Sample records for epoxy curing agents

  1. Ultrasonic mixing of epoxy curing agents

    NASA Technical Reports Server (NTRS)

    Hodges, W. T.; St.clair, T. L.

    1983-01-01

    A new technique for mixing solid curing agents into liquid epoxy resins using ultrasonic energy was developed. This procedure allows standard curing agents such as 4,4 prime-diaminodiphenyl sulfone (4,4 prime-DDS) and its 3,3 prime-isomer, (3,3 prime-DDS) to be mixed without prior melting of the curing agent. It also allows curing agents such as 4,4 prime-diaminodiphenyl sulfone (4,4 prime-DDS) and its 3,3 prime-isomer, (3,3 prime-DDS) to be mixed without prior melting of the curing agent. It also allows curing agents with very high melt temperatures such as 4,4 prime-diaminobenzophenone (4,4 prime-DABP) (242 C) to be mixed without premature curing. Four aromatic diamines were ultrasonically blended into MY-720 epoxy resin. These were 4,4 prime-DDS; 3,3 prime-DDA; 4,4 prime-DABP and 3,3 prime-DABP. Unfilled moldings were cast and cured for each system and their physical and mechanical properties compared.

  2. Epoxy foams using multiple resins and curing agents

    DOEpatents

    Russick, Edward M.; Rand, Peter B.

    2000-01-01

    An epoxy foam comprising a plurality of resins, a plurality of curing agents, at least one blowing agent, at least one surfactant and optionally at least one filler and the process for making. Preferred is an epoxy foam comprising two resins of different reactivities, two curing agents, a blowing agent, a surfactant, and a filler. According to the present invention, an epoxy foam is prepared with tailorable reactivity, exotherm, and pore size by a process of admixing a plurality of resins with a plurality of curing agents, a surfactant and blowing agent, whereby a foamable mixture is formed and heating said foamable mixture at a temperature greater than the boiling temperature of the blowing agent whereby said mixture is foamed and cured.

  3. Phthalocyanine Tetraamine Epoxy-Curing Agents

    NASA Technical Reports Server (NTRS)

    Fohlen, G. M.; Achar, B. N.; Parker, J. A.

    1986-01-01

    Tough fire- and chemical-resistant epoxies produced by using metalphthalocyanine tetraamines (MPT's) of copper, cobalt, or nickel as curing agents. Synthesis of MPT's commercially realizable and gives pure compounds with almost 90-percent yield. Synthesis applicable for metals with atomic radii of about 1.35 angstroms, including Cu, Co, Ni, Zn, Fe, Pt, Al, and V. Possible to use metal phthalocyanines to cure epoxy resins in homogeneous reaction.

  4. High char yield epoxy curing agents

    NASA Technical Reports Server (NTRS)

    Delvigs, P.; Serafini, T. T.; Vanucci, R. D.

    1981-01-01

    Class of imide-amine curing agents preserves structural integrity, prevents fiber release, and is fully compatible with conventional epoxy resins; agents do not detract from composite properties while greatly reducing char yield. Materials utilizing curing are used in aerospace, automotive, and other structural components where deterioration must be minimized and fiber release avoided in event of fire.

  5. Curing agent for polyepoxides and epoxy resins and composites cured therewith. [preventing carbon fiber release

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P.; Vannucci, R. D. (Inventor)

    1981-01-01

    A curing for a polyepoxide is described which contains a divalent aryl radical such as phenylene a tetravalent aryl radical such as a tetravalent benzene radical. An epoxide is cured by admixture with the curing agent. The cured epoxy product retains the usual properties of cured epoxides and, in addition, has a higher char residue after burning, on the order of 45% by weight. The higher char residue is of value in preventing release to the atmosphere of carbon fibers from carbon fiber-epoxy resin composites in the event of burning of the composite.

  6. Adhesion strength of norbornene-based self-healing agents to an amine-cured epoxy

    NASA Astrophysics Data System (ADS)

    Huang, Guang Chun; Lee, Jong Keun; Kessler, Michael R.; Yoon, Sungho

    2009-07-01

    Self-healing is triggered by crack propagation through embedded microcapsules in an epoxy matrix, which then release the liquid healing agent into the crack plane. Subsequent exposure of the healing agent to the chemical catalyst initiates ring-opening metathesis polymerization (ROMP) and bonding of the crack faces. In order to improve self-healing functionality, it is necessary to enhance adhesion of polymerized healing agent within the crack to the matrix resin. In this study, shear bond strength between different norbornene-based healing agents and an amine-cured epoxy resin was evaluated using the single lap shear test method (ASTM D3163, modified). The healing agents tested include endodicyclopentadiene (endo-DCPD), 5-ethylidene-2-norbornene (ENB) and DCPD/ENB blends. 5-Norbornene-2-methanol (NBM) was used as an adhesion promoter, containing hydroxyl groups to form hydrogen bonds with the amine-cured epoxy. A custom synthesized norbornene-based crosslinking agent was also added to improve adhesion for ENB by increasing the crosslinking density of the adhesive after ROMP. The healing agents were polymerized with varying loadings of the 1st generation Grubbs' catalyst at different reaction times and temperatures.

  7. Use of 2,5-dimethyl-2,5-hexane diamine as a curing agent for epoxy resins. [Patent application

    DOEpatents

    Rinde, J.A.; Newey, H.A.

    Primary diamines are prepared for use as a curing agent for epoxy resins. These curing agents can be used to form epoxy resin mixtures useful in filament winding and preimpregnated fiber molding and in formulating film adhesives, powder coatings and molding powders. The epoxy mixtures form for such uses a room temperature non-reacting, intermediate stable state which has a latent cross-linking capability.

  8. Use of 2,5-dimethyl-2,5-hexane diamine as a curing agent for epoxy resins

    DOEpatents

    Rinde, J.A.; Newey, H.A.

    1981-02-24

    Primary diamines are disclosed of the formula shown in a diagram wherein R is a straight chain saturated hydrocarbon of 2 to 4 carbons, a disubstituted benzene ring, or disubstituted dibenzomethane for use as a curing agent for epoxy resins. These curing agents can be used to form epoxy resin mixtures useful in filament winding and pre-impregnated fiber molding and in formulating film adhesives, powder coatings and molding powders. The epoxy mixtures form for such uses as room temperature non-reacting, intermediate stable state which has a latent cross-linking capability.

  9. Use of 2,5-dimethyl-2,5-hexane diamine as a curing agent for epoxy resins

    DOEpatents

    Rinde, James A. [Livermore, CA; Newey, Herbert A. [Lafayette, CA

    1981-02-24

    Primary diamines of the formula ##STR1## wherein R is a straight chain saturated hydrocarbon of 2 to 4 carbons, a disubstituted benzene ring, or disubstituted dibenzo methane for use as a curing agent for epoxy resins. These curing agents can be used to form epoxy resin mixtures useful in filament winding and pre-impregnated fiber molding and in formulating film adhesives, powder coatings and molding powders. The epoxy mixtures form for such uses as room temperature non-reacting, intermediate stable state which has a latent cross-linking capability.

  10. The synthesis and dynamics research of new curing agent for epoxy resin

    NASA Astrophysics Data System (ADS)

    Peng, Yongli; Huang, Hengyu; Sun, Yong

    2017-05-01

    Two-step synthesis of trimellitic anhydride trimellitic anhydride n - butyl ester (TMNB) was introduced which could be used as an epoxy resin curing agent. The kinetics of the curing reaction was analyzed by N-order model and autocatalytic model. The curing kinetics parameters, the results show that the curing activation energy (Ea) of this system was 35.79kJ / mol. The kinetic equation of curing was d/a d t =2.1061 ×104e x p (-35.79/R T ) α0.5163(l-α ) 0.366 . Combined with β-1 / T extrapolation and experimental adjustment to obtain the resin system curing process: 75°C for 1h, 140°C for 3h, 160°C for 2h.

  11. Stress Relaxation in Epoxy Thermosets via a Ferrocene-Based Amine Curing Agent

    DOE PAGES

    Jones, Brad H.; Wheeler, David R.; Black, Hayden T.; ...

    2017-06-29

    Physical stress relaxation in rubbery, thermoset polymers is limited by cross-links, which impede segmental motion and restrict relaxation to network defects, such as chain ends. In parallel, the cure shrinkage associated with thermoset polymerizations leads to the development of internal residual stress that cannot be effectively relaxed. Recent strategies have reduced or eliminated such cure stress in thermoset polymers largely by exploiting chemical relaxation processes, wherein temporary cross-links or otherwise transient bonds are incorporated into the polymer network. In this paper, we explore an alternative approach, wherein physical relaxation is enhanced by the incorporation of organometallic sandwich moieties into themore » backbone of the polymer network. A standard epoxy resin is cured with a diamine derivative of ferrocene and compared to conventional diamine curing agents. The ferrocene-based thermoset is clearly distinguished from the conventional materials by reduced cure stress with increasing cure temperature as well as unique stress relaxation behavior above its glass transition in the fully cured state. The relaxation experiments exhibit features characteristic of a physical relaxation process. Furthermore, the cure stress is observed to vanish precipitously upon deliberate introduction of network defects through an increasing imbalance of epoxy and amine functional groups. Finally, we postulate that these beneficial properties arise from fluxional motion of the cyclopentadienyl ligands on the polymer backbone.« less

  12. Stress Relaxation in Epoxy Thermosets via a Ferrocene-Based Amine Curing Agent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Brad H.; Wheeler, David R.; Black, Hayden T.

    Physical stress relaxation in rubbery, thermoset polymers is limited by cross-links, which impede segmental motion and restrict relaxation to network defects, such as chain ends. In parallel, the cure shrinkage associated with thermoset polymerizations leads to the development of internal residual stress that cannot be effectively relaxed. Recent strategies have reduced or eliminated such cure stress in thermoset polymers largely by exploiting chemical relaxation processes, wherein temporary cross-links or otherwise transient bonds are incorporated into the polymer network. In this paper, we explore an alternative approach, wherein physical relaxation is enhanced by the incorporation of organometallic sandwich moieties into themore » backbone of the polymer network. A standard epoxy resin is cured with a diamine derivative of ferrocene and compared to conventional diamine curing agents. The ferrocene-based thermoset is clearly distinguished from the conventional materials by reduced cure stress with increasing cure temperature as well as unique stress relaxation behavior above its glass transition in the fully cured state. The relaxation experiments exhibit features characteristic of a physical relaxation process. Furthermore, the cure stress is observed to vanish precipitously upon deliberate introduction of network defects through an increasing imbalance of epoxy and amine functional groups. Finally, we postulate that these beneficial properties arise from fluxional motion of the cyclopentadienyl ligands on the polymer backbone.« less

  13. High performance UV and thermal cure hybrid epoxy adhesive

    NASA Astrophysics Data System (ADS)

    Chen, C. F.; Iwasaki, S.; Kanari, M.; Li, B.; Wang, C.; Lu, D. Q.

    2017-06-01

    New type one component UV and thermal curable hybrid epoxy adhesive was successfully developed. The hybrid epoxy adhesive is complete initiator free composition. Neither photo-initiator nor thermal initiator is contained. The hybrid adhesive is mainly composed of special designed liquid bismaleimide, partially acrylated epoxy resin, acrylic monomer, epoxy resin and latent curing agent. Its UV light and thermal cure behavior was studied by FT-IR spectroscopy and FT-Raman spectroscopy. Adhesive samples cured at UV only, thermal only and UV + thermal cure conditions were investigated. By calculated conversion rate of double bond in both acrylic component and maleimide compound, satisfactory light curability of the hybrid epoxy adhesive was confirmed quantitatively. The investigation results also showed that its UV cure components, acrylic and bismalimide, possess good thermal curability too. The initiator free hybrid epoxy adhesive showed satisfactory UV curability, good thermal curability and high adhesion performance.

  14. Preparation of hyperbranched poly (amidoamine)-grafted graphene nanolayers as a composite and curing agent for epoxy resin

    NASA Astrophysics Data System (ADS)

    Gholipour-Mahmoudalilou, Meysam; Roghani-Mamaqani, Hossein; Azimi, Reza; Abdollahi, Amin

    2018-01-01

    Thermal properties of epoxy resin were improved by preparation of a curing agent of poly (amidoamine) (PAMAM) dendrimer-grafted graphene oxide (GO). Hyperbranched PAMAM-modified GO (GD) was prepared by a divergent dendrimer synthesis methodology. Modification of GO with (3-Aminopropyl)triethoxysilane (APTES), Michael addition of methacrylic acid, and amidation reaction with ethylenediamine results in the curing agent of GD. Then, epoxy resin was cured in the presence of different amounts of GD and the final products were compared with ethylenediamine-cured epoxy resin (E) in their thermal degradation temperature and char contents. Functionalization of GO with APTES and hyperbranched dendrimer formation at the surface of GO were evaluated by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and thermogravimetric analysis (TGA) results. TGA results showed that the weight loss associated with chemical moieties in GONH2, GOMA, and GD is estimated to be 10.1, 12.2, and 14.1%, respectively. Covalent attachment of dendrimer at the surface of GO increases its thermal stability. TGA also showed that decomposition temperature and char content are higher for composites compared with E. Scanning and transmission electron microscopies show that flat and smooth graphene nanolayers are wrinkled in GO and re-stacking and flattening of nanolayers is observed in GD.

  15. Exploratory study on the effects of novel diamine curing agents and isocyanate precursors on the properties on new epoxy and urethane adhesives

    NASA Technical Reports Server (NTRS)

    Glasgow, D. G.; Garthwait, C.

    1977-01-01

    Aromatic diamines based on diphenyl sulfone and benzophenone were studied as epoxy adhesive curing agents. Previously found differences in adhesive strengths for meta vs para orientation were not found in these series. The use of aluminum and alumina as fillers in a m,m prime-methylene dianiline-cured epoxy adhesive was not found to be beneficial to adhesive strength. Alumina filled adhesives had much lower strength than unfilled adhesives. The unfilled m,m prime-methylene dianiline-based epoxy adhesive had excellent resistance to moisture relative to a p,p prime-methylene dianiline-based adhesive and maintained good strengths up to 250 F. A glass fiber composite based on a m,m prime-methylene dianiline-cured epoxy appeared to be equivalent to the p,p prime-methylene dianiline-cured epoxy as judged by short beam shear tests.

  16. Exploratory Study on the Effects of Novel Diamine Curing Agents and Isocyanate Precursors on the Properties of New Epoxy and Urethane Adhesives

    NASA Technical Reports Server (NTRS)

    Glasgow, D. Gerald; Garthwait, Clayborn

    1977-01-01

    This report covers the results of investigations directed toward studying the effects of novel aromatic diamine structures on epoxy adhesive properties and includes work done under a modification to the original contract. Three aromatic diamines based on diphenylsulfone and benzophenone were studied as epoxy adhesive curing agents. Previously found differences in adhesive strengths for meta vs para orientation were not found in these series. The use of aluminum and alumina as fillers in a m,m'-methylene dianiline-cured epoxy adhesive was not found to be beneficial to adhesive strength. Alumina filled adhesives had much lower strength than unfilled adhesives. The unfilled m,m'-methylene dianiline-based epoxy adhesive had excellent resistance to moisture relative to a p,p'-methylene dianiline-based adhesive and maintained good strengths up to 250 F. A glass fiber composite based on a m,m'-methylene dianiline-cured epoxy appeared to be equivalent to the p,p'-methylene dianiline-cured epoxy as judged by short beam shear tests.

  17. Intrinsic Flame-Retardant and Thermally Stable Epoxy Endowed by a Highly Efficient, Multifunctional Curing Agent

    PubMed Central

    Dong, Chunlei; Wirasaputra, Alvianto; Luo, Qinqin; Liu, Shumei; Yuan, Yanchao; Zhao, Jianqing; Fu, Yi

    2016-01-01

    It is difficult to realize flame retardancy of epoxy without suffering much detriment in thermal stability. To solve the problem, a super-efficient phosphorus-nitrogen-containing reactive-type flame retardant, 10-(hydroxy(4-hydroxyphenyl)methyl)-5,10-dihydrophenophosphazinine-10-oxide (HB-DPPA) is synthesized and characterized. When it is used as a co-curing agent of 4,4′-methylenedianiline (DDM) for curing diglycidyl ether of bisphenol A (DGEBA), the cured epoxy achieves UL-94 V-0 rating with the limiting oxygen index of 29.3%. In this case, the phosphorus content in the system is exceptionally low (0.18 wt %). To the best of our knowledge, it currently has the highest efficiency among similar epoxy systems. Such excellent flame retardancy originates from the exclusive chemical structure of the phenophosphazine moiety, in which the phosphorus element is stabilized by the two adjacent aromatic rings. The action in the condensed phase is enhanced and followed by pressurization of the pyrolytic gases that induces the blowing-out effect during combustion. The cone calorimeter result reveals the formation of a unique intumescent char structure with five discernible layers. Owing to the super-efficient flame retardancy and the rigid molecular structure of HB-DPPA, the flame-retardant epoxy acquires high thermal stability and its initial decomposition temperature only decreases by 4.6 °C as compared with the unmodified one. PMID:28774127

  18. Curing of epoxy resins with 1-/di(2-chloroethoxyphosphinyl)methyl/-2,4- and -2,6-diaminobenzene

    NASA Technical Reports Server (NTRS)

    Mikroyannidis, J. A.; Kourtides, D. A.

    1984-01-01

    Fire resistant compositions were prepared using 1-di(2-chloroethoxy-phosphinyl)methyl-2,4- and -2,6-diaminobenzene (DCEPD) as a curing agent for typical epoxy resins such as EPON 828 (Shell), XD 7342 (Dow), and My 720 (Ciba Geigy). In addition, compositions of these three epoxy resins with common curing agents such as m-phenylenediamine (MPD) or 4,4'-diaminodiphenylsulphone (DDS) were studied to compare their reactions with those of DCEPD. The reactivity of the three curing agents toward the epoxy resins, measured by differential calorimetry (DSC), was of the order MPD DCEPD DDS. The relatively lower reactivity of DCEPD toward epoxy resins was attributed to electronic effects.

  19. Curing of epoxy resins with 1-DI(2-chloroethoxyphosphinyl) methyl-2,4 and -2,6-diaminobenzene

    NASA Technical Reports Server (NTRS)

    Mikroyannidis, J. A.; Kourtides, D. A.

    1983-01-01

    Fire resistant compositions were prepared using 1-di(2-chloroethoxy-phosphinyl)methyl-2,4- and -2,6-diaminobenzene (DCEPD) as a curing agent for typical epoxy resins such as EPON 828 (Shell), XD 7342 (Dow), and My 720 (Ciba Geigy). In addition, compositions of these three epoxy resins with common curing agents such as m-phenylenediamine (MPD) or 4,4'-diaminodiphenylsulphone (DDS) were studied to compare their reactions with those of DCEPD. The reactivity of the three curing agents toward the epoxy resins, measured by differential calorimetry (DSC), was of the order MPD DCEPD DDS. The relatively lower reactivity of DCEPD toward epoxy resins was attributed to electronic effects.

  20. Exploratory study on the effects of novel diamine curing agents and isocyanate precursors on the properties of new epoxy and urethane adhesives

    NASA Technical Reports Server (NTRS)

    Glasgow, D. G.

    1976-01-01

    The effects of novel aromatic diamine structures on the adhesive properties of epoxy and polyurethane adhesives were studied. Aromatic diamines based on benzophenone and diphenyl-methane isomers were evaluated as curing agents for epoxy resins and benzophenone and diphenyl-methane based diamine isomers were evaluated as curing agents for polyurethane adhesives. Polyurethane adhesives were prepared based on m, m prime-diisocyanato-diphenyl-methane and m, m prime-diisocyanato-benzophenone. The m, m prime-diisocayanato-diphenyl-methane based adhesive had properties comparable to state-of-the-art adhesives. The m, m prime-diisocyanato-benzophenone based adhesive was extremely reactive.

  1. Health Problems of Epoxy Resins and Amine-curing Agents

    PubMed Central

    Bourne, L. B.; Milner, F. J. M.; Alberman, K. B.

    1959-01-01

    Epoxy resins were first introduced about 10 years ago. Toxic effects, particularly dermatitis, have been frequently described. An investigation into the possible causes of pathological sequelae following the use of epoxy resin/amine mixtures has been undertaken. The cause of most cases of dermatitis and sensitization appears to be uncombined amine which is present in recent mixtures and persists in hardened resin for long periods. The results of experiments with two of the most commonly used resin/amine mixtures confirm this. Cold-cured resins are more dangerous and remain so even when hardened. A simple theory is suggested for the mechanism of the reaction between epoxy resins, amines, and biological systems. This theory leads logically to the handling precautions outlined. Images PMID:13651551

  2. Measurement of the degree of cure in epoxies with ultrasonic velocity

    NASA Technical Reports Server (NTRS)

    Winfree, W. P.; Parker, F. R.

    1986-01-01

    The use of ultrasonic longitudinal velocity values to measure the degree of cure (defined for an epoxide system as the concentration of epoxide/amine bonds divided by the initial epoxide concentration) in epoxy resins is investigated. The experimental setup used to measure the changes in longitudinal velocity with time is described, together with the technique used to calculate the degree of cure from the acoustic data, using the principle of additive module. Measurements were done with diglycidyl ether of bisphenol A epoxy resin cured with an amine adduct agent. Good qualitative agreement was shown between the time dependence of the acoustically measured degree of cure and the predicted rate of reaction.

  3. Synthesis of a Novel Phosphorus-Containing Flame Retardant Curing Agent and Its Application in Epoxy Resins.

    PubMed

    Zhang, Hongkun; Xu, Miaojun; Li, Bin

    2016-03-01

    A novel phosphorus-containing compound diphenyl-(2,5-dihydroxyphenyl)-phosphine oxide defined as DPDHPPO was synthesized and used as flame retardant and curing agent for epoxy resins (EP). The chemical structure was well characterized by Fourier transform infrared (FTIR) spectroscopy, 1H, 13C and 31P nuclear magnetic resonance. The flame retardant properties, combusting performances and thermal degradation behaviors of the cured epoxy resins were investigated by limiting oxygen index (LOI), vertical burning tests (UL-94), cone calorimeter and thermogravimetric analysis (TGA) tests. The morphologies and chemical compositions of char residues for cured epoxy resins were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The water resistant properties were evaluated by putting the samples into distilled water at 70 degrees C for 168 h. The results revealed that the EP/40 wt% DPDHPPO/60 wt% PDA thermosets successfully passed UL-94 V-0 flammability rating and the LOI value was as high as 31.9%. The cone tests results revealed that the incorporation of DPDHPPO efficiently reduced the combustion parameters of epoxy resins thermosets, such as heat release rate (HRR), total heat release (THR) and so on. The TGA results indicated that the introduction of DPDHPPO promoted epoxy resins matrix decomposed ahead of time compared with that of pure EP and led to a higher char yield and thermal stability at high temperature. The morphological structures and analysis of XPS of char residues revealed that DPDHPPO benefited to the formation of a sufficient, compact and homogeneous char layer with rich flame retardant elements on the epoxy resins materials surface during combustion. After water resistance tests, EP/40 wt% DPDHPPO/60 wt% PDA thermosets still remained excellent flame retardancy, the moisture absorption of epoxy resins thermosets decreased with the increase of DPDHPPO contents in the thermosets due to the existing

  4. Characterization of cure kinetics and physical properties of a high performance, glass fiber-reinforced epoxy prepreg and a novel fluorine-modified, amine-cured commercial epoxy

    NASA Astrophysics Data System (ADS)

    Bilyeu, Bryan

    Kinetic equation parameters for the curing reaction of a commercial glass fiber reinforced high performance epoxy prepreg composed of the tetrafunctional epoxy tetraglycidyl 4,4-diaminodiphenyl methane (TGDDM), the tetrafunctional amine curing agent 4,4'-diaminodiphenylsulfone (DDS) and an ionic initiator/accelerator, are determined by various thermal analysis techniques and the results compared. The reaction is monitored by heat generated determined by differential scanning calorimetry (DSC) and by high speed DSC when the reaction rate is high. The changes in physical properties indicating increasing conversion are followed by shifts in glass transition temperature determined by DSC, temperature-modulated DSC (TMDSC), step scan DSC and high speed DSC, thermomechanical (TMA) and dynamic mechanical (DMA) analysis and thermally stimulated depolarization (TSD). Changes in viscosity, also indicative of degree of conversion, are monitored by DMA. Thermal stability as a function of degree of cure is monitored by thermogravimetric analysis (TGA). The parameters of the general kinetic equations, including activation energy and rate constant, are explained and used to compare results of various techniques. The utilities of the kinetic descriptions are demonstrated in the construction of a useful time-temperature-transformation (TTT) diagram and a continuous heating transformation (CHT) diagram for rapid determination of processing parameters in the processing of prepregs. Shrinkage due to both resin consolidation and fiber rearrangement is measured as the linear expansion of the piston on a quartz dilatometry cell using TMA. The shrinkage of prepregs was determined to depend on the curing temperature, pressure applied and the fiber orientation. Chemical modification of an epoxy was done by mixing a fluorinated aromatic amine (aniline) with a standard aliphatic amine as a curing agent for a commercial Diglycidylether of Bisphenol-A (DGEBA) epoxy. The resulting cured network

  5. Cationic cure kinetics of a polyoxometalate loaded epoxy nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Benjamin J.

    2012-08-06

    The reaction cure kinetics of a novel polyoxometalate (POM) loaded epoxy nanocomposite is described. The POM is dispersed in the epoxy resin up to volume fractions of 0.1. Differential scanning calorimetry measurements show the cure of the epoxy resin to be sensitive to the POM loading. A kinetics study of the cure exotherm confirms that POM acts as a catalyst promoting cationic homopolymerization of the epoxy resin. The cure reaction is shown to propagate through two cure regimes. A fast cure at short time is shown to be propagation by the activated chain end (ACE) mechanism. A slow cure atmore » long time is shown to be propagation by the activated monomer (AM) mechanism. The activation energies for the fast and slow cure regimes agree well with other epoxy based systems that have been confirmed to propagate by the ACE and AM mechanisms.« less

  6. Curing Effects on Interfacial Adhesion between Recycled Carbon Fiber and Epoxy Resin Heated by Microwave Irradiation

    PubMed Central

    Shimamoto, Daisuke; Hotta, Yuji

    2018-01-01

    The interfacial adhesion of recycled carbon fiber (CF) reinforced epoxy composite heated by microwave (MW) irradiation were investigated by changing the curing state of the epoxy resin. The recycled CF was recovered from the composite, which was prepared by vacuum-assisted resin transfer molding, by thermal degradation at 500 or 600 °C. Thermogravimetric analysis showed that the heating at 600 °C caused rough damage to the CF surface, whereas recycled CF recovered at 500 °C have few defects. The interfacial shear strength (IFSS) between recycled CF and epoxy resin was measured by a single-fiber fragmentation test. The test specimen was heated by MW after mixing the epoxy resin with a curing agent or pre-curing, in order to investigate the curing effects on the matrix resin. The IFSSs of the MW-irradiated samples were significantly varied by the curing state of the epoxy resin and the surface condition of recycled CF, resulting that they were 99.5 to 131.7% of oven heated samples Furthermore, rheological measurements showed that the viscosity and shrinking behaviors of epoxy resin were affected based on the curing state of epoxy resin before MW irradiation. PMID:29587422

  7. Curing Effects on Interfacial Adhesion between Recycled Carbon Fiber and Epoxy Resin Heated by Microwave Irradiation.

    PubMed

    Tominaga, Yuichi; Shimamoto, Daisuke; Hotta, Yuji

    2018-03-26

    The interfacial adhesion of recycled carbon fiber (CF) reinforced epoxy composite heated by microwave (MW) irradiation were investigated by changing the curing state of the epoxy resin. The recycled CF was recovered from the composite, which was prepared by vacuum-assisted resin transfer molding, by thermal degradation at 500 or 600 °C. Thermogravimetric analysis showed that the heating at 600 °C caused rough damage to the CF surface, whereas recycled CF recovered at 500 °C have few defects. The interfacial shear strength (IFSS) between recycled CF and epoxy resin was measured by a single-fiber fragmentation test. The test specimen was heated by MW after mixing the epoxy resin with a curing agent or pre-curing, in order to investigate the curing effects on the matrix resin. The IFSSs of the MW-irradiated samples were significantly varied by the curing state of the epoxy resin and the surface condition of recycled CF, resulting that they were 99.5 to 131.7% of oven heated samples Furthermore, rheological measurements showed that the viscosity and shrinking behaviors of epoxy resin were affected based on the curing state of epoxy resin before MW irradiation.

  8. Fiber-optic epoxy composite cure sensor. II. Performance characteristics

    NASA Astrophysics Data System (ADS)

    Lam, Kai-Yuen; Afromowitz, Martin A.

    1995-09-01

    The performance of a fiber-optic epoxy composite cure sensor, as previously proposed, depends on the optical properties and the reaction kinetics of the epoxy. The reaction kinetics of a typical epoxy system are presented. It is a third-order autocatalytic reaction with a peak observed in each isothermal reaction-rate curve. A model is derived to describe the performance characteristics of the epoxy cure sensor. If a composite coupon is cured at an isothermal temperature, the sensor signal can be used to predict the time when the gel point occurs and to monitor the cure process. The sensor is also shown to perform well in nonstoichiometric epoxy matrices. In addition the sensor can detect the end of the cure without calibration.

  9. Network Formation in Piperidine-Cured Epoxy and Epoxy-Rubber Systems: Effects of Cure Time.

    NASA Astrophysics Data System (ADS)

    D'Oyen, Raquel M.; Carr, Stephen H.

    1996-03-01

    The system, piperidine-cured diglycidyl ether of bisphenol-A (DGEBA) to which various amounts of carboxyl terminated acrylonitrile-butadiene (CTBN) have been added, is used as a model rubber modified thermoset. The glass transition temperatures (T_g) of a low molecular weight (374 g/eq) epoxy, cured with piperidine at 120 degC, have been measured by differential scanning calorimetry in order to follow the curing process. The maximum Tg is found after curing for 16 hours. Systems that have been modified with varied concentrations of an adducted CTBN, also show Tg maxima at this time. Addition of 5-20in long-time T_gs, indicating complete segregation of the rubber. The T_gs of the CTBN modified systems at short times are higher than in the unmodified epoxy. This acceleration of the initial stage of cure indicates that the CTBN acts as a diluent, increasing the initial rate of reaction by changing the mobility of the reactive sites. The mechanical properties--toughness, yield and modulus--are related to the CTBN content and to the degree of cure of the system.

  10. Rubber-Modified Epoxies. I. Cure, Transitions, and Morphology.

    DTIC Science & Technology

    1984-10-01

    thermosetting systems has been developed. An aromatic tetrafunctional diamine-cured diglycidyl ether of bis- phenol A epoxy resin [maximum glass transition...systems has been developed. An aromatic tetrafunctional diamine-cured digly- cidyl ether of bisphenol A epoxy resin [maximum glass transition...epoxy resins are brittle materials. The crack resistance can be improved by the addition of reactive liquid rubber to uncured neat epoxy systems (1-3

  11. Comparative investigation of thermal and mechanical properties of cross-linked epoxy polymers with different curing agents by molecular dynamics simulation.

    PubMed

    Jeyranpour, F; Alahyarizadeh, Gh; Arab, B

    2015-11-01

    Molecular dynamics (MD) simulations were carried out to predict the thermal and mechanical properties of the cross-linked epoxy system composed of DGEBA resin and the curing agent TETA. To investigate the effects of curing agents, a comprehensive and comparative study was also performed on the thermal and mechanical properties of DGEBA/TETA and DGEBA/DETDA epoxy systems such as density, glass transition temperature (Tg), coefficient of thermal expansion (CTE) and elastic properties of different cross-linking densities and different temperatures. The results indicated that the glass transition temperature of DGEBA/TETA system calculated through density-temperature data, ∼ 385-395 °K, for the epoxy system with the cross-linking density of 62.5% has a better agreement with the experimental value (Tg, ∼ 400 °K) in comparison to the value calculated through the variation of cell volume in terms of temperature, 430-440 °K. They also indicated that CTE related parameters and elastic properties including Young, Bulk, and shear's moduli, and Poisson's ratio have a relative agreement with the experimental results. Comparison between the thermal and mechanical properties of epoxy systems of DGEBA/TETA and DGEBA/DETDA showed that the DGEBA/DETDA has a higher Tg in all cross linking densities than that of DGEBA/TETA, while higher mechanical properties was observed in the case of DGEBA/TETA in almost all cross linking densities. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Cold-Curing Structural Epoxy Resins: Analysis of the Curing Reaction as a Function of Curing Time and Thickness

    PubMed Central

    Esposito Corcione, Carola; Freuli, Fabrizio; Frigione, Mariaenrica

    2014-01-01

    The curing reaction of a commercial cold-curing structural epoxy resin, specifically formulated for civil engineering applications, was analyzed by thermal analysis as a function of the curing time and the sample thickness. Original and remarkable results regarding the effects of curing time on the glass transition temperature and on the residual heat of reaction of the cold-cured epoxy were obtained. The influence of the sample thickness on the curing reaction of the cold-cured resin was also deeply investigated. A highly exothermal reaction, based on a self-activated frontal polymerization reaction, was supposed and verified trough a suitable temperature signal acquisition system, specifically realized for this measurement. This is one of the first studies carried out on the curing behavior of these peculiar cold-cured epoxy resins as a function of curing time and thickness. PMID:28788215

  13. Cold-Curing Structural Epoxy Resins: Analysis of the Curing Reaction as a Function of Curing Time and Thickness.

    PubMed

    Corcione, Carola Esposito; Freuli, Fabrizio; Frigione, Mariaenrica

    2014-09-22

    The curing reaction of a commercial cold-curing structural epoxy resin, specifically formulated for civil engineering applications, was analyzed by thermal analysis as a function of the curing time and the sample thickness. Original and remarkable results regarding the effects of curing time on the glass transition temperature and on the residual heat of reaction of the cold-cured epoxy were obtained. The influence of the sample thickness on the curing reaction of the cold-cured resin was also deeply investigated. A highly exothermal reaction, based on a self-activated frontal polymerization reaction, was supposed and verified trough a suitable temperature signal acquisition system, specifically realized for this measurement. This is one of the first studies carried out on the curing behavior of these peculiar cold-cured epoxy resins as a function of curing time and thickness.

  14. Microwave-Assisted Curing of Silicon Carbide-Reinforced Epoxy Composites: Role of Dielectric Properties

    NASA Astrophysics Data System (ADS)

    Pal, Ranu; Akhtar, M. J.; Kar, Kamal K.

    2018-05-01

    In this work, the dielectric properties of epoxy-based composites are significantly improved with the help of the silicon carbide (SiC) filler at an operating frequency of 2.45 GHz to make them ideal candidates for microwave curing. The improvement is due to enhancement of the interfacial polarization because of the presence of the SiC filler. The dielectric properties are measured using the microwave cavity perturbation method. The cavity structure is simulated using the COMSOL@Multiphysics software to verify the measured data in terms of the resonant frequency. Finally, all the SiC-based composites including the neat epoxy resin are heated in the 2.45 GHz microwave oven at 300 W for 20 min. The thermal and mechanical properties of all the cured composites are measured, and the data are compared with their room temperature pre-cured counterparts. The dielectric properties of composite samples using SiC as a reinforcing agent in the epoxy are found to be substantially improved compared with those of the pure epoxy sample, which actually leads to better curing of these composite using the 2.45 GHz microwave system.

  15. Characterization and Curing Kinetics of Epoxy/Silica Nano-Hybrids

    PubMed Central

    Yang, Cheng-Fu; Wang, Li-Fen; Wu, Song-Mao; Su, Chean-Cheng

    2015-01-01

    The sol-gel technique was used to prepare epoxy/silica nano-hybrids. The thermal characteristics, curing kinetics and structure of epoxy/silica nano-hybrids were studied using differential scanning calorimetry (DSC), 29Si nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM). To improve the compatibility between the organic and inorganic phases, a coupling agent was used to modify the diglycidyl ether of bisphenol A (DGEBA) epoxy. The sol-gel technique enables the silica to be successfully incorporated into the network of the hybrids, increasing the thermal stability and improving the mechanical properties of the prepared epoxy/silica nano-hybrids. An autocatalytic mechanism of the epoxy/SiO2 nanocomposites was observed. The low reaction rate of epoxy in the nanocomposites is caused by the steric hindrance in the network of hybrids that arises from the consuming of epoxide group in the network of hybrids by the silica. In the nanocomposites, the nano-scale silica particles had an average size of approximately 35 nm, and the particles were well dispersed in the epoxy matrix, according to the TEM images. PMID:28793616

  16. Ultrasonic Mixing of Epoxy Curing Agents.

    DTIC Science & Technology

    1983-05-01

    Li~fl , • 4 Future generation aircraft need higher performance polymer matrices to fully achieve the weight savings possible with composite materials...ref. 1). New resins are being formulated in an effort to understand basic polymer behav- ior and to develop improved resins (refs. 2, 3 and 4). Some... polymer /curing agent combinations that could be useful, cannot be mixed properly using conven- tional methods because of the high melting temperature

  17. Room Temperature Curing Resin Systems for Graphite/Epoxy Composite Repair.

    DTIC Science & Technology

    1979-12-01

    ROOM TEMPERATURE CURING RESIN SYSTEMS FOR GRAPHITE/EPOXY COMPOS--ETC(UI DEC 79 0 J CRABTREE N62269-79-C-G224 UNCLASSIFIE O80-46 NADC -781 1-6 NL END...Room Temperature Curing Resin Sys-U3 linal for Graphite/Epoxy Composite Repair •.Dec *79 NOR- -46h: V111IT NUM8ER(s) 4362269-79- ,722 S. PERFORMING...repair, composite repair room temperature cure resin , moderate temperature cure resins , epoxies, adhesives, vinyl eater polymers, anaerobic curing polymers

  18. Aminophenoxycyclotriphosphazene cured epoxy resins and the composites, laminates, adhesives and structures thereof

    NASA Technical Reports Server (NTRS)

    Kumar, Devendra (Inventor); Fohlen, George M. (Inventor); Parker, John A. (Inventor)

    1977-01-01

    Aminophenoxy cyclotriphosphazenes such as hexakis (4-aminophenoxy) cyclotriphosphazene and tris (4-aminophenoxy)-tris phenoxy cyclotriphosphazene are used as curing agents for epoxy resins. These 1,2-epoxy resins are selected from di- or polyepoxide containing organic moieties of the formula (CH2-CHO-CH2) m-W-R-W- (CH2CH-CH2O)m where R is diphenyl dimethylmethane, diphenylmethane; W is a nitrogen or oxygen atom; and m is 1 when W is oxygen and 2 when W is nitrogen. The resins are cured thermally in stages at between about 110 to 135 C for between about 1 and 10 min, then at between about 175 to 185 C for between 0.5 to 10 hr and post cured at between about 215 and 235 C for between 0.1 and 2 hr. These resins are useful for making fire resistant elevated temperature stable composites, laminates, molded parts, and adhesives and structures, usually for aircraft secondary structures and for spacecraft construction.

  19. Silane coupling agent for attaching fusion-bonded epoxy to steel.

    PubMed

    Tchoquessi Diodjo, Madeleine R; Belec, Lénaïk; Aragon, Emmanuel; Joliff, Yoann; Lanarde, Lise; Perrin, François-Xavier

    2013-07-24

    We describe the possibility of using γ-aminopropyltriethoxysilane (γ-APS) to increase the durability of epoxy powder coating/steel joints. The curing temperature of epoxy powder coatings is frequently above 200 °C, which is seen so far as a major limitation for the use of the heat-sensitive aminosilane coupling agent. Despite this limitation, we demonstrate that aminosilane is a competitive alternative to traditional chromate conversion to enhance the durability of epoxy powder coatings/steel joints. Fourier-transform reflection-absorption infrared spectroscopy (FT-RAIRS), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) were used to identify the silane deposition conditions that influence the adhesion of epoxy powder coatings on steel. We show that AFM analysis provides highly sensitive measurements of mechanical property development and, as such, the degree of condensation of the silane. The joint durability in water at 60 °C was lower when the pH of the γ-APS solution was controlled at 4.6 using formic acid, rather than that at natural pH (10.6). At the curing temperature of 220 °C, oxidation of the carbon adjacent to the amine headgroup of γ-APS gives amide species by a pseudofirst-order kinetics. However, a few amino functionalities remain to react with oxirane groups of epoxy resin and, thus, strengthen the epoxy/silane interphase. The formation of ammonium formate in the acidic silane inhibits the reaction between silane and epoxy, which consequently decreases the epoxy/silane interphase cohesion. We find that the nanoroughness of silane deposits increases with the cure temperature which is beneficial to the wet stability of the epoxy/steel joints, due to increased mechanical interlocking.

  20. Study on Synthesis of Thoreau-modified 3, 5-Dimethyl-Thioltoluenediamine Used as Epoxy Resin Curing Agent and Its Performance

    NASA Astrophysics Data System (ADS)

    Peng, Yongli; Xiao, Wenzheng

    2017-06-01

    A novel curing agent Thoreau modified 3, 5-Dimethyl-thioltoluenediamine was synthesized and its molecular structure was characterized by FTIR and DSC. The curing kinetics of a high toughness and low volume shrinkage ratio epoxy system (modified DMTDA/DGEBA) was studied by differential scanning calorimetry (DSC) under noni so thermal conditions. The data were fitted to an order model and autocatalytic model respectively. The results indicate that in order model deviates significantly from experimental data. Malik’s method was used to prove that the curing kinetics of the system concerned follow single-step autocatalytic model, and a “single-point model-free” approach was employed to calculate meaningful kinetic parameters. The DSC curves derived from autocatalytic model gave satisfactory agreement with that of experiment in the range 5K/min∼25K/min. As the heating rate increased, the predicted DSC curves deviated from experimental curves, and the total exothermic enthalpy declined owing to the transition of competition relationship between kinetics control and diffusion control.

  1. Fiber-optic epoxy composite cure sensor. I. Dependence of refractive index of an autocatalytic reaction epoxy system at 850 nm on temperature and extent of cure

    NASA Astrophysics Data System (ADS)

    Lam, Kai-Yuen; Afromowitz, Martin A.

    1995-09-01

    We discuss the behavior of the refractive index of a typical epoxy-aromatic diamine system. Near 850 nm the index of refraction is found to be largely controlled by the density of the epoxy. Models are derived to describe its dependence on temperature and extent of cure. Within the range of temperatures studied, the refractive index decreases linearly with increasing temperature. In addition, as the epoxy is cured, the refractive index increases linearly with conversion to the gel point. >From then on, shrinkage in the volume of the epoxy is restricted by local viscosity. Therefore the linear relationship between the refractive index and the extent of cure does not hold beyond the gel point.

  2. The stability of new transparent polymeric materials: The epoxy trimethoxyboroxine system. Part 1: The preparation, characterization and curing of epoxy resins and their copolymers

    NASA Technical Reports Server (NTRS)

    Pearce, E.; Lin, S. C.

    1981-01-01

    The effects of resin composition, curing conditions fillers, and flame retardant additives on the flammability of diglycidyl ether of bisphenol-A (DGEBA) as measured by the oxygen index is examined. The oxygen index of DGEBA cured with various curing agents was between 0.198 to 0.238. Fillers and flame retardant additives can increase the oxygen index dependent on the material and the amount used. Changes in the basic cured resin properties can be anticipated with the addition of noncompatible additives. High flame resistant epoxy resins with good stability and mechanical properties are investigated.

  3. Adhesion at the interface in cured graphite fiber epoxy-amine resin composites

    NASA Technical Reports Server (NTRS)

    Needles, Howard L.; Alger, Kenneth W.; Okamoto, Robert

    1987-01-01

    The effect of high temperature curing on the interface between unsized or epoxy-sized graphite fiber tow and epoxy-amine resin was examined by scanning electron microscopy of compression and freeze fractured specimens. Little or no adhesion was found between the unsized graphite fiber tows and the epoxy-amine resin on curing at 165 C for 17 hrs. Epoxy-sized graphite fibers showed a similar lack of adhesion between the fiber tows and the epoxy-amine resin at 3 and 17 hr cures, although good penetration of the resin into the sized fiber tows had occurred. Interfacial bond strengths for the composites could not be effectively measured by compression fracture of specimens.

  4. The Modification of a Tetrafunctional Epoxy and Its Curing Reaction

    PubMed Central

    Yu, Mingming; Feng, Bin; Xie, Wang; Fang, Lin; Li, Hong; Liu, Liqi; Ren, Musu; Sun, Jinliang; Zhang, Jiabao; Hu, Hefeng

    2015-01-01

    Recent experimental results showed that the Tg of cured resin scarcely decreased and the impact strength of resins increased by over 50% when a tetrafunctional epoxy named N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenyl ether (TGDDE) was introduced to an appropriate flexible chain from a dimer fatty acid (DFA). In order to understand the reason for this phenomenon, the modification and the chemical structure of the prepolymer together with the curing reaction and the viscoelasticity of the cured resins were studied in detail in the present work. The results indicated that the modification would help the prepolymer improve its molecular mobility. As a result, the resins could be further cured, resulting in the cross-linking density increasing. This is because the curing efficiency was increased, but the tetrafunctional epoxy was not cured completely due to its large steric hindrance. Moreover, the flexibility of some parts of the networks was improved, which was beneficial for the toughness of the cured resins. Therefore, the toughness of the tetrafunctional resin was improved with little influence on the thermal properties when the epoxies were modified with an appropriate content of DFA.

  5. Bisimide amine cured epoxy /IME/ resins and composites. II - Ten-degree off-axis tensile and shear properties of Celion 6000/IME composites

    NASA Technical Reports Server (NTRS)

    Scola, D. A.

    1982-01-01

    Bisimide amines (BIAs), which are presently used as curing agents in a state-of-the-art epoxy resin, are oligomeric and polymeric mixtures. A series of composites consisting of the novel BIA-cured epoxy resin reinforced with Celion 6000 graphite fibers were fabricated and evaluated, and the ten-degree, off-axis uniaxial tensile and shear properties of these composites were determined. The use of the intralaminar shear strain-to-failure was used in the calculation of resin shear strain-to-failure. Study results indicate that several of these novel composite systems exhibit shear strain properties that are superior to those of the control composite system of the present experiments, which employed a sulfone curing agent.

  6. Flame Retardant Epoxy Resins

    NASA Technical Reports Server (NTRS)

    Thompson, C. M.; Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.; Lyon, R. E.

    2004-01-01

    As part of a program to develop fire resistant exterior composite structures for future subsonic commercial aircraft, flame retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured epoxies were characterized by thermogravimetric analysis, propane torch test, elemental analysis and microscale combustion calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness of plaques of several cured formulations was determined on single-edge notched bend specimens. The chemistry and properties of these new epoxy formulations are discussed.

  7. Monitoring Fiber Stress During Curing of Single Fiber Glass- and Graphite-Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Madhukar, Madhu S.; Kosuri, Ranga P.; Bowles, Kenneth J.

    1994-01-01

    The difference in thermal expansion characteristics of epoxy matrices and graphite fibers can produce significant residual stresses in the fibers during curing of composite materials. Tests on single fiber glass-epoxy and graphite-epoxy composite specimens were conducted in which the glass and graphite fibers were preloaded in tension, and the epoxy matrix was cast around the fibers. The fiber tension was monitored while the matrix was placed around the fiber and subjected to the temperature-time curing cycle. Two mechanisms responsible for producing stress in embedded fibers were identified as matrix thermal expansion and contraction and matrix cure shrinkage. A simple analysis based on the change in fiber tension during the curing cycle was conducted to estimate the produced stresses. Experimental results on single fiber glass- and graphite-epoxy composites show that the fiber was subjected to significant tensile stresses when the temperature was raised from the first to the second dwell period. When initial fiber pretension is about 60 percent of the fiber failure load, these curing-induced stresses can cause tensile fracture of the embedded fiber.

  8. Self-healing woven glass fabric/epoxy composites with the healant consisting of micro-encapsulated epoxy and latent curing agent

    NASA Astrophysics Data System (ADS)

    Yin, Tao; Zhou, Lin; Zhi Rong, Min; Qiu Zhang, Ming

    2008-02-01

    This paper reports a study of self-healing woven glass fabric reinforced epoxy composites. The healing agent was a two-component one synthesized in the authors' laboratory, which consisted of epoxy-loaded urea-formaldehyde microcapsules as the polymerizable binder and CuBr2(2-methylimidazole)4 (CuBr2(2-MeIm)4) as the latent hardener. Both the microcapsules and the matching catalyst were pre-embedded and pre-dissolved in the composites' matrix, respectively. When the microcapsules are split by propagating cracks, the uncured epoxy can be released into the damaged areas and then consolidated under the catalysis of CuBr2(2-MeIm)4 that was homogeneously distributed in the composites' matrix on a molecular scale. As a result, the cracked faces can be bonded together. The influence of the content of the self-healing agent on the composites' tensile properties, interlaminar fracture toughness and healing efficiency was evaluated. It was found that a healing efficiency over 70% relative to the fracture toughness of virgin composites was obtained in the case of 30 wt% epoxy-loaded microcapsules and 2 wt% latent hardener.

  9. Stronger Fire-Resistant Epoxies

    NASA Technical Reports Server (NTRS)

    Fohlen, George M.; Parker, John A.; Kumar, Devendra

    1988-01-01

    New curing agent improves mechanical properties and works at lower temperature. Use of aminophenoxycyclotriphosphazene curing agents yields stronger, more heat- and fire-resistant epoxy resins. Used with solvent if necessary for coating fabrics or casting films.

  10. Safe Deactivation of Energetic Materials and Use of By-products as Epoxy Curing Agents

    DTIC Science & Technology

    2001-11-01

    National Laboratory has developed a lab- scale synthesis to convert TNT to higher value products such as TATB. 3.2 Firing Range Clean-Up Due to...1000 2000 3000 4000 5000 TCD1 , of Nitrogen Nitric Oxide Nitrous oxide ammonia Water Figure 1. Reactant Products for the Reaction of...SAND2001-3344 Unlimited Release Printed November 2001 Safe Deactivation of Energetic Materials and Use of By- products as Epoxy Curing

  11. Epoxy Grout With Silica Thickener

    NASA Technical Reports Server (NTRS)

    Mcclung, C. E.

    1984-01-01

    Grout cures quickly, even in presence of hydraulic oil. Grout is mixture of aggregate particles, finely-divided silica, epoxy resin, and triethylenetetramine curing agent, with mixture containing about 85 percent silica and aggregate particle sand 15 percent resin and curing agent. Silica is thickening agent and keeps grout from sagging.

  12. Preparation of low viscosity epoxy acrylic acid photopolymer prepolymer in light curing system

    NASA Astrophysics Data System (ADS)

    Li, P.; Huang, J. Y.; Liu, G. Z.

    2018-01-01

    With the integration and development of materials engineering, applied mechanics, automatic control and bionics, light cured composite has become one of the most favourite research topics in the field of materials and engineering at home and abroad. In the UV curing system, the prepolymer and the reactive diluent form the backbone of the cured material together. And they account for more than 90% of the total mass. The basic properties of the cured product are mainly determined by the prepolymer. A low viscosity epoxy acrylate photosensitive prepolymer with a viscosity of 6800 mPa • s (25 °C ) was obtained by esterification of 5 hours with bisphenol A epoxy resin with high epoxy value and low viscosity.

  13. Cure Kinetics of Epoxy Nanocomposites Affected by MWCNTs Functionalization: A Review

    PubMed Central

    Saeb, Mohammad Reza; Bakhshandeh, Ehsan; Khonakdar, Hossein Ali; Mäder, Edith; Scheffler, Christina; Heinrich, Gert

    2013-01-01

    The current paper provides an overview to emphasize the role of functionalization of multiwalled carbon nanotubes (MWCNTs) in manipulating cure kinetics of epoxy nanocomposites, which itself determines ultimate properties of the resulting compound. In this regard, the most commonly used functionalization schemes, that is, carboxylation and amidation, are thoroughly surveyed to highlight the role of functionalized nanotubes in controlling the rate of autocatalytic and vitrification kinetics. The current literature elucidates that the mechanism of curing in epoxy/MWCNTs nanocomposites remains almost unaffected by the functionalization of carbon nanotubes. On the other hand, early stage facilitation of autocatalytic reactions in the presence of MWCNTs bearing amine groups has been addressed by several researchers. When carboxylated nanotubes were used to modify MWCNTs, the rate of such reactions diminished as a consequence of heterogeneous dispersion within the epoxy matrix. At later stages of curing, however, the prolonged vitrification was seen to be dominant. Thus, the type of functional groups covalently located on the surface of MWCNTs directly affects the degree of polymer-nanotube interaction followed by enhancement of curing reaction. Our survey demonstrated that most widespread efforts ever made to represent multifarious surface-treated MWCNTs have not been directed towards preparation of epoxy nanocomposites, but they could result in property synergism. PMID:24348181

  14. Tetraglycidyl epoxy resins and graphite fiber composites cured with flexibilized aromatic diamines

    NASA Technical Reports Server (NTRS)

    Delvigs, P.

    1986-01-01

    Studies were performed to synthesize new ether modified, flexibilized aromatic diamine hardeners for curing epoxy resins. The effect of moisture absorption on the glass transition temperatures of a tetraglycidyl epoxy, MY 720, cured with flexibilized hardeners and a conventional aromatic diamine was studied. Unidirectional composites, using epoxy-sized Celion 6000 graphite fiber as the reinforcement, were fabricated. The room temperature and 300 F mechanical properties of the composites, before and after moisture exposure, were determined. The Mode I interlaminar fracture toughness of the composites was characterized using a double cantilever beam technique to calculate the critical strain energy release rate.

  15. Flammability of Epoxy Resins Containing Phosphorus

    NASA Technical Reports Server (NTRS)

    Hergenrother, P. M.; Thompson, C. M.; Smith, J. G.; Connell, J. W.; Hinkley, J. A.

    2005-01-01

    As part of a program to develop fire-resistant exterior composite structures for future subsonic commercial and general aviation aircraft, flame-retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured neat epoxy formulations were characterized by thermogravimetric analysis, propane torch test, elemental analysis, microscale combustion calorimetry, and fire calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness and compressive strength of several cured formulations showed no detrimental effect due to phosphorus content. The chemistry and properties of these new epoxy formulations are discussed.

  16. Strain development in curing epoxy resin and glass fibre/epoxy composites monitored by fibre Bragg grating sensors in birefringent optical fibre

    NASA Astrophysics Data System (ADS)

    Chehura, E.; Skordos, A. A.; Ye, C.-C.; James, S. W.; Partridge, I. K.; Tatam, R. P.

    2005-04-01

    Fibre Bragg gratings (FBGs) fabricated in linearly birefringent fibres were embedded in glass fibre/epoxy composites and in the corresponding unreinforced resin to monitor the effective transverse strain development during the cure process. The optical fibres containing the FBG sensors were aligned either normal or parallel to the reinforcement fibres in unidirectional glass fibre/epoxy prepregs. The chemical cure kinetics of the epoxy resin system used were studied using differential scanning calorimetry, in order to investigate the correlation between the strain monitoring results and the evolution of the curing reaction. A non-parametric cure kinetics model was developed and validated for this purpose. The effective transverse strain measured by the FBGs demonstrated high sensitivity to the degree of cure as a result of the densification of the resin caused by the curing reaction. The effective compressive transverse strain developed during the reaction, and thus the corresponding sensitivity to chemical changes, was higher in the case of the sensing fibre aligned normal to the reinforcement fibres than in the case of the sensor fibre parallel to the reinforcement fibres. Small but measurable sensitivity to cure induced changes was observed in the case of the unreinforced resin.

  17. Imide modified epoxy matrix resins

    NASA Technical Reports Server (NTRS)

    Scola, D. A.; Pater, R. H.

    1981-01-01

    High char yield epoxy using novel bisimide amines (BIA's) as curing agents with a state of the art epoxy resin was developed. Stoichiometric quantities of the epoxy resin and the BIA's were studied to determine the cure cycle required for preparation of resin specimens. The bisimide cured epoxies were designated IME's (imide modified epoxy). The physical, thermal and mechanical properties of these novel resins were determined. The levels of moisture absorption exhibited by the bisimide amine cured expoxies (IME's) were considerably lower than the state of the art epoxies. The strain-to-failure of the control resin system was improved 25% by replacement of DDS with 6F-DDS. Each BIA containing resin exhibited twice the char yield of the control resin MY 720/DDS. Graphite fiber reinforced control (C) and IME resins were fabricated and characterized. Two of the composite systems showed superior properties compared to the other Celion 6000/IME composite systems and state of the art graphite epoxy systems. The two systems exhibited excellent wet shear and flexural strengths and moduli at 300 and 350 F.

  18. DSC and curing kinetics study of epoxy grouting diluted with furfural -acetone slurry

    NASA Astrophysics Data System (ADS)

    Yin, H.; Sun, D. W.; Li, B.; Liu, Y. T.; Ran, Q. P.; Liu, J. P.

    2016-07-01

    The use of furfural-acetone slurry as active diluents of Bisphenol-A epoxy resin (DGEBA) groutings has been studied by dynamic and non-isothermal DSC for the first time. Curing kinetics study was investigated by non-isothermal differential scanning calorimetries at different heating rates. Activation enery (Ea) was calculated based on Kissinger and Ozawa Methods, and the results showed that Ea increased from 58.87 to 71.13KJ/mol after the diluents were added. The furfural-acetone epoxy matrix could cure completely at the theoretical curing temperature of 365.8K and the curing time of 139mins, which were determined by the kinetic model parameters.

  19. A New Epoxy-Based Layered Silicate Nanocomposite Using a Hyperbranched Polymer: Study of the Curing Reaction and Nanostructure Development

    PubMed Central

    Cortés, Pilar; Fraga, Iria; Calventus, Yolanda; Román, Frida; Hutchinson, John M.; Ferrando, Francesc

    2014-01-01

    Polymer layered silicate (PLS) nanocomposites have been prepared with diglycidyl ether of bisphenol-A (DGEBA) epoxy resin as the matrix and organically modified montmorillonite (MMT) as the clay nanofiller. Resin-clay mixtures with different clay contents (zero, two, five and 10 wt%) were cured, both isothermally andnon-isothermally, using a poly(ethyleneimine) hyperbranched polymer (HBP), the cure kinetics being monitored by differential scanning calorimetry (DSC). The nanostructure of the cured nanocomposites was characterized by small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM), and their mechanical properties were determined by dynamic mechanical analysis (DMA) and impact testing. The results are compared with an earlier study of the structure and properties of the same DGEBA-MMT system cured with a polyoxypropylene diamine, Jeffamine. There are very few examples of the use of HBP as a curing agent in epoxy PLS nanocomposites; here, it is found to enhance significantly the degree of exfoliation of these nanocomposites compared with those cured with Jeffamine, with a corresponding enhancement in the impact energy for nanocomposites with the low clay content of 2 wt%. These changes are attributed to the different cure kinetics with the HBP, in which the intra-gallery homopolymerization reaction is accelerated, such that it occurs before the bulk cross-linking reaction. PMID:28788542

  20. A New Epoxy-Based Layered Silicate Nanocomposite Using a Hyperbranched Polymer: Study of the Curing Reaction and Nanostructure Development.

    PubMed

    Cortés, Pilar; Fraga, Iria; Calventus, Yolanda; Román, Frida; Hutchinson, John M; Ferrando, Francesc

    2014-03-04

    Polymer layered silicate (PLS) nanocomposites have been prepared with diglycidyl ether of bisphenol-A (DGEBA) epoxy resin as the matrix and organically modified montmorillonite (MMT) as the clay nanofiller. Resin-clay mixtures with different clay contents (zero, two, five and 10 wt%) were cured, both isothermally and non-isothermally, using a poly(ethyleneimine) hyperbranched polymer (HBP), the cure kinetics being monitored by differential scanning calorimetry (DSC). The nanostructure of the cured nanocomposites was characterized by small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM), and their mechanical properties were determined by dynamic mechanical analysis (DMA) and impact testing. The results are compared with an earlier study of the structure and properties of the same DGEBA-MMT system cured with a polyoxypropylene diamine, Jeffamine. There are very few examples of the use of HBP as a curing agent in epoxy PLS nanocomposites; here, it is found to enhance significantly the degree of exfoliation of these nanocomposites compared with those cured with Jeffamine, with a corresponding enhancement in the impact energy for nanocomposites with the low clay content of 2 wt%. These changes are attributed to the different cure kinetics with the HBP, in which the intra-gallery homopolymerization reaction is accelerated, such that it occurs before the bulk cross-linking reaction.

  1. Increasing Fire Safety of Epoxies

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Mikroyannidis, J. A.

    1985-01-01

    Epoxy with increased resistance to fire made by reacting any of three commercial epoxide monomers with curing agent consisting of mixture of isomers called "DCEPD". Curing agent incorporates phosphorus and chlorine directly into crosslinking part of polymer. DCEPD produced by nitrating precursor phosphonylmethyl benzene, then reducing resulting isomeric mixture of dinitro compounds.

  2. Elastic properties, reaction kinetics, and structural relaxation of an epoxy resin polymer during cure

    NASA Astrophysics Data System (ADS)

    Heili, Manon; Bielawski, Andrew; Kieffer, John

    The cure kinetics of a DGEBA/DETA epoxy is investigated using concurrent Raman and Brillouin light scattering. Raman scattering allows us to monitor the in-situ reaction and quantitatively assess the degree of cure. Brillouin scattering yields the elastic properties of the system, providing a measure of network connectivity. We show that the adiabatic modulus evolves non-uniquely as a function of cure degree, depending on the cure temperature and the molar ratio of the epoxy. Two mechanisms contribute to the increase in the elastic modulus of the material during curing. First, there is the formation of covalent bonds in the network during the curing process. Second, following bond formation, the epoxy undergoes structural relaxation toward an optimally packed network configuration, enhancing non-bonded interactions. We investigate to what extent the non-bonded interaction contribution to structural rigidity in cross-linked polymers is reversible, and to what extent it corresponds to the difference between adiabatic and isothermal moduli obtained from static tensile, i.e. the so-called relaxational modulus. To this end, we simultaneously measure the adiabatic and isothermal elastic moduli as a function of applied strain and deformation rate.

  3. A One-Component, Fast-Cure, and Economical Epoxy Resin System Suitable for Liquid Molding of Automotive Composite Parts.

    PubMed

    Wang, Yiru; Liu, Wanshuang; Qiu, Yiping; Wei, Yi

    2018-04-27

    Imidazole cured epoxy resin systems were evaluated for one-component, fast-curing resins for liquid molding of automotive composite parts according to industry requirements. It was demonstrated that an epoxy resin-1-(cyanoethyl)-2-ethyl-4-methylimidazol(EP-1C2E4MIM) system would cure in a few minutes at 120 °C, while exhibiting acceptable pot life, viscosity profiles, and low water absorption. Moreover, this system yielded high T g parts with mechanical properties similar to the amine-epoxy systems, which are the mainstream two-component epoxy resin systems for automobiles.

  4. A One-Component, Fast-Cure, and Economical Epoxy Resin System Suitable for Liquid Molding of Automotive Composite Parts

    PubMed Central

    Wang, Yiru; Qiu, Yiping; Wei, Yi

    2018-01-01

    Imidazole cured epoxy resin systems were evaluated for one-component, fast-curing resins for liquid molding of automotive composite parts according to industry requirements. It was demonstrated that an epoxy resin-1-(cyanoethyl)-2-ethyl-4-methylimidazol(EP-1C2E4MIM) system would cure in a few minutes at 120 °C, while exhibiting acceptable pot life, viscosity profiles, and low water absorption. Moreover, this system yielded high Tg parts with mechanical properties similar to the amine-epoxy systems, which are the mainstream two-component epoxy resin systems for automobiles. PMID:29702575

  5. Solidifying process and flame retardancy of epoxy resin cured with boron-containing phenolic resin

    NASA Astrophysics Data System (ADS)

    Deng, Peng; Shi, Yan; Liu, Yuansen; Liu, Yuan; Wang, Qi

    2018-01-01

    For the sake of improving the charring performance and flame retardancy of epoxy resin (EP), boron-containing phenolic resin (BPR) instead of a conventional curing agent, linear phenolic resin (LPR) was employed to cure EP. Of several possible chemical structures for BPR, the existence of benzyl hydroxy groups in BPR chains has been confirmed using 1H nuclear magnetic resonance spectroscopy. The resonance of these groups may reasonably explain the higher curing reactivity of BPR-cured EP than that of LPR-cured EP. Thermogravimetric analysis, observation of the morphologies of the char residues and X-ray photoelectron spectroscopic were performed to characterize the charring process. Due to the presence of B2O3 produced on the char surface from decomposition of phenyl borates and the facile high self-crosslinking reaction of BPR, a more continuous and stronger char barrier was formed for BPR-cured EP compared to that for the LPR-cured EP system. Therefore the former exhibited much better flame retardancy. In addition, BPR-cured EP also displayed better dynamic mechanical properties, than those observed for LPR-cured EP. It is not subject to the significant lowering the glass transition temperature of the polymer which accompanies curing with LPR. This suggests that BPR cured resin may meet the requirement for utilization at high temperature.

  6. Preparation of Microcellular Epoxy Foams through a Limited-Foaming Process: A Contradiction with the Time-Temperature-Transformation Cure Diagram.

    PubMed

    Wang, Lijun; Zhang, Chun; Gong, Wei; Ji, Yubi; Qin, Shuhao; He, Li

    2018-01-01

    3D cross-linking networks are generated through chemical reactions between thermosetting epoxy resin and hardener during curing. The curing degree of epoxy material can be increased by increasing curing temperature and/or time. The epoxy material must then be fully cured through a postcuring process to optimize its material characteristics. Here, a limited-foaming method is introduced for the preparation of microcellular epoxy foams (Lim-foams) with improved cell morphology, high thermal expansion coefficient, and good compressive properties. Lim-foams exhibit a lower glass transition temperature (T g ) and curing degree than epoxy foams fabricated through free-foaming process (Fre-foams). Surprisingly, however, the T g of Lim-foams is unaffected by postcuring temperature and time. This phenomenon, which is related to high gas pressure in the bubbles, contradicts that indicated by the time-temperature-transformation cure diagram. High bubble pressure promotes the movement of molecular chains under heating at low temperature and simultaneously suppresses the etherification cross-linking reaction during post-curing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Fiber-Reinforced Epoxy Composites and Methods of Making Same Without the Use of Oven or Autoclave

    NASA Technical Reports Server (NTRS)

    Barnell, Thomas J. (Inventor); Rauscher, Michael D. (Inventor); Stienecker, Rick D. (Inventor); Nickerson, David M. (Inventor); Tong, Tat H. (Inventor)

    2016-01-01

    Method embodiments for producing a fiber-reinforced epoxy composite comprise providing a mold defining a shape for a composite, applying a fiber reinforcement over the mold, covering the mold and fiber reinforcement thereon in a vacuum enclosure, performing a vacuum on the vacuum enclosure to produce a pressure gradient, insulating at least a portion of the vacuum enclosure with thermal insulation, infusing the fiber reinforcement with a reactive mixture of uncured epoxy resin and curing agent under vacuum conditions, wherein the reactive mixture of uncured epoxy resin and curing agent generates exothermic heat, and producing the fiber-reinforced epoxy composite having a glass transition temperature of at least about 100.degree. C. by curing the fiber reinforcement infused with the reactive mixture of uncured epoxy resin and curing agent by utilizing the exothermically generated heat, wherein the curing is conducted inside the thermally insulated vacuum enclosure without utilization of an external heat source or an external radiation source.

