Sample records for equation modeling analysis

  1. Mechanical modeling for magnetorheological elastomer isolators based on constitutive equations and electromagnetic analysis

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Dong, Xufeng; Li, Luyu; Ou, Jinping

    2018-06-01

    As constitutive models are too complicated and existing mechanical models lack universality, these models are beyond satisfaction for magnetorheological elastomer (MRE) devices. In this article, a novel universal method is proposed to build concise mechanical models. Constitutive model and electromagnetic analysis were applied in this method to ensure universality, while a series of derivations and simplifications were carried out to obtain a concise formulation. To illustrate the proposed modeling method, a conical MRE isolator was introduced. Its basic mechanical equations were built based on equilibrium, deformation compatibility, constitutive equations and electromagnetic analysis. An iteration model and a highly efficient differential equation editor based model were then derived to solve the basic mechanical equations. The final simplified mechanical equations were obtained by re-fitting the simulations with a novel optimal algorithm. In the end, verification test of the isolator has proved the accuracy of the derived mechanical model and the modeling method.

  2. Generalized Path Analysis and Generalized Simultaneous Equations Model for Recursive Systems with Responses of Mixed Types

    ERIC Educational Resources Information Center

    Tsai, Tien-Lung; Shau, Wen-Yi; Hu, Fu-Chang

    2006-01-01

    This article generalizes linear path analysis (PA) and simultaneous equations models (SiEM) to deal with mixed responses of different types in a recursive or triangular system. An efficient instrumental variable (IV) method for estimating the structural coefficients of a 2-equation partially recursive generalized path analysis (GPA) model and…

  3. Using Structural Equation Modeling To Fit Models Incorporating Principal Components.

    ERIC Educational Resources Information Center

    Dolan, Conor; Bechger, Timo; Molenaar, Peter

    1999-01-01

    Considers models incorporating principal components from the perspectives of structural-equation modeling. These models include the following: (1) the principal-component analysis of patterned matrices; (2) multiple analysis of variance based on principal components; and (3) multigroup principal-components analysis. Discusses fitting these models…

  4. Variational objective analysis for cyclone studies

    NASA Technical Reports Server (NTRS)

    Achtemeier, Gary L.

    1989-01-01

    Significant accomplishments during 1987 to 1988 are summarized with regard to each of the major project components. Model 1 requires satisfaction of two nonlinear horizontal momentum equations, the integrated continuity equation, and the hydrostatic equation. Model 2 requires satisfaction of model 1 plus the thermodynamic equation for a dry atmosphere. Model 3 requires satisfaction of model 2 plus the radiative transfer equation. Model 4 requires satisfaction of model 3 plus a moisture conservation equation and a parameterization for moist processes.

  5. Nonlinear Poisson Equation for Heterogeneous Media

    PubMed Central

    Hu, Langhua; Wei, Guo-Wei

    2012-01-01

    The Poisson equation is a widely accepted model for electrostatic analysis. However, the Poisson equation is derived based on electric polarizations in a linear, isotropic, and homogeneous dielectric medium. This article introduces a nonlinear Poisson equation to take into consideration of hyperpolarization effects due to intensive charges and possible nonlinear, anisotropic, and heterogeneous media. Variational principle is utilized to derive the nonlinear Poisson model from an electrostatic energy functional. To apply the proposed nonlinear Poisson equation for the solvation analysis, we also construct a nonpolar solvation energy functional based on the nonlinear Poisson equation by using the geometric measure theory. At a fixed temperature, the proposed nonlinear Poisson theory is extensively validated by the electrostatic analysis of the Kirkwood model and a set of 20 proteins, and the solvation analysis of a set of 17 small molecules whose experimental measurements are also available for a comparison. Moreover, the nonlinear Poisson equation is further applied to the solvation analysis of 21 compounds at different temperatures. Numerical results are compared to theoretical prediction, experimental measurements, and those obtained from other theoretical methods in the literature. A good agreement between our results and experimental data as well as theoretical results suggests that the proposed nonlinear Poisson model is a potentially useful model for electrostatic analysis involving hyperpolarization effects. PMID:22947937

  6. Random-Effects Models for Meta-Analytic Structural Equation Modeling: Review, Issues, and Illustrations

    ERIC Educational Resources Information Center

    Cheung, Mike W.-L.; Cheung, Shu Fai

    2016-01-01

    Meta-analytic structural equation modeling (MASEM) combines the techniques of meta-analysis and structural equation modeling for the purpose of synthesizing correlation or covariance matrices and fitting structural equation models on the pooled correlation or covariance matrix. Both fixed-effects and random-effects models can be defined in MASEM.…

  7. Mathematical and Numerical Analysis of Model Equations on Interactions of the HIV/AIDS Virus and the Immune System

    NASA Astrophysics Data System (ADS)

    Parumasur, N.; Willie, R.

    2008-09-01

    We consider a simple HIV/AIDs finite dimensional mathematical model on interactions of the blood cells, the HIV/AIDs virus and the immune system for consistence of the equations to the real biomedical situation that they model. A better understanding to a cure solution to the illness modeled by the finite dimensional equations is given. This is accomplished through rigorous mathematical analysis and is reinforced by numerical analysis of models developed for real life cases.

  8. Applying Meta-Analysis to Structural Equation Modeling

    ERIC Educational Resources Information Center

    Hedges, Larry V.

    2016-01-01

    Structural equation models play an important role in the social sciences. Consequently, there is an increasing use of meta-analytic methods to combine evidence from studies that estimate the parameters of structural equation models. Two approaches are used to combine evidence from structural equation models: A direct approach that combines…

  9. Nonlinear Poisson equation for heterogeneous media.

    PubMed

    Hu, Langhua; Wei, Guo-Wei

    2012-08-22

    The Poisson equation is a widely accepted model for electrostatic analysis. However, the Poisson equation is derived based on electric polarizations in a linear, isotropic, and homogeneous dielectric medium. This article introduces a nonlinear Poisson equation to take into consideration of hyperpolarization effects due to intensive charges and possible nonlinear, anisotropic, and heterogeneous media. Variational principle is utilized to derive the nonlinear Poisson model from an electrostatic energy functional. To apply the proposed nonlinear Poisson equation for the solvation analysis, we also construct a nonpolar solvation energy functional based on the nonlinear Poisson equation by using the geometric measure theory. At a fixed temperature, the proposed nonlinear Poisson theory is extensively validated by the electrostatic analysis of the Kirkwood model and a set of 20 proteins, and the solvation analysis of a set of 17 small molecules whose experimental measurements are also available for a comparison. Moreover, the nonlinear Poisson equation is further applied to the solvation analysis of 21 compounds at different temperatures. Numerical results are compared to theoretical prediction, experimental measurements, and those obtained from other theoretical methods in the literature. A good agreement between our results and experimental data as well as theoretical results suggests that the proposed nonlinear Poisson model is a potentially useful model for electrostatic analysis involving hyperpolarization effects. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Derivation of Continuum Models from An Agent-based Cancer Model: Optimization and Sensitivity Analysis.

    PubMed

    Voulgarelis, Dimitrios; Velayudhan, Ajoy; Smith, Frank

    2017-01-01

    Agent-based models provide a formidable tool for exploring complex and emergent behaviour of biological systems as well as accurate results but with the drawback of needing a lot of computational power and time for subsequent analysis. On the other hand, equation-based models can more easily be used for complex analysis in a much shorter timescale. This paper formulates an ordinary differential equations and stochastic differential equations model to capture the behaviour of an existing agent-based model of tumour cell reprogramming and applies it to optimization of possible treatment as well as dosage sensitivity analysis. For certain values of the parameter space a close match between the equation-based and agent-based models is achieved. The need for division of labour between the two approaches is explored. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Local Analysis of Shock Capturing Using Discontinuous Galerkin Methodology

    NASA Technical Reports Server (NTRS)

    Atkins, H. L.

    1997-01-01

    The compact form of the discontinuous Galerkin method allows for a detailed local analysis of the method in the neighborhood of the shock for a non-linear model problem. Insight gained from the analysis leads to new flux formulas that are stable and that preserve the compactness of the method. Although developed for a model equation, the flux formulas are applicable to systems such as the Euler equations. This article presents the analysis for methods with a degree up to 5. The analysis is accompanied by supporting numerical experiments using Burgers' equation and the Euler equations.

  12. A Variational Assimilation Method for Satellite and Conventional Data: Development of Basic Model for Diagnosis of Cyclone Systems

    NASA Technical Reports Server (NTRS)

    Achtemeier, Gary L.; Scott, Robert W.; Chen, J.

    1991-01-01

    A summary is presented of the progress toward the completion of a comprehensive diagnostic objective analysis system based upon the calculus of variations. The approach was to first develop the objective analysis subject to the constraints that the final product satisfies the five basic primitive equations for a dry inviscid atmosphere: the two nonlinear horizontal momentum equations, the continuity equation, the hydrostatic equation, and the thermodynamic equation. Then, having derived the basic model, there would be added to it the equations for moist atmospheric processes and the radiative transfer equation.

  13. The Specific Analysis of Structural Equation Models

    ERIC Educational Resources Information Center

    McDonald, Roderick P.

    2004-01-01

    Conventional structural equation modeling fits a covariance structure implied by the equations of the model. This treatment of the model often gives misleading results because overall goodness of fit tests do not focus on the specific constraints implied by the model. An alternative treatment arising from Pearl's directed acyclic graph theory…

  14. Bayesian structural equation modeling: a more flexible representation of substantive theory.

    PubMed

    Muthén, Bengt; Asparouhov, Tihomir

    2012-09-01

    This article proposes a new approach to factor analysis and structural equation modeling using Bayesian analysis. The new approach replaces parameter specifications of exact zeros with approximate zeros based on informative, small-variance priors. It is argued that this produces an analysis that better reflects substantive theories. The proposed Bayesian approach is particularly beneficial in applications where parameters are added to a conventional model such that a nonidentified model is obtained if maximum-likelihood estimation is applied. This approach is useful for measurement aspects of latent variable modeling, such as with confirmatory factor analysis, and the measurement part of structural equation modeling. Two application areas are studied, cross-loadings and residual correlations in confirmatory factor analysis. An example using a full structural equation model is also presented, showing an efficient way to find model misspecification. The approach encompasses 3 elements: model testing using posterior predictive checking, model estimation, and model modification. Monte Carlo simulations and real data are analyzed using Mplus. The real-data analyses use data from Holzinger and Swineford's (1939) classic mental abilities study, Big Five personality factor data from a British survey, and science achievement data from the National Educational Longitudinal Study of 1988.

  15. Modeling the Benchmark Active Control Technology Wind-Tunnel Model for Active Control Design Applications

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.

    1998-01-01

    This report describes the formulation of a model of the dynamic behavior of the Benchmark Active Controls Technology (BACT) wind tunnel model for active control design and analysis applications. The model is formed by combining the equations of motion for the BACT wind tunnel model with actuator models and a model of wind tunnel turbulence. The primary focus of this report is the development of the equations of motion from first principles by using Lagrange's equations and the principle of virtual work. A numerical form of the model is generated by making use of parameters obtained from both experiment and analysis. Comparisons between experimental and analytical data obtained from the numerical model show excellent agreement and suggest that simple coefficient-based aerodynamics are sufficient to accurately characterize the aeroelastic response of the BACT wind tunnel model. The equations of motion developed herein have been used to aid in the design and analysis of a number of flutter suppression controllers that have been successfully implemented.

  16. A multivariate variational objective analysis-assimilation method. Part 1: Development of the basic model

    NASA Technical Reports Server (NTRS)

    Achtemeier, Gary L.; Ochs, Harry T., III

    1988-01-01

    The variational method of undetermined multipliers is used to derive a multivariate model for objective analysis. The model is intended for the assimilation of 3-D fields of rawinsonde height, temperature and wind, and mean level temperature observed by satellite into a dynamically consistent data set. Relative measurement errors are taken into account. The dynamic equations are the two nonlinear horizontal momentum equations, the hydrostatic equation, and an integrated continuity equation. The model Euler-Lagrange equations are eleven linear and/or nonlinear partial differential and/or algebraic equations. A cyclical solution sequence is described. Other model features include a nonlinear terrain-following vertical coordinate that eliminates truncation error in the pressure gradient terms of the horizontal momentum equations and easily accommodates satellite observed mean layer temperatures in the middle and upper troposphere. A projection of the pressure gradient onto equivalent pressure surfaces removes most of the adverse impacts of the lower coordinate surface on the variational adjustment.

  17. Computerized power supply analysis: State equation generation and terminal models

    NASA Technical Reports Server (NTRS)

    Garrett, S. J.

    1978-01-01

    To aid engineers that design power supply systems two analysis tools that can be used with the state equation analysis package were developed. These tools include integration routines that start with the description of a power supply in state equation form and yield analytical results. The first tool uses a computer program that works with the SUPER SCEPTRE circuit analysis program and prints the state equation for an electrical network. The state equations developed automatically by the computer program are used to develop an algorithm for reducing the number of state variables required to describe an electrical network. In this way a second tool is obtained in which the order of the network is reduced and a simpler terminal model is obtained.

  18. The influence of a wind tunnel on helicopter rotational noise: Formulation of analysis

    NASA Technical Reports Server (NTRS)

    Mosher, M.

    1984-01-01

    An analytical model is discussed that can be used to examine the effects of wind tunnel walls on helicopter rotational noise. A complete physical model of an acoustic source in a wind tunnel is described and a simplified version is then developed. This simplified model retains the important physical processes involved, yet it is more amenable to analysis. The simplified physical model is then modeled as a mathematical problem. An inhomogeneous partial differential equation with mixed boundary conditions is set up and then transformed into an integral equation. Details of generating a suitable Green's function and integral equation are included and the equation is discussed and also given for a two-dimensional case.

  19. Dynamical System Analysis of Reynolds Stress Closure Equations

    NASA Technical Reports Server (NTRS)

    Girimaji, Sharath S.

    1997-01-01

    In this paper, we establish the causality between the model coefficients in the standard pressure-strain correlation model and the predicted equilibrium states for homogeneous turbulence. We accomplish this by performing a comprehensive fixed point analysis of the modeled Reynolds stress and dissipation rate equations. The results from this analysis will be very useful for developing improved pressure-strain correlation models to yield observed equilibrium behavior.

  20. Fast and accurate calculation of dilute quantum gas using Uehling–Uhlenbeck model equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yano, Ryosuke, E-mail: ryosuke.yano@tokiorisk.co.jp

    The Uehling–Uhlenbeck (U–U) model equation is studied for the fast and accurate calculation of a dilute quantum gas. In particular, the direct simulation Monte Carlo (DSMC) method is used to solve the U–U model equation. DSMC analysis based on the U–U model equation is expected to enable the thermalization to be accurately obtained using a small number of sample particles and the dilute quantum gas dynamics to be calculated in a practical time. Finally, the applicability of DSMC analysis based on the U–U model equation to the fast and accurate calculation of a dilute quantum gas is confirmed by calculatingmore » the viscosity coefficient of a Bose gas on the basis of the Green–Kubo expression and the shock layer of a dilute Bose gas around a cylinder.« less

  1. Meta-Analytic Structural Equation Modeling (MASEM): Comparison of the Multivariate Methods

    ERIC Educational Resources Information Center

    Zhang, Ying

    2011-01-01

    Meta-analytic Structural Equation Modeling (MASEM) has drawn interest from many researchers recently. In doing MASEM, researchers usually first synthesize correlation matrices across studies using meta-analysis techniques and then analyze the pooled correlation matrix using structural equation modeling techniques. Several multivariate methods of…

  2. Mathematical Analysis of the Solidification Behavior of Plain Steel Based on Solute- and Heat-Transfer Equations in the Liquid-Solid Zone

    NASA Astrophysics Data System (ADS)

    Fujimura, Toshio; Takeshita, Kunimasa; Suzuki, Ryosuke O.

    2018-04-01

    An analytical approximate solution to non-linear solute- and heat-transfer equations in the unsteady-state mushy zone of Fe-C plain steel has been obtained, assuming a linear relationship between the solid fraction and the temperature of the mushy zone. The heat transfer equations for both the solid and liquid zone along with the boundary conditions have been linked with the equations to solve the whole equations. The model predictions ( e.g., the solidification constants and the effective partition ratio) agree with the generally accepted values and with a separately performed numerical analysis. The solidus temperature predicted by the model is in the intermediate range of the reported formulas. The model and Neuman's solution are consistent in the low carbon range. A conventional numerical heat analysis ( i.e., an equivalent specific heat method using the solidus temperature predicted by the model) is consistent with the model predictions for Fe-C plain steels. The model presented herein simplifies the computations to solve the solute- and heat-transfer simultaneous equations while searching for a solidus temperature as a part of the solution. Thus, this model can reduce the complexity of analyses considering the heat- and solute-transfer phenomena in the mushy zone.

  3. APPLE - An aeroelastic analysis system for turbomachines and propfans

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Bakhle, Milind A.; Srivastava, R.; Mehmed, Oral

    1992-01-01

    This paper reviews aeroelastic analysis methods for propulsion elements (advanced propellers, compressors and turbines) being developed and used at NASA Lewis Research Center. These aeroelastic models include both structural and aerodynamic components. The structural models include the typical section model, the beam model with and without disk flexibility, and the finite element blade model with plate bending elements. The aerodynamic models are based on the solution of equations ranging from the two-dimensional linear potential equation for a cascade to the three-dimensional Euler equations for multi-blade configurations. Typical results are presented for each aeroelastic model. Suggestions for further research are indicated. All the available aeroelastic models and analysis methods are being incorporated into a unified computer program named APPLE (Aeroelasticity Program for Propulsion at LEwis).

  4. Modeling the Benchmark Active Control Technology Wind-Tunnel Model for Application to Flutter Suppression

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R.

    1996-01-01

    This paper describes the formulation of a model of the dynamic behavior of the Benchmark Active Controls Technology (BACT) wind-tunnel model for application to design and analysis of flutter suppression controllers. The model is formed by combining the equations of motion for the BACT wind-tunnel model with actuator models and a model of wind-tunnel turbulence. The primary focus of this paper is the development of the equations of motion from first principles using Lagrange's equations and the principle of virtual work. A numerical form of the model is generated using values for parameters obtained from both experiment and analysis. A unique aspect of the BACT wind-tunnel model is that it has upper- and lower-surface spoilers for active control. Comparisons with experimental frequency responses and other data show excellent agreement and suggest that simple coefficient-based aerodynamics are sufficient to accurately characterize the aeroelastic response of the BACT wind-tunnel model. The equations of motion developed herein have been used to assist the design and analysis of a number of flutter suppression controllers that have been successfully implemented.

  5. Modeling Individual Damped Linear Oscillator Processes with Differential Equations: Using Surrogate Data Analysis to Estimate the Smoothing Parameter

    ERIC Educational Resources Information Center

    Deboeck, Pascal R.; Boker, Steven M.; Bergeman, C. S.

    2008-01-01

    Among the many methods available for modeling intraindividual time series, differential equation modeling has several advantages that make it promising for applications to psychological data. One interesting differential equation model is that of the damped linear oscillator (DLO), which can be used to model variables that have a tendency to…

  6. Bayesian Analysis of Structural Equation Models with Nonlinear Covariates and Latent Variables

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Lee, Sik-Yum

    2006-01-01

    In this article, we formulate a nonlinear structural equation model (SEM) that can accommodate covariates in the measurement equation and nonlinear terms of covariates and exogenous latent variables in the structural equation. The covariates can come from continuous or discrete distributions. A Bayesian approach is developed to analyze the…

  7. Informed Conjecturing of Solutions for Differential Equations in a Modeling Context

    ERIC Educational Resources Information Center

    Winkel, Brian

    2015-01-01

    We examine two differential equations. (i) first-order exponential growth or decay; and (ii) second order, linear, constant coefficient differential equations, and show the advantage of learning differential equations in a modeling context for informed conjectures of their solution. We follow with a discussion of the complete analysis afforded by…

  8. Transient three-dimensional thermal-hydraulic analysis of nuclear reactor fuel rod arrays: general equations and numerical scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wnek, W.J.; Ramshaw, J.D.; Trapp, J.A.

    1975-11-01

    A mathematical model and a numerical solution scheme for thermal- hydraulic analysis of fuel rod arrays are given. The model alleviates the two major deficiencies associated with existing rod array analysis models, that of a correct transverse momentum equation and the capability of handling reversing and circulatory flows. Possible applications of the model include steady state and transient subchannel calculations as well as analysis of flows in heat exchangers, other engineering equipment, and porous media. (auth)

  9. Bayesian Structural Equation Modeling: A More Flexible Representation of Substantive Theory

    ERIC Educational Resources Information Center

    Muthen, Bengt; Asparouhov, Tihomir

    2012-01-01

    This article proposes a new approach to factor analysis and structural equation modeling using Bayesian analysis. The new approach replaces parameter specifications of exact zeros with approximate zeros based on informative, small-variance priors. It is argued that this produces an analysis that better reflects substantive theories. The proposed…

  10. Maximum Likelihood Analysis of Nonlinear Structural Equation Models with Dichotomous Variables

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Lee, Sik-Yum

    2005-01-01

    In this article, a maximum likelihood approach is developed to analyze structural equation models with dichotomous variables that are common in behavioral, psychological and social research. To assess nonlinear causal effects among the latent variables, the structural equation in the model is defined by a nonlinear function. The basic idea of the…

  11. A Structural Equation Modeling Analysis of Influences on Juvenile Delinquency

    ERIC Educational Resources Information Center

    Barrett, David E.; Katsiyannis, Antonis; Zhang, Dalun; Zhang, Dake

    2014-01-01

    This study examined influences on delinquency and recidivism using structural equation modeling. The sample comprised 199,204 individuals: 99,602 youth whose cases had been processed by the South Carolina Department of Juvenile Justice and a matched control group of 99,602 youth without juvenile records. Structural equation modeling for the…

  12. A model for closing the inviscid form of the average-passage equation system

    NASA Technical Reports Server (NTRS)

    Adamczyk, J. J.; Mulac, R. A.; Celestina, M. L.

    1985-01-01

    A mathematical model is proposed for closing or mathematically completing the system of equations which describes the time average flow field through the blade passages of multistage turbomachinery. These equations referred to as the average passage equation system govern a conceptual model which has proven useful in turbomachinery aerodynamic design and analysis. The closure model is developed so as to insure a consistency between these equations and the axisymmetric through flow equations. The closure model was incorporated into a computer code for use in simulating the flow field about a high speed counter rotating propeller and a high speed fan stage. Results from these simulations are presented.

  13. Nonlinear static and dynamic analysis of beam structures using fully intrinsic equations

    NASA Astrophysics Data System (ADS)

    Sotoudeh, Zahra

    2011-07-01

    Beams are structural members with one dimension much larger than the other two. Examples of beams include propeller blades, helicopter rotor blades, and high aspect-ratio aircraft wings in aerospace engineering; shafts and wind turbine blades in mechanical engineering; towers, highways and bridges in civil engineering; and DNA modeling in biomedical engineering. Beam analysis includes two sets of equations: a generally linear two-dimensional problem over the cross-sectional plane and a nonlinear, global one-dimensional analysis. This research work deals with a relatively new set of equations for one-dimensional beam analysis, namely the so-called fully intrinsic equations. Fully intrinsic equations comprise a set of geometrically exact, nonlinear, first-order partial differential equations that is suitable for analyzing initially curved and twisted anisotropic beams. A fully intrinsic formulation is devoid of displacement and rotation variables, making it especially attractive because of the absence of singularities, infinite-degree nonlinearities, and other undesirable features associated with finite rotation variables. In spite of the advantages of these equations, using them with certain boundary conditions presents significant challenges. This research work will take a broad look at these challenges of modeling various boundary conditions when using the fully intrinsic equations. Hopefully it will clear the path for wider and easier use of the fully intrinsic equations in future research. This work also includes application of fully intrinsic equations in structural analysis of joined-wing aircraft, different rotor blade configuration and LCO analysis of HALE aircraft.

  14. Stoichiometric network analysis and associated dimensionless kinetic equations. Application to a model of the Bray-Liebhafsky reaction.

    PubMed

    Schmitz, Guy; Kolar-Anić, Ljiljana Z; Anić, Slobodan R; Cupić, Zeljko D

    2008-12-25

    The stoichiometric network analysis (SNA) introduced by B. L. Clarke is applied to a simplified model of the complex oscillating Bray-Liebhafsky reaction under batch conditions, which was not examined by this method earlier. This powerful method for the analysis of steady-states stability is also used to transform the classical differential equations into dimensionless equations. This transformation is easy and leads to a form of the equations combining the advantages of classical dimensionless equations with the advantages of the SNA. The used dimensionless parameters have orders of magnitude given by the experimental information about concentrations and currents. This simplifies greatly the study of the slow manifold and shows which parameters are essential for controlling its shape and consequently have an important influence on the trajectories. The effectiveness of these equations is illustrated on two examples: the study of the bifurcations points and a simple sensitivity analysis, different from the classical one, more based on the chemistry of the studied system.

  15. On the numerical treatment of nonlinear source terms in reaction-convection equations

    NASA Technical Reports Server (NTRS)

    Lafon, A.; Yee, H. C.

    1992-01-01

    The objectives of this paper are to investigate how various numerical treatments of the nonlinear source term in a model reaction-convection equation can affect the stability of steady-state numerical solutions and to show under what conditions the conventional linearized analysis breaks down. The underlying goal is to provide part of the basic building blocks toward the ultimate goal of constructing suitable numerical schemes for hypersonic reacting flows, combustions and certain turbulence models in compressible Navier-Stokes computations. It can be shown that nonlinear analysis uncovers much of the nonlinear phenomena which linearized analysis is not capable of predicting in a model reaction-convection equation.

  16. Development of a numerical model for vehicle-bridge interaction analysis of railway bridges

    NASA Astrophysics Data System (ADS)

    Kim, Hee Ju; Cho, Eun Sang; Ham, Jun Su; Park, Ki Tae; Kim, Tae Heon

    2016-04-01

    In the field of civil engineering, analyzing dynamic response was main concern for a long time. These analysis methods can be divided into moving load analysis method and moving mass analysis method, and formulating each an equation of motion has recently been studied after dividing vehicles and bridges. In this study, the numerical method is presented, which can consider the various train types and can solve the equations of motion for a vehicle-bridge interaction analysis by non-iteration procedure through formulating the coupled equations for motion. Also, 3 dimensional accurate numerical models was developed by KTX-vehicle in order to analyze dynamic response characteristics. The equations of motion for the conventional trains are derived, and the numerical models of the conventional trains are idealized by a set of linear springs and dashpots with 18 degrees of freedom. The bridge models are simplified by the 3 dimensional space frame element which is based on the Euler-Bernoulli theory. The rail irregularities of vertical and lateral directions are generated by PSD functions of the Federal Railroad Administration (FRA).

  17. Bayesian Data-Model Fit Assessment for Structural Equation Modeling

    ERIC Educational Resources Information Center

    Levy, Roy

    2011-01-01

    Bayesian approaches to modeling are receiving an increasing amount of attention in the areas of model construction and estimation in factor analysis, structural equation modeling (SEM), and related latent variable models. However, model diagnostics and model criticism remain relatively understudied aspects of Bayesian SEM. This article describes…

  18. Linear Equating for the NEAT Design: Parameter Substitution Models and Chained Linear Relationship Models

    ERIC Educational Resources Information Center

    Kane, Michael T.; Mroch, Andrew A.; Suh, Youngsuk; Ripkey, Douglas R.

    2009-01-01

    This paper analyzes five linear equating models for the "nonequivalent groups with anchor test" (NEAT) design with internal anchors (i.e., the anchor test is part of the full test). The analysis employs a two-dimensional framework. The first dimension contrasts two general approaches to developing the equating relationship. Under a "parameter…

  19. The Nernst equation applied to oxidation-reduction reactions in myoglobin and hemoglobin. Evaluation of the parameters.

    PubMed

    Saroff, Harry A

    Analyses of the binding of oxygen to monomers such as myoglobin employ the Mass Action equation. The Mass Action equation, as such, is not directly applicable for the analysis of the binding of oxygen to oligomers such as hemoglobin. When the binding of oxygen to hemoglobin is analyzed, models incorporating extensions of mass action are employed. Oxidation-reduction reactions of the heme group in myoglobin and hemoglobin involve the binding and dissociation of electrons. This reaction is described with the Nernst equation. The Nernst equation is applicable only to a monomeric species even if the number of electrons involved is greater than unity. To analyze the oxidation-reduction reaction in a molecule such as hemoglobin a model is required which incorporates extensions of the Nernst equation. This communication develops models employing the Nernst equation for oxidation-reduction reactions analogous to those employed for hemoglobin in the analysis of the oxygenation (binding of oxygen) reaction.

  20. Gene regulatory networks: a coarse-grained, equation-free approach to multiscale computation.

    PubMed

    Erban, Radek; Kevrekidis, Ioannis G; Adalsteinsson, David; Elston, Timothy C

    2006-02-28

    We present computer-assisted methods for analyzing stochastic models of gene regulatory networks. The main idea that underlies this equation-free analysis is the design and execution of appropriately initialized short bursts of stochastic simulations; the results of these are processed to estimate coarse-grained quantities of interest, such as mesoscopic transport coefficients. In particular, using a simple model of a genetic toggle switch, we illustrate the computation of an effective free energy Phi and of a state-dependent effective diffusion coefficient D that characterize an unavailable effective Fokker-Planck equation. Additionally we illustrate the linking of equation-free techniques with continuation methods for performing a form of stochastic "bifurcation analysis"; estimation of mean switching times in the case of a bistable switch is also implemented in this equation-free context. The accuracy of our methods is tested by direct comparison with long-time stochastic simulations. This type of equation-free analysis appears to be a promising approach to computing features of the long-time, coarse-grained behavior of certain classes of complex stochastic models of gene regulatory networks, circumventing the need for long Monte Carlo simulations.

  1. Automatic simplification of systems of reaction-diffusion equations by a posteriori analysis.

    PubMed

    Maybank, Philip J; Whiteley, Jonathan P

    2014-02-01

    Many mathematical models in biology and physiology are represented by systems of nonlinear differential equations. In recent years these models have become increasingly complex in order to explain the enormous volume of data now available. A key role of modellers is to determine which components of the model have the greatest effect on a given observed behaviour. An approach for automatically fulfilling this role, based on a posteriori analysis, has recently been developed for nonlinear initial value ordinary differential equations [J.P. Whiteley, Model reduction using a posteriori analysis, Math. Biosci. 225 (2010) 44-52]. In this paper we extend this model reduction technique for application to both steady-state and time-dependent nonlinear reaction-diffusion systems. Exemplar problems drawn from biology are used to demonstrate the applicability of the technique. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Reliable and More Powerful Methods for Power Analysis in Structural Equation Modeling

    ERIC Educational Resources Information Center

    Yuan, Ke-Hai; Zhang, Zhiyong; Zhao, Yanyun

    2017-01-01

    The normal-distribution-based likelihood ratio statistic T[subscript ml] = nF[subscript ml] is widely used for power analysis in structural Equation modeling (SEM). In such an analysis, power and sample size are computed by assuming that T[subscript ml] follows a central chi-square distribution under H[subscript 0] and a noncentral chi-square…

  3. Convection equation modeling: A non-iterative direct matrix solution algorithm for use with SINDA

    NASA Technical Reports Server (NTRS)

    Schrage, Dean S.

    1993-01-01

    The determination of the boundary conditions for a component-level analysis, applying discrete finite element and finite difference modeling techniques often requires an analysis of complex coupled phenomenon that cannot be described algebraically. For example, an analysis of the temperature field of a coldplate surface with an integral fluid loop requires a solution to the parabolic heat equation and also requires the boundary conditions that describe the local fluid temperature. However, the local fluid temperature is described by a convection equation that can only be solved with the knowledge of the locally-coupled coldplate temperatures. Generally speaking, it is not computationally efficient, and sometimes, not even possible to perform a direct, coupled phenomenon analysis of the component-level and boundary condition models within a single analysis code. An alternative is to perform a disjoint analysis, but transmit the necessary information between models during the simulation to provide an indirect coupling. For this approach to be effective, the component-level model retains full detail while the boundary condition model is simplified to provide a fast, first-order prediction of the phenomenon in question. Specifically for the present study, the coldplate structure is analyzed with a discrete, numerical model (SINDA) while the fluid loop convection equation is analyzed with a discrete, analytical model (direct matrix solution). This indirect coupling allows a satisfactory prediction of the boundary condition, while not subjugating the overall computational efficiency of the component-level analysis. In the present study a discussion of the complete analysis of the derivation and direct matrix solution algorithm of the convection equation is presented. Discretization is analyzed and discussed to extend of solution accuracy, stability and computation speed. Case studies considering a pulsed and harmonic inlet disturbance to the fluid loop are analyzed to assist in the discussion of numerical dissipation and accuracy. In addition, the issues of code melding or integration with standard class solvers such as SINDA are discussed to advise the user of the potential problems to be encountered.

  4. Approximating a nonlinear advanced-delayed equation from acoustics

    NASA Astrophysics Data System (ADS)

    Teodoro, M. Filomena

    2016-10-01

    We approximate the solution of a particular non-linear mixed type functional differential equation from physiology, the mucosal wave model of the vocal oscillation during phonation. The mathematical equation models a superficial wave propagating through the tissues. The numerical scheme is adapted from the work presented in [1, 2, 3], using homotopy analysis method (HAM) to solve the non linear mixed type equation under study.

  5. A Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics. Part 1. Analysis Development

    DTIC Science & Technology

    1980-06-01

    sufficient. Dropping the time lag terms, the equations for Xu, Xx’, and X reduce to linear algebraic equations.Y Hence in the quasistatic case the...quasistatic variables now are not described by differential equations but rather by linear algebraic equations. The solution for x0 then is simply -365...matrices for two-bladed rotor 414 7. LINEAR SYSTEM ANALYSIS 425 7,1 State Variable Form 425 7.2 Constant Coefficient System 426 7.2. 1 Eigen-analysis 426

  6. Model parameter uncertainty analysis for an annual field-scale P loss model

    NASA Astrophysics Data System (ADS)

    Bolster, Carl H.; Vadas, Peter A.; Boykin, Debbie

    2016-08-01

    Phosphorous (P) fate and transport models are important tools for developing and evaluating conservation practices aimed at reducing P losses from agricultural fields. Because all models are simplifications of complex systems, there will exist an inherent amount of uncertainty associated with their predictions. It is therefore important that efforts be directed at identifying, quantifying, and communicating the different sources of model uncertainties. In this study, we conducted an uncertainty analysis with the Annual P Loss Estimator (APLE) model. Our analysis included calculating parameter uncertainties and confidence and prediction intervals for five internal regression equations in APLE. We also estimated uncertainties of the model input variables based on values reported in the literature. We then predicted P loss for a suite of fields under different management and climatic conditions while accounting for uncertainties in the model parameters and inputs and compared the relative contributions of these two sources of uncertainty to the overall uncertainty associated with predictions of P loss. Both the overall magnitude of the prediction uncertainties and the relative contributions of the two sources of uncertainty varied depending on management practices and field characteristics. This was due to differences in the number of model input variables and the uncertainties in the regression equations associated with each P loss pathway. Inspection of the uncertainties in the five regression equations brought attention to a previously unrecognized limitation with the equation used to partition surface-applied fertilizer P between leaching and runoff losses. As a result, an alternate equation was identified that provided similar predictions with much less uncertainty. Our results demonstrate how a thorough uncertainty and model residual analysis can be used to identify limitations with a model. Such insight can then be used to guide future data collection and model development and evaluation efforts.

  7. Testing Mediation Using Multiple Regression and Structural Equation Modeling Analyses in Secondary Data

    ERIC Educational Resources Information Center

    Li, Spencer D.

    2011-01-01

    Mediation analysis in child and adolescent development research is possible using large secondary data sets. This article provides an overview of two statistical methods commonly used to test mediated effects in secondary analysis: multiple regression and structural equation modeling (SEM). Two empirical studies are presented to illustrate the…

  8. Using Structural Equation Models with Latent Variables to Study Student Growth and Development.

    ERIC Educational Resources Information Center

    Pike, Gary R.

    1991-01-01

    Analysis of data on freshman-to-senior developmental gains in 722 University of Tennessee-Knoxville students provides evidence of the advantages of structural equation modeling with latent variables and suggests that the group differences identified by traditional analysis of variance and covariance techniques may be an artifact of measurement…

  9. Multilevel Structural Equation Models for the Analysis of Comparative Data on Educational Performance

    ERIC Educational Resources Information Center

    Goldstein, Harvey; Bonnet, Gerard; Rocher, Thierry

    2007-01-01

    The Programme for International Student Assessment comparative study of reading performance among 15-year-olds is reanalyzed using statistical procedures that allow the full complexity of the data structures to be explored. The article extends existing multilevel factor analysis and structural equation models and shows how this can extract richer…

  10. Computing the modal mass from the state space model in combined experimental-operational modal analysis

    NASA Astrophysics Data System (ADS)

    Cara, Javier

    2016-05-01

    Modal parameters comprise natural frequencies, damping ratios, modal vectors and modal masses. In a theoretic framework, these parameters are the basis for the solution of vibration problems using the theory of modal superposition. In practice, they can be computed from input-output vibration data: the usual procedure is to estimate a mathematical model from the data and then to compute the modal parameters from the estimated model. The most popular models for input-output data are based on the frequency response function, but in recent years the state space model in the time domain has become popular among researchers and practitioners of modal analysis with experimental data. In this work, the equations to compute the modal parameters from the state space model when input and output data are available (like in combined experimental-operational modal analysis) are derived in detail using invariants of the state space model: the equations needed to compute natural frequencies, damping ratios and modal vectors are well known in the operational modal analysis framework, but the equation needed to compute the modal masses has not generated much interest in technical literature. These equations are applied to both a numerical simulation and an experimental study in the last part of the work.

  11. Ground resonance analysis using a substructure modeling approach

    NASA Technical Reports Server (NTRS)

    Chen, S.-Y.; Berman, A.; Austin, E. E.

    1984-01-01

    A convenient and versatile procedure for modeling and analyzing ground resonance phenomena is described and illustrated. A computer program is used which dynamically couples differential equations with nonlinear and time dependent coefficients. Each set of differential equations may represent a component such as a rotor, fuselage, landing gear, or a failed damper. Arbitrary combinations of such components may be formulated into a model of a system. When the coupled equations are formed, a procedure is executed which uses a Floquet analysis to determine the stability of the system. Illustrations of the use of the procedures along with the numerical examples are presented.

  12. Ground resonance analysis using a substructure modeling approach

    NASA Technical Reports Server (NTRS)

    Chen, S. Y.; Austin, E. E.; Berman, A.

    1985-01-01

    A convenient and versatile procedure for modeling and analyzing ground resonance phenomena is described and illustrated. A computer program is used which dynamically couples differential equations with nonlinear and time dependent coefficients. Each set of differential equations may represent a component such as a rotor, fuselage, landing gear, or a failed damper. Arbitrary combinations of such components may be formulated into a model of a system. When the coupled equations are formed, a procedure is executed which uses a Floquet analysis to determine the stability of the system. Illustrations of the use of the procedures along with the numerical examples are presented.

  13. Application of satellite data in variational analysis for global cyclonic systems

    NASA Technical Reports Server (NTRS)

    Achtemeier, G. L.

    1988-01-01

    The goal of the research is a variational data assimilation method that incorporates as dynamical constraints, the primitive equations for a moist, convectively unstable atmosphere and the radiative transfer equation. Variables to be adjusted include the three-dimensional vector wind, height, temperature, and moisture from rawinsonde data, and cloud-wind vectors, moisture, and radiance from satellite data. In order to facilitate thorough analysis of each of the model components, four variational models that divide the problem naturally according to increasing complexity were defined. The research performed during the second year fall into four areas: sensitivity studies involving Model 1; evaluation of Model 2; reformation of Model 1 for greater compatibility with Model 2; development of Model 3 (radiative transfer equation); and making the model more responsive to the observations.

  14. A Review of Recent Aeroelastic Analysis Methods for Propulsion at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Bakhle, Milind A.; Srivastava, R.; Mehmed, Oral; Stefko, George L.

    1993-01-01

    This report reviews aeroelastic analyses for propulsion components (propfans, compressors and turbines) being developed and used at NASA LeRC. These aeroelastic analyses include both structural and aerodynamic models. The structural models include a typical section, a beam (with and without disk flexibility), and a finite-element blade model (with plate bending elements). The aerodynamic models are based on the solution of equations ranging from the two-dimensional linear potential equation to the three-dimensional Euler equations for multibladed configurations. Typical calculated results are presented for each aeroelastic model. Suggestions for further research are made. Many of the currently available aeroelastic models and analysis methods are being incorporated in a unified computer program, APPLE (Aeroelasticity Program for Propulsion at LEwis).

  15. A Study of Multigrid Preconditioners Using Eigensystem Analysis

    NASA Technical Reports Server (NTRS)

    Roberts, Thomas W.; Swanson, R. C.

    2005-01-01

    The convergence properties of numerical schemes for partial differential equations are studied by examining the eigensystem of the discrete operator. This method of analysis is very general, and allows the effects of boundary conditions and grid nonuniformities to be examined directly. Algorithms for the Laplace equation and a two equation model hyperbolic system are examined.

  16. Nonlinear density wave investigation for an extended car-following model considering driver’s memory and jerk

    NASA Astrophysics Data System (ADS)

    Jin, Zhizhan; Li, Zhipeng; Cheng, Rongjun; Ge, Hongxia

    2018-01-01

    Based on the two velocity difference model (TVDM), an extended car-following model is developed to investigate the effect of driver’s memory and jerk on traffic flow in this paper. By using linear stability analysis, the stability conditions are derived. And through nonlinear analysis, the time-dependent Ginzburg-Landau (TDGL) equation and the modified Korteweg-de Vries (mKdV) equation are obtained, respectively. The mKdV equation is constructed to describe the traffic behavior near the critical point. The evolution of traffic congestion and the corresponding energy consumption are discussed. Numerical simulations show that the improved model is found not only to enhance the stability of traffic flow, but also to depress the energy consumption, which are consistent with the theoretical analysis.

  17. Instability of turing patterns in reaction-diffusion-ODE systems.

    PubMed

    Marciniak-Czochra, Anna; Karch, Grzegorz; Suzuki, Kanako

    2017-02-01

    The aim of this paper is to contribute to the understanding of the pattern formation phenomenon in reaction-diffusion equations coupled with ordinary differential equations. Such systems of equations arise, for example, from modeling of interactions between cellular processes such as cell growth, differentiation or transformation and diffusing signaling factors. We focus on stability analysis of solutions of a prototype model consisting of a single reaction-diffusion equation coupled to an ordinary differential equation. We show that such systems are very different from classical reaction-diffusion models. They exhibit diffusion-driven instability (turing instability) under a condition of autocatalysis of non-diffusing component. However, the same mechanism which destabilizes constant solutions of such models, destabilizes also all continuous spatially heterogeneous stationary solutions, and consequently, there exist no stable Turing patterns in such reaction-diffusion-ODE systems. We provide a rigorous result on the nonlinear instability, which involves the analysis of a continuous spectrum of a linear operator induced by the lack of diffusion in the destabilizing equation. These results are extended to discontinuous patterns for a class of nonlinearities.

  18. User’s Guide for the VTRPE (Variable Terrain Radio Parabolic Equation) Computer Model

    DTIC Science & Technology

    1991-10-01

    propagation effects and antenna characteristics in radar system performance calculations. the radar transmission equation is oiten employed. Fol- lowing Kerr.2...electromagnetic wave equations for the complex electric and magnetic radiation fields. The model accounts for the effects of nonuniform atmospheric refractivity...mission equation, that is used in the performance prediction and analysis of radar and communication systems. Optimized fast Fourier transform (FFT

  19. Proteus two-dimensional Navier-Stokes computer code, version 2.0. Volume 1: Analysis description

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Schwab, John R.; Bui, Trong T.

    1993-01-01

    A computer code called Proteus 2D was developed to solve the two-dimensional planar or axisymmetric, Reynolds-averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort was to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The governing equations are solved in generalized nonorthogonal body-fitted coordinates, by marching in time using a fully-coupled ADI solution procedure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step options are available for convergence acceleration. The documentation is divided into three volumes. This is the Analysis Description, and presents the equations and solution procedure. The governing equations, the turbulence model, the linearization of the equations and boundary conditions, the time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models are described in detail.

  20. Proteus three-dimensional Navier-Stokes computer code, version 1.0. Volume 1: Analysis description

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Schwab, John R.; Bui, Trong T.

    1993-01-01

    A computer code called Proteus 3D has been developed to solve the three dimensional, Reynolds averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The objective in this effort has been to develop a code for aerospace propulsion applications that is easy to use and easy to modify. Code readability, modularity, and documentation have been emphasized. The governing equations are solved in generalized non-orthogonal body-fitted coordinates by marching in time using a fully-coupled ADI solution procedure. The boundary conditions are treated implicitly. All terms, including the diffusion terms, are linearized using second-order Taylor series expansions. Turbulence is modeled using either an algebraic or two-equation eddy viscosity model. The thin-layer or Euler equations may also be solved. The energy equation may be eliminated by the assumption of constant total enthalpy. Explicit and implicit artificial viscosity may be used. Several time step options are available for convergence acceleration. The documentation is divided into three volumes. This is the Analysis Description, and presents the equations and solution procedure. It describes in detail the governing equations, the turbulence model, the linearization of the equations and boundary conditions, the time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models.

  1. Application of the order-of-magnitude analysis to a fourth-order RANS closure for simulating a 2D boundary layer

    NASA Astrophysics Data System (ADS)

    Poroseva, Svetlana V.

    2013-11-01

    Simulations of turbulent boundary-layer flows are usually conducted using a set of the simplified Reynolds-Averaged Navier-Stokes (RANS) equations obtained by order-of-magnitude analysis (OMA) of the original RANS equations. The resultant equations for the mean-velocity components are closed using the Boussinesq approximation for the Reynolds stresses. In this study OMA is applied to the fourth-order RANS (FORANS) set of equations. The FORANS equations are chosen as they can be closed on the level of the 5th-order correlations without using unknown model coefficients, i.e. no turbulent diffusion modeling is required. New models for the 2nd-, 3rd- and 4th-order velocity-pressure gradient correlations are derived for the current FORANS equations. This set of FORANS equations and models are analyzed for the case of two-dimensional mean flow. The equations include familiar transport terms for the mean-velocity components along with algebraic expressions for velocity correlations of different orders specific to the FORANS approach. Flat plate DNS data (Spalart, 1988) are used to verify these expressions and the areas of the OMA applicability within the boundary layer. The material is based upon work supported by NASA under award NNX12AJ61A.

  2. Analysis of eccentric annular incompressible seals. II - Effects of eccentricity on rotordynamic coefficients

    NASA Technical Reports Server (NTRS)

    Nelson, C. C.; Nguyen, D. T.

    1987-01-01

    A new analysis procedure has been presented which solves for the flow variables of an annular pressure seal in which the rotor has a large static displacement (eccentricity) from the centered position. The present paper incorporates the solutions to investigate the effect of eccentricity on the rotordynamic coefficients. The analysis begins with a set of governing equations based on a turbulent bulk-flow model and Moody's friction factor equation. Perturbations of the flow variables yields a set of zeroth- and first-order equations. After integration of the zeroth-order equations, the resulting zeroth-order flow variables are used as input in the solution of the first-order equations. Further integration of the first order pressures yields the eccentric rotordynamic coefficients. The results from this procedure compare well with available experimental and theoretical data, with accuracy just as good or slightly better than the predictions based on a finite-element model.

  3. User’s Manual for SEEK TALK Full Scale Engineering Development Life Cycle Cost (LCC) Model. Volume II. Model Equations and Model Operations.

    DTIC Science & Technology

    1981-04-01

    LIFE CYCLE COST (LCC) LCC SENSITIVITY ANALYSIS LCC MODE , REPAIR LEVEL ANALYSIS (RLA) 20 ABSTRACT (Cnn tlnue on reverse side It necessary and Identify... level analysis capability. Next it provides values for Air Force input parameters and instructions for contractor inputs, general operating...Maintenance Manhour Requirements 39 5.1.4 Calculation of Repair Level Fractions 43 5.2 Cost Element Equations 47 5.2.1 Production Cost Element 47

  4. Sensitivity Analysis of Hydraulic Head to Locations of Model Boundaries

    DOE PAGES

    Lu, Zhiming

    2018-01-30

    Sensitivity analysis is an important component of many model activities in hydrology. Numerous studies have been conducted in calculating various sensitivities. Most of these sensitivity analysis focus on the sensitivity of state variables (e.g. hydraulic head) to parameters representing medium properties such as hydraulic conductivity or prescribed values such as constant head or flux at boundaries, while few studies address the sensitivity of the state variables to some shape parameters or design parameters that control the model domain. Instead, these shape parameters are typically assumed to be known in the model. In this study, based on the flow equation, wemore » derive the equation (and its associated initial and boundary conditions) for sensitivity of hydraulic head to shape parameters using continuous sensitivity equation (CSE) approach. These sensitivity equations can be solved numerically in general or analytically in some simplified cases. Finally, the approach has been demonstrated through two examples and the results are compared favorably to those from analytical solutions or numerical finite difference methods with perturbed model domains, while numerical shortcomings of the finite difference method are avoided.« less

  5. Sensitivity Analysis of Hydraulic Head to Locations of Model Boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Zhiming

    Sensitivity analysis is an important component of many model activities in hydrology. Numerous studies have been conducted in calculating various sensitivities. Most of these sensitivity analysis focus on the sensitivity of state variables (e.g. hydraulic head) to parameters representing medium properties such as hydraulic conductivity or prescribed values such as constant head or flux at boundaries, while few studies address the sensitivity of the state variables to some shape parameters or design parameters that control the model domain. Instead, these shape parameters are typically assumed to be known in the model. In this study, based on the flow equation, wemore » derive the equation (and its associated initial and boundary conditions) for sensitivity of hydraulic head to shape parameters using continuous sensitivity equation (CSE) approach. These sensitivity equations can be solved numerically in general or analytically in some simplified cases. Finally, the approach has been demonstrated through two examples and the results are compared favorably to those from analytical solutions or numerical finite difference methods with perturbed model domains, while numerical shortcomings of the finite difference method are avoided.« less

  6. Dynamical analysis of cigarette smoking model with a saturated incidence rate

    NASA Astrophysics Data System (ADS)

    Zeb, Anwar; Bano, Ayesha; Alzahrani, Ebraheem; Zaman, Gul

    2018-04-01

    In this paper, we consider a delayed smoking model in which the potential smokers are assumed to satisfy the logistic equation. We discuss the dynamical behavior of our proposed model in the form of Delayed Differential Equations (DDEs) and show conditions for asymptotic stability of the model in steady state. We also discuss the Hopf bifurcation analysis of considered model. Finally, we use the nonstandard finite difference (NSFD) scheme to show the results graphically with help of MATLAB.

  7. Deriving Differential Equations from Process Algebra Models in Reagent-Centric Style

    NASA Astrophysics Data System (ADS)

    Hillston, Jane; Duguid, Adam

    The reagent-centric style of modeling allows stochastic process algebra models of biochemical signaling pathways to be developed in an intuitive way. Furthermore, once constructed, the models are amenable to analysis by a number of different mathematical approaches including both stochastic simulation and coupled ordinary differential equations. In this chapter, we give a tutorial introduction to the reagent-centric style, in PEPA and Bio-PEPA, and the way in which such models can be used to generate systems of ordinary differential equations.

