Estimating Soil Hydraulic Parameters using Gradient Based Approach
NASA Astrophysics Data System (ADS)
Rai, P. K.; Tripathi, S.
2017-12-01
The conventional way of estimating parameters of a differential equation is to minimize the error between the observations and their estimates. The estimates are produced from forward solution (numerical or analytical) of differential equation assuming a set of parameters. Parameter estimation using the conventional approach requires high computational cost, setting-up of initial and boundary conditions, and formation of difference equations in case the forward solution is obtained numerically. Gaussian process based approaches like Gaussian Process Ordinary Differential Equation (GPODE) and Adaptive Gradient Matching (AGM) have been developed to estimate the parameters of Ordinary Differential Equations without explicitly solving them. Claims have been made that these approaches can straightforwardly be extended to Partial Differential Equations; however, it has been never demonstrated. This study extends AGM approach to PDEs and applies it for estimating parameters of Richards equation. Unlike the conventional approach, the AGM approach does not require setting-up of initial and boundary conditions explicitly, which is often difficult in real world application of Richards equation. The developed methodology was applied to synthetic soil moisture data. It was seen that the proposed methodology can estimate the soil hydraulic parameters correctly and can be a potential alternative to the conventional method.
A hybrid agent-based approach for modeling microbiological systems.
Guo, Zaiyi; Sloot, Peter M A; Tay, Joc Cing
2008-11-21
Models for systems biology commonly adopt Differential Equations or Agent-Based modeling approaches for simulating the processes as a whole. Models based on differential equations presuppose phenomenological intracellular behavioral mechanisms, while models based on Multi-Agent approach often use directly translated, and quantitatively less precise if-then logical rule constructs. We propose an extendible systems model based on a hybrid agent-based approach where biological cells are modeled as individuals (agents) while molecules are represented by quantities. This hybridization in entity representation entails a combined modeling strategy with agent-based behavioral rules and differential equations, thereby balancing the requirements of extendible model granularity with computational tractability. We demonstrate the efficacy of this approach with models of chemotaxis involving an assay of 10(3) cells and 1.2x10(6) molecules. The model produces cell migration patterns that are comparable to laboratory observations.
From the crust to the core of neutron stars on a microscopic basis
NASA Astrophysics Data System (ADS)
Baldo, M.; Burgio, G. F.; Centelles, M.; Sharma, B. K.; Viñas, X.
2014-09-01
Within a microscopic approach the structure of Neutron Stars is usually studied by modelling the homogeneous nuclear matter of the core by a suitable Equation of State, based on a many-body theory, and the crust by a functional based on a more phenomenological approach. We present the first calculation of Neutron Star overall structure by adopting for the core an Equation of State derived from the Brueckner-Hartree-Fock theory and for the crust, including the pasta phase, an Energy Density Functional based on the same Equation of State, and which is able to describe accurately the binding energy of nuclei throughout the mass table. Comparison with other approaches is discussed. The relevance of the crust Equation of State for the Neutron Star radius is particularly emphasised.
The Ostrovsky-Vakhnenko equation by a Riemann-Hilbert approach
NASA Astrophysics Data System (ADS)
Boutet de Monvel, Anne; Shepelsky, Dmitry
2015-01-01
We present an inverse scattering transform (IST) approach for the (differentiated) Ostrovsky-Vakhnenko equation This equation can also be viewed as the short wave model for the Degasperis-Procesi (sDP) equation. Our IST approach is based on an associated Riemann-Hilbert problem, which allows us to give a representation for the classical (smooth) solution, to get the principal term of its long time asymptotics, and also to describe loop soliton solutions. Dedicated to Johannes Sjöstrand with gratitude and admiration.
A multivariate quadrature based moment method for LES based modeling of supersonic combustion
NASA Astrophysics Data System (ADS)
Donde, Pratik; Koo, Heeseok; Raman, Venkat
2012-07-01
The transported probability density function (PDF) approach is a powerful technique for large eddy simulation (LES) based modeling of scramjet combustors. In this approach, a high-dimensional transport equation for the joint composition-enthalpy PDF needs to be solved. Quadrature based approaches provide deterministic Eulerian methods for solving the joint-PDF transport equation. In this work, it is first demonstrated that the numerical errors associated with LES require special care in the development of PDF solution algorithms. The direct quadrature method of moments (DQMOM) is one quadrature-based approach developed for supersonic combustion modeling. This approach is shown to generate inconsistent evolution of the scalar moments. Further, gradient-based source terms that appear in the DQMOM transport equations are severely underpredicted in LES leading to artificial mixing of fuel and oxidizer. To overcome these numerical issues, a semi-discrete quadrature method of moments (SeQMOM) is formulated. The performance of the new technique is compared with the DQMOM approach in canonical flow configurations as well as a three-dimensional supersonic cavity stabilized flame configuration. The SeQMOM approach is shown to predict subfilter statistics accurately compared to the DQMOM approach.
NASA Astrophysics Data System (ADS)
Andriopoulos, K.; Dimas, S.; Leach, P. G. L.; Tsoubelis, D.
2009-08-01
Complete symmetry groups enable one to characterise fully a given differential equation. By considering the reversal of an approach based upon complete symmetry groups we construct new classes of differential equations which have the equations of Bateman, Monge-Ampère and Born-Infeld as special cases. We develop a symbolic algorithm to decrease the complexity of the calculations involved.
NASA Astrophysics Data System (ADS)
Camporesi, Roberto
2011-06-01
We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and the variation of constants method. The approach presented here can be used in a first course on differential equations for science and engineering majors.
NASA Astrophysics Data System (ADS)
Camporesi, Roberto
2016-01-01
We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of the other more advanced approaches: Laplace transform, linear systems, the general theory of linear equations with variable coefficients and variation of parameters. The approach presented here can be used in a first course on differential equations for science and engineering majors.
Nestler, Steffen
2014-05-01
Parameters in structural equation models are typically estimated using the maximum likelihood (ML) approach. Bollen (1996) proposed an alternative non-iterative, equation-by-equation estimator that uses instrumental variables. Although this two-stage least squares/instrumental variables (2SLS/IV) estimator has good statistical properties, one problem with its application is that parameter equality constraints cannot be imposed. This paper presents a mathematical solution to this problem that is based on an extension of the 2SLS/IV approach to a system of equations. We present an example in which our approach was used to examine strong longitudinal measurement invariance. We also investigated the new approach in a simulation study that compared it with ML in the examination of the equality of two latent regression coefficients and strong measurement invariance. Overall, the results show that the suggested approach is a useful extension of the original 2SLS/IV estimator and allows for the effective handling of equality constraints in structural equation models. © 2013 The British Psychological Society.
USDA-ARS?s Scientific Manuscript database
Given a time series of potential evapotranspiration and rainfall data, there are at least two approaches for estimating vertical percolation rates. One approach involves solving Richards' equation (RE) with a plant uptake model. An alternative approach involves applying a simple soil moisture accoun...
NASA Astrophysics Data System (ADS)
Ghamarian, Iman; Samimi, Peyman; Dixit, Vikas; Collins, Peter C.
2015-11-01
While it is useful to predict properties in metallic materials based upon the composition and microstructure, the complexity of real, multi-component, and multi-phase engineering alloys presents difficulties when attempting to determine constituent-based phenomenological equations. This paper applies an approach based upon the integration of three separate modeling approaches, specifically artificial neural networks, genetic algorithms, and Monte Carlo simulations to determine a mechanism-based equation for the yield strength of α+ β processed Ti-6Al-4V (all compositions in weight percent) which consists of a complex multi-phase microstructure with varying spatial and morphological distributions of the key microstructural features. Notably, this is an industrially important alloy yet an alloy for which such an equation does not exist in the published literature. The equation ultimately derived in this work not only can accurately describe the properties of the current dataset but also is consistent with the limited and dissociated information available in the literature regarding certain parameters such as intrinsic yield strength of pure hexagonal close-packed alpha titanium. In addition, this equation suggests new interesting opportunities for controlling yield strength by controlling the relative intrinsic strengths of the two phases through solid solution strengthening.
Generalized Flip-Flop Input Equations Based on a Four-Valued Boolean Algebra
NASA Technical Reports Server (NTRS)
Tucker, Jerry H.; Tapia, Moiez A.
1996-01-01
A procedure is developed for obtaining generalized flip-flop input equations, and a concise method is presented for representing these equations. The procedure is based on solving a four-valued characteristic equation of the flip-flop, and can encompass flip-flops that are too complex to approach intuitively. The technique is presented using Karnaugh maps, but could easily be implemented in software.
Requirements for Predictive Density Functional Theory Methods for Heavy Materials Equation of State
NASA Astrophysics Data System (ADS)
Mattsson, Ann E.; Wills, John M.
2012-02-01
The difficulties in experimentally determining the Equation of State of actinide and lanthanide materials has driven the development of many computational approaches with varying degree of empiricism and predictive power. While Density Functional Theory (DFT) based on the Schr"odinger Equation (possibly with relativistic corrections including the scalar relativistic approach) combined with local and semi-local functionals has proven to be a successful and predictive approach for many materials, it is not giving enough accuracy, or even is a complete failure, for the actinides. To remedy this failure both an improved fundamental description based on the Dirac Equation (DE) and improved functionals are needed. Based on results obtained using the appropriate fundamental approach of DFT based on the DE we discuss the performance of available semi-local functionals, the requirements for improved functionals for actinide/lanthanide materials, and the similarities in how functionals behave in transition metal oxides. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
A general method to determine the stability of compressible flows
NASA Technical Reports Server (NTRS)
Guenther, R. A.; Chang, I. D.
1982-01-01
Several problems were studied using two completely different approaches. The initial method was to use the standard linearized perturbation theory by finding the value of the individual small disturbance quantities based on the equations of motion. These were serially eliminated from the equations of motion to derive a single equation that governs the stability of fluid dynamic system. These equations could not be reduced unless the steady state variable depends only on one coordinate. The stability equation based on one dependent variable was found and was examined to determine the stability of a compressible swirling jet. The second method applied a Lagrangian approach to the problem. Since the equations developed were based on different assumptions, the condition of stability was compared only for the Rayleigh problem of a swirling flow, both examples reduce to the Rayleigh criterion. This technique allows including the viscous shear terms which is not possible in the first method. The same problem was then examined to see what effect shear has on stability.
Uncertainty Quantification in Simulations of Epidemics Using Polynomial Chaos
Santonja, F.; Chen-Charpentier, B.
2012-01-01
Mathematical models based on ordinary differential equations are a useful tool to study the processes involved in epidemiology. Many models consider that the parameters are deterministic variables. But in practice, the transmission parameters present large variability and it is not possible to determine them exactly, and it is necessary to introduce randomness. In this paper, we present an application of the polynomial chaos approach to epidemiological mathematical models based on ordinary differential equations with random coefficients. Taking into account the variability of the transmission parameters of the model, this approach allows us to obtain an auxiliary system of differential equations, which is then integrated numerically to obtain the first-and the second-order moments of the output stochastic processes. A sensitivity analysis based on the polynomial chaos approach is also performed to determine which parameters have the greatest influence on the results. As an example, we will apply the approach to an obesity epidemic model. PMID:22927889
NASA Astrophysics Data System (ADS)
Oskouie, M. Faraji; Ansari, R.; Rouhi, H.
2018-04-01
Eringen's nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects. Previous studies have revealed that using the differential form of the strain-driven version of this theory leads to paradoxical results in some cases, such as bending analysis of cantilevers, and recourse must be made to the integral version. In this article, a novel numerical approach is developed for the bending analysis of Euler-Bernoulli nanobeams in the context of strain- and stress-driven integral nonlocal models. This numerical approach is proposed for the direct solution to bypass the difficulties related to converting the integral governing equation into a differential equation. First, the governing equation is derived based on both strain-driven and stress-driven nonlocal models by means of the minimum total potential energy. Also, in each case, the governing equation is obtained in both strong and weak forms. To solve numerically the derived equations, matrix differential and integral operators are constructed based upon the finite difference technique and trapezoidal integration rule. It is shown that the proposed numerical approach can be efficiently applied to the strain-driven nonlocal model with the aim of resolving the mentioned paradoxes. Also, it is able to solve the problem based on the strain-driven model without inconsistencies of the application of this model that are reported in the literature.
A Clinical Approach to the Diagnosis of Acid-Base Disorders
Bear, Robert A.
1986-01-01
The ability to diagnose and manage acid-base disorders rapidly and effectively is essential to the care of critically ill patients. This article presents an approach to the diagnosis of pure and mixed acid-base disorders, metabolic or respiratory. The approach taken is based on using the law of mass-action equation as it applies to the bicarbonate buffer system (Henderson equation), using sub-classifications for diagnostic purposes of causes of metabolic acidosis and metabolic alkalosis, and using a knowledge of the well-defined and predictable compensatory responses that attempt to limit the change in pH in each of the primary acid-base disorders. PMID:21267134
An Efficient Numerical Approach for Nonlinear Fokker-Planck equations
NASA Astrophysics Data System (ADS)
Otten, Dustin; Vedula, Prakash
2009-03-01
Fokker-Planck equations which are nonlinear with respect to their probability densities that occur in many nonequilibrium systems relevant to mean field interaction models, plasmas, classical fermions and bosons can be challenging to solve numerically. To address some underlying challenges in obtaining numerical solutions, we propose a quadrature based moment method for efficient and accurate determination of transient (and stationary) solutions of nonlinear Fokker-Planck equations. In this approach the distribution function is represented as a collection of Dirac delta functions with corresponding quadrature weights and locations, that are in turn determined from constraints based on evolution of generalized moments. Properties of the distribution function can be obtained by solution of transport equations for quadrature weights and locations. We will apply this computational approach to study a wide range of problems, including the Desai-Zwanzig Model (for nonlinear muscular contraction) and multivariate nonlinear Fokker-Planck equations describing classical fermions and bosons, and will also demonstrate good agreement with results obtained from Monte Carlo and other standard numerical methods.
An Assessment of Peridynamics for Pre and Post Failure Deformation
2011-11-01
begin with an overview of the peridynamics equations ; first the micro-elastic and micro-plastic models will be outlined, and then the newer state ...expressed as differential equations . The peridynamics framework was subsequently extended to a state -based approach (2, 7) to facilitate use of common...computing the sums. 2.2.3 Stress and Nodal Forces State -based peridynamics and FE both use the same momentum equation , equation 1, and similar
NASA Astrophysics Data System (ADS)
Ford, Neville J.; Connolly, Joseph A.
2009-07-01
We give a comparison of the efficiency of three alternative decomposition schemes for the approximate solution of multi-term fractional differential equations using the Caputo form of the fractional derivative. The schemes we compare are based on conversion of the original problem into a system of equations. We review alternative approaches and consider how the most appropriate numerical scheme may be chosen to solve a particular equation.
A multi-domain spectral method for time-fractional differential equations
NASA Astrophysics Data System (ADS)
Chen, Feng; Xu, Qinwu; Hesthaven, Jan S.
2015-07-01
This paper proposes an approach for high-order time integration within a multi-domain setting for time-fractional differential equations. Since the kernel is singular or nearly singular, two main difficulties arise after the domain decomposition: how to properly account for the history/memory part and how to perform the integration accurately. To address these issues, we propose a novel hybrid approach for the numerical integration based on the combination of three-term-recurrence relations of Jacobi polynomials and high-order Gauss quadrature. The different approximations used in the hybrid approach are justified theoretically and through numerical examples. Based on this, we propose a new multi-domain spectral method for high-order accurate time integrations and study its stability properties by identifying the method as a generalized linear method. Numerical experiments confirm hp-convergence for both time-fractional differential equations and time-fractional partial differential equations.
Modeling of delays in PKPD: classical approaches and a tutorial for delay differential equations.
Koch, Gilbert; Krzyzanski, Wojciech; Pérez-Ruixo, Juan Jose; Schropp, Johannes
2014-08-01
In pharmacokinetics/pharmacodynamics (PKPD) the measured response is often delayed relative to drug administration, individuals in a population have a certain lifespan until they maturate or the change of biomarkers does not immediately affects the primary endpoint. The classical approach in PKPD is to apply transit compartment models (TCM) based on ordinary differential equations to handle such delays. However, an alternative approach to deal with delays are delay differential equations (DDE). DDEs feature additional flexibility and properties, realize more complex dynamics and can complementary be used together with TCMs. We introduce several delay based PKPD models and investigate mathematical properties of general DDE based models, which serve as subunits in order to build larger PKPD models. Finally, we review current PKPD software with respect to the implementation of DDEs for PKPD analysis.
Prieur, Fabrice; Vilenskiy, Gregory; Holm, Sverre
2012-10-01
A corrected derivation of nonlinear wave propagation equations with fractional loss operators is presented. The fundamental approach is based on fractional formulations of the stress-strain and heat flux definitions but uses the energy equation and thermodynamic identities to link density and pressure instead of an erroneous fractional form of the entropy equation as done in Prieur and Holm ["Nonlinear acoustic wave equations with fractional loss operators," J. Acoust. Soc. Am. 130(3), 1125-1132 (2011)]. The loss operator of the obtained nonlinear wave equations differs from the previous derivations as well as the dispersion equation, but when approximating for low frequencies the expressions for the frequency dependent attenuation and velocity dispersion remain unchanged.
NASA Technical Reports Server (NTRS)
Elbanna, Hesham M.; Carlson, Leland A.
1992-01-01
The quasi-analytical approach is applied to the three-dimensional full potential equation to compute wing aerodynamic sensitivity coefficients in the transonic regime. Symbolic manipulation is used to reduce the effort associated with obtaining the sensitivity equations, and the large sensitivity system is solved using 'state of the art' routines. Results are compared to those obtained by the direct finite difference approach and both methods are evaluated to determine their computational accuracy and efficiency. The quasi-analytical approach is shown to be accurate and efficient for large aerodynamic systems.
Electronic structure, transport, and collective effects in molecular layered systems.
Hahn, Torsten; Ludwig, Tim; Timm, Carsten; Kortus, Jens
2017-01-01
The great potential of organic heterostructures for organic device applications is exemplified by the targeted engineering of the electronic properties of phthalocyanine-based systems. The transport properties of two different phthalocyanine systems, a pure copper phthalocyanine (CoPc) and a flourinated copper phthalocyanine-manganese phthalocyanine (F 16 CoPc/MnPc) heterostructure, are investigated by means of density functional theory (DFT) and the non-equilibrium Green's function (NEGF) approach. Furthermore, a master-equation-based approach is used to include electronic correlations beyond the mean-field-type approximation of DFT. We describe the essential theoretical tools to obtain the parameters needed for the master equation from DFT results. Finally, an interacting molecular monolayer is considered within a master-equation approach.
NASA Astrophysics Data System (ADS)
Daude, F.; Galon, P.
2018-06-01
A Finite-Volume scheme for the numerical computations of compressible single- and two-phase flows in flexible pipelines is proposed based on an approximate Godunov-type approach. The spatial discretization is here obtained using the HLLC scheme. In addition, the numerical treatment of abrupt changes in area and network including several pipelines connected at junctions is also considered. The proposed approach is based on the integral form of the governing equations making it possible to tackle general equations of state. A coupled approach for the resolution of fluid-structure interaction of compressible fluid flowing in flexible pipes is considered. The structural problem is solved using Euler-Bernoulli beam finite elements. The present Finite-Volume method is applied to ideal gas and two-phase steam-water based on the Homogeneous Equilibrium Model (HEM) in conjunction with a tabulated equation of state in order to demonstrate its ability to tackle general equations of state. The extensive application of the scheme for both shock tube and other transient flow problems demonstrates its capability to resolve such problems accurately and robustly. Finally, the proposed 1-D fluid-structure interaction model appears to be computationally efficient.
Numerical optimization using flow equations.
Punk, Matthias
2014-12-01
We develop a method for multidimensional optimization using flow equations. This method is based on homotopy continuation in combination with a maximum entropy approach. Extrema of the optimizing functional correspond to fixed points of the flow equation. While ideas based on Bayesian inference such as the maximum entropy method always depend on a prior probability, the additional step in our approach is to perform a continuous update of the prior during the homotopy flow. The prior probability thus enters the flow equation only as an initial condition. We demonstrate the applicability of this optimization method for two paradigmatic problems in theoretical condensed matter physics: numerical analytic continuation from imaginary to real frequencies and finding (variational) ground states of frustrated (quantum) Ising models with random or long-range antiferromagnetic interactions.
Numerical optimization using flow equations
NASA Astrophysics Data System (ADS)
Punk, Matthias
2014-12-01
We develop a method for multidimensional optimization using flow equations. This method is based on homotopy continuation in combination with a maximum entropy approach. Extrema of the optimizing functional correspond to fixed points of the flow equation. While ideas based on Bayesian inference such as the maximum entropy method always depend on a prior probability, the additional step in our approach is to perform a continuous update of the prior during the homotopy flow. The prior probability thus enters the flow equation only as an initial condition. We demonstrate the applicability of this optimization method for two paradigmatic problems in theoretical condensed matter physics: numerical analytic continuation from imaginary to real frequencies and finding (variational) ground states of frustrated (quantum) Ising models with random or long-range antiferromagnetic interactions.
A review of physically based models for soil erosion by water
NASA Astrophysics Data System (ADS)
Le, Minh-Hoang; Cerdan, Olivier; Sochala, Pierre; Cheviron, Bruno; Brivois, Olivier; Cordier, Stéphane
2010-05-01
Physically-based models rely on fundamental physical equations describing stream flow and sediment and associated nutrient generation in a catchment. This paper reviews several existing erosion and sediment transport approaches. The process of erosion include soil detachment, transport and deposition, we present various forms of equations and empirical formulas used when modelling and quantifying each of these processes. In particular, we detail models describing rainfall and infiltration effects and the system of equations to describe the overland flow and the evolution of the topography. We also present the formulas for the flow transport capacity and the erodibility functions. Finally, we present some recent numerical schemes to approach the shallow water equations and it's coupling with infiltration and erosion source terms.
Computer Applications in Balancing Chemical Equations.
ERIC Educational Resources Information Center
Kumar, David D.
2001-01-01
Discusses computer-based approaches to balancing chemical equations. Surveys 13 methods, 6 based on matrix, 2 interactive programs, 1 stand-alone system, 1 developed in algorithm in Basic, 1 based on design engineering, 1 written in HyperCard, and 1 prepared for the World Wide Web. (Contains 17 references.) (Author/YDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, R.
This report documents the initial progress on the reduced-order flow model developments in SAM for thermal stratification and mixing modeling. Two different modeling approaches are pursued. The first one is based on one-dimensional fluid equations with additional terms accounting for the thermal mixing from both flow circulations and turbulent mixing. The second approach is based on three-dimensional coarse-grid CFD approach, in which the full three-dimensional fluid conservation equations are modeled with closure models to account for the effects of turbulence.
Algebraic features of some generalizations of the Lotka-Volterra system
NASA Astrophysics Data System (ADS)
Bibik, Yu. V.; Sarancha, D. A.
2010-10-01
For generalizations of the Lotka-Volterra system, an integration method is proposed based on the nontrivial algebraic structure of these generalizations. The method makes use of an auxiliary first-order differential equation derived from the phase curve equation with the help of this algebraic structure. Based on this equation, a Hamiltonian approach can be developed and canonical variables (moreover, action-angle variables) can be constructed.
On supporting students' understanding of solving linear equation by using flowchart
NASA Astrophysics Data System (ADS)
Toyib, Muhamad; Kusmayadi, Tri Atmojo; Riyadi
2017-05-01
The aim of this study was to support 7th graders to gradually understand the concepts and procedures of solving linear equation. Thirty-two 7th graders of a Junior High School in Surakarta, Indonesia were involved in this study. Design research was used as the research approach to achieve the aim. A set of learning activities in solving linear equation with one unknown were designed based on Realistic Mathematics Education (RME) approach. The activities were started by playing LEGO to find a linear equation then solve the equation by using flowchart. The results indicate that using the realistic problems, playing LEGO could stimulate students to construct linear equation. Furthermore, Flowchart used to encourage students' reasoning and understanding on the concepts and procedures of solving linear equation with one unknown.
Additive nonlinear biomass equations: A likelihood-based approach
David L. R. Affleck; Ulises Dieguez-Aranda
2016-01-01
Since Parresolâs (Can. J. For. Res. 31:865-878, 2001) seminal article on the topic, it has become standard to develop nonlinear tree biomass equations to ensure compatibility among total and component predictions and to fit these equations using multistep generalized least-squares methods. In particular, many studies have specified equations for total tree...
GENERIC Integrators: Structure Preserving Time Integration for Thermodynamic Systems
NASA Astrophysics Data System (ADS)
Öttinger, Hans Christian
2018-04-01
Thermodynamically admissible evolution equations for non-equilibrium systems are known to possess a distinct mathematical structure. Within the GENERIC (general equation for the non-equilibrium reversible-irreversible coupling) framework of non-equilibrium thermodynamics, which is based on continuous time evolution, we investigate the possibility of preserving all the structural elements in time-discretized equations. Our approach, which follows Moser's [1] construction of symplectic integrators for Hamiltonian systems, is illustrated for the damped harmonic oscillator. Alternative approaches are sketched.
Bayesian Structural Equation Modeling: A More Flexible Representation of Substantive Theory
ERIC Educational Resources Information Center
Muthen, Bengt; Asparouhov, Tihomir
2012-01-01
This article proposes a new approach to factor analysis and structural equation modeling using Bayesian analysis. The new approach replaces parameter specifications of exact zeros with approximate zeros based on informative, small-variance priors. It is argued that this produces an analysis that better reflects substantive theories. The proposed…
NASA Astrophysics Data System (ADS)
Leskiw, Donald M.; Zhau, Junmei
2000-06-01
This paper reports on results from an ongoing project to develop methodologies for representing and managing multiple, concurrent levels of detail and enabling high performance computing using parallel arrays within distributed object-based simulation frameworks. At this time we present the methodology for representing and managing multiple, concurrent levels of detail and modeling accuracy by using a representation based on the Kalman approach for estimation. The Kalman System Model equations are used to represent model accuracy, Kalman Measurement Model equations provide transformations between heterogeneous levels of detail, and interoperability among disparate abstractions is provided using a form of the Kalman Update equations.
Patil, M P; Sonolikar, R L
2008-10-01
This paper presents a detailed computational fluid dynamics (CFD) based approach for modeling thermal destruction of hazardous wastes in a circulating fluidized bed (CFB) incinerator. The model is based on Eular - Lagrangian approach in which gas phase (continuous phase) is treated in a Eularian reference frame, whereas the waste particulate (dispersed phase) is treated in a Lagrangian reference frame. The reaction chemistry hasbeen modeled through a mixture fraction/ PDF approach. The conservation equations for mass, momentum, energy, mixture fraction and other closure equations have been solved using a general purpose CFD code FLUENT4.5. Afinite volume method on a structured grid has been used for solution of governing equations. The model provides detailed information on the hydrodynamics (gas velocity, particulate trajectories), gas composition (CO, CO2, O2) and temperature inside the riser. The model also allows different operating scenarios to be examined in an efficient manner.
Critical spaces for quasilinear parabolic evolution equations and applications
NASA Astrophysics Data System (ADS)
Prüss, Jan; Simonett, Gieri; Wilke, Mathias
2018-02-01
We present a comprehensive theory of critical spaces for the broad class of quasilinear parabolic evolution equations. The approach is based on maximal Lp-regularity in time-weighted function spaces. It is shown that our notion of critical spaces coincides with the concept of scaling invariant spaces in case that the underlying partial differential equation enjoys a scaling invariance. Applications to the vorticity equations for the Navier-Stokes problem, convection-diffusion equations, the Nernst-Planck-Poisson equations in electro-chemistry, chemotaxis equations, the MHD equations, and some other well-known parabolic equations are given.
NASA Astrophysics Data System (ADS)
Vasco, D. W.
2018-04-01
Following an approach used in quantum dynamics, an exponential representation of the hydraulic head transforms the diffusion equation governing pressure propagation into an equivalent set of ordinary differential equations. Using a reservoir simulator to determine one set of dependent variables leaves a reduced set of equations for the path of a pressure transient. Unlike the current approach for computing the path of a transient, based on a high-frequency asymptotic solution, the trajectories resulting from this new formulation are valid for arbitrary spatial variations in aquifer properties. For a medium containing interfaces and layers with sharp boundaries, the trajectory mechanics approach produces paths that are compatible with travel time fields produced by a numerical simulator, while the asymptotic solution produces paths that bend too strongly into high permeability regions. The breakdown of the conventional asymptotic solution, due to the presence of sharp boundaries, has implications for model parameter sensitivity calculations and the solution of the inverse problem. For example, near an abrupt boundary, trajectories based on the asymptotic approach deviate significantly from regions of high sensitivity observed in numerical computations. In contrast, paths based on the new trajectory mechanics approach coincide with regions of maximum sensitivity to permeability changes.
Maji, Kaushik; Kouri, Donald J
2011-03-28
We have developed a new method for solving quantum dynamical scattering problems, using the time-independent Schrödinger equation (TISE), based on a novel method to generalize a "one-way" quantum mechanical wave equation, impose correct boundary conditions, and eliminate exponentially growing closed channel solutions. The approach is readily parallelized to achieve approximate N(2) scaling, where N is the number of coupled equations. The full two-way nature of the TISE is included while propagating the wave function in the scattering variable and the full S-matrix is obtained. The new algorithm is based on a "Modified Cayley" operator splitting approach, generalizing earlier work where the method was applied to the time-dependent Schrödinger equation. All scattering variable propagation approaches to solving the TISE involve solving a Helmholtz-type equation, and for more than one degree of freedom, these are notoriously ill-behaved, due to the unavoidable presence of exponentially growing contributions to the numerical solution. Traditionally, the method used to eliminate exponential growth has posed a major obstacle to the full parallelization of such propagation algorithms. We stabilize by using the Feshbach projection operator technique to remove all the nonphysical exponentially growing closed channels, while retaining all of the propagating open channel components, as well as exponentially decaying closed channel components.
Analytical solution of the nonlinear diffusion equation
NASA Astrophysics Data System (ADS)
Shanker Dubey, Ravi; Goswami, Pranay
2018-05-01
In the present paper, we derive the solution of the nonlinear fractional partial differential equations using an efficient approach based on the q -homotopy analysis transform method ( q -HATM). The fractional diffusion equations derivatives are considered in Caputo sense. The derived results are graphically demonstrated as well.
Embedding methods for the steady Euler equations
NASA Technical Reports Server (NTRS)
Chang, S. H.; Johnson, G. M.
1983-01-01
An approach to the numerical solution of the steady Euler equations is to embed the first-order Euler system in a second-order system and then to recapture the original solution by imposing additional boundary conditions. Initial development of this approach and computational experimentation with it were previously based on heuristic physical reasoning. This has led to the construction of a relaxation procedure for the solution of two-dimensional steady flow problems. The theoretical justification for the embedding approach is addressed. It is proven that, with the appropriate choice of embedding operator and additional boundary conditions, the solution to the embedded system is exactly the one to the original Euler equations. Hence, solving the embedded version of the Euler equations will not produce extraneous solutions.
NASA Astrophysics Data System (ADS)
Zhou, Xin
1990-03-01
For the direct-inverse scattering transform of the time dependent Schrödinger equation, rigorous results are obtained based on an opertor-triangular-factorization approach. By viewing the equation as a first order operator equation, similar results as for the first order n x n matrix system are obtained. The nonlocal Riemann-Hilbert problem for inverse scattering is shown to have solution.
Foundations of modelling of nonequilibrium low-temperature plasmas
NASA Astrophysics Data System (ADS)
Alves, L. L.; Bogaerts, A.; Guerra, V.; Turner, M. M.
2018-02-01
This work explains the need for plasma models, introduces arguments for choosing the type of model that better fits the purpose of each study, and presents the basics of the most common nonequilibrium low-temperature plasma models and the information available from each one, along with an extensive list of references for complementary in-depth reading. The paper presents the following models, organised according to the level of multi-dimensional description of the plasma: kinetic models, based on either a statistical particle-in-cell/Monte-Carlo approach or the solution to the Boltzmann equation (in the latter case, special focus is given to the description of the electron kinetics); multi-fluid models, based on the solution to the hydrodynamic equations; global (spatially-average) models, based on the solution to the particle and energy rate-balance equations for the main plasma species, usually including a very complete reaction chemistry; mesoscopic models for plasma-surface interaction, adopting either a deterministic approach or a stochastic dynamical Monte-Carlo approach. For each plasma model, the paper puts forward the physics context, introduces the fundamental equations, presents advantages and limitations, also from a numerical perspective, and illustrates its application with some examples. Whenever pertinent, the interconnection between models is also discussed, in view of multi-scale hybrid approaches.
ERIC Educational Resources Information Center
Ursavas, Omer Faruk; Reisoglu, Ilknur
2017-01-01
Purpose: The purpose of this paper is to explore the validity of extended technology acceptance model (TAM) in explaining pre-service teachers' Edmodo acceptance and the variation of variables related to TAM among pre-service teachers having different cognitive styles. Design/methodology/approach: Structural equation modeling approach was used to…
ERIC Educational Resources Information Center
Camporesi, Roberto
2011-01-01
We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as well as of…
Modeling of multi-band drift in nanowires using a full band Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Hathwar, Raghuraj; Saraniti, Marco; Goodnick, Stephen M.
2016-07-01
We report on a new numerical approach for multi-band drift within the context of full band Monte Carlo (FBMC) simulation and apply this to Si and InAs nanowires. The approach is based on the solution of the Krieger and Iafrate (KI) equations [J. B. Krieger and G. J. Iafrate, Phys. Rev. B 33, 5494 (1986)], which gives the probability of carriers undergoing interband transitions subject to an applied electric field. The KI equations are based on the solution of the time-dependent Schrödinger equation, and previous solutions of these equations have used Runge-Kutta (RK) methods to numerically solve the KI equations. This approach made the solution of the KI equations numerically expensive and was therefore only applied to a small part of the Brillouin zone (BZ). Here we discuss an alternate approach to the solution of the KI equations using the Magnus expansion (also known as "exponential perturbation theory"). This method is more accurate than the RK method as the solution lies on the exponential map and shares important qualitative properties with the exact solution such as the preservation of the unitary character of the time evolution operator. The solution of the KI equations is then incorporated through a modified FBMC free-flight drift routine and applied throughout the nanowire BZ. The importance of the multi-band drift model is then demonstrated for the case of Si and InAs nanowires by simulating a uniform field FBMC and analyzing the average carrier energies and carrier populations under high electric fields. Numerical simulations show that the average energy of the carriers under high electric field is significantly higher when multi-band drift is taken into consideration, due to the interband transitions allowing carriers to achieve higher energies.
Gröbner Bases and Generation of Difference Schemes for Partial Differential Equations
NASA Astrophysics Data System (ADS)
Gerdt, Vladimir P.; Blinkov, Yuri A.; Mozzhilkin, Vladimir V.
2006-05-01
In this paper we present an algorithmic approach to the generation of fully conservative difference schemes for linear partial differential equations. The approach is based on enlargement of the equations in their integral conservation law form by extra integral relations between unknown functions and their derivatives, and on discretization of the obtained system. The structure of the discrete system depends on numerical approximation methods for the integrals occurring in the enlarged system. As a result of the discretization, a system of linear polynomial difference equations is derived for the unknown functions and their partial derivatives. A difference scheme is constructed by elimination of all the partial derivatives. The elimination can be achieved by selecting a proper elimination ranking and by computing a Gröbner basis of the linear difference ideal generated by the polynomials in the discrete system. For these purposes we use the difference form of Janet-like Gröbner bases and their implementation in Maple. As illustration of the described methods and algorithms, we construct a number of difference schemes for Burgers and Falkowich-Karman equations and discuss their numerical properties.
Topology optimisation for natural convection problems
NASA Astrophysics Data System (ADS)
Alexandersen, Joe; Aage, Niels; Andreasen, Casper Schousboe; Sigmund, Ole
2014-12-01
This paper demonstrates the application of the density-based topology optimisation approach for the design of heat sinks and micropumps based on natural convection effects. The problems are modelled under the assumptions of steady-state laminar flow using the incompressible Navier-Stokes equations coupled to the convection-diffusion equation through the Boussinesq approximation. In order to facilitate topology optimisation, the Brinkman approach is taken to penalise velocities inside the solid domain and the effective thermal conductivity is interpolated in order to accommodate differences in thermal conductivity of the solid and fluid phases. The governing equations are discretised using stabilised finite elements and topology optimisation is performed for two different problems using discrete adjoint sensitivity analysis. The study shows that topology optimisation is a viable approach for designing heat sink geometries cooled by natural convection and micropumps powered by natural convection.
NASA Astrophysics Data System (ADS)
Gelß, Patrick; Matera, Sebastian; Schütte, Christof
2016-06-01
In multiscale modeling of heterogeneous catalytic processes, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. Usually, this is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO2(110) surface. We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.
Semiconductor spintronics: The full matrix approach
NASA Astrophysics Data System (ADS)
Rossani, A.
2015-12-01
A new model, based on an asymptotic procedure for solving the spinor kinetic equations of electrons and phonons is proposed, which gives naturally the displaced Fermi-Dirac distribution function at the leading order. The balance equations for the electron number, energy density and momentum, plus the Poisson’s equation, constitute now a system of six equations. Moreover, two equations for the evolution of the spin densities are added, which account for a general dispersion relation.
NASA Astrophysics Data System (ADS)
Shiri, Jalal
2018-06-01
Among different reference evapotranspiration (ETo) modeling approaches, mass transfer-based methods have been less studied. These approaches utilize temperature and wind speed records. On the other hand, the empirical equations proposed in this context generally produce weak simulations, except when a local calibration is used for improving their performance. This might be a crucial drawback for those equations in case of local data scarcity for calibration procedure. So, application of heuristic methods can be considered as a substitute for improving the performance accuracy of the mass transfer-based approaches. However, given that the wind speed records have usually higher variation magnitudes than the other meteorological parameters, application of a wavelet transform for coupling with heuristic models would be necessary. In the present paper, a coupled wavelet-random forest (WRF) methodology was proposed for the first time to improve the performance accuracy of the mass transfer-based ETo estimation approaches using cross-validation data management scenarios in both local and cross-station scales. The obtained results revealed that the new coupled WRF model (with the minimum scatter index values of 0.150 and 0.192 for local and external applications, respectively) improved the performance accuracy of the single RF models as well as the empirical equations to great extent.
NASA Astrophysics Data System (ADS)
Jayasree, P. K.; Arun, K. V.; Oormila, R.; Sreelakshmi, H.
2018-05-01
As per Indian Standards, laterally loaded piles are usually analysed using the method adopted by IS 2911-2010 (Part 1/Section 2). But the practising engineers are of the opinion that the IS method is very conservative in design. This work aims at determining the extent to which the conventional IS design approach is conservative. This is done through a comparative study between IS approach and the theoretical model based on Vesic's equation. Bore log details for six different bridges were collected from the Kerala Public Works Department. Cast in situ fixed head piles embedded in three soil conditions both end bearing as well as friction piles were considered and analyzed separately. Piles were also modelled in STAAD.Pro software based on IS approach and the results were validated using Matlock and Reese (In Proceedings of fifth international conference on soil mechanics and foundation engineering, 1961) equation. The results were presented as the percentage variation in values of bending moment and deflection obtained by different methods. The results obtained from the mathematical model based on Vesic's equation and that obtained as per the IS approach were compared and the IS method was found to be uneconomical and conservative.
Solving the incompressible surface Navier-Stokes equation by surface finite elements
NASA Astrophysics Data System (ADS)
Reuther, Sebastian; Voigt, Axel
2018-01-01
We consider a numerical approach for the incompressible surface Navier-Stokes equation on surfaces with arbitrary genus g (S ) . The approach is based on a reformulation of the equation in Cartesian coordinates of the embedding R3, penalization of the normal component, a Chorin projection method, and discretization in space by surface finite elements for each component. The approach thus requires only standard ingredients which most finite element implementations can offer. We compare computational results with discrete exterior calculus simulations on a torus and demonstrate the interplay of the flow field with the topology by showing realizations of the Poincaré-Hopf theorem on n-tori.
Modeling languages for biochemical network simulation: reaction vs equation based approaches.
Wiechert, Wolfgang; Noack, Stephan; Elsheikh, Atya
2010-01-01
Biochemical network modeling and simulation is an essential task in any systems biology project. The systems biology markup language (SBML) was established as a standardized model exchange language for mechanistic models. A specific strength of SBML is that numerous tools for formulating, processing, simulation and analysis of models are freely available. Interestingly, in the field of multidisciplinary simulation, the problem of model exchange between different simulation tools occurred much earlier. Several general modeling languages like Modelica have been developed in the 1990s. Modelica enables an equation based modular specification of arbitrary hierarchical differential algebraic equation models. Moreover, libraries for special application domains can be rapidly developed. This contribution compares the reaction based approach of SBML with the equation based approach of Modelica and explains the specific strengths of both tools. Several biological examples illustrating essential SBML and Modelica concepts are given. The chosen criteria for tool comparison are flexibility for constraint specification, different modeling flavors, hierarchical, modular and multidisciplinary modeling. Additionally, support for spatially distributed systems, event handling and network analysis features is discussed. As a major result it is shown that the choice of the modeling tool has a strong impact on the expressivity of the specified models but also strongly depends on the requirements of the application context.
NASA Technical Reports Server (NTRS)
Coirier, William J.; Powell, Kenneth G.
1994-01-01
A Cartesian, cell-based approach for adaptively-refined solutions of the Euler and Navier-Stokes equations in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, N-sided 'cut' cells are created using polygon-clipping algorithms. The grid is stored in a binary-tree structure which provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite-volume formulation. The convective terms are upwinded: a gradient-limited, linear reconstruction of the primitive variables is performed, providing input states to an approximate Riemann solver for computing the fluxes between neighboring cells. The more robust of a series of viscous flux functions is used to provide the viscous fluxes at the cell interfaces. Adaptively-refined solutions of the Navier-Stokes equations using the Cartesian, cell-based approach are obtained and compared to theory, experiment, and other accepted computational results for a series of low and moderate Reynolds number flows.
NASA Technical Reports Server (NTRS)
Coirier, William J.; Powell, Kenneth G.
1995-01-01
A Cartesian, cell-based approach for adaptively-refined solutions of the Euler and Navier-Stokes equations in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, N-sided 'cut' cells are created using polygon-clipping algorithms. The grid is stored in a binary-tree data structure which provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite-volume formulation. The convective terms are upwinded: A gradient-limited, linear reconstruction of the primitive variables is performed, providing input states to an approximate Riemann solver for computing the fluxes between neighboring cells. The more robust of a series of viscous flux functions is used to provide the viscous fluxes at the cell interfaces. Adaptively-refined solutions of the Navier-Stokes equations using the Cartesian, cell-based approach are obtained and compared to theory, experiment and other accepted computational results for a series of low and moderate Reynolds number flows.
Dynamics of single-bubble sonoluminescence. An alternative approach to the Rayleigh-Plesset equation
NASA Astrophysics Data System (ADS)
de Barros, Ana L. F.; Nogueira, Álvaro L. M. A.; Paschoal, Ricardo C.; Portes, Dirceu, Jr.; Rodrigues, Hilario
2018-03-01
Sonoluminescence is the phenomenon in which acoustic energy is (partially) transformed into light as a bubble of gas collapses inside a liquid medium. One particular model used to explain the motion of the bubble’s wall forced by acoustic pressure is expressed by the Rayleigh-Plesset equation, which can be obtained from the Navier-Stokes equation. In this article, we describe an alternative approach to derive the Rayleigh-Plesset equation based on Lagrangian mechanics. This work is addressed mainly to undergraduate students and teachers. It requires knowledge of calculus and of many concepts from various fields of physics at the intermediate level.
ERIC Educational Resources Information Center
Camporesi, Roberto
2016-01-01
We present an approach to the impulsive response method for solving linear constant-coefficient ordinary differential equations of any order based on the factorization of the differential operator. The approach is elementary, we only assume a basic knowledge of calculus and linear algebra. In particular, we avoid the use of distribution theory, as…
A new fictitious domain approach for Stokes equation
NASA Astrophysics Data System (ADS)
Yang, Min
2017-10-01
The purpose of this paper is to present a new fictitious domain approach based on the Nietzsche’s method combining with a penalty method for the Stokes equation. This method allows for an easy and flexible handling of the geometrical aspects. Stability and a priori error estimate are proved. Finally, a numerical experiment is provided to verify the theoretical findings.
Quantitative photoacoustic imaging in the acoustic regime using SPIM
NASA Astrophysics Data System (ADS)
Beigl, Alexander; Elbau, Peter; Sadiq, Kamran; Scherzer, Otmar
2018-05-01
While in standard photoacoustic imaging the propagation of sound waves is modeled by the standard wave equation, our approach is based on a generalized wave equation with variable sound speed and material density, respectively. In this paper we present an approach for photoacoustic imaging, which in addition to the recovery of the absorption density parameter, the imaging parameter of standard photoacoustics, also allows us to reconstruct the spatially varying sound speed and density, respectively, of the medium. We provide analytical reconstruction formulas for all three parameters based in a linearized model based on single plane illumination microscopy (SPIM) techniques.
Hyperboloidal evolution of test fields in three spatial dimensions
NASA Astrophysics Data System (ADS)
Zenginoǧlu, Anıl; Kidder, Lawrence E.
2010-06-01
We present the numerical implementation of a clean solution to the outer boundary and radiation extraction problems within the 3+1 formalism for hyperbolic partial differential equations on a given background. Our approach is based on compactification at null infinity in hyperboloidal scri fixing coordinates. We report numerical tests for the particular example of a scalar wave equation on Minkowski and Schwarzschild backgrounds. We address issues related to the implementation of the hyperboloidal approach for the Einstein equations, such as nonlinear source functions, matching, and evaluation of formally singular terms at null infinity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren Bo; Yu Jun; Lin Ji
Based on the bosonization approach, the N=1 supersymmetric Ito (sIto) system is changed to a system of coupled bosonic equations. The approach can effectively avoid difficulties caused by intractable fermionic fields which are anticommuting. By solving the coupled bosonic equations, the traveling wave solutions of the sIto system are obtained with the mapping and deformation method. Some novel types of exact solutions for the supersymmetric system are constructed with the solutions and symmetries of the usual Ito equation. In the meanwhile, the similarity reduction solutions of the model are also studied with the Lie point symmetry theory.
NASA Astrophysics Data System (ADS)
Hussain, Nur Farahin Mee; Zahid, Zalina
2014-12-01
Nowadays, in the job market demand, graduates are expected not only to have higher performance in academic but they must also be excellent in soft skill. Problem-Based Learning (PBL) has a number of distinct advantages as a learning method as it can deliver graduates that will be highly prized by industry. This study attempts to determine the satisfaction level of engineering students on the PBL Approach and to evaluate their determinant factors. The Structural Equation Modeling (SEM) was used to investigate how the factors of Good Teaching Scale, Clear Goals, Student Assessment and Levels of Workload affected the student satisfaction towards PBL approach.
Cotton-type and joint invariants for linear elliptic systems.
Aslam, A; Mahomed, F M
2013-01-01
Cotton-type invariants for a subclass of a system of two linear elliptic equations, obtainable from a complex base linear elliptic equation, are derived both by spliting of the corresponding complex Cotton invariants of the base complex equation and from the Laplace-type invariants of the system of linear hyperbolic equations equivalent to the system of linear elliptic equations via linear complex transformations of the independent variables. It is shown that Cotton-type invariants derived from these two approaches are identical. Furthermore, Cotton-type and joint invariants for a general system of two linear elliptic equations are also obtained from the Laplace-type and joint invariants for a system of two linear hyperbolic equations equivalent to the system of linear elliptic equations by complex changes of the independent variables. Examples are presented to illustrate the results.
Cotton-Type and Joint Invariants for Linear Elliptic Systems
Aslam, A.; Mahomed, F. M.
2013-01-01
Cotton-type invariants for a subclass of a system of two linear elliptic equations, obtainable from a complex base linear elliptic equation, are derived both by spliting of the corresponding complex Cotton invariants of the base complex equation and from the Laplace-type invariants of the system of linear hyperbolic equations equivalent to the system of linear elliptic equations via linear complex transformations of the independent variables. It is shown that Cotton-type invariants derived from these two approaches are identical. Furthermore, Cotton-type and joint invariants for a general system of two linear elliptic equations are also obtained from the Laplace-type and joint invariants for a system of two linear hyperbolic equations equivalent to the system of linear elliptic equations by complex changes of the independent variables. Examples are presented to illustrate the results. PMID:24453871
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelß, Patrick, E-mail: p.gelss@fu-berlin.de; Matera, Sebastian, E-mail: matera@math.fu-berlin.de; Schütte, Christof, E-mail: schuette@mi.fu-berlin.de
2016-06-01
In multiscale modeling of heterogeneous catalytic processes, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. Usually, this is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO{sub 2}(110) surface.more » We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.« less
Magnetic Field in a Screw Flow with Fluctuations
NASA Astrophysics Data System (ADS)
Titov, V. V.; Stepanov, R. A.; Sokoloff, D. D.
2018-04-01
We consider the influence of fluctuations in a screw flow of a conducting liquid on the effect of magnetic field self-excitation; the solution of this problem is important for experimental realization of a turbulent dynamo. We propose a theoretical approach based on the solution of averaged equations obtained in the limit of a short correlation time. The applicability of this approach is confirmed by direct numerical simulation of the initial equations. We demonstrate the influence of the correlation of fluctuations on the dynamo effect threshold. It is shown that the solution of the mean-field equations differs from the solution based on direct numerical simulation for a finite correlation time. The advantages and disadvantages of the two approaches are estimates, as well as the importance of the discovered difference in the context of problems of magnetic field self-excitation. The influence of helicity and intermittency on the type of the solution is considered.
Assessment of Person Fit Using Resampling-Based Approaches
ERIC Educational Resources Information Center
Sinharay, Sandip
2016-01-01
De la Torre and Deng suggested a resampling-based approach for person-fit assessment (PFA). The approach involves the use of the [math equation unavailable] statistic, a corrected expected a posteriori estimate of the examinee ability, and the Monte Carlo (MC) resampling method. The Type I error rate of the approach was closer to the nominal level…
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Anirban; Ganguly, Anindita; Chatterjee, Saumya Deep
2018-04-01
In this paper the authors have dealt with seven kinds of non-linear Volterra and Fredholm classes of equations. The authors have formulated an algorithm for solving the aforementioned equation types via Hybrid Function (HF) and Triangular Function (TF) piecewise-linear orthogonal approach. In this approach the authors have reduced integral equation or integro-differential equation into equivalent system of simultaneous non-linear equation and have employed either Newton's method or Broyden's method to solve the simultaneous non-linear equations. The authors have calculated the L2-norm error and the max-norm error for both HF and TF method for each kind of equations. Through the illustrated examples, the authors have shown that the HF based algorithm produces stable result, on the contrary TF-computational method yields either stable, anomalous or unstable results.
Field Effect Transistor in Nanoscale
2017-04-26
analogues) and BxCyNz (Napathalene analogues with x+y+z=10) molecules using quantum many body approach coupled with kinetic (master) equations...analogues with x +y+z=10) molecules using quantum many body approach coupled with kinetic (master) equations. Interestingly, various types of non-linear...Small molecules (such as benzene), double quantum dots (like GaAs-based QDs) which are coupled weakly to metallic electrodes have shown their
ERIC Educational Resources Information Center
Song, Xin-Yuan; Lee, Sik-Yum
2006-01-01
Structural equation models are widely appreciated in social-psychological research and other behavioral research to model relations between latent constructs and manifest variables and to control for measurement error. Most applications of SEMs are based on fully observed continuous normal data and models with a linear structural equation.…
NASA Astrophysics Data System (ADS)
McCaul, G. M. G.; Lorenz, C. D.; Kantorovich, L.
2017-03-01
We present a partition-free approach to the evolution of density matrices for open quantum systems coupled to a harmonic environment. The influence functional formalism combined with a two-time Hubbard-Stratonovich transformation allows us to derive a set of exact differential equations for the reduced density matrix of an open system, termed the extended stochastic Liouville-von Neumann equation. Our approach generalizes previous work based on Caldeira-Leggett models and a partitioned initial density matrix. This provides a simple, yet exact, closed-form description for the evolution of open systems from equilibriated initial conditions. The applicability of this model and the potential for numerical implementations are also discussed.
Physics-Based Stimulation for Night Vision Goggle Simulation
2006-11-01
a CRT display system can produce darker black level than displays based on digital light processing (DLP) or liquid crystal technologies. It should...The general form of the bucket equation for any gun (color) is as follows: (3) n n n n r MnRp f MxR MnR ⎛ ⎞− = ⎜ ⎟−⎝ ⎠ Equation 3 General...simulate rendering approach, we began by testing the bucket rendering approach already utilized by SensorHost: (10) n n n n r MnRp f MxR MnR
NASA Technical Reports Server (NTRS)
Ito, K.
1983-01-01
Approximation schemes based on Legendre-tau approximation are developed for application to parameter identification problem for delay and partial differential equations. The tau method is based on representing the approximate solution as a truncated series of orthonormal functions. The characteristic feature of the Legendre-tau approach is that when the solution to a problem is infinitely differentiable, the rate of convergence is faster than any finite power of 1/N; higher accuracy is thus achieved, making the approach suitable for small N.
NASA Technical Reports Server (NTRS)
Achtemeier, Gary L.; Scott, Robert W.; Chen, J.
1991-01-01
A summary is presented of the progress toward the completion of a comprehensive diagnostic objective analysis system based upon the calculus of variations. The approach was to first develop the objective analysis subject to the constraints that the final product satisfies the five basic primitive equations for a dry inviscid atmosphere: the two nonlinear horizontal momentum equations, the continuity equation, the hydrostatic equation, and the thermodynamic equation. Then, having derived the basic model, there would be added to it the equations for moist atmospheric processes and the radiative transfer equation.
NASA Astrophysics Data System (ADS)
Nayak, Bishnupriya; Menon, S. V. G.
2018-01-01
Enthalpy-based equation of state based on a modified soft sphere model for the fluid phase, which includes vaporization and ionization effects, is formulated for highly porous materials. Earlier developments and applications of enthalpy-based approach had not accounted for the fact that shocked states of materials with high porosity (e.g., porosity more than two for Cu) are in the expanded fluid region. We supplement the well known soft sphere model with a generalized Lennard-Jones formula for the zero temperature isotherm, with parameters determined from cohesive energy, specific volume and bulk modulus of the solid at normal condition. Specific heats at constant pressure, ionic and electronic enthalpy parameters and thermal excitation effects are calculated using the modified approach and used in the enthalpy-based equation of state. We also incorporate energy loss from the shock due to expansion of shocked material in calculating porous Hugoniot. Results obtained for Cu, even up to initial porosities ten, show good agreement with experimental data.
NASA Astrophysics Data System (ADS)
Qin, Bo; Tian, Bo; Wang, Yu-Feng; Shen, Yu-Jia; Wang, Ming
2017-10-01
Under investigation in this paper are the Belov-Chaltikian (BC), Leznov and Blaszak-Marciniak (BM) lattice equations, which are associated with the conformal field theory, UToda(m_1,m_2) system and r-matrix, respectively. With symbolic computation, the Bell-polynomial approach is developed to directly bilinearize those three sets of differential-difference nonlinear evolution equations (NLEEs). This Bell-polynomial approach does not rely on any dependent variable transformation, which constitutes the key step and main difficulty of the Hirota bilinear method, and thus has the advantage in the bilinearization of the differential-difference NLEEs. Based on the bilinear forms obtained, the N-soliton solutions are constructed in terms of the N × N Wronskian determinant. Graphic illustrations demonstrate that those solutions, more general than the existing results, permit some new properties, such as the solitonic propagation and interactions for the BC lattice equations, and the nonnegative dark solitons for the BM lattice equations.
A Two-Step Bayesian Approach for Propensity Score Analysis: Simulations and Case Study.
Kaplan, David; Chen, Jianshen
2012-07-01
A two-step Bayesian propensity score approach is introduced that incorporates prior information in the propensity score equation and outcome equation without the problems associated with simultaneous Bayesian propensity score approaches. The corresponding variance estimators are also provided. The two-step Bayesian propensity score is provided for three methods of implementation: propensity score stratification, weighting, and optimal full matching. Three simulation studies and one case study are presented to elaborate the proposed two-step Bayesian propensity score approach. Results of the simulation studies reveal that greater precision in the propensity score equation yields better recovery of the frequentist-based treatment effect. A slight advantage is shown for the Bayesian approach in small samples. Results also reveal that greater precision around the wrong treatment effect can lead to seriously distorted results. However, greater precision around the correct treatment effect parameter yields quite good results, with slight improvement seen with greater precision in the propensity score equation. A comparison of coverage rates for the conventional frequentist approach and proposed Bayesian approach is also provided. The case study reveals that credible intervals are wider than frequentist confidence intervals when priors are non-informative.
NASA Astrophysics Data System (ADS)
Jouybari-Moghaddam, Y.; Saradjian, M. R.; Forati, A. M.
2017-09-01
Land Surface Temperature (LST) is one of the significant variables measured by remotely sensed data, and it is applied in many environmental and Geoscience studies. The main aim of this study is to develop an algorithm to retrieve the LST from Landsat-8 satellite data using Radiative Transfer Equation (RTE). However, LST can be retrieved from RTE, but, since the RTE has two unknown parameters including LST and surface emissivity, estimating LST from RTE is an under the determined problem. In this study, in order to solve this problem, an approach is proposed an equation set includes two RTE based on Landsat-8 thermal bands (i.e.: band 10 and 11) and two additional equations based on the relation between the Normalized Difference Vegetation Index (NDVI) and emissivity of Landsat-8 thermal bands by using simulated data for Landsat-8 bands. The iterative least square approach was used for solving the equation set. The LST derived from proposed algorithm is evaluated by the simulated dataset, built up by MODTRAN. The result shows the Root Mean Squared Error (RMSE) is less than 1.18°K. Therefore; the proposed algorithm can be a suitable and robust method to retrieve the LST from Landsat-8 satellite data.
