The mechanical and thermal strengths of the epoxy composites with these fillers were investigated. The zirconia-impregnated HNTs (Zr/HNT) were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and tunneling electron microscopy (TEM). The hardening conditions of the epoxy composites were analyzed by differential scanning calorimetry (DSC). The thermal strength of the epoxy composites was studied by thermomechanical analysis (TMA) and micro-calorimetry and the mechanical strength of the epoxy composites (flexural strength and tensile strength) was studied by using a universal testing machine (UTM). The mechanical and thermal strengths of the epoxy composites with Zr/HNT were improved compared to those of the epoxy composite with HNT, and also increased as the zirconia loading on HNT increased.

  13. Epoxy composites coating with Fe3O4 decorated graphene oxide: Modified bio-inspired surface chemistry, synergistic effect and improved anti-corrosion performance

    NASA Astrophysics Data System (ADS)

    Zhan, Yingqing; Zhang, Jieming; Wan, Xinyi; Long, Zhihang; He, Shuangjiang; He, Yi

    2018-04-01

    To obtain graphene or graphene derivatives based epoxy composite coatings with high anti-corrosion performance, the morphology of nanostructures, dispersion, and interfacial adhesion are key factors that need to be considered. We here demonstrated the bio-inspired co-modification of graphene oxide/Fe3O4 hybrid (GO-Fe3O4@ poly (DA+KH550)) and its synergistic effect on the anti-corrosion performance of epoxy coating. For this purpose, graphene oxide/Fe3O4 hybrid obtained from hydrothermal route was modified by self-polymerization between dopamine and secondary functional monomer (KH550), which led to the modified bio-inspired surface functionalization. This novel modified bio-inspired functionalization was quite distinct from conventional surface modification or decoration. Namely, abundant amino groups were introduced by modified bio-inspired functionalization, which allowed the graphene oxide/Fe3O4 hybrid to disperse well in epoxy resin and enhanced the interfacial adhesion between modified nanofiller and epoxy resin through chemical crosslinking reaction. The electrochemical impedance spectroscopy (EIS) test revealed that anti-corrosive performance of epoxy coatings was significantly enhanced by addition of 0.5 wt% modified bio-inspired functionalized GO-Fe3O4 hybrid compared with neat epoxy and other nanofillers/epoxy composite coatings. Moreover, the micro-hardness of epoxy coating was enhanced by 71.8% compared with pure epoxy coating at the same loading content. In addition, the anticorrosion mechanism of GO-Fe3O4@poly (DA+KH550) was tentatively discussed.

  14. Effect of Hygrothermal Aging on the Mechanical Properties of Fluorinated and Nonfluorinated Clay-Epoxy Nanocomposites

    PubMed Central

    Hamim, Salah U.; Singh, Raman P.

    2014-01-01

    Hydrophilic nature of epoxy polymers can lead to both reversible and irreversible/permanent changes in epoxy upon moisture absorption. The permanent changes leading to the degradation of mechanical properties due to combined effect of moisture and elevated temperature on EPON 862, Nanomer I.28E, and Somasif MAE clay-epoxy nanocomposites are investigated in this study. The extent of permanent degradation on fracture and flexural properties due to the hygrothermal aging is determined by drying the epoxy and their clay-epoxy nanocomposites after moisture absorption. Significant permanent damage is observed for fracture toughness and flexural modulus, while the extent of permanent damage is less significant for flexural strength. It is also observed that permanent degradation in Somasif MAE clay-epoxy nanocomposites is higher compared to Nanomer I.28E clay-epoxy nanocomposites. Fourier transform infrared (FTIR) spectroscopy revealed that both clays retained their original chemical structure after the absorption-desorption cycle without undergoing significant changes. Scanning electron microscopy (SEM) images of the fracture surfaces provide evidence that Somasif MAE clay particles offered very little resistance to crack propagation in case of redried specimens when compared to Nanomer I.28E counterpart. The reason for the observed higher extent of permanent degradation in Somasif MAE clay-epoxy system has been attributed to the weakening of the filler-matrix interface. PMID:27379285

  15. Effect of Hygrothermal Aging on the Mechanical Properties of Fluorinated and Nonfluorinated Clay-Epoxy Nanocomposites.

    PubMed

    Hamim, Salah U; Singh, Raman P

    2014-01-01

    Hydrophilic nature of epoxy polymers can lead to both reversible and irreversible/permanent changes in epoxy upon moisture absorption. The permanent changes leading to the degradation of mechanical properties due to combined effect of moisture and elevated temperature on EPON 862, Nanomer I.28E, and Somasif MAE clay-epoxy nanocomposites are investigated in this study. The extent of permanent degradation on fracture and flexural properties due to the hygrothermal aging is determined by drying the epoxy and their clay-epoxy nanocomposites after moisture absorption. Significant permanent damage is observed for fracture toughness and flexural modulus, while the extent of permanent damage is less significant for flexural strength. It is also observed that permanent degradation in Somasif MAE clay-epoxy nanocomposites is higher compared to Nanomer I.28E clay-epoxy nanocomposites. Fourier transform infrared (FTIR) spectroscopy revealed that both clays retained their original chemical structure after the absorption-desorption cycle without undergoing significant changes. Scanning electron microscopy (SEM) images of the fracture surfaces provide evidence that Somasif MAE clay particles offered very little resistance to crack propagation in case of redried specimens when compared to Nanomer I.28E counterpart. The reason for the observed higher extent of permanent degradation in Somasif MAE clay-epoxy system has been attributed to the weakening of the filler-matrix interface.

  16. Comparative study on Ti/Zr/V and chromate conversion treated aluminum alloys: Anti-corrosion performance and epoxy coating adhesion properties

    NASA Astrophysics Data System (ADS)

    Zhu, Wen; Li, Wenfang; Mu, Songlin; Fu, Nianqing; Liao, Zhongmiao

    2017-05-01

    In this study, a Ti/Zr/V conversion coating (TZVCC) was deposited on the surface of aluminum alloy 6063 (AA6063) as an alternative of the chromate conversion coating (CCC). Both the TZVCC treated AA6063 (TZVCC/AA6063) and CCC treated AA6063 (CCC/AA6063) were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM) and contact angle measuring device. The anti-corrosion performance of the TZVCC/AA6063 and CCC/AA6063 was evaluated by electrochemical measurements and neutral salt spray tests. It showed that both the surface roughness and surface free energy of the AA6063 were significantly increased after TZVCC treatment. The anti-corrosion performance of TZVCC/AA6063 was superior to that of CCC/AA6063. In addition, the effects of the TZVCC and CCC on the adhesion properties and anti-corrosion performance of epoxy coating applied on samples were examined by pull-off tests and electrochemical impedance spectroscopy (EIS). The dry, wet and recovery adhesive strengths of the epoxy coating on TZVCC treated samples (epoxy coated TZVCC/AA6063) were very close to those of epoxy coating on CCC treated ones (epoxy coated CCC/AA6063). The epoxy coated TZVCC/AA6063 showed better corrosion resistance than the epoxy coated CCC/AA6063 and epoxy coated AA6063.

  17. Method for Improving Acoustic Impedance of Epoxy Resins

    DTIC Science & Technology

    2010-06-11

    neoprene, ethylene propylene diene monomer ( EPDM ) and polyurethane rubbers . Typical applications of these materials encapsulate and protect acoustic...different material (e.g., rubber ) cannot be used. Thus, a hard, strong and acoustically transparent material is needed. Suitable high modulus...epoxy resin. In this method, an epoxy resin component is mixed with a rubber component. The epoxy resin component is preferably a bisphenol A

  18. Dynamic Loading Characteristics in Metals and Composites

    DTIC Science & Technology

    2009-12-01

    Armenakas and Sciammarella [6] reported experimental findings on the mechanical properties of glass fiber reinforced epoxy plates subjected to high rates... Sciammarella [6] Glass/epoxy Decrease Increase Decrease - Lifshitz [7] Angle ply glass/epoxy Increase Independent Independent - Daniel et al...Armenakas, and C. A. Sciammarella , “Response of glass-fiber-reinforced epoxy specimens to high rates of tensile loading,” Experimental Mechanics, vol

  19. A new approach to raising heat resistance of epoxy nanocomposites

    NASA Astrophysics Data System (ADS)

    Korobko, Anatoliy P.; Levakova, Irina V.; Krasheninnikov, Sergey V.

    2012-07-01

    A new approach to enhancing heat resistance of epoxy nanocomposites is offered. Complete exfoliation of montmorillonite particles into individual platelets (nanoparticles) is not sufficient condition for increasing the glass transition temperature of the epoxy nanocomposite. A much higher contribution to the increase in the heat resistance is ensured by grafting of epoxy molecular chains onto the surface of aluminosilicate platelets.

  20. Curing Effects on Interfacial Adhesion between Recycled Carbon Fiber and Epoxy Resin Heated by Microwave Irradiation

    PubMed Central

    Shimamoto, Daisuke; Hotta, Yuji

    2018-01-01

    The interfacial adhesion of recycled carbon fiber (CF) reinforced epoxy composite heated by microwave (MW) irradiation were investigated by changing the curing state of the epoxy resin. The recycled CF was recovered from the composite, which was prepared by vacuum-assisted resin transfer molding, by thermal degradation at 500 or 600 °C. Thermogravimetric analysis showed that the heating at 600 °C caused rough damage to the CF surface, whereas recycled CF recovered at 500 °C have few defects. The interfacial shear strength (IFSS) between recycled CF and epoxy resin was measured by a single-fiber fragmentation test. The test specimen was heated by MW after mixing the epoxy resin with a curing agent or pre-curing, in order to investigate the curing effects on the matrix resin. The IFSSs of the MW-irradiated samples were significantly varied by the curing state of the epoxy resin and the surface condition of recycled CF, resulting that they were 99.5 to 131.7% of oven heated samples Furthermore, rheological measurements showed that the viscosity and shrinking behaviors of epoxy resin were affected based on the curing state of epoxy resin before MW irradiation. PMID:29587422

  1. Progress toward Making Epoxy/Carbon-Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Tiano, Thomas; Roylance, Margaret; Gassner, John; Kyle, William

    2008-01-01

    A modicum of progress has been made in an effort to exploit single-walled carbon nanotubes as fibers in epoxy-matrix/fiber composite materials. Two main obstacles to such use of carbon nanotubes are the following: (1) bare nanotubes are not soluble in epoxy resins and so they tend to agglomerate instead of becoming dispersed as desired; and (2) because of lack of affinity between nanotubes and epoxy matrices, there is insufficient transfer of mechanical loads between the nanotubes and the matrices. Part of the effort reported here was oriented toward (1) functionalization of single-walled carbon nanotubes with methyl methacrylate (MMA) to increase their dispersability in epoxy resins and increase transfer of mechanical loads and (2) ultrasonic dispersion of the functionalized nanotubes in tetrahydrofuran, which was used as an auxiliary solvent to aid in dispersing the functionalized nanotubes into a epoxy resin. In another part of this effort, poly(styrene sulfonic acid) was used as the dispersant and water as the auxiliary solvent. In one experiment, the strength of composite of epoxy with MMA-functionalized-nanotubes was found to be 29 percent greater than that of a similar composite of epoxy with the same proportion of untreated nanotubes.

  2. Curing Effects on Interfacial Adhesion between Recycled Carbon Fiber and Epoxy Resin Heated by Microwave Irradiation.

    PubMed

    Tominaga, Yuichi; Shimamoto, Daisuke; Hotta, Yuji

    2018-03-26

    The interfacial adhesion of recycled carbon fiber (CF) reinforced epoxy composite heated by microwave (MW) irradiation were investigated by changing the curing state of the epoxy resin. The recycled CF was recovered from the composite, which was prepared by vacuum-assisted resin transfer molding, by thermal degradation at 500 or 600 °C. Thermogravimetric analysis showed that the heating at 600 °C caused rough damage to the CF surface, whereas recycled CF recovered at 500 °C have few defects. The interfacial shear strength (IFSS) between recycled CF and epoxy resin was measured by a single-fiber fragmentation test. The test specimen was heated by MW after mixing the epoxy resin with a curing agent or pre-curing, in order to investigate the curing effects on the matrix resin. The IFSSs of the MW-irradiated samples were significantly varied by the curing state of the epoxy resin and the surface condition of recycled CF, resulting that they were 99.5 to 131.7% of oven heated samples Furthermore, rheological measurements showed that the viscosity and shrinking behaviors of epoxy resin were affected based on the curing state of epoxy resin before MW irradiation.

  3. Enhancement of mechanical properties of epoxy/graphene nanocomposite

    NASA Astrophysics Data System (ADS)

    Berhanuddin, N. I. C.; Zaman, I.; Rozlan, S. A. M.; Karim, M. A. A.; Manshoor, B.; Khalid, A.; Chan, S. W.; Meng, Q.

    2017-10-01

    Graphene is a novel class of nanofillers possessing outstanding characteristics including most compatible with most polymers, high absolute strength, high aspect ratio and cost effectiveness. In this study, graphene was used to reinforce epoxy as a matrix, to enhance its mechanical properties. Two types of epoxy composite were developed which are epoxy/graphene nanocomposite and epoxy/modified graphene nanocomposite. The fabrication of graphene was going through thermal expansion and sonication process. Chemical modification was only done for modified graphene where 4,4’-Methylene diphenyl diisocyanate (MDI) is used. The mechanical properties of both nanocomposite, such as Young’s modulus and maximum stress were investigated. Three weight percentage were used for this study which are 0.5 wt%, 1.0 wt% and 1.5 wt%. At 0.5 wt%, modified and unmodified shows the highest value compared to neat epoxy, where the value were 8 GPa, 6 GPa and 0.675 GPa, respectively. For maximum stress, neat epoxy showed the best result compared to both nanocomposite due to the changes of material properties when adding the filler into the matrix. Therefore, both nanocomposite increase the mechanical properties of the epoxy, however modification surface of graphene gives better improvement.

  4. Thermal-mechanical properties of a graphitic-nanofibers reinforced epoxy.

    PubMed

    Salehi-Khojin, Amin; Jana, Soumen; Zhong, Wei-Hong

    2007-03-01

    We previously developed a series of reactive graphitic nanofibers (r-GNFs) reinforced epoxy (nano-epoxy) as composite matrices, which have shown good wetting and adhesion properties with continuous fiber. In this work, the thermal-mechanical properties of the nano-epoxy system containing EponTM Resin 828 and Epi-cure Curing Agent W were characterized. Results from three-point bending tests showed that the flexural strength and flexural modulus of this system with 0.30 wt% of reactive nanofibers were increased by 16%, and 21% respectively, over pure epoxy. Fracture toughness increased by ca. 40% for specimens with 0.50 wt% of r-GNFs. By dynamic mechanical analysis (DMA) test, specimens with 0.30 wt% of r-GNFs showed a significant increase in storage modulus E' (by ca. 122%) and loss modulus E" (by ca. 111%) with respect to that of pure epoxy. Also thermo-dilatometry analysis (TDA) was used to measure dimensional change of specimens as a function of temperature, and then, coefficients of thermal expansion (CTE) before and after glass transition temperature (Tg) were obtained. Results implied that nano-epoxy materials had good dimensional stability and reduced CTE values when compared to those of pure epoxy.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kesgin, Ibrahim; Hasse, Quentin; Ivanyushenkov, Yury

    The use of second-generation high-temperature superconducting-coated conductors enables an enhancement of the performance of undulator magnets. However, preventing the motion of the wire and providing sufficient conduction cooling to the winding stacks have remained challenges. In this study, we have evaluated epoxy impregnation techniques to address these issues. Epoxy resin was prepared with different nanopowders and the effect on the performance of the undulator coil pack was investigated. All epoxy impregnated coils showed smaller n values and some degree of deterioration of the critical current I c. The I c degradation was most pronounced for epoxy mixed with high aspectmore » ratio multiwalled carbon nanotubes (MWCNTs). It has been found that the crack formation in the epoxy results in plastic deformation of the copper stabilizer layer, which causes the underlying ceramic REBCO superconducting layer to crack resulting in degradation of the superconducting tape performance. As a result, careful adjustment of epoxy thickness surrounding the superconductor and the powder ratio in the epoxy eliminate the performance degradation.« less

  6. Mechanical and anticorrosive properties of graphene/epoxy resin composites coating prepared by in-situ method.

    PubMed

    Zhang, Zhiyi; Zhang, Wenhui; Li, Diansen; Sun, Youyi; Wang, Zhuo; Hou, Chunling; Chen, Lu; Cao, Yang; Liu, Yaqing

    2015-01-20

    The graphene nanosheets-based epoxy resin coating (0, 0.1, 0.4 and 0.7 wt %) was prepared by a situ-synthesis method. The effect of polyvinylpyrrolidone/reduced graphene oxide (PVP-rGO) on mechanical and thermal properties of epoxy resin coating was investigated using nanoindentation technique and thermogravimetric analysis, respectively. A significant enhancement (ca. 213% and 73 °C) in the Young modulus and thermal stability of epoxy resin coating was obtained at a loading of 0.7 wt %, respectively. Furthermore, the erosion resistance of graphene nanosheets-based epoxy resin coating was investigated by electrochemical measurement. The results showed also that the Rrcco (ca. 0.3 mm/year) of graphene nanosheets-based epoxy resin coating was far lower than neat epoxy resin (1.3 mm/year). Thus, this approach provides a novel route for improving erosion resistance and mechanical-thermal stability of polymers coating, which is expected to be used in mechanical-thermal-corrosion coupling environments.

  7. Contact allergy to an epoxy reactive diluent: 1,4-butanediol diglycidyl ether.

    PubMed

    Jolanki, R; Estlander, T; Kanerva, L

    1987-02-01

    3 female workers in a brush factory developed contact allergy from a 2-component epoxy glue containing epoxy resin (37% w/w), reactive diluents: i.e., 1,4-butanediol diglycidyl ether (BDDGE) 3%, glycidyl ethers of aliphatic alcohols (Epoxide 8) 0.03% and phenyl glycidyl ether (PGE) 0.01%; and inert fillers. All 3 patients were positive to the resin component of the glue and to BDDGE, indicating that BDDGE was the main allergen. 2 of the patients reacted to PGE, but none to the 3rd reactive diluent (Epoxide 8) in the glue. 2 of the patients did not react to epoxy resin, indicating that BDDGE may be an even stronger sensitizer in humans than epoxy resin, and that it does not cross-react with epoxy resins. Permeation studies revealed that BDDGE penetrates disposable PVC and rubber gloves in less than 30 min; thus, contaminated gloves should be replaced immediately. Reactive diluents should be included in patch test series if contact allergy to epoxy products is suspected.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keeratitham, Waralee, E-mail: waralee.ke@student.chula.ac.th; Somwangthanaroj, Anongnat, E-mail: anongnat.s@chula.ac.th

    Herein, our main objective is to prepare the fast curing epoxy system with high glass transition temperature (T{sub g}) by incorporating the multifunctional epoxy resin into the mixture of diglycidyl ether of bisphenol A (DGEBA) as a major epoxy component and aromatic diamine as a hardener. Furthermore, the curing behavior as well as thermal and thermomechanical properties were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and thermomechanical analysis (TMA). It was found that T{sub g} obtained from tan δ of DGEBA/aromatic diamine system increased from 100 °C to 205 °C with the presence of 30 percentage bymore » weight of multifunctional epoxy resin. Additionally, the isothermal DSC results showed that the multifunctional epoxy resin can accelerate the curing reaction of DGEBA/aromatic diamine system. Namely, a high degree of curing (∼90%) was achieved after a few minutes of curing at low temperature of 130 °C, owing to a large number of epoxy ring of multifunctional epoxy resin towards the active hydrogen atoms of aromatic diamine.« less

  9. Mechanical and Anticorrosive Properties of Graphene/Epoxy Resin Composites Coating Prepared by in-Situ Method

    PubMed Central

    Zhang, Zhiyi; Zhang, Wenhui; Li, Diansen; Sun, Youyi; Wang, Zhuo; Hou, Chunling; Chen, Lu; Cao, Yang; Liu, Yaqing

    2015-01-01

    The graphene nanosheets-based epoxy resin coating (0, 0.1, 0.4 and 0.7 wt %) was prepared by a situ-synthesis method. The effect of polyvinylpyrrolidone/reduced graphene oxide (PVP-rGO) on mechanical and thermal properties of epoxy resin coating was investigated using nanoindentation technique and thermogravimetric analysis, respectively. A significant enhancement (ca. 213% and 73 °C) in the Young modulus and thermal stability of epoxy resin coating was obtained at a loading of 0.7 wt %, respectively. Furthermore, the erosion resistance of graphene nanosheets-based epoxy resin coating was investigated by electrochemical measurement. The results showed also that the Rrcco (ca. 0.3 mm/year) of graphene nanosheets-based epoxy resin coating was far lower than neat epoxy resin (1.3 mm/year). Thus, this approach provides a novel route for improving erosion resistance and mechanical-thermal stability of polymers coating, which is expected to be used in mechanical-thermal-corrosion coupling environments. PMID:25608656

  10. Modification of the Interfacial Interaction between Carbon Fiber and Epoxy with Carbon Hybrid Materials

    PubMed Central

    Yu, Kejing; Wang, Menglei; Wu, Junqing; Qian, Kun; Sun, Jie; Lu, Xuefeng

    2016-01-01

    The mechanical properties of the hybrid materials and epoxy and carbon fiber (CF) composites were improved significantly as compared to the CF composites made from unmodified epoxy. The reasons could be attributed to the strong interfacial interaction between the CF and the epoxy composites for the existence of carbon nanomaterials. The microstructure and dispersion of carbon nanomaterials were characterized by transmission electron microscopy (TEM) and optical microscopy (OM). The results showed that the dispersion of the hybrid materials in the polymer was superior to other carbon nanomaterials. The high viscosity and shear stress characterized by a rheometer and the high interfacial friction and damping behavior characterized by dynamic mechanical analysis (DMA) indicated that the strong interfacial interaction was greatly improved between fibers and epoxy composites. Remarkably, the tensile tests presented that the CF composites with hybrid materials and epoxy composites have a better reinforcing and toughening effect on CF, which further verified the strong interfacial interaction between epoxy and CF for special structural hybrid materials. PMID:28335217

  11. Electrical and Mechanical Properties of 3D-Printed Graphene-Reinforced Epoxy

    NASA Astrophysics Data System (ADS)

    Compton, Brett G.; Hmeidat, Nadim S.; Pack, Robert C.; Heres, Maximilian F.; Sangoro, Joshua R.

    2018-03-01

    Recent developments in additive manufacturing have demonstrated the potential for thermoset polymer feedstock materials to achieve high strength, stiffness, and functionality through incorporation of structural and functional filler materials. In this work, graphene was investigated as a potential filler material to provide rheological properties necessary for direct-write three-dimensional (3D) printing and electrostatic discharge properties to the printed component. The rheological properties of epoxy/graphene mixtures were characterized, and printable epoxy/graphene inks formulated. Sheet resistance values for printed epoxy/graphene composites ranged from 0.67 × 102 Ω/sq to 8.2 × 103 Ω/sq. The flexural strength of printed epoxy/graphene composites was comparable to that of cast neat epoxy ( 80 MPa), suggesting great potential for these new materials in multifunctional 3D-printed devices.