  8. Impregnating magnetic components with MDA free epoxy

    NASA Astrophysics Data System (ADS)

    Sanchez, R. O.; Domeier, L.; Gunewardena, S.

    1995-08-01

    This paper describes the use of 'Formula 456' an aliphatic amine cured epoxy for impregnating coils. Methylene dianiline (MDA) has been used for more than 20 years as the curing agent for various epoxy formulations throughout the Department of Energy. Sandia National Laboratories began the process of replacing MDA with other formulations because of regulations imposed by OSHA on the use of MDA.

  9. Epoxy Nanocomposites Containing Zeolitic Imidazolate Framework-8.

    PubMed

    Liu, Cong; Mullins, Michael; Hawkins, Spencer; Kotaki, Masaya; Sue, Hung-Jue

    2018-01-10

    Zeolitic imidazole framework-8 (ZIF-8) is utilized as a functional filler and a curing agent in the preparation of epoxy nanocomposites. The imidazole group on the surface of the ZIF-8 initiates epoxy curing, resulting in covalent bonding between the ZIF-8 crystals and epoxy matrix. A substantial reduction in dielectric constant and increase in tensile modulus were observed. The implication of the present study for utilization of metal-organic framework to improve physical and mechanical properties of polymeric matrixes is discussed.

  10. Synthesis and properties of a bio-based epoxy resin with high epoxy value and low viscosity.

    PubMed

    Ma, Songqi; Liu, Xiaoqing; Fan, Libo; Jiang, Yanhua; Cao, Lijun; Tang, Zhaobin; Zhu, Jin

    2014-02-01

    A bio-based epoxy resin (denoted TEIA) with high epoxy value (1.16) and low viscosity (0.92 Pa s, 258C) was synthesized from itaconic acid and its chemical structure was confirmed by 1H NMR and 13C NMR spectroscopy. Its curing reaction with poly(propylene glycol) bis(2-aminopropyl ether) (D230) and methyl hexahydrophthalic anhydride (MHHPA) was investigated. For comparison, the commonly used diglycidyl ether of bisphenol A (DGEBA) was also cured with the same curing agents. The results demonstrated that TEIA showed higher curing reactivity towards D230/MHHPA and lower viscosity compared with DGEBA, resulting in the better processability. Owing to its high epoxy value and unique structure, comparable or better glass transition temperature as well as mechanical properties could be obtained for the TEIA-based network relative to the DGEBA-based network. The results indicated that itaconic acid is a promising renewable feedstock for the synthesis of bio-based epoxy resin with high performance.

  11. Toughened epoxy resin system and a method thereof

    DOEpatents

    Janke, C.J.; Dorsey, G.F.; Havens, S.J.; Lopata, V.J.

    1998-03-10

    Mixtures of epoxy resins with cationic initiators are curable under high energy ionizing radiation such as electron beam radiation, X-ray radiation, and gamma radiation. The composition of this process consists of an epoxy resin, a cationic initiator such as a diaryliodonium or triarylsulfonium salt of specific anions, and a toughening agent such as a thermoplastic, hydroxy-containing thermoplastic oligomer, epoxy-containing thermoplastic oligomer, reactive flexibilizer, rubber, elastomer, or mixture thereof. Cured compositions have high glass transition temperatures, good mechanical properties, and good toughness. These properties are comparable to those of similar thermally cured epoxies.

  12. Toughened epoxy resin system and a method thereof

    DOEpatents

    Janke, Christopher J.; Dorsey, George F.; Havens, Stephen J.; Lopata, Vincent J.

    1998-01-01

    Mixtures of epoxy resins with cationic initiators are curable under high energy ionizing radiation such as electron beam radiation, X-ray radiation, and gamma radiation. The composition of this process consists of an epoxy resin, a cationic initiator such as a diaryliodonium or triarylsulfonium salt of specific anions, and a toughening agent such as a thermoplastic, hydroxy-containing thermoplastic oligomer, epoxy-containing thermoplastic oligomer, reactive flexibilizer, rubber, elastomer, or mixture thereof. Cured compositions have high glass transition temperatures, good mechanical properties, and good toughness. These properties are comparable to those of similar thermally cured epoxies.

  13. Simultaneous acoustic and dielectric real time curing monitoring of epoxy systems

    NASA Astrophysics Data System (ADS)

    Gkikas, G.; Saganas, Ch.; Grammatikos, S. A.; Aggelis, D. G.; Paipetis, A. S.

    2012-04-01

    The attainment of structural integrity of the reinforcing matrix in composite materials is of primary importance for the final properties of the composite structure. The detailed monitoring of the curing process on the other hand is paramount (i) in defining the optimal conditions for the impregnation of the reinforcement by the matrix (ii) in limiting the effects of the exotherm produced by the polymerization reaction which create unwanted thermal stresses and (iii) in securing optimal behavior in matrix controlled properties, such as off axis or shear properties and in general the durability of the composite. Dielectric curing monitoring is a well known technique for distinguishing between the different stages of the polymerization of a typical epoxy system. The technique successfully predicts the gelation and the vitrification of the epoxy and has been extended for the monitoring of prepregs. Recent work has shown that distinct changes in the properties of the propagated sound in the epoxy which undergoes polymerization is as well directly related to the gelation and vitrification of the resin, as well as to the attainment of the final properties of the resin system. In this work, a typical epoxy is simultaneously monitored using acoustic and dielectric methods. The system is isothermally cured in an oven to avoid effects from the polymerization exotherm. Typical broadband sensors are employed for the acoustic monitoring, while flat interdigital sensors are employed for the dielectric scans. All stages of the polymerization process were successfully monitored and the validity of both methods was cross checked and verified.

  14. Structure Property Relationships of Biobased Epoxy Resins

    NASA Astrophysics Data System (ADS)

    Maiorana, Anthony Surraht

    The thesis is about the synthesis, characterization, development, and application of epoxy resins derived from sustainable feedstocks such as lingo-cellulose, plant oils, and other non-food feedstocks. The thesis can be divided into two main topics 1) the synthesis and structure property relationship investigation of new biobased epoxy resin families and 2) mixing epoxy resins with reactive diluents, nanoparticles, toughening agents, and understanding co-curing reactions, filler/matrix interactions, and cured epoxy resin thermomechanical, viscoelastic, and dielectric properties. The thesis seeks to bridge the gap between new epoxy resin development, application for composites and advanced materials, processing and manufacturing, and end of life of thermoset polymers. The structures of uncured epoxy resins are characterized through traditional small molecule techniques such as nuclear magnetic resonance, high resolution mass spectrometry, and infrared spectroscopy. The structure of epoxy resin monomers are further understood through the process of curing the resins and cured resins' properties through rheology, chemorheology, dynamic mechanical analysis, tensile testing, fracture toughness, differential scanning calorimetry, scanning electron microscopy, thermogravimetric analysis, and notched izod impact testing. It was found that diphenolate esters are viable alternatives to bisphenol A and that the structure of the ester side chain can have signifi-cant effects on monomer viscosity. The structure of the cured diphenolate based epoxy resins also influence glass transition temperature and dielectric properties. Incorporation of reactive diluents and flexible resins can lower viscosity, extend gel time, and enable processing of high filler content composites and increase fracture toughness. Incorpora-tion of high elastic modulus nanoparticles such as graphene can provide increases in physical properties such as elastic modulus and fracture toughness. The synthesis

  15. High energy electron beam curing of epoxy resin systems incorporating cationic photoinitiators

    DOEpatents

    Janke, C.J.; Lopata, V.J.; Havens, S.J.; Dorsey, G.F.; Moulton, R.J.

    1999-03-02

    A mixture of epoxy resins such as a semi-solid triglycidyl ether of tris (hydroxyphenyl) methane and a low viscosity bisphenol A glycidyl ether and a cationic photoinitiator such as a diaryliodonium salt is cured by irradiating with a dosage of electron beams from about 50 to about 150 kGy, forming a cross-linked epoxy resin polymer.

  16. High energy electron beam curing of epoxy resin systems incorporating cationic photoinitiators

    DOEpatents

    Janke, Christopher J.; Lopata, Vincent J.; Havens, Stephen J.; Dorsey, George F.; Moulton, Richard J.

    1999-01-01

    A mixture of epoxy resins such as a semi-solid triglycidyl ether of tris (hydroxyphenyl) methane and a low viscosity bisphenol A glycidyl ether and a cationic photoinitiator such as a diaryliodonium salt is cured by irradiating with a dosage of electron beams from about 50 to about 150 kGy, forming a cross-linked epoxy resin polymer.

  17. Method for epoxy foam production using a liquid anhydride

    DOEpatents

    Celina, Mathias [Albuquerque, NM

    2012-06-05

    An epoxy resin mixture with at least one epoxy resin of between approximately 50 wt % and 100 wt %, an anhydride cure agent of between approximately 0 wt % and approximately 50 wt %, a tert-butoxycarbonyl anhydride foaming agent of between proximately 0.1-20 wt %, a surfactant and an imidazole or similar catalyst of less than approximately 2 wt %, where the resin mixture is formed from at least one epoxy resin with a 1-10 wt % tert-butoxycarbonyl anhydride compound and an imidazole catalyst at a temperature sufficient to keep the resin in a suitable viscosity range, the resin mixture reacting to form a foaming resin which in the presence of an epoxy curative can then be cured at a temperature greater than 50.degree. C. to form an epoxy foam.

  18. Self-curing concrete with different self-curing agents

    NASA Astrophysics Data System (ADS)

    Gopala krishna sastry, K. V. S.; manoj kumar, Putturu

    2018-03-01

    Concrete is recognised as a versatile construction material globally. Properties of concrete depend upon, to a greater extent, the hydration of cement and microstructure of hydrated cement. Congenial atmosphere would aid the hydration of cement and hence curing of concrete becomes essential, till a major portion of the hydration process is completed. But in areas of water inadequacy and concreting works at considerable heights, curing is problematic. Self-Curing or Internal Curing technique overcomes these problems. It supplies redundant moisture, for more than sufficient hydration of cement and diminish self-desiccation. Self-Curing agents substantially help in the conservation of water in concrete, by bringing down the evaporation during the hydration of Concrete. The present study focuses on the impact of self-curing agents such as Poly Ethylene Glycol (PEG), Poly Vinyl Alcohol (PVA) and Super Absorbent Polymer (SAP) on the concrete mix of M25 grade (reference mix). The effect of these agents on strength properties of Concrete such as compressive strength, split tensile strength and flexural strength was observed on a comparative basis which revealed that PEG 4000 was the most effective among all the agents.

  19. Curing kinetics and thermomechanical properties of latent epoxy/carbon fiber composites

    NASA Astrophysics Data System (ADS)

    Dalle Vacche, S.; Michaud, V.; Demierre, M.; Bourban, P.-E.; Månson, J.-A. E.

    2016-07-01

    In this work, resins based on diglycidyl ether of bisphenol A (DGEBA) epoxy and a latent hardener, dicyandiamide (DICY), as well as carbon fiber (CF) composites based on them, were prepared with three commercial accelerators: a methylene bis (phenyl dimethyl urea), a cycloaliphatic substituted urea, and a modified polyamine. The curing kinetics of the three DGEBA/DICY/accelerator systems were investigated by chemorheology and differential scanning calorimetry (DSC), in isothermal and over temperature change conditions. Differences in the reaction onset temperature, and in the glass transition temperature (Tg) were highlighted. For curing of thick resin samples, a slow curing cycle at the lowest possible temperature was used, followed by high temperature (160 - 180 °C) post-curing. Indeed, fast curing at higher temperatures caused the formation of hot spots and led to local burning of the samples. The obtained thermomechanical properties, assessed by ultimate tensile testing and dynamic mechanical analysis (DMA) in single cantilever configuration, were all in the expected range for epoxy resins, with tensile moduli close to 3 GPa and Tg > 140 °C. The longterm stability of these resins at room temperature was verified by DSC. Composite samples were prepared by hand lay-up by manually impregnating four layers of 5-harness satin CF textile, and curing in vacuum bag. Impregnation quality and void content were assessed by optical microscopy. The flexural properties of the post-cured composites were assessed by three-point bending test at room temperature and showed no relevant differences, all composites having bending moduli of 45 - 50 GPa. Finally, composites cured with a faster high temperature curing cycle (20 min at 140 °C) were prepared with the DGEBA/DICY/ methylene bis (phenyl dimethyl urea) system, obtaining similar properties as with the slower curing cycle, showing that the prepreg system allowed more flexibility in terms of curing cycle than the bulk resin

  20. Cure kinetics, morphologies, and mechanical properties of thermoplastic/MWCNT modified multifunctional glassy epoxies prepared via continuous reaction methods

    NASA Astrophysics Data System (ADS)

    Cheng, Xiaole

    The primary goal of this dissertation is to develop a novel continuous reactor method to prepare partially cured epoxy prepolymers for aerospace prepreg applications with the aim of replacing traditional batch reactors. Compared to batch reactors, the continuous reactor is capable of solubilizing and dispersing a broad range of additives including thermoplastic tougheners, stabilizers, nanoparticles and curatives and advancing epoxy molecular weights and viscosities while reducing energy consumption. In order to prove this concept, polyethersulfone (PES) modified 4, 4'-diaminodiphenylsulfone (44DDS)/tetraglycidyl-4, 4'-diaminodiphenylmethane (TGDDM) epoxy prepolymers were firstly prepared using both continuous reactor and batch reactor methods. Kinetic studies confirmed the chain extension reaction in the continuous reactor is similar to the batch reactor, and the molecular weights and viscosities of prepolymers were readily controlled through reaction kinetics. Atomic force microscopy (AFM) confirmed similar cured network morphologies for formulations prepared from batch and continuous reactors. Additionally tensile strength, tensile modulus and fracture toughness analyses concluded mechanical properties of cured epoxy matrices produced from both reactors were equivalent. Effects of multifunctional epoxy compositions on thermoplastics phase-separated morphologies were systematically studied using a combination of AFM with nanomechanical mapping, spectroscopic and calorimetric techniques to provide new insights to tailor cured reaction induced phase separation (CRIPS) in multifunctional epoxy blend networks. Furthermore, how resultant crosslinked glassy polymer network and phase-separated morphologies correlated with mechanical properties are discussed in detail. Multiwall carbon nanotube (MWCNT)/TGDDM epoxy prepolymers were further prepared by combining the successful strategies for advancing epoxy chemistries and dispersing nanotubes using the continuous reactor

  1. Cure Kinetics of Benzoxazine/Cycloaliphatic Epoxy Resin by Differential Scanning Calorimetry

    NASA Astrophysics Data System (ADS)

    Gouni, Sreeja Reddy

    Understanding the curing kinetics of a thermoset resin has a significant importance in developing and optimizing curing cycles in various industrial manufacturing processes. This can assist in improving the quality of final product and minimizing the manufacturing-associated costs. One approach towards developing such an understanding is to formulate kinetic models that can be used to optimize curing time and temperature to reach a full cure state or to determine time to apply pressure in an autoclave process. Various phenomenological reaction models have been used in the literature to successfully predict the kinetic behavior of a thermoset system. The current research work was designed to investigate the cure kinetics of Bisphenol-A based Benzoxazine (BZ-a) and Cycloaliphatic epoxy resin (CER) system under isothermal and nonisothermal conditions by Differential Scanning Calorimetry (DSC). The cure characteristics of BZ-a/CER copolymer systems with 75/25 wt% and 50/50 wt% have been studied and compared to that of pure benzoxazine under nonisothermal conditions. The DSC thermograms exhibited by these BZ-a/CER copolymer systems showed a single exothermic peak, indicating that the reactions between benzoxazine-benzoxazine monomers and benzoxazine-cycloaliphatic epoxy resin were interactive and occurred simultaneously. The Kissinger method and isoconversional methods including Ozawa-Flynn-Wall and Freidman were employed to obtain the activation energy values and determine the nature of the reaction. The cure behavior and the kinetic parameters were determined by adopting a single step autocatalytic model based on Kamal and Sourour phenomenological reaction model. The model was found to suitably describe the cure kinetics of copolymer system prior to the diffusion-control reaction. Analyzing and understanding the thermoset resin system under isothermal conditions is also important since it is the most common practice in the industry. The BZ-a/CER copolymer system with

  2. Effects of Amine and Anhydride Curing Agents on the VARTM Matrix Processing Properties

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W.; Hubert, Pascal; Song, Xiaolan; Cano, Roberto J.; Loos, Alfred C.; Pipes, R. Byron

    2002-01-01

    To ensure successful application of composite structure for aerospace vehicles, it is necessary to develop material systems that meet a variety of requirements. The industry has recently developed a number of low-viscosity epoxy resins to meet the processing requirements associated with vacuum assisted resin transfer molding (VARTM) of aerospace components. The curing kinetics and viscosity of two of these resins, an amine-cured epoxy system, Applied Poleramic, Inc. VR-56-4 1, and an anhydride-cured epoxy system, A.T.A.R.D. Laboratories SI-ZG-5A, have been characterized for application in the VARTM process. Simulations were carried out using the process model, COMPRO, to examine heat transfer, curing kinetics and viscosity for different panel thicknesses and cure cycles. Results of these simulations indicate that the two resins have significantly different curing behaviors and flow characteristics.

  3. Quantitation of buried contamination by use of solvents. Part 1: Solvent degradation of amine cured epoxy resins

    NASA Technical Reports Server (NTRS)

    Rheineck, A. E.; Heskin, R. A.; Hill, L. W.

    1972-01-01

    The solubility and/or swelling of cured epoxy resins was studied using the solubility parameter method. Determination of solubility parameters were found in order to select solvents for solvent-assisted degradation of cured epoxy polymers used in spacecraft. A method for improving recovery of seeded spores is suggested for assay of buried contaminants. Three commercial epoxy resins were cured using four different alkyl amines. For each resin-amine combination, three levels of amine were used, corresponding to 1/3, 2/3, and all of the amine required to react with the oxirane groups of the resin. The solubility parameters of the 36 resulting model compounds were determined in poorly and moderately hydrogen-bonded solvents. No strongly hydrogen-bonded solvents caused dissolution or swelling. The tolerance of cured resins is discussed in terms of polymer structure.

  4. Effects of silica-coated carbon nanotubes on the curing behavior and properties of epoxy composites

    DOE PAGES

    Li, Ao; Li, Weizhen; Ling, Yang; ...

    2016-02-22

    Multi-walled carbon nanotubes (MWCNTs) were coated with silica by a sol–gel method to improve interfacial bonding and dispersion of nanotubes in the diglycidyl ether of bisphenol A (DGEBA) matrix. TEM and FE-SEM measurements showed that the silica shell was successfully coated on the surface of r-MWCNTs (as-received MWCNTs), and that the dispersion of MWCNT@SiO 2 in the epoxy matrix and interfacial adhesion between MWCNTs and epoxy were improved through the silica shell formation. The effects of silica-coated multi-walled carbon nanotube (MWCNT@SiO 2) addition on the curing behavior of epoxy resin, and on the physical and thermomechanical properties of epoxy composites,more » were studied. FT-IR measurements of different blends at different curing times indicated that the curing reaction was accelerated with the presence of MWCNTs and increased with the content of MWCNT@SiO 2. DSC results confirmed that the value of activation energy decreased with the introduction of MWCNTs in the order of MWCNT@SiO 2 < r-MWCNTs < epoxy. It was found that the thermal conductivity of epoxy composites were significantly enhanced by incorporation of MWCNT@SiO 2, relative to composites with r-MWCNTs, while the values of the glass transition temperature slightly increased, and the high electrical resistivity of these composites was retained overall.« less

  5. Effects of hydrothermal exposure on a low-temperature cured epoxy

    NASA Technical Reports Server (NTRS)

    Lauver, R. W.

    1978-01-01

    Thermal mechanical analysis was employed to monitor the penetration temperature of a low-temperature epoxy resin. Both neat resin and E-glass composite samples were examined. The effects of cure temperature variation and moisture content on the apparent glass transition temperature were determined.

  6. Evaluation of experimental epoxy monomers

    NASA Technical Reports Server (NTRS)

    Hodges, W. T.; St.clair, T. L.; Pratt, J. R.; Ficklin, R.

    1985-01-01

    Future generation aircraft need higher performance polymer matrices to fully achieve the weight savings possible with composite materials. New resins are being formulated in an effort to understand basic polymer behavior and to develop improved resins. Some polymer/curing agent combinations that could be useful are difficult to process. In the area of epoxies, a major problem is that some components have physical properties which make them difficult to utilize as matrix resins. A previous study showed that the use of ultrasonic energy can be advantageous in the mixing of curing agents into a standard epoxy resin, such as MY 720 (Ciba-Geigy designation). This work is expanded to include three novel epoxides.

  7. Bio-based epoxy/chitin nanofiber composites cured with amine-type hardeners containing chitosan.

    PubMed

    Shibata, Mitsuhiro; Enjoji, Motohiro; Sakazume, Katsumi; Ifuku, Shinsuke

    2016-06-25

    Sorbitol polyglycidyl ether (SPE) which is a bio-based water-soluble epoxy resin was cured with chitosan (CS) and/or a commercial water-soluble polyamidoamine- or polyetheramine-type epoxy hardener (PAA or PEA). Furthermore, biocomposites of the CS-cured SPE (CS-SPE) and CS/PAA- or CS/PEA-cured SPE (SPE-CA or SPE-CE) biocomposites with chitin nanofiber (CNF) were prepared by casting and compression molding methods, respectively. The curing reaction of epoxy and amino groups of the reactants was confirmed by the FT-IR spectral analysis. SPE-CS and SPE-CA were almost transparent films, while SPE-CE was opaque. Transparency of SPE-CS/CNF and SPE-CA/CNF became a little worse with increasing CNF content. The tanδ peak temperature of SPE-CS was higher than those of SPE-PAA and SPE-PEA. SPE-CA or SPE-CE exhibited two tanδ peak temperatures related to glass transitions of the CS-rich and PAA-rich or PEA-rich moieties. The tanδ peak temperatures related to the CS-rich and PAA-rich moieties increased with increasing CNF content. A higher order of tensile strengths and moduli of the cured resins was SPE-CS≫SPE-CA>SPE-CE. The tensile strength and modulus of each sample were much improved by the addition of 3wt% CNF, while further addition of CNF caused a lowering of the strength and modulus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Effects of hydrothermal exposure on a low-temperature cured epoxy

    NASA Technical Reports Server (NTRS)

    Lauver, R. W.

    1978-01-01

    Thermal mechanical analysis was employed to monitor the penetration temperature of a low-temperature epoxy resin (EPON 826/D230). Both neat resin and E-glass composite samples were examined. The effects of cure temperature variation and moisture content on the apparent glass transition temperature were determined.

  9. Studies on the structural changes during curing of epoxy and its blend with CTBN

    NASA Astrophysics Data System (ADS)

    Srivastava, Kavita; Rathore, Ashwani Kumar; Srivastava, Deepak

    2018-01-01

    Cashew nut shell liquid (CNSL), an agricultural renewable resource material, produces natural phenolic distillates such as cardanol. Cardanol condenses with formaldehyde at the ortho- and para-position of the phenolic ring under acidic or alkaline condition to yield a series of polymers of novolac- or resol-type phenolic resins. These phenolic resins may further be modified by epoxidation with epichlorohydrin to duplicate the performance of such phenolic-type novolacs (CFN). The structural changes during curing of blend samples of epoxy and carboxyl terminated poly (butadiene-co-acrylonitrile) (CTBN) were studies by Fourier-transform infrared (FTIR) spectrophotometer. The epoxy samples were synthesized by biomass material, cardanol. Blend sample was prepared by physical mixing of CTBN ranging between 0 and 20 weight percent CTBN liquid rubber into cardanol-based epoxidized novolac (CEN) resin. The FTIR spectrum of uncured blend sample clearly indicated that there appeared a band in the region of 3200-3500 cm- 1 which might be due to the presence of phenolic hydroxyl group and sbnd OH group of the opened epoxide. Pure epoxy resin showed peaks near 856 cm- 1 which might be due to oxirane functionality of the epoxidized novolac resin. Both epoxy and its blend sample was cured with polyamine. The cure temperature of CEN resin was found to be decreased by the incorporation of CTBN. The decomposition behavior was also studied by thermogravimetric analyzer (TGA). Two-step decomposition behavior was observed in both epoxy and its blend samples.

  10. Metal (2) 4,4',4",4'" phthalocyanine tetraamines as curing agents for epoxy resins

    NASA Technical Reports Server (NTRS)

    Achar, B. N.; Fohlen, G. M.; Parker, J. A. (Inventor)

    1985-01-01

    Metal, preferably divalent copper, cobalt or nickel, phthalocyanine tetraamines are used as curing agents for epoxides. The resulting copolymers have high thermal and chemical resistance and are homogeneous. They are useful as binders for laminates, e.g., graphite cloth laminate.

  11. Liquid crystalline epoxy networks with exchangeable disulfide bonds

    DOE PAGES

    Li, Yuzhan; Zhang, Yuehong; Rios, Orlando; ...

    2017-06-09

    In this study, a liquid crystalline epoxy network (LCEN) with exchangeable disulfide bonds is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic dicarboxylic acid curing agent containing a disulfide bond. The effect of disulfide bonds on curing behavior and liquid crystalline (LC) phase formation of the LCEN is investigated. The presence of the disulfide bonds results in an increase in the reaction rate, leading to a reduction in liquid crystallinity of the LCEN. In order to promote LC phase formation and stabilize the self-assembled LC domains, a similar aliphatic dicarboxylic acid without the disulfide bond is used asmore » a co-curing agent to reduce the amount of exchangeable disulfide bonds in the system. After optimizing the molar ratio of the two curing agents, the resulting LCEN exhibits improved reprocessability and recyclability because of the disulfide exchange reactions, while preserving LC properties, such as the reversible LC phase transition and macroscopic LC orientation, for shape memory applications.« less

  12. The effect of crack motion during epoxy crack injection and curing.

    DOT National Transportation Integrated Search

    2005-06-01

    One strategy to regain structural integrity of cracked reinforced concrete bridge deck girders is to inject the cracks with epoxy. Many bridge owners allow all traffic to use the bridge during injection and curing, while other bridge owners restrict ...

  13. Electron Beam Cured Epoxy Resin Composites for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Janke, Christopher J.; Dorsey, George F.; Havens, Stephen J.; Lopata, Vincent J.; Meador, Michael A.

    1997-01-01

    Electron beam curing of Polymer Matrix Composites (PMC's) is a nonthermal, nonautoclave curing process that has been demonstrated to be a cost effective and advantageous alternative to conventional thermal curing. Advantages of electron beam curing include: reduced manufacturing costs; significantly reduced curing times; improvements in part quality and performance; reduced environmental and health concerns; and improvement in material handling. In 1994 a Cooperative Research and Development Agreement (CRADA), sponsored by the Department of Energy Defense Programs and 10 industrial partners, was established to advance the electron beam curing of PMC technology. Over the last several years a significant amount of effort within the CRADA has been devoted to the development and optimization of resin systems and PMCs that match the performance of thermal cured composites. This highly successful materials development effort has resulted in a board family of high performance, electron beam curable cationic epoxy resin systems possessing a wide range of excellent processing and property profiles. Hundreds of resin systems, both toughened and untoughened, offering unlimited formulation and processing flexibility have been developed and evaluated in the CRADA program.

  14. Impact of a novel phosphorus-nitrogen flame retardant curing agent on the properties of epoxy resin

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoli; Liang, Bing

    2017-12-01

    A phosphorus-nitrogen flame retardant curing agent diethyl phosphonic p-Phenylenediamine diamide (DEPPPD) was synthesized. The chemical structure of the obtained compound was identified by Fourier transform infrared (FTIR), 1H nuclear magnetic resonance (1HNMR), and mass spectroscopies. A series of t hermosetting systems were prepared by conventional epoxy resins (E-44) and DEPPPD. The effects of DEPPPD on flame retardancy, thermal degradation behavior, mechanical properties and the morphologies of char residues of EP/DEPPPD thermosets were investigated. The results demonstrated that when the phosphorus content of 2.88 wt%, EP-3 successfully passed UL-94 V-0 flammability rating, the LOI value was as high as 31.1%, the impact strength and tensile strength of it was 6.50 KJ m-2 and 48.21 MPa, the adhesive strength could reach 14.61 MPa, respectively. The TGA results indicated that the introduction of DEPPPD promoted EP matrix decomposed at a lower temperature, the rate of the thermal decomposition also decreased compared with EP-0. The residual char ratio of 800 °C was increased whether in nitrogen or in the air. The morphological structures of char residue were more compact and homogeneous which could prevent the heat transmission and diffusion, limit the production of combustible gases and reduced the heat release rate.

  15. Thermal expansion of an epoxy-glass microsphere composite

    NASA Technical Reports Server (NTRS)

    Price, H. L.; Burks, H. D.

    1977-01-01

    The thermal expansion of a composite of epoxy (diglycidyl ether of bisphenol A) and solid glass microspheres was investigated. The microspheres had surfaces which were either untreated or treated with a silicone release agent, an epoxy coupling agent, or a general purpose silane coupling agent. Both room temperature (about 300 K) and elevated temperature (about 475 K) cures were used for the epoxy. Two microsphere size ranges were used, about 50 microns, which is applicable in filled moldings, and about 125 microns, which is applicable as bond line spacers. The thermal expansion of the composites was measured from 300 to 350 K or from 300 to 500 K, depending on the epoxy cure temperature. Measurements were made on composites containing up to .6 volume fraction microspheres. Two predictive models, which required only the values of thermal expansion of the polymer and glass and their specific gravities, were tested against the experimental data. A finite element analysis was made of the thermal strain of a composite cell containing a single microsphere surrounded by a finite-thickness interface.

  16. Studies on the structural changes during curing of epoxy and its blend with CTBN.

    PubMed

    Srivastava, Kavita; Rathore, Ashwani Kumar; Srivastava, Deepak

    2018-01-05

    Cashew nut shell liquid (CNSL), an agricultural renewable resource material, produces natural phenolic distillates such as cardanol. Cardanol condenses with formaldehyde at the ortho- and para-position of the phenolic ring under acidic or alkaline condition to yield a series of polymers of novolac- or resol-type phenolic resins. These phenolic resins may further be modified by epoxidation with epichlorohydrin to duplicate the performance of such phenolic-type novolacs (CFN). The structural changes during curing of blend samples of epoxy and carboxyl terminated poly (butadiene-co-acrylonitrile) (CTBN) were studies by Fourier-transform infrared (FTIR) spectrophotometer. The epoxy samples were synthesized by biomass material, cardanol. Blend sample was prepared by physical mixing of CTBN ranging between 0 and 20weightpercent CTBN liquid rubber into cardanol-based epoxidized novolac (CEN) resin. The FTIR spectrum of uncured blend sample clearly indicated that there appeared a band in the region of 3200-3500cm -1 which might be due to the presence of phenolic hydroxyl group and OH group of the opened epoxide. Pure epoxy resin showed peaks near 856cm -1 which might be due to oxirane functionality of the epoxidized novolac resin. Both epoxy and its blend sample was cured with polyamine. The cure temperature of CEN resin was found to be decreased by the incorporation of CTBN. The decomposition behavior was also studied by thermogravimetric analyzer (TGA). Two-step decomposition behavior was observed in both epoxy and its blend samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Thermosets of epoxy monomer from Tung oil fatty acids cured in two synergistic ways

    USDA-ARS?s Scientific Manuscript database

    A new epoxy monomer from tung oil fatty acids, glycidyl ester of eleostearic acid (GEEA), was synthesized and characterized by 1H-NMR and 13C-NMR spectroscopy. Differential scanning calorimetry analysis (DSC) and FT-IR were utilized to investigate the curing process of GEEA cured by both dienophiles...

  18. Surface engineering of nanoparticles with macromolecules for epoxy curing: Development of super-reactive nitrogen-rich nanosilica through surface chemistry manipulation

    NASA Astrophysics Data System (ADS)

    Jouyandeh, Maryam; Jazani, Omid Moini; Navarchian, Amir H.; Shabanian, Meisam; Vahabi, Henri; Saeb, Mohammad Reza

    2018-07-01

    Curing behavior of epoxy-based nanocomposites depends on dispersion state of nanofillers and their physical and chemical interactions with the curing moieties. In this work, a systematic approach was introduced for chemical functionalization of nanoparticles with macromolecules in order to enrich crosslinking potential of epoxy/amine systems, particularly at late stages of cure where the curing is diffusion-controlled. Super-reactive hyperbranched polyethylenimine (PEI)-attached nanosilica was materialized in this work to facilitate epoxy-amine curing. Starting from coupling [3-(2,3-epoxypropoxy) propyl] trimethoxysilane (EPPTMS) with hyperbranched PEI, a super-reactive macromolecule was obtained and subsequently grafted onto the nanosilica surface. Eventually, a thermally-stable highly-curable nanocomposite was attained by replacement of amine and imine groups of the PEI with imide and amide groups through the reaction with pyromellitic acid dianhydride. Fourier-transform infrared spectrophotometry, X-ray diffractometry, X-ray photoelectron spectroscopy and transmission electron microscopy approved successful grafting of polymer chains onto the nanosilica surface. Thermogravimetric analyses approved a relatively high grafting ratio of ca. 21%. Curing potential of the developed super-reactive nanoparticle was uncovered through nonisothermal differential scanning calorimetry signifying an enthalpy rise of ca. 120 J/g by addition of 2 wt.% to epoxy at 5 °C/min heating rate. Even at low concentration of 0.5 wt.%, the glass transition temperature of epoxy increased from 128 to 156 °C, demonstrating prolonged crosslinking.

  19. Thermoset epoxy polymers from renewable resources

    DOEpatents

    East, Anthony [Madison, NJ; Jaffe, Michael [Maplewood, NJ; Zhang, Yi [Harrison, NJ; Catalani, Luiz H [Carapicuiba, BR

    2009-11-17

    Novel thermoset epoxy polymers using the bisglycidyl ethers of anhydrosugars, such as isosorbide, isomannide, and isoidide, are disclosed. The bisglycidyl ethers are useful as substitutes for bisphenol A in the manufacture of thermoset epoxy ethers. The anhydrosugars are derived from renewable sources and the bisglycidyl ethers are not xenoestrogenic and the thermoset curing agents are likewise derived form renewable resources.

  20. Correlation between elastic and plastic deformations of partially cured epoxy networks

    NASA Astrophysics Data System (ADS)

    Müller, Michael; Böhm, Robert; Geller, Sirko; Kupfer, Robert; Jäger, Hubert; Gude, Maik

    2018-05-01

    The thermo-mechanical behavior of polymer matrix materials is strongly dependent on the curing reaction as well as temperature and time. To date, investigations of epoxy resins and their composites mainly focused on the elastic domain because plastic deformation of cross-linked polymer networks was considered as irrelevant or not feasible. This paper presents a novel approach which combines both elastic and plastic domain. Based on an analytical framework describing the storage modulus, analogous parameter combinations are defined in order to reduce complexity when variations in temperature, strain rate and degree of cure are encountered.

  1. Curing and toughening of epoxy resins with phosphorus containing monomers and polymers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Y.R.; Park, I.Y.; Yoon, T.H.

    1996-12-31

    Epoxy resins have been utilized in many areas, from house holds to airplanes, for the past several decades due to some exceptional properties such as low cost, good mechanical properties and excellent adhesive properties. However, low fracture toughness and flame resistance of epoxy resins have limited their applicability. Therefore, enhancing those properties have been of great interest to many researchers and scientists. As introduced by McGrath and co-workers in 1980s, the reactive thermoplastic polymers have proven to be an excellent toughener for improving not only fracture toughness but also adhesive properties without sacrificing thermo-mechanical properties and chemical resistance. Flame retardencymore » could be improved by adding flame retardent additives which are divided into two groups; additives and reactives. However, among the additives, halogen compounds are known to be toxic gas generator and ozone depleter. Moreover, additives could be potentially leached out of the material, while reactives are inferior to additives. Recently, a reactive type phosphine oxide containing flame retardants have been introduced by McGrath and co-workers and proven to be an excellent flame retardant. In this paper, phospine oxide containing monomers were prepared and utilized as curing agents for expoxy resins, and starting materials for the polymers.« less

  2. Method of making thermally removable epoxies

    DOEpatents

    Loy, Douglas A.; Wheeler, David R.; Russick, Edward M.; McElhanon, James R.; Saunders, Randall S.

    2002-01-01

    A method of making a thermally-removable epoxy by mixing a bis(maleimide) compound to a monomeric furan compound containing an oxirane group to form a di-epoxy mixture and then adding a curing agent at temperatures from approximately room temperature to less than approximately 90.degree. C. to form a thermally-removable epoxy. The thermally-removable epoxy can be easily removed within approximately an hour by heating to temperatures greater than approximately 90.degree. C. in a polar solvent. The epoxy material can be used in protecting electronic components that may require subsequent removal of the solid material for component repair, modification or quality control.

  3. Effect of CNT addition on cure kinetics of glass fiber/epoxy composite

    NASA Astrophysics Data System (ADS)

    Fulmali, A. O.; Kattaguri, R.; Mahato, K. K.; Prusty, R. K.; Ray, B. C.

    2018-03-01

    In present time, developments in reinforced polymer composites have acquired preferential attention for high performance and high precision applications like aerospace, marine and transportation. Fibre reinforced polymer (FRP) composites are being substituted because of their low density, higher strength, stiffness, impact resistance, and improved corrosion resistance. Further laminated composites exhibit superior in-plane mechanical properties that are mostly governed by the fibers. However, laminated FRP composites suffer from poor out of plane properties in some applications. These properties can further be improved by the addition of Nano fillers like carbon nanotube (CNT), graphene and so on. Curing cycle plays a very important role in drawing out the optimum property of glass fiber/epoxy (GE) composite. It is expected that the cure kinetics can further be altered by addition of CNT due to its higher aspect ratio. The main objective of this work is to study the effect of CNT addition on cure kinetics of GE composite as multi-segment adsorption of polymer takes place on the CNT surface. In this study effects of curing parameters on mechanical properties and glass transition temperature of CNT embedded glass fiber/epoxy composite (CNT-GE) has been evaluated. For this study control GE and CNT-GE (with 0.1 wt. %) laminates were fabricated using hand lay-up technique followed by hot compression. The curing parameters that were considered in the present investigation were temperature (80°C, 110°C, and 140°C) and time (0.5 hr, 3 hr and 6 hr). For different combination of above mentioned temperature and time, samples of GE and CNT-GE composites were post cured. Mechanical properties were determined by flexural testing using 3 point bending fixture on INSTRON-5967 and thermal properties i.e. glass transition temperature (Tg) determined by Differential Scanning Calorimeter (DSC) to evaluate the effects of curing parameters. For CNT-GE samples, No much variation

  4. Viscoelastic properties of graphene-based epoxy resins

    NASA Astrophysics Data System (ADS)

    Nobile, Maria Rossella; Fierro, Annalisa; Rosolia, Salvatore; Raimondo, Marialuigia; Lafdi, Khalid; Guadagno, Liberata

    2015-12-01

    In this paper the viscoelastic properties of an epoxy resin filled with graphene-based nanoparticles have been investigated in the liquid state, before curing, by means of a rotational rheometer equipped with a parallel plate geometry. Exfoliated graphite was prepared using traditional acid intercalation followed by a sudden treatment at high temperature (900°C). The percentage of exfoliated graphite was found to be 56%. The epoxy matrix was prepared by mixing a tetrafunctional precursor with a reactive diluent which produces a significant decrease in the viscosity of the epoxy precursor so that the dispersion step of nanofillers in the matrix can easily occur. The hardener agent, the 4,4-diaminodiphenyl sulfone (DDS), was added at a stoichiometric concentration with respect to all the epoxy rings. The inclusion of the partially exfoliated graphite (pEG) in the formulated epoxy mixture significantly modifies the rheological behaviour of the mixture itself. The epoxy mixture, indeed, shows a Newtonian behaviour while, at 3 wt % pEG content, the complex viscosity of the nanocomposite clearly shows a shear thinning behaviour with η* values much higher at the lower frequencies. The increase in complex viscosity with the increasing of the partially exfoliated graphite content was mostly caused by a dramatic increase in the storage modulus. All the graphene-based epoxy mixtures were cured by a two-stage curing cycles: a first isothermal stage was carried out at the lower temperature of 125°C for 1 hour while the second isothermal stage was performed at the higher temperature of 200°C for 3 hours. The mechanical properties of the cured nanocomposites show high values in the storage modulus and glass transition temperature.

  5. Synthesis of polyoxometalate-loaded epoxy composites

    DOEpatents

    Anderson, Benjamin J

    2014-10-07

    The synthesis of a polyoxometalate-loaded epoxy uses a one-step cure by applying an external stimulus to release the acid from the polyoxometalate and thereby catalyze the cure reaction of the epoxy resin. Such polyoxometalate-loaded epoxy composites afford the cured epoxy unique properties imparted by the intrinsic properties of the polyoxometalate. For example, polyoxometalate-loaded epoxy composites can be used as corrosion resistant epoxy coatings, for encapsulation of electronics with improved dielectric properties, and for structural applications with improved mechanical properties.

  6. Multivariate curve resolution using a combination of mid-infrared and near-infrared spectra for the analysis of isothermal epoxy curing reaction

    NASA Astrophysics Data System (ADS)

    Yamasaki, Hideki; Morita, Shigeaki

    2018-05-01

    Multivariate curve resolution (MCR) was applied to a hetero-spectrally combined dataset consisting of mid-infrared (MIR) and near-infrared (NIR) spectra collected during the isothermal curing reaction of an epoxy resin. An epoxy monomer, bisphenol A diglycidyl ether (BADGE), and a hardening agent, 4,4‧-diaminodiphenyl methane (DDM), were used for the reaction. The fundamental modes of the Nsbnd H and Osbnd H stretches were highly overlapped in the MIR region, while their first overtones could be independently identified in the NIR region. The concentration profiles obtained by MCR using the hetero-spectral combination showed good agreement with the results of calculations based on the Beer-Lambert law and the mass balance. The band assignments and absorption sites estimated by the analysis also showed good agreement with the results using two-dimensional (2D) hetero-correlation spectroscopy.

  7. Thermal-mechanical properties of a graphitic-nanofibers reinforced epoxy.

    PubMed

    Salehi-Khojin, Amin; Jana, Soumen; Zhong, Wei-Hong

    2007-03-01

    We previously developed a series of reactive graphitic nanofibers (r-GNFs) reinforced epoxy (nano-epoxy) as composite matrices, which have shown good wetting and adhesion properties with continuous fiber. In this work, the thermal-mechanical properties of the nano-epoxy system containing EponTM Resin 828 and Epi-cure Curing Agent W were characterized. Results from three-point bending tests showed that the flexural strength and flexural modulus of this system with 0.30 wt% of reactive nanofibers were increased by 16%, and 21% respectively, over pure epoxy. Fracture toughness increased by ca. 40% for specimens with 0.50 wt% of r-GNFs. By dynamic mechanical analysis (DMA) test, specimens with 0.30 wt% of r-GNFs showed a significant increase in storage modulus E' (by ca. 122%) and loss modulus E" (by ca. 111%) with respect to that of pure epoxy. Also thermo-dilatometry analysis (TDA) was used to measure dimensional change of specimens as a function of temperature, and then, coefficients of thermal expansion (CTE) before and after glass transition temperature (Tg) were obtained. Results implied that nano-epoxy materials had good dimensional stability and reduced CTE values when compared to those of pure epoxy.

  8. Structural and electronic properties of carbon nanotube-reinforced epoxy resins.

    PubMed

    Suggs, Kelvin; Wang, Xiao-Qian

    2010-03-01

    Nanocomposites of cured epoxy resin reinforced by single-walled carbon nanotubes exhibit a plethora of interesting behaviors at the molecular level. We have employed a combination of force-field-based molecular mechanics and first-principles calculations to study the corresponding binding and charge-transfer behavior. The simulation study of various nanotube species and curing agent configurations provides insight into the optimal structures in lieu of interfacial stability. An analysis of charge distributions of the epoxy functionalized semiconducting and metallic tubes reveals distinct level hybridizations. The implications of these results for understanding dispersion mechanism and future nano reinforced composite developments are discussed.

  9. Epoxy resin synthesis using low molecular weight lignin separated from various lignocellulosic materials.

    PubMed

    Asada, Chikako; Basnet, Sunita; Otsuka, Masaya; Sasaki, Chizuru; Nakamura, Yoshitoshi

    2015-03-01

    A low molecular weight lignin from various lignocellulosic materials was used for the synthesis of bio-based epoxy resins. The lignin extracted with methanol from steam-exploded samples (steaming time of 5 min at steam pressure of 3.5 MPa) from different biomasses (i.e., cedar, eucalyptus, and bamboo) were functionalized by the reaction with epichlorohydrin, catalyzed by a water-soluble phase transfer catalyst tetramethylammonium chloride, which was further reacted with 30 wt% aqueous NaOH for ring closure using methyl ethyl ketone as a solvent. The glycidylated products of the lignin with good yields were cured to epoxy polymer networks with bio-based curing agents i.e., lignin itself and a commercial curing agent TD2131. Relatively good thermal properties of the bio-based epoxy network was obtained and thermal decomposition temperature at 5% weight loss (Td5) of cedar-derived epoxy resin was higher than that derived from eucalyptus and bamboo. The bio-based resin satisfies the stability requirement of epoxy resin applicable for electric circuit boards. The methanol-insoluble residues were enzymatically hydrolyzed to produce glucose. This study indicated that the biomass-derived methanol-soluble lignin may be a promising candidate to be used as a substitute for petroleum-based epoxy resin derived from bisphenol A, while insoluble residues may be processed to give a bioethanol precursor i.e., glucose. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Epoxy Monomers Cured by High Cellulosic Nanocrystal Loading.

    PubMed

    Khelifa, Farid; Habibi, Youssef; Bonnaud, Leila; Dubois, Philippe

    2016-04-27

    The present study focuses on the use of cellulose nanocrystals (CNC) as the main constituent of a nanocomposite material and takes advantage of hydroxyl groups, characteristic of the CNC chemical structure, to thermally cross-link an epoxy resin. An original and simple approach is proposed, based on the collective sticking of CNC building blocks with the help of a DGEBA/TGPAP-based epoxy resin. Scientific findings suggest that hydroxyl groups act as a toxic-free cross-linking agent of the resin. The enhanced protection against water degradation as compared to neat CNC film and the improvement of mechanical properties of the synthesized films are attributed to a good compatibility between the CNC and the resin. Moreover, the preservation of CNC optical properties at high concentrations opens the way to applying these materials in photonic devices.

  11. A Novel Approach to Monitoring the Curing of Epoxy in Closed Tools by Use of Ultrasonic Spectroscopy

    PubMed Central

    2017-01-01

    The increasing use of composite materials has led to a greater demand for efficient curing cycles to reduce costs and speed up production cycles in manufacturing. One method to achieve this goal is in-line cure monitoring to determine the exact curing time. This article proposes a novel method through which to monitor the curing process inside closed tools by employing ultrasonic spectroscopy. A simple experiment is used to demonstrate the change in the ultrasonic spectrum during the cure cycle of an epoxy. The results clearly reveal a direct correlation between the amplitude and state of cure. The glass transition point is indicated by a global minimum of the reflected amplitude. PMID:29301222

  12. Curing kinetics of 4,4‧-Methylenebis epoxy and m-Xylylenediamine

    NASA Astrophysics Data System (ADS)

    Li, Z. R.; Li, X. D.; Guo, X. Y.

    2017-11-01

    In this paper, the curing kinetics of 4,4‧-Methylenebis epoxy resin(TGDDM) and m-Xylylenediamine(m-XDA) was investigated by non-isothermal differential scanning calorimetry(DSC) at various heating rates. Selected non-isothermal methods for analyzing curing kinetics were compared. The activation energy(E) and the correlation coefficient(R) were obtained by different isoconversional methods. The reaction order(n) was obtained by the activation energy in different isoconversional methods for the by Crane equation. The results show that the apparent activation energy are 65.23kJ/mol, 52.20 kJ/mol and 66.10 kJ/mol by using the method of Kissinger, Friedman and F-W-O, the reaction order are 0.911, 0.729 and 0.923 by using the method of Kissinger, Friedman and F-W-O.

  13. Multivariate curve resolution using a combination of mid-infrared and near-infrared spectra for the analysis of isothermal epoxy curing reaction.

    PubMed

    Yamasaki, Hideki; Morita, Shigeaki

    2018-05-15

    Multivariate curve resolution (MCR) was applied to a hetero-spectrally combined dataset consisting of mid-infrared (MIR) and near-infrared (NIR) spectra collected during the isothermal curing reaction of an epoxy resin. An epoxy monomer, bisphenol A diglycidyl ether (BADGE), and a hardening agent, 4,4'-diaminodiphenyl methane (DDM), were used for the reaction. The fundamental modes of the NH and OH stretches were highly overlapped in the MIR region, while their first overtones could be independently identified in the NIR region. The concentration profiles obtained by MCR using the hetero-spectral combination showed good agreement with the results of calculations based on the Beer-Lambert law and the mass balance. The band assignments and absorption sites estimated by the analysis also showed good agreement with the results using two-dimensional (2D) hetero-correlation spectroscopy. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Development of toughened epoxy polymers for high performance composite and ablative applications

    NASA Technical Reports Server (NTRS)

    Allen, V. R.

    1982-01-01

    A survey of current procedures for the assessment of state of cure in epoxy polymers and for the evaluation of polymer toughness as related to nature of the crosslinking agent was made to facilitate a cause-effect study of the chemical modification of epoxy polymers. Various conformations of sample morphology were examined to identify testing variables and to establish optimum conditions for the selected physical test methods. Dynamic viscoelasticity testing was examined in conjunction with chemical analyses to allow observation of the extent of the curing reaction with size of the crosslinking agent the primary variable. Specifically the aims of the project were twofold: (1) to consider the experimental variables associated with development of "extent of cure" analysis, and (2) to assess methodology of fracture energy determination and to prescribe a meaningful and reproducible procedure. The following is separated into two categories for ease of presentation.

  15. Epoxy matrix with triaromatic mesogenic unit in dielectric spectroscopy observation

    NASA Astrophysics Data System (ADS)

    Włodarska, Magdalena; Mossety-Leszczak, Beata; Bąk, Grzegorz W.; Kisiel, Maciej; Dłużniewski, Maciej; Okrasa, Lidia

    2018-04-01

    This paper describes the dielectric response of a selected liquid crystal epoxy monomer (plain and in curing systems) in a wide range of frequency and temperature. The dielectric spectroscopy, thanks to its sensitivity, is a very good tool for studying phase transitions, reaction progress, or material properties. This sensitivity is important in the case of liquid crystal epoxy resins, where properties of the final network depend on the choice of monomers, curing agents, curing conditions and post-curing treatment, or applying an external electric or magnetic field during the reaction. In most of the obtained cured products, the collected dielectric data show two relaxation processes. The α-process is related to a structural reorientation; it can usually be linked with the glass transition and the mechanical properties of the material. The β-process can be identified as a molecular motion process, probably associated with the carboxyl groups in the mesogen. A transient Maxwell-Wagner relaxation observed in one of the compositions after the initial curing is removed by post-curing treatment at elevated temperatures. Post-curing is therefore necessary for obtaining uniformly cured products in those cases. In the investigated systems, the choice of a curing agent can change the glass transition temperature by at least 70 °C. The obtained results are in a good agreement with an earlier study employing other techniques. Finally, we assess the influence of the direction of mesogen alignment on the dielectric properties of one selected system, where a global order was induced by applying an external magnetic field in the course of curing.

  16. Diamine curing agents for polyurethanes

    NASA Technical Reports Server (NTRS)

    Bell, V. L.; St. Clair, T. L.

    1975-01-01

    Three aromatic diamines have properties that make them promising candidates as curing agents for converting isocyanates to polyurethanes with higher adhesive strengths, higher softening temperatures, better toughness, and improved abrasion resistance.

  17. Imide modified epoxy matrix resins

    NASA Technical Reports Server (NTRS)

    Scola, D. A.

    1984-01-01

    The results of a program designed to develop tough imide modified epoxy resins cured by bisimide amine (BIA) hardeners are described. State-of-the-art epoxides MY720 and DER383 were used, and four bismide amines were evaluated. These were the BIA's derived from the 6F anhydride (4,4'-(hexafluoroisopropylidene) bis(phthalic anhydride) and the diamines 3,3'-diaminodiphynyl sulfone, 4,4'-oxygianiline, 4,4'-methylene dianiline, and 1,12-dodecane diamine. A key intermediate, designated 6F anhydride, is required for the synthesis of the bisimide amines. Reaction parameters to synthesize a precursor to the 6F anhydride (6FHC) in high yields were investigated. The catalyst trifluoromethane sulfonic acid was studied. Although small scale runs yielded the 6FHC in 50 percent yield, efforts to ranslate these results to a larger scale synthesis gave the 6FHC in only 9 percent yield. Results show that the concept of using bisimide amine as curing agents to improve the toughness properties of epoxies is valid.

  18. Silica-alumina trihydrate filled epoxy castings resistant to arced SF.sub.6

    DOEpatents

    Chenoweth, Terrence E.; Yeoman, Frederick A.

    1978-01-01

    A cured, insulating, casting composition, having a coefficient of linear thermal expansion of below about 38 .times. 10.sup.-6 in./in./.degree. C and being resistant to arced sulfur hexafluoride gas, in contact with a metal surface in a sulfur hexafluoride gas environment, is made from hydantoin epoxy resin, anhydride curing agent and a filler combination of fused silica and alumina trihydrate.

  19. The Effect of Curing Temperature on the Fracture Toughness of Fiberglass Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Ryan, Thomas J.

    The curing reaction in a thermoset polymer matrix composite is often accelerated by the addition of heat in an oven or autoclave. The heat added increases the rate of the polymerization reaction and cross-linking in the material. The cure cycle used (temperature, pressure and time) can therefore alter the final material properties. This research focuses on how the curing temperature (250, 275, 300 °F) affects the yield strength and the mode I interlaminar fracture toughness, GI, of a unidirectional S-2 glass epoxy composite. The test method that was used for the tension test was ASTM D3039 and the test method for the mode I interlaminar fracture toughness, the double cantilever beam (DCB) test, was ASTM D5528. The DCB specimens were fabricated with a non-adhesive insert at the midplane of the composite that serves as the initiatior of the delamination. Opening forces were then applied to the specimen, causing the crack propagation. The results show that increasing the cure temperature by 50 °F increased the tensile strength by 10% (86.54 - 94.73 ksi) and decreased the fracture toughness 20% (506.23 - 381.31 J/m 2). Thus, the curing temperature can cause a trade-off between these two properties, which means that the curing cycle will need to be altered based on the intended use and the required material properties.

  20. Ultrasonic characterization of changes in viscoelastic properties of epoxy during cure

    NASA Technical Reports Server (NTRS)

    Winfree, W. P.; Parker, F. R.

    1985-01-01

    A technique for using the longitudinal velocity (LV) of an ultrasonic wave to monitor the extent of cross linking (CL) during the cure of thermosetting resins is described. The method was developed by monitoring the rate of change in LV during the cure of a bisphenol-A epoxy resin with an amine adduct. The experiment included variations in the temperature and stoichiometry in order to express the rate of change in terms of the reaction kinetics. The pulse-echo method was used with a single transducer operating at 20 MHz. Numerical models were defined to account for the acoustic response of a single layer, the attenuation and the reflection coefficient. A linear relationship was observed between the inverse of the temperature and the log of the rate of change in the velocity, supporting the theory that the velocity could be used to monitor the extent of the cross-linking reaction. An activation energy of 11.9 kcal/mole was calculated for the mixture being investigated.

  1. Self-Repairing Mechanism of MUF/Epoxy Microcapsules for Epoxy Material

    NASA Astrophysics Data System (ADS)

    Ni, Zhuo; Lin, Yuhao; Zhou, Xiaobo

    2017-12-01

    In this paper, a post curing reaction for the microcapsule/epoxy composite material and the conditions of thermal treatment for self-healing process were studied by differential scanning calorimetry (DSC). The condition of thermal treatment for post curing (60°C, 2 hours) was employed to fully cure the epoxy composite. Damage mechanism for the epoxy material was demonstrated via data simulation and three-point bending experiment for the stress distribution reveals that micro-cracks are more likely to be generated on the central region in stress concentration area of two constrained boundaries and the numbers of micro-cracks are reduced from the central area to the two ends of the material. Self-repairing performances of MUF microcapsule/epoxy composite materials were characterized using both destructive bending tests and non-destructive DMA measurements. Self-healing efficiencies of the composites embedded 2% and 5% microcapsule content measured by DMA are 101% and 104% respectively which are close to those results of 104% and 113% correspondingly measured by bending tests. Crack formation and development, core material releasing for MUF microcapsules and physiochemical process of the self-repairing were investigated by using OM, fluorescent technique and infrared microscope. These provide detailed evidences and important information on self-healing mechanism of the microcapsule/epoxy self-repairing material.

  2. Study on epoxy resin modified by polyether ionic liquid

    NASA Astrophysics Data System (ADS)

    Jin, X. C.; Guo, L. Y.; Deng, L. L.; Wu, H.

    2017-06-01

    Chloride 1-carboxyl polyether-3-methyl imidazole ionic liquid (PIIL) was synthesized. Then blended with epoxy resin(EP) to prepare the composite materials of PIIL/EP, which cured with aniline curing agent. The structure and curing performance of PIIL/EP were determined by FT-IR and DSC. The effects of the content of PIIL on strength of EP were studied. The results show that the PIIL was the target product. The strength was improved significantly with increase of the PIIL content. The obvious rubber elasticity of PIIL/EP after cured was showed when the content of PIIL accounts for 40% and the impact strength was up to 15.95kJ/m2.

  3. Unanticipated Effects of Epoxy Impregnating Transformers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SANCHEZ,ROBERT O.; ARCHER,WENDEL E.

    2000-08-23

    Many Sandia components for military applications are designed for a 20-year life. In order to determine if magnetic components meet that requirement, the parts are subjected to selected destructive tests. This paper reviews the re-design of a power transformer and the tests required to prove-in the re-design. The re-design included replacing the Epon 828/Mica/methylenedianiline (curing agent Z) epoxy encapsulant with a recent Sandia National Laboratory (SNL) developed epoxy encapsulant. The new encapsulant reduces the Environmental Safety and Health (ES and H) hazards. Life testing of this re-designed transformer generated failures; an open secondary winding. An experimental program to determine themore » cause of the broken wires and an improved design to eliminate the problem was executed. This design weakness was corrected by reverting to the hazardous epoxy system.« less

  4. Epoxy hydantoins as matrix resins

    NASA Technical Reports Server (NTRS)

    Weiss, J.

    1983-01-01

    Tensile strength and fracture toughness of castings of the hydantoin resins cured with methylenedianiline are significantly higher than MY 720 control castings. Water absorption of an ethyl, amyl hydantoin formulation is 2.1 percent at equilibrium and Tg's are about 160 C, approximately 15 deg below the final cure temperature. Two series of urethane and ester-extended hydantoin epoxy resins were synthesized to determine the effect of crosslink density and functional groups on properties. Castings cured with methylenedianiline or with hexahydrophthalic anhydride were made from these compounds and evaluated. The glass transition temperatures, tensile strengths and moduli, and fracture toughness values were all much lower than that of the simple hydantoin epoxy resins. Using a methylene bishydantoin epoxy with a more rigid structure gave brittle, low-energy fractures, while a more flexible, ethoxy-extended hydantoin epoxy resin gave a very low Tg.

  5. Durability of self-healing woven glass fabric/epoxy composites

    NASA Astrophysics Data System (ADS)

    Yin, Tao; Rong, Min Zhi; Zhang, Ming Qiu; Zhao, Jian Qing

    2009-07-01

    In this work, the durability of the healing capability of self-healing woven glass fabric/epoxy laminates was investigated. The composites contained a two-component healing system with epoxy-loaded urea-formaldehyde microcapsules as the polymerizable binder and CuBr2(2-methylimidazole)4 (CuBr2(2-MeIm)4) as the latent hardener. It was found that the healing efficiency of the laminates firstly decreased with storage time at room temperature, and then leveled off for over two months. By means of a systematic investigation and particularly verification tests with dynamic mechanical analysis (DMA), diffusion of epoxy monomer from the microcapsules due to volumetric contraction of the composites during manufacturing was found to be the probable cause. The diffusing sites on the microcapsules were eventually blocked because the penetrated resin was gradually cured by the remnant amine curing agent in the composites' matrix, and eventually the healing ability was no longer reduced after a longer storage time. The results should help to develop approaches for improving the service stability of the laminates.

  6. Lightweight Forms for Epoxy/Aramid Ducts

    NASA Technical Reports Server (NTRS)

    Mix, E. W.; Anderson, A. N.; Bedford, Donald L., Sr.

    1986-01-01

    Aluminum mandrels easy to remove. Lightweight aluminum mandrel for shaping epoxy/aramid ducts simplifies and speeds production. In new process, glass-reinforced epoxy/aramid cloth wrapped on aluminum mandrel. Stainless-steel flanges and other hardware fitted on duct and held by simple tooling. Entire assembly placed in oven to cure epoxy. After curing, assembly placed in alkaline bath dissolves aluminum mandrel in about 4 hours. Epoxy/aramid shell ready for use as duct. Aluminum mandrel used to make ducts of various inside diameters up to 6 in. Standard aluminum forms used. Conventional tube-bending equipment produces requisite curves in mandrels.

  7. Positioning and aligning CNTs by external magnetic field to assist localised epoxy cure

    NASA Astrophysics Data System (ADS)

    Ariu, G.; Hamerton, I.; Ivanov, D.

    2016-01-01

    This work focuses on the generation of conductive networks through the localised alignment of nano fillers, such as multi-walled carbon nanotubes (MWCNTs). The feasibility of alignment and positioning of functionalised MWCNTs by external DC magnetic fields was investigated. The aim of this manipulation is to enhance resin curing through AC induction heating due to hysteresis losses from the nanotubes. Experimental analyses focused on in-depth assessment of the nanotube functionalisation, processing and characterisation of magnetic, rheological and cure kinetics properties of the MWCNT solution. The study has shown that an external magnetic field has great potential for positioning and alignment of CNTs. The study demonstrated potential for creating well-ordered architectures with an unprecedented level of control of network geometry. Magnetic characterisation indicated cobalt-plated nanotubes to be the most suitable candidate for magnetic alignment due to their high magnetic sensitivity. Epoxy/metal-plated CNT nanocomposite systems were validated by thermal analysis as induction heating mediums. The curing process could therefore be optimised by the use of dielectric resins. This study offers a first step towards the proof of concept of this technique as a novel repair technology.

  8. Treatment of high-latency microcapsules containing an aluminium complex with an epoxy-functionalised trialkoxysilane.

    PubMed

    Kamiya, Kazunobu; Suzuki, Noboru

    2016-12-01

    Some aluminium complexes are excellent catalysts of cationic polymerisation and are used for low-temperature and fast-curing adhesive, used in electronic part mounting. Microencapsulation is a suitable technique for getting high latency of the catalysts and long shelf life of the adhesives. For the higher latency in a cycloaliphatic epoxy compound, the microcapsule surface which retained small amount of aluminium complex was coated with epoxy polymer and the effect was examined. From the X-ray photoelectron spectroscopic results, the surface was recognised to be sufficiently coated and the differential scanning calorimetric analyses showed that the coating did not significantly affect the low-temperature and fast-curing properties of adhesive. After storing the mixture of cycloaliphatic epoxy compound, coated microcapsules, triphenylsilanol and silane coupling agent for 48 h at room temperature, the increase in viscosity was only 0.01 Pa s, resulting in the excellent shelf life.

  9. Halohydrination of epoxy resins using sodium halides as cationizing agents in MALDI-MS and DIOS-MS.

    PubMed

    Watanabe, Takehiro; Kawasaki, Hideya; Kimoto, Takashi; Arakawa, Ryuichi

    2008-12-01

    Halohydrination of epoxy resins using sodium halides as cationizing agents in matrix-assisted laser desorption/ionization (MALDI) and desorption ionization on porous silicon mass spectrometry (DIOS-MS) were investigated. Different mass spectra were observed when NaClO(4) and NaI were used as the cationizing agents at the highest concentration of 10.0 mM, which is much higher than that normally used in MALDI-MS. MALDI mass spectra of epoxy resins using NaI revealed iodohydrination to occur as epoxy functions of the polymers. The halohydrination also occurred using NaBr, but not NaCl, due to the differences in their nucleophilicities. On the basis of the results of experiments using deuterated CD(3)OD as the solvent, the hydrogen atom source was probably ambient water or residual solvent, rather than being derived from matrices. Halohydrination also occurred with DIOS-MS in which no organic matrix was used; in addition, reduction of epoxy functions was observed with DIOS. NaI is a useful cationizing agent for changing the chemical form of epoxy resins due to iodohydrination and, thus, for identifying the presence of epoxy functions. Copyright (c) 2008 John Wiley & Sons, Ltd.

  10. Kinetic studies of chemical shrinkage and residual stress formation in thermoset epoxy adhesives under confined curing conditions

    NASA Astrophysics Data System (ADS)

    Schumann, M.; Geiß, P. L.

    2015-05-01

    Faultless processing of thermoset polymers in demanding applications requires a profound mastering of the curing kinetics considering both the physico-chemical changes in the transition from the liquid to the solid state and the consolidation of the polymers network in the diffusion controlled curing regime past the gel point. Especially in adhesive joints shrinkage stress occurring at an early state of the curing process under confined conditions is likely to cause defects due to local debonding and thus reduce their strength and durability1. Rheometry is considered the method of choice to investigate the change of elastic and viscous properties in the progress of curing. Drawbacks however relate to experimental challenges in accessing the full range of kinetic parameters of thermoset resins with low initial viscosity from the very beginning of the curing reaction to the post-cure consolidation of the polymer due to the formation of secondary chemical bonds. Therefore the scope of this study was to interrelate rheological data with results from in-situ measurements of the shrinkage stress formation in adhesive joints and with the change of refractive index in the progress of curing. This combination of different methods has shown to be valuable in gaining advanced insight into the kinetics of the curing reaction. The experimental results are based on a multi component thermoset epoxy-amine adhesive.

  11. Molecular Mobility in Hyperbranched Polymers and Their Interaction with an Epoxy Matrix

    PubMed Central

    Román, Frida; Colomer, Pere; Calventus, Yolanda; Hutchinson, John M.

    2016-01-01

    The molecular mobility related to the glass transition and secondary relaxations in a hyperbranched polyethyleneimine, HBPEI, and its relaxation behaviour when incorporated into an epoxy resin matrix are investigated by dielectric relaxation spectroscopy (DRS) and dynamic mechanical analysis (DMA). Three systems are analysed: HBPEI, epoxy and an epoxy/HBPEI mixture, denoted ELP. The DRS behaviour is monitored in the ELP system in three stages: prior to curing, during curing, and in the fully cured system. In the stage prior to curing, DRS measurements show three dipolar relaxations: γ, β and α, for all systems (HBPEI, epoxy and ELP). The α-relaxation for the ELP system deviates significantly from that for HBPEI, but superposes on that for the epoxy resin. The fully cured thermoset displays both β- and α-relaxations. In DMA measurements, both α- and β-relaxations are observed in all systems and in both the uncured and fully cured systems, similar to the behaviour identified by DRS. PMID:28773319

  12. Large boron--epoxy filament-wound pressure vessels

    NASA Technical Reports Server (NTRS)

    Jensen, W. M.; Bailey, R. L.; Knoell, A. C.