Towards the quantization of Eddington-inspired-Born-Infeld theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouhmadi-López, Mariam; Chen, Che-Yu, E-mail: mbl@ubi.pt, E-mail: b97202056@gmail.com
2016-11-01
The quantum effects close to the classical big rip singularity within the Eddington-inspired-Born-Infeld theory (EiBI) are investigated through quantum geometrodynamics. It is the first time that this approach is applied to a modified theory constructed upon Palatini formalism. The Wheeler-DeWitt (WDW) equation is obtained and solved based on an alternative action proposed in ref. [1], under two different factor ordering choices. This action is dynamically equivalent to the original EiBI action while it is free of square root of the spacetime curvature. We consider a homogeneous, isotropic and spatially flat universe, which is assumed to be dominated by a phantommore » perfect fluid whose equation of state is a constant. We obtain exact solutions of the WDW equation based on some specific conditions. In more general cases, we propose a qualitative argument with the help of a Wentzel-Kramers-Brillouin (WKB) approximation to get further solutions. Besides, we also construct an effective WDW equation by simply promoting the classical Friedmann equations. We find that for all the approaches considered, the DeWitt condition hinting singularity avoidance is satisfied. Therefore the big rip singularity is expected to be avoided through the quantum approach within the EiBI theory.« less
A Riemann-Hilbert Approach for the Novikov Equation
NASA Astrophysics Data System (ADS)
Boutet de Monvel, Anne; Shepelsky, Dmitry; Zielinski, Lech
2016-09-01
We develop the inverse scattering transform method for the Novikov equation u_t-u_{txx}+4u^2u_x=3u u_xu_{xx}+u^2u_{xxx} considered on the line xin(-∞,∞) in the case of non-zero constant background. The approach is based on the analysis of an associated Riemann-Hilbert (RH) problem, which in this case is a 3× 3 matrix problem. The structure of this RH problem shares many common features with the case of the Degasperis-Procesi (DP) equation having quadratic nonlinear terms (see [Boutet de Monvel A., Shepelsky D., Nonlinearity 26 (2013), 2081-2107, arXiv:1107.5995]) and thus the Novikov equation can be viewed as a ''modified DP equation'', in analogy with the relationship between the Korteweg-de Vries (KdV) equation and the modified Korteweg-de Vries (mKdV) equation. We present parametric formulas giving the solution of the Cauchy problem for the Novikov equation in terms of the solution of the RH problem and discuss the possibilities to use the developed formalism for further studying of the Novikov equation.
James E. Smith; Coeli M. Hoover
2017-01-01
The carbon reports in the Fire and Fuels Extension (FFE) to the Forest Vegetation Simulator (FVS) provide two alternate approaches to carbon estimates for live trees (Rebain 2010). These are (1) the FFE biomass algorithms, which are volumebased biomass equations, and (2) the Jenkins allometric equations (Jenkins and others 2003), which are diameter based. Here, we...
Method of fan sound mode structure determination
NASA Technical Reports Server (NTRS)
Pickett, G. F.; Sofrin, T. G.; Wells, R. W.
1977-01-01
A method for the determination of fan sound mode structure in the Inlet of turbofan engines using in-duct acoustic pressure measurements is presented. The method is based on the simultaneous solution of a set of equations whose unknowns are modal amplitude and phase. A computer program for the solution of the equation set was developed. An additional computer program was developed which calculates microphone locations the use of which results in an equation set that does not give rise to numerical instabilities. In addition to the development of a method for determination of coherent modal structure, experimental and analytical approaches are developed for the determination of the amplitude frequency spectrum of randomly generated sound models for use in narrow annulus ducts. Two approaches are defined: one based on the use of cross-spectral techniques and the other based on the use of an array of microphones.
Hamiltonian formulation of the KdV equation
NASA Astrophysics Data System (ADS)
Nutku, Y.
1984-06-01
We consider the canonical formulation of Whitham's variational principle for the KdV equation. This Lagrangian is degenerate and we have found it necessary to use Dirac's theory of constrained systems in constructing the Hamiltonian. Earlier discussions of the Hamiltonian structure of the KdV equation were based on various different decompositions of the field which is avoided by this new approach.
Refractive laser beam shaping by means of a functional differential equation based design approach.
Duerr, Fabian; Thienpont, Hugo
2014-04-07
Many laser applications require specific irradiance distributions to ensure optimal performance. Geometric optical design methods based on numerical calculation of two plano-aspheric lenses have been thoroughly studied in the past. In this work, we present an alternative new design approach based on functional differential equations that allows direct calculation of the rotational symmetric lens profiles described by two-point Taylor polynomials. The formalism is used to design a Gaussian to flat-top irradiance beam shaping system but also to generate a more complex dark-hollow Gaussian (donut-like) irradiance distribution with zero intensity in the on-axis region. The presented ray tracing results confirm the high accuracy of both calculated solutions and emphasize the potential of this design approach for refractive beam shaping applications.
A new mathematical approach for shock-wave solution in a dusty plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, G.C.; Dwivedi, C.B.; Talukdar, M.
1997-12-01
The problem of nonlinear Burger equation in a plasma contaminated with heavy dust grains has been revisited. As discussed earlier [C. B. Dwivedi and B. P. Pandey, Phys. Plasmas {bold 2}, 9 (1995)], the Burger equation originates due to dust charge fluctuation dynamics. A new alternate mathematical approach based on a simple traveling wave formalism has been applied to find out the solution of the derived Burger equation, and the method recovers the known shock-wave solution. This technique, although having its own limitation, predicts successfully the salient features of the weak shock-wave structure in a dusty plasma with dust chargemore » fluctuation dynamics. It is emphasized that this approach of the traveling wave formalism is being applied for the first time to solve the nonlinear wave equation in plasmas. {copyright} {ital 1997 American Institute of Physics.}« less
NASA Astrophysics Data System (ADS)
Chen, Wen; Wang, Fajie
Based on the implicit calculus equation modeling approach, this paper proposes a speculative concept of the potential and wave operators on negative dimensionality. Unlike the standard partial differential equation (PDE) modeling, the implicit calculus modeling approach does not require the explicit expression of the PDE governing equation. Instead the fundamental solution of physical problem is used to implicitly define the differential operator and to implement simulation in conjunction with the appropriate boundary conditions. In this study, we conjecture an extension of the fundamental solution of the standard Laplace and Helmholtz equations to negative dimensionality. And then by using the singular boundary method, a recent boundary discretization technique, we investigate the potential and wave problems using the fundamental solution on negative dimensionality. Numerical experiments reveal that the physics behaviors on negative dimensionality may differ on positive dimensionality. This speculative study might open an unexplored territory in research.
Composite anion-exchangers modified with nanoparticles of hydrated oxides of multivalent metals
NASA Astrophysics Data System (ADS)
Maltseva, T. V.; Kolomiets, E. O.; Dzyazko, Yu. S.; Scherbakov, S.
2018-02-01
Organic-inorganic composite ion-exchangers based on anion exchange resins have been obtained. Particles of one-component and two-component modifier were embedded using the approach, which allows us to realize purposeful control of a size of the embedded particles. The approach is based on Ostwald-Freundlich equation, which was adapted to deposition in ion exchange matrix. The equation was obtained experimentally. Hydrated oxides of zirconium and iron were applied to modification, concentration of the reagents were varied. The embedded particles accelerate sorption, the rate of which is fitted by the model equation of chemical reactions of pseudo-second order. When sorption of arsenate ions from very diluted solution (50 µg dm-3) occurs, the composites show higher distribution coefficients comparing with the pristine resin.
NASA Astrophysics Data System (ADS)
Dehghan, Mehdi; Mohammadi, Vahid
2017-03-01
As is said in [27], the tumor-growth model is the incorporation of nutrient within the mixture as opposed to being modeled with an auxiliary reaction-diffusion equation. The formulation involves systems of highly nonlinear partial differential equations of surface effects through diffuse-interface models [27]. Simulations of this practical model using numerical methods can be applied for evaluating it. The present paper investigates the solution of the tumor growth model with meshless techniques. Meshless methods are applied based on the collocation technique which employ multiquadrics (MQ) radial basis function (RBFs) and generalized moving least squares (GMLS) procedures. The main advantages of these choices come back to the natural behavior of meshless approaches. As well as, a method based on meshless approach can be applied easily for finding the solution of partial differential equations in high-dimension using any distributions of points on regular and irregular domains. The present paper involves a time-dependent system of partial differential equations that describes four-species tumor growth model. To overcome the time variable, two procedures will be used. One of them is a semi-implicit finite difference method based on Crank-Nicolson scheme and another one is based on explicit Runge-Kutta time integration. The first case gives a linear system of algebraic equations which will be solved at each time-step. The second case will be efficient but conditionally stable. The obtained numerical results are reported to confirm the ability of these techniques for solving the two and three-dimensional tumor-growth equations.
2006-08-01
equations for the antimicrobial activities and the structural properties of the silanols, the alcohols, and the phenols against four bacteria.........59 4... equations in Table 4-3. ...................................69 ix 4-6 Comparison data of PRESS and RMSPE of different classes of external compounds against...manner as shown in Equation 1-1. Hansch and Fujita derived a correlation model Equation 1-2 based on the linear free energy approach using
A finite element approach for solution of the 3D Euler equations
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Ramakrishnan, R.; Dechaumphai, P.
1986-01-01
Prediction of thermal deformations and stresses has prime importance in the design of the next generation of high speed flight vehicles. Aerothermal load computations for complex three-dimensional shapes necessitate development of procedures to solve the full Navier-Stokes equations. This paper details the development of a three-dimensional inviscid flow approach which can be extended for three-dimensional viscous flows. A finite element formulation, based on a Taylor series expansion in time, is employed to solve the compressible Euler equations. Model generation and results display are done using a commercially available program, PATRAN, and vectorizing strategies are incorporated to ensure computational efficiency. Sample problems are presented to demonstrate the validity of the approach for analyzing high speed compressible flows.
Determining "small parameters" for quasi-steady state
NASA Astrophysics Data System (ADS)
Goeke, Alexandra; Walcher, Sebastian; Zerz, Eva
2015-08-01
For a parameter-dependent system of ordinary differential equations we present a systematic approach to the determination of parameter values near which singular perturbation scenarios (in the sense of Tikhonov and Fenichel) arise. We call these special values Tikhonov-Fenichel parameter values. The principal application we intend is to equations that describe chemical reactions, in the context of quasi-steady state (or partial equilibrium) settings. Such equations have rational (or even polynomial) right-hand side. We determine the structure of the set of Tikhonov-Fenichel parameter values as a semi-algebraic set, and present an algorithmic approach to their explicit determination, using Groebner bases. Examples and applications (which include the irreversible and reversible Michaelis-Menten systems) illustrate that the approach is rather easy to implement.
Voulgarelis, Dimitrios; Velayudhan, Ajoy; Smith, Frank
2017-01-01
Agent-based models provide a formidable tool for exploring complex and emergent behaviour of biological systems as well as accurate results but with the drawback of needing a lot of computational power and time for subsequent analysis. On the other hand, equation-based models can more easily be used for complex analysis in a much shorter timescale. This paper formulates an ordinary differential equations and stochastic differential equations model to capture the behaviour of an existing agent-based model of tumour cell reprogramming and applies it to optimization of possible treatment as well as dosage sensitivity analysis. For certain values of the parameter space a close match between the equation-based and agent-based models is achieved. The need for division of labour between the two approaches is explored. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Tzanos, Constantine P.
1992-10-01
A higher-order differencing scheme (Tzanos, 1990) is used in conjunction with a multigrid approach to obtain accurate solutions of the Navier-Stokes convection-diffusion equations at high Re numbers. Flow in a square cavity with a moving lid is used as a test problem. a multigrid approach based on the additive correction method (Settari and Aziz) and an iterative incomplete lower and upper solver demonstrated good performance for the whole range of Re number under consideration (from 1000 to 10,000) and for both uniform and nonuniform grids. It is concluded that the combination of the higher-order differencing scheme with a multigrid approach proved to be an effective technique for giving accurate solutions of the Navier-Stokes equations at high Re numbers.
A novel unsplit perfectly matched layer for the second-order acoustic wave equation.
Ma, Youneng; Yu, Jinhua; Wang, Yuanyuan
2014-08-01
When solving acoustic field equations by using numerical approximation technique, absorbing boundary conditions (ABCs) are widely used to truncate the simulation to a finite space. The perfectly matched layer (PML) technique has exhibited excellent absorbing efficiency as an ABC for the acoustic wave equation formulated as a first-order system. However, as the PML was originally designed for the first-order equation system, it cannot be applied to the second-order equation system directly. In this article, we aim to extend the unsplit PML to the second-order equation system. We developed an efficient unsplit implementation of PML for the second-order acoustic wave equation based on an auxiliary-differential-equation (ADE) scheme. The proposed method can benefit to the use of PML in simulations based on second-order equations. Compared with the existing PMLs, it has simpler implementation and requires less extra storage. Numerical results from finite-difference time-domain models are provided to illustrate the validity of the approach. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciraolo, Giulio, E-mail: g.ciraolo@math.unipa.it; Gargano, Francesco, E-mail: gargano@math.unipa.it; Sciacca, Vincenzo, E-mail: sciacca@math.unipa.it
2013-08-01
We study a new approach to the problem of transparent boundary conditions for the Helmholtz equation in unbounded domains. Our approach is based on the minimization of an integral functional arising from a volume integral formulation of the radiation condition. The index of refraction does not need to be constant at infinity and may have some angular dependency as well as perturbations. We prove analytical results on the convergence of the approximate solution. Numerical examples for different shapes of the artificial boundary and for non-constant indexes of refraction will be presented.
Linda S. Heath; Mark Hansen; James E. Smith; Patrick D. Miles
2009-01-01
The official U.S. forest carbon inventories (U.S. EPA 2008) have relied on tree biomass estimates that utilize diameter based prediction equations from Jenkins and others (2003), coupled with U.S. Forest Service, Forest Inventory and Analysis (FIA) sample tree measurements and forest area estimates. However, these biomass prediction equations are not the equations used...
NASA Technical Reports Server (NTRS)
Turc, Catalin; Anand, Akash; Bruno, Oscar; Chaubell, Julian
2011-01-01
We present a computational methodology (a novel Nystrom approach based on use of a non-overlapping patch technique and Chebyshev discretizations) for efficient solution of problems of acoustic and electromagnetic scattering by open surfaces. Our integral equation formulations (1) Incorporate, as ansatz, the singular nature of open-surface integral-equation solutions, and (2) For the Electric Field Integral Equation (EFIE), use analytical regularizes that effectively reduce the number of iterations required by iterative linear-algebra solution based on Krylov-subspace iterative solvers.
Equations with Parameters: A Locus Approach
ERIC Educational Resources Information Center
Abramovich, Sergei; Norton, Anderson
2006-01-01
This paper introduces technology-based teaching ideas that facilitate the development of qualitative reasoning techniques in the context of quadratic equations with parameters. It reflects on activities designed for and used with prospective secondary mathematics teachers in accord with standards for teaching and recommendations for teachers in…
Liu, Gaisheng; Lu, Zhiming; Zhang, Dongxiao
2007-01-01
A new approach has been developed for solving solute transport problems in randomly heterogeneous media using the Karhunen‐Loève‐based moment equation (KLME) technique proposed by Zhang and Lu (2004). The KLME approach combines the Karhunen‐Loève decomposition of the underlying random conductivity field and the perturbative and polynomial expansions of dependent variables including the hydraulic head, flow velocity, dispersion coefficient, and solute concentration. The equations obtained in this approach are sequential, and their structure is formulated in the same form as the original governing equations such that any existing simulator, such as Modular Three‐Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems (MT3DMS), can be directly applied as the solver. Through a series of two‐dimensional examples, the validity of the KLME approach is evaluated against the classical Monte Carlo simulations. Results indicate that under the flow and transport conditions examined in this work, the KLME approach provides an accurate representation of the mean concentration. For the concentration variance, the accuracy of the KLME approach is good when the conductivity variance is 0.5. As the conductivity variance increases up to 1.0, the mismatch on the concentration variance becomes large, although the mean concentration can still be accurately reproduced by the KLME approach. Our results also indicate that when the conductivity variance is relatively large, neglecting the effects of the cross terms between velocity fluctuations and local dispersivities, as done in some previous studies, can produce noticeable errors, and a rigorous treatment of the dispersion terms becomes more appropriate.
Transport Equation Based Wall Distance Computations Aimed at Flows With Time-Dependent Geometry
NASA Technical Reports Server (NTRS)
Tucker, Paul G.; Rumsey, Christopher L.; Bartels, Robert E.; Biedron, Robert T.
2003-01-01
Eikonal, Hamilton-Jacobi and Poisson equations can be used for economical nearest wall distance computation and modification. Economical computations may be especially useful for aeroelastic and adaptive grid problems for which the grid deforms, and the nearest wall distance needs to be repeatedly computed. Modifications are directed at remedying turbulence model defects. For complex grid structures, implementation of the Eikonal and Hamilton-Jacobi approaches is not straightforward. This prohibits their use in industrial CFD solvers. However, both the Eikonal and Hamilton-Jacobi equations can be written in advection and advection-diffusion forms, respectively. These, like the Poisson s Laplacian, are commonly occurring industrial CFD solver elements. Use of the NASA CFL3D code to solve the Eikonal and Hamilton-Jacobi equations in advective-based forms is explored. The advection-based distance equations are found to have robust convergence. Geometries studied include single and two element airfoils, wing body and double delta configurations along with a complex electronics system. It is shown that for Eikonal accuracy, upwind metric differences are required. The Poisson approach is found effective and, since it does not require offset metric evaluations, easiest to implement. The sensitivity of flow solutions to wall distance assumptions is explored. Generally, results are not greatly affected by wall distance traits.
Transport Equation Based Wall Distance Computations Aimed at Flows With Time-Dependent Geometry
NASA Technical Reports Server (NTRS)
Tucker, Paul G.; Rumsey, Christopher L.; Bartels, Robert E.; Biedron, Robert T.
2003-01-01
Eikonal, Hamilton-Jacobi and Poisson equations can be used for economical nearest wall distance computation and modification. Economical computations may be especially useful for aeroelastic and adaptive grid problems for which the grid deforms, and the nearest wall distance needs to be repeatedly computed. Modifications are directed at remedying turbulence model defects. For complex grid structures, implementation of the Eikonal and Hamilton-Jacobi approaches is not straightforward. This prohibits their use in industrial CFD solvers. However, both the Eikonal and Hamilton-Jacobi equations can be written in advection and advection-diffusion forms, respectively. These, like the Poisson's Laplacian, are commonly occurring industrial CFD solver elements. Use of the NASA CFL3D code to solve the Eikonal and Hamilton-Jacobi equations in advective-based forms is explored. The advection-based distance equations are found to have robust convergence. Geometries studied include single and two element airfoils, wing body and double delta configurations along with a complex electronics system. It is shown that for Eikonal accuracy, upwind metric differences are required. The Poisson approach is found effective and, since it does not require offset metric evaluations, easiest to implement. The sensitivity of flow solutions to wall distance assumptions is explored. Generally, results are not greatly affected by wall distance traits.
ERIC Educational Resources Information Center
von Davier, Matthias; González B., Jorge; von Davier, Alina A.
2013-01-01
Local equating (LE) is based on Lord's criterion of equity. It defines a family of true transformations that aim at the ideal of equitable equating. van der Linden (this issue) offers a detailed discussion of common issues in observed-score equating relative to this local approach. By assuming an underlying item response theory model, one of…
A hybrid approach for nonlinear computational aeroacoustics predictions
NASA Astrophysics Data System (ADS)
Sassanis, Vasileios; Sescu, Adrian; Collins, Eric M.; Harris, Robert E.; Luke, Edward A.
2017-01-01
In many aeroacoustics applications involving nonlinear waves and obstructions in the far-field, approaches based on the classical acoustic analogy theory or the linearised Euler equations are unable to fully characterise the acoustic field. Therefore, computational aeroacoustics hybrid methods that incorporate nonlinear wave propagation have to be constructed. In this study, a hybrid approach coupling Navier-Stokes equations in the acoustic source region with nonlinear Euler equations in the acoustic propagation region is introduced and tested. The full Navier-Stokes equations are solved in the source region to identify the acoustic sources. The flow variables of interest are then transferred from the source region to the acoustic propagation region, where the full nonlinear Euler equations with source terms are solved. The transition between the two regions is made through a buffer zone where the flow variables are penalised via a source term added to the Euler equations. Tests were conducted on simple acoustic and vorticity disturbances, two-dimensional jets (Mach 0.9 and 2), and a three-dimensional jet (Mach 1.5), impinging on a wall. The method is proven to be effective and accurate in predicting sound pressure levels associated with the propagation of linear and nonlinear waves in the near- and far-field regions.
Stochastic simulation of multiscale complex systems with PISKaS: A rule-based approach.
Perez-Acle, Tomas; Fuenzalida, Ignacio; Martin, Alberto J M; Santibañez, Rodrigo; Avaria, Rodrigo; Bernardin, Alejandro; Bustos, Alvaro M; Garrido, Daniel; Dushoff, Jonathan; Liu, James H
2018-03-29
Computational simulation is a widely employed methodology to study the dynamic behavior of complex systems. Although common approaches are based either on ordinary differential equations or stochastic differential equations, these techniques make several assumptions which, when it comes to biological processes, could often lead to unrealistic models. Among others, model approaches based on differential equations entangle kinetics and causality, failing when complexity increases, separating knowledge from models, and assuming that the average behavior of the population encompasses any individual deviation. To overcome these limitations, simulations based on the Stochastic Simulation Algorithm (SSA) appear as a suitable approach to model complex biological systems. In this work, we review three different models executed in PISKaS: a rule-based framework to produce multiscale stochastic simulations of complex systems. These models span multiple time and spatial scales ranging from gene regulation up to Game Theory. In the first example, we describe a model of the core regulatory network of gene expression in Escherichia coli highlighting the continuous model improvement capacities of PISKaS. The second example describes a hypothetical outbreak of the Ebola virus occurring in a compartmentalized environment resembling cities and highways. Finally, in the last example, we illustrate a stochastic model for the prisoner's dilemma; a common approach from social sciences describing complex interactions involving trust within human populations. As whole, these models demonstrate the capabilities of PISKaS providing fertile scenarios where to explore the dynamics of complex systems. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhong, Jiaqi; Zeng, Cheng; Yuan, Yupeng; Zhang, Yuzhe; Zhang, Ye
2018-04-01
The aim of this paper is to present an explicit numerical algorithm based on improved spectral Galerkin method for solving the unsteady diffusion-convection-reaction equation. The principal characteristics of this approach give the explicit eigenvalues and eigenvectors based on the time-space separation method and boundary condition analysis. With the help of Fourier series and Galerkin truncation, we can obtain the finite-dimensional ordinary differential equations which facilitate the system analysis and controller design. By comparing with the finite element method, the numerical solutions are demonstrated via two examples. It is shown that the proposed method is effective.
The Estimation of Gestational Age at Birth in Database Studies.
Eberg, Maria; Platt, Robert W; Filion, Kristian B
2017-11-01
Studies on the safety of prenatal medication use require valid estimation of the pregnancy duration. However, gestational age is often incompletely recorded in administrative and clinical databases. Our objective was to compare different approaches to estimating the pregnancy duration. Using data from the Clinical Practice Research Datalink and Hospital Episode Statistics, we examined the following four approaches to estimating missing gestational age: (1) generalized estimating equations for longitudinal data; (2) multiple imputation; (3) estimation based on fetal birth weight and sex; and (4) conventional approaches that assigned a fixed value (39 weeks for all or 39 weeks for full term and 35 weeks for preterm). The gestational age recorded in Hospital Episode Statistics was considered the gold standard. We conducted a simulation study comparing the described approaches in terms of estimated bias and mean square error. A total of 25,929 infants from 22,774 mothers were included in our "gold standard" cohort. The smallest average absolute bias was observed for the generalized estimating equation that included birth weight, while the largest absolute bias occurred when assigning 39-week gestation to all those with missing values. The smallest mean square errors were detected with generalized estimating equations while multiple imputation had the highest mean square errors. The use of generalized estimating equations resulted in the most accurate estimation of missing gestational age when birth weight information was available. In the absence of birth weight, assignment of fixed gestational age based on term/preterm status may be the optimal approach.
NASA Astrophysics Data System (ADS)
Zhong, XiaoXu; Liao, ShiJun
2018-01-01
Analytic approximations of the Von Kármán's plate equations in integral form for a circular plate under external uniform pressure to arbitrary magnitude are successfully obtained by means of the homotopy analysis method (HAM), an analytic approximation technique for highly nonlinear problems. Two HAM-based approaches are proposed for either a given external uniform pressure Q or a given central deflection, respectively. Both of them are valid for uniform pressure to arbitrary magnitude by choosing proper values of the so-called convergence-control parameters c 1 and c 2 in the frame of the HAM. Besides, it is found that the HAM-based iteration approaches generally converge much faster than the interpolation iterative method. Furthermore, we prove that the interpolation iterative method is a special case of the first-order HAM iteration approach for a given external uniform pressure Q when c 1 = - θ and c 2 = -1, where θ denotes the interpolation iterative parameter. Therefore, according to the convergence theorem of Zheng and Zhou about the interpolation iterative method, the HAM-based approaches are valid for uniform pressure to arbitrary magnitude at least in the special case c 1 = - θ and c 2 = -1. In addition, we prove that the HAM approach for the Von Kármán's plate equations in differential form is just a special case of the HAM for the Von Kármán's plate equations in integral form mentioned in this paper. All of these illustrate the validity and great potential of the HAM for highly nonlinear problems, and its superiority over perturbation techniques.
A DYNAMIC DENSITY FUNCTIONAL THEORY APPROACH TO DIFFUSION IN WHITE DWARFS AND NEUTRON STAR ENVELOPES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaw, A.; Murillo, M. S.
2016-09-20
We develop a multicomponent hydrodynamic model based on moments of the Born–Bogolyubov–Green–Kirkwood–Yvon hierarchy equations for physical conditions relevant to astrophysical plasmas. These equations incorporate strong correlations through a density functional theory closure, while transport enters through a relaxation approximation. This approach enables the introduction of Coulomb coupling correction terms into the standard Burgers equations. The diffusive currents for these strongly coupled plasmas is self-consistently derived. The settling of impurities and its impact on cooling can be greatly affected by strong Coulomb coupling, which we show can be quantified using the direct correlation function.
AN INTEGRAL EQUATION REPRESENTATION OF WIDE-BAND ELECTROMAGNETIC SCATTERING BY THIN SHEETS
An efficient, accurate numerical modeling scheme has been developed, based on the integral equation solution to compute electromagnetic (EM) responses of thin sheets over a wide frequency band. The thin-sheet approach is useful for simulating the EM response of a fracture system ...
NASA Astrophysics Data System (ADS)
Mönkölä, Sanna
2013-06-01
This study considers developing numerical solution techniques for the computer simulations of time-harmonic fluid-structure interaction between acoustic and elastic waves. The focus is on the efficiency of an iterative solution method based on a controllability approach and spectral elements. We concentrate on the model, in which the acoustic waves in the fluid domain are modeled by using the velocity potential and the elastic waves in the structure domain are modeled by using displacement. Traditionally, the complex-valued time-harmonic equations are used for solving the time-harmonic problems. Instead of that, we focus on finding periodic solutions without solving the time-harmonic problems directly. The time-dependent equations can be simulated with respect to time until a time-harmonic solution is reached, but the approach suffers from poor convergence. To overcome this challenge, we follow the approach first suggested and developed for the acoustic wave equations by Bristeau, Glowinski, and Périaux. Thus, we accelerate the convergence rate by employing a controllability method. The problem is formulated as a least-squares optimization problem, which is solved with the conjugate gradient (CG) algorithm. Computation of the gradient of the functional is done directly for the discretized problem. A graph-based multigrid method is used for preconditioning the CG algorithm.
Sensitivity Equation Derivation for Transient Heat Transfer Problems
NASA Technical Reports Server (NTRS)
Hou, Gene; Chien, Ta-Cheng; Sheen, Jeenson
2004-01-01
The focus of the paper is on the derivation of sensitivity equations for transient heat transfer problems modeled by different discretization processes. Two examples will be used in this study to facilitate the discussion. The first example is a coupled, transient heat transfer problem that simulates the press molding process in fabrication of composite laminates. These state equations are discretized into standard h-version finite elements and solved by a multiple step, predictor-corrector scheme. The sensitivity analysis results based upon the direct and adjoint variable approaches will be presented. The second example is a nonlinear transient heat transfer problem solved by a p-version time-discontinuous Galerkin's Method. The resulting matrix equation of the state equation is simply in the form of Ax = b, representing a single step, time marching scheme. A direct differentiation approach will be used to compute the thermal sensitivities of a sample 2D problem.
The renormalization group and the implicit function theorem for amplitude equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkinis, Eleftherios
2008-07-15
This article lays down the foundations of the renormalization group (RG) approach for differential equations characterized by multiple scales. The renormalization of constants through an elimination process and the subsequent derivation of the amplitude equation [Chen et al., Phys. Rev. E 54, 376 (1996)] are given a rigorous but not abstract mathematical form whose justification is based on the implicit function theorem. Developing the theoretical framework that underlies the RG approach leads to a systematization of the renormalization process and to the derivation of explicit closed-form expressions for the amplitude equations that can be carried out with symbolic computation formore » both linear and nonlinear scalar differential equations and first order systems but independently of their particular forms. Certain nonlinear singular perturbation problems are considered that illustrate the formalism and recover well-known results from the literature as special cases.« less
Wu, Hulin; Xue, Hongqi; Kumar, Arun
2012-06-01
Differential equations are extensively used for modeling dynamics of physical processes in many scientific fields such as engineering, physics, and biomedical sciences. Parameter estimation of differential equation models is a challenging problem because of high computational cost and high-dimensional parameter space. In this article, we propose a novel class of methods for estimating parameters in ordinary differential equation (ODE) models, which is motivated by HIV dynamics modeling. The new methods exploit the form of numerical discretization algorithms for an ODE solver to formulate estimating equations. First, a penalized-spline approach is employed to estimate the state variables and the estimated state variables are then plugged in a discretization formula of an ODE solver to obtain the ODE parameter estimates via a regression approach. We consider three different order of discretization methods, Euler's method, trapezoidal rule, and Runge-Kutta method. A higher-order numerical algorithm reduces numerical error in the approximation of the derivative, which produces a more accurate estimate, but its computational cost is higher. To balance the computational cost and estimation accuracy, we demonstrate, via simulation studies, that the trapezoidal discretization-based estimate is the best and is recommended for practical use. The asymptotic properties for the proposed numerical discretization-based estimators are established. Comparisons between the proposed methods and existing methods show a clear benefit of the proposed methods in regards to the trade-off between computational cost and estimation accuracy. We apply the proposed methods t an HIV study to further illustrate the usefulness of the proposed approaches. © 2012, The International Biometric Society.
Computers and the Rational-Root Theorem--Another View.
ERIC Educational Resources Information Center
Waits, Bert K.; Demana, Franklin
1989-01-01
An approach to finding the rational roots of polynomial equations based on computer graphing is given. It integrates graphing with the purely algebraic approach. Either computers or graphing calculators can be used. (MNS)
NASA Astrophysics Data System (ADS)
Cooper, Fred; Dawson, John F.
2016-02-01
We present an alternative to the perturbative (in coupling constant) diagrammatic approach for studying stochastic dynamics of a class of reaction diffusion systems. Our approach is based on an auxiliary field loop expansion for the path integral representation for the generating functional of the noise induced correlation functions of the fields describing these systems. The systems we consider include Langevin systems describable by the set of self interacting classical fields ϕi(x , t) in the presence of external noise ηi(x , t) , namely (∂t - ν∇2) ϕ - F [ ϕ ] = η, as well as chemical reaction annihilation processes obtained by applying the many-body approach of Doi-Peliti to the Master Equation formulation of these problems. We consider two different effective actions, one based on the Onsager-Machlup (OM) approach, and the other due to Janssen-deGenneris based on the Martin-Siggia-Rose (MSR) response function approach. For the simple models we consider, we determine an analytic expression for the Energy landscape (effective potential) in both formalisms and show how to obtain the more physical effective potential of the Onsager-Machlup approach from the MSR effective potential in leading order in the auxiliary field loop expansion. For the KPZ equation we find that our approximation, which is non-perturbative and obeys broken symmetry Ward identities, does not lead to the appearance of a fluctuation induced symmetry breakdown. This contradicts the results of earlier studies.
Constrained multibody system dynamics: An automated approach
NASA Technical Reports Server (NTRS)
Kamman, J. W.; Huston, R. L.
1982-01-01
The governing equations for constrained multibody systems are formulated in a manner suitable for their automated, numerical development and solution. The closed loop problem of multibody chain systems is addressed. The governing equations are developed by modifying dynamical equations obtained from Lagrange's form of d'Alembert's principle. The modifications is based upon a solution of the constraint equations obtained through a zero eigenvalues theorem, is a contraction of the dynamical equations. For a system with n-generalized coordinates and m-constraint equations, the coefficients in the constraint equations may be viewed as constraint vectors in n-dimensional space. In this setting the system itself is free to move in the n-m directions which are orthogonal to the constraint vectors.
On Hilbert-Schmidt norm convergence of Galerkin approximation for operator Riccati equations
NASA Technical Reports Server (NTRS)
Rosen, I. G.
1988-01-01
An abstract approximation framework for the solution of operator algebraic Riccati equations is developed. The approach taken is based on a formulation of the Riccati equation as an abstract nonlinear operator equation on the space of Hilbert-Schmidt operators. Hilbert-Schmidt norm convergence of solutions to generic finite dimensional Galerkin approximations to the Riccati equation to the solution of the original infinite dimensional problem is argued. The application of the general theory is illustrated via an operator Riccati equation arising in the linear-quadratic design of an optimal feedback control law for a 1-D heat/diffusion equation. Numerical results demonstrating the convergence of the associated Hilbert-Schmidt kernels are included.
Matrix approaches to assess terrestrial nitrogen scheme in CLM4.5
NASA Astrophysics Data System (ADS)
Du, Z.
2017-12-01
Terrestrial carbon (C) and nitrogen (N) cycles have been commonly represented by a series of balance equations to track their influxes into and effluxes out of individual pools in earth system models (ESMs). This representation matches our understanding of C and N cycle processes well but makes it difficult to track model behaviors. To overcome these challenges, we developed a matrix approach, which reorganizes the series of terrestrial C and N balance equations in the CLM4.5 into two matrix equations based on original representation of C and N cycle processes and mechanisms. The matrix approach would consequently help improve the comparability of models and data, evaluate impacts of additional model components, facilitate benchmark analyses, model intercomparisons, and data-model fusion, and improve model predictive power.
Extended resolvent and inverse scattering with an application to KPI
NASA Astrophysics Data System (ADS)
Boiti, M.; Pempinelli, F.; Pogrebkov, A. K.; Prinari, B.
2003-08-01
We present in detail an extended resolvent approach for investigating linear problems associated to 2+1 dimensional integrable equations. Our presentation is based as an example on the nonstationary Schrödinger equation with potential being a perturbation of the one-soliton potential by means of a decaying two-dimensional function. Modification of the inverse scattering theory as well as properties of the Jost solutions and spectral data as follows from the resolvent approach are given.
Fractional-order difference equations for physical lattices and some applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru
2015-10-15
Fractional-order operators for physical lattice models based on the Grünwald-Letnikov fractional differences are suggested. We use an approach based on the models of lattices with long-range particle interactions. The fractional-order operators of differentiation and integration on physical lattices are represented by kernels of lattice long-range interactions. In continuum limit, these discrete operators of non-integer orders give the fractional-order derivatives and integrals with respect to coordinates of the Grünwald-Letnikov types. As examples of the fractional-order difference equations for physical lattices, we give difference analogs of the fractional nonlocal Navier-Stokes equations and the fractional nonlocal Maxwell equations for lattices with long-range interactions.more » Continuum limits of these fractional-order difference equations are also suggested.« less
Novel Approach for Solving the Equation of Motion of a Simple Harmonic Oscillator. Classroom Notes
ERIC Educational Resources Information Center
Gauthier, N.
2004-01-01
An elementary method, based on the use of complex variables, is proposed for solving the equation of motion of a simple harmonic oscillator. The method is first applied to the equation of motion for an undamped oscillator and it is then extended to the more important case of a damped oscillator. It is finally shown that the method can readily be…
NASA Astrophysics Data System (ADS)
Yeh, G. T.; Tsai, C. H.
2015-12-01
This paper presents the development of a THMC (thermal-hydrology-mechanics-chemistry) process model in variably saturated media. The governing equations for variably saturated flow and reactive chemical transport are obtained based on the mass conservation principle of species transport supplemented with Darcy's law, constraint of species concentration, equation of states, and constitutive law of K-S-P (Conductivity-Degree of Saturation-Capillary Pressure). The thermal transport equation is obtained based on the conservation of energy. The geo-mechanic displacement is obtained based on the assumption of equilibrium. Conventionally, these equations have been implicitly coupled via the calculations of secondary variables based on primary variables. The mechanisms of coupling have not been obvious. In this paper, governing equations are explicitly coupled for all primary variables. The coupling is accomplished via the storage coefficients, transporting velocities, and conduction-dispersion-diffusion coefficient tensor; one set each for every primary variable. With this new system of equations, the coupling mechanisms become clear. Physical interpretations of every term in the coupled equations will be discussed. Examples will be employed to demonstrate the intuition and superiority of these explicit coupling approaches. Keywords: Variably Saturated Flow, Thermal Transport, Geo-mechanics, Reactive Transport.
Solution of underdetermined systems of equations with gridded a priori constraints.
Stiros, Stathis C; Saltogianni, Vasso
2014-01-01
The TOPINV, Topological Inversion algorithm (or TGS, Topological Grid Search) initially developed for the inversion of highly non-linear redundant systems of equations, can solve a wide range of underdetermined systems of non-linear equations. This approach is a generalization of a previous conclusion that this algorithm can be used for the solution of certain integer ambiguity problems in Geodesy. The overall approach is based on additional (a priori) information for the unknown variables. In the past, such information was used either to linearize equations around approximate solutions, or to expand systems of observation equations solved on the basis of generalized inverses. In the proposed algorithm, the a priori additional information is used in a third way, as topological constraints to the unknown n variables, leading to an R(n) grid containing an approximation of the real solution. The TOPINV algorithm does not focus on point-solutions, but exploits the structural and topological constraints in each system of underdetermined equations in order to identify an optimal closed space in the R(n) containing the real solution. The centre of gravity of the grid points defining this space corresponds to global, minimum-norm solutions. The rationale and validity of the overall approach are demonstrated on the basis of examples and case studies, including fault modelling, in comparison with SVD solutions and true (reference) values, in an accuracy-oriented approach.
NASA Astrophysics Data System (ADS)
Plimak, L. I.; Fleischhauer, M.; Olsen, M. K.; Collett, M. J.
2003-01-01
We present an introduction to phase-space techniques (PST) based on a quantum-field-theoretical (QFT) approach. In addition to bridging the gap between PST and QFT, our approach results in a number of generalizations of the PST. First, for problems where the usual PST do not result in a genuine Fokker-Planck equation (even after phase-space doubling) and hence fail to produce a stochastic differential equation (SDE), we show how the system in question may be approximated via stochastic difference equations (SΔE). Second, we show that introducing sources into the SDE’s (or SΔE’s) generalizes them to a full quantum nonlinear stochastic response problem (thus generalizing Kubo’s linear reaction theory to a quantum nonlinear stochastic response theory). Third, we establish general relations linking quantum response properties of the system in question to averages of operator products ordered in a way different from time normal. This extends PST to a much wider assemblage of operator products than are usually considered in phase-space approaches. In all cases, our approach yields a very simple and straightforward way of deriving stochastic equations in phase space.
Bayesian structural equation modeling: a more flexible representation of substantive theory.
Muthén, Bengt; Asparouhov, Tihomir
2012-09-01
This article proposes a new approach to factor analysis and structural equation modeling using Bayesian analysis. The new approach replaces parameter specifications of exact zeros with approximate zeros based on informative, small-variance priors. It is argued that this produces an analysis that better reflects substantive theories. The proposed Bayesian approach is particularly beneficial in applications where parameters are added to a conventional model such that a nonidentified model is obtained if maximum-likelihood estimation is applied. This approach is useful for measurement aspects of latent variable modeling, such as with confirmatory factor analysis, and the measurement part of structural equation modeling. Two application areas are studied, cross-loadings and residual correlations in confirmatory factor analysis. An example using a full structural equation model is also presented, showing an efficient way to find model misspecification. The approach encompasses 3 elements: model testing using posterior predictive checking, model estimation, and model modification. Monte Carlo simulations and real data are analyzed using Mplus. The real-data analyses use data from Holzinger and Swineford's (1939) classic mental abilities study, Big Five personality factor data from a British survey, and science achievement data from the National Educational Longitudinal Study of 1988.
NASA Astrophysics Data System (ADS)
Starke, R.; Schober, G. A. H.
2018-03-01
We provide a systematic theoretical, experimental, and historical critique of the standard derivation of Fresnel's equations, which shows in particular that these well-established equations actually contradict the traditional, macroscopic approach to electrodynamics in media. Subsequently, we give a rederivation of Fresnel's equations which is exclusively based on the microscopic Maxwell equations and hence in accordance with modern first-principles materials physics. In particular, as a main outcome of this analysis being of a more general interest, we propose the most general boundary conditions on electric and magnetic fields which are valid on the microscopic level.
Shannon, Robin; Glowacki, David R
2018-02-15
The chemical master equation is a powerful theoretical tool for analyzing the kinetics of complex multiwell potential energy surfaces in a wide range of different domains of chemical kinetics spanning combustion, atmospheric chemistry, gas-surface chemistry, solution phase chemistry, and biochemistry. There are two well-established methodologies for solving the chemical master equation: a stochastic "kinetic Monte Carlo" approach and a matrix-based approach. In principle, the results yielded by both approaches are identical; the decision of which approach is better suited to a particular study depends on the details of the specific system under investigation. In this Article, we present a rigorous method for accelerating stochastic approaches by several orders of magnitude, along with a method for unbiasing the accelerated results to recover the "true" value. The approach we take in this paper is inspired by the so-called "boxed molecular dynamics" (BXD) method, which has previously only been applied to accelerate rare events in molecular dynamics simulations. Here we extend BXD to design a simple algorithmic strategy for accelerating rare events in stochastic kinetic simulations. Tests on a number of systems show that the results obtained using the BXD rare event strategy are in good agreement with unbiased results. To carry out these tests, we have implemented a kinetic Monte Carlo approach in MESMER, which is a cross-platform, open-source, and freely available master equation solver.
Cockcroft-Gault revisited: New de-liver-ance on recommendations for use in cirrhosis.
Scappaticci, Gianni B; Regal, Randolph E
2017-01-28
The Cockcroft-Gault (CG) equation has become perhaps the most popular practical approach for estimating renal function among health care professionals. Despite its widespread use, clinicians often overlook not only the limitations of the original serum creatinine (SCr) based equation, but also may not appreciate the validity of the many variations used to compensate for these limitations. For cirrhotic patients in particular, the underlying pathophysiology of the disease contributes to a falsely low SCr, thereby overestimating renal function with use of the CG equation in this population. We reviewed the original CG trial from 1976 along with data surrounding clinician specific alterations to the CG equation that followed through time. These alterations included different formulas for body weight in obese patients and the "rounding up" approach in patients with low SCr. Additionally, we described the pathophysiology and hemodynamic changes that occur in cirrhosis; and reviewed several studies that attempted to estimate renal function in this population. The evidence we reviewed regarding the most accurate manipulation of the original CG equation to estimate creatinine clearance (CrCl) was inconclusive. Unfortunately, the homogeneity of the patient population in the original CG trial limited its external validity. Elimination of body weight in the CG equation actually produced the estimate closest to the measure CrCl. Furthermore, "rounding up" of SCr values often underestimated CrCl. This approach could lead to suboptimal dosing of drug therapies in patients with low SCr. In cirrhotic patients, utilization of SCr based methods overestimated true renal function by about 50% in the literature we reviewed.
Critical Factors Analysis for Offshore Software Development Success by Structural Equation Modeling
NASA Astrophysics Data System (ADS)
Wada, Yoshihisa; Tsuji, Hiroshi
In order to analyze the success/failure factors in offshore software development service by the structural equation modeling, this paper proposes to follow two approaches together; domain knowledge based heuristic analysis and factor analysis based rational analysis. The former works for generating and verifying of hypothesis to find factors and causalities. The latter works for verifying factors introduced by theory to build the model without heuristics. Following the proposed combined approaches for the responses from skilled project managers of the questionnaire, this paper found that the vendor property has high causality for the success compared to software property and project property.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balajewicz, Maciej; Tezaur, Irina; Dowell, Earl
For a projection-based reduced order model (ROM) of a fluid flow to be stable and accurate, the dynamics of the truncated subspace must be taken into account. This paper proposes an approach for stabilizing and enhancing projection-based fluid ROMs in which truncated modes are accounted for a priori via a minimal rotation of the projection subspace. Attention is focused on the full non-linear compressible Navier–Stokes equations in specific volume form as a step toward a more general formulation for problems with generic non-linearities. Unlike traditional approaches, no empirical turbulence modeling terms are required, and consistency between the ROM and themore » Navier–Stokes equation from which the ROM is derived is maintained. Mathematically, the approach is formulated as a trace minimization problem on the Stiefel manifold. As a result, the reproductive as well as predictive capabilities of the method are evaluated on several compressible flow problems, including a problem involving laminar flow over an airfoil with a high angle of attack, and a channel-driven cavity flow problem.« less
Balajewicz, Maciej; Tezaur, Irina; Dowell, Earl
2016-05-25
For a projection-based reduced order model (ROM) of a fluid flow to be stable and accurate, the dynamics of the truncated subspace must be taken into account. This paper proposes an approach for stabilizing and enhancing projection-based fluid ROMs in which truncated modes are accounted for a priori via a minimal rotation of the projection subspace. Attention is focused on the full non-linear compressible Navier–Stokes equations in specific volume form as a step toward a more general formulation for problems with generic non-linearities. Unlike traditional approaches, no empirical turbulence modeling terms are required, and consistency between the ROM and themore » Navier–Stokes equation from which the ROM is derived is maintained. Mathematically, the approach is formulated as a trace minimization problem on the Stiefel manifold. As a result, the reproductive as well as predictive capabilities of the method are evaluated on several compressible flow problems, including a problem involving laminar flow over an airfoil with a high angle of attack, and a channel-driven cavity flow problem.« less
Engelhardt, Benjamin; Kschischo, Maik; Fröhlich, Holger
2017-06-01
Ordinary differential equations (ODEs) are a popular approach to quantitatively model molecular networks based on biological knowledge. However, such knowledge is typically restricted. Wrongly modelled biological mechanisms as well as relevant external influence factors that are not included into the model are likely to manifest in major discrepancies between model predictions and experimental data. Finding the exact reasons for such observed discrepancies can be quite challenging in practice. In order to address this issue, we suggest a Bayesian approach to estimate hidden influences in ODE-based models. The method can distinguish between exogenous and endogenous hidden influences. Thus, we can detect wrongly specified as well as missed molecular interactions in the model. We demonstrate the performance of our Bayesian dynamic elastic-net with several ordinary differential equation models from the literature, such as human JAK-STAT signalling, information processing at the erythropoietin receptor, isomerization of liquid α -Pinene, G protein cycling in yeast and UV-B triggered signalling in plants. Moreover, we investigate a set of commonly known network motifs and a gene-regulatory network. Altogether our method supports the modeller in an algorithmic manner to identify possible sources of errors in ODE-based models on the basis of experimental data. © 2017 The Author(s).
The quantum realm of the ''Little Sibling'' of the Big Rip singularity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albarran, Imanol; Bouhmadi-López, Mariam; Cabral, Francisco
We analyse the quantum behaviour of the ''Little Sibling'' of the Big Rip singularity (LSBR) [1]. The quantisation is carried within the geometrodynamical approach given by the Wheeler-DeWitt (WDW) equation. The classical model is based on a Friedmann-Lemaître-Robertson-Walker Universe filled by a perfect fluid that can be mapped to a scalar field with phantom character. We analyse the WDW equation in two setups. In the first step, we consider the scale factor as the single degree of freedom, which from a classical perspective parametrises both the geometry and the matter content given by the perfect fluid. We then solve themore » WDW equation within a WKB approximation, for two factor ordering choices. On the second approach, we consider the WDW equation with two degrees of freedom: the scale factor and a scalar field. We solve the WDW equation, with the Laplace-Beltrami factor-ordering, using a Born-Oppenheimer approximation. In both approaches, we impose the DeWitt (DW) condition as a potential criterion for singularity avoidance. We conclude that in all the cases analysed the DW condition can be verified, which might be an indication that the LSBR can be avoided or smoothed in the quantum approach.« less
Larios, Adam; Petersen, Mark R.; Titi, Edriss S.; ...
2017-04-29
We report the results of a computational investigation of two blow-up criteria for the 3D incompressible Euler equations. One criterion was proven in a previous work, and a related criterion is proved here. These criteria are based on an inviscid regularization of the Euler equations known as the 3D Euler-Voigt equations, which are known to be globally well-posed. Moreover, simulations of the 3D Euler-Voigt equations also require less resolution than simulations of the 3D Euler equations for xed values of the regularization parameter α > 0. Therefore, the new blow-up criteria allow one to gain information about possible singularity formationmore » in the 3D Euler equations indirectly; namely, by simulating the better-behaved 3D Euler-Voigt equations. The new criteria are only known to be suficient for blow-up. Therefore, to test the robustness of the inviscid-regularization approach, we also investigate analogous criteria for blow-up of the 1D Burgers equation, where blow-up is well-known to occur.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larios, Adam; Petersen, Mark R.; Titi, Edriss S.
We report the results of a computational investigation of two blow-up criteria for the 3D incompressible Euler equations. One criterion was proven in a previous work, and a related criterion is proved here. These criteria are based on an inviscid regularization of the Euler equations known as the 3D Euler-Voigt equations, which are known to be globally well-posed. Moreover, simulations of the 3D Euler-Voigt equations also require less resolution than simulations of the 3D Euler equations for xed values of the regularization parameter α > 0. Therefore, the new blow-up criteria allow one to gain information about possible singularity formationmore » in the 3D Euler equations indirectly; namely, by simulating the better-behaved 3D Euler-Voigt equations. The new criteria are only known to be suficient for blow-up. Therefore, to test the robustness of the inviscid-regularization approach, we also investigate analogous criteria for blow-up of the 1D Burgers equation, where blow-up is well-known to occur.« less
Control volume based hydrocephalus research; analysis of human data
NASA Astrophysics Data System (ADS)
Cohen, Benjamin; Wei, Timothy; Voorhees, Abram; Madsen, Joseph; Anor, Tomer
2010-11-01
Hydrocephalus is a neuropathophysiological disorder primarily diagnosed by increased cerebrospinal fluid volume and pressure within the brain. To date, utilization of clinical measurements have been limited to understanding of the relative amplitude and timing of flow, volume and pressure waveforms; qualitative approaches without a clear framework for meaningful quantitative comparison. Pressure volume models and electric circuit analogs enforce volume conservation principles in terms of pressure. Control volume analysis, through the integral mass and momentum conservation equations, ensures that pressure and volume are accounted for using first principles fluid physics. This approach is able to directly incorporate the diverse measurements obtained by clinicians into a simple, direct and robust mechanics based framework. Clinical data obtained for analysis are discussed along with data processing techniques used to extract terms in the conservation equation. Control volume analysis provides a non-invasive, physics-based approach to extracting pressure information from magnetic resonance velocity data that cannot be measured directly by pressure instrumentation.
3D numerical simulation of transient processes in hydraulic turbines
NASA Astrophysics Data System (ADS)
Cherny, S.; Chirkov, D.; Bannikov, D.; Lapin, V.; Skorospelov, V.; Eshkunova, I.; Avdushenko, A.
2010-08-01
An approach for numerical simulation of 3D hydraulic turbine flows in transient operating regimes is presented. The method is based on a coupled solution of incompressible RANS equations, runner rotation equation, and water hammer equations. The issue of setting appropriate boundary conditions is considered in detail. As an illustration, the simulation results for runaway process are presented. The evolution of vortex structure and its effect on computed runaway traces are analyzed.
Simplifications for hydronic system models in modelica
Jorissen, F.; Wetter, M.; Helsen, L.
2018-01-12
Building systems and their heating, ventilation and air conditioning flow networks, are becoming increasingly complex. Some building energy simulation tools simulate these flow networks using pressure drop equations. These flow network models typically generate coupled algebraic nonlinear systems of equations, which become increasingly more difficult to solve as their sizes increase. This leads to longer computation times and can cause the solver to fail. These problems also arise when using the equation-based modelling language Modelica and Annex 60-based libraries. This may limit the applicability of the library to relatively small problems unless problems are restructured. This paper discusses two algebraicmore » loop types and presents an approach that decouples algebraic loops into smaller parts, or removes them completely. The approach is applied to a case study model where an algebraic loop of 86 iteration variables is decoupled into smaller parts with a maximum of five iteration variables.« less
Derivation of Hunt equation for suspension distribution using Shannon entropy theory
NASA Astrophysics Data System (ADS)
Kundu, Snehasis
2017-12-01
In this study, the Hunt equation for computing suspension concentration in sediment-laden flows is derived using Shannon entropy theory. Considering the inverse of the void ratio as a random variable and using principle of maximum entropy, probability density function and cumulative distribution function of suspension concentration is derived. A new and more general cumulative distribution function for the flow domain is proposed which includes several specific other models of CDF reported in literature. This general form of cumulative distribution function also helps to derive the Rouse equation. The entropy based approach helps to estimate model parameters using suspension data of sediment concentration which shows the advantage of using entropy theory. Finally model parameters in the entropy based model are also expressed as functions of the Rouse number to establish a link between the parameters of the deterministic and probabilistic approaches.
Structural interactions in ionic liquids linked to higher-order Poisson-Boltzmann equations
NASA Astrophysics Data System (ADS)
Blossey, R.; Maggs, A. C.; Podgornik, R.
2017-06-01
We present a derivation of generalized Poisson-Boltzmann equations starting from classical theories of binary fluid mixtures, employing an approach based on the Legendre transform as recently applied to the case of local descriptions of the fluid free energy. Under specific symmetry assumptions, and in the linearized regime, the Poisson-Boltzmann equation reduces to a phenomenological equation introduced by Bazant et al. [Phys. Rev. Lett. 106, 046102 (2011)], 10.1103/PhysRevLett.106.046102, whereby the structuring near the surface is determined by bulk coefficients.
Schrödinger equation revisited
Schleich, Wolfgang P.; Greenberger, Daniel M.; Kobe, Donald H.; Scully, Marlan O.
2013-01-01
The time-dependent Schrödinger equation is a cornerstone of quantum physics and governs all phenomena of the microscopic world. However, despite its importance, its origin is still not widely appreciated and properly understood. We obtain the Schrödinger equation from a mathematical identity by a slight generalization of the formulation of classical statistical mechanics based on the Hamilton–Jacobi equation. This approach brings out most clearly the fact that the linearity of quantum mechanics is intimately connected to the strong coupling between the amplitude and phase of a quantum wave. PMID:23509260
1D kinetic simulations of a short glow discharge in helium
NASA Astrophysics Data System (ADS)
Yuan, Chengxun; Bogdanov, E. A.; Eliseev, S. I.; Kudryavtsev, A. A.
2017-07-01
This paper presents a 1D model of a direct current glow discharge based on the solution of the kinetic Boltzmann equation in the two-term approximation. The model takes into account electron-electron coulomb collisions, the corresponding collision integral is written in both detailed and simplified forms. The Boltzmann equation for electrons is coupled with continuity equations for ions and metastable atoms and the Poisson equation for electric potential. Simulations are carried out self-consistently for the whole length of discharge in helium (from cathode to anode) for cases p = 1 Torr, L = 3.6 cm and p = 20 Torr, L = 1.8 mm, so that pL = 3.6 cm.Torr in both cases. It is shown that simulations based on the kinetic approach give lower values of electron temperature in plasma than fluid simulations. Peaks in spatial differential flux corresponding to the electrons originating from superelastic collisions and Penning ionization were observed in simulations. Different approaches of taking coulomb collisions into account give significantly different values of electron density and electron temperature in plasma. Analysis showed that using a simplified approach gives a non-zero contribution to the electron energy balance, which is comparable to energy losses on elastic and inelastic collisions and leads to significant errors and thus is not recommended.
Modelling uncertainty in incompressible flow simulation using Galerkin based generalized ANOVA
NASA Astrophysics Data System (ADS)
Chakraborty, Souvik; Chowdhury, Rajib
2016-11-01
This paper presents a new algorithm, referred to here as Galerkin based generalized analysis of variance decomposition (GG-ANOVA) for modelling input uncertainties and its propagation in incompressible fluid flow. The proposed approach utilizes ANOVA to represent the unknown stochastic response. Further, the unknown component functions of ANOVA are represented using the generalized polynomial chaos expansion (PCE). The resulting functional form obtained by coupling the ANOVA and PCE is substituted into the stochastic Navier-Stokes equation (NSE) and Galerkin projection is employed to decompose it into a set of coupled deterministic 'Navier-Stokes alike' equations. Temporal discretization of the set of coupled deterministic equations is performed by employing Adams-Bashforth scheme for convective term and Crank-Nicolson scheme for diffusion term. Spatial discretization is performed by employing finite difference scheme. Implementation of the proposed approach has been illustrated by two examples. In the first example, a stochastic ordinary differential equation has been considered. This example illustrates the performance of proposed approach with change in nature of random variable. Furthermore, convergence characteristics of GG-ANOVA has also been demonstrated. The second example investigates flow through a micro channel. Two case studies, namely the stochastic Kelvin-Helmholtz instability and stochastic vortex dipole, have been investigated. For all the problems results obtained using GG-ANOVA are in excellent agreement with benchmark solutions.