  12. The Effect of Water on the Work of Adhesion at Epoxy Interfaces by Molecular Dynamics Simulation

    NASA Technical Reports Server (NTRS)

    Hinkley, J.A.; Frankland, S.J.V.; Clancy, T.C.

    2009-01-01

    Molecular dynamics simulation can be used to explore the detailed effects of chemistry on properties of materials. In this paper, two different epoxies found in aerospace resins are modeled using molecular dynamics. The first material, an amine-cured tetrafunctional epoxy, represents a composite matrix resin, while the second represents a 177 C-cured adhesive. Surface energies are derived for both epoxies and the work of adhesion values calculated for the epoxy/epoxy interfaces agree with experiment. Adding water -- to simulate the effect of moisture exposure -- reduced the work of adhesion in one case, and increased it in the other. To explore the difference, the various energy terms that make up the net work of adhesion were compared and the location of the added water was examined.

  13. Fiber-optic epoxy composite cure sensor. I. Dependence of refractive index of an autocatalytic reaction epoxy system at 850 nm on temperature and extent of cure

    NASA Astrophysics Data System (ADS)

    Lam, Kai-Yuen; Afromowitz, Martin A.

    1995-09-01

    We discuss the behavior of the refractive index of a typical epoxy-aromatic diamine system. Near 850 nm the index of refraction is found to be largely controlled by the density of the epoxy. Models are derived to describe its dependence on temperature and extent of cure. Within the range of temperatures studied, the refractive index decreases linearly with increasing temperature. In addition, as the epoxy is cured, the refractive index increases linearly with conversion to the gel point. >From then on, shrinkage in the volume of the epoxy is restricted by local viscosity. Therefore the linear relationship between the refractive index and the extent of cure does not hold beyond the gel point.

  14. Colorless triphenylamine-based aliphatic thermoset epoxy for multicolored and near-infrared electrochromic applications.

    PubMed

    Chuang, Ya-Wen; Yen, Hung-Ju; Wu, Jia-Hao; Liou, Guey-Sheng

    2014-03-12

    In this study, two novel colorless thermoset epoxy resins with anodically electrochromism were prepared from the thermal curing of two triphenylamine-based diamine monomers, 4,4'-diamino-4″-methoxytriphenylamine (1) and N,N'-bis(4-aminophenyl)-N,N'-di(4-methoxylphenyl)-1,4-phenylenediamine (2) with aliphatic epoxy triglycidyl isocyanurate, respectively. The resulting thermoset epoxy resins showed excellent softening temperature (Ts, 270 and 280 °C) due to the rigid structure and highly crosslinking density. In addition, novel colorless epoxy resin films revealed good reversible electrochemical oxidation and interesting multi-electrochromic behavior with high contrast ratio both in visible and near-infrared regions. The aliphatic thermoset epoxy resins also exhibited high transparency in visible region as colorless and great potential for practical electrochromic applications.

  15. Lightweight Forms for Epoxy/Aramid Ducts

    NASA Technical Reports Server (NTRS)

    Mix, E. W.; Anderson, A. N.; Bedford, Donald L., Sr.

    1986-01-01

    Aluminum mandrels easy to remove. Lightweight aluminum mandrel for shaping epoxy/aramid ducts simplifies and speeds production. In new process, glass-reinforced epoxy/aramid cloth wrapped on aluminum mandrel. Stainless-steel flanges and other hardware fitted on duct and held by simple tooling. Entire assembly placed in oven to cure epoxy. After curing, assembly placed in alkaline bath dissolves aluminum mandrel in about 4 hours. Epoxy/aramid shell ready for use as duct. Aluminum mandrel used to make ducts of various inside diameters up to 6 in. Standard aluminum forms used. Conventional tube-bending equipment produces requisite curves in mandrels.

  16. Enhanced protective properties of epoxy/polyaniline-camphorsulfonate nanocomposite coating on an ultrafine-grained metallic surface

    NASA Astrophysics Data System (ADS)

    Pour-Ali, Sadegh; Kiani-Rashid, Alireza; Babakhani, Abolfazl; Davoodi, Ali

    2016-07-01

    An ultrafine-grained surface layer on mild steel substrate with average grain size of 77 nm was produced through wire brushing process. Surface grain size was determined through transmission electron microscopy and X-ray diffraction methods. This substrate was coated with epoxy and an in situ synthesized epoxy/polyaniline-camphorsulfonate (epoxy/PANI-CSA) nanocomposite. The corrosion behavior was studied by open circuit potential, potentiodynamic polarization and impedance measurements. Results of electrochemical tests evidenced the enhanced protective properties of epoxy/PANI-CSA coating on the substrate with ultrafine-grained surface.

  17. Evaluation of interlaminar shear of laminate by 3D digital holography

    NASA Astrophysics Data System (ADS)

    Mayssa, Karray; Christophe, Poilane; Mohamed, Gargouri; Pascal, Picart

    2017-05-01

    In this paper, we propose a three-color holographic interferometer devoted to the 3D displacement field analysis of a composite material. The method in applied to analyze cracks during a short beam shear test. The tested materials are a glass/epoxy composite, a flax/carbon/epoxy composite and a flax/epoxy composite. Such an evaluation provides a pertinent parameter to detect premature cracks in the structure, long before it becomes visible on the real time stress/strain curve, or with a classical microscope. Moreover, the mechanical proprieties of flax/carbon/epoxy composite and flax/epoxy composite are compared.

  18. Isolation and purification of antialgal compounds from the red alga Gracilaria lemaneiformis for activity against common harmful red tide microalgae.

    PubMed

    Sun, Ying-Ying; Meng, Kun; Su, Zhen-Xia; Guo, Gan-Lin; Pu, Yin-Fang; Wang, Chang-Hai

    2017-02-01

    Seven antialgal compounds (1-7) were successfully isolated from the red alga Gracilaria lemaneiformis through a combination of silica gel column chromatography and repeated preparative thin-layer chromatography. On the basis of the spectral data, the compounds were identified as gossonorol (1), 7,10-epoxy-ar-bisabol-11-ol (2), glycerol monopalmitate (3), stigmasterol (4), 15-hydroxymethyl-2, 6, 10, 18, 22, 26, 30-heptamethyl-14-methylene-17-hentriacontene (5), 4-hydroxyphenethyl alcohol (6), and margaric acid (7). These seven compounds were isolated from G. lemaneiformis for the first time, while the compounds 4, 6, and 7 were isolated from marine macroalgae for the first time. Furthermore, a quantitative relationship between the inhibition of algal growth and the concentration of each antialgal compound was determined and important parameters for future practical HAB control, e.g., EC 50-96h , were also obtained. The results indicated that isolated compounds 1-7 possess selective antialgal activity against the growth of several red tide microalgae (including Amphidinium carterae, Heterosigma akashiwo, Karenia mikimitoi, Phaeocystis globsa, Prorocentrum donghaiense, and Skeletonema costatum). Their antialgal activity against test red tide microalgae has not been previously reported. Furthermore, the EC 50-96h of one or more of the compounds towards the tested red microalgae was not only significantly less than 10 μg/mL but also was smaller than that of the characteristic antialgal agent potassium dichromate. The study demonstrates that compounds 1-7 possess significant application potential as antialgal agents against several harmful red tide microalgae.

  19. Molecular Modeling of Aerospace Polymer Matrices Including Carbon Nanotube-Enhanced Epoxy

    NASA Astrophysics Data System (ADS)

    Radue, Matthew S.

    Carbon fiber (CF) composites are increasingly replacing metals used in major structural parts of aircraft, spacecraft, and automobiles. The current limitations of carbon fiber composites are addressed through computational material design by modeling the salient aerospace matrix materials. Molecular Dynamics (MD) models of epoxies with and without carbon nanotube (CNT) reinforcement and models of pure bismaleimides (BMIs) were developed to elucidate structure-property relationships for improved selection and tailoring of matrices. The influence of monomer functionality on the mechanical properties of epoxies is studied using the Reax Force Field (ReaxFF). From deformation simulations, the Young's modulus, yield point, and Poisson's ratio are calculated and analyzed. The results demonstrate an increase in stiffness and yield strength with increasing resin functionality. Comparison between the network structures of distinct epoxies is further advanced by the Monomeric Degree Index (MDI). Experimental validation demonstrates the MD results correctly predict the relationship in Young's moduli for all epoxies modeled. Therefore, the ReaxFF is confirmed to be a useful tool for studying the mechanical behavior of epoxies. While epoxies have been well-studied using MD, there has been no concerted effort to model cured BMI polymers due to the complexity of the network-forming reactions. A novel, adaptable crosslinking framework is developed for implementing 5 distinct cure reactions of Matrimid-5292 (a BMI resin) and investigating the network structure using MD simulations. The influence of different cure reactions and extent of curing are analyzed on the several thermo-mechanical properties such as mass density, glass transition temperature, coefficient of thermal expansion, elastic moduli, and thermal conductivity. The developed crosslinked models correctly predict experimentally observed trends for various properties. Finally, the epoxies modeled (di-, tri-, and tetra-functionalresins) are simulated with embedded CNT to understand how the affinity to nanoparticles affects the mechanical response. Multiscale modeling techniques are then employed to translate the molecular phenomena observed to predict the behavior of realistic composites. The effective stiffness of hybrid composites are predicted for CNT/epoxy composites with randomly oriented CNTs, for CF/CNT/epoxy systems with aligned CFs and randomly oriented CNTs, and for woven CF/CNT/epoxy fabric with randomly oriented CNTs. The results indicate that in the CNT/epoxy systems the epoxy type has a significant influence on the elastic properties. For the CF/CNT/epoxy hybrid composites, the axial modulus is highly influenced by CF concentration, while the transverse modulus is primarily affected by the CNT weight fraction.

  20. Radio-tracer techniques for the study of flow in saturated porous materials

    USGS Publications Warehouse

    Skibitzke, H.E.; Chapman, H.T.; Robinson, G.M.; McCullough, Richard A.

    1961-01-01

    An experiment was conducted by the U.S. Geological Survey to determine the feasibility of using a radioactive substance as a tracer in the study of microscopic flow in a saturated porous solid. A radioactive tracer was chosen in preference to dye or other chemical in order to eliminate effects of the tracer itself on the flow system such as those relating to density, viscosity and surface tension. The porous solid was artificial "sandstone" composed of uniform fine grains of sand bonded together with an epoxy adhesive. The sides of the block thus made were sealed with an epoxy coating compound to insure water-tightness. Because of the chemical inertness of the block it was possible to use radioactive phosphorus (P32). Ion-exchange equilibrium was created between the block and nonradioactive phosphoric acid. Then a tracer tagged with P32 was injected into the block in the desired geometric configuration, in this case, a line source. After equilibrium in isotopic exchange was reached between the block and the line source, the block was rinsed, drained and sawn into slices. It was found that a quantitative analysis of the flow system may be made by assaying the dissected block. ?? 1961.

  1. In vitro methods for hazard assessment of industrial chemicals – opportunities and challenges

    PubMed Central

    Wong, Chin Lin; Ghassabian, Sussan; Smith, Maree T.; Lam, Ai-Leen

    2015-01-01

    Allergic contact dermatitis (ACD) is a delayed-type hypersensitivity immune reaction mediated by T-lymphocytes as a result of repeated exposure of an allergen primarily on skin. ACD accounts for up to 95% of occupational skin diseases, with epoxy resins implicated as one of the most common causes of ACD. Efficient high-throughput in vitro screening for accurate identification of compounds and materials that may pose hazardous risks in the workplace is crucial. At present, the murine local lymph node assay is the ‘method of choice’ for predicting the sensitizing potency of contact allergens. As the 3Rs principles of reduction, refinement, and replacement in animal testing has gained political and economic momentum, several in vitro screening methods have been developed for identifying potential contact allergens. To date, these latter methods have been utilized primarily to assess the skin sensitizing potential of the chemical components of cosmetic products with scant research attention as to the applicability of these methods to industrial chemicals, particularly epoxy resins. Herein we review the currently utilized in vitro methods and identify the knowledge gaps with regard to assessing the generalizability of in vitro screening methods for assessing the skin sensitizing potential of industrial chemicals. PMID:25999858

  2. Evidence for Tissue Toxicity in BALB/c Exposed to a Long-Term Treatment with Oxiranes Compared to Meglumine Antimoniate

    PubMed Central

    Oliveira, Luiz Filipe Gonçalves; Souza-Silva, Franklin; Cysne-Finkelstein, Léa; Rabelo, Kíssila; Amorim, Juliana Fernandes; Azevedo, Adriana de Souza; Bourguignon, Saulo Cabral; Ferreira, Vitor Francisco; Paes, Marciano Viana

    2017-01-01

    Leishmaniasis remains a serious public health problem in developing countries without effective control, whether by vaccination or chemotherapy. Part of the failure of leishmaniasis control is due to the lack of new less toxic and more effective drugs able to eliminate both the lesions and the parasite. Oxiranes derived from naphthoquinones now being assayed are promising drugs for the treatment of this group of diseases. The predicted pharmacokinetic properties and toxicological profiles of epoxy-α-lapachone and epoxymethoxy-lawsone have now been compared to those of meglumine antimoniate, and histological changes induced by these drugs in noninfected BALB/c mice tissues are described. Effects of these compounds on liver, kidney, lung, heart, and cerebral tissues of healthy mice were examined. The data presented show that both these oxiranes and meglumine antimoniate induce changes in all BALB/c mice tissues, with the lung, heart, and brain being the most affected. Epoxymethoxy-lawsone was the most toxic to lung tissue, while most severe damage was caused in the heart by epoxy-α-lapachone. Meglumine antimoniate caused mild-to-moderate changes in heart and lung tissues. PMID:28798938

  3. In vitro methods for hazard assessment of industrial chemicals - opportunities and challenges.

    PubMed

    Wong, Chin Lin; Ghassabian, Sussan; Smith, Maree T; Lam, Ai-Leen

    2015-01-01

    Allergic contact dermatitis (ACD) is a delayed-type hypersensitivity immune reaction mediated by T-lymphocytes as a result of repeated exposure of an allergen primarily on skin. ACD accounts for up to 95% of occupational skin diseases, with epoxy resins implicated as one of the most common causes of ACD. Efficient high-throughput in vitro screening for accurate identification of compounds and materials that may pose hazardous risks in the workplace is crucial. At present, the murine local lymph node assay is the 'method of choice' for predicting the sensitizing potency of contact allergens. As the 3Rs principles of reduction, refinement, and replacement in animal testing has gained political and economic momentum, several in vitro screening methods have been developed for identifying potential contact allergens. To date, these latter methods have been utilized primarily to assess the skin sensitizing potential of the chemical components of cosmetic products with scant research attention as to the applicability of these methods to industrial chemicals, particularly epoxy resins. Herein we review the currently utilized in vitro methods and identify the knowledge gaps with regard to assessing the generalizability of in vitro screening methods for assessing the skin sensitizing potential of industrial chemicals.

  4. Controlled Contamination of Epoxy Composites with PDMS and Removal by Laser Ablation

    NASA Technical Reports Server (NTRS)

    Palmieri, Frank; Ledesma, Rodolfo; Cataldo, Daniel; Lin, Yi; Wohl, Christopher; Gupta, Mool; Connell, John

    2016-01-01

    Surface preparation is critical to the performance of adhesively bonded composites. During manufacturing, minute quantities of mold release compounds are inevitably deposited on faying surfaces and may compromise bond performance. To ensure safety, mechanical fasteners and other crack arrest features must be installed in the bondlines of primary structures, which negates some advantages of adhesively bonded construction. Laser ablation is an automated, repeatable, and scalable process with high potential for the surface preparation of metals and composites in critical applications such as primary airframe structures. In this study, laser ablation is evaluated on composite surfaces for the removal of polydimethylsiloxane (PDMS), a common mold release material. Composite panels were contaminated uniformly with PDMS film thicknesses as low as 6.0 nm as measured by variable angle spectroscopic ellipsometry. Bond performance was assessed by mechanical testing using a 250 F cure, epoxy adhesive and compared with pre-bond surface inspection results. Water contact angle, optically stimulated electron emission, and laser induced breakdown spectroscopy were used to characterize contaminated and laser ablated surfaces. The failure mode obtained from double cantilever beam tests correlated well with surface characterization data. The test results indicated that even low levels of PDMS were not completely removed by laser ablation.

  5. Development of a unique polyurethane primer/topcoat

    NASA Technical Reports Server (NTRS)

    Novak, Howard L.; Klotz, James M.

    1994-01-01

    USBI Company, a Division of Pratt & Whitney Government Engines and Space Propulsion, is involved in corrosion and environmental research and development activities both at their headquarters in Huntsville, Alabama and their Florida Operations at Kennedy Space Center, Florida. The programs involve the development of environmentally compatible materials that improve the corrosion protection of expensive Solid Rocket Boosters (SRB) that are part of the Space Shuttle systems developed and managed by Marshall Space Flight Center in Huntsville, Alabama. Coatings For Industry, a paint manufacturer in Souderton, PA helped formulate and produce the first lot of BOOSTERCOAT paint. High strength aluminum aerospace flight hardware exposed to harsh seacoast environments and seawater immersion presently uses high volatile organic compound (VOC) chromated and lead bearing primers and epoxy topcoats for corrosion protection. Epoxy paint tends to be brittle and has relatively low ultraviolet (UV) exposure resistance. A unique, environmentally compatible, non-leaded/non-chromated, low VOC polyurethane single coat (primer/topcoat) trade named BOOSTERCOAT has been developed for excellent corrosion protection, flexibility, adhesion, chemical and solvent resistance properties. This report will discuss the development of BOOSTERCOAT and the potential opportunities for commercial use in the energy, transportation, chemical, maritime, structural fields.

  6. Electrical properties of epoxies used in hybrid microelectronics

    NASA Technical Reports Server (NTRS)

    Stout, C. W.

    1976-01-01

    The electrical properties and basic characteristics of the structure of conductive epoxies were studied. The results of the experimental work performed to measure the electrical properties of epoxies are presented.

  7. Method for Improving Acoustic Impedance of Epoxy Resins

    DTIC Science & Technology

    2010-06-21

    include neoprene, ethylene propylene diene monomer ( EPDM ) and polyurethane rubbers . Typical applications of these materials encapsulate and protect...a different material (e.g., rubber ) cannot be used. Thus, a hard, strong and acoustically transparent material is needed. Suitable high modulus...an epoxy resin. In this method, an epoxy resin component is mixed with a rubber component. The epoxy resin component is preferably a bisphenol A

  8. 40 CFR 180.1283 - (Z)-7,8-epoxy-2-methyloctadecane (Disparlure); exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false (Z)-7,8-epoxy-2-methyloctadecane... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1283 (Z)-7,8-epoxy-2-methyloctadecane... is established for residues of (Z)-7,8-epoxy-2-methyloctadecane on all food and feed crops that occur...

  9. 40 CFR 180.1283 - (Z)-7,8-epoxy-2-methyloctadecane (Disparlure); exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false (Z)-7,8-epoxy-2-methyloctadecane... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1283 (Z)-7,8-epoxy-2-methyloctadecane... is established for residues of (Z)-7,8-epoxy-2-methyloctadecane on all food and feed crops that occur...

  10. 40 CFR 180.1283 - (Z)-7,8-epoxy-2-methyloctadecane (Disparlure); exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false (Z)-7,8-epoxy-2-methyloctadecane... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1283 (Z)-7,8-epoxy-2-methyloctadecane... is established for residues of (Z)-7,8-epoxy-2-methyloctadecane on all food and feed crops that occur...

  11. 40 CFR 180.1283 - (Z)-7,8-epoxy-2-methyloctadecane (Disparlure); exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false (Z)-7,8-epoxy-2-methyloctadecane... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1283 (Z)-7,8-epoxy-2-methyloctadecane... is established for residues of (Z)-7,8-epoxy-2-methyloctadecane on all food and feed crops that occur...

  12. 40 CFR 180.1283 - (Z)-7,8-epoxy-2-methyloctadecane (Disparlure); exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false (Z)-7,8-epoxy-2-methyloctadecane... PESTICIDE CHEMICAL RESIDUES IN FOOD Exemptions From Tolerances § 180.1283 (Z)-7,8-epoxy-2-methyloctadecane... is established for residues of (Z)-7,8-epoxy-2-methyloctadecane on all food and feed crops that occur...

  13. Siloxane Modifiers for Epoxy Resins.

    DTIC Science & Technology

    1983-12-01

    similarly prepared ATBN- and CTBN -modified epoxies. Wear rate was quite dramatically reduced with some of the modifiers. Wear results are discussed in...similarly prepared ATBN- and CTBN -modified epoxies. Wear rate was quite dramatically reduced with some of the modifiers. Wear results are discussed...acrylonitrile copolymers having both carboxyl ( CTBN ) and amine (ATBN) end groups have been widely used as epoxy modifiers (4-11). During the curing process, the

  14. Air Quality Management Using Pollution Prevention: A Joint Service Approach

    DTIC Science & Technology

    1998-03-01

    sites to promote polymerization. High solids coatings may be one or two component systems based on acrylic , alkyd , epoxy, polyester, or urethane...formulation to form high molecular weight polymers. Examples include acrylic , epoxy/polyester hybrid , functional epoxy, thin film epoxy, and urethane...Air Human System Center (HSC/OEBQ) Naval Facilities Engineering Service Center (NFESC) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 9

  15. Structure Property Relationships of Biobased Epoxy Resins

    NASA Astrophysics Data System (ADS)

    Maiorana, Anthony Surraht

    The thesis is about the synthesis, characterization, development, and application of epoxy resins derived from sustainable feedstocks such as lingo-cellulose, plant oils, and other non-food feedstocks. The thesis can be divided into two main topics 1) the synthesis and structure property relationship investigation of new biobased epoxy resin families and 2) mixing epoxy resins with reactive diluents, nanoparticles, toughening agents, and understanding co-curing reactions, filler/matrix interactions, and cured epoxy resin thermomechanical, viscoelastic, and dielectric properties. The thesis seeks to bridge the gap between new epoxy resin development, application for composites and advanced materials, processing and manufacturing, and end of life of thermoset polymers. The structures of uncured epoxy resins are characterized through traditional small molecule techniques such as nuclear magnetic resonance, high resolution mass spectrometry, and infrared spectroscopy. The structure of epoxy resin monomers are further understood through the process of curing the resins and cured resins' properties through rheology, chemorheology, dynamic mechanical analysis, tensile testing, fracture toughness, differential scanning calorimetry, scanning electron microscopy, thermogravimetric analysis, and notched izod impact testing. It was found that diphenolate esters are viable alternatives to bisphenol A and that the structure of the ester side chain can have signifi-cant effects on monomer viscosity. The structure of the cured diphenolate based epoxy resins also influence glass transition temperature and dielectric properties. Incorporation of reactive diluents and flexible resins can lower viscosity, extend gel time, and enable processing of high filler content composites and increase fracture toughness. Incorpora-tion of high elastic modulus nanoparticles such as graphene can provide increases in physical properties such as elastic modulus and fracture toughness. The synthesis of epoxy resins with aliphatic esters in the main chain of the polymer allow for chemical recycling under alkaline conditions and changing the hydrophobicity and access of main chain esters influences the rate of polymer degradation. The thesis further provides strategies and concepts that will allow for future researchers to rapidly understand how to manipulate epoxy resins for specific end uses and supplements current understanding of epoxy curing agents, accelerators, and interactions with fillers.