    1973-01-01

    Advanced composite material used to fabricate pressure vessel is prepeg (partially cured) consisting of continuous, parallel boron filaments in epoxy resin matrix arranged to form tape. To fabricate chamber, tape is wound on form which must be removable after composite has been cured. Configuration of boron--epoxy composite pressure vessel was determined by computer program.

  13. Effect of Liquid-Crystalline Epoxy Backbone Structure on Thermal Conductivity of Epoxy-Alumina Composites

    NASA Astrophysics Data System (ADS)

    Giang, Thanhkieu; Kim, Jinhwan

    2017-01-01

    In a series of papers published recently, we clearly demonstrated that the most important factor governing the thermal conductivity of epoxy-Al2O3 composites is the backbone structure of the epoxy. In this study, three more epoxies based on diglycidyl ester-terminated liquid-crystalline epoxy (LCE) have been synthesized to draw conclusions regarding the effect of the epoxy backbone structure on the thermal conductivity of epoxy-alumina composites. The synthesized structures were characterized by proton nuclear magnetic resonance (1H-NMR) and Fourier-transform infrared (FT-IR) spectroscopy. Differential scanning calorimetry, thermogravimetric analysis, and optical microscopy were also employed to examine the thermal and optical properties of the synthesized LCEs and the cured composites. All three LCE resins exhibited typical liquid-crystalline behaviors: clear solid crystalline state below the melting temperature ( T m), sharp crystalline melting at T m, and transition to nematic phase above T m with consequent isotropic phase above the isotropic temperature ( T i). The LCE resins displayed distinct nematic liquid-crystalline phase over a wide temperature range and retained liquid-crystalline phase after curing, with high thermal conductivity of the resulting composite. The thermal conductivity values ranged from 3.09 W/m-K to 3.89 W/m-K for LCE-Al2O3 composites with 50 vol.% filler loading. The steric effect played a governing role in the difference. The neat epoxy resin thermal conductivity was obtained as 0.35 W/m-K to 0.49 W/m-K based on analysis using the Agari-Uno model. The results clearly support the objective of this study in that the thermal conductivity of the LCE-containing networks strongly depended on the epoxy backbone structure and the degree of ordering in the cured network.

  14. Fabrication of tough epoxy with shape memory effects by UV-assisted direct-ink write printing.

    PubMed

    Chen, Kaijuan; Kuang, Xiao; Li, Vincent; Kang, Guozheng; Qi, H Jerry

    2018-03-07

    3D printing of epoxy-based shape memory polymers with high mechanical strength, excellent thermal stability and chemical resistance is highly desirable for practical applications. However, thermally cured epoxy in general is difficult to print directly. There have been limited numbers of successes in printing epoxy but they suffer from relatively poor mechanical properties. Here, we present an ultraviolet (UV)-assisted 3D printing of thermally cured epoxy composites with high tensile toughness via a two-stage curing approach. The ink containing UV curable resin and epoxy oligomer is used for UV-assisted direct-ink write (DIW)-based 3D printing followed by thermal curing of the part containing the epoxy oligomer. The UV curable resin forms a network by photo polymerization after the 1st stage of UV curing, which can maintain the printed architecture at an elevated temperature. The 2nd stage thermal curing of the epoxy oligomer yields an interpenetrating polymer network (IPN) composite with highly enhanced mechanical properties. It is found that the printed IPN epoxy composites enabled by the two-stage curing show isotropic mechanical properties and high tensile toughness. We demonstrated that the 3D-printed high-toughness epoxy composites show good shape memory properties. This UV-assisted DIW 3D printing via a two-stage curing method can broaden the application of 3D printing to fabricate thermoset materials with enhanced tensile toughness and tunable properties for high-performance and functional applications.

  15. New structure of diamine curing agent for epoxy resins with self-restoration ability: Synthesis and spectroscopy characterization

    NASA Astrophysics Data System (ADS)

    Raimondo, Marialuigia; Guadagno, Liberata; Naddeo, Carlo; Longo, Pasquale; Mariconda, Annaluisa; Agovino, Anna

    2017-02-01

    The development of smart materials in aeronautical structures consisting of compounds based on epoxy resins having self-repair capability has been hampered by some criticalities. One of the main critical points is related to the impossibility to use primary amines (e.g.: 4,4‧-diaminodiphenyl sulfone, DDS) as hardeners, because they can poison the catalyst responsible for the healing mechanisms. In this paper, the synthesis, characterization and some tests of applicability of a new hardener, the tetramethylated diaminodiphenyl sulfone (tm-DDS), are shown. The tm-DDS is able to rapidly react with epoxy resin, giving a composite material having some characteristics significantly better than composites hardened with different tertiary amines. The new hardener is able to increase the glass transition temperature (Tg) of about 90 °C with respect to the more common hardener, ancamine K54, already used in self-healing epoxy formulations.

  16. Multi-step cure kinetic model of ultra-thin glass fiber epoxy prepreg exhibiting both autocatalytic and diffusion-controlled regimes under isothermal and dynamic-heating conditions

    NASA Astrophysics Data System (ADS)

    Kim, Ye Chan; Min, Hyunsung; Hong, Sungyong; Wang, Mei; Sun, Hanna; Park, In-Kyung; Choi, Hyouk Ryeol; Koo, Ja Choon; Moon, Hyungpil; Kim, Kwang J.; Suhr, Jonghwan; Nam, Jae-Do

    2017-08-01

    As packaging technologies are demanded that reduce the assembly area of substrate, thin composite laminate substrates require the utmost high performance in such material properties as the coefficient of thermal expansion (CTE), and stiffness. Accordingly, thermosetting resin systems, which consist of multiple fillers, monomers and/or catalysts in thermoset-based glass fiber prepregs, are extremely complicated and closely associated with rheological properties, which depend on the temperature cycles for cure. For the process control of these complex systems, it is usually required to obtain a reliable kinetic model that could be used for the complex thermal cycles, which usually includes both the isothermal and dynamic-heating segments. In this study, an ultra-thin prepreg with highly loaded silica beads and glass fibers in the epoxy/amine resin system was investigated as a model system by isothermal/dynamic heating experiments. The maximum degree of cure was obtained as a function of temperature. The curing kinetics of the model prepreg system exhibited a multi-step reaction and a limited conversion as a function of isothermal curing temperatures, which are often observed in epoxy cure system because of the rate-determining diffusion of polymer chain growth. The modified kinetic equation accurately described the isothermal behavior and the beginning of the dynamic-heating behavior by integrating the obtained maximum degree of cure into the kinetic model development.

  17. Mechanical Reinforcement of Epoxy Composites with Carbon Fibers and HDPE

    NASA Astrophysics Data System (ADS)

    He, R.; Chang, Q.; Huang, X.; Li, J.

    2018-01-01

    Silanized carbon fibers (CFs) and a high-density polyethylene with amino terminal groups (HDPE) were introduced into epoxy resins to fabricate high-performance composites. A. mechanical characterization of the composites was performed to investigate the effect of CFs in cured epoxy/HDPE systems. The composites revealed a noticeable improvement in the tensile strength, elongation at break, flexural strength, and impact strength in comparison with those of neat epoxy and cured epoxy/HDPE systems. SEM micrographs showed that the toughening effect could be explained by yield deformations, phase separation, and microcracking.

  18. Siloxane Modifiers for Epoxy Resins.

    DTIC Science & Technology

    1983-12-01

    similarly prepared ATBN- and CTBN -modified epoxies. Wear rate was quite dramatically reduced with some of the modifiers. Wear results are discussed in...similarly prepared ATBN- and CTBN -modified epoxies. Wear rate was quite dramatically reduced with some of the modifiers. Wear results are discussed...acrylonitrile copolymers having both carboxyl ( CTBN ) and amine (ATBN) end groups have been widely used as epoxy modifiers (4-11). During the curing process, the

  19. Microleakage of light-cured resin and resin-modified glass-ionomer dentin bonding agents applied with co-cure vs pre-cure technique.

    PubMed

    Tulunoglu, O; Uçtaşh, M; Alaçam, A; Omürlü, H

    2000-01-01

    This in vitro study evaluated the effect of dentin bonding agents in reducing microleakage after three months in Class V restorations restored with Z100 resin composite. Materials tested were three types of resin-based dentin bonding agents: a multi-step (Scotchbond Multi-Purpose); a one-step (Scotchbond One-Step); a self-etching, self-priming (Clearfil Liner Bond) and a resin-modified glass ionomer (GC Fuji Bond LC). Class V cavity preparations with occlusal margins in enamel and gingival margins in cementum were prepared both on labial and lingual surfaces of extracted premolar teeth. Restorations (two per tooth) were distributed randomly into nine test groups (n = 10) consisting of the various DBAs applied with co-cure and pre-cure techniques, and no dentin bonding as a negative control group. Samples were stored in saline for three months, thermocycled, stained with silver nitrate, then sectioned through the middle of the preparation to facilitate the removal of the composite resin restoration. For groups treated with the pre-cure technique, the differences between the enamel leakage values of SBMP-control, CFLB-control and SB1S-control subgroups were significant (p < 0.05). For enamel leakage values of groups treated with the co-cure technique, the differences between the SBMP-control, SB1S-control, CFLB-control and Fuji LC-control subgroups were significant (p < 0.05). For cementum leakage values of groups treated with pre-cure technique, the difference between the CFLB-control and the Fuji, SBMP and SB1S groups was significant (p < 0.05). No significant differences could be detected between the cementum leakage values of groups treated with the co-cure technique (p > 0.05). The differences between the values obtained with application of CFLB with the pre-cure and co-cure techniques at the cementum margins were found to be statistically significant (p = 0.02). No statistically significant differences could be detected between the pre-cure and co-cure values

  20. Facile fabrication of superhydrophobic films with fractal structures using epoxy resin microspheres

    NASA Astrophysics Data System (ADS)

    Quan, Yun-Yun; Zhang, Li-Zhi

    2014-02-01

    A simple method has been developed to fabricate superhydrophobic surfaces with fractal structures with epoxy resin microspheres (ERMs). The ERMs is produced by phase separation in an epoxy-amine curing system with a silica sol (SS) dispersant. The transparent epoxy solution becomes cloudy and turns into epoxy suspension (ES) in this process. The fractal structure (two tier structure) generated by synthetic epoxy resin microspheres (ERMs) and deposited nanoincrutations on the surfaces of these ERMs, which have been observed by scanning electron microscope (SEM). The curing time of ES is an important condition to obtain films with good comprehensive performances. Superhydrophobic films can be prepared by adding extra SS into ES with a curing time longer than 5 h. The optimal curing time is 10 h to fabricate a film with good mechanical stability and high superhydrophobicity. In addition, a surface with anti-wetting property of impacting microdroplets can be fabricated by prolonging the curing time of ES to 24 h. The gradually decreased hydrophilic groups resulted from a longer curing time enable the surface to have smaller surface adhesions to water droplets, which is the main reason to keep its superhydrophobicity under impacting conditions. The coated surface is highly hydrophobic and the impacting water droplets are bounced off from the surface.

  1. Effect of toughened epoxy resin on partial discharge at solid-solid interface

    NASA Astrophysics Data System (ADS)

    Li, Manping; Wu, Kai; Zhang, Zhao; Cheng, Yonghong

    2017-02-01

    A series of solid-solid interfaces, consisting of ceramic-epoxy resin interface samples with a tip-plate electrode, were investigated by performing partial discharge tests and real-time electrical tree observations. A toughening agent was added to the epoxy resin at different ratios for comparison. The impact strength, differential scanning calorimetry (DSC) and dielectric properties of the cured compositions and ceramic were tested. The electric field strength at the tip was calculated based on Maxwell’s theory. The test results show that the addition of a toughener can improve the impact strength of epoxy resin but it decreases the partial discharge inception voltage (PDIV) of the interface sample. At the same time, toughening leads to complex branches of the electrical tree. The simulation result suggests that this reduction of the PDIV cannot be explained by a change of permittivity due to the addition of a toughening agent. The microstructural change caused by toughening was considered to be the key factor for lower PDIV and complex electrical tree branches. Supported by China Academy of Engineering Physics (Project 2014B05005).

  2. Rubber-like Quasi-thermosetting Polyetheramine-cured Epoxy Asphalt Composites Capable of Being Opened to Traffic Immediately

    NASA Astrophysics Data System (ADS)

    Kang, Yang; Wu, Qiang; Jin, Rui; Yu, Pengfei; Cheng, Jixiang

    2016-01-01

    This paper reports the facile preparation, mechanical performance and linear viscoelasticity of polyetheramine-cured rubber-like epoxy asphalt composites (EACs) with different asphalt contents. Compared with previous EACs prepared via complex chemical reactions and time-consuming high-temperature curing, the EACs reported here were obtained by using a compatible, bi-functional polyetheramine and a simple physical co-blend process, which make the EACs feasibly scalable for production at a lower cost. The EACs were cured for 1 h at 160 °C and 3 d at 60 °C therefore, these composites can be opened to traffic immediately. The EACs have a much greater temperature stability than common thermoplastic polymer-modified asphalt composites from -30 °C to 120 °C, but their complex shear moduli at higher temperatures slightly decrease instead of remaining constant when temperatures are greater than 80 °C, especially for the higher asphalt content composites; that is, these composites are quasi-thermosetting. Wicket plots illustrate that the EACs reported here are thermorheological simple materials, and the master curves are constructed and well-fitted by generalized logistic sigmoidal model functions. This research provides a facile, low-cost method for the preparation of polyetheramine-cured EACs that can be opened to traffic immediately, and the concept of quasi-thermosetting may facilitate the development of cheaper EACs for advanced applications.

  3. Rubber-like Quasi-thermosetting Polyetheramine-cured Epoxy Asphalt Composites Capable of Being Opened to Traffic Immediately.

    PubMed

    Kang, Yang; Wu, Qiang; Jin, Rui; Yu, Pengfei; Cheng, Jixiang

    2016-01-06

    This paper reports the facile preparation, mechanical performance and linear viscoelasticity of polyetheramine-cured rubber-like epoxy asphalt composites (EACs) with different asphalt contents. Compared with previous EACs prepared via complex chemical reactions and time-consuming high-temperature curing, the EACs reported here were obtained by using a compatible, bi-functional polyetheramine and a simple physical co-blend process, which make the EACs feasibly scalable for production at a lower cost. The EACs were cured for 1 h at 160 °C and 3 d at 60 °C; therefore, these composites can be opened to traffic immediately. The EACs have a much greater temperature stability than common thermoplastic polymer-modified asphalt composites from -30 °C to 120 °C, but their complex shear moduli at higher temperatures slightly decrease instead of remaining constant when temperatures are greater than 80 °C, especially for the higher asphalt content composites; that is, these composites are quasi-thermosetting. Wicket plots illustrate that the EACs reported here are thermorheological simple materials, and the master curves are constructed and well-fitted by generalized logistic sigmoidal model functions. This research provides a facile, low-cost method for the preparation of polyetheramine-cured EACs that can be opened to traffic immediately, and the concept of quasi-thermosetting may facilitate the development of cheaper EACs for advanced applications.

  4. Rubber-like Quasi-thermosetting Polyetheramine-cured Epoxy Asphalt Composites Capable of Being Opened to Traffic Immediately

    PubMed Central

    Kang, Yang; Wu, Qiang; Jin, Rui; Yu, Pengfei; Cheng, Jixiang

    2016-01-01

    This paper reports the facile preparation, mechanical performance and linear viscoelasticity of polyetheramine-cured rubber-like epoxy asphalt composites (EACs) with different asphalt contents. Compared with previous EACs prepared via complex chemical reactions and time-consuming high-temperature curing, the EACs reported here were obtained by using a compatible, bi-functional polyetheramine and a simple physical co-blend process, which make the EACs feasibly scalable for production at a lower cost. The EACs were cured for 1 h at 160 °C and 3 d at 60 °C; therefore, these composites can be opened to traffic immediately. The EACs have a much greater temperature stability than common thermoplastic polymer-modified asphalt composites from −30 °C to 120 °C, but their complex shear moduli at higher temperatures slightly decrease instead of remaining constant when temperatures are greater than 80 °C, especially for the higher asphalt content composites; that is, these composites are quasi-thermosetting. Wicket plots illustrate that the EACs reported here are thermorheological simple materials, and the master curves are constructed and well-fitted by generalized logistic sigmoidal model functions. This research provides a facile, low-cost method for the preparation of polyetheramine-cured EACs that can be opened to traffic immediately, and the concept of quasi-thermosetting may facilitate the development of cheaper EACs for advanced applications. PMID:26733315

  5. ABA and ABC type thermoplastic elastomer toughening of epoxy matrices and its effect on carbon fiber reinforced composites

    NASA Astrophysics Data System (ADS)

    Pitchiaya, Gomatheeshwar

    Epoxy-matrices have high modulus, strength, excellent creep resistance, but lacks ductility. One approach to improve the mechanical toughness is the addition of thermoplastic elastomers (TPEs). The TPEs investigated here are triblock copolymers of styrene-butadiene-methyl methacrylate (SBM) and methylmethacrylate-butylacrylate-methylmethacrylate (MAM) of the ABC and ABA type, respectively. The effect of concentration (1-12.5 wt %) of these TPEs on a diglycidyl ether of bisphenol-A (DGEBA) epoxy cured with metaphenylenediamine (mPDA), has been investigated. The TPE-DGEBA epoxies were characterized by TGA, DMA, SEM and impact. The flexural modulus, flexural strength and thermal resistance remained unaffected up to 5 wt% loading of TPEs, and exhibited less than 10% decrease at higher weight percent. T g was unaffected for all concentrations. Fracture toughness was improved 250% and up to 375% (when non- stoichiometric amount of curing agent was used) with TPE addition to epoxy/mPDA matrix. A SBM(1phr)EPON system was chosen to be the matrix of choice for a fiber reinforced composite system with a 4wt% aromatic epoxy sizing on a AS4 (UV-treated) carbon fiber. The 0° and 90° flexural modulus and strength of a SBM modified system was compared with the neat and their fracture surfaces were analyzed. A 89% increase in flexural strength was observed in a 90° flexural test for the modified system when compared with the neat. Novel sizing agents were also developed to enhance interfacial shear strength (IFSS) and the fiber-matrix adhesion and their birefringence pattern were analyzed.

  6. High Strain Rate Mechanical Properties of Epoxy and Epoxy-Based Particulate Composites

    DTIC Science & Technology

    2007-08-01

    and titanium alloy (Ti- 6Al - 4V ) bar materials available. For all bar systems, the properties of the sample are determined by measuring the...polished, carbon-coated specimens provided adequate contrast between the aluminum particles, the epoxy matrix and any porosity present after curing...difference between the two measures of particle size can be explained by the higher levels of porosity observed in the Epoxy-65H2 specimen, which

  7. Latent Hardeners for the Assembly of Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Palmieri, Frank; Wohl, Christopher J.; Connell, John W.; Mercado, Zoar; Galloway, Jordan

    2016-01-01

    Large-scale composite structures are commonly joined by secondary bonding of molded-and-cured thermoset components. This approach may result in unpredictable joint strengths. In contrast, assemblies made by co-curing, although limited in size by the mold, result in stable structures, and are certifiable for commercial aviation because of structural continuity through the joints. Multifunctional epoxy resins were prepared that should produce fully-cured subcomponents with uncured joining surfaces, enabling them to be assembled by co-curing in a subsequent out-of-autoclave process. Aromatic diamines were protected by condensation with a ketone or aldehyde to form imines. Properties of the amine-cured epoxy were compared with those of commercially available thermosetting epoxy resins and rheology and thermal analysis were used to demonstrate the efficacy of imine protection. Optimum conditions to reverse the protecting chemistry in the solid state using moisture and acid catalysis were determined. Alternative chemistries were also investigated. For example, chain reaction depolymerization and photoinitiated catalysts would be expected to minimize liberation of volatile organic content upon deprotection and avoid residual reactive species that could damage the resin. Results from the analysis of protected and deprotected resins will be presented.

  8. Role of Curing Agents in the Preservation of Shelf-stable Canned Meat Products1

    PubMed Central

    Duncan, Charles L.; Foster, E. M.

    1968-01-01

    Experiments were conducted to gain a better understanding of the mechanism by which sodium chloride, sodium nitrate, and sodium nitrite supplement the action of heat in preserving canned cured meat products. Heated spores of putrefactive anaerobe 3679h were less tolerant of all three curing agents in the outgrowth medium than were unheated spores. When the curing agents were added to the heating menstruum, but not to the outgrowth medium, sodium chloride and sodium nitrate tended to protect the spores against heat injury, but sodium nitrite did not. When the spores were both heated and cultured in the presence of the curing agents: (i) nitrate and salt increased the apparent heat resistance at low concentrations (0.5 to 1%) but decreased it at concentrations of 2 to 4%; (ii) nitrite was markedly inhibitory, especially at pH 6.0. At the normal pH of canned luncheon meats (approximately 6.0), nitrite appears to be the chief preservative agent against spoilage by putrefactive anaerobes. PMID:5645422

  9. Process for epoxy foam production

    DOEpatents

    Celina, Mathias C [Albuquerque, NM

    2011-08-23

    An epoxy resin mixture with at least one epoxy resin of between approximately 60 wt % and 90 wt %, a maleic anhydride of between approximately 1 wt % and approximately 30 wt %, and an imidazole catalyst of less than approximately 2 wt % where the resin mixture is formed from at least one epoxy resin with a 1-30 wt % maleic anhydride compound and an imidazole catalyst at a temperature sufficient to keep the maleic anhydride compound molten, the resin mixture reacting to form a foaming resin which can then be cured at a temperature greater than 50.degree. C. to form an epoxy foam.

  10. Effect of addition of Ag nano powder on mechanical properties of epoxy/polyaminoamide adduct coatings filled with conducting polymer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samad, Ubair Abdus; Center of excellence for research in engineering materials; Khan, Rawaiz

    In this study the effect of Ag Nano powder on mechanical properties of epoxy coatings filled with optimized ratio of conducting polymers (Polyaniline and Polyppyrole) was evaluated. Bisphenol A diglycidyl ether epoxy resin (DGEBA) along with polyaminoamide adduct (ARADUR 3282-1 BD) is used as curing agent under optimized stoichiometry values. Curing is performed at room temperature with different percentages of Nano filler. Glass and steel panels were used as coating substrate. Bird applicator was used to coat the samples in order to obtain thin film with wet film thickness (WFT) of about 70-90 µm. The samples were kept in dust freemore » environment for about 7 days at room temperature for complete curing. The coated steel panels were used to evaluate the mechanical properties of coating such as hardness, scratch and impact tests whereas coated glass panels were used for measuring pendulum hardness of the coatings. To check the dispersion and morphology of Nano filler in epoxy matrix scanning electron microscopy (SEM) was used in addition Nano indentation was also performed to observe the effect of Nano filler on modulus of elasticity and hardness at Nano scale.« less

  11. Effect of addition of Ag nano powder on mechanical properties of epoxy/polyaminoamide adduct coatings filled with conducting polymer

    NASA Astrophysics Data System (ADS)

    Samad, Ubair Abdus; Khan, Rawaiz; Alam, Mohammad Asif; Al-Othman, Othman Y.; Al-Zahrani, Saeed M.

    2015-05-01

    In this study the effect of Ag Nano powder on mechanical properties of epoxy coatings filled with optimized ratio of conducting polymers (Polyaniline and Polyppyrole) was evaluated. Bisphenol A diglycidyl ether epoxy resin (DGEBA) along with polyaminoamide adduct (ARADUR 3282-1 BD) is used as curing agent under optimized stoichiometry values. Curing is performed at room temperature with different percentages of Nano filler. Glass and steel panels were used as coating substrate. Bird applicator was used to coat the samples in order to obtain thin film with wet film thickness (WFT) of about 70-90 µm. The samples were kept in dust free environment for about 7 days at room temperature for complete curing. The coated steel panels were used to evaluate the mechanical properties of coating such as hardness, scratch and impact tests whereas coated glass panels were used for measuring pendulum hardness of the coatings. To check the dispersion and morphology of Nano filler in epoxy matrix scanning electron microscopy (SEM) was used in addition Nano indentation was also performed to observe the effect of Nano filler on modulus of elasticity and hardness at Nano scale.

  12. Green Preparation of Epoxy/Graphene Oxide Nanocomposites Using a Glycidylamine Epoxy Resin as the Surface Modifier and Phase Transfer Agent of Graphene Oxide.

    PubMed

    Tang, Xinlei; Zhou, Yang; Peng, Mao

    2016-01-27

    In studies of epoxy/graphene oxide (GO) nanocomposites, organic solvents are commonly used to disperse GO, and vigorous mechanical processes and complicated modification of GO are usually required, increasing the cost and hindering the development and application of epoxy nanocomposites. Here, we report a green, facile, and efficient method of preparing epoxy/GO nanocomposites. When triglycidyl para-aminophenol (TGPAP), a commercially available glycidyl amine epoxy resin with one tertiary amine group per molecule, is used as both the surface modifier and phase transfer agent of GO, GO can be directly and rapidly transferred from water to diglycidyl ether of bisphenol A and other types of epoxy resins by manual stirring under ambient conditions, whereas GO cannot be transferred to these epoxy resins in the absence of TGPAP. The interaction between TGPAP and GO and the effect of the TGPAP content on the dispersion of GO in the epoxy matrix were investigated systematically. Superior dispersion and exfoliation of GO nanosheets and remarkably improved mechanical properties, including tensile and flexural properties, toughness, storage modulus, and microhardness, of the epoxy/GO nanocomposites with a suitable amount of TGPAP were demonstrated. This method is organic-solvent-free and technically feasible for large-scale preparation of high-performance nanocomposites; it opens up new opportunities for exploiting the unique properties of graphene or even other nanofillers for a wide range of applications.

  13. Solving the problem of building models of crosslinked polymers: an example focussing on validation of the properties of crosslinked epoxy resins.

    PubMed

    Hall, Stephen A; Howlin, Brendan J; Hamerton, Ian; Baidak, Alex; Billaud, Claude; Ward, Steven

    2012-01-01

    The construction of molecular models of crosslinked polymers is an area of some difficulty and considerable interest. We report here a new method of constructing these models and validate the method by modelling three epoxy systems based on the epoxy monomers bisphenol F diglycidyl ether (BFDGE) and triglycidyl-p-amino phenol (TGAP) with the curing agent diamino diphenyl sulphone (DDS). The main emphasis of the work concerns the improvement of the techniques for the molecular simulation of these epoxies and specific attention is paid towards model construction techniques, including automated model building and prediction of glass transition temperatures (T(g)). Typical models comprise some 4200-4600 atoms (ca. 120-130 monomers). In a parallel empirical study, these systems have been cast, cured and analysed by dynamic mechanical thermal analysis (DMTA) to measure T(g). Results for the three epoxy systems yield good agreement with experimental T(g) ranges of 200-220°C, 270-285°C and 285-290°C with corresponding simulated ranges of 210-230°C, 250-300°C, and 250-300°C respectively.

  14. Complex Cure Kinetics of the Tertiary Amine activated Reaction in DGEBA Epoxy Hardened with Diethanolamine

    NASA Astrophysics Data System (ADS)

    Ancipink, Windy; McCoy, John; Clarkson, Caitlyn; Kropka, Jamie; Celina, Mathias; Giron, Nicholas; Hailesilassie, Lebelo; Fredj, Narjes

    The curing of a diglycidyl ether of bisphenol-A (DGEBA) epoxy with diethanolamine (DEA) involves a well understood fast amine-epoxide reaction followed by a more complicated slower hydroxyl-epoxide reaction. The time scale of these two reactions are well separated and can be studied independently from one another. The initial amine-epoxide reaction results in a tertiary amine adduct which is a product of the direct reaction of a secondary amine from the DEA reacting with a single DGEBA epoxide. The second hydroxyl-epoxide reaction results in a highly crosslinked glassy epoxy resin. The deviation in the mechanisms between high and low temperatures are discerned through the use of differential scanning calorimetry (DSC), infrared spectroscopy (IR), and isothermal microcalorimetry (IMC) data. Observations of reaction rates at temperatures ranging from 30° C to 110° C have led to the determination that the hydroxyl-epoxide reaction is temperature sensitive. The hydroxyl-epoxide reaction occurs through two different mechanisms: at low temperatures, the reaction is catalyzed by the tertiary amine adduct; at higher temperatures, the reaction does not appear to be catalyzed. Sandia National Laboratories, Albuquerque, NM.

  15. Grafting of polyethylenimine onto cellulose nanofibers for interfacial enhancement in their epoxy nanocomposites.

    PubMed

    Zhao, Jiangqi; Li, Qingye; Zhang, Xiaofang; Xiao, Meijie; Zhang, Wei; Lu, Canhui

    2017-02-10

    Cellulose nanofibers (CNFs) were surface-modified with polyethyleneimine (PEI), which brought plentiful amine groups on the surface of CNFs, leading to a reduced hydrogen bond density between CNFs and consequently less CNFs agglomerates. The amine groups could also react with the epoxy as an effective curing agent that could increase the interfacial crosslinking density and strengthen interfacial adhesion. The tensile strength and Young's modulus of CNFs-PEI/Epoxy nanocomposites were 88.1% and 237.6% higher than those of neat epoxy, respectively. The tensile storage modulus of the nanocomposites also increased significantly at the temperature either below or above the Tg. The coefficient of thermal expansion for the CNFs-PEI/Epoxy nanocomposites was 22.2ppmK -1 , much lower than that of the neat epoxy (88.6ppmK -1 ). In addition, the thermal conductivity of the nanocomposites was observed to increase as well. The exceptional and balanced properties may provide the nanocomposites promising applications in automotive, construction and electronic devices. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Epoxy resin

    DOEpatents

    Wilson, Glenn R.; Salyer, Ival O.; Ball, III, George L.

    1976-07-13

    By mixing one part of a prepolymer containing a polyamine partially polymerized with an organic epoxide and subsequently reacted with a fatty acid containing from 8 to 32 carbon atoms, and then reacting this prepolymer mixture with 3 parts of an organic epoxide, a composition was obtained which made a gas frothable, shear-stable, room temperature curing, low density foam. A particularly advantageous prepolymer was prepared using a polyamine selected from the group consisting of diethylenetriamine, triethylenetetramine, and tetraethylenepentamine, partially polymerized with an organic epoxide having an average molecular weight of about 350 and having an epoxide equivalent of 185 to 192, and reacted with 2-10 weight percent linoleic acid. When one part of this prepolymer was reacted with about three parts of epoxy, and frothed by whipping in air or nitrogen an epoxy foam was produced which could be troweled onto surfaces and into corners or crevices, and subsequently cured, at near ambient temperature, to a strong dimensionally stable foam product.

  17. A cure-rate model for the Shuttle filament-wound case

    NASA Technical Reports Server (NTRS)

    Cagliostro, D. E.; Islas, A.; Hsu, Ming-Ta

    1987-01-01

    An epoxy and carbon fiber composite has been used to produce a light-weight rocket case for the Space Shuttle. A kinetic model is developed which can predict the extent of epoxy conversion during the winding and curing of the case. The model accounts for both chemical and physical kinetics. In the model, chemical kinetics occur exclusively up to the time the transition temperature equals the reaction temperature. At this point the resin begins to solidify and the rate of this process limits the rate of epoxy conversion. A comparison of predicted and actual epoxy conversion is presented for isothermal and temperature programmed cure schedules.

  18. Epoxy adhesive formulations for engineered wood manufacturing: Design of Experiment (DOE) and hardener modification

    NASA Astrophysics Data System (ADS)

    Wangkheeree, W.; Meekum, U.

    2016-03-01

    The effect of IPDA, DDS, BPA and DICY, as main ingredient of TETA based hardener were examined. The 2k design of experiment(DOE) with k=3 were preliminary explored. The designed parameters A(IPDA), B(DDS) and C(BPA) were assigned as low(-) and high(+) levels, respectively. The Design Expert™ was hired as the analyzing tool at α=0.05. The mixed epoxy resin was based on the commercial one. The designed responds including tcure, t50, impact strengths, flexural properties and HDT were measured, respectively. Regarding to ANOVA conclusion, it was found that, there were no significant effects on the assigned parameters on the interested responds, except for the HDT where BPA(C) was negative effect was found. The lower in the crosslink density of cured epoxy, inferior in HDT, the higher in BPA addition was hypothesized. It was found that impact strength of cured epoxy derived from all formula were unacceptable low and tcure and t50, were too short. Thus, the further investigation by adding DICY into hardener was explored. The results showed that no significant change by mechanical means of cured epoxy by resolving 5-30 phr of DICY into the hardener. However, it was observed that the DICY added formula showed the obvious long cure times and behave as prepreg formula. The room temperature cured epoxy was incompletely crosslinked. The degrees of linear chain fragment were evidence, by weight, when higher DICY loading was engaged. Complete crosslink was achieved at 150°C post curing. The hardener comprised of TETA/aliphatic Epoxy(RD108) adduct was studied for enhancing the toughness of epoxy resin. It was observed that longer cure time at 150°C but lower toughness was experienced, on both prepreg and engineered wood made from the resins, at high TETA/RD108 ratio. Incomplete cure was explained for the mechanical inferior at high RD108 loading.

  19. Plant Oil-Derived Epoxy Polymers toward Sustainable Biobased Thermosets.

    PubMed

    Wang, Zhongkai; Yuan, Liang; Ganewatta, Mitra S; Lamm, Meghan E; Rahman, Md Anisur; Wang, Jifu; Liu, Shengquan; Tang, Chuanbing

    2017-06-01

    Epoxy polymers (EPs) derived from soybean oil with varied chemical structures are synthesized. These polymers are then cured with anhydrides to yield soybean-oil-derived epoxy thermosets. The curing kinetic, thermal, and mechanical properties are well characterized. Due to the high epoxide functionality per epoxy polymer chain, these thermosets exhibit tensile strength over an order of magnitude higher than a control formulation with epoxidized soybean oil. More importantly, thermosetting materials ranging from soft elastomers to tough thermosets can be obtained simply by using different EPs and/or by controlling feed ratios of EPs to anhydrides. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Multifunctional curing agents and their use in improving strength of composites containing carbon fibers embedded in a polymeric matrix

    DOEpatents

    Vautard, Frederic; Ozcan, Soydan

    2017-04-11

    A functionalized carbon fiber having covalently bound on its surface a sizing agent containing epoxy groups, at least some of which are engaged in covalent bonds with crosslinking molecules, wherein each of said crosslinking molecules possesses at least two epoxy-reactive groups and at least one free functional group reactive with functional groups of a polymer matrix in which the carbon fiber is to be incorporated, wherein at least a portion of said crosslinking molecules are engaged, via at least two of their epoxy-reactive groups, in crosslinking bonds between at least two epoxy groups of the sizing agent. Composites comprised of these functionalized carbon fibers embedded in a polymeric matrix are also described. Methods for producing the functionalized carbon fibers and composites thereof are also described.

  1. Synthesis and characterisation of epoxy resins reinforced with carbon nanotubes and nanofibers.

    PubMed

    Prolongo, S G; Gude, M R; Ureña, A

    2009-10-01

    Epoxy nanocomposites were fabricated using two kinds of nanofiller, amino-functionalized multi-walled carbon nanotubes (CNTs) and non-treated long carbon nanofibers (CNFs). The non-cured mixtures were analysed through viscosity measurements. The effect of the nanoreinforcement on the curing process was determined by differential scanning calorimetry. Finally, the characterisation of cured nanocomposites was carried out studying their thermo-mechanical and electrical behaviour. At room temperature, the addition of CNTs causes a viscosity increase of epoxy monomer much more marked than the introduction of CNFs due to their higher specific area. It was probed that in that case exists chemical reaction between amino-functionalized CNTs and the oxirane rings of epoxy monomer. The presence of nanoreinforcement induces a decrease of curing reaction rate and modifies the epoxy conversion reached. The glass transition temperature of the nanocomposites decreases with the contents of CNTs and CNFs added, which could be related to plasticization phenomena of the nanoreinforcements. The storage modulus of epoxy resin significantly increases with the addition of CNTs and CNFs. This augment is higher with amino-functionalized CNTs due, between other reasons, to the stronger interaction with the epoxy matrix. The electrical conductivity is greatly increased with the addition of CNTs and CNFs. In fact, the percolation threshold is lower than 0.25 wt% due to the high aspect ratio of the used nanoreinforcements.

  2. Hydrophobic Modification of Layered Clays and Compatibility for Epoxy Nanocomposites

    PubMed Central

    Lin, Jiang-Jen; Chan, Ying-Nan; Lan, Yi-Fen

    2010-01-01

    Recent studies on the intercalation and exfoliation of layered clays with polymeric intercalating agents involving poly(oxypropylene)-amines and the particular uses for epoxy nanocomposites are reviewed. For intercalation, counter-ionic exchange reactions of clays including cationic layered silicates and anionic Al-Mg layered double hydroxide (LDH) with polymeric organic ions afforded organoclays led to spatial interlayer expansion from 12 to 92 Å (X-ray diffraction) as well as hydrophobic property. The inorganic clays of layered structure could be modified by the poly(oxypropylene)amine-salts as the intercalating agents with molecular weights ranging from 230 to 5,000 g/mol. Furthermore, natural montmorillonite (MMT) clay could be exfoliated into thin layer silicate platelets (ca. 1 nm thickness) in one step by using polymeric types of exfoliating agents. Different lateral dimensions of MMT, synthetic fluorinated Mica and LDH clays had been cured into epoxy nanocomposites. The hydrophobic amine-salt modification resulting in high spacing of layered or exfoliation of individual clay platelets is the most important factor for gaining significant improvements of properties. In particular, these modified clays were reported to gain significant improvements such as reduced coefficient of thermal expansion (CTE), enhanced thermal stability, and hardness. The utilization of these layered clays for initiating the epoxy self-polymerization was also reported to have a unique compatibility between clay and organic resin matrix. However, the matrix domain lacks of covalently bonded crosslink and leads to the isolation of powder material. It is generally concluded that the hydrophobic expansion of the clay inter-gallery spacing is the crucial step for enhancing the compatibility and the ultimate preparation of the advanced epoxy materials.

  3. Predicting the Macroscopic Fracture Energy of Epoxy Resins from Atomistic Molecular Simulations

    DOE PAGES

    Meng, Zhaoxu; Bessa, Miguel A.; Xia, Wenjie; ...

    2016-12-06

    Predicting the macroscopic fracture energy of highly crosslinked glassy polymers from atomistic simulations is challenging due to the size of the process zone being large in these systems. Here, we present a scale-bridging approach that links atomistic molecular dynamics simulations to macroscopic fracture properties on the basis of a continuum fracture mechanics model for two different epoxy materials. Our approach reveals that the fracture energy of epoxy resins strongly depends on the functionality of epoxy resin and the component ratio between the curing agent (amine) and epoxide. The most intriguing part of our study is that we demonstrate that themore » fracture energy exhibits a maximum value within the range of conversion degrees considered (from 65% to 95%), which can be attributed to the combined effects of structural rigidity and post-yield deformability. Our study provides physical insight into the molecular mechanisms that govern the fracture characteristics of epoxy resins and demonstrates the success of utilizing atomistic molecular simulations towards predicting macroscopic material properties.« less

  4. Predicting the Macroscopic Fracture Energy of Epoxy Resins from Atomistic Molecular Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Zhaoxu; Bessa, Miguel A.; Xia, Wenjie

    Predicting the macroscopic fracture energy of highly crosslinked glassy polymers from atomistic simulations is challenging due to the size of the process zone being large in these systems. Here, we present a scale-bridging approach that links atomistic molecular dynamics simulations to macroscopic fracture properties on the basis of a continuum fracture mechanics model for two different epoxy materials. Our approach reveals that the fracture energy of epoxy resins strongly depends on the functionality of epoxy resin and the component ratio between the curing agent (amine) and epoxide. The most intriguing part of our study is that we demonstrate that themore » fracture energy exhibits a maximum value within the range of conversion degrees considered (from 65% to 95%), which can be attributed to the combined effects of structural rigidity and post-yield deformability. Our study provides physical insight into the molecular mechanisms that govern the fracture characteristics of epoxy resins and demonstrates the success of utilizing atomistic molecular simulations towards predicting macroscopic material properties.« less

  5. Toughening Mechanisms in Silica-Filled Epoxy Nanocomposites

    NASA Astrophysics Data System (ADS)

    Patel, Binay S.

    and modeled fracture energy results. Furthermore, the contribution of microcracking was most prevalent at lower filler contents which suggests that the presence of microcracking may account for the previously unexplained improvements in fracture behavior attained in silica-filled epoxy nanocomposites at low filler contents. Secondly, surface modification through the application of three different propriety surface treatments ("A", "B" and "C") was found to greatly influence the processibility and fracture behavior of silica-filled epoxy nanocomposites. B-treated silica nanoparticles were found to readily form micron-scale agglomerates, settled during nanocomposite curing and showed no improvement in fracture toughness with increasing filler content. In contrast, the nanocomposites consisting of A-treated and C-treated silica nanoparticles yielded morphologies primarily containing well-dispersed nanoparticles. Therefore, fracture toughness improved with increasing filler content. Finally, particle porosity was found to have no significant effect on fracture behavior for the range of silica-filled epoxy nanocomposites investigated. Lower density porous silica nanoparticles were just as effective toughening agents as higher density non-porous silica nanoparticles. Consequently, the potential exists for the use of toughened-epoxies in lightweight structural applications.

  6. Influence of surface modification of halloysite nanotubes on their dispersion in epoxy matrix: Mesoscopic DPD simulation

    NASA Astrophysics Data System (ADS)

    Komarov, P.; Markina, A.; Ivanov, V.

    2016-06-01

    The problems of constructing of a meso-scale model of composites based on polymers and aluminosilicate nanotubes for prediction of the filler's spatial distribution at early stages of material formation have been considered. As a test system for the polymer matrix, the mixture of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate as epoxy resin monomers and 4-methylhexahydrophthalic anhydride as curing agent has been used. It is shown that the structure of a mixture of uncured epoxy resin and nanotubes is (mainly) determined by the surface functionalization of nanotubes. The results indicate that only nanotubes with maximum functionalization can preserve a uniform distribution in space.

  7. Aspects of the Fracture Toughness of Carbon Nanotube Modified Epoxy Polymer Composites

    NASA Astrophysics Data System (ADS)

    Mirjalili, Vahid

    Epoxy resins used in fibre reinforced composites exhibit a brittle fracture behaviour, because they show no sign of damage prior to a catastrophic failure. Rubbery materials and micro-particles have been added to epoxy resins to improve their fracture toughness, which reduces strength and elastic properties. In this research, carbon nanotubes (CNTs) are investigated as a potential toughening agent for epoxy resins and carbon fibre reinforced composites, which can also enhance strength and elastic properties. More specifically, the toughening mechanisms of CNTs are investigated theoretically and experimentally. The effect of aligned and randomly oriented carbon nanotubes (CNTs) on the fracture toughness of polymers was modelled using Elastic Plastic Fracture Mechanics. Toughening from CNT pull-out and rupture were considered, depending on the CNTs critical length. The model was used to identify the effect of CNTs geometrical and mechanical properties on the fracture toughness of CNT-modified epoxies. The modelling results showed that a uniform dispersion and alignment of a high volume fraction of CNTs normal to the crack growth plane would lead to the maximum fracture toughness enhancement. To achieve a uniform dispersion, the effect of processing on the dispersion of single walled and multi walled CNTs in epoxy resins was investigated. An instrumented optical microscope with a hot stage was used to quantify the evolution of the CNT dispersion during cure. The results showed that the reduction of the resin viscosity at temperatures greater than 100 °C caused an irreversible re-agglomeration of the CNTs in the matrix. The dispersion quality was then directly correlated to the fracture toughness of the modified resin. It was shown that the fine tuning of the ratio of epoxy resin, curing agent and CNT content was paramount to the improvement of the base resin fracture toughness. For the epoxy resin (MY0510 from Hexcel), an improvement of 38% was achieved with 0.3 wt

  8. Dielectric cure monitoring: Preliminary studies

    NASA Technical Reports Server (NTRS)

    Goldberg, B. E.; Semmel, M. L.

    1984-01-01

    Preliminary studies have been conducted on two types of dielectric cure monitoring systems employing both epoxy resins and phenolic composites. An Audrey System was used for 23 cure monitoring runs with very limited success. Nine complete cure monitoring runs have been investigated using a Micromet System. Two additional measurements were performed to investigate the Micromet's sensitivity to water absorption in a post-cure carbon-phenolic material. While further work is needed to determine data significance, the Micromet system appears to show promise as a feedback control device during processing.

  9. Solving the Problem of Building Models of Crosslinked Polymers: An Example Focussing on Validation of the Properties of Crosslinked Epoxy Resins

    PubMed Central

    Hall, Stephen A.; Howlin, Brendan J; Hamerton, Ian; Baidak, Alex; Billaud, Claude; Ward, Steven

    2012-01-01

    The construction of molecular models of crosslinked polymers is an area of some difficulty and considerable interest. We report here a new method of constructing these models and validate the method by modelling three epoxy systems based on the epoxy monomers bisphenol F diglycidyl ether (BFDGE) and triglycidyl-p-amino phenol (TGAP) with the curing agent diamino diphenyl sulphone (DDS). The main emphasis of the work concerns the improvement of the techniques for the molecular simulation of these epoxies and specific attention is paid towards model construction techniques, including automated model building and prediction of glass transition temperatures (Tg). Typical models comprise some 4200–4600 atoms (ca. 120–130 monomers). In a parallel empirical study, these systems have been cast, cured and analysed by dynamic mechanical thermal analysis (DMTA) to measure Tg. Results for the three epoxy systems yield good agreement with experimental Tg ranges of 200–220°C, 270–285°C and 285–290°C with corresponding simulated ranges of 210–230°C, 250–300°C, and 250–300°C respectively. PMID:22916182

  10. Deep-release of Epon 828 epoxy from the shock-driven reaction product phase

    NASA Astrophysics Data System (ADS)

    Lang, John; Fredenburg, Anthony; Coe, Joshua; Dattelbaum, Dana

    2017-06-01

    A challenge in improving equations-of-state (EOS) for polymers and their product phase is the lack of off-Hugoniot data. Here, we describe a novel experimental approach for obtaining release pathways along isentropes from the shocked products. A series of gas-gun experiments was conducted to obtain release isentropes of the products for 70/30 wt% Epon 828 epoxy resin/Jeffamine T-403 curing agent. Thin epoxy flyers backed by a low-density syntactic foam were impacted into LiF windows at up to 6.3 mm/ μs, creating stresses in excess of those required for reaction ( 25 GPa). Following a sustained shock input, a rarefaction fan from the back of the thin flyer reduced the pressure in the epoxy products along a release isentrope. Optical velocimetry (PDV) was used to measure the particle velocity at the epoxy/LiF interface. Numerical simulations using several different EOS describing the reactant-to-product transformation were conducted, and the results were compared with measured wave profiles. The best agreement with experiment was obtained using separate tabular EOS for the polymer ``reactant'' (e.g. epoxy) and product mixture, suggesting the transition to the products is irreversible.

  11. Postbuckling behavior of graphite-epoxy panels

    NASA Technical Reports Server (NTRS)

    Starnes, J. H., Jr.; Dickson, J. N.; Rouse, M.

    1984-01-01

    Structurally efficient fuselage panels are often designed to allow buckling to occur at applied loads below ultimate. Interest in applying graphite-epoxy materials to fuselage primary structure led to several studies of the post-buckling behavior of graphite-epoxy structural components. Studies of the postbuckling behavior of flat and curved, unstiffened and stiffened graphite-epoxy panels loaded in compression and shear were summarized. The response and failure characteristics of specimens studied experimentally were described, and analytical and experimental results were compared. The specimens tested in the studies described were fabricated from commercially available 0.005-inch-thick unidirectional graphite-fiber tapes preimpregnated with 350 F cure thermosetting epoxy resins.

  12. Cellulose whisker/epoxy resin nanocomposites.

    PubMed

    Tang, Liming; Weder, Christoph

    2010-04-01

    New nanocomposites composed of cellulose nanofibers or "whiskers" and an epoxy resin were prepared. Cellulose whiskers with aspect ratios of approximately 10 and approximately 84 were isolated from cotton and sea animals called tunicates, respectively. Suspensions of these whiskers in dimethylformamide were combined with an oligomeric difunctional diglycidyl ether of bisphenol A with an epoxide equivalent weight of 185-192 and a diethyl toluenediamine-based curing agent. Thin films were produced by casting these mixtures and subsequent curing. The whisker content was systematically varied between 4 and 24% v/v. Electron microscopy studies suggest that the whiskers are evenly dispersed within the epoxy matrix. Dynamic mechanical thermoanalysis revealed that the glass transition temperature (T(g)) of the materials was not significantly influenced by the incorporation of the cellulose filler. Between room temperature and 150 degrees C, i.e., below T(g), the tensile storage moduli (E') of the nanocomposites increased modestly, for example from 1.6 GPa for the neat polymer to 4.9 and 3.6 GPa for nanocomposites comprising 16% v/v tunicate or cotton whiskers. The relative reinforcement was more significant at 185 degrees C (i.e., above T(g)), where E' was increased from approximately 16 MPa (neat polymer) to approximately 1.6 GPa (tunicate) or approximately 215 MPa (cotton). The mechanical properties of the new materials are well-described by the percolation model and are the result of the formation of a percolating whisker network in which stress transfer is facilitated by strong interactions between the whiskers.

  13. Molecular Modeling of Aerospace Polymer Matrices Including Carbon Nanotube-Enhanced Epoxy

    NASA Astrophysics Data System (ADS)

    Radue, Matthew S.

    Carbon fiber (CF) composites are increasingly replacing metals used in major structural parts of aircraft, spacecraft, and automobiles. The current limitations of carbon fiber composites are addressed through computational material design by modeling the salient aerospace matrix materials. Molecular Dynamics (MD) models of epoxies with and without carbon nanotube (CNT) reinforcement and models of pure bismaleimides (BMIs) were developed to elucidate structure-property relationships for improved selection and tailoring of matrices. The influence of monomer functionality on the mechanical properties of epoxies is studied using the Reax Force Field (ReaxFF). From deformation simulations, the Young's modulus, yield point, and Poisson's ratio are calculated and analyzed. The results demonstrate an increase in stiffness and yield strength with increasing resin functionality. Comparison between the network structures of distinct epoxies is further advanced by the Monomeric Degree Index (MDI). Experimental validation demonstrates the MD results correctly predict the relationship in Young's moduli for all epoxies modeled. Therefore, the ReaxFF is confirmed to be a useful tool for studying the mechanical behavior of epoxies. While epoxies have been well-studied using MD, there has been no concerted effort to model cured BMI polymers due to the complexity of the network-forming reactions. A novel, adaptable crosslinking framework is developed for implementing 5 distinct cure reactions of Matrimid-5292 (a BMI resin) and investigating the network structure using MD simulations. The influence of different cure reactions and extent of curing are analyzed on the several thermo-mechanical properties such as mass density, glass transition temperature, coefficient of thermal expansion, elastic moduli, and thermal conductivity. The developed crosslinked models correctly predict experimentally observed trends for various properties. Finally, the epoxies modeled (di-, tri-, and tetra

  14. Electron and proton absorption calculations for a graphite/epoxy composite model. [large space structures

    NASA Technical Reports Server (NTRS)

    Long, E. R., Jr.

    1979-01-01

    The Bethe-Bloch stopping power relations for inelastic collisions were used to determine the absorption of electron and proton energy in cured neat epoxy resin and the absorption of electron energy in a graphite/epoxy composite. Absorption of electron energy due to bremsstrahlung was determined. Electron energies from 0.2 to 4.0 MeV and proton energies from 0.3 to 1.75 MeV were used. Monoenergetic electron energy absorption profiles for models of pure graphite, cured neat epoxy resin, and graphite/epoxy composites are reported. A relation is determined for depth of uniform energy absorption in a composite as a function of fiber volume fraction and initial electron energy. Monoenergetic proton energy absorption profiles are reported for the neat resin model. A relation for total proton penetration in the epoxy resin as a function of initial proton energy is determined. Electron energy absorption in the composite due to bremsstrahlung is reported. Electron and proton energy absorption profiles in cured neat epoxy resin are reported for environments approximating geosynchronous earth orbit.

  15. Phosphorus Moieties Make Polymers Less Flammable

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Mikroyannidis, J. A.

    1992-01-01

    Phosphorus incorporated into epoxies and polyamides via curing agent. According to report, use of 1-(di(2-chloroethoxyphosphinyl)methyl)-2,4- and -2,6-diaminobenzene (DCEPD) as curing agent for epoxies and polyamides makes these polymers more fire-retardant than corresponding polymers made with standard curing agents not containing phosphorus.

  16. Corrosion Protection of Phenolic-Epoxy/Tetraglycidyl Metaxylediamine Composite Coatings in a Temperature-Controlled Borax Environment

    NASA Astrophysics Data System (ADS)

    Xu, Wenhua; Wang, Zhenyu; Han, En-Hou; Liu, Chunbo

    2017-12-01

    The failure behavior for two kinds of phenolic-epoxy/tetraglycidyl metaxylediamine composite coatings in 60 °C borax aqueous solution was evaluated using electrochemical methods (EIS) combined with scanning electron microscopy, confocal laser scanning microscope, water immersion test, and Raman spectrum. The main focus was on the effect of curing agent on the corrosion protection of coatings. Results revealed that the coating cured by phenolic modified aromatic amine possessed more compact cross-linked structure, better wet adhesion, lower water absorption (0.064 mg h-1 cm-2) and its impedance values was closed to 108 Ω cm2 after immersion for 576 h, while the coating cured by modified aromatic ring aliphatic amine was lower than 105 Ω cm2. The corrosion mechanism of the two coatings is discussed.

  17. Mechanical Properties and Morphologies of Carboxyl-Terminated Butadiene Acrylonitrile Liquid Rubber/Epoxy Blends Compatibilized by Pre-Crosslinking.

    PubMed

    Xu, Shiai; Song, Xiaoxue; Cai, Yangben

    2016-07-29

    In order to enhance the compatibilization and interfacial adhesion between epoxy and liquid carboxyl-terminated butadiene acrylonitrile (CTBN) rubber, an initiator was introduced into the mixture and heated to initiate the cross-linking reaction of CTBN. After the addition of curing agents, the CTBN/epoxy blends with a localized interpenetrating network structure were prepared. The mechanical properties and morphologies of pre-crosslinked and non-crosslinked CTBN/epoxy blends were investigated. The results show that the tensile strength, elongation at break and impact strength of pre-crosslinked CTBN/epoxy blends are significantly higher than those of non-crosslinked CTBN/epoxy blends, which is primarily due to the enhanced interfacial strength caused by the chemical bond between the two phases and the localized interpenetrating network structure. Both pre-crosslinked and non-crosslinked CTBN/epoxy blends show a bimodal distribution of micron- and nano-sized rubber particles. However, pre-crosslinked CTBN/epoxy blends have smaller micron-sized rubber particles and larger nano-sized rubber particles than non-crosslinked CTBN/epoxy blends. The dynamic mechanical analysis shows that the storage modulus of pre-crosslinked CTBN/epoxy blends is higher than that of non-crosslinked CTBN/epoxy blends. The glass transition temperature of the CTBN phase in pre-crosslinked CTBN/epoxy blends increases slightly compared with the CTBN/epoxy system. The pre-crosslinking of rubber is a promising method for compatibilization and controlling the morphology of rubber-modified epoxy materials.

  18. Mechanical Properties and Morphologies of Carboxyl-Terminated Butadiene Acrylonitrile Liquid Rubber/Epoxy Blends Compatibilized by Pre-Crosslinking

    PubMed Central

    Xu, Shiai; Song, Xiaoxue; Cai, Yangben

    2016-01-01

    In order to enhance the compatibilization and interfacial adhesion between epoxy and liquid carboxyl-terminated butadiene acrylonitrile (CTBN) rubber, an initiator was introduced into the mixture and heated to initiate the cross-linking reaction of CTBN. After the addition of curing agents, the CTBN/epoxy blends with a localized interpenetrating network structure were prepared. The mechanical properties and morphologies of pre-crosslinked and non-crosslinked CTBN/epoxy blends were investigated. The results show that the tensile strength, elongation at break and impact strength of pre-crosslinked CTBN/epoxy blends are significantly higher than those of non-crosslinked CTBN/epoxy blends, which is primarily due to the enhanced interfacial strength caused by the chemical bond between the two phases and the localized interpenetrating network structure. Both pre-crosslinked and non-crosslinked CTBN/epoxy blends show a bimodal distribution of micron- and nano-sized rubber particles. However, pre-crosslinked CTBN/epoxy blends have smaller micron-sized rubber particles and larger nano-sized rubber particles than non-crosslinked CTBN/epoxy blends. The dynamic mechanical analysis shows that the storage modulus of pre-crosslinked CTBN/epoxy blends is higher than that of non-crosslinked CTBN/epoxy blends. The glass transition temperature of the CTBN phase in pre-crosslinked CTBN/epoxy blends increases slightly compared with the CTBN/epoxy system. The pre-crosslinking of rubber is a promising method for compatibilization and controlling the morphology of rubber-modified epoxy materials. PMID:28773762

  19. Self-healing of low-velocity impact damage in glass fabric/epoxy composites using an epoxy-mercaptan healing agent

    NASA Astrophysics Data System (ADS)

    Chao Yuan, Yan; Ye, Yueping; Zhi Rong, Min; Chen, Haibin; Wu, Jingshen; Qiu Zhang, Ming; Qin, Shi Xiang; Yang, Gui Cheng

    2011-01-01

    Self-healing woven glass fabric-reinforced epoxy composite laminates were made by embedding epoxy- and mercaptan-loaded microcapsules. After being subjected to low-velocity impact, the laminates were able to heal the damage in an autonomic way at room temperature. The healing-induced reduction in the damaged areas was visualized using a scanning acoustic microscope. The rate of damage area reduction, which is closely related to the effect of crack rehabilitation and mechanical recovery, is a function of impact energy, content and size of the healing microcapsules. Minor damage, such as microcracks in the matrix, can be completely repaired by the healing system without manual intervention, including external pressure. Microcapsules with larger size and/or higher concentration are propitious for delivering more healing agent to cracked portions, while imposition of lateral pressure on damaged specimens forces the separated faces to approach each other. Both can improve the rate of damage area reduction in the case of severe damage.

  20. Epoxy Resins in Electron Microscopy

    PubMed Central

    Finck, Henry

    1960-01-01

    A method of embedding biological specimens in araldite 502 (Ciba) has been developed for materials available in the United States. Araldite-embedded tissues are suitable for electron microscopy, but the cutting qualities of the resin necessitates more than routine attention during microtomy. The rather high viscosity of araldite 502 also seems to be an unnecessary handicap. The less viscous epoxy epon 812 (Shell) produces specimens with improved cutting qualities, and has several features—low shrinkage and absence of specimen damage during cure, minimal compression of sections, relative absence of electron beam-induced section damage, etc.—which recommends it as a routine embedding material. The hardness of the cured resin can be easily adjusted by several methods to suit the materials embedded in it. Several problems and advantages of working with sections of epoxy resins are also discussed. PMID:13822825

  1. Preparation, Characterization, and Enhanced Thermal and Mechanical Properties of Epoxy-Titania Composites

    PubMed Central

    Rubab, Zakya; Siddiqi, Humaira M.; Saeed, Shaukat

    2014-01-01

    This paper presents the synthesis and thermal and mechanical properties of epoxy-titania composites. First, submicron titania particles are prepared via surfactant-free sol-gel method using TiCl4 as precursor. These particles are subsequently used as inorganic fillers (or reinforcement) for thermally cured epoxy polymers. Epoxy-titania composites are prepared via mechanical mixing of titania particles with liquid epoxy resin and subsequently curing the mixture with an aliphatic diamine. The amount of titania particles integrated into epoxy matrix is varied between 2.5 and 10.0 wt.% to investigate the effect of sub-micron titania particles on thermal and mechanical properties of epoxy-titania composites. These composites are characterized by X-ray photoelectron (XPS) spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric (TG), and mechanical analyses. It is found that sub-micron titania particles significantly enhance the glass transition temperature (>6.7%), thermal oxidative stability (>12.0%), tensile strength (>21.8%), and Young's modulus (>16.8%) of epoxy polymers. Epoxy-titania composites with 5.0 wt.% sub-micron titania particles perform best at elevated temperatures as well as under high stress. PMID:24578638

  2. Toughening reinforced epoxy composites with brominated polymeric additives

    NASA Technical Reports Server (NTRS)

    Nir, Z. (Inventor); Gilwee, W. J., Jr. (Inventor)

    1985-01-01

    Cured polyfunctional epoxy resins including tris(hydroxyphenyl)methane triglycidyl ether are toughened by addition of polybrominated polymeric additives having an EE below 1500 to the pre-cure composition. Carboxy-terminated butadiene-acrylonitrile rubber is optionally present in the pre-cure mixture as such or as a pre-formed copolymer with other reactants. Reinforced composites, particularly carbon-reinforced composites, of these resins are disclosed and shown to have improved toughness.

  3. Fracture behavior of block copolymer and graphene nanoplatelet modified epoxy and fiber reinforced/epoxy polymer composites

    NASA Astrophysics Data System (ADS)

    Kamar, Nicholas T.

    Glass and carbon fiber reinforced/epoxy polymer composites (GFRPs and CFRPs) have high strength-to-weight and stiffness-to-weight ratios. Thus, GFRPs and CFRPs are used to lightweight aircraft, marine and ground vehicles to reduce transportation energy utilization and cost. However, GFRP and CFRP matrices have a low resistance to crack initiation and propagation; i.e. they have low fracture toughness. Current methods to increase fracture toughness of epoxy and corresponding GFRP and CFRPs often reduce composite mechanical and thermomechanical properties. With the advent of nanotechnology, new methods to improve the fracture toughness and impact properties of composites are now available. The goal of this research is to identify the fracture behavior and toughening mechanisms of nanoparticle modified epoxy, GFRPs and CFRPs utilizing the triblock copolymer poly(styrene)-block-poly(butadiene)-block-poly(methylmethacrylate) (SBM) and graphene nanoplatelets (GnPs) as toughening agents. The triblock copolymer SBM was used to toughen the diglycidyl ether of bisphenol-A (DGEBA) resin cured with m-phenylenediamine (mPDA) and corresponding AS4-12k CFRPs. SBM self assembled in epoxy to form nanostructured domains leading to larger increases in fracture toughness, KQ (MPa*m 1/2) than the traditional, phase separating carboxyl-terminated butadiene-acrylonitrile (CTBN) rubber. Additionally, SBM increased the mode-I fracture toughness, GIc (J/m2) of CFRPs without corresponding reductions in composite three-point flexural properties and glass transition temperature (Tg). Fractography of SBM modified epoxy and CFRPs via scanning electron microscopy (SEM) showed that sub 100 nm spherical micelles cavitated to induce void growth and matrix shear yielding toughening mechanisms. Furthermore, SBM did not suppress epoxy Tg, while CTBN decreased Tg with both increasing concentration and acrylonitrile content. Graphene nanoplatelets (GnPs) consist of a few layers of graphene sheets, which

  4. Corrosion protection properties and interfacial adhesion mechanism of an epoxy/polyamide coating applied on the steel surface decorated with cerium oxide nanofilm: Complementary experimental, molecular dynamics (MD) and first principle quantum mechanics (QM) simulation methods

    NASA Astrophysics Data System (ADS)

    Bahlakeh, Ghasem; Ramezanzadeh, Bahram; Saeb, Mohammad Reza; Terryn, Herman; Ghaffari, Mehdi

    2017-10-01

    The effect of cerium oxide treatment on the corrosion protection properties and interfacial interaction of steel/epoxy was studied by electrochemical impedance spectroscopy, (EIS) classical molecular dynamics (MD) and first principle quantum mechanics (QM) simulation methods X-ray photoelectron spectroscopy (XPS) was used to verify the chemical composition of the Ce film deposited on the steel. To probe the role of the curing agent in epoxy adsorption, computations were compared for an epoxy, aminoamide and aminoamide modified epoxy. Moreover, to study the influence of water on interfacial interactions the MD simulations were executed for poly (aminoamide)-cured epoxy resin in contact with the different crystallographic cerium dioxide (ceria, CeO2) surfaces including (100), (110), and (111) in the presence of water molecules. It was found that aminoamide-cured epoxy material was strongly adhered to all types of CeO2 substrates, so that binding to ceria surfaces followed the decreasing order CeO2 (111) > CeO2 (100) > CeO2 (110) in both dry and wet environments. Calculation of interaction energies noticed an enhanced adhesion to metal surface due to aminoamide curing of epoxy resin; where facets (100) and (111) revealed electrostatic and Lewis acid-base interactions, while an additional hydrogen bonding interaction was identified for CeO2 (110). Overall, MD simulations suggested decrement of adhesion to CeO2 in wet environment compared to dry conditions. Additionally, contact angle, pull-off test, cathodic delamination and salt spray analyses were used to confirm the simulation results. The experimental results in line with modeling results revealed that Ce layer deposited on steel enhanced substrate surface free energy, work of adhesion, and interfacial adhesion strength of the epoxy coating. Furthermore, decrement of adhesion of epoxy to CeO2 in presence of water was affirmed by experimental results. EIS results revealed remarkable enhancement of the corrosion

  5. Biobased Epoxy Nanocomposites Derived from Lignin-Based Monomers.

    PubMed

    Zhao, Shou; Abu-Omar, Mahdi M

    2015-07-13

    Biobased epoxy nanocomposites were synthesized based on 2-methoxy-4-propylphenol (dihydroeugenol, DHE), a molecule that has been obtained from the lignin component of biomass. To increase the content of hydroxyl groups, DHE was o-demethylated using aqueous HBr to yield propylcatechol (DHEO), which was subsequently glycidylated to epoxy monomer. Optimal conditions in terms of yield and epoxy equivalent weight were found to be 60 °C with equal NaOH/phenolic hydroxyl molar ratio. The structural evolution from DHE to cured epoxy was followed by (1)H NMR and Fourier transform infrared spectroscopy. The nano-montmorillonite modified DHEO epoxy exhibited improved storage modulus and thermal stability as determined from dynamic mechanical analysis and thermogravimetric analysis. This study widens the synthesis routes of biobased epoxy thermosets from lignin-based molecules.

  6. Flexible Epoxy Resin Formed Upon Blending with a Triblock Copolymer through Reaction-Induced Microphase Separation

    PubMed Central

    Chu, Wei-Cheng; Lin, Wei-Sheng; Kuo, Shiao-Wei

    2016-01-01

    In this study, we used diglycidyl ether bisphenol A (DGEBA) as a matrix, the ABA block copolymer poly(ethylene oxide–b–propylene oxide–b–ethylene oxide) (Pluronic F127) as an additive, and diphenyl diaminosulfone (DDS) as a curing agent to prepare flexible epoxy resins through reaction-induced microphase separation (RIMPS). Fourier transform infrared spectroscopy confirmed the existence of hydrogen bonding between the poly(ethylene oxide) segment of F127 and the OH groups of the DGEBA resin. Small-angle X-ray scattering, atomic force microscopy, and transmission electron microscopy all revealed evidence for the microphase separation of F127 within the epoxy resin. Glass transition temperature (Tg) phenomena and mechanical properties (modulus) were determined through differential scanning calorimetry and dynamic mechanical analysis, respectively, of samples at various blend compositions. The modulus data provided evidence for the formation of wormlike micelle structures, through a RIMPS mechanism, in the flexible epoxy resin upon blending with the F127 triblock copolymer. PMID:28773571

  7. Out-of-Autoclave Cure Composites

    NASA Technical Reports Server (NTRS)

    Hayes, Brian S.