6Li in a three-body model with realistic Forces: Separable versus nonseparable approach
NASA Astrophysics Data System (ADS)
Hlophe, L.; Lei, Jin; Elster, Ch.; Nogga, A.; Nunes, F. M.
2017-12-01
Background: Deuteron induced reactions are widely used to probe nuclear structure and astrophysical information. Those (d ,p ) reactions may be viewed as three-body reactions and described with Faddeev techniques. Purpose: Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. However, it needs to be demonstrated that their solution based on separable interactions agrees exactly with solutions based on nonseparable forces. Methods: Momentum space Faddeev equations are solved with nonseparable and separable forces as coupled integral equations. Results: The ground state of 6Li is calculated via momentum space Faddeev equations using the CD-Bonn neutron-proton force and a Woods-Saxon type neutron(proton)-4He force. For the latter the Pauli-forbidden S -wave bound state is projected out. This result is compared to a calculation in which the interactions in the two-body subsystems are represented by separable interactions derived in the Ernst-Shakin-Thaler (EST) framework. Conclusions: We find that calculations based on the separable representation of the interactions and the original interactions give results that agree to four significant figures for the binding energy, provided that energy and momentum support points of the EST expansion are chosen independently. The momentum distributions computed in both approaches also fully agree with each other.
Assessing the Humanities in the Primary School Using a Portfolio-Based Approach
ERIC Educational Resources Information Center
Eaude, Tony
2017-01-01
This article suggests that a portfolio-based approach to assessing the humanities in the primary school is appropriate and outlines what this might involve. It argues for a broad interpretation of "the humanities" and for adopting principles associated with formative assessment, where assessment is not equated with testing and a wide…
Charge and energy migration in molecular clusters: A stochastic Schrödinger equation approach.
Plehn, Thomas; May, Volkhard
2017-01-21
The performance of stochastic Schrödinger equations for simulating dynamic phenomena in large scale open quantum systems is studied. Going beyond small system sizes, commonly used master equation approaches become inadequate. In this regime, wave function based methods profit from their inherent scaling benefit and present a promising tool to study, for example, exciton and charge carrier dynamics in huge and complex molecular structures. In the first part of this work, a strict analytic derivation is presented. It starts with the finite temperature reduced density operator expanded in coherent reservoir states and ends up with two linear stochastic Schrödinger equations. Both equations are valid in the weak and intermediate coupling limit and can be properly related to two existing approaches in literature. In the second part, we focus on the numerical solution of these equations. The main issue is the missing norm conservation of the wave function propagation which may lead to numerical discrepancies. To illustrate this, we simulate the exciton dynamics in the Fenna-Matthews-Olson complex in direct comparison with the data from literature. Subsequently a strategy for the proper computational handling of the linear stochastic Schrödinger equation is exposed particularly with regard to large systems. Here, we study charge carrier transfer kinetics in realistic hybrid organic/inorganic para-sexiphenyl/ZnO systems of different extension.
Charge and energy migration in molecular clusters: A stochastic Schrödinger equation approach
NASA Astrophysics Data System (ADS)
Plehn, Thomas; May, Volkhard
2017-01-01
The performance of stochastic Schrödinger equations for simulating dynamic phenomena in large scale open quantum systems is studied. Going beyond small system sizes, commonly used master equation approaches become inadequate. In this regime, wave function based methods profit from their inherent scaling benefit and present a promising tool to study, for example, exciton and charge carrier dynamics in huge and complex molecular structures. In the first part of this work, a strict analytic derivation is presented. It starts with the finite temperature reduced density operator expanded in coherent reservoir states and ends up with two linear stochastic Schrödinger equations. Both equations are valid in the weak and intermediate coupling limit and can be properly related to two existing approaches in literature. In the second part, we focus on the numerical solution of these equations. The main issue is the missing norm conservation of the wave function propagation which may lead to numerical discrepancies. To illustrate this, we simulate the exciton dynamics in the Fenna-Matthews-Olson complex in direct comparison with the data from literature. Subsequently a strategy for the proper computational handling of the linear stochastic Schrödinger equation is exposed particularly with regard to large systems. Here, we study charge carrier transfer kinetics in realistic hybrid organic/inorganic para-sexiphenyl/ZnO systems of different extension.
Prediction of unsteady transonic flow around missile configurations
NASA Technical Reports Server (NTRS)
Nixon, D.; Reisenthel, P. H.; Torres, T. O.; Klopfer, G. H.
1990-01-01
This paper describes the preliminary development of a method for predicting the unsteady transonic flow around missiles at transonic and supersonic speeds, with the final goal of developing a computer code for use in aeroelastic calculations or during maneuvers. The basic equations derived for this method are an extension of those derived by Klopfer and Nixon (1989) for steady flow and are a subset of the Euler equations. In this approach, the five Euler equations are reduced to an equation similar to the three-dimensional unsteady potential equation, and a two-dimensional Poisson equation. In addition, one of the equations in this method is almost identical to the potential equation for which there are well tested computer codes, allowing the development of a prediction method based in part on proved technology.
NASA Technical Reports Server (NTRS)
Allan, Brian G.
2000-01-01
A reduced order modeling approach of the Navier-Stokes equations is presented for the design of a distributed optimal feedback kernel. This approach is based oil a Krylov subspace method where significant modes of the flow are captured in the model This model is then used in all optimal feedback control design where sensing and actuation is performed oil tile entire flow field. This control design approach yields all optimal feedback kernel which provides insight into the placement of sensors and actuators in the flow field. As all evaluation of this approach, a two-dimensional shear layer and driven cavity flow are investigated.
A PDE Sensitivity Equation Method for Optimal Aerodynamic Design
NASA Technical Reports Server (NTRS)
Borggaard, Jeff; Burns, John
1996-01-01
The use of gradient based optimization algorithms in inverse design is well established as a practical approach to aerodynamic design. A typical procedure uses a simulation scheme to evaluate the objective function (from the approximate states) and its gradient, then passes this information to an optimization algorithm. Once the simulation scheme (CFD flow solver) has been selected and used to provide approximate function evaluations, there are several possible approaches to the problem of computing gradients. One popular method is to differentiate the simulation scheme and compute design sensitivities that are then used to obtain gradients. Although this black-box approach has many advantages in shape optimization problems, one must compute mesh sensitivities in order to compute the design sensitivity. In this paper, we present an alternative approach using the PDE sensitivity equation to develop algorithms for computing gradients. This approach has the advantage that mesh sensitivities need not be computed. Moreover, when it is possible to use the CFD scheme for both the forward problem and the sensitivity equation, then there are computational advantages. An apparent disadvantage of this approach is that it does not always produce consistent derivatives. However, for a proper combination of discretization schemes, one can show asymptotic consistency under mesh refinement, which is often sufficient to guarantee convergence of the optimal design algorithm. In particular, we show that when asymptotically consistent schemes are combined with a trust-region optimization algorithm, the resulting optimal design method converges. We denote this approach as the sensitivity equation method. The sensitivity equation method is presented, convergence results are given and the approach is illustrated on two optimal design problems involving shocks.
Bayesian Factor Analysis as a Variable Selection Problem: Alternative Priors and Consequences
Lu, Zhao-Hua; Chow, Sy-Miin; Loken, Eric
2016-01-01
Factor analysis is a popular statistical technique for multivariate data analysis. Developments in the structural equation modeling framework have enabled the use of hybrid confirmatory/exploratory approaches in which factor loading structures can be explored relatively flexibly within a confirmatory factor analysis (CFA) framework. Recently, a Bayesian structural equation modeling (BSEM) approach (Muthén & Asparouhov, 2012) has been proposed as a way to explore the presence of cross-loadings in CFA models. We show that the issue of determining factor loading patterns may be formulated as a Bayesian variable selection problem in which Muthén and Asparouhov’s approach can be regarded as a BSEM approach with ridge regression prior (BSEM-RP). We propose another Bayesian approach, denoted herein as the Bayesian structural equation modeling with spike and slab prior (BSEM-SSP), which serves as a one-stage alternative to the BSEM-RP. We review the theoretical advantages and disadvantages of both approaches and compare their empirical performance relative to two modification indices-based approaches and exploratory factor analysis with target rotation. A teacher stress scale data set (Byrne, 2012; Pettegrew & Wolf, 1982) is used to demonstrate our approach. PMID:27314566
Modelling vortex-induced fluid-structure interaction.
Benaroya, Haym; Gabbai, Rene D
2008-04-13
The principal goal of this research is developing physics-based, reduced-order, analytical models of nonlinear fluid-structure interactions associated with offshore structures. Our primary focus is to generalize the Hamilton's variational framework so that systems of flow-oscillator equations can be derived from first principles. This is an extension of earlier work that led to a single energy equation describing the fluid-structure interaction. It is demonstrated here that flow-oscillator models are a subclass of the general, physical-based framework. A flow-oscillator model is a reduced-order mechanical model, generally comprising two mechanical oscillators, one modelling the structural oscillation and the other a nonlinear oscillator representing the fluid behaviour coupled to the structural motion.Reduced-order analytical model development continues to be carried out using a Hamilton's principle-based variational approach. This provides flexibility in the long run for generalizing the modelling paradigm to complex, three-dimensional problems with multiple degrees of freedom, although such extension is very difficult. As both experimental and analytical capabilities advance, the critical research path to developing and implementing fluid-structure interaction models entails-formulating generalized equations of motion, as a superset of the flow-oscillator models; and-developing experimentally derived, semi-analytical functions to describe key terms in the governing equations of motion. The developed variational approach yields a system of governing equations. This will allow modelling of multiple d.f. systems. The extensions derived generalize the Hamilton's variational formulation for such problems. The Navier-Stokes equations are derived and coupled to the structural oscillator. This general model has been shown to be a superset of the flow-oscillator model. Based on different assumptions, one can derive a variety of flow-oscillator models.
Estimating Causal Effects in Mediation Analysis Using Propensity Scores
ERIC Educational Resources Information Center
Coffman, Donna L.
2011-01-01
Mediation is usually assessed by a regression-based or structural equation modeling (SEM) approach that we refer to as the classical approach. This approach relies on the assumption that there are no confounders that influence both the mediator, "M", and the outcome, "Y". This assumption holds if individuals are randomly…
NASA Technical Reports Server (NTRS)
Jiang, Yi-Tsann
1993-01-01
A general solution adaptive scheme-based on a remeshing technique is developed for solving the two-dimensional and quasi-three-dimensional Euler and Favre-averaged Navier-Stokes equations. The numerical scheme is formulated on an unstructured triangular mesh utilizing an edge-based pointer system which defines the edge connectivity of the mesh structure. Jameson's four-stage hybrid Runge-Kutta scheme is used to march the solution in time. The convergence rate is enhanced through the use of local time stepping and implicit residual averaging. As the solution evolves, the mesh is regenerated adaptively using flow field information. Mesh adaptation parameters are evaluated such that an estimated local numerical error is equally distributed over the whole domain. For inviscid flows, the present approach generates a complete unstructured triangular mesh using the advancing front method. For turbulent flows, the approach combines a local highly stretched structured triangular mesh in the boundary layer region with an unstructured mesh in the remaining regions to efficiently resolve the important flow features. One-equation and two-equation turbulence models are incorporated into the present unstructured approach. Results are presented for a wide range of flow problems including two-dimensional multi-element airfoils, two-dimensional cascades, and quasi-three-dimensional cascades. This approach is shown to gain flow resolution in the refined regions while achieving a great reduction in the computational effort and storage requirements since solution points are not wasted in regions where they are not required.
NASA Technical Reports Server (NTRS)
Jiang, Yi-Tsann; Usab, William J., Jr.
1993-01-01
A general solution adaptive scheme based on a remeshing technique is developed for solving the two-dimensional and quasi-three-dimensional Euler and Favre-averaged Navier-Stokes equations. The numerical scheme is formulated on an unstructured triangular mesh utilizing an edge-based pointer system which defines the edge connectivity of the mesh structure. Jameson's four-stage hybrid Runge-Kutta scheme is used to march the solution in time. The convergence rate is enhanced through the use of local time stepping and implicit residual averaging. As the solution evolves, the mesh is regenerated adaptively using flow field information. Mesh adaptation parameters are evaluated such that an estimated local numerical error is equally distributed over the whole domain. For inviscid flows, the present approach generates a complete unstructured triangular mesh using the advancing front method. For turbulent flows, the approach combines a local highly stretched structured triangular mesh in the boundary layer region with an unstructured mesh in the remaining regions to efficiently resolve the important flow features. One-equation and two-equation turbulence models are incorporated into the present unstructured approach. Results are presented for a wide range of flow problems including two-dimensional multi-element airfoils, two-dimensional cascades, and quasi-three-dimensional cascades. This approach is shown to gain flow resolution in the refined regions while achieving a great reduction in the computational effort and storage requirements since solution points are not wasted in regions where they are not required.
Lamiraud, Karine; Moatti, Jean-Paul; Raffi, François; Carrieri, Maria-Patrizia; Protopopescu, Camelia; Michelet, Christian; Schneider, Luminita; Collin, Fideline; Leport, Catherine; Spire, Bruno
2012-05-01
It is well established that high adherence to HIV-infected patients on highly active antiretroviral treatment (HAART) is a major determinant of virological and immunologic success. Furthermore, psychosocial research has identified a wide range of adherence factors including patients' subjective beliefs about the effectiveness of HAART. Current statistical approaches, mainly based on the separate identification either of factors associated with treatment effectiveness or of those associated with adherence, fail to properly explore the true relationship between adherence and treatment effectiveness. Adherence behavior may be influenced not only by perceived benefits-which are usually the focus of related studies-but also by objective treatment benefits reflected in biological outcomes. Our objective was to assess the bidirectional relationship between adherence and response to treatment among patients enrolled in the ANRS CO8 APROCO-COPILOTE study. We compared a conventional statistical approach based on the separate estimations of an adherence and an effectiveness equation to an econometric approach using a 2-equation simultaneous system based on the same 2 equations. Our results highlight a reciprocal relationship between adherence and treatment effectiveness. After controlling for endogeneity, adherence was positively associated with treatment effectiveness. Furthermore, CD4 count gain after baseline was found to have a positive significant effect on adherence at each observation period. This immunologic parameter was not significant when the adherence equation was estimated separately. In the 2-equation model, the covariances between disturbances of both equations were found to be significant, thus confirming the statistical appropriacy of studying adherence and treatment effectiveness jointly. Our results, which suggest that positive biological results arising as a result of high adherence levels, in turn reinforce continued adherence and strengthen the argument that patients who do not experience rapid improvement in their immunologic and clinical statuses after HAART initiation should be prioritized when developing adherence support interventions. Furthermore, they invalidate the hypothesis that HAART leads to "false reassurance" among HIV-infected patients.
NASA Astrophysics Data System (ADS)
Lee, Gibbeum; Cho, Yeunwoo
2018-01-01
A new semi-analytical approach is presented to solving the matrix eigenvalue problem or the integral equation in Karhunen-Loeve (K-L) representation of random data such as irregular ocean waves. Instead of direct numerical approach to this matrix eigenvalue problem, which may suffer from the computational inaccuracy for big data, a pair of integral and differential equations are considered, which are related to the so-called prolate spheroidal wave functions (PSWF). First, the PSWF is expressed as a summation of a small number of the analytical Legendre functions. After substituting them into the PSWF differential equation, a much smaller size matrix eigenvalue problem is obtained than the direct numerical K-L matrix eigenvalue problem. By solving this with a minimal numerical effort, the PSWF and the associated eigenvalue of the PSWF differential equation are obtained. Then, the eigenvalue of the PSWF integral equation is analytically expressed by the functional values of the PSWF and the eigenvalues obtained in the PSWF differential equation. Finally, the analytically expressed PSWFs and the eigenvalues in the PWSF integral equation are used to form the kernel matrix in the K-L integral equation for the representation of exemplary wave data such as ordinary irregular waves. It is found that, with the same accuracy, the required memory size of the present method is smaller than that of the direct numerical K-L representation and the computation time of the present method is shorter than that of the semi-analytical method based on the sinusoidal functions.
NASA Astrophysics Data System (ADS)
Reuter, Bryan; Oliver, Todd; Lee, M. K.; Moser, Robert
2017-11-01
We present an algorithm for a Direct Numerical Simulation of the variable-density Navier-Stokes equations based on the velocity-vorticity approach introduced by Kim, Moin, and Moser (1987). In the current work, a Helmholtz decomposition of the momentum is performed. Evolution equations for the curl and the Laplacian of the divergence-free portion are formulated by manipulation of the momentum equations and the curl-free portion is reconstructed by enforcing continuity. The solution is expanded in Fourier bases in the homogeneous directions and B-Spline bases in the inhomogeneous directions. Discrete equations are obtained through a mixed Fourier-Galerkin and collocation weighted residual method. The scheme is designed such that the numerical solution conserves mass locally and globally by ensuring the discrete divergence projection is exact through the use of higher order splines in the inhomogeneous directions. The formulation is tested on multiple variable-density flow problems.
Free response approach in a parametric system
NASA Astrophysics Data System (ADS)
Huang, Dishan; Zhang, Yueyue; Shao, Hexi
2017-07-01
In this study, a new approach to predict the free response in a parametric system is investigated. It is proposed in the special form of a trigonometric series with an exponentially decaying function of time, based on the concept of frequency splitting. By applying harmonic balance, the parametric vibration equation is transformed into an infinite set of homogeneous linear equations, from which the principal oscillation frequency can be computed, and all coefficients of harmonic components can be obtained. With initial conditions, arbitrary constants in a general solution can be determined. To analyze the computational accuracy and consistency, an approach error function is defined, which is used to assess the computational error in the proposed approach and in the standard numerical approach based on the Runge-Kutta algorithm. Furthermore, an example of a dynamic model of airplane wing flutter on a turbine engine is given to illustrate the applicability of the proposed approach. Numerical solutions show that the proposed approach exhibits high accuracy in mathematical expression, and it is valuable for theoretical research and engineering applications of parametric systems.
Vertically Integrated Models for Carbon Storage Modeling in Heterogeneous Domains
NASA Astrophysics Data System (ADS)
Bandilla, K.; Celia, M. A.
2017-12-01
Numerical modeling is an essential tool for studying the impacts of geologic carbon storage (GCS). Injection of carbon dioxide (CO2) into deep saline aquifers leads to multi-phase flow (injected CO2 and resident brine), which can be described by a set of three-dimensional governing equations, including mass-balance equation, volumetric flux equations (modified Darcy), and constitutive equations. This is the modeling approach on which commonly used reservoir simulators such as TOUGH2 are based. Due to the large density difference between CO2 and brine, GCS models can often be simplified by assuming buoyant segregation and integrating the three-dimensional governing equations in the vertical direction. The integration leads to a set of two-dimensional equations coupled with reconstruction operators for vertical profiles of saturation and pressure. Vertically-integrated approaches have been shown to give results of comparable quality as three-dimensional reservoir simulators when applied to realistic CO2 injection sites such as the upper sand wedge at the Sleipner site. However, vertically-integrated approaches usually rely on homogeneous properties over the thickness of a geologic layer. Here, we investigate the impact of general (vertical and horizontal) heterogeneity in intrinsic permeability, relative permeability functions, and capillary pressure functions. We consider formations involving complex fluvial deposition environments and compare the performance of vertically-integrated models to full three-dimensional models for a set of hypothetical test cases consisting of high permeability channels (streams) embedded in a low permeability background (floodplains). The domains are randomly generated assuming that stream channels can be represented by sinusoidal waves in the plan-view and by parabolas for the streams' cross-sections. Stream parameters such as width, thickness and wavelength are based on values found at the Ketzin site in Germany. Results from the vertically-integrated approach are compared to results using TOUGH2, both in terms of depth-averaged saturation and vertical saturation profiles.
NASA Astrophysics Data System (ADS)
Siettos, C. I.; Gear, C. W.; Kevrekidis, I. G.
2012-08-01
We show how the equation-free approach can be exploited to enable agent-based simulators to perform system-level computations such as bifurcation, stability analysis and controller design. We illustrate these tasks through an event-driven agent-based model describing the dynamic behaviour of many interacting investors in the presence of mimesis. Using short bursts of appropriately initialized runs of the detailed, agent-based simulator, we construct the coarse-grained bifurcation diagram of the (expected) density of agents and investigate the stability of its multiple solution branches. When the mimetic coupling between agents becomes strong enough, the stable stationary state loses its stability at a coarse turning point bifurcation. We also demonstrate how the framework can be used to design a wash-out dynamic controller that stabilizes open-loop unstable stationary states even under model uncertainty.
Hierarchical Approach to 'Atomistic' 3-D MOSFET Simulation
NASA Technical Reports Server (NTRS)
Asenov, Asen; Brown, Andrew R.; Davies, John H.; Saini, Subhash
1999-01-01
We present a hierarchical approach to the 'atomistic' simulation of aggressively scaled sub-0.1 micron MOSFET's. These devices are so small that their characteristics depend on the precise location of dopant atoms within them, not just on their average density. A full-scale three-dimensional drift-diffusion atomistic simulation approach is first described and used to verify more economical, but restricted, options. To reduce processor time and memory requirements at high drain voltage, we have developed a self-consistent option based on a solution of the current continuity equation restricted to a thin slab of the channel. This is coupled to the solution of the Poisson equation in the whole simulation domain in the Gummel iteration cycles. The accuracy of this approach is investigated in comparison to the full self-consistent solution. At low drain voltage, a single solution of the nonlinear Poisson equation is sufficient to extract the current with satisfactory accuracy. In this case, the current is calculated by solving the current continuity equation in a drift approximation only, also in a thin slab containing the MOSFET channel. The regions of applicability for the different components of this hierarchical approach are illustrated in example simulations covering the random dopant-induced threshold voltage fluctuations, threshold voltage lowering, threshold voltage asymmetry, and drain current fluctuations.
The precise time-dependent solution of the Fokker–Planck equation with anomalous diffusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Ran; Du, Jiulin, E-mail: jiulindu@aliyun.com
2015-08-15
We study the time behavior of the Fokker–Planck equation in Zwanzig’s rule (the backward-Ito’s rule) based on the Langevin equation of Brownian motion with an anomalous diffusion in a complex medium. The diffusion coefficient is a function in momentum space and follows a generalized fluctuation–dissipation relation. We obtain the precise time-dependent analytical solution of the Fokker–Planck equation and at long time the solution approaches to a stationary power-law distribution in nonextensive statistics. As a test, numerically we have demonstrated the accuracy and validity of the time-dependent solution. - Highlights: • The precise time-dependent solution of the Fokker–Planck equation with anomalousmore » diffusion is found. • The anomalous diffusion satisfies a generalized fluctuation–dissipation relation. • At long time the time-dependent solution approaches to a power-law distribution in nonextensive statistics. • Numerically we have demonstrated the accuracy and validity of the time-dependent solution.« less
Prediction of helicopter rotor noise in hover
NASA Astrophysics Data System (ADS)
Kusyumov, A. N.; Mikhailov, S. A.; Garipova, L. I.; Batrakov, A. S.; Barakos, G.
2015-05-01
Two mathematical models are used in this work to estimate the acoustics of a hovering main rotor. The first model is based on the Ffowcs Williams-Howkings equations using the formulation of Farassat. An analytical approach is followed for this model, to determine the thickness and load noise contributions of the rotor blade in hover. The second approach allows using URANS and RANS CFD solutions and based on numerical solution of the Ffowcs Williams-Howkings equations. The employed test cases correspond to a model rotor available at the KNRTUKAI aerodynamics laboratory. The laboratory is equipped with a system of acoustic measurements, and comparisons between predictions and measurements are to be attempted as part of this work.
Collector modulation in high-voltage bipolar transistor in the saturation mode: Analytical approach
NASA Astrophysics Data System (ADS)
Dmitriev, A. P.; Gert, A. V.; Levinshtein, M. E.; Yuferev, V. S.
2018-04-01
A simple analytical model is developed, capable of replacing the numerical solution of a system of nonlinear partial differential equations by solving a simple algebraic equation when analyzing the collector resistance modulation of a bipolar transistor in the saturation mode. In this approach, the leakage of the base current into the emitter and the recombination of non-equilibrium carriers in the base are taken into account. The data obtained are in good agreement with the results of numerical calculations and make it possible to describe both the motion of the front of the minority carriers and the steady state distribution of minority carriers across the collector in the saturation mode.
Stochastic theory of non-Markovian open quantum system
NASA Astrophysics Data System (ADS)
Zhao, Xinyu
In this thesis, a stochastic approach to solving non-Markovian open quantum system called "non-Markovian quantum state diffusion" (NMQSD) approach is discussed in details. The NMQSD approach can serve as an analytical and numerical tool to study the dynamics of the open quantum systems. We explore three main topics of the NMQSD approach. First, we extend the NMQSD approach to many-body open systems such as two-qubit system and coupled N-cavity system. Based on the exact NMQSD equations and the corresponding master equations, we investigate several interesting non-Markovian features due to the memory effect of the environment such as the entanglement generation in two-qubit system and the coherence and entanglement transfer between cavities. Second, we extend the original NMQSD approach to the case that system is coupled to a fermionic bath or a spin bath. By introducing the anti-commutative Grassmann noise and the fermionic coherent state, we derive a fermionic NMQSD equation and the corresponding master equation. The fermionic NMQSD is illustrated by several examples. In a single qubit dissipative example, we have explicitly demonstrated that the NMQSD approach and the ordinary quantum mechanics give rise to the exactly same results. We also show the difference between fermionic bath and bosonic bath. Third, we combine the bosonic and fermionic NMQSD approach to develop a unified NMQSD approach to study the case that an open system is coupled to a bosonic bath and a fermionic bath simultaneously. For all practical purposes, we develop a set of useful computer programs (NMQSD Toolbox) to implement the NMQSD equation in realistic computations. In particular, we develop an algorithm to calculate the exact O operator involved in the NMQSD equation. The NMQSD toolbox is designed to be user friendly, so it will be especially valuable for a non-expert who has interest to employ the NMQSD equation to solve a practical problem. Apart from the central topics on the NMQSD approach, we also study the environment-assisted error correction (EAEC) scheme. We have proposed two new schemes beyond the original EAEC scheme. Our schemes can be used to recover an unknown entangled initial state for a dephasing channel and recover an arbitrary unknown initial state for a dissipative channel using a generalized quantum measurement.
Dimensionality Analysis of "CBAL"™ Writing Tests. Research Report. ETS RR-13-10
ERIC Educational Resources Information Center
Fu, Jianbin; Chung, Seunghee; Wise, Maxwell
2013-01-01
The Cognitively Based Assessment of, for, and as Learning ("CBAL"™) research initiative is aimed at developing an innovative approach to K-12 assessment based on cognitive competency models. Because the choice of scoring and equating approaches depends on test dimensionality, the dimensional structure of CBAL tests must be understood.…
Reduction method with system analysis for multiobjective optimization-based design
NASA Technical Reports Server (NTRS)
Azarm, S.; Sobieszczanski-Sobieski, J.
1993-01-01
An approach for reducing the number of variables and constraints, which is combined with System Analysis Equations (SAE), for multiobjective optimization-based design is presented. In order to develop a simplified analysis model, the SAE is computed outside an optimization loop and then approximated for use by an operator. Two examples are presented to demonstrate the approach.
Recursion equations in predicting band width under gradient elution.
Liang, Heng; Liu, Ying
2004-06-18
The evolution of solute zone under gradient elution is a typical problem of non-linear continuity equation since the local diffusion coefficient and local migration velocity of the mass cells of solute zones are the functions of position and time due to space- and time-variable mobile phase composition. In this paper, based on the mesoscopic approaches (Lagrangian description, the continuity theory and the local equilibrium assumption), the evolution of solute zones in space- and time-dependent fields is described by the iterative addition of local probability density of the mass cells of solute zones. Furthermore, on macroscopic levels, the recursion equations have been proposed to simulate zone migration and spreading in reversed-phase high-performance liquid chromatography (RP-HPLC) through directly relating local retention factor and local diffusion coefficient to local mobile phase concentration. This new approach differs entirely from the traditional theories on plate concept with Eulerian description, since band width recursion equation is actually the accumulation of local diffusion coefficients of solute zones to discrete-time slices. Recursion equations and literature equations were used in dealing with same experimental data in RP-HPLC, and the comparison results show that the recursion equations can accurately predict band width under gradient elution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narlesky, Joshua Edward; Kelly, Elizabeth J.
2015-09-10
This report documents the new PG calibration regression equation. These calibration equations incorporate new data that have become available since revision 1 of “A Calibration to Predict the Concentrations of Impurities in Plutonium Oxide by Prompt Gamma Analysis” was issued [3] The calibration equations are based on a weighted least squares (WLS) approach for the regression. The WLS method gives each data point its proper amount of influence over the parameter estimates. This gives two big advantages, more precise parameter estimates and better and more defensible estimates of uncertainties. The WLS approach makes sense both statistically and experimentally because themore » variances increase with concentration, and there are physical reasons that the higher measurements are less reliable and should be less influential. The new magnesium calibration includes a correction for sodium and separate calibration equation for items with and without chlorine. These additional calibration equations allow for better predictions and smaller uncertainties for sodium in materials with and without chlorine. Chlorine and sodium have separate equations for RICH materials. Again, these equations give better predictions and smaller uncertainties chlorine and sodium for RICH materials.« less
Fan, Tingbo; Liu, Zhenbo; Chen, Tao; Li, Faqi; Zhang, Dong
2011-09-01
In this work, the authors propose a modeling approach to compute the nonlinear acoustic field generated by a flat piston transmitter with an attached aluminum lens. In this approach, the geometrical parameters (radius and focal length) of a virtual source are initially determined by Snell's refraction law and then adjusted based on the Rayleigh integral result in the linear case. Then, this virtual source is used with the nonlinear spheroidal beam equation (SBE) model to predict the nonlinear acoustic field in the focal region. To examine the validity of this approach, the calculated nonlinear result is compared with those from the Westervelt and (Khokhlov-Zabolotskaya-Kuznetsov) KZK equations for a focal intensity of 7 kW/cm(2). Results indicate that this approach could accurately describe the nonlinear acoustic field in the focal region with less computation time. The proposed modeling approach is shown to accurately describe the nonlinear acoustic field in the focal region. Compared with the Westervelt equation, the computation time of this approach is significantly reduced. It might also be applicable for the widely used concave focused transmitter with a large aperture angle.
Gravitoelectromagnetic analogy based on tidal tensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, L. Filipe O.; Herdeiro, Carlos A. R.
2008-07-15
We propose a new approach to a physical analogy between general relativity and electromagnetism, based on tidal tensors of both theories. Using this approach we write a covariant form for the gravitational analogues of the Maxwell equations, which makes transparent both the similarities and key differences between the two interactions. The following realizations of the analogy are given. The first one matches linearized gravitational tidal tensors to exact electromagnetic tidal tensors in Minkowski spacetime. The second one matches exact magnetic gravitational tidal tensors for ultrastationary metrics to exact magnetic tidal tensors of electromagnetism in curved spaces. In the third wemore » show that our approach leads to a two-step exact derivation of Papapetrou's equation describing the force exerted on a spinning test particle. Analogous scalar invariants built from tidal tensors of both theories are also discussed.« less
Numerical simulation of tonal fan noise of computers and air conditioning systems
NASA Astrophysics Data System (ADS)
Aksenov, A. A.; Gavrilyuk, V. N.; Timushev, S. F.
2016-07-01
Current approaches to fan noise simulation are mainly based on the Lighthill equation and socalled aeroacoustic analogy, which are also based on the transformed Lighthill equation, such as the wellknown FW-H equation or the Kirchhoff theorem. A disadvantage of such methods leading to significant modeling errors is associated with incorrect solution of the decomposition problem, i.e., separation of acoustic and vortex (pseudosound) modes in the area of the oscillation source. In this paper, we propose a method for tonal noise simulation based on the mesh solution of the Helmholtz equation for the Fourier transform of pressure perturbation with boundary conditions in the form of the complex impedance. A noise source is placed on the surface surrounding each fan rotor. The acoustic fan power is determined by the acoustic-vortex method, which ensures more accurate decomposition and determination of the pressure pulsation amplitudes in the near field of the fan.
NASA Astrophysics Data System (ADS)
Aihara, Yuichi; Sugimoto, Kyoko; Price, William S.; Hayamizu, Kikuko
2000-08-01
The Debye-Hückel-Onsager and Nernst-Einstein equations, which are based on two different conceptual approaches, constitute the most widely used equations for relating ionic conduction to ionic mobility. However, both of these classical (simple) equations are predictive of ionic conductivity only at very low salt concentrations. In the present work the ionic conductivity of four organic solvent-lithium salt-based electrolytes were measured. These experimental conductivity values were then contrasted with theoretical values calculated using the translational diffusion (also known as self-diffusion or intradiffusion) coefficients of all of the species present obtained using pulsed-gradient spin-echo (1H, 19F and 7Li) nuclear magnetic resonance self-diffusion measurements. The experimental results verified the applicability of both theoretical approaches at very low salt concentrations for these particular systems as well as helping to clarify the reasons for the divergence between theory and experiment. In particular, it was found that the correspondence between the Debye-Hückel-Onsager equation and experimental values could be improved by using the measured solvent self-diffusion values to correct for salt-induced changes in the solution viscosity. The concentration dependence of the self-diffusion coefficients is discussed in terms of the Jones-Dole equation.
A new variant of a scaling hypothesis and a fundamental equation of state based on it
NASA Astrophysics Data System (ADS)
Kudryavtseva, I. V.; Rykov, V. A.; Rykov, S. V.; Ustyuzhanin, E. E.
2018-01-01
This paper deals with a fundamental equation of state (FEOS) for substances. We have suggested a new method. It allows constructing FEOS that is based on the scaling theory of critical phenomena and describes thermodynamic properties related to liquid and gas phases of a substance in a wide range of the pressures and temperatures. In the framework of the methodological approach, we have provided: (i) a transition of FEOS in a virial equation of state in the low density region; (ii) a transition of FEOS in a Widom equation of state in the critical region. The method has been tested on the example of FEOS of R218. The area of applicability of FEOS is 0 < ρ/ρ c < 3.2 in the density and 133 < T < 440 K in the temperature. We have compared FEOS with some equations of state and discussed the results.
Investigating High-School Students' Reasoning Strategies when They Solve Linear Equations
ERIC Educational Resources Information Center
Huntley, Mary Ann; Marcus, Robin; Kahan, Jeremy; Miller, Jane Lincoln
2007-01-01
A cross-curricular structured-probe task-based clinical interview study with 44 pairs of third-year high-school mathematics students, most of whom were high achieving, was conducted to investigate their approaches to a variety of algebra problems. This paper presents results from one problem that involved solving a set of three linear equations of…
Braneworld gravity within non-conservative gravitational theory
NASA Astrophysics Data System (ADS)
Fabris, J. C.; Caramês, Thiago R. P.; da Silva, J. M. Hoff
2018-05-01
We investigate the braneworld gravity starting from the non-conservative gravitational field equations in a five-dimensional bulk. The approach is based on the Gauss-Codazzi formalism along with the study of the braneworld consistency conditions. The effective gravitational equations on the brane are obtained and the constraint leading to a brane energy-momentum conservation is analyzed.
Campbell, D A; Chkrebtii, O
2013-12-01
Statistical inference for biochemical models often faces a variety of characteristic challenges. In this paper we examine state and parameter estimation for the JAK-STAT intracellular signalling mechanism, which exemplifies the implementation intricacies common in many biochemical inference problems. We introduce an extension to the Generalized Smoothing approach for estimating delay differential equation models, addressing selection of complexity parameters, choice of the basis system, and appropriate optimization strategies. Motivated by the JAK-STAT system, we further extend the generalized smoothing approach to consider a nonlinear observation process with additional unknown parameters, and highlight how the approach handles unobserved states and unevenly spaced observations. The methodology developed is generally applicable to problems of estimation for differential equation models with delays, unobserved states, nonlinear observation processes, and partially observed histories. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi; ...
2015-11-12
Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scovazzi, Guglielmo; Carnes, Brian; Zeng, Xianyi
Here, we propose a new approach for the stabilization of linear tetrahedral finite elements in the case of nearly incompressible transient solid dynamics computations. Our method is based on a mixed formulation, in which the momentum equation is complemented by a rate equation for the evolution of the pressure field, approximated with piece-wise linear, continuous finite element functions. The pressure equation is stabilized to prevent spurious pressure oscillations in computations. Incidentally, it is also shown that many stabilized methods previously developed for the static case do not generalize easily to transient dynamics. Extensive tests in the context of linear andmore » nonlinear elasticity are used to corroborate the claim that the proposed method is robust, stable, and accurate.« less
Actuation for simultaneous motions and constraining efforts: an open chain example
NASA Astrophysics Data System (ADS)
Perreira, N. Duke
1997-06-01
A brief discussion on systems where simultaneous control of forces and velocities are desirable is given and an example linkage with revolute and prismatic joint is selected for further analysis. The Newton-Euler approach for dynamic system analysis is applied to the example to provide a basis of comparison. Gauge invariant transformations are used to convert the dynamic equations into invariant form suitable for use in a new dynamic system analysis method known as the motion-effort approach. This approach uses constraint elimination techniques based on singular value decompositions to recast the invariant form of dynamic system equations into orthogonal sets of motion and effort equations. Desired motions and constraining efforts are partitioned into ideally obtainable and unobtainable portions which are then used to determine the required actuation. The method is applied to the example system and an analytic estimate to its success is made.
Kerboua, Kaouther; Hamdaoui, Oualid
2018-01-01
Based on two different assumptions regarding the equation describing the state of the gases within an acoustic cavitation bubble, this paper studies the sonochemical production of hydrogen, through two numerical models treating the evolution of a chemical mechanism within a single bubble saturated with oxygen during an oscillation cycle in water. The first approach is built on an ideal gas model, while the second one is founded on Van der Waals equation, and the main objective was to analyze the effect of the considered state equation on the ultrasonic hydrogen production retrieved by simulation under various operating conditions. The obtained results show that even when the second approach gives higher values of temperature, pressure and total free radicals production, yield of hydrogen does not follow the same trend. When comparing the results released by both models regarding hydrogen production, it was noticed that the ratio of the molar amount of hydrogen is frequency and acoustic amplitude dependent. The use of Van der Waals equation leads to higher quantities of hydrogen under low acoustic amplitude and high frequencies, while employing ideal gas law based model gains the upper hand regarding hydrogen production at low frequencies and high acoustic amplitudes. Copyright © 2017 Elsevier B.V. All rights reserved.
The unified acoustic and aerodynamic prediction theory of advanced propellers in the time domain
NASA Technical Reports Server (NTRS)
Farassat, F.
1984-01-01
This paper presents some numerical results for the noise of an advanced supersonic propeller based on a formulation published last year. This formulation was derived to overcome some of the practical numerical difficulties associated with other acoustic formulations. The approach is based on the Ffowcs Williams-Hawkings equation and time domain analysis is used. To illustrate the method of solution, a model problem in three dimensions and based on the Laplace equation is solved. A brief sketch of derivation of the acoustic formula is then given. Another model problem is used to verify validity of the acoustic formulation. A recent singular integral equation for aerodynamic applications derived from the acoustic formula is also presented here.
Similarity solution of the Boussinesq equation
NASA Astrophysics Data System (ADS)
Lockington, D. A.; Parlange, J.-Y.; Parlange, M. B.; Selker, J.
Similarity transforms of the Boussinesq equation in a semi-infinite medium are available when the boundary conditions are a power of time. The Boussinesq equation is reduced from a partial differential equation to a boundary-value problem. Chen et al. [Trans Porous Media 1995;18:15-36] use a hodograph method to derive an integral equation formulation of the new differential equation which they solve by numerical iteration. In the present paper, the convergence of their scheme is improved such that numerical iteration can be avoided for all practical purposes. However, a simpler analytical approach is also presented which is based on Shampine's transformation of the boundary value problem to an initial value problem. This analytical approximation is remarkably simple and yet more accurate than the analytical hodograph approximations.
Boltzmann equation and hydrodynamics beyond Navier-Stokes.
Bobylev, A V
2018-04-28
We consider in this paper the problem of derivation and regularization of higher (in Knudsen number) equations of hydrodynamics. The author's approach based on successive changes of hydrodynamic variables is presented in more detail for the Burnett level. The complete theory is briefly discussed for the linearized Boltzmann equation. It is shown that the best results in this case can be obtained by using the 'diagonal' equations of hydrodynamics. Rigorous estimates of accuracy of the Navier-Stokes and Burnett approximations are also presented.This article is part of the theme issue 'Hilbert's sixth problem'. © 2018 The Author(s).
RMS massless arm dynamics capability in the SVDS. [equations of motion
NASA Technical Reports Server (NTRS)
Flanders, H. A.
1977-01-01
The equations of motion for the remote manipulator system, assuming that the masses and inertias of the arm can be neglected, are developed for implementation into the space vehicle dynamics simulation (SVDS) program for the Orbiter payload system. The arm flexibility is incorporated into the equations by the computation of flexibility terms for use in the joint servo model. The approach developed in this report is based on using the Jacobian transformation matrix to transform force and velocity terms between the configuration space and the task space to simplify the form of the equations.
A new multigroup method for cross-sections that vary rapidly in energy
Haut, Terry Scot; Ahrens, Cory D.; Jonko, Alexandra; ...
2016-11-04
Here, we present a numerical method for solving the time-independent thermal radiative transfer (TRT) equation or the neutron transport (NT) equation when the opacity (cross-section) varies rapidly in frequency (energy) on the microscale ε; ε corresponds to the characteristic spacing between absorption lines or resonances, and is much smaller than the macroscopic frequency (energy) variation of interest. The approach is based on a rigorous homogenization of the TRT/NT equation in the frequency (energy) variable. Discretization of the homogenized TRT/NT equation results in a multigroup-type system, and can therefore be solved by standard methods.
Memory Effects and Nonequilibrium Correlations in the Dynamics of Open Quantum Systems
NASA Astrophysics Data System (ADS)
Morozov, V. G.
2018-01-01
We propose a systematic approach to the dynamics of open quantum systems in the framework of Zubarev's nonequilibrium statistical operator method. The approach is based on the relation between ensemble means of the Hubbard operators and the matrix elements of the reduced statistical operator of an open quantum system. This key relation allows deriving master equations for open systems following a scheme conceptually identical to the scheme used to derive kinetic equations for distribution functions. The advantage of the proposed formalism is that some relevant dynamical correlations between an open system and its environment can be taken into account. To illustrate the method, we derive a non-Markovian master equation containing the contribution of nonequilibrium correlations associated with energy conservation.
Kinetic Equations for Describing the Liquid-Glass Transition in Polymers
NASA Astrophysics Data System (ADS)
Aksenov, V. L.; Tropin, T. V.; Schmelzer, J. V. P.
2018-01-01
We present a theoretical approach based on nonequilibrium thermodynamics and used to describe the kinetics of the transition from the liquid to the glassy state (glass transition). In the framework of this approach, we construct kinetic equations describing the time and temperature evolution of the structural parameter. We discuss modifications of the equations required for taking the nonexponential, nonlinear character of the relaxation in the vitrification region into account. To describe the formation of polymer glasses, we present modified expressions for the system relaxation time. We compare the obtained results with experimental data, measurements of the polystyrene glass transition for different cooling rates using the method of differential scanning calorimetry. We discuss prospects for developing a method for describing the polymer glass transition.
NASA Technical Reports Server (NTRS)
Edwards, S.; Reuther, J.; Chattot, J. J.
1997-01-01
The objective of this paper is to present a control theory approach for the design of airfoils in the presence of viscous compressible flows. A coupled system of the integral boundary layer and the Euler equations is solved to provide rapid flow simulations. An adjunct approach consistent with the complete coupled state equations is employed to obtain the sensitivities needed to drive a numerical optimization algorithm. Design to target pressure distribution is demonstrated on an RAE 2822 airfoil at transonic speed.
Reflected stochastic differential equation models for constrained animal movement
Hanks, Ephraim M.; Johnson, Devin S.; Hooten, Mevin B.
2017-01-01
Movement for many animal species is constrained in space by barriers such as rivers, shorelines, or impassable cliffs. We develop an approach for modeling animal movement constrained in space by considering a class of constrained stochastic processes, reflected stochastic differential equations. Our approach generalizes existing methods for modeling unconstrained animal movement. We present methods for simulation and inference based on augmenting the constrained movement path with a latent unconstrained path and illustrate this augmentation with a simulation example and an analysis of telemetry data from a Steller sea lion (Eumatopias jubatus) in southeast Alaska.
NASA Astrophysics Data System (ADS)
Goldenberg, J.; Libai, B.; Solomon, S.; Jan, N.; Stauffer, D.
2000-09-01
A percolation model is presented, with computer simulations for illustrations, to show how the sales of a new product may penetrate the consumer market. We review the traditional approach in the marketing literature, which is based on differential or difference equations similar to the logistic equation (Bass, Manage. Sci. 15 (1969) 215). This mean-field approach is contrasted with the discrete percolation on a lattice, with simulations of "social percolation" (Solomon et al., Physica A 277 (2000) 239) in two to five dimensions giving power laws instead of exponential growth, and strong fluctuations right at the percolation threshold.
NASA Astrophysics Data System (ADS)
Austin, Rickey W.
In Einstein's theory of Special Relativity (SR), one method to derive relativistic kinetic energy is via applying the classical work-energy theorem to relativistic momentum. This approach starts with a classical based work-energy theorem and applies SR's momentum to the derivation. One outcome of this derivation is relativistic kinetic energy. From this derivation, it is rather straight forward to form a kinetic energy based time dilation function. In the derivation of General Relativity a common approach is to bypass classical laws as a starting point. Instead a rigorous development of differential geometry and Riemannian space is constructed, from which classical based laws are derived. This is in contrast to SR's approach of starting with classical laws and applying the consequences of the universal speed of light by all observers. A possible method to derive time dilation due to Newtonian gravitational potential energy (NGPE) is to apply SR's approach to deriving relativistic kinetic energy. It will be shown this method gives a first order accuracy compared to Schwarzschild's metric. The SR's kinetic energy and the newly derived NGPE derivation are combined to form a Riemannian metric based on these two energies. A geodesic is derived and calculations compared to Schwarzschild's geodesic for an orbiting test mass about a central, non-rotating, non-charged massive body. The new metric results in high accuracy calculations when compared to Einsteins General Relativity's prediction. The new method provides a candidate approach for starting with classical laws and deriving General Relativity effects. This approach mimics SR's method of starting with classical mechanics when deriving relativistic equations. As a compliment to introducing General Relativity, it provides a plausible scaffolding method from classical physics when teaching introductory General Relativity. A straight forward path from classical laws to General Relativity will be derived. This derivation provides a minimum first order accuracy to Schwarzschild's solution to Einstein's field equations.
A new aerodynamic integral equation based on an acoustic formula in the time domain
NASA Technical Reports Server (NTRS)
Farassat, F.
1984-01-01
An aerodynamic integral equation for bodies moving at transonic and supersonic speeds is presented. Based on a time-dependent acoustic formula for calculating the noise emanating from the outer portion of a propeller blade travelling at high speed (the Ffowcs Williams-Hawking formulation), the loading terms and a conventional thickness source terms are retained. Two surface and three line integrals are employed to solve an equation for the loading noise. The near-field term is regularized using the collapsing sphere approach to obtain semiconvergence on the blade surface. A singular integral equation is thereby derived for the unknown surface pressure, and is amenable to numerical solutions using Galerkin or collocation methods. The technique is useful for studying the nonuniform inflow to the propeller.
A Jacobi collocation approximation for nonlinear coupled viscous Burgers' equation
NASA Astrophysics Data System (ADS)
Doha, Eid H.; Bhrawy, Ali H.; Abdelkawy, Mohamed A.; Hafez, Ramy M.
2014-02-01
This article presents a numerical approximation of the initial-boundary nonlinear coupled viscous Burgers' equation based on spectral methods. A Jacobi-Gauss-Lobatto collocation (J-GL-C) scheme in combination with the implicit Runge-Kutta-Nyström (IRKN) scheme are employed to obtain highly accurate approximations to the mentioned problem. This J-GL-C method, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled viscous Burgers' equation to a system of nonlinear ordinary differential equation which is far easier to solve. The given examples show, by selecting relatively few J-GL-C points, the accuracy of the approximations and the utility of the approach over other analytical or numerical methods. The illustrative examples demonstrate the accuracy, efficiency, and versatility of the proposed algorithm.
NASA Astrophysics Data System (ADS)
Bhrawy, A. H.; Doha, E. H.; Baleanu, D.; Ezz-Eldien, S. S.
2015-07-01
In this paper, an efficient and accurate spectral numerical method is presented for solving second-, fourth-order fractional diffusion-wave equations and fractional wave equations with damping. The proposed method is based on Jacobi tau spectral procedure together with the Jacobi operational matrix for fractional integrals, described in the Riemann-Liouville sense. The main characteristic behind this approach is to reduce such problems to those of solving systems of algebraic equations in the unknown expansion coefficients of the sought-for spectral approximations. The validity and effectiveness of the method are demonstrated by solving five numerical examples. Numerical examples are presented in the form of tables and graphs to make comparisons with the results obtained by other methods and with the exact solutions more easier.
NASA Astrophysics Data System (ADS)
Zhang, Yanxiang; Chen, Yu; Yan, Mufu
2017-07-01
The open circuit voltage (OCV) of solid oxide fuel cells is generally overestimated by the Nernst equation and the Wagner equation, due to the polarization losses at electrodes. Considering both the electronic conduction of electrolyte and the electrode polarization losses, we express the OCV as an implicit function of the characteristic oxygen pressure of electrolyte (p* [atm], at which the electronic and ionic conductivities are the same), and the relative polarization resistance of electrodes (rc = Rc/Ri and ra = Ra/Ri, where Ri/c/a [Ωcm2] denotes the ionic resistance of electrolyte, and the polarization resistances of cathode and anode, respectively). This equation approaches to the Wagner equation when the electrodes are highly active (rc and ra → 0), and approaches to the Nernst equation when the electrolyte is a purely ionic conductor (p* → 0). For the fuel cells whose OCV is well below the prediction of the Wagner equation, for example with thin doped ceria electrolyte, it is demonstrated that the combination of OCV and impedance spectroscopy measurements allows the determination of p*, Rc and Ra. This equation can serve as a simple yet powerful tool to study the internal losses in the cell under open circuit condition.
Fractional Diffusion Processes: Probability Distributions and Continuous Time Random Walk
NASA Astrophysics Data System (ADS)
Gorenflo, R.; Mainardi, F.
A physical-mathematical approach to anomalous diffusion may be based on generalized diffusion equations (containing derivatives of fractional order in space or/and time) and related random walk models. By the space-time fractional diffusion equation we mean an evolution equation obtained from the standard linear diffusion equation by replacing the second-order space derivative with a Riesz-Feller derivative of order alpha in (0,2] and skewness theta (\\verttheta\\vertlemin \\{alpha ,2-alpha \\}), and the first-order time derivative with a Caputo derivative of order beta in (0,1] . The fundamental solution (for the Cauchy problem) of the fractional diffusion equation can be interpreted as a probability density evolving in time of a peculiar self-similar stochastic process. We view it as a generalized diffusion process that we call fractional diffusion process, and present an integral representation of the fundamental solution. A more general approach to anomalous diffusion is however known to be provided by the master equation for a continuous time random walk (CTRW). We show how this equation reduces to our fractional diffusion equation by a properly scaled passage to the limit of compressed waiting times and jump widths. Finally, we describe a method of simulation and display (via graphics) results of a few numerical case studies.
Numerical solution of the two-dimensional time-dependent incompressible Euler equations
NASA Technical Reports Server (NTRS)
Whitfield, David L.; Taylor, Lafayette K.
1994-01-01
A numerical method is presented for solving the artificial compressibility form of the 2D time-dependent incompressible Euler equations. The approach is based on using an approximate Riemann solver for the cell face numerical flux of a finite volume discretization. Characteristic variable boundary conditions are developed and presented for all boundaries and in-flow out-flow situations. The system of algebraic equations is solved using the discretized Newton-relaxation (DNR) implicit method. Numerical results are presented for both steady and unsteady flow.
Solving constant-coefficient differential equations with dielectric metamaterials
NASA Astrophysics Data System (ADS)
Zhang, Weixuan; Qu, Che; Zhang, Xiangdong
2016-07-01
Recently, the concept of metamaterial analog computing has been proposed (Silva et al 2014 Science 343 160-3). Some mathematical operations such as spatial differentiation, integration, and convolution, have been performed by using designed metamaterial blocks. Motivated by this work, we propose a practical approach based on dielectric metamaterial to solve differential equations. The ordinary differential equation can be solved accurately by the correctly designed metamaterial system. The numerical simulations using well-established numerical routines have been performed to successfully verify all theoretical analyses.
The role of radiation reaction in Lienard-Wiechert description of FEL interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimel, I.; Elias, L.R.
1995-12-31
The most common theoretical analysis of the FEL interaction is based on the set of equations consisting of Lorentz and wave equations. This approach explains most of FEL features and, in particular, works well to describe operation in the amplifier mode. In that approach however, there are some difficulties in describing operation in oscillator mode, as well as self amplified spontaneous emission. In particular, it is not possible to describe the start up stage since there is no wave to start with. It is clear that a different approach is required in such situations. That is why we have pursuedmore » the study of the FEL interaction in the framework of Lorentz plus Lienard-Wiechert equations. The Lienard-Wiechert Lorentz equation approach however, presents its own set of problems. Variation in energy of the electrons is given exclusively by the Lorentz equation. Thus, the energy lost due to the radiation process is not properly taken into account. This, of course, is a long standing problem in classical electrodynamics. In order to restore energy conservation radiation reaction has to be incorporated into the framework. The first question in that regard has to do with which form of the radiation reaction equations is the most convenient for computations in the FEL process. This has to do with the fact that historically, radiation reaction has been added in an ad hoc manner instead of being derived from the fundamental equations. Another problem discussed is how to take into account the radiation reaction in a collective manner in the interaction among electrons. Also discussed is the radiation reaction vis a vi the coherence properties of the FEL process.« less
Pore size distribution calculation from 1H NMR signal and N2 adsorption-desorption techniques
NASA Astrophysics Data System (ADS)
Hassan, Jamal
2012-09-01
The pore size distribution (PSD) of nano-material MCM-41 is determined using two different approaches: N2 adsorption-desorption and 1H NMR signal of water confined in silica nano-pores of MCM-41. The first approach is based on the recently modified Kelvin equation [J.V. Rocha, D. Barrera, K. Sapag, Top. Catal. 54(2011) 121-134] which deals with the known underestimation in pore size distribution for the mesoporous materials such as MCM-41 by introducing a correction factor to the classical Kelvin equation. The second method employs the Gibbs-Thompson equation, using NMR, for melting point depression of liquid in confined geometries. The result shows that both approaches give similar pore size distribution to some extent, and also the NMR technique can be considered as an alternative direct method to obtain quantitative results especially for mesoporous materials. The pore diameter estimated for the nano-material used in this study was about 35 and 38 Å for the modified Kelvin and NMR methods respectively. A comparison between these methods and the classical Kelvin equation is also presented.
Modifying Bagnold's Sediment Transport Equation for Use in Watershed-Scale Channel Incision Models
NASA Astrophysics Data System (ADS)
Lammers, R. W.; Bledsoe, B. P.
2016-12-01
Destabilized stream channels may evolve through a sequence of stages, initiated by bed incision and followed by bank erosion and widening. Channel incision can be modeled using Exner-type mass balance equations, but model accuracy is limited by the accuracy and applicability of the selected sediment transport equation. Additionally, many sediment transport relationships require significant data inputs, limiting their usefulness in data-poor environments. Bagnold's empirical relationship for bedload transport is attractive because it is based on stream power, a relatively straightforward parameter to estimate using remote sensing data. However, the equation is also dependent on flow depth, which is more difficult to measure or estimate for entire drainage networks. We recast Bagnold's original sediment transport equation using specific discharge in place of flow depth. Using a large dataset of sediment transport rates from the literature, we show that this approach yields similar predictive accuracy as other stream power based relationships. We also explore the applicability of various critical stream power equations, including Bagnold's original, and support previous conclusions that these critical values can be predicted well based solely on sediment grain size. In addition, we propagate error in these sediment transport equations through channel incision modeling to compare the errors associated with our equation to alternative formulations. This new version of Bagnold's bedload transport equation has utility for channel incision modeling at larger spatial scales using widely available and remote sensing data.
Probabilistic analysis of wind-induced vibration mitigation of structures by fluid viscous dampers
NASA Astrophysics Data System (ADS)
Chen, Jianbing; Zeng, Xiaoshu; Peng, Yongbo
2017-11-01
The high-rise buildings usually suffer from excessively large wind-induced vibrations, and thus vibration control systems might be necessary. Fluid viscous dampers (FVDs) with nonlinear power law against velocity are widely employed. With the transition of design method from traditional frequency domain approaches to more refined direct time domain approaches, the difficulty of time integration of these systems occurs sometimes. In the present paper, firstly the underlying reason of the difficulty is revealed by identifying that the equations of motion of high-rise buildings installed with FVDs are sometimes stiff differential equations. Thus, an approach effective for stiff differential systems, i.e., the backward difference formula (BDF), is then introduced, and verified to be effective for the equation of motion of wind-induced vibration controlled systems. Comparative studies are performed among some methods, including the Newmark method, KR-alpha method, energy-based linearization method and the statistical linearization method. Based on the above results, a 20-story steel frame structure is taken as a practical example. Particularly, the randomness of structural parameters and of wind loading input is emphasized. The extreme values of the responses are examined, showing the effectiveness of the proposed approach, and also necessitating the refined probabilistic analysis in the design of wind-induced vibration mitigation systems.
Numerical approximations for fractional diffusion equations via a Chebyshev spectral-tau method
NASA Astrophysics Data System (ADS)
Doha, Eid H.; Bhrawy, Ali H.; Ezz-Eldien, Samer S.
2013-10-01
In this paper, a class of fractional diffusion equations with variable coefficients is considered. An accurate and efficient spectral tau technique for solving the fractional diffusion equations numerically is proposed. This method is based upon Chebyshev tau approximation together with Chebyshev operational matrix of Caputo fractional differentiation. Such approach has the advantage of reducing the problem to the solution of a system of algebraic equations, which may then be solved by any standard numerical technique. We apply this general method to solve four specific examples. In each of the examples considered, the numerical results show that the proposed method is of high accuracy and is efficient for solving the time-dependent fractional diffusion equations.