  16. Low cost tooling material and process for graphite and Kevlar composites

    NASA Technical Reports Server (NTRS)

    Childs, William I.

    1987-01-01

    An Extruded Sheet Tooling Compound (ESTC) was developed for use in quickly building low cost molds for fabricating composites. The ESTC is a very highly mineral-filled resin system formed into a 6 mm thick sheet. The sheet is laid on the pattern, vacuum (bag) is applied to remove air from the pattern surface, and the assembly is heat cured. The formed ESTC is then backed and/or framed and ready for use. The cured ESTC exhibits low coefficient of thermal expansion and maintains strength at temperatures of 180 to 200 C. Tools were made and used successfully for: Compression molding of high strength epoxy sheet molding compound, stamping of aluminum, resin transfer molding of polyester, and liquid resin molding of polyester. Several variations of ESTC can be made for specific requirements. Higher thermal conductivity can be achieved by using an aluminum particle filler. Room temperature gel is possible to allow use of foam patterns.

  17. Characterization of the most odor-active volatiles in fresh, hand-squeezed juice of grapefruit (Citrus paradisi Macfayden).

    PubMed

    Buettner, A; Schieberle, P

    1999-12-01

    By application of the aroma extract dilution analysis on an extract prepared from fresh grapefruit juice, 37 odor-active compounds were detected in the flavor dilution (FD) factor range of 4-256 and subsequently identified. Among them the highest odor activities (FD factors) were determined for ethyl butanoate, p-1-menthene-8-thiol, (Z)-3-hexenal, 4,5-epoxy-(E)-2-decenal, 4-mercapto-4-methylpentane-2-one, 1-heptene-3-one, and wine lactone. Besides the 5 last mentioned compounds, a total of 13 further odorants were identified for the first time as flavor constituents of grapefruit. The data confirmed results of the literature on the significant contribution of 1-p-menthene-8-thiol in grapefruit aroma but clearly showed that a certain number of further odorants are necessary to elicit the typical grapefruit flavor.

  18. [Determination of four coumarin constituents before and after Angelicae Dahuricae Radix stewed with yellow rice wine and research on its mutual transformation mechanism].

    PubMed

    Yuan, Zi-Min; Wang, Jing; Jia, Tian-Zhu; Chen, Jian-Feng

    2016-08-01

    To determine the contents of oxypeucedanin, oxypeucedanin hydrate, byakangelicol and byak-angelicin both before and after Angelicae Dahuricae Radix was stewed with yellow rice wine by high-performance liquid chromatography, and study the mutual transformation mechanisms of oxypeucedanin into oxypeucedanin hydrate, as well as byakangelicol into byak-angelicin. The research results indicated that the contents of oxypeucedanin and byakangelicol were decreased, but the contents of oxypeucedanin hydrate and byak-angelicin were increased after Angelicae Dahuricae Radix was processed with yellow rice wine. The contents' changes of these chemical compounds were due to the ring opening reaction of epoxy compounds, such as oxypeucedanin and byakangelicol under the weak acidity and heating conditions of yellow rice wine. This research could provide a scientific basis for the processing mechanism of Angelicae Dahuricae Radix with yellow rice wine stewing. Copyright© by the Chinese Pharmaceutical Association.

  19. Cytotoxicity of cardenolides and cardenolide glycosides from Asclepias curassavica.

    PubMed

    Li, Jun-Zhu; Qing, Chen; Chen, Chang-Xiang; Hao, Xiao-Jiang; Liu, Hai-Yang

    2009-04-01

    A new cardenolide, 12beta,14beta-dihydroxy-3beta,19-epoxy-3alpha-methoxy-5alpha-card-20(22)-enolide (6), and a new doubly linked cardenolide glycoside, 12beta-hydroxycalotropin (13), together with eleven known compounds, coroglaucigenin (1), 12beta-hydroxycoroglaucigenin (2), calotropagenin (3), desglucouzarin (4), 6'-O-feruloyl-desglucouzarin (5), calotropin (7), uscharidin (8), asclepin (9), 16alpha-hydroxyasclepin (10), 16alpha-acetoxycalotropin (11), and 16alpha-acetoxyasclepin (12), were isolated from the aerial part of ornamental milkweed, Asclepias curassavica and chemically elucidated through spectral analyses. All the isolates were evaluated for their cytotoxic activity against HepG2 and Raji cell lines. The results showed that asclepin (9) had the strongest cytotoxic activity with an IC(50) value of 0.02 microM against the two cancer cell lines and the new compound 13 had significant cytotoxic activity with IC(50) values of 0.69 and 1.46 microM, respectively.

  20. Filled and Unfilled Temperature-Dependent Epoxy Resin Blends for Lossy Transducer Substrates

    PubMed Central

    Eames, Matthew D.C.; Hossack, John A.

    2016-01-01

    In the context of our ongoing investigation of low-cost 2-dimensional (2-D) arrays, we studied the temperature-dependent acoustic properties of epoxy blends that could serve as an acoustically lossy backing material in compact 2-D array-based devices. This material should be capable of being machined during array manufacture, while also providing adequate signal attenuation to mitigate backing block reverberation artifacts. The acoustic impedance and attenuation of 5 unfilled epoxy blends and 2 filled epoxy blends—tungsten and fiberglass fillers—were analyzed across a 35°C temperature range in 5°C increments. Unfilled epoxy materials possessed an approximately linear variation of impedance and sigmoidal variation of attenuation properties over the range of temperatures of interest. An intermediate epoxy blend was fitted to a quadratic trend line with R2 values of 0.94 and 0.99 for attenuation and impedance, respectively. It was observed that a fiberglass filler induces a strong quadratic trend in the impedance data with temperature, which results in increased error in the characterization of attenuation and impedance. The tungsten-filled epoxy was not susceptible to such problems because a different method of fabrication was required. At body temperature, the tungsten-filled epoxy could provide a 44 dB attenuation of the round-trip backing block echo in our application, in which the center frequency is 5 MHz and the backing material is 1.1 mm thick. This is an 11 dB increase in attenuation compared with the fiberglass-filled epoxy in the context of our application. This work provides motivation for exploring the use of custom-made tungsten-filled epoxy materials as a substitute PCB-based substrate to provide electrical signal interconnect. PMID:19406716

  1. Effect of Liquid-Crystalline Epoxy Backbone Structure on Thermal Conductivity of Epoxy-Alumina Composites

    NASA Astrophysics Data System (ADS)

    Giang, Thanhkieu; Kim, Jinhwan

    2017-01-01

    In a series of papers published recently, we clearly demonstrated that the most important factor governing the thermal conductivity of epoxy-Al2O3 composites is the backbone structure of the epoxy. In this study, three more epoxies based on diglycidyl ester-terminated liquid-crystalline epoxy (LCE) have been synthesized to draw conclusions regarding the effect of the epoxy backbone structure on the thermal conductivity of epoxy-alumina composites. The synthesized structures were characterized by proton nuclear magnetic resonance (1H-NMR) and Fourier-transform infrared (FT-IR) spectroscopy. Differential scanning calorimetry, thermogravimetric analysis, and optical microscopy were also employed to examine the thermal and optical properties of the synthesized LCEs and the cured composites. All three LCE resins exhibited typical liquid-crystalline behaviors: clear solid crystalline state below the melting temperature ( T m), sharp crystalline melting at T m, and transition to nematic phase above T m with consequent isotropic phase above the isotropic temperature ( T i). The LCE resins displayed distinct nematic liquid-crystalline phase over a wide temperature range and retained liquid-crystalline phase after curing, with high thermal conductivity of the resulting composite. The thermal conductivity values ranged from 3.09 W/m-K to 3.89 W/m-K for LCE-Al2O3 composites with 50 vol.% filler loading. The steric effect played a governing role in the difference. The neat epoxy resin thermal conductivity was obtained as 0.35 W/m-K to 0.49 W/m-K based on analysis using the Agari-Uno model. The results clearly support the objective of this study in that the thermal conductivity of the LCE-containing networks strongly depended on the epoxy backbone structure and the degree of ordering in the cured network.

  2. Tandem Reactions for Streamlining Synthesis

    PubMed Central

    HUSSAIN, MAHMUD M.; WALSH, PATRICK J.

    2009-01-01

    CONSPECTUS In 1980 Sharpless and Katsuki introduced the asymmetric epoxidation of prochiral allylic alcohols (the Sharpless-Katsuki Asymmetric Epoxidation), which enabled the rapid synthesis of highly enantioenriched epoxy alcohols. This reaction was a milestone in the development of asymmetric catalysis because it was the first highly enantioselective oxidation reaction. Furthermore, it provided access to enantioenriched allylic alcohols that are now standard starting materials in natural product synthesis. In 1981 Sharpless and coworkers made another seminal contribution by describing the kinetic resolution (KR) of racemic allylic alcohols. This work demonstrated that small-molecule catalysts could compete with enzymatic catalysts in KRs. For these pioneering works, Sharpless was awarded the 2001 Nobel Prize with Knowles and Noyori. Despite these achievements, the Sharpless KR is not an efficient method to prepare epoxy alcohols with high enantiomeric excess (ee). First, the racemic allylic alcohol must be prepared and purified. KR of the racemic allylic alcohol must be stopped at low conversion, because the ee of the product epoxy alcohol decreases as the KR progresses. Thus, better methods to prepare epoxy alcohols containing stereogenic carbinol carbons are needed. This Account summarizes our efforts to develop one-pot methods for the synthesis of various epoxy alcohols and allylic epoxy alcohols with high enantio-, diastereo-, and chemoselectivity. Our laboratory developed titanium-based catalysts for use in the synthesis of epoxy alcohols with tertiary carbinols. The catalysts are involved in the first step, which is an asymmetric alkyl or allyl addition to enones. The resulting intermediates are then subjected to a titanium-directed diastereoselective epoxidation to provide tertiary epoxy alcohols. Similarly, the synthesis of acyclic epoxy alcohols begins with asymmetric additions to enals and subsequent epoxidation. The methods described here enable the synthesis of skeletally diverse epoxy alcohols. PMID:18710197

  3. Silane coupling agent for attaching fusion-bonded epoxy to steel.

    PubMed

    Tchoquessi Diodjo, Madeleine R; Belec, Lénaïk; Aragon, Emmanuel; Joliff, Yoann; Lanarde, Lise; Perrin, François-Xavier

    2013-07-24

    We describe the possibility of using γ-aminopropyltriethoxysilane (γ-APS) to increase the durability of epoxy powder coating/steel joints. The curing temperature of epoxy powder coatings is frequently above 200 °C, which is seen so far as a major limitation for the use of the heat-sensitive aminosilane coupling agent. Despite this limitation, we demonstrate that aminosilane is a competitive alternative to traditional chromate conversion to enhance the durability of epoxy powder coatings/steel joints. Fourier-transform reflection-absorption infrared spectroscopy (FT-RAIRS), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) were used to identify the silane deposition conditions that influence the adhesion of epoxy powder coatings on steel. We show that AFM analysis provides highly sensitive measurements of mechanical property development and, as such, the degree of condensation of the silane. The joint durability in water at 60 °C was lower when the pH of the γ-APS solution was controlled at 4.6 using formic acid, rather than that at natural pH (10.6). At the curing temperature of 220 °C, oxidation of the carbon adjacent to the amine headgroup of γ-APS gives amide species by a pseudofirst-order kinetics. However, a few amino functionalities remain to react with oxirane groups of epoxy resin and, thus, strengthen the epoxy/silane interphase. The formation of ammonium formate in the acidic silane inhibits the reaction between silane and epoxy, which consequently decreases the epoxy/silane interphase cohesion. We find that the nanoroughness of silane deposits increases with the cure temperature which is beneficial to the wet stability of the epoxy/steel joints, due to increased mechanical interlocking.

  4. Synthesis of 4,19-disubstituted derivatives of DOC. Radioreceptor assay of some corticosteroid derivatives in human mononuclear leukocytes.

    PubMed

    Harnik, M; Kashman, Y; Cojocaru, M; Bauer, H; Laux, M; Lewicka, S; Vecsei, P

    1990-10-01

    Several new 4,19-substituted steroids and previously synthesized corticosteroids were assayed for affinity to type 1 receptors in human mononuclear leukocytes. 11 beta,19-epoxy-4,21-dihydroxypregn-4-ene-3,20-dione (2) was hydrogenated with Pd-C to yield a mixture of all four dihydro derivatives 5, accompanied by 4,21-diacetoxy-11 beta,19-epoxy-3-hydroxypregnan-20-one (6) and 21-acetoxy-11 beta,19-epoxy-4-hydroxypregnane-3,20-dione (7). With hot acetic + p-toluenesulfonic acid 5 underwent rearrangement to 21-acetoxy-11 beta,19-epoxypregn-5-ene-4,20-dione (8) Pd-C hydrogenation of 3,21-diacetoxy-5 beta,19-cyclopregna-2,9(11)-diene-4,20-dione (10) gave 3,21-diacetoxy-5 beta,19-cyclopregn-5-ene-4,20-dione (11) and the 9,11-dihydro derivative of the latter. Treatment of 10 with warm HCl furnished 19-chloro-4,21-dihydroxypregna-4,9(11)-diene-3,20-dione (13). Pd-C hydrogenation of its diacetate 14 afforded the 4,5-dihydro derivative 18, 19-chloro-21-acetoxypregn-9(11)-en-20-one (15), its 4-acetoxy derivative 16 and the 3,4-diacetoxy derivative 17. When tested in a radioreceptor assay in human mononuclear leukocytes the synthesized compounds showed only low relative binding affinities (RBA) to type 1 receptor, the highest being 0.72% for 13 (aldosterone = 100%). For comparison, other RBA in this system were: 19-noraldosterone, 20%; 18-deoxyaldosterone, 5.8%; 18-deoxy-19-noraldosterone, 4.7%; 18,21-anhydroaldosterone, 0.37%; 17-isoaldosterone, 7.6% and apoaldosterone, 4.3%

  5. Atomic Oxygen and Space Environment Effects on Aerospace Materials Flown with EOIM-3 Experiment

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.; Clatterbuck, Carroll H.; Ayres-Treusdell, Mary; Park, Gloria; Kolos, Diane

    1996-01-01

    Polymer materials samples mounted on a passive carrier tray were flown aboard the STS-46 Atlantis shuttle as complement to the EOIM-3 (Evaluation of Oxygen Interaction with Materials) experiment to evaluate the effects of atomic oxygen on the materials and to measure the gaseous shuttle bay environment. The morphological changes of the samples produced by the atomic oxygen fluence of 2.07 x 10(exp 20) atoms/cm(exp 2) are being reported. The changes have been verified using Electron Spectroscopy for Chemical Analysis (ESCA), gravimetric measurement, microscopic observations and thermo-optical measurements. The samples, including Kapton, Delrin, epoxies, Beta Cloth, Chemglaze Z306, silver Teflon, silicone coatings, 3M tape and Uralane and Ultem, PEEK, Victrex (PES), Polyethersulfone and Polymethylpentene thermoplastic, have been characterized by their oxygen reaction efficiency on the basis of their erosion losses and the oxygen fluence. Those efficiencies have been compared to results from other experiments, when available. The efficiencies of the samples are all in the range of E-24 g/atom. The results indicate that the reaction efficiencies of the reported materials can be grouped in about three ranges of values. The least affected materials which have efficiencies varying from 1 to 10(exp 25) g/atom, include silicones, epoxies, Uralane and Teflon. A second group with efficiency from 10 to 45(exp 25) g/atom includes additional silicone coatings, the Chemglaze Z306 paint and Kapton. The third range from 50 to 75(exp 25) includes organic compound such as Pentene, Peek, Ultem, Sulfone and a 3M tape. A Delrin sample had the highest reaction efficiency of 179(exp 25) g/atom. Two samples, the aluminum Beta cloth X389-7 and the epoxy fiberglass G-11 nonflame retardant, showed a slight mass increase.

  6. Oxidation of C18 Hydroxy-Polyunsaturated Fatty Acids to Epoxide or Ketone by Catalase-Related Hemoproteins Activated with Iodosylbenzene.

    PubMed

    Teder, Tarvi; Boeglin, William E; Brash, Alan R

    2017-07-01

    Small catalase-related hemoproteins with a facility to react with fatty acid hydroperoxides were examined for their potential mono-oxygenase activity when activated using iodosylbenzene. The proteins tested were a Fusarium graminearum 41 kD catalase hemoprotein (Fg-cat, gene FGSG_02217), a Pseudomonas fluorescens Pfl01 catalase (37.5 kD, accession number WP_011333788.1), and a Mycobacterium avium ssp. paratuberculosis 33 kD catalase (gene MAP-2744c). 13-Hydroxy-octadecenoic acids (which are normally unreactive) were selected as substrates because these enzymes react specifically with the corresponding 13S-hydroperoxides (Pakhomova et al. 18:2559-2568, 5; Teder et al. 1862:706-715, 14). In the presence of iodosylbenzene Fg-cat converted 13S-hydroxy-fatty acids to two products: the 15,16-double bond of 13S-hydroxy α-linolenic acid was oxidized stereospecifically to the 15S,16R-cis-epoxide or the 13-hydroxyl was oxidized to the 13-ketone. Products were identified by UV, HPLC, LC-MS, NMR and by comparison with authentic standards prepared for this study. The Pfl01-cat displayed similar activity. MAP-2744c oxidized 13S-hydroxy-linoleic acid to the 13-ketone, and epoxidized the double bonds to form the 9,10-epoxy-13-hydroxy, 11,12-epoxy-13-hydroxy, and 9,10-epoxy-13-keto derivatives; equivalent transformations occurred with 9S-hydroxy-linoleic acid as substrate. In parallel incubations in the presence of iodosylbenzene, human catalase displayed no activity towards 13S-hydroxy-linoleic acid, as expected from the highly restricted access to its active site. The results indicated that with suitable transformation to Compound I, monooxygenase activity can be demonstrated by these catalase-related hemoproteins with tyrosine as the proximal heme ligand.

  7. Fluorinated Alkyl Ether Epoxy Resin Compositions and Applications Thereof

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Wohl, Christopher J. (Inventor); Siochi, Emilie J. (Inventor); Gardner, John M. (Inventor); Smith, Joseph G. (Inventor); Palmieri, Frank M. (Inventor)

    2017-01-01

    Epoxy resin compositions prepared using amino terminated fluoro alkyl ethers. The epoxy resin compositions exhibit low surface adhesion properties making them useful as coatings, paints, moldings, adhesives, and fiber reinforced composites.

  8. Physical aging of linear and network epoxy resins

    NASA Technical Reports Server (NTRS)

    Kong, E. S.-W.; Wilkes, G. L.; Mcgrath, J. E.; Banthia, A. K.; Mohajer, Y.; Tant, M. R.

    1981-01-01

    Network and linear epoxy resins principally based on the diglycidyl ether of bisphenol-A and its oligomers are prepared and studied using diamine and anhydride crosslinking agents. Rubber modified epoxies and a carbon fiber reinforced composite are also investigated. All materials display time-dependent changes when stored at temperatures below the glass transition temperature after quenching (sub-T/g/ annealing). Solvent sorption experiments initiated after different sub-T(g) annealing times demonstrate that the rate of solvent uptake can be indirectly related to the free volume of the epoxy resins. Residual thermal stresses and water are found to have little effect on the physical aging process, which affects the sub-T(g) properties of uniaxial carbon fiber reinforced epoxy material. Finally, the importance of the recovery phenomenon which affects the durability of epoxy glasses is considered.

  9. EPOXI Mission Press Conference

    NASA Image and Video Library

    2010-11-18

    Jessica Sunshine, EPOXI Deputy Principal Investigator, University of Maryland, far right, discusses imagery sent back from the EPOXI Mission spacecraft during a press conference, Thursday, Nov. 18, 2010, at NASA Headquarters in Washington. The press conference was held to discuss the Nov. 4 successful flyby of Comet Hartley 2 by NASA's EPOXI Mission Spacecraft. Images from the flyby provided scientists the most extensive observations of a comet in history. Photo Credit: (NASA/Paul E. Alers)

  10. Fracture Mechanics of Transverse Cracks and Edge Delamination in Graphite-Epoxy Composite Laminates.

    DTIC Science & Technology

    1982-03-01

    Fracture failure in multi-layer epoxy-based composite laminates seldom begins with breaking of the load-carrying reinforcing fibers. Rather, smeall...often observed sub-laminate fracture mudes in, e.g., glass-epoxy and graph- ite-epoxy composite laminates. Although these matrix-dominated crackings...the uicrostructures of any given fibrous composite , fracture analysis of sub-laminate cracks based on micro leanie [I Is almost Impossible If not

  11. Investigation of the effect of resin material on impact damage to graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Palmer, R. J.

    1981-01-01

    The results of an experimental program are described which establishes the feasibility and guide lines for resin development. The objective was to identify the basic epoxy neat resin properties that improve low velocity impact resistance and toughness to graphite-epoxy laminates and at the same time maintain useful structural laminate mechanical properties. Materials tests from twenty-three toughened epoxy resin matrix systems are included.

  12. Rubber-Modified Epoxy and Glass Laminates for Application to Naval Ship Structures.

    DTIC Science & Technology

    1983-09-01

    more information. Two generic carboxy terminated butadiene acrylonitrile ( CTBN )-modified epoxy/glass cloth material systems have been characterized...versus Normal Impact Energy of 7781-Z6040/Fl55 .......... .................... 8 4 - Front Surface of CTBN -Modified Epoxy GRP Panel After 60 Impacts at...15 6 - Back Surface of CTBN -Modified Epoxy GRP Panel After 60 Impacts at 206 Foot-Pounds ..... .................. ... 16 7 - Back Surface of

  13. Epoxy/Fluoroether Composites

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.; Taylor, M. S.

    1986-01-01

    Composite materials made from unfilled and glass-fiber-reinforced epoxy toughened by copolymerization with elastomeric prepolymers of perfluoroalkyl ether diacyl fluoride (EDAF). Improved properties due to hydrogen bonding between rubber phase and epoxy matrix, plus formation of rubberlike phase domains that molecularly interpenetrate with epoxy matrix. With optimum rubber content, particle size, and particle shape, entire molecular structure reinforced and toughened. Improved composites also show increased failure strength, stiffness, glass-transition temperature, and resistance to water.