  8. Solution of Algebraic Equations in the Analysis, Design, and Optimization of Continuous Ultrafiltration

    ERIC Educational Resources Information Center

    Foley, Greg

    2011-01-01

    Continuous feed and bleed ultrafiltration, modeled with the gel polarization model for the limiting flux, is shown to provide a rich source of non-linear algebraic equations that can be readily solved using numerical and graphical techniques familiar to undergraduate students. We present a variety of numerical problems in the design, analysis, and…

  9. Simulations of Fluvial Landscapes

    NASA Astrophysics Data System (ADS)

    Cattan, D.; Birnir, B.

    2013-12-01

    The Smith-Bretherton-Birnir (SBB) model for fluvial landsurfaces consists of a pair of partial differential equations, one governing water flow and one governing the sediment flow. Numerical solutions of these equations have been shown to provide realistic models in the evolution of fluvial landscapes. Further analysis of these equations shows that they possess scaling laws (Hack's Law) that are known to exist in nature. However, the simulations are highly dependent on the numerical methods used; with implicit methods exhibiting the correct scaling laws, but the explicit methods fail to do so. These equations, and the resulting models, help to bridge the gap between the deterministic and the stochastic theories of landscape evolution. Slight modifications of the SBB equations make the results of the model more realistic. By modifying the sediment flow equation, the model obtains more pronounced meandering rivers. Typical landsurface with rivers.

  10. Numerical Analysis of a Class of THM Coupled Model for Porous Materials

    NASA Astrophysics Data System (ADS)

    Liu, Tangwei; Zhou, Jingying; Lu, Hongzhi

    2018-01-01

    We consider the coupled models of the Thermo-hydro-mechanical (THM) problem for porous materials which arises in many engineering applications. Firstly, mathematical models of the THM coupled problem for porous materials were discussed. Secondly, for different cases, some numerical difference schemes of coupled model were constructed, respectively. Finally, aassuming that the original water vapour effect is neglectable and that the volume fraction of liquid phase and the solid phase are constants, the nonlinear equations can be reduced to linear equations. The discrete equations corresponding to the linear equations were solved by the Arnodli method.

  11. Numerical analysis and FORTRAN program for the computation of the turbulent wakes of turbomachinery rotor blades, isolated airfoils and cascade of airfoils. Final Report - Ph.D. Thesis Mar. 1980

    NASA Technical Reports Server (NTRS)

    Hah, C.; Lakshminarayana, B.

    1982-01-01

    Turbulent wakes of turbomachinery rotor blades, isolated airfoils, and a cascade of airfoils were investigated both numerically and experimentally. Low subsonic and incompressible wake flows were examined. A finite difference procedure was employed in the numerical analysis utilizing the continuity, momentum, and turbulence closure equations in the rotating, curvilinear, and nonorthogonal coordinate system. A nonorthogonal curvilinear coordinate system was developed to improve the accuracy and efficiency of the numerical calculation. Three turbulence models were employed to obtain closure of the governing equations. The first model was comprised to transport equations for the turbulent kinetic energy and the rate of energy dissipation, and the second and third models were comprised of equations for the rate of turbulent kinetic energy dissipation and Reynolds stresses, respectively. The second model handles the convection and diffusion terms in the Reynolds stress transport equation collectively, while the third model handles them individually. The numerical results demonstrate that the second and third models provide accurate predictions, but the computer time and memory storage can be considerably saved with the second model.

  12. An Analysis of Test Equating Models for the Alabama High School Graduation Examination.

    ERIC Educational Resources Information Center

    Glowacki, Margaret L.

    The purpose of this study was to determine which equating models are appropriate for the Alabama High School Graduation Examination (AHSGE) by equating two previously administered fall forms for each subject area of the AHSGE and determining whether differences exist in the test score distributions or passing scores resulting from the equating…

  13. Comparison of the Nernst-Planck model and the Poisson-Boltzmann model for electroosmotic flows in microchannels.

    PubMed

    Park, H M; Lee, J S; Kim, T W

    2007-11-15

    In the analysis of electroosmotic flows, the internal electric potential is usually modeled by the Poisson-Boltzmann equation. The Poisson-Boltzmann equation is derived from the assumption of thermodynamic equilibrium where the ionic distributions are not affected by fluid flows. Although this is a reasonable assumption for steady electroosmotic flows through straight microchannels, there are some important cases where convective transport of ions has nontrivial effects. In these cases, it is necessary to adopt the Nernst-Planck equation instead of the Poisson-Boltzmann equation to model the internal electric field. In the present work, the predictions of the Nernst-Planck equation are compared with those of the Poisson-Boltzmann equation for electroosmotic flows in various microchannels where the convective transport of ions is not negligible.

  14. Multivariate space - time analysis of PRE-STORM precipitation

    NASA Technical Reports Server (NTRS)

    Polyak, Ilya; North, Gerald R.; Valdes, Juan B.

    1994-01-01

    This paper presents the methodologies and results of the multivariate modeling and two-dimensional spectral and correlation analysis of PRE-STORM rainfall gauge data. Estimated parameters of the models for the specific spatial averages clearly indicate the eastward and southeastward wave propagation of rainfall fluctuations. A relationship between the coefficients of the diffusion equation and the parameters of the stochastic model of rainfall fluctuations is derived that leads directly to the exclusive use of rainfall data to estimate advection speed (about 12 m/s) as well as other coefficients of the diffusion equation of the corresponding fields. The statistical methodology developed here can be used for confirmation of physical models by comparison of the corresponding second-moment statistics of the observed and simulated data, for generating multiple samples of any size, for solving the inverse problem of the hydrodynamic equations, and for application in some other areas of meteorological and climatological data analysis and modeling.

  15. Analyzing Mixed-Dyadic Data Using Structural Equation Models

    ERIC Educational Resources Information Center

    Peugh, James L.; DiLillo, David; Panuzio, Jillian

    2013-01-01

    Mixed-dyadic data, collected from distinguishable (nonexchangeable) or indistinguishable (exchangeable) dyads, require statistical analysis techniques that model the variation within dyads and between dyads appropriately. The purpose of this article is to provide a tutorial for performing structural equation modeling analyses of cross-sectional…

  16. Autonomous Aerobraking: Thermal Analysis and Response Surface Development

    NASA Technical Reports Server (NTRS)

    Dec, John A.; Thornblom, Mark N.

    2011-01-01

    A high-fidelity thermal model of the Mars Reconnaissance Orbiter was developed for use in an autonomous aerobraking simulation study. Response surface equations were derived from the high-fidelity thermal model and integrated into the autonomous aerobraking simulation software. The high-fidelity thermal model was developed using the Thermal Desktop software and used in all phases of the analysis. The use of Thermal Desktop exclusively, represented a change from previously developed aerobraking thermal analysis methodologies. Comparisons were made between the Thermal Desktop solutions and those developed for the previous aerobraking thermal analyses performed on the Mars Reconnaissance Orbiter during aerobraking operations. A variable sensitivity screening study was performed to reduce the number of variables carried in the response surface equations. Thermal analysis and response surface equation development were performed for autonomous aerobraking missions at Mars and Venus.

  17. Bending of Euler-Bernoulli nanobeams based on the strain-driven and stress-driven nonlocal integral models: a numerical approach

    NASA Astrophysics Data System (ADS)

    Oskouie, M. Faraji; Ansari, R.; Rouhi, H.

    2018-04-01

    Eringen's nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects. Previous studies have revealed that using the differential form of the strain-driven version of this theory leads to paradoxical results in some cases, such as bending analysis of cantilevers, and recourse must be made to the integral version. In this article, a novel numerical approach is developed for the bending analysis of Euler-Bernoulli nanobeams in the context of strain- and stress-driven integral nonlocal models. This numerical approach is proposed for the direct solution to bypass the difficulties related to converting the integral governing equation into a differential equation. First, the governing equation is derived based on both strain-driven and stress-driven nonlocal models by means of the minimum total potential energy. Also, in each case, the governing equation is obtained in both strong and weak forms. To solve numerically the derived equations, matrix differential and integral operators are constructed based upon the finite difference technique and trapezoidal integration rule. It is shown that the proposed numerical approach can be efficiently applied to the strain-driven nonlocal model with the aim of resolving the mentioned paradoxes. Also, it is able to solve the problem based on the strain-driven model without inconsistencies of the application of this model that are reported in the literature.

  18. Mars approach for global sensitivity analysis of differential equation models with applications to dynamics of influenza infection.

    PubMed

    Lee, Yeonok; Wu, Hulin

    2012-01-01

    Differential equation models are widely used for the study of natural phenomena in many fields. The study usually involves unknown factors such as initial conditions and/or parameters. It is important to investigate the impact of unknown factors (parameters and initial conditions) on model outputs in order to better understand the system the model represents. Apportioning the uncertainty (variation) of output variables of a model according to the input factors is referred to as sensitivity analysis. In this paper, we focus on the global sensitivity analysis of ordinary differential equation (ODE) models over a time period using the multivariate adaptive regression spline (MARS) as a meta model based on the concept of the variance of conditional expectation (VCE). We suggest to evaluate the VCE analytically using the MARS model structure of univariate tensor-product functions which is more computationally efficient. Our simulation studies show that the MARS model approach performs very well and helps to significantly reduce the computational cost. We present an application example of sensitivity analysis of ODE models for influenza infection to further illustrate the usefulness of the proposed method.

  19. Algorithmic framework for group analysis of differential equations and its application to generalized Zakharov-Kuznetsov equations

    NASA Astrophysics Data System (ADS)

    Huang, Ding-jiang; Ivanova, Nataliya M.

    2016-02-01

    In this paper, we explain in more details the modern treatment of the problem of group classification of (systems of) partial differential equations (PDEs) from the algorithmic point of view. More precisely, we revise the classical Lie algorithm of construction of symmetries of differential equations, describe the group classification algorithm and discuss the process of reduction of (systems of) PDEs to (systems of) equations with smaller number of independent variables in order to construct invariant solutions. The group classification algorithm and reduction process are illustrated by the example of the generalized Zakharov-Kuznetsov (GZK) equations of form ut +(F (u)) xxx +(G (u)) xyy +(H (u)) x = 0. As a result, a complete group classification of the GZK equations is performed and a number of new interesting nonlinear invariant models which have non-trivial invariance algebras are obtained. Lie symmetry reductions and exact solutions for two important invariant models, i.e., the classical and modified Zakharov-Kuznetsov equations, are constructed. The algorithmic framework for group analysis of differential equations presented in this paper can also be applied to other nonlinear PDEs.

  20. An Illustration of a Longitudinal Cross-Lagged Design for Larger Structural Equation Models. Teacher's Corner.

    ERIC Educational Resources Information Center

    Burkholder, Gary J.; Harlow, Lisa L.

    2003-01-01

    Tested a model of HIV behavior risk, using a fully cross-lagged, longitudinal design to illustrate the analysis of larger structural equation models. Data from 527 women who completed a survey at three time points show excellent fit of the model to the data. (SLD)

  1. Two ways to solve, using Lie group analysis, the fundamental valuation equation in the double-square-root model of the term structure

    NASA Astrophysics Data System (ADS)

    Sinkala, W.

    2011-01-01

    Two approaches based on Lie group analysis are employed to obtain the closed-form solution of a partial differential equation derived by Francis A. Longstaff [J Financial Econom 1989;23:195-224] for the price of a discount bond in the double-square-root model of the term structure.

  2. Sensitivity analysis of dynamic biological systems with time-delays.

    PubMed

    Wu, Wu Hsiung; Wang, Feng Sheng; Chang, Maw Shang

    2010-10-15

    Mathematical modeling has been applied to the study and analysis of complex biological systems for a long time. Some processes in biological systems, such as the gene expression and feedback control in signal transduction networks, involve a time delay. These systems are represented as delay differential equation (DDE) models. Numerical sensitivity analysis of a DDE model by the direct method requires the solutions of model and sensitivity equations with time-delays. The major effort is the computation of Jacobian matrix when computing the solution of sensitivity equations. The computation of partial derivatives of complex equations either by the analytic method or by symbolic manipulation is time consuming, inconvenient, and prone to introduce human errors. To address this problem, an automatic approach to obtain the derivatives of complex functions efficiently and accurately is necessary. We have proposed an efficient algorithm with an adaptive step size control to compute the solution and dynamic sensitivities of biological systems described by ordinal differential equations (ODEs). The adaptive direct-decoupled algorithm is extended to solve the solution and dynamic sensitivities of time-delay systems describing by DDEs. To save the human effort and avoid the human errors in the computation of partial derivatives, an automatic differentiation technique is embedded in the extended algorithm to evaluate the Jacobian matrix. The extended algorithm is implemented and applied to two realistic models with time-delays: the cardiovascular control system and the TNF-α signal transduction network. The results show that the extended algorithm is a good tool for dynamic sensitivity analysis on DDE models with less user intervention. By comparing with direct-coupled methods in theory, the extended algorithm is efficient, accurate, and easy to use for end users without programming background to do dynamic sensitivity analysis on complex biological systems with time-delays.

  3. Algebraic aspects of evolution partial differential equation arising in the study of constant elasticity of variance model from financial mathematics

    NASA Astrophysics Data System (ADS)

    Motsepa, Tanki; Aziz, Taha; Fatima, Aeeman; Khalique, Chaudry Masood

    2018-03-01

    The optimal investment-consumption problem under the constant elasticity of variance (CEV) model is investigated from the perspective of Lie group analysis. The Lie symmetry group of the evolution partial differential equation describing the CEV model is derived. The Lie point symmetries are then used to obtain an exact solution of the governing model satisfying a standard terminal condition. Finally, we construct conservation laws of the underlying equation using the general theorem on conservation laws.

  4. Optimal harvesting for a predator-prey agent-based model using difference equations.

    PubMed

    Oremland, Matthew; Laubenbacher, Reinhard

    2015-03-01

    In this paper, a method known as Pareto optimization is applied in the solution of a multi-objective optimization problem. The system in question is an agent-based model (ABM) wherein global dynamics emerge from local interactions. A system of discrete mathematical equations is formulated in order to capture the dynamics of the ABM; while the original model is built up analytically from the rules of the model, the paper shows how minor changes to the ABM rule set can have a substantial effect on model dynamics. To address this issue, we introduce parameters into the equation model that track such changes. The equation model is amenable to mathematical theory—we show how stability analysis can be performed and validated using ABM data. We then reduce the equation model to a simpler version and implement changes to allow controls from the ABM to be tested using the equations. Cohen's weighted κ is proposed as a measure of similarity between the equation model and the ABM, particularly with respect to the optimization problem. The reduced equation model is used to solve a multi-objective optimization problem via a technique known as Pareto optimization, a heuristic evolutionary algorithm. Results show that the equation model is a good fit for ABM data; Pareto optimization provides a suite of solutions to the multi-objective optimization problem that can be implemented directly in the ABM.

  5. Structural Equation Model Trees

    ERIC Educational Resources Information Center

    Brandmaier, Andreas M.; von Oertzen, Timo; McArdle, John J.; Lindenberger, Ulman

    2013-01-01

    In the behavioral and social sciences, structural equation models (SEMs) have become widely accepted as a modeling tool for the relation between latent and observed variables. SEMs can be seen as a unification of several multivariate analysis techniques. SEM Trees combine the strengths of SEMs and the decision tree paradigm by building tree…

  6. Bayesian Analysis of Nonlinear Structural Equation Models with Nonignorable Missing Data

    ERIC Educational Resources Information Center

    Lee, Sik-Yum

    2006-01-01

    A Bayesian approach is developed for analyzing nonlinear structural equation models with nonignorable missing data. The nonignorable missingness mechanism is specified by a logistic regression model. A hybrid algorithm that combines the Gibbs sampler and the Metropolis-Hastings algorithm is used to produce the joint Bayesian estimates of…

  7. Multilevel Analysis of Structural Equation Models via the EM Algorithm.

    ERIC Educational Resources Information Center

    Jo, See-Heyon

    The question of how to analyze unbalanced hierarchical data generated from structural equation models has been a common problem for researchers and analysts. Among difficulties plaguing statistical modeling are estimation bias due to measurement error and the estimation of the effects of the individual's hierarchical social milieu. This paper…

  8. The Dissipation Rate Transport Equation and Subgrid-Scale Models in Rotating Turbulence

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Ye, Zhou

    1997-01-01

    The dissipation rate transport equation remains the most uncertain part of turbulence modeling. The difficulties arc increased when external agencies like rotation prevent straightforward dimensional analysis from determining the correct form of the modelled equation. In this work, the dissipation rate transport equation and subgrid scale models for rotating turbulence are derived from an analytical statistical theory of rotating turbulence. In the strong rotation limit, the theory predicts a turbulent steady state in which the inertial range energy spectrum scales as k(sup -2) and the turbulent time scale is the inverse rotation rate. This scaling has been derived previously by heuristic arguments.

  9. Numerical analysis of composite STEEL-CONCRETE SECTIONS using integral equation of Volterra

    NASA Astrophysics Data System (ADS)

    Partov, Doncho; Kantchev, Vesselin

    2011-09-01

    The paper presents analysis of the stress and deflections changes due to creep in statically determinate composite steel-concrete beam. The mathematical model involves the equation of equilibrium, compatibility and constitutive relationship, i.e. an elastic law for the steel part and an integral-type creep law of Boltzmann — Volterra for the concrete part. On the basis of the theory of the viscoelastic body of Arutyunian-Trost-Bažant for determining the redistribution of stresses in beam section between concrete plate and steel beam with respect to time "t", two independent Volterra integral equations of the second kind have been derived. Numerical method based on linear approximation of the singular kernal function in the integral equation is presented. Example with the model proposed is investigated. The creep functions is suggested by the model CEB MC90-99 and the "ACI 209R-92 model. The elastic modulus of concrete E c (t) is assumed to be constant in time `t'. The obtained results from the both models are compared.

  10. Experiences on p-Version Time-Discontinuous Galerkin's Method for Nonlinear Heat Transfer Analysis and Sensitivity Analysis

    NASA Technical Reports Server (NTRS)

    Hou, Gene

    2004-01-01

    The focus of this research is on the development of analysis and sensitivity analysis equations for nonlinear, transient heat transfer problems modeled by p-version, time discontinuous finite element approximation. The resulting matrix equation of the state equation is simply in the form ofA(x)x = c, representing a single step, time marching scheme. The Newton-Raphson's method is used to solve the nonlinear equation. Examples are first provided to demonstrate the accuracy characteristics of the resultant finite element approximation. A direct differentiation approach is then used to compute the thermal sensitivities of a nonlinear heat transfer problem. The report shows that only minimal coding effort is required to enhance the analysis code with the sensitivity analysis capability.

  11. Point model equations for neutron correlation counting: Extension of Böhnel's equations to any order

    DOE PAGES

    Favalli, Andrea; Croft, Stephen; Santi, Peter

    2015-06-15

    Various methods of autocorrelation neutron analysis may be used to extract information about a measurement item containing spontaneously fissioning material. The two predominant approaches being the time correlation analysis (that make use of a coincidence gate) methods of multiplicity shift register logic and Feynman sampling. The common feature is that the correlated nature of the pulse train can be described by a vector of reduced factorial multiplet rates. We call these singlets, doublets, triplets etc. Within the point reactor model the multiplet rates may be related to the properties of the item, the parameters of the detector, and basic nuclearmore » data constants by a series of coupled algebraic equations – the so called point model equations. Solving, or inverting, the point model equations using experimental calibration model parameters is how assays of unknown items is performed. Currently only the first three multiplets are routinely used. In this work we develop the point model equations to higher order multiplets using the probability generating functions approach combined with the general derivative chain rule, the so called Faà di Bruno Formula. Explicit expression up to 5th order are provided, as well the general iterative formula to calculate any order. This study represents the first necessary step towards determining if higher order multiplets can add value to nondestructive measurement practice for nuclear materials control and accountancy.« less

  12. 1/f Noise from nonlinear stochastic differential equations.

    PubMed

    Ruseckas, J; Kaulakys, B

    2010-03-01

    We consider a class of nonlinear stochastic differential equations, giving the power-law behavior of the power spectral density in any desirably wide range of frequency. Such equations were obtained starting from the point process models of 1/fbeta noise. In this article the power-law behavior of spectrum is derived directly from the stochastic differential equations, without using the point process models. The analysis reveals that the power spectrum may be represented as a sum of the Lorentzian spectra. Such a derivation provides additional justification of equations, expands the class of equations generating 1/fbeta noise, and provides further insights into the origin of 1/fbeta noise.

  13. Direct and Indirect Effects of Parental Influence upon Adolescent Alcohol Use: A Structural Equation Modeling Analysis

    ERIC Educational Resources Information Center

    Kim, Young-Mi; Neff, James Alan

    2010-01-01

    A model incorporating the direct and indirect effects of parental monitoring on adolescent alcohol use was evaluated by applying structural equation modeling (SEM) techniques to data on 4,765 tenth-graders in the 2001 Monitoring the Future Study. Analyses indicated good fit of hypothesized measurement and structural models. Analyses supported both…

  14. Quantified Choice of Root-Mean-Square Errors of Approximation for Evaluation and Power Analysis of Small Differences between Structural Equation Models

    ERIC Educational Resources Information Center

    Li, Libo; Bentler, Peter M.

    2011-01-01

    MacCallum, Browne, and Cai (2006) proposed a new framework for evaluation and power analysis of small differences between nested structural equation models (SEMs). In their framework, the null and alternative hypotheses for testing a small difference in fit and its related power analyses were defined by some chosen root-mean-square error of…

  15. Lagrangian formulation for penny-shaped and Perkins-Kern geometry models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, W.S.

    1989-09-01

    This paper discusses basic theories for vertical penny-shaped and Perkins-Kern (PK) geometry models developed with a Lagrangian formulation combined with a virtual-work analysis. The Lagrangian formulation yields a pair of nonlinear equations in R/sub f/ or L/sub f/ and b/sub f/, the fracture radius or length and half-width. By introduction of a virtual-work analysis, a simple equation is obtained that can be solved numerically. This equation is written in a form that can be used to determine fracture geometry when the fluid-loss coefficient of the fracturing fluid is known. Also, this equation, coupled with a material-balance equation after shut-in, canmore » be used to analyze pressure-decline data after shut-in to determine the effective fluid-loss coefficient and fracture geometry.« less

  16. Modification of a variational objective analysis model for new equations for pressure gradient and vertical velocity in the lower troposphere and for spatial resolution and accuracy of satellite data

    NASA Technical Reports Server (NTRS)

    Achtemeier, G. L.

    1986-01-01

    Since late 1982 NASA has supported research to develop a numerical variational model for the diagnostic assimilation of conventional and space-based meteorological data. In order to analyze the model components, four variational models are defined dividing the problem naturally according to increasing complexity. The first of these variational models (MODEL I), the subject of this report, contains the two nonlinear horizontal momentum equations, the integrated continuity equation, and the hydrostatic equation. This report summarizes the results of research (1) to improve the way the large nonmeteorological parts of the pressure gradient force are partitioned between the two terms of the pressure gradient force terms of the horizontal momentum equations, (2) to generalize the integrated continuity equation to account for variable pressure thickness over elevated terrain, and (3) to introduce horizontal variation in the precision modulus weights for the observations.

  17. Analysis of nonlocal neural fields for both general and gamma-distributed connectivities

    NASA Astrophysics Data System (ADS)

    Hutt, Axel; Atay, Fatihcan M.

    2005-04-01

    This work studies the stability of equilibria in spatially extended neuronal ensembles. We first derive the model equation from statistical properties of the neuron population. The obtained integro-differential equation includes synaptic and space-dependent transmission delay for both general and gamma-distributed synaptic connectivities. The latter connectivity type reveals infinite, finite, and vanishing self-connectivities. The work derives conditions for stationary and nonstationary instabilities for both kernel types. In addition, a nonlinear analysis for general kernels yields the order parameter equation of the Turing instability. To compare the results to findings for partial differential equations (PDEs), two typical PDE-types are derived from the examined model equation, namely the general reaction-diffusion equation and the Swift-Hohenberg equation. Hence, the discussed integro-differential equation generalizes these PDEs. In the case of the gamma-distributed kernels, the stability conditions are formulated in terms of the mean excitatory and inhibitory interaction ranges. As a novel finding, we obtain Turing instabilities in fields with local inhibition-lateral excitation, while wave instabilities occur in fields with local excitation and lateral inhibition. Numerical simulations support the analytical results.

  18. Quasi-Linear Vacancy Dynamics Modeling and Circuit Analysis of the Bipolar Memristor

    PubMed Central

    Abraham, Isaac

    2014-01-01

    The quasi-linear transport equation is investigated for modeling the bipolar memory resistor. The solution accommodates vacancy and circuit level perspectives on memristance. For the first time in literature the component resistors that constitute the contemporary dual variable resistor circuit model are quantified using vacancy parameters and derived from a governing partial differential equation. The model describes known memristor dynamics even as it generates new insight about vacancy migration, bottlenecks to switching speed and elucidates subtle relationships between switching resistance range and device parameters. The model is shown to comply with Chua's generalized equations for the memristor. Independent experimental results are used throughout, to validate the insights obtained from the model. The paper concludes by implementing a memristor-capacitor filter and compares its performance to a reference resistor-capacitor filter to demonstrate that the model is usable for practical circuit analysis. PMID:25390634

  19. Quasi-linear vacancy dynamics modeling and circuit analysis of the bipolar memristor.

    PubMed

    Abraham, Isaac

    2014-01-01

    The quasi-linear transport equation is investigated for modeling the bipolar memory resistor. The solution accommodates vacancy and circuit level perspectives on memristance. For the first time in literature the component resistors that constitute the contemporary dual variable resistor circuit model are quantified using vacancy parameters and derived from a governing partial differential equation. The model describes known memristor dynamics even as it generates new insight about vacancy migration, bottlenecks to switching speed and elucidates subtle relationships between switching resistance range and device parameters. The model is shown to comply with Chua's generalized equations for the memristor. Independent experimental results are used throughout, to validate the insights obtained from the model. The paper concludes by implementing a memristor-capacitor filter and compares its performance to a reference resistor-capacitor filter to demonstrate that the model is usable for practical circuit analysis.

  20. Non-Linear Acoustic Concealed Weapons Detector

    DTIC Science & Technology

    2006-05-01

    signature analysis 8 the interactions of the beams with concealed objects. The Khokhlov- Zabolotskaya-Kuznetsov ( KZK ) equation is the most widely used...Hamilton developed a finite difference method based on the KZK equation to model pulsed acoustic emissions from axial symmetric sources. Using a...College of William & Mary, we have developed a simulation code using the KZK equation to model non-linear acoustic beams and visualize beam patterns

  1. Approaches for modeling within subject variability in pharmacometric count data analysis: dynamic inter-occasion variability and stochastic differential equations.

    PubMed

    Deng, Chenhui; Plan, Elodie L; Karlsson, Mats O

    2016-06-01

    Parameter variation in pharmacometric analysis studies can be characterized as within subject parameter variability (WSV) in pharmacometric models. WSV has previously been successfully modeled using inter-occasion variability (IOV), but also stochastic differential equations (SDEs). In this study, two approaches, dynamic inter-occasion variability (dIOV) and adapted stochastic differential equations, were proposed to investigate WSV in pharmacometric count data analysis. These approaches were applied to published count models for seizure counts and Likert pain scores. Both approaches improved the model fits significantly. In addition, stochastic simulation and estimation were used to explore further the capability of the two approaches to diagnose and improve models where existing WSV is not recognized. The results of simulations confirmed the gain in introducing WSV as dIOV and SDEs when parameters vary randomly over time. Further, the approaches were also informative as diagnostics of model misspecification, when parameters changed systematically over time but this was not recognized in the structural model. The proposed approaches in this study offer strategies to characterize WSV and are not restricted to count data.

  2. Enhanced Modeling of First-Order Plant Equations of Motion for Aeroelastic and Aeroservoelastic Applications

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.

    2010-01-01

    A methodology is described for generating first-order plant equations of motion for aeroelastic and aeroservoelastic applications. The description begins with the process of generating data files representing specialized mode-shapes, such as rigid-body and control surface modes, using both PATRAN and NASTRAN analysis. NASTRAN executes the 146 solution sequence using numerous Direct Matrix Abstraction Program (DMAP) calls to import the mode-shape files and to perform the aeroelastic response analysis. The aeroelastic response analysis calculates and extracts structural frequencies, generalized masses, frequency-dependent generalized aerodynamic force (GAF) coefficients, sensor deflections and load coefficients data as text-formatted data files. The data files are then re-sequenced and re-formatted using a custom written FORTRAN program. The text-formatted data files are stored and coefficients for s-plane equations are fitted to the frequency-dependent GAF coefficients using two Interactions of Structures, Aerodynamics and Controls (ISAC) programs. With tabular files from stored data created by ISAC, MATLAB generates the first-order aeroservoelastic plant equations of motion. These equations include control-surface actuator, turbulence, sensor and load modeling. Altitude varying root-locus plot and PSD plot results for a model of the F-18 aircraft are presented to demonstrate the capability.

  3. Generalized Appended Product Indicator Procedure for Nonlinear Structural Equation Analysis.

    ERIC Educational Resources Information Center

    Wall, Melanie M.; Amemiya, Yasuo

    2001-01-01

    Considers the estimation of polynomial structural models and shows a limitation of an existing method. Introduces a new procedure, the generalized appended product indicator procedure, for nonlinear structural equation analysis. Addresses statistical issues associated with the procedure through simulation. (SLD)

  4. Nonlinear Solver Approaches for the Diffusive Wave Approximation to the Shallow Water Equations

    NASA Astrophysics Data System (ADS)

    Collier, N.; Knepley, M.

    2015-12-01

    The diffusive wave approximation to the shallow water equations (DSW) is a doubly-degenerate, nonlinear, parabolic partial differential equation used to model overland flows. Despite its challenges, the DSW equation has been extensively used to model the overland flow component of various integrated surface/subsurface models. The equation's complications become increasingly problematic when ponding occurs, a feature which becomes pervasive when solving on large domains with realistic terrain. In this talk I discuss the various forms and regularizations of the DSW equation and highlight their effect on the solvability of the nonlinear system. In addition to this analysis, I present results of a numerical study which tests the applicability of a class of composable nonlinear algebraic solvers recently added to the Portable, Extensible, Toolkit for Scientific Computation (PETSc).

  5. Numerical modeling of the interaction of liquid drops and jets with shock waves and gas jets

    NASA Astrophysics Data System (ADS)

    Surov, V. S.

    1993-02-01

    The motion of a liquid drop (jet) and of the ambient gas is described, in the general case, by Navier-Stokes equations. An approximate solution to the interaction of a plane shock wave with a single liquid drop is presented. Based on the analysis, the general system of Navier-Stokes equations is reduced to two groups of equations, Euler equations for gas and Navier-Stokes equations for liquid; solutions to these equations are presented. The discussion also covers the modeling of the interaction of a shock wave with a drop screen, interaction of a liquid jet with a counterpropagating supersonic gas flow, and modeling of processes in a shock layer during the impact of a drop against an obstacle in gas flow.

  6. Two- and three-dimensional natural and mixed convection simulation using modular zonal models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wurtz, E.; Nataf, J.M.; Winkelmann, F.

    We demonstrate the use of the zonal model approach, which is a simplified method for calculating natural and mixed convection in rooms. Zonal models use a coarse grid and use balance equations, state equations, hydrostatic pressure drop equations and power law equations of the form {ital m} = {ital C}{Delta}{sup {ital n}}. The advantage of the zonal approach and its modular implementation are discussed. The zonal model resolution of nonlinear equation systems is demonstrated for three cases: a 2-D room, a 3-D room and a pair of 3-D rooms separated by a partition with an opening. A sensitivity analysis withmore » respect to physical parameters and grid coarseness is presented. Results are compared to computational fluid dynamics (CFD) calculations and experimental data.« less

  7. Analysis of Some Properties of the Nonlinear Schrödinger Equation Used for Filamentation Modeling

    NASA Astrophysics Data System (ADS)

    Zemlyanov, A. A.; Bulygin, A. D.

    2018-06-01

    Properties of the integral of motion and evolution of the effective light beam radius are analyzed for the stationary model of the nonlinear Schrödinger equation describing the filamentation. It is demonstrated that within the limits of such model, filamentation is limited only by the dissipation mechanisms.

  8. Critical Factors Analysis for Offshore Software Development Success by Structural Equation Modeling

    NASA Astrophysics Data System (ADS)

    Wada, Yoshihisa; Tsuji, Hiroshi

    In order to analyze the success/failure factors in offshore software development service by the structural equation modeling, this paper proposes to follow two approaches together; domain knowledge based heuristic analysis and factor analysis based rational analysis. The former works for generating and verifying of hypothesis to find factors and causalities. The latter works for verifying factors introduced by theory to build the model without heuristics. Following the proposed combined approaches for the responses from skilled project managers of the questionnaire, this paper found that the vendor property has high causality for the success compared to software property and project property.

  9. ISAC: A tool for aeroservoelastic modeling and analysis

    NASA Technical Reports Server (NTRS)

    Adams, William M., Jr.; Hoadley, Sherwood Tiffany

    1993-01-01

    The capabilities of the Interaction of Structures, Aerodynamics, and Controls (ISAC) system of program modules is discussed. The major modeling, analysis, and data management components of ISAC are identified. Equations of motion are displayed for a Laplace-domain representation of the unsteady aerodynamic forces. Options for approximating a frequency-domain representation of unsteady aerodynamic forces with rational functions of the Laplace variable are shown. Linear time invariant state-space equations of motion that result are discussed. Model generation and analyses of stability and dynamic response characteristics are shown for an aeroelastic vehicle which illustrates some of the capabilities of ISAC as a modeling and analysis tool for aeroelastic applications.

  10. Superspace and global stability in general relativity

    NASA Astrophysics Data System (ADS)

    Gurzadyan, A. V.; Kocharyan, A. A.

    A framework is developed enabling the global analysis of the stability of cosmological models using the local geometric characteristics of the infinite-dimensional superspace, i.e. using the generalized Jacobi equation reformulated for pseudo-Riemannian manifolds. We give a direct formalism for dynamical analysis in the superspace, the requisite equation pertinent for stability analysis of the universe by means of generalized covariant and Fermi derivative is derived. Then, the relevant definitions and formulae are retrieved for cosmological models with a scalar field.

  11. Semiparametric mixed-effects analysis of PK/PD models using differential equations.

    PubMed

    Wang, Yi; Eskridge, Kent M; Zhang, Shunpu

    2008-08-01

    Motivated by the use of semiparametric nonlinear mixed-effects modeling on longitudinal data, we develop a new semiparametric modeling approach to address potential structural model misspecification for population pharmacokinetic/pharmacodynamic (PK/PD) analysis. Specifically, we use a set of ordinary differential equations (ODEs) with form dx/dt = A(t)x + B(t) where B(t) is a nonparametric function that is estimated using penalized splines. The inclusion of a nonparametric function in the ODEs makes identification of structural model misspecification feasible by quantifying the model uncertainty and provides flexibility for accommodating possible structural model deficiencies. The resulting model will be implemented in a nonlinear mixed-effects modeling setup for population analysis. We illustrate the method with an application to cefamandole data and evaluate its performance through simulations.

  12. One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishii, M.

    1977-10-01

    In view of the practical importance of the drift-flux model for two-phase flow analysis in general and in the analysis of nuclear-reactor transients and accidents in particular, the kinematic constitutive equation for the drift velocity has been studied for various two-phase flow regimes. The constitutive equation that specifies the relative motion between phases in the drift-flux model has been derived by taking into account the interfacial geometry, the body-force field, shear stresses, and the interfacial momentum transfer, since these macroscopic effects govern the relative velocity between phases. A comparison of the model with various experimental data over various flow regimesmore » and a wide range of flow parameters shows a satisfactory agreement.« less

  13. Nonlinear analysis of 0-3 polarized PLZT microplate based on the new modified couple stress theory

    NASA Astrophysics Data System (ADS)

    Wang, Liming; Zheng, Shijie

    2018-02-01

    In this study, based on the new modified couple stress theory, the size- dependent model for nonlinear bending analysis of a pure 0-3 polarized PLZT plate is developed for the first time. The equilibrium equations are derived from a variational formulation based on the potential energy principle and the new modified couple stress theory. The Galerkin method is adopted to derive the nonlinear algebraic equations from governing differential equations. And then the nonlinear algebraic equations are solved by using Newton-Raphson method. After simplification, the new model includes only a material length scale parameter. In addition, numerical examples are carried out to study the effect of material length scale parameter on the nonlinear bending of a simply supported pure 0-3 polarized PLZT plate subjected to light illumination and uniform distributed load. The results indicate the new model is able to capture the size effect and geometric nonlinearity.

  14. Lattice Boltzmann model for high-order nonlinear partial differential equations

    NASA Astrophysics Data System (ADS)

    Chai, Zhenhua; He, Nanzhong; Guo, Zhaoli; Shi, Baochang

    2018-01-01

    In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂tϕ +∑k=1mαk∂xkΠk(ϕ ) =0 (1 ≤k ≤m ≤6 ), αk are constant coefficients, Πk(ϕ ) are some known differential functions of ϕ . As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K (n ,n ) -Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009), 10.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009), 10.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.

  15. Lattice Boltzmann model for high-order nonlinear partial differential equations.

    PubMed

    Chai, Zhenhua; He, Nanzhong; Guo, Zhaoli; Shi, Baochang

    2018-01-01

    In this paper, a general lattice Boltzmann (LB) model is proposed for the high-order nonlinear partial differential equation with the form ∂_{t}ϕ+∑_{k=1}^{m}α_{k}∂_{x}^{k}Π_{k}(ϕ)=0 (1≤k≤m≤6), α_{k} are constant coefficients, Π_{k}(ϕ) are some known differential functions of ϕ. As some special cases of the high-order nonlinear partial differential equation, the classical (m)KdV equation, KdV-Burgers equation, K(n,n)-Burgers equation, Kuramoto-Sivashinsky equation, and Kawahara equation can be solved by the present LB model. Compared to the available LB models, the most distinct characteristic of the present model is to introduce some suitable auxiliary moments such that the correct moments of equilibrium distribution function can be achieved. In addition, we also conducted a detailed Chapman-Enskog analysis, and found that the high-order nonlinear partial differential equation can be correctly recovered from the proposed LB model. Finally, a large number of simulations are performed, and it is found that the numerical results agree with the analytical solutions, and usually the present model is also more accurate than the existing LB models [H. Lai and C. Ma, Sci. China Ser. G 52, 1053 (2009)1672-179910.1007/s11433-009-0149-3; H. Lai and C. Ma, Phys. A (Amsterdam) 388, 1405 (2009)PHYADX0378-437110.1016/j.physa.2009.01.005] for high-order nonlinear partial differential equations.

  16. Equations for hydraulic conductivity estimation from particle size distribution: A dimensional analysis

    NASA Astrophysics Data System (ADS)

    Wang, Ji-Peng; François, Bertrand; Lambert, Pierre

    2017-09-01

    Estimating hydraulic conductivity from particle size distribution (PSD) is an important issue for various engineering problems. Classical models such as Hazen model, Beyer model, and Kozeny-Carman model usually regard the grain diameter at 10% passing (d10) as an effective grain size and the effects of particle size uniformity (in Beyer model) or porosity (in Kozeny-Carman model) are sometimes embedded. This technical note applies the dimensional analysis (Buckingham's ∏ theorem) to analyze the relationship between hydraulic conductivity and particle size distribution (PSD). The porosity is regarded as a dependent variable on the grain size distribution in unconsolidated conditions. It indicates that the coefficient of grain size uniformity and a dimensionless group representing the gravity effect, which is proportional to the mean grain volume, are the main two determinative parameters for estimating hydraulic conductivity. Regression analysis is then carried out on a database comprising 431 samples collected from different depositional environments and new equations are developed for hydraulic conductivity estimation. The new equation, validated in specimens beyond the database, shows an improved prediction comparing to using the classic models.

  17. Stability analysis for a delay differential equations model of a hydraulic turbine speed governor

    NASA Astrophysics Data System (ADS)

    Halanay, Andrei; Safta, Carmen A.; Dragoi, Constantin; Piraianu, Vlad F.

    2017-01-01

    The paper aims to study the dynamic behavior of a speed governor for a hydraulic turbine using a mathematical model. The nonlinear mathematical model proposed consists in a system of delay differential equations (DDE) to be compared with already established mathematical models of ordinary differential equations (ODE). A new kind of nonlinearity is introduced as a time delay. The delays can characterize different running conditions of the speed governor. For example, it is considered that spool displacement of hydraulic amplifier might be blocked due to oil impurities in the oil supply system and so the hydraulic amplifier has a time delay in comparison to the time control. Numerical simulations are presented in a comparative manner. A stability analysis of the hydraulic control system is performed, too. Conclusions of the dynamic behavior using the DDE model of a hydraulic turbine speed governor are useful in modeling and controlling hydropower plants.

  18. Spectrum Analysis of Inertial and Subinertial Motions Based on Analyzed Winds and Wind-Driven Currents from a Primitive Equation General Ocean Circulation Model.

    DTIC Science & Technology

    1982-12-01

    1Muter.Te Motions Based on Ana lyzed Winds and wind-driven December 1982 Currents from. a Primitive Squat ion General a.OW -love"*..* Oean Circulation...mew se"$ (comeS.... do oISN..u am ae~ 00do OWaor NUN Fourier and Rotary Spc , Analysis Modeled Inertial and Subinrtial Motion 4 Primitive Equation

  19. Generating a Multiphase Equation of State with Swarm Intelligence

    NASA Astrophysics Data System (ADS)

    Cox, Geoffrey

    2017-06-01

    Hydrocode calculations require knowledge of the variation of pressure of a material with density and temperature, which is given by the equation of state. An accurate model needs to account for discontinuities in energy, density and properties of a material across a phase boundary. When generating a multiphase equation of state the modeller attempts to balance the agreement between the available data for compression, expansion and phase boundary location. However, this can prove difficult because minor adjustments in the equation of state for a single phase can have a large impact on the overall phase diagram. Recently, Cox and Christie described a method for combining statistical-mechanics-based condensed matter physics models with a stochastic analysis technique called particle swarm optimisation. The models produced show good agreement with experiment over a wide range of pressure-temperature space. This talk details the general implementation of this technique, shows example results, and describes the types of analysis that can be performed with this method.

  20. Modeling languages for biochemical network simulation: reaction vs equation based approaches.

    PubMed

    Wiechert, Wolfgang; Noack, Stephan; Elsheikh, Atya

    2010-01-01

    Biochemical network modeling and simulation is an essential task in any systems biology project. The systems biology markup language (SBML) was established as a standardized model exchange language for mechanistic models. A specific strength of SBML is that numerous tools for formulating, processing, simulation and analysis of models are freely available. Interestingly, in the field of multidisciplinary simulation, the problem of model exchange between different simulation tools occurred much earlier. Several general modeling languages like Modelica have been developed in the 1990s. Modelica enables an equation based modular specification of arbitrary hierarchical differential algebraic equation models. Moreover, libraries for special application domains can be rapidly developed. This contribution compares the reaction based approach of SBML with the equation based approach of Modelica and explains the specific strengths of both tools. Several biological examples illustrating essential SBML and Modelica concepts are given. The chosen criteria for tool comparison are flexibility for constraint specification, different modeling flavors, hierarchical, modular and multidisciplinary modeling. Additionally, support for spatially distributed systems, event handling and network analysis features is discussed. As a major result it is shown that the choice of the modeling tool has a strong impact on the expressivity of the specified models but also strongly depends on the requirements of the application context.

  1. Improved Bond Equations for Fiber-Reinforced Polymer Bars in Concrete.

    PubMed

    Pour, Sadaf Moallemi; Alam, M Shahria; Milani, Abbas S

    2016-08-30

    This paper explores a set of new equations to predict the bond strength between fiber reinforced polymer (FRP) rebar and concrete. The proposed equations are based on a comprehensive statistical analysis and existing experimental results in the literature. Namely, the most effective parameters on bond behavior of FRP concrete were first identified by applying a factorial analysis on a part of the available database. Then the database that contains 250 pullout tests were divided into four groups based on the concrete compressive strength and the rebar surface. Afterward, nonlinear regression analysis was performed for each study group in order to determine the bond equations. The results show that the proposed equations can predict bond strengths more accurately compared to the other previously reported models.

  2. Regression Simulation Model. Appendix X. Users Manual,

    DTIC Science & Technology

    1981-03-01

    change as the prediction equations become refined. Whereas no notice will be provided when the changes are made, the programs will be modified such that...NATIONAL BUREAU Of STANDARDS 1963 A ___,_ __ _ __ _ . APPENDIX X ( R4/ EGRESSION IMULATION ’jDEL. Ape’A ’) 7 USERS MANUA submitted to The Great River...regression analysis and to establish a prediction equation (model). The prediction equation contains the partial regression coefficients (B-weights) which

  3. Coupling of Coastal Wave Transformation and Computational Fluid Dynamics Models for Seakeeping Analysis

    DTIC Science & Technology

    2017-04-03

    setup in terms of temporal and spatial discretization . The second component was an extension of existing depth-integrated wave models to describe...equations (Abbott, 1976). Discretization schemes involve numerical dispersion and dissipation that distort the true character of the governing equations...represent a leading-order approximation of the Boussinesq-type equations. Tam and Webb (1993) proposed a wavenumber-based discretization scheme to preserve

  4. Multi-Body Analysis of a Tiltrotor Configuration

    NASA Technical Reports Server (NTRS)

    Ghiringhelli, G. L.; Masarati, P.; Mantegazza, P.; Nixon, M. W.

    1997-01-01

    The paper describes the aeroelastic analysis of a tiltrotor configuration. The 1/5 scale wind tunnel semispan model of the V-22 tiltrotor aircraft is considered. The analysis is performed by means of a multi-body code, based on an original formulation. The differential equilibrium problem is stated in terms of first order differential equations. The equilibrium equations of every rigid body are written, together with the definitions of the momenta. The bodies are connected by kinematic constraints, applied in form of Lagrangian multipliers. Deformable components are mainly modelled by means of beam elements, based on an original finite volume formulation. Multi-disciplinar problems can be solved by adding user-defined differential equations. In the presented analysis the equations related to the control of the swash-plate of the model are considered. Advantages of a multi-body aeroelastic code over existing comprehensive rotorcraft codes include the exact modelling of the kinematics of the hub, the detailed modelling of the flexibility of critical hub components, and the possibility to simulate steady flight conditions as well as wind-up and maneuvers. The simulations described in the paper include: 1) the analysis of the aeroelastic stability, with particular regard to the proprotor/pylon instability that is peculiar to tiltrotors, 2) the determination of the dynamic behavior of the system and of the loads due to typical maneuvers, with particular regard to the conversion from helicopter to airplane mode, and 3) the stress evaluation in critical components, such as the pitch links and the conversion downstop spring.

  5. LINEAR - DERIVATION AND DEFINITION OF A LINEAR AIRCRAFT MODEL

    NASA Technical Reports Server (NTRS)

    Duke, E. L.

    1994-01-01

    The Derivation and Definition of a Linear Model program, LINEAR, provides the user with a powerful and flexible tool for the linearization of aircraft aerodynamic models. LINEAR was developed to provide a standard, documented, and verified tool to derive linear models for aircraft stability analysis and control law design. Linear system models define the aircraft system in the neighborhood of an analysis point and are determined by the linearization of the nonlinear equations defining vehicle dynamics and sensors. LINEAR numerically determines a linear system model using nonlinear equations of motion and a user supplied linear or nonlinear aerodynamic model. The nonlinear equations of motion used are six-degree-of-freedom equations with stationary atmosphere and flat, nonrotating earth assumptions. LINEAR is capable of extracting both linearized engine effects, such as net thrust, torque, and gyroscopic effects and including these effects in the linear system model. The point at which this linear model is defined is determined either by completely specifying the state and control variables, or by specifying an analysis point on a trajectory and directing the program to determine the control variables and the remaining state variables. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to provide easy selection of state, control, and observation variables to be used in a particular model. Thus, the order of the system model is completely under user control. Further, the program provides the flexibility of allowing alternate formulations of both the state and observation equations. Data describing the aircraft and the test case is input to the program through a terminal or formatted data files. All data can be modified interactively from case to case. The aerodynamic model can be defined in two ways: a set of nondimensional stability and control derivatives for the flight point of interest, or a full non-linear aerodynamic model as used in simulations. LINEAR is written in FORTRAN and has been implemented on a DEC VAX computer operating under VMS with a virtual memory requirement of approximately 296K of 8 bit bytes. Both an interactive and batch version are included. LINEAR was developed in 1988.

  6. Equation-free multiscale computation: algorithms and applications.

    PubMed

    Kevrekidis, Ioannis G; Samaey, Giovanni

    2009-01-01

    In traditional physicochemical modeling, one derives evolution equations at the (macroscopic, coarse) scale of interest; these are used to perform a variety of tasks (simulation, bifurcation analysis, optimization) using an arsenal of analytical and numerical techniques. For many complex systems, however, although one observes evolution at a macroscopic scale of interest, accurate models are only given at a more detailed (fine-scale, microscopic) level of description (e.g., lattice Boltzmann, kinetic Monte Carlo, molecular dynamics). Here, we review a framework for computer-aided multiscale analysis, which enables macroscopic computational tasks (over extended spatiotemporal scales) using only appropriately initialized microscopic simulation on short time and length scales. The methodology bypasses the derivation of macroscopic evolution equations when these equations conceptually exist but are not available in closed form-hence the term equation-free. We selectively discuss basic algorithms and underlying principles and illustrate the approach through representative applications. We also discuss potential difficulties and outline areas for future research.

  7. Linear stability analysis of the Vlasov-Poisson equations in high density plasmas in the presence of crossed fields and density gradients

    NASA Technical Reports Server (NTRS)

    Kaup, D. J.; Hansen, P. J.; Choudhury, S. Roy; Thomas, Gary E.

    1986-01-01

    The equations for the single-particle orbits in a nonneutral high density plasma in the presence of inhomogeneous crossed fields are obtained. Using these orbits, the linearized Vlasov equation is solved as an expansion in the orbital radii in the presence of inhomogeneities and density gradients. A model distribution function is introduced whose cold-fluid limit is exactly the same as that used in many previous studies of the cold-fluid equations. This model function is used to reduce the linearized Vlasov-Poisson equations to a second-order ordinary differential equation for the linearized electrostatic potential whose eigenvalue is the perturbation frequency.

  8. Diffusion equations and the time evolution of foreign exchange rates

    NASA Astrophysics Data System (ADS)

    Figueiredo, Annibal; de Castro, Marcio T.; da Fonseca, Regina C. B.; Gleria, Iram

    2013-10-01

    We investigate which type of diffusion equation is most appropriate to describe the time evolution of foreign exchange rates. We modify the geometric diffusion model assuming a non-exponential time evolution and the stochastic term is the sum of a Wiener noise and a jump process. We find the resulting diffusion equation to obey the Kramers-Moyal equation. Analytical solutions are obtained using the characteristic function formalism and compared with empirical data. The analysis focus on the first four central moments considering the returns of foreign exchange rate. It is shown that the proposed model offers a good improvement over the classical geometric diffusion model.