Matrix exponential-based closures for the turbulent subgrid-scale stress tensor.
Li, Yi; Chevillard, Laurent; Eyink, Gregory; Meneveau, Charles
2009-01-01
Two approaches for closing the turbulence subgrid-scale stress tensor in terms of matrix exponentials are introduced and compared. The first approach is based on a formal solution of the stress transport equation in which the production terms can be integrated exactly in terms of matrix exponentials. This formal solution of the subgrid-scale stress transport equation is shown to be useful to explore special cases, such as the response to constant velocity gradient, but neglecting pressure-strain correlations and diffusion effects. The second approach is based on an Eulerian-Lagrangian change of variables, combined with the assumption of isotropy for the conditionally averaged Lagrangian velocity gradient tensor and with the recent fluid deformation approximation. It is shown that both approaches lead to the same basic closure in which the stress tensor is expressed as the matrix exponential of the resolved velocity gradient tensor multiplied by its transpose. Short-time expansions of the matrix exponentials are shown to provide an eddy-viscosity term and particular quadratic terms, and thus allow a reinterpretation of traditional eddy-viscosity and nonlinear stress closures. The basic feasibility of the matrix-exponential closure is illustrated by implementing it successfully in large eddy simulation of forced isotropic turbulence. The matrix-exponential closure employs the drastic approximation of entirely omitting the pressure-strain correlation and other nonlinear scrambling terms. But unlike eddy-viscosity closures, the matrix exponential approach provides a simple and local closure that can be derived directly from the stress transport equation with the production term, and using physically motivated assumptions about Lagrangian decorrelation and upstream isotropy.
Niang, Oumar; Thioune, Abdoulaye; El Gueirea, Mouhamed Cheikh; Deléchelle, Eric; Lemoine, Jacques
2012-09-01
The major problem with the empirical mode decomposition (EMD) algorithm is its lack of a theoretical framework. So, it is difficult to characterize and evaluate this approach. In this paper, we propose, in the 2-D case, the use of an alternative implementation to the algorithmic definition of the so-called "sifting process" used in the original Huang's EMD method. This approach, especially based on partial differential equations (PDEs), was presented by Niang in previous works, in 2005 and 2007, and relies on a nonlinear diffusion-based filtering process to solve the mean envelope estimation problem. In the 1-D case, the efficiency of the PDE-based method, compared to the original EMD algorithmic version, was also illustrated in a recent paper. Recently, several 2-D extensions of the EMD method have been proposed. Despite some effort, 2-D versions for EMD appear poorly performing and are very time consuming. So in this paper, an extension to the 2-D space of the PDE-based approach is extensively described. This approach has been applied in cases of both signal and image decomposition. The obtained results confirm the usefulness of the new PDE-based sifting process for the decomposition of various kinds of data. Some results have been provided in the case of image decomposition. The effectiveness of the approach encourages its use in a number of signal and image applications such as denoising, detrending, or texture analysis.
Asquith, William H.; Roussel, Meghan C.
2009-01-01
Annual peak-streamflow frequency estimates are needed for flood-plain management; for objective assessment of flood risk; for cost-effective design of dams, levees, and other flood-control structures; and for design of roads, bridges, and culverts. Annual peak-streamflow frequency represents the peak streamflow for nine recurrence intervals of 2, 5, 10, 25, 50, 100, 200, 250, and 500 years. Common methods for estimation of peak-streamflow frequency for ungaged or unmonitored watersheds are regression equations for each recurrence interval developed for one or more regions; such regional equations are the subject of this report. The method is based on analysis of annual peak-streamflow data from U.S. Geological Survey streamflow-gaging stations (stations). Beginning in 2007, the U.S. Geological Survey, in cooperation with the Texas Department of Transportation and in partnership with Texas Tech University, began a 3-year investigation concerning the development of regional equations to estimate annual peak-streamflow frequency for undeveloped watersheds in Texas. The investigation focuses primarily on 638 stations with 8 or more years of data from undeveloped watersheds and other criteria. The general approach is explicitly limited to the use of L-moment statistics, which are used in conjunction with a technique of multi-linear regression referred to as PRESS minimization. The approach used to develop the regional equations, which was refined during the investigation, is referred to as the 'L-moment-based, PRESS-minimized, residual-adjusted approach'. For the approach, seven unique distributions are fit to the sample L-moments of the data for each of 638 stations and trimmed means of the seven results of the distributions for each recurrence interval are used to define the station specific, peak-streamflow frequency. As a first iteration of regression, nine weighted-least-squares, PRESS-minimized, multi-linear regression equations are computed using the watershed characteristics of drainage area, dimensionless main-channel slope, and mean annual precipitation. The residuals of the nine equations are spatially mapped, and residuals for the 10-year recurrence interval are selected for generalization to 1-degree latitude and longitude quadrangles. The generalized residual is referred to as the OmegaEM parameter and represents a generalized terrain and climate index that expresses peak-streamflow potential not otherwise represented in the three watershed characteristics. The OmegaEM parameter was assigned to each station, and using OmegaEM, nine additional regression equations are computed. Because of favorable diagnostics, the OmegaEM equations are expected to be generally reliable estimators of peak-streamflow frequency for undeveloped and ungaged stream locations in Texas. The mean residual standard error, adjusted R-squared, and percentage reduction of PRESS by use of OmegaEM are 0.30log10, 0.86, and -21 percent, respectively. Inclusion of the OmegaEM parameter provides a substantial reduction in the PRESS statistic of the regression equations and removes considerable spatial dependency in regression residuals. Although the OmegaEM parameter requires interpretation on the part of analysts and the potential exists that different analysts could estimate different values for a given watershed, the authors suggest that typical uncertainty in the OmegaEM estimate might be about +or-0.1010. Finally, given the two ensembles of equations reported herein and those in previous reports, hydrologic design engineers and other analysts have several different methods, which represent different analytical tracks, to make comparisons of peak-streamflow frequency estimates for ungaged watersheds in the study area.
Rule-based spatial modeling with diffusing, geometrically constrained molecules.
Gruenert, Gerd; Ibrahim, Bashar; Lenser, Thorsten; Lohel, Maiko; Hinze, Thomas; Dittrich, Peter
2010-06-07
We suggest a new type of modeling approach for the coarse grained, particle-based spatial simulation of combinatorially complex chemical reaction systems. In our approach molecules possess a location in the reactor as well as an orientation and geometry, while the reactions are carried out according to a list of implicitly specified reaction rules. Because the reaction rules can contain patterns for molecules, a combinatorially complex or even infinitely sized reaction network can be defined. For our implementation (based on LAMMPS), we have chosen an already existing formalism (BioNetGen) for the implicit specification of the reaction network. This compatibility allows to import existing models easily, i.e., only additional geometry data files have to be provided. Our simulations show that the obtained dynamics can be fundamentally different from those simulations that use classical reaction-diffusion approaches like Partial Differential Equations or Gillespie-type spatial stochastic simulation. We show, for example, that the combination of combinatorial complexity and geometric effects leads to the emergence of complex self-assemblies and transportation phenomena happening faster than diffusion (using a model of molecular walkers on microtubules). When the mentioned classical simulation approaches are applied, these aspects of modeled systems cannot be observed without very special treatment. Further more, we show that the geometric information can even change the organizational structure of the reaction system. That is, a set of chemical species that can in principle form a stationary state in a Differential Equation formalism, is potentially unstable when geometry is considered, and vice versa. We conclude that our approach provides a new general framework filling a gap in between approaches with no or rigid spatial representation like Partial Differential Equations and specialized coarse-grained spatial simulation systems like those for DNA or virus capsid self-assembly.
Rule-based spatial modeling with diffusing, geometrically constrained molecules
2010-01-01
Background We suggest a new type of modeling approach for the coarse grained, particle-based spatial simulation of combinatorially complex chemical reaction systems. In our approach molecules possess a location in the reactor as well as an orientation and geometry, while the reactions are carried out according to a list of implicitly specified reaction rules. Because the reaction rules can contain patterns for molecules, a combinatorially complex or even infinitely sized reaction network can be defined. For our implementation (based on LAMMPS), we have chosen an already existing formalism (BioNetGen) for the implicit specification of the reaction network. This compatibility allows to import existing models easily, i.e., only additional geometry data files have to be provided. Results Our simulations show that the obtained dynamics can be fundamentally different from those simulations that use classical reaction-diffusion approaches like Partial Differential Equations or Gillespie-type spatial stochastic simulation. We show, for example, that the combination of combinatorial complexity and geometric effects leads to the emergence of complex self-assemblies and transportation phenomena happening faster than diffusion (using a model of molecular walkers on microtubules). When the mentioned classical simulation approaches are applied, these aspects of modeled systems cannot be observed without very special treatment. Further more, we show that the geometric information can even change the organizational structure of the reaction system. That is, a set of chemical species that can in principle form a stationary state in a Differential Equation formalism, is potentially unstable when geometry is considered, and vice versa. Conclusions We conclude that our approach provides a new general framework filling a gap in between approaches with no or rigid spatial representation like Partial Differential Equations and specialized coarse-grained spatial simulation systems like those for DNA or virus capsid self-assembly. PMID:20529264
Loukova, Galina V; Milov, Alexey A; Vasiliev, Vladimir P; Minkin, Vladimir I
2016-07-21
For metal-based compounds, the ground- and excited-state dipole moments and the difference thereof are, for the first time, obtained both experimentally and theoretically using solvatochromic equations and DFT/B3LYP/QZVP calculations. The approach is suggested to be promising and easily accessible, and can be universal to elucidate the electronic properties of metal-based compounds.
From Equation to Inequality Using a Function-Based Approach
ERIC Educational Resources Information Center
Verikios, Petros; Farmaki, Vassiliki
2010-01-01
This article presents features of a qualitative research study concerning the teaching and learning of school algebra using a function-based approach in a grade 8 class, of 23 students, in 26 lessons, in a state school of Athens, in the school year 2003-2004. In this article, we are interested in the inequality concept and our aim is to…
Rank-preserving regression: a more robust rank regression model against outliers.
Chen, Tian; Kowalski, Jeanne; Chen, Rui; Wu, Pan; Zhang, Hui; Feng, Changyong; Tu, Xin M
2016-08-30
Mean-based semi-parametric regression models such as the popular generalized estimating equations are widely used to improve robustness of inference over parametric models. Unfortunately, such models are quite sensitive to outlying observations. The Wilcoxon-score-based rank regression (RR) provides more robust estimates over generalized estimating equations against outliers. However, the RR and its extensions do not sufficiently address missing data arising in longitudinal studies. In this paper, we propose a new approach to address outliers under a different framework based on the functional response models. This functional-response-model-based alternative not only addresses limitations of the RR and its extensions for longitudinal data, but, with its rank-preserving property, even provides more robust estimates than these alternatives. The proposed approach is illustrated with both real and simulated data. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Au, Loretta; Wright, Nigel; Botton, Christopher
2003-01-01
This article reports the use of a Structural Equation Modelling (SEM) technique as a means of exploring our understanding of the leadership of Heads of Subject Departments within School Based Management (SBM) secondary schools in Hong Kong. Arguments made by Gronn (1999, 2000), Spillane et al. (2001) suggest that studies of leadership need to…
Comparison of Implicit Collocation Methods for the Heat Equation
NASA Technical Reports Server (NTRS)
Kouatchou, Jules; Jezequel, Fabienne; Zukor, Dorothy (Technical Monitor)
2001-01-01
We combine a high-order compact finite difference scheme to approximate spatial derivatives arid collocation techniques for the time component to numerically solve the two dimensional heat equation. We use two approaches to implement the collocation methods. The first one is based on an explicit computation of the coefficients of polynomials and the second one relies on differential quadrature. We compare them by studying their merits and analyzing their numerical performance. All our computations, based on parallel algorithms, are carried out on the CRAY SV1.
A Correlation-Based Transition Model using Local Variables. Part 1; Model Formation
NASA Technical Reports Server (NTRS)
Menter, F. R.; Langtry, R. B.; Likki, S. R.; Suzen, Y. B.; Huang, P. G.; Volker, S.
2006-01-01
A new correlation-based transition model has been developed, which is based strictly on local variables. As a result, the transition model is compatible with modern computational fluid dynamics (CFD) approaches, such as unstructured grids and massive parallel execution. The model is based on two transport equations, one for intermittency and one for the transition onset criteria in terms of momentum thickness Reynolds number. The proposed transport equations do not attempt to model the physics of the transition process (unlike, e.g., turbulence models) but from a framework for the implementation of correlation-based models into general-purpose CFD methods.
Non-invasive pressure difference estimation from PC-MRI using the work-energy equation
Donati, Fabrizio; Figueroa, C. Alberto; Smith, Nicolas P.; Lamata, Pablo; Nordsletten, David A.
2015-01-01
Pressure difference is an accepted clinical biomarker for cardiovascular disease conditions such as aortic coarctation. Currently, measurements of pressure differences in the clinic rely on invasive techniques (catheterization), prompting development of non-invasive estimates based on blood flow. In this work, we propose a non-invasive estimation procedure deriving pressure difference from the work-energy equation for a Newtonian fluid. Spatial and temporal convergence is demonstrated on in silico Phase Contrast Magnetic Resonance Image (PC-MRI) phantoms with steady and transient flow fields. The method is also tested on an image dataset generated in silico from a 3D patient-specific Computational Fluid Dynamics (CFD) simulation and finally evaluated on a cohort of 9 subjects. The performance is compared to existing approaches based on steady and unsteady Bernoulli formulations as well as the pressure Poisson equation. The new technique shows good accuracy, robustness to noise, and robustness to the image segmentation process, illustrating the potential of this approach for non-invasive pressure difference estimation. PMID:26409245
Ringe, Stefan; Oberhofer, Harald; Hille, Christoph; Matera, Sebastian; Reuter, Karsten
2016-08-09
The size-modified Poisson-Boltzmann (MPB) equation is an efficient implicit solvation model which also captures electrolytic solvent effects. It combines an account of the dielectric solvent response with a mean-field description of solvated finite-sized ions. We present a general solution scheme for the MPB equation based on a fast function-space-oriented Newton method and a Green's function preconditioned iterative linear solver. In contrast to popular multigrid solvers, this approach allows us to fully exploit specialized integration grids and optimized integration schemes. We describe a corresponding numerically efficient implementation for the full-potential density-functional theory (DFT) code FHI-aims. We show that together with an additional Stern layer correction the DFT+MPB approach can describe the mean activity coefficient of a KCl aqueous solution over a wide range of concentrations. The high sensitivity of the calculated activity coefficient on the employed ionic parameters thereby suggests to use extensively tabulated experimental activity coefficients of salt solutions for a systematic parametrization protocol.
NASA Technical Reports Server (NTRS)
Korte, John J.; Kumar, Ajay; Singh, D. J.; White, J. A.
1992-01-01
A design program is developed which incorporates a modern approach to the design of supersonic/hypersonic wind-tunnel nozzles. The approach is obtained by the coupling of computational fluid dynamics (CFD) with design optimization. The program can be used to design a 2D or axisymmetric, supersonic or hypersonic, wind-tunnel nozzles that can be modeled with a calorically perfect gas. The nozzle design is obtained by solving a nonlinear least-squares optimization problem (LSOP). The LSOP is solved using an iterative procedure which requires intermediate flowfield solutions. The nozzle flowfield is simulated by solving the Navier-Stokes equations for the subsonic and transonic flow regions and the parabolized Navier-Stokes equations for the supersonic flow regions. The advantages of this method are that the design is based on the solution of the viscous equations eliminating the need to make separate corrections to a design contour, and the flexibility of applying the procedure to different types of nozzle design problems.
Computational attributes of the integral form of the equation of transfer
NASA Technical Reports Server (NTRS)
Frankel, J. I.
1991-01-01
Difficulties can arise in radiative and neutron transport calculations when a highly anisotropic scattering phase function is present. In the presence of anisotropy, currently used numerical solutions are based on the integro-differential form of the linearized Boltzmann transport equation. This paper, departs from classical thought and presents an alternative numerical approach based on application of the integral form of the transport equation. Use of the integral formalism facilitates the following steps: a reduction in dimensionality of the system prior to discretization, the use of symbolic manipulation to augment the computational procedure, and the direct determination of key physical quantities which are derivable through the various Legendre moments of the intensity. The approach is developed in the context of radiative heat transfer in a plane-parallel geometry, and results are presented and compared with existing benchmark solutions. Encouraging results are presented to illustrate the potential of the integral formalism for computation. The integral formalism appears to possess several computational attributes which are well-suited to radiative and neutron transport calculations.
Continuous data assimilation for downscaling large-footprint soil moisture retrievals
NASA Astrophysics Data System (ADS)
Altaf, Muhammad U.; Jana, Raghavendra B.; Hoteit, Ibrahim; McCabe, Matthew F.
2016-10-01
Soil moisture is a key component of the hydrologic cycle, influencing processes leading to runoff generation, infiltration and groundwater recharge, evaporation and transpiration. Generally, the measurement scale for soil moisture is found to be different from the modeling scales for these processes. Reducing this mismatch between observation and model scales in necessary for improved hydrological modeling. An innovative approach to downscaling coarse resolution soil moisture data by combining continuous data assimilation and physically based modeling is presented. In this approach, we exploit the features of Continuous Data Assimilation (CDA) which was initially designed for general dissipative dynamical systems and later tested numerically on the incompressible Navier-Stokes equation, and the Benard equation. A nudging term, estimated as the misfit between interpolants of the assimilated coarse grid measurements and the fine grid model solution, is added to the model equations to constrain the model's large scale variability by available measurements. Soil moisture fields generated at a fine resolution by a physically-based vadose zone model (HYDRUS) are subjected to data assimilation conditioned upon coarse resolution observations. This enables nudging of the model outputs towards values that honor the coarse resolution dynamics while still being generated at the fine scale. Results show that the approach is feasible to generate fine scale soil moisture fields across large extents, based on coarse scale observations. Application of this approach is likely in generating fine and intermediate resolution soil moisture fields conditioned on the radiometerbased, coarse resolution products from remote sensing satellites.
Solving the interval type-2 fuzzy polynomial equation using the ranking method
NASA Astrophysics Data System (ADS)
Rahman, Nurhakimah Ab.; Abdullah, Lazim
2014-07-01
Polynomial equations with trapezoidal and triangular fuzzy numbers have attracted some interest among researchers in mathematics, engineering and social sciences. There are some methods that have been developed in order to solve these equations. In this study we are interested in introducing the interval type-2 fuzzy polynomial equation and solving it using the ranking method of fuzzy numbers. The ranking method concept was firstly proposed to find real roots of fuzzy polynomial equation. Therefore, the ranking method is applied to find real roots of the interval type-2 fuzzy polynomial equation. We transform the interval type-2 fuzzy polynomial equation to a system of crisp interval type-2 fuzzy polynomial equation. This transformation is performed using the ranking method of fuzzy numbers based on three parameters, namely value, ambiguity and fuzziness. Finally, we illustrate our approach by numerical example.
NASA Astrophysics Data System (ADS)
Rao, T. R. Ramesh
2018-04-01
In this paper, we study the analytical method based on reduced differential transform method coupled with sumudu transform through Pades approximants. The proposed method may be considered as alternative approach for finding exact solution of Gas dynamics equation in an effective manner. This method does not require any discretization, linearization and perturbation.
NASA Astrophysics Data System (ADS)
Sinkala, W.
2011-01-01
Two approaches based on Lie group analysis are employed to obtain the closed-form solution of a partial differential equation derived by Francis A. Longstaff [J Financial Econom 1989;23:195-224] for the price of a discount bond in the double-square-root model of the term structure.
ERIC Educational Resources Information Center
Ke, Fengfeng; Kwak, Dean
2013-01-01
The present study investigated the relationships between constructs of web-based student-centered learning and the learning satisfaction of a diverse online student body. Hypotheses on the constructs of student-centered learning were tested using structural equation modeling. The results indicated that five key constructs of student-centered…
Sizing-tube-fin space radiators
NASA Technical Reports Server (NTRS)
Peoples, J. A.
1978-01-01
Temperature and size considerations of the tube fin space radiator were characterized by charts and equations. An approach of accurately assessing rejection capability commensurate with a phase A/B level output is reviewed. A computer program, based on Mackey's equations, is also presented which sizes the rejection area for a given thermal load. The program also handles the flow and thermal considerations of the film coefficient.
A Structural Equation Model at the Individual and Group Level for Assessing Faking-Related Change
ERIC Educational Resources Information Center
Ferrando, Pere Joan; Anguiano-Carrasco, Cristina
2011-01-01
This article proposes a comprehensive approach based on structural equation modeling for assessing the amount of trait-level change derived from faking-motivating situations. The model is intended for a mixed 2-wave 2-group design, and assesses change at both the group and the individual level. Theoretically the model adopts an integrative…
Stochastic approach to equilibrium and nonequilibrium thermodynamics.
Tomé, Tânia; de Oliveira, Mário J
2015-04-01
We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete (master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second the definition of entropy production rate, which is non-negative and vanishes in thermodynamic equilibrium. Based on these assumptions, we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasiequilibrium processes; the convexity of the equilibrium surface; the monotonic time behavior of thermodynamic potentials, including entropy; the bilinear form of the entropy production rate; the Onsager coefficients and reciprocal relations; and the nonequilibrium steady states of chemical reactions.
Pawlowski, Roger P.; Phipps, Eric T.; Salinger, Andrew G.; ...
2012-01-01
A template-based generic programming approach was presented in Part I of this series of papers [Sci. Program. 20 (2012), 197–219] that separates the development effort of programming a physical model from that of computing additional quantities, such as derivatives, needed for embedded analysis algorithms. In this paper, we describe the implementation details for using the template-based generic programming approach for simulation and analysis of partial differential equations (PDEs). We detail several of the hurdles that we have encountered, and some of the software infrastructure developed to overcome them. We end with a demonstration where we present shape optimization and uncertaintymore » quantification results for a 3D PDE application.« less
Investigation of Low-Reynolds-Number Rocket Nozzle Design Using PNS-Based Optimization Procedure
NASA Technical Reports Server (NTRS)
Hussaini, M. Moin; Korte, John J.
1996-01-01
An optimization approach to rocket nozzle design, based on computational fluid dynamics (CFD) methodology, is investigated for low-Reynolds-number cases. This study is undertaken to determine the benefits of this approach over those of classical design processes such as Rao's method. A CFD-based optimization procedure, using the parabolized Navier-Stokes (PNS) equations, is used to design conical and contoured axisymmetric nozzles. The advantage of this procedure is that it accounts for viscosity during the design process; other processes make an approximated boundary-layer correction after an inviscid design is created. Results showed significant improvement in the nozzle thrust coefficient over that of the baseline case; however, the unusual nozzle design necessitates further investigation of the accuracy of the PNS equations for modeling expanding flows with thick laminar boundary layers.
Fast Legendre moment computation for template matching
NASA Astrophysics Data System (ADS)
Li, Bing C.
2017-05-01
Normalized cross correlation (NCC) based template matching is insensitive to intensity changes and it has many applications in image processing, object detection, video tracking and pattern recognition. However, normalized cross correlation implementation is computationally expensive since it involves both correlation computation and normalization implementation. In this paper, we propose Legendre moment approach for fast normalized cross correlation implementation and show that the computational cost of this proposed approach is independent of template mask sizes which is significantly faster than traditional mask size dependent approaches, especially for large mask templates. Legendre polynomials have been widely used in solving Laplace equation in electrodynamics in spherical coordinate systems, and solving Schrodinger equation in quantum mechanics. In this paper, we extend Legendre polynomials from physics to computer vision and pattern recognition fields, and demonstrate that Legendre polynomials can help to reduce the computational cost of NCC based template matching significantly.
Numerical solution of the Black-Scholes equation using cubic spline wavelets
NASA Astrophysics Data System (ADS)
Černá, Dana
2016-12-01
The Black-Scholes equation is used in financial mathematics for computation of market values of options at a given time. We use the θ-scheme for time discretization and an adaptive scheme based on wavelets for discretization on the given time level. Advantages of the proposed method are small number of degrees of freedom, high-order accuracy with respect to variables representing prices and relatively small number of iterations needed to resolve the problem with a desired accuracy. We use several cubic spline wavelet and multi-wavelet bases and discuss their advantages and disadvantages. We also compare an isotropic and anisotropic approach. Numerical experiments are presented for the two-dimensional Black-Scholes equation.
Approximate median regression for complex survey data with skewed response.
Fraser, Raphael André; Lipsitz, Stuart R; Sinha, Debajyoti; Fitzmaurice, Garrett M; Pan, Yi
2016-12-01
The ready availability of public-use data from various large national complex surveys has immense potential for the assessment of population characteristics using regression models. Complex surveys can be used to identify risk factors for important diseases such as cancer. Existing statistical methods based on estimating equations and/or utilizing resampling methods are often not valid with survey data due to complex survey design features. That is, stratification, multistage sampling, and weighting. In this article, we accommodate these design features in the analysis of highly skewed response variables arising from large complex surveys. Specifically, we propose a double-transform-both-sides (DTBS)'based estimating equations approach to estimate the median regression parameters of the highly skewed response; the DTBS approach applies the same Box-Cox type transformation twice to both the outcome and regression function. The usual sandwich variance estimate can be used in our approach, whereas a resampling approach would be needed for a pseudo-likelihood based on minimizing absolute deviations (MAD). Furthermore, the approach is relatively robust to the true underlying distribution, and has much smaller mean square error than a MAD approach. The method is motivated by an analysis of laboratory data on urinary iodine (UI) concentration from the National Health and Nutrition Examination Survey. © 2016, The International Biometric Society.
Approximate Median Regression for Complex Survey Data with Skewed Response
Fraser, Raphael André; Lipsitz, Stuart R.; Sinha, Debajyoti; Fitzmaurice, Garrett M.; Pan, Yi
2016-01-01
Summary The ready availability of public-use data from various large national complex surveys has immense potential for the assessment of population characteristics using regression models. Complex surveys can be used to identify risk factors for important diseases such as cancer. Existing statistical methods based on estimating equations and/or utilizing resampling methods are often not valid with survey data due to complex survey design features. That is, stratification, multistage sampling and weighting. In this paper, we accommodate these design features in the analysis of highly skewed response variables arising from large complex surveys. Specifically, we propose a double-transform-both-sides (DTBS) based estimating equations approach to estimate the median regression parameters of the highly skewed response; the DTBS approach applies the same Box-Cox type transformation twice to both the outcome and regression function. The usual sandwich variance estimate can be used in our approach, whereas a resampling approach would be needed for a pseudo-likelihood based on minimizing absolute deviations (MAD). Furthermore, the approach is relatively robust to the true underlying distribution, and has much smaller mean square error than a MAD approach. The method is motivated by an analysis of laboratory data on urinary iodine (UI) concentration from the National Health and Nutrition Examination Survey. PMID:27062562
NASA Astrophysics Data System (ADS)
Kiafar, Hamed; Babazadeh, Hosssien; Marti, Pau; Kisi, Ozgur; Landeras, Gorka; Karimi, Sepideh; Shiri, Jalal
2017-10-01
Evapotranspiration estimation is of crucial importance in arid and hyper-arid regions, which suffer from water shortage, increasing dryness and heat. A modeling study is reported here to cross-station assessment between hyper-arid and humid conditions. The derived equations estimate ET0 values based on temperature-, radiation-, and mass transfer-based configurations. Using data from two meteorological stations in a hyper-arid region of Iran and two meteorological stations in a humid region of Spain, different local and cross-station approaches are applied for developing and validating the derived equations. The comparison of the gene expression programming (GEP)-based-derived equations with corresponding empirical-semi empirical ET0 estimation equations reveals the superiority of new formulas in comparison with the corresponding empirical equations. Therefore, the derived models can be successfully applied in these hyper-arid and humid regions as well as similar climatic contexts especially in data-lack situations. The results also show that when relying on proper input configurations, cross-station might be a promising alternative for locally trained models for the stations with data scarcity.
A new numerical treatment based on Lucas polynomials for 1D and 2D sinh-Gordon equation
NASA Astrophysics Data System (ADS)
Oruç, Ömer
2018-04-01
In this paper, a new mixed method based on Lucas and Fibonacci polynomials is developed for numerical solutions of 1D and 2D sinh-Gordon equations. Firstly time variable discretized by central finite difference and then unknown function and its derivatives are expanded to Lucas series. With the help of these series expansion and Fibonacci polynomials, matrices for differentiation are derived. With this approach, finding the solution of sinh-Gordon equation transformed to finding the solution of an algebraic system of equations. Lucas series coefficients are acquired by solving this system of algebraic equations. Then by plugginging these coefficients into Lucas series expansion numerical solutions can be obtained consecutively. The main objective of this paper is to demonstrate that Lucas polynomial based method is convenient for 1D and 2D nonlinear problems. By calculating L2 and L∞ error norms of some 1D and 2D test problems efficiency and performance of the proposed method is monitored. Acquired accurate results confirm the applicability of the method.
Algebraic geometry and Bethe ansatz. Part I. The quotient ring for BAE
NASA Astrophysics Data System (ADS)
Jiang, Yunfeng; Zhang, Yang
2018-03-01
In this paper and upcoming ones, we initiate a systematic study of Bethe ansatz equations for integrable models by modern computational algebraic geometry. We show that algebraic geometry provides a natural mathematical language and powerful tools for understanding the structure of solution space of Bethe ansatz equations. In particular, we find novel efficient methods to count the number of solutions of Bethe ansatz equations based on Gröbner basis and quotient ring. We also develop analytical approach based on companion matrix to perform the sum of on-shell quantities over all physical solutions without solving Bethe ansatz equations explicitly. To demonstrate the power of our method, we revisit the completeness problem of Bethe ansatz of Heisenberg spin chain, and calculate the sum rules of OPE coefficients in planar N=4 super-Yang-Mills theory.
NASA Astrophysics Data System (ADS)
Gao, K.; van Dommelen, J. A. W.; Göransson, P.; Geers, M. G. D.
2015-09-01
In this paper, a homogenization method is proposed to obtain the parameters of Biot's poroelastic theory from a multiscale perspective. It is assumed that the behavior of a macroscopic material point can be captured through the response of a microscopic Representative Volume Element (RVE) consisting of both a solid skeleton and a gaseous fluid. The macroscopic governing equations are assumed to be Biot's poroelastic equations and the RVE is governed by the conservation of linear momentum and the adopted linear constitutive laws under the isothermal condition. With boundary conditions relying on the macroscopic solid displacement and fluid pressure, the homogenized solid stress and fluid displacement are obtained based on energy consistency. This homogenization framework offers an approach to obtain Biot's parameters directly through the response of the RVE in the regime of Darcy's flow where the pressure gradient is dominating. A numerical experiment is performed in the form of a sound absorption test on a porous material with an idealized partially open microstructure that is described by Biot's equations where the parameters are obtained through the proposed homogenization approach. The result is evaluated by comparison with Direct Numerical Simulations (DNS), showing a superior performance of this approach compared to an alternative semi-phenomenological model for estimating Biot's parameters of the studied porous material.
Development of upwind schemes for the Euler equations
NASA Technical Reports Server (NTRS)
Chakravarthy, Sukumar R.
1987-01-01
Described are many algorithmic and computational aspects of upwind schemes and their second-order accurate formulations based on Total-Variation-Diminishing (TVD) approaches. An operational unification of the underlying first-order scheme is first presented encompassing Godunov's, Roe's, Osher's, and Split-Flux methods. For higher order versions, the preprocessing and postprocessing approaches to constructing TVD discretizations are considered. TVD formulations can be used to construct relaxation methods for unfactored implicit upwind schemes, which in turn can be exploited to construct space-marching procedures for even the unsteady Euler equations. A major part of the report describes time- and space-marching procedures for solving the Euler equations in 2-D, 3-D, Cartesian, and curvilinear coordinates. Along with many illustrative examples, several results of efficient computations on 3-D supersonic flows with subsonic pockets are presented.
NASA Astrophysics Data System (ADS)
Antokhin, I. I.
2017-06-01
We propose an efficient and flexible method for solving Fredholm and Abel integral equations of the first kind, frequently appearing in astrophysics. These equations present an ill-posed problem. Our method is based on solving them on a so-called compact set of functions and/or using Tikhonov's regularization. Both approaches are non-parametric and do not require any theoretic model, apart from some very loose a priori constraints on the unknown function. The two approaches can be used independently or in a combination. The advantage of the method, apart from its flexibility, is that it gives uniform convergence of the approximate solution to the exact one, as the errors of input data tend to zero. Simulated and astrophysical examples are presented.
Modeling tree crown dynamics with 3D partial differential equations.
Beyer, Robert; Letort, Véronique; Cournède, Paul-Henry
2014-01-01
We characterize a tree's spatial foliage distribution by the local leaf area density. Considering this spatially continuous variable allows to describe the spatiotemporal evolution of the tree crown by means of 3D partial differential equations. These offer a framework to rigorously take locally and adaptively acting effects into account, notably the growth toward light. Biomass production through photosynthesis and the allocation to foliage and wood are readily included in this model framework. The system of equations stands out due to its inherent dynamic property of self-organization and spontaneous adaptation, generating complex behavior from even only a few parameters. The density-based approach yields spatially structured tree crowns without relying on detailed geometry. We present the methodological fundamentals of such a modeling approach and discuss further prospects and applications.
Nonlinear Viscoelastic Mechanics of Cross-linked Rubbers
NASA Technical Reports Server (NTRS)
Freed, Alan D.; Leonov, Arkady I.; Gray, Hugh R. (Technical Monitor)
2002-01-01
The paper develops a general theory for finite rubber viscoelasticity, and specifies it in the form, convenient for solving problems important for rubber, tire and space industries. Based on the quasi-linear approach of non-equilibrium thermodynamics, a general nonlinear theory has been developed for arbitrary nonisothermal deformations of viscoelastic solids. In this theory, the constitutive equations are presented as the sum of known equilibrium (rubber elastic) and non-equilibrium (liquid polymer viscoelastic) terms. These equations are then simplified using several modeling arguments. Stability constraints for the proposed constitutive equations are also discussed. It is shown that only strong ellipticity criteria are applicable for assessing stability of the equations governing viscoelastic solids.
NASA Astrophysics Data System (ADS)
Wu, Jianping; Geng, Xianguo
2017-12-01
The inverse scattering transform of the coupled modified Korteweg-de Vries equation is studied by the Riemann-Hilbert approach. In the direct scattering process, the spectral analysis of the Lax pair is performed, from which a Riemann-Hilbert problem is established for the equation. In the inverse scattering process, by solving Riemann-Hilbert problems corresponding to the reflectionless cases, three types of multi-soliton solutions are obtained. The multi-soliton classification is based on the zero structures of the Riemann-Hilbert problem. In addition, some figures are given to illustrate the soliton characteristics of the coupled modified Korteweg-de Vries equation.
Verification and Improvement of Flamelet Approach for Non-Premixed Flames
NASA Technical Reports Server (NTRS)
Zaitsev, S.; Buriko, Yu.; Guskov, O.; Kopchenov, V.; Lubimov, D.; Tshepin, S.; Volkov, D.
1997-01-01
Studies in the mathematical modeling of the high-speed turbulent combustion has received renewal attention in the recent years. The review of fundamentals, approaches and extensive bibliography was presented by Bray, Libbi and Williams. In order to obtain accurate predictions for turbulent combustible flows, the effects of turbulent fluctuations on the chemical source terms should be taken into account. The averaging of chemical source terms requires to utilize probability density function (PDF) model. There are two main approaches which are dominant in high-speed combustion modeling now. In the first approach, PDF form is assumed based on intuitia of modelliers (see, for example, Spiegler et.al.; Girimaji; Baurle et.al.). The second way is much more elaborate and it is based on the solution of evolution equation for PDF. This approach was proposed by S.Pope for incompressible flames. Recently, it was modified for modeling of compressible flames in studies of Farschi; Hsu; Hsu, Raji, Norris; Eifer, Kollman. But its realization in CFD is extremely expensive in computations due to large multidimensionality of PDF evolution equation (Baurle, Hsu, Hassan).
An objective analysis of the dynamic nature of field capacity
NASA Astrophysics Data System (ADS)
Twarakavi, Navin K. C.; Sakai, Masaru; Å Imå¯Nek, Jirka
2009-10-01
Field capacity is one of the most commonly used, and yet poorly defined, soil hydraulic properties. Traditionally, field capacity has been defined as the amount of soil moisture after excess water has drained away and the rate of downward movement has materially decreased. Unfortunately, this qualitative definition does not lend itself to an unambiguous quantitative approach for estimation. Because of the vagueness in defining what constitutes "drainage of excess water" from a soil, the estimation of field capacity has often been based upon empirical guidelines. These empirical guidelines are either time, pressure, or flux based. In this paper, we developed a numerical approach to estimate field capacity using a flux-based definition. The resulting approach was implemented on the soil parameter data set used by Schaap et al. (2001), and the estimated field capacity was compared to traditional definitions of field capacity. The developed modeling approach was implemented using the HYDRUS-1D software with the capability of simultaneously estimating field capacity for multiple soils with soil hydraulic parameter data. The Richards equation was used in conjunction with the van Genuchten-Mualem model to simulate variably saturated flow in a soil. Using the modeling approach to estimate field capacity also resulted in additional information such as (1) the pressure head, at which field capacity is attained, and (2) the drainage time needed to reach field capacity from saturated conditions under nonevaporative conditions. We analyzed the applicability of the modeling-based approach to estimate field capacity on real-world soils data. We also used the developed method to create contour diagrams showing the variation of field capacity with texture. It was found that using benchmark pressure heads to estimate field capacity from the retention curve leads to inaccurate results. Finally, a simple analytical equation was developed to predict field capacity from soil hydraulic parameter information. The analytical equation was found to be effective in its ability to predict field capacities.
An efficient numerical method for solving the Boltzmann equation in multidimensions
NASA Astrophysics Data System (ADS)
Dimarco, Giacomo; Loubère, Raphaël; Narski, Jacek; Rey, Thomas
2018-01-01
In this paper we deal with the extension of the Fast Kinetic Scheme (FKS) (Dimarco and Loubère, 2013 [26]) originally constructed for solving the BGK equation, to the more challenging case of the Boltzmann equation. The scheme combines a robust and fast method for treating the transport part based on an innovative Lagrangian technique supplemented with conservative fast spectral schemes to treat the collisional operator by means of an operator splitting approach. This approach along with several implementation features related to the parallelization of the algorithm permits to construct an efficient simulation tool which is numerically tested against exact and reference solutions on classical problems arising in rarefied gas dynamic. We present results up to the 3 D × 3 D case for unsteady flows for the Variable Hard Sphere model which may serve as benchmark for future comparisons between different numerical methods for solving the multidimensional Boltzmann equation. For this reason, we also provide for each problem studied details on the computational cost and memory consumption as well as comparisons with the BGK model or the limit model of compressible Euler equations.
Three Dimensional Time Dependent Stochastic Method for Cosmic-ray Modulation
NASA Astrophysics Data System (ADS)
Pei, C.; Bieber, J. W.; Burger, R. A.; Clem, J. M.
2009-12-01
A proper understanding of the different behavior of intensities of galactic cosmic rays in different solar cycle phases requires solving the modulation equation with time dependence. We present a detailed description of our newly developed stochastic approach for cosmic ray modulation which we believe is the first attempt to solve the time dependent Parker equation in 3D evolving from our 3D steady state stochastic approach, which has been benchmarked extensively by using the finite difference method. Our 3D stochastic method is different from other stochastic approaches in literature (Ball et al 2005, Miyake et al 2005, and Florinski 2008) in several ways. For example, we employ spherical coordinates which makes the code much more efficient by reducing coordinate transformations. What's more, our stochastic differential equations are different from others because our map from Parker's original equation to the Fokker-Planck equation extends the method used by Jokipii and Levy 1977 while others don't although all 3D stochastic methods are essentially based on Ito formula. The advantage of the stochastic approach is that it also gives the probability information of travel times and path lengths of cosmic rays besides the intensities. We show that excellent agreement exists between solutions obtained by our steady state stochastic method and by the traditional finite difference method. We also show time dependent solutions for an idealized heliosphere which has a Parker magnetic field, a planar current sheet, and a simple initial condition.
Thermal-stress analysis for a wood composite blade
NASA Technical Reports Server (NTRS)
Fu, K. C.; Harb, A.
1984-01-01
A thermal-stress analysis of a wind turbine blade made of wood composite material is reported. First, the governing partial differential equation on heat conduction is derived, then, a finite element procedure using variational approach is developed for the solution of the governing equation. Thus, the temperature distribution throughout the blade is determined. Next, based on the temperature distribution, a finite element procedure using potential energy approach is applied to determine the thermal-stress distribution. A set of results is obtained through the use of a computer, which is considered to be satisfactory. All computer programs are contained in the report.
Asymptotically inspired moment-closure approximation for adaptive networks
NASA Astrophysics Data System (ADS)
Shkarayev, Maxim
2013-03-01
Dynamics of adaptive social networks, in which nodes and network structure co-evolve, are often described using a mean-field system of equations for the density of node and link types. These equations constitute an open system due to dependence on higher order topological structures. We propose a systematic approach to moment closure approximation based on the analytical description of the system in an asymptotic regime. We apply the proposed approach to two examples of adaptive networks: recruitment to a cause model and adaptive epidemic model. We show a good agreement between the mean-field prediction and simulations of the full network system.
Asymptotically inspired moment-closure approximation for adaptive networks
NASA Astrophysics Data System (ADS)
Shkarayev, Maxim S.; Shaw, Leah B.
2013-11-01
Adaptive social networks, in which nodes and network structure coevolve, are often described using a mean-field system of equations for the density of node and link types. These equations constitute an open system due to dependence on higher-order topological structures. We propose a new approach to moment closure based on the analytical description of the system in an asymptotic regime. We apply the proposed approach to two examples of adaptive networks: recruitment to a cause model and adaptive epidemic model. We show a good agreement between the improved mean-field prediction and simulations of the full network system.
On buffer layers as non-reflecting computational boundaries
NASA Technical Reports Server (NTRS)
Hayder, M. Ehtesham; Turkel, Eli L.
1996-01-01
We examine an absorbing buffer layer technique for use as a non-reflecting boundary condition in the numerical simulation of flows. One such formulation was by Ta'asan and Nark for the linearized Euler equations. They modified the flow inside the buffer zone to artificially make it supersonic in the layer. We examine how this approach can be extended to the nonlinear Euler equations. We consider both a conservative and a non-conservative form modifying the governing equations in the buffer layer. We compare this with the case that the governing equations in the layer are the same as in the interior domain. We test the effectiveness of these buffer layers by a simulation of an excited axisymmetric jet based on a nonlinear compressible Navier-Stokes equations.
A differential equation for the Generalized Born radii.
Fogolari, Federico; Corazza, Alessandra; Esposito, Gennaro
2013-06-28
The Generalized Born (GB) model offers a convenient way of representing electrostatics in complex macromolecules like proteins or nucleic acids. The computation of atomic GB radii is currently performed by different non-local approaches involving volume or surface integrals. Here we obtain a non-linear second-order partial differential equation for the Generalized Born radius, which may be solved using local iterative algorithms. The equation is derived under the assumption that the usual GB approximation to the reaction field obeys Laplace's equation. The equation admits as particular solutions the correct GB radii for the sphere and the plane. The tests performed on a set of 55 different proteins show an overall agreement with other reference GB models and "perfect" Poisson-Boltzmann based values.
SIGMA: A Knowledge-Based Simulation Tool Applied to Ecosystem Modeling
NASA Technical Reports Server (NTRS)
Dungan, Jennifer L.; Keller, Richard; Lawless, James G. (Technical Monitor)
1994-01-01
The need for better technology to facilitate building, sharing and reusing models is generally recognized within the ecosystem modeling community. The Scientists' Intelligent Graphical Modelling Assistant (SIGMA) creates an environment for model building, sharing and reuse which provides an alternative to more conventional approaches which too often yield poorly documented, awkwardly structured model code. The SIGMA interface presents the user a list of model quantities which can be selected for computation. Equations to calculate the model quantities may be chosen from an existing library of ecosystem modeling equations, or built using a specialized equation editor. Inputs for dim equations may be supplied by data or by calculation from other equations. Each variable and equation is expressed using ecological terminology and scientific units, and is documented with explanatory descriptions and optional literature citations. Automatic scientific unit conversion is supported and only physically-consistent equations are accepted by the system. The system uses knowledge-based semantic conditions to decide which equations in its library make sense to apply in a given situation, and supplies these to the user for selection. "Me equations and variables are graphically represented as a flow diagram which provides a complete summary of the model. Forest-BGC, a stand-level model that simulates photosynthesis and evapo-transpiration for conifer canopies, was originally implemented in Fortran and subsequenty re-implemented using SIGMA. The SIGMA version reproduces daily results and also provides a knowledge base which greatly facilitates inspection, modification and extension of Forest-BGC.
Petersson, K J F; Friberg, L E; Karlsson, M O
2010-10-01
Computer models of biological systems grow more complex as computing power increase. Often these models are defined as differential equations and no analytical solutions exist. Numerical integration is used to approximate the solution; this can be computationally intensive, time consuming and be a large proportion of the total computer runtime. The performance of different integration methods depend on the mathematical properties of the differential equations system at hand. In this paper we investigate the possibility of runtime gains by calculating parts of or the whole differential equations system at given time intervals, outside of the differential equations solver. This approach was tested on nine models defined as differential equations with the goal to reduce runtime while maintaining model fit, based on the objective function value. The software used was NONMEM. In four models the computational runtime was successfully reduced (by 59-96%). The differences in parameter estimates, compared to using only the differential equations solver were less than 12% for all fixed effects parameters. For the variance parameters, estimates were within 10% for the majority of the parameters. Population and individual predictions were similar and the differences in OFV were between 1 and -14 units. When computational runtime seriously affects the usefulness of a model we suggest evaluating this approach for repetitive elements of model building and evaluation such as covariate inclusions or bootstraps.
NASA Technical Reports Server (NTRS)
Cole, Gary L.; Richard, Jacques C.
1991-01-01
An approach to simulating the internal flows of supersonic propulsion systems is presented. The approach is based on a fairly simple modification of the Large Perturbation Inlet (LAPIN) computer code. LAPIN uses a quasi-one dimensional, inviscid, unsteady formulation of the continuity, momentum, and energy equations. The equations are solved using a shock capturing, finite difference algorithm. The original code, developed for simulating supersonic inlets, includes engineering models of unstart/restart, bleed, bypass, and variable duct geometry, by means of source terms in the equations. The source terms also provide a mechanism for incorporating, with the inlet, propulsion system components such as compressor stages, combustors, and turbine stages. This requires each component to be distributed axially over a number of grid points. Because of the distributed nature of such components, this representation should be more accurate than a lumped parameter model. Components can be modeled by performance map(s), which in turn are used to compute the source terms. The general approach is described. Then, simulation of a compressor/fan stage is discussed to show the approach in detail.
Modeling of combustion processes of stick propellants via combined Eulerian-Lagrangian approach
NASA Technical Reports Server (NTRS)
Kuo, K. K.; Hsieh, K. C.; Athavale, M. M.
1988-01-01
This research is motivated by the improved ballistic performance of large-caliber guns using stick propellant charges. A comprehensive theoretical model for predicting the flame spreading, combustion, and grain deformation phenomena of long, unslotted stick propellants is presented. The formulation is based upon a combined Eulerian-Lagrangian approach to simulate special characteristics of the two phase combustion process in a cartridge loaded with a bundle of sticks. The model considers five separate regions consisting of the internal perforation, the solid phase, the external interstitial gas phase, and two lumped parameter regions at either end of the stick bundle. For the external gas phase region, a set of transient one-dimensional fluid-dynamic equations using the Eulerian approach is obtained; governing equations for the stick propellants are formulated using the Lagrangian approach. The motion of a representative stick is derived by considering the forces acting on the entire propellant stick. The instantaneous temperature and stress fields in the stick propellant are modeled by considering the transient axisymmetric heat conduction equation and dynamic structural analysis.
A Factorization Approach to the Linear Regulator Quadratic Cost Problem
NASA Technical Reports Server (NTRS)
Milman, M. H.
1985-01-01
A factorization approach to the linear regulator quadratic cost problem is developed. This approach makes some new connections between optimal control, factorization, Riccati equations and certain Wiener-Hopf operator equations. Applications of the theory to systems describable by evolution equations in Hilbert space and differential delay equations in Euclidean space are presented.
Beyer, Hans-Georg
2014-01-01
The convergence behaviors of so-called natural evolution strategies (NES) and of the information-geometric optimization (IGO) approach are considered. After a review of the NES/IGO ideas, which are based on information geometry, the implications of this philosophy w.r.t. optimization dynamics are investigated considering the optimization performance on the class of positive quadratic objective functions (the ellipsoid model). Exact differential equations describing the approach to the optimizer are derived and solved. It is rigorously shown that the original NES philosophy optimizing the expected value of the objective functions leads to very slow (i.e., sublinear) convergence toward the optimizer. This is the real reason why state of the art implementations of IGO algorithms optimize the expected value of transformed objective functions, for example, by utility functions based on ranking. It is shown that these utility functions are localized fitness functions that change during the IGO flow. The governing differential equations describing this flow are derived. In the case of convergence, the solutions to these equations exhibit an exponentially fast approach to the optimizer (i.e., linear convergence order). Furthermore, it is proven that the IGO philosophy leads to an adaptation of the covariance matrix that equals in the asymptotic limit-up to a scalar factor-the inverse of the Hessian of the objective function considered.
Raymond M. Rice; Norman H. Pillsbury; Kurt W. Schmidt
1985-01-01
Abstract - A linear discriminant function, developed to predict debris avalanches after clearcut logging on a granitic batholith in northwestern California, was tested on data from two batholiths. The equation was inaccurate in predicting slope stability on one of them. A new equation based on slope, crown cover, and distance from a stream (retained from the original...
Entropy-Based Approach To Nonlinear Stability
NASA Technical Reports Server (NTRS)
Merriam, Marshal L.
1991-01-01
NASA technical memorandum suggests schemes for numerical solution of differential equations of flow made more accurate and robust by invoking second law of thermodynamics. Proposes instead of using artificial viscosity to suppress such unphysical solutions as spurious numerical oscillations and nonlinear instabilities, one should formulate equations so that rate of production of entropy within each cell of computational grid be nonnegative, as required by second law.
A 3-point derivation of dominant tree height equations
Don C. Bragg
2011-01-01
This paper describes a new approach for deriving height-diameter (H-D) equations from limited information and a few assumptions about tree height. Only three data points are required to fit this model, which can be based on virtually any nonlinear function. These points are the height of a tree at diameter at breast height (d.b.h.), the predicted height of a 10-inch d....
Expectation-Based Control of Noise and Chaos
NASA Technical Reports Server (NTRS)
Zak, Michael
2006-01-01
A proposed approach to control of noise and chaos in dynamic systems would supplement conventional methods. The approach is based on fictitious forces composed of expectations governed by Fokker-Planck or Liouville equations that describe the evolution of the probability densities of the controlled parameters. These forces would be utilized as feedback control forces that would suppress the undesired diffusion of the controlled parameters. Examples of dynamic systems in which the approach is expected to prove beneficial include spacecraft, electronic systems, and coupled lasers.
A moving mesh finite difference method for equilibrium radiation diffusion equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaobo, E-mail: xwindyb@126.com; Huang, Weizhang, E-mail: whuang@ku.edu; Qiu, Jianxian, E-mail: jxqiu@xmu.edu.cn
2015-10-01
An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativitymore » of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.« less
An Analytical Comparison of the Acoustic Analogy and Kirchhoff Formulation for Moving Surfaces
NASA Technical Reports Server (NTRS)
Brentner, Kenneth S.; Farassat, F.
1997-01-01
The Lighthill acoustic analogy, as embodied in the Ffowcs Williams-Hawkings (FW-H) equation, is compared with the Kirchhoff formulation for moving surfaces. A comparison of the two governing equations reveals that the main Kirchhoff advantage (namely nonlinear flow effects are included in the surface integration) is also available to the FW-H method if the integration surface used in the FW-H equation is not assumed impenetrable. The FW-H equation is analytically superior for aeroacoustics because it is based upon the conservation laws of fluid mechanics rather than the wave equation. This means that the FW-H equation is valid even if the integration surface is in the nonlinear region. This is demonstrated numerically in the paper. The Kirchhoff approach can lead to substantial errors if the integration surface is not positioned in the linear region. These errors may be hard to identify. Finally, new metrics based on the Sobolev norm are introduced which may be used to compare input data for both quadrupole noise calculations and Kirchhoff noise predictions.
Contact angle and local wetting at contact line.
Li, Ri; Shan, Yanguang
2012-11-06
This theoretical study was motivated by recent experiments and theoretical work that had suggested the dependence of the static contact angle on the local wetting at the triple-phase contact line. We revisit this topic because the static contact angle as a local wetting parameter is still not widely understood and clearly known. To further clarify the relationship of the static contact angle with wetting, two approaches are applied to derive a general equation for the static contact angle of a droplet on a composite surface composed of heterogeneous components. A global approach based on the free surface energy of a thermodynamic system containing the droplet and solid surface shows the static contact angle as a function of local surface chemistry and local wetting state at the contact line. A local approach, in which only local forces acting on the contact line are considered, results in the same equation. The fact that the local approach agrees with the global approach further demonstrates the static contact angle as a local wetting parameter. Additionally, the study also suggests that the wetting described by the Wenzel and Cassie equations is also the local wetting of the contact line rather than the global wetting of the droplet.
A point-centered arbitrary Lagrangian Eulerian hydrodynamic approach for tetrahedral meshes
Morgan, Nathaniel R.; Waltz, Jacob I.; Burton, Donald E.; ...
2015-02-24
We present a three dimensional (3D) arbitrary Lagrangian Eulerian (ALE) hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedral meshes. The new approach stores the conserved variables (mass, momentum, and total energy) at the nodes of the mesh and solves the conservation equations on a control volume surrounding the point. This type of an approach is termed a point-centered hydrodynamic (PCH) method. The conservation equations are discretized using an edge-based finite element (FE) approach with linear basis functions. All fluxes in the new approach are calculated at the center of each tetrahedron. A multidirectional Riemann-like problem is solved atmore » the center of the tetrahedron. The advective fluxes are calculated by solving a 1D Riemann problem on each face of the nodal control volume. A 2-stage Runge–Kutta method is used to evolve the solution forward in time, where the advective fluxes are part of the temporal integration. The mesh velocity is smoothed by solving a Laplacian equation. The details of the new ALE hydrodynamic scheme are discussed. Results from a range of numerical test problems are presented.« less
Teaching Modeling with Partial Differential Equations: Several Successful Approaches
ERIC Educational Resources Information Center
Myers, Joseph; Trubatch, David; Winkel, Brian
2008-01-01
We discuss the introduction and teaching of partial differential equations (heat and wave equations) via modeling physical phenomena, using a new approach that encompasses constructing difference equations and implementing these in a spreadsheet, numerically solving the partial differential equations using the numerical differential equation…
Gradient-Based Aerodynamic Shape Optimization Using ADI Method for Large-Scale Problems
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Baysal, Oktay
1997-01-01
A gradient-based shape optimization methodology, that is intended for practical three-dimensional aerodynamic applications, has been developed. It is based on the quasi-analytical sensitivities. The flow analysis is rendered by a fully implicit, finite volume formulation of the Euler equations.The aerodynamic sensitivity equation is solved using the alternating-direction-implicit (ADI) algorithm for memory efficiency. A flexible wing geometry model, that is based on surface parameterization and platform schedules, is utilized. The present methodology and its components have been tested via several comparisons. Initially, the flow analysis for for a wing is compared with those obtained using an unfactored, preconditioned conjugate gradient approach (PCG), and an extensively validated CFD code. Then, the sensitivities computed with the present method have been compared with those obtained using the finite-difference and the PCG approaches. Effects of grid refinement and convergence tolerance on the analysis and shape optimization have been explored. Finally the new procedure has been demonstrated in the design of a cranked arrow wing at Mach 2.4. Despite the expected increase in the computational time, the results indicate that shape optimization, which require large numbers of grid points can be resolved with a gradient-based approach.
Operational Retrievals of Evapotranspiration: Are we there yet?
NASA Astrophysics Data System (ADS)
Neale, C. M. U.; Anderson, M. C.; Hain, C.; Schull, M.; Isidro, C., Sr.; Goncalves, I. Z.
2017-12-01
Remote sensing based retrievals of evapotranspiration (ET) have progressed significantly over the last two decades with the improvement of methods and algorithms and the availability of multiple satellite sensors with shortwave and thermal infrared bands on polar orbiting platforms. The modeling approaches include simpler vegetation index (VI) based methods such as the reflectance-based crop coefficient approach coupled with surface reference evapotranspiration estimates to derive actual evapotranspiration of crops or, direct inputs to the Penman-Monteith equation through VI relationships with certain input variables. Methods that are more complex include one-layer or two-layer energy balance approaches that make use of both shortwave and longwave spectral band information to estimate different inputs to the energy balance equation. These models mostly differ in the estimation of sensible heat fluxes. For continental and global scale applications, other satellite-based products such as solar radiation, vegetation leaf area and cover are used as inputs, along with gridded re-analysis weather information. This presentation will review the state-of-the-art in satellite-based evapotranspiration estimation, giving examples of existing efforts to obtain operational ET retrievals over continental and global scales and discussing difficulties and challenges.
The Stewart approach--one clinician's perspective.