    2015-01-01

    As the size of aerospace composite parts exceeds that of even the largest autoclaves, the development of new out-of-autoclave processes and materials is necessary to ensure quality and performance. Many out-of-autoclave prepreg systems can produce high-quality composites initially; however, due to long layup times, the resin advancement commonly causes high void content and variations in fiber volume. Applied Poleramic, Inc. (API), developed an aerospace-grade benzoxazine matrix composite prepreg material that offers more than a year out-time at ambient conditions and provides exceptionally low void content when out-of-autoclave cured. When compared with aerospace epoxy prepreg systems, API's innovation offers significant improvements in terms of out-time at ambient temperature and the corresponding tack retention. The carbon fiber composites developed with the optimized matrix technology have significantly better mechanical performance in terms of hot-wet retention and compression when compared with aerospace epoxy matrices. These composites also offer an excellent overall balance of properties. This matrix system imparts very low cure shrinkage, low coefficient of thermal expansion, and low density when compared with most aerospace epoxy prepreg materials.

  8. Processing and properties of carbon nanofibers reinforced epoxy powder composites

    NASA Astrophysics Data System (ADS)

    Palencia, C.; Mazo, M. A.; Nistal, A.; Rubio, F.; Rubio, J.; Oteo, J. L.

    2011-11-01

    Commercially available CNFs (diameter 30-300 nm) have been used to develop both bulk and coating epoxy nanocomposites by using a solvent-free epoxy matrix powder. Processing of both types of materials has been carried out by a double-step process consisting in an initial physical premix of all components followed by three consecutive extrusions. The extruded pellets were grinded into powder and sieved. Carbon nanofibers powder coatings were obtained by electrostatic painting of the extruded powder followed by a curing process based in a thermal treatment at 200 °C for 25 min. On the other hand, for obtaining bulk carbon nanofibers epoxy composites, a thermal curing process involving several steps was needed. Gloss and mechanical properties of both nanocomposite coatings and bulk nanocomposites were improved as a result of the processing process. FE-SEM fracture surface microphotographs corroborate these results. It has been assessed the key role played by the dispersion of CNFs in the matrix, and the highly important step that is the processing and curing of the nanocomposites. A processing stage consisted in three consecutive extrusions has reached to nanocomposites free of entanglements neither agglomerates. This process leads to nanocomposite coatings of enhanced properties, as it has been evidenced through gloss and mechanical properties. A dispersion limit of 1% has been determined for the studied system in which a given dispersion has been achieved, as the bending mechanical properties have been increased around 25% compared with the pristine epoxy resin. It has been also demonstrated the importance of the thickness in the nanocomposite, as it involves the curing stage. The complex curing treatment carried out in the case of bulk nanocomposites has reached to reagglomeration of CNFs.

  9. The Effect of Water on the Work of Adhesion at Epoxy Interfaces by Molecular Dynamics Simulation

    NASA Technical Reports Server (NTRS)

    Hinkley, J.A.; Frankland, S.J.V.; Clancy, T.C.

    2009-01-01

    Molecular dynamics simulation can be used to explore the detailed effects of chemistry on properties of materials. In this paper, two different epoxies found in aerospace resins are modeled using molecular dynamics. The first material, an amine-cured tetrafunctional epoxy, represents a composite matrix resin, while the second represents a 177 C-cured adhesive. Surface energies are derived for both epoxies and the work of adhesion values calculated for the epoxy/epoxy interfaces agree with experiment. Adding water -- to simulate the effect of moisture exposure -- reduced the work of adhesion in one case, and increased it in the other. To explore the difference, the various energy terms that make up the net work of adhesion were compared and the location of the added water was examined.

  10. Thermal Expansion and Swelling of Cured Epoxy Resin Used in Graphite/Epoxy Composite

    NASA Technical Reports Server (NTRS)

    Adamson, M. J.

    1979-01-01

    The thermal expansion and swelling of resin material as influenced by variations in temperature during moisture absorption is discussed. Comparison measurements using composites constructed of graphite fibers and each of two epoxy resin matrices are included. Polymer theory relative to these findings is discussed and modifications are proposed.

  11. Enhancement of mechanical and electrical properties of continuous-fiber-reinforced epoxy composites with stacked graphene

    PubMed Central

    Shepelev, Olga; Kenig, Samuel

    2017-01-01

    Impregnation of expandable graphite (EG) after thermal treatment with an epoxy resin containing surface-active agents (SAAs) enhanced the intercalation of epoxy monomer between EG layers and led to further exfoliation of the graphite, resulting in stacks of few graphene layers, so-called “stacked” graphene (SG). This process enabled electrical conductivity of cured epoxy/SG composites at lower percolation thresholds, and improved thermo-mechanical properties were measured with either Kevlar, carbon or glass-fiber-reinforced composites. Several compositions with SAA-modified SG led to higher dynamic moduli especially at high temperatures, reflecting the better wetting ability of the modified nanoparticles. The hydrophilic/hydrophobic nature of the SAA dictates the surface energy balance. More hydrophilic SAAs promoted localization of the SG at the Kevlar/epoxy interface, and morphology seems to be driven by thermodynamics, rather than the kinetic effect of viscosity. This effect was less obvious with carbon or glass fibers, due to the lower surface energy of the carbon fibers or some incompatibility with the glass-fiber sizing. Proper choice of the surfactant and fine-tuning of the crosslink density at the interphase may provide further enhancements in thermo-mechanical behavior. PMID:29046838

  12. Enhancement of mechanical and electrical properties of continuous-fiber-reinforced epoxy composites with stacked graphene.

    PubMed

    Naveh, Naum; Shepelev, Olga; Kenig, Samuel

    2017-01-01

    Impregnation of expandable graphite (EG) after thermal treatment with an epoxy resin containing surface-active agents (SAAs) enhanced the intercalation of epoxy monomer between EG layers and led to further exfoliation of the graphite, resulting in stacks of few graphene layers, so-called "stacked" graphene (SG). This process enabled electrical conductivity of cured epoxy/SG composites at lower percolation thresholds, and improved thermo-mechanical properties were measured with either Kevlar, carbon or glass-fiber-reinforced composites. Several compositions with SAA-modified SG led to higher dynamic moduli especially at high temperatures, reflecting the better wetting ability of the modified nanoparticles. The hydrophilic/hydrophobic nature of the SAA dictates the surface energy balance. More hydrophilic SAAs promoted localization of the SG at the Kevlar/epoxy interface, and morphology seems to be driven by thermodynamics, rather than the kinetic effect of viscosity. This effect was less obvious with carbon or glass fibers, due to the lower surface energy of the carbon fibers or some incompatibility with the glass-fiber sizing. Proper choice of the surfactant and fine-tuning of the crosslink density at the interphase may provide further enhancements in thermo-mechanical behavior.

  13. Thermodynamic and mechanical properties of epoxy resin DGEBF crosslinked with DETDA by molecular dynamics.

    PubMed

    Tack, Jeremy L; Ford, David M

    2008-06-01

    Fully atomistic molecular dynamics (MD) simulations were used to predict the properties of diglycidyl ether of bisphenol F (DGEBF) crosslinked with curing agent diethyltoluenediamine (DETDA). This polymer is a commercially important epoxy resin and a candidate for applications in nanocomposites. The calculated properties were density and bulk modulus (at near-ambient pressure and temperature) and glass transition temperature (at near-ambient pressure). The molecular topology, degree of curing, and MD force-field were investigated as variables. The models were created by densely packing pre-constructed oligomers of different composition and connectivity into a periodic simulation box. For high degrees of curing (greater than 90%), the density was found to be insensitive to the molecular topology and precise value of degree of curing. Of the two force-fields that were investigated, cff91 and COMPASS, the latter clearly gave more accurate values for the density as compared to experiment. In fact, the density predicted by COMPASS was within 6% of reported experimental values for the highly crosslinked polymer. The predictions of both force-fields for glass transition temperature were within the range of reported experimental values, with the predictions of cff91 being more consistent with a highly cured resin.

  14. Effect of MUF/Epoxy Microcapsules on Mechanical Properties and Fractography of Epoxy Materials

    NASA Astrophysics Data System (ADS)

    Ni, Zhuo; Lin, Yuhao; Du, Xuexiao

    2017-12-01

    Melamine-urea-formaldehyde (MUF) microcapsules were synthesized, morphology, shell thickness, average diameter and interface morphology were studied by scanning electron microscope (SEM). The spherical MUF microcapsules are size normal distribution without adhesion and accumulation, being compact, rough and uneven with a thickness of 3.2μm and a core contents is approximate 70%. A latent imidazoleas the curing agent for a cross-linking chemical reaction for cracking repairing. A good dispersion of MUF microcapsules and a good interfacial bonding are obtained. Effects of MUF microcapsule size and content on bending property and dynamic mechanical propertywere investigated. Both bending strength and storage modulus of the composite are considerably reduced with an increasing addition of the microcapsules whereas the glass transition temperatures are almost not influenced. Significant toughening effects of MUF microcapsules on the epoxy composites are observed at the conditions of different content and size of microcapsule especially at low microcapsule contents and small microcapsule sizes.

  15. Preparation and properties studies of UV-curable silicone modified epoxy resin composite system.

    PubMed

    Yu, Zhouhui; Cui, Aiyong; Zhao, Peizhong; Wei, Huakai; Hu, Fangyou

    2018-01-01

    Modified epoxy suitable for ultraviolet (UV) curing is prepared by using organic silicon toughening. The curing kinetics of the composite are studied by dielectric analysis (DEA), and the two-phase compatibility of the composite is studied by scanning electron microscopy (SEM). The tensile properties, heat resistance, and humidity resistance of the cured product are explored by changing the composition ratio of the silicone and the epoxy resin. SEM of silicone/epoxy resin shows that the degree of cross-linking of the composites decreases with an increase of silicone resin content. Differential thermal analysis indicates that the glass transition temperature and the thermal stability of the composites decrease gradually with an increase of silicone resin content. The thermal degradation rate in the high temperature region, however, first decreases and then increases. In general, after adding just 10%-15% of the silicone resin and exposing to light for 15 min, the composite can still achieve a better curing effect. Under such conditions, the heat resistance of the cured product decreases a little. The tensile strength is kept constant so that elongation at breakage is apparently improved. The change rate after immersion in distilled water at 60°C for seven days is small, which shows excellent humidity resistance.

  16. Allergic contact dermatitis from a nonbisphenol A epoxy in a graphite fiber reinforced epoxy laminate.

    PubMed

    Mathias, C G

    1987-09-01

    An employee of the Composites Division of an aircraft engine manufacturing firm developed dermatitis associated with the handling of a graphite fiber reinforced epoxy laminate (epoxy prepreg). Patch test investigation demonstrated that the responsible causal agent was the nonbisphenol A epoxy binder, 4-glycidyloxy-N, N-diglycidylaniline. A patch test with bisphenol A epoxy from a standard patch test screening series was negative. Subsequent interviews with employees of the Composites Division suggested that a relative lack of awareness of the cutaneous hazards of fiber reinforced epoxy laminates, compared with liquid epoxy resin systems, may be an important risk factor for allergic sensitization to these composite materials.

  17. Imide modified epoxy matrix resins

    NASA Technical Reports Server (NTRS)

    Scola, D. A.

    1982-01-01

    Results of a program designed to develop tough imide modified epoxy (IME) resins cured by bisimide amine (BIA) hardeners are presented. State of the art epoxy resin, MY720, was used. Three aromatic bisimide amines and one aromatic aliphatic BIA were evaluated. BIA's derived from 6F anhydride (3,3 prime 4,4 prime-(hexafluoro isopropyl idene) bis (phthalic anhydride) and diamines, 3,3 prime-diam nodiphenyl sulfone (3,3 prime-DDS), 4,4 prime-diamino diphenyl sulfone (4,4 prime-DDS), 1.12-dodecane diamine (1,12-DDA) were used. BIA's were abbreviated 6F-3,3 prime-DDS, 6F-4,4 prime-DDS, 6F-3,3 prime-DDS-4,4 prime DDS, and 6F-3,3 prime-DDS-1,12-DDA corresponding to 6F anhydride and diamines mentioned. Epoxy resin and BIA's (MY720/6F-3,3 prime-DDS, MY720/6F-3,3 prime-DDS-4,4 prime-DDS, MY720/6F-3,3 prime-DDS-1,12-DDA and a 50:50 mixture of a BIA and parent diamine, MY720/6F-3,3 prime-DDS/3,3 prime-DDS, MY720/6F-3,3 prime-DDS-4,4 prime-DDS/3,3 prime-DDS, MY720/6F-3,3 prime-DDS-1,12-DDA/3,3 prime-DDS were studied to determine effect of structure and composition. Effect of the addition of two commercial epoxies, glyamine 200 and glyamine 100 on the properties of several formulations was evaluated. Bisimide amine cured epoxies were designated IME's (imide modified epoxy). Physical, thermal and mechanical properties of these resins were determined. Moisture absorption in boiling water exhibited by several of the IME's was considerably lower than the state of the art epoxies (from 3.2% for the control and state of the art to 2.0 wt% moisture absorption). Char yields are increased from 20% for control and state of the art epoxies to 40% for IME resins. Relative toughness characteristics of IME resins were measured by 10 deg off axis tensile tests of Celion 6000/IME composites. Results show that IME's containing 6F-3,3 prime-DDS or 6F-3,3 prime-DDS-1,12-DDA improved the "toughness" characteristics of composites by about 35% (tensile strength), about 35% (intralaminar shear

  18. Trifunctional Epoxy Resin Composites Modified by Soluble Electrospun Veils: Effect on the Viscoelastic and Morphological Properties

    PubMed Central

    Ognibene, Giulia; Mannino, Salvatore

    2018-01-01

    Electrospun veils from copolyethersulfones (coPES) were prepared as soluble interlaminar veils for carbon fiber/epoxy composites. Neat, resin samples were impregnated into coPES veils with unmodified resin, while dry carbon fabrics were covered with electrospun veils and then infused with the unmodified epoxy resin to prepare reinforced laminates. The thermoplastic content varied from 10 wt% to 20 wt%. TGAP epoxy monomer showed improved and fast dissolution for all the temperatures tested. The unreinforced samples were cured first at 180 °C for 2 h and then were post-cured at 220 °C for 3 h. These sample showed a high dependence on the curing cycle. Carbon reinforced samples showed significant differences compared to the neat resin samples in terms of both viscoelastic and morphological properties. PMID:29522444

  19. Development and characterization of soy-based epoxy resins and pultruded FRP composites

    NASA Astrophysics Data System (ADS)

    Zhu, Jiang

    This dissertation focuses on the development, manufacture and characterization of novel soy-based epoxy FRP composites. Use of alternative epoxy resin systems derived from a renewable resource holds potential for low cost raw materials for the polymer and composite industries. Epoxidized Allyl Soyate (EAS) and Epoxidized Methyl Soyate (EMS) were developed from soybean oil with two chemical modification procedures: transesterification and epoxidation. This research investigates the curing characteristics and thermal and mechanical properties of the neat soyate resin systems. The derived soyate resins have higher reactivity and superior performance compared to commercially available epoxidized soybean oil. An efficient two-step curing method was developed in order to utilize these soyate resins to their full potential. The epoxy co-resin systems with varied soyate resin content were successfully used to fabricate composite material through pultrusion. The pultrusion resin systems with 30 wt% soyate resins yielded improved, or comparable mechanical properties with neat commercial resins. A finite element analysis of the heat transfer and curing process was performed to study the processing characterization on glass/epoxy composite pultrusion. This model can be used to establish baseline process variables and will benefit subsequent optimization. This research demonstrates that soy-based resins, especially EAS, show considerable promise as an epoxy resin supplement for use in polymer and composite structural applications. The new products derived from soybean oil can provide competitive performance, low cost and environmental advantages.

  20. Thermochemical tests on resins: Char resistance of selected phenolic cured epoxides

    NASA Technical Reports Server (NTRS)

    Keck, F. L.

    1982-01-01

    Curing epoxy resins with novalac phenolic resins is a feasible approach for increasing intact char of the resin system. Char yields above 40% at 700 C were achieved with epoxy novalac (DEN 438)/novalac phenolic (BRWE 5833) resin systems with or without catalyst such as ethyl tri-phenyl phosphonium iodide. These char yields are comparable to commercially used epoxy resin systems like MY-720/DDS/BF3. Stable prepregs are easily made from a solvent solution of the epoxy/phenolic system and this provides a feasible process for fabrication of same into commercial laminates.

  1. Differences in interfacial bond strengths of graphite fiber-epoxy resin composites

    NASA Technical Reports Server (NTRS)

    Needles, H. L.

    1985-01-01

    The effect of epoxy-size and degree of cure on the interfacial bonding of an epoxy-amine-graphite fiber composite system is examined. The role of the fiber-resin interface in determining the overall mechanical properties of composites is poorly understood. A good interfacial adhesive bond is required to achieve maximum stress transfer to the fibers in composites, but at the same time some form of energy absorbing interfacial interaction is needed to achieve high fracture toughening. The incompatibility of these two processes makes it important to understand the nature and basic factors involved at the fiber-resin interface as stress is applied. The mechanical properties including interlaminar shear values for graphite fiber-resin composites are low compared to glass and boron-resin composites. These differences have been attributed to poor fiber-matrix adhesion. Graphite fibers are commonly subjected to post-treatments including application of organic sizing in order to improve their compatibility with the resin matrix and to protect the fiber tow from damage during processing and lay-up. In such processes, sized graphite fiber tow is impregnated with epoxy resin and then layed-up i nto the appropriate configuration. Following an extended ambient temperature cure, the graphite-resin composite structure is cured at elevated temperature using a programmed temperature sequence to cure and then cool the product.

  2. Toughening reinforced epoxy composites with brominated polymeric additives

    NASA Technical Reports Server (NTRS)

    Nir, Z.; Gilwee, W. J., Jr. (Inventor)

    1985-01-01

    Cured polyfunctional epoxy resins including tris (hydroxyphenyl) methane triglycidyl ether are toughened by addition of polybrominated polymeric additives having an EE below 1500 to the pre-cure composition. Carboxy terminated butadiene acrylonitrile rubber is optionally present in the precure mixture as such or as a pre-formed copolymer with other reactants. Reinforced composites, particularly carbon reinforced composites, of these resins are disclosed and shown to have improved toughness.

  3. Bonding Strength Properties of Adhesively-Timber Joint with Thixotropic and Room Temperature Cured Epoxy Based Adhesive Reinforced with Nano- and Micro-particles

    NASA Astrophysics Data System (ADS)

    Ahmad, Z.; Ansell, M. P.; Smedley, D.

    2011-02-01

    This research work is concerned with in situ bonded-in timber connection using pultruded rod; where the manufacturing of such joint requires adhesive which can produce thick glue-lines and does not allow any use of pressure and heat. Four types of thixotropic (for ease application) and room temperature cured epoxy based were used namely CB10TSS (regarded as standards adhesive), Nanopox (modification of CB10TSS with addition of nanosilica), Albipox (modification of CB10TSS with addition of liquid rubber) and Timberset (an epoxy-based adhesive with addition of micro-size ceramic particles). The quality of the adhesive bonds was accessed using block shear test in accordance with ASTM D905. The bond strength depends on how good the adhesive wet the timber surface. Therefore the viscosity and contact angle was also measured. The nano- and microfiller additions increased the bond strength significantly. The viscosity correlates well with contact angle measurements where lower viscosities are associated with lower contact angles. However contact angle contradicts with measured strength and wettability.

  4. Effects of cure temperature, electron radiation, and thermal cycling on P75/930 composites

    NASA Technical Reports Server (NTRS)

    Funk, Joan G.

    1990-01-01

    Graphite/epoxy composites are candidates for future space structures due to high stiffness and dimensional stability requirements of these structures. Typical graphite/epoxy composites are brittle and have high residual stresses which often result in microcracking during the thermal cycling typical of the space environment. Composite materials used in geosynchronous orbit applications will also be exposed to high levels of radiation. The purpose of the present study was to determine the effects of cure temperature and radiation exposure on the shear strength and thermal cycling-induced microcrack density of a high modulus, 275 F cure epoxy, P75/930. The results from the P75/930 are compared to previously reported data on P75/934 and T300/934 where 934 is a standard 350 F cure epoxy. The results of this study reveal that P75/930 is significantly degraded by total doses of electron radiation greater than 10(exp 8) rads and by thermally cycling between -250 F and 150 F. The P75/930 did not have improved microcrack resistance over the P75/934, and the 930 resin system appears to be more sensitive to electron radiation-induced degradation than the 934 resin system.

  5. Nanostructure of tetrafunctional epoxy resins and composites: Correlation to moisture absorption properties

    NASA Astrophysics Data System (ADS)

    Bolan, Brett Andrew

    The effect that changes in network topology, while maintaining a constant network polarity (i.e. thermodynamic driving force was kept constant), had upon the moisture absorption properties of an aerospace grade tetrafunctional epoxy (TGMDA) cured with multifunctional amines were investigated. Utilizing Positron Annihilation Lifetime Spectroscopy (PALS) to characterize the nanoscale structure of these epoxies, it was found that as the "static" hole volume (a measurement of packing defects at 0K) increased so did the equilibrium uptake. PALS studies of one of these resins cured to varying extents, found that this static amount increased with degree of cure indicating that the network becomes more open as a direct consequence of crosslinking. Polar groups, which are the attractive force for diffusion, are in the vicinity of these crosslinks, therefore it is believed that the increase in static hole volume results in exposing more polar groups for absorption. The diffusion coefficient, which is representative of the kinetic aspect of diffusion, was also investigated. It was discovered that the amount of nanohole volume in the polymer; whether the total, the static, or dynamic (i.e. thermally activated) does not correlate to the diffusion coefficient in anyway. Furthermore, at an isotherm the diffusion coefficients for all these materials were relatively constant. From this it is hypothesized that it is the similar sub-Tsb{g} motions of these resins which is the rate limiting step in diffusion. This was bolstered by the fact that the activation energy for diffusion and for the sub-Tsb{g} motions for these epoxies are of the same order of magnitude. The nanostructure of fiber reinforced epoxy composites (i.e. a boron/epoxy and a graphite/epoxy) were probed with the bulk PALS technique as well. It was observed that for the graphite/epoxy composite and its flash (i.e. no fibers present) cured under identical conditions, that the nanoholes in the composite were larger than

  6. Biobased Epoxy Resins from Deconstructed Native Softwood Lignin.

    PubMed

    van de Pas, Daniel J; Torr, Kirk M

    2017-08-14

    The synthesis of novel epoxy resins from lignin hydrogenolysis products is reported. Native lignin in pine wood was depolymerized by mild hydrogenolysis to give an oil product that was reacted with epichlorohydrin to give epoxy prepolymers. These were blended with bisphenol A diglycidyl ether or glycerol diglycidyl ether and cured with diethylenetriamine or isophorone diamine. The key novelty of this work lies in using the inherent properties of the native lignin in preparing new biobased epoxy resins. The lignin-derived epoxy prepolymers could be used to replace 25-75% of the bisphenol A diglycidyl ether equivalent, leading to increases of up to 52% in the flexural modulus and up to 38% in the flexural strength. Improvements in the flexural strength were attributed to the oligomeric products present in the lignin hydrogenolysis oil. These results indicate lignin hydrogenolysis products have potential as sustainable biobased polyols in the synthesis of high performance epoxy resins.

  7. High-Speed 3D Printing of High-Performance Thermosetting Polymers via Two-Stage Curing.

    PubMed

    Kuang, Xiao; Zhao, Zeang; Chen, Kaijuan; Fang, Daining; Kang, Guozheng; Qi, Hang Jerry

    2018-04-01

    Design and direct fabrication of high-performance thermosets and composites via 3D printing are highly desirable in engineering applications. Most 3D printed thermosetting polymers to date suffer from poor mechanical properties and low printing speed. Here, a novel ink for high-speed 3D printing of high-performance epoxy thermosets via a two-stage curing approach is presented. The ink containing photocurable resin and thermally curable epoxy resin is used for the digital light processing (DLP) 3D printing. After printing, the part is thermally cured at elevated temperature to yield an interpenetrating polymer network epoxy composite, whose mechanical properties are comparable to engineering epoxy. The printing speed is accelerated by the continuous liquid interface production assisted DLP 3D printing method, achieving a printing speed as high as 216 mm h -1 . It is also demonstrated that 3D printing structural electronics can be achieved by combining the 3D printed epoxy composites with infilled silver ink in the hollow channels. The new 3D printing method via two-stage curing combines the attributes of outstanding printing speed, high resolution, low volume shrinkage, and excellent mechanical properties, and provides a new avenue to fabricate 3D thermosetting composites with excellent mechanical properties and high efficiency toward high-performance and functional applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The fabrication, testing and delivery of boron/epoxy and graphite/epoxy nondestructive test standards

    NASA Technical Reports Server (NTRS)

    Pless, W. M.; Lewis, W. H.

    1971-01-01

    A description is given of the boron/epoxy and graphite/epoxy nondestructive test standards which were fabricated, tested and delivered to the National Aeronautics and Space Administration. Detailed design drawings of the standards are included to show the general structures and the types and location of simulated defects built into the panels. The panels were laminates with plies laid up in the 0 deg, + or - 45 deg, and 90 deg orientations and containing either titanium substrates or interlayered titanium perforated shims. Panel thickness was incrementally stepped from 2.36 mm (0.093 in.) to 12.7 mm (0.500 in.) for the graphite/epoxy standards, and from 2.36 mm (0.093 in.) to 6.35 mm (0.25 in.) for the boron/epoxy standards except for the panels with interlayered shims which were 2.9 mm (0.113 in.) maximum thickness. The panel internal conditions included defect free regions, resin variations, density/porosity variations, cure variations, delaminations/disbonds at substrate bondlines and between layers, inclusions, and interlayered shims. Ultrasonic pulse echo C-scan and low-kilovoltage X-ray techniques were used to evaluate and verify the internal conditions of the panels.

  9. Toughening mechanism in elastomer-modified epoxy resins, part 2

    NASA Technical Reports Server (NTRS)

    Yee, A. F.; Pearson, R. A.

    1984-01-01

    The role of matrix ductility on the toughenability and toughening mechanism of elastomer-modified DGEBRA epoxies was investigated. Matrix ductility was varied by using epoxide resins of varying epoxide monomer molecular weights. These epoxide resins were cured using 4,4' diaminodiphenyl sulfone (DDS) and, in some cases, modified with 10% HYCAR(r)CTBN 1300X8. Fracture roughness values for the neat epoxies were found to be almost independent on the monomer molecular weight of the epoxide resin used. However, it was found that the fracture toughness of the elastomer-modified epoxies was very dependent upon the epoxide monomer molecular weight. Tensile dilatometry indicated that the toughening mechanism, when present, is similar to the mechanisms found for the piperidine cured epoxies in Part 1. SEM and OM corroborate this finding. Dynamic mechanical studies were conducted to shed light on the toughenability of the epoxies. The time-dependent small strain behavior of these epoxies were separated into their bulk and shear components. The bulk component is related to brittle fracture, whereas the shear component is related to yielding. It can be shown that the rates of shear and bulk strain energy buildup for a given stress are uniquely determined by the values of Poisson's ratio, nu. It was found that nu increases as the monomer molecular weight of the epoxide resin used increases. This increase in nu can be associated with the low temperature beta relaxation. The effect of increasing cross-link density is to shift the beta relaxation to higher temperatures and to decrease the magnitude of the beta relaxation. Thus, increasing cross-link density decreases nu and increases the tendency towards brittle fracture.

  10. Photosensitive filler minimizes internal stresses in epoxy resins

    NASA Technical Reports Server (NTRS)

    Dillon, J. N.

    1967-01-01

    Photosensitive filler is added to curable epoxy resins to minimize stress from internal shrinkage during curing or polymerization. Cinnamic acid resins and cinnamal ketones may be added in the amount of 1 to 3 percent by weight of the resin mixture.

  11. Manufacture of fiber-epoxy test specimens: Including associated jigs and instrumentation

    NASA Technical Reports Server (NTRS)

    Mathur, S. B.; Felbeck, D. K.

    1980-01-01

    Experimental work on the manufacture and strength of graphite-epoxy composites is considered. The correct data and thus a true assessment of the strength properties based on a proper and scientifically modeled test specimen with engineered design, construction, and manufacture has led to claims of a very broad spread in optimized values. Such behavior is in the main due to inadequate control during manufacture of test specimen, improper curing, and uneven scatter in the fiber orientation. The graphite fibers are strong but brittle. Even with various epoxy matrices and volume fraction, the fracture toughness is still relatively low. Graphite-epoxy prepreg tape was investigated as a sandwich construction with intermittent interlaminar bonding between the laminates in order to produce high strength, high fracture toughness composites. The quality and control of manufacture of the multilaminate test specimen blanks was emphasized. The dimensions, orientation and cure must be meticulous in order to produce the desired mix.

  12. Properties of Two Carbon Composite Materials Using LTM25 Epoxy Resin

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.; Shah, C. H.; Postyn, A. S.

    1996-01-01

    In this report, the properties of two carbon-epoxy prepreg materials are presented. The epoxy resin used in these two materials can yield lower manufacturing costs due to its low initial cure temperature, and the capability of being cured using vacuum pressure only. The two materials selected for this study are MR50/LTM25, and CFS003/LTM25 with Amoco T300 fiber; both prepregs are manufactured by The Advanced Composites Group. MR50/LTM25 is a unidirectional prepreg tape using Mitsubishi MR50 carbon fiber impregnated with LTM25 epoxy resin. CRS003/LTM25 is a 2 by 2 twill fabric using Amoco T300 fiber and impregnated with LTM25 epoxy resin. Among the properties presented in this report are strength, stiffness, bolt bearing, and damage tolerance. Many of these properties were obtained at three environmental conditions: cold temperature/dry (CTD), room temperature/dry (RTD), and elevated temperature/wet (ETW). A few properties were obtained at room temperature/wet (RTW), and elevated temperature/dry (ETD). The cold and elevated temperatures used for testing were -125 F and 180 F, respectively. In addition, several properties related to processing are presented.

  13. Development of self-healing polymers via amine-epoxy chemistry: I. Properties of healing agent carriers and the modelling of a two-part self-healing system

    NASA Astrophysics Data System (ADS)

    Zhang, He; Yang, Jinglei

    2014-06-01

    Two types of healing agent carriers (microcapsules containing epoxy solution, referred to as EP-capsules, and etched hollow glass bubbles (HGBs) loaded with amine solution, referred to as AM-HGBs) used in self-healing epoxy systems were prepared and characterized in this study. The core percentages were measured at about 80 wt% and 33 wt% for EP-capsules and AM-HGBs, respectively. The loaded amine in AM-HGB, after incorporation into the epoxy matrix, showed high stability at ambient temperature, but diffused out gradually during heat treatment at 80 °C. The amount and the mass ratio of the two released healants at the crack plane were correlated with the size, concentration, and core percentage of the healing agent carriers. A simplified cubic array model for randomly distributed healing agent carriers was adopted to depict the longest diffusion distance of the released healants, which is inversely proportional to the cubic root of the carrier concentration.

  14. Mechanical testing of a steel-reinforced epoxy resin bar and clamp for external skeletal fixation of long-bone fractures in cats.

    PubMed

    Leitch, B J; Worth, A J

    2018-05-01

    To provide veterinarians with confidence when using a commercially available epoxy resin in external skeletal fixators (ESF), testing was conducted to determine exothermia during curing of the epoxy resin compared to polymethylmethacrylate (PMMA), the hardness of the epoxy resin as a bar over 16 weeks, and the strength of the epoxy resin bar compared with metal clamps in similarly constructed Type 1a ESF constructs simulating the repair of feline long bone fractures. Exothermia of the epoxy resin during curing was tested against PMMA with surface temperatures recorded over the first 15 minutes of curing, using four samples of each product. The hardness of 90 identical epoxy resin bars was tested by subjecting them to cyclic loads (1,000 cycles of 20.5 N, every 7 days) over a 16-week period and impact testing 10 bars every 2 weeks. Ten bars that were not subjected to cyclic loads were impact tested at 0 weeks and another 10 at 16 weeks. Strength of the epoxy resin product, as a bar and clamp composite, was tested against metal SK and Kirschner-Ehmer (KE) clamps and bars in Type 1a, tied-in intramedullary pin, ESF constructs with either 90° or 75° pin placement, subjected to compressive and bending loads to 75 N. The maximum temperature during curing of the epoxy resin (min 39.8, max 43.0)°C was less than the PMMA (min 85.2, max 98.5)°C (p<0.001). There was no change in hardness of the epoxy resin bars over the 16 weeks of cyclic loading (p=0.58). There were no differences between the median strength of the epoxy resin, SK or KE ESF constructs in compression or bending when tested to 75 N (p>0.05). Stiffness of constructs with 75° pin placement was greater for SK than epoxy resin constructs in compression (p=0.046), and was greater for KE than epoxy resin constructs in bending (p=0.033). The epoxy resin tested was found to be less exothermic than PMMA; bars made from the epoxy resin showed durability over an expected fracture healing timeframe and had

  15. Effect of electron beam irradiation on thermal and mechanical properties of epoxy polymer

    NASA Astrophysics Data System (ADS)

    Nguyen, A. T.; Visakh, P. M.; Nazarenko, O. B.; Chandran, C. S.; Melnikova, T. V.

    2017-01-01

    This study investigates the thermal and mechanical properties of epoxy polymer after exposure to different doses of electron beam irradiation. The epoxy polymer was prepared using epoxy-diane resin ED-20 cured by polyethylenepolyamine. The irradiation of the samples was carried out with doses of 30, 100 and 300 kGy. The effects of doses on thermal and mechanical properties of the epoxy polymer were investigated by the methods of thermal gravimetric analysis, tensile test, and dynamic mechanical analysis. The thermal properties of the epoxy polymer slightly increased after irradiation at the heating in air. The tensile strength and Young’s modulus of the epoxy polymer increased by the action of electron beam up to dose of 100 kGy and then decreased. The elongation at break decreased with increasing the irradiation dose.

  16. Atomistic modeling of thermomechanical properties of SWNT/Epoxy nanocomposites

    NASA Astrophysics Data System (ADS)

    Fasanella, Nicholas; Sundararaghavan, Veera

    2015-09-01

    Molecular dynamics simulations are performed to compute thermomechanical properties of cured epoxy resins reinforced with pristine and covalently functionalized carbon nanotubes. A DGEBA-DDS epoxy network was built using the ‘dendrimer’ growth approach where 75% of available epoxy sites were cross-linked. The epoxy model is verified through comparisons to experiments, and simulations are performed on nanotube reinforced cross-linked epoxy matrix using the CVFF force field in LAMMPS. Full stiffness matrices and linear coefficient of thermal expansion vectors are obtained for the nanocomposite. Large increases in stiffness and large decreases in thermal expansion were seen along the direction of the nanotube for both nanocomposite systems when compared to neat epoxy. The direction transverse to nanotube saw a 40% increase in stiffness due to covalent functionalization over neat epoxy at 1 K whereas the pristine nanotube system only saw a 7% increase due to van der Waals effects. The functionalized SWNT/epoxy nanocomposite showed an additional 42% decrease in thermal expansion along the nanotube direction when compared to the pristine SWNT/epoxy nanocomposite. The stiffness matrices are rotated over every possible orientation to simulate the effects of an isotropic system of randomly oriented nanotubes in the epoxy. The randomly oriented covalently functionalized SWNT/Epoxy nanocomposites showed substantial improvements over the plain epoxy in terms of higher stiffness (200% increase) and lower thermal expansion (32% reduction). Through MD simulations, we develop means to build simulation cells, perform annealing to reach correct densities, compute thermomechanical properties and compare with experiments.

  17. Colorless triphenylamine-based aliphatic thermoset epoxy for multicolored and near-infrared electrochromic applications.

    PubMed

    Chuang, Ya-Wen; Yen, Hung-Ju; Wu, Jia-Hao; Liou, Guey-Sheng

    2014-03-12

    In this study, two novel colorless thermoset epoxy resins with anodically electrochromism were prepared from the thermal curing of two triphenylamine-based diamine monomers, 4,4'-diamino-4″-methoxytriphenylamine (1) and N,N'-bis(4-aminophenyl)-N,N'-di(4-methoxylphenyl)-1,4-phenylenediamine (2) with aliphatic epoxy triglycidyl isocyanurate, respectively. The resulting thermoset epoxy resins showed excellent softening temperature (Ts, 270 and 280 °C) due to the rigid structure and highly crosslinking density. In addition, novel colorless epoxy resin films revealed good reversible electrochemical oxidation and interesting multi-electrochromic behavior with high contrast ratio both in visible and near-infrared regions. The aliphatic thermoset epoxy resins also exhibited high transparency in visible region as colorless and great potential for practical electrochromic applications.

  18. Composite Materials With Uncured Epoxy Matrix Exposed in Stratosphere During NASA Stratospheric Balloon Flight

    NASA Technical Reports Server (NTRS)

    Kondyurin, Alexey; Kondyurina, Irina; Bilek, Marcela; de Groh, Kim K.

    2013-01-01

    A cassette of uncured composite materials with epoxy resin matrixes was exposed in the stratosphere (40 km altitude) over three days. Temperature variations of -76 to 32.5C and pressure up to 2.1 torr were recorded during flight. An analysis of the chemical structure of the composites showed, that the polymer matrix exposed in the stratosphere becomes crosslinked, while the ground control materials react by way of polymerization reaction of epoxy groups. The space irradiations are considered to be responsible for crosslinking of the uncured polymers exposed in the stratosphere. The composites were cured on Earth after landing. Analysis of the cured composites showed that the polymer matrix remains active under stratospheric conditions. The results can be used for predicting curing processes of polymer composites in a free space environment during an orbital space flight.

  19. Assessment of increased wet wood bonding for epoxy-bonded samples using a melamine-urea-formaldehyde priming agent

    Treesearch

    Jermal G. Chandler; Charles R. Frihart

    2005-01-01

    Is the hydroxymethylated resorcinol (HMR) primer unique or can a melamine- based primer also increase the wet wood strength of epoxy bonds? Although the exact reason for poor durability with some wood adhesives is not known, the HMR priming agent was found to facilitate durable bonds in most cases tested. A model of cell wall stabilization that is believed to be the...

  20. Development of phosphorylated adhesives

    NASA Technical Reports Server (NTRS)

    Bilow, N.; Giants, T. W.; Jenkins, R. K.; Campbell, P. L.

    1983-01-01

    The synthesis of epoxy prepolymers containing phosphorus was carried out in such a manner as to provide adhesives containing at least 5 percent of this element. The purpose of this was to impart fire retardant properties to the adhesive. The two epoxy derivatives, bis(4-glycidyl-oxyphenyl)phenylphosphine oxide and bis(4-glycidyl-2-methoxyphenyl)phenylphosphonate, and a curing agent, bis(3-aminophenyl)methylphosphine oxide, were used in conjunction with one another and along with conventional epoxy resins and curing agents to bond Tedlar and Polyphenylethersulfone films to Kerimid-glass syntactic foam-filled honeycomb structures. Elevated temperatures are required to cure the epoxy resins with the phosphorus-contaning diamine; however, when Tedlar is being bonded, lower curing temperatures must be used to avoid shrinkage and the concomitant formation of surface defects. Thus, the phosphorus-containing aromatic amine curing agent cannot be used alone, although it is possible to use it in conjunction with an aliphatic amine which would allow lower cure temperatures to be used. The experimental epoxy resins have not provided adhesive bonds quite as strong as those provided by Epon 828 when compared in peel tests, but the differences are not very significant. It should be noted, if optimum properties are to be realized. In any case the fire retardant characteristics of the neat resin systems obtained are quite pronounced, since in most cases the self-extinguishing properties are evident almost instantly when specimens are removed from a flame.

  1. [The working environment control of anhydride hardeners from an epoxy resin system].

    PubMed

    Matsumoto, Naomi; Yokota, Kozo; Johyama, Yasushi; Takakura, Toshiyuki

    2003-07-01

    Epoxy resins are widely used in adhesives, coatings, materials for molds and composites, and encapsulation. Acid anhydrides such as methyltetrahydrophthalic anhydride are being used as curing agents for epoxy resins. The anhydride hardeners are well-known industrial inhalant allergens, inducing predominantly type I allergies. In the electronic components industry, these substances have been consumed in large quantities. Therefore, safe use in the industry demands control of the levels of exposure causing allergic diseases in the workshop. We conducted a prospective survey of two electronics plants to clarify how to control the atmospheric level of the anhydrides in the work environment. Measurements of the levels of the anhydrides in air started according to the Working Environment Measurement Standards (Ministry of Labour Notification No. 46, 1976) in April 2000, along with improvements in the work environment. A value of 40 micrograms/m3 was adopted as the administrative control level to judge the propriety of the working environment control. A total of 2 unit work areas in both plants belonged to Control Class III. The exposure originated from manual loading, casting, uncured hot resins, and leaks in an impregnating-machine or curing ovens. In order to achieve the working environment control, complete enclosure of the source, installation of local exhaust ventilation, and improvement or maintenance of the local exhaust ventilation system were performed on the basis of the results of the working environment measurement, with the result that the work environment was improved (Control Class I). It became evident that these measures were effective just like other noxious substances.

  2. Characterization of Epoxy Functionalized Graphite Nanoparticles and the Physical Properties of Epoxy Matrix Nanocomposites

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Bauer, Jonathan L.; Maryanski, Michael J.; Heimann, Paula J.; Barlow, Jeremy P.; Gosau, Jan-Michael; Allred, Ronald E.

    2010-01-01

    This work presents a novel approach to the functionalization of graphite nanoparticles. The technique provides a mechanism for covalent bonding between the filler and matrix, with minimal disruption to the sp2 hybridization of the pristine graphene sheet. Functionalization proceeded by covalently bonding an epoxy monomer to the surface of expanded graphite, via a coupling agent, such that the epoxy concentration was measured as approximately 4 wt.%. The impact of dispersing this material into an epoxy resin was evaluated with respect to the mechanical properties and electrical conductivity of the graphite-epoxy nanocomposite. At a loading as low as 0.5 wt.%, the electrical conductivity was increased by five orders of magnitude relative to the base resin. The material yield strength was increased by 30% and Young s modulus by 50%. These results were realized without compromise to the resin toughness.

  3. Literature Review: An Overview of Epoxy Resin Syntactic Foams with Glass Microballoons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, Jennie

    2014-03-12

    Syntactic foams are an important category of composite materials that have abundant applications in a wide variety of fields. The bulk phase of syntactic foams is a three-part epoxy resin formulation that consists of a base resin, a curative (curing agent) and a modifier (diluent and/or accelerator) [12]. These thermoset materials [12] are used frequently for their thermal stability [9], low moisture absorption and high compressive strength [10]. The characteristic feature of a syntactic foam is a network of beads that forms pores within the epoxy matrix [3]. In this review, hollow glass beads (known as glass microballoons) are considered,more » however, solid beads or microballoons made from materials such as ceramic, polymer or metal can also be used [3M, Peter]. The network of hollow beads forms a closed-cell foam; the term closed-cell comes from the fact that the microspheres used in the resin matrix are completely closed and filled with gas (termed hollow). In contrast, the microspheres used in open-cell foams are either not completely closed or broken so that matrix material can fill the spheres [11]. Although closed foams have been found to possess higher densities than open cell foams, their rigid structures give them superior mechanical properties [12]. Past research has extensively studied the effects that changing the volume fraction of microballoons to epoxy will have on the resulting syntactic foam [3,4,9]. In addition, published literature also explores how the microballoon wall thickness affects the final product [4,9,10]. Findings detail that indeed both the mechanical and some thermal properties of syntactic foams can be tailored to a specific application by varying either the volume fraction or the wall thickness of the microballoons used [10]. The major trends in syntactic foam research show that microballoon volume fraction has an inversely proportionate relationship to dynamic properties, while microballoon wall thickness is proportional to

  4. Aqueous vinylidene fluoride polymer coating composition

    NASA Technical Reports Server (NTRS)

    Bartoszek, Edward J. (Inventor); Christofas, Alkis (Inventor)

    1978-01-01

    A water-based coating composition which may be air dried to form durable, fire resistant coatings includes dispersed vinylidene fluoride polymer particles, emulsified liquid epoxy resin and a dissolved emulsifying agent for said epoxy resin which agent is also capable of rapidly curing the epoxy resin upon removal of the water from the composition.

  5. High performance, rapid thermal/UV curing epoxy resin for additive manufacturing of short and continuous carbon fiber epoxy composites

    DOEpatents

    Lewicki, James

    2018-04-17

    An additive manufacturing resin system including an additive manufacturing print head; a continuous carbon fiber or short carbon fibers operatively connected to the additive manufacturing print head; and a tailored resin operatively connected to the print head, wherein the tailored resin has a resin mass and wherein the tailored resin includes an epoxy component, a filler component, a catalyst component, and a chain extender component; wherein the epoxy component is 70-95% of the resin mass, wherein the filler component is 1-20% of the resin mass, wherein the catalyst component is 0.1-10% of the resin mass, and wherein the chain extender component is 0-50% of the resin mass.

  6. Spall Strength Measurements in Transparent Epoxy Polymers

    NASA Astrophysics Data System (ADS)

    Pepper, Jonathan; Rahmat, Meysam; Petel, Oren

    2017-06-01

    Polymer nanocomposites are seeing more frequent use in transparent armour applications. The role of the microstructure on the performance of these materials under dynamic tensile loading conditions is of particular interest. In the present study, a series of plate impact experiments was conducted in order to evaluate the dynamic response of an epoxy (EPON 828) cured with two differed hardeners. The purpose was to compare the role of these hardeners on the dynamic performance of the resulting transparent epoxy. The material response was resolved with a multi-channel photonic Doppler velocimeter. This system was used to determine the shock Hugoniot and dynamic tensile (spall) strength of the materials. The experimental results are presented in reference to spall theory and are evaluated against results predicted by an analytical model of the impacts. While varying the hardener did not change the shock Hugoniot of the epoxy, it did have an effect on the measured spall strengths.

  7. Fabrication and characterization of tapered graphite/epoxy box beams

    NASA Astrophysics Data System (ADS)

    Yen, S.-C.; Gopal, P.; Dharani, L. R.

    1993-04-01

    Graphite/epoxy (T300/934) prepreg is used to fabricate tapered box beams with a taper angle of 2 deg between the top and bottom walls. The prepreg is cured on a segmented steel core using a hot-press. A screw arrangement is used to apply curing pressure in the horizontal direction, while the platens of the hot-press apply pressure in the vertical direction. The inplane bending stiffness of the beam is determined by 3-point bend test and is found to be in agreement with theory.

  8. A statistical comparison of two carbon fiber/epoxy fabrication techniques

    NASA Technical Reports Server (NTRS)

    Hodge, A. J.

    1991-01-01

    A statistical comparison of the compression strengths of specimens that were fabricated by either a platen press or an autoclave were performed on IM6/3501-6 carbon/epoxy composites of 16-ply (0,+45,90,-45)(sub S2) lay-up configuration. The samples were cured with the same parameters and processing materials. It was found that the autoclaved panels were thicker than the platen press cured samples. Two hundred samples of each type of cure process were compression tested. The autoclaved samples had an average strength of 450 MPa (65.5 ksi), while the press cured samples had an average strength of 370 MPa (54.0 ksi). A Weibull analysis of the data showed that there is only a 30 pct. probability that the two types of cure systems yield specimens that can be considered from the same family.

  9. Bio-Based Aromatic Epoxy Monomers for Thermoset Materials.

    PubMed

    Ng, Feifei; Couture, Guillaume; Philippe, Coralie; Boutevin, Bernard; Caillol, Sylvain

    2017-01-18

    The synthesis of polymers from renewable resources is a burning issue that is actively investigated. Polyepoxide networks constitute a major class of thermosetting polymers and are extensively used as coatings, electronic materials, adhesives. Owing to their outstanding mechanical and electrical properties, chemical resistance, adhesion, and minimal shrinkage after curing, they are used in structural applications as well. Most of these thermosets are industrially manufactured from bisphenol A (BPA), a substance that was initially synthesized as a chemical estrogen. The awareness on BPA toxicity combined with the limited availability and volatile cost of fossil resources and the non-recyclability of thermosets implies necessary changes in the field of epoxy networks. Thus, substitution of BPA has witnessed an increasing number of studies both from the academic and industrial sides. This review proposes to give an overview of the reported aromatic multifunctional epoxide building blocks synthesized from biomass or from molecules that could be obtained from transformed biomass. After a reminder of the main glycidylation routes and mechanisms and the recent knowledge on BPA toxicity and legal issues, this review will provide a brief description of the main natural sources of aromatic molecules. The different epoxy prepolymers will then be organized from simple, mono-aromatic di-epoxy, to mono-aromatic poly-epoxy, to di-aromatic di-epoxy compounds, and finally to derivatives possessing numerous aromatic rings and epoxy groups.

  10. Surface and buried interfacial structures of epoxy resins used as underfills studied by sum frequency generation vibrational spectroscopy.

    PubMed

    Vázquez, Anne V; Holden, Brad; Kristalyn, Cornelius; Fuller, Mike; Wilkerson, Brett; Chen, Zhan

    2011-05-01

    Flip chip technology has greatly improved the performance of semiconductor devices, but relies heavily on the performance of epoxy underfill adhesives. Because epoxy underfills are cured in situ in flip chip semiconductor devices, understanding their surface and interfacial structures is critical for understanding their adhesion to various substrates. Here, sum frequency generation (SFG) vibrational spectroscopy was used to study surface and buried interfacial structures of two model epoxy resins used as underfills in flip chip devices, bisphenol A digylcidyl ether (BADGE) and 1,4-butanediol diglycidyl ether (BDDGE). The surface structures of these epoxies were compared before and after cure, and the orientations of their surface functional groups were deduced to understand how surface structural changes during cure may affect adhesion properties. Further, the effect of moisture exposure, a known cause of adhesion failure, on surface structures was studied. It was found that the BADGE surface significantly restructured upon moisture exposure while the BDDGE surface did not, showing that BADGE adhesives may be more prone to moisture-induced delamination. Lastly, although surface structure can give some insight into adhesion, buried interfacial structures more directly correspond to adhesion properties of polymers. SFG was used to study buried interfaces between deuterated polystyrene (d-PS) and the epoxies before and after moisture exposure. It was shown that moisture exposure acted to disorder the buried interfaces, most likely due to swelling. These results correlated with lap shear adhesion testing showing a decrease in adhesion strength after moisture exposure. The presented work showed that surface and interfacial structures can be correlated to adhesive strength and may be helpful in understanding and designing optimized epoxy underfill adhesives.

  11. Detection of leachables and cytotoxicity after exposure to methacrylate- and epoxy-based root canal sealers in vitro.

    PubMed

    Lodienė, Greta; Kopperud, Hilde M; Ørstavik, Dag; Bruzell, Ellen M

    2013-10-01

    Root canal sealing materials may have toxic potential in vitro depending on the cell line, cytotoxicity assay, material chemistry, and degree of polymer curing. The aims of the present study were to detect leaching components from epoxy- or methacrylate-based root canal sealers and to investigate the degree of cytotoxicity after exposure to extracts from these materials. Qualitative determination of substances released from the materials was performed by gas- and liquid chromatography/mass spectrometry. Submandibular salivary gland acinar cell death (apoptosis/necrosis) was determined using a fluorescence staining/microscopy technique. The major leachable monomer from the epoxy-based material was bisphenol-A diglycidyl ether (BADGE), whereas leachables from the methacrylate-based materials were mainly triethylene glycol dimethacrylate (TEGDMA), urethane dimethacrylate (UDMA), hydroxyethyl methacrylate (HEMA), and polyethyleneglycol dimethacrylate (PEGDMA). Exposure to diluted extracts of cured methacrylate-based materials caused a postexposure time-dependent increase in cell death. This effect was not demonstrated as a result of exposure to undiluted extract of cured epoxy-based material. Extracts of all fresh materials induced apoptosis significantly, but at lower dilutions of the epoxy- than the methacrylate-based materials. The degree of leaching, determined from the relative chromatogram peak heights of eluates from the methacrylate-based sealer materials, corresponded with the degree of cell death induced by extracts of these materials. © 2013 Eur J Oral Sci.

  12. In-situ measurement of thermoset resin degree of cure using embedded fiber optic

    NASA Astrophysics Data System (ADS)

    Breglio, Giovanni; Cusano, Andrea; Cutolo, Antonello; Calabro, Antonio M.; Cantoni, Stefania; Di Vita, Gandolfo; Buonocore, Vincenzo; Giordano, Michele; Nicolais, Luigi, II

    1999-12-01

    In this work, a fiber optic sensor based on Fresnel principle is presented. It is used to monitor the variations of the refractive index due to the cure process of an epoxy based resin. These materials are widely used in polymer- matrix composites. The process of thermoset matrix based composite involves mass and heat transfer coupled with irreversible chemical reactions inducing physical changes: the transformation of a fluid resin into a rubber and then into a solid glass. To improve the quality and the reliability of these materials key points are the cure monitoring and the optimization of the manufacturing process. To this aim, the fiber optic embedded sensor has been designed, developed and tested. Preliminary results on sensor capability to monitor the cure kinetics are shown. Correlation between the sensor output and conversion advancement has been proposed following the Lorentz-Lorenz law. Isothermal data form the sensor have been compared with calorimetric analysis of an epoxy based resin.

  13. Healing efficiency and dynamic mechanical properties of self-healing epoxy systems

    NASA Astrophysics Data System (ADS)

    Guadagno, Liberata; Raimondo, Marialuigia; Naddeo, Carlo; Longo, Pasquale; Mariconda, Annaluisa; Binder, Wolfgang H.

    2014-03-01

    Several systems to develop self-repairing epoxy resins have recently been formulated. In this paper the effect of matrix nature and curing cycle on the healing efficiency and dynamic mechanical properties of self-healing epoxy resins were investigated. We discuss several aspects by transferring self-healing systems from the laboratory scale to real applications in the aeronautic field, such as the possibility to choose systems with increased glass transition temperature, high storage modulus and high values in the healing functionality under real working conditions.

  14. Low-temperature mechanical properties of glass/epoxy laminates

    NASA Astrophysics Data System (ADS)

    Reed, R. P.; Madhukar, M.; Thaicharoenporn, B.; Martovetsky, N. N.

    2014-01-01

    Selected mechanical properties of glass/epoxy laminate candidates for use in the electrical turn and ground insulation of the ITER Central solenoid (CS) modules were measured. Short-beam shear and flexural tests have been conducted on various E-glass cloth weaves/epoxy laminates at 295 and 77 K. Types of glass weave include 1581, 7500, 7781, and 38050, which represent both satin and plain weaves. The epoxy, planned for use for vacuum-pressure impregnation of the CS module, consists of an anhydride-cured bisphenol F resin system. Inter-laminar shear strength, flexural elastic modulus, and flexural strength have been measured. The data indicate that these properties are dependent on the volume percent of glass. Short-beam shear strength was measured as a function of the span-to-thickness ratio for all laminates at 77 K. Comprehensive fractography was conducted to obtain the failure mode of each short-beam shear test sample.

  15. Residual Stress Developed During the Cure of Thermosetting Polymers: Optimizing Cure Schedule to Minimize Stress.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kropka, Jamie Michael; Stavig, Mark E.; Jaramillo, Rex

    When thermosetting polymers are used to bond or encapsulate electrical, mechanical or optical assemblies, residual stress, which often affects the performance and/or reliability of these devices, develops within the structure. The Thin-Disk-on-Cylinder structural response test is demonstrated as a powerful tool to design epoxy encapsulant cure schedules to reduce residual stress, even when all the details of the material evolution during cure are not explicitly known. The test's ability to (1) distinguish between cohesive and adhesive failure modes and (2) demonstrate methodologies to eliminate failure and reduce residual stress, make choices of cure schedules that optimize stress in the encapsulantmore » unambiguous. For the 828/DEA/GMB material in the Thin-Disk-on-Cylinder geometry, the stress associated with cure is significant and outweighs that associated with cool down from the final cure temperature to room temperature (for measured lid strain, Scure I > I I e+h erma * II) * The difference between the final cure temperature and 1 1 -- the temperature at which the material gels, Tf-T ge i, was demonstrated to be a primary factor in determining the residual stress associated with cure. Increasing T f -T ge i leads to a reduction in cure stress that is described as being associated with balancing some of the 828/DEA/GMB cure shrinkage with thermal expansion. The ability to tune residual stress associated with cure by controlling T f -T ge i would be anticipated to translate to other thermosetting encapsulation materials, but the times and temperatures appropriate for a given material may vary widely.« less

  16. A criterion for maximum resin flow in composite materials curing process

    NASA Astrophysics Data System (ADS)

    Lee, Woo I.; Um, Moon-Kwang

    1993-06-01

    On the basis of Springer's resin flow model, a criterion for maximum resin flow in autoclave curing is proposed. Validity of the criterion was proved for two resin systems (Fiberite 976 and Hercules 3501-6 epoxy resin). The parameter required for the criterion can be easily estimated from the measured resin viscosity data. The proposed criterion can be used in establishing the proper cure cycle to ensure maximum resin flow and, thus, the maximum compaction.

  17. Comparison of the Effect of Curing on the Properties of E-Glass/Cyanate modified Epoxy Cross Plied Laminates

    NASA Astrophysics Data System (ADS)

    Nallayan, W. Andrew; Vijayakumar, K. R.; Rasheed, Usama Tariq

    2017-05-01

    High performance polymer composite laminates that are used in Aerospace and Electronics industries requires laminates that are structurally rigid besides exhibiting high stiffness and good di electrical properties. They are required to be transparent to EM waves in order to transmit the signal with almost zero transmission loss. Response of the laminates under different loadings could hence establish a potent material combination with high structural strengths that could be used in sectors dealing with Signal transmissions. The results thus acquired can be used as a database for choosing relatively better materials for Radome and their advanced versions in the coming decades. To augment this, thin laminates with 4 plies with simple stacking configurations of 0/90/0/90 degrees as applicable to a cross plied laminates were fabricated with cyanate ester modified epoxy resin and 1200GSM E glass unidirectional fiber. Flexural and Impact strength were the properties identified for the accessing the structural responses of the Laminate as against room and oven curing conditions. FESEM images were applied to validate the experimental findings.

  18. The effect of cross linking density on the mechanical properties and structure of the epoxy polymers: molecular dynamics simulation.

    PubMed

    Shokuhfar, Ali; Arab, Behrouz

    2013-09-01

    Recently, great attention has been focused on using epoxy polymers in different fields such as aerospace, automotive, biotechnology, and electronics, owing to their superior properties. In this study, the classical molecular dynamics (MD) was used to simulate the cross linking of diglycidyl ether of bisphenol-A (DGEBA) with diethylenetriamine (DETA) curing agent, and to study the behavior of resulted epoxy polymer with different conversion rates. The constant-strain (static) approach was then applied to calculate the mechanical properties (Bulk, shear and Young's moduli, elastic stiffness constants, and Poisson's ratio) of the uncured and cross-linked systems. Estimated material properties were found to be in good agreement with experimental observations. Moreover, the dependency of mechanical properties on the cross linking density was investigated and revealed improvements in the mechanical properties with increasing the cross linking density. The radial distribution function (RDF) was also used to study the evolution of local structures of the simulated systems as a function of cross linking density.

  19. Anti-corrosion mechanism of epoxy-resin and different content Fe2O3 coatings on magnesium alloy

    NASA Astrophysics Data System (ADS)

    Jin, Tao; Kong, Fan-mei; Bai, Rui-qin; Zhang, Ru-liang

    2016-12-01

    In this study, anti-corrosion coatings were prepared and coated successfully on magnesium alloy substrates by mixing nanopowders, solvent, curing agent with epoxy resin. The effect of the amount of iron trioxide (Fe2O3) on the adhesion strength and corrosion resistance on magnesium alloy was investigated with standard protocols, and electrochemical measurements were also made in 3.5 wt.% NaCl solutions. The surface morphology and corrosion mechanism after corrosion tests was characterized using FESEM analysis. Nanoparticles in matrix acted as filler, and interstitial cross-linked spaces and other coating artifacts regions (micro cracks and voids) would all affect the anti-corrosion properties of coating. The results showed the proper powder content not only provided adhesion strength to these coatings but also improved obviously their anticorrosion. Hydrogen bound to the amine nitrogen (1N) could take part in the curing process rather than hydrogen of the amide site due to the smaller Δ G and the more stable configuration.

  20. Fabrication and Characterization of Silicon Carbide Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Townsend, James

    Nanoscale fillers can significantly enhance the performance of composites by increasing the extent of filler-to-matrix interaction. Thus far, the embedding of nanomaterials into composites has been achieved, but the directional arrangement has proved to be a challenging task. Even with advances in in-situ and shear stress induced orientation, these methods are both difficult to control and unreliable. Therefore, the fabrication of nanomaterials with an ability to orient along a magnetic field is a promising pathway to create highly controllable composite systems with precisely designed characteristics. To this end, the goal of this dissertation is to develop magnetically active nanoscale whiskers and study the effect of the whiskers orientation in a polymer matrix on the nanocomposite's behavior. Namely, we report the surface modification of silicon carbide whiskers (SiCWs) with magnetic nanoparticles and fabrication of SiC/epoxy composite materials. The magnetic nanoparticles attachment to the SiCWs was accomplished using polyelectrolyte polymer-to-polymer complexation. The "grafting to" and adsorption techniques were used to attach the polyelectrolytes to the surface of the SiCWs and magnetic nanoparticles. The anchored polyelectrolytes were polyacrylic acid (PAA) and poly(2-vinylpyridine) (P2VP). Next, the SiC/epoxy composites incorporating randomly oriented and magnetically oriented whiskers were fabricated. The formation of the composite was studied to determine the influence of the whiskers' surface composition on the epoxy curing reaction. After curing, the composites' thermal and thermo-mechanical properties were studied. These properties were related to the dispersion and orientation of the fillers in the composite samples. The obtained results indicated that the thermal and thermo-mechanical properties could be improved by orienting magnetically-active SiCWs inside the matrix. Silanization, "grafting to", adsorption, and complexation were used to modify

  1. Effects of Hygrothermal Cycling on the Chemical, Thermal, and Mechanical Properties of 862/W Epoxy Resin

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Roberts, Gary D.; Copa, Christine C.; Bail, Justin L.; Kohlman, Lee W.; Binienda, Wieslaw K.

    2011-01-01

    The hygrothermal aging characteristics of an epoxy resin were characterized over 1 year, which included 908 temperature and humidity cycles. The epoxy resin quickly showed evidence of aging through color change and increased brittleness. The influence of aging on the material s glass transition temperature (Tg) was evaluated by Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). The Tg remained relatively constant throughout the year long cyclic aging profile. The chemical composition was monitored by Fourier Transform Infrared Spectroscopy (FTIR) where evidence of chemical aging and advancement of cure was noted. The tensile strength of the resin was tested as it aged. This property was severely affected by the aging process in the form of reduced ductility and embrittlement. Detailed chemical evaluation suggests many aging mechanisms are taking place during exposure to hygrothermal conditions. This paper details the influence of processes such as: advancement of cure, chemical degradation, and physical aging on the chemical and physical properties of the epoxy resin.

  2. Low-temperature mechanical properties of glass/epoxy laminates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, R. P.; Madhukar, M.; Thaicharoenporn, B.

    2014-01-27

    Selected mechanical properties of glass/epoxy laminate candidates for use in the electrical turn and ground insulation of the ITER Central solenoid (CS) modules were measured. Short-beam shear and flexural tests have been conducted on various E-glass cloth weaves/epoxy laminates at 295 and 77 K. Types of glass weave include 1581, 7500, 7781, and 38050, which represent both satin and plain weaves. The epoxy, planned for use for vacuum-pressure impregnation of the CS module, consists of an anhydride-cured bisphenol F resin system. Inter-laminar shear strength, flexural elastic modulus, and flexural strength have been measured. The data indicate that these properties aremore » dependent on the volume percent of glass. Short-beam shear strength was measured as a function of the span-to-thickness ratio for all laminates at 77 K. Comprehensive fractography was conducted to obtain the failure mode of each short-beam shear test sample.« less

  3. Curing of Thick Thermoset Composite Laminates: Multiphysics Modeling and Experiments

    NASA Astrophysics Data System (ADS)

    Anandan, S.; Dhaliwal, G. S.; Huo, Z.; Chandrashekhara, K.; Apetre, N.; Iyyer, N.

    2017-11-01

    Fiber reinforced polymer composites are used in high-performance aerospace applications as they are resistant to fatigue, corrosion free and possess high specific strength. The mechanical properties of these composite components depend on the degree of cure and residual stresses developed during the curing process. While these parameters are difficult to determine experimentally in large and complex parts, they can be simulated using numerical models in a cost-effective manner. These simulations can be used to develop cure cycles and change processing parameters to obtain high-quality parts. In the current work, a numerical model was built in Comsol MultiPhysics to simulate the cure behavior of a carbon/epoxy prepreg system (IM7/Cycom 5320-1). A thermal spike was observed in thick laminates when the recommended cure cycle was used. The cure cycle was modified to reduce the thermal spike and maintain the degree of cure at the laminate center. A parametric study was performed to evaluate the effect of air flow in the oven, post cure cycles and cure temperatures on the thermal spike and the resultant degree of cure in the laminate.

  4. Influence of ceramic thickness and type on micromechanical properties of light-cured adhesive bonding agents.

    PubMed

    Öztürk, Elif; Bolay, Sükran; Hickel, Reinhard; Ilie, Nicoleta

    2014-10-01

    The aim of this study was to evaluate the micromechanical properties of different adhesive bonding agents when polymerized through ceramics. Sixty sound extracted human third molars were selected and the crowns were sectioned perpendicular to the long axis in order to obtain dentin slices to be bonded with one of the following adhesives: Syntac/Heliobond (Ivoclar-Vivadent) or Adper-Scotchbond-1XT (3M-ESPE). The adhesives were cured by using a LED-unit (Bluephase®, Ivoclar Vivadent) with three different curing times (10 s, 20 s and 30 s) under two ceramics (IPS-e.max-Press, Ivoclar-Vivadent; IPS-Empress®CAD, Ivoclar-Vivadent) of different thicknesses (0 mm, 0.75 mm, 2 mm). Thirty groups were included, each containing 60 measurements. Micromechanical properties (Hardness, HV; indentation modulus, E; and creep, Cr) of the adhesives were measured with an automatic microhardness indenter (Fisherscope H100C, Germany). Data were statistically analyzed by using one-way ANOVA and Tukey's post-hoc test, as well as a multivariate analysis to test the influence of the study parameters (SPSS 18.0). Significant differences were observed between the micromechanical properties of the adhesives (p < 0.05). The ceramic type showed the highest effect on HV (Partial-eta squared (η(2)) = 0.109) of the tested adhesives, while E (η(2) = 0.275) and Cr (η(2) = 0.194) were stronger influenced by the adhesive type. Ceramic thickness showed no effect on the E and Cr of the adhesives. The adhesive bonding agents used in this study performed well by curing through different thicknesses of ceramics. The micromechanical properties of the adhesives were determined by the adhesive type and were less influenced by ceramic type and curing time.

  5. Adhesives and method for making the same

    DOEpatents

    Dorsey, George F.