  14. Additive manufacturing of short and mixed fibre-reinforced polymer

    DOEpatents

    Lewicki, James; Duoss, Eric B.; Rodriguez, Jennifer Nicole; Worsley, Marcus A.; King, Michael J.

    2018-01-09

    Additive manufacturing of a fiber-reinforced polymer (FRP) product using an additive manufacturing print head; a reservoir in the additive manufacturing print head; short carbon fibers in the reservoir, wherein the short carbon fibers are randomly aligned in the reservoir; an acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin in the reservoir, wherein the short carbon fibers are dispersed in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin; a tapered nozzle in the additive manufacturing print head operatively connected to the reservoir, the tapered nozzle produces an extruded material that forms the fiber-reinforced polymer product; baffles in the tapered nozzle that receive the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin with the short carbon fibers dispersed in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin; and a system for driving the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin with the short carbon fibers dispersed in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin from the reservoir through the tapered nozzle wherein the randomly aligned short carbon fibers in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin are aligned by the baffles and wherein the extruded material has the short carbon fibers aligned in the acrylate, methacrylate, epoxy, cyanate ester or isocyanate resin that forms the fiber-reinforced polymer product.

  15. A novel hydroxyl epoxy phosphate monomer enhancing the anticorrosive performance of waterborne Graphene/Epoxy coatings

    NASA Astrophysics Data System (ADS)

    Ding, Jiheng; Rahman, Obaid ur; Peng, Wanjun; Dou, Huimin; Yu, Haibin

    2018-01-01

    Herein, we report the synthesis of a novel hydroxyl epoxy phosphate monomer (PGHEP) as an efficient dispersant for graphene to enhance the compatibility of the graphene in epoxy resin. Raman spectroscopy, Ultraviolet-visible spectroscopy (UV-vis) and X-ray photoelectron spectroscopy (XPS) studies were confirmed the π-π interactions between PGHEP and graphene. Well-dispersed states of PGHEP functionalized graphene (G) sheets in water were analyzed by transmission electron microscopy (TEM), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Further, microstructure of prepared G/waterborne epoxy coatings containing 0.5-1.0 wt.% of PGHEP functionalized G sheets were also observed with the help of SEM and TEM. The PGHEP functionalized G sheets dispersed composite coatings displayed enhanced corrosion resistance compared with pure epoxy resin, these coatings have higher contact angle, lower water absorption as evident from the results of electrochemical impedance spectroscopy (EIS) and salt spray tests. The superior corrosion protection performances of G/epoxy coatings were mainly attributed to the formed passive film from uniformly dispersed PGHEP functionalized G sheets which act as physical barrier on the steel surface. Therefore, this work provides a novel bio-based efficient dispersant for G sheets and an important method for preparing G/waterborne epoxy coatings with superior corrosion resistance properties.

  16. Superior Mechanical Properties of Epoxy Composites Reinforced by 3D Interconnected Graphene Skeleton.

    PubMed

    Ni, Ya; Chen, Lei; Teng, Kunyue; Shi, Jie; Qian, Xiaoming; Xu, Zhiwei; Tian, Xu; Hu, Chuansheng; Ma, Meijun

    2015-06-03

    Epoxy-based composites reinforced by three-dimensional graphene skeleton (3DGS) were fabricated in resin transfer molding method with respect to the difficulty in good dispersion and arrangement of graphene sheets in composites by directly mixing graphene and epoxy. 3DGS was synthesized in the process of self-assembly and reduction with poly(amidoamine) dendrimers. In the formation of 3DGS, graphene sheets were in good dispersion and ordered state, which resulted in exceptional mechanical properties and thermal stability for epoxy composites. For 3DGS/epoxy composites, the tensile and compressive strengths significantly increased by 120.9% and 148.3%, respectively, as well as the glass transition temperature, which increased by a notable 19 °C, unlike the thermal exfoliation graphene/epoxy composites via direct-mixing route, which increased by only 0.20 wt % content of fillers. Relative to the graphene/epoxy composites in direct-mixing method mentioned in literature, the increase in tensile and compressive strengths of 3DGS/epoxy composites was at least twofold and sevenfold, respectively. It can be expected that 3DGS, which comes from preforming graphene sheets orderly and dispersedly, would replace graphene nanosheets in polymer nanocomposite reinforcement and endow composites with unique structure and some unexpected performance.

  17. Effect of carbon nanotube dispersion on glass transition in cross-linked epoxy-carbon nanotube nanocomposites: role of interfacial interactions.

    PubMed

    Khare, Ketan S; Khare, Rajesh

    2013-06-20

    We have used atomistic molecular simulations to study the effect of nanofiller dispersion on the glass transition behavior of cross-linked epoxy-carbon nanotube (CNT) nanocomposites. Specific chemical interactions at the interface of CNTs and cross-linked epoxy create an interphase region, whose impact on the properties of their nanocomposites increases with an increasing extent of dispersion. To investigate this aspect, we have compared the volumetric, structural, and dynamical properties of three systems: neat cross-linked epoxy, cross-linked epoxy nanocomposite containing dispersed CNTs, and cross-linked epoxy nanocomposite containing aggregated CNTs. We find that the nanocomposite containing dispersed CNTs shows a depression in the glass transition temperature (Tg) by ~66 K as compared to the neat cross-linked epoxy, whereas such a large depression is absent in the nanocomposite containing aggregated CNTs. Our results suggest that the poor interfacial interactions between the CNTs and the cross-linked epoxy matrix lead to a more compressible interphase region between the CNTs and the bulk matrix. An analysis of the resulting dynamic heterogeneity shows that the probability of percolation of immobile domains becomes unity near the Tg calculated from volumetric properties. Our observations also lend support to the conceptual analogy between polymer nanocomposites and the nanoconfinement of polymer thin films.

  18. Development of silane grafted ZnO core shell nanoparticles loaded diglycidyl epoxy nanocomposites film for antimicrobial applications.

    PubMed

    Suresh, S; Saravanan, P; Jayamoorthy, K; Ananda Kumar, S; Karthikeyan, S

    2016-07-01

    In this article a series of epoxy nanocomposites film were developed using amine functionalized (ZnO-APTES) core shell nanoparticles as the dispersed phase and a commercially available epoxy resin as the matrix phase. The functional group of the samples was characterized using FT-IR spectra. The most prominent peaks of epoxy resin were found in bare epoxy and in all the functionalized ZnO dispersed epoxy nanocomposites (ZnO-APTES-DGEBA). The XRD analysis of all the samples exhibits considerable shift in 2θ, intensity and d-spacing values but the best and optimum concentration is found to be 3% ZnO-APTES core shell nanoparticles loaded epoxy nanocomposites supported by FT-IR results. From TGA measurements, 100wt% residue is obtained in bare ZnO nanoparticles whereas in ZnO core shell nanoparticles grafted DGEBA residue percentages are 37, 41, 45, 46 and 52% for 0, 1, 3, 5 and 7% ZnO-APTES-DGEBA respectively, which is confirmed with ICP-OES analysis. From antimicrobial activity test, it was notable that antimicrobial activity of 7% ZnO-APTES core shell nanoparticles loaded epoxy nanocomposite film has best inhibition zone effect against all pathogens under study. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Effect of epoxy resin sealing on corrosion resistance of arc spraying aluminium coating using cathode electrophoresis method

    NASA Astrophysics Data System (ADS)

    Pang, Xuming; Wang, Runqiu; Wei, Qian; Zhou, Jianxin

    2018-01-01

    Arc-sprayed Al coating was sealed with epoxy resin using the cathode electrophoresis method. The anti-corrosion performance of the coatings sealed with epoxy resin was studied by means of a 3.5 wt.% NaCl solution test at 40 °C. For comparison, the anti-corrosion performance of Al coating sealed with boiling water was also performed under the same conditions. The results show that epoxy resin with a thickness of about 20 microns can entirely cover open pores and decreases the surface roughness of the as-sprayed Al coating, and the epoxy resin even permeates into the gaps among lamellar splats from open pores. After corrosion, the thickness of the epoxy resin layer is unchanged and can still cover the as-sprayed Al coating entirely. However, the thickness of Al coating sealed with boiling water decreases from 100 to 40 microns, which indicates that the arc-sprayed Al coating has much better corrosion resistance than the Al coating sealed with boiling water. Meanwhile, the content of substituted benzene ring in the epoxy resin increases, but aromatic ring decreases according to the fourier transform infrared spectra, which will cause the rigidity of the epoxy resin to increase, but the toughness slightly decreases after corrosion.

  20. Serotonergic activity-guided phytochemical investigation of the roots of Angelica sinensis.

    PubMed

    Deng, Shixin; Chen, Shao-Nong; Yao, Ping; Nikolic, Dejan; van Breemen, Richard B; Bolton, Judy L; Fong, Harry H S; Farnsworth, Norman R; Pauli, Guido F

    2006-04-01

    Serotonin receptor (5-HT(7)) binding assay-directed fractionation of a methanol extract of the dried roots of Angelica sinensis led to the isolation and identification of 21 compounds including a new phenolic ester, angeliferulate (1), and three new phthalides, 10-angeloylbutylphthalide (2), sinaspirolide (3), and ansaspirolide (4), along with 17 known compounds, p-hydroxyphenethyl trans-ferulate (5), Z-ligustilide (6), Z-butylidenephthalide (7), senkyunolide I (8), Z-6-hydroxy-7-methoxydihydroligustilide (9), N-butylbenzenesulfonamide (10), 11(S),16(R)-dihydroxyoctadeca-9Z,17-diene-12,14-diyn-1-yl acetate (11), (3R,8S)-falcarindiol (12), heptadeca-1-en-9,10-epoxy-4,6-diyne-3,8-diol (13), oplopandiol (14), 8-hydroxy-1-methoxy-, Z-9-heptadecene-4,6-diyn-3-one (15), imperatorin, ferulic acid, vanillin, stigmasterol, sucrose, and 1,3-dilinolenin. This is the first report of a sulfonamide (10) identified from a higher plant source, although its presence needs further investigation. Biosynthetic pathways for dimeric phthalides 3 and 4 are proposed. Compounds 5, 7, 11, 12, 15, and imperatorin exhibited affinity toward 5-HT(7) receptors in a competitive binding assay.

  1. A One-Component, Fast-Cure, and Economical Epoxy Resin System Suitable for Liquid Molding of Automotive Composite Parts.

    PubMed

    Wang, Yiru; Liu, Wanshuang; Qiu, Yiping; Wei, Yi

    2018-04-27

    Imidazole cured epoxy resin systems were evaluated for one-component, fast-curing resins for liquid molding of automotive composite parts according to industry requirements. It was demonstrated that an epoxy resin-1-(cyanoethyl)-2-ethyl-4-methylimidazol(EP-1C2E4MIM) system would cure in a few minutes at 120 °C, while exhibiting acceptable pot life, viscosity profiles, and low water absorption. Moreover, this system yielded high T g parts with mechanical properties similar to the amine-epoxy systems, which are the mainstream two-component epoxy resin systems for automobiles.

  2. A One-Component, Fast-Cure, and Economical Epoxy Resin System Suitable for Liquid Molding of Automotive Composite Parts

    PubMed Central

    Wang, Yiru; Qiu, Yiping; Wei, Yi

    2018-01-01

    Imidazole cured epoxy resin systems were evaluated for one-component, fast-curing resins for liquid molding of automotive composite parts according to industry requirements. It was demonstrated that an epoxy resin-1-(cyanoethyl)-2-ethyl-4-methylimidazol(EP-1C2E4MIM) system would cure in a few minutes at 120 °C, while exhibiting acceptable pot life, viscosity profiles, and low water absorption. Moreover, this system yielded high Tg parts with mechanical properties similar to the amine-epoxy systems, which are the mainstream two-component epoxy resin systems for automobiles. PMID:29702575

  3. Effects of colloidal nanosilica on the rheological properties of epoxy resins filled with organoclay.

    PubMed

    Nguyen, Dinh Huong; Song, Gwang Seok; Lee, Dai Soo

    2011-05-01

    The rheological properties of epoxy resins filled with organoclay and colloidal nanosilica were investigated by employing a parallel plate rheometer in flow mode at 25 degrees C. Shear thickening and shear thinning behaviors were observed in the epoxy resins filled with a mixture of organoclay and colloidal nanosilica. Minima were observed in the relaxation time of the systems consisting of epoxy resins filled with organoclay and colloidal silica as the content of colloidal nanosilica was increased. It seems that the colloidal nanosilica increased the mobility of the filled epoxy resins and reduced the interactions between the silicate layers in the systems.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gantayat, S., E-mail: subhra-gantayat@rediffmail.com; Rout, D.; Swain, S. K.

    The effect of the functionalization of multiwalled carbon nanotube on the structure and electrical properties of composites was investigated. Samples based on epoxy resin with different weight percentage of MWCNTs were prepared and characterized. The interaction between MWCNT & epoxy resin was noticed by Fourier transform infrared spectroscopy (FTIR). The structure of functionalized multiwalled carbon nanotube (f-MWCNT) reinforced epoxy composite was studied by field emission scanning electron microscope (FESEM). The dispersion of f-MWCNT in epoxy resin was evidenced by high resolution transmission electron microscope (HRTEM). Electrical properties of epoxy/f-MWCNT nanocomposites were measured & the result indicated that the conductivity increasedmore » with increasing concentration of f-MWCNTs.« less

  5. Postbuckling behavior of graphite-epoxy panels

    NASA Technical Reports Server (NTRS)

    Starnes, J. H., Jr.; Dickson, J. N.; Rouse, M.

    1984-01-01

    Structurally efficient fuselage panels are often designed to allow buckling to occur at applied loads below ultimate. Interest in applying graphite-epoxy materials to fuselage primary structure led to several studies of the post-buckling behavior of graphite-epoxy structural components. Studies of the postbuckling behavior of flat and curved, unstiffened and stiffened graphite-epoxy panels loaded in compression and shear were summarized. The response and failure characteristics of specimens studied experimentally were described, and analytical and experimental results were compared. The specimens tested in the studies described were fabricated from commercially available 0.005-inch-thick unidirectional graphite-fiber tapes preimpregnated with 350 F cure thermosetting epoxy resins.

  6. Microbial cycling of isoprene, the most abundantly produced biological volatile organic compound on Earth.

    PubMed

    McGenity, Terry J; Crombie, Andrew T; Murrell, J Colin

    2018-04-01

    Isoprene (2-methyl-1,3-butadiene), the most abundantly produced biogenic volatile organic compound (BVOC) on Earth, is highly reactive and can have diverse and often detrimental atmospheric effects, which impact on climate and health. Most isoprene is produced by terrestrial plants, but (micro)algal production is important in aquatic environments, and the relative bacterial contribution remains unknown. Soils are a sink for isoprene, and bacteria that can use isoprene as a carbon and energy source have been cultivated and also identified using cultivation-independent methods from soils, leaves and coastal/marine environments. Bacteria belonging to the Actinobacteria are most frequently isolated and identified, and Proteobacteria have also been shown to degrade isoprene. In the freshwater-sediment isolate, Rhodococcus strain AD45, initial oxidation of isoprene to 1,2-epoxy-isoprene is catalyzed by a multicomponent isoprene monooxygenase encoded by the genes isoABCDEF. The resultant epoxide is converted to a glutathione conjugate by a glutathione S-transferase encoded by isoI, and further degraded by enzymes encoded by isoGHJ. Genome sequence analysis of actinobacterial isolates belonging to the genera Rhodococcus, Mycobacterium and Gordonia has revealed that isoABCDEF and isoGHIJ are linked in an operon, either on a plasmid or the chromosome. In Rhodococcus strain AD45 both isoprene and epoxy-isoprene induce a high level of transcription of 22 contiguous genes, including isoABCDEF and isoGHIJ. Sequence analysis of the isoA gene, encoding the large subunit of the oxygenase component of isoprene monooxygenase, from isolates has facilitated the development of PCR primers that are proving valuable in investigating the ecology of uncultivated isoprene-degrading bacteria.

  7. Electron and proton absorption calculations for a graphite/epoxy composite model. [large space structures

    NASA Technical Reports Server (NTRS)

    Long, E. R., Jr.

    1979-01-01

    The Bethe-Bloch stopping power relations for inelastic collisions were used to determine the absorption of electron and proton energy in cured neat epoxy resin and the absorption of electron energy in a graphite/epoxy composite. Absorption of electron energy due to bremsstrahlung was determined. Electron energies from 0.2 to 4.0 MeV and proton energies from 0.3 to 1.75 MeV were used. Monoenergetic electron energy absorption profiles for models of pure graphite, cured neat epoxy resin, and graphite/epoxy composites are reported. A relation is determined for depth of uniform energy absorption in a composite as a function of fiber volume fraction and initial electron energy. Monoenergetic proton energy absorption profiles are reported for the neat resin model. A relation for total proton penetration in the epoxy resin as a function of initial proton energy is determined. Electron energy absorption in the composite due to bremsstrahlung is reported. Electron and proton energy absorption profiles in cured neat epoxy resin are reported for environments approximating geosynchronous earth orbit.

  8. Fast Fourier Transform IR Characterization of Epoxy GY Systems Crosslinked with Aliphatic and Cycloaliphatic EH Polyamine Adducts

    PubMed Central

    Nikolic, Goran; Zlatkovic, Sasa; Cakic, Milorad; Cakic, Suzana; Lacnjevac, Caslav; Rajic, Zoran

    2010-01-01

    The use of fast FT-IR spectroscopy as a sensitive method to estimate a change of the crosslinking kinetics of epoxy resin with polyamine adducts is described in this study. A new epoxy formulation based on the use of polyamine adducts as the hardeners was analyzed. Crosslinking reactions of the different stoichiometric mixtures of the unmodified GY250 epoxy resin with the aliphatic EH606 and the cycloaliphatic EH637 polyamine adducts were studied using mid FT-IR spectroscopic techniques. As the crosslinking proceeded, the primary amine groups in polyamine adduct are converted to secondary and the tertiary amines. The decrease in the IR band intensity of epoxy groups at about 915 cm−1, as well as at about 3,056 cm−1, was observed due to process. Mid IR spectral analysis was used to calculate the content of the epoxy groups as a function of crosslinking time and the crosslinking degree of resin. The amount of all the epoxy species was estimated from IR spectra to changes during the crosslinking kinetics of epichlorhydrin. PMID:22315562

  9. Correlation between Mechanical Properties with Specific Wear Rate and the Coefficient of Friction of Graphite/Epoxy Composites

    PubMed Central

    Alajmi, Mahdi; Shalwan, Abdullah

    2015-01-01

    The correlation between the mechanical properties of Fillers/Epoxy composites and their tribological behavior was investigated. Tensile, hardness, wear, and friction tests were conducted for Neat Epoxy (NE), Graphite/Epoxy composites (GE), and Data Palm Fiber/Epoxy with or without Graphite composites (GFE and FE). The correlation was made between the tensile strength, the modulus of elasticity, elongation at the break, and the hardness, as an individual or a combined factor, with the specific wear rate (SWR) and coefficient of friction (COF) of composites. In general, graphite as an additive to polymeric composite has had an eclectic effect on mechanical properties, whereas it has led to a positive effect on tribological properties, whilst date palm fibers (DPFs), as reinforcement for polymeric composite, promoted a mechanical performance with a slight improvement to the tribological performance. Statistically, this study reveals that there is no strong confirmation of any marked correlation between the mechanical and the specific wear rate of filler/Epoxy composites. There is, however, a remarkable correlation between the mechanical properties and the friction coefficient of filler/Epoxy composites. PMID:28793431

  10. Exploratory Study on the Effects of Novel Diamine Curing Agents and Isocyanate Precursors on the Properties of New Epoxy and Urethane Adhesives

    NASA Technical Reports Server (NTRS)

    Glasgow, D. Gerald; Garthwait, Clayborn

    1977-01-01

    This report covers the results of investigations directed toward studying the effects of novel aromatic diamine structures on epoxy adhesive properties and includes work done under a modification to the original contract. Three aromatic diamines based on diphenylsulfone and benzophenone were studied as epoxy adhesive curing agents. Previously found differences in adhesive strengths for meta vs para orientation were not found in these series. The use of aluminum and alumina as fillers in a m,m'-methylene dianiline-cured epoxy adhesive was not found to be beneficial to adhesive strength. Alumina filled adhesives had much lower strength than unfilled adhesives. The unfilled m,m'-methylene dianiline-based epoxy adhesive had excellent resistance to moisture relative to a p,p'-methylene dianiline-based adhesive and maintained good strengths up to 250 F. A glass fiber composite based on a m,m'-methylene dianiline-cured epoxy appeared to be equivalent to the p,p'-methylene dianiline-cured epoxy as judged by short beam shear tests.

  11. AC electrical breakdown phenomena of epoxy/layered silicate nanocomposite in needle-plate electrodes.

    PubMed

    Park, Jae-Jun; Lee, Jae-Young

    2013-05-01

    Epoxy/layered silicate nanocomposite for the insulation of heavy electric equipments were prepared by dispersing 1 wt% of a layered silicate into an epoxy matrix with a homogenizing mixer and then AC electrical treeing and breakdown tests were carried out. Wide-angle X-ray diffraction (WAXD) analysis and transmission electron microscopy (TEM) observation showed that nano-sized monolayers were exfoliated from a multilayered silicate in the epoxy matrix. When the nano-sized silicate layers were incorporated into the epoxy matrix, the breakdown rate in needle-plate electrode geometry was 10.6 times lowered than that of the neat epoxy resin under the applied electrical field of 520.9 kV/mm at 30 degrees C, and electrical tree propagated with much more branches in the epoxy/layered silicate nanocomposite. These results showed that well-dispersed nano-sized silicate layers retarded the electrical tree growth rate. The effects of applied voltage and ambient temperature on the tree initiation, growth, and breakdown rate were also studied, and it was found that the breakdown rate was largely increased, as the applied voltage and ambient temperature increased.

  12. Correlation between Mechanical Properties with Specific Wear Rate and the Coefficient of Friction of Graphite/Epoxy Composites.

    PubMed

    Alajmi, Mahdi; Shalwan, Abdullah

    2015-07-08

    The correlation between the mechanical properties of Fillers/Epoxy composites and their tribological behavior was investigated. Tensile, hardness, wear, and friction tests were conducted for Neat Epoxy (NE), Graphite/Epoxy composites (GE), and Data Palm Fiber/Epoxy with or without Graphite composites (GFE and FE). The correlation was made between the tensile strength, the modulus of elasticity, elongation at the break, and the hardness, as an individual or a combined factor, with the specific wear rate (SWR) and coefficient of friction (COF) of composites. In general, graphite as an additive to polymeric composite has had an eclectic effect on mechanical properties, whereas it has led to a positive effect on tribological properties, whilst date palm fibers (DPFs), as reinforcement for polymeric composite, promoted a mechanical performance with a slight improvement to the tribological performance. Statistically, this study reveals that there is no strong confirmation of any marked correlation between the mechanical and the specific wear rate of filler/Epoxy composites. There is, however, a remarkable correlation between the mechanical properties and the friction coefficient of filler/Epoxy composites.