Morgan, T John
2009-05-01
Peter Stewart added controversy to an already troubled subject when he entered the clinical acid-base arena. His approach puts water dissociation at the centre of the acid-base status of body fluids. It is based on six simultaneous equations, incorporating the Laws of Mass Action, Mass Conservation, and Electrical Neutrality. Together with Gibbs-Donnan equilibria, these equations explain the diagnostically important PaCO(2)/pH relationship, and improve understanding of the physiologic basis of traditional acid-base approaches. Spin-offs have included new scanning tools for unmeasured ions, in particular the 'strong ion gap' and 'net unmeasured ions'. The most controversial feature is the designation of pH and bicarbonate concentrations as dependent variables, answerable exclusively to three independent variables. These are the strong ion difference (SID), the total concentration of non-volatile weak acid (A(TOT)), and PCO(2). Aspects of this assertion conflict with traditional renal physiology, and with current models of membrane H(+)/base transporters, oxidative phosphorylation, and proton and bicarbonate ionophores. The debate in this area is ongoing. Meanwhile, Stewart-style diagnostic and decision support systems such as the 'Strong Ion Calculator' and the web-site www.acidbase.org are now appearing.
The Stewart Approach – One Clinician’s Perspective
Morgan, T John
2009-01-01
Peter Stewart added controversy to an already troubled subject when he entered the clinical acid-base arena. His approach puts water dissociation at the centre of the acid-base status of body fluids. It is based on six simultaneous equations, incorporating the Laws of Mass Action, Mass Conservation, and Electrical Neutrality. Together with Gibbs-Donnan equilibria, these equations explain the diagnostically important PaCO2/pH relationship, and improve understanding of the physiologic basis of traditional acid-base approaches. Spin-offs have included new scanning tools for unmeasured ions, in particular the ‘strong ion gap’ and ‘net unmeasured ions’. The most controversial feature is the designation of pH and bicarbonate concentrations as dependent variables, answerable exclusively to three independent variables. These are the strong ion difference (SID), the total concentration of non-volatile weak acid (ATOT), and PCO2. Aspects of this assertion conflict with traditional renal physiology, and with current models of membrane H+/base transporters, oxidative phosphorylation, and proton and bicarbonate ionophores. The debate in this area is ongoing. Meanwhile, Stewart-style diagnostic and decision support systems such as the ‘Strong Ion Calculator’ and the web-site www.acidbase.org are now appearing. PMID:19565024
Model Parameterization and P-wave AVA Direct Inversion for Young's Impedance
NASA Astrophysics Data System (ADS)
Zong, Zhaoyun; Yin, Xingyao
2017-05-01
AVA inversion is an important tool for elastic parameters estimation to guide the lithology prediction and "sweet spot" identification of hydrocarbon reservoirs. The product of the Young's modulus and density (named as Young's impedance in this study) is known as an effective lithology and brittleness indicator of unconventional hydrocarbon reservoirs. Density is difficult to predict from seismic data, which renders the estimation of the Young's impedance inaccurate in conventional approaches. In this study, a pragmatic seismic AVA inversion approach with only P-wave pre-stack seismic data is proposed to estimate the Young's impedance to avoid the uncertainty brought by density. First, based on the linearized P-wave approximate reflectivity equation in terms of P-wave and S-wave moduli, the P-wave approximate reflectivity equation in terms of the Young's impedance is derived according to the relationship between P-wave modulus, S-wave modulus, Young's modulus and Poisson ratio. This equation is further compared to the exact Zoeppritz equation and the linearized P-wave approximate reflectivity equation in terms of P- and S-wave velocities and density, which illustrates that this equation is accurate enough to be used for AVA inversion when the incident angle is within the critical angle. Parameter sensitivity analysis illustrates that the high correlation between the Young's impedance and density render the estimation of the Young's impedance difficult. Therefore, a de-correlation scheme is used in the pragmatic AVA inversion with Bayesian inference to estimate Young's impedance only with pre-stack P-wave seismic data. Synthetic examples demonstrate that the proposed approach is able to predict the Young's impedance stably even with moderate noise and the field data examples verify the effectiveness of the proposed approach in Young's impedance estimation and "sweet spots" evaluation.
Fach, S; Sitzenfrei, R; Rauch, W
2009-01-01
It is state of the art to evaluate and optimise sewer systems with urban drainage models. Since spill flow data is essential in the calibration process of conceptual models it is important to enhance the quality of such data. A wide spread approach is to calculate the spill flow volume by using standard weir equations together with measured water levels. However, these equations are only applicable to combined sewer overflow (CSO) structures, whose weir constructions correspond with the standard weir layout. The objective of this work is to outline an alternative approach to obtain spill flow discharge data based on measurements with a sonic depth finder. The idea is to determine the relation between water level and rate of spill flow by running a detailed 3D computational fluid dynamics (CFD) model. Two real world CSO structures have been chosen due to their complex structure, especially with respect to the weir construction. In a first step the simulation results were analysed to identify flow conditions for discrete steady states. It will be shown that the flow conditions in the CSO structure change after the spill flow pipe acts as a controlled outflow and therefore the spill flow discharge cannot be described with a standard weir equation. In a second step the CFD results will be used to derive rating curves which can be easily applied in everyday practice. Therefore the rating curves are developed on basis of the standard weir equation and the equation for orifice-type outlets. Because the intersection of both equations is not known, the coefficients of discharge are regressed from CFD simulation results. Furthermore, the regression of the CFD simulation results are compared with the one of the standard weir equation by using historic water levels and hydrographs generated with a hydrodynamic model. The uncertainties resulting of the wide spread use of the standard weir equation are demonstrated.
Static Analysis of Large-Scale Multibody System Using Joint Coordinates and Spatial Algebra Operator
Omar, Mohamed A.
2014-01-01
Initial transient oscillations inhibited in the dynamic simulations responses of multibody systems can lead to inaccurate results, unrealistic load prediction, or simulation failure. These transients could result from incompatible initial conditions, initial constraints violation, and inadequate kinematic assembly. Performing static equilibrium analysis before the dynamic simulation can eliminate these transients and lead to stable simulation. Most exiting multibody formulations determine the static equilibrium position by minimizing the system potential energy. This paper presents a new general purpose approach for solving the static equilibrium in large-scale articulated multibody. The proposed approach introduces an energy drainage mechanism based on Baumgarte constraint stabilization approach to determine the static equilibrium position. The spatial algebra operator is used to express the kinematic and dynamic equations of the closed-loop multibody system. The proposed multibody system formulation utilizes the joint coordinates and modal elastic coordinates as the system generalized coordinates. The recursive nonlinear equations of motion are formulated using the Cartesian coordinates and the joint coordinates to form an augmented set of differential algebraic equations. Then system connectivity matrix is derived from the system topological relations and used to project the Cartesian quantities into the joint subspace leading to minimum set of differential equations. PMID:25045732
Omar, Mohamed A
2014-01-01
Initial transient oscillations inhibited in the dynamic simulations responses of multibody systems can lead to inaccurate results, unrealistic load prediction, or simulation failure. These transients could result from incompatible initial conditions, initial constraints violation, and inadequate kinematic assembly. Performing static equilibrium analysis before the dynamic simulation can eliminate these transients and lead to stable simulation. Most exiting multibody formulations determine the static equilibrium position by minimizing the system potential energy. This paper presents a new general purpose approach for solving the static equilibrium in large-scale articulated multibody. The proposed approach introduces an energy drainage mechanism based on Baumgarte constraint stabilization approach to determine the static equilibrium position. The spatial algebra operator is used to express the kinematic and dynamic equations of the closed-loop multibody system. The proposed multibody system formulation utilizes the joint coordinates and modal elastic coordinates as the system generalized coordinates. The recursive nonlinear equations of motion are formulated using the Cartesian coordinates and the joint coordinates to form an augmented set of differential algebraic equations. Then system connectivity matrix is derived from the system topological relations and used to project the Cartesian quantities into the joint subspace leading to minimum set of differential equations.
ERIC Educational Resources Information Center
Chien, Hui-Min; Kao, Chia-Pin; Yeh, I-Jan; Lin, Kuen-Yi
2012-01-01
This study was conducted to investigate elementary school teachers' attitudes and motivation toward web-based professional development. The relationship between teachers' attitudes and motivation was explored using the AWPD (Attitudes toward Web-based Professional Development) and MWPD (Motivation toward Web-based Professional Development)…
A numerical spectral approach to solve the dislocation density transport equation
NASA Astrophysics Data System (ADS)
Djaka, K. S.; Taupin, V.; Berbenni, S.; Fressengeas, C.
2015-09-01
A numerical spectral approach is developed to solve in a fast, stable and accurate fashion, the quasi-linear hyperbolic transport equation governing the spatio-temporal evolution of the dislocation density tensor in the mechanics of dislocation fields. The approach relies on using the Fast Fourier Transform algorithm. Low-pass spectral filters are employed to control both the high frequency Gibbs oscillations inherent to the Fourier method and the fast-growing numerical instabilities resulting from the hyperbolic nature of the transport equation. The numerical scheme is validated by comparison with an exact solution in the 1D case corresponding to dislocation dipole annihilation. The expansion and annihilation of dislocation loops in 2D and 3D settings are also produced and compared with finite element approximations. The spectral solutions are shown to be stable, more accurate for low Courant numbers and much less computation time-consuming than the finite element technique based on an explicit Galerkin-least squares scheme.
Langevin Equation for DNA Dynamics
NASA Astrophysics Data System (ADS)
Grych, David; Copperman, Jeremy; Guenza, Marina
Under physiological conditions, DNA oligomers can contain well-ordered helical regions and also flexible single-stranded regions. We describe the site-specific motion of DNA with a modified Rouse-Zimm Langevin equation formalism that describes DNA as a coarse-grained polymeric chain with global structure and local flexibility. The approach has successfully described the protein dynamics in solution and has been extended to nucleic acids. Our approach provides diffusive mode analytical solutions for the dynamics of global rotational diffusion and internal motion. The internal DNA dynamics present a rich energy landscape that accounts for an interior where hydrogen bonds and base-stacking determine structure and experience limited solvent exposure. We have implemented several models incorporating different coarse-grained sites with anisotropic rotation, energy barrier crossing, and local friction coefficients that include a unique internal viscosity and our models reproduce dynamics predicted by atomistic simulations. The models reproduce bond autocorrelation along the sequence as compared to that directly calculated from atomistic molecular dynamics simulations. The Langevin equation approach captures the essence of DNA dynamics without a cumbersome atomistic representation.
NASA Astrophysics Data System (ADS)
Angulo Pava, Jaime; Natali, Fábio M. Amorin
2009-04-01
In this paper we establish new results about the existence, stability, and instability of periodic travelling wave solutions related to the critical Korteweg-de Vries equation ut+5u4ux+u=0, and the critical nonlinear Schrödinger equation ivt+v+|v=0. The periodic travelling wave solutions obtained in our study tend to the classical solitary wave solutions in the infinite wavelength scenario. The stability approach is based on the theory developed by Angulo & Natali in [J. Angulo, F. Natali, Positivity properties of the Fourier transform and the stability of periodic travelling wave solutions, SIAM J. Math. Anal. 40 (2008) 1123-1151] for positive periodic travelling wave solutions associated to dispersive evolution equations of Korteweg-de Vries type. The instability approach is based on an extension to the periodic setting of arguments found in Bona & Souganidis & Strauss [J.L. Bona, P.E. Souganidis, W.A. Strauss, Stability and instability of solitary waves of Korteweg-de Vries type, Proc. Roy. Soc. London Ser. A 411 (1987) 395-412]. Regarding the critical Schrödinger equation stability/instability theories similar to the critical Korteweg-de Vries equation are obtained by using the classical Grillakis & Shatah & Strauss theory in [M. Grillakis, J. Shatah, W. Strauss, Stability theory of solitary waves in the presence of symmetry II, J. Funct. Anal. 94 (1990) 308-348; M. Grillakis, J. Shatah, W. Strauss, Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal. 74 (1987) 160-197]. The arguments presented in this investigation have prospects for the study of the stability of periodic travelling wave solutions of other nonlinear evolution equations.
Molecular based equation of state for shocked liquid nitromethane.
Desbiens, Nicolas; Bourasseau, Emeric; Maillet, Jean-Bernard; Soulard, Laurent
2009-07-30
An approach is proposed to obtain the equation of state of unreactive shocked liquid nitromethane. Unlike previous major works, this equation of state is not based on extended integration schemes [P.C. Lysne, D.R. Hardesty, Fundamental equation of state of liquid nitromethane to 100 kbar, J. Chem. Phys. 59 (1973) 6512]. It does not follow the way proposed by Winey et al. [J.M. Winey, G.E. Duvall, M.D. Knudson, Y.M. Gupta, Equation of state and temperature measurements for shocked nitromethane, J. Chem. Phys. 113 (2000) 7492] where the specific heat C(v), the isothermal bulk modulus B(T) and the coefficient of thermal pressure (deltaP/deltaT)(v) are modeled as functions of temperature and volume using experimental data. In this work, we compute the complete equation of state by microscopic calculations. Indeed, by means of Monte Carlo molecular simulations, we have proposed a new force field for nitromethane that lead to a good description of shock properties [N. Desbiens, E. Bourasseau, J.-B. Maillet, Potential optimization for the calculation of shocked liquid nitromethane properties, Mol. Sim. 33 (2007) 1061; A. Hervouët, N. Desbiens, E. Bourasseau, J.-B. Maillet, Microscopic approaches to liquid nitromethane detonation properties, J. Phys. Chem. B 112 (2008) 5070]. Particularly, it has been shown that shock temperatures and second shock temperatures are accurately reproduced which is significative of the quality of the potential. Here, thermodynamic derivative properties are computed: specific heats, Grüneisen parameter, sound velocity among others, along the Hugoniot curve. This work constitutes to our knowledge the first determination of the equation of state of an unreactive shocked explosive by molecular simulations.
NASA Astrophysics Data System (ADS)
Zhao, L. W.; Du, J. G.; Yin, J. L.
2018-05-01
This paper proposes a novel secured communication scheme in a chaotic system by applying generalized function projective synchronization of the nonlinear Schrödinger equation. This phenomenal approach guarantees a secured and convenient communication. Our study applied the Melnikov theorem with an active control strategy to suppress chaos in the system. The transmitted information signal is modulated into the parameter of the nonlinear Schrödinger equation in the transmitter and it is assumed that the parameter of the receiver system is unknown. Based on the Lyapunov stability theory and the adaptive control technique, the controllers are designed to make two identical nonlinear Schrödinger equation with the unknown parameter asymptotically synchronized. The numerical simulation results of our study confirmed the validity, effectiveness and the feasibility of the proposed novel synchronization method and error estimate for a secure communication. The Chaos masking signals of the information communication scheme, further guaranteed a safer and secured information communicated via this approach.
Explicit accounting of electronic effects on the Hugoniot of porous materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nayak, Bishnupriya; Menon, S. V. G., E-mail: menon.svg98@gmail.com
2016-03-28
A generalized enthalpy based equation of state, which includes thermal electron excitations explicitly, is formulated from simple considerations. Its application to obtain Hugoniot of materials needs simultaneous evaluation of pressure-volume curve and temperature, the latter requiring solution of a differential equation. The errors involved in two recent papers [Huayun et al., J. Appl. Phys. 92, 5917 (2002); 92, 5924 (2002)], which employed this approach, are brought out and discussed. In addition to developing the correct set of equations, the present work also provides a numerical method to implement this approach. Constant pressure specific heat of ions and electrons and ionicmore » enthalpy parameter, needed for applications, are calculated using a three component equation of state. The method is applied to porous Cu with different initial porosities. Comparison of results with experimental data shows good agreement. It is found that temperatures along the Hugoniot of porous materials are significantly modified due to electronic effects.« less
Sliding mode control: an approach to regulate nonlinear chemical processes
Camacho; Smith
2000-01-01
A new approach for the design of sliding mode controllers based on a first-order-plus-deadtime model of the process, is developed. This approach results in a fixed structure controller with a set of tuning equations as a function of the characteristic parameters of the model. The controller performance is judged by simulations on two nonlinear chemical processes.
An Analytic Equation Partitioning Climate Variation and Human Impacts on River Sediment Load
NASA Astrophysics Data System (ADS)
Zhang, J.; Gao, G.; Fu, B.
2017-12-01
Spatial or temporal patterns and process-based equations could co-exist in hydrologic model. Yet, existing approaches quantifying the impacts of those variables on river sediment load (RSL) changes are found to be severely limited, and new ways to evaluate the contribution of these variables are thus needed. Actually, the Newtonian modeling is hardly achievable for this process due to the limitation of both observations and knowledge of mechanisms, whereas laws based on the Darwinian approach could provide one component of a developed hydrologic model. Since that streamflow is the carrier of suspended sediment, sediment load changes are documented in changes of streamflow and suspended sediment concentration (SSC) - water discharge relationships. Consequently, an analytic equation for river sediment load changes are proposed to explicitly quantify the relative contributions of climate variation and direct human impacts on river sediment load changes. Initially, the sediment rating curve, which is of great significance in RSL changes analysis, was decomposed as probability distribution of streamflow and the corresponding SSC - water discharge relationships at equally spaced discharge classes. Furthermore, a proposed segmentation algorithm based on the fractal theory was used to decompose RSL changes attributed to these two portions. Additionally, the water balance framework was utilized and the corresponding elastic parameters were calculated. Finally, changes in climate variables (i.e. precipitation and potential evapotranspiration) and direct human impacts on river sediment load could be figured out. By data simulation, the efficiency of the segmentation algorithm was verified. The analytic equation provides a superior Darwinian approach partitioning climate and human impacts on RSL changes, as only data series of precipitation, potential evapotranspiration and SSC - water discharge are demanded.
Higuchi equation: derivation, applications, use and misuse.
Siepmann, Juergen; Peppas, Nicholas A
2011-10-10
Fifty years ago, the legendary Professor Takeru Higuchi published the derivation of an equation that allowed for the quantification of drug release from thin ointment films, containing finely dispersed drug into a perfect sink. This became the famous Higuchi equation whose fiftieth anniversary we celebrate this year. Despite the complexity of the involved mass transport processes, Higuchi derived a very simple equation, which is easy to use. Based on a pseudo-steady-state approach, a direct proportionality between the cumulative amount of drug released and the square root of time can be demonstrated. In contrast to various other "square root of time" release kinetics, the constant of proportionality in the classical Higuchi equation has a specific, physically realistic meaning. The major benefits of this equation include the possibility to: (i) facilitate device optimization, and (ii) to better understand the underlying drug release mechanisms. The equation can also be applied to other types of drug delivery systems than thin ointment films, e.g., controlled release transdermal patches or films for oral controlled drug delivery. Later, the equation was extended to other geometries and related theories have been proposed. The aim of this review is to highlight the assumptions the derivation of the classical Higuchi equation is based on and to give an overview on the use and potential misuse of this equation as well as of related theories. Copyright © 2011 Elsevier B.V. All rights reserved.
High resolution solutions of the Euler equations for vortex flows
NASA Technical Reports Server (NTRS)
Murman, E. M.; Powell, K. G.; Rizzi, A.
1985-01-01
Solutions of the Euler equations are presented for M = 1.5 flow past a 70-degree-swept delta wing. At an angle of attack of 10 degrees, strong leading-edge vortices are produced. Two computational approaches are taken, based upon fully three-dimensional and conical flow theory. Both methods utilize a finite-volume discretization solved by a pseudounsteady multistage scheme. Results from the two approaches are in good agreement. Computations have been done on a 16-million-word CYBER 205 using 196 x 56 x 96 and 128 x 128 cells for the two methods. A sizable data base is generated, and some of the practical aspects of manipulating it are mentioned. The results reveal many interesting physical features of the compressible vortical flow field and also suggest new areas needing research.
Leistritz, L; Suesse, T; Haueisen, J; Hilgenfeld, B; Witte, H
2006-01-01
Directed information transfer in the human brain occurs presumably by oscillations. As of yet, most approaches for the analysis of these oscillations are based on time-frequency or coherence analysis. The present work concerns the modeling of cortical 600 Hz oscillations, localized within the Brodmann Areas 3b and 1 after stimulation of the nervus medianus, by means of coupled differential equations. This approach leads to the so-called parameter identification problem, where based on a given data set, a set of unknown parameters of a system of ordinary differential equations is determined by special optimization procedures. Some suitable algorithms for this task are presented in this paper. Finally an oscillatory network model is optimally fitted to the data taken from ten volunteers.
An acoustic-convective splitting-based approach for the Kapila two-phase flow model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eikelder, M.F.P. ten, E-mail: m.f.p.teneikelder@tudelft.nl; Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513, 5600 MB Eindhoven; Daude, F.
In this paper we propose a new acoustic-convective splitting-based numerical scheme for the Kapila five-equation two-phase flow model. The splitting operator decouples the acoustic waves and convective waves. The resulting two submodels are alternately numerically solved to approximate the solution of the entire model. The Lagrangian form of the acoustic submodel is numerically solved using an HLLC-type Riemann solver whereas the convective part is approximated with an upwind scheme. The result is a simple method which allows for a general equation of state. Numerical computations are performed for standard two-phase shock tube problems. A comparison is made with a non-splittingmore » approach. The results are in good agreement with reference results and exact solutions.« less
Vajuvalli, Nithin N; Nayak, Krupa N; Geethanath, Sairam
2014-01-01
Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) is widely used in the diagnosis of cancer and is also a promising tool for monitoring tumor response to treatment. The Tofts model has become a standard for the analysis of DCE-MRI. The process of curve fitting employed in the Tofts equation to obtain the pharmacokinetic (PK) parameters is time-consuming for high resolution scans. Current work demonstrates a frequency-domain approach applied to the standard Tofts equation to speed-up the process of curve-fitting in order to obtain the pharmacokinetic parameters. The results obtained show that using the frequency domain approach, the process of curve fitting is computationally more efficient compared to the time-domain approach.
A linear quadratic regulator approach to the stabilization of uncertain linear systems
NASA Technical Reports Server (NTRS)
Shieh, L. S.; Sunkel, J. W.; Wang, Y. J.
1990-01-01
This paper presents a linear quadratic regulator approach to the stabilization of uncertain linear systems. The uncertain systems under consideration are described by state equations with the presence of time-varying unknown-but-bounded uncertainty matrices. The method is based on linear quadratic regulator (LQR) theory and Liapunov stability theory. The robust stabilizing control law for a given uncertain system can be easily constructed from the symmetric positive-definite solution of the associated augmented Riccati equation. The proposed approach can be applied to matched and/or mismatched systems with uncertainty matrices in which only their matrix norms are bounded by some prescribed values and/or their entries are bounded by some prescribed constraint sets. Several numerical examples are presented to illustrate the results.
Quantum hydrodynamics: capturing a reactive scattering resonance.
Derrickson, Sean W; Bittner, Eric R; Kendrick, Brian K
2005-08-01
The hydrodynamic equations of motion associated with the de Broglie-Bohm formulation of quantum mechanics are solved using a meshless method based upon a moving least-squares approach. An arbitrary Lagrangian-Eulerian frame of reference and a regridding algorithm which adds and deletes computational points are used to maintain a uniform and nearly constant interparticle spacing. The methodology also uses averaged fields to maintain unitary time evolution. The numerical instabilities associated with the formation of nodes in the reflected portion of the wave packet are avoided by adding artificial viscosity to the equations of motion. A new and more robust artificial viscosity algorithm is presented which gives accurate scattering results and is capable of capturing quantum resonances. The methodology is applied to a one-dimensional model chemical reaction that is known to exhibit a quantum resonance. The correlation function approach is used to compute the reactive scattering matrix, reaction probability, and time delay as a function of energy. Excellent agreement is obtained between the scattering results based upon the quantum hydrodynamic approach and those based upon standard quantum mechanics. This is the first clear demonstration of the ability of moving grid approaches to accurately and robustly reproduce resonance structures in a scattering system.
Goal-Oriented Probability Density Function Methods for Uncertainty Quantification
2015-12-11
approximations or data-driven approaches. We investigated the accuracy of analytical tech- niques based Kubo -Van Kampen operator cumulant expansions for...analytical techniques based Kubo -Van Kampen operator cumulant expansions for Langevin equations driven by fractional Brownian motion and other noises
A Computational Study of Shear Layer Receptivity
NASA Astrophysics Data System (ADS)
Barone, Matthew; Lele, Sanjiva
2002-11-01
The receptivity of two-dimensional, compressible shear layers to local and external excitation sources is examined using a computational approach. The family of base flows considered consists of a laminar supersonic stream separated from nearly quiescent fluid by a thin, rigid splitter plate with a rounded trailing edge. The linearized Euler and linearized Navier-Stokes equations are solved numerically in the frequency domain. The flow solver is based on a high order finite difference scheme, coupled with an overset mesh technique developed for computational aeroacoustics applications. Solutions are obtained for acoustic plane wave forcing near the most unstable shear layer frequency, and are compared to the existing low frequency theory. An adjoint formulation to the present problem is developed, and adjoint equation calculations are performed using the same numerical methods as for the regular equation sets. Solutions to the adjoint equations are used to shed light on the mechanisms which control the receptivity of finite-width compressible shear layers.
Birth-jump processes and application to forest fire spotting.
Hillen, T; Greese, B; Martin, J; de Vries, G
2015-01-01
Birth-jump models are designed to describe population models for which growth and spatial spread cannot be decoupled. A birth-jump model is a nonlinear integro-differential equation. We present two different derivations of this equation, one based on a random walk approach and the other based on a two-compartmental reaction-diffusion model. In the case that the redistribution kernels are highly concentrated, we show that the integro-differential equation can be approximated by a reaction-diffusion equation, in which the proliferation rate contributes to both the diffusion term and the reaction term. We completely solve the corresponding critical domain size problem and the minimal wave speed problem. Birth-jump models can be applied in many areas in mathematical biology. We highlight an application of our results in the context of forest fire spread through spotting. We show that spotting increases the invasion speed of a forest fire front.
Bai, Shirong; Skodje, Rex T
2017-08-17
A new approach is presented for simulating the time-evolution of chemically reactive systems. This method provides an alternative to conventional modeling of mass-action kinetics that involves solving differential equations for the species concentrations. The method presented here avoids the need to solve the rate equations by switching to a representation based on chemical pathways. In the Sum Over Histories Representation (or SOHR) method, any time-dependent kinetic observable, such as concentration, is written as a linear combination of probabilities for chemical pathways leading to a desired outcome. In this work, an iterative method is introduced that allows the time-dependent pathway probabilities to be generated from a knowledge of the elementary rate coefficients, thus avoiding the pitfalls involved in solving the differential equations of kinetics. The method is successfully applied to the model Lotka-Volterra system and to a realistic H 2 combustion model.
NASA Technical Reports Server (NTRS)
Coirier, William John
1994-01-01
A Cartesian, cell-based scheme for solving the Euler and Navier-Stokes equations in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, polygonal 'cut' cells are created. The geometry of the cut cells is computed using polygon-clipping algorithms. The grid is stored in a binary-tree data structure which provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite-volume formulation. The convective terms are upwinded, with a limited linear reconstruction of the primitive variables used to provide input states to an approximate Riemann solver for computing the fluxes between neighboring cells. A multi-stage time-stepping scheme is used to reach a steady-state solution. Validation of the Euler solver with benchmark numerical and exact solutions is presented. An assessment of the accuracy of the approach is made by uniform and adaptive grid refinements for a steady, transonic, exact solution to the Euler equations. The error of the approach is directly compared to a structured solver formulation. A non smooth flow is also assessed for grid convergence, comparing uniform and adaptively refined results. Several formulations of the viscous terms are assessed analytically, both for accuracy and positivity. The two best formulations are used to compute adaptively refined solutions of the Navier-Stokes equations. These solutions are compared to each other, to experimental results and/or theory for a series of low and moderate Reynolds numbers flow fields. The most suitable viscous discretization is demonstrated for geometrically-complicated internal flows. For flows at high Reynolds numbers, both an altered grid-generation procedure and a different formulation of the viscous terms are shown to be necessary. A hybrid Cartesian/body-fitted grid generation approach is demonstrated. In addition, a grid-generation procedure based on body-aligned cell cutting coupled with a viscous stensil-construction procedure based on quadratic programming is presented.
NASA Astrophysics Data System (ADS)
Vandermeulen, J.; Nasseri, S. A.; Van de Wiele, B.; Durin, G.; Van Waeyenberge, B.; Dupré, L.
2018-03-01
Lagrangian-based collective coordinate models for magnetic domain wall (DW) motion rely on an ansatz for the DW profile and a Lagrangian approach to describe the DW motion in terms of a set of time-dependent collective coordinates: the DW position, the DW magnetization angle, the DW width and the DW tilting angle. Another approach was recently used to derive similar equations of motion by averaging the Landau-Lifshitz-Gilbert equation without any ansatz, and identifying the relevant collective coordinates afterwards. In this paper, we use an updated version of the semi-analytical equations to compare the Lagrangian-based collective coordinate models with micromagnetic simulations for field- and STT-driven (spin-transfer torque-driven) DW motion in Pt/CoFe/MgO and Pt/Co/AlOx nanostrips. Through this comparison, we assess the accuracy of the different models, and provide insight into the deviations of the models from simulations. It is found that the lack of terms related to DW asymmetry in the Lagrangian-based collective coordinate models significantly contributes to the discrepancy between the predictions of the most accurate Lagrangian-based model and the micromagnetic simulations in the field-driven case. This is in contrast to the STT-driven case where the DW remains symmetric.
The induced electric field due to a current transient
NASA Astrophysics Data System (ADS)
Beck, Y.; Braunstein, A.; Frankental, S.
2007-05-01
Calculations and measurements of the electric fields, induced by a lightning strike, are important for understanding the phenomenon and developing effective protection systems. In this paper, a novel approach to the calculation of the electric fields due to lightning strikes, using a relativistic approach, is presented. This approach is based on a known current wave-pair model, representing the lightning current wave. The model presented is one that describes the lightning current wave, either at the first stage of the descending charge wave from the cloud or at the later stage of the return stroke. The electric fields computed are cylindrically symmetric. A simplified method for the calculation of the electric field is achieved by using special relativity theory and relativistic considerations. The proposed approach, described in this paper, is based on simple expressions (by applying Coulomb's law) compared with much more complicated partial differential equations based on Maxwell's equations. A straight forward method of calculating the electric field due to a lightning strike, modelled as a negative-positive (NP) wave-pair, is determined by using the special relativity theory in order to calculate the 'velocity field' and relativistic concepts for calculating the 'acceleration field'. These fields are the basic elements required for calculating the total field resulting from the current wave-pair model. Moreover, a modified simpler method using sub models is represented. The sub-models are filaments of either static charges or charges at constant velocity only. Combining these simple sub-models yields the total wave-pair model. The results fully agree with that obtained by solving Maxwell's equations for the discussed problem.
Corrected simulations for one-dimensional diffusion processes with naturally occurring boundaries.
Shafiey, Hassan; Gan, Xinjun; Waxman, David
2017-11-01
To simulate a diffusion process, a usual approach is to discretize the time in the associated stochastic differential equation. This is the approach used in the Euler method. In the present work we consider a one-dimensional diffusion process where the terms occurring, within the stochastic differential equation, prevent the process entering a region. The outcome is a naturally occurring boundary (which may be absorbing or reflecting). A complication occurs in a simulation of this situation. The term involving a random variable, within the discretized stochastic differential equation, may take a trajectory across the boundary into a "forbidden region." The naive way of dealing with this problem, which we refer to as the "standard" approach, is simply to reset the trajectory to the boundary, based on the argument that crossing the boundary actually signifies achieving the boundary. In this work we show, within the framework of the Euler method, that such resetting introduces a spurious force into the original diffusion process. This force may have a significant influence on trajectories that come close to a boundary. We propose a corrected numerical scheme, for simulating one-dimensional diffusion processes with naturally occurring boundaries. This involves correcting the standard approach, so that an exact property of the diffusion process is precisely respected. As a consequence, the proposed scheme does not introduce a spurious force into the dynamics. We present numerical test cases, based on exactly soluble one-dimensional problems with one or two boundaries, which suggest that, for a given value of the discrete time step, the proposed scheme leads to substantially more accurate results than the standard approach. Alternatively, the standard approach needs considerably more computation time to obtain a comparable level of accuracy to the proposed scheme, because the standard approach requires a significantly smaller time step.
Corrected simulations for one-dimensional diffusion processes with naturally occurring boundaries
NASA Astrophysics Data System (ADS)
Shafiey, Hassan; Gan, Xinjun; Waxman, David
2017-11-01
To simulate a diffusion process, a usual approach is to discretize the time in the associated stochastic differential equation. This is the approach used in the Euler method. In the present work we consider a one-dimensional diffusion process where the terms occurring, within the stochastic differential equation, prevent the process entering a region. The outcome is a naturally occurring boundary (which may be absorbing or reflecting). A complication occurs in a simulation of this situation. The term involving a random variable, within the discretized stochastic differential equation, may take a trajectory across the boundary into a "forbidden region." The naive way of dealing with this problem, which we refer to as the "standard" approach, is simply to reset the trajectory to the boundary, based on the argument that crossing the boundary actually signifies achieving the boundary. In this work we show, within the framework of the Euler method, that such resetting introduces a spurious force into the original diffusion process. This force may have a significant influence on trajectories that come close to a boundary. We propose a corrected numerical scheme, for simulating one-dimensional diffusion processes with naturally occurring boundaries. This involves correcting the standard approach, so that an exact property of the diffusion process is precisely respected. As a consequence, the proposed scheme does not introduce a spurious force into the dynamics. We present numerical test cases, based on exactly soluble one-dimensional problems with one or two boundaries, which suggest that, for a given value of the discrete time step, the proposed scheme leads to substantially more accurate results than the standard approach. Alternatively, the standard approach needs considerably more computation time to obtain a comparable level of accuracy to the proposed scheme, because the standard approach requires a significantly smaller time step.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Guowei; Baker, Nathan A.
2016-11-11
This chapter reviews the differential geometry-based solvation and electrolyte transport for biomolecular solvation that have been developed over the past decade. A key component of these methods is the differential geometry of surfaces theory, as applied to the solvent-solute boundary. In these approaches, the solvent-solute boundary is determined by a variational principle that determines the major physical observables of interest, for example, biomolecular surface area, enclosed volume, electrostatic potential, ion density, electron density, etc. Recently, differential geometry theory has been used to define the surfaces that separate the microscopic (solute) domains for biomolecules from the macroscopic (solvent) domains. In thesemore » approaches, the microscopic domains are modeled with atomistic or quantum mechanical descriptions, while continuum mechanics models (including fluid mechanics, elastic mechanics, and continuum electrostatics) are applied to the macroscopic domains. This multiphysics description is integrated through an energy functional formalism and the resulting Euler-Lagrange equation is employed to derive a variety of governing partial differential equations for different solvation and transport processes; e.g., the Laplace-Beltrami equation for the solvent-solute interface, Poisson or Poisson-Boltzmann equations for electrostatic potentials, the Nernst-Planck equation for ion densities, and the Kohn-Sham equation for solute electron density. Extensive validation of these models has been carried out over hundreds of molecules, including proteins and ion channels, and the experimental data have been compared in terms of solvation energies, voltage-current curves, and density distributions. We also propose a new quantum model for electrolyte transport.« less
NASA Technical Reports Server (NTRS)
Palazzolo, Alan; Bhattacharya, Avijit; Athavale, Mahesh; Venkataraman, Balaji; Ryan, Steve; Funston, Kerry
1997-01-01
This paper highlights bulk flow and CFD-based models prepared to calculate force and leakage properties for seals and shrouded impeller leakage paths. The bulk flow approach uses a Hir's based friction model and the CFD approach solves the Navier Stoke's (NS) equation with a finite whirl orbit or via analytical perturbation. The results show good agreement in most instances with available benchmarks.
NASA Astrophysics Data System (ADS)
Recchioni, Maria Cristina
2001-12-01
This paper investigates the application of the method introduced by L. Pasquini (1989) for simultaneously approaching the zeros of polynomial solutions to a class of second-order linear homogeneous ordinary differential equations with polynomial coefficients to a particular case in which these polynomial solutions have zeros symmetrically arranged with respect to the origin. The method is based on a family of nonlinear equations which is associated with a given class of differential equations. The roots of the nonlinear equations are related to the roots of the polynomial solutions of differential equations considered. Newton's method is applied to find the roots of these nonlinear equations. In (Pasquini, 1994) the nonsingularity of the roots of these nonlinear equations is studied. In this paper, following the lines in (Pasquini, 1994), the nonsingularity of the roots of these nonlinear equations is studied. More favourable results than the ones in (Pasquini, 1994) are proven in the particular case of polynomial solutions with symmetrical zeros. The method is applied to approximate the roots of Hermite-Sobolev type polynomials and Freud polynomials. A lower bound for the smallest positive root of Hermite-Sobolev type polynomials is given via the nonlinear equation. The quadratic convergence of the method is proven. A comparison with a classical method that uses the Jacobi matrices is carried out. We show that the algorithm derived by the proposed method is sometimes preferable to the classical QR type algorithms for computing the eigenvalues of the Jacobi matrices even if these matrices are real and symmetric.
Nonequilibrium Statistical Operator Method and Generalized Kinetic Equations
NASA Astrophysics Data System (ADS)
Kuzemsky, A. L.
2018-01-01
We consider some principal problems of nonequilibrium statistical thermodynamics in the framework of the Zubarev nonequilibrium statistical operator approach. We present a brief comparative analysis of some approaches to describing irreversible processes based on the concept of nonequilibrium Gibbs ensembles and their applicability to describing nonequilibrium processes. We discuss the derivation of generalized kinetic equations for a system in a heat bath. We obtain and analyze a damped Schrödinger-type equation for a dynamical system in a heat bath. We study the dynamical behavior of a particle in a medium taking the dissipation effects into account. We consider the scattering problem for neutrons in a nonequilibrium medium and derive a generalized Van Hove formula. We show that the nonequilibrium statistical operator method is an effective, convenient tool for describing irreversible processes in condensed matter.
Efficient Gradient-Based Shape Optimization Methodology Using Inviscid/Viscous CFD
NASA Technical Reports Server (NTRS)
Baysal, Oktay
1997-01-01
The formerly developed preconditioned-biconjugate-gradient (PBCG) solvers for the analysis and the sensitivity equations had resulted in very large error reductions per iteration; quadratic convergence was achieved whenever the solution entered the domain of attraction to the root. Its memory requirement was also lower as compared to a direct inversion solver. However, this memory requirement was high enough to preclude the realistic, high grid-density design of a practical 3D geometry. This limitation served as the impetus to the first-year activity (March 9, 1995 to March 8, 1996). Therefore, the major activity for this period was the development of the low-memory methodology for the discrete-sensitivity-based shape optimization. This was accomplished by solving all the resulting sets of equations using an alternating-direction-implicit (ADI) approach. The results indicated that shape optimization problems which required large numbers of grid points could be resolved with a gradient-based approach. Therefore, to better utilize the computational resources, it was recommended that a number of coarse grid cases, using the PBCG method, should initially be conducted to better define the optimization problem and the design space, and obtain an improved initial shape. Subsequently, a fine grid shape optimization, which necessitates using the ADI method, should be conducted to accurately obtain the final optimized shape. The other activity during this period was the interaction with the members of the Aerodynamic and Aeroacoustic Methods Branch of Langley Research Center during one stage of their investigation to develop an adjoint-variable sensitivity method using the viscous flow equations. This method had algorithmic similarities to the variational sensitivity methods and the control-theory approach. However, unlike the prior studies, it was considered for the three-dimensional, viscous flow equations. The major accomplishment in the second period of this project (March 9, 1996 to March 8, 1997) was the extension of the shape optimization methodology for the Thin-Layer Navier-Stokes equations. Both the Euler-based and the TLNS-based analyses compared with the analyses obtained using the CFL3D code. The sensitivities, again from both levels of the flow equations, also compared very well with the finite-differenced sensitivities. A fairly large set of shape optimization cases were conducted to study a number of issues previously not well understood. The testbed for these cases was the shaping of an arrow wing in Mach 2.4 flow. All the final shapes, obtained either from a coarse-grid-based or a fine-grid-based optimization, using either a Euler-based or a TLNS-based analysis, were all re-analyzed using a fine-grid, TLNS solution for their function evaluations. This allowed for a more fair comparison of their relative merits. From the aerodynamic performance standpoint, the fine-grid TLNS-based optimization produced the best shape, and the fine-grid Euler-based optimization produced the lowest cruise efficiency.
Assessments of a Turbulence Model Based on Menter's Modification to Rotta's Two-Equation Model
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.
2013-01-01
The main objective of this paper is to construct a turbulence model with a more reliable second equation simulating length scale. In the present paper, we assess the length scale equation based on Menter s modification to Rotta s two-equation model. Rotta shows that a reliable second equation can be formed in an exact transport equation from the turbulent length scale L and kinetic energy. Rotta s equation is well suited for a term-by-term modeling and shows some interesting features compared to other approaches. The most important difference is that the formulation leads to a natural inclusion of higher order velocity derivatives into the source terms of the scale equation, which has the potential to enhance the capability of Reynolds-averaged Navier-Stokes (RANS) to simulate unsteady flows. The model is implemented in the PAB3D solver with complete formulation, usage methodology, and validation examples to demonstrate its capabilities. The detailed studies include grid convergence. Near-wall and shear flows cases are documented and compared with experimental and Large Eddy Simulation (LES) data. The results from this formulation are as good or better than the well-known SST turbulence model and much better than k-epsilon results. Overall, the study provides useful insights into the model capability in predicting attached and separated flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, Ryo; Naruko, Atsushi; Hiramatsu, Takashi
2014-10-01
In this paper, we introduce a new approach to a treatment of the gravitational effects (redshift, time delay and lensing) on the observed cosmic microwave background (CMB) anisotropies based on the Boltzmann equation. From the Liouville's theorem in curved spacetime, the intensity of photons is conserved along a photon geodesic when non-gravitational scatterings are absent. Motivated by this fact, we derive a second-order line-of-sight formula by integrating the Boltzmann equation along a perturbed geodesic (curve) instead of a background geodesic (line). In this approach, the separation of the gravitational and intrinsic effects are manifest. This approach can be considered asmore » a generalization of the remapping approach of CMB lensing, where all the gravitational effects can be treated on the same footing.« less
Multiscale Multilevel Approach to Solution of Nanotechnology Problems
NASA Astrophysics Data System (ADS)
Polyakov, Sergey; Podryga, Viktoriia
2018-02-01
The paper is devoted to a multiscale multilevel approach for the solution of nanotechnology problems on supercomputer systems. The approach uses the combination of continuum mechanics models and the Newton dynamics for individual particles. This combination includes three scale levels: macroscopic, mesoscopic and microscopic. For gas-metal technical systems the following models are used. The quasihydrodynamic system of equations is used as a mathematical model at the macrolevel for gas and solid states. The system of Newton equations is used as a mathematical model at the mesoand microlevels; it is written for nanoparticles of the medium and larger particles moving in the medium. The numerical implementation of the approach is based on the method of splitting into physical processes. The quasihydrodynamic equations are solved by the finite volume method on grids of different types. The Newton equations of motion are solved by Verlet integration in each cell of the grid independently or in groups of connected cells. In the framework of the general methodology, four classes of algorithms and methods of their parallelization are provided. The parallelization uses the principles of geometric parallelism and the efficient partitioning of the computational domain. A special dynamic algorithm is used for load balancing the solvers. The testing of the developed approach was made by the example of the nitrogen outflow from a balloon with high pressure to a vacuum chamber through a micronozzle and a microchannel. The obtained results confirm the high efficiency of the developed methodology.
Some aspects of steam-water flow simulation in geothermal wells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shulyupin, Alexander N.
1996-01-24
Actual aspects of steam-water simulation in geothermal wells are considered: necessary quality of a simulator, flow regimes, mass conservation equation, momentum conservation equation, energy conservation equation and condition equations. Shortcomings of traditional hydraulic approach are noted. Main questions of simulator development by the hydraulic approach are considered. New possibilities of a simulation with the structure approach employment are noted.
Void Formation during Diffusion - Two-Dimensional Approach
NASA Astrophysics Data System (ADS)
Wierzba, Bartek
2016-06-01
The final set of equations defining the interdiffusion process in solid state is presented. The model is supplemented by vacancy evolution equation. The competition between the Kirkendall shift, backstress effect and vacancy migration is considered. The proper diffusion flux based on the Nernst-Planck formula is proposed. As a result, the comparison of the experimental and calculated evolution of the void formation in the Fe-Pd diffusion couple is shown.
Causal discovery and inference: concepts and recent methodological advances.
Spirtes, Peter; Zhang, Kun
This paper aims to give a broad coverage of central concepts and principles involved in automated causal inference and emerging approaches to causal discovery from i.i.d data and from time series. After reviewing concepts including manipulations, causal models, sample predictive modeling, causal predictive modeling, and structural equation models, we present the constraint-based approach to causal discovery, which relies on the conditional independence relationships in the data, and discuss the assumptions underlying its validity. We then focus on causal discovery based on structural equations models, in which a key issue is the identifiability of the causal structure implied by appropriately defined structural equation models: in the two-variable case, under what conditions (and why) is the causal direction between the two variables identifiable? We show that the independence between the error term and causes, together with appropriate structural constraints on the structural equation, makes it possible. Next, we report some recent advances in causal discovery from time series. Assuming that the causal relations are linear with nonGaussian noise, we mention two problems which are traditionally difficult to solve, namely causal discovery from subsampled data and that in the presence of confounding time series. Finally, we list a number of open questions in the field of causal discovery and inference.
NASA Astrophysics Data System (ADS)
Rahmouni, Lyes; Mitharwal, Rajendra; Andriulli, Francesco P.
2017-11-01
This work presents two new volume integral equations for the Electroencephalography (EEG) forward problem which, differently from the standard integral approaches in the domain, can handle heterogeneities and anisotropies of the head/brain conductivity profiles. The new formulations translate to the quasi-static regime some volume integral equation strategies that have been successfully applied to high frequency electromagnetic scattering problems. This has been obtained by extending, to the volume case, the two classical surface integral formulations used in EEG imaging and by introducing an extra surface equation, in addition to the volume ones, to properly handle boundary conditions. Numerical results corroborate theoretical treatments, showing the competitiveness of our new schemes over existing techniques and qualifying them as a valid alternative to differential equation based methods.
An application of the Maslov complex germ method to the one-dimensional nonlocal Fisher-KPP equation
NASA Astrophysics Data System (ADS)
Shapovalov, A. V.; Trifonov, A. Yu.
A semiclassical approximation approach based on the Maslov complex germ method is considered in detail for the one-dimensional nonlocal Fisher-Kolmogorov-Petrovskii-Piskunov (Fisher-KPP) equation under the supposition of weak diffusion. In terms of the semiclassical formalism developed, the original nonlinear equation is reduced to an associated linear partial differential equation and some algebraic equations for the coefficients of the linear equation with a given accuracy of the asymptotic parameter. The solutions of the nonlinear equation are constructed from the solutions of both the linear equation and the algebraic equations. The solutions of the linear problem are found with the use of symmetry operators. A countable family of the leading terms of the semiclassical asymptotics is constructed in explicit form. The semiclassical asymptotics are valid by construction in a finite time interval. We construct asymptotics which are different from the semiclassical ones and can describe evolution of the solutions of the Fisher-KPP equation at large times. In the example considered, an initial unimodal distribution becomes multimodal, which can be treated as an example of a space structure.
NASA Astrophysics Data System (ADS)
Pei, C.; Bieber, J. W.; Burger, R. A.; Clem, J.
2010-12-01
We present a detailed description of our newly developed stochastic approach for solving Parker's transport equation, which we believe is the first attempt to solve it with time dependence in 3-D, evolving from our 3-D steady state stochastic approach. Our formulation of this method is general and is valid for any type of heliospheric magnetic field, although we choose the standard Parker field as an example to illustrate the steps to calculate the transport of galactic cosmic rays. Our 3-D stochastic method is different from other stochastic approaches in the literature in several ways. For example, we employ spherical coordinates to integrate directly, which makes the code much more efficient by reducing coordinate transformations. What is more, the equivalence between our stochastic differential equations and Parker's transport equation is guaranteed by Ito's theorem in contrast to some other approaches. We generalize the technique for calculating particle flux based on the pseudoparticle trajectories for steady state solutions and for time-dependent solutions in 3-D. To validate our code, first we show that good agreement exists between solutions obtained by our steady state stochastic method and a traditional finite difference method. Then we show that good agreement also exists for our time-dependent method for an idealized and simplified heliosphere which has a Parker magnetic field and a simple initial condition for two different inner boundary conditions.
Aeroelastic Stability of Rotor Blades Using Finite Element Analysis
NASA Technical Reports Server (NTRS)
Chopra, I.; Sivaneri, N.
1982-01-01
The flutter stability of flap bending, lead-lag bending, and torsion of helicopter rotor blades in hover is investigated using a finite element formulation based on Hamilton's principle. The blade is divided into a number of finite elements. Quasi-steady strip theory is used to evaluate the aerodynamic loads. The nonlinear equations of motion are solved for steady-state blade deflections through an iterative procedure. The equations of motion are linearized assuming blade motion to be a small perturbation about the steady deflected shape. The normal mode method based on the coupled rotating natural modes is used to reduce the number of equations in the flutter analysis. First the formulation is applied to single-load-path blades (articulated and hingeless blades). Numerical results show very good agreement with existing results obtained using the modal approach. The second part of the application concerns multiple-load-path blades, i.e. bearingless blades. Numerical results are presented for several analytical models of the bearingless blade. Results are also obtained using an equivalent beam approach wherein a bearingless blade is modelled as a single beam with equivalent properties. Results show the equivalent beam model.
NASA Astrophysics Data System (ADS)
Miranda, E.; Román Acevedo, W.; Rubi, D.; Lüders, U.; Granell, P.; Suñé, J.; Levy, P.
2017-05-01
The hysteretic conduction characteristics and fatigue profile of La1/3Ca2/3MnO3 (LCMO)-based memristive devices were investigated. The oxide films were grown by pulsed laser deposition (PLD) and sandwiched between Ag and Pt electrodes. The devices exhibit bipolar resistive switching (RS) effect with well-defined intermediate conduction states that arise from partial SET and RESET events. The current-voltage curves are modeled and simulated using a compact memristive approach. Two equations are considered: one for the electron transport based on the double-diode equation and the other for the memory state of the device driven by the play operator with logistic ridge functions. An expression that accounts for the remnant resistance of the device is obtained after simplifying the model equations in the low-voltage limit. The role played by the power dissipation in the LCMO reset dynamics as well as the asymmetrical reduction of the resistance window caused by long trains of switching pulses are discussed.
Skrdla, Peter J; Robertson, Rebecca T
2005-06-02
Many solid-state reactions and phase transformations performed under isothermal conditions give rise to asymmetric, sigmoidally shaped conversion-time (x-t) profiles. The mathematical treatment of such curves, as well as their physical interpretation, is often challenging. In this work, the functional form of a Maxwell-Boltzmann (M-B) distribution is used to describe the distribution of activation energies for the reagent solids, which, when coupled with an integrated first-order rate expression, yields a novel semiempirical equation that may offer better success in the modeling of solid-state kinetics. In this approach, the Arrhenius equation is used to relate the distribution of activation energies to a corresponding distribution of rate constants for the individual molecules in the reagent solids. This distribution of molecular rate constants is then correlated to the (observable) reaction time in the derivation of the model equation. In addition to providing a versatile treatment for asymmetric, sigmoidal reaction curves, another key advantage of our equation over other models is that the start time of conversion is uniquely defined at t = 0. We demonstrate the ability of our simple, two-parameter equation to successfully model the experimental x-t data for the polymorphic transformation of a pharmaceutical compound under crystallization slurry (i.e., heterogeneous) conditions. Additionally, we use a modification of this equation to model the kinetics of a historically significant, homogeneous solid-state reaction: the thermal decomposition of AgMnO4 crystals. The potential broad applicability of our statistical (i.e., dispersive) kinetic approach makes it a potentially attractive alternative to existing models/approaches.
A quadrature based method of moments for nonlinear Fokker-Planck equations
NASA Astrophysics Data System (ADS)
Otten, Dustin L.; Vedula, Prakash
2011-09-01
Fokker-Planck equations which are nonlinear with respect to their probability densities and occur in many nonequilibrium systems relevant to mean field interaction models, plasmas, fermions and bosons can be challenging to solve numerically. To address some underlying challenges, we propose the application of the direct quadrature based method of moments (DQMOM) for efficient and accurate determination of transient (and stationary) solutions of nonlinear Fokker-Planck equations (NLFPEs). In DQMOM, probability density (or other distribution) functions are represented using a finite collection of Dirac delta functions, characterized by quadrature weights and locations (or abscissas) that are determined based on constraints due to evolution of generalized moments. Three particular examples of nonlinear Fokker-Planck equations considered in this paper include descriptions of: (i) the Shimizu-Yamada model, (ii) the Desai-Zwanzig model (both of which have been developed as models of muscular contraction) and (iii) fermions and bosons. Results based on DQMOM, for the transient and stationary solutions of the nonlinear Fokker-Planck equations, have been found to be in good agreement with other available analytical and numerical approaches. It is also shown that approximate reconstruction of the underlying probability density function from moments obtained from DQMOM can be satisfactorily achieved using a maximum entropy method.
Gas Permeation Computations with Mathematica
ERIC Educational Resources Information Center
Binous, Housam
2006-01-01
We show a new approach, based on the utilization of Mathematica, to solve gas permeation problems using membranes. We start with the design of a membrane unit for the separation of a multicomponent mixture. The built-in Mathematica function, FindRoot, allows one to solve seven simultaneous equations instead of using the iterative approach of…
2D Time-lapse Seismic Tomography Using An Active Time Constraint (ATC) Approach
We propose a 2D seismic time-lapse inversion approach to image the evolution of seismic velocities over time and space. The forward modeling is based on solving the eikonal equation using a second-order fast marching method. The wave-paths are represented by Fresnel volumes rathe...
ERIC Educational Resources Information Center
Al-Azawei, Ahmed; Parslow, Patrick; Lundqvist, Karsten
2017-01-01
Standardising learning content and teaching approaches is not considered to be the best practice in contemporary education. This approach does not differentiate learners based on their individual abilities and preferences. The present research integrates a pedagogical theory "Universal Design for Learning" ("UDL") with an…
Efficient Bayesian experimental design for contaminant source identification
NASA Astrophysics Data System (ADS)
Zhang, Jiangjiang; Zeng, Lingzao; Chen, Cheng; Chen, Dingjiang; Wu, Laosheng
2015-01-01
In this study, an efficient full Bayesian approach is developed for the optimal sampling well location design and source parameters identification of groundwater contaminants. An information measure, i.e., the relative entropy, is employed to quantify the information gain from concentration measurements in identifying unknown parameters. In this approach, the sampling locations that give the maximum expected relative entropy are selected as the optimal design. After the sampling locations are determined, a Bayesian approach based on Markov Chain Monte Carlo (MCMC) is used to estimate unknown parameters. In both the design and estimation, the contaminant transport equation is required to be solved many times to evaluate the likelihood. To reduce the computational burden, an interpolation method based on the adaptive sparse grid is utilized to construct a surrogate for the contaminant transport equation. The approximated likelihood can be evaluated directly from the surrogate, which greatly accelerates the design and estimation process. The accuracy and efficiency of our approach are demonstrated through numerical case studies. It is shown that the methods can be used to assist in both single sampling location and monitoring network design for contaminant source identifications in groundwater.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Kai; Song, Linze; Shi, Qiang, E-mail: qshi@iccas.ac.cn
Based on the path integral approach, we derive a new realization of the exact non-Markovian stochastic Schrödinger equation (SSE). The main difference from the previous non-Markovian quantum state diffusion (NMQSD) method is that the complex Gaussian stochastic process used for the forward propagation of the wave function is correlated, which may be used to reduce the amplitude of the non-Markovian memory term at high temperatures. The new SSE is then written into the recently developed hierarchy of pure states scheme, in a form that is more closely related to the hierarchical equation of motion approach. Numerical simulations are then performedmore » to demonstrate the efficiency of the new method.« less
NASA Technical Reports Server (NTRS)
Lombaerts, Thomas; Schuet, Stefan R.; Wheeler, Kevin; Acosta, Diana; Kaneshige, John
2013-01-01
This paper discusses an algorithm for estimating the safe maneuvering envelope of damaged aircraft. The algorithm performs a robust reachability analysis through an optimal control formulation while making use of time scale separation and taking into account uncertainties in the aerodynamic derivatives. Starting with an optimal control formulation, the optimization problem can be rewritten as a Hamilton- Jacobi-Bellman equation. This equation can be solved by level set methods. This approach has been applied on an aircraft example involving structural airframe damage. Monte Carlo validation tests have confirmed that this approach is successful in estimating the safe maneuvering envelope for damaged aircraft.
NASA Technical Reports Server (NTRS)
Burns, John A.; Marrekchi, Hamadi
1993-01-01
The problem of using reduced order dynamic compensators to control a class of nonlinear parabolic distributed parameter systems was considered. Concentration was on a system with unbounded input and output operators governed by Burgers' equation. A linearized model was used to compute low-order-finite-dimensional control laws by minimizing certain energy functionals. Then these laws were applied to the nonlinear model. Standard approaches to this problem employ model/controller reduction techniques in conjunction with linear quadratic Gaussian (LQG) theory. The approach used is based on the finite dimensional Bernstein/Hyland optimal projection theory which yields a fixed-finite-order controller.
Development of uncertainty-based work injury model using Bayesian structural equation modelling.
Chatterjee, Snehamoy
2014-01-01
This paper proposed a Bayesian method-based structural equation model (SEM) of miners' work injury for an underground coal mine in India. The environmental and behavioural variables for work injury were identified and causal relationships were developed. For Bayesian modelling, prior distributions of SEM parameters are necessary to develop the model. In this paper, two approaches were adopted to obtain prior distribution for factor loading parameters and structural parameters of SEM. In the first approach, the prior distributions were considered as a fixed distribution function with specific parameter values, whereas, in the second approach, prior distributions of the parameters were generated from experts' opinions. The posterior distributions of these parameters were obtained by applying Bayesian rule. The Markov Chain Monte Carlo sampling in the form Gibbs sampling was applied for sampling from the posterior distribution. The results revealed that all coefficients of structural and measurement model parameters are statistically significant in experts' opinion-based priors, whereas, two coefficients are not statistically significant when fixed prior-based distributions are applied. The error statistics reveals that Bayesian structural model provides reasonably good fit of work injury with high coefficient of determination (0.91) and less mean squared error as compared to traditional SEM.