    1991-01-01

    A thermosetting mixture for use as an adhesive, as well as other applications, that is substantially nonmutagenic. This mixture is based upon a thermosetting resin selected from polyurethane and epoxy resins, using an improved curing agent that does not contain mutagenic components. Specifically, the curing agent is a multi-mixture of substituted alkylanilines produced by an improved process. These alkylanilines are formed by condensation of at least two 2,6-dialkylanilines with a formaldehyde in an acid solution. Upon purification, at least three aromatic diamines are formed that are used for the curing agent with the polyurethane and epoxy resisn. Pot life, green strength and ultimate strength are comparable to adhesives of the prior art that contain mutagenic constituents. Although several dianilines are described, the preferred curing agents are formed using 2,6-diethylaniline (DEA) and 2,6-diisopropylaniline (DIPA), where the mole % of DEA and DIPA is 38-48 and 62-52, respectively. Curing agents within the preferred range have been designated as "Asilamine 4852" and "Asilamine 4555".

  6. Effect of thermally reduced graphene oxide on dynamic mechanical properties of carbon fiber/epoxy composite

    NASA Astrophysics Data System (ADS)

    Adak, Nitai Chandra; Chhetri, Suman; Murmu, Naresh Chandra; Samanta, Pranab; Kuila, Tapas

    2018-03-01

    The Carbon fiber (CF)/epoxy composites are being used in the automotive and aerospace industries owing to their high specific mechanical strength to weight ratio compared to the other conventional metal and alloys. However, the low interfacial adhesion between fiber and polymer matrix results the inter-laminar fracture of the composites. Effects of different carbonaceous nanomaterials i.e., carbon nanotubes (CNT), graphene nanosheets (GNPs), graphene oxide (GO) etc. on the static mechanical properties of the composites were investigated in detail. Only a few works focused on the improvement of the dynamic mechanical of the CF/epoxy composites. Herein, the effect of thermally reduced grapheme oxide (TRGO) on the dynamic mechanical properties of the CF/epoxy composites was investigated. At first, GO was synthesized using modified Hummers method and then reduced the synthesized GO inside a vacuum oven at 800 °C for 5 min. The prepared TRGO was dispersed in the epoxy resin to modify the epoxy matrix. Then, a number of TRGO/CF/epoxy laminates were manufactured incorporating different wt% of TRGO by vacuum assisted resin transfer molding (VARTM) technique. The developed laminates were cured at room temperature for 24 h and then post cured at 120 °C for 2 h. The dynamic mechanical analyzer (DMA 8000 Perkin Elmer) was used to examine the dynamic mechanical properties of the TRGO/CF/epoxy composites according to ASTM D7028. The dimension of the specimen was 44×10×2.4 mm3 for the DMA test. This test was carried out under flexural loading mode (duel cantilever) at a frequency of 1 Hz and amplitude of 50 μm. The temperature was ramped from 30 to 200 °C with a heating rate of 5 °C min-1. The dynamic mechanical analysis of the 0.2 wt% TRGO incorporated CF/epoxy composites showed ~ 96% enhancement in storage modulus and ~ 12 °C increments in glass transition temperature (Tg) compared to the base CF/epoxy composites. The fiber-matrix interaction was studied by Cole

  7. Quick mixing of epoxy components

    NASA Technical Reports Server (NTRS)

    Dunlap, D. E., Jr.

    1981-01-01

    Two materials are mixed quickly, thoroughly, and in precise proportion by disposable cartridge. Cartridge mixes components of fast-curing epoxy resins, with no mess, just before they are used. It could also be used in industry and home for caulking, sealing, and patching. Materials to be mixed are initially isolated by cylinder wall within cartridge. Cylinder has vanes, with holes in them, at one end and handle at opposite end. When handle is pulled, grooves on shaft rotate cylinder so that vanes rotate to extrude material A uniformly into material B.

  8. Static and Dynamic Mechanical Properties of Graphene Oxide-Incorporated Woven Carbon Fiber/Epoxy Composite

    NASA Astrophysics Data System (ADS)

    Adak, Nitai Chandra; Chhetri, Suman; Kim, Nam Hoon; Murmu, Naresh Chandra; Samanta, Pranab; Kuila, Tapas

    2018-03-01

    This study investigates the synergistic effects of graphene oxide (GO) on the woven carbon fiber (CF)-reinforced epoxy composites. The GO nanofiller was incorporated into the epoxy resin with variations in the content, and the CF/epoxy composites were manufactured using a vacuum-assisted resin transfer molding process and then cured at 70 and 120 °C. An analysis of the mechanical properties of the GO (0.2 wt.%)/CF/epoxy composites showed an improvement in the tensile strength, Young's modulus, toughness, flexural strength and flexural modulus by 34, 20, 83, 55 and 31%, respectively, when compared to the CF/epoxy composite. The dynamic mechanical analysis of the composites exhibited an enhancement of 56, 114 and 22% in the storage modulus, loss modulus and damping capacity (tan δ), respectively, at its glass transition temperature. The fiber-matrix interaction was studied using a Cole-Cole plot analysis.

  9. Off-Axis Ratcheting Behavior of Unidirectional Carbon/Epoxy Laminate under Asymmetric Cyclic Loading at High Temperature

    DTIC Science & Technology

    2011-11-01

    ply unidirectional carbon/epoxy laminates [0]12 were fabricated from the prepreg tape of P3252-20 (TORAY). They were laid up by hand and cured in...Off-Axis Ratcheting Behavior of Unidirectional Carbon/Epoxy Laminate under Asymmetric Cyclic Loading at High Temperature Takafumi Suzuki 1 and...Development of an engineering model for predicting the off-axis ratcheting behavior of a unidirectional CFRP laminate has been attempted. For this purpose

  10. Physical aging of linear and network epoxy resins

    NASA Technical Reports Server (NTRS)

    Kong, E. S.-W.; Wilkes, G. L.; Mcgrath, J. E.; Banthia, A. K.; Mohajer, Y.; Tant, M. R.

    1981-01-01

    Network and linear epoxy resins principally based on the diglycidyl ether of bisphenol-A and its oligomers are prepared and studied using diamine and anhydride crosslinking agents. Rubber modified epoxies and a carbon fiber reinforced composite are also investigated. All materials display time-dependent changes when stored at temperatures below the glass transition temperature after quenching (sub-T/g/ annealing). Solvent sorption experiments initiated after different sub-T(g) annealing times demonstrate that the rate of solvent uptake can be indirectly related to the free volume of the epoxy resins. Residual thermal stresses and water are found to have little effect on the physical aging process, which affects the sub-T(g) properties of uniaxial carbon fiber reinforced epoxy material. Finally, the importance of the recovery phenomenon which affects the durability of epoxy glasses is considered.

  11. Effect of matrix resin on the impact fracture characteristics of graphite-epoxy laminates

    NASA Technical Reports Server (NTRS)

    Hertzberg, P. E.; Smith, B. W.; Miller, A. G.

    1982-01-01

    The effect of resin chemistry on basic impact energy absorbent mechanisms exibited by graphite-epoxy composites was investigated. Impact fracture modes and microscopic resin deformation characteristics were examined for 26 NASA-impacted graphite epoxy laminates with different resin chemistries. Discrete specimen fracture modes were identified through cross sectional examination after impact, and subsequently compared with measured glass transition temperatures, cure cycles, and residual impact capabilities. Microscopic resin deformation mechanisms and their overall relationship to impact loading conditions, voids, and resin content were also characterized through scanning electron microscopic examination of separated fracture surfaces.

  12. Applications of Fourier transform infrared spectroscopy to quality control of the epoxy matrix

    NASA Technical Reports Server (NTRS)

    Antoon, M. K.; Starkey, K. M.; Koenig, J. L.

    1979-01-01

    The object of the paper is to demonstrate the utility of Fourier transform infrared (FT-IR) difference spectra for investigating the composition of a neat epoxy resin, hardener, and catalysts. The composition and degree of cross-linking of the cured matrix is also considered.

  13. Formulation and Characterization of Epoxy Resin Copolymer for Graphite Composites

    NASA Technical Reports Server (NTRS)

    Keck, F. L.

    1983-01-01

    Maximum char yield was obtained with a copolymer containing 25% mol fraction DGEBE and 75% mol fraction DGEBA (Epon 828). To achieve the high values (above 40%), a large quantity of catalyst (trimethoxyboroxine) was necessary. Although a graphite laminate 1/8" thick was successfully fabricated, the limited life of the catalyzed epoxy copolymer system precludes commercial application. Char yields of 45% can be achieved with phenolic cured epoxy systems as indicated by data generated under NAS2-10207 contract. A graphite laminate using this type of resin system was fabricated for comparison purposes. The resultant laminate was easier to process and because the graphite prepreg is more stable, the fabrication process could readily be adapted to commercial applications.

  14. Novel Formulations of Phase Change Materials—Epoxy Composites for Thermal Energy Storage

    PubMed Central

    Alvarez Feijoo, Miguel Angel

    2018-01-01

    This research aimed to evaluate the thermal properties of new formulations of phase change materials (PCMs)-epoxy composites, containing a thickening agent and a thermally conductive phase. The composite specimens produced consisted of composites fabricated using (a) inorganic PCMs (hydrated salts), epoxy resins and aluminum particulates or (b) organic PCM (paraffin), epoxy resins, and copper particles. Differential Scanning Calorimetry (DSC) was used to analyze the thermal behavior of the samples, while hardness measurements were used to determine changes in mechanical properties at diverse PCM and conductive phase loading values. The results indicate that the epoxy matrix can act as a container for the PCM phase without hindering the heat-absorbing behavior of the PCMs employed. Organic PCMs presented reversible phase transformations over multiple cycles, an advantage that was lacking in their inorganic counterparts. The enthalpy of the organic PCM-epoxy specimens increased linearly with the PCM content in the matrix. The use of thickening agents prevented phase segregation issues and allowed the fabrication of specimens containing up to 40% PCM, a loading significantly higher than others reported. The conductive phase seemed to improve the heat transfer and the mechanical properties of the composites when present in low percentages (<10 wt %); however, given its mass, the enthalpy detected in the composites was reduced as their loading further increased. The conductive phase combination (PCM + epoxy resin + hardener + thickening agent) presents great potential as a heat-absorbing material at the temperatures employed. PMID:29373538

  15. Novel Formulations of Phase Change Materials-Epoxy Composites for Thermal Energy Storage.

    PubMed

    Arce, Maria Elena; Alvarez Feijoo, Miguel Angel; Suarez Garcia, Andres; Luhrs, Claudia C

    2018-01-26

    This research aimed to evaluate the thermal properties of new formulations of phase change materials (PCMs)-epoxy composites, containing a thickening agent and a thermally conductive phase. The composite specimens produced consisted of composites fabricated using (a) inorganic PCMs (hydrated salts), epoxy resins and aluminum particulates or (b) organic PCM (paraffin), epoxy resins, and copper particles. Differential Scanning Calorimetry (DSC) was used to analyze the thermal behavior of the samples, while hardness measurements were used to determine changes in mechanical properties at diverse PCM and conductive phase loading values. The results indicate that the epoxy matrix can act as a container for the PCM phase without hindering the heat-absorbing behavior of the PCMs employed. Organic PCMs presented reversible phase transformations over multiple cycles, an advantage that was lacking in their inorganic counterparts. The enthalpy of the organic PCM-epoxy specimens increased linearly with the PCM content in the matrix. The use of thickening agents prevented phase segregation issues and allowed the fabrication of specimens containing up to 40% PCM, a loading significantly higher than others reported. The conductive phase seemed to improve the heat transfer and the mechanical properties of the composites when present in low percentages (<10 wt %); however, given its mass, the enthalpy detected in the composites was reduced as their loading further increased. The conductive phase combination (PCM + epoxy resin + hardener + thickening agent) presents great potential as a heat-absorbing material at the temperatures employed.

  16. Glass Reinforcement of Various Epoxy Resins-Polyurea Systems

    NASA Astrophysics Data System (ADS)

    Joshi, Medha; Jauhari, Smita

    2012-07-01

    Polyureas (PUs) were prepared by the polycondensation reaction of disperse dyes containing -NH2 group and toluene 2, 4-diisocyanate. The disperse dyes have been prepared by coupling of various 2-diazobenzothiazoles with 1,3-benzenediamine. All the PUs were characterized by elemental analysis, spectral studies, number average molecular weight ( {overline{{Mn}} } ), and thermogravimetry. Further reaction of PUs was carried out with an epoxy resin (i.e., DGEBA). The curing study of prepared resins was monitored by differential scanning calorimeter (DSC). Based on DSC, thermograms glass fiber-reinforced composites have been laminated and characterized by chemical, mechanical, and electrical properties. The unreinforced cured resins were subjected to thermogravimetric analysis (TGA). The laminated composites showed excellent resistance properties against chemicals and good mechanical and electrical properties.

  17. Anisotropic Dielectric Properties of Carbon Fiber Reinforced Polymer Composites during Microwave Curing

    NASA Astrophysics Data System (ADS)

    Zhang, Linglin; Li, Yingguang; Zhou, Jing

    2018-01-01

    Microwave cuing technology is a promising alternative to conventional autoclave curing technology in high efficient and energy saving processing of polymer composites. Dielectric properties of composites are key parameters related to the energy conversion efficiency during the microwave curing process. However, existing methods of dielectric measurement cannot be applied to the microwave curing process. This paper presented an offline test method to solve this problem. Firstly, a kinetics model of the polymer composites under microwave curing was established based on differential scanning calorimetry to describe the whole curing process. Then several specially designed samples of different feature cure degrees were prepared and used to reflect the dielectric properties of the composite during microwave curing. It was demonstrated to be a feasible plan for both test accuracy and efficiency through extensive experimental research. Based on this method, the anisotropic complex permittivity of a carbon fiber/epoxy composite during microwave curing was accurately determined. Statistical results indicated that both the dielectric constant and dielectric loss of the composite increased at the initial curing stage, peaked at the maximum reaction rate point and decreased finally during the microwave curing process. Corresponding mechanism has also been systematically investigated in this work.

  18. Nanostructures and surface hydrophobicity of self-assembled thermosets involving epoxy resin and poly(2,2,2-trifluoroethyl acrylate)-block-poly(ethylene oxide) amphiphilic diblock copolymer.

    PubMed

    Yi, Fangping; Zheng, Sixun; Liu, Tianxi

    2009-02-19

    Poly(2,2,2-trifluoroethyl acrylate)-block-poly(ethylene oxide) (PTFEA-b-PEO) amphiphilic diblock copolymer was synthesized via the reversible addition-fragmentation transfer polymerization of 2,2,2-triffluroethyl acrylate with dithiobenzoyl-terminated poly(ethylene oxide) as a chain-transfer agent. The amphiphilic diblock copolymer was incorporated into epoxy resin to prepare the nanostructured epoxy thermosets. The nanostructures were investigated by means of atomic force microscopy, small-angle X-ray scattering, and dynamic mechanical analysis. In terms of the miscibility of the subchains of the block copolymer with epoxy after and before curing reaction, it is judged that the formation of the nanostructures follows the mechanism of self-assembly. The static contact angle measurements indicate that the nanostructured thermosets containing PTFEA-b-PEO diblock copolymer displayed a significant enhancement in surface hydrophobicity as well as a reduction in surface free energy. The improvement in surface properties was ascribed to the enrichment of the fluorine-containing subchain (i.e., PTFEA block) of the amphiphilic diblock copolymer on the surface of the nanostructured thermosets, which was evidenced by surface atomic force microscopy and energy-dispersive X-ray spectroscopy.

  19. Effect of Montmorillonite Nanogel Composite Fillers on the Protection Performance of Epoxy Coatings on Steel Pipelines.

    PubMed

    Atta, Ayman M; El-Saeed, Ashraf M; Al-Lohedan, Hamad A; Wahby, Mohamed

    2017-06-02

    Montmorillonite (MMT) clay mineral is widely used as filler for several organic coatings. Its activity is increased by exfoliation via chemical modification to produce nanomaterials. In the present work, the modification of MMT to form nanogel composites is proposed to increase the dispersion of MMT into epoxy matrices used to fill cracks and holes produced by the curing exotherms of epoxy resins. The dispersion of MMT in epoxy improved both the mechanical and anti-corrosion performance of epoxy coatings in aggressive marine environments. In this respect, the MMT surfaces were chemically modified with different types of 2-acrylamido-2-methyl propane sulfonic acid (AMPS) nanogels using a surfactant-free dispersion polymerization technique. The effect of the chemical structure, nanogel content and the interaction with MMT surfaces on the surface morphology, surface charges and dispersion in the epoxy matrix were investigated for use as nano-filler for epoxy coatings. The modified MMT nanogel epoxy composites showed excellent resistance to mechanical damage and salt spray resistance up to 1000 h. The interaction of MMT nanogel composites with the epoxy matrix and good response of AMPS nanogel to sea water improve their ability to act as self-healing materials for epoxy coatings for steel.

  20. Mechanical, physical and tribological characterization of nano-cellulose fibers reinforced bio-epoxy composites: An attempt to fabricate and scale the 'Green' composite.

    PubMed

    Barari, Bamdad; Omrani, Emad; Dorri Moghadam, Afsaneh; Menezes, Pradeep L; Pillai, Krishna M; Rohatgi, Pradeep K

    2016-08-20

    The development of bio-based composites is essential in order to protect the environment while enhancing energy efficiencies. In the present investigation, the plant-derived cellulose nano-fibers (CNFs)/bio-based epoxy composites were manufactured using the Liquid Composite Molding (LCM) process. More specifically, the CNFs with and without chemical modification were utilized in the composites. The curing kinetics of the prepared composites was studied using both the isothermal and dynamic Differential Scanning Calorimetry (DSC) methods. The microstructure as well as the mechanical and tribological properties were investigated on the cured composites in order to understand the structure-property correlations of the composites. The results indicated that the manufactured composites showed improved mechanical and tribological properties when compared to the pure epoxy samples. Furthermore, the chemically modified CNFs reinforced composites outperformed the untreated composites. The surface modification of the fibers improved the curing of the resin by reducing the activation energy, and led to an improvement in the mechanical properties. The CNFs/bio-based epoxy composites form uniform tribo-layer during sliding which minimizes the direct contact between surfaces, thus reducing both the friction and wear of the composites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A critical evaluation of the enhancement of mechanical properties of epoxy modified using CNTs

    NASA Astrophysics Data System (ADS)

    Bedsole, Robert W.; Park, Cheol; Bogert, Philip B.; Tippur, Hareesh V.

    2015-09-01

    Carbon nanotubes (CNTs) have been widely shown in the literature to improve mechanical properties of epoxy, such as tensile strength, elastic modulus, strain to failure, and fracture toughness. These improvements in nanocomposite properties have been attributed to the extraordinary properties of the nanotubes, as well as the quality of their dispersion within and adhesion to the epoxy matrix. However, many authors have also struggled to show significant mechanical improvements using similar methodologies and despite, in some cases, showing qualitative improvements in dispersion with optical microscopy. These authors have frequently resorted to other methods for improving the mechanical properties of CNT/epoxy, such as electrically aligning CNTs, using different types of CNTs, or modifying the stoichiometry. The current work examines many different dispersion techniques, types of CNTs, types of epoxies, curing cycles, and other variables in an attempt to improve the mechanical properties of neat epoxy with CNTs. Despite seeing significant changes in the microscopy, no significant improvements in tensile or fracture properties have been attributed to CNTs in this work.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuzhan; Zhang, Yuehong; Rios, Orlando

    In this study, a liquid crystalline epoxy network (LCEN) with exchangeable disulfide bonds is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic dicarboxylic acid curing agent containing a disulfide bond. The effect of disulfide bonds on curing behavior and liquid crystalline (LC) phase formation of the LCEN is investigated. The presence of the disulfide bonds results in an increase in the reaction rate, leading to a reduction in liquid crystallinity of the LCEN. In order to promote LC phase formation and stabilize the self-assembled LC domains, a similar aliphatic dicarboxylic acid without the disulfide bond is used asmore » a co-curing agent to reduce the amount of exchangeable disulfide bonds in the system. After optimizing the molar ratio of the two curing agents, the resulting LCEN exhibits improved reprocessability and recyclability because of the disulfide exchange reactions, while preserving LC properties, such as the reversible LC phase transition and macroscopic LC orientation, for shape memory applications.« less

  3. Homogeneous Liquid Phase Transfer of Graphene Oxide into Epoxy Resins.

    PubMed

    Amirova, Lyaysan; Surnova, Albina; Balkaev, Dinar; Musin, Delus; Amirov, Rustem; Dimiev, Ayrat M

    2017-04-05

    The quality of polymer composite materials depends on the distribution of the filler in the polymer matrix. Due to the presence of the oxygen functional groups, graphene oxide (GO) has a strong affinity to epoxy resins, providing potential opportunity for the uniform distribution of GO sheets in the matrix. Another advantage of GO over its nonoxidized counterpart is its ability to exfoliate to single-atomic-layer sheets in water and in some organic solvents. However, these advantages of GO have not yet been fully realized due to the lack of the methods efficiently introducing GO into the epoxy resin. Here we develop a novel homogeneous liquid phase transfer method that affords uniform distribution, and fully exfoliated condition of GO in the polymer matrix. The most pronounced alteration of properties of the cured composites is registered at the 0.10%-0.15% GO content. Addition of as little as 0.10% GO leads to the increase of the Young's modulus by 48%. Moreover, we demonstrate successful introduction of GO into the epoxy matrix containing an active diluent-modifier; this opens new venues for fabrication of improved GO-epoxy-modifier composites with a broad range of predesigned properties. The experiments done on reproducing the two literature methods, using alternative GO introduction techniques, lead to either decrease or insignificant increase of the Young's modulus of the resulting GO-epoxy composites.

  4. Effect of TiO2 dispersion on mechanical properties of epoxy polymer

    NASA Astrophysics Data System (ADS)

    Singh, Sushil Kumar; Singh, Samarjit; Kohli, Raunak; Jain, Anuj; Kumar, Abhishek

    2016-05-01

    This study is focused to assess reinforcing effects of TiO2 particles on the mechanical properties of epoxy resins, particularly with regards to fracture and toughening mechanisms. An experimental study has been carried out on series of composites containing varying amount of micro size titanium dioxide (TiO2) up to 8 wt.%. The particles were dispersed via mixing with mechanical stirrer at 1000 rpm for 2 hours to ensure a well-dispersed phase of the particles. The epoxy resin with the dispersed particle has been cured with hardener at 40 °C for 16 hours. Test reveals improvement in up to 4 wt.% of the particles and decrease in the mechanical properties beyond 4 wt. %. This may be attributed to the significant increase in clustering and settlement of the particles during long curing time. The tensile strength increases by 32 % and fracture toughness (K1C) by 44.95 % and the fracture energy (G1C) by 150.29 % with particle loading of 4 wt. % TiO2.

  5. Prediction of the Formulation Dependence of the Glass Transition Temperature for Amine-Epoxy Copolymers Using a Quantitative Structure-Property Relationship Based on the AM1 Method

    DTIC Science & Technology

    2004-02-01

    Products and Chemicals , Inc . The stoichiometry of the DGEBA-PACM polymerization reaction was varied to yield epoxy/amine ratios ranging from ~2:1 through...equivalent). The DGEBA epoxy resin was cured with bis(p-aminocyclohexyl)methane (PACM) (EEW = 52.5 g/equivalent), which was acquired from Air

  6. In-Situ Cure Monitoring of the Immidization Reaction of PMR-15

    NASA Technical Reports Server (NTRS)

    Cossins, Sheryl; Kellar, Jon J.; Winter, Robb M.

    1997-01-01

    Glass fiber reinforced polymer composites are becoming widely used in industry. With this increase in production, an in-situ method of quality control for the curing of the polymer is desirable. This would allow for the production of high-quality parts having more uniform properties.' Recently, in-situ fiber optic monitoring of polymer curing has primarily focused on epoxy resins and has been performed by Raman or fluorescence methods. In addition, some infrared (IR) investigations have been performed using transmission or ATR cells. An alternate IR approach involves using optical fibers as a sensor by utilizing evanescent wave spectroscopy.

  7. Clay/Polyaniline Hybrid through Diazonium Chemistry: Conductive Nanofiller with Unusual Effects on Interfacial Properties of Epoxy Nanocomposites.

    PubMed

    Jlassi, Khouloud; Chandran, Sarath; Poothanari, Mohammed A; Benna-Zayani, Mémia; Thomas, Sabu; Chehimi, Mohamed M

    2016-04-12

    The concept of conductive network structure in thermoset matrix without sacrificing the inherent mechanical properties of thermoset polymer (e.g., epoxy) is investigated here using "hairy" bentonite fillers. The latter were prepared through the in situ polymerization of aniline in the presence of 4-diphenylamine diazonium (DPA)-modified bentonite (B-DPA) resulting in a highly exfoliated bentonite-DPA/polyaniline (B-DPA/PANI). The nanocomposite filler was mixed with diglycidyl ether of bisphenol A (DGEBA), and the curing agent (4,4'-diaminodiphenylsulfone) (DDS) at high temperature in order to obtain nanocomposites through the conventional melt mixing technique. The role of B-DPA in the modification of the interface between epoxy and B-DPA/polyaniline (B-DPA/PANI) is investigated and compared with the filler B/PANI prepared without any diazonium modification of the bentonite. Synergistic improvement in dielectric properties and mechanical properties points to the fact that the DPA aryl groups from the diazonium precursor significantly modify the interface by acting as an efficient stress transfer medium. In DPA-containing nanocomposites, unique fibril formation was observed on the fracture surface. Moreover, dramatic improvement (210-220%) in fracture toughness of epoxy composite was obtained with B-DPA/PANI filler as compared to the weak improvement of 20-30% noted in the case of the B/PANI filler. This work shows that the DPA diazonium salt has an important effect on the improvement of the interfacial properties and adhesion of DGEBA and clay/PANI nanofillers.

  8. Evaluation of Two Ionic Liquid-Based Epoxies from the MISSE-8 (Materials International Space Station Experiment-8) Sample Carrier

    NASA Technical Reports Server (NTRS)

    Rabenberg, Ellen; Kaukler, William; Grugel, Richard

    2015-01-01

    Two sets of epoxy mixtures, both containing the same ionic liquid (IL) based resin but utilizing two different curing agents, were evaluated after spending more than two years of continual space exposure outside of the International Space Station on the MISSE-8 sample rack. During this period the samples, positioned on nadir side, also experienced some 12,500 thermal cycles between approximately -40?C and +40 C. Initial examination showed some color change, a miniscule weight variance, and no cracks or de-bonding from the sample substrate. Microscopic examination of the surface reveled some slight deformities and pitting. These observations, and others, are discussed in view of the ground-based control samples. Finally, the impetus of this study in terms of space applications is presented.

  9. Effect of curing agents on the oxidative and nitrosative damage to meat proteins during processing of fermented sausages.

    PubMed

    Villaverde, A; Morcuende, D; Estévez, M

    2014-07-01

    The effect of increasing concentrations of curing agents, ascorbate (0, 250, and 500 ppm), and nitrite (0, 75, and 150 ppm), on the oxidative and nitrosative damage to proteins during processing of fermented sausages was studied. The potential influence of these reactions on color and texture of the fermented sausages was also addressed. Nitrite had a pro-oxidant effect on tryptophan depletion and promoted the formation of protein carbonyls and Schiff bases. The nitration degree in the fermented sausages was also dependent on nitrite concentration. On the other hand, ascorbate acted as an efficient inhibitor of the oxidative and nitrosative damage to meat proteins. As expected, nitrite clearly favored the formation of the cured red color and ascorbate acted as an enhancer of color formation. Nitrite content was positively correlated with hardness. The chemistry behind the action of nitrite and ascorbate on muscle proteins during meat fermentation is thoroughly discussed. The results suggest that ascorbate (500 ppm) may be required to compensate the pro-oxidant impact of nitrite on meat proteins. This study provides insight on the action of curing agents on meat proteins during processing of fermented sausages. This chemistry background provides understanding of the potential influence of the oxidative and nitrosative damage to proteins on the quality of processed muscle foods. The study provides novel information on the impact of the combination of nitrite and ascorbate on the chemical deterioration of proteins and the influence on particular quality traits of fermented sausages. These data may be of interest for the design of cured muscle foods of enhanced quality. © 2014 Institute of Food Technologists®

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, R.O.; Archer, W.E.

    This paper describes the use of Formula 456, an aliphatic amine cured epoxy for impregnating coils and high voltage transformers. Sandia has evaluated a number of MDA-free epoxy encapsulants which relied on either anhydride or other aromatic amine curing agents. The use of aliphatic amine curing agents was more recently evaluated and has resulted in the definition of Formula 456 resin. Methylene dianiline (MDA) has been used for more than 20 years as the curing agent for various epoxy formulations throughout the Department of Energy and much of industry. Sandia National Laboratories began the process of replacing MDA with othermore » formulations because of regulations imposed by OSHA on the use of MDA. OSHA has regulated MDA because it is a suspect carcinogen. Typically the elimination of OSHA-regulated materials provides a rare opportunity to qualify new formulations in a range of demanding applications. It was important to take full advantage of that opportunity, although the associated materials qualification effort was costly. Small high voltage transformers are one of those demanding applications. The successful implementation of the new formulation for high reliability transformers will be described. The test results that demonstrate the parts are qualified for use in DOE weapon systems will be presented.« less

  11. Warpage of QFN Package in Post Mold Cure Process of integrated circuit packaging

    NASA Astrophysics Data System (ADS)

    Sriwithoon, Nattha; Ugsornrat, Kessararat; Srisuwitthanon, Warayoot; Thonglor, Panakamon

    2017-09-01

    This research studied about warpage of QFN package in post mold cure process of integrated circuit (IC) packages using pre-plated (PPF) leadframe. For IC package, epoxy molding compound (EMC) are molded by cross linking of compound stiffness but incomplete crosslinked network and leading the fully cured thermoset by post mold cure (PMC) process. The cure temperature of PMC can change microstructure of EMC in term of stress inside the package and effect to warpage of the package due to coefficient of thermal expansion (CTE) between EMC and leadframe. In experiment, cure temperatures were varied to check the effect of internal stress due to different cure temperature after completed post mold cure for TDFN 2×3 8L. The cure temperature were varied with 180 °C, 170 °C, 160 °C, and 150°C with cure time 4 and 6 hours, respectively. For analysis, the TDFN 2×3 8L packages were analyzed the warpage by thickness gauge and scanning acoustic microscope (SAM) after take the test samples out from the oven cure. The results confirmed that effect of different CTE between EMC and leadframe due to different cure temperature resulting to warpage of the TDFN 2×3 8L packages.

  12. Effect of different photoinitiators and reducing agents on cure efficiency and color stability of resin-based composites using different LED wavelengths.

    PubMed

    de Oliveira, Dayane Carvalho Ramos Salles; Rocha, Mateus Garcia; Gatti, Alexandre; Correr, Americo Bortolazzo; Ferracane, Jack Liborio; Sinhoret, Mario Alexandre Coelho

    2015-12-01

    To evaluate the effect of photoinitiators and reducing agents on cure efficiency and color stability of resin-based composites using different LED wavelengths. Model resin-based composites were associated with diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide (TPO), phenylbis(2,4,6-trimethylbenzoyl) phosphine oxide (BAPO) or camphorquinone (CQ) associated with 2-(dimethylamino) ethyl methacrylate (DMAEMA), ethyl 4-(dimethyamino) benzoate (EDMAB) or 4-(N,N-dimethylamino) phenethyl alcohol (DMPOH). A narrow (Smartlite, Dentisply) and a broad spectrum (Bluephase G2, Ivoclar Vivadent) LEDs were used for photo-activation (20 J/cm(2)). Fourier transform infrared spectroscopy (FT-IR) was used to evaluate the cure efficiency for each composite, and CIELab parameters to evaluated color stability (ΔE00) after aging. The UV-vis absorption spectrophotometric analysis of each photoinitiator and reducing agent was determined. Data were analyzed using two-way ANOVA and Tukey's test for multiple comparisons (α=0.05). Higher cure efficiency was found for type-I photoinitiators photo-activated with a broad spectrum light, and for CQ-systems with a narrow band spectrum light, except when combined with an aliphatic amine (DMAEMA). Also, when combined with aromatic amines (EDMAB and DMPOH), similar cure efficiency with both wavelength LEDs was found. TPO had no cure efficiency when light-cured exclusively with a blue narrowband spectrum. CQ-systems presented higher color stability than type-I photoinitiators, especially when combined with DMPOH. After aging, CQ-based composites became more yellow and BAPO and TPO lighter and less yellow. However, CQ-systems presented higher color stability than type-I photoinitiators, as BAPO- and TPO-, despite their higher cure efficiency when photo-activated with corresponding wavelength range. Color matching is initially important, but color change over time will be one of the major reasons for replacing esthetic restorations; despite the less

  13. Process development and fabrication of space station type aluminum-clad graphite epoxy struts

    NASA Technical Reports Server (NTRS)

    Ring, L. R.

    1990-01-01

    The manufacture of aluminum-clad graphite epoxy struts, designed for application to the Space Station truss structure, is described. The strut requirements are identified, and the strut material selection rationale is discussed. The manufacturing procedure is described, and shop documents describing the details are included. Dry graphite fiber, Pitch-75, is pulled between two concentric aluminum tubes. Epoxy resin is then injected and cured. After reduction of the aluminum wall thickness by chemical milling the end fittings are bonded on the tubes. A discussion of the characteristics of the manufactured struts, i.e., geometry, weight, and any anomalies of the individual struts is included.

  14. Impact of a heteroatom in a structure-activity relationship study on analogues of phenyl glycidyl ether (PGE) from epoxy resin systems.

    PubMed

    Niklasson, Ida B; Delaine, Tamara; Luthman, Kristina; Karlberg, Ann-Therese

    2011-04-18

    Epoxy resins are among the most common causes of occupational contact dermatitis. They are normally used in so-called epoxy resin systems (ERS). These commercial products are combinations of epoxy resins, curing agents, modifiers, and reactive diluents. The most frequently used resins are diglycidyl ethers based on bisphenol A (DGEBA) and bisphenol F (DGEBF). In this study, we have investigated the contact allergenic properties of a series of analogues to the reactive diluent phenyl glycidyl ether (PGE), all with similar basic structures but with varying heteroatoms or with no heteroatom present. The chemical reactivity of the compounds in the test series toward the hexapeptide H-Pro-His-Cys-Lys-Arg-Met-OH was investigated. All epoxides were shown to bind covalently to both cysteine and proline residues. The percent depletion of nonreacted peptide was also studied resulting in ca. 60% depletion when using either PGE, phenyl 2,3-epoxypropyl sulfide (2), or N-(2,3-epoxypropyl)aniline (3), and only 15% when using 1,2-epoxy-4-phenylbutane (4) at the same time point. The skin sensitization potencies of the epoxides using the murine local lymph node assay (LLNA) were evaluated in relation to the observed physicochemical and reactivity properties. To enable determination of statistical significance between structurally closely related compounds, a nonpooled LLNA was performed. It was found that all investigated compounds containing a heteroatom in the α-position to the epoxide were strong sensitizers, congruent with the reactivity data, indicating that the impact of a heteroatom is crucial for the sensitizing capacity for this type of epoxides.

  15. Curing of polymer thermosets via click reactions and on demand processes

    NASA Astrophysics Data System (ADS)

    Brei, Mark Richard

    In the first project, an azide functional resin and tetra propargyl aromatic diamines were fabricated for use as a composite matrix. These systems take already established epoxy/amine matrices and functionalize them with click moieties. This allows lower temperatures to be used in the production of a thermoset part. These new systems yield many better mechanical properties than their epoxy/amine derivatives, but their Tgs are low in comparison. The second project investigates the characterization of a linear system based off of the above azide functional resin and a difunctional alkyne. Through selectively choosing catalyst, the linear system can show regioselectivity to either a 1,4-disubstituted triazole, or a 1,5-disubstituted triazole. Without the addition of catalyst, the system produces both triazoles in almost an equal ratio. The differently catalyzed systems were cured and then analyzed by 1H and 13C NMR to better understand the structure of the material. The third project builds off of the utility of the aforementioned azide/alkyne system and introduces an on-demand aspect to the curing of the thermoset. With the inclusion of copper(II) within the azide/alkyne system, UV light is able to catalyze said reaction and cure the material. It has been shown that the copper(II) loading levels can be extremely small, which helps in reducing the copper's effect on mechanical properties The fourth project takes a look at polysulfide-based sealants. These sealants are normally cured via an oxidative reaction. This project took thiol-terminated polysulfides and fabricated alkene-terminated polysulfides for use as a thiol-ene cured material. By changing the mechanism for cure, the polysulfide can be cured via UV light with the use of a photoinitiator within the thiol/alkene polysulfide matrix. The final chapter will focus on a characterization technique, MALDI-TOF, which was used to help characterize the above materials as well as many others. By using MALDI-TOF, the

  16. Cross-reactivity among epoxy acrylates and bisphenol F epoxy resins in patients with bisphenol A epoxy resin sensitivity.

    PubMed

    Lee, Han N; Pokorny, Christopher D; Law, Sandra; Pratt, Melanie; Sasseville, Denis; Storrs, Frances J

    2002-09-01

    The study's objective was 2-fold: first, to evaluate the potential cross-reactivity between Bis-A epoxy resins and epoxy acrylates and second, to study the cross reactivity between Bis-A epoxy resins and newer Bis-F epoxy resins in patients with allergic contact dermatitis to epoxy resins and had positive patch test to the standard epoxy resin based on bisphenol A. Forty-one patients were patch tested to 23 chemicals including epoxy acrylates, Bis-A epoxy resins, and Bis-F epoxy resins, as well as reactive diluents and nonbisphenol epoxy resins. Questions concerning exposure to epoxy resins, occupational history, and problems with dental work were completed. All patients included in the study had positive reactions to the standard Bis-A epoxy resin. Twenty percent (8 of 41) of the patients reacted to at least one of the epoxy acrylates; the most common reaction was to Bis-GMA. Five of 8 patients who reacted to the epoxy acrylates had dental work, but only one patient had problems from her dental work. Six of 8 patients (75%) who reacted to epoxy resins and epoxy acrylates did not react to aliphatic acrylates. Thirty-two percent (13 of 41) reacted to tosylamide epoxy resin, and none reacted to triglycidyl isocyanurate resin. In addition, all patients (100%) had positive reactions to at least one of the Bis-F epoxy resins that were tested. Most patients with sensitivity to Bis-A epoxy resins do not cross-react with epoxy acrylates. Patients with positive patch test reactions to epoxy acrylates used in dentistry usually do not have symptoms from their dental work. To our knowledge, this is the largest series of patients with sensitivity to the standard Bis-A epoxy resin that have been patch tested with the more recently introduced Bis-F epoxy resins. There is significant cross-reactivity between Bis-A and Bis-F epoxy resins, which can be explained by their structural similarity. Copyright 2002, Elsevier Science (USA). All rights reserved.

  17. Influence of carbon nanotubes on the properties of epoxy based composites reinforced with a semicrystalline thermoplastic

    NASA Astrophysics Data System (ADS)

    Díez-Pascual, A.; Shuttleworth, P.; Gónzalez-Castillo, E.; Marco, C.; Gómez-Fatou, M.; Ellis, G.

    2014-08-01

    Novel ternary nanocomposites based on a thermoset (TS) system composed of triglycidyl p-aminophenol (TGAP) epoxy resin and 4,4'-diaminodiphenylsulfone (DDS) curing agent incorporating 5 wt% of a semicrystalline thermoplastic (TP), an ethylene/1-octene copolymer, and 0.5 or 1.0 wt% multi-walled carbon nanotubes (MWCNTs) have been prepared via physical blending and curing. The influence of the TP and the MWCNTs on the curing process, morphology, thermal and mechanical properties of the hybrid nanocomposites has been analyzed. Different morphologies evolved depending on the CNT content: the material with 0.5 wt% MWCNTs showed a matrix-dispersed droplet-like morphology with well-dispersed nanofiller that selectively located at the TS/TP interphase, while that with 1.0 wt% MWCNTs exhibited coarse dendritic TP areas containing agglomerated MWCNTs. Although the cure reaction was accelerated in its early stage by the nanofillers, curing occurred at a lower rate since these obstructed chain crosslinking. The nanocomposite with lower nanotube content displayed two crystallization peaks at lower temperature than that of pure TP, while a single peak appearing at similar temperature to that of TP was observed for the blend with higher nanotube loading. The highest thermal stability was found for TS/TP (5.0 wt%)/MWCNTs (0.5 wt%), due to a synergistic barrier effect of both TP and the nanofiller. Moreover, this nanocomposite displayed the best mechanical properties, with an optimal combination of stiffness, strength and toughness. However, poorer performance was found for TS/TP (5.0 wt%)/MWCNTs (1.0 wt%) due to the less effective reinforcement of the agglomerated nanotubes and the coalescence of the TP particles into large areas. Therefore, finely tuned morphologies and properties can be obtained by adjusting the nanotube content in the TS/TP blends, leading to high-performance hybrid nanocomposites suitable for structural and high-temperature applications.

  18. Thermosetting epoxy resin/thermoplastic system with combined shape memory and self-healing properties

    NASA Astrophysics Data System (ADS)

    Yao, Yongtao; Wang, Jingjie; Lu, Haibao; Xu, Ben; Fu, Yongqing; Liu, Yanju; Leng, Jinsong

    2016-01-01

    A novel and facile strategy was proposed to construct a thermosetting/thermoplastic system with both shape memory and self-healing properties based on commercial epoxy resin and poly(ɛ-caprolactone)-PCL. Thermoplastic material is capable of re-structuring and changing the stiffness/modulus when the temperature is above melting temperature. PCL microfiber was used as a plasticizer in epoxy resin-based blends, and served as a ‘hard segment’ to fix a temporary shape of the composites during shape memory cycles. In this study, the electrospun PCL membrane with a porous network structure enabled a homogenous PCL fibrous distribution and optimized interaction between fiber and epoxy resin. The self-healing capability is achieved by phase transition during curing of the composites. The mechanism of the shape memory effect of the thermosetting (rubber)/thermoplastic composite is attributed to the structural design of the thermoplastic network inside the thermosetting resin/rubber matrix.

  19. Co-Curing of CFRP-Steel Hybrid Joints Using the Vacuum Assisted Resin Infusion Process

    NASA Astrophysics Data System (ADS)

    Streitferdt, Alexander; Rudolph, Natalie; Taha, Iman

    2017-10-01

    This study focuses on the one-step co-curing process of carbon fiber reinforced plastics (CFRP) joined with a steel plate to form a hybrid structure. In this process CFRP laminate and bond to the metal are realized simultaneously by resin infusion, such that the same resin serves for both infusion and adhesion. For comparison, the commonly applied two-step process of adhesive bonding is studied. In this case, the CFRP laminate is fabricated in a first stage through resin infusion of Non Crimp Fabric (NCF) and joined to the steel plate in a further step through adhesive bonding. For this purpose, the commercially available epoxy-based Betamate 1620 is applied. CFRP laminates were fabricated using two different resin systems, namely the epoxy (EP)-based RTM6 and a newly developed fast curing polyurethane (PU) resin. Results show comparable mechanical performance of the PU and EP based CFRP laminates. The strength of the bond of the co-cured samples was in the same order as the samples adhesively bonded with the PU resin and the structural adhesive. The assembly adhesive with higher ductility showed a weaker performance compared to the other tests. It could be shown that the surface roughness had the highest impact on the joint performance under the investigated conditions.

  20. Enhanced microwave shielding and mechanical properties of high loading MWCNT-epoxy composites

    NASA Astrophysics Data System (ADS)

    Singh, B. P.; Prasanta; Choudhary, Veena; Saini, Parveen; Pande, Shailaja; Singh, V. N.; Mathur, R. B.

    2013-04-01

    Dispersion of high loading of carbon nanotubes (CNTs) in epoxy resin is a challenging task for the development of efficient and thin electromagnetic interference (EMI) shielding materials. Up to 20 wt% of multiwalled carbon nanotubes (MWCNTs) loading in the composite was achieved by forming CNT prepreg in the epoxy resin as a first step. These prepreg laminates were then compression molded to form composites which resulted in EMI shielding effectiveness of -19 dB for 0.35 mm thick film and -60 dB at for 1.75 mm thick composites in the X-band (8.2-12.4 GHz). One of the reasons for such high shielding is attributed to the high electrical conductivity of the order of 9 S cm-1 achieved in these composites which is at least an order of magnitude higher than previously reported results at this loading. In addition, an improvement of 40 % in the tensile strength over the neat resin value is observed. Thermal conductivity of the MWCNTs-epoxy composite reached 2.18 W/mK as compared to only 0.14 W/mK for cured epoxy.

  1. Computational Design of Epoxy/ Boron Carbide Nanocomposites for Radiation Shielding Applications

    NASA Astrophysics Data System (ADS)

    Bejagam, Karteek; Galehdari, Nasim; Espinosa, Ingrid; Deshmukh, Sanket A.; Kelkar, Ajit D.

    An individual working in industries that include nuclear power plants, healthcare industry, and aerospace are knowingly or unknowingly exposed to radiations of different energies. Exposure to high-energy radiations such as α/ β particle emissions or gamma ray electromagnetic radiations enhances the health risks that can lead to carcinogenesis, cardiac problems, cataracts, and other acute radiation syndromes. The best possible solution to protect one from the exposure to radiations is shielding. In the present study, we have developed a new algorithm to generate a range of different structures of Diglycidyl Ether of Bisphenol F (EPON 862) and curing agent Diethylene Toluene Diamine (DETDA) resins with varying degrees of crosslinking. 3, 5, and 10 weight percent boron carbide was employed as filling materials to study its influence on the thermal and mechanical properties of composite. We further conduct the reactive molecular dynamics (RMD) simulations to investigate the effect of radiation exposure on the structural, physical, and mechanical properties of these Epoxy/Boron Carbide nanocomposites. Where possible the simulation results were compared with the experimental data.

  2. The Design and Synthesis of Epoxy Matrix Composites Curable by Electron Beam Induced Cationic Polymerization

    NASA Technical Reports Server (NTRS)

    Crivello, James V.

    2000-01-01

    Several new series of novel, high reactivity epoxy resins are described which are designed specifically for the fabrication of high performance carbon fiber reinforced composites for commercial aircraft structural applications using cationic UV and e-beam curing. The objective of this investigation is to provide resin matrices which rapidly and efficiently cure under low e-beam doses which are suitable to high speed automated composite fabrication techniques such as automated tape and tow placement. It was further the objective of this work to provide resins with superior thermal, oxidative and atomic oxygen resistance.

  3. Fire performance, microstructure and thermal degradation of an epoxy based nano intumescent fire retardant coating for structural applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aziz, Hammad, E-mail: engr.hammad.aziz03@gmail.com; Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Yusoff, P. S. M. Megat

    Intumescent fire retardant coating (IFRC) is a passive fire protection system which swells upon heating to form expanded multi-cellular char layer that protects the substrate from fire. In this research work, IFRC’s were developed using different flame retardants such as ammonium polyphosphate, expandable graphite, melamine and boric acid. These flame retardants were bound together with the help of epoxy binder and cured together using curing agent. IFRC was then reinforced with nano magnesium oxide and nano alumina as inorganic fillers to study their effect towards fire performance, microstructure and thermal degradation. Small scale fire test was conducted to investigate themore » thermal insulation of coating whereas fire performance was calculated using thermal margin value. Field emission scanning electron microscopy was used to examine the microstructure of char obtained after fire test. Thermogravimetric analysis was conducted to investigate the residual weight of coating. Results showed that the performance of the coating was enhanced by reinforcement with nano size fillers as compared to non-filler based coating. Comparing both nano size magnesium oxide and nano size alumina; nano size alumina gave better fire performance with improved microstructure of char and high residual weight.« less

  4. Fire performance, microstructure and thermal degradation of an epoxy based nano intumescent fire retardant coating for structural applications

    NASA Astrophysics Data System (ADS)

    Aziz, Hammad; Ahmad, Faiz; Yusoff, P. S. M. Megat; Zia-ul-Mustafa, M.

    2015-07-01

    Intumescent fire retardant coating (IFRC) is a passive fire protection system which swells upon heating to form expanded multi-cellular char layer that protects the substrate from fire. In this research work, IFRC's were developed using different flame retardants such as ammonium polyphosphate, expandable graphite, melamine and boric acid. These flame retardants were bound together with the help of epoxy binder and cured together using curing agent. IFRC was then reinforced with nano magnesium oxide and nano alumina as inorganic fillers to study their effect towards fire performance, microstructure and thermal degradation. Small scale fire test was conducted to investigate the thermal insulation of coating whereas fire performance was calculated using thermal margin value. Field emission scanning electron microscopy was used to examine the microstructure of char obtained after fire test. Thermogravimetric analysis was conducted to investigate the residual weight of coating. Results showed that the performance of the coating was enhanced by reinforcement with nano size fillers as compared to non-filler based coating. Comparing both nano size magnesium oxide and nano size alumina; nano size alumina gave better fire performance with improved microstructure of char and high residual weight.

  5. Epoxy Pipelining Composition and Method of Manufacture.

    DTIC Science & Technology

    1994-12-14

    exemplary curing agent blend was prepared by reacting azelaic acid 3 (nonanedioic acid ), hexanoic acid , triethylene tetramine 4 (NH 2CH2CH2NHCH2CH2NHCH2CH...2NH2; TETA) and benzyl alcohol. The exemplary 5 curing agent blend was prepared as follows: 6 (a) Azelaic acid (solid; 90.9 gm.; 0.483 moles; C 9H 16 0...heated to 230 ’C over 10 - 20 11 minutes in a silicone oil bath. As the azelaic acid melted into a liquid, the 12 reaction mixture was stirred using a

  6. Monitoring cure properties of out-of-autoclave BMI composites using IFPI sensor

    NASA Astrophysics Data System (ADS)

    Kaur, Amardeep; Anandan, Sudharshan; Yuan, Lei; Watkins, Steve E.; Chandrashekhara, K.; Xiao, Hai; Phan, Nam

    2016-04-01

    A non-destructive technique for inspection of a Bismaleimide (BMI) composite is presented using an optical fiber sensor. High performance BMI composites are used for Aerospace application for their mechanical strength. They are also used as an alternative to toughened epoxy resins. A femtosecond-laser-inscribed Intrinsic Fabry-Perot Interferometer (IFPI) sensor is used to perform real time cure monitoring of a BMI composite. The composite is cured using the out-of-autoclave (OOA) process. The IFPI sensor was used for in-situ monitoring; different curing stages are analyzed throughout the curing process. Temperature-induced-strain was measured to analyze the cure properties. The IFPI structure comprises of two reflecting mirrors inscribed on the core of the fiber using a femtosecond-laser manufacturing process. The manufacturing process makes the sensor thermally stable and robust for embedded applications. The sensor can withstand very high temperatures of up to 850 °C. The temperature and strain sensitivities of embedded IFPI sensor were measured to be 1.4 pm/μepsilon and 0.6 pm/μepsilon respectively.

  7. All-fiber optoelectronic sensor with Bragg gratings for in-situ cure monitoring

    NASA Astrophysics Data System (ADS)

    Cusano, Andrea; Breglio, Giovanni; Cutolo, Antonello; Calabro, Antonio M.; Giordano, Michele; Nicolais, Luigi, II

    2000-08-01

    Real-time, in situ monitoring for quality control of the polymer cure process is of high interest, since thermoset polymer-matrix composite are widely used in large industrial areas: aeronautical, aerospace, automotive and civil due to their low cost/low weight features. However, their final properties are strongly dependence on the processing parameters, such as temperature and pressure sequence. The key-point for advanced composite materials is the possibility to have distributed and simultaneous monitoring of chemoreological and physical properties during the cure process. To this aim, we have developed and tested an optoelectronic fiber optic sensor based on the Fresnel principle able to monitor the variations of the refractive index due to the cure process of an epoxy based resin. Experimental results have been obtained on sensor capability to monitor the cure kinetics by assuming the refractive index as reaction co-ordinate. The integration with in-fiber Bragg grating in order to measure the local temperature has been discussed and tested.

  8. Strong composition dependence of adhesive properties of ultraviolet curing adhesives with modified acrylates

    NASA Astrophysics Data System (ADS)

    Feng, Yefeng; Li, Yandong; Wang, Fupeng; Peng, Cheng; Xu, Zhichao; Hu, Jianbing

    2018-05-01

    Ultraviolet (UV) curable adhesives have been widely researched in fields of health care and electronic components. UV curing systems with modified acrylic ester prepolymers have been frequently employed. In order to clarify composition dependence of adhesive properties of adhesives containing modified acrylates, in this work, several UV curing adhesives bearing urethane and epoxy acrylates were designed and fabricated. The effects of prepolymer, diluent, feed ratio, initiator and assistant on adhesive performances were investigated. This work might offer a facile route to gain promising high-performance UV curable adhesives with desired adhesive traits through regulating their compositions.

  9. A Durable Airfield Marking System.

    DTIC Science & Technology

    1985-06-01

    Resin is Mixed with the Black Curing Agent to Form the Epoxy Adhesive ..... ........... 17 14 The Gray Adhesive (White Resin Mixed with Black Curing...rubber 100 0 Polyester (peroxide-catalyzed) 100 0 Urethane 100 0 Epoxy polyamide 100 0 Acrylic latex (TT-P-1952) 100 0 Thermoplastic Tapes Type 1 100 0...suzmarrizes cost data co1parisons for traffic marking tapes, CAS tiles, fluorocarbon composites (Teflon ),and acrylic latex paint TT-P-1952. 8 -p °’. TABLE 2

  10. Multivariate curve resolution-alternating least squares and kinetic modeling applied to near-infrared data from curing reactions of epoxy resins: mechanistic approach and estimation of kinetic rate constants.

    PubMed

    Garrido, M; Larrechi, M S; Rius, F X

    2006-02-01

    This study describes the combination of multivariate curve resolution-alternating least squares with a kinetic modeling strategy for obtaining the kinetic rate constants of a curing reaction of epoxy resins. The reaction between phenyl glycidyl ether and aniline is monitored by near-infrared spectroscopy under isothermal conditions for several initial molar ratios of the reagents. The data for all experiments, arranged in a column-wise augmented data matrix, are analyzed using multivariate curve resolution-alternating least squares. The concentration profiles recovered are fitted to a chemical model proposed for the reaction. The selection of the kinetic model is assisted by the information contained in the recovered concentration profiles. The nonlinear fitting provides the kinetic rate constants. The optimized rate constants are in agreement with values reported in the literature.

  11. Epoxy Adhesives for Stator Magnet Assembly in Stirling Radioisotope Generators (SRG)

    NASA Technical Reports Server (NTRS)

    Cater, George M.

    2004-01-01

    As NASA seeks to fulfill its goals of exploration and understanding through missions planned to visit the moons of Saturn and beyond, a number of challenges arise from the idea of deep space flight. One of the first problems associated with deep space travel is electrical power production for systems on the spacecraft. Conventional methods such as solar power are not practical because efficiency decreases substantially as the craft moves away from the Sun. The criterion for power generation during deep space missions are very specific, the main points requiring high reliability, low mass, minimal vibration and a long lifespan. A Stirling generator, although fairly old in concept, is considered to be a potential solution for electrical power generation for deep space flight. A Stirling generator works on the same electromagnetic principles of a standard generator, using the linear motion of the alternator through the stationary stator which produces electric induction. The motion of the alternator, however, is produced by the heating and cooling dynamics of pressurized gases. Essentially heating one end and cooling another of a contained gas will cause a periodic expansion and compression of the gas from one side to the other, which a displacer translates into linear mechanical motion. NASA needs to confirm that the materials used in the generator will be able to withstand the rigors of space and the life expectancy of the mission. I am working on the verification of the epoxy adhesives used to bond magnets to the steel lamination stack to complete the stator; in terms of in-service performance and durability under various space environments. Understanding the proper curing conditions, high temperature properties, and degassing problems as well as production difficulties are crucial to the long term success of the generator. system and steel substrate used in the stator. To optimize the curing conditions of the epoxies, modulated differential scanning calorimetry

  12. Effect of Zirconia Nanoparticles in Epoxy-Silica Hybrid Adhesives to Join Aluminum Substrates.

    PubMed

    Figueroa-Lara, José de Jesús; Torres-Rodríguez, Miguel; Gutiérrez-Arzaluz, Mirella; Romero-Romo, Mario

    2017-09-27

    This research presents the interaction of the epoxy polymer diglicydil ether of bisphenol-A (DGEBA) with silica (SiO₂) nanoparticles plus zirconia (ZrO₂) nanoparticles obtained via the sol-gel method in the synthesis of an epoxy-silica-zirconia hybrid adhesive cured with polyamide. ZrO₂ nanoparticles were added to the epoxy-silica hybrid adhesive produced in situ to modify the apparent shear strength of two adhesively bonded aluminum specimens. The results showed that the addition of different amounts of ZrO₂ nanoparticles increased the shear strength of the adhesively bonded aluminum joint, previously treated by sandblasting, immersion in hot water and silanized with a solution of hydrolyzed 3-glycidoxipropyltrimethoxysilane (GPTMS). The morphology and microstructure of the nanoparticles and aluminum surfaces were examined by scanning electron microscopy (SEM), and elemental analysis was performed with the Energy-dispersive X-ray spectroscopy (EDS) detector; the chemical groups were investigated during the aluminum surface modification using Fourier transform infrared spectroscopy (FTIR).

  13. Effect of Zirconia Nanoparticles in Epoxy-Silica Hybrid Adhesives to Join Aluminum Substrates

    PubMed Central

    Figueroa-Lara, José de Jesús; Torres-Rodríguez, Miguel

    2017-01-01

    This research presents the interaction of the epoxy polymer diglicydil ether of bisphenol-A (DGEBA) with silica (SiO2) nanoparticles plus zirconia (ZrO2) nanoparticles obtained via the sol-gel method in the synthesis of an epoxy-silica-zirconia hybrid adhesive cured with polyamide. ZrO2 nanoparticles were added to the epoxy-silica hybrid adhesive produced in situ to modify the apparent shear strength of two adhesively bonded aluminum specimens. The results showed that the addition of different amounts of ZrO2 nanoparticles increased the shear strength of the adhesively bonded aluminum joint, previously treated by sandblasting, immersion in hot water and silanized with a solution of hydrolyzed 3-glycidoxipropyltrimethoxysilane (GPTMS). The morphology and microstructure of the nanoparticles and aluminum surfaces were examined by scanning electron microscopy (SEM), and elemental analysis was performed with the Energy-dispersive X-ray spectroscopy (EDS) detector; the chemical groups were investigated during the aluminum surface modification using Fourier transform infrared spectroscopy (FTIR). PMID:28953243

  14. The Effects of UV Light on the Chemical and Mechanical Properties of a Transparent Epoxy-Diamine System in the Presence of an Organic UV Absorber

    PubMed Central

    Nikafshar, Saeid; Zabihi, Omid; Ahmadi, Mojtaba; Mirmohseni, Abdolreza; Taseidifar, Mojtaba; Naebe, Minoo

    2017-01-01

    Despite several excellent properties including low shrinkage, good chemical resistance, curable at low temperatures and the absence of byproducts or volatiles, epoxy resins are susceptible to ultra violet (UV) damage and their durability is reduced substantially when exposed to outdoor environments. To overcome this drawback, UV absorbers have been usually used to decrease the rate of UV degradation. In this present study, the effects of UV light on the chemical, mechanical and physical properties of cured epoxy structure, as well as the effect of an organic UV absorber, Tinuvin 1130, on the epoxy properties were investigated. Chemical changes in a cured epoxy system as a result of the presence and absence of Tinuvin 1130 were determined using Fourier transform infrared spectroscopy (FT-IR) analyses. The effect of Tinuvin 1130 on the surface morphology of the epoxy systems was also investigated by scanning electron microscopy (SEM) imaging. Additionally, the glass transition temperatures (Tg) before and during UV radiation were measured. After an 800 h UV radiation, mechanical test results revealed that the lack of the UV absorber can lead to a ~30% reduction in tensile strength. However, in the presence of Tinuvin 1130, the tensile strength was reduced only by ~11%. It was hypothesized that the use of Tinuvin 1130, as an organic UV absorber in the epoxy-amine system, could decrease the undesirable effects, arising from exposure to UV light. PMID:28772538

  15. Polymeric Additives For Graphite/Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Nir, Z.

    1990-01-01

    Report describes experimental studies of properties of several graphite/epoxy composites containing polymeric additives as flexibilizing or toughening agents. Emphasizes effects of brominated polymeric additives (BPA's) with or without carboxy-terminated butadiene acrylonitrile rubber. Reviews effects of individual and combined additives on fracture toughnesses, environmental stabilities, hot/wet strengths, thermomechanical behaviors, and other mechanical properties of composites.

  16. Polymer blends based on epoxy resin and polyphenylene ether as a matrix material for high-performance composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venderbosch, R.W.; Nelissen, J.G.L.; Peijs, A.A.J.M.

    1993-12-31

    The application of poly(2,6-dimethyl-1,4-phenylene ether), PPE, as a matrix material for continuous carbon fiber reinforced composites was studied. PPE is an amorphous thermoplastic exhibiting a high glass transition temperature (220 C) and outstanding mechanical properties with respect to e.g. toughness. However, due to the limited thermal stability at temperatures above T{sub g}, PPE can be regarded as an intractable polymer. Consequently, the introduction of PPE in a composite structure via a melt impregnation route is not feasible. In this investigation a solution impregnation route, using epoxy resin as a reactive solvent, was developed. During impregnation epoxy resin acts as amore » solvent which results in enhanced flow and a reduced processing temperature enabling the preparation of high quality composites, avoiding any degradation. Upon curing of the neat system, phase separation and phase inversion occurs resulting in a continuous PPE matrix filled with glassy epoxy spheres. As a result of this morphology the mechanical and thermal properties of the final material are mainly dominated by the PPE component. In composite applications, a strong influence of the polarity of the carbon fiber surface on the resulting matrix morphology was found. Upon curing, phase separation is initiated at the fiber surface resulting in an epoxy `interlayer` at the fiber surface. This phenomenon can provide a high level of interfacial adhesion. A preliminary investigation of the resulting composite materials revealed outstanding mechanical properties with respect to e.g. interlaminar toughness and strength.« less

  17. Trowelable ablative coating composition and method of use

    NASA Technical Reports Server (NTRS)

    Headrick, Stephen E. (Inventor); Hill, Roger L. (Inventor)

    1989-01-01

    A trowelable ablative coating composition is disclosed. The composition comprises an epoxy resin, an amide curing agent, glass microspheres and ground cork. A method for protecting a substrate is also disclosed. The method comprises applying the trowelable ablative coating discussed above to a substrate and curing the coating composition.

  18. Trowelable ablative coating composition and method of use

    NASA Technical Reports Server (NTRS)

    Headrick, Stephen E. (Inventor); Hill, Roger L. (Inventor)

    1988-01-01

    A trowelable ablative coating composition is disclosed. The composition comprises an epoxy resin, an amide curing agent, glass microspheres and ground cork. A method for protecting a substrate is also disclosed. The method comprises applying the trowelable ablative coating discussed above to a substrate and curing the coating composition.

  19. Multi-Scale Modeling of a Graphite-Epoxy-Nanotube System

    NASA Technical Reports Server (NTRS)

    Frankland, S. J. V.; Riddick, J. C.; Gates, T. S.

    2005-01-01

    A multi-scale method is utilized to determine some of the constitutive properties of a three component graphite-epoxy-nanotube system. This system is of interest because carbon nanotubes have been proposed as stiffening and toughening agents in the interlaminar regions of carbon fiber/epoxy laminates. The multi-scale method uses molecular dynamics simulation and equivalent-continuum modeling to compute three of the elastic constants of the graphite-epoxy-nanotube system: C11, C22, and C33. The 1-direction is along the nanotube axis, and the graphene sheets lie in the 1-2 plane. It was found that the C11 is only 4% larger than the C22. The nanotube therefore does have a small, but positive effect on the constitutive properties in the interlaminar region.

  20. UV-cured adhesives for carbon fiber composite applications

    NASA Astrophysics Data System (ADS)

    Lu, Hsiao-Chun

    Carbon fiber composite materials are increasingly used in automobile, marine, and aerospace industries due to their unique properties, including high strength, high stiffness and low weight. However, due to their brittle characteristic, these structures are prone to physical damage, such as a bird strike or impact damage. Once the structure is damaged, it is important to have fast and reliable temporary repair until the permanent repair or replacement can take place. In this dissertation, UV-based adhesives were used to provide a bonding strength for temporary repair. Adhesively bonded patch repair is an efficient and effective method for temporary repair. In this study, precured patches (hard patches) and dry fabric patches with laminating resins (soft patches) were performed. UV-based epoxy adhesives were applied to both patch repair systems. For precured patch repair, the bonding strengths were investigated under different surface treatments for bonding area and different adhesives thicknesses. The shear stresses of different UV exposure times and curing times were tested. Besides, the large patch repair was investigated as well. For soft patch repair, the hand wet lay-up was applied due to high viscosity of UV resins. A modified single lap shear testing (ASTM D5868) was applied to determine the shear stress. The large patches used fiber glass instead of carbon fiber to prove the possibility of repair with UV epoxy resin by hand wet lay-up process. The hand lay-up procedure was applied and assisted by vacuum pressure to eliminate the air bubbles and consolidate the patches. To enhance the bonding strength and effective soft patch repair, vacuum assisted resin transferring molding (VaRTM) is the better option. However, only low viscosity resins can be operated by VaRTM. Hence, new UV-based adhesives were formulated. The new UV-based adhesives included photoinitiator (PI), epoxy and different solvents. Solvents were used to compound the photoinitiator into epoxy

  1. Finite Element Simulation of Compression Molding of Woven Fabric Carbon Fiber/Epoxy Composites: Part I Material Model Development

    DOE PAGES

    Li, Yang; Zhao, Qiangsheng; Mirdamadi, Mansour; ...

    2016-01-06

    Woven fabric carbon fiber/epoxy composites made through compression molding are one of the promising choices of material for the vehicle light-weighting strategy. Previous studies have shown that the processing conditions can have substantial influence on the performance of this type of the material. Therefore the optimization of the compression molding process is of great importance to the manufacturing practice. An efficient way to achieve the optimized design of this process would be through conducting finite element (FE) simulations of compression molding for woven fabric carbon fiber/epoxy composites. However, performing such simulation remains a challenging task for FE as multiple typesmore » of physics are involved during the compression molding process, including the epoxy resin curing and the complex mechanical behavior of woven fabric structure. In the present study, the FE simulation of the compression molding process of resin based woven fabric composites at continuum level is conducted, which is enabled by the implementation of an integrated material modeling methodology in LS-Dyna. Specifically, the chemo-thermo-mechanical problem of compression molding is solved through the coupling of three material models, i.e., one thermal model for temperature history in the resin, one mechanical model to update the curing-dependent properties of the resin and another mechanical model to simulate the behavior of the woven fabric composites. Preliminary simulations of the carbon fiber/epoxy woven fabric composites in LS-Dyna are presented as a demonstration, while validations and models with real part geometry are planned in the future work.« less

  2. Component Release and Mechanical Properties of Endodontic Sealers following Incorporation of Antimicrobial Agents.

    PubMed

    Gjorgievska, Elizabeta S; Nicholson, John W; Coleman, Nichola J; Booth, Samantha; Dimkov, Aleksandar; Hurt, Andrew

    2017-01-01

    Root canal sealers with antimicrobial activity are highly beneficial; therefore, their antimicrobial properties could be improved by incorporation of antimicrobial agents. In the present study, the release of the quaternary ammonium compounds from endodontic sealers admixed with either benzalkonium chloride (BC) or cetylpyridinium chloride (CPC) at loadings of 2% wt was monitored. The effect of these additives on the compressive strengths and their release from the sealers was determined after 1 and 4 weeks. All of the materials studied were found to be capable of releasing antimicrobial additive in useful quantities. The release of CPC occurred to a statistically significant greater extent than BC for all materials. The addition of both BC and CPC generally decreased the compressive strength of all the endodontic sealers, with the exception of CPC in AH Plus, where the compressive strength was significantly increased. This suggests that, for these endodontic sealers, the antimicrobial additives alter the setting chemistry. AH Plus is an epoxy-based material cured with an amine, and in this case the increase in compressive strength with CPC is attributed to an enhanced cure reaction with this system. In all other cases, the additive inhibited the cure reaction to a greater or lesser extent.