  9. Maximum Likelihood Analysis of a Two-Level Nonlinear Structural Equation Model with Fixed Covariates

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Song, Xin-Yuan

    2005-01-01

    In this article, a maximum likelihood (ML) approach for analyzing a rather general two-level structural equation model is developed for hierarchically structured data that are very common in educational and/or behavioral research. The proposed two-level model can accommodate nonlinear causal relations among latent variables as well as effects…

  10. Designing a Qualitative Data Collection Strategy (QDCS) for Africa - Phase 1: A Gap Analysis of Existing Models, Simulations, and Tools Relating to Africa

    DTIC Science & Technology

    2012-06-01

    generalized behavioral model characterized after the fictional Seldon equations (the one elaborated upon by Isaac Asimov in the 1951 novel, The...Foundation). Asimov described the Seldon equations as essentially statistical models with historical data of a sufficient size and variability that they

  11. Climate Modeling in the Calculus and Differential Equations Classroom

    ERIC Educational Resources Information Center

    Kose, Emek; Kunze, Jennifer

    2013-01-01

    Students in college-level mathematics classes can build the differential equations of an energy balance model of the Earth's climate themselves, from a basic understanding of the background science. Here we use variable albedo and qualitative analysis to find stable and unstable equilibria of such a model, providing a problem or perhaps a…

  12. The Effects of Cognitive Style on Edmodo Users' Behaviour: A Structural Equation Modeling-Based Multi-Group Analysis

    ERIC Educational Resources Information Center

    Ursavas, Omer Faruk; Reisoglu, Ilknur

    2017-01-01

    Purpose: The purpose of this paper is to explore the validity of extended technology acceptance model (TAM) in explaining pre-service teachers' Edmodo acceptance and the variation of variables related to TAM among pre-service teachers having different cognitive styles. Design/methodology/approach: Structural equation modeling approach was used to…

  13. Structural Equation Modeling (SEM) for Satisfaction and Dissatisfaction Ratings; Multiple Group Invariance Analysis across Scales with Different Response Format

    ERIC Educational Resources Information Center

    Mazaheri, Mehrdad; Theuns, Peter

    2009-01-01

    The current study evaluates three hypothesized models on subjective well-being, comprising life domain ratings (LDR), overall satisfaction with life (OSWL), and overall dissatisfaction with life (ODWL), using structural equation modeling (SEM). A sample of 1,310 volunteering students, randomly assigned to six conditions, rated their overall life…

  14. Variation objective analyses for cyclone studies

    NASA Technical Reports Server (NTRS)

    Achtemeier, G. L.; Kidder, S. Q.; Ochs, H. T.

    1985-01-01

    The objectives were to: (1) develop an objective analysis technique that will maximize the information content of data available from diverse sources, with particular emphasis on the incorporation of observations from satellites with those from more traditional immersion techniques; and (2) to develop a diagnosis of the state of the synoptic scale atmosphere on a much finer scale over a much broader region than is presently possible to permit studies of the interactions and energy transfers between global, synoptic and regional scale atmospheric processes. The variational objective analysis model consists of the two horizontal momentum equations, the hydrostatic equation, and the integrated continuity equation for a dry hydrostatic atmosphere. Preliminary tests of the model with the SESMAE I data set are underway for 12 GMT 10 April 1979. At this stage of purpose of the analysis is not the diagnosis of atmospheric structures but rather the validation of the model. Model runs for rawinsonde data and with the precision modulus weights set to force most of the adjustment of the wind field to the mass field have produced 90 to 95 percent reductions in the imbalance of the initial data after only 4-cycles through the Euler-Lagrange equations. Sensitivity tests for linear stability of the 11 Euler-Lagrange equations that make up the VASP Model 1 indicate that there will be a lower limit to the scales of motion that can be resolved by this method. Linear stability criteria are violated where there is large horizontal wind shear near the upper tropospheric jet.

  15. Numerical Analysis of the Heat Transfer Characteristics within an Evaporating Meniscus

    NASA Astrophysics Data System (ADS)

    Ball, Gregory

    A numerical analysis was performed as to investigate the heat transfer characteristics of an evaporating thin-film meniscus. A mathematical model was used in the formulation of a third order ordinary differential equation. This equation governs the evaporating thin-film through use of continuity, momentum, energy equations and the Kelvin-Clapeyron model. This governing equation was treated as an initial value problem and was solved numerically using a Runge-Kutta technique. The numerical model uses varying thermophysical properties and boundary conditions such as channel width, applied superheat, accommodation coefficient and working fluid which can be tailored by the user. This work focused mainly on the effects of altering accommodation coefficient and applied superheat. A unified solution is also presented which models the meniscus to half channel width. The model was validated through comparison to literature values. In varying input values the following was determined; increasing superheat was found to shorten the film thickness and greatly increase the interfacial curvature overshoot values. The effect of decreasing accommodation coefficient lengthened the thin-film and retarded the evaporative effects.

  16. A continuum model for dynamic analysis of the Space Station

    NASA Technical Reports Server (NTRS)

    Thomas, Segun

    1989-01-01

    Dynamic analysis of the International Space Station using MSC/NASTRAN had 1312 rod elements, 62 beam elements, 489 nodes and 1473 dynamic degrees of freedom. A realtime, man-in-the-loop simulation of such a model is impractical. This paper discusses the mathematical model for realtime dynamic simulation of the Space Station. Several key questions in structures and structural dynamics are addressed. First, to achieve a significant reduction in the number of dynamic degrees of freedom, a continuum equivalent representation of the Space Station truss structure which accounted for the unsymmetry of the basic configuration and resulted in the coupling of extensional and transverse deformation, is developed. Next, dynamic equations for the continuum equivalent of the Space Station truss structure are formulated using a matrix version of Kane's dynamical equations. Flexibility is accounted for by using a theory that accommodates extension, bending in two principal planes and shear displacement. Finally, constraint equations suitable for dynamic analysis of flexible bodies with closed loop configuration are developed and solution of the resulting system of equations is based on the zero eigenvalue theorem.

  17. PROTEUS two-dimensional Navier-Stokes computer code, version 1.0. Volume 1: Analysis description

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.; Schwab, John R.; Benson, Thomas J.; Suresh, Ambady

    1990-01-01

    A new computer code was developed to solve the two-dimensional or axisymmetric, Reynolds averaged, unsteady compressible Navier-Stokes equations in strong conservation law form. The thin-layer or Euler equations may also be solved. Turbulence is modeled using an algebraic eddy viscosity model. The objective was to develop a code for aerospace applications that is easy to use and easy to modify. Code readability, modularity, and documentation were emphasized. The equations are written in nonorthogonal body-fitted coordinates, and solved by marching in time using a fully-coupled alternating direction-implicit procedure with generalized first- or second-order time differencing. All terms are linearized using second-order Taylor series. The boundary conditions are treated implicitly, and may be steady, unsteady, or spatially periodic. Simple Cartesian or polar grids may be generated internally by the program. More complex geometries require an externally generated computational coordinate system. The documentation is divided into three volumes. Volume 1 is the Analysis Description, and describes in detail the governing equations, the turbulence model, the linearization of the equations and boundary conditions, the time and space differencing formulas, the ADI solution procedure, and the artificial viscosity models.

  18. A Comparative Analysis of a Generalized Lanchester Equation Model and a Stochastic Computer Simulation Model.

    DTIC Science & Technology

    1987-03-01

    model is one in which words or numerical descriptions are used to represent an entity or process. An example of a symbolic model is a mathematical ...are the third type of model used in modeling combat attrition. Analytical models are symbolic models which use mathematical symbols and equations to...simplicity and the ease of tracing through the mathematical computations. In this section I will discuss some of the shortcoming which have been

  19. Numerical analysis for the fractional diffusion and fractional Buckmaster equation by the two-step Laplace Adam-Bashforth method

    NASA Astrophysics Data System (ADS)

    Jain, Sonal

    2018-01-01

    In this paper, we aim to use the alternative numerical scheme given by Gnitchogna and Atangana for solving partial differential equations with integer and non-integer differential operators. We applied this method to fractional diffusion model and fractional Buckmaster models with non-local fading memory. The method yields a powerful numerical algorithm for fractional order derivative to implement. Also we present in detail the stability analysis of the numerical method for solving the diffusion equation. This proof shows that this method is very stable and also converges very quickly to exact solution and finally some numerical simulation is presented.

  20. Implementation of Laminate Theory Into Strain Rate Dependent Micromechanics Analysis of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2000-01-01

    A research program is in progress to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to impact loads. Previously, strain rate dependent inelastic constitutive equations developed to model the polymer matrix were implemented into a mechanics of materials based micromechanics method. In the current work, the computation of the effective inelastic strain in the micromechanics model was modified to fully incorporate the Poisson effect. The micromechanics equations were also combined with classical laminate theory to enable the analysis of symmetric multilayered laminates subject to in-plane loading. A quasi-incremental trapezoidal integration method was implemented to integrate the constitutive equations within the laminate theory. Verification studies were conducted using an AS4/PEEK composite using a variety of laminate configurations and strain rates. The predicted results compared well with experimentally obtained values.

  1. An analytical model of a curved beam with a T shaped cross section

    NASA Astrophysics Data System (ADS)

    Hull, Andrew J.; Perez, Daniel; Cox, Donald L.

    2018-03-01

    This paper derives a comprehensive analytical dynamic model of a closed circular beam that has a T shaped cross section. The new model includes in-plane and out-of-plane vibrations derived using continuous media expressions which produces results that have a valid frequency range above those available from traditional lumped parameter models. The web is modeled using two-dimensional elasticity equations for in-plane motion and the classical flexural plate equation for out-of-plane motion. The flange is modeled using two sets of Donnell shell equations: one for the left side of the flange and one for the right side of the flange. The governing differential equations are solved with unknown wave propagation coefficients multiplied by spatial domain and time domain functions which are inserted into equilibrium and continuity equations at the intersection of the web and flange and into boundary conditions at the edges of the system resulting in 24 algebraic equations. These equations are solved to yield the wave propagation coefficients and this produces a solution to the displacement field in all three dimensions. An example problem is formulated and compared to results from finite element analysis.

  2. DEAN: A program for dynamic engine analysis

    NASA Technical Reports Server (NTRS)

    Sadler, G. G.; Melcher, K. J.

    1985-01-01

    The Dynamic Engine Analysis program, DEAN, is a FORTRAN code implemented on the IBM/370 mainframe at NASA Lewis Research Center for digital simulation of turbofan engine dynamics. DEAN is an interactive program which allows the user to simulate engine subsystems as well as a full engine systems with relative ease. The nonlinear first order ordinary differential equations which define the engine model may be solved by one of four integration schemes, a second order Runge-Kutta, a fourth order Runge-Kutta, an Adams Predictor-Corrector, or Gear's method for still systems. The numerical data generated by the model equations are displayed at specified intervals between which the user may choose to modify various parameters affecting the model equations and transient execution. Following the transient run, versatile graphics capabilities allow close examination of the data. DEAN's modeling procedure and capabilities are demonstrated by generating a model of simple compressor rig.

  3. Stochastic model for threat assessment in multi-sensor defense system

    NASA Astrophysics Data System (ADS)

    Wang, Yongcheng; Wang, Hongfei; Jiang, Changsheng

    2007-11-01

    This paper puts forward a stochastic model for target detecting and tracking in multi-sensor defense systems and applies the Lanchester differential equations to threat assessment in combat. The two different modes of targets tracking and their respective Lanchester differential equations are analyzed and established. By use of these equations, we could briefly estimate the loss of each combat side and accordingly get the threat estimation results, given the situation analysis is accomplished.

  4. ISAC - A tool for aeroservoelastic modeling and analysis. [Interaction of Structures, Aerodynamics, and Control

    NASA Technical Reports Server (NTRS)

    Adams, William M., Jr.; Hoadley, Sherwood T.

    1993-01-01

    This paper discusses the capabilities of the Interaction of Structures, Aerodynamics, and Controls (ISAC) system of program modules. The major modeling, analysis, and data management components of ISAC are identified. Equations of motion are displayed for a Laplace-domain representation of the unsteady aerodynamic forces. Options for approximating a frequency-domain representation of unsteady aerodynamic forces with rational functions of the Laplace variable are shown. Linear time invariant state-space equations of motion that result are discussed. Model generation and analyses of stability and dynamic response characteristics are shown for an aeroelastic vehicle which illustrate some of the capabilities of ISAC as a modeling and analysis tool for aeroelastic applications.

  5. Using Mixed-Effects Structural Equation Models to Study Student Academic Development.

    ERIC Educational Resources Information Center

    Pike, Gary R.

    1992-01-01

    A study at the University of Tennessee Knoxville used mixed-effect structural equation models incorporating latent variables as an alternative to conventional methods of analyzing college students' (n=722) first-year-to-senior academic gains. Results indicate, contrary to previous analysis, that coursework and student characteristics interact to…

  6. Local Influence Analysis of Nonlinear Structural Equation Models

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Tang, Nian-Sheng

    2004-01-01

    By regarding the latent random vectors as hypothetical missing data and based on the conditional expectation of the complete-data log-likelihood function in the EM algorithm, we investigate assessment of local influence of various perturbation schemes in a nonlinear structural equation model. The basic building blocks of local influence analysis…

  7. Errors of Inference in Structural Equation Modeling

    ERIC Educational Resources Information Center

    McCoach, D. Betsy; Black, Anne C.; O'Connell, Ann A.

    2007-01-01

    Although structural equation modeling (SEM) is one of the most comprehensive and flexible approaches to data analysis currently available, it is nonetheless prone to researcher misuse and misconceptions. This article offers a brief overview of the unique capabilities of SEM and discusses common sources of user error in drawing conclusions from…

  8. Parametric Sensitivity Analysis of Oscillatory Delay Systems with an Application to Gene Regulation.

    PubMed

    Ingalls, Brian; Mincheva, Maya; Roussel, Marc R

    2017-07-01

    A parametric sensitivity analysis for periodic solutions of delay-differential equations is developed. Because phase shifts cause the sensitivity coefficients of a periodic orbit to diverge, we focus on sensitivities of the extrema, from which amplitude sensitivities are computed, and of the period. Delay-differential equations are often used to model gene expression networks. In these models, the parametric sensitivities of a particular genotype define the local geometry of the evolutionary landscape. Thus, sensitivities can be used to investigate directions of gradual evolutionary change. An oscillatory protein synthesis model whose properties are modulated by RNA interference is used as an example. This model consists of a set of coupled delay-differential equations involving three delays. Sensitivity analyses are carried out at several operating points. Comments on the evolutionary implications of the results are offered.

  9. Actual measurement, hygrothermal response experiment and growth prediction analysis of microbial contamination of central air conditioning system in Dalian, China

    PubMed Central

    Lv, Yang; Hu, Guangyao; Wang, Chunyang; Yuan, Wenjie; Wei, Shanshan; Gao, Jiaoqi; Wang, Boyuan; Song, Fangchao

    2017-01-01

    The microbial contamination of central air conditioning system is one of the important factors that affect the indoor air quality. Actual measurement and analysis were carried out on microbial contamination in central air conditioning system at a venue in Dalian, China. Illumina miseq method was used and three fungal samples of two units were analysed by high throughput sequencing. Results showed that the predominant fungus in air conditioning unit A and B were Candida spp. and Cladosporium spp., and two fungus were further used in the hygrothermal response experiment. Based on the data of Cladosporium in hygrothermal response experiment, this paper used the logistic equation and the Gompertz equation to fit the growth predictive model of Cladosporium genera in different temperature and relative humidity conditions, and the square root model was fitted based on the two environmental factors. In addition, the models were carried on the analysis to verify the accuracy and feasibility of the established model equation. PMID:28367963

  10. Actual measurement, hygrothermal response experiment and growth prediction analysis of microbial contamination of central air conditioning system in Dalian, China.

    PubMed

    Lv, Yang; Hu, Guangyao; Wang, Chunyang; Yuan, Wenjie; Wei, Shanshan; Gao, Jiaoqi; Wang, Boyuan; Song, Fangchao

    2017-04-03

    The microbial contamination of central air conditioning system is one of the important factors that affect the indoor air quality. Actual measurement and analysis were carried out on microbial contamination in central air conditioning system at a venue in Dalian, China. Illumina miseq method was used and three fungal samples of two units were analysed by high throughput sequencing. Results showed that the predominant fungus in air conditioning unit A and B were Candida spp. and Cladosporium spp., and two fungus were further used in the hygrothermal response experiment. Based on the data of Cladosporium in hygrothermal response experiment, this paper used the logistic equation and the Gompertz equation to fit the growth predictive model of Cladosporium genera in different temperature and relative humidity conditions, and the square root model was fitted based on the two environmental factors. In addition, the models were carried on the analysis to verify the accuracy and feasibility of the established model equation.

  11. Multiscale modeling of brain dynamics: from single neurons and networks to mathematical tools.

    PubMed

    Siettos, Constantinos; Starke, Jens

    2016-09-01

    The extreme complexity of the brain naturally requires mathematical modeling approaches on a large variety of scales; the spectrum ranges from single neuron dynamics over the behavior of groups of neurons to neuronal network activity. Thus, the connection between the microscopic scale (single neuron activity) to macroscopic behavior (emergent behavior of the collective dynamics) and vice versa is a key to understand the brain in its complexity. In this work, we attempt a review of a wide range of approaches, ranging from the modeling of single neuron dynamics to machine learning. The models include biophysical as well as data-driven phenomenological models. The discussed models include Hodgkin-Huxley, FitzHugh-Nagumo, coupled oscillators (Kuramoto oscillators, Rössler oscillators, and the Hindmarsh-Rose neuron), Integrate and Fire, networks of neurons, and neural field equations. In addition to the mathematical models, important mathematical methods in multiscale modeling and reconstruction of the causal connectivity are sketched. The methods include linear and nonlinear tools from statistics, data analysis, and time series analysis up to differential equations, dynamical systems, and bifurcation theory, including Granger causal connectivity analysis, phase synchronization connectivity analysis, principal component analysis (PCA), independent component analysis (ICA), and manifold learning algorithms such as ISOMAP, and diffusion maps and equation-free techniques. WIREs Syst Biol Med 2016, 8:438-458. doi: 10.1002/wsbm.1348 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  12. Improved Bond Equations for Fiber-Reinforced Polymer Bars in Concrete

    PubMed Central

    Pour, Sadaf Moallemi; Alam, M. Shahria; Milani, Abbas S.

    2016-01-01

    This paper explores a set of new equations to predict the bond strength between fiber reinforced polymer (FRP) rebar and concrete. The proposed equations are based on a comprehensive statistical analysis and existing experimental results in the literature. Namely, the most effective parameters on bond behavior of FRP concrete were first identified by applying a factorial analysis on a part of the available database. Then the database that contains 250 pullout tests were divided into four groups based on the concrete compressive strength and the rebar surface. Afterward, nonlinear regression analysis was performed for each study group in order to determine the bond equations. The results show that the proposed equations can predict bond strengths more accurately compared to the other previously reported models. PMID:28773859

  13. Symmetry groups of integro-differential equations for linear thermoviscoelastic materials with memory

    NASA Astrophysics Data System (ADS)

    Zhou, L.-Q.; Meleshko, S. V.

    2017-07-01

    The group analysis method is applied to a system of integro-differential equations corresponding to a linear thermoviscoelastic model. A recently developed approach for calculating the symmetry groups of such equations is used. The general solution of the determining equations for the system is obtained. Using subalgebras of the admitted Lie algebra, two classes of partially invariant solutions of the considered system of integro-differential equations are studied.

  14. Indriect Measurement Of Nitrogen In A Mult-Component Natural Gas By Heating The Gas

    DOEpatents

    Morrow, Thomas B.; Behring, II, Kendricks A.

    2004-06-22

    Methods of indirectly measuring the nitrogen concentration in a natural gas by heating the gas. In two embodiments, the heating energy is correlated to the speed of sound in the gas, the diluent concentrations in the gas, and constant values, resulting in a model equation. Regression analysis is used to calculate the constant values, which can then be substituted into the model equation. If the diluent concentrations other than nitrogen (typically carbon dioxide) are known, the model equation can be solved for the nitrogen concentration.

  15. Application of satellite data in variational analysis for global cyclonic systems

    NASA Technical Reports Server (NTRS)

    Achtemeier, G. L.

    1987-01-01

    The research goal was a variational data assimilation method that incorporates as dynamical constraints, the primitive equations for a moist, convectively unstable atmosphere and the radiative transfer equation. Variables to be adjusted include the three-dimensional vector wind, height, temperature, and moisture from rawinsonde data, and cloud-wind vectors, moisture, and radiance from satellite data. This presents a formidable mathematical problem. In order to facilitate thorough analysis of each of the model components, four variational models that divide the problem naturally according to increasing complexity are defined. Each model is summarized.

  16. Second NASA Technical Interchange Meeting (TIM): Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)

    NASA Technical Reports Server (NTRS)

    ONeil, D. A.; Mankins, J. C.; Christensen, C. B.; Gresham, E. C.

    2005-01-01

    The Advanced Technology Lifecycle Analysis System (ATLAS), a spreadsheet analysis tool suite, applies parametric equations for sizing and lifecycle cost estimation. Performance, operation, and programmatic data used by the equations come from a Technology Tool Box (TTB) database. In this second TTB Technical Interchange Meeting (TIM), technologists, system model developers, and architecture analysts discussed methods for modeling technology decisions in spreadsheet models, identified specific technology parameters, and defined detailed development requirements. This Conference Publication captures the consensus of the discussions and provides narrative explanations of the tool suite, the database, and applications of ATLAS within NASA s changing environment.

  17. Alternative to Ritt's pseudodivision for finding the input-output equations of multi-output models.

    PubMed

    Meshkat, Nicolette; Anderson, Chris; DiStefano, Joseph J

    2012-09-01

    Differential algebra approaches to structural identifiability analysis of a dynamic system model in many instances heavily depend upon Ritt's pseudodivision at an early step in analysis. The pseudodivision algorithm is used to find the characteristic set, of which a subset, the input-output equations, is used for identifiability analysis. A simpler algorithm is proposed for this step, using Gröbner Bases, along with a proof of the method that includes a reduced upper bound on derivative requirements. Efficacy of the new algorithm is illustrated with several biosystem model examples. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Examining the Relationship between Middle School Students' Critical Reading Skills, Science Literacy Skills and Attitudes: A Structural Equation Modeling

    ERIC Educational Resources Information Center

    Karademir, Ersin; Ulucinar, Ufuk

    2017-01-01

    The purpose of this study is to verify the causal relationship between middle school students' critical reading skills, science literacy skills and attitudes towards science literacy with research data according to the default model. Through the structural equation modeling, path analysis has been applied in the study which was designed in…

  19. Digital controller design: Continuous and discrete describing function analysis of the IPS system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The dynamic equations and the mathematical model of the continuous-data IPS control system are developed. The IPS model considered included one flexible body mode and was hardmounted to the Orbiter/Pallet. The model contains equations describing a torque feed-forward loop (using accelerometers as inputs) which will aid in reducing the pointing errors caused by Orbiter disturbances.

  20. Bayesian Factor Analysis as a Variable Selection Problem: Alternative Priors and Consequences

    PubMed Central

    Lu, Zhao-Hua; Chow, Sy-Miin; Loken, Eric

    2016-01-01

    Factor analysis is a popular statistical technique for multivariate data analysis. Developments in the structural equation modeling framework have enabled the use of hybrid confirmatory/exploratory approaches in which factor loading structures can be explored relatively flexibly within a confirmatory factor analysis (CFA) framework. Recently, a Bayesian structural equation modeling (BSEM) approach (Muthén & Asparouhov, 2012) has been proposed as a way to explore the presence of cross-loadings in CFA models. We show that the issue of determining factor loading patterns may be formulated as a Bayesian variable selection problem in which Muthén and Asparouhov’s approach can be regarded as a BSEM approach with ridge regression prior (BSEM-RP). We propose another Bayesian approach, denoted herein as the Bayesian structural equation modeling with spike and slab prior (BSEM-SSP), which serves as a one-stage alternative to the BSEM-RP. We review the theoretical advantages and disadvantages of both approaches and compare their empirical performance relative to two modification indices-based approaches and exploratory factor analysis with target rotation. A teacher stress scale data set (Byrne, 2012; Pettegrew & Wolf, 1982) is used to demonstrate our approach. PMID:27314566

  1. Rarefied gas flows through a curved channel: Application of a diffusion-type equation

    NASA Astrophysics Data System (ADS)

    Aoki, Kazuo; Takata, Shigeru; Tatsumi, Eri; Yoshida, Hiroaki

    2010-11-01

    Rarefied gas flows through a curved two-dimensional channel, caused by a pressure or a temperature gradient, are investigated numerically by using a macroscopic equation of convection-diffusion type. The equation, which was derived systematically from the Bhatnagar-Gross-Krook model of the Boltzmann equation and diffuse-reflection boundary condition in a previous paper [K. Aoki et al., "A diffusion model for rarefied flows in curved channels," Multiscale Model. Simul. 6, 1281 (2008)], is valid irrespective of the degree of gas rarefaction when the channel width is much shorter than the scale of variations of physical quantities and curvature along the channel. Attention is also paid to a variant of the Knudsen compressor that can produce a pressure raise by the effect of the change of channel curvature and periodic temperature distributions without any help of moving parts. In the process of analysis, the macroscopic equation is (partially) extended to the case of the ellipsoidal-statistical model of the Boltzmann equation.

  2. Indirect Measurement Of Nitrogen In A Multi-Component Gas By Measuring The Speed Of Sound At Two States Of The Gas.

    DOEpatents

    Morrow, Thomas B.; Behring, II, Kendricks A.

    2004-10-12

    A methods of indirectly measuring the nitrogen concentration in a gas mixture. The molecular weight of the gas is modeled as a function of the speed of sound in the gas, the diluent concentrations in the gas, and constant values, resulting in a model equation. Regression analysis is used to calculate the constant values, which can then be substituted into the model equation. If the speed of sound in the gas is measured at two states and diluent concentrations other than nitrogen (typically carbon dioxide) are known, two equations for molecular weight can be equated and solved for the nitrogen concentration in the gas mixture.

  3. Long-term creep characterization of Gr. 91 steel by modified creep constitutive equations

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Gon; Kim, Sung-Ho; Lee, Chan-Bock

    2011-06-01

    This paper focuses on the long-term creep characterization of Gr. 91 steel using creep constitutive equations. The models of three such equations, a combination of power-law form and omega model (CPO), a combination of exponential form and omega model (CEO), and a combination of logarithmic form and omega model (CLO), which are described as sum decaying primary creep and accelerating tertiary creep, are proposed. A series of creep rupture data was obtained through creep tests with various applied loads at 600 °C. On the basis of the creep data, a nonlinear least-square fitting (NLSF) analysis was carried out to provide the best fit with the experimental data in optimizing the parameter constants of an individual equation. The results of the NLSF analysis showed that in the lower stress regions of 160 MPa (σ/σys <0.65), the CEO model showed a match with the experimental creep data comparable to those of the CPO and CLO models; however, in the higher stress regions of 160 MPa (σ/σy > 0.65), the CPO model showed better agreement than the other two models. It was found that the CEO model was superior to the CPO and CLO models in the modeling of long-term creep curves. Using the CEO model, the long-term creep curves of Gr. 91 steel were numerically characterized, and its creep life was predicted accurately.

  4. AITRAC: Augmented Interactive Transient Radiation Analysis by Computer. User's information manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-10-01

    AITRAC is a program designed for on-line, interactive, DC, and transient analysis of electronic circuits. The program solves linear and nonlinear simultaneous equations which characterize the mathematical models used to predict circuit response. The program features 100 external node--200 branch capability; conversional, free-format input language; built-in junction, FET, MOS, and switch models; sparse matrix algorithm with extended-precision H matrix and T vector calculations, for fast and accurate execution; linear transconductances: beta, GM, MU, ZM; accurate and fast radiation effects analysis; special interface for user-defined equations; selective control of multiple outputs; graphical outputs in wide and narrow formats; and on-line parametermore » modification capability. The user describes the problem by entering the circuit topology and part parameters. The program then automatically generates and solves the circuit equations, providing the user with printed or plotted output. The circuit topology and/or part values may then be changed by the user, and a new analysis, requested. Circuit descriptions may be saved on disk files for storage and later use. The program contains built-in standard models for resistors, voltage and current sources, capacitors, inductors including mutual couplings, switches, junction diodes and transistors, FETS, and MOS devices. Nonstandard models may be constructed from standard models or by using the special equations interface. Time functions may be described by straight-line segments or by sine, damped sine, and exponential functions. 42 figures, 1 table. (RWR)« less

  5. Empirical Likelihood in Nonignorable Covariate-Missing Data Problems.

    PubMed

    Xie, Yanmei; Zhang, Biao

    2017-04-20

    Missing covariate data occurs often in regression analysis, which frequently arises in the health and social sciences as well as in survey sampling. We study methods for the analysis of a nonignorable covariate-missing data problem in an assumed conditional mean function when some covariates are completely observed but other covariates are missing for some subjects. We adopt the semiparametric perspective of Bartlett et al. (Improving upon the efficiency of complete case analysis when covariates are MNAR. Biostatistics 2014;15:719-30) on regression analyses with nonignorable missing covariates, in which they have introduced the use of two working models, the working probability model of missingness and the working conditional score model. In this paper, we study an empirical likelihood approach to nonignorable covariate-missing data problems with the objective of effectively utilizing the two working models in the analysis of covariate-missing data. We propose a unified approach to constructing a system of unbiased estimating equations, where there are more equations than unknown parameters of interest. One useful feature of these unbiased estimating equations is that they naturally incorporate the incomplete data into the data analysis, making it possible to seek efficient estimation of the parameter of interest even when the working regression function is not specified to be the optimal regression function. We apply the general methodology of empirical likelihood to optimally combine these unbiased estimating equations. We propose three maximum empirical likelihood estimators of the underlying regression parameters and compare their efficiencies with other existing competitors. We present a simulation study to compare the finite-sample performance of various methods with respect to bias, efficiency, and robustness to model misspecification. The proposed empirical likelihood method is also illustrated by an analysis of a data set from the US National Health and Nutrition Examination Survey (NHANES).

  6. Equations For Rotary Transformers

    NASA Technical Reports Server (NTRS)

    Salomon, Phil M.; Wiktor, Peter J.; Marchetto, Carl A.

    1988-01-01

    Equations derived for input impedance, input power, and ratio of secondary current to primary current of rotary transformer. Used for quick analysis of transformer designs. Circuit model commonly used in textbooks on theory of ac circuits.

  7. Theoretical and computational analyses of LNG evaporator

    NASA Astrophysics Data System (ADS)

    Chidambaram, Palani Kumar; Jo, Yang Myung; Kim, Heuy Dong

    2017-04-01

    Theoretical and numerical analysis on the fluid flow and heat transfer inside a LNG evaporator is conducted in this work. Methane is used instead of LNG as the operating fluid. This is because; methane constitutes over 80% of natural gas. The analytical calculations are performed using simple mass and energy balance equations. The analytical calculations are made to assess the pressure and temperature variations in the steam tube. Multiphase numerical simulations are performed by solving the governing equations (basic flow equations of continuity, momentum and energy equations) in a portion of the evaporator domain consisting of a single steam pipe. The flow equations are solved along with equations of species transport. Multiphase modeling is incorporated using VOF method. Liquid methane is the primary phase. It vaporizes into the secondary phase gaseous methane. Steam is another secondary phase which flows through the heating coils. Turbulence is modeled by a two equation turbulence model. Both the theoretical and numerical predictions are seen to match well with each other. Further parametric studies are planned based on the current research.

  8. A Bayesian Approach for Nonlinear Structural Equation Models with Dichotomous Variables Using Logit and Probit Links

    ERIC Educational Resources Information Center

    Lee, Sik-Yum; Song, Xin-Yuan; Cai, Jing-Heng

    2010-01-01

    Analysis of ordered binary and unordered binary data has received considerable attention in social and psychological research. This article introduces a Bayesian approach, which has several nice features in practical applications, for analyzing nonlinear structural equation models with dichotomous data. We demonstrate how to use the software…

  9. Psychological Separation, Attachment Security, Vocational Self-Concept Crystallization, and Career Indecision: A Structural Equation Analysis.

    ERIC Educational Resources Information Center

    Tokar, David M.; Withrow, Jason R.; Hall, Rosalie J.; Moradi, Bonnie

    2003-01-01

    Structural equation modeling was used to test theoretically based models in which psychological separation and attachment security variables were related to career indecision and those relations were mediated through vocational self-concept crystallization. Results indicated that some components of separation and attachment security did relate to…

  10. Singular boundary value problem for the integrodifferential equation in an insurance model with stochastic premiums: Analysis and numerical solution

    NASA Astrophysics Data System (ADS)

    Belkina, T. A.; Konyukhova, N. B.; Kurochkin, S. V.

    2012-10-01

    A singular boundary value problem for a second-order linear integrodifferential equation with Volterra and non-Volterra integral operators is formulated and analyzed. The equation is defined on ℝ+, has a weak singularity at zero and a strong singularity at infinity, and depends on several positive parameters. Under natural constraints on the coefficients of the equation, existence and uniqueness theorems for this problem with given limit boundary conditions at singular points are proved, asymptotic representations of the solution are given, and an algorithm for its numerical determination is described. Numerical computations are performed and their interpretation is given. The problem arises in the study of the survival probability of an insurance company over infinite time (as a function of its initial surplus) in a dynamic insurance model that is a modification of the classical Cramer-Lundberg model with a stochastic process rate of premium under a certain investment strategy in the financial market. A comparative analysis of the results with those produced by the model with deterministic premiums is given.

  11. Differential geometry based solvation model. III. Quantum formulation

    PubMed Central

    Chen, Zhan; Wei, Guo-Wei

    2011-01-01

    Solvation is of fundamental importance to biomolecular systems. Implicit solvent models, particularly those based on the Poisson-Boltzmann equation for electrostatic analysis, are established approaches for solvation analysis. However, ad hoc solvent-solute interfaces are commonly used in the implicit solvent theory. Recently, we have introduced differential geometry based solvation models which allow the solvent-solute interface to be determined by the variation of a total free energy functional. Atomic fixed partial charges (point charges) are used in our earlier models, which depends on existing molecular mechanical force field software packages for partial charge assignments. As most force field models are parameterized for a certain class of molecules or materials, the use of partial charges limits the accuracy and applicability of our earlier models. Moreover, fixed partial charges do not account for the charge rearrangement during the solvation process. The present work proposes a differential geometry based multiscale solvation model which makes use of the electron density computed directly from the quantum mechanical principle. To this end, we construct a new multiscale total energy functional which consists of not only polar and nonpolar solvation contributions, but also the electronic kinetic and potential energies. By using the Euler-Lagrange variation, we derive a system of three coupled governing equations, i.e., the generalized Poisson-Boltzmann equation for the electrostatic potential, the generalized Laplace-Beltrami equation for the solvent-solute boundary, and the Kohn-Sham equations for the electronic structure. We develop an iterative procedure to solve three coupled equations and to minimize the solvation free energy. The present multiscale model is numerically validated for its stability, consistency and accuracy, and is applied to a few sets of molecules, including a case which is difficult for existing solvation models. Comparison is made to many other classic and quantum models. By using experimental data, we show that the present quantum formulation of our differential geometry based multiscale solvation model improves the prediction of our earlier models, and outperforms some explicit solvation model. PMID:22112067

  12. An Equation for Moist Entropy in a Precipitating and Icy Atmosphere

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Simpson, Joanne; Zeng, Xiping

    2003-01-01

    Moist entropy is nearly conserved in adiabatic motion. It is redistributed rather than created by moist convection. Thus moist entropy and its equation, as a healthy direction, can be used to construct analytical and numerical models for the interaction between tropical convective clouds and large-scale circulations. Hence, an accurate equation of moist entropy is needed for the analysis and modeling of atmospheric convective clouds. On the basis of the consistency between the energy and the entropy equations, a complete equation of moist entropy is derived from the energy equation. The equation expresses explicitly the internal and external sources of moist entropy, including those in relation to the microphysics of clouds and precipitation. In addition, an accurate formula for the surface flux of moist entropy from the underlying surface into the air above is derived. Because moist entropy deals "easily" with the transition among three water phases, it will be used as a prognostic variable in the next generation of cloud-resolving models (e. g. a global cloud-resolving model) for low computational noise. Its equation that is derived in this paper is accurate and complete, providing a theoretical basis for using moist entropy as a prognostic variable in the long-term modeling of clouds and large-scale circulations.

  13. Personal computer study of finite-difference methods for the transonic small disturbance equation

    NASA Technical Reports Server (NTRS)

    Bland, Samuel R.

    1989-01-01

    Calculation of unsteady flow phenomena requires careful attention to the numerical treatment of the governing partial differential equations. The personal computer provides a convenient and useful tool for the development of meshes, algorithms, and boundary conditions needed to provide time accurate solution of these equations. The one-dimensional equation considered provides a suitable model for the study of wave propagation in the equations of transonic small disturbance potential flow. Numerical results for effects of mesh size, extent, and stretching, time step size, and choice of far-field boundary conditions are presented. Analysis of the discretized model problem supports these numerical results. Guidelines for suitable mesh and time step choices are given.

  14. Regional primitive equation modeling and analysis of the polymode data set

    NASA Astrophysics Data System (ADS)

    Spall, Michael A.

    A regional, hybrid coordinate, primitive equation (PE) model is applied to a 60-day period of the POLYMODE data set. The initialization techniques and open boundary conditions introduced by Spall and Robinson are shown to produce stable, realistic, and reasonably accurate hindcasts for the 2-month data set. Comparisons with quasi-geostrophic (QG) modeling studies indicate that the PE model reproduced the jet formation that dominates the region more accurately than did the QG model. When the PE model used boundary conditions that were partially adjusted by the QG model, the resulting fields were very similar to the QG fields, indicating a rapid degradation of small-scale features near the boundaries in the QG calculation. A local term-by-term primitive equation energy and vorticity analysis package is also introduced. The full vorticity, horizontal divergence, kinetic energy, and available gravitational energy equations are solved diagnostically from the output of the regional PE model. Through the analysis of a time series of horizontal maps, the dominant processes in the flow are illustrated. The individual terms are also integrated over the region of jet formation to highlight the net balances as a function of time. The formation of the deep thermocline jet is shown to be due to horizontal advection through the boundary, baroclinic conversion in the deep thermocline and vertical pressure work, which exports the deep energy to the upper thermocline levels. It is concluded here that the PE model reproduces the observed jet formation better than the QG model because of the increased horizontal advection and stronger vertical pressure work. Although the PE model is shown to be superior to the QG model in this application, it is believed that both PE and QG models can play an important role in the regional study of mid-ocean mesoscale eddies.

  15. Analysis performance of proton exchange membrane fuel cell (PEMFC)

    NASA Astrophysics Data System (ADS)

    Mubin, A. N. A.; Bahrom, M. H.; Azri, M.; Ibrahim, Z.; Rahim, N. A.; Raihan, S. R. S.

    2017-06-01

    Recently, the proton exchange membrane fuel cell (PEMFC) has gained much attention to the technology of renewable energy due to its mechanically ideal and zero emission power source. PEMFC performance reflects from the surroundings such as temperature and pressure. This paper presents an analysis of the performance of the PEMFC by developing the mathematical thermodynamic modelling using Matlab/Simulink. Apart from that, the differential equation of the thermodynamic model of the PEMFC is used to explain the contribution of heat to the performance of the output voltage of the PEMFC. On the other hand, the partial pressure equation of the hydrogen is included in the PEMFC mathematical modeling to study the PEMFC voltage behaviour related to the input variable input hydrogen pressure. The efficiency of the model is 33.8% which calculated by applying the energy conversion device equations on the thermal efficiency. PEMFC’s voltage output performance is increased by increasing the hydrogen input pressure and temperature.

  16. Three-dimensional finite element analysis for high velocity impact. [of projectiles from space debris

    NASA Technical Reports Server (NTRS)

    Chan, S. T. K.; Lee, C. H.; Brashears, M. R.

    1975-01-01

    A finite element algorithm for solving unsteady, three-dimensional high velocity impact problems is presented. A computer program was developed based on the Eulerian hydroelasto-viscoplastic formulation and the utilization of the theorem of weak solutions. The equations solved consist of conservation of mass, momentum, and energy, equation of state, and appropriate constitutive equations. The solution technique is a time-dependent finite element analysis utilizing three-dimensional isoparametric elements, in conjunction with a generalized two-step time integration scheme. The developed code was demonstrated by solving one-dimensional as well as three-dimensional impact problems for both the inviscid hydrodynamic model and the hydroelasto-viscoplastic model.

  17. A January angular momentum balance in the OSU two-level atmospheric general circulation model

    NASA Technical Reports Server (NTRS)

    Kim, J.-W.; Grady, W.

    1982-01-01

    The present investigation is concerned with an analysis of the atmospheric angular momentum balance, based on the simulation data of the Oregon State University two-level atmospheric general circulation model (AGCM). An attempt is also made to gain an understanding of the involved processes. Preliminary results on the angular momentum and mass balance in the AGCM are shown. The basic equations are examined, and questions of turbulent momentum transfer are investigated. The methods of analysis are discussed, taking into account time-averaged balance equations, time and longitude-averaged balance equations, mean meridional circulation, the mean meridional balance of relative angular momentum, and standing and transient components of motion.

  18. A study analysis of cable-body systems totally immersed in a fluid stream

    NASA Technical Reports Server (NTRS)

    Delaurier, J. D.

    1972-01-01

    A general stability analysis of a cable-body system immersed in a fluid stream is presented. The analytical portion of this analysis treats the system as being essentially a cable problem, with the body dynamics giving the end conditions. The mathematical form of the analysis consists of partial differential wave equations, with the end and auxiliary conditions being determined from the body equations of motion. The equations uncouple to give a lateral problem and a longitudinal problem as in first order airplane dynamics. A series of tests on a tethered wind tunnel model provide a comparison of the theory with experiment.

  19. Fractional Stochastic Differential Equations Satisfying Fluctuation-Dissipation Theorem

    NASA Astrophysics Data System (ADS)

    Li, Lei; Liu, Jian-Guo; Lu, Jianfeng

    2017-10-01

    We propose in this work a fractional stochastic differential equation (FSDE) model consistent with the over-damped limit of the generalized Langevin equation model. As a result of the `fluctuation-dissipation theorem', the differential equations driven by fractional Brownian noise to model memory effects should be paired with Caputo derivatives, and this FSDE model should be understood in an integral form. We establish the existence of strong solutions for such equations and discuss the ergodicity and convergence to Gibbs measure. In the linear forcing regime, we show rigorously the algebraic convergence to Gibbs measure when the `fluctuation-dissipation theorem' is satisfied, and this verifies that satisfying `fluctuation-dissipation theorem' indeed leads to the correct physical behavior. We further discuss possible approaches to analyze the ergodicity and convergence to Gibbs measure in the nonlinear forcing regime, while leave the rigorous analysis for future works. The FSDE model proposed is suitable for systems in contact with heat bath with power-law kernel and subdiffusion behaviors.

  20. Race/Ethnicity and Social Capital among Middle- and Upper-Middle-Class Elementary School Families: A Structural Equation Model

    ERIC Educational Resources Information Center

    Caldas, Stephen J.; Cornigans, Linda

    2015-01-01

    This study used structural equation modeling to conduct a first and second order confirmatory factor analysis (CFA) of a scale developed by McDonald and Moberg (2002) to measure three dimensions of social capital among a diverse group of middle- and upper-middle-class elementary school parents in suburban New York. A structural path model was…

  1. Multiple and exact soliton solutions of the perturbed Korteweg-de Vries equation of long surface waves in a convective fluid via Painlevé analysis, factorization, and simplest equation methods.

    PubMed

    Selima, Ehab S; Yao, Xiaohua; Wazwaz, Abdul-Majid

    2017-06-01

    In this research, the surface waves of a horizontal fluid layer open to air under gravity field and vertical temperature gradient effects are studied. The governing equations of this model are reformulated and converted to a nonlinear evolution equation, the perturbed Korteweg-de Vries (pKdV) equation. We investigate the latter equation, which includes dispersion, diffusion, and instability effects, in order to examine the evolution of long surface waves in a convective fluid. Dispersion relation of the pKdV equation and its properties are discussed. The Painlevé analysis is applied not only to check the integrability of the pKdV equation but also to establish the Bäcklund transformation form. In addition, traveling wave solutions and a general form of the multiple-soliton solutions of the pKdV equation are obtained via Bäcklund transformation, the simplest equation method using Bernoulli, Riccati, and Burgers' equations as simplest equations, and the factorization method.

  2. Item response theory and structural equation modelling for ordinal data: Describing the relationship between KIDSCREEN and Life-H.

    PubMed

    Titman, Andrew C; Lancaster, Gillian A; Colver, Allan F

    2016-10-01

    Both item response theory and structural equation models are useful in the analysis of ordered categorical responses from health assessment questionnaires. We highlight the advantages and disadvantages of the item response theory and structural equation modelling approaches to modelling ordinal data, from within a community health setting. Using data from the SPARCLE project focussing on children with cerebral palsy, this paper investigates the relationship between two ordinal rating scales, the KIDSCREEN, which measures quality-of-life, and Life-H, which measures participation. Practical issues relating to fitting models, such as non-positive definite observed or fitted correlation matrices, and approaches to assessing model fit are discussed. item response theory models allow properties such as the conditional independence of particular domains of a measurement instrument to be assessed. When, as with the SPARCLE data, the latent traits are multidimensional, structural equation models generally provide a much more convenient modelling framework. © The Author(s) 2013.

  3. Minimum-variance Brownian motion control of an optically trapped probe.

    PubMed

    Huang, Yanan; Zhang, Zhipeng; Menq, Chia-Hsiang

    2009-10-20

    This paper presents a theoretical and experimental investigation of the Brownian motion control of an optically trapped probe. The Langevin equation is employed to describe the motion of the probe experiencing random thermal force and optical trapping force. Since active feedback control is applied to suppress the probe's Brownian motion, actuator dynamics and measurement delay are included in the equation. The equation of motion is simplified to a first-order linear differential equation and transformed to a discrete model for the purpose of controller design and data analysis. The derived model is experimentally verified by comparing the model prediction to the measured response of a 1.87 microm trapped probe subject to proportional control. It is then employed to design the optimal controller that minimizes the variance of the probe's Brownian motion. Theoretical analysis is derived to evaluate the control performance of a specific optical trap. Both experiment and simulation are used to validate the design as well as theoretical analysis, and to illustrate the performance envelope of the active control. Moreover, adaptive minimum variance control is implemented to maintain the optimal performance in the case in which the system is time varying when operating the actively controlled optical trap in a complex environment.

  4. An Improved K-Epsilon Model for Near-Wall Turbulence and Comparison with Direct Numerical Simulation

    NASA Technical Reports Server (NTRS)

    Shih, T. H.

    1990-01-01

    An improved k-epsilon model for low Reynolds number turbulence near a wall is presented. The near-wall asymptotic behavior of the eddy viscosity and the pressure transport term in the turbulent kinetic energy equation is analyzed. Based on this analysis, a modified eddy viscosity model, having correct near-wall behavior, is suggested, and a model for the pressure transport term in the k-equation is proposed. In addition, a modeled dissipation rate equation is reformulated. Fully developed channel flows were used for model testing. The calculations using various k-epsilon models are compared with direct numerical simulations. The results show that the present k-epsilon model performs well in predicting the behavior of near-wall turbulence. Significant improvement over previous k-epsilon models is obtained.

  5. Analysis and synthesis of distributed-lumped-active networks by digital computer

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The use of digital computational techniques in the analysis and synthesis of DLA (distributed lumped active) networks is considered. This class of networks consists of three distinct types of elements, namely, distributed elements (modeled by partial differential equations), lumped elements (modeled by algebraic relations and ordinary differential equations), and active elements (modeled by algebraic relations). Such a characterization is applicable to a broad class of circuits, especially including those usually referred to as linear integrated circuits, since the fabrication techniques for such circuits readily produce elements which may be modeled as distributed, as well as the more conventional lumped and active ones.

  6. Symmetry analysis of the high-order equations for the description of the Fermi - Pasta - Ulam problem

    NASA Astrophysics Data System (ADS)

    Kudryashov, N. A.; Volkov, A. K.

    2017-01-01

    Recently some new nonlinear equations for the description of the Fermi - Pasta - Ulam problem have been derived. The main aim of this work is to use the symmetry test to investigate these equations. We consider equations for the description of the α and α + β Fermi - Pasta - Ulam model. We find the infinitesimal operators and Lie groups, admitted by the equations. Using the groups we find the self-similar variables as well as the reductions to the ordinary differential equations. Some exact solutions are also constructed.

  7. Rotordynamic coefficients for labyrinth seals calculated by means of a finite difference technique

    NASA Technical Reports Server (NTRS)

    Nordmann, R.; Weiser, P.

    1989-01-01

    The compressible, turbulent, time dependent and three dimensional flow in a labyrinth seal can be described by the Navier-Stokes equations in conjunction with a turbulence model. Additionally, equations for mass and energy conservation and an equation of state are required. To solve these equations, a perturbation analysis is performed yielding zeroth order equations for centric shaft position and first order equations describing the flow field for small motions around the seal center. For numerical solution a finite difference method is applied to the zeroth and first order equations resulting in leakage and dynamic seal coefficients respectively.

  8. Nonlinear grid error effects on numerical solution of partial differential equations

    NASA Technical Reports Server (NTRS)

    Dey, S. K.

    1980-01-01

    Finite difference solutions of nonlinear partial differential equations require discretizations and consequently grid errors are generated. These errors strongly affect stability and convergence properties of difference models. Previously such errors were analyzed by linearizing the difference equations for solutions. Properties of mappings of decadence were used to analyze nonlinear instabilities. Such an analysis is directly affected by initial/boundary conditions. An algorithm was developed, applied to nonlinear Burgers equations, and verified computationally. A preliminary test shows that Navier-Stokes equations may be treated similarly.

  9. Analysis of swimming motions.

    NASA Technical Reports Server (NTRS)

    Gallenstein, J.; Huston, R. L.

    1973-01-01

    This paper presents an analysis of swimming motion with specific attention given to the flutter kick, the breast-stroke kick, and the breast stroke. The analysis is completely theoretical. It employs a mathematical model of the human body consisting of frustrums of elliptical cones. Dynamical equations are written for this model including both viscous and inertia forces. These equations are then applied with approximated swimming strokes and solved numerically using a digital computer. The procedure is to specify the input of the swimming motion. The computer solution then provides the output displacement, velocity, and rotation or body roll of the swimmer.

  10. A constitutive material model for nonlinear finite element structural analysis using an iterative matrix approach

    NASA Technical Reports Server (NTRS)

    Koenig, Herbert A.; Chan, Kwai S.; Cassenti, Brice N.; Weber, Richard

    1988-01-01

    A unified numerical method for the integration of stiff time dependent constitutive equations is presented. The solution process is directly applied to a constitutive model proposed by Bodner. The theory confronts time dependent inelastic behavior coupled with both isotropic hardening and directional hardening behaviors. Predicted stress-strain responses from this model are compared to experimental data from cyclic tests on uniaxial specimens. An algorithm is developed for the efficient integration of the Bodner flow equation. A comparison is made with the Euler integration method. An analysis of computational time is presented for the three algorithms.

  11. A fully coupled variable properties thermohydraulic model for a cryogenic hydrostatic journal bearing

    NASA Technical Reports Server (NTRS)

    Braun, M. J.; Wheeler, R. L., III; Hendricks, R. C.

    1986-01-01

    The goal set forth here is to continue the work started by Braun et al. (1984-1985) and present an integrated analysis of the behavior of the two row, 20 staggered pockets, hydrostatic cryogenic bearing used by the turbopumps of the Space Shuttle main engine. The variable properties Reynolds equation is fully coupled with the two-dimensional fluid film energy equation. The three-dimensional equations of the shaft and bushing model the boundary conditions of the fluid film energy equation. The effects of shaft eccentricity, angular velocity, and inertia pressure drops at pocket edge are incorporated in the model. Their effects on the bearing fluid properties, load carrying capacity, mass flow, pressure, velocity, and temperature form the ultimate object of this paper.

  12. A (2+1)-dimensional Korteweg-de Vries type equation in water waves: Lie symmetry analysis; multiple exp-function method; conservation laws

    NASA Astrophysics Data System (ADS)

    Adem, Abdullahi Rashid

    2016-05-01

    We consider a (2+1)-dimensional Korteweg-de Vries type equation which models the shallow-water waves, surface and internal waves. In the analysis, we use the Lie symmetry method and the multiple exp-function method. Furthermore, conservation laws are computed using the multiplier method.