Fuzzy logic based robotic controller
NASA Technical Reports Server (NTRS)
Attia, F.; Upadhyaya, M.
1994-01-01
Existing Proportional-Integral-Derivative (PID) robotic controllers rely on an inverse kinematic model to convert user-specified cartesian trajectory coordinates to joint variables. These joints experience friction, stiction, and gear backlash effects. Due to lack of proper linearization of these effects, modern control theory based on state space methods cannot provide adequate control for robotic systems. In the presence of loads, the dynamic behavior of robotic systems is complex and nonlinear, especially where mathematical modeling is evaluated for real-time operators. Fuzzy Logic Control is a fast emerging alternative to conventional control systems in situations where it may not be feasible to formulate an analytical model of the complex system. Fuzzy logic techniques track a user-defined trajectory without having the host computer to explicitly solve the nonlinear inverse kinematic equations. The goal is to provide a rule-based approach, which is closer to human reasoning. The approach used expresses end-point error, location of manipulator joints, and proximity to obstacles as fuzzy variables. The resulting decisions are based upon linguistic and non-numerical information. This paper presents a solution to the conventional robot controller which is independent of computationally intensive kinematic equations. Computer simulation results of this approach as obtained from software implementation are also discussed.
Liu, Jian-Guo; Du, Jian-Qiang; Zeng, Zhi-Fang; Ai, Guo-Ping
2016-10-01
The Korteweg-de Vries (KdV)-type models have been shown to describe many important physical situations such as fluid flows, plasma physics, and solid state physics. In this paper, a new (2 + 1)-dimensional KdV equation is discussed. Based on the Hirota's bilinear form and a generalized three-wave approach, we obtain new exact solutions for the new (2 + 1)-dimensional KdV equation. With the help of symbolic computation, the properties for some new solutions are presented with some figures.
Ideal solar cell equation in the presence of photon recycling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lan, Dongchen, E-mail: d.lan@unsw.edu.au; Green, Martin A., E-mail: m.green@unsw.edu.au
Previous derivations of the ideal solar cell equation based on Shockley's p-n junction diode theory implicitly assume negligible effects of photon recycling. This paper derives the equation in the presence of photon recycling that modifies the values of dark saturation and light-generated currents, using an approach applicable to arbitrary three-dimensional geometries with arbitrary doping profile and variable band gap. The work also corrects an error in previous work and proves the validity of the reciprocity theorem for charge collection in such a more general case with the previously neglected junction depletion region included.
Development of One-Group and Two-Group Interfacial Area Transport Equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishii, M.; Kim, S.
A dynamic approach employing the interfacial area transport equation is presented to replace the static flow regime dependent correlations for the interfacial area concentration. The current study derives the transport equations for the bubble number, volume, and interfacial area concentration. Accounting for the substantial differences in the transport phenomena of various sizes of bubbles, both one-group and two-group interfacial area transport equations are developed along with the necessary constitutive relations. The framework for the complicated source and sink terms in the two-group transport equation is also presented by identifying the major intragroup and intergroup bubble interaction mechanisms. In view ofmore » evaluating the theoretical model, the one-group interfacial area transport equation is benchmarked based on the available data obtained in a wide range of air-water bubbly flow in round tubes of various diameters. In general, the results show good agreement within the measurement error of {+-}10%.« less
Path integral Monte Carlo ground state approach: formalism, implementation, and applications
NASA Astrophysics Data System (ADS)
Yan, Yangqian; Blume, D.
2017-11-01
Monte Carlo techniques have played an important role in understanding strongly correlated systems across many areas of physics, covering a wide range of energy and length scales. Among the many Monte Carlo methods applicable to quantum mechanical systems, the path integral Monte Carlo approach with its variants has been employed widely. Since semi-classical or classical approaches will not be discussed in this review, path integral based approaches can for our purposes be divided into two categories: approaches applicable to quantum mechanical systems at zero temperature and approaches applicable to quantum mechanical systems at finite temperature. While these two approaches are related to each other, the underlying formulation and aspects of the algorithm differ. This paper reviews the path integral Monte Carlo ground state (PIGS) approach, which solves the time-independent Schrödinger equation. Specifically, the PIGS approach allows for the determination of expectation values with respect to eigen states of the few- or many-body Schrödinger equation provided the system Hamiltonian is known. The theoretical framework behind the PIGS algorithm, implementation details, and sample applications for fermionic systems are presented.
Kepner, Gordon R
2010-04-13
The numerous natural phenomena that exhibit saturation behavior, e.g., ligand binding and enzyme kinetics, have been approached, to date, via empirical and particular analyses. This paper presents a mechanism-free, and assumption-free, second-order differential equation, designed only to describe a typical relationship between the variables governing these phenomena. It develops a mathematical model for this relation, based solely on the analysis of the typical experimental data plot and its saturation characteristics. Its utility complements the traditional empirical approaches. For the general saturation curve, described in terms of its independent (x) and dependent (y) variables, a second-order differential equation is obtained that applies to any saturation phenomena. It shows that the driving factor for the basic saturation behavior is the probability of the interactive site being free, which is described quantitatively. Solving the equation relates the variables in terms of the two empirical constants common to all these phenomena, the initial slope of the data plot and the limiting value at saturation. A first-order differential equation for the slope emerged that led to the concept of the effective binding rate at the active site and its dependence on the calculable probability the interactive site is free. These results are illustrated using specific cases, including ligand binding and enzyme kinetics. This leads to a revised understanding of how to interpret the empirical constants, in terms of the variables pertinent to the phenomenon under study. The second-order differential equation revealed the basic underlying relations that describe these saturation phenomena, and the basic mathematical properties of the standard experimental data plot. It was shown how to integrate this differential equation, and define the common basic properties of these phenomena. The results regarding the importance of the slope and the new perspectives on the empirical constants governing the behavior of these phenomena led to an alternative perspective on saturation behavior kinetics. Their essential commonality was revealed by this analysis, based on the second-order differential equation.
Spin Hartree-Fock approach to studying quantum Heisenberg antiferromagnets in low dimensions
NASA Astrophysics Data System (ADS)
Werth, A.; Kopietz, P.; Tsyplyatyev, O.
2018-05-01
We construct a new mean-field theory for a quantum (spin-1/2) Heisenberg antiferromagnet in one (1D) and two (2D) dimensions using a Hartree-Fock decoupling of the four-point correlation functions. We show that the solution to the self-consistency equations based on two-point correlation functions does not produce any unphysical finite-temperature phase transition, in accord with the Mermin-Wagner theorem, unlike the common approach based on the mean-field equation for the order parameter. The next-neighbor spin-spin correlation functions, calculated within this approach, reproduce closely the strong renormalization by quantum fluctuations obtained via a Bethe ansatz in 1D and a small renormalization of the classical antiferromagnetic state in 2D. The heat capacity approximates with reasonable accuracy the full Bethe ansatz result at all temperatures in 1D. In 2D, we obtain a reduction of the peak height in the heat capacity at a finite temperature that is accessible by high-order 1 /T expansions.
Xu, Zhenli; Ma, Manman; Liu, Pei
2014-07-01
We propose a modified Poisson-Nernst-Planck (PNP) model to investigate charge transport in electrolytes of inhomogeneous dielectric environment. The model includes the ionic polarization due to the dielectric inhomogeneity and the ion-ion correlation. This is achieved by the self energy of test ions through solving a generalized Debye-Hückel (DH) equation. We develop numerical methods for the system composed of the PNP and DH equations. Particularly, toward the numerical challenge of solving the high-dimensional DH equation, we developed an analytical WKB approximation and a numerical approach based on the selective inversion of sparse matrices. The model and numerical methods are validated by simulating the charge diffusion in electrolytes between two electrodes, for which effects of dielectrics and correlation are investigated by comparing the results with the prediction by the classical PNP theory. We find that, at the length scale of the interface separation comparable to the Bjerrum length, the results of the modified equations are significantly different from the classical PNP predictions mostly due to the dielectric effect. It is also shown that when the ion self energy is in weak or mediate strength, the WKB approximation presents a high accuracy, compared to precise finite-difference results.
Electromagnetism on anisotropic fractal media
NASA Astrophysics Data System (ADS)
Ostoja-Starzewski, Martin
2013-04-01
Basic equations of electromagnetic fields in anisotropic fractal media are obtained using a dimensional regularization approach. First, a formulation based on product measures is shown to satisfy the four basic identities of the vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Ampère laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, so as to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions in three different directions and reduce to conventional forms for continuous media with Euclidean geometries upon setting these each of dimensions equal to unity.
NASA Astrophysics Data System (ADS)
Kiani, M.; Abdolali, A.; Safari, M.
2018-03-01
In this article, an analytical approach is presented for the analysis of electromagnetic (EM) scattering from radially inhomogeneous spherical structures (RISSs) based on the duality principle. According to the spherical symmetry, similar angular dependencies in all the regions are considered using spherical harmonics. To extract the radial dependency, the system of differential equations of wave propagation toward the inhomogeneity direction is equated with the dual planar ones. A general duality between electromagnetic fields and parameters and scattering parameters of the two structures is introduced. The validity of the proposed approach is verified through a comprehensive example. The presented approach substitutes a complicated problem in spherical coordinate to an easy, well posed, and previously solved problem in planar geometry. This approach is valid for all continuously varying inhomogeneity profiles. One of the major advantages of the proposed method is the capability of studying two general and applicable types of RISSs. As an interesting application, a class of lens antenna based on the physical concept of the gradient refractive index material is introduced. The approach is used to analyze the EM scattering from the structure and validate strong performance of the lens.
NASA Technical Reports Server (NTRS)
Duong, N.; Winn, C. B.; Johnson, G. R.
1975-01-01
Two approaches to an identification problem in hydrology are presented, based upon concepts from modern control and estimation theory. The first approach treats the identification of unknown parameters in a hydrologic system subject to noisy inputs as an adaptive linear stochastic control problem; the second approach alters the model equation to account for the random part in the inputs, and then uses a nonlinear estimation scheme to estimate the unknown parameters. Both approaches use state-space concepts. The identification schemes are sequential and adaptive and can handle either time-invariant or time-dependent parameters. They are used to identify parameters in the Prasad model of rainfall-runoff. The results obtained are encouraging and confirm the results from two previous studies; the first using numerical integration of the model equation along with a trial-and-error procedure, and the second using a quasi-linearization technique. The proposed approaches offer a systematic way of analyzing the rainfall-runoff process when the input data are imbedded in noise.
NASA Astrophysics Data System (ADS)
Shao, H.; Huang, Y.; Kolditz, O.
2015-12-01
Multiphase flow problems are numerically difficult to solve, as it often contains nonlinear Phase transition phenomena A conventional technique is to introduce the complementarity constraints where fluid properties such as liquid saturations are confined within a physically reasonable range. Based on such constraints, the mathematical model can be reformulated into a system of nonlinear partial differential equations coupled with variational inequalities. They can be then numerically handled by optimization algorithms. In this work, two different approaches utilizing the complementarity constraints based on persistent primary variables formulation[4] are implemented and investigated. The first approach proposed by Marchand et.al[1] is using "local complementary constraints", i.e. coupling the constraints with the local constitutive equations. The second approach[2],[3] , namely the "global complementary constrains", applies the constraints globally with the mass conservation equation. We will discuss how these two approaches are applied to solve non-isothermal componential multiphase flow problem with the phase change phenomenon. Several benchmarks will be presented for investigating the overall numerical performance of different approaches. The advantages and disadvantages of different models will also be concluded. References[1] E.Marchand, T.Mueller and P.Knabner. Fully coupled generalized hybrid-mixed finite element approximation of two-phase two-component flow in porous media. Part I: formulation and properties of the mathematical model, Computational Geosciences 17(2): 431-442, (2013). [2] A. Lauser, C. Hager, R. Helmig, B. Wohlmuth. A new approach for phase transitions in miscible multi-phase flow in porous media. Water Resour., 34,(2011), 957-966. [3] J. Jaffré, and A. Sboui. Henry's Law and Gas Phase Disappearance. Transp. Porous Media. 82, (2010), 521-526. [4] A. Bourgeat, M. Jurak and F. Smaï. Two-phase partially miscible flow and transport modeling in porous media : application to gas migration in a nuclear waste repository, Comp.Geosciences. (2009), Volume 13, Number 1, 29-42.
Feedback Mechanisms in a Mechanical Model of Cell Polarization
Wang, Xinxin; Carlsson, Anders E.
2014-01-01
Directed cell migration requires a spatially polarized distribution of polymerized actin. We develop and treat a mechanical model of cell polarization based on polymerization and depolymerization of actin filaments at the two ends of a cell, modulated by forces at either end that are coupled by the cell membrane. We solve this model using both a simulation approach that treats filament nucleation, polymerization, and depolymerization stochastically, and a rate-equation approach based on key properties such as the number of filaments N and the number of polymerized subunits F at either end of the cell. The rate-equation approach agrees closely with the stochastic approach at steady state and, when appropriately generalized, also predicts the dynamic behavior accurately. The calculated transitions from symmetric to polarized states show that polarization is enhanced by a high free-actin concentration, a large pointed-end off-rate, a small barbed-end off-rate, and a small spontaneous nucleation rate. The rate-equation approach allows us to perform a linear-stability analysis to pin down the key interactions that drive the polarization. The polarization is driven by a positive-feedback loop having two interactions. First, an increase in F at one side of the cell lengthens the filaments and thus reduces the decay rate of N (increasing N); second, increasing N enhances F because the force per growing filament tip is reduced. We find that the transitions induced by changing system properties result from supercritical pitchfork bifurcations. The filament lifetime depends strongly on the average filament length, and this effect is crucial for obtaining polarization correctly. PMID:25313164
Goličnik, Marko
2011-06-01
Many pharmacodynamic processes can be described by the nonlinear saturation kinetics that are most frequently based on the hyperbolic Michaelis-Menten equation. Thus, various time-dependent solutions for drugs obeying such kinetics can be expressed in terms of the Lambert W(x)-omega function. However, unfortunately, computer programs that can perform the calculations for W(x) are not widely available. To avoid this problem, the replacement of the integrated Michaelis-Menten equation with an empiric integrated 1--exp alternative model equation was proposed recently by Keller et al. (Ther Drug Monit. 2009;31:783-785), although, as shown here, it was not necessary. Simulated concentrations of model drugs obeying Michaelis-Menten elimination kinetics were generated by two approaches: 1) calculation of time-course data based on an approximation equation W2*(x) performed using Microsoft Excel; and 2) calculation of reference time-course data based on an exact W(x) function built in to the Wolfram Mathematica. I show here that the W2*(x) function approximates the actual W(x) accurately. W2*(x) is expressed in terms of elementary mathematical functions and, consequently, it can be easily implemented using any of the widely available software. Hence, with the example of a hypothetical drug, I demonstrate here that an equation based on this approximation is far better, because it is nearly equivalent to the original solution, whereas the same characteristics cannot be fully confirmed for the 1--exp model equation. The W2*(x) equation proposed here might have an important role as a useful shortcut in optional software to estimate kinetic parameters from experimental data for drugs, and it might represent an easy and universal analytical tool for simulating and designing dosing regimens.
Sonic Boom Mitigation Through Aircraft Design and Adjoint Methodology
NASA Technical Reports Server (NTRS)
Rallabhandi, Siriam K.; Diskin, Boris; Nielsen, Eric J.
2012-01-01
This paper presents a novel approach to design of the supersonic aircraft outer mold line (OML) by optimizing the A-weighted loudness of sonic boom signature predicted on the ground. The optimization process uses the sensitivity information obtained by coupling the discrete adjoint formulations for the augmented Burgers Equation and Computational Fluid Dynamics (CFD) equations. This coupled formulation links the loudness of the ground boom signature to the aircraft geometry thus allowing efficient shape optimization for the purpose of minimizing the impact of loudness. The accuracy of the adjoint-based sensitivities is verified against sensitivities obtained using an independent complex-variable approach. The adjoint based optimization methodology is applied to a configuration previously optimized using alternative state of the art optimization methods and produces additional loudness reduction. The results of the optimizations are reported and discussed.
Suboptimal LQR-based spacecraft full motion control: Theory and experimentation
NASA Astrophysics Data System (ADS)
Guarnaccia, Leone; Bevilacqua, Riccardo; Pastorelli, Stefano P.
2016-05-01
This work introduces a real time suboptimal control algorithm for six-degree-of-freedom spacecraft maneuvering based on a State-Dependent-Algebraic-Riccati-Equation (SDARE) approach and real-time linearization of the equations of motion. The control strategy is sub-optimal since the gains of the linear quadratic regulator (LQR) are re-computed at each sample time. The cost function of the proposed controller has been compared with the one obtained via a general purpose optimal control software, showing, on average, an increase in control effort of approximately 15%, compensated by real-time implementability. Lastly, the paper presents experimental tests on a hardware-in-the-loop six-degree-of-freedom spacecraft simulator, designed for testing new guidance, navigation, and control algorithms for nano-satellites in a one-g laboratory environment. The tests show the real-time feasibility of the proposed approach.
NASA Astrophysics Data System (ADS)
Tadano, Terumasa; Tsuneyuki, Shinji
2015-12-01
We show a first-principles approach for analyzing anharmonic properties of lattice vibrations in solids. We firstly extract harmonic and anharmonic force constants from accurate first-principles calculations based on the density functional theory. Using the many-body perturbation theory of phonons, we then estimate the phonon scattering probability due to anharmonic phonon-phonon interactions. We show the validity of the approach by computing the lattice thermal conductivity of Si, a typical covalent semiconductor, and selected thermoelectric materials PbTe and Bi2Te3 based on the Boltzmann transport equation. We also show that the phonon lifetime and the lattice thermal conductivity of the high-temperature phase of SrTiO3 can be estimated by employing the perturbation theory on top of the solution of the self-consistent phonon equation.
Spacelike matching to null infinity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zenginoglu, Anil; Tiglio, Manuel
2009-07-15
We present two methods to include the asymptotic domain of a background spacetime in null directions for numerical solutions of evolution equations so that both the radiation extraction problem and the outer boundary problem are solved. The first method is based on the geometric conformal approach, the second is a coordinate based approach. We apply these methods to the case of a massless scalar wave equation on a Kerr spacetime. Our methods are designed to allow existing codes to reach the radiative zone by including future null infinity in the computational domain with relatively minor modifications. We demonstrate the flexibilitymore » of the methods by considering both Boyer-Lindquist and ingoing Kerr coordinates near the black hole. We also confirm numerically predictions concerning tail decay rates for scalar fields at null infinity in Kerr spacetime due to Hod for the first time.« less
A new expression of Ns versus Ef to an accurate control charge model for AlGaAs/GaAs
NASA Astrophysics Data System (ADS)
Bouneb, I.; Kerrour, F.
2016-03-01
Semi-conductor components become the privileged support of information and communication, particularly appreciation to the development of the internet. Today, MOS transistors on silicon dominate largely the semi-conductors market, however the diminution of transistors grid length is not enough to enhance the performances and respect Moore law. Particularly, for broadband telecommunications systems, where faster components are required. For this reason, alternative structures proposed like hetero structures IV-IV or III-V [1] have been.The most effective components in this area (High Electron Mobility Transistor: HEMT) on IIIV substrate. This work investigates an approach for contributing to the development of a numerical model based on physical and numerical modelling of the potential at heterostructure in AlGaAs/GaAs interface. We have developed calculation using projective methods allowed the Hamiltonian integration using Green functions in Schrodinger equation, for a rigorous resolution “self coherent” with Poisson equation. A simple analytical approach for charge-control in quantum well region of an AlGaAs/GaAs HEMT structure was presented. A charge-control equation, accounting for a variable average distance of the 2-DEG from the interface was introduced. Our approach which have aim to obtain ns-Vg characteristics is mainly based on: A new linear expression of Fermi-level variation with two-dimensional electron gas density in high electron mobility and also is mainly based on the notion of effective doping and a new expression of AEc
NASA Technical Reports Server (NTRS)
Grantham, W. D.; Deal, P. L.
1974-01-01
A fixed-base simulator study was conducted to determine the minimum acceptable level of longitudinal stability for a representative turbofan STOL (short take-off and landing) transport airplane during the landing approach. Real-time digital simulation techniques were used. The computer was programed with equations of motion for six degrees of freedom, and the aerodynamic inputs were based on measured wind-tunnel data. The primary piloting task was an instrument approach to a breakout at a 60-m (200-ft) ceiling.
NASA Astrophysics Data System (ADS)
Subasic, E.; Huang, C.; Jakumeit, J.; Hediger, F.
2015-06-01
The ongoing increase in the size and capacity of state-of-the-art wind power plants is highlighting the need to reduce the weight of critical components, such as hubs, main shaft bearing housings, gear box housings and support bases. These components are manufactured as nodular iron castings (spheroid graphite iron, or SGI). A weight reduction of up to 20% is achievable by optimizing the geometry to minimize volume, thus enabling significant downsizing of wind power plants. One method for enhancing quality control in the production of thick-walled SGI castings, and thus reducing tolerances and, consequently, enabling castings of smaller volume is via a casting simulation of mould filling and solidification based on a combination of microscopic model and VoF-multiphase approach. Coupled fluid flow with heat transport and phase transformation kinetics during solidification is described by partial differential equations and solved using the finite volume method. The flow of multiple phases is described using a volume of fluid approach. Mass conservation equations are solved separately for both liquid and solid phases. At the micro-level, the diffusion-controlled growth model for grey iron eutectic grains by Wetterfall et al. is combined with a growth model for white iron eutectic grains. The micro-solidification model is coupled with macro-transport equations via source terms in the energy and continuity equations. As a first step the methodology was applied to a simple geometry to investigate the impact of mould-filling on the grey-to-white transition prediction in nodular cast iron.
Phases, phase equilibria, and phase rules in low-dimensional systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frolov, T., E-mail: timfrol@berkeley.edu; Mishin, Y., E-mail: ymishin@gmu.edu
2015-07-28
We present a unified approach to thermodynamic description of one, two, and three dimensional phases and phase transformations among them. The approach is based on a rigorous definition of a phase applicable to thermodynamic systems of any dimensionality. Within this approach, the same thermodynamic formalism can be applied for the description of phase transformations in bulk systems, interfaces, and line defects separating interface phases. For both lines and interfaces, we rigorously derive an adsorption equation, the phase coexistence equations, and other thermodynamic relations expressed in terms of generalized line and interface excess quantities. As a generalization of the Gibbs phasemore » rule for bulk phases, we derive phase rules for lines and interfaces and predict the maximum number of phases than may coexist in systems of the respective dimensionality.« less
The Refinement-Tree Partition for Parallel Solution of Partial Differential Equations
Mitchell, William F.
1998-01-01
Dynamic load balancing is considered in the context of adaptive multilevel methods for partial differential equations on distributed memory multiprocessors. An approach that periodically repartitions the grid is taken. The important properties of a partitioning algorithm are presented and discussed in this context. A partitioning algorithm based on the refinement tree of the adaptive grid is presented and analyzed in terms of these properties. Theoretical and numerical results are given. PMID:28009355
The Refinement-Tree Partition for Parallel Solution of Partial Differential Equations.
Mitchell, William F
1998-01-01
Dynamic load balancing is considered in the context of adaptive multilevel methods for partial differential equations on distributed memory multiprocessors. An approach that periodically repartitions the grid is taken. The important properties of a partitioning algorithm are presented and discussed in this context. A partitioning algorithm based on the refinement tree of the adaptive grid is presented and analyzed in terms of these properties. Theoretical and numerical results are given.
Emergence and space-time structure of lump solution to the (2+1)-dimensional generalized KP equation
NASA Astrophysics Data System (ADS)
Tan, Wei; Dai, Houping; Dai, Zhengde; Zhong, Wenyong
2017-11-01
A periodic breather-wave solution is obtained using homoclinic test approach and Hirota's bilinear method with a small perturbation parameter u0 for the (2+1)-dimensional generalized Kadomtsev-Petviashvili equation. Based on the periodic breather-wave, a lump solution is emerged by limit behaviour. Finally, three different forms of the space-time structure of the lump solution are investigated and discussed using the extreme value theory.
Simplified method for numerical modeling of fiber lasers.
Shtyrina, O V; Yarutkina, I A; Fedoruk, M P
2014-12-29
A simplified numerical approach to modeling of dissipative dispersion-managed fiber lasers is examined. We present a new numerical iteration algorithm for finding the periodic solutions of the system of nonlinear ordinary differential equations describing the intra-cavity dynamics of the dissipative soliton characteristics in dispersion-managed fiber lasers. We demonstrate that results obtained using simplified model are in good agreement with full numerical modeling based on the corresponding partial differential equations.
A new experimental method for determining local airloads on rotor blades in forward flight
NASA Astrophysics Data System (ADS)
Berton, E.; Maresca, C.; Favier, D.
This paper presents a new approach for determining local airloads on helicopter rotor blade sections in forward flight. The method is based on the momentum equation in which all the terms are expressed by means of the velocity field measured by a laser Doppler velocimeter. The relative magnitude of the different terms involved in the momentum and Bernoulli equations is estimated and the results are encouraging.
Heuristic approach to capillary pressures averaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coca, B.P.
1980-10-01
Several methods are available to average capillary pressure curves. Among these are the J-curve and regression equations of the wetting-fluid saturation in porosity and permeability (capillary pressure held constant). While the regression equation seem completely empiric, the J-curve method seems to be theoretically sound due to its expression based on a relation between the average capillary radius and the permeability-porosity ratio. An analysis is given of each of these methods.
NASA Technical Reports Server (NTRS)
Kaul, Upender K.
2005-01-01
A three-dimensional numerical solver based on finite-difference solution of three-dimensional elastodynamic equations in generalized curvilinear coordinates has been developed and used to generate data such as radial and tangential stresses over various gear component geometries under rotation. The geometries considered are an annulus, a thin annular disk, and a thin solid disk. The solution is based on first principles and does not involve lumped parameter or distributed parameter systems approach. The elastodynamic equations in the velocity-stress formulation that are considered here have been used in the solution of problems of geophysics where non-rotating Cartesian grids are considered. For arbitrary geometries, these equations along with the appropriate boundary conditions have been cast in generalized curvilinear coordinates in the present study.
Computation of transonic separated wing flows using an Euler/Navier-Stokes zonal approach
NASA Technical Reports Server (NTRS)
Kaynak, Uenver; Holst, Terry L.; Cantwell, Brian J.
1986-01-01
A computer program called Transonic Navier Stokes (TNS) has been developed which solves the Euler/Navier-Stokes equations around wings using a zonal grid approach. In the present zonal scheme, the physical domain of interest is divided into several subdomains called zones and the governing equations are solved interactively. The advantages of the Zonal Grid approach are as follows: (1) the grid for any subdomain can be generated easily; (2) grids can be, in a sense, adapted to the solution; (3) different equation sets can be used in different zones; and, (4) this approach allows for a convenient data base organization scheme. Using this code, separated flows on a NACA 0012 section wing and on the NASA Ames WING C have been computed. First, the effects of turbulence and artificial dissipation models incorporated into the code are assessed by comparing the TNS results with other CFD codes and experiments. Then a series of flow cases is described where data are available. The computed results, including cases with shock-induced separation, are in good agreement with experimental data. Finally, some futuristic cases are presented to demonstrate the abilities of the code for massively separated cases which do not have experimental data.
Towards an orientation-distribution-based multi-scale approach for remodelling biological tissues.
Menzel, A; Harrysson, M; Ristinmaa, M
2008-10-01
The mechanical behaviour of soft biological tissues is governed by phenomena occurring on different scales of observation. From the computational modelling point of view, a vital aspect consists of the appropriate incorporation of micromechanical effects into macroscopic constitutive equations. In this work, particular emphasis is placed on the simulation of soft fibrous tissues with the orientation of the underlying fibres being determined by distribution functions. A straightforward but convenient Taylor-type homogenisation approach links the micro- or rather meso-level of fibres to the overall macro-level and allows to reflect macroscopically orthotropic response. As a key aspect of this work, evolution equations for the fibre orientations are accounted for so that physiological effects like turnover or rather remodelling are captured. Concerning numerical applications, the derived set of equations can be embedded into a nonlinear finite element context so that first elementary simulations are finally addressed.
Analysis of Formation Flying in Eccentric Orbits Using Linearized Equations of Relative Motion
NASA Technical Reports Server (NTRS)
Lane, Christopher; Axelrad, Penina
2004-01-01
Geometrical methods for formation flying design based on the analytical solution to Hill's equations have been previously developed and used to specify desired relative motions in near circular orbits. By generating relationships between the vehicles that are intuitive, these approaches offer valuable insight into the relative motion and allow for the rapid design of satellite configurations to achieve mission specific requirements, such as vehicle separation at perigee or apogee, minimum separation, or a specific geometrical shape. Furthermore, the results obtained using geometrical approaches can be used to better constrain numerical optimization methods; allowing those methods to converge to optimal satellite configurations faster. This paper presents a set of geometrical relationships for formations in eccentric orbits, where Hill.s equations are not valid, and shows how these relationships can be used to investigate formation designs and how they evolve with time.
Homogeneous quantum electrodynamic turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1992-01-01
The electromagnetic field equations and Dirac equations for oppositely charged wave functions are numerically time-integrated using a spatial Fourier method. The numerical approach used, a spectral transform technique, is based on a continuum representation of physical space. The coupled classical field equations contain a dimensionless parameter which sets the strength of the nonlinear interaction (as the parameter increases, interaction volume decreases). For a parameter value of unity, highly nonlinear behavior in the time-evolution of an individual wave function, analogous to ideal fluid turbulence, is observed. In the truncated Fourier representation which is numerically implemented here, the quantum turbulence is homogeneous but anisotropic and manifests itself in the nonlinear evolution of equilibrium modal spatial spectra for the probability density of each particle and also for the electromagnetic energy density. The results show that nonlinearly interacting fermionic wave functions quickly approach a multi-mode, dynamic equilibrium state, and that this state can be determined by numerical means.
High-frequency Born synthetic seismograms based on coupled normal modes
Pollitz, Fred F.
2011-01-01
High-frequency and full waveform synthetic seismograms on a 3-D laterally heterogeneous earth model are simulated using the theory of coupled normal modes. The set of coupled integral equations that describe the 3-D response are simplified into a set of uncoupled integral equations by using the Born approximation to calculate scattered wavefields and the pure-path approximation to modulate the phase of incident and scattered wavefields. This depends upon a decomposition of the aspherical structure into smooth and rough components. The uncoupled integral equations are discretized and solved in the frequency domain, and time domain results are obtained by inverse Fourier transform. Examples show the utility of the normal mode approach to synthesize the seismic wavefields resulting from interaction with a combination of rough and smooth structural heterogeneities. This approach is applied to an ∼4 Hz shallow crustal wave propagation around the site of the San Andreas Fault Observatory at Depth (SAFOD).
A Kosloff/Basal method, 3D migration program implemented on the CYBER 205 supercomputer
NASA Technical Reports Server (NTRS)
Pyle, L. D.; Wheat, S. R.
1984-01-01
Conventional finite difference migration has relied on approximations to the acoustic wave equation which allow energy to propagate only downwards. Although generally reliable, such approaches usually do not yield an accurate migration for geological structures with strong lateral velocity variations or with steeply dipping reflectors. An earlier study by D. Kosloff and E. Baysal (Migration with the Full Acoustic Wave Equation) examined an alternative approach based on the full acoustic wave equation. The 2D, Fourier type algorithm which was developed was tested by Kosloff and Baysal against synthetic data and against physical model data. The results indicated that such a scheme gives accurate migration for complicated structures. This paper describes the development and testing of a vectorized, 3D migration program for the CYBER 205 using the Kosloff/Baysal method. The program can accept as many as 65,536 zero offset (stacked) traces.
Crystal structure optimisation using an auxiliary equation of state
NASA Astrophysics Data System (ADS)
Jackson, Adam J.; Skelton, Jonathan M.; Hendon, Christopher H.; Butler, Keith T.; Walsh, Aron
2015-11-01
Standard procedures for local crystal-structure optimisation involve numerous energy and force calculations. It is common to calculate an energy-volume curve, fitting an equation of state around the equilibrium cell volume. This is a computationally intensive process, in particular, for low-symmetry crystal structures where each isochoric optimisation involves energy minimisation over many degrees of freedom. Such procedures can be prohibitive for non-local exchange-correlation functionals or other "beyond" density functional theory electronic structure techniques, particularly where analytical gradients are not available. We present a simple approach for efficient optimisation of crystal structures based on a known equation of state. The equilibrium volume can be predicted from one single-point calculation and refined with successive calculations if required. The approach is validated for PbS, PbTe, ZnS, and ZnTe using nine density functionals and applied to the quaternary semiconductor Cu2ZnSnS4 and the magnetic metal-organic framework HKUST-1.
Electromagnetic energy momentum in dispersive media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philbin, T. G.
2011-01-15
The standard derivations of electromagnetic energy and momentum in media take Maxwell's equations as the starting point. It is well known that for dispersive media this approach does not directly yield exact expressions for the energy and momentum densities. Although Maxwell's equations fully describe electromagnetic fields, the general approach to conserved quantities in field theory is not based on the field equations, but rather on the action. Here an action principle for macroscopic electromagnetism in dispersive, lossless media is used to derive the exact conserved energy-momentum tensor. The time-averaged energy density reduces to Brillouin's simple formula when the fields aremore » monochromatic. The time-averaged momentum density for monochromatic fields corresponds to the familiar Minkowski expression DxB, but for general fields in dispersive media the momentum density does not have the Minkowski value. The results are unaffected by the debate over momentum balance in light-matter interactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamm, James R; Shashkov, Mikhail J
2009-01-01
Despite decades of development, Lagrangian hydrodynamics of strengthfree materials presents numerous open issues, even in one dimension. We focus on the problem of closing a system of equations for a two-material cell under the assumption of a single velocity model. There are several existing models and approaches, each possessing different levels of fidelity to the underlying physics and each exhibiting unique features in the computed solutions. We consider the case in which the change in heat in the constituent materials in the mixed cell is assumed equal. An instantaneous pressure equilibration model for a mixed cell can be cast asmore » four equations in four unknowns, comprised of the updated values of the specific internal energy and the specific volume for each of the two materials in the mixed cell. The unique contribution of our approach is a physics-inspired, geometry-based model in which the updated values of the sub-cell, relaxing-toward-equilibrium constituent pressures are related to a local Riemann problem through an optimization principle. This approach couples the modeling problem of assigning sub-cell pressures to the physics associated with the local, dynamic evolution. We package our approach in the framework of a standard predictor-corrector time integration scheme. We evaluate our model using idealized, two material problems using either ideal-gas or stiffened-gas equations of state and compare these results to those computed with the method of Tipton and with corresponding pure-material calculations.« less
Chow, Sy-Miin; Bendezú, Jason J.; Cole, Pamela M.; Ram, Nilam
2016-01-01
Several approaches currently exist for estimating the derivatives of observed data for model exploration purposes, including functional data analysis (FDA), generalized local linear approximation (GLLA), and generalized orthogonal local derivative approximation (GOLD). These derivative estimation procedures can be used in a two-stage process to fit mixed effects ordinary differential equation (ODE) models. While the performance and utility of these routines for estimating linear ODEs have been established, they have not yet been evaluated in the context of nonlinear ODEs with mixed effects. We compared properties of the GLLA and GOLD to an FDA-based two-stage approach denoted herein as functional ordinary differential equation with mixed effects (FODEmixed) in a Monte Carlo study using a nonlinear coupled oscillators model with mixed effects. Simulation results showed that overall, the FODEmixed outperformed both the GLLA and GOLD across all the embedding dimensions considered, but a novel use of a fourth-order GLLA approach combined with very high embedding dimensions yielded estimation results that almost paralleled those from the FODEmixed. We discuss the strengths and limitations of each approach and demonstrate how output from each stage of FODEmixed may be used to inform empirical modeling of young children’s self-regulation. PMID:27391255
Chow, Sy-Miin; Bendezú, Jason J; Cole, Pamela M; Ram, Nilam
2016-01-01
Several approaches exist for estimating the derivatives of observed data for model exploration purposes, including functional data analysis (FDA; Ramsay & Silverman, 2005 ), generalized local linear approximation (GLLA; Boker, Deboeck, Edler, & Peel, 2010 ), and generalized orthogonal local derivative approximation (GOLD; Deboeck, 2010 ). These derivative estimation procedures can be used in a two-stage process to fit mixed effects ordinary differential equation (ODE) models. While the performance and utility of these routines for estimating linear ODEs have been established, they have not yet been evaluated in the context of nonlinear ODEs with mixed effects. We compared properties of the GLLA and GOLD to an FDA-based two-stage approach denoted herein as functional ordinary differential equation with mixed effects (FODEmixed) in a Monte Carlo (MC) study using a nonlinear coupled oscillators model with mixed effects. Simulation results showed that overall, the FODEmixed outperformed both the GLLA and GOLD across all the embedding dimensions considered, but a novel use of a fourth-order GLLA approach combined with very high embedding dimensions yielded estimation results that almost paralleled those from the FODEmixed. We discuss the strengths and limitations of each approach and demonstrate how output from each stage of FODEmixed may be used to inform empirical modeling of young children's self-regulation.
NASA Astrophysics Data System (ADS)
Kawai, Soshi; Terashima, Hiroshi; Negishi, Hideyo
2015-11-01
This paper addresses issues in high-fidelity numerical simulations of transcritical turbulent flows at supercritical pressure. The proposed strategy builds on a tabulated look-up table method based on REFPROP database for an accurate estimation of non-linear behaviors of thermodynamic and fluid transport properties at the transcritical conditions. Based on the look-up table method we propose a numerical method that satisfies high-order spatial accuracy, spurious-oscillation-free property, and capability of capturing the abrupt variation in thermodynamic properties across the transcritical contact surface. The method introduces artificial mass diffusivity to the continuity and momentum equations in a physically-consistent manner in order to capture the steep transcritical thermodynamic variations robustly while maintaining spurious-oscillation-free property in the velocity field. The pressure evolution equation is derived from the full compressible Navier-Stokes equations and solved instead of solving the total energy equation to achieve the spurious pressure oscillation free property with an arbitrary equation of state including the present look-up table method. Flow problems with and without physical diffusion are employed for the numerical tests to validate the robustness, accuracy, and consistency of the proposed approach.
An implicit numerical scheme for the simulation of internal viscous flows on unstructured grids
NASA Technical Reports Server (NTRS)
Jorgenson, Philip C. E.; Pletcher, Richard H.
1994-01-01
The Navier-Stokes equations are solved numerically for two-dimensional steady viscous laminar flows. The grids are generated based on the method of Delaunay triangulation. A finite-volume approach is used to discretize the conservation law form of the compressible flow equations written in terms of primitive variables. A preconditioning matrix is added to the equations so that low Mach number flows can be solved economically. The equations are time marched using either an implicit Gauss-Seidel iterative procedure or a solver based on a conjugate gradient like method. A four color scheme is employed to vectorize the block Gauss-Seidel relaxation procedure. This increases the memory requirements minimally and decreases the computer time spent solving the resulting system of equations substantially. A factor of 7.6 speed up in the matrix solver is typical for the viscous equations. Numerical results are obtained for inviscid flow over a bump in a channel at subsonic and transonic conditions for validation with structured solvers. Viscous results are computed for developing flow in a channel, a symmetric sudden expansion, periodic tandem cylinders in a cross-flow, and a four-port valve. Comparisons are made with available results obtained by other investigators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawai, Soshi, E-mail: kawai@cfd.mech.tohoku.ac.jp; Terashima, Hiroshi; Negishi, Hideyo
2015-11-01
This paper addresses issues in high-fidelity numerical simulations of transcritical turbulent flows at supercritical pressure. The proposed strategy builds on a tabulated look-up table method based on REFPROP database for an accurate estimation of non-linear behaviors of thermodynamic and fluid transport properties at the transcritical conditions. Based on the look-up table method we propose a numerical method that satisfies high-order spatial accuracy, spurious-oscillation-free property, and capability of capturing the abrupt variation in thermodynamic properties across the transcritical contact surface. The method introduces artificial mass diffusivity to the continuity and momentum equations in a physically-consistent manner in order to capture themore » steep transcritical thermodynamic variations robustly while maintaining spurious-oscillation-free property in the velocity field. The pressure evolution equation is derived from the full compressible Navier–Stokes equations and solved instead of solving the total energy equation to achieve the spurious pressure oscillation free property with an arbitrary equation of state including the present look-up table method. Flow problems with and without physical diffusion are employed for the numerical tests to validate the robustness, accuracy, and consistency of the proposed approach.« less
Validation of Analytical Damping Ratio by Fatigue Stress Limit
NASA Astrophysics Data System (ADS)
Foong, Faruq Muhammad; Chung Ket, Thein; Beng Lee, Ooi; Aziz, Abdul Rashid Abdul
2018-03-01
The optimisation process of a vibration energy harvester is usually restricted to experimental approaches due to the lack of an analytical equation to describe the damping of a system. This study derives an analytical equation, which describes the first mode damping ratio of a clamp-free cantilever beam under harmonic base excitation by combining the transverse equation of motion of the beam with the damping-stress equation. This equation, as opposed to other common damping determination methods, is independent of experimental inputs or finite element simulations and can be solved using a simple iterative convergence method. The derived equation was determined to be correct for cases when the maximum bending stress in the beam is below the fatigue limit stress of the beam. However, an increasing trend in the error between the experiment and the analytical results were observed at high stress levels. Hence, the fatigue limit stress was used as a parameter to define the validity of the analytical equation.
Mehraeen, Shahab; Dierks, Travis; Jagannathan, S; Crow, Mariesa L
2013-12-01
In this paper, the nearly optimal solution for discrete-time (DT) affine nonlinear control systems in the presence of partially unknown internal system dynamics and disturbances is considered. The approach is based on successive approximate solution of the Hamilton-Jacobi-Isaacs (HJI) equation, which appears in optimal control. Successive approximation approach for updating control and disturbance inputs for DT nonlinear affine systems are proposed. Moreover, sufficient conditions for the convergence of the approximate HJI solution to the saddle point are derived, and an iterative approach to approximate the HJI equation using a neural network (NN) is presented. Then, the requirement of full knowledge of the internal dynamics of the nonlinear DT system is relaxed by using a second NN online approximator. The result is a closed-loop optimal NN controller via offline learning. A numerical example is provided illustrating the effectiveness of the approach.
Mendyk, Aleksander; Güres, Sinan; Szlęk, Jakub; Wiśniowska, Barbara; Kleinebudde, Peter
2015-01-01
The purpose of this work was to develop a mathematical model of the drug dissolution (Q) from the solid lipid extrudates based on the empirical approach. Artificial neural networks (ANNs) and genetic programming (GP) tools were used. Sensitivity analysis of ANNs provided reduction of the original input vector. GP allowed creation of the mathematical equation in two major approaches: (1) direct modeling of Q versus extrudate diameter (d) and the time variable (t) and (2) indirect modeling through Weibull equation. ANNs provided also information about minimum achievable generalization error and the way to enhance the original dataset used for adjustment of the equations' parameters. Two inputs were found important for the drug dissolution: d and t. The extrudates length (L) was found not important. Both GP modeling approaches allowed creation of relatively simple equations with their predictive performance comparable to the ANNs (root mean squared error (RMSE) from 2.19 to 2.33). The direct mode of GP modeling of Q versus d and t resulted in the most robust model. The idea of how to combine ANNs and GP in order to escape ANNs' black-box drawback without losing their superior predictive performance was demonstrated. Open Source software was used to deliver the state-of-the-art models and modeling strategies. PMID:26101544
NASA Astrophysics Data System (ADS)
Stritzel, J.; Melchert, O.; Wollweber, M.; Roth, B.
2017-09-01
The direct problem of optoacoustic signal generation in biological media consists of solving an inhomogeneous three-dimensional (3D) wave equation for an initial acoustic stress profile. In contrast, the more defiant inverse problem requires the reconstruction of the initial stress profile from a proper set of observed signals. In this article, we consider an effectively 1D approach, based on the assumption of a Gaussian transverse irradiation source profile and plane acoustic waves, in which the effects of acoustic diffraction are described in terms of a linear integral equation. The respective inverse problem along the beam axis can be cast into a Volterra integral equation of the second kind for which we explore here efficient numerical schemes in order to reconstruct initial stress profiles from observed signals, constituting a methodical progress of computational aspects of optoacoustics. In this regard, we explore the validity as well as the limits of the inversion scheme via numerical experiments, with parameters geared toward actual optoacoustic problem instances. The considered inversion input consists of synthetic data, obtained in terms of the effectively 1D approach, and, more generally, a solution of the 3D optoacoustic wave equation. Finally, we also analyze the effect of noise and different detector-to-sample distances on the optoacoustic signal and the reconstructed pressure profiles.
Mendyk, Aleksander; Güres, Sinan; Jachowicz, Renata; Szlęk, Jakub; Polak, Sebastian; Wiśniowska, Barbara; Kleinebudde, Peter
2015-01-01
The purpose of this work was to develop a mathematical model of the drug dissolution (Q) from the solid lipid extrudates based on the empirical approach. Artificial neural networks (ANNs) and genetic programming (GP) tools were used. Sensitivity analysis of ANNs provided reduction of the original input vector. GP allowed creation of the mathematical equation in two major approaches: (1) direct modeling of Q versus extrudate diameter (d) and the time variable (t) and (2) indirect modeling through Weibull equation. ANNs provided also information about minimum achievable generalization error and the way to enhance the original dataset used for adjustment of the equations' parameters. Two inputs were found important for the drug dissolution: d and t. The extrudates length (L) was found not important. Both GP modeling approaches allowed creation of relatively simple equations with their predictive performance comparable to the ANNs (root mean squared error (RMSE) from 2.19 to 2.33). The direct mode of GP modeling of Q versus d and t resulted in the most robust model. The idea of how to combine ANNs and GP in order to escape ANNs' black-box drawback without losing their superior predictive performance was demonstrated. Open Source software was used to deliver the state-of-the-art models and modeling strategies.
Evaluating revised biomass equations: are some forest types more equivalent than others?
Coeli M. Hoover; James E. Smith
2016-01-01
Background: In 2014, Chojnacky et al. published a revised set of biomass equations for trees of temperate US forests, expanding on an existing equation set (published in 2003 by Jenkins et al.), both of which were developed from published equations using a meta-analytical approach. Given the similarities in the approach to developing the equations, an examination of...
Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations
NASA Astrophysics Data System (ADS)
Kao, Chiu Yen; Osher, Stanley; Qian, Jianliang
2004-05-01
We propose a simple, fast sweeping method based on the Lax-Friedrichs monotone numerical Hamiltonian to approximate viscosity solutions of arbitrary static Hamilton-Jacobi equations in any number of spatial dimensions. By using the Lax-Friedrichs numerical Hamiltonian, we can easily obtain the solution at a specific grid point in terms of its neighbors, so that a Gauss-Seidel type nonlinear iterative method can be utilized. Furthermore, by incorporating a group-wise causality principle into the Gauss-Seidel iteration by following a finite group of characteristics, we have an easy-to-implement, sweeping-type, and fast convergent numerical method. However, unlike other methods based on the Godunov numerical Hamiltonian, some computational boundary conditions are needed in the implementation. We give a simple recipe which enforces a version of discrete min-max principle. Some convergence analysis is done for the one-dimensional eikonal equation. Extensive 2-D and 3-D numerical examples illustrate the efficiency and accuracy of the new approach. To our knowledge, this is the first fast numerical method based on discretizing the Hamilton-Jacobi equation directly without assuming convexity and/or homogeneity of the Hamiltonian.
An Entropy-Based Approach to Nonlinear Stability
NASA Technical Reports Server (NTRS)
Merriam, Marshal L.
1989-01-01
Many numerical methods used in computational fluid dynamics (CFD) incorporate an artificial dissipation term to suppress spurious oscillations and control nonlinear instabilities. The same effect can be accomplished by using upwind techniques, sometimes augmented with limiters to form Total Variation Diminishing (TVD) schemes. An analysis based on numerical satisfaction of the second law of thermodynamics allows many such methods to be compared and improved upon. A nonlinear stability proof is given for discrete scalar equations arising from a conservation law. Solutions to such equations are bounded in the L sub 2 norm if the second law of thermodynamics is satisfied in a global sense over a periodic domain. It is conjectured that an analogous statement is true for discrete equations arising from systems of conservation laws. Analysis and numerical experiments suggest that a more restrictive condition, a positive entropy production rate in each cell, is sufficient to exclude unphysical phenomena such as oscillations and expansion shocks. Construction of schemes which satisfy this condition is demonstrated for linear and nonlinear wave equations and for the one-dimensional Euler equations.
Lax Integrability and the Peakon Problem for the Modified Camassa-Holm Equation
NASA Astrophysics Data System (ADS)
Chang, Xiangke; Szmigielski, Jacek
2018-02-01
Peakons are special weak solutions of a class of nonlinear partial differential equations modelling non-linear phenomena such as the breakdown of regularity and the onset of shocks. We show that the natural concept of weak solutions in the case of the modified Camassa-Holm equation studied in this paper is dictated by the distributional compatibility of its Lax pair and, as a result, it differs from the one proposed and used in the literature based on the concept of weak solutions used for equations of the Burgers type. Subsequently, we give a complete construction of peakon solutions satisfying the modified Camassa-Holm equation in the sense of distributions; our approach is based on solving certain inverse boundary value problem, the solution of which hinges on a combination of classical techniques of analysis involving Stieltjes' continued fractions and multi-point Padé approximations. We propose sufficient conditions needed to ensure the global existence of peakon solutions and analyze the large time asymptotic behaviour whose special features include a formation of pairs of peakons that share asymptotic speeds, as well as Toda-like sorting property.
A Formalism for Covariant Polarized Radiative Transport by Ray Tracing
NASA Astrophysics Data System (ADS)
Gammie, Charles F.; Leung, Po Kin
2012-06-01
We write down a covariant formalism for polarized radiative transfer appropriate for ray tracing through a turbulent plasma. The polarized radiation field is represented by the polarization tensor (coherency matrix) N αβ ≡ langa α k a*β k rang, where ak is a Fourier coefficient for the vector potential. Using Maxwell's equations, the Liouville-Vlasov equation, and the WKB approximation, we show that the transport equation in vacuo is k μ∇μ N αβ = 0. We show that this is equivalent to Broderick & Blandford's formalism based on invariant Stokes parameters and a rotation coefficient, and suggest a modification that may reduce truncation error in some situations. Finally, we write down several alternative approaches to integrating the transfer equation.
Optimization and Control of Agent-Based Models in Biology: A Perspective.
An, G; Fitzpatrick, B G; Christley, S; Federico, P; Kanarek, A; Neilan, R Miller; Oremland, M; Salinas, R; Laubenbacher, R; Lenhart, S
2017-01-01
Agent-based models (ABMs) have become an increasingly important mode of inquiry for the life sciences. They are particularly valuable for systems that are not understood well enough to build an equation-based model. These advantages, however, are counterbalanced by the difficulty of analyzing and using ABMs, due to the lack of the type of mathematical tools available for more traditional models, which leaves simulation as the primary approach. As models become large, simulation becomes challenging. This paper proposes a novel approach to two mathematical aspects of ABMs, optimization and control, and it presents a few first steps outlining how one might carry out this approach. Rather than viewing the ABM as a model, it is to be viewed as a surrogate for the actual system. For a given optimization or control problem (which may change over time), the surrogate system is modeled instead, using data from the ABM and a modeling framework for which ready-made mathematical tools exist, such as differential equations, or for which control strategies can explored more easily. Once the optimization problem is solved for the model of the surrogate, it is then lifted to the surrogate and tested. The final step is to lift the optimization solution from the surrogate system to the actual system. This program is illustrated with published work, using two relatively simple ABMs as a demonstration, Sugarscape and a consumer-resource ABM. Specific techniques discussed include dimension reduction and approximation of an ABM by difference equations as well systems of PDEs, related to certain specific control objectives. This demonstration illustrates the very challenging mathematical problems that need to be solved before this approach can be realistically applied to complex and large ABMs, current and future. The paper outlines a research program to address them.
USING LINEAR AND POLYNOMIAL MODELS TO EXAMINE THE ENVIRONMENTAL STABILITY OF VIRUSES
The article presents the development of model equations for describing the fate of viral infectivity in environmental samples. Most of the models were based upon the use of a two-step linear regression approach. The first step employs regression of log base 10 transformed viral t...
ERIC Educational Resources Information Center
Wilkie, Karina J.
2016-01-01
Algebra has been explicit in many school curriculum programs from the early years but there are competing views on what content and approaches are appropriate for different levels of schooling. This study investigated 12-13-year-old Australian students' algebraic thinking in a hybrid environment of functional and equation-based approaches to…
Applying Meta-Analysis to Structural Equation Modeling
ERIC Educational Resources Information Center
Hedges, Larry V.
2016-01-01
Structural equation models play an important role in the social sciences. Consequently, there is an increasing use of meta-analytic methods to combine evidence from studies that estimate the parameters of structural equation models. Two approaches are used to combine evidence from structural equation models: A direct approach that combines…
Mioni, Roberto; Mioni, Giuseppe
2015-10-01
In chemistry and in acid-base physiology, the Henderson-Hasselbalch equation plays a pivotal role in studying the behaviour of the buffer solutions. However, it seems that the general function to calculate the valence of acids, bases and ampholytes, N = f(pH), at any pH, has only been provided by Kildeberg. This equation can be applied to strong acids and bases, pluriprotic weak acids, bases and ampholytes, with an arbitrary number of acid strength constants, pKA, including water. By differentiating this function with respect to pH, we obtain the general equation for the buffer value. In addition, by integrating the titration curve, TA, proposed by Kildeberg, and calculating its Legendre transform, we obtain the Gibbs free energy of pH (or pOH)-dependent titratable acid. Starting from the law of electroneutrality and applying suitable simplifications, it is possible to calculate the pH of the buffer solutions by numerical methods, available in software packages such as Excel. The concept of buffer capacity has also been clarified by Urbansky, but, at variance with our approach, not in an organic manner. In fact, for each set of monobasic, dibasic, tribasic acids, etc., various equations are presented which independently fit each individual acid-base category. Consequently, with the increase in acid groups (pKA), the equations become more and more difficult, both in practice and in theory. Some examples are proposed to highlight the boundary that exists between acid-base physiology and the thermodynamic concepts of energy, chemical potential, amount of substance and acid resistance.
Quantifying the driving factors for language shift in a bilingual region.
Prochazka, Katharina; Vogl, Gero
2017-04-25
Many of the world's around 6,000 languages are in danger of disappearing as people give up use of a minority language in favor of the majority language in a process called language shift. Language shift can be monitored on a large scale through the use of mathematical models by way of differential equations, for example, reaction-diffusion equations. Here, we use a different approach: we propose a model for language dynamics based on the principles of cellular automata/agent-based modeling and combine it with very detailed empirical data. Our model makes it possible to follow language dynamics over space and time, whereas existing models based on differential equations average over space and consequently provide no information on local changes in language use. Additionally, cellular automata models can be used even in cases where models based on differential equations are not applicable, for example, in situations where one language has become dispersed and retreated to language islands. Using data from a bilingual region in Austria, we show that the most important factor in determining the spread and retreat of a language is the interaction with speakers of the same language. External factors like bilingual schools or parish language have only a minor influence.
Off-policy reinforcement learning for H∞ control design.
Luo, Biao; Wu, Huai-Ning; Huang, Tingwen
2015-01-01
The H∞ control design problem is considered for nonlinear systems with unknown internal system model. It is known that the nonlinear H∞ control problem can be transformed into solving the so-called Hamilton-Jacobi-Isaacs (HJI) equation, which is a nonlinear partial differential equation that is generally impossible to be solved analytically. Even worse, model-based approaches cannot be used for approximately solving HJI equation, when the accurate system model is unavailable or costly to obtain in practice. To overcome these difficulties, an off-policy reinforcement leaning (RL) method is introduced to learn the solution of HJI equation from real system data instead of mathematical system model, and its convergence is proved. In the off-policy RL method, the system data can be generated with arbitrary policies rather than the evaluating policy, which is extremely important and promising for practical systems. For implementation purpose, a neural network (NN)-based actor-critic structure is employed and a least-square NN weight update algorithm is derived based on the method of weighted residuals. Finally, the developed NN-based off-policy RL method is tested on a linear F16 aircraft plant, and further applied to a rotational/translational actuator system.
NASA Astrophysics Data System (ADS)
Mananga, Eugene Stephane; Charpentier, Thibault
2015-04-01
In this paper we present a theoretical perturbative approach for describing the NMR spectrum of strongly dipolar-coupled spin systems under fast magic-angle spinning. Our treatment is based on two approaches: the Floquet approach and the Floquet-Magnus expansion. The Floquet approach is well known in the NMR community as a perturbative approach to get analytical approximations. Numerical procedures are based on step-by-step numerical integration of the corresponding differential equations. The Floquet-Magnus expansion is a perturbative approach of the Floquet theory. Furthermore, we address the " γ -encoding" effect using the Floquet-Magnus expansion approach. We show that the average over " γ " angle can be performed for any Hamiltonian with γ symmetry.
A Langevin approach to multi-scale modeling
Hirvijoki, Eero
2018-04-13
In plasmas, distribution functions often demonstrate long anisotropic tails or otherwise significant deviations from local Maxwellians. The tails, especially if they are pulled out from the bulk, pose a serious challenge for numerical simulations as resolving both the bulk and the tail on the same mesh is often challenging. A multi-scale approach, providing evolution equations for the bulk and the tail individually, could offer a resolution in the sense that both populations could be treated on separate meshes or different reduction techniques applied to the bulk and the tail population. In this paper, we propose a multi-scale method which allowsmore » us to split a distribution function into a bulk and a tail so that both populations remain genuine, non-negative distribution functions and may carry density, momentum, and energy. The proposed method is based on the observation that the motion of an individual test particle in a plasma obeys a stochastic differential equation, also referred to as a Langevin equation. Finally, this allows us to define transition probabilities between the bulk and the tail and to provide evolution equations for both populations separately.« less
External intermittency prediction using AMR solutions of RANS turbulence and transported PDF models
NASA Astrophysics Data System (ADS)
Olivieri, D. A.; Fairweather, M.; Falle, S. A. E. G.