  3. Component Release and Mechanical Properties of Endodontic Sealers following Incorporation of Antimicrobial Agents

    PubMed Central

    Nicholson, John W.; Coleman, Nichola J.; Booth, Samantha; Dimkov, Aleksandar

    2017-01-01

    Root canal sealers with antimicrobial activity are highly beneficial; therefore, their antimicrobial properties could be improved by incorporation of antimicrobial agents. In the present study, the release of the quaternary ammonium compounds from endodontic sealers admixed with either benzalkonium chloride (BC) or cetylpyridinium chloride (CPC) at loadings of 2% wt was monitored. The effect of these additives on the compressive strengths and their release from the sealers was determined after 1 and 4 weeks. All of the materials studied were found to be capable of releasing antimicrobial additive in useful quantities. The release of CPC occurred to a statistically significant greater extent than BC for all materials. The addition of both BC and CPC generally decreased the compressive strength of all the endodontic sealers, with the exception of CPC in AH Plus, where the compressive strength was significantly increased. This suggests that, for these endodontic sealers, the antimicrobial additives alter the setting chemistry. AH Plus is an epoxy-based material cured with an amine, and in this case the increase in compressive strength with CPC is attributed to an enhanced cure reaction with this system. In all other cases, the additive inhibited the cure reaction to a greater or lesser extent. PMID:28620615

  4. Preparation and Electrochemical Properties of Graphene/Epoxy Resin Composite Coating

    NASA Astrophysics Data System (ADS)

    Liao, Zijun; Zhang, Tianchi; Qiao, Sen; Zhang, Luyihang

    2017-11-01

    The multilayer graphene powder as filler, epoxy modified silicone resin as film-forming agent, anticorrosion composite coating has been created using sand dispersion method, the electrochemical performance was compared with different content of graphene composite coating and pure epoxy resin coating. The open circuit potential (OCP), potentiodynamic polarization curves (Tafel Plot) and electrochemical impedance spectroscopy (EIS) were tested. The test results showed that the anti-corrosion performance of multilayer graphene added has improved greatly, and the content of the 5% best corrosion performance of graphene composite coating.

  5. FT-IR Investigation of Hoveyda-Grubbs'2{sup nd} Generation Catalyst in Self-Healing Epoxy Mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guadagno, Liberata; Naddeo, Carlo; Vittoria, Vittoria

    The development of smart composites capable of self-repair on aeronautical structures is still at the planning stage owing to complex issues to overcome. A very important issue to solve concerns the components' stability of the proposed composites which are compromised at the cure temperatures necessary for good performance of the composite. In this work we analyzed the possibility to apply Hoveyda Grubbs' second generation catalyst (HG2) to develop self-healing systems. Our experimental results have shown critical issues in the use of epoxy precursors in conjunction with Hoveyda-Grubbs II metathesis catalyst. However, an appropriate curing cycle of the self-healing mixture permitsmore » to overcome the critical issues making possible high temperatures for the curing process without deactivating self-repair activity.« less

  6. Surface Modifier-Free Organic-Inorganic Hybridization To Produce Optically Transparent and Highly Refractive Bulk Materials Composed of Epoxy Resins and ZrO2 Nanoparticles.

    PubMed

    Enomoto, Kazushi; Kikuchi, Moriya; Narumi, Atsushi; Kawaguchi, Seigou

    2018-04-25

    Surface modifier-free hybridization of ZrO 2 nanoparticles (NPs) with epoxy-based polymers is demonstrated for the first time to afford highly transparent and refractive bulk materials. This is achieved by a unique and versatile hybridization via the one-pot direct phase transfer of ZrO 2 NPs from water to epoxy monomers without any aggregation followed by curing with anhydride. Three types of representative epoxy monomers, bisphenol A diglycidyl ether (BADGE), 3,4-epoxycyclohexylmethyl-3',4'-epoxycyclohexane carboxylate (CEL), and 1,3,5-tris(3-(oxiran-2-yl)propyl)-1,3,5-triazinane-2,4,6-trione (TEPIC), are used to produce transparent viscous dispersions. The resulting ZrO 2 NPs are thoroughly characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), and solid-state 13 C CP/MAS NMR measurements. The results from DLS and TEM analyses indicate nanodispersion of ZrO 2 into epoxy monomers as a continuous medium. A surface modification mechanism and the binding fashion during phase transfer are proposed based on the FT-IR and solid-state 13 C CP/MAS NMR measurements. Epoxy-based hybrid materials with high transparency and refractive index are successfully fabricated by heat curing or polymerizing a mixture of monomers containing epoxy-functionalized ZrO 2 NPs and methylhexahydrophthalic anhydride in the presence of a phosphoric catalyst. The TEM and small-angle X-ray scattering measurements of the hybrids show a nanodispersion of ZrO 2 in the epoxy networks. The refractive index at 594 nm ( n 594 ) increases up to 1.765 for BADGE-based hybrids, 1.667 for CEL-based hybrids, and 1.693 for TEPIC-based hybrids. Their refractive indices and Abbe's numbers are quantitatively described by the Lorentz-Lorenz effective medium expansion theory. Their transmissivity is also reasonably explained using Fresnel refraction, Rayleigh scattering, and the Lambert-Beer theories. This surface modifier-free hybridization

  7. Interpretation of Mechanical and Thermal Properties of Heavy Duty Epoxy Based Floor Coating Doped by Nanosilica

    NASA Astrophysics Data System (ADS)

    Nikje, M. M. Alavi; Khanmohammadi, M.; Garmarudi, A. Bagheri

    Epoxy-nano silica composites were prepared using Bisphenol-A epoxy resin (Araldite® GY 6010) resin obtained from in situ polymerization or blending method. SiO2 nanoparticles were pretreated by a silan based coupling agent. Surface treated nano silica was dispersed excellently by mechanical and ultrasonic homogenizers. A dramatic increase in the interfacial area between fillers and polymer can significantly improve the properties of the epoxy coating product such as tensile, elongation, abrasion resistance, etc.

  8. Comparison of the Nanostructure and Mechanical Performance of Highly Exfoliated Epoxy-Clay Nanocomposites Prepared by Three Different Protocols

    PubMed Central

    Shiravand, Fatemeh; Hutchinson, John M.; Calventus, Yolanda; Ferrando, Francesc

    2014-01-01

    Three different protocols for the preparation of polymer layered silicate nanocomposites based upon a tri-functional epoxy resin, triglycidyl para-amino phenol (TGAP), have been compared in respect of the cure kinetics, the nanostructure and their mechanical properties. The three preparation procedures involve 2 wt% and 5 wt% of organically modified montmorillonite (MMT), and are: isothermal cure at selected temperatures; pre-conditioning of the resin-clay mixture before isothermal cure; incorporation of an initiator of cationic homopolymerisation, a boron tri-fluoride methyl amine complex, BF3·MEA, within the clay galleries. It was found that features of the cure kinetics and of the nanostructure correlate with the measured impact strength of the cured nanocomposites, which increases as the degree of exfoliation of the MMT is improved. The best protocol for toughening the TGAP/MMT nanocomposites is by the incorporation of 1 wt% BF3·MEA into the clay galleries of nanocomposites containing 2 wt% MMT. PMID:28788672

  9. Comparison of the Nanostructure and Mechanical Performance of Highly Exfoliated Epoxy-Clay Nanocomposites Prepared by Three Different Protocols.

    PubMed

    Shiravand, Fatemeh; Hutchinson, John M; Calventus, Yolanda; Ferrando, Francesc

    2014-05-30

    Three different protocols for the preparation of polymer layered silicate nanocomposites based upon a tri-functional epoxy resin, triglycidyl para -amino phenol (TGAP), have been compared in respect of the cure kinetics, the nanostructure and their mechanical properties. The three preparation procedures involve 2 wt% and 5 wt% of organically modified montmorillonite (MMT), and are: isothermal cure at selected temperatures; pre-conditioning of the resin-clay mixture before isothermal cure; incorporation of an initiator of cationic homopolymerisation, a boron tri-fluoride methyl amine complex, BF₃·MEA, within the clay galleries. It was found that features of the cure kinetics and of the nanostructure correlate with the measured impact strength of the cured nanocomposites, which increases as the degree of exfoliation of the MMT is improved. The best protocol for toughening the TGAP/MMT nanocomposites is by the incorporation of 1 wt% BF₃·MEA into the clay galleries of nanocomposites containing 2 wt% MMT.

  10. Applications of Blue Light-curing Acrylic Resin to Forensic Sample Preparation and Microtomy.

    PubMed

    Groves, Ethan; Palenik, Christopher S

    2016-03-01

    This study discusses the results of an evaluation of a one-part blue light-curing acrylic resin for embedding trace evidence prior to the preparation of thin sections with a microtome. Through a comparison to several epoxy resins, the physical properties relevant to both trace evidence examination and analytical microscopy in general, including as viscosity, clarity, color, hardness, and cure speed, were explored. Finally, thin sections from paint samples embedded in this acrylic resin were evaluated to determine if, through smearing or impregnation, the resin contributed to the infrared spectra. The results of this study show that blue light-curing acrylic resins provide the desired properties of an embedding medium, generate high-quality thin sections, and can significantly simplify the preparation of paint chips, fibers and a multitude of other types of microscopic samples in the forensic trace evidence laboratory. © 2015 American Academy of Forensic Sciences.

  11. Development, manufacturing, and test of graphite-epoxy composite spoilers for flight service on 737 transport aircraft

    NASA Technical Reports Server (NTRS)

    Stoecklin, R. L.

    1976-01-01

    A total of 114 spoiler units were fabricated in a production shop environment, utilizing three graphite epoxy material systems. Production planning paper was generated for each spoiler unit to completely document each production step of each spoiler unit. The graphite epoxy skins were laid up on production tooling using both mechanical and hand layup techniques. Inspection techniques utilized MRB type assessment in the abscence of quality requirements. Each completed spoiler was subjected to ultrasonic inspection utilizing a multicolor recording system that documented each inspection result. In addition, one static test spoiler was sectioned after the test to examine the adhesive filleting to the honeycomb core. Visual examination of the cured adhesives showed excellent results.

  12. Biphenyl liquid crystalline epoxy resin as a low-shrinkage resin-based dental restorative nanocomposite.

    PubMed

    Hsu, Sheng-Hao; Chen, Rung-Shu; Chang, Yuan-Ling; Chen, Min-Huey; Cheng, Kuo-Chung; Su, Wei-Fang

    2012-11-01

    Low-shrinkage resin-based photocurable liquid crystalline epoxy nanocomposite has been investigated with regard to its application as a dental restoration material. The nanocomposite consists of an organic matrix and an inorganic reinforcing filler. The organic matrix is made of liquid crystalline biphenyl epoxy resin (BP), an epoxy resin consisting of cyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (ECH), the photoinitiator 4-octylphenyl phenyliodonium hexafluoroantimonate and the photosensitizer champhorquinone. The inorganic filler is silica nanoparticles (∼70-100 nm). The nanoparticles were modified by an epoxy silane of γ-glycidoxypropyltrimethoxysilane to be compatible with the organic matrix and to chemically bond with the organic matrix after photo curing. By incorporating the BP liquid crystalline (LC) epoxy resin into conventional ECH epoxy resin, the nanocomposite has improved hardness, flexural modulus, water absorption and coefficient of thermal expansion. Although the incorporation of silica filler may dilute the reinforcing effect of crystalline BP, a high silica filler content (∼42 vol.%) was found to increase the physical and chemical properties of the nanocomposite due to the formation of unique microstructures. The microstructure of nanoparticle embedded layers was observed in the nanocomposite using scanning and transmission electron microscopy. This unique microstructure indicates that the crystalline BP and nanoparticles support each other and result in outstanding mechanical properties. The crystalline BP in the LC epoxy resin-based nanocomposite was partially melted during exothermic photopolymerization, and the resin expanded via an order-to-disorder transition. Thus, the post-gelation shrinkage of the LC epoxy resin-based nanocomposite is greatly reduced, ∼50.6% less than in commercialized methacrylate resin-based composites. This LC epoxy nanocomposite demonstrates good physical and chemical properties and good biocompatibility

  13. Nano-Composites: Relationships Between Nano-Structure and Mechanical Properties: Phase II

    DTIC Science & Technology

    2006-01-01

    was pre-reacted with the DEGBA resin to give a 40 wt.% CTBN -epoxy adduct: ‘Albipox 1000’ from Hanse Chemie, Geesthacht, Germany. The curing agent was...not lead to a decrease in the modulus of the composite. Nor does it lead to a significant increase in the viscosity of the epoxy resin , which would...preclude the use of low-cost manufacturing routes, such as a vacuum-assisted resin -transfer moulding (VARTM) process. Keywords Epoxy

  14. A self-crosslinking thermosetting monomer with both epoxy and anhydride groups derived from tung oil fatty acids: Synthesis and properties

    USDA-ARS?s Scientific Manuscript database

    A self-crosslinking compound with epoxy groups and anhydride groups (GEMA) has been successfully synthesized from tung oil fatty acid by reacting with maleic anhydride via the Diels-Alder reaction. GEMA has very good storage stability and could be cured with trace amounts of tertiary amine. This ad...

  15. A self-crosslinking thermosetting monomer with both epoxy and anhydride groups derived from Tung oil fatty acids: Synthesis and properties

    USDA-ARS?s Scientific Manuscript database

    A self-crosslinking compound with epoxy groups and anhydride groups (GEMA) has been successfully synthesized from Tung oil fatty acid by reacting with maleic anhydride via the Diels-Alder reaction. GEMA has very good storage stability and can be cured with trace amounts of tertiary amine. This advan...

  16. Sodium nitrite: the "cure" for nitric oxide insufficiency.

    PubMed

    Parthasarathy, Deepa K; Bryan, Nathan S

    2012-11-01

    This process of "curing" food is a long practice that dates back thousands of years long before refrigeration or food safety regulations. Today food safety and mass manufacturing are dependent upon safe and effective means to cure and preserve foods including meats. Nitrite remains the most effective curing agent to prevent food spoilage and bacterial contamination. Despite decades of rigorous research on its safety and efficacy as a curing agent, it is still regarded by many as a toxic undesirable food additive. However, research within the biomedical science community has revealed enormous therapeutic benefits of nitrite that is currently being developed as novel therapies for conditions associated with nitric oxide (NO) insufficiency. Much of the same biochemistry that has been understood for decades in the meat industry has been rediscovered in human physiology. This review will highlight the fundamental biochemistry of nitrite in human physiology and highlight the risk benefit evaluation surrounding nitrite in food and meat products. Foods or diets enriched with nitrite can have profound positive health benefits. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. In-situ monitoring of curing and ageing effects in FRP plates using embedded FBG sensors

    NASA Astrophysics Data System (ADS)

    Xian, Guijun; Wang, Chuan; Li, Hui

    2010-04-01

    In recent years, fiber reinforced polymer (FRP) composites have been widely applied in civil engineering for retrofitting or renewal of existing structures. Since FRP composite may degrade when exposed to severe outdoor environments, a serious concern has been raised on its long term durability. In the present study, fiber Bragg grating (FBG) sensors were embedded in glass-, carbon- and basalt-fiber reinforced epoxy based FRP plates with wet lay-up technology, to in-situ monitor the stain changes in FRPs during the curing, and water immersion and freeze-thaw ageing processes. The study demonstrates that the curing of epoxy resin brings in a slight tension strain (e.g., 10 ~ 30 μɛ) along the fiber direction and a high contraction (e.g., ~ 1100μɛ) in the direction perpendicular to the fibers, mainly due to the resin shrinkage. The cured FRP strips were then subjected to distilled water immersion at 80oC and freeze-thaw cycles from -30°C to 30°C. Remarkable strain changes of FRPs due to the variation of the temperatures during freeze-thaw cycles indicate the potential property degradation from fatigue. The maximum strain change is dependent on the fiber types and directions to the fiber. Based on the monitored strain values with temperature change and water uptake content, CTE (coefficient of thermal expansion) and CME (coefficient of moisture expansion) are exactly determined for the FRPs.

  18. Biocompatible high performance hyperbranched epoxy/clay nanocomposite as an implantable material.

    PubMed

    Barua, Shaswat; Dutta, Nipu; Karmakar, Sanjeev; Chattopadhyay, Pronobesh; Aidew, Lipika; Buragohain, Alak K; Karak, Niranjan

    2014-04-01

    Polymeric biomaterials are in extensive use in the domain of tissue engineering and regenerative medicine. High performance hyperbranched epoxy is projected here as a potential biomaterial for tissue regeneration. Thermosetting hyperbranched epoxy nanocomposites were prepared with Homalomena aromatica rhizome oil-modified bentonite as well as organically modified montmorillonite clay. Fourier transformed infrared spectroscopy, x-ray diffraction and scanning and transmission electron microscopic techniques confirmed the strong interfacial interaction of clay layers with the epoxy matrix. The poly(amido amine)-cured thermosetting nanocomposites exhibited high mechanical properties like impact resistance (>100 cm), scratch hardness (>10 kg), tensile strength (48-58 MPa) and elongation at break (11.9-16.6%). Cytocompatibility of the thermosets was found to be excellent as evident by MTT and red blood cell hemolytic assays. The nanocomposites exhibited antimicrobial activity against Staphylococcus aureus (ATCC 11632), Escherichia coli (ATCC 10536), Mycobacterium smegmatis (ATCC14468) and Candida albicans (ATCC 10231) strains. In vivo biocompatibility of the best performing nanocomposite was ascertained by histopathological study of the brain, heart, liver and skin after subcutaneous implantation in Wistar rats. The material supported the proliferation of dermatocytes without induction of any sign of toxicity to the above organs. The adherence and proliferation of cells endorse the nanocomposite as a non-toxic biomaterial for tissue regeneration.

  19. Mechanical properties of hybrid SiC/CNT filled toughened epoxy nanocomposite

    NASA Astrophysics Data System (ADS)

    Ratim, S.; Ahmad, S.; Bonnia, N. N.; Yahaya, Sabrina M.

    2018-01-01

    Mechanical properties of epoxy nanocomposites filled single filler have been extensively studied by various researchers. However, there are not much discovery on the behavior of hybrid nanocomposite. In this study, single and hybrid nanocomposites of toughened epoxy filled CNT/SiC nanoparticles were investigated. The hybrid nanocomposites samples were prepared by combining CNT and SiC nanoparticles in toughened epoxy matrix via mechanical stirring method assisted with ultrasonic cavitations. Epoxy resin and liquid epoxidized natural rubber (LENR) mixture were first blend prior to the addition of nanofillers. Then, the curing process of the nanocomposite samples were conducted by compression molding technique at 130°C for 2 hours. The purpose of this study is to investigate the hybridization effect of CNT and SiC nanoparticles on mechanical properties toughened epoxy matrix. The total loading of single and hybrid nanofillers were fixed to 4% volume are 0, 4C, 4S, 3S1C, 2S2C, and 1S3C. Mechanical properties of hybrid composites show that the highest value of tensile strength achieved by 3S1C sample at about 7% increment and falls between their single composite values. Meanwhile, the stiffness of the same sample is significantly increased at about 31% of the matrix. On the other hand, a highest flexural property is obtained by 1S3C sample at about 20% increment dominated by CNT content. However, the impact strength shows reduction trend with the addition of SiC and CNT into the matrix. The hybridization of SiC and CNT show highest value in sample 1S3C at about 3.37 kJ/m2 of impact energy absorbed. FESEM micrograph have confirmed that better distributions and interaction observed between SiC nanoparticles and matrix compared to CNT, which contributed to higher tensile strength and modulus.

  20. A Systems Approach to Depaint Chemistry

    DTIC Science & Technology

    2009-02-01

    continuous colored film by curing through solvent evaporation, oxidation, catylization or other means. – Vehicle: Film former, binder, resin or polymer...impart large changes in properties. – Suspending agents – Driers – Anti-Skinning Agents – Wetting Agents – Anti- Foaming Agents – Coalescing Agents ...volatile stripper inside the coating. Paint Release Agent Coating Removal Mechanism Zone1: PRA Layer Zone2: PRA Initial Permeation into coating system Epoxy

  1. Prepreg cure monitoring using diffuse reflectance-FTIR. [Fourier Transform Infrared Technique

    NASA Technical Reports Server (NTRS)

    Young, P. R.; Chang, A. C.

    1984-01-01

    An in situ diffuse reflectance-Fourier transform infrared technique was developed to determine infrared spectra of graphite fiber prepregs as they were being cured. A bismaleimide, an epoxy, and addition polyimide matrix resin prepregs were studied. An experimental polyimide adhesive was also examined. Samples were positioned on a small heater at the focal point of diffuse reflectance optics and programmed at 15 F/min while FTIR spectra were being scanned, averaged, and stored. An analysis of the resulting spectra provided basic insights into changes in matrix resin molecular structure which accompanied reactions such as imidization and crosslinking. An endo-exothermal isomerization involving reactive end-caps was confirmed for the addition polyimide prepregs. The results of this study contribute to a fundamental understanding of the processing of composites and adhesives. Such understanding will promote the development of more efficient cure cycles.

  2. A novel methodology for self-healing at the nanoscale in CNT/epoxy composites

    NASA Astrophysics Data System (ADS)

    Quigley, E.; Datta, S.; Chattopadhyay, A.

    2016-04-01

    Self-healing materials have the potential to repair induced damage and extend the service life of aerospace or civil components as well as prevent catastrophic failure. A novel technique to provide self-healing capabilities at the nanoscale in carbon nanotube/epoxy nanocomposites is presented in this paper. Carbon nanotubes (CNTs) functionalized with the healing agent (dicyclopentadiene) were used to fabricate self-healing CNT/epoxy nanocomposite films. The structure of CNTs was considered suitable for this application since they are nanosized, hollow, and provide a more consistent size distribution than polymeric nanocapsules. Specimens with different weight fractions of the functionalized CNTs were fabricated to explore the effect of weight fraction of functionalized CNTs on the extent of healing. Optical micrographs with different fluorescent filters showed partial or complete healing of damage approximately two to three weeks after damage was induced. Results indicate that by using CNTs to encapsulate a healing agent, crack growth in self-healing CNT/epoxy nanocomposites can be retarded, leading to safer materials that can autonomously repair itself.

  3. Unique applications of fluoroepoxy materials

    NASA Technical Reports Server (NTRS)

    Lee, Sheng Yen

    1991-01-01

    The following subject areas are covered: (1) fluoroepoxy and curing agents; (2) an excellent moisture vapor barrier coating; (3) as adhesives to bond Teflon without any surface treatment; (4) a new method to make thermosetting fluoropolymer foam; and (5) as a new antifoaming agent for epoxy material manufacturing and processing.

  4. Host-Targeting Agents to Prevent and Cure Hepatitis C Virus Infection.

    PubMed

    Zeisel, Mirjam B; Crouchet, Emilie; Baumert, Thomas F; Schuster, Catherine

    2015-11-02

    Chronic hepatitis C virus (HCV) infection is a major cause of liver cirrhosis and hepatocellular carcinoma (HCC) which are leading indications of liver transplantation (LT). To date, there is no vaccine to prevent HCV infection and LT is invariably followed by infection of the liver graft. Within the past years, direct-acting antivirals (DAAs) have had a major impact on the management of chronic hepatitis C, which has become a curable disease in the majority of DAA-treated patients. In contrast to DAAs that target viral proteins, host-targeting agents (HTAs) interfere with cellular factors involved in the viral life cycle. By acting through a complementary mechanism of action and by exhibiting a generally higher barrier to resistance, HTAs offer a prospective option to prevent and treat viral resistance. Indeed, given their complementary mechanism of action, HTAs and DAAs can act in a synergistic manner to reduce viral loads. This review summarizes the different classes of HTAs against HCV infection that are in preclinical or clinical development and highlights their potential to prevent HCV infection, e.g., following LT, and to tailor combination treatments to cure chronic HCV infection.

  5. Corrosion Control at Graphite/Epoxy-Aluminum and Titanium Interfaces

    DTIC Science & Technology

    1974-07-01

    Exfoliation Salt Spray Showing Corrosion on Back Side of Bond Interface (2x) 18 19 20 23 24 27 31 31 32 32 33 33 34 35 ; vll...25 29 Vlll ’-■"■’"-’—’—’"■ •■■’■■: UtaMMUitaittikHMalMiiakii T= zsm ~ ■ - ■- • ’■ ■ -■■■ ■: ---"• SUMMARY Graphlte/epoxy...joint specimen. Cure M 35 psl and 3a0*F for GO minutes. Apply 0,2-0.4 ml ol BH127 adhesive primer to the bond intiiface areas. Bond 4 mil 1100

  6. Steady-shear rheological properties of graphene-reinforced epoxy resin for manufacturing of aerospace composite films

    NASA Astrophysics Data System (ADS)

    Clausi, Marialaura; Santonicola, M. Gabriella; Laurenzi, Susanna

    2016-05-01

    The aim of this work is to analyze the steady-shear rheological behavior and the absolute viscosity of epoxy matrix reinforced with graphene nanoplatelets (xGnP) before cure. Three different grades of xGnP (grades C, M and H) were dispersed homogenously at different weight percentages (wt%) into the epoxy matrix, ranging from 0.5 to 5 wt%. It is found that nanocomposite fluids with xGnP-C exhibit a Newtonian behavior at shear rate in the range 0.1-100 s-1, conversely, nanocomposite fluids with xGnP of grade M and H exhibit a shear-thinning behavior with the increase of nanoplatelet loading. Results from this analysis indicate how the steady shear rheological properties of the nano-reinforced polymer fluids depend on the geometrical characteristics of the graphene nanoplatelets.

  7. Evaluation of Adhesive Bonding of Lithium Disilicate Ceramic Material with Duel Cured Resin Luting Agents

    PubMed Central

    Gundawar, Sham M.; Radke, Usha M.

    2015-01-01

    Purpose: The purpose of this vitro study was to comparatively evaluate the adhesive bonding of dual cured resin luting agents with lithium disilicate ceramic material. Materials and Methods: Porcelain laminate veneers were prepared with lithium disilicate ceramic material i.e. IPS Empress II( E-Max Press). These laminates were bonded with RelyX ARC, Panavia F 2.0, Variolink II, Duolink and Nexus NX3.The porcelain laminates were etched with 9.6% hydrofluoric acid (Pulpdent Corporation) for one minute, washed for 15 sec with three way syringe and dried for 15 sec with air syringe. The silane (Ultradent) was applied with the help of applicator tip in a single coat and kept undisturbed for one minute. The prepared surfaces of the premolars were treated with 37% phosphoric acid (Prime dent) for 15 sec, thoroughly rinsed and dried as per manufactures instructions. The shear bond test was carried out on all samples with the Universal testing machine (Instron U.S.A.) The scanning electron microscopic study was performed at the fractured interface of representative samples from each group of luting agents. Result: In this study, the highest value of shear bond strength was obtained for NEXUS NX3 and the lowest for VARIOLINK II. Conclusion: The difference in bond strength can be interpreted as the difference in fracture resistance of luting agents, to which shearing load was applied during the shear bond strength test. It is inferred from this study that the composition of the luting agent determines the adhesive characteristics in addition to surface treatment and bonding surface area. PMID:25859514

  8. Characterization of adhesion at carbon fiber-fluorinated epoxy interface and effect of environmental degradation

    NASA Astrophysics Data System (ADS)

    Dasgupta, Suman

    2011-12-01

    the unknown mechanical and physical properties of the resin, the relaxation modulus (determined using nano-indentation) and coefficient of thermal expansion (determined using coherent gradient sensing). The adhesional pressure for 6F TGMDA-carbon fiber interface was found to be 135.48 MPa compared to 138.47 MPa for the Diamino diphenyl sulphone (DDS) cured TGMDA-carbon fiber interface. The fact that the adhesional pressure does not show significant decrease upon fluorination of the epoxy system is an advantage. The hydrophobicity of fluorine can be utilized to manufacture environmentally resistant composites while keeping the level of interfacial adhesion the same as in the case of conventional epoxy system, DDS cured TGMDA.

  9. Prevent and cure disuse bone loss

    NASA Technical Reports Server (NTRS)

    Jee, Webster S. S.

    1994-01-01

    Anabolic agents like parathyroid hormone and postagladin E-like substances were studied in dogs and rats to determine their effectiveness in the prevention and cure of bone loss due to immobilization. It was determined that postagladin E2 administration prevented immobilization while at the same time it added extra bone in a dose responsive manner. Although bone mass returns, poor trabecular architecture remains after normal ambulation recovery from immobilization. Disuse related bone loss and poor trabecular architecture were cured by post-immobilization postagladin E2 treatment.

  10. Development of a heterogeneous laminating resin system

    NASA Technical Reports Server (NTRS)

    Biermann, T. F.; Hopper, L. C.

    1985-01-01

    The factors which effect the impact resistance of laminating resin systems and yet retain equivalent performance with the conventional 450 K curing epoxy matrix systems in other areas were studied. Formulation work was conducted on two systems, an all-epoxy and an epoxy/bismaleimide, to gain fundamental information on the effect formulation changes have upon neat resin and composite properties. The all-epoxy work involved formulations with various amounts and combinations of eight different epoxy resins, four different hardeners, fifteen different toughening agents, a filler, and a catalyst. The epoxy/bismaleimide effort improved formulations with various amounts and combinations of nine different resins, four different hardeners, eight different toughening agents, four different catalysts, and a filler. When a formulation appeared to offer the proper combination of properties required for a laminating resin Celion 3K-70P fabric was prepregged. Initial screening tests on composites primarily involved Gardner type impact and measurement of short beam shear strengths under dry and hot/wet conditions.

  11. An insight of traditional plasmid curing in Vibrio species

    PubMed Central

    Letchumanan, Vengadesh; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    As the causative agent of foodborne related illness, Vibrio species causes a huge impact on the public health and management. Vibrio species is often associated with seafood as the latter plays a role as a vehicle to transmit bacterial infections. Hence, antibiotics are used not to promote growth but rather to prevent and treat bacterial infections. The extensive use of antibiotics in the aquaculture industry and environment has led to the emerging of antibiotic resistant strains. This phenomenon has triggered an alarming public health concern due to the increase number of pathogenic Vibrio strains that are resistant to clinically used antibiotics and is found in the environment. Antibiotic resistance and the genes location in the strains can be detected through plasmid curing assay. The results derived from plasmid curing assay is fast, cost effective, sufficient in providing insights, and influence the antibiotic management policies in the aquaculture industry. This presentation aims in discussing and providing insights on various curing agents in Vibrio species. To our best of knowledge, this is a first review written discussing on plasmid curing in Vibrio species. PMID:26347714

  12. Structure and properties of epoxy-siloxane-silica nanocomposite coatings for corrosion protection.

    PubMed

    Torrico, Ruben F A O; Harb, Samarah V; Trentin, Andressa; Uvida, Mayara C; Pulcinelli, Sandra H; Santilli, Celso V; Hammer, Peter

    2018-03-01

    The fraction of the silica/siloxane phase is a crucial parameter, which determines the structure and thus the properties of epoxy-siloxane-silica hybrid coatings. A careful adjustment of the colloidal precursor formulation allows tuning the nanostructure towards a highly condensed and cross-linked hybrid nanocomposite, suitable as an efficient anticorrosive coating. Novel epoxy-siloxane-silica hybrids have been prepared through the curing reaction of poly(bisphenol A-co-epichlorohydrin) (DGEBA) with diethyltriamine (DETA) and (3-glycidoxypropyl)methyltriethoxysilane (GPTMS), followed by hydrolytic condensation of tetraethoxysilane (TEOS) and GPTMS. At a constant proportion of the organic phase, the effects of the varying molar proportions of siloxane (GPTMS) and silica (TEOS) on the film properties have been investigated. A detailed structural analysis suggests for intermediate TEOS to GPTMS ratios a structure of highly condensed silica-siloxane domains covalently bonded to the embedding epoxy phase. The homogeneous distribution of the quasi-spherical sub-nonmetric silica-siloxane nodes is in agreement with low surface roughness (<5 nm), observed by atomic force microscopy. This dense nanostructure results in high thermal stability (>300 °C), strong adhesion to steel substrate and excellent barrier property in saline solution, with corrosion resistance in the GΩ cm 2 range. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. High frequency transformers and high Q factor inductors formed using epoxy-based magnetic polymer materials

    DOEpatents

    Sanchez, Robert O.; Gunewardena, Shelton; Masi, James V.

    2007-11-27

    An electrical component in the form of an inductor or transformer is disclosed which includes one or more coils and a magnetic polymer material located near the coils or supporting the coils to provide an electromagnetic interaction therewith. The magnetic polymer material is preferably a cured magnetic epoxy which includes a mercaptan derivative having a ferromagnetic atom chemically bonded therein. The ferromagnetic atom can be either a transition metal or rare-earth atom.

  14. High frequency transformers and high Q factor inductors formed using epoxy-based magnetic polymer materials

    DOEpatents

    Sanchez, Robert O.; Gunewardena, Shelton; Masi, James V.

    2005-03-29

    An electrical component in the form of an inductor or transformer is disclosed which includes one or more coils and a magnetic polymer material located near the coils or supporting the coils to provide an electromagnetic interaction therewith. The magnetic polymer material is preferably a cured magnetic epoxy which includes a mercaptan derivative having a ferromagnetic atom chemically bonded therein. The ferromagnetic atom can be either a transition metal or rare-earth atom.

  15. Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite

    NASA Astrophysics Data System (ADS)

    V. R., Arun prakash; Rajadurai, A.

    2016-10-01

    In this present work hybrid polymer (epoxy) matrix composite has been strengthened with surface modified E-glass fiber and iron(III) oxide particles with varying size. The particle sizes of 200 nm and <100 nm has been prepared by high energy ball milling and sol-gel methods respectively. To enhance better dispersion of particles and improve adhesion of fibers and fillers with epoxy matrix surface modification process has been done on both fiber and filler by an amino functional silane 3-Aminopropyltrimethoxysilane (APTMS). Crystalline and functional groups of siliconized iron(III) oxide particles were characterized by XRD and FTIR spectroscopy analysis. Fixed quantity of surface treated 15 vol% E-glass fiber was laid along with 0.5 and 1.0 vol% of iron(III) oxide particles into the matrix to fabricate hybrid composites. The composites were cured by an aliphatic hardener Triethylenetetramine (TETA). Effectiveness of surface modified particles and fibers addition into the resin matrix were revealed by mechanical testing like tensile testing, flexural testing, impact testing, inter laminar shear strength and hardness. Thermal behavior of composites was evaluated by TGA, DSC and thermal conductivity (Lee's disc). The scanning electron microscopy was employed to found shape and size of iron(III) oxide particles adhesion quality of fiber with epoxy matrix. Good dispersion of fillers in matrix was achieved with surface modifier APTMS. Tensile, flexural, impact and inter laminar shear strength of composites was improved by reinforcing surface modified fiber and filler. Thermal stability of epoxy resin was improved when surface modified fiber was reinforced along with hard hematite particles. Thermal conductivity of epoxy increased with increase of hematite content in epoxy matrix.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Brad Howard; Alam, Todd M.; Black, Hayden T

    This report catalogues the results of a project exploring the incorporation of organometallic compounds into thermosetting polymers as a means to reduce their residual stress. Various syntheses of polymerizable ferro cene derivatives were attempted with mixed success. Ultimately, a diamine derivative of ferrocene was used as a curing agen t for a commercial epoxy resin, where it was found to give similar cure kinetics and mechanical properties in comparison to conventional curing agents. T he ferrocen e - based material is uniquely able to relax stress above the glass transition, leading to reduced cure stress. We propose that this behaviormore » arises from the fluxional capacity of ferrocene. In support of this notion, nuclear magnetic resonance spectroscopy indicates a substantial increase in chain flexibility in the ferrocene - containing network. Although t he utilization of fluxionality is a novel approach to stress management in epoxy thermosets, it is anticipated to have greater impact in radical - cured ther mosets and linear polymers.« less

  17. Synthesis of a new hardener agent for self-healing epoxy resins

    NASA Astrophysics Data System (ADS)

    Raimondo, Marialuigia; Guadagno, Liberata; Naddeo, Carlo; Longo, Pasquale; Mariconda, Annaluisa; Agovino, Anna

    2014-05-01

    Actually, the development of smart composites capable of self-repair in aeronautical structures is still at the planning stage owing to complex issues to overcome. One of the critical points in the development of self-healing epoxy resin is related to the impossibility to employ primary amines as hardeners. In this paper, the synthesis of a new hardener for self-healing resins is shown together with applicability conditions/ranges.

  18. The curing agent sodium nitrite, used in the production of fermented sausages, is less inhibiting to the bacteriocin-producing meat starter culture Lactobacillus curvatus LTH 1174 under anaerobic conditions.

    PubMed

    Verluyten, Jurgen; Messens, Winy; De Vuyst, Luc

    2003-07-01

    Curvacin A is a listericidal bacteriocin produced by Lactobacillus curvatus LTH 1174, a strain isolated from fermented sausage. The response of this strain to an added curing agent (sodium nitrite) in terms of cell growth and bacteriocin production was investigated in vitro by laboratory fermentations with modified MRS broth. The strain was highly sensitive to nitrite; even a concentration of 10 ppm of curing agent inhibited its growth and both volumetric and specific bacteriocin production. A meat simulation medium containing 5 ppm of sodium nitrite was tested to investigate the influence of the gas phase on the growth and bacteriocin production of L. curvatus LTH 1174. Aerating the culture during growth had no effect on biomass formation, but the oxidative stress caused a higher level of specific bacteriocin production and led to a metabolic shift toward acetic acid production. Anaerobic conditions, on the other hand, led to an increased biomass concentration and less growth inhibition. Also, higher maximum volumetric bacteriocin activities and a higher level of specific bacteriocin production were obtained in the presence of sodium nitrite than in fermentations under aerobic conditions or standard conditions of air supply. These results indicate that the inhibitory effect of the curing agent is at least partially masked under anaerobic conditions.

  19. The Curing Agent Sodium Nitrite, Used in the Production of Fermented Sausages, Is Less Inhibiting to the Bacteriocin-Producing Meat Starter Culture Lactobacillus curvatus LTH 1174 under Anaerobic Conditions

    PubMed Central

    Verluyten, Jurgen; Messens, Winy; De Vuyst, Luc

    2003-01-01

    Curvacin A is a listericidal bacteriocin produced by Lactobacillus curvatus LTH 1174, a strain isolated from fermented sausage. The response of this strain to an added curing agent (sodium nitrite) in terms of cell growth and bacteriocin production was investigated in vitro by laboratory fermentations with modified MRS broth. The strain was highly sensitive to nitrite; even a concentration of 10 ppm of curing agent inhibited its growth and both volumetric and specific bacteriocin production. A meat simulation medium containing 5 ppm of sodium nitrite was tested to investigate the influence of the gas phase on the growth and bacteriocin production of L. curvatus LTH 1174. Aerating the culture during growth had no effect on biomass formation, but the oxidative stress caused a higher level of specific bacteriocin production and led to a metabolic shift toward acetic acid production. Anaerobic conditions, on the other hand, led to an increased biomass concentration and less growth inhibition. Also, higher maximum volumetric bacteriocin activities and a higher level of specific bacteriocin production were obtained in the presence of sodium nitrite than in fermentations under aerobic conditions or standard conditions of air supply. These results indicate that the inhibitory effect of the curing agent is at least partially masked under anaerobic conditions. PMID:12839751

  20. An epoxy monomer derived from Tung oil fatty acids and its products cured by two synergistic reactions

    USDA-ARS?s Scientific Manuscript database

    A new bio-based epoxy monomer containing conjugated double bonds, the glycidyl ester of eleostearic acid (GEEA), was synthesized from tung oil fatty acids. It was characterized using 1H-NMR, 13C-NMR and mass spectrometric analysis. Differential scanning calorimetry (DSC) and FT-IR spectroscopy were ...

  1. Morphological and mechanical analyses of laminates manufactured from randomly positioned carbon fibre/epoxy resin prepreg scraps

    NASA Astrophysics Data System (ADS)

    Souza, Christiane S. R.; Cândido, Geraldo M.; Alves, Wellington; Marlet, José Maria F.; Rezende, Mirabel C.

    2017-10-01

    This study aims to contribute to sustainability by proposing the reuse of composite prepreg scrap as an added value from discards. The research evaluates the microstructure and mechanical properties of laminates processed by the reuse of uncured carbon fibre/F155-epoxy resin prepreg scraps, waste from the ply cutting area of an aeronautical industry. The composite scraps were used as collected and were randomly positioned to produce laminates to be cured at an autoclave. The mechanical characterization shows a decrease of 39% for the compression property due to the discontinuous fibres in the laminate and an increase of 34% for the interlaminar shear strength, when compared to continuous fibre laminates. This increase is attributed to the higher crosslink density of the epoxy resin, as a result of the cure temperature used in autoclave (60 °C higher than suggested by supplier) and also to the randomly positioned scraps. Microscopic analyses confirm the consolidation of laminates, although show resin rich areas with different sizes and shapes attributed to the overlapping of the scraps with different sizes and shapes. These resin rich areas may contribute to decrease the mechanical properties of laminates. The correlation between mechanical and morphological results shows potential to be used on non-critical structural application, as composite jigs, contributing to sustainability.

  2. Epoxy monomers derived from tung oil fatty acids and its regulable thermosets cured in two synergistic ways

    USDA-ARS?s Scientific Manuscript database

    A new bio-based epoxy monomer with conjugated double bonds, glycidyl ester of eleostearic acid (GEEA), was synthesized from tung oil fatty acids and characterized by 1H-NMR, 13C-NMR and Mass Spectrometry Analysis (MSA). Differential Scanning Calorimetry (DSC) analysis and FT-IR were utilized to inve...

  3. Morphology and properties of amine terminated poly(arylene ether ketone) and poly(arylene ether sulfone) modified epoxy resin systems

    NASA Technical Reports Server (NTRS)

    Cecere, J. A.; Mcgrath, J. E.; Hedrick, J. L.

    1986-01-01

    Epoxy resin networks cured with DDS were modified by incorporating tough ductile thermoplastics such as the amine terminated polyether sulfones and amine terminated polyether ketones. Both linear copolymers were able to significantly improve the fracture toughness values at the 15 and 30 weight percent concentrations examined. These improvements in fracture toughness were achieved without any significant change in the flexural modulus.

  4. Structural Peculiarities of Ion-Conductive Organic-Inorganic Polymer Composites Based on Aliphatic Epoxy Resin and Salt of Lithium Perchlorate.

    PubMed

    Matkovska, Liubov; Iurzhenko, Maksym; Mamunya, Yevgen; Tkachenko, Igor; Demchenko, Valeriy; Synyuk, Volodymyr; Shadrin, Andriy; Boiteux, Gisele

    2017-12-01

    The article is concerned with hybrid amorphous polymers synthesized basing on epoxy oligomer of diglycide aliphatic ester of polyethylene glycol that was cured by polyethylene polyamine and lithium perchlorate salt. Structural peculiarities of organic-inorganic polymer composites were studied by differential scanning calorimetry, wide-angle X-ray spectra, infrared spectroscopic, scanning electron microscopy, elemental analysis, and transmission and reflective optical microscopy. On the one hand, the results showed that the introduction of LiClO 4 salt into epoxy polymer leads to formation of the coordinative metal-polymer complexes of donor-acceptor type between central Li + ion and ligand. On the other hand, the appearance of amorphous microinclusions, probably of inorganic nature, was also found.

  5. A study of the influence of micro and nano phase morphology on the mechanical properties of a rubber-modified epoxy resin

    NASA Astrophysics Data System (ADS)

    Russell, Bobby Glenn

    Epoxy resins are thermosets with extraordinary adhesion; high strength; good resistance to creep, heat, and chemicals; and they have low shrinkage. Conversely, these polymers are brittle, they are sensitive to moisture, and they exhibit poor toughness. To improve their toughness, they are often modified by introducing dispersed rubber particles in the primary phase. In this study, the epoxy resin was modified with carboxyl-terminated butadiene acrylonitrile (CTBN), liquid-reactive rubbers. The initiator concentration, percent acrylonitrile in the CTBN rubber, and cure temperatures were altered to give varying materials properties. Statistical analysis of the morphology data showed that the percentage of rubber acrylonitrile had an effect on both the rubber particle size and volume fraction. The cure temperature had an effect on the rubber particle volume and modulus. Plots of the rubber particle size, volume fraction, and modulus versus bulk elastic storage modulus and fracture toughness revealed that rubber particle size had no effect on bulk properties, volume fraction and rubber particle modulus had an effect on both the bulk storage elastic modulus and fracture toughness.

  6. Sustainable epoxy and oxetane thermosets from photo-initiated cationic polymerization

    NASA Astrophysics Data System (ADS)

    Ryu, Chang

    A group of sustainable materials are proposed and produced from multifunctional epoxides and oxetanes obtained from renewable sources. Monomers are photopolymerized using diaryliodonium salts designed and synthesized by our group as initiator. A detailed investigation of the network formation of epoxidized linseed oil revealed that crosslinks is markedly dependent to the thickness and viscosity of substrate. Copolymerization studies of difunctional oxetane showed that limonene dioxide was effective in increasing the reaction rates and shorten the inherent induction period, also known as kick-starting effect. Such oxetane thermoset can achieve desirable curing rates and Tg compared to petroleum based epoxy used in applications such as large scale surface coatings.

  7. Dispersion stability in carbon nanotube modified polymers and its effect on the fracture toughness

    NASA Astrophysics Data System (ADS)

    Mirjalili, Vahid; Yourdkhani, Mostafa; Hubert, Pascal

    2012-08-01

    In this paper, the dispersion stability of multiwall carbon nanotubes (MWNTs) mixed with an epoxy resin is studied. An instrumented optical microscope with a hot stage was used to study the evolution of the carbon nanotubes (CNTs) dispersion during the cure of the resin. A new image processing approach is then introduced to quantify dispersion and identify the source of dispersion degradation during the cure. The results showed that the reduction of the resin viscosity at temperatures greater than 100 °C caused an irreversible re-agglomeration of the CNTs in the matrix. It was shown that the fine-tuning of the ratio and type of curing agent as well as the curing temperature directly affect the dispersion stability of MWNTs in the epoxy polymer. The dispersion quality was then directly correlated to the fracture toughness of the modified resin and a maximum of 20% improvement was achieved.

  8. Modified Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Gilwee, W. J.

    1984-01-01

    The properties of a rubber-modified experimental epoxy resin and a standard epoxy as composite matrices were studied. In addition, a brominated epoxy resin was used in varying quantities to improve the fire resistance of the composite. The experimental resin was tris-(hydroxyphenyl)methane triglycidyl ether, known as tris epoxy novolac (TEN). The standard epoxy resin used was tetraglycidyl 4,4'-diaminodiphenyl methane (TGDDM). The above resins were modified with carboxyl-terminated butadiene acrylonitrile (CTBN) rubber. It is concluded that: (1) modification of TEN resin with bromine gives better impact resistance than rubber modification alone; (2) 25% rubber addition is necessary to obtain significant improvement in impact resistance; (3) impact resistance increases with bromine content; (4) impact velocity does not significantly affect the energy absorbed by the test sample; (5) Tg did not decline with rubber modification; and (6) TEN resin had better hot/wet properties than TGDDM resin.

  9. Evaluation of an Interdigitated Gate Electrode Field-Effect Transistor (IGEFET) for In Situ Resin Cure Monitoring

    DTIC Science & Technology

    1991-12-01

    School of Engineering, Air Force Institute of Technology, Wright-Patterson AFB OH, October 1988. 8. Billmeyer, Fred W., Jr. Textbook of Polymer Science...448-453 (April 1989). 10. Sheppard, Norman Fred , Jr. Dielectric Analysis of the Cure of Thermosetting Epoxy/Amine Systems. PhD Dissertation...Viscosity and Chemical Changes During Polymerization," American Chemical Society Symposium Series on Photophysics of Polymers, edited by C. E. Hoyle and J. M

  10. Investigation of the shear thinning behavior of epoxy resins for utilization in vibration assisted liquid composite molding processes

    NASA Astrophysics Data System (ADS)

    Meier, R.; Kirdar, C.; Rudolph, N.; Zaremba, S.; Drechsler, K.

    2014-05-01

    Efficient production and consumption of energy are of greatest importance for contemporary industries and their products. This has led to an increasing application of lightweight materials in general and of Carbon Fiber Reinforced Plastics (CFRP) in particular. However, broader application of CFRP is often limited by high costs and manual labor production processes. These constraints are addressed by Liquid Composite Molding (LCM) processes. In LCM a dry fibrous preform is placed into a cavity and infiltrated mostly by thermoset resins; epoxy resins are wide spread in CFRP applications. One crucial parameter for a fast mold filling is the viscosity of the resin, which is affected by the applied shear rates as well as temperature and curing time. The work presented focuses on the characterization of the shear thinning behavior of epoxy resins. Furthermore, the correlation with the conditions in vibration assisted LCM processes, where additional shear rates are created during manufacture, is discussed. Higher shear rates result from high frequencies and/or high amplitudes of the vibration motions which are created by a vibration engine mounted on the mold. In rheological investigations the shear thinning behavior of a representative epoxy resin is studied by means of rotational and oscillatory experiments. Moreover, possible effects of shear rates on the chemical curing reaction are studied. Here, the time for gelation is measured for different levels of shear rates in a pre-shearing phase. Based on the rheological studies, the beneficial effect of vibration assistance in LCM processes with respect to mold filling can further be predicted and utilized.

  11. Robust synthesis of epoxy resin-filled microcapsules for application to self-healing materials.

    PubMed

    Bolimowski, Patryk A; Bond, Ian P; Wass, Duncan F

    2016-02-28

    Mechanically and thermally robust microcapsules containing diglycidyl ether bisphenol A-based epoxy resin and a high-boiling-point organic solvent were synthesized in high yield using in situ polymerization of urea and formaldehyde in an oil-in-water emulsion. Microcapsules were characterized in terms of their size and size distribution, shell surface morphology and thermal resistance to the curing cycles of commercially used epoxy polymers. The size distribution of the capsules and characteristics such as shell thickness can be controlled by the specific parameters of microencapsulation, including concentrations of reagents, stirrer speed and sonication. Selected microcapsules, and separated core and shell materials, were analysed using thermogravimetric analysis and differential scanning calorimetry. It is demonstrated that capsules lose minimal 2.5 wt% at temperatures no higher than 120°C. These microcapsules can be applied to self-healing carbon fibre composite structural materials, with preliminary results showing promising performance. © 2016 The Author(s).

  12. Modeling HCV cure after an ultra-short duration of therapy with direct acting agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goyal, Ashish; Lurie, Yoav; Meissner, Eric G.

    In cases of sustained-virological response (SVR or cure) after an ultra-short duration (≤ 27 days) of direct-acting antiviral (DAA)-based therapy, despite HCV being detected at end of treatment (EOT), have been reported. Established HCV mathematical models that predict the treatment duration required to achieve cure do not take into account the possibility that the infectivity of virus produced during treatment might be reduced. The aim of this study was to develop a new mathematical model that considers the fundamental and critical concept that HCV RNA in serum represents both infectious virus (V i) and non-infectious virus (V ni) in ordermore » to explain the observation of cure with ultrashort DAA therapy. Established HCV models were compared to the new mathematical model to retrospectively explain cure in 2 patients who achieved cure after 24 or 27 days of paritaprevir, ombitasvir, dasabuvir, ritonavir and ribavirin or sofosbuvir plus ribavirin, respectively. Fitting established models with measured longitudinal HCV viral loads indicated that in both cases, cure would not have been expected without an additional 3–6 weeks of therapy after the actual EOT. In contrast, the new model fits the observed outcome by considering that in addition to blocking V i and V ni production (ε~0.998), these DAA + ribavirin treatments further enhanced the ratio of V ni to V i, thus increasing the log (V ni/V i) from 1 at pretreatment to 6 by EOT, which led to <1 infectious-virus particle in the extracellular body fluid (i.e., cure) prior to EOT. This new model can explain cure after short duration of DAA + ribavirin therapy by suggesting that a minimum 6-fold increase of log (V ni/V i) results from drug-induced enhancement of the V ni/V i.« less

  13. Modeling HCV cure after an ultra-short duration of therapy with direct acting agents

    DOE PAGES

    Goyal, Ashish; Lurie, Yoav; Meissner, Eric G.; ...

    2017-06-30

    In cases of sustained-virological response (SVR or cure) after an ultra-short duration (≤ 27 days) of direct-acting antiviral (DAA)-based therapy, despite HCV being detected at end of treatment (EOT), have been reported. Established HCV mathematical models that predict the treatment duration required to achieve cure do not take into account the possibility that the infectivity of virus produced during treatment might be reduced. The aim of this study was to develop a new mathematical model that considers the fundamental and critical concept that HCV RNA in serum represents both infectious virus (V i) and non-infectious virus (V ni) in ordermore » to explain the observation of cure with ultrashort DAA therapy. Established HCV models were compared to the new mathematical model to retrospectively explain cure in 2 patients who achieved cure after 24 or 27 days of paritaprevir, ombitasvir, dasabuvir, ritonavir and ribavirin or sofosbuvir plus ribavirin, respectively. Fitting established models with measured longitudinal HCV viral loads indicated that in both cases, cure would not have been expected without an additional 3–6 weeks of therapy after the actual EOT. In contrast, the new model fits the observed outcome by considering that in addition to blocking V i and V ni production (ε~0.998), these DAA + ribavirin treatments further enhanced the ratio of V ni to V i, thus increasing the log (V ni/V i) from 1 at pretreatment to 6 by EOT, which led to <1 infectious-virus particle in the extracellular body fluid (i.e., cure) prior to EOT. This new model can explain cure after short duration of DAA + ribavirin therapy by suggesting that a minimum 6-fold increase of log (V ni/V i) results from drug-induced enhancement of the V ni/V i.« less

  14. Contact allergy to epoxy hardeners.

    PubMed

    Aalto-Korte, Kristiina; Suuronen, Katri; Kuuliala, Outi; Henriks-Eckerman, Maj-Len; Jolanki, Riitta

    2014-09-01

    Diglycidylether of bisphenol A resin is the most important sensitizer in epoxy systems, but a minority of patients develop concomitant or solitary contact allergy to epoxy hardeners. At the Finnish Institute of Occupational Health, several in-house test substances of epoxy hardeners have been tested in a special epoxy compound patch test series. To analyse the frequency and clinical relevance of allergic reactions to different epoxy hardeners. Test files (January 1991 to March 2013) were screened for contact allergy to different epoxy hardeners, and the clinical records of patients with allergic reactions were analysed for occupation, concomitant allergic reactions, and exposure. The most commonly positive epoxy hardeners were m-xylylenediamine (n = 24), 2,4,6-tris-(dimethylaminomethyl)phenol (tris-DMP; n = 14), isophorone-diamine (n = 12), and diethylenetriamine (n = 9). Trimethylhexamethylenediamine (n = 7), tetraethylenepentamine (n = 4), and triethylenetetramine (n = 2) elicited some reactions, although most patients were found to have no specific exposure. Allergic reactions to hexamethylenetetramine, dimethylaminopropylamine and ethylenediamine dihydrochloride were not related to epoxy products. Tris-DMP is an important sensitizer in epoxy hardeners, and should be included in the patch test series of epoxy chemicals. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Investigations on N-nitrosopyrrolidine in dry-cured bacon.

    PubMed

    Fiddler, W; Pensabene, J W; Gates, R A; Foster, J M; Smith, W J

    1989-01-01

    Dry-cured or "country-style" bacon is a low volume specialty product typically made by small producers whose production practices vary widely. These practices include the direct application of dry-cure formulations containing varying concentrations of salt, sugar, flavoring agents, sodium nitrite, and sometimes sodium nitrate, and the use of lengthy curing and processing times. Because of the possibility of generating higher levels of N-nitrosopyrrolidine (NPYR) after frying in this product type compared with pump-cured bacon, an investigation was carried out on dry-cured bacon obtained from cooperating state or federally inspected establishments. Three different samples from each of the 16 plants were analyzed. Only one sample from each of 2 different producers exceeded the Food Safety and Inspection Service (FSIS) action level of 17 ppb NPYR, indicating that the majority of samples tested were in compliance. A significant correlation (P less than 0.01) was found between residual NaNO2 prior to frying and NPYR after frying. The elimination of added nitrate in the dry-cure formulations is recommended.

  16. Predictive Modeling of Fast-Curing Thermosets in Nozzle-Based Extrusion

    NASA Technical Reports Server (NTRS)

    Xie, Jingjin; Randolph, Robert; Simmons, Gary; Hull, Patrick V.; Mazzeo, Aaron D.

    2017-01-01

    This work presents an approach to modeling the dynamic spreading and curing behavior of thermosets in nozzle-based extrusions. Thermosets cover a wide range of materials, some of which permit low-temperature processing with subsequent high-temperature and high-strength working properties. Extruding thermosets may overcome the limited working temperatures and strengths of conventional thermoplastic materials used in additive manufacturing. This project aims to produce technology for the fabrication of thermoset-based structures leveraging advances made in nozzle-based extrusion, such as fused deposition modeling (FDM), material jetting, and direct writing. Understanding the synergistic interactions between spreading and fast curing of extruded thermosetting materials will provide essential insights for applications that require accurate dimensional controls, such as additive manufacturing [1], [2] and centrifugal coating/forming [3]. Two types of thermally curing thermosets -- one being a soft silicone (Ecoflex 0050) and the other being a toughened epoxy (G/Flex) -- served as the test materials in this work to obtain models for cure kinetics and viscosity. The developed models align with extensive measurements made with differential scanning calorimetry (DSC) and rheology. DSC monitors the change in the heat of reaction, which reflects the rate and degree of cure at different crosslinking stages. Rheology measures the change in complex viscosity, shear moduli, yield stress, and other properties dictated by chemical composition. By combining DSC and rheological measurements, it is possible to establish a set of models profiling the cure kinetics and chemorheology without prior knowledge of chemical composition, which is usually necessary for sophisticated mechanistic modeling. In this work, we conducted both isothermal and dynamic measurements with both DSC and rheology. With the developed models, numerical simulations yielded predictions of diameter and height of

  17. TiO2 nanotubes and mesoporous silica as containers in self-healing epoxy coatings

    PubMed Central

    Vijayan P., Poornima; Al-Maadeed, Mariam Ali S. A.

    2016-01-01

    The potential of inorganic nanomaterials as reservoirs for healing agents is presented here. Mesoporous silica (SBA-15) and TiO2 nanotubes (TNTs) were synthesized. Both epoxy-encapsulated TiO2 nanotubes and amine-immobilized mesoporous silica were incorporated into epoxy and subsequently coated on a carbon steel substrate. The encapsulated TiO2 nanotubes was quantitatively estimated using a ‘dead pore ratio’ calculation. The morphology of the composite coating was studied in detail using transmission electron microscopic (TEM) analysis. The self-healing ability of the coating was monitored using electrochemical impedance spectroscopy (EIS); the coating recovered 57% of its anticorrosive property in 5 days. The self-healing of the scratch on the coating was monitored using Scanning Electron Microscopy (SEM). The results confirmed that the epoxy pre-polymer was slowly released into the crack. The released epoxy pre-polymer came into contact with the amine immobilized in mesoporous silica and cross-linked to heal the scratch. PMID:27941829

  18. Innovative Chemical Process for Recycling Thermosets Cured with Recyclamines® by Converting Bio-Epoxy Composites in Reusable Thermoplastic—An LCA Study

    PubMed Central

    Banatao, Diosdado R.; Pastine, Stefan J.

    2018-01-01

    An innovative recycling process for thermoset polymer composites developed by Connora Technologies (Hayward, CA, USA) was studied. The process efficacy has already been tested, and it is currently working at the plant level. The main aspect investigated in the present paper was the environmental impact by means of the Life Cycle Assessment (LCA) method. Because of the need to recycle and recover materials at their end of life, the Connora process creates a great innovation in the market of epoxy composites, as they are notoriously not recyclable. Connora Technologies developed a relatively gentle chemical recycling process that induces the conversion of thermosets into thermoplastics. The LCA demonstrated that low environmental burdens are associated with the process itself and, furthermore, impacts are avoided due to the recovery of the epoxy-composite constituents (fibres and matrix). A carbon fibre (CF) epoxy-composite panel was produced through Vacuum Resin Transfer Moulding (VRTM) and afterwards treated using the Connora recycling process. The LCA results of both the production and the recycling phases are reported. PMID:29495571

  19. Epoxy/Fluoroether Composites

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.; Taylor, M. S.

    1986-01-01

    Composite materials made from unfilled and glass-fiber-reinforced epoxy toughened by copolymerization with elastomeric prepolymers of perfluoroalkyl ether diacyl fluoride (EDAF). Improved properties due to hydrogen bonding between rubber phase and epoxy matrix, plus formation of rubberlike phase domains that molecularly interpenetrate with epoxy matrix. With optimum rubber content, particle size, and particle shape, entire molecular structure reinforced and toughened. Improved composites also show increased failure strength, stiffness, glass-transition temperature, and resistance to water.

  20. Noncovalently Functionalized Tungsten Disulfide Nanosheets for Enhanced Mechanical and Thermal Properties of Epoxy Nanocomposites.

    PubMed

    Sahu, Megha; Narashimhan, Lakshmi; Prakash, Om; Raichur, Ashok M

    2017-04-26

    In the present study, noncovalently functionalized tungsten disulfide (WS 2 ) nanosheets were used as a toughening agent for epoxy nanocomposites. WS 2 was modified with branched polyethyleneimine (PEI) to increase the degree of interaction of nanosheets with the epoxy matrix and prevent restacking and agglomeration of the sheets in the epoxy matrix. The functionalization of WS 2 sheets was confirmed through Fourier transform infrared spectroscopy and thermogravimetric analysis. The exfoliation of the bulk WS 2 was confirmed through X-ray diffraction and various microscopic techniques. Epoxy nanocomposites containing up to 1 wt % of WS 2 -PEI nanosheets were fabricated. They showed a remarkable improvement in fracture toughness (K IC ). K IC increased from 0.94 to 1.72 MPa m -1/2 for WS 2 -PEI nanosheet loadings as low as 0.25 wt %. Compressive and flexural properties also showed a significant improvement as incorporation of 0.25 wt % of WS 2 -PEI nanosheets resulted in 43 and 65% increase in the compressive and flexural strengths of epoxy nanocomposites, respectively, compared with neat epoxy. Thermal stability and thermomechanical properties of the WS 2 -PEI-modified epoxy also showed a significant improvement. The simultaneous improvement in the mechanical and thermal properties could be attributed to the good dispersion of WS 2 -PEI nanosheets in the matrix, intrinsic high strength and thermal properties of the nanosheets, and improved interaction of the WS 2 nanosheets with the epoxy matrix owing to the presence of PEI molecules on the surface of the WS 2 nanosheets.

  1. Investigation of a carbon fiber/epoxy prepreg curing behavior for thick composite materials production: An industrial case-study

    NASA Astrophysics Data System (ADS)

    Giorgini, Loris; Mazzocchetti, Laura; Minak, Giangiacomo; Dolcini, Enrico

    2012-07-01

    A case-study is presented, in cooperation with RI-BA Composites srl, where the industrial production of a thick part for primary structural application is analysed. The final product is a bulk carbon fiber reinforced object characterized by great dimensions, with thickness ranging between 10mm and 35mm and obtained by Hand-Lay-Up of prepregs. The study shows that prepregs age along the time required for the process work up. Moreover, the isothermal curing investigation of the prepreg used in the production gives some useful hint for the design of a new thermal curing cycle, in order to avoid exotherm problems along the thickness of the object. The effect of the applied curing cycle on thermal properties of the object are reported.

  2. Which therapeutic strategy will achieve a cure for HIV-1?

    PubMed

    Cillo, Anthony R; Mellors, John W

    2016-06-01

    Strategies to achieve a cure for HIV-1 infection can be broadly classified into three categories: eradication cure (elimination of all viral reservoirs), functional cure (immune control without reservoir eradication), or a hybrid cure (reservoir reduction with improved immune control). The many HIV-1 cure strategies being investigated include modification of host cells to resist HIV-1, engineered T cells to eliminate HIV-infected cells, broadly HIV-1 neutralizing monoclonal antibodies, and therapeutic vaccination, but the 'kick and kill' strategy to expose latent HIV-1 with latency reversing agents (LRAs) and kill the exposed cells through immune effector functions is currently the most actively pursued. It is unknown, however, whether LRAs can deplete viral reservoirs in vivo or whether current LRAs are sufficiently safe for clinical use. Copyright © 2016. Published by Elsevier B.V.

  3. Effect of pretreatment with epoxy compounds on the mechanical properties of bovine pericardial bioprosthetic materials.

    PubMed

    Xi, T; Liu, F; Xi, B

    1992-07-01

    Early failures of bovine pericardial heart valves are due to leaflet perforation, tearing and calcification. Since glutaraldehyde fixation has been shown to produce marked changes in leaflet mechanics and has been linked to development of calcification, bovine pericardium fixed with the four hydrophilic epoxy formulations and their mechanical properties are studied in this paper. We measured the thicknesses, shrinkage temperatures, stress relaxations and stress-strain curves of bovine pericardiums after different treatments with (1) non-treatment (fresh), (2) glutaraldehyde (GA), (3) epoxy compounds followed by the posttreatment with GA (EP 1#, EP 2#), and (4) epoxy compounds (EP 3# and EP 4#). Results of this study showed that the hydrophilic epoxy compounds are good crosslinking agents. There are no significant differences of shrinkage temperature and ultimate tensile stress among all tissue samples pretreated with GA, EP 1# and EP 2#. However, the stress relaxations of tissue-samples pretreated with epoxy compounds followed by the posttreatment with GA (EP 1# and EP 2#) are significantly slower than that pretreated with GA, and the strains at fracture of EP 1# and EP 2# are also significantly larger than that of GA or epoxy compounds. These facts show that the bovine pericardium pretreated with the epoxy compound followed by the posttreatment with GA (EP 1# and EP 2#) possesses greater tenacity and potential durability in dynamic stress.