  13. Epoxy coated reinforcement study : final report.

    DOT National Transportation Integrated Search

    1999-06-01

    This report evaluates the use of Scotchlite 213 epoxy coated reinforcement in Oregon coastal environments. There is an extensive body of knowledge documenting epoxy coated reinforcement research in North America in the last 20 years. The research has...

  14. Design Guide: Designing and Building High Voltage Power Supplies. Volume 2

    DTIC Science & Technology

    1988-08-01

    and edges. * Isolation system: * One layer ol’ Tedlar: or type 120 glass fabric with a compatible resin : or finish. 199 5.4.2 Composite Joints...plastics Cellulose esters Asphalt Cork Chloride flux Epoxy resins Copper (bare) Masonite Fiber board Melamine resins Greases Nylon Polyvinyl chloride resins ...cycloaliphatic epoxy to a level inferior to the porcelain. In one application having a glass -cloth epoxy- based laminate coated with cycloaliphatic epoxy the

  15. High Strain Rate Mechanical Properties of Epoxy and Epoxy-Based Particulate Composites

    DTIC Science & Technology

    2007-08-01

    and titanium alloy (Ti- 6Al - 4V ) bar materials available. For all bar systems, the properties of the sample are determined by measuring the...polished, carbon-coated specimens provided adequate contrast between the aluminum particles, the epoxy matrix and any porosity present after curing...difference between the two measures of particle size can be explained by the higher levels of porosity observed in the Epoxy-65H2 specimen, which

  16. Compression of Composite Materials: A Review,

    DTIC Science & Technology

    1987-11-01

    epoxy tension face, . and a plexiglass core under the specimen gage-section. A Kevlar /glass phenolic hybrid composite system was evaluated in the...epoxy [0116 specimens, S2/SP-250 7 glass/epoxy [0/±45/9012s specimens, Kevlar 285 weave/Cycom 4143 Aramid/epoxy specimens, unidirectional FP alumina...bundles tested erc- E-glass, T300 graphite, T700 graphite, P75 graphite, Kevlar 49, and FP alumina. " -1. They observed that bundle failure

  17. Use of 2,5-dimethyl-2,5-hexane diamine as a curing agent for epoxy resins. [Patent application

    DOEpatents

    Rinde, J.A.; Newey, H.A.

    Primary diamines are prepared for use as a curing agent for epoxy resins. These curing agents can be used to form epoxy resin mixtures useful in filament winding and preimpregnated fiber molding and in formulating film adhesives, powder coatings and molding powders. The epoxy mixtures form for such uses a room temperature non-reacting, intermediate stable state which has a latent cross-linking capability.

  18. Synthesis and Structure Property Studies of Toughened Epoxy Resins Via Functionalized Polysiloxanes.

    DTIC Science & Technology

    1987-09-30

    34 87S N4 SYNTHESIS RNO STRUCTURE PROPERTY STUDIES OF OP NDD mEPOXY RESINS YIN FU.. (U) VIROINIR POLYTECHNIC INST OM STNTE UNIY RCKSBURG DEPT OF C.. J...Classification) Synthesis and Structure Property Studies of Toughened Epoxy Resins Via Functionalized Polysiloxanes 12. PERSONALAUTHOR(S) J. 5. HitTIe... Resins , Toughening 19. ABSTRACT (Continue on reverse if necessary and identify by block number) Epoxy resins chemically modified with functionally

  19. Microencapsulation of Polyfunctional Amines for Self-Healing of Epoxy-Based Composites

    DTIC Science & Technology

    2008-01-01

    MICROENCAPSULATION OF POLYFUNCTIONAL AMINES FOR SELF-HEALING OF EPOXY-BASED COMPOSITES David A. McIlroy*§, Ben J. Blaiszik,¥ Paul V. Braun... microcapsules containing an amine hardener (DEH-52, Dow Chemical) for use as the hardener in a 2-part epoxy healing system consisting of epoxy...microscope. Scanning electron microscopy was performed on a Philips XL30 ESEM-FEG instrument. Microencapsulation Procedure. 10 g of a 2:1 v/v

  20. Evaluation of the Epoxy/Antimony Trioxide Nanocomposites as Flame Retardant

    NASA Astrophysics Data System (ADS)

    Dheyaa, Balqees M.; Jassim, Widad H.; Hameed, Noor A.

    2018-05-01

    Antimony trioxide nanopowder was added for epoxy resin in various amount weight percentages (0, 2, 4, 6, 8, and 10) wt% to increase the combustion resistance and decrease the flammability for it. The study included three standard tests used to measure: limiting oxygen index (LOI), rate of burning (R.B), burning extent (E.B), burning time (T.B), maximum flame height (H) and residue percentage after burning in order to determine the effectiveness of the used additives to decrease the flammability of epoxy resin and increase the combustion resistance. Thermal test was done by using Lee’s disk to measure the thermal conductivity coefficient. The thermal stability and degradation kinetics of epoxy resin without reinforcement and with reinforcement by (10 wt%) were studied by using thermogravimetric analysis (TGA). The recorded results indicated that epoxy reinforced by (10 wt%) has a good effect as flame retardants for epoxy resin and active to inhibit burning and reduce the flammability.

  1. Biobased Epoxy Resins from Deconstructed Native Softwood Lignin.

    PubMed

    van de Pas, Daniel J; Torr, Kirk M

    2017-08-14

    The synthesis of novel epoxy resins from lignin hydrogenolysis products is reported. Native lignin in pine wood was depolymerized by mild hydrogenolysis to give an oil product that was reacted with epichlorohydrin to give epoxy prepolymers. These were blended with bisphenol A diglycidyl ether or glycerol diglycidyl ether and cured with diethylenetriamine or isophorone diamine. The key novelty of this work lies in using the inherent properties of the native lignin in preparing new biobased epoxy resins. The lignin-derived epoxy prepolymers could be used to replace 25-75% of the bisphenol A diglycidyl ether equivalent, leading to increases of up to 52% in the flexural modulus and up to 38% in the flexural strength. Improvements in the flexural strength were attributed to the oligomeric products present in the lignin hydrogenolysis oil. These results indicate lignin hydrogenolysis products have potential as sustainable biobased polyols in the synthesis of high performance epoxy resins.

  2. Characterization of Epoxy Functionalized Graphite Nanoparticles and the Physical Properties of Epoxy Matrix Nanocomposites

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Bauer, Jonathan L.; Maryanski, Michael J.; Heimann, Paula J.; Barlow, Jeremy P.; Gosau, Jan-Michael; Allred, Ronald E.

    2010-01-01

    This work presents a novel approach to the functionalization of graphite nanoparticles. The technique provides a mechanism for covalent bonding between the filler and matrix, with minimal disruption to the sp2 hybridization of the pristine graphene sheet. Functionalization proceeded by covalently bonding an epoxy monomer to the surface of expanded graphite, via a coupling agent, such that the epoxy concentration was measured as approximately 4 wt.%. The impact of dispersing this material into an epoxy resin was evaluated with respect to the mechanical properties and electrical conductivity of the graphite-epoxy nanocomposite. At a loading as low as 0.5 wt.%, the electrical conductivity was increased by five orders of magnitude relative to the base resin. The material yield strength was increased by 30% and Young s modulus by 50%. These results were realized without compromise to the resin toughness.

  3. Static and Dynamic Mechanical Properties of Graphene Oxide-Incorporated Woven Carbon Fiber/Epoxy Composite

    NASA Astrophysics Data System (ADS)

    Adak, Nitai Chandra; Chhetri, Suman; Kim, Nam Hoon; Murmu, Naresh Chandra; Samanta, Pranab; Kuila, Tapas

    2018-03-01

    This study investigates the synergistic effects of graphene oxide (GO) on the woven carbon fiber (CF)-reinforced epoxy composites. The GO nanofiller was incorporated into the epoxy resin with variations in the content, and the CF/epoxy composites were manufactured using a vacuum-assisted resin transfer molding process and then cured at 70 and 120 °C. An analysis of the mechanical properties of the GO (0.2 wt.%)/CF/epoxy composites showed an improvement in the tensile strength, Young's modulus, toughness, flexural strength and flexural modulus by 34, 20, 83, 55 and 31%, respectively, when compared to the CF/epoxy composite. The dynamic mechanical analysis of the composites exhibited an enhancement of 56, 114 and 22% in the storage modulus, loss modulus and damping capacity (tan δ), respectively, at its glass transition temperature. The fiber-matrix interaction was studied using a Cole-Cole plot analysis.

  4. Friction and Wear Behavior of Carbon Fabric-Reinforced Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Şahin, Y.; De Baets, Patrick

    2017-12-01

    Besides intrinsic material properties, weight/energy savings and wear performance play an important role in the selection of materials for any engineering application. The tribological behavior of carbon fabric-reinforced epoxy composites produced by molding technique was investigated using a reciprocating pin-on-plate configuration. It was shown that the wear rate considerably decreased (by a factor of approx. 8) with the introduction of the reinforcing carbon fabric into the epoxy matrix. It was observed that the wear rate of the tested composites increased with an increase in normal load. Moreover, the coefficient of friction for epoxy/steel and composites/steel tribo-pairs was also determined and decreased with increasing load. By means of scanning electron microscopy of the wear tracks, different wear mechanisms such as matrix wear, matrix fatigue and cracking, matrix debris formation for neat epoxy together with fabric/fiber thinning, fabric breakage and fabric/matrix debonding for the reinforced epoxy could be distinguished.

  5. Nanoindentation study of interphases in epoxy/amine thermosetting systems modified with thermoplastics.

    PubMed

    Ramos, Jose Angel; Blanco, Miren; Zalakain, Iñaki; Mondragon, Iñaki

    2009-08-15

    The characterization of a mixture of epoxy/amine with different stoichiometric ratios was carried out by means of nanoindentation. The epoxy system was composed by diglycidyl ether of bisphenol-A and 4,4'-methylene bis-(3-chloro 2,6-diethylaniline). Diffusion through interface formed by epoxy/amine system in stoichiometric ratio and several thermoplastic polymers was also analyzed by means of stiffness analysis, as studied by atomic force microscopy (AFM) and coupled nanoindentation tests. Used thermoplastics were an amorphous, atactic polystyrene, and two semicrystalline, syndiotactic polystyrene and poly(phenylene sulfide). Larger range diffusion was obtained in epoxy/amine systems modified with atactic polystyrene while the study of the influence of stoichiometric ratio suggests that the excess of epoxy generated stiffer material. In addition, larger indentation loads resulted in higher apparent stiffness because of the more number of polymer chains that had to re-accommodate owing to the increase in contact area.

  6. Dynamic stress analysis of smooth and notched fiber composite flexural specimens

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Chamis, C. C.

    1984-01-01

    A detailed analysis of the dynamic stress field in smooth and notched fiber composite (Charpy-type) specimens is reported in this paper. The analysis is performed with the aid of the direct transient response analysis solution sequence of MSC/NASTRAN. Three unidirectional composites were chosen for the study. They are S-Glass/Epoxy, Kevlar/Epoxy and T-300/Epoxy composite systems. The specimens are subjected to an impact load which is modeled as a triangular impulse with a maximum of 2000 lb and a duration of 1 ms. The results are compared with those of static analysis of the specimens subjected to a peak load of 2000 lb. For the geometry and type of materials studied, the static analysis results gave close conservative estimates for the dynamic stresses. Another interesting inference from the study is that the impact induced effects are felt by S-Glass/Epoxy specimens sooner than Kevlar/Epoxy or T-300/Epoxy specimens.

  7. Modified Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Gilwee, W. J.

    1984-01-01

    The properties of a rubber-modified experimental epoxy resin and a standard epoxy as composite matrices were studied. In addition, a brominated epoxy resin was used in varying quantities to improve the fire resistance of the composite. The experimental resin was tris-(hydroxyphenyl)methane triglycidyl ether, known as tris epoxy novolac (TEN). The standard epoxy resin used was tetraglycidyl 4,4'-diaminodiphenyl methane (TGDDM). The above resins were modified with carboxyl-terminated butadiene acrylonitrile (CTBN) rubber. It is concluded that: (1) modification of TEN resin with bromine gives better impact resistance than rubber modification alone; (2) 25% rubber addition is necessary to obtain significant improvement in impact resistance; (3) impact resistance increases with bromine content; (4) impact velocity does not significantly affect the energy absorbed by the test sample; (5) Tg did not decline with rubber modification; and (6) TEN resin had better hot/wet properties than TGDDM resin.

  8. Cationic cure kinetics of a polyoxometalate loaded epoxy nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Benjamin J.

    2012-08-06

    The reaction cure kinetics of a novel polyoxometalate (POM) loaded epoxy nanocomposite is described. The POM is dispersed in the epoxy resin up to volume fractions of 0.1. Differential scanning calorimetry measurements show the cure of the epoxy resin to be sensitive to the POM loading. A kinetics study of the cure exotherm confirms that POM acts as a catalyst promoting cationic homopolymerization of the epoxy resin. The cure reaction is shown to propagate through two cure regimes. A fast cure at short time is shown to be propagation by the activated chain end (ACE) mechanism. A slow cure atmore » long time is shown to be propagation by the activated monomer (AM) mechanism. The activation energies for the fast and slow cure regimes agree well with other epoxy based systems that have been confirmed to propagate by the ACE and AM mechanisms.« less

  9. Fiber-Reinforced Reactive Nano-Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Zhong, Wei-Hong

    2011-01-01

    An ultra-high-molecular-weight polyethylene/ matrix interface based on the fabrication of a reactive nano-epoxy matrix with lower surface energy has been improved. Enhanced mechanical properties versus pure epoxy on a three-point bend test include: strength (25 percent), modulus (20 percent), and toughness (30 percent). Increased thermal properties include higher Tg (glass transition temperature) and stable CTE (coefficient of thermal expansion). Improved processability for manufacturing composites includes faster wetting rates on macro-fiber surfaces, lower viscosity, better resin infusion rates, and improved rheological properties. Improved interfacial adhesion properties with Spectra fibers by pullout tests include initial debonding force of 35 percent, a maximum pullout force of 25 percent, and energy to debond at 65 percent. Improved mechanical properties of Spectra fiber composites (tensile) aging resistance properties include hygrothermal effects. With this innovation, high-performance composites have been created, including carbon fibers/nano-epoxy, glass fibers/nano-epoxy, aramid fibers/ nano-epoxy, and ultra-high-molecularweight polyethylene fiber (UHMWPE).

  10. Exploratory study on the effects of novel diamine curing agents and isocyanate precursors on the properties on new epoxy and urethane adhesives

    NASA Technical Reports Server (NTRS)

    Glasgow, D. G.; Garthwait, C.

    1977-01-01

    Aromatic diamines based on diphenyl sulfone and benzophenone were studied as epoxy adhesive curing agents. Previously found differences in adhesive strengths for meta vs para orientation were not found in these series. The use of aluminum and alumina as fillers in a m,m prime-methylene dianiline-cured epoxy adhesive was not found to be beneficial to adhesive strength. Alumina filled adhesives had much lower strength than unfilled adhesives. The unfilled m,m prime-methylene dianiline-based epoxy adhesive had excellent resistance to moisture relative to a p,p prime-methylene dianiline-based adhesive and maintained good strengths up to 250 F. A glass fiber composite based on a m,m prime-methylene dianiline-cured epoxy appeared to be equivalent to the p,p prime-methylene dianiline-cured epoxy as judged by short beam shear tests.

  11. Toughening Mechanisms in Silica-Filled Epoxy Nanocomposites

    NASA Astrophysics Data System (ADS)

    Patel, Binay S.

    Epoxies are widely used as underfill resins throughout the microelectronics industry to mechanically couple and protect various components of flip-chip assemblies. Generally rigid materials largely surround underfill resins. Improving the mechanical and thermal properties of epoxy resins to better match those of their rigid counterparts can help extend the service lifetime of flip-chip assemblies. Recently, researchers have demonstrated that silica nanoparticles are effective toughening agents for lightly-crosslinked epoxies. Improvements in the fracture toughness of silica-filled epoxy nanocomposites have primarily been attributed to two toughening mechanisms: particle debonding with subsequent void growth and matrix shear banding. Various attempts have been made to model the contribution of these toughening mechanisms to the overall fracture energy observed in silica-filled epoxy nanocomposites. However, disparities still exist between experimental and modeled fracture energy results. In this dissertation, the thermal, rheological and mechanical behavior of eight different types of silica-filled epoxy nanocomposites was investigated. Each nanocomposite consisted of up to 10 vol% of silica nanoparticles with particle sizes ranging from 20 nm to 200 nm, with a variety of surface treatments and particle structures. Fractographical analysis was conducted with new experimental approaches in order to accurately identify morphological evidence for each proposed toughening mechanism. Overall, three major insights into the fracture behavior of real world silica-filled epoxy nanocomposites were established. First, microcracking was observed as an essential toughening mechanism in silica-filled epoxy nanocomposites. Microcracking was observed on the surface and subsurface of fractured samples in each type of silica-filled epoxy nanocomposite. The additional toughening contribution of microcracking to overall fracture energy yielded excellent agreement between experimental and modeled fracture energy results. Furthermore, the contribution of microcracking was most prevalent at lower filler contents which suggests that the presence of microcracking may account for the previously unexplained improvements in fracture behavior attained in silica-filled epoxy nanocomposites at low filler contents. Secondly, surface modification through the application of three different propriety surface treatments ("A", "B" and "C") was found to greatly influence the processibility and fracture behavior of silica-filled epoxy nanocomposites. B-treated silica nanoparticles were found to readily form micron-scale agglomerates, settled during nanocomposite curing and showed no improvement in fracture toughness with increasing filler content. In contrast, the nanocomposites consisting of A-treated and C-treated silica nanoparticles yielded morphologies primarily containing well-dispersed nanoparticles. Therefore, fracture toughness improved with increasing filler content. Finally, particle porosity was found to have no significant effect on fracture behavior for the range of silica-filled epoxy nanocomposites investigated. Lower density porous silica nanoparticles were just as effective toughening agents as higher density non-porous silica nanoparticles. Consequently, the potential exists for the use of toughened-epoxies in lightweight structural applications.

  12. Noncovalently Functionalized Tungsten Disulfide Nanosheets for Enhanced Mechanical and Thermal Properties of Epoxy Nanocomposites.

    PubMed

    Sahu, Megha; Narashimhan, Lakshmi; Prakash, Om; Raichur, Ashok M

    2017-04-26

    In the present study, noncovalently functionalized tungsten disulfide (WS 2 ) nanosheets were used as a toughening agent for epoxy nanocomposites. WS 2 was modified with branched polyethyleneimine (PEI) to increase the degree of interaction of nanosheets with the epoxy matrix and prevent restacking and agglomeration of the sheets in the epoxy matrix. The functionalization of WS 2 sheets was confirmed through Fourier transform infrared spectroscopy and thermogravimetric analysis. The exfoliation of the bulk WS 2 was confirmed through X-ray diffraction and various microscopic techniques. Epoxy nanocomposites containing up to 1 wt % of WS 2 -PEI nanosheets were fabricated. They showed a remarkable improvement in fracture toughness (K IC ). K IC increased from 0.94 to 1.72 MPa m -1/2 for WS 2 -PEI nanosheet loadings as low as 0.25 wt %. Compressive and flexural properties also showed a significant improvement as incorporation of 0.25 wt % of WS 2 -PEI nanosheets resulted in 43 and 65% increase in the compressive and flexural strengths of epoxy nanocomposites, respectively, compared with neat epoxy. Thermal stability and thermomechanical properties of the WS 2 -PEI-modified epoxy also showed a significant improvement. The simultaneous improvement in the mechanical and thermal properties could be attributed to the good dispersion of WS 2 -PEI nanosheets in the matrix, intrinsic high strength and thermal properties of the nanosheets, and improved interaction of the WS 2 nanosheets with the epoxy matrix owing to the presence of PEI molecules on the surface of the WS 2 nanosheets.

  13. The evaluation of epoxy thermoplastic pavement marking material in Virginia : the application : interim report.

    DOT National Transportation Integrated Search

    1983-01-01

    Epoxy Thermoplastic (ETP) is a recently developed epoxy-resin-based thermoplastic pavement marking material being promoted by the Federal Highway Administration as a possible substitute for conventional traffic paints and thermoplastics. Its reported...

  14. On Technological Properties of Modified Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Gavrilov, M.

    2017-11-01

    The technological properties of epoxy composite materials based on constructional and chemical waste have been reviewed. The viscosity and component wettability of modified epoxy composites have been researched. The use of plasticizing additives to improve mixtures forming has been justified.

  15. Epoxy-coated reinforcement : a historical performance review.

    DOT National Transportation Integrated Search

    1996-01-01

    This report is a historical performance review of epoxy-coated reinforcement. The information in this report is presented in chronological order starting from the early 1970's, when the first bridge with epoxy-coated reinforcement was built, and endi...

  16. Effect of thermally reduced graphene oxide on dynamic mechanical properties of carbon fiber/epoxy composite

    NASA Astrophysics Data System (ADS)

    Adak, Nitai Chandra; Chhetri, Suman; Murmu, Naresh Chandra; Samanta, Pranab; Kuila, Tapas

    2018-03-01

    The Carbon fiber (CF)/epoxy composites are being used in the automotive and aerospace industries owing to their high specific mechanical strength to weight ratio compared to the other conventional metal and alloys. However, the low interfacial adhesion between fiber and polymer matrix results the inter-laminar fracture of the composites. Effects of different carbonaceous nanomaterials i.e., carbon nanotubes (CNT), graphene nanosheets (GNPs), graphene oxide (GO) etc. on the static mechanical properties of the composites were investigated in detail. Only a few works focused on the improvement of the dynamic mechanical of the CF/epoxy composites. Herein, the effect of thermally reduced grapheme oxide (TRGO) on the dynamic mechanical properties of the CF/epoxy composites was investigated. At first, GO was synthesized using modified Hummers method and then reduced the synthesized GO inside a vacuum oven at 800 °C for 5 min. The prepared TRGO was dispersed in the epoxy resin to modify the epoxy matrix. Then, a number of TRGO/CF/epoxy laminates were manufactured incorporating different wt% of TRGO by vacuum assisted resin transfer molding (VARTM) technique. The developed laminates were cured at room temperature for 24 h and then post cured at 120 °C for 2 h. The dynamic mechanical analyzer (DMA 8000 Perkin Elmer) was used to examine the dynamic mechanical properties of the TRGO/CF/epoxy composites according to ASTM D7028. The dimension of the specimen was 44×10×2.4 mm3 for the DMA test. This test was carried out under flexural loading mode (duel cantilever) at a frequency of 1 Hz and amplitude of 50 μm. The temperature was ramped from 30 to 200 °C with a heating rate of 5 °C min-1. The dynamic mechanical analysis of the 0.2 wt% TRGO incorporated CF/epoxy composites showed ~ 96% enhancement in storage modulus and ~ 12 °C increments in glass transition temperature (Tg) compared to the base CF/epoxy composites. The fiber-matrix interaction was studied by Cole-Cole plot analysis. It proved the homogeneous dispersion of the epoxy resin and TRGO. The homogeneous dispersion of the TRGO in the epoxy matrix increased the overall enhancement of the dynamic mechanical properties of the hybrid composites.