2011-12-01
External intermittency in turbulent round jets is predicted using a Reynolds-averaged Navier-Stokes modelling approach coupled to solutions of the transported probability density function (pdf) equation for scalar variables. Solutions to the descriptive equations are obtained using a finite-volume method, combined with an adaptive mesh refinement algorithm, applied in both physical and compositional space. This method contrasts with conventional approaches to solving the transported pdf equation which generally employ Monte Carlo techniques. Intermittency-modified eddy viscosity and second-moment turbulence closures are used to accommodate the effects of intermittency on the flow field, with the influence of intermittency also included, through modifications to the mixing model, in the transported pdf equation. Predictions of the overall model are compared with experimental data on the velocity and scalar fields in a round jet, as well as against measurements of intermittency profiles and scalar pdfs in a number of flows, with good agreement obtained. For the cases considered, predictions based on the second-moment turbulence closure are clearly superior, although both turbulence models give realistic predictions of the bimodal scalar pdfs observed experimentally.
A Langevin approach to multi-scale modeling
NASA Astrophysics Data System (ADS)
Hirvijoki, Eero
2018-04-01
In plasmas, distribution functions often demonstrate long anisotropic tails or otherwise significant deviations from local Maxwellians. The tails, especially if they are pulled out from the bulk, pose a serious challenge for numerical simulations as resolving both the bulk and the tail on the same mesh is often challenging. A multi-scale approach, providing evolution equations for the bulk and the tail individually, could offer a resolution in the sense that both populations could be treated on separate meshes or different reduction techniques applied to the bulk and the tail population. In this letter, we propose a multi-scale method which allows us to split a distribution function into a bulk and a tail so that both populations remain genuine, non-negative distribution functions and may carry density, momentum, and energy. The proposed method is based on the observation that the motion of an individual test particle in a plasma obeys a stochastic differential equation, also referred to as a Langevin equation. This allows us to define transition probabilities between the bulk and the tail and to provide evolution equations for both populations separately.
Sensitivity Analysis of Hydraulic Head to Locations of Model Boundaries
Lu, Zhiming
2018-01-30
Sensitivity analysis is an important component of many model activities in hydrology. Numerous studies have been conducted in calculating various sensitivities. Most of these sensitivity analysis focus on the sensitivity of state variables (e.g. hydraulic head) to parameters representing medium properties such as hydraulic conductivity or prescribed values such as constant head or flux at boundaries, while few studies address the sensitivity of the state variables to some shape parameters or design parameters that control the model domain. Instead, these shape parameters are typically assumed to be known in the model. In this study, based on the flow equation, wemore » derive the equation (and its associated initial and boundary conditions) for sensitivity of hydraulic head to shape parameters using continuous sensitivity equation (CSE) approach. These sensitivity equations can be solved numerically in general or analytically in some simplified cases. Finally, the approach has been demonstrated through two examples and the results are compared favorably to those from analytical solutions or numerical finite difference methods with perturbed model domains, while numerical shortcomings of the finite difference method are avoided.« less
A Langevin approach to multi-scale modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirvijoki, Eero
In plasmas, distribution functions often demonstrate long anisotropic tails or otherwise significant deviations from local Maxwellians. The tails, especially if they are pulled out from the bulk, pose a serious challenge for numerical simulations as resolving both the bulk and the tail on the same mesh is often challenging. A multi-scale approach, providing evolution equations for the bulk and the tail individually, could offer a resolution in the sense that both populations could be treated on separate meshes or different reduction techniques applied to the bulk and the tail population. In this paper, we propose a multi-scale method which allowsmore » us to split a distribution function into a bulk and a tail so that both populations remain genuine, non-negative distribution functions and may carry density, momentum, and energy. The proposed method is based on the observation that the motion of an individual test particle in a plasma obeys a stochastic differential equation, also referred to as a Langevin equation. Finally, this allows us to define transition probabilities between the bulk and the tail and to provide evolution equations for both populations separately.« less
Non-Markovian electron dynamics in nanostructures coupled to dissipative contacts
NASA Astrophysics Data System (ADS)
Novakovic, B.; Knezevic, I.
2013-02-01
In quasiballistic semiconductor nanostructures, carrier exchange between the active region and dissipative contacts is the mechanism that governs relaxation. In this paper, we present a theoretical treatment of transient quantum transport in quasiballistic semiconductor nanostructures, which is based on the open system theory and valid on timescales much longer than the characteristic relaxation time in the contacts. The approach relies on a model interaction between the current-limiting active region and the contacts, given in the scattering-state basis. We derive a non-Markovian master equation for the irreversible evolution of the active region's many-body statistical operator by coarse-graining the exact dynamical map over the contact relaxation time. In order to obtain the response quantities of a nanostructure under bias, such as the potential and the charge and current densities, the non-Markovian master equation must be solved numerically together with the Schr\\"{o}dinger, Poisson, and continuity equations. We discuss how to numerically solve this coupled system of equations and illustrate the approach on the example of a silicon nin diode.
Sensitivity Analysis of Hydraulic Head to Locations of Model Boundaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Zhiming
Sensitivity analysis is an important component of many model activities in hydrology. Numerous studies have been conducted in calculating various sensitivities. Most of these sensitivity analysis focus on the sensitivity of state variables (e.g. hydraulic head) to parameters representing medium properties such as hydraulic conductivity or prescribed values such as constant head or flux at boundaries, while few studies address the sensitivity of the state variables to some shape parameters or design parameters that control the model domain. Instead, these shape parameters are typically assumed to be known in the model. In this study, based on the flow equation, wemore » derive the equation (and its associated initial and boundary conditions) for sensitivity of hydraulic head to shape parameters using continuous sensitivity equation (CSE) approach. These sensitivity equations can be solved numerically in general or analytically in some simplified cases. Finally, the approach has been demonstrated through two examples and the results are compared favorably to those from analytical solutions or numerical finite difference methods with perturbed model domains, while numerical shortcomings of the finite difference method are avoided.« less
Rotational dynamics of bases in the gene coding interferon alpha 17 (IFNA17).
Krasnobaeva, L A; Yakushevich, L V
2015-02-01
In the present work, rotational oscillations of nitrogenous bases in the DNA with the sequence of the gene coding interferon alpha 17 (IFNA17), are investigated. As a mathematical model simulating oscillations of the bases, we use a system of two coupled nonlinear partial differential equations that takes into account effects of dissipation, action of external fields and dependence of the equation coefficients on the sequence of bases. We apply the methods of the theory of oscillations to solve the equations in the linear approach and to construct the dispersive curves determining the dependence of the frequency of the plane waves (ω) on the wave vector (q). In the nonlinear case, the solutions in the form of kink are considered, and the main characteristics of the kink: the rest energy (E0), the rest mass (m0), the size (d) and sound velocity (C0), are calculated. With the help of the energetic method, the kink velocity (υ), the path (S), and the lifetime (τ) are also obtained.
Matrix approach to land carbon cycle modeling: A case study with the Community Land Model.
Huang, Yuanyuan; Lu, Xingjie; Shi, Zheng; Lawrence, David; Koven, Charles D; Xia, Jianyang; Du, Zhenggang; Kluzek, Erik; Luo, Yiqi
2018-03-01
The terrestrial carbon (C) cycle has been commonly represented by a series of C balance equations to track C influxes into and effluxes out of individual pools in earth system models (ESMs). This representation matches our understanding of C cycle processes well but makes it difficult to track model behaviors. It is also computationally expensive, limiting the ability to conduct comprehensive parametric sensitivity analyses. To overcome these challenges, we have developed a matrix approach, which reorganizes the C balance equations in the original ESM into one matrix equation without changing any modeled C cycle processes and mechanisms. We applied the matrix approach to the Community Land Model (CLM4.5) with vertically-resolved biogeochemistry. The matrix equation exactly reproduces litter and soil organic carbon (SOC) dynamics of the standard CLM4.5 across different spatial-temporal scales. The matrix approach enables effective diagnosis of system properties such as C residence time and attribution of global change impacts to relevant processes. We illustrated, for example, the impacts of CO 2 fertilization on litter and SOC dynamics can be easily decomposed into the relative contributions from C input, allocation of external C into different C pools, nitrogen regulation, altered soil environmental conditions, and vertical mixing along the soil profile. In addition, the matrix tool can accelerate model spin-up, permit thorough parametric sensitivity tests, enable pool-based data assimilation, and facilitate tracking and benchmarking of model behaviors. Overall, the matrix approach can make a broad range of future modeling activities more efficient and effective. © 2017 John Wiley & Sons Ltd.
Huang, W.; Zheng, Lingyun; Zhan, X.
2002-01-01
Accurate modelling of groundwater flow and transport with sharp moving fronts often involves high computational cost, when a fixed/uniform mesh is used. In this paper, we investigate the modelling of groundwater problems using a particular adaptive mesh method called the moving mesh partial differential equation approach. With this approach, the mesh is dynamically relocated through a partial differential equation to capture the evolving sharp fronts with a relatively small number of grid points. The mesh movement and physical system modelling are realized by solving the mesh movement and physical partial differential equations alternately. The method is applied to the modelling of a range of groundwater problems, including advection dominated chemical transport and reaction, non-linear infiltration in soil, and the coupling of density dependent flow and transport. Numerical results demonstrate that sharp moving fronts can be accurately and efficiently captured by the moving mesh approach. Also addressed are important implementation strategies, e.g. the construction of the monitor function based on the interpolation error, control of mesh concentration, and two-layer mesh movement. Copyright ?? 2002 John Wiley and Sons, Ltd.
A fully implicit finite element method for bidomain models of cardiac electromechanics
Dal, Hüsnü; Göktepe, Serdar; Kaliske, Michael; Kuhl, Ellen
2012-01-01
We propose a novel, monolithic, and unconditionally stable finite element algorithm for the bidomain-based approach to cardiac electromechanics. We introduce the transmembrane potential, the extracellular potential, and the displacement field as independent variables, and extend the common two-field bidomain formulation of electrophysiology to a three-field formulation of electromechanics. The intrinsic coupling arises from both excitation-induced contraction of cardiac cells and the deformation-induced generation of intra-cellular currents. The coupled reaction-diffusion equations of the electrical problem and the momentum balance of the mechanical problem are recast into their weak forms through a conventional isoparametric Galerkin approach. As a novel aspect, we propose a monolithic approach to solve the governing equations of excitation-contraction coupling in a fully coupled, implicit sense. We demonstrate the consistent linearization of the resulting set of non-linear residual equations. To assess the algorithmic performance, we illustrate characteristic features by means of representative three-dimensional initial-boundary value problems. The proposed algorithm may open new avenues to patient specific therapy design by circumventing stability and convergence issues inherent to conventional staggered solution schemes. PMID:23175588
Jiang, Hao; Adidharma, Hertanto
2014-11-07
The thermodynamic modeling of flexible charged hard-sphere chains representing polyampholyte or polyelectrolyte molecules in solution is considered. The excess Helmholtz energy and osmotic coefficients of solutions containing short polyampholyte and the osmotic coefficients of solutions containing short polyelectrolytes are determined by performing canonical and isobaric-isothermal Monte Carlo simulations. A new equation of state based on the thermodynamic perturbation theory is also proposed for flexible charged hard-sphere chains. For the modeling of such chains, the use of solely the structure information of monomer fluid for calculating the chain contribution is found to be insufficient and more detailed structure information must therefore be considered. Two approaches, i.e., the dimer and dimer-monomer approaches, are explored to obtain the contribution of the chain formation to the Helmholtz energy. By comparing with the simulation results, the equation of state with either the dimer or dimer-monomer approach accurately predicts the excess Helmholtz energy and osmotic coefficients of polyampholyte and polyelectrolyte solutions except at very low density. It also well captures the effect of temperature on the thermodynamic properties of these solutions.
Bittig, Arne T; Uhrmacher, Adelinde M
2017-01-01
Spatio-temporal dynamics of cellular processes can be simulated at different levels of detail, from (deterministic) partial differential equations via the spatial Stochastic Simulation algorithm to tracking Brownian trajectories of individual particles. We present a spatial simulation approach for multi-level rule-based models, which includes dynamically hierarchically nested cellular compartments and entities. Our approach ML-Space combines discrete compartmental dynamics, stochastic spatial approaches in discrete space, and particles moving in continuous space. The rule-based specification language of ML-Space supports concise and compact descriptions of models and to adapt the spatial resolution of models easily.
A universal constraint-based formulation for freely moving immersed bodies in fluids
NASA Astrophysics Data System (ADS)
Patankar, Neelesh A.
2012-11-01
Numerical simulation of moving immersed bodies in fluids is now practiced routinely. A variety of variants of these approaches have been published, most of which rely on using a background mesh for the fluid equations and tracking the body using Lagrangian points. In this talk, generalized constraint-based governing equations will be presented that provide a unified framework for various immersed body techniques. The key idea that is common to these methods is to assume that the entire fluid-body domain is a ``fluid'' and then to constrain the body domain to move in accordance with its governing equations. The immersed body can be rigid or deforming. The governing equations are developed so that they are independent of the nature of temporal or spatial discretization schemes. Specific choices of time stepping and spatial discretization then lead to techniques developed in prior literature ranging from freely moving rigid to elastic self-propelling bodies. To simulate Brownian systems, thermal fluctuations can be included in the fluid equations via additional random stress terms. Solving the fluctuating hydrodynamic equations coupled with the immersed body results in the Brownian motion of that body. The constraint-based formulation leads to fractional time stepping algorithms a la Chorin-type schemes that are suitable for fast computations of rigid or self-propelling bodies whose deformation kinematics are known. Support from NSF is gratefully acknowledged.
Bayesian source term estimation of atmospheric releases in urban areas using LES approach.
Xue, Fei; Kikumoto, Hideki; Li, Xiaofeng; Ooka, Ryozo
2018-05-05
The estimation of source information from limited measurements of a sensor network is a challenging inverse problem, which can be viewed as an assimilation process of the observed concentration data and the predicted concentration data. When dealing with releases in built-up areas, the predicted data are generally obtained by the Reynolds-averaged Navier-Stokes (RANS) equations, which yields building-resolving results; however, RANS-based models are outperformed by large-eddy simulation (LES) in the predictions of both airflow and dispersion. Therefore, it is important to explore the possibility of improving the estimation of the source parameters by using the LES approach. In this paper, a novel source term estimation method is proposed based on LES approach using Bayesian inference. The source-receptor relationship is obtained by solving the adjoint equations constructed using the time-averaged flow field simulated by the LES approach based on the gradient diffusion hypothesis. A wind tunnel experiment with a constant point source downwind of a single building model is used to evaluate the performance of the proposed method, which is compared with that of the existing method using a RANS model. The results show that the proposed method reduces the errors of source location and releasing strength by 77% and 28%, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Filinov, A.; Bonitz, M.; Loffhagen, D.
2018-06-01
A combination of first principle molecular dynamics (MD) simulations with a rate equation model (MD-RE approach) is presented to study the trapping and the scattering of rare gas atoms from metal surfaces. The temporal evolution of the atom fractions that are either adsorbed or scattered into the continuum is investigated in detail. We demonstrate that for this description one has to consider trapped, quasi-trapped and scattering states, and present an energetic definition of these states. The rate equations contain the transition probabilities between the states. We demonstrate how these rate equations can be derived from kinetic theory. Moreover, we present a rigorous way to determine the transition probabilities from a microscopic analysis of the particle trajectories generated by MD simulations. Once the system reaches quasi-equilibrium, the rates converge to stationary values, and the subsequent thermal adsorption/desorption dynamics is completely described by the rate equations without the need to perform further time-consuming MD simulations. As a proof of concept of our approach, MD simulations for argon atoms interacting with a platinum (111) surface are presented. A detailed deterministic trajectory analysis is performed, and the transition rates are constructed. The dependence of the rates on the incidence conditions and the lattice temperature is analyzed. Based on this example, we analyze the time scale of the gas-surface system to approach the quasi-stationary state. The MD-RE model has great relevance for the plasma-surface modeling as it makes an extension of accurate simulations to long, experimentally relevant time scales possible. Its application to the computation of atomic sticking probabilities is given in the second part (paper II).
Prediction of Transitional Flows in the Low Pressure Turbine
NASA Technical Reports Server (NTRS)
Huang, George; Xiong, Guohua
1998-01-01
Current turbulence models tend to give too early and too short a length of flow transition to turbulence, and hence fail to predict flow separation induced by the adverse pressure gradients and streamline flow curvatures. Our discussion will focus on the development and validation of transition models. The baseline data for model comparisons are the T3 series, which include a range of free-stream turbulence intensity and cover zero-pressure gradient to aft-loaded turbine pressure gradient flows. The method will be based on the conditioned N-S equations and a transport equation for the intermittency factor. First, several of the most popular 2-equation models in predicting flow transition are examined: k-e [Launder-Sharina], k-w [Wilcox], Lien-Leschiziner and SST [Menter] models. All models fail to predict the onset and the length of transition, even for the simplest flat plate with zero-pressure gradient(T3A). Although the predicted onset position of transition can be varied by providing different inlet turbulent energy dissipation rates, the appropriate inlet conditions for turbulence quantities should be adjusted to match the decay of the free-stream turbulence. Arguably, one may adjust the low-Reynolds-number part of the model to predict transition. This approach has so far not been very successful. However, we have found that the low-Reynolds-number model of Launder and Sharma [1974], which is an improved version of Jones and Launder [1972] gave the best overall performance. The Launder and Sharma model was designed to capture flow re-laminarization (a reverse of flow transition), but tends to give rise to a too early and too fast transition in comparison with the physical transition. The three test cases were for flows with zero pressure gradient but with different free-stream turbulent intensities. The same can be said about the model when considering flows subject to pressure gradient(T3C1). To capture the effects of transition using existing turbulence models, one approach is to make use of the concept of the intermittency to predict the flow transition. It was originally based on the intermittency distribution of Narasimha [1957], and then gradually evolved into a transport equation for the intermittency factor. Gostelow and associates [1994,1995] have made some improvements to Narasimha's method in an attempt to account for both favorable and adverse pressure gradients. Their approach is based on a linear, explicit combination of laminar and turbulent solutions. This approach fails to predict the overshoot of the skin friction on a flat plate near the end of transition zone, even though the length of transition is well predicted. The major flaw of Gostelow's approach is that it assumes the non-turbulent part being the laminar solution and the turbulent part being the turbulent solution and they do not interact across the transitional region. The technique in condition averaging the flow equations in intermittent flows was first introduced by Libby [1975] and Dopazo [1977] and further refined by Dick and associates [1988, 1996]. This approach employs two sets of transport equations for the non-turbulent part and the other for the turbulent part. The advantage of this approach is that it allows the interaction of non-turbulent and turbulent velocities through the introduction of additional source terms in the continuity and momentum equations for the non-turbulent and turbulent velocities. However, the strong coupling of the two sets of equations has caused some numerical difficulties, which requires special attention. The prediction of the skin friction can be improved by this approach via the implicit coupling of non-turbulent and turbulent velocity flelds. Another improvement of the interrmittency model can be further made by allowing the intermittency to vary in the cross-stream direction. This is one step prior to testing any proposal for the transport equation for the intermittency factor. Instead of solving the transport equation for the intermittency factor, the distribution for the intermittency factor is prescribed by Klebanoff's empirical formula [1955]. The skin friction is very well predicted by this new modification, including the overshoot of the profile near the end of the transition zone. The outcome of this study is very encouraging since it indicates that the proper description of the intermittency distribution is the key to the success of the model prediction. This study will be used to guide us on the modelling of the intermittency transport equation.
Modeling of non-thermal plasma in flammable gas mixtures
NASA Astrophysics Data System (ADS)
Napartovich, A. P.; Kochetov, I. V.; Leonov, S. B.
2008-07-01
An idea of using plasma-assisted methods of fuel ignition is based on non-equilibrium generation of chemically active species that speed up the combustion process. It is believed that gain in energy consumed for combustion acceleration by plasmas is due to the non-equilibrium nature of discharge plasma, which allows radicals to be produced in an above-equilibrium amount. Evidently, the size of the effect is strongly dependent on the initial temperature, pressure, and composition of the mixture. Of particular interest is comparison between thermal ignition of a fuel-air mixture and non-thermal plasma initiation of the combustion. Mechanisms of thermal ignition in various fuel-air mixtures have been studied for years, and a number of different mechanisms are known providing an agreement with experiments at various conditions. The problem is -- how to conform thermal chemistry approach to essentially non-equilibrium plasma description. The electric discharge produces much above-equilibrium amounts of chemically active species: atoms, radicals and ions. The point is that despite excess concentrations of a number of species, total concentration of these species is far below concentrations of the initial gas mixture. Therefore, rate coefficients for reactions of these discharge produced species with other gas mixture components are well known quantities controlled by the translational temperature, which can be calculated from the energy balance equation taking into account numerous processes initiated by plasma. A numerical model was developed combining traditional approach of thermal combustion chemistry with advanced description of the plasma kinetics based on solution of electron Boltzmann equation. This approach allows us to describe self-consistently strongly non-equilibrium electric discharge in chemically unstable (ignited) gas. Equations of pseudo-one-dimensional gas dynamics were solved in parallel with a system of thermal chemistry equations, kinetic equations for charged particles (electrons, positive and negative ions), and with the electric circuit equation. The electric circuit comprises power supply, ballast resistor connected in series with the discharge and capacity. Rate coefficients for electron-assisted reactions were calculated from solving the two-term spherical harmonic expansion of the Boltzmann equation. Such an approach allows us to describe influence of thermal chemistry reactions (burning) on the discharge characteristics. Results of comparison between the discharge and thermal ignition effects for mixtures of hydrogen or ethylene with dry air will be reported. Effects of acceleration of ignition by discharge plasma will be analyzed. In particular, the role of singlet oxygen produced effectively in the discharge in ignition speeding up will be discussed.
NASA Technical Reports Server (NTRS)
Stouffer, D. C.; Sheh, M. Y.
1988-01-01
A micromechanical model based on crystallographic slip theory was formulated for nickel-base single crystal superalloys. The current equations include both drag stress and back stress state variables to model the local inelastic flow. Specially designed experiments have been conducted to evaluate the effect of back stress in single crystals. The results showed that (1) the back stress is orientation dependent; and (2) the back stress state variable in the inelastic flow equation is necessary for predicting anelastic behavior of the material. The model also demonstrated improved fatigue predictive capability. Model predictions and experimental data are presented for single crystal superalloy Rene N4 at 982 C.
NASA Astrophysics Data System (ADS)
Wang, Jie; Chen, Li; Yu, Zhongbo
2018-02-01
Rainfall infiltration on hillslopes is an important issue in hydrology, which is related to many environmental problems, such as flood, soil erosion, and nutrient and contaminant transport. This study aimed to improve the quantification of infiltration on hillslopes under both steady and unsteady rainfalls. Starting from Darcy's law, an analytical integral infiltrability equation was derived for hillslope infiltration by use of the flux-concentration relation. Based on this equation, a simple scaling relation linking the infiltration times on hillslopes and horizontal planes was obtained which is applicable for both small and large times and can be used to simplify the solution procedure of hillslope infiltration. The infiltrability equation also improved the estimation of ponding time for infiltration under rainfall conditions. For infiltration after ponding, the time compression approximation (TCA) was applied together with the infiltrability equation. To improve the computational efficiency, the analytical integral infiltrability equation was approximated with a two-term power-like function by nonlinear regression. Procedures of applying this approach to both steady and unsteady rainfall conditions were proposed. To evaluate the performance of the new approach, it was compared with the Green-Ampt model for sloping surfaces by Chen and Young (2006) and Richards' equation. The proposed model outperformed the sloping Green-Ampt, and both ponding time and infiltration predictions agreed well with the solutions of Richards' equation for various soil textures, slope angles, initial water contents, and rainfall intensities for both steady and unsteady rainfalls.
Time-dependent jet flow and noise computations
NASA Technical Reports Server (NTRS)
Berman, C. H.; Ramos, J. I.; Karniadakis, G. E.; Orszag, S. A.
1990-01-01
Methods for computing jet turbulence noise based on the time-dependent solution of Lighthill's (1952) differential equation are demonstrated. A key element in this approach is a flow code for solving the time-dependent Navier-Stokes equations at relatively high Reynolds numbers. Jet flow results at Re = 10,000 are presented here. This code combines a computationally efficient spectral element technique and a new self-consistent turbulence subgrid model to supply values for Lighthill's turbulence noise source tensor.
A Thermodynamically Consistent Approach to Phase-Separating Viscous Fluids
NASA Astrophysics Data System (ADS)
Anders, Denis; Weinberg, Kerstin
2018-04-01
The de-mixing properties of heterogeneous viscous fluids are determined by an interplay of diffusion, surface tension and a superposed velocity field. In this contribution a variational model of the decomposition, based on the Navier-Stokes equations for incompressible laminar flow and the extended Korteweg-Cahn-Hilliard equations, is formulated. An exemplary numerical simulation using C1-continuous finite elements demonstrates the capability of this model to compute phase decomposition and coarsening of the moving fluid.
Calculation of free turbulent mixing by interaction approach.
NASA Technical Reports Server (NTRS)
Morel, T.; Torda, T. P.
1973-01-01
The applicability of Bradshaw's interaction hypothesis to two-dimensional free shear flows was investigated. According to it, flows with velocity extrema may be considered to consist of several interacting layers. The hypothesis leads to a new expression for the shear stress which removes the usual restriction that shear stress vanishes at the velocity extremum. The approach is based on kinetic energy and the length scale equations. The compressible flow equations are simplified by restriction to low Mach numbers, and the range of their applicability is discussed. The empirical functions of the turbulence model are found here to be correlated with the spreading rate of the shear layer. The analysis demonstrates that the interaction hypothesis is a workable concept.
Shah, A A; Xing, W W; Triantafyllidis, V
2017-04-01
In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach.
Xing, W. W.; Triantafyllidis, V.
2017-01-01
In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach. PMID:28484327
A new approach for designing self-organizing systems and application to adaptive control
NASA Technical Reports Server (NTRS)
Ramamoorthy, P. A.; Zhang, Shi; Lin, Yueqing; Huang, Song
1993-01-01
There is tremendous interest in the design of intelligent machines capable of autonomous learning and skillful performance under complex environments. A major task in designing such systems is to make the system plastic and adaptive when presented with new and useful information and stable in response to irrelevant events. A great body of knowledge, based on neuro-physiological concepts, has evolved as a possible solution to this problem. Adaptive resonance theory (ART) is a classical example under this category. The system dynamics of an ART network is described by a set of differential equations with nonlinear functions. An approach for designing self-organizing networks characterized by nonlinear differential equations is proposed.
Modeling pH variation in reverse osmosis.
Nir, Oded; Bishop, Noga Fridman; Lahav, Ori; Freger, Viatcheslav
2015-12-15
The transport of hydronium and hydroxide ions through reverse osmosis membranes constitutes a unique case of ionic species characterized by uncommonly high permeabilities. Combined with electromigration, this leads to complex behavior of permeate pH, e.g., negative rejection, as often observed for monovalent ions in nanofiltration of salt mixtures. In this work we employed a rigorous phenomenological approach combined with chemical equilibrium to describe the trans-membrane transport of hydronium and hydroxide ions along with salt transport and calculate the resulting permeate pH. Starting from the Nernst-Planck equation, a full non-linear transport equation was derived, for which an approximate solution was proposed based on the analytical solution previously developed for trace ions in a dominant salt. Using the developed approximate equation, transport coefficients were deduced from experimental results obtained using a spiral wound reverse osmosis module operated under varying permeate flux (2-11 μm/s), NaCl feed concentrations (0.04-0.18 M) and feed pH values (5.5-9.0). The approximate equation agreed well with the experimental results, corroborating the finding that diffusion and electromigration, rather than a priori neglected convection, were the major contributors to the transport of hydronium and hydroxide. The approach presented here has the potential to improve the predictive capacity of reverse osmosis transport models for acid-base species, thereby improving process design/control. Copyright © 2015 Elsevier Ltd. All rights reserved.
Iterative approach as alternative to S-matrix in modal methods
NASA Astrophysics Data System (ADS)
Semenikhin, Igor; Zanuccoli, Mauro
2014-12-01
The continuously increasing complexity of opto-electronic devices and the rising demands of simulation accuracy lead to the need of solving very large systems of linear equations making iterative methods promising and attractive from the computational point of view with respect to direct methods. In particular, iterative approach potentially enables the reduction of required computational time to solve Maxwell's equations by Eigenmode Expansion algorithms. Regardless of the particular eigenmodes finding method used, the expansion coefficients are computed as a rule by scattering matrix (S-matrix) approach or similar techniques requiring order of M3 operations. In this work we consider alternatives to the S-matrix technique which are based on pure iterative or mixed direct-iterative approaches. The possibility to diminish the impact of M3 -order calculations to overall time and in some cases even to reduce the number of arithmetic operations to M2 by applying iterative techniques are discussed. Numerical results are illustrated to discuss validity and potentiality of the proposed approaches.
Gironés, Xavier; Carbó-Dorca, Ramon; Ponec, Robert
2003-01-01
A new approach allowing the theoretical modeling of the electronic substituent effect is proposed. The approach is based on the use of fragment Quantum Self-Similarity Measures (MQS-SM) calculated from domain averaged Fermi Holes as new theoretical descriptors allowing for the replacement of Hammett sigma constants in QSAR models. To demonstrate the applicability of this new approach its formalism was applied to the description of the substituent effect on the dissociation of a broad series of meta and para substituted benzoic acids. The accuracy and the predicting power of this new approach was tested on the comparison with a recent exhaustive study by Sullivan et al. It has been shown that the accuracy and the predicting power of both procedures is comparable, but, in contrast to a five-parameter correlation equation necessary to describe the data in the study, our approach is more simple and, in fact, only a simple one-parameter correlation equation is required.
Modern control concepts in hydrology
NASA Technical Reports Server (NTRS)
Duong, N.; Johnson, G. R.; Winn, C. B.
1974-01-01
Two approaches to an identification problem in hydrology are presented based upon concepts from modern control and estimation theory. The first approach treats the identification of unknown parameters in a hydrologic system subject to noisy inputs as an adaptive linear stochastic control problem; the second approach alters the model equation to account for the random part in the inputs, and then uses a nonlinear estimation scheme to estimate the unknown parameters. Both approaches use state-space concepts. The identification schemes are sequential and adaptive and can handle either time invariant or time dependent parameters. They are used to identify parameters in the Prasad model of rainfall-runoff. The results obtained are encouraging and conform with results from two previous studies; the first using numerical integration of the model equation along with a trial-and-error procedure, and the second, by using a quasi-linearization technique. The proposed approaches offer a systematic way of analyzing the rainfall-runoff process when the input data are imbedded in noise.
An improved model of fission gas atom transport in irradiated uranium dioxide
NASA Astrophysics Data System (ADS)
Shea, J. H.
2018-04-01
The hitherto standard approach to predicting fission gas release has been a pure diffusion gas atom transport model based upon Fick's law. An additional mechanism has subsequently been identified from experimental data at high burnup and has been summarised in an empirical model that is considered to embody a so-called fuel matrix 'saturation' phenomenon whereby the fuel matrix has become saturated with fission gas so that the continued addition of extra fission gas atoms results in their expulsion from the fuel matrix into the fuel rod plenum. The present paper proposes a different approach by constructing an enhanced fission gas transport law consisting of two components: 1) Fick's law and 2) a so-called drift term. The new transport law can be shown to be effectively identical in its predictions to the 'saturation' approach and is more readily physically justifiable. The method introduces a generalisation of the standard diffusion equation which is dubbed the Drift Diffusion Equation. According to the magnitude of a dimensionless Péclet number, P, the new equation can vary from pure diffusion to pure drift, which latter represents a collective motion of the fission gas atoms through the fuel matrix at a translational velocity. Comparison is made between the saturation and enhanced transport approaches. Because of its dependence on P, the Drift Diffusion Equation is shown to be more effective at managing the transition from one type of limiting transport phenomenon to the other. Thus it can adapt appropriately according to the reactor operation.
The charge conserving Poisson-Boltzmann equations: Existence, uniqueness, and maximum principle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Chiun-Chang, E-mail: chlee@mail.nhcue.edu.tw
2014-05-15
The present article is concerned with the charge conserving Poisson-Boltzmann (CCPB) equation in high-dimensional bounded smooth domains. The CCPB equation is a Poisson-Boltzmann type of equation with nonlocal coefficients. First, under the Robin boundary condition, we get the existence of weak solutions to this equation. The main approach is variational, based on minimization of a logarithm-type energy functional. To deal with the regularity of weak solutions, we establish a maximum modulus estimate for the standard Poisson-Boltzmann (PB) equation to show that weak solutions of the CCPB equation are essentially bounded. Then the classical solutions follow from the elliptic regularity theorem.more » Second, a maximum principle for the CCPB equation is established. In particular, we show that in the case of global electroneutrality, the solution achieves both its maximum and minimum values at the boundary. However, in the case of global non-electroneutrality, the solution may attain its maximum value at an interior point. In addition, under certain conditions on the boundary, we show that the global non-electroneutrality implies pointwise non-electroneutrality.« less
GLASS VISCOSITY AS A FUNCTION OF TEMPERATURE AND COMPOSITION: A MODEL BASED ON ADAM-GIBBS EQUATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hrma, Pavel R.
2008-07-01
Within the temperature range and composition region of processing and product forming, the viscosity of commercial and waste glasses spans over 12 orders of magnitude. This paper shows that a generalized Adam-Gibbs relationship reasonably approximates the real behavior of glasses with four temperature-independent parameters of which two are linear functions of the composition vector. The equation is subjected to two constraints, one requiring that the viscosity-temperature relationship approaches the Arrhenius function at high temperatures with a composition-independent pre-exponential factor and the other that the viscosity value is independent of composition at the glass-transition temperature. Several sets of constant coefficients weremore » obtained by fitting the generalized Adam-Gibbs equation to data of two glass families: float glass and Hanford waste glass. Other equations (the Vogel-Fulcher-Tammann equation, original and modified, the Avramov equation, and the Douglass-Doremus equation) were fitted to float glass data series and compared with the Adam-Gibbs equation, showing that Adam-Gibbs glass appears an excellent approximation of real glasses even as compared with other candidate constitutive relations.« less
A new method for constructing analytic elements for groundwater flow.
NASA Astrophysics Data System (ADS)
Strack, O. D.
2007-12-01
The analytic element method is based upon the superposition of analytic functions that are defined throughout the infinite domain, and can be used to meet a variety of boundary conditions. Analytic elements have been use successfully for a number of problems, mainly dealing with the Poisson equation (see, e.g., Theory and Applications of the Analytic Element Method, Reviews of Geophysics, 41,2/1005 2003 by O.D.L. Strack). The majority of these analytic elements consists of functions that exhibit jumps along lines or curves. Such linear analytic elements have been developed also for other partial differential equations, e.g., the modified Helmholz equation and the heat equation, and were constructed by integrating elementary solutions, the point sink and the point doublet, along a line. This approach is limiting for two reasons. First, the existence is required of the elementary solutions, and, second, the integration tends to limit the range of solutions that can be obtained. We present a procedure for generating analytic elements that requires merely the existence of a harmonic function with the desired properties; such functions exist in abundance. The procedure to be presented is used to generalize this harmonic function in such a way that the resulting expression satisfies the applicable differential equation. The approach will be applied, along with numerical examples, for the modified Helmholz equation and for the heat equation, while it is noted that the method is in no way restricted to these equations. The procedure is carried out entirely in terms of complex variables, using Wirtinger calculus.
Reduced Dirac equation and Lamb shift as off-mass-shell effect in quantum electrodynamics
NASA Astrophysics Data System (ADS)
Ni, Guang-Jiong; Xu, Jian-Jun; Lou, Sen-Yue
2011-02-01
Based on the accurate experimental data of energy-level differences in hydrogen-like atoms, especially the 1S—2S transitions of hydrogen and deuterium, the necessity of introducing a reduced Dirac equation with reduced mass as the substitution of original electron mass is stressed. Based on new cognition about the essence of special relativity, we provide a reasonable argument for the reduced Dirac equation to have two symmetries, the invariance under the (newly defined) space-time inversion and that under the pure space inversion, in a noninertial frame. By using the reduced Dirac equation and within the framework of quantum electrodynamics in covariant form, the Lamb shift can be evaluated (at one-loop level) as the radiative correction on a bound electron staying in an off-mass-shell state—-a new approach eliminating the infrared divergence. Hence the whole calculation, though with limited accuracy, is simplified, getting rid of all divergences and free of ambiguity.
Bjerklie, David M.; Dingman, S. Lawrence; Bolster, Carl H.
2005-01-01
A set of conceptually derived in‐bank river discharge–estimating equations (models), based on the Manning and Chezy equations, are calibrated and validated using a database of 1037 discharge measurements in 103 rivers in the United States and New Zealand. The models are compared to a multiple regression model derived from the same data. The comparison demonstrates that in natural rivers, using an exponent on the slope variable of 0.33 rather than the traditional value of 0.5 reduces the variance associated with estimating flow resistance. Mean model uncertainty, assuming a constant value for the conductance coefficient, is less than 5% for a large number of estimates, and 67% of the estimates would be accurate within 50%. The models have potential application where site‐specific flow resistance information is not available and can be the basis for (1) a general approach to estimating discharge from remotely sensed hydraulic data, (2) comparison to slope‐area discharge estimates, and (3) large‐scale river modeling.
NASA Astrophysics Data System (ADS)
Burgio, G. F.
2018-03-01
We discuss the structure of Neutron Stars by modelling the homogeneous nuclear matter of the core by a suitable microscopic Equation of State, based on the Brueckner-Hartree-Fock many-body theory, and the crust, including the pasta phase, by the BCPM energy density functional which is based on the same Equation of State. This allows for a uni ed description of the Neutron Star matter over a wide density range. A comparison with other uni ed approaches is discussed. With the same Equation of State, which features strong direct Urca processes and using consistent nuclear pairing gaps as well as effective masses, we model neutron star cooling, in particular the current rapid cooldown of the neutron star Cas A. We nd that several scenarios are possible to explain the features of Cas A, but only large and extended proton 1 S 0 gaps and small neutron 3 PF 2 gaps can accommodate also the major part of the complete current cooling data.
Gas solubility in dilute solutions: A novel molecular thermodynamic perspective
NASA Astrophysics Data System (ADS)
Chialvo, Ariel A.
2018-05-01
We present an explicit molecular-based interpretation of the thermodynamic phase equilibrium underlying gas solubility in liquids, through rigorous links between the microstructure of the dilute systems and the relevant macroscopic quantities that characterize their solution thermodynamics. We apply the formal analysis to unravel and highlight the molecular-level nature of the approximations behind the widely used Krichevsky-Kasarnovsky [J. Am. Chem. Soc. 57, 2168 (1935)] and Krichevsky-Ilinskaya [Acta Physicochim. 20, 327 (1945)] equations for the modeling of gas solubility. Then, we implement a general molecular-based approach to gas solubility and illustrate it by studying Lennard-Jones binary systems whose microstructure and thermodynamic properties were consistently generated via integral equation calculations. Furthermore, guided by the molecular-based analysis, we propose a novel macroscopic modeling approach to gas solubility, emphasize some usually overlook modeling subtleties, and identify novel interdependences among relevant solubility quantities that can be used as either handy modeling constraints or tools for consistency tests.
NASA Astrophysics Data System (ADS)
Carichino, Lucia; Guidoboni, Giovanna; Szopos, Marcela
2018-07-01
The goal of this work is to develop a novel splitting approach for the numerical solution of multiscale problems involving the coupling between Stokes equations and ODE systems, as often encountered in blood flow modeling applications. The proposed algorithm is based on a semi-discretization in time based on operator splitting, whose design is guided by the rationale of ensuring that the physical energy balance is maintained at the discrete level. As a result, unconditional stability with respect to the time step choice is ensured by the implicit treatment of interface conditions within the Stokes substeps, whereas the coupling between Stokes and ODE substeps is enforced via appropriate initial conditions for each substep. Notably, unconditional stability is attained without the need of subiterating between Stokes and ODE substeps. Stability and convergence properties of the proposed algorithm are tested on three specific examples for which analytical solutions are derived.
Multi-fidelity Gaussian process regression for prediction of random fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parussini, L.; Venturi, D., E-mail: venturi@ucsc.edu; Perdikaris, P.
We propose a new multi-fidelity Gaussian process regression (GPR) approach for prediction of random fields based on observations of surrogate models or hierarchies of surrogate models. Our method builds upon recent work on recursive Bayesian techniques, in particular recursive co-kriging, and extends it to vector-valued fields and various types of covariances, including separable and non-separable ones. The framework we propose is general and can be used to perform uncertainty propagation and quantification in model-based simulations, multi-fidelity data fusion, and surrogate-based optimization. We demonstrate the effectiveness of the proposed recursive GPR techniques through various examples. Specifically, we study the stochastic Burgersmore » equation and the stochastic Oberbeck–Boussinesq equations describing natural convection within a square enclosure. In both cases we find that the standard deviation of the Gaussian predictors as well as the absolute errors relative to benchmark stochastic solutions are very small, suggesting that the proposed multi-fidelity GPR approaches can yield highly accurate results.« less
Gas solubility in dilute solutions: A novel molecular thermodynamic perspective.
Chialvo, Ariel A
2018-05-07
We present an explicit molecular-based interpretation of the thermodynamic phase equilibrium underlying gas solubility in liquids, through rigorous links between the microstructure of the dilute systems and the relevant macroscopic quantities that characterize their solution thermodynamics. We apply the formal analysis to unravel and highlight the molecular-level nature of the approximations behind the widely used Krichevsky-Kasarnovsky [J. Am. Chem. Soc. 57, 2168 (1935)] and Krichevsky-Ilinskaya [Acta Physicochim. 20, 327 (1945)] equations for the modeling of gas solubility. Then, we implement a general molecular-based approach to gas solubility and illustrate it by studying Lennard-Jones binary systems whose microstructure and thermodynamic properties were consistently generated via integral equation calculations. Furthermore, guided by the molecular-based analysis, we propose a novel macroscopic modeling approach to gas solubility, emphasize some usually overlook modeling subtleties, and identify novel interdependences among relevant solubility quantities that can be used as either handy modeling constraints or tools for consistency tests.
Automated combinatorial method for fast and robust prediction of lattice thermal conductivity
NASA Astrophysics Data System (ADS)
Plata, Jose J.; Nath, Pinku; Usanmaz, Demet; Toher, Cormac; Fornari, Marco; Buongiorno Nardelli, Marco; Curtarolo, Stefano
The lack of computationally inexpensive and accurate ab-initio based methodologies to predict lattice thermal conductivity, κl, without computing the anharmonic force constants or performing time-consuming ab-initio molecular dynamics, is one of the obstacles preventing the accelerated discovery of new high or low thermal conductivity materials. The Slack equation is the best alternative to other more expensive methodologies but is highly dependent on two variables: the acoustic Debye temperature, θa, and the Grüneisen parameter, γ. Furthermore, different definitions can be used for these two quantities depending on the model or approximation. Here, we present a combinatorial approach based on the quasi-harmonic approximation to elucidate which definitions of both variables produce the best predictions of κl. A set of 42 compounds was used to test accuracy and robustness of all possible combinations. This approach is ideal for obtaining more accurate values than fast screening models based on the Debye model, while being significantly less expensive than methodologies that solve the Boltzmann transport equation.
Bidirectional plant canopy reflection models derived from the radiation transfer equation
NASA Technical Reports Server (NTRS)
Beeth, D. R.
1975-01-01
A collection of bidirectional canopy reflection models was obtained from the solution of the radiation transfer equation for a horizontally homogeneous canopy. A phase function is derived for a collection of bidirectionally reflecting and transmitting planar elements characterized geometrically by slope and azimuth density functions. Two approaches to solving the radiation transfer equation for the canopy are presented. One approach factors the radiation transfer equation into a solvable set of three first-order linear differential equations by assuming that the radiation field within the canopy can be initially approximated by three components: uniformly diffuse downwelling, uniformly diffuse upwelling, and attenuated specular. The solution to these equations, which can be iterated to any degree of accuracy, was used to obtain overall canopy reflection from the formal solution to the radiation transfer equation. A programable solution to canopy overall bidirectional reflection is given for this approach. The special example of Lambertian leaves with constant leaf bidirectional reflection and scattering functions is considered, and a programmable solution for this example is given. The other approach to solving the radiation transfer equation, a generalized Chandrasekhar technique, is presented in the appendix.
The Riemann-Lanczos equations in general relativity and their integrability
NASA Astrophysics Data System (ADS)
Dolan, P.; Gerber, A.
2008-06-01
The aim of this paper is to examine the Riemann-Lanczos equations and how they can be made integrable. They consist of a system of linear first-order partial differential equations that arise in general relativity, whereby the Riemann curvature tensor is generated by an unknown third-order tensor potential field called the Lanczos tensor. Our approach is based on the theory of jet bundles, where all field variables and all their partial derivatives of all relevant orders are treated as independent variables alongside the local manifold coordinates (xa) on the given space-time manifold M. This approach is adopted in (a) Cartan's method of exterior differential systems, (b) Vessiot's dual method using vector field systems, and (c) the Janet-Riquier theory of systems of partial differential equations. All three methods allow for the most general situations under which integrability conditions can be found. They give equivalent results, namely, that involutivity is always achieved at all generic points of the jet manifold M after a finite number of prolongations. Two alternative methods that appear in the general relativity literature to find integrability conditions for the Riemann-Lanczos equations generate new partial differential equations for the Lanczos potential that introduce a source term, which is nonlinear in the components of the Riemann tensor. We show that such sources do not occur when either of method (a), (b), or (c) are used.
The free-electron laser - Maxwell's equations driven by single-particle currents
NASA Technical Reports Server (NTRS)
Colson, W. B.; Ride, S. K.
1980-01-01
It is shown that if single particle currents are coupled to Maxwell's equations, the resulting set of self-consistent nonlinear equations describes the evolution of the electron beam and the amplitude and phase of the free-electron-laser field. The formulation is based on the slowly varying amplitude and phase approximation, and the distinction between microscopic and macroscopic scales, which distinguishes the microscopic bunching from the macroscopic pulse propagation. The capabilities of this new theoretical approach become apparent when its predictions for the ultrashort pulse free-electron laser are compared to experimental data; the optical pulse evolution, determined simply and accurately, agrees well with observations.
Biswas, Samir Kumar; Kanhirodan, Rajan; Vasu, Ram Mohan; Roy, Debasish
2011-08-01
We explore a pseudodynamic form of the quadratic parameter update equation for diffuse optical tomographic reconstruction from noisy data. A few explicit and implicit strategies for obtaining the parameter updates via a semianalytical integration of the pseudodynamic equations are proposed. Despite the ill-posedness of the inverse problem associated with diffuse optical tomography, adoption of the quadratic update scheme combined with the pseudotime integration appears not only to yield higher convergence, but also a muted sensitivity to the regularization parameters, which include the pseudotime step size for integration. These observations are validated through reconstructions with both numerically generated and experimentally acquired data.
Fresnel Lens Solar Concentrator Design Based on Geometric Optics and Blackbody Radiation Equations
NASA Technical Reports Server (NTRS)
Watson, Michael D.; Jayroe, Robert, Jr.
1999-01-01
Fresnel lenses have been used for years as solar concentrators in a variety of applications. Several variables effect the final design of these lenses including: lens diameter, image spot distance from the lens, and bandwidth focused in the image spot. Defining the image spot as the geometrical optics circle of least confusion and applying blackbody radiation equations the spot energy distribution can be determined. These equations are used to design a fresnel lens to produce maximum flux for a given spot size, lens diameter, and image distance. This approach results in significant increases in solar efficiency over traditional single wavelength designs.
Dillenseger, Jean-Louis; Esneault, Simon; Garnier, Carole
2008-01-01
This paper describes a modeling method of the tissue temperature evolution over time in hyperthermia. More precisely, this approach is used to simulate the hepatocellular carcinoma curative treatment by a percutaneous high intensity ultrasound surgery. The tissue temperature evolution over time is classically described by Pennes' bioheat transfer equation which is generally solved by a finite difference method. In this paper we will present a method where the bioheat transfer equation can be algebraically solved after a Fourier transformation over the space coordinates. The implementation and boundary conditions of this method will be shown and compared with the finite difference method.
High-order FDTD methods for transverse electromagnetic systems in dispersive inhomogeneous media.
Zhao, Shan
2011-08-15
This Letter introduces a novel finite-difference time-domain (FDTD) formulation for solving transverse electromagnetic systems in dispersive media. Based on the auxiliary differential equation approach, the Debye dispersion model is coupled with Maxwell's equations to derive a supplementary ordinary differential equation for describing the regularity changes in electromagnetic fields at the dispersive interface. The resulting time-dependent jump conditions are rigorously enforced in the FDTD discretization by means of the matched interface and boundary scheme. High-order convergences are numerically achieved for the first time in the literature in the FDTD simulations of dispersive inhomogeneous media. © 2011 Optical Society of America
Hierarchical Multiscale Modeling of Macromolecules and their Assemblies
Ortoleva, P.; Singharoy, A.; Pankavich, S.
2013-01-01
Soft materials (e.g., enveloped viruses, liposomes, membranes and supercooled liquids) simultaneously deform or display collective behaviors, while undergoing atomic scale vibrations and collisions. While the multiple space-time character of such systems often makes traditional molecular dynamics simulation impractical, a multiscale approach has been presented that allows for long-time simulation with atomic detail based on the co-evolution of slowly-varying order parameters (OPs) with the quasi-equilibrium probability density of atomic configurations. However, this approach breaks down when the structural change is extreme, or when nearest-neighbor connectivity of atoms is not maintained. In the current study, a self-consistent approach is presented wherein OPs and a reference structure co-evolve slowly to yield long-time simulation for dynamical soft-matter phenomena such as structural transitions and self-assembly. The development begins with the Liouville equation for N classical atoms and an ansatz on the form of the associated N-atom probability density. Multiscale techniques are used to derive Langevin equations for the coupled OP-configurational dynamics. The net result is a set of equations for the coupled stochastic dynamics of the OPs and centers of mass of the subsystems that constitute a soft material body. The theory is based on an all-atom methodology and an interatomic force field, and therefore enables calibration-free simulations of soft matter, such as macromolecular assemblies. PMID:23671457
A homotopy algorithm for digital optimal projection control GASD-HADOC
NASA Technical Reports Server (NTRS)
Collins, Emmanuel G., Jr.; Richter, Stephen; Davis, Lawrence D.
1993-01-01
The linear-quadratic-gaussian (LQG) compensator was developed to facilitate the design of control laws for multi-input, multi-output (MIMO) systems. The compensator is computed by solving two algebraic equations for which standard closed-loop solutions exist. Unfortunately, the minimal dimension of an LQG compensator is almost always equal to the dimension of the plant and can thus often violate practical implementation constraints on controller order. This deficiency is especially highlighted when considering control-design for high-order systems such as flexible space structures. This deficiency motivated the development of techniques that enable the design of optimal controllers whose dimension is less than that of the design plant. A homotopy approach based on the optimal projection equations that characterize the necessary conditions for optimal reduced-order control. Homotopy algorithms have global convergence properties and hence do not require that the initializing reduced-order controller be close to the optimal reduced-order controller to guarantee convergence. However, the homotopy algorithm previously developed for solving the optimal projection equations has sublinear convergence properties and the convergence slows at higher authority levels and may fail. A new homotopy algorithm for synthesizing optimal reduced-order controllers for discrete-time systems is described. Unlike the previous homotopy approach, the new algorithm is a gradient-based, parameter optimization formulation and was implemented in MATLAB. The results reported may offer the foundation for a reliable approach to optimal, reduced-order controller design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chacon, Luis; del-Castillo-Negrete, Diego; Hauck, Cory D.
2014-09-01
We propose a Lagrangian numerical algorithm for a time-dependent, anisotropic temperature transport equation in magnetized plasmas in the large guide field regime. The approach is based on an analytical integral formal solution of the parallel (i.e., along the magnetic field) transport equation with sources, and it is able to accommodate both local and non-local parallel heat flux closures. The numerical implementation is based on an operator-split formulation, with two straightforward steps: a perpendicular transport step (including sources), and a Lagrangian (field-line integral) parallel transport step. Algorithmically, the first step is amenable to the use of modern iterative methods, while themore » second step has a fixed cost per degree of freedom (and is therefore scalable). Accuracy-wise, the approach is free from the numerical pollution introduced by the discrete parallel transport term when the perpendicular to parallel transport coefficient ratio X ⊥ /X ∥ becomes arbitrarily small, and is shown to capture the correct limiting solution when ε = X⊥L 2 ∥/X1L 2 ⊥ → 0 (with L∥∙ L⊥ , the parallel and perpendicular diffusion length scales, respectively). Therefore, the approach is asymptotic-preserving. We demonstrate the capabilities of the scheme with several numerical experiments with varying magnetic field complexity in two dimensions, including the case of transport across a magnetic island.« less
Prague, Mélanie; Commenges, Daniel; Gran, Jon Michael; Ledergerber, Bruno; Young, Jim; Furrer, Hansjakob; Thiébaut, Rodolphe
2017-03-01
Highly active antiretroviral therapy (HAART) has proved efficient in increasing CD4 counts in many randomized clinical trials. Because randomized trials have some limitations (e.g., short duration, highly selected subjects), it is interesting to assess the effect of treatments using observational studies. This is challenging because treatment is started preferentially in subjects with severe conditions. This general problem had been treated using Marginal Structural Models (MSM) relying on the counterfactual formulation. Another approach to causality is based on dynamical models. We present three discrete-time dynamic models based on linear increments models (LIM): the first one based on one difference equation for CD4 counts, the second with an equilibrium point, and the third based on a system of two difference equations, which allows jointly modeling CD4 counts and viral load. We also consider continuous-time models based on ordinary differential equations with non-linear mixed effects (ODE-NLME). These mechanistic models allow incorporating biological knowledge when available, which leads to increased statistical evidence for detecting treatment effect. Because inference in ODE-NLME is numerically challenging and requires specific methods and softwares, LIM are a valuable intermediary option in terms of consistency, precision, and complexity. We compare the different approaches in simulation and in illustration on the ANRS CO3 Aquitaine Cohort and the Swiss HIV Cohort Study. © 2016, The International Biometric Society.
Differential Geometry Based Multiscale Models
Wei, Guo-Wei
2010-01-01
Large chemical and biological systems such as fuel cells, ion channels, molecular motors, and viruses are of great importance to the scientific community and public health. Typically, these complex systems in conjunction with their aquatic environment pose a fabulous challenge to theoretical description, simulation, and prediction. In this work, we propose a differential geometry based multiscale paradigm to model complex macromolecular systems, and to put macroscopic and microscopic descriptions on an equal footing. In our approach, the differential geometry theory of surfaces and geometric measure theory are employed as a natural means to couple the macroscopic continuum mechanical description of the aquatic environment with the microscopic discrete atom-istic description of the macromolecule. Multiscale free energy functionals, or multiscale action functionals are constructed as a unified framework to derive the governing equations for the dynamics of different scales and different descriptions. Two types of aqueous macromolecular complexes, ones that are near equilibrium and others that are far from equilibrium, are considered in our formulations. We show that generalized Navier–Stokes equations for the fluid dynamics, generalized Poisson equations or generalized Poisson–Boltzmann equations for electrostatic interactions, and Newton's equation for the molecular dynamics can be derived by the least action principle. These equations are coupled through the continuum-discrete interface whose dynamics is governed by potential driven geometric flows. Comparison is given to classical descriptions of the fluid and electrostatic interactions without geometric flow based micro-macro interfaces. The detailed balance of forces is emphasized in the present work. We further extend the proposed multiscale paradigm to micro-macro analysis of electrohydrodynamics, electrophoresis, fuel cells, and ion channels. We derive generalized Poisson–Nernst–Planck equations that are coupled to generalized Navier–Stokes equations for fluid dynamics, Newton's equation for molecular dynamics, and potential and surface driving geometric flows for the micro-macro interface. For excessively large aqueous macromolecular complexes in chemistry and biology, we further develop differential geometry based multiscale fluid-electro-elastic models to replace the expensive molecular dynamics description with an alternative elasticity formulation. PMID:20169418
A high-resolution Godunov method for compressible multi-material flow on overlapping grids
NASA Astrophysics Data System (ADS)
Banks, J. W.; Schwendeman, D. W.; Kapila, A. K.; Henshaw, W. D.
2007-04-01
A numerical method is described for inviscid, compressible, multi-material flow in two space dimensions. The flow is governed by the multi-material Euler equations with a general mixture equation of state. Composite overlapping grids are used to handle complex flow geometry and block-structured adaptive mesh refinement (AMR) is used to locally increase grid resolution near shocks and material interfaces. The discretization of the governing equations is based on a high-resolution Godunov method, but includes an energy correction designed to suppress numerical errors that develop near a material interface for standard, conservative shock-capturing schemes. The energy correction is constructed based on a uniform-pressure-velocity flow and is significant only near the captured interface. A variety of two-material flows are presented to verify the accuracy of the numerical approach and to illustrate its use. These flows assume an equation of state for the mixture based on the Jones-Wilkins-Lee (JWL) forms for the components. This equation of state includes a mixture of ideal gases as a special case. Flow problems considered include unsteady one-dimensional shock-interface collision, steady interaction of a planar interface and an oblique shock, planar shock interaction with a collection of gas-filled cylindrical inhomogeneities, and the impulsive motion of the two-component mixture in a rigid cylindrical vessel.
Aerodynamic parameter estimation via Fourier modulating function techniques
NASA Technical Reports Server (NTRS)
Pearson, A. E.