  4. Cage and linear structured polysiloxane/epoxy hybrids for coatings: Surface property and film permeability.

    PubMed

    Ma, Yanli; He, Ling; Jia, Mengjun; Zhao, Lingru; Zuo, Yanyan; Hu, Pingan

    2017-08-15

    Three polysiloxane/epoxy hybrids obtained by evolving cage- or linear-structured polysiloxane into poly glycidyl methacrylate (PGMA) matrix are compared used as coatings. One is the cage-structured hybrid of P(GMA/MA-POSS) copolymer obtained by GMA and methacrylisobutyl polyhedral oligomeric silsesquioxane (MA-POSS) via free radical polymerization, the other two are PGMA/NH 2 -POSS and PGMA/NH 2 -PDMS hybrids by cage-structured aminopropyllsobutyl POSS (NH 2 -POSS) or linear-structured diamino terminated poly(dimethylsiloxane) (NH 2 -PDMS) to cure PGMA. The effect of MA-POSS, NH 2 -POSS and NH 2 -PDMS on polysiloxane/epoxy hybrid films is characterized according to their surface morphology, transparency, permeability, adhesive strength and thermo-mechanical properties. Due to caged POSS tending to agglomerate onto the film surface, P(GMA/MA-POSS) and PGMA/NH 2 -POSS films exhibit much more heterogeneous surfaces than PGMA/NH 2 -PDMS film, but the well-compatibility between epoxy matrix and MA-POSS has provided P(GMA/MA-POSS) film with much higher transmittance (98%) than PGMA/NH 2 -POSS film (24%), PGMA/NH 2 -PDMS film (27%) and traditional epoxy resin film (5%). The introduction of polysiloxane into epoxy matrix is confirmed to create hybrids with strong adhesive strength (526-1113N) and high thermos-stability (T g =262-282°C), especially the cage-structured P(GMA/MA-POSS) hybrid (1113N and 282°C), but the flexible PDMS improves PGMA/NH 2 -PDMS hybrid with much higher storage modulus (519MPa) than PGMA/NH 2 -POSS (271MPa), which suggests that PDMS is advantage in improving the film stiffness than POSS cages. However, cage-structured P(GMA/MA-POSS) and PGMA/NH 2 -POSS indicate higher permeability than PGMA/NH 2 -PDMS and traditional epoxy resin. Comparatively, the cage-structured P(GMA/MA-POSS) hybrid is the best coating in transparency, permeability, adhesive strength and thermostability, but linear-structured PGMA/NH 2 -PDMS hybrid behaviors the best coating in

  5. Evaluation of Alternative Peel Ply Surface Preparation Methods of SC-15 Epoxy / Fiberglass Composite Surfaces for Secondary Bonding

    DTIC Science & Technology

    2014-01-01

    pressure of 325 kPa (40 psi) at the peak of the temperature ramp of the cure schedule (13). The higher hold pressure requires the use of a high -pressure...Henkel Corporation Aerospace Group. Hysol EA 9896 Peel Ply; Preliminary Technical Datasheet, Bay Point, CA, February 2010. 11. Airtech Advanced ...using FM 94K epoxy film adhesive by mechanical testing, elemental surface analysis, and high -resolution imaging of failure surfaces. Woven S2

  6. Metal-Filled Adhesives Amenable To X-Ray Inspection

    NASA Technical Reports Server (NTRS)

    Hermansen, Ralph D.; Sutherland, Thomas H.; Predmore, Roamer

    1994-01-01

    Adhesive joints between metal parts made amenable to nondestructive radiographic inspection by incorporating radiopaque fillers that increase x-ray contrasts of joints. Adhesives can be epoxies, urethanes, acrylics, phenolics, or silicones, with appropriate curing agents and with such modifiers as polysulfides, polyamides, or butadiene rubbers.

  7. Mechanism of Particle Formation in Silver/Epoxy Nanocomposites Obtained through a Visible-Light-Assisted in Situ Synthesis.

    PubMed

    dell'Erba, Ignacio E; Martínez, Francisco D; Hoppe, Cristina E; Eliçabe, Guillermo E; Ceolín, Marcelo; Zucchi, Ileana A; Schroeder, Walter F

    2017-10-03

    A detailed understanding of the processes taking place during the in situ synthesis of metal/polymer nanocomposites is crucial to manipulate the shape and size of nanoparticles (NPs) with a high level of control. In this paper, we report an in-depth time-resolved analysis of the particle formation process in silver/epoxy nanocomposites obtained through a visible-light-assisted in situ synthesis. The selected epoxy monomer was based on diglycidyl ether of bisphenol A, which undergoes relatively slow cationic ring-opening polymerization. This feature allowed us to access a full description of the formation process of silver NPs before this was arrested by the curing of the epoxy matrix. In situ time-resolved small-angle X-ray scattering investigation was carried out to follow the evolution of the number and size of the silver NPs as a function of irradiation time, whereas rheological experiments combined with near-infrared and ultraviolet-visible spectroscopies were performed to interpret how changes in the rheological properties of the matrix affect the nucleation and growth of particles. The analysis of the obtained results allowed us to propose consistent mechanisms for the formation of metal/polymer nanocomposites obtained by light-assisted one-pot synthesis. Finally, the effect of a thermal postcuring treatment of the epoxy matrix on the particle size in the nanocomposite was investigated.

  8. Complete cure of persistent virus infections by antiviral siRNAs.

    PubMed

    Saulnier, Aure; Pelletier, Isabelle; Labadie, Karine; Colbère-Garapin, Florence

    2006-01-01

    Small interfering RNAs (siRNAs) have been developed as antiviral agents for mammalian cells. The capacity of specific siRNAs to prevent virus infections has been demonstrated, and there is evidence that these new antiviral agents could have a partial therapeutic effect a few days after infection. We investigated the possibility of curing a persistent infection, several months after becoming established, using an in vitro model of persistent poliovirus (PV) infection in HEp-2 cells. Despite high virus titers and the presence of PV mutants, repeated treatment with a mixture of two siRNAs targeting both noncoding and coding regions, one of them in a highly conserved region, resulted in the complete cure of the majority of persistently infected cultures. No escape mutants emerged in treated cultures. The antiviral effect of specific siRNAs, consistent with a mechanism of RNA interference, correlated with a decrease in the amount of viral RNA, until its complete disappearance, resulting in cultures cured of virions and viral RNA.

  9. The effects of light curing units and environmental temperatures on C 000000000000 000000000000 000000000000 111111111111 000000000000 111111111111 000000000000 000000000000 000000000000 C conversion of commercial and experimental bonding agents.

    PubMed

    Jafarzadeh-Kashi, Tahereh Sadat; Erfan, Mohmmad; Kalbasi, Salmeh; Ghadiri, Malihe; Rakhshan, Vahid

    2014-10-01

    Polymerization of bonding agents (BA) is a critical factor in determining the success of bonded restorations. We aimed to assess the effects of two light curing units and two temperatures on the extent of polymerization (EP) of a commercial BA and an experimental BA. Forty BA specimens were randomly divided into 8 subgroups of n = 5 to compare the polymerization of two BAs (experimental/Scotchbond) based on the variables: temperature (23/37 °C) and light-curing unit (quartz-tungsten-halogen/light-emitting diode). The EP (%) was measured using differential scanning calorimetry, and analyzed using the t-test, two- and three-way analyses of variance (ANOVA), and the Bonferroni test (α = 0.05). There were significant differences between the EP results between the two BAs (P = 0.012) and due to the different temperatures (P = 0.001), but not between the different light-curing units (P = 0.548). The interaction between BA and temperature was significant (P < 0.001). The other interactions were nonsignificant. The two light-curing units had similar effects on the EP. The EP values were better when curing was performed at human body temperature.

  10. Assessment of cross-reactivity of new less sensitizing epoxy resin monomers in epoxy resin-allergic individuals.

    PubMed

    Hagvall, Lina; Niklasson, Ida B; Rudbäck, Johanna; O'Boyle, Niamh M; Niklasson, Eva; Luthman, Kristina; Karlberg, Ann-Therese

    2016-09-01

    Measures to prevent occupational exposure to epoxy resins, including education, medical examination, and voluntary agreements between employers and workers, have not been effective enough to protect against skin sensitization. Therefore, alternatives to the major epoxy resin haptens that have been found to be less sensitizing in the local lymph node assay have been developed. To study the cross-reactivity of two newly designed epoxy resin monomers, with decreased skin-sensitizing potency and good technical properties as compared with diglycidyl ether of bisphenol A (DGEBA), in subjects with known contact allergy to epoxy resin of DGEBA type. Eleven individuals with previous positive patch test reactions to epoxy resin of DGEBA participated in the study. The two alternative epoxy resin monomers were synthesized and patch tested in dilution series in parallel with epoxy resin of DGEBA from the baseline series (containing 92% DGEBA). All participants reacted to epoxy resin of DGEBA on retesting. Three participants reacted to monomer 1. No reactions were seen to monomer 2. The alternative monomers studied showed little or no cross-reactivity with epoxy resin of DGEBA. Decreasing the risk of sensitization by using less sensitizing compounds is important, as contact allergy to epoxy resins is common in spite of thorough preventive measures. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Development of ricehusk ash reinforced bismaleimide toughened epoxy nanocomposites.

    NASA Astrophysics Data System (ADS)

    K, Kanimozhi; Sethuraman, K.; V, Selvaraj; Alagar, Muthukaruppan

    2014-09-01

    Abstract Recent past decades have witnessed remarkable advances in composites with potential applications in biomedical devices, aerospace, textiles, civil engineering, energy, electronic engineering, and household products. Thermoset polymer composites have further enhanced and broadened the area of applications of composites. In the present work epoxy-BMI toughened-silica hybrid (RHA/DGEBA-BMI) was prepared using bismaleimide as toughener, bisphenol-A as matrix and a silica precursor derived from rice husk ash as reinforcement with glycidoxypropyltrimethoxysilane as coupling agent. Differential scanning calorimetry, electron microscopy, thermogravimetric analysis, and goniometry were used to characterize RHA/DGEBA-BMI composites developed in the present work. Tensile, impact and flexural strength, tensile and flexural modulus, hardness, dielectric properties were also studied and discussed. The hybrid nanocomposites possess the higher values of the glass transition temperature (Tg) and mechanical properties than those of neat epoxy matrix.

  12. Development of ricehusk ash reinforced bismaleimide toughened epoxy nanocomposites

    PubMed Central

    Kanimozhi, K.; Sethuraman, K.; Selvaraj, V.; Alagar, M.

    2014-01-01

    Recent past decades have witnessed remarkable advances in composites with potential applications in biomedical devices, aerospace, textiles, civil engineering, energy, electronic engineering, and household products. Thermoset polymer composites have further enhanced and broadened the area of applications of composites. In the present work epoxy-BMI toughened-silica hybrid (RHA/DGEBA-BMI) was prepared using bismaleimide as toughener, bisphenol-A as matrix and a silica precursor derived from rice husk ash as reinforcement with glycidoxypropyltrimethoxysilane as coupling agent. Differential scanning calorimetry, electron microscopy, thermogravimetric analysis, and goniometry were used to characterize RHA/DGEBA-BMI composites developed in the present work. Tensile, impact and flexural strength, tensile and flexural modulus, hardness, dielectric properties were also studied and discussed. The hybrid nanocomposites possess the higher values of the glass transition temperature (Tg) and mechanical properties than those of neat epoxy matrix. PMID:25279372

  13. Sofalcone, a mucoprotective agent, increases the cure rate of Helicobacter pylori infection when combined with rabeprazole, amoxicillin and clarithromycin

    PubMed Central

    Isomoto, Hajime; Furusu, Hisashi; Ohnita, Ken; Wen, Chun-Yang; Inoue, Kenichiro; Kohno, Shigeru

    2005-01-01

    AIM: The mucoprotective agents, sofalcone and polaprezinc have anti-Helicobacter pylori (H pylori) activities. We determined the therapeutic effects of sofalcone and polaprezinc when combined with rabeprazole, amoxicillin and clarithromycin for Helicobacter pylori infection. METHODS: One hundred and sixty-five consecutive outpatients with peptic ulcer and H pylori infection were randomly assigned to one of the following three groups and medicated for 7 d. Group A: triple therapy with rabeprazole (10 mg twice daily), clarithromycin (200 mg twice daily) and amoxicillin (750 mg twice daily). Group B: sofalcone (100 mg thrice daily) plus the triple therapy. Group C: polaprezinc (150 mg twice daily) plus the triple therapy. Eradication was considered successful if 13C-urea breath test was negative at least 4 wk after cessation of eradication regimens or successive famotidine in the cases of active peptic ulcer. RESULTS: On intention-to-treat basis, H pylori cure was achieved in 43 of 55 (78.2%) patients, 47 of 54 (87.0%) and 45 of 56 (80.4%) for the groups A, B and C respectively. Using per protocol analysis, the eradication rates were 81.1% (43/53), 94.0% (47/50) and 84.9% (45/53) respectively. There was a significant difference in the cure rates between group A and B. Adverse events occurred in 10, 12 and 11 patients, from groups A, B and C respectively, but the events were generally mild. CONCLUSION: The addition of sofalcone, but not polaprezinc, significantly increased the cure rate of H pylori infection when combined with the rabeprazole-amoxicillin-clarithromycin regimen. PMID:15786539

  14. Exploratory Development of Corrosion Inhibiting Primers

    DTIC Science & Technology

    1977-07-01

    Phenolic Hardener From previous studies, phenol formaldehyde resins of the novolac (two-step) type have given superior properties when used to cure epoxy...novolacs and three resole (one-step) type phenol- formaldehyde resins which also perform as epoxide curing agents. First, Model #1, as de;crihed in Section...results. Varcum 4326 resin was chosen at this stage for further use with the model systems. It is a low molecular weight phenol- formaldehyde resin used

  15. Evaluation of Environmental Conditions on the Curing Of Commercial Fixative and Intumescent Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholson, J. C.

    2016-09-26

    Performance metrics for evaluating commercial fixatives are often not readily available for important parameters that must be considered per the facility safety basis and the facility Basis for Interim Operations (BIO). One such parameter is the behavior of such materials in varied, “non-ideal” conditions where ideal is defined as 75 °F, 40% RH. Coupled with the inherent flammable nature of the fixative materials that can act to propagate flame along surfaces that are otherwise fireproof (concrete, sheet metal), much is left unknown when considering the safety basis implications for introducing these materials into nuclear facilities. Through SRNL’s efforts, three (3)more » fixatives, one (1) decontamination gel, and six (6) intumescent coatings were examined for their responses to environmental conditions to determine whether these materials were impervious to non-nominal temperatures and humidities that may be found in nuclear facilities. Characteristics that were examined included set-to-touch time, dust free time, and adhesion testing of the fully cured compounds. Of these ten materials, three were two-part epoxy materials while the other seven consisted of only one constituent. The results show that the epoxies tested are unable to cure in sub-freezing temperatures, with the low temperatures inhibiting crosslinking to a very significant degree. These efforts show significant inhibiting of performance for non-nominal environmental conditions, something that must be addressed both in the decision process for a fixative material to apply and per the safety basis to ensure the accurate flammability and material at risk is calculated.« less

  16. EPOXI Mission Press Conference

    NASA Image and Video Library

    2010-11-18

    Jessica Sunshine, EPOXI Deputy Principal Investigator, University of Maryland, far right, discusses imagery sent back from the EPOXI Mission spacecraft during a press conference, Thursday, Nov. 18, 2010, at NASA Headquarters in Washington. The press conference was held to discuss the Nov. 4 successful flyby of Comet Hartley 2 by NASA's EPOXI Mission Spacecraft. Images from the flyby provided scientists the most extensive observations of a comet in history. Photo Credit: (NASA/Paul E. Alers)

  17. Epoxy resins in the construction industry.

    PubMed

    Spee, Ton; Van Duivenbooden, Cor; Terwoert, Jeroen

    2006-09-01

    Epoxy resins are used as coatings, adhesives, and in wood and concrete repair. However, epoxy resins can be highly irritating to the skin and are strong sensitizers. Some hardeners are carcinogenic. Based on the results of earlier Dutch studies, an international project on "best practices,"--Epoxy Code--with epoxy products was started. Partners were from Denmark, Germany, the Netherlands, and the UK. The "Code" deals with substitution, safe working procedures, safer tools, and skin protection. The feasibility of an internationally agreed "ranking system" for the health risks of epoxy products was studied. Such a ranking system should inform the user of the harmfulness of different epoxies and stimulate research on less harmful products by product developers.

  18. Toughening mechanism in elastometer-modified epoxy resins: Part 1

    NASA Technical Reports Server (NTRS)

    Yee, A. F.; Pearson, R. A.

    1983-01-01

    Several plaques of Epon 828, cured with piperidine, modified with hycar(r) CTBN 1300X8, Hycar(R) CTBN 1300X13, and Hycar(R) CTBN 1300x15, and in some cases modified with biphenol A (BPA), yielded properly toughened epoxies with rubber particle diameters ranging from 0.1 to 10 microns. Fracture toughness experiments indicate that toughness was more a function of rubber content than the rubber particle size. Tensile volumetric behavior of the near resin exhibits two regions: an initial region where the increase in volume strain was due to the Poisson's effect, and a second region where a slower rate of increase in volume strain was due to shear deformation. Tensile volumetric deformation of an elastomer-modified epoxy exhibits the same type of behavior to that of the neat resin at low rates ( 3.2x0.01 sec(-1)). But at very high strain rates, which correspond more closely to the strain rates at the crack tip, there exists an increase in volume strain beyond the Poisson's effect. TEM, SEM and OM studies indicate that the rubber particles had voided. When a thin section from the deformed region is viewed under crossed-polarized light, shear bands are seen connecting voided rubber particles. From this information cavitation and enhanced shear band formation is proposed as the toughening mechanism.

  19. Process for Preparing Epoxy-Reinforced Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B (Inventor)

    2016-01-01

    One-pot reaction process for preparing epoxy-reinforced monolithic silica aerogels comprising the reaction of at least one silicon compound selected from the group consisting of alkoxysilanes, orthosilicates and combination thereof in any ratio with effective amounts of an epoxy monomer and an aminoalkoxy silane to obtain an epoxy monomer-silica sol in solution, subsequently preparing an epoxy-monomer silica gel from said silica sol solution followed by initiating polymerization of the epoxy monomer to obtain the epoxy-reinforced monolithic silica aerogel.

  20. Recyclable epoxy resins: An example of green approach for advanced composite applications

    NASA Astrophysics Data System (ADS)

    Cicala, Gianluca; Rosa, Daniela La; Musarra, Marco; Saccullo, Giuseppe; Banatao, Rey; Pastine, Stefan

    2016-05-01

    Automotive composite applications are increasingly growing due to demand for lightweight structures to comply to the requirements for fuel reduction. HP-RTM is gaining relevance as one of the preferred production technologies for high volume applications. The BMW i3 life module being a notable example of HP-RTM application. The key aspects of HP-RTM are the short injection times (i.e. less than 1min) and the fast curing of the thermoset resins (i.e. less than 10min). The choice of using thermosets poses relevant issues for their limited recycling options. The standard recycling solution is the incineration but, this solution poses some concerns in terms of global environmental impact. Novel solutions are presented in this work based on the use of recyclable epoxy systems. In our work the results of experimentation carried out by our group with cleavable ammines by Connora Technologies and bioepoxy resins by Entropy Resins will be discussed. The multiple uses of recycled matrices obtained treating the recyclable epoxy resins are discussed in the framework of a "cradle" to "crave" approach. Finally, Life Cycle Assessment (LCA) is used to evaluate the environmental benefits of the proposed approach.

  1. Synthesis of hydrazone functionalized epoxy polymers for non-linear optical device applications

    NASA Astrophysics Data System (ADS)

    Singh, Rajendra K.

    A series of twelve, thermally crosslinkable, epoxy polymers bearing covalently attached NLO-active hydrazone chromophores were synthesized. The primary focus was on the synthesis of two series of NLO-active hydroxy functionalized hydrazone chromophores. The first series, called the monohydroxy series (Hydrazones I--VI) comprised of six monohydroxy functionalized hydrazones and the second series consisted of six dihydroxy functionalized hydrazones (Hydrazones VII--XII). These hydrazone chromophores were then grafted, via the hydroxy functionality, on to a commercial epoxy polymer to obtain twelve NLO-active soluble prepolymers. The grafting reaction yields multiple secondary hydroxyl sites due to opening of the epoxide rings and these hydroxyl groups were used for further crosslinking by formulating the prepolymers with a blocked polyisocyanate commercial crosslinker. This formulation was spin coated on glass slides to form 2--2.5 m m thick uniform, defect free, transparent films. The films were corona poled, above their Tg, to align the chromophores in a noncentrosymmetric fashion and simultaneously complete the thermal cure that results in a highly crosslinked network. Finally the thermal characteristics of the second order nonlinearity of the twelve polymers are compared to illustrate the key structure-property relationships underlying the performance of the films.

  2. Thermal Expansion Measurements of Polymer Matrix Composites and Syntactics

    DTIC Science & Technology

    1992-04-01

    828 (Shell Chemical) epoxy combined with 50.0 PBW EPON® V-40 polyamide curing agent (Shell Chemical) and Owens Corning (E-780) polyester combined 1...with 24 oz. woven roving with an Owens Corning 463 finish. " A 3 x 1, S-2 glass with 27 oz. woven roving with an Owens Corning 933 finish, nominally...wet polyester resin ( Owens Corning E-780) and subsequently processing the composites using the standard vacuum bag cure cycle for this polyester

  3. An Interferometric Study of Epoxy Polymerization Kinetics

    NASA Astrophysics Data System (ADS)

    Page, Melissa A.; Tandy Grubbs, W.

    1999-05-01

    An interferometric method for monitoring polymerization kinetics is described. The experimental apparatus can be constructed from items commonly available in undergraduate laboratories. It consists of a low power helium-neon laser, a home-built Michelson interferometer, and a photodiode light detector. When a polymerizing sample is placed in one arm of the Michelson interferometer, the variation in refractive index will cause a corresponding shift in the phase of the coherent optical beam that passes through the sample, and the output of the interferometer will subsequently fluctuate between constructive and destructive interference. The oscillation in the interferometer output intensity is monitored as a function of time with the photodiode. The time between successive maxima (or minima) is used to calculate the change in refractive index with time (Dn/Dt), which is subsequently used as a phenomenological definition of polymerization rate. We have utilized this device to collect and compare curing profiles of commercially available epoxy glues.

  4. New processable modified polyimide resins for adhesive and matrix applications

    NASA Technical Reports Server (NTRS)

    Landman, D.

    1985-01-01

    A broad product line of bismaleimide modified epoxy adhesives which are cured by conventional addition curing methods is described. These products fill a market need for 232 C (450 F) service adhesives which are cured in a manner similar to conventional 177 C (350 F) epoxy adhesives. The products described include film adhesives, pastes, and a primer. Subsequent development work has resulted in a new bismaleimide modified epoxy resin which uses a unique addition curing mechanism. This has resulted in products with improved thermomechanical properties compared to conventional bismaleimide epoxy resins. A film adhesive, paste, and matrix resin for composites using this new technology are described. In all cases, the products developed are heat cured by using typical epoxy cure cycles i.e., 1 hour at 177 C (350 F) followed by 2 hours postcure at 246 C (475 F).

  5. Curing Composite Materials Using Lower-Energy Electron Beams

    NASA Technical Reports Server (NTRS)

    Byrne, Catherine A.; Bykanov, Alexander

    2004-01-01

    In an improved method of fabricating composite-material structures by laying up prepreg tapes (tapes of fiber reinforcement impregnated by uncured matrix materials) and then curing them, one cures the layups by use of beams of electrons having kinetic energies in the range of 200 to 300 keV. In contrast, in a prior method, one used electron beams characterized by kinetic energies up to 20 MeV. The improved method was first suggested by an Italian group in 1993, but had not been demonstrated until recently. With respect to both the prior method and the present improved method, the impetus for the use of electron- beam curing is a desire to avoid the high costs of autoclaves large enough to effect thermal curing of large composite-material structures. Unfortunately, in the prior method, the advantages of electron-beam curing are offset by the need for special walls and ceilings on curing chambers to shield personnel from x rays generated by impacts of energetic electrons. These shields must be thick [typically 2 to 3 ft (about 0.6 to 0.9 m) if made of concrete] and are therefore expensive. They also make it difficult to bring large structures into and out of the curing chambers. Currently, all major companies that fabricate composite-material spacecraft and aircraft structures form their layups by use of automated tape placement (ATP) machines. In the present improved method, an electron-beam gun is attached to an ATP head and used to irradiate the tape as it is pressed onto the workpiece. The electron kinetic energy between 200 and 300 keV is sufficient for penetration of the ply being laid plus one or two of the plies underneath it. Provided that the electron-beam gun is properly positioned, it is possible to administer the required electron dose and, at the same time, to protect personnel with less shielding than is needed in the prior method. Adequate shielding can be provided by concrete walls 6 ft (approximately equal to 1.8 m) high and 16 in. (approximately

  6. Physical aging and its influence on the reliability of network epoxies and epoxy-matrix composites

    NASA Technical Reports Server (NTRS)

    Heinemann, K.

    1983-01-01

    The matrix-dominated physical and mechanical properties of a carbon fiber reinforced epoxy composite and a neat epoxy resin were found to be affected by sub-Tg annealing in nitrogen and dark atmosphere. Postcured specimens of Thornel 300 carbon-fiber/Fiberite 934 epoxy as well as Fiberite 934 epoxy resin were quenched from above Tg and given annealing at 140 C, 110 C, or 80 C, for time up to one-hundred thousand minutes. No weight loss was observed during annealing at these temperatures. Significant variations were found in density, modulus, hardness, damping, moisture absorption ability, thermal expansivity. Moisture-epoxy interactious were also studied. The kinetics of aging as well as the molecular aggregation during this densification process were monitored by differential scanning calorimetry, dynamic mechanical analysis, density gradient column, microhardness tester, Instron, and solid-state nuclear magnetic resonance spectroscopy.

  7. Light curing through glass ceramics: effect of curing mode on micromechanical properties of dual-curing resin cements.

    PubMed

    Flury, Simon; Lussi, Adrian; Hickel, Reinhard; Ilie, Nicoleta

    2014-04-01

    The aim of this study was to investigate micromechanical properties of five dual-curing resin cements after different curing modes including light curing through glass ceramic materials. Vickers hardness (VH) and indentation modulus (Y HU) of Panavia F2.0, RelyX Unicem 2 Automix, SpeedCEM, BisCem, and BeautiCem SA were measured after 1 week of storage (37 °C, 100 % humidity). The resin cements were tested following self-curing or light curing with the second-generation light-emitting diode (LED) curing unit Elipar FreeLight 2 in Standard Mode (1,545 mW/cm(2)) or with the third-generation LED curing unit VALO in High Power Mode (1,869 mW/cm(2)) or in XtraPower Mode (3,505 mW/cm(2)). Light curing was performed directly or through glass ceramic discs of 1.5 or 3 mm thickness of IPS Empress CAD or IPS e.max CAD. VH and Y HU were analysed with Kruskal-Wallis tests followed by pairwise Wilcoxon rank sum tests (α = 0.05). RelyX Unicem 2 Automix resulted in the highest VH and Y HU followed by BeautiCem SA, BisCem, SpeedCEM, and finally Panavia F2.0. Self-curing of RelyX Unicem 2 Automix and SpeedCEM lowered VH and Y HU compared to light curing whereas self-curing of Panavia F2.0, BisCem, and BeautiCem SA led to similar or significantly higher VH and Y HU compared to light curing. Generally, direct light curing resulted in similar or lower VH and Y HU compared to light curing through 1.5-mm-thick ceramic discs. Light curing through 3-mm-thick discs of IPS e.max CAD generally reduced VH and Y HU for all resin cements except SpeedCEM, which was the least affected by light curing through ceramic discs. The resin cements responded heterogeneously to changes in curing mode. The applied irradiances and light curing times adequately cured the resin cements even through 1.5-mm-thick ceramic discs. When light curing resin cements through thick glass ceramic restorations, clinicians should consider to prolong the light curing times even with LED curing units providing high

  8. Fourier transform infrared (FTIR) fiber optic monitoring of composites during cure in an autoclave

    NASA Technical Reports Server (NTRS)

    Druy, Mark A.; Elandjian, Lucy; Stevenson, William A.; Driver, Richard D.; Leskowitz, Garett M.

    1990-01-01

    Real-time in situ monitoring of the chemical states of epoxy resins was investigated during cure in an autoclave using infrared evanescent spectroscopy. Fiber evanescent sensors were developed which may be sandwiched between the plies of the prepreg sample. A short length of sapphire fiber was used as the sensor cell portion of the fiber probe. Heavy metal fluoride glass optical fiber cables were designed for connecting the FTIR spectrometer to the sensor fiber within the autoclave. The sapphire fibers have outstanding mechanical thermal properties which should permit their use as an embedded link in all thermoset composites. The system is capable of operation at a temperature of 250 C for periods up to 8 hours without major changes to the fiber transmission. A discussion of the selection of suitable sensor fibers, the construction of a fiber-optic interface, and the interpretation of in situ infrared spectra of the curing process is presented.

  9. Fracture characteristics of angleplied laminates fabricated from overaged graphite/epoxy prepreg

    NASA Technical Reports Server (NTRS)

    Ginty, C. A.; Chamis, C. C.

    1985-01-01

    A series of angleplied graphite/epoxy laminates was fabricated from overaged prepreg and tested in tension to investigate the effects of overaged or advanced cure material on the degradation of laminate strength. Results, which include fracture stresses, indicate a severe degradation in strength. In addition, the fracture surfaces and microstructural characteristics are distinctly unlike any features observed in previous tests of this prepreg and laminate configuration. Photographs of the surfaces and microstructures reveal flat morphologies consisting of alternate rows of fibers and hackles. These fracture surface characteristics are independent of the laminate configurations. The photomicrographs are presented and compared with data from similar studies to show the unique characteristics produced by the overage prepreg. Analytical studies produced results which agreed with those from the experimental investigations.

  10. Fracture characteristics of angleplied laminates fabricated from overaged graphite/epoxy prepreg

    NASA Technical Reports Server (NTRS)

    Ginty, Carol A.; Chamis, Christos C.

    1987-01-01

    A series of angleplied graphite/epoxy laminates was fabricated from overaged prepreg and tested in tension to investigate the effects of overaged or advanced cure material on the degradation of laminate strength. Results, which include fracture stresses, indicate a severe degradation in strength. In addition, the fracture surfaces and microstructural characteristics are distinctly unlike any features observed in previous tests of this prepreg and laminate configuration. Photographs of the surfaces and microstructures reveal flat morphologies consisting of alternate rows of fibers and hackles. These fracture surface characteristics are independent of the laminate configurations. The photomicrographs are presented and compared with data from similar studies to show the unique characteristics produced by the overage prepreg. Analytical studies produced results which agreed with those from the experimental investigations.

  11. Wettability of nano-epoxies to UHMWPE fibers.

    PubMed

    Neema, S; Salehi-Khojin, A; Zhamu, A; Zhong, W H; Jana, S; Gan, Y X

    2006-07-01

    Ultra high molecular weight polyethylene (UHMWPE) fibers have a unique combination of outstanding mechanical, physical, and chemical properties. However, as reinforcements for manufacturing high performance composite materials, UHMWPE fibers have poor wettability with most polymers. As a result, the interfacial bonding strength between the fibers and polymer matrices is very low. Recently, developing so-called nano-matrices containing reactive graphitic nanofibers (r-GNFs) has been proposed to promote the wetting of such matrices to certain types of fiber reinforcements. In this work, the wettability of UHMWPE fibers with different epoxy matrices including a nano-epoxy, and a pure epoxy was investigated. Systematic experimental work was conducted to determine the viscosity of the epoxies, the contact angle between the epoxies and the fibers. Also obtained are the surface energy of the fibers and the epoxies. The experimental results show that the wettability of the UHMWPE fibers with the nano-epoxy is much better than that of the UHMWPE fibers with the pure epoxy.

  12. Nonequilibrium material effects on the behavior of polymeric composite matrices and their related composites

    NASA Technical Reports Server (NTRS)

    Wilkes, G. L.

    1982-01-01

    The effects of physical aging on the material properties of some linear and network macromolecular glasses are discussed. The free volume concept is used to describe this behavior. The effect of physical aging on properties of some uniaxial graphite/fiber epoxy resin composites is investigated using stress relaxation in both tensile and flexural modes. The matrix polymers used were resins both of which are based on a 4,4-methylenedianiline derivative of epichlorohydrin with diamino diphenyl sulfone (DDS) as the curing agent. The matrix resin, as used in the practical application in composites, not fully cured and the glass transition of the network was dependent on the curing schedule. The physical aging of the bulk crosslinked epoxy was found to depend on the annealing temperature, and the T sub g of the resin. The physical aging of the composite, monitored by the stress relaxation method, was found to be dependent on the testing direction.

  13. The glass transition in cured epoxy thermosets: A comparative molecular dynamics study in coarse-grained and atomistic resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langeloth, Michael; Böhm, Michael C.; Müller-Plathe, Florian

    2015-12-28

    We investigate the volumetric glass transition temperature T{sub g} in epoxy thermosets by means of molecular dynamics simulations. The epoxy thermosets consist of the resin bisphenol A diglycidyl ether and the hardener diethylenetriamine. A structure based coarse-grained (CG) force field has been derived using iterative Boltzmann inversion in order to facilitate simulations of larger length scales. We observe that T{sub g} increases clearly with the degree of cross-linking for all-atomistic (AA) and CG simulations. The transition T{sub g} in CG simulations of uncured mixtures is much lower than in AA-simulations due to the soft nature of the CG potentials, butmore » increases all the more with the formation of rigid cross-links. Additional simulations of the CG mixtures in contact with a surface show the existence of an interphase region of about 3 nm thickness in which the network properties deviate significantly from the bulk. In accordance to experimental studies, we observe that T{sub g} is reduced in this interphase region and gradually increases to its bulk value with distance from the surface. The present study shows that the glass transition is a local phenomenon that depends on the network structure in the immediate environment.« less

  14. Novel Diels-Alder based self-healing epoxies for aerospace composites

    NASA Astrophysics Data System (ADS)

    Coope, T. S.; Turkenburg, D. H.; Fischer, H. R.; Luterbacher, R.; van Bracht, H.; Bond, I. P.

    2016-08-01

    Epoxy resins containing Diels-Alder (DA) furan and maleimide moieties are presented with the capability to self-heal after exposure to an external heat source. A conventional epoxy amine system has been combined with furfuryl and maleimide functional groups in a two-step process, to avoid major side-reactions, and the concentration of a thermo-reversibly binding cross-linker was considered to balance thermoset and thermoplastic behaviours, and the subsequent self-healing performance. In the context of self-repair technologies an inbuilt ‘intrinsic’ self-healing system is deemed favourable as the healing agent can be placed in known ‘hot spot’ regions (i.e. skin-stringer run outs, ply drops and around drilled holes) where operational damage predominately occurs in load bearing aerospace structures. In this study, the mechanical and self-healing performance of furan functionalised epoxy resins containing varying amounts (10, 20, 30 or 40 pph) of bismaleimide were investigated using a bulk epoxy polymer tapered double cantilever beam test specimen geometry. Two forms, a thin film and a bulk material, were evaluated to account for future integration methods into fibre reinforced polymer (FRP) composites. The highest healing efficiency, with respect to the obtained initial load value, was observed from the 20 pph bulk material derivative. The polymers were successful in achieving consistent multiple (three) healing cycles when heated at 150 °C for 5 min. This novel investigated DA material exhibits favourable processing characteristics for FRP composites as preliminary studies have shown successful coextrution with reinforcing fibres to form free standing films and dry fibre impregnation.

  15. Syringaresinol: A Renewable and Safer Alternative to Bisphenol A for Epoxy-Amine Resins.

    PubMed

    Janvier, Marine; Hollande, Louis; Jaufurally, Abdus Samad; Pernes, Miguel; Ménard, Raphaël; Grimaldi, Marina; Beaugrand, Johnny; Balaguer, Patrick; Ducrot, Paul-Henri; Allais, Florent

    2017-02-22

    A renewable bisepoxide, SYR-EPO, was prepared from syringaresinol, a naturally occurring bisphenol deriving from sinapic acid, by using a chemo-enzymatic synthetic pathway. Estrogenic activity tests revealed no endocrine disruption for syringaresinol. Its glycidylation afforded SYR-EPO with excellent yield and purity. This biobased, safe epoxy precursor was then cured with conventional and renewable diamines for the preparation of epoxy-amine resins. The resulting thermosets were thermally and mechanically characterized. Thermal analyses of these new resins showed excellent thermal stabilities (T d5 % =279-309 °C) and T g ranging from 73 to 126 °C, almost reaching the properties of those obtained with the diglycidylether of bisphenol A (DGEBA), extensively used in the polymer industry (T d5 % =319 °C and T g =150 °C for DGEBA/isophorone diamine resins). Degradation studies in NaOH and HCl aqueous solutions also highlighted the robustness of the syringaresinol-based resins, similar to bisphenol A (BPA). All these results undoubtedly confirmed the potential of syringaresinol as a greener and safer substitute for BPA. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Nature of the Elimination of the Penicillinase Plasmid from Staphylococcus aureus by Surface-Active Agents

    PubMed Central

    Sonstein, Stephen A.; Baldwin, J. N.

    1972-01-01

    Growth of Stapylococcus aureus in various ionic surface-active agents resulted in loss of the ability to produce penicillinase, whereas growth in nonionic surface-active agents had no effect on penicillinase production. The curing effect of various alkyl sulfates was found to be dependent upon the chain length. Curing by surface-active agents could be inhibited by magnesium. Reciprocal transduction experiments showed that curing by a surface-active agent was a property of the plasmid, not of the bacterial strain in which the plasmic resides. PMID:4204903

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Brad H.; Wheeler, David R.; Black, Hayden T.

    Physical stress relaxation in rubbery, thermoset polymers is limited by cross-links, which impede segmental motion and restrict relaxation to network defects, such as chain ends. In parallel, the cure shrinkage associated with thermoset polymerizations leads to the development of internal residual stress that cannot be effectively relaxed. Recent strategies have reduced or eliminated such cure stress in thermoset polymers largely by exploiting chemical relaxation processes, wherein temporary cross-links or otherwise transient bonds are incorporated into the polymer network. In this paper, we explore an alternative approach, wherein physical relaxation is enhanced by the incorporation of organometallic sandwich moieties into themore » backbone of the polymer network. A standard epoxy resin is cured with a diamine derivative of ferrocene and compared to conventional diamine curing agents. The ferrocene-based thermoset is clearly distinguished from the conventional materials by reduced cure stress with increasing cure temperature as well as unique stress relaxation behavior above its glass transition in the fully cured state. The relaxation experiments exhibit features characteristic of a physical relaxation process. Furthermore, the cure stress is observed to vanish precipitously upon deliberate introduction of network defects through an increasing imbalance of epoxy and amine functional groups. Finally, we postulate that these beneficial properties arise from fluxional motion of the cyclopentadienyl ligands on the polymer backbone.« less

  18. Structure-Stability Relationships of Polymers Based on Thermogravimetric Analysis Data. Part 1. Polyaliphatics, Polyalicyclics, Spiro Polymers and Phenylene-R-Polymers

    DTIC Science & Technology

    1974-12-01

    Polymerization 13 9. Polymers with Bridged Ring Systems 14 10. Spiro Polymers 14 11. Polyphenylene s 16 12. Phenol - Formaldehyde Resins 17 13. Polyphenylene... Formaldehyde Resins A wide variety of phenol- formaldehyde resins , cured with various curing agents, has been evaluated. The Tdec’s (N 2 ), which...415 0 570 415 540C 2- 410 0 -CHI - 0- c-Ci.f-CCH = 1-eC.- 390 540 0 (Phenol- Formaldehyde Resins ) -CVH- (aliph.) 390 / F_ 535 0 - CHL" (epoxy

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keeratitham, Waralee, E-mail: waralee.ke@student.chula.ac.th; Somwangthanaroj, Anongnat, E-mail: anongnat.s@chula.ac.th

    Herein, our main objective is to prepare the fast curing epoxy system with high glass transition temperature (T{sub g}) by incorporating the multifunctional epoxy resin into the mixture of diglycidyl ether of bisphenol A (DGEBA) as a major epoxy component and aromatic diamine as a hardener. Furthermore, the curing behavior as well as thermal and thermomechanical properties were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA) and thermomechanical analysis (TMA). It was found that T{sub g} obtained from tan δ of DGEBA/aromatic diamine system increased from 100 °C to 205 °C with the presence of 30 percentage bymore » weight of multifunctional epoxy resin. Additionally, the isothermal DSC results showed that the multifunctional epoxy resin can accelerate the curing reaction of DGEBA/aromatic diamine system. Namely, a high degree of curing (∼90%) was achieved after a few minutes of curing at low temperature of 130 °C, owing to a large number of epoxy ring of multifunctional epoxy resin towards the active hydrogen atoms of aromatic diamine.« less

  20. Degradable Networks Containing Silyl Ether Bonds

    NASA Astrophysics Data System (ADS)

    Bassampour, Zahra S.

    Degradable networks possess applications in many fields such as medical implants, electrical devices, industrial coatings, adhesives, and aerospace. Silyl ether bonds are reactive functionalities capable of degrading under physiological condition without significantly affecting the pH of the surrounding environment. This dissertation focuses on preparative methods of degradable networks utilizing silyl ether functionalities. Epoxy polymers are broadly utilized in many different applications. Despite the broad utilization of epoxy polymer thermosets in long-term applications, these thermosets are not very popular candidates in short-term applications. This unpopularity is mostly due to the fact that epoxy networks are non-degradable systems, which results in their recycling being very costly and environmentally unfriendly. In the first and second part of this dissertation, the synthesis of various amine and thiol curing agents containing hydrolyzable silyl ether bonds is described. Using these curing agents, thermosetting epoxy polymers with degradable properties were prepared. The degradation behavior and thermal properties of the cured networks were studied. Age-related macular degeneration (AMD) is a leading cause of vision loss in the industrialized world. The high prevalence of AMD and the complications and shortcomings of available treatment options give rise to a great need for the development of novel types of biodegradable implants to provide sustainable drug release. The third part of this dissertation describes the utilization of hydrolyzable silyl ether bonds in the synthesis of novel implants capable of reserving and releasing a drug in a controlled manner in order to treat AMD. Base- catalyzed thiol-Michael reactions were exploited to prepare a series of biodegradable cross- linked networks. The networks were characterized by FTIR, TGA, and DMA. The effect of monomer structure on degradation, release behavior, and thermal properties was investigated.

  1. Salt exclusion in silane-laced epoxy coatings.

    PubMed

    Wang, Peng; Schaefer, Dale W

    2010-01-05

    The corrosion protection mechanism of a one-step silane-laced epoxy coating system was investigated using neutron reflectivity. Pure epoxy and silane-laced epoxy films were examined at equilibrium with saturated NaCl water solution. The results demonstrate that the addition of silane introduces a salt-exclusion effect to epoxy coating. Specifically, the addition of silane densifies the epoxy network, which leads to exclusion of hydrated salt ions by a size effect. The effect is particularly significant at the metal-coating interface. Exclusion of ions improves the corrosion resistance, particularly for metals susceptible to pitting.

  2. A novel hydroxyl epoxy phosphate monomer enhancing the anticorrosive performance of waterborne Graphene/Epoxy coatings

    NASA Astrophysics Data System (ADS)

    Ding, Jiheng; Rahman, Obaid ur; Peng, Wanjun; Dou, Huimin; Yu, Haibin

    2018-01-01

    Herein, we report the synthesis of a novel hydroxyl epoxy phosphate monomer (PGHEP) as an efficient dispersant for graphene to enhance the compatibility of the graphene in epoxy resin. Raman spectroscopy, Ultraviolet-visible spectroscopy (UV-vis) and X-ray photoelectron spectroscopy (XPS) studies were confirmed the π-π interactions between PGHEP and graphene. Well-dispersed states of PGHEP functionalized graphene (G) sheets in water were analyzed by transmission electron microscopy (TEM), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Further, microstructure of prepared G/waterborne epoxy coatings containing 0.5-1.0 wt.% of PGHEP functionalized G sheets were also observed with the help of SEM and TEM. The PGHEP functionalized G sheets dispersed composite coatings displayed enhanced corrosion resistance compared with pure epoxy resin, these coatings have higher contact angle, lower water absorption as evident from the results of electrochemical impedance spectroscopy (EIS) and salt spray tests. The superior corrosion protection performances of G/epoxy coatings were mainly attributed to the formed passive film from uniformly dispersed PGHEP functionalized G sheets which act as physical barrier on the steel surface. Therefore, this work provides a novel bio-based efficient dispersant for G sheets and an important method for preparing G/waterborne epoxy coatings with superior corrosion resistance properties.

  3. Analysis and Tests of Reinforced Carbon-Epoxy/Foam-Core Sandwich Panels with Cutouts

    NASA Technical Reports Server (NTRS)

    Baker, Donald J.; Rogers, Charles

    1996-01-01

    The results of a study of a low-cost structurally efficient minimum-gage shear-panel design that can be used in light helicopters are presented. The shear-panel design is based on an integrally stiffened syntactic-foam stabilized-skin with an all-bias-ply tape construction for stabilized-skin concept with an all-bias-ply tape construction for the skins. This sandwich concept is an economical way to increase the panel bending stiffness weight penalty. The panels considered in the study were designed to be buckling resistant up to 100 lbs/in. of shear load and to have an ultimate strength of 300 lbs/in. The panel concept uses unidirectional carbon-epoxy tape on a syntactic adhesive as a stiffener that is co-cured with the skin and is an effective concept for improving panel buckling strength. The panel concept also uses pultruded carbon-epoxy rods embedded in a syntactic adhesive and over-wrapped with a bias-ply carbon-epoxy tape to form a reinforcing beam which is an effective method for redistributing load around rectangular cutout. The buckling strength of the reinforced panels is 83 to 90 percent of the predicted buckling strength based on a linear buckling analysis. The maximum experimental deflection exceeds the maximum deflection predicted by a nonlinear analysis by approximately one panel thickness. The failure strength of the reinforced panels was two and a half to seven times of the buckling strength. This efficient shear-panel design concept exceeds the required ultimate strength requirement of 300 lbs/in by more than 100 percent.

  4. Finding a cure for HIV: will it ever be achievable?

    PubMed Central

    2011-01-01

    Combination antiretroviral therapy (cART) has led to a major reduction in HIV-related mortality and morbidity. However, HIV still cannot be cured. With the absence of an effective prophylactic or therapeutic vaccine, increasing numbers of infected people, emerging new toxicities secondary to cART and the need for life-long treatment, there is now a real urgency to find a cure for HIV. There are currently multiple barriers to curing HIV. The most significant barrier is the establishment of a latent or "silent" infection in resting CD4+ T cells. In latent HIV infection, the virus is able to integrate into the host cell genome, but does not proceed to active replication. As a consequence, antiviral agents, as well as the immune system, are unable to eliminate these long-lived, latently infected cells. Reactivation of latently infected resting CD4+ T cells can then re-establish infection once cART is stopped. Other significant barriers to cure include residual viral replication in patients receiving cART, even when the virus is not detectable by conventional assays. In addition, HIV can be sequestered in anatomical reservoirs, such as the brain, gastrointestinal tract and genitourinary tract. Achieving either a functional cure (long-term control of HIV in the absence of cART) or a sterilizing cure (elimination of all HIV-infected cells) remains a major challenge. Several studies have now demonstrated that treatment intensification appears to have little impact on latent reservoirs. Some potential and promising approaches that may reduce the latent reservoir include very early initiation of cART and the use of agents that could potentially reverse latent infection. Agents that reverse latent infection will promote viral production; however, simultaneous administration of cART will prevent subsequent rounds of viral replication. Such drugs as histone deacetylase inhibitors, currently used and licensed for the treatment of some cancers, or activating latently infected

  5. Novel self-healing materials chemistries for targeted applications

    NASA Astrophysics Data System (ADS)

    Wilson, Gerald O.

    Self-healing materials of the type developed by White and co-workers [1] were designed to autonomically heal themselves when damaged, thereby extending the lifetime of various applications in which such material systems are employed. The system was based on urea-formaldehyde microcapsules containing dicyclopentadiene (DCPD) and Grubbs' catalyst particles embedded together in an epoxy matrix. When a crack propagates through the material, it ruptures the microcapsules, releasing DCPD into the crack plane, where it comes in contact and reacts with the catalyst to initiate a ring opening metathesis polymerization (ROMP), bonding the crack and restoring structural continuity. The present work builds on this concept in several ways. Firstly, it expands the scope and versatility of the ROMP self-healing chemistry by incorporation into epoxy vinyl ester matrices. Major technical challenges in this application include protection of the catalyst from deactivation by aggressive curing agents, and optimization of the concentration of healing agents in the matrix. Secondly, new ruthenium catalysts are evaluated for application in ROMP-based self-healing materials. The use of alternative derivatives of Grubbs' catalyst gave rise to self-healing systems with improved healing efficiencies and thermal properties. Evaluation of the stability of these new catalysts to primary amine curing agents used in the curing of common epoxy matrices also led to the discovery and characterization of new ruthenium catalysts which exhibited ROMP initiation kinetics superior to those of first and second generation Grubbs' catalysts. Finally, free radical polymerization was evaluated for application in the development of bio-compatible self-healing materials. [1] White, S. R.; Sottos, N. R.; Geubelle, P. R.; Moore, J. S.; Kessler, M. R.; Sriram, S. R.; Brown, E. N.; Viswanathan, S. Nature 2001, 409, 794.

  6. Curing mechanism of flexible aqueous polymeric coatings.

    PubMed

    Irfan, Muhammad; Ahmed, Abid Riaz; Kolter, Karl; Bodmeier, Roland; Dashevskiy, Andriy

    2017-06-01

    The objective of this study was to explain curing phenomena for pellets coated with a flexible polymeric coating based on poly(vinyl acetate) (Kollicoat® SR 30D) with regard to the effect of starter cores, thickness of drug layer, adhesion of coating to drug-layered-cores as well as coating properties. In addition, appropriate approaches to eliminate the curing effect were identified. Sugar or MCC cores were layered with the model drugs carbamazepine, theophylline, propranolol HCl, tramadol HCl and metoprolol HCl using HPMC (5 or 25% w/w, based on drug) as a binder. Drug-layered pellets were coated with Kollicoat® SR 30D in a fluidized bed coater using TEC (10% w/w) as plasticizer and talc (35-100% w/w) as anti-tacking agent. Drug release, pellet properties (morphology, water uptake-weight loss and osmolality) and adhesion of the coating to the drug layer were investigated as a function of curing at 60°C or 60°C/75% RH for 24h. The film formation of the aqueous dispersion of Kollicoat® SR 30D was complete, and therefore, a strong curing effect (decrease in drug release) at elevated temperature and humidity (60°C/75% RH) could not be explained by the well-known hydroplasticization and the further gradual coalescence of the colloidal polymer particles. According to the provided mechanistic explanation, the observed curing effect was associated with (1) high flexibility of coating, (2) adhesion between coating and drug layer, (3) water retaining properties of the drug layer, and (4) osmotically active cores. Unwanted curing effects could be minimized/eliminated by the addition of talc or/and pore-forming water soluble polymers in the coating, increasing binder amount or applying an intermediate coating, by increasing the thickness of drug layer or using non-osmotic cores. A new insight into curing phenomena mainly associated with the adhesion between drug layer and coating was provided. Appropriate approaches to avoid unwanted curing effect were identified

  7. Halogen-free benzoxazine based curable compositions for high TG applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tietze, Roger; Nguyen, Yen-Loan

    The present invention provides a halogen-free curable composition including a benzoxazine monomer, at least one epoxy resin, a catalyst, a toughening agent and a solvent. The halogen-free curable composition is especially suited for use in automobile and aerospace applications since the composition, upon curing, produces a composite having a high glass transition temperature.

  8. Halogen free benzoxazine based curable compositions for high T.sub.g applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tietze, Roger; Nguyen, Yen-Loan

    A method for forming a halogen-free curable composition containing a benzoxazine monomer, at least one epoxy resin, a catalyst, a toughening agent and a solvent. The halogen-free curable composition is especially suited for use in automobile and aerospace applications since the composition, upon curing, produces a composite having a high glass transition temperature.

  9. Property Changes of Cyanate Ester/epoxy Insulation Systems Caused by AN Iter-Like Double Impregnation and by Reactor Irradiation

    NASA Astrophysics Data System (ADS)

    Prokopec, R.; Humer, K.; Fillunger, H.; Maix, R. K.; Weber, H. W.

    2010-04-01

    Because of the double pancake design of the ITER TF coils the insulation will be applied in several steps. As a consequence, the conductor insulation as well as the pancake insulation will undergo multiple heat cycles in addition to the initial curing cycle. In particular the properties of the organic resin may be influenced, since its heat resistance is limited. Two identical types of sample consisting of wrapped R-glass/Kapton layers and vacuum impregnated with a cyanate ester/epoxy blend were prepared. The build-up of the reinforcement was identical for both insulation systems; however, one system was fabricated in two steps. In the first step only one half of the reinforcing layers was impregnated and cured. Afterwards the remaining layers were wrapped onto the already cured system, before the resulting system was impregnated and cured again. The mechanical properties were characterized prior to and after irradiation to fast neutron fluences of 1 and 2×1022 m-2 (E>0.1 MeV) in tension and interlaminar shear at 77 K. In order to simulate the pulsed operation of ITER, tension-tension fatigue measurements were performed in the load controlled mode. The results do not show any evidence for reduced mechanical strength caused by the additional heat cycle.

  10. Comparing the shear bond strength of direct and indirect composite inlays in relation to different surface conditioning and curing techniques

    PubMed Central

    Zorba, Yahya Orcun; Ilday, Nurcan Ozakar; Bayındır, Yusuf Ziya; Demirbuga, Sezer

    2013-01-01

    Objective: The aim of this study was to test the null hypothesis that different surface conditioning (etch and rinse and self-etch) and curing techniques (light cure/dual cure) had no effect on the shear bond strength of direct and indirect composite inlays. Materials and Methods: A total of 112 extracted human molar teeth were horizontally sectioned and randomly divided into two groups according to restoration technique (direct and indirect restorations). Each group was further subdivided into seven subgroups (n = 8) according to bonding agent (etch and rinse adhesives Scotchbond multi-purpose plus, All-Bond 3, Adper Single Bond and Prime Bond NT; and self-etch adhesives Clearfil Liner Bond, Futurabond DC and G bond). Indirect composites were cemented to dentin surfaces using dual-curing luting cement. Shear bond strength of specimens was tested using a Universal Testing Machine. Two samples from each subgroup were evaluated under Scanning electron microscopy to see the failing modes. Data was analyzed using independent sample t-tests and Tukey's tests. Results: Surface conditioning and curing of bonding agents were all found to have significant effects on shear bond strength (P < 0.05) of both direct and indirect composite inlays. With direct restoration, etch and rinse systems and dual-cured bonding agents yielded higher bond strengths than indirect restoration, self-etch systems and light-cured bonding agents. Conclusions: The results of the present study indicated that direct restoration to be a more reliable method than indirect restoration. Although etch and rinse bonding systems showed higher shear bond strength to dentin than self-etch systems, both systems can be safely used for the adhesion of direct as well as indirect restorations. PMID:24932118

  11. Comparing the shear bond strength of direct and indirect composite inlays in relation to different surface conditioning and curing techniques.

    PubMed

    Zorba, Yahya Orcun; Ilday, Nurcan Ozakar; Bayındır, Yusuf Ziya; Demirbuga, Sezer

    2013-10-01

    The aim of this study was to test the null hypothesis that different surface conditioning (etch and rinse and self-etch) and curing techniques (light cure/dual cure) had no effect on the shear bond strength of direct and indirect composite inlays. A total of 112 extracted human molar teeth were horizontally sectioned and randomly divided into two groups according to restoration technique (direct and indirect restorations). Each group was further subdivided into seven subgroups (n = 8) according to bonding agent (etch and rinse adhesives Scotchbond multi-purpose plus, All-Bond 3, Adper Single Bond and Prime Bond NT; and self-etch adhesives Clearfil Liner Bond, Futurabond DC and G bond). Indirect composites were cemented to dentin surfaces using dual-curing luting cement. Shear bond strength of specimens was tested using a Universal Testing Machine. Two samples from each subgroup were evaluated under Scanning electron microscopy to see the failing modes. Data was analyzed using independent sample t-tests and Tukey's tests. Surface conditioning and curing of bonding agents were all found to have significant effects on shear bond strength (P < 0.05) of both direct and indirect composite inlays. With direct restoration, etch and rinse systems and dual-cured bonding agents yielded higher bond strengths than indirect restoration, self-etch systems and light-cured bonding agents. The results of the present study indicated that direct restoration to be a more reliable method than indirect restoration. Although etch and rinse bonding systems showed higher shear bond strength to dentin than self-etch systems, both systems can be safely used for the adhesion of direct as well as indirect restorations.

  12. Are epoxy-wood bonds durable enough?

    Treesearch

    Charles R. Frihart

    2005-01-01

    An important aspect of any adhesive bond is that the bond maintains its integrity during its end use. Epoxies form highly durable bonds with many substrates but are usually not considered capable of forming completely durable bonds with wood by standard accelerated tests. However, epoxies are sold for wood boat construction, and some data have indicated that epoxies...

  13. Effect of Graphene Oxide Mixed Epoxy on Mechanical Properties of Carbon Fiber/Acrylonitrile-Butadiene-Styrene Composites.

    PubMed

    Wang, Cuicui; Ge, Heyi; Ma, Xiaolong; Liu, Zhifang; Wang, Ting; Zhang, Jingyi

    2018-04-01

    In this study, the watersoluble epoxy resin was prepared via the ring-opening reaction between diethanolamine and epoxy resin. The modified resin mixed with graphene oxide (GO) as a sizing agent was coated onto carbon fiber (CF) and then the GO-CF reinforced acrylonitrile-butadienestyrene (ABS) composites were prepared. The influences of the different contents of GO on CF and CF/ABS composite were explored. The combination among epoxy, GO sheets and maleic anhydride grafted ABS (ABSMA) showed a synergistic effect on improving the properties of GO-CF and GO-CF/ABS composite. The GO-CF had higher single tensile strength than the commercial CF. The maximum ILSS of GO-CF/ABS composite obtained 19.2% improvement as compared with that of the commercial CF/ABS composite. Such multiscale enhancement method and the synergistic reinforced GO-CF/ABS composite show good prospective applications in many industry areas.

  14. Flexible moldable conductive current-limiting materials

    DOEpatents

    Shea, John Joseph; Djordjevic, Miomir B.; Hanna, William Kingston

    2002-01-01

    A current limiting PTC device (10) has two electrodes (14) with a thin film of electric conducting polymer material (20) disposed between the electrodes, the polymer material (20) having superior flexibility and short circuit performance, where the polymer material contains short chain aliphatic diepoxide, conductive filler particles, curing agent, and, preferably, a minor amount of bisphenol A epoxy resin.

  15. Material property for designing, analyzing, and fabricating space structures

    NASA Technical Reports Server (NTRS)

    Kolkailah, Faysal A.

    1991-01-01

    An analytical study was made of plasma assisted bullet projectile. The finite element analysis and the micro-macromechanic analysis was applied to an optimum design technique for the multilayered graphite-epoxy composite projectile that will achieve hypervelocity of 6 to 10 Km/s. The feasibility was determined of dialectics to monitor cure of graphite-epoxies. Several panels were fabricated, cured, and tested with encouraging results of monitoring the cure of graphite-epoxies. The optimum cure process for large structures was determined. Different orientation were used and three different curing cycles were employed. A uniaxial tensile test was performed on all specimens. The optimum orientation with the optimum cure cycle were concluded.

  16. Effect of critical molecular weight of PEO in epoxy/EPO blends as characterized by advanced DSC and solid-state NMR

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoliang; Lu, Shoudong; Sun, Pingchuan; Xue, Gi

    2013-03-01

    The differential scanning calorimetry (DSC) and solid state NMR have been used to systematically study the length scale of the miscibility and local dynamics of the epoxy resin/poly(ethylene oxide) (ER/PEO) blends with different PEO molecular weight. By DSC, we found that the diffusion behavior of PEO with different Mw is an important factor in controlling these behaviors upon curing. We further employed two-dimensional 13C-{1H}PISEMA NMR experiment to elucidate the possible weak interaction and detailed local dynamics in ER/PEO blends. The CH2O group of PEO forms hydrogen bond with hydroxyl proton of cured-ER ether group, and its local dynamics frozen by such interaction. Our finding indicates that molecular weight (Mw) of PEO is a crucial factor in controlling the miscibility, chain dynamics and hydrogen bonding interaction in these blends.

  17. The application of epoxy resin coating in grounding grid

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Chen, Z. R.; Xi, L. J.; Wang, X. Y.; Wang, H. F.

    2018-01-01

    Epoxy resin anticorrosion coating is widely used in grounding grid corrosion protection because of its wide range of materials, good antiseptic effect and convenient processing. Based on the latest research progress, four kinds of epoxy anticorrosive coatings are introduced, which are structural modified epoxy coating, inorganic modified epoxy coating, organic modified epoxy coating and polyaniline / epoxy resin composite coating. In this paper, the current research progress of epoxy base coating is analyzed, and prospected the possible development direction of the anti-corrosion coating in the grounding grid, which provides a reference for coating corrosion prevention of grounding materials.

  18. Contact allergy to epoxy (meth)acrylates.

    PubMed

    Aalto-Korte, Kristiina; Jungewelter, Soile; Henriks-Eckerman, Maj-Len; Kuuliala, Outi; Jolanki, Riitta

    2009-07-01

    Contact allergy to epoxy (meth)acrylates, 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy) phenyl]propane (bis-GMA), 2,2-bis[4-(2-hydroxy-3-acryloxypropoxy)phenyl]-propane (bis-GA), 2,2-bis[4-(methacryl-oxyethoxy)phenyl] propane (bis-EMA), 2,2-bis[4-(methacryloxy)phenyl]-propane (bis-MA), and glycidyl methacrylate (GMA) is often manifested together with contact allergy to diglycidyl ether of bisphenol A (DGEBA) epoxy resin. To analyse patterns of concomitant allergic reactions to the five epoxy (meth)acrylates in relation to exposure. We reviewed the 1994-2008 patch test files at the Finnish Institute of Occupational Health (FIOH) for reactions to the five epoxy (meth)acrylates, and examined the patients' medical records for exposure. Twenty-four patients had an allergic reaction to at least one of the studied epoxy (meth)acrylates, but specific exposure was found only in five patients: two bis-GMA allergies from dental products, two bis-GA allergies from UV-curable printing inks, and one bis-GA allergy from an anaerobic glue. Only 25% of the patients were negative to DGEBA epoxy resin. The great majority of allergic patch test reactions to bis-GMA, bis-GA, GMA and bis-EMA were not associated with specific exposure, and cross-allergy to DGEBA epoxy resin remained a probable explanation. However, independent reactions to bis-GA indicated specific exposure. Anaerobic sealants may induce sensitization not only to aliphatic (meth)acrylates but also to aromatic bis-GA.

  19. Progress toward Making Epoxy/Carbon-Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Tiano, Thomas; Roylance, Margaret; Gassner, John; Kyle, William

    2008-01-01

    A modicum of progress has been made in an effort to exploit single-walled carbon nanotubes as fibers in epoxy-matrix/fiber composite materials. Two main obstacles to such use of carbon nanotubes are the following: (1) bare nanotubes are not soluble in epoxy resins and so they tend to agglomerate instead of becoming dispersed as desired; and (2) because of lack of affinity between nanotubes and epoxy matrices, there is insufficient transfer of mechanical loads between the nanotubes and the matrices. Part of the effort reported here was oriented toward (1) functionalization of single-walled carbon nanotubes with methyl methacrylate (MMA) to increase their dispersability in epoxy resins and increase transfer of mechanical loads and (2) ultrasonic dispersion of the functionalized nanotubes in tetrahydrofuran, which was used as an auxiliary solvent to aid in dispersing the functionalized nanotubes into a epoxy resin. In another part of this effort, poly(styrene sulfonic acid) was used as the dispersant and water as the auxiliary solvent. In one experiment, the strength of composite of epoxy with MMA-functionalized-nanotubes was found to be 29 percent greater than that of a similar composite of epoxy with the same proportion of untreated nanotubes.

  20. Fiber-Reinforced Reactive Nano-Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Zhong, Wei-Hong

    2011-01-01

    An ultra-high-molecular-weight polyethylene/ matrix interface based on the fabrication of a reactive nano-epoxy matrix with lower surface energy has been improved. Enhanced mechanical properties versus pure epoxy on a three-point bend test include: strength (25 percent), modulus (20 percent), and toughness (30 percent). Increased thermal properties include higher Tg (glass transition temperature) and stable CTE (coefficient of thermal expansion). Improved processability for manufacturing composites includes faster wetting rates on macro-fiber surfaces, lower viscosity, better resin infusion rates, and improved rheological properties. Improved interfacial adhesion properties with Spectra fibers by pullout tests include initial debonding force of 35 percent, a maximum pullout force of 25 percent, and energy to debond at 65 percent. Improved mechanical properties of Spectra fiber composites (tensile) aging resistance properties include hygrothermal effects. With this innovation, high-performance composites have been created, including carbon fibers/nano-epoxy, glass fibers/nano-epoxy, aramid fibers/ nano-epoxy, and ultra-high-molecularweight polyethylene fiber (UHMWPE).

  1. Release of Self-Healing Agents in a Material: What Happens Next?

    PubMed

    Lee, Min Wook; Yoon, Sam S; Yarin, Alexander L

    2017-05-24

    A microfluidic chip-like setup consisting of a vascular system of microchannels alternatingly filled with either a resin monomer or a curing agent is used to study the intrinsic physical healing mechanism in self-healing materials. It is observed that, as a prenotched crack propagates across the chip, the resin and curing agent are released from the damaged channels. Subsequently, both the resin and the curing agent wet the surrounding polydimethylsiloxane (PDMS) matrix and spread over the crack banks until the two blobs come in contact, mix, and polymerize through an organometallic cross-linking reaction. Moreover, the polymerized domains form a system of pillars, which span the crack banks on the opposite side. This "stitching" phenomenon prevents further propagation of the crack.

  2. 40 CFR 721.320 - Acrylamide-substituted epoxy.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylamide-substituted epoxy. 721.320... Substances § 721.320 Acrylamide-substituted epoxy. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acrylamide-substituted epoxy (PMN P-92-660...

  3. 40 CFR 721.320 - Acrylamide-substituted epoxy.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acrylamide-substituted epoxy. 721.320... Substances § 721.320 Acrylamide-substituted epoxy. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acrylamide-substituted epoxy (PMN P-92-660...

  4. 40 CFR 721.320 - Acrylamide-substituted epoxy.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylamide-substituted epoxy. 721.320... Substances § 721.320 Acrylamide-substituted epoxy. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acrylamide-substituted epoxy (PMN P-92-660...

  5. 40 CFR 721.320 - Acrylamide-substituted epoxy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acrylamide-substituted epoxy. 721.320... Substances § 721.320 Acrylamide-substituted epoxy. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acrylamide-substituted epoxy (PMN P-92-660...

  6. 40 CFR 721.320 - Acrylamide-substituted epoxy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylamide-substituted epoxy. 721.320... Substances § 721.320 Acrylamide-substituted epoxy. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acrylamide-substituted epoxy (PMN P-92-660...

  7. Design and Analysis of Drive Shaft using Kevlar/Epoxy and Glass/Epoxy as a Composite Material

    NASA Astrophysics Data System (ADS)

    Karthikeyan, P.; Gobinath, R.; Kumar, L. Ajith; Jenish, D. Xavier

    2017-05-01

    In automobile industry drive shaft is one of the most important components to transmit power form the engine to rear wheel through the differential gear. Generally steel drive shaft is used in automobile industry, nowadays they are more interested to replace steel drive shaft with that of composite drive shaft. The overall objective of this paper is to analyze the composite drive shaft using to find out the best replacement for conventional steel drive shaft. The uses of advanced composite materials such as Kevlar, Graphite, Carbon and Glass with proper resins ware resulted in remarkable achievements in automobile industry because of its greater specific strength and specific modulus, improved fatigue and corrosion resistances and reduction in energy requirements due to reduction in weight as compared to steel shaft. This paper is to presents, the modeling and analysis of drive shaft using Kevlar/Epoxy and Glass/Epoxy as a composite material and to find best replacement for conventional steel drive shafts with an Kevlar/epoxy or Glass/Epoxy resin composite drive shaft. Modeling is done using CATIA software and Analysis is carried out by using ANSYS 10.0 software for easy understanding. The composite drive shaft reduces the weight by 81.67 % for Kevlar/Epoxy and 72.66% for Glass/Epoxy when compared with conventional steel drive shaft.