  13. Transonic flow of steam with non-equilibrium and homogenous condensation

    NASA Astrophysics Data System (ADS)

    Virk, Akashdeep Singh; Rusak, Zvi

    2017-11-01

    A small-disturbance model for studying the physical behavior of a steady transonic flow of steam with non-equilibrium and homogeneous condensation around a thin airfoil is derived. The steam thermodynamic behavior is described by van der Waals equation of state. The water condensation rate is calculated according to classical nucleation and droplet growth models. The current study is based on an asymptotic analysis of the fluid flow and condensation equations and boundary conditions in terms of the small thickness of the airfoil, small angle of attack, closeness of upstream flow Mach number to unity and small amount of condensate. The asymptotic analysis gives the similarity parameters that govern the problem. The flow field may be described by a non-homogeneous transonic small-disturbance equation coupled with a set of four ordinary differential equations for the calculation of the condensate mass fraction. An iterative numerical scheme which combines Murman & Cole's (1971) method with Simpson's integration rule is applied to solve the coupled system of equations. The model is used to study the effects of energy release from condensation on the aerodynamic performance of airfoils operating at high pressures and temperatures and near the vapor-liquid saturation conditions.

  14. Structural Equation Models in a Redundancy Analysis Framework With Covariates.

    PubMed

    Lovaglio, Pietro Giorgio; Vittadini, Giorgio

    2014-01-01

    A recent method to specify and fit structural equation modeling in the Redundancy Analysis framework based on so-called Extended Redundancy Analysis (ERA) has been proposed in the literature. In this approach, the relationships between the observed exogenous variables and the observed endogenous variables are moderated by the presence of unobservable composites, estimated as linear combinations of exogenous variables. However, in the presence of direct effects linking exogenous and endogenous variables, or concomitant indicators, the composite scores are estimated by ignoring the presence of the specified direct effects. To fit structural equation models, we propose a new specification and estimation method, called Generalized Redundancy Analysis (GRA), allowing us to specify and fit a variety of relationships among composites, endogenous variables, and external covariates. The proposed methodology extends the ERA method, using a more suitable specification and estimation algorithm, by allowing for covariates that affect endogenous indicators indirectly through the composites and/or directly. To illustrate the advantages of GRA over ERA we propose a simulation study of small samples. Moreover, we propose an application aimed at estimating the impact of formal human capital on the initial earnings of graduates of an Italian university, utilizing a structural model consistent with well-established economic theory.

  15. Three dimensional, numerical analysis of an elasto hydrodynamic lubrication using fluid structure interaction (FSI) approach

    NASA Astrophysics Data System (ADS)

    Hanoca, P.; Ramakrishna, H. V.

    2018-03-01

    This work is related to develop a methodology to model and simulate the TEHD using the sequential application of CFD and CSD. The FSI analyses are carried out using ANSYS Workbench. In this analysis steady state, 3D Navier-Stoke equations along with energy equation are solved. Liquid properties are introduced where the viscosity and density are the function of pressure and temperature. The cavitation phenomenon is adopted in the analysis. Numerical analysis has been carried at different speeds and surfaces temperatures. During the analysis, it was found that as speed increases, hydrodynamic pressures will also increases. The pressure profile obtained from the Roelands equation is more sensitive to the temperature as compared to the Barus equation. The stress distributions specify the significant positions in the bearing structure. The developed method is capable of giving latest approaching into the physics of elasto hydrodynamic lubrication.

  16. Using Structural Equation Modeling to Assess Functional Connectivity in the Brain: Power and Sample Size Considerations

    ERIC Educational Resources Information Center

    Sideridis, Georgios; Simos, Panagiotis; Papanicolaou, Andrew; Fletcher, Jack

    2014-01-01

    The present study assessed the impact of sample size on the power and fit of structural equation modeling applied to functional brain connectivity hypotheses. The data consisted of time-constrained minimum norm estimates of regional brain activity during performance of a reading task obtained with magnetoencephalography. Power analysis was first…

  17. Investigating Experimental Effects within the Framework of Structural Equation Modeling: An Example with Effects on Both Error Scores and Reaction Times

    ERIC Educational Resources Information Center

    Schweizer, Karl

    2008-01-01

    Structural equation modeling provides the framework for investigating experimental effects on the basis of variances and covariances in repeated measurements. A special type of confirmatory factor analysis as part of this framework enables the appropriate representation of the experimental effect and the separation of experimental and…

  18. Use of Item Parceling in Structural Equation Modeling with Missing Data

    ERIC Educational Resources Information Center

    Orcan, Fatih

    2013-01-01

    Parceling is referred to as a procedure for computing sums or average scores across multiple items. Parcels instead of individual items are then used as indicators of latent factors in the structural equation modeling analysis (Bandalos 2002, 2008; Little et al., 2002; Yang, Nay, & Hoyle, 2010). Item parceling may be applied to alleviate some…

  19. Socioeconomic Status and Asian American and Pacific Islander Students' Transition to College: A Structural Equation Modeling Analysis

    ERIC Educational Resources Information Center

    Museus, Samuel D.; Vue, Rican

    2013-01-01

    The purpose of this study is to examine socioeconomic differences in the interpersonal factors that influence college access among Asian Americans and Pacific Islanders (AAPIs). Data on 1,460 AAPIs from the Education Longitudinal Study (ELS: 02/06) were analyzed using structural equation modeling techniques. Findings suggest that parental…

  20. A Comparative Analysis of Reynolds-Averaged Navier-Stokes Model Predictions for Rayleigh-Taylor Instability and Mixing with Constant and Complex Accelerations

    NASA Astrophysics Data System (ADS)

    Schilling, Oleg

    2016-11-01

    Two-, three- and four-equation, single-velocity, multicomponent Reynolds-averaged Navier-Stokes (RANS) models, based on the turbulent kinetic energy dissipation rate or lengthscale, are used to simulate At = 0 . 5 Rayleigh-Taylor turbulent mixing with constant and complex accelerations. The constant acceleration case is inspired by the Cabot and Cook (2006) DNS, and the complex acceleration cases are inspired by the unstable/stable and unstable/neutral cases simulated using DNS (Livescu, Wei & Petersen 2011) and the unstable/stable/unstable case simulated using ILES (Ramaprabhu, Karkhanis & Lawrie 2013). The four-equation models couple equations for the mass flux a and negative density-specific volume correlation b to the K- ɛ or K- L equations, while the three-equation models use a two-fluid algebraic closure for b. The lengthscale-based models are also applied with no buoyancy production in the L equation to explore the consequences of neglecting this term. Predicted mixing widths, turbulence statistics, fields, and turbulent transport equation budgets are compared among these models to identify similarities and differences in the turbulence production, dissipation and diffusion physics represented by the closures used in these models. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. FDDO and DSMC analyses of rarefied gas flow through 2D nozzles

    NASA Technical Reports Server (NTRS)

    Chung, Chan-Hong; De Witt, Kenneth J.; Jeng, Duen-Ren; Penko, Paul F.

    1992-01-01

    Two different approaches, the finite-difference method coupled with the discrete-ordinate method (FDDO), and the direct-simulation Monte Carlo (DSMC) method, are used in the analysis of the flow of a rarefied gas expanding through a two-dimensional nozzle and into a surrounding low-density environment. In the FDDO analysis, by employing the discrete-ordinate method, the Boltzmann equation simplified by a model collision integral is transformed to a set of partial differential equations which are continuous in physical space but are point functions in molecular velocity space. The set of partial differential equations are solved by means of a finite-difference approximation. In the DSMC analysis, the variable hard sphere model is used as a molecular model and the no time counter method is employed as a collision sampling technique. The results of both the FDDO and the DSMC methods show good agreement. The FDDO method requires less computational effort than the DSMC method by factors of 10 to 40 in CPU time, depending on the degree of rarefaction.

  2. A mathematical model for mixed convective flow of chemically reactive Oldroyd-B fluid between isothermal stretching disks

    NASA Astrophysics Data System (ADS)

    Hashmi, M. S.; Khan, N.; Ullah Khan, Sami; Rashidi, M. M.

    In this study, we have constructed a mathematical model to investigate the heat source/sink effects in mixed convection axisymmetric flow of an incompressible, electrically conducting Oldroyd-B fluid between two infinite isothermal stretching disks. The effects of viscous dissipation and Joule heating are also considered in the heat equation. The governing partial differential equations are converted into ordinary differential equations by using appropriate similarity variables. The series solution of these dimensionless equations is constructed by using homotopy analysis method. The convergence of the obtained solution is carefully examined. The effects of various involved parameters on pressure, velocity and temperature profiles are comprehensively studied. A graphical analysis has been presented for various values of problem parameters. The numerical values of wall shear stress and Nusselt number are computed at both upper and lower disks. Moreover, a graphical and tabular explanation for critical values of Frank-Kamenetskii regarding other flow parameters.

  3. Effect Sizes for Growth-Modeling Analysis for Controlled Clinical Trials in the Same Metric as for Classical Analysis

    ERIC Educational Resources Information Center

    Feingold, Alan

    2009-01-01

    The use of growth-modeling analysis (GMA)--including hierarchical linear models, latent growth models, and general estimating equations--to evaluate interventions in psychology, psychiatry, and prevention science has grown rapidly over the last decade. However, an effect size associated with the difference between the trajectories of the…

  4. Tori and chaos in a simple C1-system

    NASA Astrophysics Data System (ADS)

    Roessler, O. E.; Kahiert, C.; Ughleke, B.

    A piecewise-linear autonomous 3-variable ordinary differential equation is presented which permits analytical modeling of chaotic attractors. A once-differentiable system of equations is defined which consists of two linear half-systems which meet along a threshold plane. The trajectories described by each equation is thereby continuous along the divide, forming a one-parameter family of invariant tori. The addition of a damping term produces a system of equations for various chaotic attractors. Extension of the system by means of a 4-variable generalization yields hypertori and hyperchaos. It is noted that the hierarchy established is amenable to analysis by the use of Poincare half-maps. Applications of the systems of ordinary differential equations to modeling turbulent flows are discussed.

  5. A formulation of rotor-airframe coupling for design analysis of vibrations of helicopter airframes

    NASA Technical Reports Server (NTRS)

    Kvaternik, R. G.; Walton, W. C., Jr.

    1982-01-01

    A linear formulation of rotor airframe coupling intended for vibration analysis in airframe structural design is presented. The airframe is represented by a finite element analysis model; the rotor is represented by a general set of linear differential equations with periodic coefficients; and the connections between the rotor and airframe are specified through general linear equations of constraint. Coupling equations are applied to the rotor and airframe equations to produce one set of linear differential equations governing vibrations of the combined rotor airframe system. These equations are solved by the harmonic balance method for the system steady state vibrations. A feature of the solution process is the representation of the airframe in terms of forced responses calculated at the rotor harmonics of interest. A method based on matrix partitioning is worked out for quick recalculations of vibrations in design studies when only relatively few airframe members are varied. All relations are presented in forms suitable for direct computer implementation.

  6. Exact finite difference schemes for the non-linear unidirectional wave equation

    NASA Technical Reports Server (NTRS)

    Mickens, R. E.

    1985-01-01

    Attention is given to the construction of exact finite difference schemes for the nonlinear unidirectional wave equation that describes the nonlinear propagation of a wave motion in the positive x-direction. The schemes constructed for these equations are compared with those obtained by using the usual procedures of numerical analysis. It is noted that the order of the exact finite difference models is equal to the order of the differential equation.

  7. The evolution equation for the flame surface density in turbulent premixed combustion

    NASA Technical Reports Server (NTRS)

    Trouve, A.; Poinsot, T.

    1992-01-01

    One central ingredient in flamelet models for turbulent premixed combustion is the flame surface density. This quantity conveys most of the effects of the turbulence on the rate of energy release and is obtained via a modeled transport equation, called the Sigma-equation. Past theoretical work has produced a rigorous approach that leads to an exact, but unclosed, formulation for the turbulent Sigma-equation. In this exact Sigma-equation, it appears that the dynamical properties of the flame surface density are determined by a single parameter, namely the turbulent flame stretch. Unfortunately, the flame surface density and the turbulent flame stretch are not available from experiments and, in the absence of experimental data, little is known on the validity of the closure assumptions used in current flamelet models. Direct Numerical Simulation (DNS) is the obvious, complementary approach to get basic information on these fundamental quantities. Three-dimensional DNS of premixed flames in isotropic turbulent flow is used to estimate the different terms appearing in the Sigma-equation. A new methodology is proposed to provide the source and sink terms for the flame surface density, resolved both temporally and spatially throughout the turbulent flame brush. Using this methodology, the effects of the Lewis number on the rate of production of flame surface area are described in great detail and meaningful comparisons with flamelet models can be performed. The analysis reveals in particular the tendency of the models to overpredict flame surface dissipation as well as their inability to reproduce variations due to thermo-diffusive phenomena. Thanks to the detailed information produced by a DNS-based analysis, this type of comparison not only underscores the shortcomings of current models but also suggests ways to improve them.

  8. The evolution of methods for noise prediction of high speed rotors and propellers in the time domain

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1986-01-01

    Linear wave equation models which have been used over the years at NASA Langley for describing noise emissions from high speed rotating blades are summarized. The noise sources are assumed to lie on a moving surface, and analysis of the situation has been based on the Ffowcs Williams-Hawkings (FW-H) equation. Although the equation accounts for two surface and one volume source, the NASA analyses have considered only the surface terms. Several variations on the FW-H model are delineated for various types of applications, noting the computational benefits of removing the frequency dependence of the calculations. Formulations are also provided for compact and noncompact sources, and features of Long's subsonic integral equation and Farassat's high speed integral equation are discussed. The selection of subsonic or high speed models is dependent on the Mach number of the blade surface where the source is located.

  9. A unique set of micromechanics equations for high temperature metal matrix composites

    NASA Technical Reports Server (NTRS)

    Hopkins, D. A.; Chamis, C. C.

    1985-01-01

    A unique set of micromechanic equations is presented for high temperature metal matrix composites. The set includes expressions to predict mechanical properties, thermal properties and constituent microstresses for the unidirectional fiber reinforced ply. The equations are derived based on a mechanics of materials formulation assuming a square array unit cell model of a single fiber, surrounding matrix and an interphase to account for the chemical reaction which commonly occurs between fiber and matrix. A three-dimensional finite element analysis was used to perform a preliminary validation of the equations. Excellent agreement between properties predicted using the micromechanics equations and properties simulated by the finite element analyses are demonstrated. Implementation of the micromechanics equations as part of an integrated computational capability for nonlinear structural analysis of high temperature multilayered fiber composites is illustrated.

  10. Time and frequency domain analysis of sampled data controllers via mixed operation equations

    NASA Technical Reports Server (NTRS)

    Frisch, H. P.

    1981-01-01

    Specification of the mathematical equations required to define the dynamic response of a linear continuous plant, subject to sampled data control, is complicated by the fact that the digital components of the control system cannot be modeled via linear ordinary differential equations. This complication can be overcome by introducing two new mathematical operations; namely, the operation of zero order hold and digial delay. It is shown that by direct utilization of these operations, a set of linear mixed operation equations can be written and used to define the dynamic response characteristics of the controlled system. It also is shown how these linear mixed operation equations lead, in an automatable manner, directly to a set of finite difference equations which are in a format compatible with follow on time and frequency domain analysis methods.

  11. Understanding the importance of the temperature dependence of viscosity on the crystallization dynamics in the Ge2Sb2Te5 phase-change material

    NASA Astrophysics Data System (ADS)

    Aladool, A.; Aziz, M. M.; Wright, C. D.

    2017-06-01

    The crystallization dynamics in the phase-change material Ge2Sb2Te5 is modelled using the more detailed Master equation method over a wide range of heating rates commensurate with published ultrafast calorimetry experiments. Through the attachment and detachment of monomers, the Master rate equation naturally traces nucleation and growth of crystallites with temperature history to calculate the transient distribution of cluster sizes in the material. Both the attachment and detachment rates in this theory are strong functions of viscosity, and thus, the value of viscosity and its dependence on temperature significantly affect the crystallization process. In this paper, we use the physically realistic Mauro-Yue-Ellison-Gupta-Allan viscosity model in the Master equation approach to study the role of the viscosity model parameters on the crystallization dynamics in Ge2Sb2Te5 under ramped annealing conditions with heating rates up to 4 × 104 K/s. Furthermore, due to the relatively low computational cost of the Master equation method compared to atomistic level computations, an iterative numerical approach was developed to fit theoretical Kissinger plots simulated with the Master equation system to experimental Kissinger plots from ultrafast calorimetry measurements at increasing heating rates. This provided a more rigorous method (incorporating both nucleation and growth processes) to extract the viscosity model parameters from the analysis of experimental data. The simulations and analysis revealed the strong coupling between the glass transition temperature and fragility index in the viscosity and crystallization models and highlighted the role of the dependence of the glass transition temperature on the heating rate for the accurate estimation of the fragility index of phase-change materials from the analysis of experimental measurements.

  12. Ill-posedness of Dynamic Equations of Compressible Granular Flow

    NASA Astrophysics Data System (ADS)

    Shearer, Michael; Gray, Nico

    2017-11-01

    We introduce models for 2-dimensional time-dependent compressible flow of granular materials and suspensions, based on the rheology of Pouliquen and Forterre. The models include density dependence through a constitutive equation in which the density or volume fraction of solid particles with material density ρ* is taken as a function of an inertial number I: ρ = ρ * Φ(I), in which Φ(I) is a decreasing function of I. This modelling has different implications from models relying on critical state soil mechanics, in which ρ is treated as a variable in the equations, contributing to a flow rule. The analysis of the system of equations builds on recent work of Barker et al in the incompressible case. The main result is the identification of a criterion for well-posedness of the equations. We additionally analyze a modification that applies to suspensions, for which the rheology takes a different form and the inertial number reflects the role of the fluid viscosity.

  13. Maxwell's second- and third-order equations of transfer for non-Maxwellian gases

    NASA Technical Reports Server (NTRS)

    Baganoff, D.

    1992-01-01

    Condensed algebraic forms for Maxwell's second- and third-order equations of transfer are developed for the case of molecules described by either elastic hard spheres, inverse-power potentials, or by Bird's variable hard-sphere model. These hardly reduced, yet exact, equations provide a new point of origin, when using the moment method, in seeking approximate solutions in the kinetic theory of gases for molecular models that are physically more realistic than that provided by the Maxwell model. An important by-product of the analysis when using these second- and third-order relations is that a clear mathematical connection develops between Bird's variable hard-sphere model and that for the inverse-power potential.

  14. The influence of wind-tunnel walls on discrete frequency noise

    NASA Technical Reports Server (NTRS)

    Mosher, M.

    1984-01-01

    This paper describes an analytical model that can be used to examine the effects of wind-tunnel walls on discrete frequency noise. First, a complete physical model of an acoustic source in a wind tunnel is described, and a simplified version is then developed. This simplified model retains the important physical processes involved, yet it is more amenable to analysis. Second, the simplified physical model is formulated as a mathematical problem. An inhomogeneous partial differential equation with mixed boundary conditions is set up and then transformed into an integral equation. The integral equation has been solved with a panel program on a computer. Preliminary results from a simple model problem will be shown and compared with the approximate analytic solution.

  15. A Comparison between Multiple Regression Models and CUN-BAE Equation to Predict Body Fat in Adults

    PubMed Central

    Fuster-Parra, Pilar; Bennasar-Veny, Miquel; Tauler, Pedro; Yañez, Aina; López-González, Angel A.; Aguiló, Antoni

    2015-01-01

    Background Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Methods Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. Results The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (ρ = 0:87 vs. ρ = 0:86 for the whole sample and ρ = 0:88 vs. ρ = 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). Conclusions There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF. PMID:25821960

  16. A comparison between multiple regression models and CUN-BAE equation to predict body fat in adults.

    PubMed

    Fuster-Parra, Pilar; Bennasar-Veny, Miquel; Tauler, Pedro; Yañez, Aina; López-González, Angel A; Aguiló, Antoni

    2015-01-01

    Because the accurate measure of body fat (BF) is difficult, several prediction equations have been proposed. The aim of this study was to compare different multiple regression models to predict BF, including the recently reported CUN-BAE equation. Multi regression models using body mass index (BMI) and body adiposity index (BAI) as predictors of BF will be compared. These models will be also compared with the CUN-BAE equation. For all the analysis a sample including all the participants and another one including only the overweight and obese subjects will be considered. The BF reference measure was made using Bioelectrical Impedance Analysis. The simplest models including only BMI or BAI as independent variables showed that BAI is a better predictor of BF. However, adding the variable sex to both models made BMI a better predictor than the BAI. For both the whole group of participants and the group of overweight and obese participants, using simple models (BMI, age and sex as variables) allowed obtaining similar correlations with BF as when the more complex CUN-BAE was used (ρ = 0:87 vs. ρ = 0:86 for the whole sample and ρ = 0:88 vs. ρ = 0:89 for overweight and obese subjects, being the second value the one for CUN-BAE). There are simpler models than CUN-BAE equation that fits BF as well as CUN-BAE does. Therefore, it could be considered that CUN-BAE overfits. Using a simple linear regression model, the BAI, as the only variable, predicts BF better than BMI. However, when the sex variable is introduced, BMI becomes the indicator of choice to predict BF.

  17. L1-Based Approximations of PDEs and Applications

    DTIC Science & Technology

    2012-09-05

    the analysis of the Navier-Stokes equations. The early versions of artificial vis- cosities being overly dissipative, the interest for these technique ...Guermond, and B. Popov. Stability analysis of explicit en- tropy viscosity methods for non-linear scalar conservation equations. Math. Comp., 2012... methods for solv- ing mathematical models of nonlinear phenomena such as nonlinear conservation laws, surface/image/data reconstruction problems

  18. On Bi-Grid Local Mode Analysis of Solution Techniques for 3-D Euler and Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Ibraheem, S. O.; Demuren, A. O.

    1994-01-01

    A procedure is presented for utilizing a bi-grid stability analysis as a practical tool for predicting multigrid performance in a range of numerical methods for solving Euler and Navier-Stokes equations. Model problems based on the convection, diffusion and Burger's equation are used to illustrate the superiority of the bi-grid analysis as a predictive tool for multigrid performance in comparison to the smoothing factor derived from conventional von Neumann analysis. For the Euler equations, bi-grid analysis is presented for three upwind difference based factorizations, namely Spatial, Eigenvalue and Combination splits, and two central difference based factorizations, namely LU and ADI methods. In the former, both the Steger-Warming and van Leer flux-vector splitting methods are considered. For the Navier-Stokes equations, only the Beam-Warming (ADI) central difference scheme is considered. In each case, estimates of multigrid convergence rates from the bi-grid analysis are compared to smoothing factors obtained from single-grid stability analysis. Effects of grid aspect ratio and flow skewness are examined. Both predictions are compared with practical multigrid convergence rates for 2-D Euler and Navier-Stokes solutions based on the Beam-Warming central scheme.

  19. A ferrofluid based energy harvester: Computational modeling, analysis, and experimental validation

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Alazemi, Saad F.; Daqaq, Mohammed F.; Li, Gang

    2018-03-01

    A computational model is described and implemented in this work to analyze the performance of a ferrofluid based electromagnetic energy harvester. The energy harvester converts ambient vibratory energy into an electromotive force through a sloshing motion of a ferrofluid. The computational model solves the coupled Maxwell's equations and Navier-Stokes equations for the dynamic behavior of the magnetic field and fluid motion. The model is validated against experimental results for eight different configurations of the system. The validated model is then employed to study the underlying mechanisms that determine the electromotive force of the energy harvester. Furthermore, computational analysis is performed to test the effect of several modeling aspects, such as three-dimensional effect, surface tension, and type of the ferrofluid-magnetic field coupling on the accuracy of the model prediction.

  20. Dimensional analysis of detrimental ozone generation by positive wire-to-plate corona discharge in air

    NASA Astrophysics Data System (ADS)

    Bo, Z.; Chen, J. H.

    2010-02-01

    The dimensional analysis technique is used to formulate a correlation between ozone generation rate and various parameters that are important in the design and operation of positive wire-to-plate corona discharges in indoor air. The dimensionless relation is determined by linear regression analysis based on the results from 36 laboratory-scale experiments. The derived equation is validated by experimental data and a numerical model published in the literature. Applications of such derived equation are illustrated through an example selection of the appropriate set of operating conditions in the design/operation of a photocopier to follow the federal regulations of ozone emission. Finally, a new current-voltage characteristic equation is proposed for positive wire-to-plate corona discharges based on the derived dimensionless equation.

  1. Study of Factors Preventing Children from Enrolment in Primary School in the Republic of Honduras: Analysis Using Structural Equation Modelling

    ERIC Educational Resources Information Center

    Ashida, Akemi

    2015-01-01

    Studies have investigated factors that impede enrolment in Honduras. However, they have not analysed individual factors as a whole or identified the relationships among them. This study used longitudinal data for 1971 children who entered primary schools from 1986 to 2000, and employed structural equation modelling to examine the factors…

  2. Next Steps in Bayesian Structural Equation Models: Comments on, Variations of, and Extensions to Muthen and Asparouhov (2012)

    ERIC Educational Resources Information Center

    Rindskopf, David

    2012-01-01

    Muthen and Asparouhov (2012) made a strong case for the advantages of Bayesian methodology in factor analysis and structural equation models. I show additional extensions and adaptations of their methods and show how non-Bayesians can take advantage of many (though not all) of these advantages by using interval restrictions on parameters. By…

  3. Factors Affecting Higher Order Thinking Skills of Students: A Meta-Analytic Structural Equation Modeling Study

    ERIC Educational Resources Information Center

    Budsankom, Prayoonsri; Sawangboon, Tatsirin; Damrongpanit, Suntorapot; Chuensirimongkol, Jariya

    2015-01-01

    The purpose of the research is to develop and identify the validity of factors affecting higher order thinking skills (HOTS) of students. The thinking skills can be divided into three types: analytical, critical, and creative thinking. This analysis is done by applying the meta-analytic structural equation modeling (MASEM) based on a database of…

  4. The Martian climate: Energy balance models with CO2/H2O atmospheres

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.

    1985-01-01

    Coupled equations are developed for mass and heat transport in a seasonal Mars model with condensation and sublimation of CO2 at the polar caps. Topics covered include physical considerations of planetary as mass and energy balance; effects of phase changes at the surface on mass and heat flux; atmospheric transport and governing equations; and numerical analysis.

  5. Taking a systems approach to ecological systems

    USGS Publications Warehouse

    Grace, James B.

    2015-01-01

    Increasingly, there is interest in a systems-level understanding of ecological problems, which requires the evaluation of more complex, causal hypotheses. In this issue of the Journal of Vegetation Science, Soliveres et al. use structural equation modeling to test a causal network hypothesis about how tree canopies affect understorey communities. Historical analysis suggests structural equation modeling has been under-utilized in ecology.

  6. Trajectory Control for Very Flexible Aircraft

    DTIC Science & Technology

    2006-10-30

    aircraft are coupled with the aeroelastic equations that govern the geometrically nonlinear structural response of the vehicle. A low -order strain...nonlinear structural formulation, the finite state aerodynamic model, and the nonlinear rigid body equations together provide a low -order complete...nonlinear aircraft analysis tool. Due to the inherent flexibility of the aircraft modeling, the low order structural fre- quencies are of the same order

  7. Stability analysis of a liquid fuel annular combustion chamber. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Mcdonald, G. H.

    1978-01-01

    High frequency combustion instability problems in a liquid fuel annular combustion chamber are examined. A modified Galerkin method was used to produce a set of modal amplitude equations from the general nonlinear partial differential acoustic wave equation in order to analyze the problem of instability. From these modal amplitude equations, the two variable perturbation method was used to develop a set of approximate equations of a given order of magnitude. These equations were modeled to show the effects of velocity sensitive combustion instabilities by evaluating the effects of certain parameters in the given set of equations.

  8. Box compression analysis of world-wide data spanning 46 years

    Treesearch

    Thomas J. Urbanik; Benjamin Frank

    2006-01-01

    The state of the art among most industry citations of box compression estimation is the equation by McKee developed in 1963. Because of limitations in computing tools at the time the McKee equation was developed, the equation is a simplification, with many constraints, of a more general relationship. By applying the results of sophisticated finite element modeling, in...

  9. Rethinking Pedagogy for Second-Order Differential Equations: A Simplified Approach to Understanding Well-Posed Problems

    ERIC Educational Resources Information Center

    Tisdell, Christopher C.

    2017-01-01

    Knowing an equation has a unique solution is important from both a modelling and theoretical point of view. For over 70 years, the approach to learning and teaching "well posedness" of initial value problems (IVPs) for second- and higher-order ordinary differential equations has involved transforming the problem and its analysis to a…

  10. Recursive thoughts on the simulation of the flexible multibody dynamics of slender offshore structures

    NASA Astrophysics Data System (ADS)

    Schilder, J.; Ellenbroek, M.; de Boer, A.

    2017-12-01

    In this work, the floating frame of reference formulation is used to create a flexible multibody model of slender offshore structures such as pipelines and risers. It is shown that due to the chain-like topology of the considered structures, the equation of motion can be expressed in terms of absolute interface coordinates. In the presented form, kinematic constraint equations are satisfied explicitly and the Lagrange multipliers are eliminated from the equations. Hence, the structures can be conveniently coupled to finite element or multibody models of for example seabed and vessel. The chain-like topology enables the efficient use of recursive solution procedures for both transient dynamic analysis and equilibrium analysis. For this, the transfer matrix method is used. In order to improve the convergence of the equilibrium analysis, the analytical solution of an ideal catenary is used as an initial configuration, reducing the number of required iterations.

  11. Automated analysis of biological oscillator models using mode decomposition.

    PubMed

    Konopka, Tomasz

    2011-04-01

    Oscillating signals produced by biological systems have shapes, described by their Fourier spectra, that can potentially reveal the mechanisms that generate them. Extracting this information from measured signals is interesting for the validation of theoretical models, discovery and classification of interaction types, and for optimal experiment design. An automated workflow is described for the analysis of oscillating signals. A software package is developed to match signal shapes to hundreds of a priori viable model structures defined by a class of first-order differential equations. The package computes parameter values for each model by exploiting the mode decomposition of oscillating signals and formulating the matching problem in terms of systems of simultaneous polynomial equations. On the basis of the computed parameter values, the software returns a list of models consistent with the data. In validation tests with synthetic datasets, it not only shortlists those model structures used to generate the data but also shows that excellent fits can sometimes be achieved with alternative equations. The listing of all consistent equations is indicative of how further invalidation might be achieved with additional information. When applied to data from a microarray experiment on mice, the procedure finds several candidate model structures to describe interactions related to the circadian rhythm. This shows that experimental data on oscillators is indeed rich in information about gene regulation mechanisms. The software package is available at http://babylone.ulb.ac.be/autoosc/.

  12. Stochastic modeling of mode interactions via linear parabolized stability equations

    NASA Astrophysics Data System (ADS)

    Ran, Wei; Zare, Armin; Hack, M. J. Philipp; Jovanovic, Mihailo

    2017-11-01

    Low-complexity approximations of the Navier-Stokes equations have been widely used in the analysis of wall-bounded shear flows. In particular, the parabolized stability equations (PSE) and Floquet theory have been employed to capture the evolution of primary and secondary instabilities in spatially-evolving flows. We augment linear PSE with Floquet analysis to formally treat modal interactions and the evolution of secondary instabilities in the transitional boundary layer via a linear progression. To this end, we leverage Floquet theory by incorporating the primary instability into the base flow and accounting for different harmonics in the flow state. A stochastic forcing is introduced into the resulting linear dynamics to model the effect of nonlinear interactions on the evolution of modes. We examine the H-type transition scenario to demonstrate how our approach can be used to model nonlinear effects and capture the growth of the fundamental and subharmonic modes observed in direct numerical simulations and experiments.

  13. Simple radiative transfer model for relationships between canopy biomass and reflectance

    NASA Technical Reports Server (NTRS)

    Park, J. K.; Deering, D. W.

    1982-01-01

    A modified Kubelka-Munk model has been utilized to derive useful equations for the analysis of apparent canopy reflectance. Based on the solution to the model simple working equations were formulated by employing reflectance characteristic parameters. The relationships derived show the asymptotic nature of reflectance data that is typically observed in remote sensing studies of plant biomass. They also establish the range of expected apparent canopy reflectance values for specific plant canopy types. The usefulness of the simplified equations was demonstrated by the exceptionally close fit of the theoretical curves to two separately acquired data sets for alfalfa and shortgrass prairie canopies.

  14. Data-driven discovery of partial differential equations.

    PubMed

    Rudy, Samuel H; Brunton, Steven L; Proctor, Joshua L; Kutz, J Nathan

    2017-04-01

    We propose a sparse regression method capable of discovering the governing partial differential equation(s) of a given system by time series measurements in the spatial domain. The regression framework relies on sparsity-promoting techniques to select the nonlinear and partial derivative terms of the governing equations that most accurately represent the data, bypassing a combinatorially large search through all possible candidate models. The method balances model complexity and regression accuracy by selecting a parsimonious model via Pareto analysis. Time series measurements can be made in an Eulerian framework, where the sensors are fixed spatially, or in a Lagrangian framework, where the sensors move with the dynamics. The method is computationally efficient, robust, and demonstrated to work on a variety of canonical problems spanning a number of scientific domains including Navier-Stokes, the quantum harmonic oscillator, and the diffusion equation. Moreover, the method is capable of disambiguating between potentially nonunique dynamical terms by using multiple time series taken with different initial data. Thus, for a traveling wave, the method can distinguish between a linear wave equation and the Korteweg-de Vries equation, for instance. The method provides a promising new technique for discovering governing equations and physical laws in parameterized spatiotemporal systems, where first-principles derivations are intractable.

  15. Model-independent curvature determination with 21 cm intensity mapping experiments

    NASA Astrophysics Data System (ADS)

    Witzemann, Amadeus; Bull, Philip; Clarkson, Chris; Santos, Mario G.; Spinelli, Marta; Weltman, Amanda

    2018-06-01

    Measurements of the spatial curvature of the Universe have improved significantly in recent years, but still tend to require strong assumptions to be made about the equation of state of dark energy (DE) in order to reach sub-percent precision. When these assumptions are relaxed, strong degeneracies arise that make it hard to disentangle DE and curvature, degrading the constraints. We show that forthcoming 21 cm intensity mapping experiments such as Hydrogen Intensity and Real-time Analysis eXperiment (HIRAX) are ideally designed to carry out model-independent curvature measurements, as they can measure the clustering signal at high redshift with sufficient precision to break many of the degeneracies. We consider two different model-independent methods, based on `avoiding' the DE-dominated regime and non-parametric modelling of the DE equation of state, respectively. Our forecasts show that HIRAX will be able to improve upon current model-independent constraints by around an order of magnitude, reaching percent-level accuracy even when an arbitrary DE equation of state is assumed. In the same model-independent analysis, the sample variance limit for a similar survey is another order of magnitude better.

  16. Near-wall turbulence model and its application to fully developed turbulent channel and pipe flows

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.

    1990-01-01

    A near-wall turbulence model and its incorporation into a multiple-timescale turbulence model are presented. The near-wall turbulence model is obtained from a k-equation turbulence model and a near-wall analysis. In the method, the equations for the conservation of mass, momentum, and turbulent kinetic energy are integrated up to the wall, and the energy transfer and the dissipation rates inside the near-wall layer are obtained from algebraic equations. Fully developed turbulent channel and pipe flows are solved using a finite element method. The computational results compare favorably with experimental data. It is also shown that the turbulence model can resolve the overshoot phenomena of the turbulent kinetic energy and the dissipation rate in the region very close to the wall.

  17. Development and analysis of prognostic equations for mesoscale kinetic energy and mesoscale (subgrid scale) fluxes for large-scale atmospheric models

    NASA Technical Reports Server (NTRS)

    Avissar, Roni; Chen, Fei

    1993-01-01

    Generated by landscape discontinuities (e.g., sea breezes) mesoscale circulation processes are not represented in large-scale atmospheric models (e.g., general circulation models), which have an inappropiate grid-scale resolution. With the assumption that atmospheric variables can be separated into large scale, mesoscale, and turbulent scale, a set of prognostic equations applicable in large-scale atmospheric models for momentum, temperature, moisture, and any other gaseous or aerosol material, which includes both mesoscale and turbulent fluxes is developed. Prognostic equations are also developed for these mesoscale fluxes, which indicate a closure problem and, therefore, require a parameterization. For this purpose, the mean mesoscale kinetic energy (MKE) per unit of mass is used, defined as E-tilde = 0.5 (the mean value of u'(sub i exp 2), where u'(sub i) represents the three Cartesian components of a mesoscale circulation (the angle bracket symbol is the grid-scale, horizontal averaging operator in the large-scale model, and a tilde indicates a corresponding large-scale mean value). A prognostic equation is developed for E-tilde, and an analysis of the different terms of this equation indicates that the mesoscale vertical heat flux, the mesoscale pressure correlation, and the interaction between turbulence and mesoscale perturbations are the major terms that affect the time tendency of E-tilde. A-state-of-the-art mesoscale atmospheric model is used to investigate the relationship between MKE, landscape discontinuities (as characterized by the spatial distribution of heat fluxes at the earth's surface), and mesoscale sensible and latent heat fluxes in the atmosphere. MKE is compared with turbulence kinetic energy to illustrate the importance of mesoscale processes as compared to turbulent processes. This analysis emphasizes the potential use of MKE to bridge between landscape discontinuities and mesoscale fluxes and, therefore, to parameterize mesoscale fluxes generated by such subgrid-scale landscape discontinuities in large-scale atmospheric models.

  18. Is the Wheeler-DeWitt equation more fundamental than the Schrödinger equation?

    NASA Astrophysics Data System (ADS)

    Shestakova, Tatyana P.

    The Wheeler-DeWitt equation was proposed 50 years ago and until now it is the cornerstone of most approaches to quantization of gravity. One can find in the literature, the opinion that the Wheeler-DeWitt equation is even more fundamental than the basic equation of quantum theory, the Schrödinger equation. We still should remember that we are in the situation when no observational data can confirm or reject the fundamental status of the Wheeler-DeWitt equation, so we can give just indirect arguments in favor of or against it, grounded on mathematical consistency and physical relevance. I shall present the analysis of the situation and comparison of the standard Wheeler-DeWitt approach with the extended phase space approach to quantization of gravity. In my analysis, I suppose, first, that a future quantum theory of gravity must be applicable to all phenomena from the early universe to quantum effects in strong gravitational fields, in the latter case, the state of the observer (the choice of a reference frame) may appear to be significant. Second, I suppose that the equation for the wave function of the universe must not be postulated but derived by means of a mathematically consistent procedure, which exists in path integral quantization. When applying this procedure to any gravitating system, one should take into account features of gravity, namely, nontrivial spacetime topology and possible absence of asymptotic states. The Schrödinger equation has been derived early for cosmological models with a finite number of degrees of freedom, and just recently it has been found for the spherically symmetric model which is a simplest model with an infinite number of degrees of freedom. The structure of the Schrödinger equation and its general solution appears to be very similar in these cases. The obtained results give grounds to say that the Schrödinger equation retains its fundamental meaning in constructing quantum theory of gravity.

  19. Master equation for a kinetic model of a trading market and its analytic solution

    NASA Astrophysics Data System (ADS)

    Chatterjee, Arnab; Chakrabarti, Bikas K.; Stinchcombe, Robin B.

    2005-08-01

    We analyze an ideal-gas-like model of a trading market with quenched random saving factors for its agents and show that the steady state income (m) distribution P(m) in the model has a power law tail with Pareto index ν exactly equal to unity, confirming the earlier numerical studies on this model. The analysis starts with the development of a master equation for the time development of P(m) . Precise solutions are then obtained in some special cases.

  20. Master equation for a kinetic model of a trading market and its analytic solution.

    PubMed

    Chatterjee, Arnab; Chakrabarti, Bikas K; Stinchcombe, Robin B

    2005-08-01

    We analyze an ideal-gas-like model of a trading market with quenched random saving factors for its agents and show that the steady state income (m) distribution P(m) in the model has a power law tail with Pareto index nu exactly equal to unity, confirming the earlier numerical studies on this model. The analysis starts with the development of a master equation for the time development of P(m) . Precise solutions are then obtained in some special cases.

  1. A Descriptive Guide to Trade Space Analysis

    DTIC Science & Technology

    2015-09-01

    Development QFD Quality Function Deployment RSM Response Surface Method RSE Response Surface Equation SE Systems Engineering SME Subject Matter...surface equations ( RSEs ) as surrogate models. It uses the RSEs with Monte Carlo simulation to quantitatively explore changes across the surfaces to

  2. Application of the Modified Compaction Material Model to the Analysis of Landmine Detonation in Soil with Various Degrees of Water Saturation

    DTIC Science & Technology

    2007-01-01

    Equation of State R2 – Constant in JWL Equation of State σ – Yield Stress T – Temperature...v – Specific volume w – Constant in JWL Equation of State x – Spatial coordinate y – Spatial coordinate Y – Yield stress Subscripts Comp – Value at...Constant in JWL Equation of State α – Porosity B – Compaction Modulus B1 – Strain Hardening Constant B2 – Constant in JWL Equation of State

  3. A near-wall turbulence model and its application to fully developed turbulent channel and pipe flows

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.

    1988-01-01

    A near wall turbulence model and its incorporation into a multiple-time-scale turbulence model are presented. In the method, the conservation of mass, momentum, and the turbulent kinetic energy equations are integrated up to the wall; and the energy transfer rate and the dissipation rate inside the near wall layer are obtained from algebraic equations. The algebraic equations for the energy transfer rate and the dissipation rate inside the near wall layer were obtained from a k-equation turbulence model and the near wall analysis. A fully developed turbulent channel flow and fully developed turbulent pipe flows were solved using a finite element method to test the predictive capability of the turbulence model. The computational results compared favorably with experimental data. It is also shown that the present turbulence model could resolve the over shoot phenomena of the turbulent kinetic energy and the dissipation rate in the region very close to the wall.

  4. Refined Models for an Analysis of Internal and External Buckling Modes of a Monolayer in a Layered Composite

    NASA Astrophysics Data System (ADS)

    Paimushin, V. N.

    2017-11-01

    For an analysis of internal and external buckling modes of a monolayer inside or at the periphery of a layered composite, refined geometrically nonlinear equations are constructed. They are based on modeling the monolayer as a thin plate interacting with binder layers at the points of boundary surfaces. The binder layer is modeled as a transversely soft foundation. It is assumed the foundations, previously compressed in the transverse direction (the first loading stage), have zero displacements of its external boundary surfaces at the second loading stage, but the contact interaction of the plate with foundations occurs without slippage or delamination. The deformation of the plate at a medium flexure is described by geometrically nonlinear relations of the classical plate theory based on the Kirchhoff-Love hypothesis (the first variant) or the refined Timoshenko model with account of the transverse shear and compression (the second variant). The foundation is described by linearized 3D equations of elasticity theory, which are simplified within the framework of the model of a transversely soft layer. Integrating the linearized equations along the transverse coordinate and satisfying the kinematic joining conditions of the plate with foundations, with account of their initial compression in the thickness direction, a system of 2D geometrically nonlinear equations and appropriate boundary conditions are derived. These equations describe the contact interaction between elements of the deformable system. The relations obtained are simplified for the case of a symmetric stacking sequence.

  5. A nonlinear analysis of the terahertz serpentine waveguide traveling-wave amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ke, E-mail: like.3714@163.com; Cao, Miaomiao, E-mail: mona486@yeah.net; Institute of Electronics, University of Chinese Academy of Sciences, Beijing 100190

    A nonlinear model for the numerical simulation of terahertz serpentine waveguide traveling-wave tube (SW-TWT) is described. In this model, the electromagnetic wave transmission in the SW is represented as an infinite set of space harmonics to interact with an electron beam. Analytical expressions for axial electric fields in axisymmetric interaction gaps of SW-TWTs are derived and compared with the results from CST simulation. The continuous beam is treated as discrete macro-particles with different initial phases. The beam-tunnel field equations, space-charge field equations, and motion equations are combined to solve the beam-wave interaction. The influence of backward wave and relativistic effectmore » is also considered in the series of equations. The nonlinear model is used to design a 340 GHz SW-TWT. Several favorable comparisons of model predictions with results from a 3-D Particle-in-cell simulation code CHIPIC are presented, in which the output power versus beam voltage and interaction periods are illustrated. The relative error of the predicted output power is less than 15% in the 3 dB bandwidth and the relative error of the saturated length is less than 8%.The results show that the 1-D nonlinear analysis model is appropriate to solve the terahertz SW-TWT operation characteristics.« less

  6. Three-Loop Automatic of Control System the Landfill of Household Solid Waste

    NASA Astrophysics Data System (ADS)

    Sereda, T. G.; Kostarev, S. N.

    2017-05-01

    The analysis of models of governance ground municipal solid waste (MSW). Considered a distributed circuit (spatio-temporal) ground control model. Developed a dynamic model of multicontour control landfill. Adjustable parameters are defined (the ratio of CH4 CO2 emission/fluxes, concentrations of heavy metals ions) and control (purging array, irrigation, adding reagents). Based on laboratory studies carried out with the analysis of equity flows and procedures developed by the transferring matrix that takes into account the relationship control loops. A system of differential equations in the frequency and time domains. Given the numerical approaches solving systems of differential equations in finite differential form.

  7. A Proposed Probabilistic Extension of the Halpern and Pearl Definition of ‘Actual Cause’

    PubMed Central

    2017-01-01

    ABSTRACT Joseph Halpern and Judea Pearl ([2005]) draw upon structural equation models to develop an attractive analysis of ‘actual cause’. Their analysis is designed for the case of deterministic causation. I show that their account can be naturally extended to provide an elegant treatment of probabilistic causation. 1Introduction2Preemption3Structural Equation Models4The Halpern and Pearl Definition of ‘Actual Cause’5Preemption Again6The Probabilistic Case7Probabilistic Causal Models8A Proposed Probabilistic Extension of Halpern and Pearl’s Definition9Twardy and Korb’s Account10Probabilistic Fizzling11Conclusion PMID:29593362

  8. Trajectory-Based Loads for the Ares I-X Test Flight Vehicle

    NASA Technical Reports Server (NTRS)

    Vause, Roland F.; Starr, Brett R.

    2011-01-01

    In trajectory-based loads, the structural engineer treats each point on the trajectory as a load case. Distributed aero, inertial, and propulsion forces are developed for the structural model which are equivalent to the integrated values of the trajectory model. Free-body diagrams are then used to solve for the internal forces, or loads, that keep the applied aero, inertial, and propulsion forces in dynamic equilibrium. There are several advantages to using trajectory-based loads. First, consistency is maintained between the integrated equilibrium equations of the trajectory analysis and the distributed equilibrium equations of the structural analysis. Second, the structural loads equations are tied to the uncertainty model for the trajectory systems analysis model. Atmosphere, aero, propulsion, mass property, and controls uncertainty models all feed into the dispersions that are generated for the trajectory systems analysis model. Changes in any of these input models will affect structural loads response. The trajectory systems model manages these inputs as well as the output from the structural model over thousands of dispersed cases. Large structural models with hundreds of thousands of degrees of freedom would execute too slowly to be an efficient part of several thousand system analyses. Trajectory-based loads provide a means for the structures discipline to be included in the integrated systems analysis. Successful applications of trajectory-based loads methods for the Ares I-X vehicle are covered in this paper. Preliminary design loads were based on 2000 trajectories using Monte Carlo dispersions. Range safety loads were tied to 8423 malfunction turn trajectories. In addition, active control system loads were based on 2000 preflight trajectories using Monte Carlo dispersions.

  9. Dynamic Analysis and Control of Lightweight Manipulators with Flexible Parallel Link Mechanisms. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lee, Jeh Won

    1990-01-01

    The objective is the theoretical analysis and the experimental verification of dynamics and control of a two link flexible manipulator with a flexible parallel link mechanism. Nonlinear equations of motion of the lightweight manipulator are derived by the Lagrangian method in symbolic form to better understand the structure of the dynamic model. The resulting equation of motion have a structure which is useful to reduce the number of terms calculated, to check correctness, or to extend the model to higher order. A manipulator with a flexible parallel link mechanism is a constrained dynamic system whose equations are sensitive to numerical integration error. This constrained system is solved using singular value decomposition of the constraint Jacobian matrix. Elastic motion is expressed by the assumed mode method. Mode shape functions of each link are chosen using the load interfaced component mode synthesis. The discrepancies between the analytical model and the experiment are explained using a simplified and a detailed finite element model.

  10. Turbulence Model Selection for Low Reynolds Number Flows

    PubMed Central

    2016-01-01

    One of the major flow phenomena associated with low Reynolds number flow is the formation of separation bubbles on an airfoil’s surface. NACA4415 airfoil is commonly used in wind turbines and UAV applications. The stall characteristics are gradual compared to thin airfoils. The primary criterion set for this work is the capture of laminar separation bubble. Flow is simulated for a Reynolds number of 120,000. The numerical analysis carried out shows the advantages and disadvantages of a few turbulence models. The turbulence models tested were: one equation Spallart Allmars (S-A), two equation SST K-ω, three equation Intermittency (γ) SST, k-kl-ω and finally, the four equation transition γ-Reθ SST. However, the variation in flow physics differs between these turbulence models. Procedure to establish the accuracy of the simulation, in accord with previous experimental results, has been discussed in detail. PMID:27104354

  11. Turbulence Model Selection for Low Reynolds Number Flows.

    PubMed

    Aftab, S M A; Mohd Rafie, A S; Razak, N A; Ahmad, K A

    2016-01-01

    One of the major flow phenomena associated with low Reynolds number flow is the formation of separation bubbles on an airfoil's surface. NACA4415 airfoil is commonly used in wind turbines and UAV applications. The stall characteristics are gradual compared to thin airfoils. The primary criterion set for this work is the capture of laminar separation bubble. Flow is simulated for a Reynolds number of 120,000. The numerical analysis carried out shows the advantages and disadvantages of a few turbulence models. The turbulence models tested were: one equation Spallart Allmars (S-A), two equation SST K-ω, three equation Intermittency (γ) SST, k-kl-ω and finally, the four equation transition γ-Reθ SST. However, the variation in flow physics differs between these turbulence models. Procedure to establish the accuracy of the simulation, in accord with previous experimental results, has been discussed in detail.

  12. Generalized constitutive equations for piezo-actuated compliant mechanism

    NASA Astrophysics Data System (ADS)

    Cao, Junyi; Ling, Mingxiang; Inman, Daniel J.; Lin, Jin

    2016-09-01

    This paper formulates analytical models to describe the static displacement and force interactions between generic serial-parallel compliant mechanisms and their loads by employing the matrix method. In keeping with the familiar piezoelectric constitutive equations, the generalized constitutive equations of compliant mechanism represent the input-output displacement and force relations in the form of a generalized Hooke’s law and as analytical functions of physical parameters. Also significantly, a new model of output displacement for compliant mechanism interacting with piezo-stacks and elastic loads is deduced based on the generalized constitutive equations. Some original findings differing from the well-known constitutive performance of piezo-stacks are also given. The feasibility of the proposed models is confirmed by finite element analysis and by experiments under various elastic loads. The analytical models can be an insightful tool for predicting and optimizing the performance of a wide class of compliant mechanisms that simultaneously consider the influence of loads and piezo-stacks.

  13. On the time-splitting scheme used in the Princeton Ocean Model

    NASA Astrophysics Data System (ADS)

    Kamenkovich, V. M.; Nechaev, D. A.