  17. Cure kinetics, morphologies, and mechanical properties of thermoplastic/MWCNT modified multifunctional glassy epoxies prepared via continuous reaction methods

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaole

    The primary goal of this dissertation is to develop a novel continuous reactor method to prepare partially cured epoxy prepolymers for aerospace prepreg applications with the aim of replacing traditional batch reactors. Compared to batch reactors, the continuous reactor is capable of solubilizing and dispersing a broad range of additives including thermoplastic tougheners, stabilizers, nanoparticles and curatives and advancing epoxy molecular weights and viscosities while reducing energy consumption. In order to prove this concept, polyethersulfone (PES) modified 4, 4'-diaminodiphenylsulfone (44DDS)/tetraglycidyl-4, 4'-diaminodiphenylmethane (TGDDM) epoxy prepolymers were firstly prepared using both continuous reactor and batch reactor methods. Kinetic studies confirmed the chain extension reaction in the continuous reactor is similar to the batch reactor, and the molecular weights and viscosities of prepolymers were readily controlled through reaction kinetics. Atomic force microscopy (AFM) confirmed similar cured network morphologies for formulations prepared from batch and continuous reactors. Additionally tensile strength, tensile modulus and fracture toughness analyses concluded mechanical properties of cured epoxy matrices produced from both reactors were equivalent. Effects of multifunctional epoxy compositions on thermoplastics phase-separated morphologies were systematically studied using a combination of AFM with nanomechanical mapping, spectroscopic and calorimetric techniques to provide new insights to tailor cured reaction induced phase separation (CRIPS) in multifunctional epoxy blend networks. Furthermore, how resultant crosslinked glassy polymer network and phase-separated morphologies correlated with mechanical properties are discussed in detail. Multiwall carbon nanotube (MWCNT)/TGDDM epoxy prepolymers were further prepared by combining the successful strategies for advancing epoxy chemistries and dispersing nanotubes using the continuous reactor. Optical microscopy (OM) and scanning electron microscopy (SEM) were used to characterize the MWCNT dispersion states and stabilization in epoxy prepolymer matrix after continuous process and during curing cycles. Additionally, electrical conductivities and mechanical properties of final cured MWCNT/TGDDM composites were measured and discussed in view of their corresponding MWCNT dispersion states. Ternary blends of MWCNT reinforced thermoplastic/epoxy prepolymers were prepared by the continuous reactor. Influence of MWCNT on the CRIPS mechanism and the cured morphologies were systematically investigated using SEM and rheological analysis. Incorporation of MWCNT in thermoplastic/epoxy matrices can lead to a morphological transformation from phase inverted, to co-continuous, and to droplet dispersed morphology. In additional, dynamic mechanical analysis revealed the heterogeneity of MWCNT dispersion in thermoplastic/thermosets systems.

  18. Effects of high energy radiation on the mechanical properties of epoxy/graphite fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Fornes, R. E.; Gilbert, R. D.; Memory, J. D.

    1987-01-01

    Publications and theses generated on composite research are listed. Surface energy changes of an epoxy based on tetraglycidyl diaminodiphenyl methane (TGDDM)/diaminodiphenyl sulfone (DDS), T-300 graphite fiber and T-300/5208 (graphite fiber/epoxy) composites were investigated after irradiation with 0.5 MeV electrons. Electron spin resonance (ESR) investigations of line shapes and the radical decay behavior were made of an epoxy based on tetraglycidyl diaminodiphenyl methane (TGDDM)/diaminodiphenyl sulfone (DDS), T-300 graphite fiber, and T-300/5208 (graphite fiber/epoxy) composites after irradiation with Co(60) gamma-radiation or 0.5 MeV electrons. The results of the experiments are discussed.

  19. Effect of nanoparticles dispersion on viscoelastic properties of epoxy–zirconia polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Singh, Sushil Kumar; Kumar, Abhishek; Jain, Anuj

    2018-03-01

    In the present work zirconia-nanoparticles were dispersed in epoxy matrix to form epoxy-zirconia polymer nanocomposites using ultrasonication and viscoelastic properties of nanocomposites were investigated. For the same spherical zirconia-nanoparticles (45 nm) were dispersed in weight fraction of 2, 4, 6 and 8 % to reinforce the epoxy. DMA results show the significant enhancement in viscoelastic properties with the dispersion of zirconia nanoparticles in the epoxy matrix. The value of storage modulus and glass transition temperature increases from 179 MPa (pristine) to 225 MPa (6 wt.% ZrO2) and 61 °C (pristine) to 70 °C (6 wt.% ZrO2) respectively with the dispersion of zirconia nanoparticles in the epoxy.

  20. Physical aging in graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Kong, E. S. W.

    1983-01-01

    Sub-Tg annealing has been found to affect the properties of graphite/epoxy composites. The network epoxy studied was based on the chemistry of tetraglycidyl 4,4'-diamino-diphenyl methane (TGDDM) crosslinked by 4,4'-diamino-diphenyl sulfone (DDS). Differential scanning calorimetry, thermal mechanical analysis, and solid-state cross-polarized magic-angle-spinning nuclear magnetic resonance spectroscopy have been utilized in order to characterize this process of recovery towards thermodynamic equilibrium. The volume and enthalpy recovery as well as the 'thermoreversibility' aspects of the physical aging are discussed. This nonequilibrium and time-dependent behavior of network epoxies are considered in view of the increasingly wide applications of TGDDM-DDS epoxies as matrix materials of structural composites in the aerospace industry.

  1. Curing of epoxy resins with 1-/di(2-chloroethoxyphosphinyl)methyl/-2,4- and -2,6-diaminobenzene

    NASA Technical Reports Server (NTRS)

    Mikroyannidis, J. A.; Kourtides, D. A.

    1984-01-01

    Fire resistant compositions were prepared using 1-di(2-chloroethoxy-phosphinyl)methyl-2,4- and -2,6-diaminobenzene (DCEPD) as a curing agent for typical epoxy resins such as EPON 828 (Shell), XD 7342 (Dow), and My 720 (Ciba Geigy). In addition, compositions of these three epoxy resins with common curing agents such as m-phenylenediamine (MPD) or 4,4'-diaminodiphenylsulphone (DDS) were studied to compare their reactions with those of DCEPD. The reactivity of the three curing agents toward the epoxy resins, measured by differential calorimetry (DSC), was of the order MPD DCEPD DDS. The relatively lower reactivity of DCEPD toward epoxy resins was attributed to electronic effects.

  2. Rubber-toughened polyfunctional epoxies - Brominated vs nonbrominated formulated for graphite composites

    NASA Technical Reports Server (NTRS)

    Nir, Z.; Gilwee, W. J.; Kourtides, D. A.; Parker, J. A.

    1983-01-01

    A new, commercially available, trifunctional epoxy resin (tris-(hydroxyphenyl)-methane triglycidyl ether) was modified with synthetic rubber to increase the impact resistance of epoxy/graphite composites. These composites were reinforced with commercially available satin-weave carbon cloth using two formulations of epoxies (brominated and nonbrominated) containing various amounts of carboxy-terminated butadience acrylonitrile (CTBN) rubber that had been prereacted with epoxy resin. The impact resistance was determined by measuring the interlaminar shear strength of the composites after impact. The mechanical properties, such as flexural strength and modulus at room temperature and at 93 C, were also determined. Measurements were taken of the flammability and glass transition temperature (Tg); and a thermal-gravimetric analysis was made.

  3. Graphene-epoxy flexible transparent capacitor obtained by graphene-polymer transfer and UV-induced bonding.

    PubMed

    Sangermano, Marco; Chiolerio, Alessandro; Veronese, Giulio Paolo; Ortolani, Luca; Rizzoli, Rita; Mancarella, Fulvio; Morandi, Vittorio

    2014-02-01

    A new approach is reported for the preparation of a graphene-epoxy flexible transparent capacitor obtained by graphene-polymer transfer and UV-induced bonding. SU8 resin is employed for realizing a well-adherent, transparent, and flexible supporting layer. The achieved transparent graphene/SU8 membrane presents two distinct surfaces: one homogeneous conductive surface containing a graphene layer and one dielectric surface typical of the epoxy polymer. Two graphene/SU8 layers are bonded together by using an epoxy photocurable formulation based on epoxy resin. The obtained material showed a stable and clear capacitive behavior. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effects of high energy radiation on the mechanical properties of epoxy/graphite fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Fornes, R. E.; Gilbert, R. D.; Memory, J. D.

    1986-01-01

    The epoxy resin system formed by tetraglycidyl 4,4'-diamino diphenyl methane (TGDDM) and 4,4'-diamino diphenyl sulfone (DDS) was characterized by dynamic mechanical analysis and differential scanning calorimetry. Dynamic mechanical properties of graphite fiber epoxy composite specimens formulated with two different adhesive systems (NARMCO 5208, NARMCO 5209) were determined. The specimens were exposed to varying dose levels of ionizing radiation (0.5 MeV electrons) with a maximum absorbed dose of 10,000 Mrads. Following irradiation, property measurements were made to assess the influence of radiation on the epoxy and composite specimens. The results established that ionizing radiation has a limited effect on the properties of epoxy and composite specimens.

  5. Curing of epoxy resins with 1-DI(2-chloroethoxyphosphinyl) methyl-2,4 and -2,6-diaminobenzene

    NASA Technical Reports Server (NTRS)

    Mikroyannidis, J. A.; Kourtides, D. A.

    1983-01-01

    Fire resistant compositions were prepared using 1-di(2-chloroethoxy-phosphinyl)methyl-2,4- and -2,6-diaminobenzene (DCEPD) as a curing agent for typical epoxy resins such as EPON 828 (Shell), XD 7342 (Dow), and My 720 (Ciba Geigy). In addition, compositions of these three epoxy resins with common curing agents such as m-phenylenediamine (MPD) or 4,4'-diaminodiphenylsulphone (DDS) were studied to compare their reactions with those of DCEPD. The reactivity of the three curing agents toward the epoxy resins, measured by differential calorimetry (DSC), was of the order MPD DCEPD DDS. The relatively lower reactivity of DCEPD toward epoxy resins was attributed to electronic effects.

  6. Action of ionizing radiation on epoxy resins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van de Voorde, M. E.

    1970-12-01

    The resistance of classical and experimental epoxy resins to irradiation was studied. The resistance to irradiation of epoxy resins of diverse compositions as well as the development of resins having a radioresistance that approaches that of certain ceramics are discussed. Sources of irradiation and the techniques of dosimetry used are described. The structures of certain epoxy resins and of hardeners are given. The preparation of these resins and their physical properties is described. The effects of radiation on epoxy resins, as well as conditions of irradiation, and suggested mechanisms for degradation of the irradiated resins are discussed. The relationship betweenmore » chemical structure of the resins and their physical properties is evaluated. (115 references) (JCB)« less

  7. Thermal conductivity of pillared graphene-epoxy nanocomposites using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Lakshmanan, A.; Srivastava, S.; Ramazani, A.; Sundararaghavan, V.

    2018-04-01

    Thermal conductivity in a pillared graphene-epoxy nanocomposite (PGEN) is studied using equilibrium molecular dynamics simulations. PGEN is a proposed material for advanced thermal management applications because it combines high in-plane conductivity of graphene with high axial conductivity of a nanotube to significantly enhance the overall conductivity of the epoxy matrix material. Anisotropic conductivity of PGEN has been compared with that of pristine and functionalized carbon nanotube-epoxy nanocomposites, showcasing the advantages of the unique hierarchical structure of PGEN. Compared to pure carbon allotropes, embedding the epoxy matrix also promotes a weaker dependence of conductivity on thermal variations. These features make this an attractive material for thermal management applications.

  8. Dielectric spectroscopy of SiO2, ZnO - nanoparticle loaded epoxy resin in the frequency range of 20 Hz to 2 MHz

    NASA Astrophysics Data System (ADS)

    Thakor, Sanketsinh; Rana, V. A.; Vankar, H. P.

    2017-05-01

    In present work, Bisphenol A-(epichlorhydrin); epoxy resin with hardener N(3-dimethylaminopropyl)-1,3-propylenediamine were used to determine the dielectric properties. Sample of the neat epoxy resin and nanoparticle loaded epoxy resin in the form of disc were prepared of different weight fraction. SiO2 and ZnO nanoparticles were taken as filler in the epoxy resin. Complex permittivity of the prepared samples was measured in the frequency range of 20 Hz to 2 MHz using precision LCR meter at room temperature. The charismatic change in dielectric behavior based on type and concentration of nanoparticle are discussed in detail.

  9. High Strain Rate Mechanical Properties of Epoxy and Epoxy-Based Particulate Composites (Preprint)

    DTIC Science & Technology

    2007-05-01

    WC) and titanium alloy (Ti- 6Al - 4V ) bar materials available. For all bar systems, the properties of the sample are determined by measuring the...metallographically-polished, carbon-coated specimens provided adequate contrast between the aluminum particles, the epoxy matrix and any porosity present after...The difference between the two measures of particle size can be explained by the higher levels of porosity observed in the Epoxy-65H2 specimen, which

  10. Dynamic compressive strength of epoxy composites

    NASA Astrophysics Data System (ADS)

    Plastinin, A. V.; Sil'vestrov, V. V.

    1996-11-01

    The strength of laminated and unidirectionally reinforced composite materials was investigated in conditions of dynamic uniaxial compression with a strain rate of 50-1000 sec-1 using the split Hopkinson pressure bar method. It was shown that in conditions of dynamic compression, glass/epoxy, aramid/epoxy, and carbon/epoxy composites exhibit elastic-brittle behavior with anisotropy of the strength and elastic properties. The effect of the strain rate on the strength characteristics of fiberglass-reinforced plastics was demonstrated.

  11. Photochemical studies on aromatic γ,δ-epoxy ketones: efficient synthesis of benzocyclobutanones and indanones.

    PubMed

    Shao, Yutian; Yang, Chao; Gui, Weijun; Liu, Yang; Xia, Wujiong

    2012-04-11

    Irradiation of terminal aromatic γ,δ-epoxy ketones with a 450 W UV lamp led to Norrish type II cyclization/semi-pinacol rearrangement cascade reaction which formed the benzocyclobutanones containing a full-carbon quaternary center, whereas irradiation of substituted aromatic γ,δ-epoxy ketones led to the indanones through a photochemical epoxy rearrangement and 1,5-biradicals cyclization tandem reaction. This journal is © The Royal Society of Chemistry 2012

  12. Vernonia galamensis, potential new crop source of epoxy acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perdue, R.E. Jr.; Carlson, K.D.; Gilbert, M.G.

    Vernonia galamensis is a good source of seed oil rich in epoxy acid, which can be used to manufacture plastic formulations, protective coatings, and other products. Seed from a natural stand in Ethiopia contained 31% epoxy acid. Under cultivation in Kenya, this unimproved germ plasm produced a substantial yield of seed with 32% epoxy acid. This African species has good natural seed retention and is a promising new crop for semiarid tropical areas. 11 references.

  13. Electrical conductivity of multi-walled carbon nanotubes-SU8 epoxy composites

    NASA Astrophysics Data System (ADS)

    Grimaldi, Claudio; Mionić, Marijana; Gaal, Richard; Forró, László; Magrez, Arnaud

    2013-06-01

    We have characterized the electrical conductivity of the composite which consists of multi-walled carbon nanotubes dispersed in SU8 epoxy resin. Depending on the processing conditions of the epoxy (ranging from non-polymerized to cross-linked), we obtained tunneling and percolating-like regimes of the electrical conductivity of the composites. We interpret the observed qualitative change of the conductivity behavior in terms of reduced separation between the nanotubes induced by polymerization of the epoxy matrix.

  14. Occupational contact dermatitis caused by 1,3-benzenedimethanamine, N-(2-phenylethyl) derivatives in hardeners for epoxy paints and coatings.

    PubMed

    Pesonen, Maria; Kuuliala, Outi; Suomela, Sari; Aalto-Korte, Kristiina

    2016-12-01

    Amines in epoxy hardeners are significant causes of occupational allergic contact dermatitis among workers who use epoxy resin systems. To describe a novel group of contact allergens: N-(2-phenylethyl) derivatives of the reactive amine 1,3-benzenedimethanamine (1,3-BDMA). We describe the clinical examinations and exposure of 6 patients with occupational contact allergy to derivatives of 1,3-BDMA. Of the 6 patients, 4 were spray painters who used epoxy paints, 1 was a floor layer who handled a variety of epoxy coatings, and 1 was a worker in epoxy hardener manufacture. We were able to confirm exposure to epoxy hardeners that contained derivatives of 1,3-BDMA in 5 of the 6 sensitized patients. Despite the close structural resemblance between derivatives of 1,3-BDMA and m-xylylenediamine (MXDA), only 3 patients reacted positively to MXDA. Concomitant contact allergy to diglycidyl ether of bisphenol A resin was seen in 2 of the 6 patients. Because of the lack of a commercially available patch test substance, the diagnosis of contact allergy to derivatives of 1,3-BDMA requires patch testing with either the epoxy hardener product or a hardener ingredient that contains the derivatives of 1,3-BDMA. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Non-hermetic encapsulation for implantable electronic devices based on epoxy.

    PubMed

    Boeser, Fabian; Ordonez, Juan S; Schuettler, Martin; Stieglitz, Thomas; Plachta, Dennis T T

    2015-08-01

    Hermetic and non-hermetic implant packaging are the two strategies to protect electronic systems from the humid conditions inside the human body. Within the scope of this work twelve different material combinations for a non-hermetic, high-reliable epoxy based encapsulation technique were characterized. Three EPO-TEK (ET) epoxies and one low budget epoxy were chosen for studies with respect to their processability, water vapor transmission rate (WVTR) and adhesion to two different ceramic-based substrates as well as to one standard FR4-substrate. Setups were built to analyze the mentioned properties for at least 30 days using an aging test in a moist environment. As secondary test subjects, commercially available USB flash drives (UFD) were successfully encapsulated inside the epoxies, soaked in phosphate buffered saline (PBS, pH=7.4), stored in an incubator (37°C) and tested for 256 days without failure. By means of epoxy WVTR (0.0278 g/day/m(2)) and degrease of adhesion (24.59 %) during 30 days in PBS, the combination of the standard FR4-substrate and the epoxy ET 301-2 was found to feature the best encapsulation properties. If a ceramic-based electronic system has to be used, the most promising combination consists of the alumina substrate and the epoxy ET 302-3M (WVTR: 0.0588 g/day/m(2); adhesion drop: 49.58 %).

  16. Contact allergy to epoxy (meth)acrylates.

    PubMed

    Aalto-Korte, Kristiina; Jungewelter, Soile; Henriks-Eckerman, Maj-Len; Kuuliala, Outi; Jolanki, Riitta

    2009-07-01

    Contact allergy to epoxy (meth)acrylates, 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy) phenyl]propane (bis-GMA), 2,2-bis[4-(2-hydroxy-3-acryloxypropoxy)phenyl]-propane (bis-GA), 2,2-bis[4-(methacryl-oxyethoxy)phenyl] propane (bis-EMA), 2,2-bis[4-(methacryloxy)phenyl]-propane (bis-MA), and glycidyl methacrylate (GMA) is often manifested together with contact allergy to diglycidyl ether of bisphenol A (DGEBA) epoxy resin. To analyse patterns of concomitant allergic reactions to the five epoxy (meth)acrylates in relation to exposure. We reviewed the 1994-2008 patch test files at the Finnish Institute of Occupational Health (FIOH) for reactions to the five epoxy (meth)acrylates, and examined the patients' medical records for exposure. Twenty-four patients had an allergic reaction to at least one of the studied epoxy (meth)acrylates, but specific exposure was found only in five patients: two bis-GMA allergies from dental products, two bis-GA allergies from UV-curable printing inks, and one bis-GA allergy from an anaerobic glue. Only 25% of the patients were negative to DGEBA epoxy resin. The great majority of allergic patch test reactions to bis-GMA, bis-GA, GMA and bis-EMA were not associated with specific exposure, and cross-allergy to DGEBA epoxy resin remained a probable explanation. However, independent reactions to bis-GA indicated specific exposure. Anaerobic sealants may induce sensitization not only to aliphatic (meth)acrylates but also to aromatic bis-GA.

  17. Design and Analysis of Drive Shaft using Kevlar/Epoxy and Glass/Epoxy as a Composite Material

    NASA Astrophysics Data System (ADS)

    Karthikeyan, P.; Gobinath, R.; Kumar, L. Ajith; Jenish, D. Xavier

    2017-05-01

    In automobile industry drive shaft is one of the most important components to transmit power form the engine to rear wheel through the differential gear. Generally steel drive shaft is used in automobile industry, nowadays they are more interested to replace steel drive shaft with that of composite drive shaft. The overall objective of this paper is to analyze the composite drive shaft using to find out the best replacement for conventional steel drive shaft. The uses of advanced composite materials such as Kevlar, Graphite, Carbon and Glass with proper resins ware resulted in remarkable achievements in automobile industry because of its greater specific strength and specific modulus, improved fatigue and corrosion resistances and reduction in energy requirements due to reduction in weight as compared to steel shaft. This paper is to presents, the modeling and analysis of drive shaft using Kevlar/Epoxy and Glass/Epoxy as a composite material and to find best replacement for conventional steel drive shafts with an Kevlar/epoxy or Glass/Epoxy resin composite drive shaft. Modeling is done using CATIA software and Analysis is carried out by using ANSYS 10.0 software for easy understanding. The composite drive shaft reduces the weight by 81.67 % for Kevlar/Epoxy and 72.66% for Glass/Epoxy when compared with conventional steel drive shaft.