  8. Fracture behavior of nano-scale rubber-modified epoxies

    NASA Astrophysics Data System (ADS)

    Bacigalupo, Lauren N.

    The primary focus of the first portion of this study is to compare physical and mechanical properties of a model epoxy that has been toughened with one of three different types of rubber-based modifier: a traditional telechelic oligomer (phase separates into micro-size particles), a core-shell latex particle (preformed nano-scale particles) and a triblock copolymer (self-assembles into nano-scale particles). The effect of modifier content on the physical properties of the matrix was determined using several thermal analysis methods, which provided insight into any inherent alterations of the epoxy matrix. Although the primary objective is to study the role of particle size on the fracture toughness, stiffness and strength were also determined since these properties are often reduced in rubber-toughened epoxies. It was found that since the CSR- and SBM-modified epoxies are composed of less rubber, thermal and mechanical properties of the epoxy were better maintained. In order to better understand the fracture behavior and mechanisms of the three types of rubber particles utilized in this study, extensive microscopy analysis was conducted. Scanning transmission electron microscopy (STEM) was used to quantify the volume fraction of particles, transmission optical microscopy (TOM) was used to determine plastic damage zone size, and scanning electron microscopy (SEM) was used to assess void growth in the plastic zone after fracture. By quantifying these characteristics, it was then possible to model the plastic damage zone size as well as the fracture toughness to elucidate the behavior of the rubber-modified epoxies. It was found that localized shear yielding and matrix void growth are the active toughening mechanisms in all rubber-modified epoxies in this study, however, matrix void growth was more prevalent. The second portion of this study investigated the use of three acrylate-based triblocks and four acrylate-based diblocks to modify a model epoxy system. By

  9. Influence of curing time, overlay material and thickness on three light-curing composites used for luting indirect composite restorations.

    PubMed

    D'Arcangelo, Camillo; De Angelis, Francesco; Vadini, Mirco; Carluccio, Fabio; Vitalone, Laura Merla; D'Amario, Maurizio

    2012-08-01

    .13). In the SAR group, acceptable hardness values were only achieved with 2-mm-thick overlays after 120 or 80 s curing time (VH 39.81 and 29.78, respectively). In the EST-X group, acceptable hardness values were only achieved with 3-mm or thinner overlays, after 120 or 80 s curing time (VH 36.20 and 36.03, respectively). Curing time, restoration thickness, and overlay material significantly influenced the microhardness of the tested resin composites employed as luting agents. The clinician should carefully keep these factors under control.

  10. EPOXI Mission Press Conference

    NASA Image and Video Library

    2010-11-18

    Pete Schultz, EPOXI scientist from Brown University, makes a point during a press conference, Thursday, Nov. 18, 2010, at NASA Headquarters in Washington. The press conference was held to discuss the Nov. 4 successful flyby of Comet Hartley 2 by NASA's EPOXI Mission Spacecraft. Images from the flyby provided scientists the most extensive observations of a comet in history. Photo Credit: (NASA/Paul E. Alers)

  11. 40 CFR 721.10113 - Thioether epoxy (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Thioether epoxy (generic). 721.10113... Substances § 721.10113 Thioether epoxy (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as thioether epoxy (PMN P-04-547) is subject to...

  12. 40 CFR 721.10113 - Thioether epoxy (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Thioether epoxy (generic). 721.10113... Substances § 721.10113 Thioether epoxy (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as thioether epoxy (PMN P-04-547) is subject to...

  13. 40 CFR 721.10113 - Thioether epoxy (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Thioether epoxy (generic). 721.10113... Substances § 721.10113 Thioether epoxy (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as thioether epoxy (PMN P-04-547) is subject to...

  14. 40 CFR 721.10113 - Thioether epoxy (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Thioether epoxy (generic). 721.10113... Substances § 721.10113 Thioether epoxy (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as thioether epoxy (PMN P-04-547) is subject to...

  15. 40 CFR 721.10113 - Thioether epoxy (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Thioether epoxy (generic). 721.10113... Substances § 721.10113 Thioether epoxy (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as thioether epoxy (PMN P-04-547) is subject to...

  16. Cure Cycle Optimization of Rapidly Cured Out-Of-Autoclave Composites.

    PubMed

    Dong, Anqi; Zhao, Yan; Zhao, Xinqing; Yu, Qiyong

    2018-03-13

    Out-of-autoclave prepreg typically needs a long cure cycle to guarantee good properties as the result of low processing pressure applied. It is essential to reduce the manufacturing time, achieve real cost reduction, and take full advantage of out-of-autoclave process. The focus of this paper is to reduce the cure cycle time and production cost while maintaining high laminate quality. A rapidly cured out-of-autoclave resin and relative prepreg were independently developed. To determine a suitable rapid cure procedure for the developed prepreg, the effect of heating rate, initial cure temperature, dwelling time, and post-cure time on the final laminate quality were evaluated and the factors were then optimized. As a result, a rapid cure procedure was determined. The results showed that the resin infiltration could be completed at the end of the initial cure stage and no obvious void could be seen in the laminate at this time. The laminate could achieve good internal quality using the optimized cure procedure. The mechanical test results showed that the laminates had a fiber volume fraction of 59-60% with a final glass transition temperature of 205 °C and excellent mechanical strength especially the flexural properties.

  17. Cure Cycle Optimization of Rapidly Cured Out-Of-Autoclave Composites

    PubMed Central

    Dong, Anqi; Zhao, Yan; Zhao, Xinqing; Yu, Qiyong

    2018-01-01

    Out-of-autoclave prepreg typically needs a long cure cycle to guarantee good properties as the result of low processing pressure applied. It is essential to reduce the manufacturing time, achieve real cost reduction, and take full advantage of out-of-autoclave process. The focus of this paper is to reduce the cure cycle time and production cost while maintaining high laminate quality. A rapidly cured out-of-autoclave resin and relative prepreg were independently developed. To determine a suitable rapid cure procedure for the developed prepreg, the effect of heating rate, initial cure temperature, dwelling time, and post-cure time on the final laminate quality were evaluated and the factors were then optimized. As a result, a rapid cure procedure was determined. The results showed that the resin infiltration could be completed at the end of the initial cure stage and no obvious void could be seen in the laminate at this time. The laminate could achieve good internal quality using the optimized cure procedure. The mechanical test results showed that the laminates had a fiber volume fraction of 59–60% with a final glass transition temperature of 205 °C and excellent mechanical strength especially the flexural properties. PMID:29534048

  18. 40 CFR 721.3140 - Vinyl epoxy ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Vinyl epoxy ester. 721.3140 Section... Substances § 721.3140 Vinyl epoxy ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance vinyl epoxy ester (PMN P-85-527) is subject to reporting under this...

  19. 40 CFR 721.3140 - Vinyl epoxy ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Vinyl epoxy ester. 721.3140 Section... Substances § 721.3140 Vinyl epoxy ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance vinyl epoxy ester (PMN P-85-527) is subject to reporting under this...

  20. 40 CFR 721.3140 - Vinyl epoxy ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Vinyl epoxy ester. 721.3140 Section... Substances § 721.3140 Vinyl epoxy ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance vinyl epoxy ester (PMN P-85-527) is subject to reporting under this...

  1. 40 CFR 721.3140 - Vinyl epoxy ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Vinyl epoxy ester. 721.3140 Section... Substances § 721.3140 Vinyl epoxy ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance vinyl epoxy ester (PMN P-85-527) is subject to reporting under this...

  2. 40 CFR 721.3140 - Vinyl epoxy ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Vinyl epoxy ester. 721.3140 Section... Substances § 721.3140 Vinyl epoxy ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance vinyl epoxy ester (PMN P-85-527) is subject to reporting under this...

  3. Allergic contact dermatitis due to urethane acrylate in ultraviolet cured inks.

    PubMed Central

    Nethercott, J R; Jakubovic, H R; Pilger, C; Smith, J W

    1983-01-01

    Seven workers exposed to ultraviolet printing inks developed contact dermatitis. Six cases were allergic and one irritant. A urethane acrylate resin accounted for five cases of sensitisation, one of which was also sensitive to pentaerythritol triacrylate and another also to an epoxy acrylate resin. One instance of allergy to trimethylpropane triacrylate accounted for the sixth case of contact dermatitis in this group of workers. An irritant reaction is presumed to account for the dermatitis in the individual not proved to have cutaneous allergy by patch tests. In this instance trimethylpropane triacrylate was thought to be the most likely irritating agent. Laboratory investigation proved urethane acrylate to be an allergen. The results of investigations of the sensitisation potentials of urethane acrylate, methylmethacrylate, epoxy acrylate resins, toluene-2,4-diisocyanate, and other multifunctional acrylic monomers in the albino guinea pig are presented. The interpretation of such predictive tests is discussed. Images PMID:6223656

  4. Physical aging in graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Kong, E. S. W.

    1983-01-01

    Sub-Tg annealing has been found to affect the properties of graphite/epoxy composites. The network epoxy studied was based on the chemistry of tetraglycidyl 4,4'-diamino-diphenyl methane (TGDDM) crosslinked by 4,4'-diamino-diphenyl sulfone (DDS). Differential scanning calorimetry, thermal mechanical analysis, and solid-state cross-polarized magic-angle-spinning nuclear magnetic resonance spectroscopy have been utilized in order to characterize this process of recovery towards thermodynamic equilibrium. The volume and enthalpy recovery as well as the 'thermoreversibility' aspects of the physical aging are discussed. This nonequilibrium and time-dependent behavior of network epoxies are considered in view of the increasingly wide applications of TGDDM-DDS epoxies as matrix materials of structural composites in the aerospace industry.

  5. Dynamic compressive strength of epoxy composites

    NASA Astrophysics Data System (ADS)

    Plastinin, A. V.; Sil'vestrov, V. V.

    1996-11-01

    The strength of laminated and unidirectionally reinforced composite materials was investigated in conditions of dynamic uniaxial compression with a strain rate of 50-1000 sec-1 using the split Hopkinson pressure bar method. It was shown that in conditions of dynamic compression, glass/epoxy, aramid/epoxy, and carbon/epoxy composites exhibit elastic-brittle behavior with anisotropy of the strength and elastic properties. The effect of the strain rate on the strength characteristics of fiberglass-reinforced plastics was demonstrated.

  6. EPOXI Mission Press Conference

    NASA Image and Video Library

    2010-11-18

    Tim Larson, EPOXI Project Manager from the Jet Propulsion Laboratory in Pasadena, Calif., speaks during a press conference, Thursday, Nov. 18, 2010, at NASA Headquarters in Washington. The press conference was held to discuss the Nov. 4 successful flyby of Comet Hartley 2 by NASA's EPOXI Mission Spacecraft. Images from the flyby provided scientists the most extensive observations of a comet in history. Photo Credit: (NASA/Paul E. Alers)

  7. Pre-cure freezing affects proteolysis in dry-cured hams.

    PubMed

    Bañón, S; Cayuela, J M; Granados, M V; Garrido, M D

    1999-01-01

    Several parameters (sodium chloride, moisture, intramuscular fat, total nitrogen, non-protein nitrogen, white precipitates, free tyrosine, L* a* b* values and acceptability) related with proteolysis during the curing were compared in dry-cured hams manufactured from refrigerated and frozen/thawed raw material. Pre-cure freezing increased the proteolysis levels significantly (p<0.05) in the zones of the ham where water losses and absorption of salt is slowest. Frozen hams present a high incidence of white precipitates, formed mainly by tyrosine crystals. The colour and acceptability scores are similar in frozen and refrigerated hams. The previous freezing and thawing process accentuates the water losses, salt absorption and proteolysis of the cured meat, although it does not significantly affect the sensory quality of the dry-cured ham.

  8. Evaluation of epoxy systems for use in SBASI

    NASA Technical Reports Server (NTRS)

    Coultas, T. J.

    1971-01-01

    The purpose of the test program was to evaluate the performance of different epoxy systems as replacements for existing epoxy systems in the SBASI. The three areas of investigation were the connector shell potting, the epoxy tape under the charge cup, and the epoxy impregnated fiberglass over the output charge. Factors considered, in addition to performance, were availability, shelf life, pot life, and effect on producibility and cost.

  9. Thermal Characterization and Flammability of Structural Epoxy Adhesive and Carbon/Epoxy Composite with Environmental and Chemical Degradation (Postprint)

    DTIC Science & Technology

    2012-01-01

    this study). TGA scans show the thermal degradation of carbon/ epoxy composite by fuel additive at room temperature. Through Microscale Combustion...concerns regarding the durability of structural epoxy adhesive contaminated by hydraulic fluid or fuel additive , under simplified test conditions (no...higher than room tem- perature) or fuel additive (at all temperatures of this study). TGA scans show the thermal degradation of carbon/ epoxy composite

  10. Testing Tensile and Shear Epoxy Strength at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Alberts, S. J.; Doehne, C. J.; Johnson, W. L.

    2017-01-01

    This paper covers cryogenic, tensile testing and research completed on a number of epoxies used in cryogenic applications. Epoxies are used in many different applications; however, this research focused on the use of epoxy used to bond MLI standoffs to cryogenic storage tanks and the loads imparted to the tank through the MLI. To conduct testing, samples were made from bare stainless steel, aluminum and primed aluminum. Testing involved slowly cooling test samples with liquid nitrogen then applying gradually increasing tensile loads to the epoxy. The testing evaluated the strength and durability of epoxies at cryogenic temperatures and serves as a base for future testing. The results of the tests showed that some epoxies withstood the harsh conditions while others failed. The two epoxies yielding the best results were Masterbond EP29LPSP and Scotch Weld 2216. For all metal surfaces tested, both epoxies had zero failures for up to 11.81 kg of mass..

  11. Testing Tensile and Shear Epoxy Strength at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Alberts, S. J.; Doehne, C. J.; Johnson, W. L.

    2017-01-01

    This paper covers cryogenic, tensile testing and research completed on a number of epoxies used in cryogenic applications. Epoxies are used in many different applications; however, this research focused on the use of epoxy used to bond MLI standoffs to cryogenic storage tanks and the loads imparted to the tank through the MLI. To conduct testing, samples were made from bare stainless steel, aluminum and primed aluminum. Testing involved slowly cooling test samples with liquid nitrogen then applying gradually increasing tensile loads to the epoxy. The testing evaluated the strength and durability of epoxies at cryogenic temperatures and serves as a base for future testing. The results of the tests showed that some epoxies withstood the harsh conditions while others failed. The two epoxies yielding the best results were Masterbond EP29LPSP and Scotch Weld 2216. For all metal surfaces tested, both epoxies had zero failures for up to 11.81 kg of mass.

  12. Enhanced Stress Relaxation and Reduced Cure Stress in Thermosets with Ferrocene-Based Crosslinkers

    NASA Astrophysics Data System (ADS)

    Jones, Brad; Wheeler, David; Stavig, Mark; Black, Hayden; Sawyer, Patricia; Giron, Nicholas; Celina, Mathias; Alam, Todd

    Organometallic sandwich compounds are characterized by facile isomerization among a variety of unique states. For example, ferrocene exhibits an extraordinarily low barrier to rotation of its cyclopentadienyl (Cp) ligands about the metal-Cp axis. We propose that this phenomenon can be exploited to enhance stress relaxation of polymers containing organometallic sandwich backbone moieties. Here, we describe the synthesis and characterization of several thermosets that employ ferrocene derivatives as crosslinkers. In particular, we compare a ferrocene diamine to several conventional diamines in the crosslinking of epoxy resin. Stress relaxation and dynamic mechanical analyses reveal that the ferrocene-based thermosets are distinguished from conventional thermosets by their capacity for physical relaxation. More importantly, these materials exhibit markedly different residual stress evolution during cure. For example, the cure stress in ferrocene-based thermosets drops precipitously with decreasing crosslink density. Our results highlight the unique role organometallic chemistry can play for stress management of thermosets and, more broadly, in manipulating their structure-property relationships. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the US Department of Energy National Nuclear Security Administration under contract DE-AC04-94AL85000.

  13. Synthesis of Radiation Curable Palm Oil-Based Epoxy Acrylate: NMR and FTIR Spectroscopic Investigations.

    PubMed

    Salih, Ashraf M; Ahmad, Mansor Bin; Ibrahim, Nor Azowa; Dahlan, Khairul Zaman Hj Mohd; Tajau, Rida; Mahmood, Mohd Hilmi; Yunus, Wan Md Zin Wan

    2015-08-04

    Over the past few decades, there has been an increasing demand for bio-based polymers and resins in industrial applications, due to their potential lower cost and environmental impact compared with petroleum-based counterparts. The present research concerns the synthesis of epoxidized palm oil acrylate (EPOLA) from an epoxidized palm oil product (EPOP) as environmentally friendly material. EPOP was acrylated by acrylic acid via a ring opening reaction. The kinetics of the acrylation reaction were monitored throughout the reaction course and the acid value of the reaction mixture reached 10 mg KOH/g after 16 h, indicating the consumption of the acrylic acid. The obtained epoxy acrylate was investigated intensively by means of FTIR and NMR spectroscopy, and the results revealed that the ring opening reaction was completed successfully with an acrylation yield about 82%. The UV free radical polymerization of EPOLA was carried out using two types of photoinitiators. The radiation curing behavior was determined by following the conversion of the acrylate groups. The cross-linking density and the hardness of the cured EPOLA films were measured to evaluate the effect of the photoinitiator on the solid film characteristics, besides, the thermal and mechanical properties were also evaluated.

  14. Synthesis and characterizations of melamine-based epoxy resins.

    PubMed

    Ricciotti, Laura; Roviello, Giuseppina; Tarallo, Oreste; Borbone, Fabio; Ferone, Claudio; Colangelo, Francesco; Catauro, Michelina; Cioffi, Raffaele

    2013-09-05

    A new, easy and cost-effective synthetic procedure for the preparation of thermosetting melamine-based epoxy resins is reported. By this innovative synthetic method, different kinds of resins can be obtained just by mixing the reagents in the presence of a catalyst without solvent and with mild curing conditions. Two types of resins were synthesized using melamine and a glycidyl derivative (resins I) or by adding a silane derivative (resin II). The resins were characterized by means of chemical-physical and thermal techniques. Experimental results show that all the prepared resins have a good thermal stability, but differ for their mechanical properties: resin I exhibits remarkable stiffness with a storage modulus value up to 830 MPa at room temperature, while lower storage moduli were found for resin II, indicating that the presence of silane groups could enhance the flexibility of these materials. The resins show a pot life higher than 30 min, which makes these resins good candidates for practical applications. The functionalization with silane terminations can be exploited in the formulation of hybrid organic-inorganic composite materials.

  15. Synthesis and Characterizations of Melamine-Based Epoxy Resins

    PubMed Central

    Ricciotti, Laura; Roviello, Giuseppina; Tarallo, Oreste; Borbone, Fabio; Ferone, Claudio; Colangelo, Francesco; Catauro, Michelina; Cioffi, Raffaele

    2013-01-01

    A new, easy and cost-effective synthetic procedure for the preparation of thermosetting melamine-based epoxy resins is reported. By this innovative synthetic method, different kinds of resins can be obtained just by mixing the reagents in the presence of a catalyst without solvent and with mild curing conditions. Two types of resins were synthesized using melamine and a glycidyl derivative (resins I) or by adding a silane derivative (resin II). The resins were characterized by means of chemical-physical and thermal techniques. Experimental results show that all the prepared resins have a good thermal stability, but differ for their mechanical properties: resin I exhibits remarkable stiffness with a storage modulus value up to 830 MPa at room temperature, while lower storage moduli were found for resin II, indicating that the presence of silane groups could enhance the flexibility of these materials. The resins show a pot life higher than 30 min, which makes these resins good candidates for practical applications. The functionalization with silane terminations can be exploited in the formulation of hybrid organic-inorganic composite materials. PMID:24013372

  16. Adhesion to root canal dentine using one and two-step adhesives with dual-cure composite core materials.

    PubMed

    Foxton, R M; Nakajima, M; Tagami, J; Miura, H

    2005-02-01

    The regional tensile bond strengths of two dual-cure composite resin core materials to root canal dentine using either a one or two-step self-etching adhesive were evaluated. Extracted premolar teeth were decoronated and their root canals prepared to a depth of 8 mm and a width of 1.4 mm. In one group, a one-step self-etching adhesive (Unifil Self-etching Bond) was applied to the walls of the post-space and light-cured for 10 s. After which, the post-spaces were filled with the a dual-cure composite resin (Unifil Core) and then half the specimens were light-cured for 60 s and the other half placed in darkness for 30 min. In the second group, a self-etching primer (ED Primer II) was applied for 30 s, followed by an adhesive resin (Clearfil Photo Bond), which was light-cured for 10 s. The post-spaces were filled with a dual-cure composite resin (DC Core) and then half the specimens were light-cured for 60 s and the other half placed in darkness for 30 min. Chemical-cure composite resin was placed on the outer surfaces of all the roots, which were then stored in water for 24 h. They were serially sliced perpendicular to the bonded interface into 8, 0.6 mm-thick slabs, and then transversely sectioned into beams, approximately 8 x 0.6 x 0.6 mm, for the microtensile bond strength test (muTBS). Data were divided into two (coronal/apical half of post-space) and analysed using three-way anova and Scheffe's test (P < 0.05). Failure modes were observed under an scanning electron microscope (SEM) and statistically analysed. Specimens for observation of the bonded interfaces were prepared in a similar manner as for bond strength testing, cut in half and embedded in epoxy resin. They were then polished to a high gloss, gold sputter coated, and after argon ion etching, observed under an SEM. For both dual-cure composite resins and curing strategies, there were no significant differences in muTBS between the coronal and apical regions (P > 0.05). In addition, both dual-cure

  17. Survival of selected foodborne pathogens on dry cured pork loins.

    PubMed

    Morales-Partera, Ángela M; Cardoso-Toset, Fernando; Jurado-Martos, Francisco; Astorga, Rafael J; Huerta, Belén; Luque, Inmaculada; Tarradas, Carmen; Gómez-Laguna, Jaime

    2017-10-03

    The safety of ready-to-eat products such as cured pork loins must be guaranteed by the food industry. In the present study, the efficacy of the dry curing process of pork loins obtained from free-range pigs in the reduction of three of the most important foodborne pathogens is analysed. A total of 28 pork loin segments, with an average weight of 0.57±0.12kg, were divided into four groups with three being inoculated by immersion with 7logCFU/ml of either Salmonella Typhimurium, Campylobacter coli or Listeria innocua and the last one inoculated by immersion with sterile medium (control group). The loin segments were treated with a seasoning mixture of curing agents and spices, packed in a synthetic sausage casing and cured for 64days. Microbiological analysis, pH and water activity (a w ) were assessed at four stages. The values of pH and a w decreased with curing time as expected. S. Typhimurium and C. coli dropped significantly (3.28 and 2.14 log units, respectively), but limited reduction of L. innocua (0.84 log unit) was observed along the curing process. In our study, three factors were considered critical: the initial concentration of the bacteria, the progressive reduction of pH and the reduction of a w values. Our results encourage performing periodic analysis at different stages of the manufacturing of dry cured pork loins to ensure the absence of the three evaluated foodborne pathogens. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The Effect of a Rapid Heating Rate, Mechanical Vibration and Surfactant Chemistry on the Structure–Property Relationships of Epoxy/Clay Nanocomposites

    PubMed Central

    Nuhiji, Betime; Attard, Darren; Thorogood, Gordon; Hanley, Tracey; Magniez, Kevin; Bungur, Jenny; Fox, Bronwyn

    2013-01-01

    The role of processing conditions and intercalant chemistry in montmorillonite clays on the dispersion, morphology and mechanical properties of two epoxy/clay nanocomposite systems was investigated in this paper. This work highlights the importance of employing complementary techniques (X-ray diffraction, small angle X-ray scattering, optical microscopy and transmission electron microscopy) to correlate nanomorphology to macroscale properties. Materials were prepared using an out of autoclave manufacturing process equipped to generate rapid heating rates and mechanical vibration. The results suggested that the quaternary ammonium surfactant on C30B clay reacted with the epoxy during cure, while the primary ammonium surfactant (I.30E) catalysed the polymerisation reaction. These effects led to important differences in nanocomposite clay morphologies. The use of mechanical vibration at 4 Hz prior to matrix gelation was found to facilitate clay dispersion and to reduce the area fraction of I.30E clay agglomerates in addition to increasing flexural strength by over 40%. PMID:28811457

  19. EPOXI Mission Press Conference

    NASA Image and Video Library

    2010-11-18

    Michael A'Hearn, EPOXI Principal Investigator, University of Maryland, holds a plastic bottle containing ice to illustrate a point during a press conference, Thursday, Nov. 18, 2010, at NASA Headquarters in Washington. The press conference was held to discuss the Nov. 4 successful flyby of Comet Hartley 2 by NASA's EPOXI Mission Spacecraft. Images from the flyby provided scientists the most extensive observations of a comet in history. Photo Credit: (NASA/Paul E. Alers)

  20. Comparative static curing versus dynamic curing on tablet coating structures.

    PubMed

    Gendre, Claire; Genty, Muriel; Fayard, Barbara; Tfayli, Ali; Boiret, Mathieu; Lecoq, Olivier; Baron, Michel; Chaminade, Pierre; Péan, Jean Manuel

    2013-09-10

    Curing is generally required to stabilize film coating from aqueous polymer dispersion. This post-coating drying step is traditionally carried out in static conditions, requiring the transfer of solid dosage forms to an oven. But, curing operation performed directly inside the coating equipment stands for an attractive industrial application. Recently, the use of various advanced physico-chemical characterization techniques i.e., X-ray micro-computed tomography, vibrational spectroscopies (near infrared and Raman) and X-ray microdiffraction, allowed new insights into the film-coating structures of dynamically cured tablets. Dynamic curing end-point was efficiently determined after 4h. The aim of the present work was to elucidate the influence of curing conditions on film-coating structures. Results demonstrated that 24h of static curing and 4h of dynamic curing, both performed at 60°C and ambient relative humidity, led to similar coating layers in terms of drug release properties, porosity, water content, structural rearrangement of polymer chains and crystalline distribution. Furthermore, X-ray microdiffraction measurements pointed out different crystalline coating compositions depending on sample storage time. An aging mechanism might have occur during storage, resulting in the crystallization and the upward migration of cetyl alcohol, coupled to the downward migration of crystalline sodium lauryl sulfate within the coating layer. Interestingly, this new study clearly provided further knowledge into film-coating structures after a curing step and confirmed that curing operation could be performed in dynamic conditions. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Light curing through glass ceramics with a second- and a third-generation LED curing unit: effect of curing mode on the degree of conversion of dual-curing resin cements.

    PubMed

    Flury, Simon; Lussi, Adrian; Hickel, Reinhard; Ilie, Nicoleta

    2013-12-01

    The aim of this study was to measure the degree of conversion (DC) of five dual-curing resin cements after different curing modes with a second- and a third-generation light-emitting diode (LED) curing unit. Additionally, irradiance of both light curing units was measured at increasing distances and through discs of two glass ceramics for computer-aided design/manufacturing (CAD/CAM). Irradiance and spectra of the Elipar FreeLight 2 (Standard Mode (SM)) and of the VALO light curing unit (High Power Mode (HPM) and Xtra Power Mode (XPM)) were measured with a MARC radiometer. Irradiance was measured at increasing distances (control) and through discs (1.5 to 6 mm thickness) of IPS Empress CAD and IPS e.max CAD. DC of Panavia F2.0, RelyX Unicem 2 Automix, SpeedCEM, BisCem, and BeautiCem SA was measured with an attenuated total reflectance-Fourier transform infrared spectrometer when self-cured (negative control) or light cured in SM for 40 s, HPM for 32 s, or XPM for 18 s. Light curing was performed directly (positive control) or through discs of either 1.5- or 3-mm thickness of IPS Empress CAD or IPS e.max CAD. DC was analysed with Kruskal-Wallis tests followed by pairwise Wilcoxon rank sum tests (α = 0.05). Maximum irradiances were 1,545 mW/cm(2) (SM), 2,179 mW/cm(2) (HPM), and 4,156 mW/cm(2) (XPM), and all irradiances decreased by >80 % through discs of 1.5 mm, ≥95 % through 3 mm, and up to >99 % through 6 mm. Generally, self-curing resulted in the lowest DC. For some cements, direct light curing did not result in higher DC compared to when light cured through ceramic discs. For other cements, light curing through ceramic discs of 3 mm generally reduced DC. Light curing was favourable for dual-curing cements. Some cements were more susceptible to variations in curing mode than others. When light curing a given cement, the higher irradiances of the third-generation LED curing unit resulted in similar DC compared to the second-generation one, though at shorter

  2. The effect of compaction parameters and dielectric composition on properties of soft magnetic composites

    NASA Astrophysics Data System (ADS)

    Xiao, Ling; Sun, Y. H.; Yu, Lie

    2011-07-01

    This paper investigated the effect of compaction parameters and dielectric composition on mechanical, magnetic and electrical properties of iron-organosilicon epoxy resin soft magnetic composites. In this work, iron powders with high purity were covered by an organic material (organosilicon epoxy resin) and then by coupling agent (KH-550). The coated powders were then cold compacted at 600, 800 and 1000 MPa and cured under vacuum respectively. The results show that the saturation magnetic flux density and electrical resistivity are dependent on compaction pressure and resin content. Increase in the organic phase content leads to decrease of the saturation magnetic flux density, while increase of the electrical resistivity. Furthermore, the samples with 0.9 wt% resins + 0.1 wt% coupling agent at compaction pressure of 800 MPa shows better properties than the others.

  3. High Strain Rate Mechanical Properties of Epoxy and Epoxy-Based Particulate Composites (Preprint)

    DTIC Science & Technology

    2007-05-01

    WC) and titanium alloy (Ti- 6Al - 4V ) bar materials available. For all bar systems, the properties of the sample are determined by measuring the...metallographically-polished, carbon-coated specimens provided adequate contrast between the aluminum particles, the epoxy matrix and any porosity present after...The difference between the two measures of particle size can be explained by the higher levels of porosity observed in the Epoxy-65H2 specimen, which

  4. Travelers with cutaneous leishmaniasis cured without systemic therapy.

    PubMed

    Morizot, G; Kendjo, E; Mouri, O; Thellier, M; Pérignon, A; Foulet, F; Cordoliani, F; Bourrat, E; Laffitte, E; Alcaraz, I; Bodak, N; Ravel, C; Vray, M; Grogl, M; Mazier, D; Caumes, E; Lachaud, L; Buffet, P A

    2013-08-01

    Cutaneous leishmaniasis (CL) is a disfiguring but not life-threatening disease. Because antileishmanial drugs are potentially toxic, the World Health Organization (WHO) recommends simple wound care or local therapy as first-line treatment, followed or replaced by systemic therapy if local therapy fails or cannot be performed. To determine the feasibility and impact of the recommended approach, we analyzed the results of a centralized referral treatment program in 135 patients with parasitologically proven CL. Infections involved 10 Leishmania species and were contracted in 29 different countries. Eighty-four of 135 patients (62%) were initially treated without systemic therapy. Of 109 patients with evaluable charts, 23 of 25 (92%) treated with simple wound care and 37 of 47 (79%) treated with local antileishmanial therapy were cured by days 42-60. In 37 patients with large or complex lesions, or preexisting morbidities, or who had not been cured with local therapy, the cure rate with systemic antileishmanial agents was 60%. Systemic adverse events were observed in 15 patients, all receiving systemic therapy. In this population of CL patients displaying variable degrees of complexity and severity, almost two-thirds of patients could be initially managed without systemic therapy. Of these, 60 were cured before day 60. The WHO-recommended stepwise approach favoring initial local therapy therefore resulted in at least 44% of all patients being cured without exposure to the risk of systemic adverse events. Efforts are needed to further simplify local therapy of CL and to improve the management of patients with complex lesions and/or preexisting comorbidities.

  5. 40 CFR 721.2755 - Cycloaliphatic epoxy resin (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Cycloaliphatic epoxy resin (generic... Substances § 721.2755 Cycloaliphatic epoxy resin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as cycloaliphatic epoxy resin (PMN...

  6. 40 CFR 721.2755 - Cycloaliphatic epoxy resin (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Cycloaliphatic epoxy resin (generic... Substances § 721.2755 Cycloaliphatic epoxy resin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as cycloaliphatic epoxy resin (PMN...

  7. 40 CFR 721.2755 - Cycloaliphatic epoxy resin (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Cycloaliphatic epoxy resin (generic... Substances § 721.2755 Cycloaliphatic epoxy resin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as cycloaliphatic epoxy resin (PMN...

  8. 40 CFR 721.2755 - Cycloaliphatic epoxy resin (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Cycloaliphatic epoxy resin (generic... Substances § 721.2755 Cycloaliphatic epoxy resin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as cycloaliphatic epoxy resin (PMN...

  9. 40 CFR 721.2755 - Cycloaliphatic epoxy resin (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Cycloaliphatic epoxy resin (generic... Substances § 721.2755 Cycloaliphatic epoxy resin (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as cycloaliphatic epoxy resin (PMN...

  10. Epoxy coated reinforcement study : final report.

    DOT National Transportation Integrated Search

    1999-06-01

    This report evaluates the use of Scotchlite 213 epoxy coated reinforcement in Oregon coastal environments. There is an extensive body of knowledge documenting epoxy coated reinforcement research in North America in the last 20 years. The research has...

  11. Prediction of Material Properties of Nanostructured Polymer Composites Using Atomistic Simulations

    NASA Technical Reports Server (NTRS)

    Hinkley, J.A.; Clancy, T.C.; Frankland, S.J.V.

    2009-01-01

    Atomistic models of epoxy polymers were built in order to assess the effect of structure at the nanometer scale on the resulting bulk properties such as elastic modulus and thermal conductivity. Atomistic models of both bulk polymer and carbon nanotube polymer composites were built. For the bulk models, the effect of moisture content and temperature on the resulting elastic constants was calculated. A relatively consistent decrease in modulus was seen with increasing temperature. The dependence of modulus on moisture content was less consistent. This behavior was seen for two different epoxy systems, one containing a difunctional epoxy molecule and the other a tetrafunctional epoxy molecule. Both epoxy structures were crosslinked with diamine curing agents. Multifunctional properties were calculated with the nanocomposite models. Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between the carbon nanotube and the surrounding epoxy matrix. These estimated values were used in a multiscale model in order to predict the thermal conductivity of a nanocomposite as a function of the nanometer scaled molecular structure.

  12. Enhancement of mechanical properties of epoxy/graphene nanocomposite

    NASA Astrophysics Data System (ADS)

    Berhanuddin, N. I. C.; Zaman, I.; Rozlan, S. A. M.; Karim, M. A. A.; Manshoor, B.; Khalid, A.; Chan, S. W.; Meng, Q.

    2017-10-01

    Graphene is a novel class of nanofillers possessing outstanding characteristics including most compatible with most polymers, high absolute strength, high aspect ratio and cost effectiveness. In this study, graphene was used to reinforce epoxy as a matrix, to enhance its mechanical properties. Two types of epoxy composite were developed which are epoxy/graphene nanocomposite and epoxy/modified graphene nanocomposite. The fabrication of graphene was going through thermal expansion and sonication process. Chemical modification was only done for modified graphene where 4,4’-Methylene diphenyl diisocyanate (MDI) is used. The mechanical properties of both nanocomposite, such as Young’s modulus and maximum stress were investigated. Three weight percentage were used for this study which are 0.5 wt%, 1.0 wt% and 1.5 wt%. At 0.5 wt%, modified and unmodified shows the highest value compared to neat epoxy, where the value were 8 GPa, 6 GPa and 0.675 GPa, respectively. For maximum stress, neat epoxy showed the best result compared to both nanocomposite due to the changes of material properties when adding the filler into the matrix. Therefore, both nanocomposite increase the mechanical properties of the epoxy, however modification surface of graphene gives better improvement.

  13. Chromium Ions Improve Moisure Resistance of Epoxy Resins

    NASA Technical Reports Server (NTRS)

    St. Clair, A. K.; St. Clair, T. L.; Stoakley, D. M.; Singh, J. J.; Sprinkle, D. R.

    1986-01-01

    Broad spectrum of thermosetting epoxy resins used on commercial and military aircraft, primarily as composite matrices and adhesives. In new technique, chromium-ion containing epoxy with improved resistance to moisture produced where chromium ions believed to prevent absorption of water molecules by coordinating themselves to hydroxyl groups on epoxy chain. Anticipated that improved epoxy formulation useful as composite matrix resin, adhesive, or casting resin for applications on commercial and advanced aircraft. Improvement made without sacrifice in mechanical properties of polymer.

  14. Fatigue of Self-Healing Nanofiber-based Composites: Static Test and Subcritical Crack Propagation.

    PubMed

    Lee, Min Wook; Sett, Soumyadip; Yoon, Sam S; Yarin, Alexander L

    2016-07-20

    Here, we studied the self-healing of composite materials filled with epoxy-containing nanofibers. An initial incision in the middle of a composite sample stretched in a static fatigue test can result in either crack propagation or healing. In this study, crack evolution was observed in real time. A binary epoxy, which acted as a self-healing agent, was encapsulated in two separate types of interwoven nano/microfibers formed by dual-solution blowing, with the core containing either epoxy or hardener and the shell being formed from poly(vinylidene fluoride)/ poly(ethylene oxide) mixture. The core-shell fibers were encased in a poly(dimethylsiloxane) matrix. When the fibers were damaged by a growing crack in this fiber-reinforced composite material because of static stretching in the fatigue test, they broke and released the healing agent into the crack area. The epoxy used in this study was cured and solidified for approximately an hour at room temperature, which then conglutinated and healed the damaged location. The observations were made for at least several hours and in some cases up to several days. It was revealed that the presence of the healing agent (the epoxy) in the fibers successfully prevented the propagation of cracks in stretched samples subjected to the fatigue test. A theoretical analysis of subcritical cracks was performed, and it revealed a jumplike growth of subcritical cracks, which was in qualitative agreement with the experimental results.

  15. Contact allergy to epoxy resin: risk occupations and consequences.

    PubMed

    Bangsgaard, Nannie; Thyssen, Jacob Pontoppidan; Menné, Torkil; Andersen, Klaus Ejner; Mortz, Charlotte G; Paulsen, Evy; Sommerlund, Mette; Veien, Niels Kren; Laurberg, Grete; Kaaber, Knud; Thormann, Jens; Andersen, Bo Lasthein; Danielsen, Anne; Avnstorp, Christian; Kristensen, Berit; Kristensen, Ove; Vissing, Susanne; Nielsen, Niels Henrik; Johansen, Jeanne Duus

    2012-08-01

    Epoxy resin monomers are strong skin sensitizers that are widely used in industrial sectors. In Denmark, the law stipulates that workers must undergo a course on safe handling of epoxy resins prior to occupational exposure, but the effectiveness of this initiative is largely unknown. To evaluate the prevalence of contact allergy to epoxy resin monomer (diglycidyl ether of bisphenol A; MW 340) among patients with suspected contact dermatitis and relate this to occupation and work-related consequences. The dataset comprised 20 808 consecutive dermatitis patients patch tested during 2005-2009. All patients with an epoxy resin-positive patch test were sent a questionnaire. A positive patch test reaction to epoxy resin was found in 275 patients (1.3%), with a higher proportion in men (1.9%) than in women (1.0%). The prevalence of sensitization to epoxy resin remained stable over the study period. Of the patients with an epoxy resin-positive patch test, 71% returned a questionnaire; 95 patients had worked with epoxy resin in the occupational setting, and, of these, one-third did not use protective gloves and only 50.5% (48) had participated in an educational programme. The 1% prevalence of epoxy resin contact allergy is equivalent to reports from other countries. The high occurrence of epoxy resin exposure at work, and the limited use of protective measures, indicate that reinforcement of the law is required. © 2012 John Wiley & Sons A/S.

  16. Epoxy bond and stop etch fabrication method

    DOEpatents

    Simmons, Jerry A.; Weckwerth, Mark V.; Baca, Wes E.

    2000-01-01

    A class of epoxy bond and stop etch (EBASE) microelectronic fabrication techniques is disclosed. The essence of such techniques is to grow circuit components on top of a stop etch layer grown on a first substrate. The first substrate and a host substrate are then bonded together so that the circuit components are attached to the host substrate by the bonding agent. The first substrate is then removed, e.g., by a chemical or physical etching process to which the stop etch layer is resistant. EBASE fabrication methods allow access to regions of a device structure which are usually blocked by the presence of a substrate, and are of particular utility in the fabrication of ultrafast electronic and optoelectronic devices and circuits.

  17. Short communication: pre- and co-curing effect of adhesives on shear bond strengths of composite resins to primary enamel and dentine: an in vitro study.

    PubMed

    Viswanathan, R; Shashibhushan, K K; Subba Reddy, V V

    2011-12-01

    To evaluate and compare shear bond strengths of composite resins to primary enamel and dentine when the adhesives are pre-cured (light cured before the application of the resin) or co-cured (adhesive and the resin light cured together). Buccal surfaces of 80 caries-free primary molars were wet ground to create bonding surfaces on enamel and dentine and specimens mounted on acrylic blocks. Two bonding agents (Prime and Bond NT® and Xeno III®) were applied to either enamel or dentine as per manufacturer's instructions. In 40 specimens, the bonding agent was light cured immediately after the application (pre-cured). The other 40 specimens were not light cured until the composite resin application (co-cured). Resin composite cylinders were made incrementally using acrylic moulds over the adhesives and light cured. Specimens were stored in deionised water for 24 hours at room temperature. Shear bond strength was measured using an Instron universal testing machine (in MPa) and was analysed with Student's unpaired t test. Light curing the adhesive separately produced significantly higher bond strengths to primary dentine than co-curing (p<0.001). At the same time light curing the adhesive separately did not produce significantly different bond strengths to primary enamel (p>0.05). Curing sequence had no significant effect on shear bond strength of adhesives on the primary enamel. Pre-curing adhesives before curing composite resins produced greater shear bond strength to primary dentine.

  18. Simulation and Validation of Injection-Compression Filling Stage of Liquid Moulding with Fast Curing Resins

    NASA Astrophysics Data System (ADS)

    Martin, Ffion A.; Warrior, Nicholas A.; Simacek, Pavel; Advani, Suresh; Hughes, Adrian; Darlington, Roger; Senan, Eissa

    2018-03-01

    Very short manufacture cycle times are required if continuous carbon fibre and epoxy composite components are to be economically viable solutions for high volume composite production for the automotive industry. Here, a manufacturing process variant of resin transfer moulding (RTM), targets a reduction of in-mould manufacture time by reducing the time to inject and cure components. The process involves two stages; resin injection followed by compression. A flow simulation methodology using an RTM solver for the process has been developed. This paper compares the simulation prediction to experiments performed using industrial equipment. The issues encountered during the manufacturing are included in the simulation and their sensitivity to the process is explored.

  19. Landscape review of current HIV 'kick and kill' cure research - some kicking, not enough killing.

    PubMed

    Thorlund, Kristian; Horwitz, Marc S; Fife, Brian T; Lester, Richard; Cameron, D William

    2017-08-29

    Current antiretroviral therapy (ART) used to treat human immunodeficiency virus (HIV) patients is life-long because it only suppresses de novo infections. Recent efforts to eliminate HIV have tested the ability of a number of agents to reactivate ('Kick') the well-known latent reservoir. This approach is rooted in the assumption that once these cells are reactivated the host's immune system itself will eliminate ('Kill') the virus. While many agents have been shown to reactivate large quantities of the latent reservoir, the impact on the size of the latent reservoir has been negligible. This suggests that the immune system is not sufficient to eliminate reactivated reservoirs. Thus, there is a need for more emphasis on 'kill' strategies in HIV cure research, and how these might work in combination with current or future kick strategies. We conducted a landscape review of HIV 'cure' clinical trials using 'kick and kill' approaches. We identified and reviewed current available clinical trial results in human participants as well as ongoing and planned clinical trials. We dichotomized trials by whether they did not include or include a 'kill' agent. We extracted potential reasons why the 'kill' is missing from current 'kick and kill' strategies. We subsequently summarized and reviewed current 'kill' strategies have entered the phase of clinical trial testing in human participants and highlighted those with the greatest promise. The identified 'kick' trials only showed promise on surrogate measures activating latent T-cells, but did not show any positive effects on clinical 'cure' measures. Of the 'kill' agents currently being tested in clinical trials, early results have shown small but meaningful proportions of participants remaining off ART for several months with broadly neutralizing antibodies, as well as agents for regulating immune cell responses. A similar result was also recently observed in a trial combining a conventional 'kick' with a vaccine immune booster

  20. Action of ionizing radiation on epoxy resins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van de Voorde, M. E.

    1970-12-01

    The resistance of classical and experimental epoxy resins to irradiation was studied. The resistance to irradiation of epoxy resins of diverse compositions as well as the development of resins having a radioresistance that approaches that of certain ceramics are discussed. Sources of irradiation and the techniques of dosimetry used are described. The structures of certain epoxy resins and of hardeners are given. The preparation of these resins and their physical properties is described. The effects of radiation on epoxy resins, as well as conditions of irradiation, and suggested mechanisms for degradation of the irradiated resins are discussed. The relationship betweenmore » chemical structure of the resins and their physical properties is evaluated. (115 references) (JCB)« less

  1. Enhanced electromagnetic interference shielding properties of carbon fiber veil/Fe3O4 nanoparticles/epoxy multiscale composites

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Wang, Jun; Zhang, Bin; Wu, Qilei; Su, Xiaogang

    2017-12-01

    The multiscale approach has been adapted to enhance the electromagnetic interference shielding properties of carbon fiber (CF) veil epoxy-based composites. The Fe3O4 nanoparticles (NPs) were homogeneously dispersed in the epoxy matrix after surface modification by using silane coupling agent. The CF veil/Fe3O4 NPs/epoxy multiscale composites were manufactured by impregnating the CF veils with Fe3O4 NPs/epoxy mixture to prepare prepreg followed by vacuum bagging process. The electromagnetic interference shielding properties combined with the complex permittivity and complex permeability of the composites were investigated in the X-band (8.2-12.4 GHz) range. The total shielding effectiveness (SET) increases with increasing Fe3O4 NPs loadings and the maximum SET is 51.5 dB at low thickness of 1 mm. The incorporation of Fe3O4 NPs into the composites enhances the complex permittivity and complex permeability thus enhancing the electromagnetic wave absorption capability. The increased SET dominated by absorption loss SEA is attributed to the enhanced magnetic loss and dielectric loss generated by Fe3O4 NPs and multilayer construction of the composites. The microwave conductivity increases and the skin depth decreases with increasing Fe3O4 NPs loadings.

  2. Atomistic Modeling of Thermal Conductivity of Epoxy Nanotube Composites

    NASA Astrophysics Data System (ADS)

    Fasanella, Nicholas A.; Sundararaghavan, Veera

    2016-05-01

    The Green-Kubo method was used to investigate the thermal conductivity as a function of temperature for epoxy/single wall carbon nanotube (SWNT) nanocomposites. An epoxy network of DGEBA-DDS was built using the `dendrimer' growth approach, and conductivity was computed by taking into account long-range Coulombic forces via a k-space approach. Thermal conductivity was calculated in the direction perpendicular to, and along the SWNT axis for functionalized and pristine SWNT/epoxy nanocomposites. Inefficient phonon transport at the ends of nanotubes is an important factor in the thermal conductivity of the nanocomposites, and for this reason discontinuous nanotubes were modeled in addition to long nanotubes. The thermal conductivity of the long, pristine SWNT/epoxy system is equivalent to that of an isolated SWNT along its axis, but there was a 27% reduction perpendicular to the nanotube axis. The functionalized, long SWNT/epoxy system had a very large increase in thermal conductivity along the nanotube axis (~700%), as well as the directions perpendicular to the nanotube (64%). The discontinuous nanotubes displayed an increased thermal conductivity along the SWNT axis compared to neat epoxy (103-115% for the pristine SWNT/epoxy, and 91-103% for functionalized SWNT/epoxy system). The functionalized system also showed a 42% improvement perpendicular to the nanotube, while the pristine SWNT/epoxy system had no improvement over epoxy. The thermal conductivity tensor is averaged over all possible orientations to see the effects of randomly orientated nanotubes, and allow for experimental comparison. Excellent agreement is seen for the discontinuous, pristine SWNT/epoxy nanocomposite. These simulations demonstrate there exists a threshold of the SWNT length where the best improvement for a composite system with randomly oriented nanotubes would transition from pristine SWNTs to functionalized SWNTs.

  3. The effects on tensile, shear, and adhesive mechanical properties when recycled epoxy/fiberglass is used as an alternative for glass microballoons in fiberglass foam core sandwiches

    NASA Astrophysics Data System (ADS)

    Wilson, Dru Matthew

    The problem of this study was to determine whether fiberglass foam core sandwiches made with recycled epoxy/fiberglass have equal or better flatwise tension, shear, and peel (adhesion) mechanical properties when compared with composite sandwiches made with industry standard glass microballoons. Recycling epoxy/fiberglass could save money by: (1) reusing cured composite materials, (2) consuming less virgin composite materials, (3) spending less on transportation and disposing of unusable composites, and (4) possibly enabling companies to sell their recycled composite powder to other manufacturers. This study used three mechanical property tests, which included: flatwise tensile test, shear test, and peel (adhesion) test. Each test used 300 samples for a combined total of 900 sandwich test samples for this study. A factorial design with three independent variables was used. The first variable, filler type, had three levels: no filler, microballoon filler, and recycled epoxy/fiberglass filler. The second variable, foam density, had four levels: 3 lb/ft³, 4 lb/ft³, 5 lb/ft³, and 6 lb/ft³. The third variable, filler percentage ratio, had eight levels: 0%, 10%, 20%, 30%, 40%, 50%, 60%, and 70%. The results of this study revealed two primary conclusions. The first conclusion was that sandwich test panels produced with recycled epoxy/fiberglass powder were equal or significantly better in tensile, shear, and peel (adhesion) strength than sandwiches produced with hollow glass microballoons. The second conclusion was that sandwich test panels produced with recycled epoxy/fiberglass powder were equal or significantly lighter in weight than sandwiches produced with hollow glass microballoons.

  4. The Effect of Small Additions of Carbon Nanotubes on the Mechanical Properties of Epoxy Polymers under Static and Dynamic Loads

    NASA Astrophysics Data System (ADS)

    Tarasov, A. E.; Badamshina, E. R.; Anokhin, D. V.; Razorenov, S. V.; Vakorina, G. S.

    2018-01-01

    The results of measurements of the mechanical characteristics of cured epoxy composites containing small and ultrasmall additions of single-walled carbon nanotubes in the concentration range from 0 to 0.133 wt % under static and dynamic loads are presented. Static measurements of strength characteristics have been carried out under standard test conditions. Measurements of the Hugoniot elastic limit and spall strength were performed under a shock wave loading of the samples at a deformation rate of (0.8-1.5) ß 105 s-1 before the fracture using explosive devices by recording and subsequent analyzing the evolution of the full wave profiles. It has been shown that agglomerates of nanotubes present in the structure of the composites after curing cause a significant scatter of the measured strength parameters, both in the static and in the dynamic test modes. However, the effects of carbon nanotube additions in the studied concentration interval on the physical and mechanical characteristics of the parameters were not revealed for both types of loading.

  5. Chromatographic assessment of two hybrid monoliths prepared via epoxy-amine ring-opening polymerization and methacrylate-based free radical polymerization using methacrylate epoxy cyclosiloxane as functional monomer.

    PubMed

    Wang, Hongwei; Ou, Junjie; Lin, Hui; Liu, Zhongshan; Huang, Guang; Dong, Jing; Zou, Hanfa

    2014-11-07

    Two kinds of hybrid monolithic columns were prepared by using methacrylate epoxy cyclosiloxane (epoxy-MA) as functional monomer, containing three epoxy moieties and one methacrylate group. One column was in situ fabricated by ring-opening polymerization of epoxy-MA and 1,10-diaminodecane (DAD) using a porogenic system consisting of isopropanol (IPA), H2O and ethanol at 65°C for 12h. The other was prepared by free radical polymerization of epoxy-MA and ethylene dimethacrylate (EDMA) using 1-propanol and 1,4-butanediol as the porogenic solvents at 60°C for 12h. Two hybrid monoliths were investigated on the morphology and chromatographic assessment. Although two kinds of monolithic columns were prepared with epoxy-MA, their morphologies looked rather different. It could be found that the epoxy-MA-DAD monolith possessed higher column efficiencies (25,000-34,000plates/m) for the separation of alkylbenzenes than the epoxy-MA-EDMA monolith (12,000-13,000plates/m) in reversed-phase nano-liquid chromatography (nano-LC). Depending on the remaining epoxy or methacrylate groups on the surface of two pristine monoliths, the epoxy-MA-EDMA monolith could be easily modified with 1-octadecylamine (ODA) via ring-opening reaction, while the epoxy-MA-DAD monolith could be modified with stearyl methacrylate (SMA) via free radical reaction. The chromatographic performance for the separation of alkylbenzenes on SMA-modified epoxy-MA-DAD monolith was remarkably improved (42,000-54,000 plates/m) when compared with that on pristine epoxy-MA-DAD monolith, while it was not obviously enhanced on ODA-modified epoxy-MA-EDMA monolith when compared with that on pristine epoxy-MA-EDMA monolith. The enhancement of the column efficiency of epoxy-MA-DAD monolith after modification might be ascribed to the decreased mass-transfer resistence. The two kinds of hybrid monoliths were also applied for separations of six phenols and seven basic compounds in nano-LC. Copyright © 2014 Elsevier B.V. All

  6. Light-Cured Self-Etch Adhesives Undergo Hydroxyapatite-Triggered Self-Cure

    PubMed Central

    Liu, Y.; Bai, X.; Liu, Y.W.; Wang, Y.

    2015-01-01

    Light cure is a popular mode of curing for dental adhesives. However, it suffers from inadequate light delivery when the restoration site is less accessible, in which case a self-cure mechanism is desirable to salvage any compromised polymerization. We previously reported a novel self-cure system mediated by ethyl 4-(dimethylamino)-benzoate (4E) and hydroxyapatite (HAp). The present work aims to investigate if such self-cure phenomenon takes place in adhesives that underwent prior inadequate light cure and to elucidate if HAp released from the dental etching process is sufficient to trigger it. Model self-etch adhesives were formulated with various components, including bis[2-methacryloyloxy)ethyl]-phosphate (2MP) as acidic monomer and trimethylbenzoyl-diphenylphosphine oxide (TPO) as photoinitiator. In vitro evolution of degree of conversion (DC) of HAp-incorporated adhesives was monitored by infrared spectroscopy during light irradiation and dark storage. Selected adhesives were allowed to etch and extract HAp from enamel, light-cured in situ, and stored in the dark, after which Raman line mapping was used to obtain spatially resolved DC across the enamel-resin interface. Results showed that TPO+4E adhesives reached DC similar to TPO-only counterparts upon completion of light irradiation but underwent another round of initiation that boosted DC to ~100% regardless of HAp level or prior light exposure. When applied to enamel, TPO-only adhesives had ~80% DC in resin, which gradually descended to ~50% in enamel, whereas TPO+4E adhesives consistently scored ~80% DC across the enamel-resin interface. These observations suggest that polymerization of adhesives that underwent insufficient light cure is salvaged by the novel self-cure mechanism, and such salvaging effect can be triggered by HAp released from dental substrate during the etching process. PMID:26635279

  7. Light-Cured Self-Etch Adhesives Undergo Hydroxyapatite-Triggered Self-Cure.

    PubMed

    Liu, Y; Bai, X; Liu, Y W; Wang, Y

    2016-03-01

    Light cure is a popular mode of curing for dental adhesives. However, it suffers from inadequate light delivery when the restoration site is less accessible, in which case a self-cure mechanism is desirable to salvage any compromised polymerization. We previously reported a novel self-cure system mediated by ethyl 4-(dimethylamino)-benzoate (4E) and hydroxyapatite (HAp). The present work aims to investigate if such self-cure phenomenon takes place in adhesives that underwent prior inadequate light cure and to elucidate if HAp released from the dental etching process is sufficient to trigger it. Model self-etch adhesives were formulated with various components, including bis[2-methacryloyloxy)ethyl]-phosphate (2MP) as acidic monomer and trimethylbenzoyl-diphenylphosphine oxide (TPO) as photoinitiator. In vitro evolution of degree of conversion (DC) of HAp-incorporated adhesives was monitored by infrared spectroscopy during light irradiation and dark storage. Selected adhesives were allowed to etch and extract HAp from enamel, light-cured in situ, and stored in the dark, after which Raman line mapping was used to obtain spatially resolved DC across the enamel-resin interface. Results showed that TPO+4E adhesives reached DC similar to TPO-only counterparts upon completion of light irradiation but underwent another round of initiation that boosted DC to ~100% regardless of HAp level or prior light exposure. When applied to enamel, TPO-only adhesives had ~80% DC in resin, which gradually descended to ~50% in enamel, whereas TPO+4E adhesives consistently scored ~80% DC across the enamel-resin interface. These observations suggest that polymerization of adhesives that underwent insufficient light cure is salvaged by the novel self-cure mechanism, and such salvaging effect can be triggered by HAp released from dental substrate during the etching process. © International & American Associations for Dental Research 2015.

  8. High-performance fiber/epoxy composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Chiao, T. T.; Hamstad, M. A.; Jessop, E. S.; Toland, R. H.

    1978-01-01

    Activities described include: (1) determining the applicability of an ultrahigh-strength graphite fiber to composite pressure vessels; (2) defining the fatigue performance of thin-titanium-lined, high-strength graphite/epoxy pressure vessel; (3) selecting epoxy resin systems suitable for filament winding; (4) studying the fatigue life potential of Kevlar 49/epoxy pressure vessels; and (5) developing polymer liners for composite pressure vessels. Kevlar 49/epoxy and graphite fiber/epoxy pressure vessels, 10.2 cm in diameter, some with aluminum liners and some with alternation layers of rubber and polymer were fabricated. To determine liner performance, vessels were subjected to gas permeation tests, fatigue cycling, and burst tests, measuring composite performance, fatigue life, and leak rates. Both the metal and the rubber/polymer liner performed well. Proportionately larger pressure vessels (20.3 and 38 cm in diameter) were made and subjected to the same tests. In these larger vessels, line leakage problems with both liners developed the causes of the leaks were identified and some solutions to such liner problems are recommended.

  9. Magnetic Resonance Studies of Epoxy Resins.

    DTIC Science & Technology

    1980-12-07

    1. INTRODUCTION ..................................................... ..... ol 2. EPR EXPERIMENTS ON EPOXY RESINS...Calculated sizes of cube-shaped rigid regions.......................... 59 1. INTRODUCTION Epoxy resin polymers are important matrix materials for... information on this network microstructure. The experiments involved measurements made as a function of either temperature or solvent content. In the latter

  10. Method for Improving Acoustic Impedance of Epoxy Resins

    DTIC Science & Technology

    2010-06-11

    neoprene, ethylene propylene diene monomer ( EPDM ) and polyurethane rubbers . Typical applications of these materials encapsulate and protect acoustic...different material (e.g., rubber ) cannot be used. Thus, a hard, strong and acoustically transparent material is needed. Suitable high modulus...epoxy resin. In this method, an epoxy resin component is mixed with a rubber component. The epoxy resin component is preferably a bisphenol A

  11. The interfacial strength of carbon nanofiber epoxy composite using single fiber pullout experiments.

    PubMed

    Manoharan, M P; Sharma, A; Desai, A V; Haque, M A; Bakis, C E; Wang, K W

    2009-07-22

    Carbon nanotubes and nanofibers are extensively researched as reinforcing agents in nanocomposites for their multifunctionality, light weight and high strength. However, it is the interface between the nanofiber and the matrix that dictates the overall properties of the nanocomposite. The current trend is to measure elastic properties of the bulk nanocomposite and then compare them with theoretical models to extract the information on the interfacial strength. The ideal experiment is single fiber pullout from the matrix because it directly measures the interfacial strength. However, the technique is difficult to apply to nanocomposites because of the small size of the fibers and the requirement for high resolution force and displacement sensing. We present an experimental technique for measuring the interfacial strength of nanofiber-reinforced composites using the single fiber pullout technique and demonstrate the technique for a carbon nanofiber-reinforced epoxy composite. The experiment is performed in situ in a scanning electron microscope and the interfacial strength for the epoxy composite was measured to be 170 MPa.

  12. Influence of triallyl cyanurate as co-agent on gamma irradiation cured high density polyethylene/reclaimed tire rubber blend

    NASA Astrophysics Data System (ADS)

    Mali, Manoj N.; Arakh, Amar A.; Dubey, K. A.; Mhaske, S. T.

    2017-02-01

    Utilization of waste from tire industry as reclaimed tire rubber (RTR) by formation of blends with high density polyethylene (HDPE) is great area to be focused. Enhancement of properties by the addition of triallyl cyanurate (TAC) as a co-agent with 1%, 3% and 5% to blend of HDPE 50 wt% and RTR 50 wt% in presence of gamma irradiation curing were investigated. Specifically, mechanical and thermal properties were studied as a function of amount of TAC and gamma irradiation dose in range of 50-200 kGy. The resultant blends were evaluated for the values of impact strength, gel content, thermal stability, tensile properties, rheological properties and morphological properties with increasing irradiation dosage and TAC loading. The mechanical properties tensile strength, hardness, impact strength of blend containing 3% of TAC were substantially increased with increasing irradiation dosage up to 150 KGy. Rheological analysis has shown increase in viscosity with increase in TAC loading up to 3% and 150 KGy irradiation dosages. 3% loading of TAC lead to better set of properties with150 KGy gamma irradiation dosage.

  13. Development of AlN/Epoxy Composites with Enhanced Thermal Conductivity

    PubMed Central

    Xu, Yonggang; Yang, Chi; Li, Jun; Zhang, Hailong; Hu, Song; Wang, Shiwei

    2017-01-01

    AlN/epoxy composites with high thermal conductivity were successfully prepared by infiltrating epoxy into AlN porous ceramics which were fabricated by gelcasting of foaming method. The microstructure, mechanical, and thermal properties of the resulting composites were investigated. The compressive strengths of the AlN/epoxy composites were enhanced compared with the pure epoxy. The AlN/epoxy composites demonstrate much higher thermal conductivity, up to 19.0 W/(m·K), compared with those by the traditional particles filling method, because of continuous thermal channels formed by the walls and struts of AlN porous ceramics. This study demonstrates a potential route to manufacture epoxy-based composites with extremely high thermal conductivity. PMID:29258277

  14. Development of AlN/Epoxy Composites with Enhanced Thermal Conductivity.

    PubMed

    Xu, Yonggang; Yang, Chi; Li, Jun; Mao, Xiaojian; Zhang, Hailong; Hu, Song; Wang, Shiwei

    2017-12-18

    AlN/epoxy composites with high thermal conductivity were successfully prepared by infiltrating epoxy into AlN porous ceramics which were fabricated by gelcasting of foaming method. The microstructure, mechanical, and thermal properties of the resulting composites were investigated. The compressive strengths of the AlN/epoxy composites were enhanced compared with the pure epoxy. The AlN/epoxy composites demonstrate much higher thermal conductivity, up to 19.0 W/(m·K), compared with those by the traditional particles filling method, because of continuous thermal channels formed by the walls and struts of AlN porous ceramics. This study demonstrates a potential route to manufacture epoxy-based composites with extremely high thermal conductivity.

  15. Comparison of the Effect of Addition of Cyanoacrylate, Epoxy Resin, and Gum Arabic on Surface Hardness of Die Stone.

    PubMed

    Tripathi, Arvind; Gupta, Ashutosh; Bagchi, Soumyojeet; Mishra, Lallan; Gautam, Abhina; Madhok, Riti

    2016-04-01

    To observe the effects of incorporating cyanoacrylate, epoxy resins, and gum arabic on the abrasion resistance of type IV gypsum die materials. Forty specimens were prepared and divided into four groups (10 specimens in each group), namely group A (control), group B (die stone mixed with cyanoacrylate), group C (die stone mixed with epoxy resin), group D (die stone mixed with gum arabic). All the specimens were subjected to abrasion testing, wear volume analysis, Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscope (SEM) analysis. Abrasion testing showed maximum wear in the control group and minimum wear in the gum arabic group. Intergroup differences were statistically significant (p < 0.001). The largest mean difference was between control and gum arabic. The lowest was between cyanoacrylate and the control group. The mean wear volume was lowest in the gum arabic group (4.23 mm(3) ) and highest in the control group (6.78 mm(3) ). The FT-IR graphs of the gum arabic models showed the presence of CH2 , which is responsible for its binding activity. SEM revealed that the irregular particles of gum arabic display an interlocking arrangement. This jigsaw puzzle pattern results in stronger physical bond formation. Observations from this study showed that the addition of gum arabic increases resistance to abrasion in type IV gypsum. Cyanoacrylates are good adhesives as well, but a major drawback is that they have very low resistance to chemical action with water and physical actions such as sunlight. Epoxy resins are powerful adhesives, but they attain their full efficiency when cured with heat. Cyanoacrylate and epoxy resin displayed poor physical bonding, primarily because of inhomogeneity. © 2015 by the American College of Prosthodontists.

  16. Linear and nonlinear mechanical properties of a series of epoxy resins

    NASA Technical Reports Server (NTRS)

    Curliss, D. B.; Caruthers, J. M.

    1987-01-01

    The linear viscoelastic properties have been measured for a series of bisphenol-A-based epoxy resins cured with the diamine DDS. The linear viscoelastic master curves were constructed via time-temperature superposition of frequency dependent G-prime and G-double-prime isotherms. The G-double-prime master curves exhibited two sub-Tg transitions. Superposition of isotherms in the glass-to-rubber transition (i.e., alpha) and the beta transition at -60 C was achieved by simple horizontal shifts in the log frequency axis; however, in the region between alpha and beta, superposition could not be effected by simple horizontal shifts along the log frequency axis. The different temperature dependency of the alpha and beta relaxation mechanisms causes a complex response of G-double-prime in the so called alpha-prime region. A novel numerical procedure has been developed to extract the complete relaxation spectra and its temperature dependence from the G-prime and G-double-prime isothermal data in the alpha-prime region.

  17. Method for Improving Acoustic Impedance of Epoxy Resins

    DTIC Science & Technology

    2010-06-21

    include neoprene, ethylene propylene diene monomer ( EPDM ) and polyurethane rubbers . Typical applications of these materials encapsulate and protect...a different material (e.g., rubber ) cannot be used. Thus, a hard, strong and acoustically transparent material is needed. Suitable high modulus...an epoxy resin. In this method, an epoxy resin component is mixed with a rubber component. The epoxy resin component is preferably a bisphenol A

  18. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for the...

  19. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for the...

  20. 40 CFR 721.2752 - Epoxy resin containing phosphorus (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Epoxy resin containing phosphorus... Specific Chemical Substances § 721.2752 Epoxy resin containing phosphorus (generic). (a) Chemical substance... epoxy resin containing phosphorus (PMN P-00-912) is subject to reporting under this section for the...