    2009-05-01

    The analysis of the time-splitting procedure implemented in the Princeton Ocean Model (POM) is presented. The time-splitting procedure uses different time steps to describe the evolution of interacting fast and slow propagating modes. In the general case the exact separation of the fast and slow modes is not possible. The main idea of the analyzed procedure is to split the system of primitive equations into two systems of equations for interacting external and internal modes. By definition, the internal mode varies slowly and the crux of the problem is to determine the proper filter, which excludes the fast component of the external mode variables in the relevant equations. The objective of this paper is to examine properties of the POM time-splitting procedure applied to equations governing the simplest linear non-rotating two-layer model of constant depth. The simplicity of the model makes it possible to study these properties analytically. First, the time-split system of differential equations is examined for two types of the determination of the slow component based on an asymptotic approach or time-averaging. Second, the differential-difference scheme is developed and some criteria of its stability are discussed for centered, forward, or backward time-averaging of the external mode variables. Finally, the stability of the POM time-splitting schemes with centered and forward time-averaging is analyzed. The effect of the Asselin filter on solutions of the considered schemes is studied. It is assumed that questions arising in the analysis of the simplest model are inherent in the general model as well.

  14. Alternate solution to generalized Bernoulli equations via an integrating factor: an exact differential equation approach

    NASA Astrophysics Data System (ADS)

    Tisdell, C. C.

    2017-08-01

    Solution methods to exact differential equations via integrating factors have a rich history dating back to Euler (1740) and the ideas enjoy applications to thermodynamics and electromagnetism. Recently, Azevedo and Valentino presented an analysis of the generalized Bernoulli equation, constructing a general solution by linearizing the problem through a substitution. The purpose of this note is to present an alternative approach using 'exact methods', illustrating that a substitution and linearization of the problem is unnecessary. The ideas may be seen as forming a complimentary and arguably simpler approach to Azevedo and Valentino that have the potential to be assimilated and adapted to pedagogical needs of those learning and teaching exact differential equations in schools, colleges, universities and polytechnics. We illustrate how to apply the ideas through an analysis of the Gompertz equation, which is of interest in biomathematical models of tumour growth.

  15. What Are We Doing When We Translate from Quantitative Models?

    PubMed Central

    Critchfield, Thomas S; Reed, Derek D

    2009-01-01

    Although quantitative analysis (in which behavior principles are defined in terms of equations) has become common in basic behavior analysis, translational efforts often examine everyday events through the lens of narrative versions of laboratory-derived principles. This approach to translation, although useful, is incomplete because equations may convey concepts that are difficult to capture in words. To support this point, we provide a nontechnical introduction to selected aspects of quantitative analysis; consider some issues that translational investigators (and, potentially, practitioners) confront when attempting to translate from quantitative models; and discuss examples of relevant translational studies. We conclude that, where behavior-science translation is concerned, the quantitative features of quantitative models cannot be ignored without sacrificing conceptual precision, scientific and practical insights, and the capacity of the basic and applied wings of behavior analysis to communicate effectively. PMID:22478533

  16. Chaotic dynamics and diffusion in a piecewise linear equation

    NASA Astrophysics Data System (ADS)

    Shahrear, Pabel; Glass, Leon; Edwards, Rod

    2015-03-01

    Genetic interactions are often modeled by logical networks in which time is discrete and all gene activity states update simultaneously. However, there is no synchronizing clock in organisms. An alternative model assumes that the logical network is preserved and plays a key role in driving the dynamics in piecewise nonlinear differential equations. We examine dynamics in a particular 4-dimensional equation of this class. In the equation, two of the variables form a negative feedback loop that drives a second negative feedback loop. By modifying the original equations by eliminating exponential decay, we generate a modified system that is amenable to detailed analysis. In the modified system, we can determine in detail the Poincaré (return) map on a cross section to the flow. By analyzing the eigenvalues of the map for the different trajectories, we are able to show that except for a set of measure 0, the flow must necessarily have an eigenvalue greater than 1 and hence there is sensitive dependence on initial conditions. Further, there is an irregular oscillation whose amplitude is described by a diffusive process that is well-modeled by the Irwin-Hall distribution. There is a large class of other piecewise-linear networks that might be analyzed using similar methods. The analysis gives insight into possible origins of chaotic dynamics in periodically forced dynamical systems.

  17. Distribution factors for construction loads and girder capacity equations [project summary].

    DOT National Transportation Integrated Search

    2017-03-01

    This project focused on the use of Florida I-beams (FIBs) in bridge construction. University of Florida researchers used analytical models and finite element analysis to update equations used in the design of bridges using FIBs. They were particularl...

  18. Optical solitons and modulation instability analysis with (3 + 1)-dimensional nonlinear Shrödinger equation

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi; Baleanu, Dumitru

    2017-12-01

    This paper addresses the (3 + 1)-dimensional nonlinear Shrödinger equation (NLSE) that serves as the model to study the propagation of optical solitons through nonlinear optical fibers. Two integration schemes are employed to study the equation. These are the complex envelope function ansatz and the solitary wave ansatz with Jaccobi elliptic function methods, we present the exact dark, bright and dark-bright or combined optical solitons to the model. The intensity as well as the nonlinear phase shift of the solitons are reported. The modulation instability aspects are discussed using the concept of linear stability analysis. The MI gain is got. Numerical simulation of the obtained results are analyzed with interesting figures showing the physical meaning of the solutions.

  19. The characteristics of RF modulated plasma boundary sheaths: An analysis of the standard sheath model

    NASA Astrophysics Data System (ADS)

    Naggary, Schabnam; Brinkmann, Ralf Peter

    2015-09-01

    The characteristics of radio frequency (RF) modulated plasma boundary sheaths are studied on the basis of the so-called ``standard sheath model.'' This model assumes that the applied radio frequency ωRF is larger than the plasma frequency of the ions but smaller than that of the electrons. It comprises a phase-averaged ion model - consisting of an equation of continuity (with ionization neglected) and an equation of motion (with collisional ion-neutral interaction taken into account) - a phase-resolved electron model - consisting of an equation of continuity and the assumption of Boltzmann equilibrium -, and Poisson's equation for the electrical field. Previous investigations have studied the standard sheath model under additional approximations, most notably the assumption of a step-like electron front. This contribution presents an investigation and parameter study of the standard sheath model which avoids any further assumptions. The resulting density profiles and overall charge-voltage characteristics are compared with those of the step-model based theories. The authors gratefully acknowledge Efe Kemaneci for helpful comments and fruitful discussions.

  20. HYDRA-II: A hydrothermal analysis computer code: Volume 2, User's manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCann, R.A.; Lowery, P.S.; Lessor, D.L.

    1987-09-01

    HYDRA-II is a hydrothermal computer code capable of three-dimensional analysis of coupled conduction, convection, and thermal radiation problems. This code is especially appropriate for simulating the steady-state performance of spent fuel storage systems. The code has been evaluated for this application for the US Department of Energy's Commercial Spent Fuel Management Program. HYDRA-II provides a finite-difference solution in cartesian coordinates to the equations governing the conservation of mass, momentum, and energy. A cylindrical coordinate system may also be used to enclose the cartesian coordinate system. This exterior coordinate system is useful for modeling cylindrical cask bodies. The difference equations formore » conservation of momentum incorporate directional porosities and permeabilities that are available to model solid structures whose dimensions may be smaller than the computational mesh. The equation for conservation of energy permits modeling of orthotropic physical properties and film resistances. Several automated methods are available to model radiation transfer within enclosures and from fuel rod to fuel rod. The documentation of HYDRA-II is presented in three separate volumes. Volume 1 - Equations and Numerics describes the basic differential equations, illustrates how the difference equations are formulated, and gives the solution procedures employed. This volume, Volume 2 - User's Manual, contains code flow charts, discusses the code structure, provides detailed instructions for preparing an input file, and illustrates the operation of the code by means of a sample problem. The final volume, Volume 3 - Verification/Validation Assessments, provides a comparison between the analytical solution and the numerical simulation for problems with a known solution. 6 refs.« less

  1. Gravitational lensing by eigenvalue distributions of random matrix models

    NASA Astrophysics Data System (ADS)

    Martínez Alonso, Luis; Medina, Elena

    2018-05-01

    We propose to use eigenvalue densities of unitary random matrix ensembles as mass distributions in gravitational lensing. The corresponding lens equations reduce to algebraic equations in the complex plane which can be treated analytically. We prove that these models can be applied to describe lensing by systems of edge-on galaxies. We illustrate our analysis with the Gaussian and the quartic unitary matrix ensembles.

  2. Equations relating compacted and uncompacted live crown ratio for common tree species in the South

    Treesearch

    KaDonna C. Randolph

    2010-01-01

    Species-specific equations to predict uncompacted crown ratio (UNCR) from compacted live crown ratio (CCR), tree length, and stem diameter were developed for 24 species and 12 genera in the southern United States. Using data from the US Forest Service Forest Inventory and Analysis program, nonlinear regression was used to model UNCR with a logistic function. Model...

  3. Regression Levels of Selected Affective Factors on Science Achievement: A Structural Equation Model with TIMSS 2011 Data

    ERIC Educational Resources Information Center

    Akilli, Mustafa

    2015-01-01

    The aim of this study is to demonstrate the science success regression levels of chosen emotional features of 8th grade students using Structural Equation Model. The study was conducted by the analysis of students' questionnaires and science success in TIMSS 2011 data using SEM. Initially, the factors that are thought to have an effect on science…

  4. Application of partial differential equation modeling of the control/structural dynamics of flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence W., Jr.; Rajiyah, H.

    1991-01-01

    Partial differential equations for modeling the structural dynamics and control systems of flexible spacecraft are applied here in order to facilitate systems analysis and optimization of these spacecraft. Example applications are given, including the structural dynamics of SCOLE, the Solar Array Flight Experiment, the Mini-MAST truss, and the LACE satellite. The development of related software is briefly addressed.

  5. GenSSI 2.0: multi-experiment structural identifiability analysis of SBML models.

    PubMed

    Ligon, Thomas S; Fröhlich, Fabian; Chis, Oana T; Banga, Julio R; Balsa-Canto, Eva; Hasenauer, Jan

    2018-04-15

    Mathematical modeling using ordinary differential equations is used in systems biology to improve the understanding of dynamic biological processes. The parameters of ordinary differential equation models are usually estimated from experimental data. To analyze a priori the uniqueness of the solution of the estimation problem, structural identifiability analysis methods have been developed. We introduce GenSSI 2.0, an advancement of the software toolbox GenSSI (Generating Series for testing Structural Identifiability). GenSSI 2.0 is the first toolbox for structural identifiability analysis to implement Systems Biology Markup Language import, state/parameter transformations and multi-experiment structural identifiability analysis. In addition, GenSSI 2.0 supports a range of MATLAB versions and is computationally more efficient than its previous version, enabling the analysis of more complex models. GenSSI 2.0 is an open-source MATLAB toolbox and available at https://github.com/genssi-developer/GenSSI. thomas.ligon@physik.uni-muenchen.de or jan.hasenauer@helmholtz-muenchen.de. Supplementary data are available at Bioinformatics online.

  6. Quantified choice of root-mean-square errors of approximation for evaluation and power analysis of small differences between structural equation models.

    PubMed

    Li, Libo; Bentler, Peter M

    2011-06-01

    MacCallum, Browne, and Cai (2006) proposed a new framework for evaluation and power analysis of small differences between nested structural equation models (SEMs). In their framework, the null and alternative hypotheses for testing a small difference in fit and its related power analyses were defined by some chosen root-mean-square error of approximation (RMSEA) pairs. In this article, we develop a new method that quantifies those chosen RMSEA pairs and allows a quantitative comparison of them. Our method proposes the use of single RMSEA values to replace the choice of RMSEA pairs for model comparison and power analysis, thus avoiding the differential meaning of the chosen RMSEA pairs inherent in the approach of MacCallum et al. (2006). With this choice, the conventional cutoff values in model overall evaluation can directly be transferred and applied to the evaluation and power analysis of model differences. © 2011 American Psychological Association

  7. A model of a fishery with fish stock involving delay equations.

    PubMed

    Auger, P; Ducrot, Arnaud

    2009-12-13

    The aim of this paper is to provide a new mathematical model for a fishery by including a stock variable for the resource. This model takes the form of an infinite delay differential equation. It is mathematically studied and a bifurcation analysis of the steady states is fulfilled. Depending on the different parameters of the problem, we show that Hopf bifurcation may occur leading to oscillating behaviours of the system. The mathematical results are finally discussed.

  8. Multiple-Group Analysis Using the sem Package in the R System

    ERIC Educational Resources Information Center

    Evermann, Joerg

    2010-01-01

    Multiple-group analysis in covariance-based structural equation modeling (SEM) is an important technique to ensure the invariance of latent construct measurements and the validity of theoretical models across different subpopulations. However, not all SEM software packages provide multiple-group analysis capabilities. The sem package for the R…

  9. Computational cost of two alternative formulations of Cahn-Hilliard equations

    NASA Astrophysics Data System (ADS)

    Paszyński, Maciej; Gurgul, Grzegorz; Łoś, Marcin; Szeliga, Danuta

    2018-05-01

    In this paper we propose two formulations of Cahn-Hilliard equations, which have several applications in cancer growth modeling and material science phase-field simulations. The first formulation uses one C4 partial differential equations (PDEs) the second one uses two C2 PDEs. Finally, we compare the computational costs of direct solvers for both formulations, using the refined isogeometric analysis (rIGA) approach.

  10. Effect of Dust Coagulation Dynamics on the Geometry of Aggregates

    NASA Technical Reports Server (NTRS)

    Nakamura, R.

    1996-01-01

    Master equation gives a more fundamental description of stochastic coagulation processes rather than popular Smoluchowski's equation. In order to examine the effect of the dynamics on the geometry of resulting aggregates, we study Master equation with a rigorous Monte Carlo algorithm. It is found that Cluster-Cluster aggregation model is a good approximation of orderly growth and the aggregates have fluffy structures with a fractal dimension approx. 2. A scaling analysis of Smoluchowski's equation also supports this conclusion.

  11. Theoretical study of reactive and nonreactive turbulent coaxial jets

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.; Wakelyn, N. T.

    1976-01-01

    The hydrodynamic properties and the reaction kinetics of axisymmetric coaxial turbulent jets having steady mean quantities are investigated. From the analysis, limited to free turbulent boundary layer mixing of such jets, it is found that the two-equation model of turbulence is adequate for most nonreactive flows. For the reactive flows, where an allowance must be made for second order correlations of concentration fluctuations in the finite rate chemistry for initially inhomogeneous mixture, an equation similar to the concentration fluctuation equation of a related model is suggested. For diffusion limited reactions, the eddy breakup model based on concentration fluctuations is found satisfactory and simple to use. The theoretical results obtained from these various models are compared with some of the available experimental data.

  12. Comparative analysis of Goodwin's business cycle models

    NASA Astrophysics Data System (ADS)

    Antonova, A. O.; Reznik, S.; Todorov, M. D.

    2016-10-01

    We compare the behavior of solutions of Goodwin's business cycle equation in the form of neutral delay differential equation with fixed delay (NDDE model) and in the form of the differential equations of 3rd, 4th and 5th orders (ODE model's). Such ODE model's (Taylor series expansion of NDDE in powers of θ) are proposed in N. Dharmaraj and K. Vela Velupillai [6] for investigation of the short periodic sawthooth oscillations in NDDE. We show that the ODE's of 3rd, 4th and 5th order may approximate the asymptotic behavior of only main Goodwin's mode, but not the sawthooth modes. If the order of the Taylor series expansion exceeds 5, then the approximate ODE becomes unstable independently of time lag θ.

  13. A Flight Dynamics Model for a Multi-Actuated Flexible Rocket Vehicle

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.

    2011-01-01

    A comprehensive set of motion equations for a multi-actuated flight vehicle is presented. The dynamics are derived from a vector approach that generalizes the classical linear perturbation equations for flexible launch vehicles into a coupled three-dimensional model. The effects of nozzle and aerosurface inertial coupling, sloshing propellant, and elasticity are incorporated without restrictions on the position, orientation, or number of model elements. The present formulation is well suited to matrix implementation for large-scale linear stability and sensitivity analysis and is also shown to be extensible to nonlinear time-domain simulation through the application of a special form of Lagrange s equations in quasi-coordinates. The model is validated through frequency-domain response comparison with a high-fidelity planar implementation.

  14. A New Constitutive Model for the Plastic Flow of Metals at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Spigarelli, S.; El Mehtedi, M.

    2014-02-01

    A new constitutive model based on the combination of the Garofalo and Hensel-Spittel equations has been used to describe the plastic flow behavior of an AA6005 aluminum alloy tested in torsion. The analysis of the experimental data by the constitutive model resulted in an excellent description of the flow curves. The model equation was then rewritten to explicitly include the Arrhenius term describing the temperature dependence of plastic deformation. The calculation indicated that the activation energy for hot working slowly decreased with increasing strain, leading to thermally activated flow softening. The combined use of the new equation and torsion testing led to the development of a constitutive model which can be safely adopted in a computer code to simulate forging or extrusion.

  15. Energy Finite Element Analysis Developments for Vibration Analysis of Composite Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Vlahopoulos, Nickolas; Schiller, Noah H.

    2011-01-01

    The Energy Finite Element Analysis (EFEA) has been utilized successfully for modeling complex structural-acoustic systems with isotropic structural material properties. In this paper, a formulation for modeling structures made out of composite materials is presented. An approach based on spectral finite element analysis is utilized first for developing the equivalent material properties for the composite material. These equivalent properties are employed in the EFEA governing differential equations for representing the composite materials and deriving the element level matrices. The power transmission characteristics at connections between members made out of non-isotropic composite material are considered for deriving suitable power transmission coefficients at junctions of interconnected members. These coefficients are utilized for computing the joint matrix that is needed to assemble the global system of EFEA equations. The global system of EFEA equations is solved numerically and the vibration levels within the entire system can be computed. The new EFEA formulation for modeling composite laminate structures is validated through comparison to test data collected from a representative composite aircraft fuselage that is made out of a composite outer shell and composite frames and stiffeners. NASA Langley constructed the composite cylinder and conducted the test measurements utilized in this work.

  16. Matrix approach to uncertainty assessment and reduction for modeling terrestrial carbon cycle

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Xia, J.; Ahlström, A.; Zhou, S.; Huang, Y.; Shi, Z.; Wang, Y.; Du, Z.; Lu, X.

    2017-12-01

    Terrestrial ecosystems absorb approximately 30% of the anthropogenic carbon dioxide emissions. This estimate has been deduced indirectly: combining analyses of atmospheric carbon dioxide concentrations with ocean observations to infer the net terrestrial carbon flux. In contrast, when knowledge about the terrestrial carbon cycle is integrated into different terrestrial carbon models they make widely different predictions. To improve the terrestrial carbon models, we have recently developed a matrix approach to uncertainty assessment and reduction. Specifically, the terrestrial carbon cycle has been commonly represented by a series of carbon balance equations to track carbon influxes into and effluxes out of individual pools in earth system models. This representation matches our understanding of carbon cycle processes well and can be reorganized into one matrix equation without changing any modeled carbon cycle processes and mechanisms. We have developed matrix equations of several global land C cycle models, including CLM3.5, 4.0 and 4.5, CABLE, LPJ-GUESS, and ORCHIDEE. Indeed, the matrix equation is generic and can be applied to other land carbon models. This matrix approach offers a suite of new diagnostic tools, such as the 3-dimensional (3-D) parameter space, traceability analysis, and variance decomposition, for uncertainty analysis. For example, predictions of carbon dynamics with complex land models can be placed in a 3-D parameter space (carbon input, residence time, and storage potential) as a common metric to measure how much model predictions are different. The latter can be traced to its source components by decomposing model predictions to a hierarchy of traceable components. Then, variance decomposition can help attribute the spread in predictions among multiple models to precisely identify sources of uncertainty. The highly uncertain components can be constrained by data as the matrix equation makes data assimilation computationally possible. We will illustrate various applications of this matrix approach to uncertainty assessment and reduction for terrestrial carbon cycle models.

  17. Fast and local non-linear evolution of steep wave-groups on deep water: A comparison of approximate models to fully non-linear simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adcock, T. A. A.; Taylor, P. H.

    2016-01-15

    The non-linear Schrödinger equation and its higher order extensions are routinely used for analysis of extreme ocean waves. This paper compares the evolution of individual wave-packets modelled using non-linear Schrödinger type equations with packets modelled using fully non-linear potential flow models. The modified non-linear Schrödinger Equation accurately models the relatively large scale non-linear changes to the shape of wave-groups, with a dramatic contraction of the group along the mean propagation direction and a corresponding extension of the width of the wave-crests. In addition, as extreme wave form, there is a local non-linear contraction of the wave-group around the crest whichmore » leads to a localised broadening of the wave spectrum which the bandwidth limited non-linear Schrödinger Equations struggle to capture. This limitation occurs for waves of moderate steepness and a narrow underlying spectrum.« less

  18. Calculation of Thermally-Induced Displacements in Spherically Domed Ion Engine Grids

    NASA Technical Reports Server (NTRS)

    Soulas, George C.

    2006-01-01

    An analytical method for predicting the thermally-induced normal and tangential displacements of spherically domed ion optics grids under an axisymmetric thermal loading is presented. A fixed edge support that could be thermally expanded is used for this analysis. Equations for the displacements both normal and tangential to the surface of the spherical shell are derived. A simplified equation for the displacement at the center of the spherical dome is also derived. The effects of plate perforation on displacements and stresses are determined by modeling the perforated plate as an equivalent solid plate with modified, or effective, material properties. Analytical model results are compared to the results from a finite element model. For the solid shell, comparisons showed that the analytical model produces results that closely match the finite element model results. The simplified equation for the normal displacement of the spherical dome center is also found to accurately predict this displacement. For the perforated shells, the analytical solution and simplified equation produce accurate results for materials with low thermal expansion coefficients.

  19. Geometric model of pseudo-distance measurement in satellite location systems

    NASA Astrophysics Data System (ADS)

    Panchuk, K. L.; Lyashkov, A. A.; Lyubchinov, E. V.

    2018-04-01

    The existing mathematical model of pseudo-distance measurement in satellite location systems does not provide a precise solution of the problem, but rather an approximate one. The existence of such inaccuracy, as well as bias in measurement of distance from satellite to receiver, results in inaccuracy level of several meters. Thereupon, relevance of refinement of the current mathematical model becomes obvious. The solution of the system of quadratic equations used in the current mathematical model is based on linearization. The objective of the paper is refinement of current mathematical model and derivation of analytical solution of the system of equations on its basis. In order to attain the objective, geometric analysis is performed; geometric interpretation of the equations is given. As a result, an equivalent system of equations, which allows analytical solution, is derived. An example of analytical solution implementation is presented. Application of analytical solution algorithm to the problem of pseudo-distance measurement in satellite location systems allows to improve the accuracy such measurements.

  20. Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations.

    PubMed

    Vorobev, Anatoliy

    2010-11-01

    We use the Cahn-Hilliard approach to model the slow dissolution dynamics of binary mixtures. An important peculiarity of the Cahn-Hilliard-Navier-Stokes equations is the necessity to use the full continuity equation even for a binary mixture of two incompressible liquids due to dependence of mixture density on concentration. The quasicompressibility of the governing equations brings a short time-scale (quasiacoustic) process that may not affect the slow dynamics but may significantly complicate the numerical treatment. Using the multiple-scale method we separate the physical processes occurring on different time scales and, ultimately, derive the equations with the filtered-out quasiacoustics. The derived equations represent the Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations. This approximation can be further employed as a universal theoretical model for an analysis of slow thermodynamic and hydrodynamic evolution of the multiphase systems with strongly evolving and diffusing interfacial boundaries, i.e., for the processes involving dissolution/nucleation, evaporation/condensation, solidification/melting, polymerization, etc.

  1. Dynamic Modeling and Simulation of a Rotational Inverted Pendulum

    NASA Astrophysics Data System (ADS)

    Duart, J. L.; Montero, B.; Ospina, P. A.; González, E.

    2017-01-01

    This paper presents an alternative way to the dynamic modeling of a rotational inverted pendulum using the classic mechanics known as Euler-Lagrange allows to find motion equations that describe our model. It also has a design of the basic model of the system in SolidWorks software, which based on the material and dimensions of the model provides some physical variables necessary for modeling. In order to verify the theoretical results, It was made a contrast between the solutions obtained by simulation SimMechanics-Matlab and the system of equations Euler-Lagrange, solved through ODE23tb method included in Matlab bookstores for solving equations systems of the type and order obtained. This article comprises a pendulum trajectory analysis by a phase space diagram that allows the identification of stable and unstable regions of the system.

  2. Nonclassical point of view of the Brownian motion generation via fractional deterministic model

    NASA Astrophysics Data System (ADS)

    Gilardi-Velázquez, H. E.; Campos-Cantón, E.

    In this paper, we present a dynamical system based on the Langevin equation without stochastic term and using fractional derivatives that exhibit properties of Brownian motion, i.e. a deterministic model to generate Brownian motion is proposed. The stochastic process is replaced by considering an additional degree of freedom in the second-order Langevin equation. Thus, it is transformed into a system of three first-order linear differential equations, additionally α-fractional derivative are considered which allow us to obtain better statistical properties. Switching surfaces are established as a part of fluctuating acceleration. The final system of three α-order linear differential equations does not contain a stochastic term, so the system generates motion in a deterministic way. Nevertheless, from the time series analysis, we found that the behavior of the system exhibits statistics properties of Brownian motion, such as, a linear growth in time of mean square displacement, a Gaussian distribution. Furthermore, we use the detrended fluctuation analysis to prove the Brownian character of this motion.

  3. A lumped parameter mathematical model for simulation of subsonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Krosel, S. M.; Cole, G. L.; Bruton, W. M.; Szuch, J. R.

    1986-01-01

    Equations for a lumped parameter mathematical model of a subsonic wind tunnel circuit are presented. The equation state variables are internal energy, density, and mass flow rate. The circuit model is structured to allow for integration and analysis of tunnel subsystem models which provide functions such as control of altitude pressure and temperature. Thus the model provides a useful tool for investigating the transient behavior of the tunnel and control requirements. The model was applied to the proposed NASA Lewis Altitude Wind Tunnel (AWT) circuit and included transfer function representations of the tunnel supply/exhaust air and refrigeration subsystems. Both steady state and frequency response data are presented for the circuit model indicating the type of results and accuracy that can be expected from the model. Transient data for closed loop control of the tunnel and its subsystems are also presented, demonstrating the model's use as a control analysis tool.

  4. Modeling and analysis on ring-type piezoelectric transformers.

    PubMed

    Ho, Shine-Tzong

    2007-11-01

    This paper presents an electromechanical model for a ring-type piezoelectric transformer (PT). To establish this model, vibration characteristics of the piezoelectric ring with free boundary conditions are analyzed in advance. Based on the vibration analysis of the piezoelectric ring, the operating frequency and vibration mode of the PT are chosen. Then, electromechanical equations of motion for the PT are derived based on Hamilton's principle, which can be used to simulate the coupled electromechanical system for the transformer. Such as voltage stepup ratio, input impedance, output impedance, input power, output power, and efficiency are calculated by the equations. The optimal load resistance and the maximum efficiency for the PT will be presented in this paper. Experiments also were conducted to verify the theoretical analysis, and a good agreement was obtained.

  5. Fully-coupled analysis of jet mixing problems. Part 1. Shock-capturing model, SCIPVIS

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; Wolf, D. E.

    1984-01-01

    A computational model, SCIPVIS, is described which predicts the multiple cell shock structure in imperfectly expanded, turbulent, axisymmetric jets. The model spatially integrates the parabolized Navier-Stokes jet mixing equations using a shock-capturing approach in supersonic flow regions and a pressure-split approximation in subsonic flow regions. The regions are coupled using a viscous-characteristic procedure. Turbulence processes are represented via the solution of compressibility-corrected two-equation turbulence models. The formation of Mach discs in the jet and the interactive analysis of the wake-like mixing process occurring behind Mach discs is handled in a rigorous manner. Calculations are presented exhibiting the fundamental interactive processes occurring in supersonic jets and the model is assessed via comparisons with detailed laboratory data for a variety of under- and overexpanded jets.

  6. Theory of the lattice Boltzmann Method: Dispersion, Dissipation, Isotropy, Galilean Invariance, and Stability

    NASA Technical Reports Server (NTRS)

    Lallemand, Pierre; Luo, Li-Shi

    2000-01-01

    The generalized hydrodynamics (the wave vector dependence of the transport coefficients) of a generalized lattice Boltzmann equation (LBE) is studied in detail. The generalized lattice Boltzmann equation is constructed in moment space rather than in discrete velocity space. The generalized hydrodynamics of the model is obtained by solving the dispersion equation of the linearized LBE either analytically by using perturbation technique or numerically. The proposed LBE model has a maximum number of adjustable parameters for the given set of discrete velocities. Generalized hydrodynamics characterizes dispersion, dissipation (hyper-viscosities), anisotropy, and lack of Galilean invariance of the model, and can be applied to select the values of the adjustable parameters which optimize the properties of the model. The proposed generalized hydrodynamic analysis also provides some insights into stability and proper initial conditions for LBE simulations. The stability properties of some 2D LBE models are analyzed and compared with each other in the parameter space of the mean streaming velocity and the viscous relaxation time. The procedure described in this work can be applied to analyze other LBE models. As examples, LBE models with various interpolation schemes are analyzed. Numerical results on shear flow with an initially discontinuous velocity profile (shock) with or without a constant streaming velocity are shown to demonstrate the dispersion effects in the LBE model; the results compare favorably with our theoretical analysis. We also show that whereas linear analysis of the LBE evolution operator is equivalent to Chapman-Enskog analysis in the long wave-length limit (wave vector k = 0), it can also provide results for large values of k. Such results are important for the stability and other hydrodynamic properties of the LBE method and cannot be obtained through Chapman-Enskog analysis.

  7. Three-dimensional stochastic modeling of radiation belts in adiabatic invariant coordinates

    NASA Astrophysics Data System (ADS)

    Zheng, Liheng; Chan, Anthony A.; Albert, Jay M.; Elkington, Scot R.; Koller, Josef; Horne, Richard B.; Glauert, Sarah A.; Meredith, Nigel P.

    2014-09-01

    A 3-D model for solving the radiation belt diffusion equation in adiabatic invariant coordinates has been developed and tested. The model, named Radbelt Electron Model, obtains a probabilistic solution by solving a set of Itô stochastic differential equations that are mathematically equivalent to the diffusion equation. This method is capable of solving diffusion equations with a full 3-D diffusion tensor, including the radial-local cross diffusion components. The correct form of the boundary condition at equatorial pitch angle α0=90° is also derived. The model is applied to a simulation of the October 2002 storm event. At α0 near 90°, our results are quantitatively consistent with GPS observations of phase space density (PSD) increases, suggesting dominance of radial diffusion; at smaller α0, the observed PSD increases are overestimated by the model, possibly due to the α0-independent radial diffusion coefficients, or to insufficient electron loss in the model, or both. Statistical analysis of the stochastic processes provides further insights into the diffusion processes, showing distinctive electron source distributions with and without local acceleration.

  8. Hypergeometric Equation in Modeling Relativistic Isotropic Sphere

    NASA Astrophysics Data System (ADS)

    Thirukkanesh, S.; Ragel, F. C.

    2014-04-01

    We study the Einstein system of equations in static spherically symmetric spacetimes. We obtained classes of exact solutions to the Einstein system by transforming the condition for pressure isotropy to a hypergeometric equation choosing a rational form for one of the gravitational potentials. The solutions are given in simple form that is a desirable requisite to study the behavior of relativistic compact objects in detail. A physical analysis indicate that our models satisfy all the fundamental requirements of realistic star and match smoothly with the exterior Schwarzschild metric. The derived masses and densities are consistent with the previously reported experimental and theoretical studies describing strange stars. The models satisfy the standard energy conditions required by normal matter.

  9. On the effects of nonlinear boundary conditions in diffusive logistic equations on bounded domains

    NASA Astrophysics Data System (ADS)

    Cantrell, Robert Stephen; Cosner, Chris

    We study a diffusive logistic equation with nonlinear boundary conditions. The equation arises as a model for a population that grows logistically inside a patch and crosses the patch boundary at a rate that depends on the population density. Specifically, the rate at which the population crosses the boundary is assumed to decrease as the density of the population increases. The model is motivated by empirical work on the Glanville fritillary butterfly. We derive local and global bifurcation results which show that the model can have multiple equilibria and in some parameter ranges can support Allee effects. The analysis leads to eigenvalue problems with nonstandard boundary conditions.

  10. Emergence and analysis of Kuramoto-Sakaguchi-like models as an effective description for the dynamics of coupled Wien-bridge oscillators.

    PubMed

    English, L Q; Mertens, David; Abdoulkary, Saidou; Fritz, C B; Skowronski, K; Kevrekidis, P G

    2016-12-01

    We derive the Kuramoto-Sakaguchi model from the basic circuit equations governing two coupled Wien-bridge oscillators. A Wien-bridge oscillator is a particular realization of a tunable autonomous oscillator that makes use of frequency filtering (via an RC bandpass filter) and positive feedback (via an operational amplifier). In the past few years, such oscillators have started to be utilized in synchronization studies. We first show that the Wien-bridge circuit equations can be cast in the form of a coupled pair of van der Pol equations. Subsequently, by applying the method of multiple time scales, we derive the differential equations that govern the slow evolution of the oscillator phases and amplitudes. These equations are directly reminiscent of the Kuramoto-Sakaguchi-type models for the study of synchronization. We analyze the resulting system in terms of the existence and stability of various coupled oscillator solutions and explain on that basis how their synchronization emerges. The phase-amplitude equations are also compared numerically to the original circuit equations and good agreement is found. Finally, we report on experimental measurements of two coupled Wien-bridge oscillators and relate the results to the theoretical predictions.

  11. Numerical analysis of MHD Carreau fluid flow over a stretching cylinder with homogenous-heterogeneous reactions

    NASA Astrophysics Data System (ADS)

    Khan, Imad; Ullah, Shafquat; Malik, M. Y.; Hussain, Arif

    2018-06-01

    The current analysis concentrates on the numerical solution of MHD Carreau fluid flow over a stretching cylinder under the influences of homogeneous-heterogeneous reactions. Modelled non-linear partial differential equations are converted into ordinary differential equations by using suitable transformations. The resulting system of equations is solved with the aid of shooting algorithm supported by fifth order Runge-Kutta integration scheme. The impact of non-dimensional governing parameters on the velocity, temperature, skin friction coefficient and local Nusselt number are comprehensively delineated with the help of graphs and tables.

  12. The novel application of artificial neural network on bioelectrical impedance analysis to assess the body composition in elderly

    PubMed Central

    2013-01-01

    Background This study aims to improve accuracy of Bioelectrical Impedance Analysis (BIA) prediction equations for estimating fat free mass (FFM) of the elderly by using non-linear Back Propagation Artificial Neural Network (BP-ANN) model and to compare the predictive accuracy with the linear regression model by using energy dual X-ray absorptiometry (DXA) as reference method. Methods A total of 88 Taiwanese elderly adults were recruited in this study as subjects. Linear regression equations and BP-ANN prediction equation were developed using impedances and other anthropometrics for predicting the reference FFM measured by DXA (FFMDXA) in 36 male and 26 female Taiwanese elderly adults. The FFM estimated by BIA prediction equations using traditional linear regression model (FFMLR) and BP-ANN model (FFMANN) were compared to the FFMDXA. The measuring results of an additional 26 elderly adults were used to validate than accuracy of the predictive models. Results The results showed the significant predictors were impedance, gender, age, height and weight in developed FFMLR linear model (LR) for predicting FFM (coefficient of determination, r2 = 0.940; standard error of estimate (SEE) = 2.729 kg; root mean square error (RMSE) = 2.571kg, P < 0.001). The above predictors were set as the variables of the input layer by using five neurons in the BP-ANN model (r2 = 0.987 with a SD = 1.192 kg and relatively lower RMSE = 1.183 kg), which had greater (improved) accuracy for estimating FFM when compared with linear model. The results showed a better agreement existed between FFMANN and FFMDXA than that between FFMLR and FFMDXA. Conclusion When compared the performance of developed prediction equations for estimating reference FFMDXA, the linear model has lower r2 with a larger SD in predictive results than that of BP-ANN model, which indicated ANN model is more suitable for estimating FFM. PMID:23388042

  13. Conformational statistics of stiff macromolecules as solutions to partial differential equations on the rotation and motion groups

    PubMed

    Chirikjian; Wang

    2000-07-01

    Partial differential equations (PDE's) for the probability density function (PDF) of the position and orientation of the distal end of a stiff macromolecule relative to its proximal end are derived and solved. The Kratky-Porod wormlike chain, the Yamakawa helical wormlike chain, and the original and revised Marko-Siggia models are examples of stiffness models to which the present formulation is applied. The solution technique uses harmonic analysis on the rotation and motion groups to convert PDE's governing the PDF's of interest into linear algebraic equations which have mathematically elegant solutions.

  14. Applications of a Property of the Schrödinger Equation to the Modeling of Conservative Discrete Systems

    NASA Astrophysics Data System (ADS)

    Popa, Alexandru

    1998-08-01

    Recently we have demonstrated in a mathematical paper the following property: The energy which results from the Schrödinger equation can be rigorously calculated by line integrals of analytical functions, if the Hamilton-Jacobi equation, written for the same system, is satisfied in the space of coordinates by a periodical trajectory. We present now an accurate analysis model of the conservative discrete systems, that is based on this property. The theory is checked for a lot of atomic systems. The experimental data, which are ionization energies, are taken from well known books.

  15. A linearized Euler analysis of unsteady flows in turbomachinery

    NASA Technical Reports Server (NTRS)

    Hall, Kenneth C.; Crawley, Edward F.

    1987-01-01

    A method for calculating unsteady flows in cascades is presented. The model, which is based on the linearized unsteady Euler equations, accounts for blade loading shock motion, wake motion, and blade geometry. The mean flow through the cascade is determined by solving the full nonlinear Euler equations. Assuming the unsteadiness in the flow is small, then the Euler equations are linearized about the mean flow to obtain a set of linear variable coefficient equations which describe the small amplitude, harmonic motion of the flow. These equations are discretized on a computational grid via a finite volume operator and solved directly subject to an appropriate set of linearized boundary conditions. The steady flow, which is calculated prior to the unsteady flow, is found via a Newton iteration procedure. An important feature of the analysis is the use of shock fitting to model steady and unsteady shocks. Use of the Euler equations with the unsteady Rankine-Hugoniot shock jump conditions correctly models the generation of steady and unsteady entropy and vorticity at shocks. In particular, the low frequency shock displacement is correctly predicted. Results of this method are presented for a variety of test cases. Predicted unsteady transonic flows in channels are compared to full nonlinear Euler solutions obtained using time-accurate, time-marching methods. The agreement between the two methods is excellent for small to moderate levels of flow unsteadiness. The method is also used to predict unsteady flows in cascades due to blade motion (flutter problem) and incoming disturbances (gust response problem).

  16. Overview of the ArbiTER edge plasma eigenvalue code

    NASA Astrophysics Data System (ADS)

    Baver, Derek; Myra, James; Umansky, Maxim

    2011-10-01

    The Arbitrary Topology Equation Reader, or ArbiTER, is a flexible eigenvalue solver that is currently under development for plasma physics applications. The ArbiTER code builds on the equation parser framework of the existing 2DX code, extending it to include a topology parser. This will give the code the capability to model problems with complicated geometries (such as multiple X-points and scrape-off layers) or model equations with arbitrary numbers of dimensions (e.g. for kinetic analysis). In the equation parser framework, model equations are not included in the program's source code. Instead, an input file contains instructions for building a matrix from profile functions and elementary differential operators. The program then executes these instructions in a sequential manner. These instructions may also be translated into analytic form, thus giving the code transparency as well as flexibility. We will present an overview of how the ArbiTER code is to work, as well as preliminary results from early versions of this code. Work supported by the U.S. DOE.

  17. Evolutionary game theory for physical and biological scientists. II. Population dynamics equations can be associated with interpretations

    PubMed Central

    Liao, David; Tlsty, Thea D.

    2014-01-01

    The use of mathematical equations to analyse population dynamics measurements is being increasingly applied to elucidate complex dynamic processes in biological systems, including cancer. Purely ‘empirical’ equations may provide sufficient accuracy to support predictions and therapy design. Nevertheless, interpretation of fitting equations in terms of physical and biological propositions can provide additional insights that can be used both to refine models that prove inconsistent with data and to understand the scope of applicability of models that validate. The purpose of this tutorial is to assist readers in mathematically associating interpretations with equations and to provide guidance in choosing interpretations and experimental systems to investigate based on currently available biological knowledge, techniques in mathematical and computational analysis and methods for in vitro and in vivo experiments. PMID:25097752

  18. Equations of Interdoublet Separation during Flagella Motion Reveal Mechanisms of Wave Propagation and Instability

    PubMed Central

    Bayly, Philip V.; Wilson, Kate S.

    2014-01-01

    The motion of flagella and cilia arises from the coordinated activity of dynein motor protein molecules arrayed along microtubule doublets that span the length of axoneme (the flagellar cytoskeleton). Dynein activity causes relative sliding between the doublets, which generates propulsive bending of the flagellum. The mechanism of dynein coordination remains incompletely understood, although it has been the focus of many studies, both theoretical and experimental. In one leading hypothesis, known as the geometric clutch (GC) model, local dynein activity is thought to be controlled by interdoublet separation. The GC model has been implemented as a numerical simulation in which the behavior of a discrete set of rigid links in viscous fluid, driven by active elements, was approximated using a simplified time-marching scheme. A continuum mechanical model and associated partial differential equations of the GC model have remained lacking. Such equations would provide insight into the underlying biophysics, enable mathematical analysis of the behavior, and facilitate rigorous comparison to other models. In this article, the equations of motion for the flagellum and its doublets are derived from mechanical equilibrium principles and simple constitutive models. These equations are analyzed to reveal mechanisms of wave propagation and instability in the GC model. With parameter values in the range expected for Chlamydomonas flagella, solutions to the fully nonlinear equations closely resemble observed waveforms. These results support the ability of the GC hypothesis to explain dynein coordination in flagella and provide a mathematical foundation for comparison to other leading models. PMID:25296329

  19. Using Plate Finite Elements for Modeling Fillets in Design, Optimization, and Dynamic Analysis

    NASA Technical Reports Server (NTRS)

    Brown, A. M.; Seugling, R. M.

    2003-01-01

    A methodology has been developed that allows the use of plate elements instead of numerically inefficient solid elements for modeling structures with 90 degree fillets. The technique uses plate bridges with pseudo Young's modulus (Eb) and thickness (tb) values placed between the tangent points of the fillets. These parameters are obtained by solving two nonlinear simultaneous equations in terms of the independent variables rlt and twallt. These equations are generated by equating the rotation at the tangent point of a bridge system with that of a fillet, where both rotations are derived using beam theory. Accurate surface fits of the solutions are also presented to provide the user with closed-form equations for the parameters. The methodology was verified on the subcomponent level and with a representative filleted structure, where the technique yielded a plate model exhibiting a level of accuracy better than or equal to a high-fidelity solid model and with a 90-percent reduction in the number of DOFs. The application of this method for parametric design studies, optimization, and dynamic analysis should prove extremely beneficial for the finite element practitioner. Although the method does not attempt to produce accurate stresses in the filleted region, it can also be used to obtain stresses elsewhere in the structure for preliminary analysis. A future avenue of study is to extend the theory developed here to other fillet geometries, including fillet angles other than 90 and multifaceted intersections.

  20. Numerical study of signal propagation in corrugated coaxial cables

    DOE PAGES

    Li, Jichun; Machorro, Eric A.; Shields, Sidney

    2017-01-01

    Our article focuses on high-fidelity modeling of signal propagation in corrugated coaxial cables. Taking advantage of the axisymmetry, the authors reduce the 3-D problem to a 2-D problem by solving time-dependent Maxwell's equations in cylindrical coordinates.They then develop a nodal discontinuous Galerkin method for solving their model equations. We prove stability and error analysis for the semi-discrete scheme. We we present our numerical results, we demonstrate that our algorithm not only converges as our theoretical analysis predicts, but it is also very effective in solving a variety of signal propagation problems in practical corrugated coaxial cables.

  1. Comparative Analysis of InSAR Digital Surface Models for Test Area Bucharest

    NASA Astrophysics Data System (ADS)

    Dana, Iulia; Poncos, Valentin; Teleaga, Delia

    2010-03-01

    This paper presents the results of the interferometric processing of ERS Tandem, ENVISAT and TerraSAR- X for digital surface model (DSM) generation. The selected test site is Bucharest (Romania), a built-up area characterized by the usual urban complex pattern: mixture of buildings with different height levels, paved roads, vegetation, and water bodies. First, the DSMs were generated following the standard interferometric processing chain. Then, the accuracy of the DSMs was analyzed against the SPOT HRS model (30 m resolution at the equator). A DSM derived by optical stereoscopic processing of SPOT 5 HRG data and also the SRTM (3 arc seconds resolution at the equator) DSM have been included in the comparative analysis.

  2. Data-driven discovery of partial differential equations

    PubMed Central

    Rudy, Samuel H.; Brunton, Steven L.; Proctor, Joshua L.; Kutz, J. Nathan

    2017-01-01

    We propose a sparse regression method capable of discovering the governing partial differential equation(s) of a given system by time series measurements in the spatial domain. The regression framework relies on sparsity-promoting techniques to select the nonlinear and partial derivative terms of the governing equations that most accurately represent the data, bypassing a combinatorially large search through all possible candidate models. The method balances model complexity and regression accuracy by selecting a parsimonious model via Pareto analysis. Time series measurements can be made in an Eulerian framework, where the sensors are fixed spatially, or in a Lagrangian framework, where the sensors move with the dynamics. The method is computationally efficient, robust, and demonstrated to work on a variety of canonical problems spanning a number of scientific domains including Navier-Stokes, the quantum harmonic oscillator, and the diffusion equation. Moreover, the method is capable of disambiguating between potentially nonunique dynamical terms by using multiple time series taken with different initial data. Thus, for a traveling wave, the method can distinguish between a linear wave equation and the Korteweg–de Vries equation, for instance. The method provides a promising new technique for discovering governing equations and physical laws in parameterized spatiotemporal systems, where first-principles derivations are intractable. PMID:28508044

  3. Steric effects in the dynamics of electrolytes at large applied voltages. II. Modified Poisson-Nernst-Planck equations.

    PubMed

    Kilic, Mustafa Sabri; Bazant, Martin Z; Ajdari, Armand

    2007-02-01

    In situations involving large potentials or surface charges, the Poisson-Boltzman (PB) equation has shortcomings because it neglects ion-ion interactions and steric effects. This has been widely recognized by the electrochemistry community, leading to the development of various alternative models resulting in different sets "modified PB equations," which have had at least qualitative success in predicting equilibrium ion distributions. On the other hand, the literature is scarce in terms of descriptions of concentration dynamics in these regimes. Here, adapting strategies developed to modify the PB equation, we propose a simple modification of the widely used Poisson-Nernst-Planck (PNP) equations for ionic transport, which at least qualitatively accounts for steric effects. We analyze numerical solutions of these modified PNP equations on the model problem of the charging of a simple electrolyte cell, and compare the outcome to that of the standard PNP equations. Finally, we repeat the asymptotic analysis of Bazant, Thornton, and Ajdari [Phys. Rev. E 70, 021506 (2004)] for this new system of equations to further document the interest and limits of validity of the simpler equivalent electrical circuit models introduced in Part I [Kilic, Bazant, and Ajdari, Phys. Rev. E 75, 021502 (2007)] for such problems.

  4. A mixed finite-element method for solving the poroelastic Biot equations with electrokinetic coupling

    NASA Astrophysics Data System (ADS)

    Pain, C. C.; Saunders, J. H.; Worthington, M. H.; Singer, J. M.; Stuart-Bruges, W.; Mason, G.; Goddard, A.

    2005-02-01

    In this paper, a numerical method for solving the Biot poroelastic equations is developed. These equations comprise acoustic (typically water) and elastic (porous medium frame) equations, which are coupled mainly through fluid/solid drag terms. This wave solution is coupled to a simplified form of Maxwell's equations, which is solved for the streaming potential resulting from electrokinesis. The ultimate aim is to use the generated electrical signals to provide porosity, permeability and other information about the formation surrounding a borehole. The electrical signals are generated through electrokinesis by seismic waves causing movement of the fluid through pores or fractures of a porous medium. The focus of this paper is the numerical solution of the Biot equations in displacement form, which is achieved using a mixed finite-element formulation with a different finite-element representation for displacements and stresses. The mixed formulation is used in order to reduce spurious displacement modes and fluid shear waves in the numerical solutions. These equations are solved in the time domain using an implicit unconditionally stable time-stepping method using iterative solution methods amenable to solving large systems of equations. The resulting model is embodied in the MODELLING OF ACOUSTICS, POROELASTICS AND ELECTROKINETICS (MAPEK) computer model for electroseismic analysis.

  5. Multiple-generator errors are unavoidable under model misspecification.

    PubMed

    Jewett, D L; Zhang, Z

    1995-08-01

    Model misspecification poses a major problem for dipole source localization (DSL) because it causes insidious multiple-generator errors (MulGenErrs) to occur in the fitted dipole parameters. This paper describes how and why this occurs, based upon simple algebraic considerations. MulGenErrs must occur, to some degree, in any DSL analysis of real data because there is model misspecification and mathematically the equations used for the simultaneously active generators must be of a different form than the equations for each generator active alone.

  6. The stability of coupled renewal-differential equations with econometric applications

    NASA Technical Reports Server (NTRS)

    Rhoten, R. P.; Aggarwal, J. K.

    1969-01-01

    Concepts and results are presented in the fields of mathematical modeling, economics, and stability analysis. A coupled renewal-differential equation structure is presented as a modeling form for systems possessing hereditary characteristics, and this structure is applied to a model of the Austrian theory of business cycles. For realistic conditions, the system is shown to have an infinite number of poles, and conditions are presented which are both necessary and sufficient for all poles to lie strictly in the left half plane.

  7. Using Laboratory Experiments to Improve Ice-Ocean Parameterizations

    NASA Astrophysics Data System (ADS)

    McConnochie, C. D.; Kerr, R. C.

    2017-12-01

    Numerical models of ice-ocean interactions are typically unable to resolve the transport of heat and salt to the ice face. Instead, models rely upon parameterizations that have not been sufficiently validated by observations. Recent laboratory experiments of ice-saltwater interactions allow us to test the standard parameterization of heat and salt transport to ice faces - the three-equation model. The three-equation model predicts that the melt rate is proportional to the fluid velocity while the experimental results typically show that the melt rate is independent of the fluid velocity. By considering an analysis of the boundary layer that forms next to a melting ice face, we suggest a resolution to this disagreement. We show that the three-equation model makes the implicit assumption that the thickness of the diffusive sublayer next to the ice is set by a shear instability. However, at low flow velocities, the sublayer is instead set by a convective instability. This distinction leads to a threshold velocity of approximately 4 cm/s at geophysically relevant conditions, above which the form of the parameterization should be valid. In contrast, at flow speeds below 4 cm/s, the three-equation model will underestimate the melt rate. By incorporating such a minimum velocity into the three-equation model, predictions made by numerical simulations could be easily improved.

  8. A laboratory examination of the three-equation model of ice-ocean interactions

    NASA Astrophysics Data System (ADS)

    McConnochie, Craig; Kerr, Ross

    2017-11-01

    Numerical models of ice-ocean interactions are typically unable to resolve the transport of heat and salt to the ice face. As such, models rely upon parameterizations that have not been properly validated by data. Recent laboratory experiments of ice-saltwater interactions allow us to test the standard parameterization of heat and salt transport to ice faces - the `three equation model'. We find a significant disagreement in the dependence of the melt rate on the fluid velocity. The three-equation model predicts that the melt rate is proportional to the fluid velocity while the experimental results typically show that the melt rate is independent of the fluid velocity. By considering a theoretical analysis of the boundary layer next to a melting ice face we suggest a resolution to this disagreement. We show that the three-equation model assumes that the thickness of the diffusive sublayer is set by a shear instability. However, at low flow velocities, the sublayer is instead set by a convective instability. This distinction leads to a threshold velocity of approximately 4 cm/s at geophysically relevant conditions, above which the form of the parameterization should be valid. In contrast, at flow speeds below 4 cm/s, the three-equation model will underestimate the melt rate. ARC DP120102772.