  18. Corrosion protection properties and interfacial adhesion mechanism of an epoxy/polyamide coating applied on the steel surface decorated with cerium oxide nanofilm: Complementary experimental, molecular dynamics (MD) and first principle quantum mechanics (QM) simulation methods

    NASA Astrophysics Data System (ADS)

    Bahlakeh, Ghasem; Ramezanzadeh, Bahram; Saeb, Mohammad Reza; Terryn, Herman; Ghaffari, Mehdi

    2017-10-01

    The effect of cerium oxide treatment on the corrosion protection properties and interfacial interaction of steel/epoxy was studied by electrochemical impedance spectroscopy, (EIS) classical molecular dynamics (MD) and first principle quantum mechanics (QM) simulation methods X-ray photoelectron spectroscopy (XPS) was used to verify the chemical composition of the Ce film deposited on the steel. To probe the role of the curing agent in epoxy adsorption, computations were compared for an epoxy, aminoamide and aminoamide modified epoxy. Moreover, to study the influence of water on interfacial interactions the MD simulations were executed for poly (aminoamide)-cured epoxy resin in contact with the different crystallographic cerium dioxide (ceria, CeO2) surfaces including (100), (110), and (111) in the presence of water molecules. It was found that aminoamide-cured epoxy material was strongly adhered to all types of CeO2 substrates, so that binding to ceria surfaces followed the decreasing order CeO2 (111) > CeO2 (100) > CeO2 (110) in both dry and wet environments. Calculation of interaction energies noticed an enhanced adhesion to metal surface due to aminoamide curing of epoxy resin; where facets (100) and (111) revealed electrostatic and Lewis acid-base interactions, while an additional hydrogen bonding interaction was identified for CeO2 (110). Overall, MD simulations suggested decrement of adhesion to CeO2 in wet environment compared to dry conditions. Additionally, contact angle, pull-off test, cathodic delamination and salt spray analyses were used to confirm the simulation results. The experimental results in line with modeling results revealed that Ce layer deposited on steel enhanced substrate surface free energy, work of adhesion, and interfacial adhesion strength of the epoxy coating. Furthermore, decrement of adhesion of epoxy to CeO2 in presence of water was affirmed by experimental results. EIS results revealed remarkable enhancement of the corrosion resistance of epoxy coating applied on the steel specimens treated by cerium oxide.

  19. Aluminum Rich Epoxy Primer for Ground and Air Vehicles

    DTIC Science & Technology

    2017-03-01

    UNCLASSIFIED DOCUMENT Aluminum Rich Epoxy Primer for Ground and Air Vehicles Monthly Technical Report for the Period: January 20, 2017...Objective: To further develop the Aluminum Rich Epoxy Primer systems for Air and Ground Vehicles while addressing the objective requirements

  20. Biphenyl liquid crystalline epoxy resin as a low-shrinkage resin-based dental restorative nanocomposite.

    PubMed

    Hsu, Sheng-Hao; Chen, Rung-Shu; Chang, Yuan-Ling; Chen, Min-Huey; Cheng, Kuo-Chung; Su, Wei-Fang

    2012-11-01

    Low-shrinkage resin-based photocurable liquid crystalline epoxy nanocomposite has been investigated with regard to its application as a dental restoration material. The nanocomposite consists of an organic matrix and an inorganic reinforcing filler. The organic matrix is made of liquid crystalline biphenyl epoxy resin (BP), an epoxy resin consisting of cyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (ECH), the photoinitiator 4-octylphenyl phenyliodonium hexafluoroantimonate and the photosensitizer champhorquinone. The inorganic filler is silica nanoparticles (∼70-100 nm). The nanoparticles were modified by an epoxy silane of γ-glycidoxypropyltrimethoxysilane to be compatible with the organic matrix and to chemically bond with the organic matrix after photo curing. By incorporating the BP liquid crystalline (LC) epoxy resin into conventional ECH epoxy resin, the nanocomposite has improved hardness, flexural modulus, water absorption and coefficient of thermal expansion. Although the incorporation of silica filler may dilute the reinforcing effect of crystalline BP, a high silica filler content (∼42 vol.%) was found to increase the physical and chemical properties of the nanocomposite due to the formation of unique microstructures. The microstructure of nanoparticle embedded layers was observed in the nanocomposite using scanning and transmission electron microscopy. This unique microstructure indicates that the crystalline BP and nanoparticles support each other and result in outstanding mechanical properties. The crystalline BP in the LC epoxy resin-based nanocomposite was partially melted during exothermic photopolymerization, and the resin expanded via an order-to-disorder transition. Thus, the post-gelation shrinkage of the LC epoxy resin-based nanocomposite is greatly reduced, ∼50.6% less than in commercialized methacrylate resin-based composites. This LC epoxy nanocomposite demonstrates good physical and chemical properties and good biocompatibility, comparable to commercialized composites. The results indicate that this novel LC nanocomposite is worthy of development and has potential for further applications in clinical dentistry. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. Halohydrination of epoxy resins using sodium halides as cationizing agents in MALDI-MS and DIOS-MS.

    PubMed

    Watanabe, Takehiro; Kawasaki, Hideya; Kimoto, Takashi; Arakawa, Ryuichi

    2008-12-01

    Halohydrination of epoxy resins using sodium halides as cationizing agents in matrix-assisted laser desorption/ionization (MALDI) and desorption ionization on porous silicon mass spectrometry (DIOS-MS) were investigated. Different mass spectra were observed when NaClO(4) and NaI were used as the cationizing agents at the highest concentration of 10.0 mM, which is much higher than that normally used in MALDI-MS. MALDI mass spectra of epoxy resins using NaI revealed iodohydrination to occur as epoxy functions of the polymers. The halohydrination also occurred using NaBr, but not NaCl, due to the differences in their nucleophilicities. On the basis of the results of experiments using deuterated CD(3)OD as the solvent, the hydrogen atom source was probably ambient water or residual solvent, rather than being derived from matrices. Halohydrination also occurred with DIOS-MS in which no organic matrix was used; in addition, reduction of epoxy functions was observed with DIOS. NaI is a useful cationizing agent for changing the chemical form of epoxy resins due to iodohydrination and, thus, for identifying the presence of epoxy functions. Copyright (c) 2008 John Wiley & Sons, Ltd.

  2. Flight service evaluation of an advanced composite empennage component on commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The development and flight evaluation of an advanced composite empennage component is presented. The recommended concept for the covers is graphite-epoxy hats bonded to a graphite-epoxy skin. The hat flare-out has been eliminated, instead the hat is continuous into the joint. The recommended concept for the spars is graphite-epoxy caps and a hybrid of Kevlar-49 and graphite-epoxy in the spar web. The spar cap, spar web stiffeners for attaching the ribs, and intermediate stiffeners are planned to be fabricated as a unit. Access hole in the web will be reinforced with a donut type, zero degree graphite-epoxy wound reinforcement. The miniwich design concept in the upper three ribs originally proposed is changed to a graphite-epoxy stiffened solid laminate design concept. The recommended configuration for the lower seven ribs remains as graphite-epoxy caps with aluminum cruciform diagonals. The indicated weight saving for the current advanced composite vertical fin configuration is 20.2% including a 24 lb growth allowance. The project production cost saving is approximately 1% based on a cumulative average of 250 aircraft and including only material, production labor, and quality assurance costs.

  3. A novel fabrication of a high performance SiO(2)-graphene oxide (GO) nanohybrids: Characterization of thermal properties of epoxy nanocomposites filled with SiO(2)-GO nanohybrids.

    PubMed

    Haeri, S Z; Ramezanzadeh, B; Asghari, M

    2017-05-01

    In this study it has been aimed to enhance the thermal resistance of epoxy coating through incorporation of SiO 2 -GO nanohybrids. SiO 2 -GO nanohybrids were synthesized through one-step sol-gel route using a mixture of Tetraethylorthosilane (TEOS) and 3-Aminopropyl triethoxysilane (APTES) silanes. The SiO 2 -GO nanohybrids were prepared at various hydrolysis times of 24, 48 and 72h. Then 0.2wt.% of GO and SiO 2 -GO nanohybrids were separately incorporated into the epoxy coating. Results revealed that amino functionalized SiO 2 nanoparticles with particle size around 20-30nm successfully synthesized on the basal plane of GO. Results showed significant improvement of dispersion and interfacial interactions between nanohybrids and epoxy composite arising from covalent bonding between the SiO 2 -GO and the epoxy matrix. It was found that the thermal resistance of SiO 2 -GO nanohybrids and SiO 2 -GO/Epoxy nanocomposite was noticeably higher than GO and epoxy matrix, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Preparation, Fabrication, and Evaluation of Advanced Polymeric and Composite Materials

    NASA Technical Reports Server (NTRS)

    Orwoll, Robert A.

    1997-01-01

    The thesis titles are given below: physical and mechanical behavior of amorphous poly(arylene ether-co-imidasole)s and poly(arylene ether-co-imidasole) modification epoxies; the requirements of patentability as applied to the chemical arts; fabrication of thermoplastic polymer composite ribbon; blend of reactive diluents with phenylethynyl-terminated arylene ether oligomers; the synthesis, characterization, and application of ether-containing polyimides; the synthesis of reflective and electrically conductive polyimide films via an in-situ self-metalization procedure using silver (I) complexes; the thermal cure of phenylethynyl terminated polyimides and selected model compounds; and the synthesis, characterization, and molecular modeling of cyclic arylene ether oligomers.

  5. 8-Alkylcoumarins from the Fruits of Cnidium monnieri Protect against Hydrogen Peroxide Induced Oxidative Stress Damage

    PubMed Central

    Chang, Chi-I; Hu, Wan-Chiao; Shen, Che-Piao; Hsu, Ban-Dar; Lin, Wei-Yong; Sung, Ping-Jyun; Wang, Wei-Hsien; Wu, Jin-Bin; Kuo, Yueh-Hsiung

    2014-01-01

    Three new 8-alkylcoumarins, 7-O-methylphellodenol-B (1), 7-methoxy-8-(3-methyl-2,3-epoxy-1-oxobutyl)chromen-2-one (2), and 3′-O-methylvaginol (3), together with seven known compounds (4–10) were isolated from the fruits of Cnidium monnieri. Their structures were determined by detailed analysis of spectroscopic data and comparison with the data of known analogues. All the isolates were evaluated the cytoprotective activity by MTS cell proliferation assay and the results showed that all the three new 8-alkylcoumarins exhibited cytoprotective effect on Neuro-2a neuroblastoma cells injured by hydrogen peroxide. PMID:24642881

  6. Epoxy-resin patterns speed shell-molding of aluminum parts

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Half patterns cast from commercial epoxy resin containing aluminum powder are used for shell-molding of aluminum parts. The half patterns are cast in plastic molds of the original wooden pattern. Ten serviceable sand resin molds are made from each epoxy pattern.

  7. Evaluation of grit-impregnated, epoxy coated prestressing strand on South Slough (Charleston) Bridge : construction report.

    DOT National Transportation Integrated Search

    1991-12-01

    Construction of the South Slough (Charleston) Bridge was completed in March of 1991. The structure was constructed with prestressed concrete beams using grit-impregnated, epoxy coated prestressing strands. While epoxy coated reinforcing steel has bee...

  8. Room Temperature Curing Resin Systems for Graphite/Epoxy Composite Repair.

    DTIC Science & Technology

    1979-12-01

    ROOM TEMPERATURE CURING RESIN SYSTEMS FOR GRAPHITE/EPOXY COMPOS--ETC(UI DEC 79 0 J CRABTREE N62269-79-C-G224 UNCLASSIFIE O80-46 NADC -781 1-6 NL END...Room Temperature Curing Resin Sys-U3 linal for Graphite/Epoxy Composite Repair •.Dec *79 NOR- -46h: V111IT NUM8ER(s) 4362269-79- ,722 S. PERFORMING...repair, composite repair room temperature cure resin , moderate temperature cure resins , epoxies, adhesives, vinyl eater polymers, anaerobic curing polymers

  9. Nickel-catalyzed regio- and enantioselective aminolysis of 3,4-epoxy alcohols.

    PubMed

    Wang, Chuan; Yamamoto, Hisashi

    2015-04-08

    The first catalytic regio- and enantioselective aminolysis of 3,4-epoxy alcohols has been accomplished. Under the catalysis of Ni(ClO4)2·6H2O, the C4 selective ring opening of various 3,4-epoxy alcohols proceeded in a stereospecific manner with high regioselectivities. Furthermore, with the Ni-BINAM catalytic system the enantioselective ring opening of 3,4-epoxy alcohols furnished various γ-hydroxy-δ-amino alcohols as products with complete regiocontrol and high enantioselectivities (up to 94% ee).

  10. Interpretation of Mechanical and Thermal Properties of Heavy Duty Epoxy Based Floor Coating Doped by Nanosilica

    NASA Astrophysics Data System (ADS)

    Nikje, M. M. Alavi; Khanmohammadi, M.; Garmarudi, A. Bagheri

    Epoxy-nano silica composites were prepared using Bisphenol-A epoxy resin (Araldite® GY 6010) resin obtained from in situ polymerization or blending method. SiO2 nanoparticles were pretreated by a silan based coupling agent. Surface treated nano silica was dispersed excellently by mechanical and ultrasonic homogenizers. A dramatic increase in the interfacial area between fillers and polymer can significantly improve the properties of the epoxy coating product such as tensile, elongation, abrasion resistance, etc.

  11. Epoxy Nanocomposites Containing Zeolitic Imidazolate Framework-8.

    PubMed

    Liu, Cong; Mullins, Michael; Hawkins, Spencer; Kotaki, Masaya; Sue, Hung-Jue

    2018-01-10

    Zeolitic imidazole framework-8 (ZIF-8) is utilized as a functional filler and a curing agent in the preparation of epoxy nanocomposites. The imidazole group on the surface of the ZIF-8 initiates epoxy curing, resulting in covalent bonding between the ZIF-8 crystals and epoxy matrix. A substantial reduction in dielectric constant and increase in tensile modulus were observed. The implication of the present study for utilization of metal-organic framework to improve physical and mechanical properties of polymeric matrixes is discussed.

  12. A FTIR/chemometrics approach to characterize the gamma radiation effects on iodine/epoxy-paint interactions in Nuclear Power Plants.

    PubMed

    Colombani, Juliette; Chauvet, Elodie; Amat, Sandrine; Dupuy, Nathalie; Gigmes, Didier

    2017-04-01

    The effects of radiation on polymeric materials are a topic of concern in a wide range of industries including the sterilization, and the nuclear power industry. While much work has concentrated on systems like polyolefins that are radiation sterilized, some work has been done on epoxy systems. The epoxy system studied is an epoxy/amine paint which is representative of the paint that covers the inner surfaces of the French nuclear reactor containment buildings. In case of a severe accident on a Nuclear Power Plant, fission products can be released from the nuclear fuel to the reactor containment building. Among them, volatile iodine (I 2 ) can be produced and can interact with the epoxy-paint. This paint is also subjected to gamma radiation damages (due to the high dose in the containment coming from radionuclides released from the fuel). So the epoxy-paint studied was exposed to gamma radiation under air atmosphere after being loaded with I 2 or not. The aim of this study is to characterize by FTIR spectroscopy the iodine-paint interactions, then to identify the radiation damages on the epoxy-paint, and to check their effects on these iodine-paint interactions. This work shows the potential of multi-block analysis method (ANOVA-PCA and COMDIM = AComDim) for such a study as it allows to identify the nature of iodine/epoxy-paint interactions and to characterize the gamma radiation damages on the epoxy-paint. AComDim method conduces to the extraction of Common Components to different tables and highlights factors of influence and their interactions. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Toughness augmentation by fibrillation and yielding in nanostructured blends with recycled polyurethane as a modifier

    NASA Astrophysics Data System (ADS)

    Reghunadhan, Arunima; Datta, Janusz; Kalarikkal, Nandakumar; Haponiuk, Jozef T.; Thomas, Sabu

    2018-06-01

    In the present paper, we have carefully investigated the morphology and fracture mechanism of the recycled polyurethane (RPU)/epoxy blend system. The second phase (RPU) added to the epoxy resin has a positive effect on the overall mechanical properties. Interestingly, the recycled polymer has a remarkable effect on the fracture toughness of epoxy resin. The mechanism behind the fracture toughness improvement up on the addition of RPU was found to be very similar to that of the incorporation of hyperbranched polymers in epoxy resin. Brittle to ductile fracture was clear in the case of higher loadings such as 20 and 40 phr of RPU in the epoxy resin. The mechanism behind improvement of fracture toughness was found to fibrillation of the RPU phase which was evidenced by the fracture morphology. In fact the force applied to the epoxy matrix was effectively transferred to the added RPU phase due to its strong interaction with the epoxy phase. This effective transfer of force to the RPU phase protects the epoxy matrix without catastrophic failure and we observed 44% increase in G1C values at an addition of 40 phr RPU. This results in the extensive fibrillation of RPU which causes the generation of new surfaces. Thus the impact energy has been fully utilized by the RPU phase. The mechanism is termed as simultaneous reinforcing and toughening and normally reported as a result of cavitations and yielding. SEM, HRTEM and AFM analyses clearly demonstrated the fibrillated morphology of the fracture surface and the formation of nanostructures. This report is first of its kind in the case of both epoxy modification and the elastomer toughening.

  14. Effect of surface modification of fibers with a polymer coating on the interlaminar shear strength of a composite and the translation of fiber strength in an F-12 aramid/epoxy composite vessel

    NASA Astrophysics Data System (ADS)

    Shu-hui, Zhang; Guo-zheng, Liang; Wei, Zhang; Jin-fang, Zeng

    2006-11-01

    The surface of aramid fibers was modified with a polymer coating — a surface treatment reagent containing epoxy resin. The resulting fibers were examined by using NOL tests, hydroburst tests, and the scanning electron microscopy. The modified fibers had a rougher surface than the untreated ones. The interlaminar shear strength of an aramid-fiber-reinforced epoxy composite was highest when the concentration of polymer coating system was 5%. The translation of fiber strength in an aramid/epoxy composite vessel was improved by 8%. The mechanism of the surface treatment of fibers in improving the mechanical properties of aramid/epoxy composites is discussed.

  15. Epoxy Matrices Modified by Green Additives for Recyclable Materials.

    PubMed

    Henriksen, Martin L; Ravnsbaek, Jens B; Bjerring, Morten; Vosegaard, Thomas; Daasbjerg, Kim; Hinge, Mogens

    2017-07-21

    Epoxy-based thermosets are one of the most popular matrix materials in many industries, and significant environmental benefits can be obtained by developing a recyclable variant of this widely utilized material. Incorporation of a bio-based disulfide additive within a commercial epoxy system leads to a cross-linked material that can be fractionated under mild and environmentally benign conditions. The material has been analyzed by FTIR and solid-state NMR. Furthermore, modified epoxy matrices with low additive concentrations are demonstrated to have similar mechanical and thermal properties compared to commercially available benchmarks. Thus, additive formulation and fractionation based on green chemistry principles have been demonstrated, and a recyclable epoxy matrix has been developed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A biomimetic approach to enhancing interfacial interactions: polydopamine-coated clay as reinforcement for epoxy resin.

    PubMed

    Yang, Liping; Phua, Si Lei; Teo, Jun Kai Herman; Toh, Cher Ling; Lau, Soo Khim; Ma, Jan; Lu, Xuehong

    2011-08-01

    A facile biomimetic method was developed to enhance the interfacial interaction in polymer-layered silicate nanocomposites. By mimicking mussel adhesive proteins, a monolayer of polydopamine was constructed on clay surface by a controllable coating method. The modified clay (D-clay) was incorporated into an epoxy resin, it is found that the strong interfacial interactions brought by the polydopamine benefits not only the dispersion of the D-clay in the epoxy but also the effective interfacial stress transfer, leading to greatly improved thermomechanical properties at very low inorganic loadings. Rheological and infrared spectroscopic studies show that the interfacial interactions between the D-clay and epoxy are dominated by the hydrogen bonds between the catechol-enriched polydopamine and the epoxy.

  17. Tensile Mechanical Property of Oil Palm Empty Fruit Bunch Fiber Reinforced Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Ghazilan, A. L. Ahmad; Mokhtar, H.; Shaik Dawood, M. S. I.; Aminanda, Y.; Ali, J. S. Mohamed

    2017-03-01

    Natural, short, untreated and randomly oriented oil palm empty fruit bunch fiber reinforced epoxy composites were manufactured using vacuum bagging technique with 20% fiber volume composition. The performance of the composite was evaluated as an alternative to synthetic or conventional reinforced composites. Tensile properties such as tensile strength, modulus of elasticity and Poisson’s ratio were compared to the tensile properties of pure epoxy obtained via tensile tests as per ASTM D 638 specifications using Universal Testing Machine INSTRON 5582. The tensile properties of oil palm empty fruit bunch fiber reinforced epoxy composites were lower compared to plain epoxy structure with the decrement in performances of 38% for modulus of elasticity and 61% for tensile strength.

  18. Composites of Graphene Nanoribbon Stacks and Epoxy for Joule Heating and Deicing of Surfaces.

    PubMed

    Raji, Abdul-Rahman O; Varadhachary, Tanvi; Nan, Kewang; Wang, Tuo; Lin, Jian; Ji, Yongsung; Genorio, Bostjan; Zhu, Yu; Kittrell, Carter; Tour, James M

    2016-02-10

    A conductive composite of graphene nanoribbon (GNR) stacks and epoxy is fabricated. The epoxy is filled with the GNR stacks, which serve as a conductive additive. The GNR stacks are on average 30 nm thick, 250 nm wide, and 30 μm long. The GNR-filled epoxy composite exhibits a conductivity >100 S/m at 5 wt % GNR content. This permits application of the GNR-epoxy composite for deicing of surfaces through Joule (voltage-induced) heating generated by the voltage across the composite. A power density of 0.5 W/cm(2) was delivered to remove ∼1 cm-thick (14 g) monolith of ice from a static helicopter rotor blade surface in a -20 °C environment.

  19. Seismic, creep, and tensile testing of various epoxy bonded rebar products in hardened concrete.

    DOT National Transportation Integrated Search

    2007-02-01

    The objective of this project was to evaluate the performance of currently specified epoxy adhesive anchor systems on various epoxy-coated rebar under seismic, creep and tensile loading. Previous testing of dowel bonding materials for use in hardened...

  20. ETV Program Report: Coatings for Wastewater Collection Systems - Standard Cement Materials, Epoxy Coating 4553

    EPA Science Inventory

    The Standard Cement Materials, Inc. Standard Epoxy Coating 4553™ (SEC 4553) epoxy coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Ma...

  1. Seismic, creep, and tensile testing of various epoxy bonded rebar products in hardened concrete.

    DOT National Transportation Integrated Search

    2007-01-01

    The objective of this project was to evaluate the performance of currently specified epoxy adhesive : anchor systems on various epoxy-coated rebar under seismic, creep and tensile loading. Previous testing of : dowel bonding materials for use in hard...

  2. Seismic, creep, and tensile testing of various epoxy bonded rebar products in hardened concrete.

    DOT National Transportation Integrated Search

    2006-02-01

    The objective of this project was to evaluate the performance of currently specified epoxy adhesive : anchor systems on various epoxy-coated rebar under seismic, creep and tensile loading. Previous testing of : dowel bonding materials for use in hard...