1995-01-01
Parameter estimation algorithms are developed in the frequency domain for systems modeled by input/output ordinary differential equations. The approach is based on Shinbrot's method of moment functionals utilizing Fourier based modulating functions. Assuming white measurement noises for linear multivariable system models, an adaptive weighted least squares algorithm is developed which approximates a maximum likelihood estimate and cannot be biased by unknown initial or boundary conditions in the data owing to a special property attending Shinbrot-type modulating functions. Application is made to perturbation equation modeling of the longitudinal and lateral dynamics of a high performance aircraft using flight-test data. Comparative studies are included which demonstrate potential advantages of the algorithm relative to some well established techniques for parameter identification. Deterministic least squares extensions of the approach are made to the frequency transfer function identification problem for linear systems and to the parameter identification problem for a class of nonlinear-time-varying differential system models.
Talygin, E A; Zazybo, N A; Zhorzholiany, S T; Krestinich, I M; Mironov, A A; Kiknadze, G I; Bokerya, L A; Gorodkov, A Y; Makarenko, V N; Alexandrova, S A
2016-01-01
New approach to intracardiac blood flow condition analysis based on geometric parameters of left ventricle flow channel has been suggested. Parameters, that used in this method, follow from exact solutions of nonstationary Navier-Stocks equations for selforganized tornado-like flows of viscous incompressible fluid. The main advantage of this method is considering dynamic anatomy of intracardiac cavity and trabeculae relief of left ventricle streamlined surface, both registered in a common mri-process, as flow condition indicator. Calculated quantity options that characterizes blood flow condition can be use as diagnostic criterias for estimation of violation in blood circulation function which entails heart ejection reduction. Developed approach allows to clarify heart jet organization mechanism and estimate the share of the tornado-like flow self-organization in heart ejection structure.
Simulations of pattern dynamics for reaction-diffusion systems via SIMULINK.
Wang, Kaier; Steyn-Ross, Moira L; Steyn-Ross, D Alistair; Wilson, Marcus T; Sleigh, Jamie W; Shiraishi, Yoichi
2014-04-11
Investigation of the nonlinear pattern dynamics of a reaction-diffusion system almost always requires numerical solution of the system's set of defining differential equations. Traditionally, this would be done by selecting an appropriate differential equation solver from a library of such solvers, then writing computer codes (in a programming language such as C or Matlab) to access the selected solver and display the integrated results as a function of space and time. This "code-based" approach is flexible and powerful, but requires a certain level of programming sophistication. A modern alternative is to use a graphical programming interface such as Simulink to construct a data-flow diagram by assembling and linking appropriate code blocks drawn from a library. The result is a visual representation of the inter-relationships between the state variables whose output can be made completely equivalent to the code-based solution. As a tutorial introduction, we first demonstrate application of the Simulink data-flow technique to the classical van der Pol nonlinear oscillator, and compare Matlab and Simulink coding approaches to solving the van der Pol ordinary differential equations. We then show how to introduce space (in one and two dimensions) by solving numerically the partial differential equations for two different reaction-diffusion systems: the well-known Brusselator chemical reactor, and a continuum model for a two-dimensional sheet of human cortex whose neurons are linked by both chemical and electrical (diffusive) synapses. We compare the relative performances of the Matlab and Simulink implementations. The pattern simulations by Simulink are in good agreement with theoretical predictions. Compared with traditional coding approaches, the Simulink block-diagram paradigm reduces the time and programming burden required to implement a solution for reaction-diffusion systems of equations. Construction of the block-diagram does not require high-level programming skills, and the graphical interface lends itself to easy modification and use by non-experts.
A neural net-based approach to software metrics
NASA Technical Reports Server (NTRS)
Boetticher, G.; Srinivas, Kankanahalli; Eichmann, David A.
1992-01-01
Software metrics provide an effective method for characterizing software. Metrics have traditionally been composed through the definition of an equation. This approach is limited by the fact that all the interrelationships among all the parameters be fully understood. This paper explores an alternative, neural network approach to modeling metrics. Experiments performed on two widely accepted metrics, McCabe and Halstead, indicate that the approach is sound, thus serving as the groundwork for further exploration into the analysis and design of software metrics.
NASA Astrophysics Data System (ADS)
Shul'man, A. Ya; Posvyanskii, D. V.
2014-05-01
The density functional approach in the Kohn-Sham approximation is widely used to study properties of many-electron systems. Due to the nonlinearity of the Kohn-Sham equations, the general self-consistent solution method for infinite systems involves iterations with alternate solutions of the Poisson and Schrödinger equations. One of problems with such an approach is that the charge distribution, updated by solving the Schrodinger equation, may be incompatible with the boundary conditions of the Poisson equation for Coulomb potential. The resulting instability or divergence manifests itself most appreciably in the case of infinitely extended systems because the corresponding boundary-value problem becomes singular. In this work the stable iterative scheme for solving the Kohn-Sham equations for infinite systems with inhomogeneous electron gas is described based on eliminating the long-range character of the Coulomb interaction, which causes the tight coupling of the charge distribution with the boundary conditions. This algorithm has been previously successfully implemented in the calculation of work function and surface energy of simple metals in the jellium model. Here it is used to calculate the energy spectrum of quasi-two-dimensional electron gas in the accumulation layer at the semiconductor surface n-InAs. The electrons in such a structure occupy states that belong to both discrete and continuous parts of the energy spectrum. This causes the problems of convergence in the usually used approaches, which do not exist in our case. Because of the narrow bandgap of InAs, it is necessary to take the nonparabolicity of the conduction band into account; this is done by means of a new effective mass method. The calculated quasi-two-dimensional energy bands correspond well to experimental data measured by the angle resolved photoelectron spectroscopy technique.
NASA Astrophysics Data System (ADS)
Marzban, Hamid Reza
2018-05-01
In this paper, we are concerned with the parameter identification of linear time-invariant systems containing multiple delays. The approach is based upon a hybrid of block-pulse functions and Legendre's polynomials. The convergence of the proposed procedure is established and an upper error bound with respect to the L2-norm associated with the hybrid functions is derived. The problem under consideration is first transformed into a system of algebraic equations. The least squares technique is then employed for identification of the desired parameters. Several multi-delay systems of varying complexity are investigated to evaluate the performance and capability of the proposed approximation method. It is shown that the proposed approach is also applicable to a class of nonlinear multi-delay systems. It is demonstrated that the suggested procedure provides accurate results for the desired parameters.
Evaluation of a Multigrid Scheme for the Incompressible Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Swanson, R. C.
2004-01-01
A fast multigrid solver for the steady, incompressible Navier-Stokes equations is presented. The multigrid solver is based upon a factorizable discrete scheme for the velocity-pressure form of the Navier-Stokes equations. This scheme correctly distinguishes between the advection-diffusion and elliptic parts of the operator, allowing efficient smoothers to be constructed. To evaluate the multigrid algorithm, solutions are computed for flow over a flat plate, parabola, and a Karman-Trefftz airfoil. Both nonlifting and lifting airfoil flows are considered, with a Reynolds number range of 200 to 800. Convergence and accuracy of the algorithm are discussed. Using Gauss-Seidel line relaxation in alternating directions, multigrid convergence behavior approaching that of O(N) methods is achieved. The computational efficiency of the numerical scheme is compared with that of Runge-Kutta and implicit upwind based multigrid methods.
Eigenvalue sensitivity analysis of planar frames with variable joint and support locations
NASA Technical Reports Server (NTRS)
Chuang, Ching H.; Hou, Gene J. W.
1991-01-01
Two sensitivity equations are derived in this study based upon the continuum approach for eigenvalue sensitivity analysis of planar frame structures with variable joint and support locations. A variational form of an eigenvalue equation is first derived in which all of the quantities are expressed in the local coordinate system attached to each member. Material derivative of this variational equation is then sought to account for changes in member's length and orientation resulting form the perturbation of joint and support locations. Finally, eigenvalue sensitivity equations are formulated in either domain quantities (by the domain method) or boundary quantities (by the boundary method). It is concluded that the sensitivity equation derived by the boundary method is more efficient in computation but less accurate than that of the domain method. Nevertheless, both of them in terms of computational efficiency are superior to the conventional direct differentiation method and the finite difference method.
Computation of incompressible viscous flows through turbopump components
NASA Technical Reports Server (NTRS)
Kiris, Cetin; Chang, Leon
1993-01-01
Flow through pump components, such as an inducer and an impeller, is efficiently simulated by solving the incompressible Navier-Stokes equations. The solution method is based on the pseudocompressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. the equations are solved in steadily rotating reference frames and the centrifugal force and the Coriolis force are added to the equation of motion. Current computations use a one-equation Baldwin-Barth turbulence model which is derived from a simplified form of the standard k-epsilon model equations. The resulting computer code is applied to the flow analysis inside a generic rocket engine pump inducer, a fuel pump impeller, and SSME high pressure fuel turbopump impeller. Numerical results of inducer flow are compared with experimental measurements. In the fuel pump impeller, the effect of downstream boundary conditions is investigated. Flow analyses at 80 percent, 100 percent, and 120 percent of design conditions are presented.
A finite element based method for solution of optimal control problems
NASA Technical Reports Server (NTRS)
Bless, Robert R.; Hodges, Dewey H.; Calise, Anthony J.
1989-01-01
A temporal finite element based on a mixed form of the Hamiltonian weak principle is presented for optimal control problems. The mixed form of this principle contains both states and costates as primary variables that are expanded in terms of elemental values and simple shape functions. Unlike other variational approaches to optimal control problems, however, time derivatives of the states and costates do not appear in the governing variational equation. Instead, the only quantities whose time derivatives appear therein are virtual states and virtual costates. Also noteworthy among characteristics of the finite element formulation is the fact that in the algebraic equations which contain costates, they appear linearly. Thus, the remaining equations can be solved iteratively without initial guesses for the costates; this reduces the size of the problem by about a factor of two. Numerical results are presented herein for an elementary trajectory optimization problem which show very good agreement with the exact solution along with excellent computational efficiency and self-starting capability. The goal is to evaluate the feasibility of this approach for real-time guidance applications. To this end, a simplified two-stage, four-state model for an advanced launch vehicle application is presented which is suitable for finite element solution.
Multi-dimensional upwinding-based implicit LES for the vorticity transport equations
NASA Astrophysics Data System (ADS)
Foti, Daniel; Duraisamy, Karthik
2017-11-01
Complex turbulent flows such as rotorcraft and wind turbine wakes are characterized by the presence of strong coherent structures that can be compactly described by vorticity variables. The vorticity-velocity formulation of the incompressible Navier-Stokes equations is employed to increase numerical efficiency. Compared to the traditional velocity-pressure formulation, high order numerical methods and sub-grid scale models for the vorticity transport equation (VTE) have not been fully investigated. Consistent treatment of the convection and stretching terms also needs to be addressed. Our belief is that, by carefully designing sharp gradient-capturing numerical schemes, coherent structures can be more efficiently captured using the vorticity-velocity formulation. In this work, a multidimensional upwind approach for the VTE is developed using the generalized Riemann problem-based scheme devised by Parish et al. (Computers & Fluids, 2016). The algorithm obtains high resolution by augmenting the upwind fluxes with transverse and normal direction corrections. The approach is investigated with several canonical vortex-dominated flows including isolated and interacting vortices and turbulent flows. The capability of the technique to represent sub-grid scale effects is also assessed. Navy contract titled ``Turbulence Modelling Across Disparate Length Scales for Naval Computational Fluid Dynamics Applications,'' through Continuum Dynamics, Inc.
NASA Technical Reports Server (NTRS)
Cai, Zhiqiang; Manteuffel, Thomas A.; McCormick, Stephen F.
1996-01-01
In this paper, we study the least-squares method for the generalized Stokes equations (including linear elasticity) based on the velocity-vorticity-pressure formulation in d = 2 or 3 dimensions. The least squares functional is defined in terms of the sum of the L(exp 2)- and H(exp -1)-norms of the residual equations, which is weighted appropriately by by the Reynolds number. Our approach for establishing ellipticity of the functional does not use ADN theory, but is founded more on basic principles. We also analyze the case where the H(exp -1)-norm in the functional is replaced by a discrete functional to make the computation feasible. We show that the resulting algebraic equations can be uniformly preconditioned by well-known techniques.
Nonlocal electrical diffusion equation
NASA Astrophysics Data System (ADS)
Gómez-Aguilar, J. F.; Escobar-Jiménez, R. F.; Olivares-Peregrino, V. H.; Benavides-Cruz, M.; Calderón-Ramón, C.
2016-07-01
In this paper, we present an analysis and modeling of the electrical diffusion equation using the fractional calculus approach. This alternative representation for the current density is expressed in terms of the Caputo derivatives, the order for the space domain is 0<β≤1 and for the time domain is 0<γ≤2. We present solutions for the full fractional equation involving space and time fractional derivatives using numerical methods based on Fourier variable separation. The case with spatial fractional derivatives leads to Levy flight type phenomena, while the time fractional equation is related to sub- or super diffusion. We show that the mathematical concept of fractional derivatives can be useful to understand the behavior of semiconductors, the design of solar panels, electrochemical phenomena and the description of anomalous complex processes.
An advanced kinetic theory for morphing continuum with inner structures
NASA Astrophysics Data System (ADS)
Chen, James
2017-12-01
Advanced kinetic theory with the Boltzmann-Curtiss equation provides a promising tool for polyatomic gas flows, especially for fluid flows containing inner structures, such as turbulence, polyatomic gas flows and others. Although a Hamiltonian-based distribution function was proposed for diatomic gas flow, a general distribution function for the generalized Boltzmann-Curtiss equations and polyatomic gas flow is still out of reach. With assistance from Boltzmann's entropy principle, a generalized Boltzmann-Curtiss distribution for polyatomic gas flow is introduced. The corresponding governing equations at equilibrium state are derived and compared with Eringen's morphing (micropolar) continuum theory derived under the framework of rational continuum thermomechanics. Although rational continuum thermomechanics has the advantages of mathematical rigor and simplicity, the presented statistical kinetic theory approach provides a clear physical picture for what the governing equations represent.
NASA Astrophysics Data System (ADS)
Glushak, P. A.; Markiv, B. B.; Tokarchuk, M. V.
2018-01-01
We present a generalization of Zubarev's nonequilibrium statistical operator method based on the principle of maximum Renyi entropy. In the framework of this approach, we obtain transport equations for the basic set of parameters of the reduced description of nonequilibrium processes in a classical system of interacting particles using Liouville equations with fractional derivatives. For a classical systems of particles in a medium with a fractal structure, we obtain a non-Markovian diffusion equation with fractional spatial derivatives. For a concrete model of the frequency dependence of a memory function, we obtain generalized Kettano-type diffusion equation with the spatial and temporal fractality taken into account. We present a generalization of nonequilibrium thermofield dynamics in Zubarev's nonequilibrium statistical operator method in the framework of Renyi statistics.
Calculating work in weakly driven quantum master equations: Backward and forward equations
NASA Astrophysics Data System (ADS)
Liu, Fei
2016-01-01
I present a technical report indicating that the two methods used for calculating characteristic functions for the work distribution in weakly driven quantum master equations are equivalent. One involves applying the notion of quantum jump trajectory [Phys. Rev. E 89, 042122 (2014), 10.1103/PhysRevE.89.042122], while the other is based on two energy measurements on the combined system and reservoir [Silaev et al., Phys. Rev. E 90, 022103 (2014), 10.1103/PhysRevE.90.022103]. These represent backward and forward methods, respectively, which adopt a very similar approach to that of the Kolmogorov backward and forward equations used in classical stochastic theory. The microscopic basis for the former method is also clarified. In addition, a previously unnoticed equality related to the heat is also revealed.
Reduced modeling of signal transduction – a modular approach
Koschorreck, Markus; Conzelmann, Holger; Ebert, Sybille; Ederer, Michael; Gilles, Ernst Dieter
2007-01-01
Background Combinatorial complexity is a challenging problem in detailed and mechanistic mathematical modeling of signal transduction. This subject has been discussed intensively and a lot of progress has been made within the last few years. A software tool (BioNetGen) was developed which allows an automatic rule-based set-up of mechanistic model equations. In many cases these models can be reduced by an exact domain-oriented lumping technique. However, the resulting models can still consist of a very large number of differential equations. Results We introduce a new reduction technique, which allows building modularized and highly reduced models. Compared to existing approaches further reduction of signal transduction networks is possible. The method also provides a new modularization criterion, which allows to dissect the model into smaller modules that are called layers and can be modeled independently. Hallmarks of the approach are conservation relations within each layer and connection of layers by signal flows instead of mass flows. The reduced model can be formulated directly without previous generation of detailed model equations. It can be understood and interpreted intuitively, as model variables are macroscopic quantities that are converted by rates following simple kinetics. The proposed technique is applicable without using complex mathematical tools and even without detailed knowledge of the mathematical background. However, we provide a detailed mathematical analysis to show performance and limitations of the method. For physiologically relevant parameter domains the transient as well as the stationary errors caused by the reduction are negligible. Conclusion The new layer based reduced modeling method allows building modularized and strongly reduced models of signal transduction networks. Reduced model equations can be directly formulated and are intuitively interpretable. Additionally, the method provides very good approximations especially for macroscopic variables. It can be combined with existing reduction methods without any difficulties. PMID:17854494
NASA Astrophysics Data System (ADS)
Brown-Dymkoski, Eric; Kasimov, Nurlybek; Vasilyev, Oleg V.
2014-04-01
In order to introduce solid obstacles into flows, several different methods are used, including volume penalization methods which prescribe appropriate boundary conditions by applying local forcing to the constitutive equations. One well known method is Brinkman penalization, which models solid obstacles as porous media. While it has been adapted for compressible, incompressible, viscous and inviscid flows, it is limited in the types of boundary conditions that it imposes, as are most volume penalization methods. Typically, approaches are limited to Dirichlet boundary conditions. In this paper, Brinkman penalization is extended for generalized Neumann and Robin boundary conditions by introducing hyperbolic penalization terms with characteristics pointing inward on solid obstacles. This Characteristic-Based Volume Penalization (CBVP) method is a comprehensive approach to conditions on immersed boundaries, providing for homogeneous and inhomogeneous Dirichlet, Neumann, and Robin boundary conditions on hyperbolic and parabolic equations. This CBVP method can be used to impose boundary conditions for both integrated and non-integrated variables in a systematic manner that parallels the prescription of exact boundary conditions. Furthermore, the method does not depend upon a physical model, as with porous media approach for Brinkman penalization, and is therefore flexible for various physical regimes and general evolutionary equations. Here, the method is applied to scalar diffusion and to direct numerical simulation of compressible, viscous flows. With the Navier-Stokes equations, both homogeneous and inhomogeneous Neumann boundary conditions are demonstrated through external flow around an adiabatic and heated cylinder. Theoretical and numerical examination shows that the error from penalized Neumann and Robin boundary conditions can be rigorously controlled through an a priori penalization parameter η. The error on a transient boundary is found to converge as O(η), which is more favorable than the error convergence of the already established Dirichlet boundary condition.
Equation-of-motion coupled cluster method for the description of the high spin excited states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Musiał, Monika, E-mail: musial@ich.us.edu.pl; Lupa, Łukasz; Kucharski, Stanisław A.
2016-04-21
The equation-of-motion (EOM) coupled cluster (CC) approach in the version applicable for the excitation energy (EE) calculations has been formulated for high spin components. The EE-EOM-CC scheme based on the restricted Hartree-Fock reference and standard amplitude equations as used in the Davidson diagonalization procedure yields the singlet states. The triplet and higher spin components require separate amplitude equations. In the case of quintets, the relevant equations are much simpler and easier to solve. Out of 26 diagrammatic terms contributing to the R{sub 1} and R{sub 2} singlet equations in the case of quintets, only R{sub 2} operator survives with 5more » diagrammatic terms present. In addition all terms engaging three body elements of the similarity transformed Hamiltonian disappear. This indicates a substantial simplification of the theory. The implemented method has been applied to the pilot study of the excited states of the C{sub 2} molecule and quintet states of C and Si atoms.« less
Ejlerskov, Katrine T.; Jensen, Signe M.; Christensen, Line B.; Ritz, Christian; Michaelsen, Kim F.; Mølgaard, Christian
2014-01-01
For 3-year-old children suitable methods to estimate body composition are sparse. We aimed to develop predictive equations for estimating fat-free mass (FFM) from bioelectrical impedance (BIA) and anthropometry using dual-energy X-ray absorptiometry (DXA) as reference method using data from 99 healthy 3-year-old Danish children. Predictive equations were derived from two multiple linear regression models, a comprehensive model (height2/resistance (RI), six anthropometric measurements) and a simple model (RI, height, weight). Their uncertainty was quantified by means of 10-fold cross-validation approach. Prediction error of FFM was 3.0% for both equations (root mean square error: 360 and 356 g, respectively). The derived equations produced BIA-based prediction of FFM and FM near DXA scan results. We suggest that the predictive equations can be applied in similar population samples aged 2–4 years. The derived equations may prove useful for studies linking body composition to early risk factors and early onset of obesity. PMID:24463487
Ejlerskov, Katrine T; Jensen, Signe M; Christensen, Line B; Ritz, Christian; Michaelsen, Kim F; Mølgaard, Christian
2014-01-27
For 3-year-old children suitable methods to estimate body composition are sparse. We aimed to develop predictive equations for estimating fat-free mass (FFM) from bioelectrical impedance (BIA) and anthropometry using dual-energy X-ray absorptiometry (DXA) as reference method using data from 99 healthy 3-year-old Danish children. Predictive equations were derived from two multiple linear regression models, a comprehensive model (height(2)/resistance (RI), six anthropometric measurements) and a simple model (RI, height, weight). Their uncertainty was quantified by means of 10-fold cross-validation approach. Prediction error of FFM was 3.0% for both equations (root mean square error: 360 and 356 g, respectively). The derived equations produced BIA-based prediction of FFM and FM near DXA scan results. We suggest that the predictive equations can be applied in similar population samples aged 2-4 years. The derived equations may prove useful for studies linking body composition to early risk factors and early onset of obesity.
Pure quasi-P-wave calculation in transversely isotropic media using a hybrid method
NASA Astrophysics Data System (ADS)
Wu, Zedong; Liu, Hongwei; Alkhalifah, Tariq
2018-07-01
The acoustic approximation for anisotropic media is widely used in current industry imaging and inversion algorithms mainly because Pwaves constitute the majority of the energy recorded in seismic exploration. The resulting acoustic formulae tend to be simpler, resulting in more efficient implementations, and depend on fewer medium parameters. However, conventional solutions of the acoustic wave equation with higher-order derivatives suffer from shear wave artefacts. Thus, we derive a new acoustic wave equation for wave propagation in transversely isotropic (TI) media, which is based on a partially separable approximation of the dispersion relation for TI media and free of shear wave artefacts. Even though our resulting equation is not a partial differential equation, it is still a linear equation. Thus, we propose to implement this equation efficiently by combining the finite difference approximation with spectral evaluation of the space-independent parts. The resulting algorithm provides solutions without the constraint ɛ ≥ δ. Numerical tests demonstrate the effectiveness of the approach.
NASA Astrophysics Data System (ADS)
Verweij, Martin D.; Huijssen, Jacob
2006-05-01
In diagnostic medical ultrasound, it has become increasingly important to evaluate the nonlinear field of an acoustic beam that propagates in a weakly nonlinear, dissipative medium and that is steered off-axis up to very wide angles. In this case, computations cannot be based on the widely used KZK equation since it applies only to small angles. To benefit from successful computational schemes from elastodynamics and electromagnetics, we propose to use two first-order acoustic field equations, accompanied by two constitutive equations, as an alternative basis. This formulation quite naturally results in the contrast source formalism, makes a clear distinction between fundamental conservation laws and medium behavior, and allows for a straightforward inclusion of any medium inhomogenities. This paper is concerned with the derivation of relevant constitutive equations. We take a pragmatic approach and aim to find those constitutive equations that represent the same medium as implicitly described by the recognized, full wave, nonlinear equations such as the generalized Westervelt equation. We will show how this is achieved by considering the nonlinear case without attenuation, the linear case with attenuation, and the nonlinear case with attenuation. As a result we will obtain surprisingly simple constitutive equations for the full wave case.
Efficient techniques for wave-based sound propagation in interactive applications
NASA Astrophysics Data System (ADS)
Mehra, Ravish
Sound propagation techniques model the effect of the environment on sound waves and predict their behavior from point of emission at the source to the final point of arrival at the listener. Sound is a pressure wave produced by mechanical vibration of a surface that propagates through a medium such as air or water, and the problem of sound propagation can be formulated mathematically as a second-order partial differential equation called the wave equation. Accurate techniques based on solving the wave equation, also called the wave-based techniques, are too expensive computationally and memory-wise. Therefore, these techniques face many challenges in terms of their applicability in interactive applications including sound propagation in large environments, time-varying source and listener directivity, and high simulation cost for mid-frequencies. In this dissertation, we propose a set of efficient wave-based sound propagation techniques that solve these three challenges and enable the use of wave-based sound propagation in interactive applications. Firstly, we propose a novel equivalent source technique for interactive wave-based sound propagation in large scenes spanning hundreds of meters. It is based on the equivalent source theory used for solving radiation and scattering problems in acoustics and electromagnetics. Instead of using a volumetric or surface-based approach, this technique takes an object-centric approach to sound propagation. The proposed equivalent source technique generates realistic acoustic effects and takes orders of magnitude less runtime memory compared to prior wave-based techniques. Secondly, we present an efficient framework for handling time-varying source and listener directivity for interactive wave-based sound propagation. The source directivity is represented as a linear combination of elementary spherical harmonic sources. This spherical harmonic-based representation of source directivity can support analytical, data-driven, rotating or time-varying directivity function at runtime. Unlike previous approaches, the listener directivity approach can be used to compute spatial audio (3D audio) for a moving, rotating listener at interactive rates. Lastly, we propose an efficient GPU-based time-domain solver for the wave equation that enables wave simulation up to the mid-frequency range in tens of minutes on a desktop computer. It is demonstrated that by carefully mapping all the components of the wave simulator to match the parallel processing capabilities of the graphics processors, significant improvement in performance can be achieved compared to the CPU-based simulators, while maintaining numerical accuracy. We validate these techniques with offline numerical simulations and measured data recorded in an outdoor scene. We present results of preliminary user evaluations conducted to study the impact of these techniques on user's immersion in virtual environment. We have integrated these techniques with the Half-Life 2 game engine, Oculus Rift head-mounted display, and Xbox game controller to enable users to experience high-quality acoustics effects and spatial audio in the virtual environment.
Semi-analytical approach to estimate railroad tank car shell puncture
DOT National Transportation Integrated Search
2011-03-16
This paper describes the development of engineering-based equations to estimate the puncture resistance of railroad tank cars under a generalized shell or side impact scenario. Resistance to puncture is considered in terms of puncture velocity, which...
Generalized Ordinary Differential Equation Models 1
Miao, Hongyu; Wu, Hulin; Xue, Hongqi
2014-01-01
Existing estimation methods for ordinary differential equation (ODE) models are not applicable to discrete data. The generalized ODE (GODE) model is therefore proposed and investigated for the first time. We develop the likelihood-based parameter estimation and inference methods for GODE models. We propose robust computing algorithms and rigorously investigate the asymptotic properties of the proposed estimator by considering both measurement errors and numerical errors in solving ODEs. The simulation study and application of our methods to an influenza viral dynamics study suggest that the proposed methods have a superior performance in terms of accuracy over the existing ODE model estimation approach and the extended smoothing-based (ESB) method. PMID:25544787
Generalized Ordinary Differential Equation Models.
Miao, Hongyu; Wu, Hulin; Xue, Hongqi
2014-10-01
Existing estimation methods for ordinary differential equation (ODE) models are not applicable to discrete data. The generalized ODE (GODE) model is therefore proposed and investigated for the first time. We develop the likelihood-based parameter estimation and inference methods for GODE models. We propose robust computing algorithms and rigorously investigate the asymptotic properties of the proposed estimator by considering both measurement errors and numerical errors in solving ODEs. The simulation study and application of our methods to an influenza viral dynamics study suggest that the proposed methods have a superior performance in terms of accuracy over the existing ODE model estimation approach and the extended smoothing-based (ESB) method.
NASA Astrophysics Data System (ADS)
Zabihi, F.; Saffarian, M.
2016-07-01
The aim of this article is to obtain the numerical solution of the two-dimensional KdV-Burgers equation. We construct the solution by using a different approach, that is based on using collocation points. The solution is based on using the thin plate splines radial basis function, which builds an approximated solution with discretizing the time and the space to small steps. We use a predictor-corrector scheme to avoid solving the nonlinear system. The results of numerical experiments are compared with analytical solutions to confirm the accuracy and efficiency of the presented scheme.
NASA Astrophysics Data System (ADS)
Matsevityi, Yu. M.; Alekhina, S. V.; Borukhov, V. T.; Zayats, G. M.; Kostikov, A. O.
2017-11-01
The problem of identifying the time-dependent thermal conductivity coefficient in the initial-boundary-value problem for the quasi-stationary two-dimensional heat conduction equation in a bounded cylinder is considered. It is assumed that the temperature field in the cylinder is independent of the angular coordinate. To solve the given problem, which is related to a class of inverse problems, a mathematical approach based on the method of conjugate gradients in a functional form is being developed.
The influence of thermal and conductive temperatures in a nanoscale resonator
NASA Astrophysics Data System (ADS)
Hobiny, Aatef; Abbas, Ibrahim A.
2018-06-01
In this work, the thermoelastic interaction in a nano-scale resonator based on two-temperature Green-Naghdi model is established. The nanoscale resonator ends were simply supported. In the Laplace's domain, the analytical solution of conductivity temperature and thermodynamic temperature, the displacement and the stress components are obtained. The eigenvalue approach resorted to for solutions. In the vector-matrix differential equations form, the essential equations were written. The numerical results for all variables are presented and are illustrated graphically.
Three-dimensional marginal separation
NASA Technical Reports Server (NTRS)
Duck, Peter W.
1988-01-01
The three dimensional marginal separation of a boundary layer along a line of symmetry is considered. The key equation governing the displacement function is derived, and found to be a nonlinear integral equation in two space variables. This is solved iteratively using a pseudo-spectral approach, based partly in double Fourier space, and partly in physical space. Qualitatively, the results are similar to previously reported two dimensional results (which are also computed to test the accuracy of the numerical scheme); however quantitatively the three dimensional results are much different.
On Riemann boundary value problems for null solutions of the two dimensional Helmholtz equation
NASA Astrophysics Data System (ADS)
Bory Reyes, Juan; Abreu Blaya, Ricardo; Rodríguez Dagnino, Ramón Martin; Kats, Boris Aleksandrovich
2018-01-01
The Riemann boundary value problem (RBVP to shorten notation) in the complex plane, for different classes of functions and curves, is still widely used in mathematical physics and engineering. For instance, in elasticity theory, hydro and aerodynamics, shell theory, quantum mechanics, theory of orthogonal polynomials, and so on. In this paper, we present an appropriate hyperholomorphic approach to the RBVP associated to the two dimensional Helmholtz equation in R^2 . Our analysis is based on a suitable operator calculus.
Castells, Xavier; Acebes, Juan José; Majós, Carles; Boluda, Susana; Julià-Sapé, Margarida; Candiota, Ana Paula; Ariño, Joaquín; Barceló, Anna; Arús, Carles
2015-01-01
Glioblastoma (Gb) is one of the most deadly tumors. Its molecular subtypes are yet to be fully characterized while the attendant efforts for personalized medicine need to be intensified in relation to glioblastoma diagnosis, treatment, and prognosis. Several molecular signatures based on gene expression microarrays were reported, but the use of microarrays for routine clinical practice is challenged by attendant economic costs. Several authors have proposed discriminant equations based on RT-PCR. Still, the discriminant threshold is often incompletely described, which makes proper validation difficult. In a previous work, we have reported two Gb subtypes based on the expression levels of four genes: CHI3L1, LDHA, LGALS1, and IGFBP3. One Gb subtype presented with low expression of the four genes mentioned, and of MGMT in a large portion of the patients (with anticipated high methylation of its promoter), and mutated IDH1. Here, we evaluate the robustness of the equations fitted with these genes using RT-PCR values in a set of 64 cases and importantly, define an unequivocal discriminant threshold with a view to prognostic implications. We developed two approaches to generate the discriminant equations: 1) using the expression level of the four genes mentioned above, and 2) using those genes displaying the highest correlation with survival among the aforementioned four ones, plus MGMT, as an attempt to further reduce the number of genes. The ease of equations' applicability, reduction in cost for raw data, and robustness in terms of resampling-based classification accuracy warrant further evaluation of these equations to discern Gb tumor biopsy heterogeneity at molecular level, diagnose potential malignancy, and prognosis of individual patients with glioblastomas.
Hong, Sehee; Kim, Soyoung
2018-01-01
There are basically two modeling approaches applicable to analyzing an actor-partner interdependence model: the multilevel modeling (hierarchical linear model) and the structural equation modeling. This article explains how to use these two models in analyzing an actor-partner interdependence model and how these two approaches work differently. As an empirical example, marital conflict data were used to analyze an actor-partner interdependence model. The multilevel modeling and the structural equation modeling produced virtually identical estimates for a basic model. However, the structural equation modeling approach allowed more realistic assumptions on measurement errors and factor loadings, rendering better model fit indices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gutjahr, A.L.; Kincaid, C.T.; Mercer, J.W.
1987-04-01
The objective of this report is to summarize the various modeling approaches that were used to simulate solute transport in a variably saturated emission. In particular, the technical strengths and weaknesses of each approach are discussed, and conclusions and recommendations for future studies are made. Five models are considered: (1) one-dimensional analytical and semianalytical solutions of the classical deterministic convection-dispersion equation (van Genuchten, Parker, and Kool, this report ); (2) one-dimensional simulation using a continuous-time Markov process (Knighton and Wagenet, this report); (3) one-dimensional simulation using the time domain method and the frequency domain method (Duffy and Al-Hassan, this report);more » (4) one-dimensional numerical approach that combines a solution of the classical deterministic convection-dispersion equation with a chemical equilibrium speciation model (Cederberg, this report); and (5) three-dimensional numerical solution of the classical deterministic convection-dispersion equation (Huyakorn, Jones, Parker, Wadsworth, and White, this report). As part of the discussion, the input data and modeling results are summarized. The models were used in a data analysis mode, as opposed to a predictive mode. Thus, the following discussion will concentrate on the data analysis aspects of model use. Also, all the approaches were similar in that they were based on a convection-dispersion model of solute transport. Each discussion addresses the modeling approaches in the order listed above.« less
Linear and nonlinear spectroscopy from quantum master equations.
Fetherolf, Jonathan H; Berkelbach, Timothy C
2017-12-28
We investigate the accuracy of the second-order time-convolutionless (TCL2) quantum master equation for the calculation of linear and nonlinear spectroscopies of multichromophore systems. We show that even for systems with non-adiabatic coupling, the TCL2 master equation predicts linear absorption spectra that are accurate over an extremely broad range of parameters and well beyond what would be expected based on the perturbative nature of the approach; non-equilibrium population dynamics calculated with TCL2 for identical parameters are significantly less accurate. For third-order (two-dimensional) spectroscopy, the importance of population dynamics and the violation of the so-called quantum regression theorem degrade the accuracy of TCL2 dynamics. To correct these failures, we combine the TCL2 approach with a classical ensemble sampling of slow microscopic bath degrees of freedom, leading to an efficient hybrid quantum-classical scheme that displays excellent accuracy over a wide range of parameters. In the spectroscopic setting, the success of such a hybrid scheme can be understood through its separate treatment of homogeneous and inhomogeneous broadening. Importantly, the presented approach has the computational scaling of TCL2, with the modest addition of an embarrassingly parallel prefactor associated with ensemble sampling. The presented approach can be understood as a generalized inhomogeneous cumulant expansion technique, capable of treating multilevel systems with non-adiabatic dynamics.
Linear and nonlinear spectroscopy from quantum master equations
NASA Astrophysics Data System (ADS)
Fetherolf, Jonathan H.; Berkelbach, Timothy C.
2017-12-01
We investigate the accuracy of the second-order time-convolutionless (TCL2) quantum master equation for the calculation of linear and nonlinear spectroscopies of multichromophore systems. We show that even for systems with non-adiabatic coupling, the TCL2 master equation predicts linear absorption spectra that are accurate over an extremely broad range of parameters and well beyond what would be expected based on the perturbative nature of the approach; non-equilibrium population dynamics calculated with TCL2 for identical parameters are significantly less accurate. For third-order (two-dimensional) spectroscopy, the importance of population dynamics and the violation of the so-called quantum regression theorem degrade the accuracy of TCL2 dynamics. To correct these failures, we combine the TCL2 approach with a classical ensemble sampling of slow microscopic bath degrees of freedom, leading to an efficient hybrid quantum-classical scheme that displays excellent accuracy over a wide range of parameters. In the spectroscopic setting, the success of such a hybrid scheme can be understood through its separate treatment of homogeneous and inhomogeneous broadening. Importantly, the presented approach has the computational scaling of TCL2, with the modest addition of an embarrassingly parallel prefactor associated with ensemble sampling. The presented approach can be understood as a generalized inhomogeneous cumulant expansion technique, capable of treating multilevel systems with non-adiabatic dynamics.
NASA Astrophysics Data System (ADS)
de Melo, Pedro Miguel M. C.; Marini, Andrea
2016-04-01
We present a full ab initio description of the coupled out-of-equilibrium dynamics of photons, phonons, and electrons. In the present approach, the quantized nature of the electromagnetic field as well as of the nuclear oscillations is fully taken into account. The result is a set of integrodifferential equations, written on the Keldysh contour, for the Green's functions of electrons, phonons, and photons where the different kinds of interactions are merged together. We then concentrate on the electronic dynamics in order to reduce the problem to a computationally feasible approach. By using the generalized Baym-Kadanoff ansatz and the completed collision approximation, we introduce a series of efficient but controllable approximations. In this way, we reduce all equations to a set of decoupled equations for the density matrix that describe all kinds of static and dynamical correlations. The final result is a coherent, general, and inclusive scheme to calculate several physical quantities: carrier dynamics, transient photoabsorption, and light emission, all of which include, at the same time, electron-electron, electron-phonon, and electron-photon interactions. We further discuss how all these observables can be easily calculated within the present scheme using a fully atomistic ab initio approach.
Towards standard testbeds for numerical relativity
NASA Astrophysics Data System (ADS)
Alcubierre, Miguel; Allen, Gabrielle; Bona, Carles; Fiske, David; Goodale, Tom; Guzmán, F. Siddhartha; Hawke, Ian; Hawley, Scott H.; Husa, Sascha; Koppitz, Michael; Lechner, Christiane; Pollney, Denis; Rideout, David; Salgado, Marcelo; Schnetter, Erik; Seidel, Edward; Shinkai, Hisa-aki; Shoemaker, Deirdre; Szilágyi, Béla; Takahashi, Ryoji; Winicour, Jeff
2004-01-01
In recent years, many different numerical evolution schemes for Einstein's equations have been proposed to address stability and accuracy problems that have plagued the numerical relativity community for decades. Some of these approaches have been tested on different spacetimes, and conclusions have been drawn based on these tests. However, differences in results originate from many sources, including not only formulations of the equations, but also gauges, boundary conditions, numerical methods and so on. We propose to build up a suite of standardized testbeds for comparing approaches to the numerical evolution of Einstein's equations that are designed to both probe their strengths and weaknesses and to separate out different effects, and their causes, seen in the results. We discuss general design principles of suitable testbeds, and we present an initial round of simple tests with periodic boundary conditions. This is a pivotal first step towards building a suite of testbeds to serve the numerical relativists and researchers from related fields who wish to assess the capabilities of numerical relativity codes. We present some examples of how these tests can be quite effective in revealing various limitations of different approaches, and illustrating their differences. The tests are presently limited to vacuum spacetimes, can be run on modest computational resources and can be used with many different approaches used in the relativity community.
An innovations approach to decoupling of multibody dynamics and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.
1989-01-01
The problem of hinged multibody dynamics is solved using an extension of the innovations approach of linear filtering and prediction theory to the problem of mechanical system modeling and control. This approach has been used quite effectively to diagonalize the equations for filtering and prediction for linear state space systems. It has similar advantages in the study of dynamics and control of multibody systems. The innovations approach advanced here consists of expressing the equations of motion in terms of two closely related processes: (1) the innovations process e, a sequence of moments, obtained from the applied moments T by means of a spatially recursive Kalman filter that goes from the tip of the manipulator to its base; (2) a residual process, a sequence of velocities, obtained from the joint-angle velocities by means of an outward smoothing operations. The innovations e and the applied moments T are related by means of the relationships e = (I - L)T and T = (I + K)e. The operation (I - L) is a causal lower triangular matrix which is generated by a spatially recursive Kalman filter and the corresponding discrete-step Riccati equation. Hence, the innovations and the applied moments can be obtained from each other by means of a causal operation which is itself casually invertible.
Progress in multi-dimensional upwind differencing
NASA Technical Reports Server (NTRS)
Vanleer, Bram
1992-01-01
Multi-dimensional upwind-differencing schemes for the Euler equations are reviewed. On the basis of the first-order upwind scheme for a one-dimensional convection equation, the two approaches to upwind differencing are discussed: the fluctuation approach and the finite-volume approach. The usual extension of the finite-volume method to the multi-dimensional Euler equations is not entirely satisfactory, because the direction of wave propagation is always assumed to be normal to the cell faces. This leads to smearing of shock and shear waves when these are not grid-aligned. Multi-directional methods, in which upwind-biased fluxes are computed in a frame aligned with a dominant wave, overcome this problem, but at the expense of robustness. The same is true for the schemes incorporating a multi-dimensional wave model not based on multi-dimensional data but on an 'educated guess' of what they could be. The fluctuation approach offers the best possibilities for the development of genuinely multi-dimensional upwind schemes. Three building blocks are needed for such schemes: a wave model, a way to achieve conservation, and a compact convection scheme. Recent advances in each of these components are discussed; putting them all together is the present focus of a worldwide research effort. Some numerical results are presented, illustrating the potential of the new multi-dimensional schemes.
Optimizing Power–Frequency Droop Characteristics of Distributed Energy Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guggilam, Swaroop S.; Zhao, Changhong; Dall Anese, Emiliano
This paper outlines a procedure to design power-frequency droop slopes for distributed energy resources (DERs) installed in distribution networks to optimally participate in primary frequency response. In particular, the droop slopes are engineered such that DERs respond in proportion to their power ratings and they are not unfairly penalized in power provisioning based on their location in the distribution network. The main contribution of our approach is that a guaranteed level of frequency regulation can be guaranteed at the feeder head, while ensuring that the outputs of individual DERs conform to some well-defined notion of fairness. The approach we adoptmore » leverages an optimization-based perspective and suitable linearizations of the power-flow equations to embed notions of fairness and information regarding the physics of the power flows within the distribution network into the droop slopes. Time-domain simulations from a differential algebraic equation model of the 39-bus New England test-case system augmented with three instances of the IEEE 37-node distribution-network with frequency-sensitive DERs are provided to validate our approach.« less
Tseng, Jui-Pin
2017-02-01
This investigation establishes the global cluster synchronization of complex networks with a community structure based on an iterative approach. The units comprising the network are described by differential equations, and can be non-autonomous and involve time delays. In addition, units in the different communities can be governed by different equations. The coupling configuration of the network is rather general. The coupling terms can be non-diffusive, nonlinear, asymmetric, and with heterogeneous coupling delays. Based on this approach, both delay-dependent and delay-independent criteria for global cluster synchronization are derived. We implement the present approach for a nonlinearly coupled neural network with heterogeneous coupling delays. Two numerical examples are given to show that neural networks can behave in a variety of new collective ways under the synchronization criteria. These examples also demonstrate that neural networks remain synchronized in spite of coupling delays between neurons across different communities; however, they may lose synchrony if the coupling delays between the neurons within the same community are too large, such that the synchronization criteria are violated. Copyright © 2016 Elsevier Ltd. All rights reserved.
New Approaches to Coding Information using Inverse Scattering Transform
NASA Astrophysics Data System (ADS)
Frumin, L. L.; Gelash, A. A.; Turitsyn, S. K.
2017-06-01
Remarkable mathematical properties of the integrable nonlinear Schrödinger equation (NLSE) can offer advanced solutions for the mitigation of nonlinear signal distortions in optical fiber links. Fundamental optical soliton, continuous, and discrete eigenvalues of the nonlinear spectrum have already been considered for the transmission of information in fiber-optic channels. Here, we propose to apply signal modulation to the kernel of the Gelfand-Levitan-Marchenko equations that offers the advantage of a relatively simple decoder design. First, we describe an approach based on exploiting the general N -soliton solution of the NLSE for simultaneous coding of N symbols involving 4 ×N coding parameters. As a specific elegant subclass of the general schemes, we introduce a soliton orthogonal frequency division multiplexing (SOFDM) method. This method is based on the choice of identical imaginary parts of the N -soliton solution eigenvalues, corresponding to equidistant soliton frequencies, making it similar to the conventional OFDM scheme, thus, allowing for the use of the efficient fast Fourier transform algorithm to recover the data. Then, we demonstrate how to use this new approach to control signal parameters in the case of the continuous spectrum.
Processing in (linear) systems with stochastic input
NASA Astrophysics Data System (ADS)
Nutu, Catalin Silviu; Axinte, Tiberiu
2016-12-01
The paper is providing a different approach to real-world systems, such as micro and macro systems of our real life, where the man has little or no influence on the system, either not knowing the rules of the respective system or not knowing the input of the system, being thus mainly only spectator of the system's output. In such a system, the input of the system and the laws ruling the system could be only "guessed", based on intuition or previous knowledge of the analyzer of the respective system. But, as we will see in the paper, it exists also another, more theoretical and hence scientific way to approach the matter of the real-world systems, and this approach is mostly based on the theory related to Schrödinger's equation and the wave function associated with it and quantum mechanics as well. The main results of the paper are regarding the utilization of the Schrödinger's equation and related theory but also of the Quantum mechanics, in modeling real-life and real-world systems.
Lagrangian Perturbation Approach to the Formation of Large-scale Structure
NASA Astrophysics Data System (ADS)
Buchert, Thomas
The present lecture notes address three columns on which the Lagrangian perturbation approach to cosmological dynamics is based: 1. the formulation of a Lagrangian theory of self-gravitating flows in which the dynamics is described in terms of a single field variable; 2. the procedure, how to obtain the dynamics of Eulerian fields from the Lagrangian picture, and 3. a precise definition of a Newtonian cosmology framework in which Lagrangian perturbation solutions can be studied. While the first is a discussion of the basic equations obtained by transforming the Eulerian evolution and field equations to the Lagrangian picture, the second exemplifies how the Lagrangian theory determines the evolution of Eulerian fields including kinematical variables like expansion, vorticity, as well as the shear and tidal tensors. The third column is based on a specification of initial and boundary conditions, and in particular on the identification of the average flow of an inhomogeneous cosmology with a `Hubble-flow'. Here, we also look at the limits of the Lagrangian perturbation approach as inferred from comparisons with N-body simulations and illustrate some striking properties of the solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Kausik, E-mail: kausik.chatterjee@aggiemail.usu.edu; Center for Atmospheric and Space Sciences, Utah State University, Logan, UT 84322; Roadcap, John R., E-mail: john.roadcap@us.af.mil
The objective of this paper is the exposition of a recently-developed, novel Green's function Monte Carlo (GFMC) algorithm for the solution of nonlinear partial differential equations and its application to the modeling of the plasma sheath region around a cylindrical conducting object, carrying a potential and moving at low speeds through an otherwise neutral medium. The plasma sheath is modeled in equilibrium through the GFMC solution of the nonlinear Poisson–Boltzmann (NPB) equation. The traditional Monte Carlo based approaches for the solution of nonlinear equations are iterative in nature, involving branching stochastic processes which are used to calculate linear functionals ofmore » the solution of nonlinear integral equations. Over the last several years, one of the authors of this paper, K. Chatterjee has been developing a philosophically-different approach, where the linearization of the equation of interest is not required and hence there is no need for iteration and the simulation of branching processes. Instead, an approximate expression for the Green's function is obtained using perturbation theory, which is used to formulate the random walk equations within the problem sub-domains where the random walker makes its walks. However, as a trade-off, the dimensions of these sub-domains have to be restricted by the limitations imposed by perturbation theory. The greatest advantage of this approach is the ease and simplicity of parallelization stemming from the lack of the need for iteration, as a result of which the parallelization procedure is identical to the parallelization procedure for the GFMC solution of a linear problem. The application area of interest is in the modeling of the communication breakdown problem during a space vehicle's re-entry into the atmosphere. However, additional application areas are being explored in the modeling of electromagnetic propagation through the atmosphere/ionosphere in UHF/GPS applications.« less
NASA Astrophysics Data System (ADS)
Chatterjee, Kausik; Roadcap, John R.; Singh, Surendra
2014-11-01
The objective of this paper is the exposition of a recently-developed, novel Green's function Monte Carlo (GFMC) algorithm for the solution of nonlinear partial differential equations and its application to the modeling of the plasma sheath region around a cylindrical conducting object, carrying a potential and moving at low speeds through an otherwise neutral medium. The plasma sheath is modeled in equilibrium through the GFMC solution of the nonlinear Poisson-Boltzmann (NPB) equation. The traditional Monte Carlo based approaches for the solution of nonlinear equations are iterative in nature, involving branching stochastic processes which are used to calculate linear functionals of the solution of nonlinear integral equations. Over the last several years, one of the authors of this paper, K. Chatterjee has been developing a philosophically-different approach, where the linearization of the equation of interest is not required and hence there is no need for iteration and the simulation of branching processes. Instead, an approximate expression for the Green's function is obtained using perturbation theory, which is used to formulate the random walk equations within the problem sub-domains where the random walker makes its walks. However, as a trade-off, the dimensions of these sub-domains have to be restricted by the limitations imposed by perturbation theory. The greatest advantage of this approach is the ease and simplicity of parallelization stemming from the lack of the need for iteration, as a result of which the parallelization procedure is identical to the parallelization procedure for the GFMC solution of a linear problem. The application area of interest is in the modeling of the communication breakdown problem during a space vehicle's re-entry into the atmosphere. However, additional application areas are being explored in the modeling of electromagnetic propagation through the atmosphere/ionosphere in UHF/GPS applications.
NASA Astrophysics Data System (ADS)
DeVille, R. E. Lee; Harkin, Anthony; Holzer, Matt; Josić, Krešimir; Kaper, Tasso J.
2008-06-01
For singular perturbation problems, the renormalization group (RG) method of Chen, Goldenfeld, and Oono [Phys. Rev. E. 49 (1994) 4502-4511] has been shown to be an effective general approach for deriving reduced or amplitude equations that govern the long time dynamics of the system. It has been applied to a variety of problems traditionally analyzed using disparate methods, including the method of multiple scales, boundary layer theory, the WKBJ method, the Poincaré-Lindstedt method, the method of averaging, and others. In this article, we show how the RG method may be used to generate normal forms for large classes of ordinary differential equations. First, we apply the RG method to systems with autonomous perturbations, and we show that the reduced or amplitude equations generated by the RG method are equivalent to the classical Poincaré-Birkhoff normal forms for these systems up to and including terms of O(ɛ2), where ɛ is the perturbation parameter. This analysis establishes our approach and generalizes to higher order. Second, we apply the RG method to systems with nonautonomous perturbations, and we show that the reduced or amplitude equations so generated constitute time-asymptotic normal forms, which are based on KBM averages. Moreover, for both classes of problems, we show that the main coordinate changes are equivalent, up to translations between the spaces in which they are defined. In this manner, our results show that the RG method offers a new approach for deriving normal forms for nonautonomous systems, and it offers advantages since one can typically more readily identify resonant terms from naive perturbation expansions than from the nonautonomous vector fields themselves. Finally, we establish how well the solution to the RG equations approximates the solution of the original equations on time scales of O(1/ɛ).
Simulating Donnan equilibria based on the Nernst-Planck equation
NASA Astrophysics Data System (ADS)
Gimmi, Thomas; Alt-Epping, Peter
2018-07-01
Understanding ion transport through clays and clay membranes is important for many geochemical and environmental applications. Ion transport is affected by electrostatic forces exerted by charged clay surfaces. Anions are partly excluded from pore water near these surfaces, whereas cations are enriched. Such effects can be modeled by the Donnan approach. Here we introduce a new, comparatively simple way to represent Donnan equilibria in transport simulations. We include charged surfaces as immobile ions in the balance equation and calculate coupled transport of all components, including the immobile charges, with the Nernst-Planck equation. This results in an additional diffusion potential that influences ion transport, leading to Donnan ion distributions while maintaining local charge balance. The validity of our new approach was demonstrated by comparing Nernst-Planck simulations using the reactive transport code Flotran with analytical solutions available for simple Donnan systems. Attention has to be paid to the numerical evaluation of the electrochemical migration term in the Nernst-Planck equation to obtain correct results for asymmetric electrolytes. Sensitivity simulations demonstrate the influence of various Donnan model parameters on simulated anion accessible porosities. It is furthermore shown that the salt diffusion coefficient in a Donnan pore depends on local concentrations, in contrast to the aqueous salt diffusion coefficient. Our approach can be easily implemented into other transport codes. It is versatile and facilitates, for instance, assessing the implications of different activity models for the Donnan porosity.
Abtahi, Shirin; Abtahi, Farhad; Ellegård, Lars; Johannsson, Gudmundur; Bosaeus, Ingvar
2015-01-01
For several decades electrical bioimpedance (EBI) has been used to assess body fluid distribution and body composition. Despite the development of several different approaches for assessing total body water (TBW), it remains uncertain whether bioimpedance spectroscopic (BIS) approaches are more accurate than single frequency regression equations. The main objective of this study was to answer this question by calculating the expected accuracy of a single measurement for different EBI methods. The results of this study showed that all methods produced similarly high correlation and concordance coefficients, indicating good accuracy as a method. Even the limits of agreement produced from the Bland-Altman analysis indicated that the performance of single frequency, Sun's prediction equations, at population level was close to the performance of both BIS methods; however, when comparing the Mean Absolute Percentage Error value between the single frequency prediction equations and the BIS methods, a significant difference was obtained, indicating slightly better accuracy for the BIS methods. Despite the higher accuracy of BIS methods over 50 kHz prediction equations at both population and individual level, the magnitude of the improvement was small. Such slight improvement in accuracy of BIS methods is suggested insufficient to warrant their clinical use where the most accurate predictions of TBW are required, for example, when assessing over-fluidic status on dialysis. To reach expected errors below 4-5%, novel and individualized approaches must be developed to improve the accuracy of bioimpedance-based methods for the advent of innovative personalized health monitoring applications. PMID:26137489
Equation-based languages – A new paradigm for building energy modeling, simulation and optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetter, Michael; Bonvini, Marco; Nouidui, Thierry S.
Most of the state-of-the-art building simulation programs implement models in imperative programming languages. This complicates modeling and excludes the use of certain efficient methods for simulation and optimization. In contrast, equation-based modeling languages declare relations among variables, thereby allowing the use of computer algebra to enable much simpler schematic modeling and to generate efficient code for simulation and optimization. We contrast the two approaches in this paper. We explain how such manipulations support new use cases. In the first of two examples, we couple models of the electrical grid, multiple buildings, HVAC systems and controllers to test a controller thatmore » adjusts building room temperatures and PV inverter reactive power to maintain power quality. In the second example, we contrast the computing time for solving an optimal control problem for a room-level model predictive controller with and without symbolic manipulations. As a result, exploiting the equation-based language led to 2, 200 times faster solution« less
NASA Technical Reports Server (NTRS)
Cheng, H. K.; Wong, Eric Y.; Dogra, V. K.
1991-01-01
Grad's thirteen-moment equations are applied to the flow behind a bow shock under the formalism of a thin shock layer. Comparison of this version of the theory with Direct Simulation Monte Carlo calculations of flows about a flat plate at finite attack angle has lent support to the approach as a useful extension of the continuum model for studying translational nonequilibrium in the shock layer. This paper reassesses the physical basis and limitations of the development with additional calculations and comparisons. The streamline correlation principle, which allows transformation of the 13-moment based system to one based on the Navier-Stokes equations, is extended to a three-dimensional formulation. The development yields a strip theory for planar lifting surfaces at finite incidences. Examples reveal that the lift-to-drag ratio is little influenced by planform geometry and varies with altitudes according to a 'bridging function' determined by correlated two-dimensional calculations.
Analysis of physics-based preconditioning for single-phase subchannel equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansel, J. E.; Ragusa, J. C.; Allu, S.
2013-07-01
The (single-phase) subchannel approximations are used throughout nuclear engineering to provide an efficient flow simulation because the computational burden is much smaller than for computational fluid dynamics (CFD) simulations, and empirical relations have been developed and validated to provide accurate solutions in appropriate flow regimes. Here, the subchannel equations have been recast in a residual form suitable for a multi-physics framework. The Eigen spectrum of the Jacobian matrix, along with several potential physics-based preconditioning approaches, are evaluated, and the the potential for improved convergence from preconditioning is assessed. The physics-based preconditioner options include several forms of reduced equations that decouplemore » the subchannels by neglecting crossflow, conduction, and/or both turbulent momentum and energy exchange between subchannels. Eigen-scopy analysis shows that preconditioning moves clusters of eigenvalues away from zero and toward one. A test problem is run with and without preconditioning. Without preconditioning, the solution failed to converge using GMRES, but application of any of the preconditioners allowed the solution to converge. (authors)« less
Equation-based languages – A new paradigm for building energy modeling, simulation and optimization
Wetter, Michael; Bonvini, Marco; Nouidui, Thierry S.
2016-04-01
Most of the state-of-the-art building simulation programs implement models in imperative programming languages. This complicates modeling and excludes the use of certain efficient methods for simulation and optimization. In contrast, equation-based modeling languages declare relations among variables, thereby allowing the use of computer algebra to enable much simpler schematic modeling and to generate efficient code for simulation and optimization. We contrast the two approaches in this paper. We explain how such manipulations support new use cases. In the first of two examples, we couple models of the electrical grid, multiple buildings, HVAC systems and controllers to test a controller thatmore » adjusts building room temperatures and PV inverter reactive power to maintain power quality. In the second example, we contrast the computing time for solving an optimal control problem for a room-level model predictive controller with and without symbolic manipulations. As a result, exploiting the equation-based language led to 2, 200 times faster solution« less