  9. Analytic Modeling of the Hydrodynamic, Thermal, and Structural Behavior of Foil Thrust Bearings

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; DellaCorte, Christopher; Prahl, Joseph M.

    2005-01-01

    A simulation and modeling effort is conducted on gas foil thrust bearings. A foil bearing is a self acting hydrodynamic device capable of separating stationary and rotating components of rotating machinery by a film of air or other gaseous lubricant. Although simple in appearance these bearings have proven to be complicated devices in analysis. They are sensitive to fluid structure interaction, use a compressible gas as a lubricant, may not be in the fully continuum range of fluid mechanics, and operate in the range where viscous heat generation is significant. These factors provide a challenge to the simulation and modeling task. The Reynolds equation with the addition of Knudsen number effects due to thin film thicknesses is used to simulate the hydrodynamics. The energy equation is manipulated to simulate the temperature field of the lubricant film and combined with the ideal gas relationship, provides density field input to the Reynolds equation. Heat transfer between the lubricant and the surroundings is also modeled. The structural deformations of the bearing are modeled with a single partial differential equation. The equation models the top foil as a thin, bending dominated membrane whose deflections are governed by the biharmonic equation. A linear superposition of hydrodynamic load and compliant foundation reaction is included. The stiffness of the compliant foundation is modeled as a distributed stiffness that supports the top foil. The system of governing equations is solved numerically by a computer program written in the Mathematica computing environment. Representative calculations and comparisons with experimental results are included for a generation I gas foil thrust bearing.

  10. Assessment of the Effects of Entrainment and Wind Shear on Nuclear Cloud Rise Modeling

    NASA Astrophysics Data System (ADS)

    Zalewski, Daniel; Jodoin, Vincent

    2001-04-01

    Accurate modeling of nuclear cloud rise is critical in hazard prediction following a nuclear detonation. This thesis recommends improvements to the model currently used by DOD. It considers a single-term versus a three-term entrainment equation, the value of the entrainment and eddy viscous drag parameters, as well as the effect of wind shear in the cloud rise following a nuclear detonation. It examines departures from the 1979 version of the Department of Defense Land Fallout Interpretive Code (DELFIC) with the current code used in the Hazard Prediction and Assessment Capability (HPAC) code version 3.2. The recommendation for a single-term entrainment equation, with constant value parameters, without wind shear corrections, and without cloud oscillations is based on both a statistical analysis using 67 U.S. nuclear atmospheric test shots and the physical representation of the modeling. The statistical analysis optimized the parameter values of interest for four cases: the three-term entrainment equation with wind shear and without wind shear as well as the single-term entrainment equation with and without wind shear. The thesis then examines the effect of cloud oscillations as a significant departure in the code. Modifications to user input atmospheric tables are identified as a potential problem in the calculation of stabilized cloud dimensions in HPAC.

  11. Dissolution process analysis using model-free Noyes-Whitney integral equation.

    PubMed

    Hattori, Yusuke; Haruna, Yoshimasa; Otsuka, Makoto

    2013-02-01

    Drug dissolution process of solid dosages is theoretically described by Noyes-Whitney-Nernst equation. However, the analysis of the process is demonstrated assuming some models. Normally, the model-dependent methods are idealized and require some limitations. In this study, Noyes-Whitney integral equation was proposed and applied to represent the drug dissolution profiles of a solid formulation via the non-linear least squares (NLLS) method. The integral equation is a model-free formula involving the dissolution rate constant as a parameter. In the present study, several solid formulations were prepared via changing the blending time of magnesium stearate (MgSt) with theophylline monohydrate, α-lactose monohydrate, and crystalline cellulose. The formula could excellently represent the dissolution profile, and thereby the rate constant and specific surface area could be obtained by NLLS method. Since the long time blending coated the particle surface with MgSt, it was found that the water permeation was disturbed by its layer dissociating into disintegrant particles. In the end, the solid formulations were not disintegrated; however, the specific surface area gradually increased during the process of dissolution. The X-ray CT observation supported this result and demonstrated that the rough surface was dominant as compared to dissolution, and thus, specific surface area of the solid formulation gradually increased. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Optical solitons and modulation instability analysis of an integrable model of (2+1)-Dimensional Heisenberg ferromagnetic spin chain equation

    NASA Astrophysics Data System (ADS)

    Inc, Mustafa; Aliyu, Aliyu Isa; Yusuf, Abdullahi; Baleanu, Dumitru

    2017-12-01

    This paper addresses the nonlinear Schrödinger type equation (NLSE) in (2+1)-dimensions which describes the nonlinear spin dynamics of Heisenberg ferromagnetic spin chains (HFSC) with anisotropic and bilinear interactions in the semiclassical limit. Two integration schemes are employed to study the equation. These are the complex envelope function ansatz and the generalized tanh methods. Dark, dark-bright or combined optical and singular soliton solutions of the equation are derived. Furthermore, the modulational instability (MI) is studied based on the standard linear-stability analysis and the MI gain is got. Numerical simulation of the obtained results are analyzed with interesting figures showing the physical meaning of the solutions.

  13. Model error estimation for distributed systems described by elliptic equations

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.

    1983-01-01

    A function space approach is used to develop a theory for estimation of the errors inherent in an elliptic partial differential equation model for a distributed parameter system. By establishing knowledge of the inevitable deficiencies in the model, the error estimates provide a foundation for updating the model. The function space solution leads to a specification of a method for computation of the model error estimates and development of model error analysis techniques for comparison between actual and estimated errors. The paper summarizes the model error estimation approach as well as an application arising in the area of modeling for static shape determination of large flexible systems.

  14. Full thermomechanical coupling in modelling of micropolar thermoelasticity

    NASA Astrophysics Data System (ADS)

    Murashkin, E. V.; Radayev, Y. N.

    2018-04-01

    The present paper is devoted to plane harmonic waves of displacements and microrotations propagating in fully coupled thermoelastic continua. The analysis is carried out in the framework of linear conventional thermoelastic micropolar continuum model. The reduced energy balance equation and the special form of the Helmholtz free energy are discussed. The constitutive constants providing fully coupling of equations of motion and heat conduction are considered. The dispersion equation is derived and analysed in the form bi-cubic and bi-quadratic polynoms product. The equation are analyzed by the computer algebra system Mathematica. Algebraic forms expressed by complex multivalued square and cubic radicals are obtained for wavenumbers of transverse and longitudinal waves. The exact forms of wavenumbers of a plane harmonic coupled thermoelastic waves are computed.

  15. Prediction equation for estimating total daily energy requirements of special operations personnel.

    PubMed

    Barringer, N D; Pasiakos, S M; McClung, H L; Crombie, A P; Margolis, L M

    2018-01-01

    Special Operations Forces (SOF) engage in a variety of military tasks with many producing high energy expenditures, leading to undesired energy deficits and loss of body mass. Therefore, the ability to accurately estimate daily energy requirements would be useful for accurate logistical planning. Generate a predictive equation estimating energy requirements of SOF. Retrospective analysis of data collected from SOF personnel engaged in 12 different SOF training scenarios. Energy expenditure and total body water were determined using the doubly-labeled water technique. Physical activity level was determined as daily energy expenditure divided by resting metabolic rate. Physical activity level was broken into quartiles (0 = mission prep, 1 = common warrior tasks, 2 = battle drills, 3 = specialized intense activity) to generate a physical activity factor (PAF). Regression analysis was used to construct two predictive equations (Model A; body mass and PAF, Model B; fat-free mass and PAF) estimating daily energy expenditures. Average measured energy expenditure during SOF training was 4468 (range: 3700 to 6300) Kcal·d- 1 . Regression analysis revealed that physical activity level ( r  = 0.91; P  < 0.05) and body mass ( r  = 0.28; P  < 0.05; Model A), or fat-free mass (FFM; r  = 0.32; P  < 0.05; Model B) were the factors that most highly predicted energy expenditures. Predictive equations coupling PAF with body mass (Model A) and FFM (Model B), were correlated ( r  = 0.74 and r  = 0.76, respectively) and did not differ [mean ± SEM: Model A; 4463 ± 65 Kcal·d - 1 , Model B; 4462 ± 61 Kcal·d - 1 ] from DLW measured energy expenditures. By quantifying and grouping SOF training exercises into activity factors, SOF energy requirements can be predicted with reasonable accuracy and these equations used by dietetic/logistical personnel to plan appropriate feeding regimens to meet SOF nutritional requirements across their mission profile.

  16. State of the Art Methodology for the Design and Analysis of Future Large Scale Evaluations: A Selective Examination.

    ERIC Educational Resources Information Center

    Burstein, Leigh

    Two specific methods of analysis in large-scale evaluations are considered: structural equation modeling and selection modeling/analysis of non-equivalent control group designs. Their utility in large-scale educational program evaluation is discussed. The examination of these methodological developments indicates how people (evaluators,…

  17. Determinants of Linear Judgment: A Meta-Analysis of Lens Model Studies

    ERIC Educational Resources Information Center

    Karelaia, Natalia; Hogarth, Robin M.

    2008-01-01

    The mathematical representation of E. Brunswik's (1952) lens model has been used extensively to study human judgment and provides a unique opportunity to conduct a meta-analysis of studies that covers roughly 5 decades. Specifically, the authors analyzed statistics of the "lens model equation" (L. R. Tucker, 1964) associated with 249 different…

  18. An evaluation of the accuracy and precision of methane prediction equations for beef cattle fed high-forage and high-grain diets.

    PubMed

    Escobar-Bahamondes, P; Oba, M; Beauchemin, K A

    2017-01-01

    The study determined the performance of equations to predict enteric methane (CH4) from beef cattle fed forage- and grain-based diets. Many equations are available to predict CH4 from beef cattle and the predictions vary substantially among equations. The aims were to (1) construct a database of CH4 emissions for beef cattle from published literature, and (2) identify the most precise and accurate extant CH4 prediction models for beef cattle fed diets varying in forage content. The database was comprised of treatment means of CH4 production from in vivo beef studies published from 2000 to 2015. Criteria to include data in the database were as follows: animal description, intakes, diet composition and CH4 production. In all, 54 published equations that predict CH4 production from diet composition were evaluated. Precision and accuracy of the equations were evaluated using the concordance correlation coefficient (r c ), root mean square prediction error (RMSPE), model efficiency and analysis of errors. Equations were ranked using a combined index of the various statistical assessments based on principal component analysis. The final database contained 53 studies and 207 treatment means that were divided into two data sets: diets containing ⩾400 g/kg dry matter (DM) forage (n=116) and diets containing ⩽200 g/kg DM forage (n=42). Diets containing between ⩽400 and ⩾200 g/kg DM forage were not included in the analysis because of their limited numbers (n=6). Outliers, treatment means where feed was fed restrictively and diets with CH4 mitigation additives were omitted (n=43). Using the high-forage dataset the best-fit equations were the International Panel on Climate Change Tier 2 method, 3 equations for steers that considered gross energy intake (GEI) and body weight and an equation that considered dry matter intake and starch:neutral detergent fiber with r c ranging from 0.60 to 0.73 and RMSPE from 35.6 to 45.9 g/day. For the high-grain diets, the 5 best-fit equations considered intakes of metabolisable energy, cellulose, hemicellulose and fat, or for steers GEI and body weight, with r c ranging from 0.35 to 0.52 and RMSPE from 47.4 to 62.9 g/day. Ranking of extant CH4 prediction equations for their accuracy and precision differed with forage content of the diet. When used for cattle fed high-grain diets, extant CH4 prediction models were generally imprecise and lacked accuracy.

  19. Adjoint equations and analysis of complex systems: Application to virus infection modelling

    NASA Astrophysics Data System (ADS)

    Marchuk, G. I.; Shutyaev, V.; Bocharov, G.

    2005-12-01

    Recent development of applied mathematics is characterized by ever increasing attempts to apply the modelling and computational approaches across various areas of the life sciences. The need for a rigorous analysis of the complex system dynamics in immunology has been recognized since more than three decades ago. The aim of the present paper is to draw attention to the method of adjoint equations. The methodology enables to obtain information about physical processes and examine the sensitivity of complex dynamical systems. This provides a basis for a better understanding of the causal relationships between the immune system's performance and its parameters and helps to improve the experimental design in the solution of applied problems. We show how the adjoint equations can be used to explain the changes in hepatitis B virus infection dynamics between individual patients.

  20. Modeling of delays in PKPD: classical approaches and a tutorial for delay differential equations.

    PubMed

    Koch, Gilbert; Krzyzanski, Wojciech; Pérez-Ruixo, Juan Jose; Schropp, Johannes

    2014-08-01

    In pharmacokinetics/pharmacodynamics (PKPD) the measured response is often delayed relative to drug administration, individuals in a population have a certain lifespan until they maturate or the change of biomarkers does not immediately affects the primary endpoint. The classical approach in PKPD is to apply transit compartment models (TCM) based on ordinary differential equations to handle such delays. However, an alternative approach to deal with delays are delay differential equations (DDE). DDEs feature additional flexibility and properties, realize more complex dynamics and can complementary be used together with TCMs. We introduce several delay based PKPD models and investigate mathematical properties of general DDE based models, which serve as subunits in order to build larger PKPD models. Finally, we review current PKPD software with respect to the implementation of DDEs for PKPD analysis.

  1. Estimation of health effects of prenatal methylmercury exposure using structural equation models.

    PubMed

    Budtz-Jørgensen, Esben; Keiding, Niels; Grandjean, Philippe; Weihe, Pal

    2002-10-14

    Observational studies in epidemiology always involve concerns regarding validity, especially measurement error, confounding, missing data, and other problems that may affect the study outcomes. Widely used standard statistical techniques, such as multiple regression analysis, may to some extent adjust for these shortcomings. However, structural equations may incorporate most of these considerations, thereby providing overall adjusted estimations of associations. This approach was used in a large epidemiological data set from a prospective study of developmental methyl-mercury toxicity. Structural equation models were developed for assessment of the association between biomarkers of prenatal mercury exposure and neuropsychological test scores in 7 year old children. Eleven neurobehavioral outcomes were grouped into motor function and verbally mediated function. Adjustment for local dependence and item bias was necessary for a satisfactory fit of the model, but had little impact on the estimated mercury effects. The mercury effect on the two latent neurobehavioral functions was similar to the strongest effects seen for individual test scores of motor function and verbal skills. Adjustment for contaminant exposure to poly chlorinated biphenyls (PCBs) changed the estimates only marginally, but the mercury effect could be reduced to non-significance by assuming a large measurement error for the PCB biomarker. The structural equation analysis allows correction for measurement error in exposure variables, incorporation of multiple outcomes and incomplete cases. This approach therefore deserves to be applied more frequently in the analysis of complex epidemiological data sets.

  2. Growth and inactivation of Salmonella at low refrigerated storage temperatures and thermal inactivation on raw chicken meat and laboratory media: mixed effect meta-analysis.

    PubMed

    Smadi, Hanan; Sargeant, Jan M; Shannon, Harry S; Raina, Parminder

    2012-12-01

    Growth and inactivation regression equations were developed to describe the effects of temperature on Salmonella concentration on chicken meat for refrigerated temperatures (⩽10°C) and for thermal treatment temperatures (55-70°C). The main objectives were: (i) to compare Salmonella growth/inactivation in chicken meat versus laboratory media; (ii) to create regression equations to estimate Salmonella growth in chicken meat that can be used in quantitative risk assessment (QRA) modeling; and (iii) to create regression equations to estimate D-values needed to inactivate Salmonella in chicken meat. A systematic approach was used to identify the articles, critically appraise them, and pool outcomes across studies. Growth represented in density (Log10CFU/g) and D-values (min) as a function of temperature were modeled using hierarchical mixed effects regression models. The current meta-analysis analysis found a significant difference (P⩽0.05) between the two matrices - chicken meat and laboratory media - for both growth at refrigerated temperatures and inactivation by thermal treatment. Growth and inactivation were significantly influenced by temperature after controlling for other variables; however, no consistent pattern in growth was found. Validation of growth and inactivation equations against data not used in their development is needed. Copyright © 2012 Ministry of Health, Saudi Arabia. Published by Elsevier Ltd. All rights reserved.

  3. Evolutionary game theory for physical and biological scientists. I. Training and validating population dynamics equations.

    PubMed

    Liao, David; Tlsty, Thea D

    2014-08-06

    Failure to understand evolutionary dynamics has been hypothesized as limiting our ability to control biological systems. An increasing awareness of similarities between macroscopic ecosystems and cellular tissues has inspired optimism that game theory will provide insights into the progression and control of cancer. To realize this potential, the ability to compare game theoretic models and experimental measurements of population dynamics should be broadly disseminated. In this tutorial, we present an analysis method that can be used to train parameters in game theoretic dynamics equations, used to validate the resulting equations, and used to make predictions to challenge these equations and to design treatment strategies. The data analysis techniques in this tutorial are adapted from the analysis of reaction kinetics using the method of initial rates taught in undergraduate general chemistry courses. Reliance on computer programming is avoided to encourage the adoption of these methods as routine bench activities.

  4. Energy exchange analysis in droplet dynamics via the Navier-Stokes-Cahn-Hilliard model

    NASA Astrophysics Data System (ADS)

    Espath, L. F. R.; Sarmiento, A. F.; Vignal, P.; Varga, B. O. N.; Cortes, A. M. A.; Dalcin, L.; Calo, V. M.

    2016-06-01

    We develop the energy budget equation of the coupled Navier-Stokes-Cahn-Hilliard (NSCH) system. We use the NSCH equations to model the dynamics of liquid droplets in a liquid continuum. Buoyancy effects are accounted for through the Boussinesq assumption. We physically interpret each quantity involved in the energy exchange to further insight into the model. Highly resolved simulations involving density-driven flows and merging of droplets allow us to analyze these energy budgets. In particular, we focus on the energy exchanges when droplets merge, and describe flow features relevant to this phenomenon. By comparing our numerical simulations to analytical predictions and experimental results available in the literature, we conclude that modeling droplet dynamics within the framework of NSCH equations is a sensible approach worth further research.

  5. Methods for estimating the magnitude and frequency of peak streamflows at ungaged sites in and near the Oklahoma Panhandle

    USGS Publications Warehouse

    Smith, S. Jerrod; Lewis, Jason M.; Graves, Grant M.

    2015-09-28

    Generalized-least-squares multiple-linear regression analysis was used to formulate regression relations between peak-streamflow frequency statistics and basin characteristics. Contributing drainage area was the only basin characteristic determined to be statistically significant for all percentage of annual exceedance probabilities and was the only basin characteristic used in regional regression equations for estimating peak-streamflow frequency statistics on unregulated streams in and near the Oklahoma Panhandle. The regression model pseudo-coefficient of determination, converted to percent, for the Oklahoma Panhandle regional regression equations ranged from about 38 to 63 percent. The standard errors of prediction and the standard model errors for the Oklahoma Panhandle regional regression equations ranged from about 84 to 148 percent and from about 76 to 138 percent, respectively. These errors were comparable to those reported for regional peak-streamflow frequency regression equations for the High Plains areas of Texas and Colorado. The root mean square errors for the Oklahoma Panhandle regional regression equations (ranging from 3,170 to 92,000 cubic feet per second) were less than the root mean square errors for the Oklahoma statewide regression equations (ranging from 18,900 to 412,000 cubic feet per second); therefore, the Oklahoma Panhandle regional regression equations produce more accurate peak-streamflow statistic estimates for the irrigated period of record in the Oklahoma Panhandle than do the Oklahoma statewide regression equations. The regression equations developed in this report are applicable to streams that are not substantially affected by regulation, impoundment, or surface-water withdrawals. These regression equations are intended for use for stream sites with contributing drainage areas less than or equal to about 2,060 square miles, the maximum value for the independent variable used in the regression analysis.

  6. Torsional vibration of a cracked rod by variational formulation and numerical analysis

    NASA Astrophysics Data System (ADS)

    Chondros, T. G.; Labeas, G. N.

    2007-04-01

    The torsional vibration of a circumferentially cracked cylindrical shaft is studied through an "exact" analytical solution and a numerical finite element (FE) analysis. The Hu-Washizu-Barr variational formulation is used to develop the differential equation and the boundary conditions of the cracked rod. The equations of motion for a uniform cracked rod in torsional vibration are derived and solved, and the Rayleigh quotient is used to further approximate the natural frequencies of the cracked rod. Results for the problem of the torsional vibration of a cylindrical shaft with a peripheral crack are provided through an analytical solution based on variational formulation to derive the equation of motion and a numerical analysis utilizing a parametric three-dimensional (3D) solid FE model of the cracked rod. The crack is modelled as a continuous flexibility based on fracture mechanics principles. The variational formulation results are compared with the FE alternative. The sensitivity of the FE discretization with respect to the analytical results is assessed.

  7. An Introduction to Computational Physics

    NASA Astrophysics Data System (ADS)

    Pang, Tao

    2010-07-01

    Preface to first edition; Preface; Acknowledgements; 1. Introduction; 2. Approximation of a function; 3. Numerical calculus; 4. Ordinary differential equations; 5. Numerical methods for matrices; 6. Spectral analysis; 7. Partial differential equations; 8. Molecular dynamics simulations; 9. Modeling continuous systems; 10. Monte Carlo simulations; 11. Genetic algorithm and programming; 12. Numerical renormalization; References; Index.

  8. Alternative Analysis of the Michaelis-Menten Equations

    ERIC Educational Resources Information Center

    Krogstad, Harald E.; Dawed, Mohammed Yiha; Tegegne, Tadele Tesfa

    2011-01-01

    Courses in mathematical modelling are always in need of simple, illustrative examples. The Michaelis-Menten reaction kinetics equations have been considered to be a basic example of scaling and singular perturbation. However, the leading order approximations do not easily show the expected behaviour, and this note proposes a different perturbation…

  9. Modeling Morphogenesis with Reaction-Diffusion Equations Using Galerkin Spectral Methods

    DTIC Science & Technology

    2002-05-06

    reaction- diffusion equation is a difficult problem in analysis that will not be addressed here. Errors will also arise from numerically approx solutions to...the ODEs. When comparing the approximate solution to actual reaction- diffusion systems found in nature, we must also take into account errors that...

  10. Modelling by Differential Equations

    ERIC Educational Resources Information Center

    Chaachoua, Hamid; Saglam, Ayse

    2006-01-01

    This paper aims to show the close relation between physics and mathematics taking into account especially the theory of differential equations. By analysing the problems posed by scientists in the seventeenth century, we note that physics is very important for the emergence of this theory. Taking into account this analysis, we show the…

  11. Multiple-parameter bifurcation analysis in a Kuramoto model with time delay and distributed shear

    NASA Astrophysics Data System (ADS)

    Niu, Ben; Zhang, Jiaming; Wei, Junjie

    2018-05-01

    In this paper, time delay effect and distributed shear are considered in the Kuramoto model. On the Ott-Antonsen's manifold, through analyzing the associated characteristic equation of the reduced functional differential equation, the stability boundary of the incoherent state is derived in multiple-parameter space. Moreover, very rich dynamical behavior such as stability switches inducing synchronization switches can occur in this equation. With the loss of stability, Hopf bifurcating coherent states arise, and the criticality of Hopf bifurcations is determined by applying the normal form theory and the center manifold theorem. On one hand, theoretical analysis indicates that the width of shear distribution and time delay can both eliminate the synchronization then lead the Kuramoto model to incoherence. On the other, time delay can induce several coexisting coherent states. Finally, some numerical simulations are given to support the obtained results where several bifurcation diagrams are drawn, and the effect of time delay and shear is discussed.

  12. On the dynamics of a human body model.

    NASA Technical Reports Server (NTRS)

    Huston, R. L.; Passerello, C. E.

    1971-01-01

    Equations of motion for a model of the human body are developed. Basically, the model consists of an elliptical cylinder representing the torso, together with a system of frustrums of elliptical cones representing the limbs. They are connected to the main body and each other by hinges and ball and socket joints. Vector, tensor, and matrix methods provide a systematic organization of the geometry. The equations of motion are developed from the principles of classical mechanics. The solution of these equations then provide the displacement and rotation of the main body when the external forces and relative limb motions are specified. Three simple example motions are studied to illustrate the method. The first is an analysis and comparison of simple lifting on the earth and the moon. The second is an elementary approach to underwater swimming, including both viscous and inertia effects. The third is an analysis of kicking motion and its effect upon a vertically suspended man such as a parachutist.

  13. The shallow water equations as a hybrid flow model for the numerical and experimental analysis of hydro power stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostermann, Lars; Seidel, Christian

    2015-03-10

    The numerical analysis of hydro power stations is an important method of the hydraulic design and is used for the development and optimisation of hydro power stations in addition to the experiments with the physical submodel of a full model in the hydraulic laboratory. For the numerical analysis, 2D and 3D models are appropriate and commonly used.The 2D models refer mainly to the shallow water equations (SWE), since for this flow model a large experience on a wide field of applications for the flow analysis of numerous problems in hydraulic engineering already exists. Often, the flow model is verified bymore » in situ measurements. In order to consider 3D flow phenomena close to singularities like weirs, hydro power stations etc. the development of a hybrid fluid model is advantageous to improve the quality and significance of the global model. Here, an extended hybrid flow model based on the principle of the SWE is presented. The hybrid flow model directly links the numerical model with the experimental data, which may originate from physical full models, physical submodels and in-situ measurements. Hence a wide field of application of the hybrid model emerges including the improvement of numerical models and the strong coupling of numerical and experimental analysis.« less

  14. Fractional-order in a macroeconomic dynamic model

    NASA Astrophysics Data System (ADS)

    David, S. A.; Quintino, D. D.; Soliani, J.

    2013-10-01

    In this paper, we applied the Riemann-Liouville approach in order to realize the numerical simulations to a set of equations that represent a fractional-order macroeconomic dynamic model. It is a generalization of a dynamic model recently reported in the literature. The aforementioned equations have been simulated for several cases involving integer and non-integer order analysis, with some different values to fractional order. The time histories and the phase diagrams have been plotted to visualize the effect of fractional order approach. The new contribution of this work arises from the fact that the macroeconomic dynamic model proposed here involves the public sector deficit equation, which renders the model more realistic and complete when compared with the ones encountered in the literature. The results reveal that the fractional-order macroeconomic model can exhibit a real reasonable behavior to macroeconomics systems and might offer greater insights towards the understanding of these complex dynamic systems.

  15. Analysis of two-equation turbulence models for recirculating flows

    NASA Technical Reports Server (NTRS)

    Thangam, S.

    1991-01-01

    The two-equation kappa-epsilon model is used to analyze turbulent separated flow past a backward-facing step. It is shown that if the model constraints are modified to be consistent with the accepted energy decay rate for isotropic turbulence, the dominant features of the flow field, namely the size of the separation bubble and the streamwise component of the mean velocity, can be accurately predicted. In addition, except in the vicinity of the step, very good predictions for the turbulent shear stress, the wall pressure, and the wall shear stress are obtained. The model is also shown to provide good predictions for the turbulence intensity in the region downstream of the reattachment point. Estimated long time growth rates for the turbulent kinetic energy and dissipation rate of homogeneous shear flow are utilized to develop an optimal set of constants for the two equation kappa-epsilon model. The physical implications of the model performance are also discussed.

  16. Numerical modelling in biosciences using delay differential equations

    NASA Astrophysics Data System (ADS)

    Bocharov, Gennadii A.; Rihan, Fathalla A.

    2000-12-01

    Our principal purposes here are (i) to consider, from the perspective of applied mathematics, models of phenomena in the biosciences that are based on delay differential equations and for which numerical approaches are a major tool in understanding their dynamics, (ii) to review the application of numerical techniques to investigate these models. We show that there are prima facie reasons for using such models: (i) they have a richer mathematical framework (compared with ordinary differential equations) for the analysis of biosystem dynamics, (ii) they display better consistency with the nature of certain biological processes and predictive results. We analyze both the qualitative and quantitative role that delays play in basic time-lag models proposed in population dynamics, epidemiology, physiology, immunology, neural networks and cell kinetics. We then indicate suitable computational techniques for the numerical treatment of mathematical problems emerging in the biosciences, comparing them with those implemented by the bio-modellers.

  17. Dynamic Modeling and Simulation of an Underactuated System

    NASA Astrophysics Data System (ADS)

    Libardo Duarte Madrid, Juan; Ospina Henao, P. A.; González Querubín, E.

    2017-06-01

    In this paper, is used the Lagrangian classical mechanics for modeling the dynamics of an underactuated system, specifically a rotary inverted pendulum that will have two equations of motion. A basic design of the system is proposed in SOLIDWORKS 3D CAD software, which based on the material and dimensions of the model provides some physical variables necessary for modeling. In order to verify the results obtained, a comparison the CAD model simulated in the environment SimMechanics of MATLAB software with the mathematical model who was consisting of Euler-Lagrange’s equations implemented in Simulink MATLAB, solved with the ODE23tb method, included in the MATLAB libraries for the solution of systems of equations of the type and order obtained. This article also has a topological analysis of pendulum trajectories through a phase space diagram, which allows the identification of stable and unstable regions of the system.

  18. The ACC/AHA 2013 pooled cohort equations compared to a Korean Risk Prediction Model for atherosclerotic cardiovascular disease.

    PubMed

    Jung, Keum Ji; Jang, Yangsoo; Oh, Dong Joo; Oh, Byung-Hee; Lee, Sang Hoon; Park, Seong-Wook; Seung, Ki-Bae; Kim, Hong-Kyu; Yun, Young Duk; Choi, Sung Hee; Sung, Jidong; Lee, Tae-Yong; Kim, Sung Hi; Koh, Sang Baek; Kim, Moon Chan; Chang Kim, Hyeon; Kimm, Heejin; Nam, Chungmo; Park, Sungha; Jee, Sun Ha

    2015-09-01

    To evaluate the performance of the American College of Cardiology/American Heart Association (ACC/AHA) 2013 Pooled Cohort Equations in the Korean Heart Study (KHS) population and to develop a Korean Risk Prediction Model (KRPM) for atherosclerotic cardiovascular disease (ASCVD) events. The KHS cohort included 200,010 Korean adults aged 40-79 years who were free from ASCVD at baseline. Discrimination, calibration, and recalibration of the ACC/AHA Equations in predicting 10-year ASCVD risk in the KHS cohort were evaluated. The KRPM was derived using Cox model coefficients, mean risk factor values, and mean incidences from the KHS cohort. In the discriminatory analysis, the ACC/AHA Equations' White and African-American (AA) models moderately distinguished cases from non-cases, and were similar to the KRPM: For men, the area under the receiver operating characteristic curve (AUROCs) were 0.727 (White model), 0.725 (AA model), and 0.741 (KRPM); for women, the corresponding AUROCs were 0.738, 0.739, and 0.745. Absolute 10-year ASCVD risk for men in the KHS cohort was overestimated by 56.5% (White model) and 74.1% (AA model), while the risk for women was underestimated by 27.9% (White model) and overestimated by 29.1% (AA model). Recalibration of the ACC/AHA Equations did not affect discriminatory ability but improved calibration substantially, especially in men in the White model. Of the three ASCVD risk prediction models, the KRPM showed best calibration. The ACC/AHA Equations should not be directly applied for ASCVD risk prediction in a Korean population. The KRPM showed best predictive ability for ASCVD risk. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Rethinking pedagogy for second-order differential equations: a simplified approach to understanding well-posed problems

    NASA Astrophysics Data System (ADS)

    Tisdell, Christopher C.

    2017-07-01

    Knowing an equation has a unique solution is important from both a modelling and theoretical point of view. For over 70 years, the approach to learning and teaching 'well posedness' of initial value problems (IVPs) for second- and higher-order ordinary differential equations has involved transforming the problem and its analysis to a first-order system of equations. We show that this excursion is unnecessary and present a direct approach regarding second- and higher-order problems that does not require an understanding of systems.

  20. A nonlinear wave equation in nonadiabatic flame propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booty, M.R.; Matalon, M.; Matkowsky, B.J.

    1988-06-01

    The authors derive a nonlinear wave equation from the diffusional thermal model of gaseous combustion to describe the evolution of a flame front. The equation arises as a long wave theory, for values of the volumeric heat loss in a neighborhood of the extinction point (beyond which planar uniformly propagating flames cease to exist), and for Lewis numbers near the critical value beyond which uniformly propagating planar flames lose stability via a degenerate Hopf bifurcation. Analysis of the equation suggests the possibility of a singularity developing in finite time.

  1. Geometric approach to nuclear pasta phases

    NASA Astrophysics Data System (ADS)

    Kubis, Sebastian; Wójcik, Włodzimierz

    2016-12-01

    By use of the variational methods and differential geometry in the framework of the liquid drop model we formulate appropriate equilibrium equations for pasta phases with imposed periodicity. The extension of the Young-Laplace equation in the case of charged fluid is obtained. The β equilibrium and virial theorem are also generalized. All equations are shown in gauge invariant form. For the first time, the pasta shape stability analysis is carried out. The proper stability condition in the form of the generalized Jacobi equation is derived. The presented formalism is tested on some particular cases.

  2. Simple equations to simulate closed-loop recycling liquid-liquid chromatography: Ideal and non-ideal recycling models.

    PubMed

    Kostanyan, Artak E

    2015-12-04

    The ideal (the column outlet is directly connected to the column inlet) and non-ideal (includes the effects of extra-column dispersion) recycling equilibrium-cell models are used to simulate closed-loop recycling counter-current chromatography (CLR CCC). Simple chromatogram equations for the individual cycles and equations describing the transport and broadening of single peaks and complex chromatograms inside the recycling closed-loop column for ideal and non-ideal recycling models are presented. The extra-column dispersion is included in the theoretical analysis, by replacing the recycling system (connecting lines, pump and valving) by a cascade of Nec perfectly mixed cells. To evaluate extra-column contribution to band broadening, two limiting regimes of recycling are analyzed: plug-flow, Nec→∞, and maximum extra-column dispersion, Nec=1. Comparative analysis of ideal and non-ideal models has shown that when the volume of the recycling system is less than one percent of the column volume, the influence of the extra-column processes on the CLR CCC separation may be neglected. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Estimation of fat-free mass in Asian neonates using bioelectrical impedance analysis

    PubMed Central

    Tint, Mya-Thway; Ward, Leigh C; Soh, Shu E; Aris, Izzuddin M; Chinnadurai, Amutha; Saw, Seang Mei; Gluckman, Peter D; Godfrey, Keith M; Chong, Yap-Seng; Kramer, Michael S; Yap, Fabian; Lingwood, Barbara; Lee, Yung Seng

    2016-01-01

    The aims of this study were to develop and validate a prediction equation of fat-free mass (FFM) based on bioelectrical impedance analysis (BIA) and anthropometry using air displacement plethysmography (ADP) as a reference in Asian neonates and to test the applicability of the prediction equations in independent Western cohort. A total of 173 neonates at birth and 140 at week-2 of age were included. Multiple linear regression analysis was performed to develop the prediction equations in a two-third randomly selected subset and validated on the remaining one-third subset at each time point and in an independent Queensland cohort. FFM measured by ADP was the dependent variable and anthropometric measures, sex and impedance quotient (L2/R50) were independent variables in the model. Accuracy of prediction equations were assessed using intra-class correlation and Bland-Altman analyses. L2/R50 was the significant predictor of FFM at week-2 but not at birth. Compared to the model using weight, sex and length, including L2/R50 slightly improved the prediction with a bias of 0.01kg with 2SD limits of agreement (LOA) (0.18, −0.20). Prediction explained 88.9% of variation but not beyond that of anthropometry. Applying these equations to Queensland cohort provided similar performance at the appropriate age. However, when the Queensland equations were applied to our cohort, the bias increased slightly but with similar LOA. BIA appears to have limited use in predicting FFM in the first few weeks of life compared to simple anthropometry in Asian populations. There is a need for population and age appropriate FFM prediction equations. PMID:26856420

  4. Estimation of fat-free mass in Asian neonates using bioelectrical impedance analysis.

    PubMed

    Tint, Mya-Thway; Ward, Leigh C; Soh, Shu E; Aris, Izzuddin M; Chinnadurai, Amutha; Saw, Seang Mei; Gluckman, Peter D; Godfrey, Keith M; Chong, Yap-Seng; Kramer, Michael S; Yap, Fabian; Lingwood, Barbara; Lee, Yung Seng

    2016-03-28

    The aims of this study were to develop and validate a prediction equation of fat-free mass (FFM) based on bioelectrical impedance analysis (BIA) and anthropometry using air-displacement plethysmography (ADP) as a reference in Asian neonates and to test the applicability of the prediction equations in an independent Western cohort. A total of 173 neonates at birth and 140 at two weeks of age were included. Multiple linear regression analysis was performed to develop the prediction equations in a two-third randomly selected subset and validated on the remaining one-third subset at each time point and in an independent Queensland cohort. FFM measured by ADP was the dependent variable, and anthropometric measures, sex and impedance quotient (L2/R50) were independent variables in the model. Accuracy of prediction equations was assessed using intra-class correlation and Bland-Altman analyses. L2/R50 was the significant predictor of FFM at week two but not at birth. Compared with the model using weight, sex and length, including L2/R50 slightly improved the prediction with a bias of 0·01 kg with 2 sd limits of agreement (LOA) (0·18, -0·20). Prediction explained 88·9 % of variation but not beyond that of anthropometry. Applying these equations to the Queensland cohort provided similar performance at the appropriate age. However, when the Queensland equations were applied to our cohort, the bias increased slightly but with similar LOA. BIA appears to have limited use in predicting FFM in the first few weeks of life compared with simple anthropometry in Asian populations. There is a need for population- and age-appropriate FFM prediction equations.

  5. Fourier analysis of the SOR iteration

    NASA Technical Reports Server (NTRS)

    Leveque, R. J.; Trefethen, L. N.

    1986-01-01

    The SOR iteration for solving linear systems of equations depends upon an overrelaxation factor omega. It is shown that for the standard model problem of Poisson's equation on a rectangle, the optimal omega and corresponding convergence rate can be rigorously obtained by Fourier analysis. The trick is to tilt the space-time grid so that the SOR stencil becomes symmetrical. The tilted grid also gives insight into the relation between convergence rates of several variants.

  6. An overview of longitudinal data analysis methods for neurological research.

    PubMed

    Locascio, Joseph J; Atri, Alireza

    2011-01-01

    The purpose of this article is to provide a concise, broad and readily accessible overview of longitudinal data analysis methods, aimed to be a practical guide for clinical investigators in neurology. In general, we advise that older, traditional methods, including (1) simple regression of the dependent variable on a time measure, (2) analyzing a single summary subject level number that indexes changes for each subject and (3) a general linear model approach with a fixed-subject effect, should be reserved for quick, simple or preliminary analyses. We advocate the general use of mixed-random and fixed-effect regression models for analyses of most longitudinal clinical studies. Under restrictive situations or to provide validation, we recommend: (1) repeated-measure analysis of covariance (ANCOVA), (2) ANCOVA for two time points, (3) generalized estimating equations and (4) latent growth curve/structural equation models.

  7. Master Equation Analysis of Thermal and Nonthermal Microwave Effects.

    PubMed

    Ma, Jianyi

    2016-10-11

    Master equation is a successful model to describe the conventional heating reaction, it is expanded to capture the "microwave effect" in this work. The work equation of "microwave effect" included master equation presents the direct heating, indirect heating, and nonthermal effect about the microwave field. The modified master equation provides a clear physics picture to the nonthermal microwave effect: (1) The absorption and the emission of the microwave, which is dominated by the transition dipole moment between two corresponding states and the intensity of the microwave field, provides a new path to change the reaction rate constants. (2) In the strong microwave field, the distribution of internal states of the molecules will deviate from the equilibrium distribution, and the system temperature defined in the conventional heating reaction is no longer available. According to the general form of "microwave effect" included master equation, a two states model for unimolecular dissociation is proposed and is used to discuss the microwave nonthermal effect particularly. The average rate constants can be increased up to 2400 times for some given cases without the temperature changed in the two states model. Additionally, the simulation of a model system was executed using our State Specified Master Equation package. Three important conclusions can be obtained in present work: (1) A reasonable definition of the nonthermal microwave effect is given in the work equation of "microwave effect" included master equation. (2) Nonthermal microwave effect possibly exists theoretically. (3) The reaction rate constants perhaps can be changed obviously by the microwave field for the non-RRKM and the mode-specified reactions.

  8. Comparative Analysis of Models of the Earth's Gravity: 3. Accuracy of Predicting EAS Motion

    NASA Astrophysics Data System (ADS)

    Kuznetsov, E. D.; Berland, V. E.; Wiebe, Yu. S.; Glamazda, D. V.; Kajzer, G. T.; Kolesnikov, V. I.; Khremli, G. P.

    2002-05-01

    This paper continues a comparative analysis of modern satellite models of the Earth's gravity which we started in [6, 7]. In the cited works, the uniform norms of spherical functions were compared with their gradients for individual harmonics of the geopotential expansion [6] and the potential differences were compared with the gravitational accelerations obtained in various models of the Earth's gravity [7]. In practice, it is important to know how consistently the EAS motion is represented by various geopotential models. Unless otherwise stated, a model version in which the equations of motion are written using the classical Encke scheme and integrated together with the variation equations by the implicit one-step Everhart's algorithm [1] was used. When calculating coordinates and velocities on the integration step (at given instants of time), the approximate Everhart formula was employed.

  9. Nonlinear field equations for aligning self-propelled rods.

    PubMed

    Peshkov, Anton; Aranson, Igor S; Bertin, Eric; Chaté, Hugues; Ginelli, Francesco

    2012-12-28

    We derive a set of minimal and well-behaved nonlinear field equations describing the collective properties of self-propelled rods from a simple microscopic starting point, the Vicsek model with nematic alignment. Analysis of their linear and nonlinear dynamics shows good agreement with the original microscopic model. In particular, we derive an explicit expression for density-segregated, banded solutions, allowing us to develop a more complete analytic picture of the problem at the nonlinear level.

  10. Optical solitons in nematic liquid crystals: model with saturation effects

    NASA Astrophysics Data System (ADS)

    Borgna, Juan Pablo; Panayotaros, Panayotis; Rial, Diego; de la Vega, Constanza Sánchez F.

    2018-04-01

    We study a 2D system that couples a Schrödinger evolution equation to a nonlinear elliptic equation and models the propagation of a laser beam in a nematic liquid crystal. The nonlinear elliptic equation describes the response of the director angle to the laser beam electric field. We obtain results on well-posedness and solitary wave solutions of this system, generalizing results for a well-studied simpler system with a linear elliptic equation for the director field. The analysis of the nonlinear elliptic problem shows the existence of an isolated global branch of solutions with director angles that remain bounded for arbitrary electric field. The results on the director equation are also used to show local and global existence, as well as decay for initial conditions with sufficiently small L 2-norm. For sufficiently large L 2-norm we show the existence of energy minimizing optical solitons with radial, positive and monotone profiles.

  11. Computation of incompressible viscous flows through turbopump components

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin; Chang, Leon

    1993-01-01

    Flow through pump components, such as an inducer and an impeller, is efficiently simulated by solving the incompressible Navier-Stokes equations. The solution method is based on the pseudocompressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. the equations are solved in steadily rotating reference frames and the centrifugal force and the Coriolis force are added to the equation of motion. Current computations use a one-equation Baldwin-Barth turbulence model which is derived from a simplified form of the standard k-epsilon model equations. The resulting computer code is applied to the flow analysis inside a generic rocket engine pump inducer, a fuel pump impeller, and SSME high pressure fuel turbopump impeller. Numerical results of inducer flow are compared with experimental measurements. In the fuel pump impeller, the effect of downstream boundary conditions is investigated. Flow analyses at 80 percent, 100 percent, and 120 percent of design conditions are presented.

  12. Underwater photogrammetric theoretical equations and technique

    NASA Astrophysics Data System (ADS)

    Fan, Ya-bing; Huang, Guiping; Qin, Gui-qin; Chen, Zheng

    2011-12-01

    In order to have a high level of accuracy of measurement in underwater close-range photogrammetry, this article deals with a study of three varieties of model equations according to the way of imaging upon the water. First, the paper makes a careful analysis for the two varieties of theoretical equations and finds out that there are some serious limitations in practical application and has an in-depth study for the third model equation. Second, one special project for this measurement has designed correspondingly. Finally, one rigid antenna has been tested by underwater photogrammetry. The experimental results show that the precision of 3D coordinates measurement is 0.94mm, which validates the availability and operability in practical application with this third equation. It can satisfy the measurement requirements of refraction correction, improving levels of accuracy of underwater close-range photogrammetry, as well as strong antijamming and stabilization.

  13. Modeling spatial competition for light in plant populations with the porous medium equation.

    PubMed

    Beyer, Robert; Etard, Octave; Cournède, Paul-Henry; Laurent-Gengoux, Pascal

    2015-02-01

    We consider a plant's local leaf area index as a spatially continuous variable, subject to particular reaction-diffusion dynamics of allocation, senescence and spatial propagation. The latter notably incorporates the plant's tendency to form new leaves in bright rather than shaded locations. Applying a generalized Beer-Lambert law allows to link existing foliage to production dynamics. The approach allows for inter-individual variability and competition for light while maintaining robustness-a key weakness of comparable existing models. The analysis of the single plant case leads to a significant simplification of the system's key equation when transforming it into the well studied porous medium equation. Confronting the theoretical model to experimental data of sugar beet populations, differing in configuration density, demonstrates its accuracy.

  14. Peridynamic Multiscale Finite Element Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costa, Timothy; Bond, Stephen D.; Littlewood, David John

    The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic andmore » local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the art of local models with the flexibility and accuracy of the nonlocal peridynamic model. In the mixed locality method this coupling occurs across scales, so that the nonlocal model can be used to communicate material heterogeneity at scales inappropriate to local partial differential equation models. Additionally, the computational burden of the weak form of the peridynamic model is reduced dramatically by only requiring that the model be solved on local patches of the simulation domain which may be computed in parallel, taking advantage of the heterogeneous nature of next generation computing platforms. Addition- ally, we present a novel Galerkin framework, the 'Ambulant Galerkin Method', which represents a first step towards a unified mathematical analysis of local and nonlocal multiscale finite element methods, and whose future extension will allow the analysis of multiscale finite element methods that mix models across scales under certain assumptions of the consistency of those models.« less

  15. Approximate Single-Diode Photovoltaic Model for Efficient I-V Characteristics Estimation

    PubMed Central

    Ting, T. O.; Zhang, Nan; Guan, Sheng-Uei; Wong, Prudence W. H.

    2013-01-01

    Precise photovoltaic (PV) behavior models are normally described by nonlinear analytical equations. To solve such equations, it is necessary to use iterative procedures. Aiming to make the computation easier, this paper proposes an approximate single-diode PV model that enables high-speed predictions for the electrical characteristics of commercial PV modules. Based on the experimental data, statistical analysis is conducted to validate the approximate model. Simulation results show that the calculated current-voltage (I-V) characteristics fit the measured data with high accuracy. Furthermore, compared with the existing modeling methods, the proposed model reduces the simulation time by approximately 30% in this work. PMID:24298205

  16. A Markov Chain Monte Carlo Approach to Confirmatory Item Factor Analysis

    ERIC Educational Resources Information Center

    Edwards, Michael C.

    2010-01-01

    Item factor analysis has a rich tradition in both the structural equation modeling and item response theory frameworks. The goal of this paper is to demonstrate a novel combination of various Markov chain Monte Carlo (MCMC) estimation routines to estimate parameters of a wide variety of confirmatory item factor analysis models. Further, I show…

  17. An approach to the analysis of performance of quasi-optimum digital phase-locked loops.

    NASA Technical Reports Server (NTRS)

    Polk, D. R.; Gupta, S. C.

    1973-01-01

    An approach to the analysis of performance of quasi-optimum digital phase-locked loops (DPLL's) is presented. An expression for the characteristic function of the prior error in the state estimate is derived, and from this expression an infinite dimensional equation for the prior error variance is obtained. The prior error-variance equation is a function of the communication system model and the DPLL gain and is independent of the method used to derive the DPLL gain. Two approximations are discussed for reducing the prior error-variance equation to finite dimension. The effectiveness of one approximation in analyzing DPLL performance is studied.

  18. A Priori Analysis of Subgrid-Scale Models for Large Eddy Simulations of Supercritical Binary-Species Mixing Layers

    NASA Technical Reports Server (NTRS)

    Okong'o, Nora; Bellan, Josette

    2005-01-01

    Models for large eddy simulation (LES) are assessed on a database obtained from direct numerical simulations (DNS) of supercritical binary-species temporal mixing layers. The analysis is performed at the DNS transitional states for heptane/nitrogen, oxygen/hydrogen and oxygen/helium mixing layers. The incorporation of simplifying assumptions that are validated on the DNS database leads to a set of LES equations that requires only models for the subgrid scale (SGS) fluxes, which arise from filtering the convective terms in the DNS equations. Constant-coefficient versions of three different models for the SGS fluxes are assessed and calibrated. The Smagorinsky SGS-flux model shows poor correlations with the SGS fluxes, while the Gradient and Similarity models have high correlations, as well as good quantitative agreement with the SGS fluxes when the calibrated coefficients are used.

  19. Perturbation Selection and Local Influence Analysis for Nonlinear Structural Equation Model

    ERIC Educational Resources Information Center

    Chen, Fei; Zhu, Hong-Tu; Lee, Sik-Yum

    2009-01-01

    Local influence analysis is an important statistical method for studying the sensitivity of a proposed model to model inputs. One of its important issues is related to the appropriate choice of a perturbation vector. In this paper, we develop a general method to select an appropriate perturbation vector and a second-order local influence measure…

  20. Academic Optimism and Collective Responsibility: An Organizational Model of the Dynamics of Student Achievement

    ERIC Educational Resources Information Center

    Wu, Jason H.

    2013-01-01

    This study was designed to examine the construct of academic optimism and its relationship with collective responsibility in a sample of Taiwan elementary schools. The construct of academic optimism was tested using confirmatory factor analysis, and the whole structural model was tested with a structural equation modeling analysis. The data were…

  1. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling.

    PubMed

    Schuck, P

    2000-03-01

    A new method for the size-distribution analysis of polymers by sedimentation velocity analytical ultracentrifugation is described. It exploits the ability of Lamm equation modeling to discriminate between the spreading of the sedimentation boundary arising from sample heterogeneity and from diffusion. Finite element solutions of the Lamm equation for a large number of discrete noninteracting species are combined with maximum entropy regularization to represent a continuous size-distribution. As in the program CONTIN, the parameter governing the regularization constraint is adjusted by variance analysis to a predefined confidence level. Estimates of the partial specific volume and the frictional ratio of the macromolecules are used to calculate the diffusion coefficients, resulting in relatively high-resolution sedimentation coefficient distributions c(s) or molar mass distributions c(M). It can be applied to interference optical data that exhibit systematic noise components, and it does not require solution or solvent plateaus to be established. More details on the size-distribution can be obtained than from van Holde-Weischet analysis. The sensitivity to the values of the regularization parameter and to the shape parameters is explored with the help of simulated sedimentation data of discrete and continuous model size distributions, and by applications to experimental data of continuous and discrete protein mixtures.