  3. Fiber-Reinforced Epoxy Composites and Methods of Making Same Without the Use of Oven or Autoclave

    NASA Technical Reports Server (NTRS)

    Barnell, Thomas J. (Inventor); Rauscher, Michael D. (Inventor); Stienecker, Rick D. (Inventor); Nickerson, David M. (Inventor); Tong, Tat H. (Inventor)

    2016-01-01

    Method embodiments for producing a fiber-reinforced epoxy composite comprise providing a mold defining a shape for a composite, applying a fiber reinforcement over the mold, covering the mold and fiber reinforcement thereon in a vacuum enclosure, performing a vacuum on the vacuum enclosure to produce a pressure gradient, insulating at least a portion of the vacuum enclosure with thermal insulation, infusing the fiber reinforcement with a reactive mixture of uncured epoxy resin and curing agent under vacuum conditions, wherein the reactive mixture of uncured epoxy resin and curing agent generates exothermic heat, and producing the fiber-reinforced epoxy composite having a glass transition temperature of at least about 100.degree. C. by curing the fiber reinforcement infused with the reactive mixture of uncured epoxy resin and curing agent by utilizing the exothermically generated heat, wherein the curing is conducted inside the thermally insulated vacuum enclosure without utilization of an external heat source or an external radiation source.

  4. Synthesis and properties of a bio-based epoxy resin with high epoxy value and low viscosity.

    PubMed

    Ma, Songqi; Liu, Xiaoqing; Fan, Libo; Jiang, Yanhua; Cao, Lijun; Tang, Zhaobin; Zhu, Jin

    2014-02-01

    A bio-based epoxy resin (denoted TEIA) with high epoxy value (1.16) and low viscosity (0.92 Pa s, 258C) was synthesized from itaconic acid and its chemical structure was confirmed by 1H NMR and 13C NMR spectroscopy. Its curing reaction with poly(propylene glycol) bis(2-aminopropyl ether) (D230) and methyl hexahydrophthalic anhydride (MHHPA) was investigated. For comparison, the commonly used diglycidyl ether of bisphenol A (DGEBA) was also cured with the same curing agents. The results demonstrated that TEIA showed higher curing reactivity towards D230/MHHPA and lower viscosity compared with DGEBA, resulting in the better processability. Owing to its high epoxy value and unique structure, comparable or better glass transition temperature as well as mechanical properties could be obtained for the TEIA-based network relative to the DGEBA-based network. The results indicated that itaconic acid is a promising renewable feedstock for the synthesis of bio-based epoxy resin with high performance.

  5. Enhancement of Fracture Toughness of Epoxy Nanocomposites by Combining Nanotubes and Nanosheets as Fillers

    PubMed Central

    Domun, Nadiim; Paton, Keith R.; Sainsbury, Toby; Zhang, Tao; Mohamud, Hibaaq

    2017-01-01

    In this work the fracture toughness of epoxy resin has been improved through the addition of low loading of single part and hybrid nanofiller materials. Functionalised multi-walled carbon nanotubes (f-MWCNTs) was used as single filler, increased the critical strain energy release rate, GIC, by 57% compared to the neat epoxy, at only 0.1 wt% filler content. Importantly, no degradation in the tensile or thermal properties of the nanocomposite was observed compared to the neat epoxy. When two-dimensional boron nitride nanosheets (BNNS) were added along with the one-dimensional f-MWCNTs, the fracture toughness increased further to 71.6% higher than that of the neat epoxy. Interestingly, when functionalised graphene nanoplatelets (f-GNPs) and boron nitride nanotubes (BNNTs) were used as hybrid filler, the fracture toughness of neat epoxy is improved by 91.9%. In neither of these hybrid filler systems the tensile properties were degraded, but the thermal properties of the nanocomposites containing boron nitride materials deteriorated slightly. PMID:29048345

  6. Epoxy asphalt concrete is a perspective material for the construction of roads

    NASA Astrophysics Data System (ADS)

    Vyrozhemskyi, Valerii; Kopynets, Ivan; Kischynskyi, Sergii; Bidnenko, Nataliia

    2017-09-01

    An effective way to increase the durability of asphalt concrete pavements that are subject to high traffic loads and adverse weather and climatic factors is the use of polymer additives which drastically improve the rheological and physical-mechanical properties of bitumen. The use of thermosetting polymers including epoxy resins for asphalt and bitumen modification is seen as a perspective solution for this issue. Conducted at DerzhdorNDI SE studies have proved high riding qualities of asphalt pavements that contain epoxy resins. When replacing 20-35% of bitumen with epoxy component, a significant improvement in strength characteristics of asphalt pavement is noted, especially at elevated temperatures. Specific feature of epoxy asphalt concrete is its ability to gain strength over a long-term operation. Thus, despite the increased cost of epoxy asphalt concrete, long service life of pavements on its basis (up to 30 years as predicted) ensures a high profitability of using this material, especially on the roads with heavy traffic and severe traffic conditions.

  7. Molecular Mobility in Hyperbranched Polymers and Their Interaction with an Epoxy Matrix

    PubMed Central

    Román, Frida; Colomer, Pere; Calventus, Yolanda; Hutchinson, John M.

    2016-01-01

    The molecular mobility related to the glass transition and secondary relaxations in a hyperbranched polyethyleneimine, HBPEI, and its relaxation behaviour when incorporated into an epoxy resin matrix are investigated by dielectric relaxation spectroscopy (DRS) and dynamic mechanical analysis (DMA). Three systems are analysed: HBPEI, epoxy and an epoxy/HBPEI mixture, denoted ELP. The DRS behaviour is monitored in the ELP system in three stages: prior to curing, during curing, and in the fully cured system. In the stage prior to curing, DRS measurements show three dipolar relaxations: γ, β and α, for all systems (HBPEI, epoxy and ELP). The α-relaxation for the ELP system deviates significantly from that for HBPEI, but superposes on that for the epoxy resin. The fully cured thermoset displays both β- and α-relaxations. In DMA measurements, both α- and β-relaxations are observed in all systems and in both the uncured and fully cured systems, similar to the behaviour identified by DRS. PMID:28773319

  8. Tensile properties of compressed moulded Napier/glass fibre reinforced epoxy composites

    NASA Astrophysics Data System (ADS)

    Fatinah, T. S.; Majid, M. S. Abdul; Ridzuan, M. J. M.; Hong, T. W.; Amin, N. A. M.; Afendi, M.

    2017-10-01

    This paper describes the experimental investigation of the tensile properties of compressed moulded Napier grass fibres reinforced epoxy composites. The effect of treatment 5% sodium hydroxide (NaOH) concentrated solution and hybridization of Napier with CSM E-glass fibres on tensile properties was also studied. The untreated and treated Napier fibres with 25% fibre loading were fabricated with epoxy resin by a cold press process. 7% fibre loading of CSM glass fibre was hybrid as the skin layer for 18% fibre loading of untreated Napier grass fibre. The tensile tests were conducted using Universal Testing Machine in accordance with ASTM D638. The tensile properties of the untreated Napier/epoxy composites were compared with treated Napier/epoxy and untreated Napier/CSM/epoxy composites. The results demonstrated that the tensile performance of untreated Napier fibre composites was significantly improved by both of the modification; alkali treatment and glass fibre hybridization. Napier grass fibres showed promising potentials to be used as reinforcement in the polymer based composites.

  9. High-performance fiber/epoxy composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Chiao, T. T.; Hamstad, M. A.; Jessop, E. S.; Toland, R. H.

    1978-01-01

    Activities described include: (1) determining the applicability of an ultrahigh-strength graphite fiber to composite pressure vessels; (2) defining the fatigue performance of thin-titanium-lined, high-strength graphite/epoxy pressure vessel; (3) selecting epoxy resin systems suitable for filament winding; (4) studying the fatigue life potential of Kevlar 49/epoxy pressure vessels; and (5) developing polymer liners for composite pressure vessels. Kevlar 49/epoxy and graphite fiber/epoxy pressure vessels, 10.2 cm in diameter, some with aluminum liners and some with alternation layers of rubber and polymer were fabricated. To determine liner performance, vessels were subjected to gas permeation tests, fatigue cycling, and burst tests, measuring composite performance, fatigue life, and leak rates. Both the metal and the rubber/polymer liner performed well. Proportionately larger pressure vessels (20.3 and 38 cm in diameter) were made and subjected to the same tests. In these larger vessels, line leakage problems with both liners developed the causes of the leaks were identified and some solutions to such liner problems are recommended.

  10. Development of a heterogeneous laminating resin system

    NASA Technical Reports Server (NTRS)

    Biermann, T. F.; Hopper, L. C.

    1985-01-01

    The factors which effect the impact resistance of laminating resin systems and yet retain equivalent performance with the conventional 450 K curing epoxy matrix systems in other areas were studied. Formulation work was conducted on two systems, an all-epoxy and an epoxy/bismaleimide, to gain fundamental information on the effect formulation changes have upon neat resin and composite properties. The all-epoxy work involved formulations with various amounts and combinations of eight different epoxy resins, four different hardeners, fifteen different toughening agents, a filler, and a catalyst. The epoxy/bismaleimide effort improved formulations with various amounts and combinations of nine different resins, four different hardeners, eight different toughening agents, four different catalysts, and a filler. When a formulation appeared to offer the proper combination of properties required for a laminating resin Celion 3K-70P fabric was prepregged. Initial screening tests on composites primarily involved Gardner type impact and measurement of short beam shear strengths under dry and hot/wet conditions.

  11. Enhancement of Fracture Toughness of Epoxy Nanocomposites by Combining Nanotubes and Nanosheets as Fillers.

    PubMed

    Domun, Nadiim; Paton, Keith R; Hadavinia, Homayoun; Sainsbury, Toby; Zhang, Tao; Mohamud, Hibaaq

    2017-10-19

    In this work the fracture toughness of epoxy resin has been improved through the addition of low loading of single part and hybrid nanofiller materials. Functionalised multi-walled carbon nanotubes (f-MWCNTs) was used as single filler, increased the critical strain energy release rate, G IC , by 57% compared to the neat epoxy, at only 0.1 wt% filler content. Importantly, no degradation in the tensile or thermal properties of the nanocomposite was observed compared to the neat epoxy. When two-dimensional boron nitride nanosheets (BNNS) were added along with the one-dimensional f-MWCNTs, the fracture toughness increased further to 71.6% higher than that of the neat epoxy. Interestingly, when functionalised graphene nanoplatelets (f-GNPs) and boron nitride nanotubes (BNNTs) were used as hybrid filler, the fracture toughness of neat epoxy is improved by 91.9%. In neither of these hybrid filler systems the tensile properties were degraded, but the thermal properties of the nanocomposites containing boron nitride materials deteriorated slightly.

  12. Grafting of polyethylenimine onto cellulose nanofibers for interfacial enhancement in their epoxy nanocomposites.

    PubMed

    Zhao, Jiangqi; Li, Qingye; Zhang, Xiaofang; Xiao, Meijie; Zhang, Wei; Lu, Canhui

    2017-02-10

    Cellulose nanofibers (CNFs) were surface-modified with polyethyleneimine (PEI), which brought plentiful amine groups on the surface of CNFs, leading to a reduced hydrogen bond density between CNFs and consequently less CNFs agglomerates. The amine groups could also react with the epoxy as an effective curing agent that could increase the interfacial crosslinking density and strengthen interfacial adhesion. The tensile strength and Young's modulus of CNFs-PEI/Epoxy nanocomposites were 88.1% and 237.6% higher than those of neat epoxy, respectively. The tensile storage modulus of the nanocomposites also increased significantly at the temperature either below or above the Tg. The coefficient of thermal expansion for the CNFs-PEI/Epoxy nanocomposites was 22.2ppmK -1 , much lower than that of the neat epoxy (88.6ppmK -1 ). In addition, the thermal conductivity of the nanocomposites was observed to increase as well. The exceptional and balanced properties may provide the nanocomposites promising applications in automotive, construction and electronic devices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Enhanced mechanical properties of epoxy nanocomposites by mixing noncovalently functionalized boron nitride nanoflakes.

    PubMed

    Lee, Dongju; Song, Sung Ho; Hwang, Jaewon; Jin, Sung Hwan; Park, Kwang Hyun; Kim, Bo Hyun; Hong, Soon Hyung; Jeon, Seokwoo

    2013-08-12

    The influence of surface modifications on the mechanical properties of epoxy-hexagonal boron nitride nanoflake (BNNF) nanocomposites is investigated. Homogeneous distributions of boron nitride nanoflakes in a polymer matrix, preserving intrinsic material properties of boron nitride nanoflakes, is the key to successful composite applications. Here, a method is suggested to obtain noncovalently functionalized BNNFs with 1-pyrenebutyric acid (PBA) molecules and to synthesize epoxy-BNNF nanocomposites with enhanced mechanical properties. The incorporation of noncovalently functionalized BNNFs into epoxy resin yields an elastic modulus of 3.34 GPa, and 71.9 MPa ultimate tensile strength at 0.3 wt%. The toughening enhancement is as high as 107% compared to the value of neat epoxy. The creep strain and the creep compliance of the noncovalently functionalized BNNF nanocomposite is significantly less than the neat epoxy and the nonfunctionalized BNNF nanocomposite. Noncovalent functionalization of BNNFs is effective to increase mechanical properties by strong affinity between the fillers and the matrix. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Variation of mechanical properties due to hygrothermal ageing and permanent changes upon redrying in clay/epoxy nanocomposites

    NASA Astrophysics Data System (ADS)

    Hamim, Salah Uddin Ahmed

    2011-12-01

    Epoxy polymers are an important class of material for use in various applications. Due to their hydrophilic nature, epoxy resins tend to absorb moisture. Absorption of moisture degrades the functional, structural and mechanical properties. For polymers, moisture absorption can lead to both reversible and irreversible changes. In this study, the combined effect of moisture and elevated temperature on the mechanical properties of Epon 862 and its nanocomposites were investigated. The extent of permanent damage on fracture toughness and flexural properties of epoxy, due to the aggressive degradation provided by hygrothermal ageing, was determined by drying the epoxy and their clay/epoxy nanocomposites after moisture absorption. From the investigation it was found out that, clay can help in reducing the negative effect of hygrothermal ageing. Significant permanent damage was observed for fracture toughness and modulus, while the extent of permanent damage was less significant for flexural strength. Failure mechanism of this nanocomposites were studied by using Scanning Electron Microscopy (SEM).

  15. Prediction of Material Properties of Nanostructured Polymer Composites Using Atomistic Simulations

    NASA Technical Reports Server (NTRS)

    Hinkley, J.A.; Clancy, T.C.; Frankland, S.J.V.

    2009-01-01

    Atomistic models of epoxy polymers were built in order to assess the effect of structure at the nanometer scale on the resulting bulk properties such as elastic modulus and thermal conductivity. Atomistic models of both bulk polymer and carbon nanotube polymer composites were built. For the bulk models, the effect of moisture content and temperature on the resulting elastic constants was calculated. A relatively consistent decrease in modulus was seen with increasing temperature. The dependence of modulus on moisture content was less consistent. This behavior was seen for two different epoxy systems, one containing a difunctional epoxy molecule and the other a tetrafunctional epoxy molecule. Both epoxy structures were crosslinked with diamine curing agents. Multifunctional properties were calculated with the nanocomposite models. Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between the carbon nanotube and the surrounding epoxy matrix. These estimated values were used in a multiscale model in order to predict the thermal conductivity of a nanocomposite as a function of the nanometer scaled molecular structure.

  16. Characterization of Volatiles in Rambutan Fruit (Nephelium lappaceum L.).

    PubMed

    Ong; Acree; Lavin

    1998-02-16

    The volatile compounds from the red-skinned cultivar of rambutan, Jitlee (Nephelium lappaceumL.), a tropical fruit native to Southeast Asia, were extracted using both Freon 113 and ethyl acetate solvents. Isolation and characterization of odor-active compounds present in the fruit were mediated by gas chromatography/olfactory (GC/O), chromatography, and spectrometry. Authentic standards were used to determine mass spectral, retention index, and odor match. Of over 100 volatiles detected by GC/MS, twice as many polar volatiles were detected in the ethyl acetate extract as in the nonpolar Freon extract. GC/O analysis also detected more odor-active compounds in the polar extracts. Over 60 compounds in the extracts had some odor activity. The 20 most potent odorants included beta-damascenone, (E)-4,5-epoxy-(E)-2-decenal, vanillin, (E)-2-nonenal, phenylacetic acid, cinnamic acid, unknown 1 (sweaty), ethyl 2-methylbutyrate, and delta-decalactone. On the basis of calculated odor activity values, beta-damascenone, ethyl 2-methylbutyrate, 2,6-nonadienal, (E)-2-nonenal, and nonanal were determined to be the main contributors to the fruit aroma. Taken together, these results indicate that the exotic aroma character of rambutan is the interaction of fruity-sweet and fatty-green odors, with the possible contribution of "civet-like"-sweaty, spicy, and woody notes.

  17. Identification and biological evaluation of flavonoids from the fruits of Prunus mume.

    PubMed

    Yan, Xi-Tao; Li, Wei; Sun, Ya-Nan; Yang, Seo-Young; Lee, Sang-Hyun; Chen, Jian-Bo; Jang, Hae-Dong; Kim, Young-Ho

    2014-03-01

    This Letter describes the identification of potent antioxidant and anti-osteoporosis agents from the fruits of Prunus mume. From the methanol extract, a novel flavan dimer, characterized as 2β,3β-epoxy-5,7,4'-trihydroxyflavan-(4α→8)-epicatechin (1), was isolated along with five known flavonoids (2-6). Their structures were determined based on extensive spectroscopic analysis, including IR, HRESIMS, 1D- and 2D-NMR, and CD spectra. The antioxidant activities of compounds 1-6 were evaluated in terms of their peroxyl radical-scavenging (Trolox equivalent) and reducing capacities. All isolates showed potent peroxyl radical-scavenging and reducing activities at concentrations of 1-10 μM. Among them, compounds 1 and 2 were the most active at 1 μM. Anti-osteoporosis activities were investigated using both murine osteoblastic MC3T3-E1 cells and osteoclastic RAW 264.7 cells. Compounds 2, 3, and 6 significantly stimulated the differentiation of osteoblastic MC3T3-E1 cells to increase collagen synthesis or mineralization functions of osteoblasts. Compounds 1, 3, 4, and 6 significantly suppressed tartrate-resistant acid phosphatase (TRAP) activity in receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclastic RAW 264.7 macrophage cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphonia urceolata.

    PubMed

    Wang, Song; Li, Xiao-Ming; Teuscher, Franka; Li, Dong-Li; Diesel, Arnulf; Ebel, Rainer; Proksch, Peter; Wang, Bin-Gui

    2006-11-01

    Cultivation of the endophytic fungus Chaetomium globosum, which was isolated from the inner tissue of the marine red alga Polysiphonia urceolata, resulted in the isolation of chaetopyranin (1), a new benzaldehyde secondary metabolite. Ten known compounds were also isolated, including two benzaldehyde congeners, 2-(2',3-epoxy-1',3'-heptadienyl)-6-hydroxy-5-(3-methyl-2-butenyl)benzaldehyde (2) and isotetrahydroauroglaucin (3), two anthraquinone derivatives, erythroglaucin (4) and parietin (5), five asperentin derivatives including asperentin (6, also known as cladosporin), 5'-hydroxy-asperentin-8-methylether (7), asperentin-8-methyl ether (8), 4'-hydroxyasperentin (9), and 5'-hydroxyasperentin (10), and the prenylated diketopiperazine congener neoechinulin A (11). The structures of these compounds were determined on the basis of their spectroscopic data analysis (1H, 13C, 1H-1H COSY, HMQC, and HMBC NMR, as well as low- and high-resolution mass experiments). To our knowledge, compound 1 represents the first example of a 2H-benzopyran derivative of marine algal-derived fungi as well as of the fungal genus Chaetomium. Each isolate was tested for its DPPH (1,1-diphenyl-2-picrylhydrazyl) radical-scavenging property. Compounds 1-4 were found to have moderate activity. Chaetopyranin (1) also exhibited moderate to weak cytotoxic activity toward several tumor cell lines.

  19. Momordica charantia constituents and antidiabetic screening of the isolated major compounds.

    PubMed

    Harinantenaina, Liva; Tanaka, Michi; Takaoka, Shigeru; Oda, Munehiro; Mogami, Orie; Uchida, Masayuki; Asakawa, Yoshinori

    2006-07-01

    Bioguided fractionation of the methanol extract of Momordica charantia dried gourds led to the isolation of three new cucurbitane triterpenoids (1-3), together with eight known compounds (4-11). The aglycone of momordicoside I was isolated from the ether soluble fraction in a high amount. The structures of the metabolites were established on the basis of one and two dimensional NMR spectroscopic evidence, X-ray analysis, and comparison with the reported data in the literature. A number of phytochemicals have been isolated from Momordica charantia but the constituents responsible for the hypoglycaemic/antihyperglycaemic activities have not been determined. Therefore, in order to evaluate the contribution of the cucurbitane triterpenoids of the ether fraction of M. charantia methanol extract to in vivo anti-diabetic effects, the major compounds, 5beta,19-epoxy-3beta,25-dihydroxycucurbita-6,23(E)-diene (4), and 3beta,7beta,25-trihydroxycucurbita-5,23(E)-dien-19-al (5) have been tested and have shown blood hypoglycaemic effects in the diabetes-induced male ddY mice strain at 400 mg/kg. The two aglycones of charantin did not show any hypoglycaemic effects. Our finding is the first demonstration that major pure cucurbutanoid compounds of M. charantia have in vivo hypoglycaemic effects.

  20. Occupational allergic contact dermatitis caused by epoxy chemicals: occupations, sensitizing products, and diagnosis.

    PubMed

    Aalto-Korte, Kristiina; Pesonen, Maria; Suuronen, Katri

    2015-12-01

    Epoxy products are among the most common causes of occupational allergic contact dermatitis. Diglycidyl ether of bisphenol A resin (DGEBA-R) is the most important sensitizer in epoxy systems. To describe patients with occupational allergic contact dermatitis caused by epoxy products. Patients with allergic reactions to epoxy chemicals were chosen from test files (January 1991 to June 2014). Only patients with occupational contact allergy to some component of epoxy resin systems were included. We analysed patch test results, occupation, symptoms, and exposure data. We found a total of 209 cases with occupational contact allergy to epoxy chemicals. The largest occupational groups were painters (n = 41), floor layers (n = 19), electrical industry workers (n = 19), tile setters (n = 16), and aircraft industry workers (n = 15). A total of 82% of the patients reacted to DGEBA-R. Diagnosis of the DGEBA-R-negative patients required testing with m-xylylenediamine, N,N'-tetraglycidyl-4,4'-methylenedianiline, 1,4-butanediol diglycidyl ether, 2,4,6-tris-(dimethylaminomethyl)phenol, diglycidyl ether of bisphenol F resin, N,N'-diglycidyl-4-glycidyloxyaniline, isophoronediamine, 4,4'-diaminodiphenylmethane, diethylenetriamine, and cresyl glycidyl ether. The hands/upper extremities were most commonly affected (69%), but facial symptoms were also frequent (60%). Allergic contact dermatitis caused by to epoxy products cannot always be diagnosed by the use of commercial test substances. Workplace products need to be tested. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Top