  2. Linearized-moment analysis of the temperature jump and temperature defect in the Knudsen layer of a rarefied gas.

    PubMed

    Gu, Xiao-Jun; Emerson, David R

    2014-06-01

    Understanding the thermal behavior of a rarefied gas remains a fundamental problem. In the present study, we investigate the predictive capabilities of the regularized 13 and 26 moment equations. In this paper, we consider low-speed problems with small gradients, and to simplify the analysis, a linearized set of moment equations is derived to explore a classic temperature problem. Analytical solutions obtained for the linearized 26 moment equations are compared with available kinetic models and can reliably capture all qualitative trends for the temperature-jump coefficient and the associated temperature defect in the thermal Knudsen layer. In contrast, the linearized 13 moment equations lack the necessary physics to capture these effects and consistently underpredict kinetic theory. The deviation from kinetic theory for the 13 moment equations increases significantly for specular reflection of gas molecules, whereas the 26 moment equations compare well with results from kinetic theory. To improve engineering analyses, expressions for the effective thermal conductivity and Prandtl number in the Knudsen layer are derived with the linearized 26 moment equations.

  3. The advancement of the built environment research through employment of structural equation modeling (SEM)

    NASA Astrophysics Data System (ADS)

    Wasilah, S.; Fahmyddin, T.

    2018-03-01

    The employment of structural equation modeling (SEM) in research has taken an increasing attention in among researchers in built environment. There is a gap to understand the attributes, application, and importance of this approach in data analysis in built environment study. This paper intends to provide fundamental comprehension of SEM method in data analysis, unveiling attributes, employment and significance and bestow cases to assess associations amongst variables and constructs. The study uses some main literature to grasp the essence of SEM regarding with built environment research. The better acknowledgment of this analytical tool may assist the researcher in the built environment to analyze data under complex research questions and to test multivariate models in a single study.

  4. Analysis and calculation of macrosegregation in a casting ingot, exhibits C and E

    NASA Technical Reports Server (NTRS)

    Poirier, D. R.; Maples, A. L.

    1984-01-01

    A computer model which describes the solidification of a binary metal alloy in an insulated rectangular mold with a temperature gradient is presented. A numerical technique, applicable to a broad class of moving boundary problems, was implemented therein. The solidification model described is used to calculate the macrosegregation within the solidified casting by coupling the equations for liquid flow in the solid/liquid or mushy zone with the energy equation for heat flow throughout the ingot and thermal convection in the bulk liquid portion. The rate of development of the solid can be automatically calculated by the model. Numerical analysis of such solidification parameters as enthalpy and boundary layer flow is displayed. On-line user interface and software documentation are presented.

  5. Cage Regional Energy Budgets from the GLAS 4TH Order Model

    NASA Technical Reports Server (NTRS)

    Herman, G. F.; Alexder, M. A.; Shubert, S. D.

    1984-01-01

    The status and future plans of a study to (1) assess the accuracy of regional energy balance calculations obtained from the 4th-order model, (2) determine the impact of satellite data on the calculations, and (3) determine their utility for ocean energy transport studies are discussed. An equation is presented which models the vertically-integrated, time and areally-averaged total energy content of a region of the atmosphere extending from the surface to the top of the atmosphere. All of the terms of the equation were evaluated using early versions of the GLAS FGGE IIIb analysis, and analysis with satellite data deleted. Results show that the budget is dominated by the surface fluxes, net radiation, and horizontal atmospoheric divergence.

  6. Soliton and kink jams in traffic flow with open boundaries.

    PubMed

    Muramatsu, M; Nagatani, T

    1999-07-01

    Soliton density wave is investigated numerically and analytically in the optimal velocity model (a car-following model) of a one-dimensional traffic flow with open boundaries. Soliton density wave is distinguished from the kink density wave. It is shown that the soliton density wave appears only at the threshold of occurrence of traffic jams. The Korteweg-de Vries (KdV) equation is derived from the optimal velocity model by the use of the nonlinear analysis. It is found that the traffic soliton appears only near the neutral stability line. The soliton solution is analytically obtained from the perturbed KdV equation. It is shown that the soliton solution obtained from the nonlinear analysis is consistent with that of the numerical simulation.

  7. Forcing scheme analysis for the axisymmetric lattice Boltzmann method under incompressible limit.

    PubMed

    Zhang, Liangqi; Yang, Shiliang; Zeng, Zhong; Chen, Jie; Yin, Linmao; Chew, Jia Wei

    2017-04-01

    Because the standard lattice Boltzmann (LB) method is proposed for Cartesian Navier-Stokes (NS) equations, additional source terms are necessary in the axisymmetric LB method for representing the axisymmetric effects. Therefore, the accuracy and applicability of the axisymmetric LB models depend on the forcing schemes adopted for discretization of the source terms. In this study, three forcing schemes, namely, the trapezium rule based scheme, the direct forcing scheme, and the semi-implicit centered scheme, are analyzed theoretically by investigating their derived macroscopic equations in the diffusive scale. Particularly, the finite difference interpretation of the standard LB method is extended to the LB equations with source terms, and then the accuracy of different forcing schemes is evaluated for the axisymmetric LB method. Theoretical analysis indicates that the discrete lattice effects arising from the direct forcing scheme are part of the truncation error terms and thus would not affect the overall accuracy of the standard LB method with general force term (i.e., only the source terms in the momentum equation are considered), but lead to incorrect macroscopic equations for the axisymmetric LB models. On the other hand, the trapezium rule based scheme and the semi-implicit centered scheme both have the advantage of avoiding the discrete lattice effects and recovering the correct macroscopic equations. Numerical tests applied for validating the theoretical analysis show that both the numerical stability and the accuracy of the axisymmetric LB simulations are affected by the direct forcing scheme, which indicate that forcing schemes free of the discrete lattice effects are necessary for the axisymmetric LB method.

  8. A non-asymptotic model of dynamics of honeycomb lattice-type plates

    NASA Astrophysics Data System (ADS)

    Cielecka, Iwona; Jędrysiak, Jarosław

    2006-09-01

    Lightweight structures, consisted of special composite material systems like sandwich plates, are often used in aerospace or naval engineering. In composite sandwich plates, the intermediate core is usually made of cellular structures, e.g. honeycomb micro-frames, reinforcing static and dynamic properties of these plates. Here, a new non-asymptotic continuum model of honeycomb lattice-type plates is shown and applied to the analysis of dynamic problems. The general formulation of the model for periodic lattice-type plates of an arbitrary lay-out was presented by Cielecka and Jędrysiak [Journal of Theoretical and Applied Mechanics 40 (2002) 23-46]. This model, partly based on the tolerance averaging method developed for periodic composite solids by Woźniak and Wierzbicki [Averaging techniques in thermomechanics of composite solids, Wydawnictwo Politechniki Częstochowskiej, Częstochowa, 2000], takes into account the effect of the length microstructure size on the dynamic plate behaviour. The shown method leads to the model equations describing the above effect for honeycomb lattice-type plates. These equations have the form similar to equations for isotropic cases. The dynamic analysis of such plates exemplifies this effect, which is significant and cannot be neglected. The physical correctness of the obtained results is also discussed.

  9. Vibrational analysis of vertical axis wind turbine blades

    NASA Astrophysics Data System (ADS)

    Kapucu, Onur

    The goal of this research is to derive a vibration model for a vertical axis wind turbine blade. This model accommodates the affects of varying relative flow angle caused by rotating the blade in the flow field, uses a simple aerodynamic model that assumes constant wind speed and constant rotation rate, and neglects the disturbance of wind due to upstream blade or post. The blade is modeled as elastic Euler-Bernoulli beam under transverse bending and twist deflections. Kinetic and potential energy equations for a rotating blade under deflections are obtained, expressed in terms of assumed modal coordinates and then plugged into Lagrangian equations where the non-conservative forces are the lift and drag forces and moments. An aeroelastic model for lift and drag forces, approximated with third degree polynomials, on the blade are obtained assuming an airfoil under variable angle of attack and airflow magnitudes. A simplified quasi-static airfoil theory is used, in which the lift and drag coefficients are not dependent on the history of the changing angle of attack. Linear terms on the resulting equations of motion will be used to conduct a numerical analysis and simulation, where numeric specifications are modified from the Sandia-17m Darrieus wind turbine by Sandia Laboratories.

  10. Partial differential equation techniques for analysing animal movement: A comparison of different methods.

    PubMed

    Wang, Yi-Shan; Potts, Jonathan R

    2017-03-07

    Recent advances in animal tracking have allowed us to uncover the drivers of movement in unprecedented detail. This has enabled modellers to construct ever more realistic models of animal movement, which aid in uncovering detailed patterns of space use in animal populations. Partial differential equations (PDEs) provide a popular tool for mathematically analysing such models. However, their construction often relies on simplifying assumptions which may greatly affect the model outcomes. Here, we analyse the effect of various PDE approximations on the analysis of some simple movement models, including a biased random walk, central-place foraging processes and movement in heterogeneous landscapes. Perhaps the most commonly-used PDE method dates back to a seminal paper of Patlak from 1953. However, our results show that this can be a very poor approximation in even quite simple models. On the other hand, more recent methods, based on transport equation formalisms, can provide more accurate results, as long as the kernel describing the animal's movement is sufficiently smooth. When the movement kernel is not smooth, we show that both the older and newer methods can lead to quantitatively misleading results. Our detailed analysis will aid future researchers in the appropriate choice of PDE approximation for analysing models of animal movement. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Application of a soft computing technique in predicting the percentage of shear force carried by walls in a rectangular channel with non-homogeneous roughness.

    PubMed

    Khozani, Zohreh Sheikh; Bonakdari, Hossein; Zaji, Amir Hossein

    2016-01-01

    Two new soft computing models, namely genetic programming (GP) and genetic artificial algorithm (GAA) neural network (a combination of modified genetic algorithm and artificial neural network methods) were developed in order to predict the percentage of shear force in a rectangular channel with non-homogeneous roughness. The ability of these methods to estimate the percentage of shear force was investigated. Moreover, the independent parameters' effectiveness in predicting the percentage of shear force was determined using sensitivity analysis. According to the results, the GP model demonstrated superior performance to the GAA model. A comparison was also made between the GP program determined as the best model and five equations obtained in prior research. The GP model with the lowest error values (root mean square error ((RMSE) of 0.0515) had the best function compared with the other equations presented for rough and smooth channels as well as smooth ducts. The equation proposed for rectangular channels with rough boundaries (RMSE of 0.0642) outperformed the prior equations for smooth boundaries.

  12. Multilevel structural equation models for assessing moderation within and across levels of analysis.

    PubMed

    Preacher, Kristopher J; Zhang, Zhen; Zyphur, Michael J

    2016-06-01

    Social scientists are increasingly interested in multilevel hypotheses, data, and statistical models as well as moderation or interactions among predictors. The result is a focus on hypotheses and tests of multilevel moderation within and across levels of analysis. Unfortunately, existing approaches to multilevel moderation have a variety of shortcomings, including conflated effects across levels of analysis and bias due to using observed cluster averages instead of latent variables (i.e., "random intercepts") to represent higher-level constructs. To overcome these problems and elucidate the nature of multilevel moderation effects, we introduce a multilevel structural equation modeling (MSEM) logic that clarifies the nature of the problems with existing practices and remedies them with latent variable interactions. This remedy uses random coefficients and/or latent moderated structural equations (LMS) for unbiased tests of multilevel moderation. We describe our approach and provide an example using the publicly available High School and Beyond data with Mplus syntax in Appendix. Our MSEM method eliminates problems of conflated multilevel effects and reduces bias in parameter estimates while offering a coherent framework for conceptualizing and testing multilevel moderation effects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  13. Finite element analysis and computer graphics visualization of flow around pitching and plunging airfoils

    NASA Technical Reports Server (NTRS)

    Bratanow, T.; Ecer, A.

    1973-01-01

    A general computational method for analyzing unsteady flow around pitching and plunging airfoils was developed. The finite element method was applied in developing an efficient numerical procedure for the solution of equations describing the flow around airfoils. The numerical results were employed in conjunction with computer graphics techniques to produce visualization of the flow. The investigation involved mathematical model studies of flow in two phases: (1) analysis of a potential flow formulation and (2) analysis of an incompressible, unsteady, viscous flow from Navier-Stokes equations.

  14. Asymptotic analysis of dissipative waves with applications to their numerical simulation

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas

    1990-01-01

    Various problems involving the interplay of asymptotics and numerics in the analysis of wave propagation in dissipative systems are studied. A general approach to the asymptotic analysis of linear, dissipative waves is developed. It was applied to the derivation of asymptotic boundary conditions for numerical solutions on unbounded domains. Applications include the Navier-Stokes equations. Multidimensional traveling wave solutions to reaction-diffusion equations are also considered. A preliminary numerical investigation of a thermo-diffusive model of flame propagation in a channel with heat loss at the walls is presented.

  15. Meshless collocation methods for the numerical solution of elliptic boundary valued problems the rotational shallow water equations on the sphere

    NASA Astrophysics Data System (ADS)

    Blakely, Christopher D.

    This dissertation thesis has three main goals: (1) To explore the anatomy of meshless collocation approximation methods that have recently gained attention in the numerical analysis community; (2) Numerically demonstrate why the meshless collocation method should clearly become an attractive alternative to standard finite-element methods due to the simplicity of its implementation and its high-order convergence properties; (3) Propose a meshless collocation method for large scale computational geophysical fluid dynamics models. We provide numerical verification and validation of the meshless collocation scheme applied to the rotational shallow-water equations on the sphere and demonstrate computationally that the proposed model can compete with existing high performance methods for approximating the shallow-water equations such as the SEAM (spectral-element atmospheric model) developed at NCAR. A detailed analysis of the parallel implementation of the model, along with the introduction of parallel algorithmic routines for the high-performance simulation of the model will be given. We analyze the programming and computational aspects of the model using Fortran 90 and the message passing interface (mpi) library along with software and hardware specifications and performance tests. Details from many aspects of the implementation in regards to performance, optimization, and stabilization will be given. In order to verify the mathematical correctness of the algorithms presented and to validate the performance of the meshless collocation shallow-water model, we conclude the thesis with numerical experiments on some standardized test cases for the shallow-water equations on the sphere using the proposed method.

  16. Three-dimensional finite elements for the analysis of soil contamination using a multiple-porosity approach

    NASA Astrophysics Data System (ADS)

    El-Zein, Abbas; Carter, John P.; Airey, David W.

    2006-06-01

    A three-dimensional finite-element model of contaminant migration in fissured clays or contaminated sand which includes multiple sources of non-equilibrium processes is proposed. The conceptual framework can accommodate a regular network of fissures in 1D, 2D or 3D and immobile solutions in the macro-pores of aggregated topsoils, as well as non-equilibrium sorption. A Galerkin weighted-residual statement for the three-dimensional form of the equations in the Laplace domain is formulated. Equations are discretized using linear and quadratic prism elements. The system of algebraic equations is solved in the Laplace domain and solution is inverted to the time domain numerically. The model is validated and its scope is illustrated through the analysis of three problems: a waste repository deeply buried in fissured clay, a storage tank leaking into sand and a sanitary landfill leaching into fissured clay over a sand aquifer.

  17. Teacher role stress, satisfaction, commitment, and intentions to leave: a structural model.

    PubMed

    Conley, Sharon; You, Sukkyung

    2009-12-01

    Structural equation modeling was used to assess the plausibility of a conceptual model specifying hypothesized linkages among teachers' perceptions of the role stresses of role ambiguity, role conflict, and role overload and commitment, satisfaction, and intentions to leave their employing school. 178 teachers in four high schools in a southern coastal region of California responded to survey questions designed to capture the above constructs. Confirmatory factor analysis was used to assess whether the role-stress items fit hypothesized constructs. Structural equation modeling results indicated that satisfaction and commitment are two mediators in the role stresses-intentions to leave relationship.

  18. Exact Analysis of Squared Cross-Validity Coefficient in Predictive Regression Models

    ERIC Educational Resources Information Center

    Shieh, Gwowen

    2009-01-01

    In regression analysis, the notion of population validity is of theoretical interest for describing the usefulness of the underlying regression model, whereas the presumably more important concept of population cross-validity represents the predictive effectiveness for the regression equation in future research. It appears that the inference…

  19. Demographic Faultlines: A Meta-Analysis of the Literature

    ERIC Educational Resources Information Center

    Thatcher, Sherry M. B.; Patel, Pankaj C.

    2011-01-01

    We propose and test a theoretical model focusing on antecedents and consequences of demographic faultlines. We also posit contingencies that affect overall team dynamics in the context of demographic faultlines, such as the study setting and performance measurement. Using meta-analysis structural equation modeling with a final data set consisting…

  20. A General Approach to Causal Mediation Analysis

    ERIC Educational Resources Information Center

    Imai, Kosuke; Keele, Luke; Tingley, Dustin

    2010-01-01

    Traditionally in the social sciences, causal mediation analysis has been formulated, understood, and implemented within the framework of linear structural equation models. We argue and demonstrate that this is problematic for 3 reasons: the lack of a general definition of causal mediation effects independent of a particular statistical model, the…

  1. Modeling ARRM Xenon Tank Pressurization Using 1D Thermodynamic and Heat Transfer Equations

    NASA Technical Reports Server (NTRS)

    Gilligan, Patrick; Tomsik, Thomas

    2016-01-01

    As a first step in understanding what ground support equipment (GSE) is required to provide external cooling during the loading of 5,000 kg of xenon into 4 aluminum lined composite overwrapped pressure vessels (COPVs), a modeling analysis was performed using Microsoft Excel. The goals of the analysis were to predict xenon temperature and pressure throughout loading at the launch facility, estimate the time required to load one tank, and to get an early estimate of what provisions for cooling xenon might be needed while the tanks are being filled. The model uses the governing thermodynamic and heat transfer equations to achieve these goals. Results indicate that a single tank can be loaded in about 15 hours with reasonable external coolant requirements. The model developed in this study was successfully validated against flight and test data. The first data set is from the Dawn mission which also utilizes solar electric propulsion with xenon propellant, and the second is test data from the rapid loading of a hydrogen cylindrical COPV. The main benefit of this type of model is that the governing physical equations using bulk fluid solid temperatures can provide a quick and accurate estimate of the state of the propellant throughout loading which is much cheaper in terms of computational time and licensing costs than a Computation Fluid Dynamics (CFD) analysis while capturing the majority of the thermodynamics and heat transfer.

  2. Modeling Xenon Tank Pressurization using One-Dimensional Thermodynamic and Heat Transfer Equations

    NASA Technical Reports Server (NTRS)

    Gilligan, Ryan P.; Tomsik, Thomas M.

    2017-01-01

    As a first step in understanding what ground support equipment (GSE) is required to provide external cooling during the loading of 5,000 kg of xenon into 4 aluminum lined composite overwrapped pressure vessels (COPVs), a modeling analysis was performed using Microsoft Excel. The goals of the analysis were to predict xenon temperature and pressure throughout loading at the launch facility, estimate the time required to load one tank, and to get an early estimate of what provisions for cooling xenon might be needed while the tanks are being filled. The model uses the governing thermodynamic and heat transfer equations to achieve these goals. Results indicate that a single tank can be loaded in about 15 hours with reasonable external coolant requirements. The model developed in this study was successfully validated against flight and test data. The first data set is from the Dawn mission which also utilizes solar electric propulsion with xenon propellant, and the second is test data from the rapid loading of a hydrogen cylindrical COPV. The main benefit of this type of model is that the governing physical equations using bulk fluid solid temperatures can provide a quick and accurate estimate of the state of the propellant throughout loading which is much cheaper in terms of computational time and licensing costs than a Computation Fluid Dynamics (CFD) analysis while capturing the majority of the thermodynamics and heat transfer.

  3. STRUCTURAL ESTIMATES OF TREATMENT EFFECTS ON OUTCOMES USING RETROSPECTIVE DATA: AN APPLICATION TO DUCTAL CARCINOMA IN SITU

    PubMed Central

    Gold, Heather Taffet; Sorbero, Melony E. S.; Griggs, Jennifer J.; Do, Huong T.; Dick, Andrew W.

    2013-01-01

    Analysis of observational cohort data is subject to bias from unobservable risk selection. We compared econometric models and treatment effectiveness estimates using the linked Surveillance, Epidemiology, and End Results (SEER)-Medicare claims data for women diagnosed with ductal carcinoma in situ. Treatment effectiveness estimates for mastectomy and breast conserving surgery (BCS) with or without radiotherapy were compared using three different models: simultaneous-equations model, discrete-time survival model with unobserved heterogeneity (frailty), and proportional hazards model. Overall trends in disease-free survival (DFS), or time to first subsequent breast event, by treatment are similar regardless of the model, with mastectomy yielding the highest DFS over 8 years of follow-up, followed by BCS with radiotherapy, and then BCS alone. Absolute rates and direction of bias varied substantially by treatment strategy. DFS was underestimated by single-equation and frailty models compared to the simultaneous-equations model and RCT results for BCS with RT and overestimated for BCS alone. PMID:21602195

  4. Dynamic sensitivity analysis of biological systems

    PubMed Central

    Wu, Wu Hsiung; Wang, Feng Sheng; Chang, Maw Shang

    2008-01-01

    Background A mathematical model to understand, predict, control, or even design a real biological system is a central theme in systems biology. A dynamic biological system is always modeled as a nonlinear ordinary differential equation (ODE) system. How to simulate the dynamic behavior and dynamic parameter sensitivities of systems described by ODEs efficiently and accurately is a critical job. In many practical applications, e.g., the fed-batch fermentation systems, the system admissible input (corresponding to independent variables of the system) can be time-dependent. The main difficulty for investigating the dynamic log gains of these systems is the infinite dimension due to the time-dependent input. The classical dynamic sensitivity analysis does not take into account this case for the dynamic log gains. Results We present an algorithm with an adaptive step size control that can be used for computing the solution and dynamic sensitivities of an autonomous ODE system simultaneously. Although our algorithm is one of the decouple direct methods in computing dynamic sensitivities of an ODE system, the step size determined by model equations can be used on the computations of the time profile and dynamic sensitivities with moderate accuracy even when sensitivity equations are more stiff than model equations. To show this algorithm can perform the dynamic sensitivity analysis on very stiff ODE systems with moderate accuracy, it is implemented and applied to two sets of chemical reactions: pyrolysis of ethane and oxidation of formaldehyde. The accuracy of this algorithm is demonstrated by comparing the dynamic parameter sensitivities obtained from this new algorithm and from the direct method with Rosenbrock stiff integrator based on the indirect method. The same dynamic sensitivity analysis was performed on an ethanol fed-batch fermentation system with a time-varying feed rate to evaluate the applicability of the algorithm to realistic models with time-dependent admissible input. Conclusion By combining the accuracy we show with the efficiency of being a decouple direct method, our algorithm is an excellent method for computing dynamic parameter sensitivities in stiff problems. We extend the scope of classical dynamic sensitivity analysis to the investigation of dynamic log gains of models with time-dependent admissible input. PMID:19091016

  5. HYDRA-II: A hydrothermal analysis computer code: Volume 3, Verification/validation assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCann, R.A.; Lowery, P.S.

    1987-10-01

    HYDRA-II is a hydrothermal computer code capable of three-dimensional analysis of coupled conduction, convection, and thermal radiation problems. This code is especially appropriate for simulating the steady-state performance of spent fuel storage systems. The code has been evaluated for this application for the US Department of Energy's Commercial Spent Fuel Management Program. HYDRA-II provides a finite difference solution in cartesian coordinates to the equations governing the conservation of mass, momentum, and energy. A cylindrical coordinate system may also be used to enclose the cartesian coordinate system. This exterior coordinate system is useful for modeling cylindrical cask bodies. The difference equationsmore » for conservation of momentum are enhanced by the incorporation of directional porosities and permeabilities that aid in modeling solid structures whose dimensions may be smaller than the computational mesh. The equation for conservation of energy permits modeling of orthotropic physical properties and film resistances. Several automated procedures are available to model radiation transfer within enclosures and from fuel rod to fuel rod. The documentation of HYDRA-II is presented in three separate volumes. Volume I - Equations and Numerics describes the basic differential equations, illustrates how the difference equations are formulated, and gives the solution procedures employed. Volume II - User's Manual contains code flow charts, discusses the code structure, provides detailed instructions for preparing an input file, and illustrates the operation of the code by means of a model problem. This volume, Volume III - Verification/Validation Assessments, provides a comparison between the analytical solution and the numerical simulation for problems with a known solution. This volume also documents comparisons between the results of simulations of single- and multiassembly storage systems and actual experimental data. 11 refs., 55 figs., 13 tabs.« less

  6. Uncertainty Quantification in Simulations of Epidemics Using Polynomial Chaos

    PubMed Central

    Santonja, F.; Chen-Charpentier, B.

    2012-01-01

    Mathematical models based on ordinary differential equations are a useful tool to study the processes involved in epidemiology. Many models consider that the parameters are deterministic variables. But in practice, the transmission parameters present large variability and it is not possible to determine them exactly, and it is necessary to introduce randomness. In this paper, we present an application of the polynomial chaos approach to epidemiological mathematical models based on ordinary differential equations with random coefficients. Taking into account the variability of the transmission parameters of the model, this approach allows us to obtain an auxiliary system of differential equations, which is then integrated numerically to obtain the first-and the second-order moments of the output stochastic processes. A sensitivity analysis based on the polynomial chaos approach is also performed to determine which parameters have the greatest influence on the results. As an example, we will apply the approach to an obesity epidemic model. PMID:22927889

  7. Causal structure of oscillations in gene regulatory networks: Boolean analysis of ordinary differential equation attractors.

    PubMed

    Sun, Mengyang; Cheng, Xianrui; Socolar, Joshua E S

    2013-06-01

    A common approach to the modeling of gene regulatory networks is to represent activating or repressing interactions using ordinary differential equations for target gene concentrations that include Hill function dependences on regulator gene concentrations. An alternative formulation represents the same interactions using Boolean logic with time delays associated with each network link. We consider the attractors that emerge from the two types of models in the case of a simple but nontrivial network: a figure-8 network with one positive and one negative feedback loop. We show that the different modeling approaches give rise to the same qualitative set of attractors with the exception of a possible fixed point in the ordinary differential equation model in which concentrations sit at intermediate values. The properties of the attractors are most easily understood from the Boolean perspective, suggesting that time-delay Boolean modeling is a useful tool for understanding the logic of regulatory networks.

  8. An efficient formulation of robot arm dynamics for control and computer simulation

    NASA Astrophysics Data System (ADS)

    Lee, C. S. G.; Nigam, R.

    This paper describes an efficient formulation of the dynamic equations of motion of industrial robots based on the Lagrange formulation of d'Alembert's principle. This formulation, as applied to a PUMA robot arm, results in a set of closed form second order differential equations with cross product terms. They are not as efficient in computation as those formulated by the Newton-Euler method, but provide a better analytical model for control analysis and computer simulation. Computational complexities of this dynamic model together with other models are tabulated for discussion.

  9. Reflected stochastic differential equation models for constrained animal movement

    USGS Publications Warehouse

    Hanks, Ephraim M.; Johnson, Devin S.; Hooten, Mevin B.

    2017-01-01

    Movement for many animal species is constrained in space by barriers such as rivers, shorelines, or impassable cliffs. We develop an approach for modeling animal movement constrained in space by considering a class of constrained stochastic processes, reflected stochastic differential equations. Our approach generalizes existing methods for modeling unconstrained animal movement. We present methods for simulation and inference based on augmenting the constrained movement path with a latent unconstrained path and illustrate this augmentation with a simulation example and an analysis of telemetry data from a Steller sea lion (Eumatopias jubatus) in southeast Alaska.

  10. Modeling Climate Dynamically

    ERIC Educational Resources Information Center

    Walsh, Jim; McGehee, Richard

    2013-01-01

    A dynamical systems approach to energy balance models of climate is presented, focusing on low order, or conceptual, models. Included are global average and latitude-dependent, surface temperature models. The development and analysis of the differential equations and corresponding bifurcation diagrams provides a host of appropriate material for…

  11. Multivariate Prediction Equations for HbA1c Lowering, Weight Change, and Hypoglycemic Events Associated with Insulin Rescue Medication in Type 2 Diabetes Mellitus: Informing Economic Modeling.

    PubMed

    Willis, Michael; Asseburg, Christian; Nilsson, Andreas; Johnsson, Kristina; Kartman, Bernt

    2017-03-01

    Type 2 diabetes mellitus (T2DM) is chronic and progressive and the cost-effectiveness of new treatment interventions must be established over long time horizons. Given the limited durability of drugs, assumptions regarding downstream rescue medication can drive results. Especially for insulin, for which treatment effects and adverse events are known to depend on patient characteristics, this can be problematic for health economic evaluation involving modeling. To estimate parsimonious multivariate equations of treatment effects and hypoglycemic event risks for use in parameterizing insulin rescue therapy in model-based cost-effectiveness analysis. Clinical evidence for insulin use in T2DM was identified in PubMed and from published reviews and meta-analyses. Study and patient characteristics and treatment effects and adverse event rates were extracted and the data used to estimate parsimonious treatment effect and hypoglycemic event risk equations using multivariate regression analysis. Data from 91 studies featuring 171 usable study arms were identified, mostly for premix and basal insulin types. Multivariate prediction equations for glycated hemoglobin A 1c lowering and weight change were estimated separately for insulin-naive and insulin-experienced patients. Goodness of fit (R 2 ) for both outcomes were generally good, ranging from 0.44 to 0.84. Multivariate prediction equations for symptomatic, nocturnal, and severe hypoglycemic events were also estimated, though considerable heterogeneity in definitions limits their usefulness. Parsimonious and robust multivariate prediction equations were estimated for glycated hemoglobin A 1c and weight change, separately for insulin-naive and insulin-experienced patients. Using these in economic simulation modeling in T2DM can improve realism and flexibility in modeling insulin rescue medication. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  12. An Introduction to Computational Physics - 2nd Edition

    NASA Astrophysics Data System (ADS)

    Pang, Tao

    2006-01-01

    Preface to first edition; Preface; Acknowledgements; 1. Introduction; 2. Approximation of a function; 3. Numerical calculus; 4. Ordinary differential equations; 5. Numerical methods for matrices; 6. Spectral analysis; 7. Partial differential equations; 8. Molecular dynamics simulations; 9. Modeling continuous systems; 10. Monte Carlo simulations; 11. Genetic algorithm and programming; 12. Numerical renormalization; References; Index.

  13. An inverse problem for a semilinear parabolic equation arising from cardiac electrophysiology

    NASA Astrophysics Data System (ADS)

    Beretta, Elena; Cavaterra, Cecilia; Cerutti, M. Cristina; Manzoni, Andrea; Ratti, Luca

    2017-10-01

    In this paper we develop theoretical analysis and numerical reconstruction techniques for the solution of an inverse boundary value problem dealing with the nonlinear, time-dependent monodomain equation, which models the evolution of the electric potential in the myocardial tissue. The goal is the detection of an inhomogeneity \

  14. Energy Cascade in Fermi-Pasta Models

    NASA Astrophysics Data System (ADS)

    Ponno, A.; Bambusi, D.

    We show that, for long-wavelength initial conditions, the FPU dynamics is described, up to a certain time, by two KdV-like equations, which represent the resonant Hamiltonian normal form of the system. The energy cascade taking place in the system is then quantitatively characterized by arguments of dimensional analysis based on such equations.

  15. Analysis of Sediment Transport for Rivers in South Korea based on Data Mining technique

    NASA Astrophysics Data System (ADS)

    Jang, Eun-kyung; Ji, Un; Yeo, Woonkwang

    2017-04-01

    The purpose of this study is to calculate of sediment discharge assessment using data mining in South Korea. The Model Tree was selected for this study which is the most suitable technique to explicitly analyze the relationship between input and output variables in various and diverse databases among the Data Mining. In order to derive the sediment discharge equation using the Model Tree of Data Mining used the dimensionless variables used in Engelund and Hansen, Ackers and White, Brownlie and van Rijn equations as the analytical condition. In addition, total of 14 analytical conditions were set considering the conditions dimensional variables and the combination conditions of the dimensionless variables and the dimensional variables according to the relationship between the flow and the sediment transport. For each case, the analysis results were analyzed by mean of discrepancy ratio, root mean square error, mean absolute percent error, correlation coefficient. The results showed that the best fit was obtained by using five dimensional variables such as velocity, depth, slope, width and Median Diameter. And closest approximation to the best goodness-of-fit was estimated from the depth, slope, width, main grain size of bed material and dimensionless tractive force and except for the slope in the single variable. In addition, the three types of Model Tree that are most appropriate are compared with the Ackers and White equation which is the best fit among the existing equations, the mean discrepancy ration and the correlation coefficient of the Model Tree are improved compared to the Ackers and White equation.

  16. A second-order closure analysis of turbulent diffusion flames. [combustion physics

    NASA Technical Reports Server (NTRS)

    Varma, A. K.; Fishburne, E. S.; Beddini, R. A.

    1977-01-01

    A complete second-order closure computer program for the investigation of compressible, turbulent, reacting shear layers was developed. The equations for the means and the second order correlations were derived from the time-averaged Navier-Stokes equations and contain third order and higher order correlations, which have to be modeled in terms of the lower-order correlations to close the system of equations. In addition to fluid mechanical turbulence models and parameters used in previous studies of a variety of incompressible and compressible shear flows, a number of additional scalar correlations were modeled for chemically reacting flows, and a typical eddy model developed for the joint probability density function for all the scalars. The program which is capable of handling multi-species, multistep chemical reactions, was used to calculate nonreacting and reacting flows in a hydrogen-air diffusion flame.

  17. Acidity in DMSO from the embedded cluster integral equation quantum solvation model.

    PubMed

    Heil, Jochen; Tomazic, Daniel; Egbers, Simon; Kast, Stefan M

    2014-04-01

    The embedded cluster reference interaction site model (EC-RISM) is applied to the prediction of acidity constants of organic molecules in dimethyl sulfoxide (DMSO) solution. EC-RISM is based on a self-consistent treatment of the solute's electronic structure and the solvent's structure by coupling quantum-chemical calculations with three-dimensional (3D) RISM integral equation theory. We compare available DMSO force fields with reference calculations obtained using the polarizable continuum model (PCM). The results are evaluated statistically using two different approaches to eliminating the proton contribution: a linear regression model and an analysis of pK(a) shifts for compound pairs. Suitable levels of theory for the integral equation methodology are benchmarked. The results are further analyzed and illustrated by visualizing solvent site distribution functions and comparing them with an aqueous environment.

  18. Student Background, School Climate, School Disorder, and Student Achievement: An Empirical Study of New York City's Middle Schools

    ERIC Educational Resources Information Center

    Chen, Greg; Weikart, Lynne A.

    2008-01-01

    This study develops and tests a school disorder and student achievement model based upon the school climate framework. The model was fitted to 212 New York City middle schools using the Structural Equations Modeling Analysis method. The analysis shows that the model fits the data well based upon test statistics and goodness of fit indices. The…

  19. Stability Analysis of Finite Difference Schemes for Hyperbolic Systems, and Problems in Applied and Computational Linear Algebra.

    DTIC Science & Technology

    FINITE DIFFERENCE THEORY, * LINEAR ALGEBRA , APPLIED MATHEMATICS, APPROXIMATION(MATHEMATICS), BOUNDARY VALUE PROBLEMS, COMPUTATIONS, HYPERBOLAS, MATHEMATICAL MODELS, NUMERICAL ANALYSIS, PARTIAL DIFFERENTIAL EQUATIONS, STABILITY.

  20. Stochastic model simulation using Kronecker product analysis and Zassenhaus formula approximation.

    PubMed

    Caglar, Mehmet Umut; Pal, Ranadip

    2013-01-01

    Probabilistic Models are regularly applied in Genetic Regulatory Network modeling to capture the stochastic behavior observed in the generation of biological entities such as mRNA or proteins. Several approaches including Stochastic Master Equations and Probabilistic Boolean Networks have been proposed to model the stochastic behavior in genetic regulatory networks. It is generally accepted that Stochastic Master Equation is a fundamental model that can describe the system being investigated in fine detail, but the application of this model is computationally enormously expensive. On the other hand, Probabilistic Boolean Network captures only the coarse-scale stochastic properties of the system without modeling the detailed interactions. We propose a new approximation of the stochastic master equation model that is able to capture the finer details of the modeled system including bistabilities and oscillatory behavior, and yet has a significantly lower computational complexity. In this new method, we represent the system using tensors and derive an identity to exploit the sparse connectivity of regulatory targets for complexity reduction. The algorithm involves an approximation based on Zassenhaus formula to represent the exponential of a sum of matrices as product of matrices. We derive upper bounds on the expected error of the proposed model distribution as compared to the stochastic master equation model distribution. Simulation results of the application of the model to four different biological benchmark systems illustrate performance comparable to detailed stochastic master equation models but with considerably lower computational complexity. The results also demonstrate the reduced complexity of the new approach as compared to commonly used Stochastic Simulation Algorithm for equivalent accuracy.

  1. A Nonlinear differential equation model of Asthma effect of environmental pollution using LHAM

    NASA Astrophysics Data System (ADS)

    Joseph, G. Arul; Balamuralitharan, S.

    2018-04-01

    In this paper, we investigated a nonlinear differential equation mathematical model to study the spread of asthma in the environmental pollutants from industry and mainly from tobacco smoke from smokers in different type of population. Smoking is the main cause to spread Asthma in the environment. Numerical simulation is also discussed. Finally by using Liao’s Homotopy analysis Method (LHAM), we found that the approximate analytical solution of Asthmatic disease in the environmental.

  2. A mathematical model of intestinal oedema formation.

    PubMed

    Young, Jennifer; Rivière, Béatrice; Cox, Charles S; Uray, Karen

    2014-03-01

    Intestinal oedema is a medical condition referring to the build-up of excess fluid in the interstitial spaces of the intestinal wall tissue. Intestinal oedema is known to produce a decrease in intestinal transit caused by a decrease in smooth muscle contractility, which can lead to numerous medical problems for the patient. Interstitial volume regulation has thus far been modelled with ordinary differential equations, or with a partial differential equation system where volume changes depend only on the current pressure and not on updated tissue stress. In this work, we present a computational, partial differential equation model of intestinal oedema formation that overcomes the limitations of past work to present a comprehensive model of the phenomenon. This model includes mass and momentum balance equations which give a time evolution of the interstitial pressure, intestinal volume changes and stress. The model also accounts for the spatially varying mechanical properties of the intestinal tissue and the inhomogeneous distribution of fluid-leaking capillaries that create oedema. The intestinal wall is modelled as a multi-layered, deforming, poroelastic medium, and the system of equations is solved using a discontinuous Galerkin method. To validate the model, simulation results are compared with results from four experimental scenarios. A sensitivity analysis is also provided. The model is able to capture the final submucosal interstitial pressure and total fluid volume change for all four experimental cases, and provide further insight into the distribution of these quantities across the intestinal wall.

  3. A two-layer model for buoyant inertial displacement flows in inclined pipes

    NASA Astrophysics Data System (ADS)

    Etrati, Ali; Frigaard, Ian A.

    2018-02-01

    We investigate the inertial flows found in buoyant miscible displacements using a two-layer model. From displacement flow experiments in inclined pipes, it has been observed that for significant ranges of Fr and Re cos β/Fr, a two-layer, stratified flow develops with the heavier fluid moving at the bottom of the pipe. Due to significant inertial effects, thin-film/lubrication models developed for laminar, viscous flows are not effective for predicting these flows. Here we develop a displacement model that addresses this shortcoming. The complete model for the displacement flow consists of mass and momentum equations for each fluid, resulting in a set of four non-linear equations. By integrating over each layer and eliminating the pressure gradient, we reduce the system to two equations for the area and mean velocity of the heavy fluid layer. The wall and interfacial stresses appear as source terms in the reduced system. The final system of equations is solved numerically using a robust, shock-capturing scheme. The equations are stabilized to remove non-physical instabilities. A linear stability analysis is able to predict the onset of instabilities at the interface and together with numerical solution, is used to study displacement effectiveness over different parametric regimes. Backflow and instability onset predictions are made for different viscosity ratios.

  4. Vector Autoregression, Structural Equation Modeling, and Their Synthesis in Neuroimaging Data Analysis

    PubMed Central

    Chen, Gang; Glen, Daniel R.; Saad, Ziad S.; Hamilton, J. Paul; Thomason, Moriah E.; Gotlib, Ian H.; Cox, Robert W.

    2011-01-01

    Vector autoregression (VAR) and structural equation modeling (SEM) are two popular brain-network modeling tools. VAR, which is a data-driven approach, assumes that connected regions exert time-lagged influences on one another. In contrast, the hypothesis-driven SEM is used to validate an existing connectivity model where connected regions have contemporaneous interactions among them. We present the two models in detail and discuss their applicability to FMRI data, and interpretational limits. We also propose a unified approach that models both lagged and contemporaneous effects. The unifying model, structural vector autoregression (SVAR), may improve statistical and explanatory power, and avoids some prevalent pitfalls that can occur when VAR and SEM are utilized separately. PMID:21975109

  5. Working covariance model selection for generalized estimating equations.

    PubMed

    Carey, Vincent J; Wang, You-Gan

    2011-11-20

    We investigate methods for data-based selection of working covariance models in the analysis of correlated data with generalized estimating equations. We study two selection criteria: Gaussian pseudolikelihood and a geodesic distance based on discrepancy between model-sensitive and model-robust regression parameter covariance estimators. The Gaussian pseudolikelihood is found in simulation to be reasonably sensitive for several response distributions and noncanonical mean-variance relations for longitudinal data. Application is also made to a clinical dataset. Assessment of adequacy of both correlation and variance models for longitudinal data should be routine in applications, and we describe open-source software supporting this practice. Copyright © 2011 John Wiley & Sons, Ltd.

  6. A theoretical analysis of fluid flow and energy transport in hydrothermal systems

    USGS Publications Warehouse

    Faust, Charles R.; Mercer, James W.

    1977-01-01

    A mathematical derivation for fluid flow and energy transport in hydrothermal systems is presented. Specifically, the mathematical model describes the three-dimensional flow of both single- and two-phase, single-component water and the transport of heat in porous media. The derivation begins with the point balance equations for mass, momentum, and energy. These equations are then averaged over a finite volume to obtain the macroscopic balance equations for a porous medium. The macroscopic equations are combined by appropriate constitutive relationships to form two similified partial differential equations posed in terms of fluid pressure and enthalpy. A two-dimensional formulation of the simplified equations is also derived by partial integration in the vertical dimension. (Woodard-USGS)

  7. Structural equation model analysis for the evaluation of overall driving performance: A driving simulator study focusing on driver distraction.

    PubMed

    Papantoniou, Panagiotis

    2018-04-03

    The present research relies on 2 main objectives. The first is to investigate whether latent model analysis through a structural equation model can be implemented on driving simulator data in order to define an unobserved driving performance variable. Subsequently, the second objective is to investigate and quantify the effect of several risk factors including distraction sources, driver characteristics, and road and traffic environment on the overall driving performance and not in independent driving performance measures. For the scope of the present research, 95 participants from all age groups were asked to drive under different types of distraction (conversation with passenger, cell phone use) in urban and rural road environments with low and high traffic volume in a driving simulator experiment. Then, in the framework of the statistical analysis, a correlation table is presented investigating any of a broad class of statistical relationships between driving simulator measures and a structural equation model is developed in which overall driving performance is estimated as a latent variable based on several individual driving simulator measures. Results confirm the suitability of the structural equation model and indicate that the selection of the specific performance measures that define overall performance should be guided by a rule of representativeness between the selected variables. Moreover, results indicate that conversation with the passenger was not found to have a statistically significant effect, indicating that drivers do not change their performance while conversing with a passenger compared to undistracted driving. On the other hand, results support the hypothesis that cell phone use has a negative effect on driving performance. Furthermore, regarding driver characteristics, age, gender, and experience all have a significant effect on driving performance, indicating that driver-related characteristics play the most crucial role in overall driving performance. The findings of this study allow a new approach to the investigation of driving behavior in driving simulator experiments and in general. By the successful implementation of the structural equation model, driving behavior can be assessed in terms of overall performance and not through individual performance measures, which allows an important scientific step forward from piecemeal analyses to a sound combined analysis of the interrelationship between several risk factors and overall driving performance.

  8. Quasi-brittle damage modeling based on incremental energy relaxation combined with a viscous-type regularization

    NASA Astrophysics Data System (ADS)

    Langenfeld, K.; Junker, P.; Mosler, J.

    2018-05-01

    This paper deals with a constitutive model suitable for the analysis of quasi-brittle damage in structures. The model is based on incremental energy relaxation combined with a viscous-type regularization. A similar approach—which also represents the inspiration for the improved model presented in this paper—was recently proposed in Junker et al. (Contin Mech Thermodyn 29(1):291-310, 2017). Within this work, the model introduced in Junker et al. (2017) is critically analyzed first. This analysis leads to an improved model which shows the same features as that in Junker et al. (2017), but which (i) eliminates unnecessary model parameters, (ii) can be better interpreted from a physics point of view, (iii) can capture a fully softened state (zero stresses), and (iv) is characterized by a very simple evolution equation. In contrast to the cited work, this evolution equation is (v) integrated fully implicitly and (vi) the resulting time-discrete evolution equation can be solved analytically providing a numerically efficient closed-form solution. It is shown that the final model is indeed well-posed (i.e., its tangent is positive definite). Explicit conditions guaranteeing this well-posedness are derived. Furthermore, by additively decomposing the stress rate into deformation- and purely time-dependent terms, the functionality of the model is explained. Illustrative numerical examples confirm the theoretical findings.

  9. Relation Between the Cell Volume and the Cell Cycle Dynamics in Mammalian cell

    NASA Astrophysics Data System (ADS)

    Magno, A. C. G.; Oliveira, I. L.; Hauck, J. V. S.

    2016-08-01

    The main goal of this work is to add and analyze an equation that represents the volume in a dynamical model of the mammalian cell cycle proposed by Gérard and Goldbeter (2011) [1]. The cell division occurs when the cyclinB/Cdkl complex is totally degraded (Tyson and Novak, 2011)[2] and it reaches a minimum value. At this point, the cell is divided into two newborn daughter cells and each one will contain the half of the cytoplasmic content of the mother cell. The equations of our base model are only valid if the cell volume, where the reactions occur, is constant. Whether the cell volume is not constant, that is, the rate of change of its volume with respect to time is explicitly taken into account in the mathematical model, then the equations of the original model are no longer valid. Therefore, every equations were modified from the mass conservation principle for considering a volume that changes with time. Through this approach, the cell volume affects all model variables. Two different dynamic simulation methods were accomplished: deterministic and stochastic. In the stochastic simulation, the volume affects every model's parameters which have molar unit, whereas in the deterministic one, it is incorporated into the differential equations. In deterministic simulation, the biochemical species may be in concentration units, while in stochastic simulation such species must be converted to number of molecules which are directly proportional to the cell volume. In an effort to understand the influence of the new equation a stability analysis was performed. This elucidates how the growth factor impacts the stability of the model's limit cycles. In conclusion, a more precise model, in comparison to the base model, was created for the cell cycle as it now takes into consideration the cell volume variation

  10. Probabilistic boundary element method

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Raveendra, S. T.

    1989-01-01

    The purpose of the Probabilistic Structural Analysis Method (PSAM) project is to develop structural analysis capabilities for the design analysis of advanced space propulsion system hardware. The boundary element method (BEM) is used as the basis of the Probabilistic Advanced Analysis Methods (PADAM) which is discussed. The probabilistic BEM code (PBEM) is used to obtain the structural response and sensitivity results to a set of random variables. As such, PBEM performs analogous to other structural analysis codes such as finite elements in the PSAM system. For linear problems, unlike the finite element method (FEM), the BEM governing equations are written at the boundary of the body only, thus, the method eliminates the need to model the volume of the body. However, for general body force problems, a direct condensation of the governing equations to the boundary of the body is not possible and therefore volume modeling is generally required.

  11. From Heuristic to Mathematical Modeling of Drugs Dissolution Profiles: Application of Artificial Neural Networks and Genetic Programming

    PubMed Central

    Mendyk, Aleksander; Güres, Sinan; Szlęk, Jakub; Wiśniowska, Barbara; Kleinebudde, Peter

    2015-01-01

    The purpose of this work was to develop a mathematical model of the drug dissolution (Q) from the solid lipid extrudates based on the empirical approach. Artificial neural networks (ANNs) and genetic programming (GP) tools were used. Sensitivity analysis of ANNs provided reduction of the original input vector. GP allowed creation of the mathematical equation in two major approaches: (1) direct modeling of Q versus extrudate diameter (d) and the time variable (t) and (2) indirect modeling through Weibull equation. ANNs provided also information about minimum achievable generalization error and the way to enhance the original dataset used for adjustment of the equations' parameters. Two inputs were found important for the drug dissolution: d and t. The extrudates length (L) was found not important. Both GP modeling approaches allowed creation of relatively simple equations with their predictive performance comparable to the ANNs (root mean squared error (RMSE) from 2.19 to 2.33). The direct mode of GP modeling of Q versus d and t resulted in the most robust model. The idea of how to combine ANNs and GP in order to escape ANNs' black-box drawback without losing their superior predictive performance was demonstrated. Open Source software was used to deliver the state-of-the-art models and modeling strategies. PMID:26101544

  12. From Heuristic to Mathematical Modeling of Drugs Dissolution Profiles: Application of Artificial Neural Networks and Genetic Programming.

    PubMed

    Mendyk, Aleksander; Güres, Sinan; Jachowicz, Renata; Szlęk, Jakub; Polak, Sebastian; Wiśniowska, Barbara; Kleinebudde, Peter

    2015-01-01

    The purpose of this work was to develop a mathematical model of the drug dissolution (Q) from the solid lipid extrudates based on the empirical approach. Artificial neural networks (ANNs) and genetic programming (GP) tools were used. Sensitivity analysis of ANNs provided reduction of the original input vector. GP allowed creation of the mathematical equation in two major approaches: (1) direct modeling of Q versus extrudate diameter (d) and the time variable (t) and (2) indirect modeling through Weibull equation. ANNs provided also information about minimum achievable generalization error and the way to enhance the original dataset used for adjustment of the equations' parameters. Two inputs were found important for the drug dissolution: d and t. The extrudates length (L) was found not important. Both GP modeling approaches allowed creation of relatively simple equations with their predictive performance comparable to the ANNs (root mean squared error (RMSE) from 2.19 to 2.33). The direct mode of GP modeling of Q versus d and t resulted in the most robust model. The idea of how to combine ANNs and GP in order to escape ANNs' black-box drawback without losing their superior predictive performance was demonstrated. Open Source software was used to deliver the state-of-the-art models and modeling strategies.

  13. Search algorithm complexity modeling with application to image alignment and matching

    NASA Astrophysics Data System (ADS)

    DelMarco, Stephen

    2014-05-01

    Search algorithm complexity modeling, in the form of penetration rate estimation, provides a useful way to estimate search efficiency in application domains which involve searching over a hypothesis space of reference templates or models, as in model-based object recognition, automatic target recognition, and biometric recognition. The penetration rate quantifies the expected portion of the database that must be searched, and is useful for estimating search algorithm computational requirements. In this paper we perform mathematical modeling to derive general equations for penetration rate estimates that are applicable to a wide range of recognition problems. We extend previous penetration rate analyses to use more general probabilistic modeling assumptions. In particular we provide penetration rate equations within the framework of a model-based image alignment application domain in which a prioritized hierarchical grid search is used to rank subspace bins based on matching probability. We derive general equations, and provide special cases based on simplifying assumptions. We show how previously-derived penetration rate equations are special cases of the general formulation. We apply the analysis to model-based logo image alignment in which a hierarchical grid search is used over a geometric misalignment transform hypothesis space. We present numerical results validating the modeling assumptions and derived formulation.

  14. An Overview of Longitudinal Data Analysis Methods for Neurological Research

    PubMed Central

    Locascio, Joseph J.; Atri, Alireza

    2011-01-01

    The purpose of this article is to provide a concise, broad and readily accessible overview of longitudinal data analysis methods, aimed to be a practical guide for clinical investigators in neurology. In general, we advise that older, traditional methods, including (1) simple regression of the dependent variable on a time measure, (2) analyzing a single summary subject level number that indexes changes for each subject and (3) a general linear model approach with a fixed-subject effect, should be reserved for quick, simple or preliminary analyses. We advocate the general use of mixed-random and fixed-effect regression models for analyses of most longitudinal clinical studies. Under restrictive situations or to provide validation, we recommend: (1) repeated-measure analysis of covariance (ANCOVA), (2) ANCOVA for two time points, (3) generalized estimating equations and (4) latent growth curve/structural equation models. PMID:22203825

  15. Phase space analysis for anisotropic universe with nonlinear bulk viscosity

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Mumtaz, Saadia

    2018-06-01

    In this paper, we discuss phase space analysis of locally rotationally symmetric Bianchi type I universe model by taking a noninteracting mixture of dust like and viscous radiation like fluid whose viscous pressure satisfies a nonlinear version of the Israel-Stewart transport equation. An autonomous system of equations is established by defining normalized dimensionless variables. In order to investigate stability of the system, we evaluate corresponding critical points for different values of the parameters. We also compute power-law scale factor whose behavior indicates different phases of the universe model. It is found that our analysis does not provide a complete immune from fine-tuning because the exponentially expanding solution occurs only for a particular range of parameters. We conclude that stable solutions exist in the presence of nonlinear model for bulk viscosity with different choices of the constant parameter m for anisotropic universe.

  16. Bayesian structural equation modeling in sport and exercise psychology.

    PubMed

    Stenling, Andreas; Ivarsson, Andreas; Johnson, Urban; Lindwall, Magnus

    2015-08-01

    Bayesian statistics is on the rise in mainstream psychology, but applications in sport and exercise psychology research are scarce. In this article, the foundations of Bayesian analysis are introduced, and we will illustrate how to apply Bayesian structural equation modeling in a sport and exercise psychology setting. More specifically, we contrasted a confirmatory factor analysis on the Sport Motivation Scale II estimated with the most commonly used estimator, maximum likelihood, and a Bayesian approach with weakly informative priors for cross-loadings and correlated residuals. The results indicated that the model with Bayesian estimation and weakly informative priors provided a good fit to the data, whereas the model estimated with a maximum likelihood estimator did not produce a well-fitting model. The reasons for this discrepancy between maximum likelihood and Bayesian estimation are discussed as well as potential advantages and caveats with the Bayesian approach.

  17. Relating the microscopic rules in coalescence-fragmentation models to the cluster-size distribution

    NASA Astrophysics Data System (ADS)

    Ruszczycki, B.; Burnett, B.; Zhao, Z.; Johnson, N. F.

    2009-11-01

    Coalescence-fragmentation problems are now of great interest across the physical, biological, and social sciences. They are typically studied from the perspective of rate equations, at the heart of which are the rules used for coalescence and fragmentation. Here we discuss how changes in these microscopic rules affect the macroscopic cluster-size distribution which emerges from the solution to the rate equation. Our analysis elucidates the crucial role that the fragmentation rule can play in such dynamical grouping models. We focus our discussion on two well-known models whose fragmentation rules lie at opposite extremes. In particular, we provide a range of generalizations and new analytic results for the well-known model of social group formation developed by Eguíluz and Zimmermann, [Phys. Rev. Lett. 85, 5659 (2000)]. We develop analytic perturbation treatments of this original model, and extend the analytic analysis to the treatment of growing and declining populations.

  18. Mathematical modeling of spinning elastic bodies for modal analysis.

    NASA Technical Reports Server (NTRS)

    Likins, P. W.; Barbera, F. J.; Baddeley, V.

    1973-01-01

    The problem of modal analysis of an elastic appendage on a rotating base is examined to establish the relative advantages of various mathematical models of elastic structures and to extract general inferences concerning the magnitude and character of the influence of spin on the natural frequencies and mode shapes of rotating structures. In realization of the first objective, it is concluded that except for a small class of very special cases the elastic continuum model is devoid of useful results, while for constant nominal spin rate the distributed-mass finite-element model is quite generally tractable, since in the latter case the governing equations are always linear, constant-coefficient, ordinary differential equations. Although with both of these alternatives the details of the formulation generally obscure the essence of the problem and permit very little engineering insight to be gained without extensive computation, this difficulty is not encountered when dealing with simple concentrated mass models.

  19. Development of Semi-Empirical Damping Equation for Baffled Tank with Oblate Spheroidal Dome

    NASA Technical Reports Server (NTRS)

    Yang, H. Q.; West, Jeff; Brodnick, Jacob; Eberhart, Chad

    2016-01-01

    Propellant slosh is a potential source of disturbance that can significantly impact the stability of space vehicles. The slosh dynamics are typically represented by a mechanical model of a spring-mass-damper. This mechanical model is then included in the equation of motion of the entire vehicle for Guidance, Navigation and Control analysis. The typical parameters required by the mechanical model include natural frequency of the slosh, slosh mass, slosh mass center location, and the critical damping ratio. A fundamental study has been undertaken at NASA MSFC to understand the fluid damping physics from a ring baffle in the barrel section of a propellant tank. An asymptotic damping equation and CFD blended equation have been derived by NASA MSFC team to complement the popularly used Miles equation at different flow regimes. The new development has found success in providing a nonlinear damping model for the Space Launch System. The purpose of this study is to further extend the semi-empirical damping equations into the oblate spheroidal dome section of the propellant tanks. First, previous experimental data from the spherical baffled tank are collected and analyzed. Several methods of taking the dome curvature effect, including a generalized Miles equation, area projection method, and equalized fill height method, are assessed. CFD simulation is used to shed light on the interaction of vorticity around the baffle with the locally curved wall and liquid-gas interface. The final damping equation will be validated by a recent subscale test with an oblate spheroidal dome conducted at NASA MSFC.

  20. Hydrodynamic representation of the Klein-Gordon-Einstein equations in the weak field limit: General formalism and perturbations analysis

    NASA Astrophysics Data System (ADS)

    Suárez, Abril; Chavanis, Pierre-Henri

    2015-07-01

    Using a generalization of the Madelung transformation, we derive the hydrodynamic representation of the Klein-Gordon-Einstein equations in the weak field limit. We consider a complex self-interacting scalar field with a λ |φ |4 potential. We study the evolution of the spatially homogeneous background in the fluid representation and derive the linearized equations describing the evolution of small perturbations in a static and in an expanding Universe. We compare the results with simplified models in which the gravitational potential is introduced by hand in the Klein-Gordon equation, and assumed to satisfy a (generalized) Poisson equation. Nonrelativistic hydrodynamic equations based on the Schrödinger-Poisson equations or on the Gross-Pitaevskii-Poisson equations are recovered in the limit c →+∞. We study the evolution of the perturbations in the matter era using the nonrelativistic limit of our formalism. Perturbations whose wavelength is below the Jeans length oscillate in time while perturbations whose wavelength is above the Jeans length grow linearly with the scale factor as in the cold dark matter model. The growth of perturbations in the scalar field model is substantially faster than in the cold dark matter model. When the wavelength of the perturbations approaches the cosmological horizon (Hubble length), a relativistic treatment is mandatory. In that case, we find that relativistic effects attenuate or even prevent the growth of perturbations. This paper exposes the general formalism and provides illustrations in simple cases. Other applications of our formalism will be considered in companion papers.

  1. A k-Omega Turbulence Model for Quasi-Three-Dimensional Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    1995-01-01

    A two-equation k-omega turbulence model has been developed and applied to a quasi-three-dimensional viscous analysis code for blade-to-blade flows in turbomachinery. the code includes the effects of rotation, radius change, and variable stream sheet thickness. The flow equations are given and the explicit runge-Kutta solution scheme is described. the k-omega model equations are also given and the upwind implicit approximate-factorization solution scheme is described. Three cases were calculated: transitional flow over a flat plate, a transonic compressor rotor, and transonic turbine vane with heat transfer. Results were compared to theory, experimental data, and to results using the Baldwin-Lomax turbulence model. The two models compared reasonably well with the data and surprisingly well with each other. Although the k-omega model behaves well numerically and simulates effects of transition, freestream turbulence, and wall roughness, it was not decisively better than the Baldwin-Lomax model for the cases considered here.

  2. Statistical mechanics of unsupervised feature learning in a restricted Boltzmann machine with binary synapses

    NASA Astrophysics Data System (ADS)

    Huang, Haiping

    2017-05-01

    Revealing hidden features in unlabeled data is called unsupervised feature learning, which plays an important role in pretraining a deep neural network. Here we provide a statistical mechanics analysis of the unsupervised learning in a restricted Boltzmann machine with binary synapses. A message passing equation to infer the hidden feature is derived, and furthermore, variants of this equation are analyzed. A statistical analysis by replica theory describes the thermodynamic properties of the model. Our analysis confirms an entropy crisis preceding the non-convergence of the message passing equation, suggesting a discontinuous phase transition as a key characteristic of the restricted Boltzmann machine. Continuous phase transition is also confirmed depending on the embedded feature strength in the data. The mean-field result under the replica symmetric assumption agrees with that obtained by running message passing algorithms on single instances of finite sizes. Interestingly, in an approximate Hopfield model, the entropy crisis is absent, and a continuous phase transition is observed instead. We also develop an iterative equation to infer the hyper-parameter (temperature) hidden in the data, which in physics corresponds to iteratively imposing Nishimori condition. Our study provides insights towards understanding the thermodynamic properties of the restricted Boltzmann machine learning, and moreover important theoretical basis to build simplified deep networks.

  3. Modelling Evolutionary Algorithms with Stochastic Differential Equations.

    PubMed

    Heredia, Jorge Pérez

    2017-11-20

    There has been renewed interest in modelling the behaviour of evolutionary algorithms (EAs) by more traditional mathematical objects, such as ordinary differential equations or Markov chains. The advantage is that the analysis becomes greatly facilitated due to the existence of well established methods. However, this typically comes at the cost of disregarding information about the process. Here, we introduce the use of stochastic differential equations (SDEs) for the study of EAs. SDEs can produce simple analytical results for the dynamics of stochastic processes, unlike Markov chains which can produce rigorous but unwieldy expressions about the dynamics. On the other hand, unlike ordinary differential equations (ODEs), they do not discard information about the stochasticity of the process. We show that these are especially suitable for the analysis of fixed budget scenarios and present analogues of the additive and multiplicative drift theorems from runtime analysis. In addition, we derive a new more general multiplicative drift theorem that also covers non-elitist EAs. This theorem simultaneously allows for positive and negative results, providing information on the algorithm's progress even when the problem cannot be optimised efficiently. Finally, we provide results for some well-known heuristics namely Random Walk (RW), Random Local Search (RLS), the (1+1) EA, the Metropolis Algorithm (MA), and the Strong Selection Weak Mutation (SSWM) algorithm.

  4. Dynamic GSCA (Generalized Structured Component Analysis) with Applications to the Analysis of Effective Connectivity in Functional Neuroimaging Data

    ERIC Educational Resources Information Center

    Jung, Kwanghee; Takane, Yoshio; Hwang, Heungsun; Woodward, Todd S.

    2012-01-01

    We propose a new method of structural equation modeling (SEM) for longitudinal and time series data, named Dynamic GSCA (Generalized Structured Component Analysis). The proposed method extends the original GSCA by incorporating a multivariate autoregressive model to account for the dynamic nature of data taken over time. Dynamic GSCA also…

  5. A variable resolution nonhydrostatic global atmospheric semi-implicit semi-Lagrangian model

    NASA Astrophysics Data System (ADS)

    Pouliot, George Antoine

    2000-10-01

    The objective of this project is to develop a variable-resolution finite difference adiabatic global nonhydrostatic semi-implicit semi-Lagrangian (SISL) model based on the fully compressible nonhydrostatic atmospheric equations. To achieve this goal, a three-dimensional variable resolution dynamical core was developed and tested. The main characteristics of the dynamical core can be summarized as follows: Spherical coordinates were used in a global domain. A hydrostatic/nonhydrostatic switch was incorporated into the dynamical equations to use the fully compressible atmospheric equations. A generalized horizontal variable resolution grid was developed and incorporated into the model. For a variable resolution grid, in contrast to a uniform resolution grid, the order of accuracy of finite difference approximations is formally lost but remains close to the order of accuracy associated with the uniform resolution grid provided the grid stretching is not too significant. The SISL numerical scheme was implemented for the fully compressible set of equations. In addition, the generalized minimum residual (GMRES) method with restart and preconditioner was used to solve the three-dimensional elliptic equation derived from the discretized system of equations. The three-dimensional momentum equation was integrated in vector-form to incorporate the metric terms in the calculations of the trajectories. Using global re-analysis data for a specific test case, the model was compared to similar SISL models previously developed. Reasonable agreement between the model and the other independently developed models was obtained. The Held-Suarez test for dynamical cores was used for a long integration and the model was successfully integrated for up to 1200 days. Idealized topography was used to test the variable resolution component of the model. Nonhydrostatic effects were simulated at grid spacings of 400 meters with idealized topography and uniform flow. Using a high-resolution topographic data set and the variable resolution grid, sets of experiments with increasing resolution were performed over specific regions of interest. Using realistic initial conditions derived from re-analysis fields, nonhydrostatic effects were significant for grid spacings on the order of 0.1 degrees with orographic forcing. If the model code was adapted for use in a message passing interface (MPI) on a parallel supercomputer today, it was estimated that a global grid spacing of 0.1 degrees would be achievable for a global model. In this case, nonhydrostatic effects would be significant for most areas. A variable resolution grid in a global model provides a unified and flexible approach to many climate and numerical weather prediction problems. The ability to configure the model from very fine to very coarse resolutions allows for the simulation of atmospheric phenomena at different scales using the same code. We have developed a dynamical core illustrating the feasibility of using a variable resolution in a global model.

  6. A Model for Communications Satellite System Architecture Assessment

    DTIC Science & Technology

    2011-09-01

    This is shown in Equation 4. The total system cost includes all development, acquisition, fielding, operations, maintenance and upgrades, and system...protection. A mathematical model was implemented to enable the analysis of communications satellite system architectures based on multiple system... implemented to enable the analysis of communications satellite system architectures based on multiple system attributes. Utilization of the model in

  7. Numerical Analysis of a Paraffin/Metal Foam Composite for Thermal Storage

    NASA Astrophysics Data System (ADS)

    Di Giorgio, P.; Iasiello, M.; Viglione, A.; Mameli, M.; Filippeschi, S.; Di Marco, P.; Andreozzi, A.; Bianco, N.

    2017-01-01

    In the last decade, the use of Phase Change Materials (PCMs) as passive thermal energy storage has been widely studied both analytically and experimentally. Among the PCMs, paraffins show many advantages, such as having a high latent heat, a low vapour pressure, being chemically inert, stable and non-toxic. But, their thermal conductivity is very low with a high volume change during the melting process. An efficient way to increase their poor thermal conductivity is to couple them with open cells metallic foams. This paper deals with a theoretical analysis of paraffin melting process inside an aluminum foam. A mathematical model is developed by using the volume-averaged governing equations for the porous domain, made up by the PCM embedded into the metal foam. Non-Darcian and buoyancy effects are considered in the momentum equation, while the energy equations are modelled with the Local Thermal Non-Equilibrium (LTNE) approach. The PCM liquefaction is treated with the apparent heat capacity method and the governing equations are solved with a finite-element scheme by COMSOL Multiphysics®. A new method to calculate the coupling coefficients needed for the thermal model has been developed and the results obtained have been validated comparing them to experimental data in literature.

  8. Slip Boundary Conditions for the Compressible Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Aoki, Kazuo; Baranger, Céline; Hattori, Masanari; Kosuge, Shingo; Martalò, Giorgio; Mathiaud, Julien; Mieussens, Luc

    2017-11-01

    The slip boundary conditions for the compressible Navier-Stokes equations are derived systematically from the Boltzmann equation on the basis of the Chapman-Enskog solution of the Boltzmann equation and the analysis of the Knudsen layer adjacent to the boundary. The resulting formulas of the slip boundary conditions are summarized with explicit values of the slip coefficients for hard-sphere molecules as well as the Bhatnagar-Gross-Krook model. These formulas, which can be applied to specific problems immediately, help to prevent the use of often used slip boundary conditions that are either incorrect or without theoretical basis.

  9. Modeling the missile-launch tube problem in DYSCO

    NASA Technical Reports Server (NTRS)

    Berman, Alex; Gustavson, Bruce A.

    1989-01-01

    DYSCO is a versatile, general purpose dynamic analysis program which assembles equations and solves dynamics problems. The executive manages a library of technology modules which contain routines that compute the matrix coefficients of the second order ordinary differential equations of the components. The executive performs the coupling of the equations of the components and manages the solution of the coupled equations. Any new component representation may be added to the library if, given the state vector, a FORTRAN program can be written to compute M, C, K, and F. The problem described demonstrates the generality of this statement.

  10. Rocket/launcher structural dynamics

    NASA Technical Reports Server (NTRS)

    Ferragut, N. J.

    1976-01-01

    The equations of motion describing the interactions between a rocket and a launcher were derived using Lagrange's Equation. A rocket launching was simulated. The motions of both the rocket and the launcher can be considered in detail. The model contains flexible elements and rigid elements. The rigid elements (masses) were judiciously utilized to simplify the derivation of the equations. The advantages of simultaneous shoe release were illustrated. Also, the loading history of the interstage structure of a boosted configuration was determined. The equations shown in this analysis could be used as a design tool during the modification of old launchers and the design of new launchers.

  11. Dynamic analysis and control PID path of a model type gantry crane

    NASA Astrophysics Data System (ADS)

    Ospina-Henao, P. A.; López-Suspes, Framsol

    2017-06-01

    This paper presents an alternate form for the dynamic modelling of a mechanical system that simulates in real life a gantry crane type, using Euler’s classical mechanics and Lagrange formalism, which allows find the equations of motion that our model describe. Moreover, it has a basic model design system using the SolidWorks software, based on the material and dimensions of the model provides some physical variables necessary for modelling. In order to verify the theoretical results obtained, a contrast was made between solutions obtained by simulation in SimMechanics-Matlab and Euler-Lagrange equations system, has been solved through Matlab libraries for solving equation’s systems of the type and order obtained. The force is determined, but not as exerted by the spring, as this will be the control variable. The objective is to bring the mass of the pendulum from one point to another with a specified distance without the oscillation from it, so that, the answer is overdamped. This article includes an analysis of PID control in which the equations of motion of Euler-Lagrange are rewritten in the state space, once there, they were implemented in Simulink to get the natural response of the system to a step input in F and then draw the desired trajectories.

  12. Deterministic modelling and stochastic simulation of biochemical pathways using MATLAB.

    PubMed

    Ullah, M; Schmidt, H; Cho, K H; Wolkenhauer, O

    2006-03-01

    The analysis of complex biochemical networks is conducted in two popular conceptual frameworks for modelling. The deterministic approach requires the solution of ordinary differential equations (ODEs, reaction rate equations) with concentrations as continuous state variables. The stochastic approach involves the simulation of differential-difference equations (chemical master equations, CMEs) with probabilities as variables. This is to generate counts of molecules for chemical species as realisations of random variables drawn from the probability distribution described by the CMEs. Although there are numerous tools available, many of them free, the modelling and simulation environment MATLAB is widely used in the physical and engineering sciences. We describe a collection of MATLAB functions to construct and solve ODEs for deterministic simulation and to implement realisations of CMEs for stochastic simulation using advanced MATLAB coding (Release 14). The program was successfully applied to pathway models from the literature for both cases. The results were compared to implementations using alternative tools for dynamic modelling and simulation of biochemical networks. The aim is to provide a concise set of MATLAB functions that encourage the experimentation with systems biology models. All the script files are available from www.sbi.uni-rostock.de/ publications_matlab-paper.html.

  13. Testing students' e-learning via Facebook through Bayesian structural equation modeling.

    PubMed

    Salarzadeh Jenatabadi, Hashem; Moghavvemi, Sedigheh; Wan Mohamed Radzi, Che Wan Jasimah Bt; Babashamsi, Parastoo; Arashi, Mohammad

    2017-01-01

    Learning is an intentional activity, with several factors affecting students' intention to use new learning technology. Researchers have investigated technology acceptance in different contexts by developing various theories/models and testing them by a number of means. Although most theories/models developed have been examined through regression or structural equation modeling, Bayesian analysis offers more accurate data analysis results. To address this gap, the unified theory of acceptance and technology use in the context of e-learning via Facebook are re-examined in this study using Bayesian analysis. The data (S1 Data) were collected from 170 students enrolled in a business statistics course at University of Malaya, Malaysia, and tested with the maximum likelihood and Bayesian approaches. The difference between the two methods' results indicates that performance expectancy and hedonic motivation are the strongest factors influencing the intention to use e-learning via Facebook. The Bayesian estimation model exhibited better data fit than the maximum likelihood estimator model. The results of the Bayesian and maximum likelihood estimator approaches are compared and the reasons for the result discrepancy are deliberated.

  14. Testing students’ e-learning via Facebook through Bayesian structural equation modeling

    PubMed Central

    Moghavvemi, Sedigheh; Wan Mohamed Radzi, Che Wan Jasimah Bt; Babashamsi, Parastoo; Arashi, Mohammad

    2017-01-01

    Learning is an intentional activity, with several factors affecting students’ intention to use new learning technology. Researchers have investigated technology acceptance in different contexts by developing various theories/models and testing them by a number of means. Although most theories/models developed have been examined through regression or structural equation modeling, Bayesian analysis offers more accurate data analysis results. To address this gap, the unified theory of acceptance and technology use in the context of e-learning via Facebook are re-examined in this study using Bayesian analysis. The data (S1 Data) were collected from 170 students enrolled in a business statistics course at University of Malaya, Malaysia, and tested with the maximum likelihood and Bayesian approaches. The difference between the two methods’ results indicates that performance expectancy and hedonic motivation are the strongest factors influencing the intention to use e-learning via Facebook. The Bayesian estimation model exhibited better data fit than the maximum likelihood estimator model. The results of the Bayesian and maximum likelihood estimator approaches are compared and the reasons for the result discrepancy are deliberated. PMID:28886019

  15. A general numerical model for wave rotor analysis

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel W.

    1992-01-01

    Wave rotors represent one of the promising technologies for achieving very high core temperatures and pressures in future gas turbine engines. Their operation depends upon unsteady gas dynamics and as such, their analysis is quite difficult. This report describes a numerical model which has been developed to perform such an analysis. Following a brief introduction, a summary of the wave rotor concept is given. The governing equations are then presented, along with a summary of the assumptions used to obtain them. Next, the numerical integration technique is described. This is an explicit finite volume technique based on the method of Roe. The discussion then focuses on the implementation of appropriate boundary conditions. Following this, some results are presented which first compare the numerical approximation to the governing differential equations and then compare the overall model to an actual wave rotor experiment. Finally, some concluding remarks are presented concerning the limitations of the simplifying assumptions and areas where the model may be improved.

  16. Development of Composite Materials with High Passive Damping Properties

    DTIC Science & Technology

    2006-05-15

    frequency response function analysis. Sound transmission through sandwich panels was studied using the statistical energy analysis (SEA). Modal density...2.2.3 Finite element models 14 2.2.4 Statistical energy analysis method 15 CHAPTER 3 ANALYSIS OF DAMPING IN SANDWICH MATERIALS. 24 3.1 Equation of...sheets and the core. 2.2.4 Statistical energy analysis method Finite element models are generally only efficient for problems at low and middle frequencies

  17. Center manifolds for a class of degenerate evolution equations and existence of small-amplitude kinetic shocks

    NASA Astrophysics Data System (ADS)

    Pogan, Alin; Zumbrun, Kevin

    2018-06-01

    We construct center manifolds for a class of degenerate evolution equations including the steady Boltzmann equation and related kinetic models, establishing in the process existence and behavior of small-amplitude kinetic shock and boundary layers. Notably, for Boltzmann's equation, we show that elements of the center manifold decay in velocity at near-Maxwellian rate, in accord with the formal Chapman-Enskog picture of near-equilibrium flow as evolution along the manifold of Maxwellian states, or Grad moment approximation via Hermite polynomials in velocity. Our analysis is from a classical dynamical systems point of view, with a number of interesting modifications to accommodate ill-posedness of the underlying evolution equation.

  18. Poisson-Nernst-Planck equations with steric effects - non-convexity and multiple stationary solutions

    NASA Astrophysics Data System (ADS)

    Gavish, Nir

    2018-04-01

    We study the existence and stability of stationary solutions of Poisson-Nernst-Planck equations with steric effects (PNP-steric equations) with two counter-charged species. We show that within a range of parameters, steric effects give rise to multiple solutions of the corresponding stationary equation that are smooth. The PNP-steric equation, however, is found to be ill-posed at the parameter regime where multiple solutions arise. Following these findings, we introduce a novel PNP-Cahn-Hilliard model, show that it is well-posed and that it admits multiple stationary solutions that are smooth and stable. The various branches of stationary solutions and their stability are mapped utilizing bifurcation analysis and numerical continuation methods.

  19. Modeling of outgassing and matrix decomposition in carbon-phenolic composites

    NASA Technical Reports Server (NTRS)

    Mcmanus, Hugh L.

    1993-01-01

    A new release rate equation to model the phase change of water to steam in composite materials was derived from the theory of molecular diffusion and equilibrium moisture concentration. The new model is dependent on internal pressure, the microstructure of the voids and channels in the composite materials, and the diffusion properties of the matrix material. Hence, it is more fundamental and accurate than the empirical Arrhenius rate equation currently in use. The model was mathematically formalized and integrated into the thermostructural analysis code CHAR. Parametric studies on variation of several parameters have been done. Comparisons to Arrhenius and straight-line models show that the new model produces physically realistic results under all conditions.

  20. Panel summary report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gutjahr, A.L.; Kincaid, C.T.; Mercer, J.W.

    1987-04-01

    The objective of this report is to summarize the various modeling approaches that were used to simulate solute transport in a variably saturated emission. In particular, the technical strengths and weaknesses of each approach are discussed, and conclusions and recommendations for future studies are made. Five models are considered: (1) one-dimensional analytical and semianalytical solutions of the classical deterministic convection-dispersion equation (van Genuchten, Parker, and Kool, this report ); (2) one-dimensional simulation using a continuous-time Markov process (Knighton and Wagenet, this report); (3) one-dimensional simulation using the time domain method and the frequency domain method (Duffy and Al-Hassan, this report);more » (4) one-dimensional numerical approach that combines a solution of the classical deterministic convection-dispersion equation with a chemical equilibrium speciation model (Cederberg, this report); and (5) three-dimensional numerical solution of the classical deterministic convection-dispersion equation (Huyakorn, Jones, Parker, Wadsworth, and White, this report). As part of the discussion, the input data and modeling results are summarized. The models were used in a data analysis mode, as opposed to a predictive mode. Thus, the following discussion will concentrate on the data analysis aspects of model use. Also, all the approaches were similar in that they were based on a convection-dispersion model of solute transport. Each discussion addresses the modeling approaches in the order listed above.« less

  1. Symbolic generation of elastic rotor blade equations using a FORTRAN processor and numerical study on dynamic inflow effects on the stability of helicopter rotors

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.

    1986-01-01

    The process of performing an automated stability analysis for an elastic-bladed helicopter rotor is discussed. A symbolic manipulation program, written in FORTRAN, is used to aid in the derivation of the governing equations of motion for the rotor. The blades undergo coupled bending and torsional deformations. Two-dimensional quasi-steady aerodynamics below stall are used. Although reversed flow effects are neglected, unsteady effects, modeled as dynamic inflow are included. Using a Lagrangian approach, the governing equations are derived in generalized coordinates using the symbolic program. The program generates the steady and perturbed equations and writes into subroutines to be called by numerical routines. The symbolic program can operate on both expressions and matrices. For the case of hovering flight, the blade and dynamic inflow equations are converted to equations in a multiblade coordinate system by rearranging the coefficients of the equations. For the case of forward flight, the multiblade equations are obtained through the symbolic program. The final multiblade equations are capable of accommodating any number of elastic blade modes. The computer implementation of this procedure consists of three stages: (1) the symbolic derivation of equations; (2) the coding of the equations into subroutines; and (3) the numerical study after identifying mass, damping, and stiffness coefficients. Damping results are presented in hover and in forward flight with and without dynamic inflow effects for various rotor blade models, including rigid blade lag-flap, elastic flap-lag, flap-lag-torsion, and quasi-static torsion. Results from dynamic inflow effects which are obtained from a lift deficiency function for a quasi-static inflow model in hover are also presented.

  2. Numerical models analysis of energy conversion process in air-breathing laser propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong Yanji; Song Junling; Cui Cunyan

    Energy source was considered as a key essential in this paper to describe energy conversion process in air-breathing laser propulsion. Some secondary factors were ignored when three independent modules, ray transmission module, energy source term module and fluid dynamic module, were established by simultaneous laser radiation transportation equation and fluid mechanics equation. The incidence laser beam was simulated based on ray tracing method. The calculated results were in good agreement with those of theoretical analysis and experiments.

  3. Accuracy analysis of automodel solutions for Lévy flight-based transport: from resonance radiative transfer to a simple general model

    NASA Astrophysics Data System (ADS)

    Kukushkin, A. B.; Sdvizhenskii, P. A.

    2017-12-01

    The results of accuracy analysis of automodel solutions for Lévy flight-based transport on a uniform background are presented. These approximate solutions have been obtained for Green’s function of the following equations: the non-stationary Biberman-Holstein equation for three-dimensional (3D) radiative transfer in plasma and gases, for various (Doppler, Lorentz, Voigt and Holtsmark) spectral line shapes, and the 1D transport equation with a simple longtailed step-length probability distribution function with various power-law exponents. The results suggest the possibility of substantial extension of the developed method of automodel solution to other fields far beyond physics.

  4. Pre- and post-flight-test models versus measured skyship-500 control responses

    NASA Technical Reports Server (NTRS)

    Jex, Henry R.; Magdaleno, Raymond E.; Gelhausen, Paul; Tischler, Mark B.

    1987-01-01

    The dynamical equations-of-motion (EOM) for cruising airships require nonconventional terms to account for buoyancy and apparent-mass-effects, but systematic validation of these equations against flight data is not available. Using a candidate set of EOM, three comparisons are made with carefully-measured describing functions derived from frequency-sweep flight tests on the Skyship-500 airship. The first compares the pre-flight predictions to the data; the second compares the 'best-fit' equations to data at each of two airspeeds and the third compared the ability to extrapolate from one condition to another via airship-specific scaling laws. Two transient responses are also compared. The generally good results demonstrate that fairly simple, perturbation equation models are adequate for many types of flight-control analysis and flying quality evaluations of cruising airships.

  5. On some nonlinear effects in ultrasonic fields

    PubMed

    Tjotta

    2000-03-01

    Nonlinear effects associated with intense sound fields in fluids are considered theoretically. Special attention is directed to the study of higher effects that cannot be described within the standard propagation models of nonlinear acoustics (the KZK and Burgers equations). The analysis is based on the fundamental equations of motion for a thermoviscous fluid, for which thermal equations of state exist. Model equations are derived and used to analyze nonlinear sources for generation of flow and heat, and other changes in the ambient state of the fluid. Fluctuations in the coefficients of viscosity and thermal conductivity caused by the sound field, are accounted for. Also considered are nonlinear effects induced in the fluid by flexural vibrations. The intensity and absorption of finite amplitude sound waves are calculated, and related to the sources for generation of higher order effects.

  6. Multi-level analysis in information systems research: the case of enterprise resource planning system usage in China

    NASA Astrophysics Data System (ADS)

    Sun, Yuan; Bhattacherjee, Anol

    2011-11-01

    Information technology (IT) usage within organisations is a multi-level phenomenon that is influenced by individual-level and organisational-level variables. Yet, current theories, such as the unified theory of acceptance and use of technology, describe IT usage as solely an individual-level phenomenon. This article postulates a model of organisational IT usage that integrates salient organisational-level variables such as user training, top management support and technical support within an individual-level model to postulate a multi-level model of IT usage. The multi-level model was then empirically validated using multi-level data collected from 128 end users and 26 managers in 26 firms in China regarding their use of enterprise resource planning systems and analysed using the multi-level structural equation modelling (MSEM) technique. We demonstrate the utility of MSEM analysis of multi-level data relative to the more common structural equation modelling analysis of single-level data and show how single-level data can be aggregated to approximate multi-level analysis when multi-level data collection is not possible. We hope that this article will motivate future scholars to employ multi-level data and multi-level analysis for understanding organisational phenomena that are truly multi-level in nature.

  7. System for the Analysis of Global Energy Markets - Vol. I, Model Documentation

    EIA Publications

    2003-01-01

    Documents the objectives and the conceptual and methodological approach used in the development of projections for the International Energy Outlook. The first volume of this report describes the System for the Analysis of Global Energy Markets (SAGE) methodology and provides an in-depth explanation of the equations of the model.

  8. Social Cognitive Predictors of College Students' Academic Performance and Persistence: A Meta-Analytic Path Analysis

    ERIC Educational Resources Information Center

    Brown, Steven D.; Tramayne, Selena; Hoxha, Denada; Telander, Kyle; Fan, Xiaoyan; Lent, Robert W.

    2008-01-01

    This study tested Social Cognitive Career Theory's (SCCT) academic performance model using a two-stage approach that combined meta-analytic and structural equation modeling methodologies. Unbiased correlations obtained from a previously published meta-analysis [Robbins, S. B., Lauver, K., Le, H., Davis, D., & Langley, R. (2004). Do psychosocial…

  9. Local projection stabilization for linearized Brinkman-Forchheimer-Darcy equation

    NASA Astrophysics Data System (ADS)

    Skrzypacz, Piotr

    2017-09-01

    The Local Projection Stabilization (LPS) is presented for the linearized Brinkman-Forchheimer-Darcy equation with high Reynolds numbers. The considered equation can be used to model porous medium flows in chemical reactors of packed bed type. The detailed finite element analysis is presented for the case of nonconstant porosity. The enriched variant of LPS is based on the equal order interpolation for the velocity and pressure. The optimal error bounds for the velocity and pressure errors are justified numerically.

  10. Final Report for Dynamic Models for Causal Analysis of Panel Data. Models for Change in Quantitative Variables, Part II Scholastic Models. Part II, Chapter 4.

    ERIC Educational Resources Information Center

    Hannan, Michael T.

    This document is part of a series of chapters described in SO 011 759. Stochastic models for the sociological analysis of change and the change process in quantitative variables are presented. The author lays groundwork for the statistical treatment of simple stochastic differential equations (SDEs) and discusses some of the continuities of…

  11. Energy and technology review: Engineering modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cabayan, H.S.; Goudreau, G.L.; Ziolkowski, R.W.

    1986-10-01

    This report presents information concerning: Modeling Canonical Problems in Electromagnetic Coupling Through Apertures; Finite-Element Codes for Computing Electrostatic Fields; Finite-Element Modeling of Electromagnetic Phenomena; Modeling Microwave-Pulse Compression in a Resonant Cavity; Lagrangian Finite-Element Analysis of Penetration Mechanics; Crashworthiness Engineering; Computer Modeling of Metal-Forming Processes; Thermal-Mechanical Modeling of Tungsten Arc Welding; Modeling Air Breakdown Induced by Electromagnetic Fields; Iterative Techniques for Solving Boltzmann's Equations for p-Type Semiconductors; Semiconductor Modeling; and Improved Numerical-Solution Techniques in Large-Scale Stress Analysis.

  12. A study of the viscous and nonadiabatic flow in radial turbines

    NASA Technical Reports Server (NTRS)

    Khalil, I.; Tabakoff, W.

    1981-01-01

    A method for analyzing the viscous nonadiabatic flow within turbomachine rotors is presented. The field analysis is based upon the numerical integration of the incompressible Navier-Stokes equations together with the energy equation over the rotors blade-to-blade stream channels. The numerical code used to solve the governing equations employs a nonorthogonal boundary fitted coordinate system that suits the most complicated blade geometries. Effects of turbulence are modeled with two equations; one expressing the development of the turbulence kinetic energy and the other its dissipation rate. The method of analysis is applied to a radial inflow turbine. The solution obtained indicates the severity of the complex interaction mechanism that occurs between different flow regimes (i.e., boundary layers, recirculating eddies, separation zones, etc.). Comparison with nonviscous flow solutions tend to justify strongly the inadequacy of using the latter with standard boundary layer techniques to obtain viscous flow details within turbomachine rotors. Capabilities and limitations of the present method of analysis are discussed.

  13. Projection-Based Reduced Order Modeling for Spacecraft Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Qian, Jing; Wang, Yi; Song, Hongjun; Pant, Kapil; Peabody, Hume; Ku, Jentung; Butler, Charles D.

    2015-01-01

    This paper presents a mathematically rigorous, subspace projection-based reduced order modeling (ROM) methodology and an integrated framework to automatically generate reduced order models for spacecraft thermal analysis. Two key steps in the reduced order modeling procedure are described: (1) the acquisition of a full-scale spacecraft model in the ordinary differential equation (ODE) and differential algebraic equation (DAE) form to resolve its dynamic thermal behavior; and (2) the ROM to markedly reduce the dimension of the full-scale model. Specifically, proper orthogonal decomposition (POD) in conjunction with discrete empirical interpolation method (DEIM) and trajectory piece-wise linear (TPWL) methods are developed to address the strong nonlinear thermal effects due to coupled conductive and radiative heat transfer in the spacecraft environment. Case studies using NASA-relevant satellite models are undertaken to verify the capability and to assess the computational performance of the ROM technique in terms of speed-up and error relative to the full-scale model. ROM exhibits excellent agreement in spatiotemporal thermal profiles (<0.5% relative error in pertinent time scales) along with salient computational acceleration (up to two orders of magnitude speed-up) over the full-scale analysis. These findings establish the feasibility of ROM to perform rational and computationally affordable thermal analysis, develop reliable thermal control strategies for spacecraft, and greatly reduce the development cycle times and costs.

  14. Mathematical modeling and fuzzy availability analysis for serial processes in the crystallization system of a sugar plant

    NASA Astrophysics Data System (ADS)

    Aggarwal, Anil Kr.; Kumar, Sanjeev; Singh, Vikram

    2017-03-01

    The binary states, i.e., success or failed state assumptions used in conventional reliability are inappropriate for reliability analysis of complex industrial systems due to lack of sufficient probabilistic information. For large complex systems, the uncertainty of each individual parameter enhances the uncertainty of the system reliability. In this paper, the concept of fuzzy reliability has been used for reliability analysis of the system, and the effect of coverage factor, failure and repair rates of subsystems on fuzzy availability for fault-tolerant crystallization system of sugar plant is analyzed. Mathematical modeling of the system is carried out using the mnemonic rule to derive Chapman-Kolmogorov differential equations. These governing differential equations are solved with Runge-Kutta fourth-order method.

  15. Multi criteria evaluation for universal soil loss equation based on geographic information system

    NASA Astrophysics Data System (ADS)

    Purwaamijaya, I. M.

    2018-05-01

    The purpose of this research were to produce(l) a conceptual, functional model designed and implementation for universal soil loss equation (usle), (2) standard operational procedure for multi criteria evaluation of universal soil loss equation (usle) using geographic information system, (3) overlay land cover, slope, soil and rain fall layers to gain universal soil loss equation (usle) using multi criteria evaluation, (4) thematic map of universal soil loss equation (usle) in watershed, (5) attribute table of universal soil loss equation (usle) in watershed. Descriptive and formal correlation methods are used for this research. Cikapundung Watershed, Bandung, West Java, Indonesia was study location. This research was conducted on January 2016 to May 2016. A spatial analysis is used to superimposed land cover, slope, soil and rain layers become universal soil loss equation (usle). Multi criteria evaluation for universal soil loss equation (usle) using geographic information system could be used for conservation program.

  16. Transverse instability of periodic and generalized solitary waves for a fifth-order KP model

    NASA Astrophysics Data System (ADS)

    Haragus, Mariana; Wahlén, Erik

    2017-02-01

    We consider a fifth-order Kadomtsev-Petviashvili equation which arises as a two-dimensional model in the classical water-wave problem. This equation possesses a family of generalized line solitary waves which decay exponentially to periodic waves at infinity. We prove that these solitary waves are transversely spectrally unstable and that this instability is induced by the transverse instability of the periodic tails. We rely upon a detailed spectral analysis of some suitably chosen linear operators.

  17. Waves in magnetized quark matter

    NASA Astrophysics Data System (ADS)

    Fogaça, D. A.; Sanches, S. M.; Navarra, F. S.

    2018-05-01

    We study wave propagation in a non-relativistic cold quark-gluon plasma immersed in a constant magnetic field. Starting from the Euler equation we derive linear wave equations and investigate their stability and causality. We use a generic form for the equation of state, the EOS derived from the MIT bag model and also a variant of the this model which includes gluon degrees of freedom. The results of this analysis may be relevant for perturbations propagating through the quark matter phase in the core of compact stars and also for perturbations propagating in the low temperature quark-gluon plasma formed in low energy heavy ion collisions, to be carried out at FAIR and NICA.

  18. A conformal approach for the analysis of the non-linear stability of radiation cosmologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luebbe, Christian, E-mail: c.luebbe@ucl.ac.uk; Department of Mathematics, University of Leicester, University Road, LE1 8RH; Valiente Kroon, Juan Antonio, E-mail: j.a.valiente-kroon@qmul.ac.uk

    2013-01-15

    The conformal Einstein equations for a trace-free (radiation) perfect fluid are derived in terms of the Levi-Civita connection of a conformally rescaled metric. These equations are used to provide a non-linear stability result for de Sitter-like trace-free (radiation) perfect fluid Friedman-Lemaitre-Robertson-Walker cosmological models. The solutions thus obtained exist globally towards the future and are future geodesically complete. - Highlights: Black-Right-Pointing-Pointer We study the Einstein-Euler system in General Relativity using conformal methods. Black-Right-Pointing-Pointer We analyze the structural properties of the associated evolution equations. Black-Right-Pointing-Pointer We establish the non-linear stability of pure radiation cosmological models.

  19. Solubility and dissolution thermodynamics of phthalic anhydride in organic solvents at 283-313 K

    NASA Astrophysics Data System (ADS)

    Wang, Long; Zhang, Fang; Gao, Xiaoqiang; Luo, Tingliang; Xu, Li; Liu, Guoji

    2017-08-01

    The solubility of phthalic anhydride was measured at 283-313 K under atmospheric pressure in ethyl acetate, n-propyl acetate, methyl acetate, acetone, 1,4-dioxane, n-hexane, n-butyl acetate, cyclohexane, and dichloromethane. The solubility of phthalic anhydride in all solvents increased with the increasing temperature. The Van't Hoff equation, modified Apelblat equation, λ h equation, and Wilson model were used to correlate the experimental solubility data. The standard dissolution enthalpy, the standard entropy, and the standard Gibbs energy were evaluated based on the Van't Hoff analysis. The experimental data and model parameters would be useful for optimizing of the separation processes involving phthalic anhydride.

  20. Flipping an Algebra Classroom: Analyzing, Modeling, and Solving Systems of Linear Equations

    ERIC Educational Resources Information Center

    Kirvan, Rebecca; Rakes, Christopher R.; Zamora, Regie

    2015-01-01

    The present study investigated whether flipping an algebra classroom led to a stronger focus on conceptual understanding and improved learning of systems of linear equations for 54 seventh- and eighth-grade students using teacher journal data and district-mandated unit exam items. Multivariate analysis of covariance was used to compare scores on…

  1. Effect of turbulent eddy viscosity on the unstable surface mode above an acoustic liner

    NASA Astrophysics Data System (ADS)

    Marx, David; Aurégan, Yves

    2013-07-01

    Lined ducts are used to reduce noise radiation from ducts in turbofan engines. In certain conditions they may sustain hydrodynamic instabilities. A local linear stability analysis of the flow in a 2D lined channel is performed using a numerical integration of the governing equations. Several model equations are used, one of them taking into account turbulent eddy viscosity, and a realistic turbulent mean flow profile is used that vanishes at the wall. The stability analysis results are compared to published experimental results. Both the model and the experiments show the existence of an unstable mode, and the importance of taking into account eddy viscosity in the model is shown. When this is done, quantities such as the growth rate and the velocity eigenfunctions are shown to agree correctly.

  2. Markov modeling and reliability analysis of urea synthesis system of a fertilizer plant

    NASA Astrophysics Data System (ADS)

    Aggarwal, Anil Kr.; Kumar, Sanjeev; Singh, Vikram; Garg, Tarun Kr.

    2015-12-01

    This paper deals with the Markov modeling and reliability analysis of urea synthesis system of a fertilizer plant. This system was modeled using Markov birth-death process with the assumption that the failure and repair rates of each subsystem follow exponential distribution. The first-order Chapman-Kolmogorov differential equations are developed with the use of mnemonic rule and these equations are solved with Runga-Kutta fourth-order method. The long-run availability, reliability and mean time between failures are computed for various choices of failure and repair rates of subsystems of the system. The findings of the paper are discussed with the plant personnel to adopt and practice suitable maintenance policies/strategies to enhance the performance of the urea synthesis system of the fertilizer plant.

  3. Multiple Indicator Stationary Time Series Models.

    ERIC Educational Resources Information Center

    Sivo, Stephen A.

    2001-01-01

    Discusses the propriety and practical advantages of specifying multivariate time series models in the context of structural equation modeling for time series and longitudinal panel data. For time series data, the multiple indicator model specification improves on classical time series analysis. For panel data, the multiple indicator model…

  4. Bankfull discharge and channel characteristics of streams in New York State

    USGS Publications Warehouse

    Mulvihill, Christiane I.; Baldigo, Barry P.; Miller, Sarah J.; DeKoskie, Douglas; DuBois, Joel

    2009-01-01

    Equations that relate drainage area to bankfull discharge and channel characteristics (such as width, depth, and cross-sectional area) at gaged sites are needed to help define bankfull discharge and channel characteristics at ungaged sites and can be used in stream-restoration and protection projects, stream-channel classification, and channel assessments. These equations are intended to serve as a guide for streams in areas of similar hydrologic, climatic, and physiographic conditions. New York State contains eight hydrologic regions that were previously delineated on the basis of high-flow (flood) characteristics. This report seeks to increase understanding of the factors affecting bankfull discharge and channel characteristics to drainage-area size relations in New York State by providing an in-depth analysis of seven previously published regional bankfull-discharge and channel-characteristics curves.Stream-survey data and discharge records from 281 cross sections at 82 streamflow-gaging stations were used in regression analyses to relate drainage area to bankfull discharge and bankfull-channel width, depth, and cross-sectional area. The R2 and standard errors of estimate of each regional equation were compared to the R2 and standard errors of estimate for the statewide (pooled) model to determine if regionalizing data reduced model variability. It was found that regional models typically yield less variable results than those obtained using pooled statewide equations, which indicates statistically significant regional differences in bankfull-discharge and channel-characteristics relations.Statistical analysis of bankfull-discharge relations found that curves for regions 4 and 7 fell outside the 95-percent confidence interval bands of the statewide model and had intercepts that were significantly diferent (p≤0.10) from the other five hydrologic regions.Analysis of channel-characteristics relations found that the bankfull width, depth, and cross-sectional area curves for region 3 were significantly different p(≤0.05) from the other six regions.It was hypothesized that some regional variability could be reduced by creating models for streams with similar physiographic and climatic characteristics. Available data on streamflow patterns and previous regional-curve research suggested that mean annual runoff, Rosgen stream type, and water-surface slope were the variables most likely to influence regional bankfull discharge and channel characteristics to drainage-area size relations. Results showed that although all of these factors had an influence on regional relations, most stratified models have lower 2 values and higher standard errors of estimate than the regional models.The New York statewide (pooled) bankfull-discharge equation and equations for regions 4 and 7 were compared with equations for four other regions in the Northeast to evaluate region-to-region differences, and assess the ability of individual curves to produce results more accurate than those that would be obtained from one model of the northeastern United States. Results indicated that model slopes lack significant diferences, though intercepts are significantly different. Comparison of bankfull-discharge estimates using different models shows that results could vary by as much as 100 percent depending on which model was used and indicated that regionalization improved model accuracy.

  5. [Theoretical modeling and experimental research on direct compaction characteristics of multi-component pharmaceutical powders based on the Kawakita equation].

    PubMed

    Si, Guo-Ning; Chen, Lan; Li, Bao-Guo

    2014-04-01

    Base on the Kawakita powder compression equation, a general theoretical model for predicting the compression characteristics of multi-components pharmaceutical powders with different mass ratios was developed. The uniaxial flat-face compression tests of powder lactose, starch and microcrystalline cellulose were carried out, separately. Therefore, the Kawakita equation parameters of the powder materials were obtained. The uniaxial flat-face compression tests of the powder mixtures of lactose, starch, microcrystalline cellulose and sodium stearyl fumarate with five mass ratios were conducted, through which, the correlation between mixture density and loading pressure and the Kawakita equation curves were obtained. Finally, the theoretical prediction values were compared with experimental results. The analysis showed that the errors in predicting mixture densities were less than 5.0% and the errors of Kawakita vertical coordinate were within 4.6%, which indicated that the theoretical model could be used to predict the direct compaction characteristics of multi-component pharmaceutical powders.

  6. Methods for estimating drought streamflow probabilities for Virginia streams

    USGS Publications Warehouse

    Austin, Samuel H.

    2014-01-01

    Maximum likelihood logistic regression model equations used to estimate drought flow probabilities for Virginia streams are presented for 259 hydrologic basins in Virginia. Winter streamflows were used to estimate the likelihood of streamflows during the subsequent drought-prone summer months. The maximum likelihood logistic regression models identify probable streamflows from 5 to 8 months in advance. More than 5 million streamflow daily values collected over the period of record (January 1, 1900 through May 16, 2012) were compiled and analyzed over a minimum 10-year (maximum 112-year) period of record. The analysis yielded the 46,704 equations with statistically significant fit statistics and parameter ranges published in two tables in this report. These model equations produce summer month (July, August, and September) drought flow threshold probabilities as a function of streamflows during the previous winter months (November, December, January, and February). Example calculations are provided, demonstrating how to use the equations to estimate probable streamflows as much as 8 months in advance.

  7. Continuous state-space representation of a bucket-type rainfall-runoff model: a case study with the GR4 model using state-space GR4 (version 1.0)

    NASA Astrophysics Data System (ADS)

    Santos, Léonard; Thirel, Guillaume; Perrin, Charles

    2018-04-01

    In many conceptual rainfall-runoff models, the water balance differential equations are not explicitly formulated. These differential equations are solved sequentially by splitting the equations into terms that can be solved analytically with a technique called operator splitting. As a result, only the solutions of the split equations are used to present the different models. This article provides a methodology to make the governing water balance equations of a bucket-type rainfall-runoff model explicit and to solve them continuously. This is done by setting up a comprehensive state-space representation of the model. By representing it in this way, the operator splitting, which makes the structural analysis of the model more complex, could be removed. In this state-space representation, the lag functions (unit hydrographs), which are frequent in rainfall-runoff models and make the resolution of the representation difficult, are first replaced by a so-called Nash cascade and then solved with a robust numerical integration technique. To illustrate this methodology, the GR4J model is taken as an example. The substitution of the unit hydrographs with a Nash cascade, even if it modifies the model behaviour when solved using operator splitting, does not modify it when the state-space representation is solved using an implicit integration technique. Indeed, the flow time series simulated by the new representation of the model are very similar to those simulated by the classic model. The use of a robust numerical technique that approximates a continuous-time model also improves the lag parameter consistency across time steps and provides a more time-consistent model with time-independent parameters.

  8. Multipath analysis diffraction calculations

    NASA Technical Reports Server (NTRS)

    Statham, Richard B.

    1996-01-01

    This report describes extensions of the Kirchhoff diffraction equation to higher edge terms and discusses their suitability to model diffraction multipath effects of a small satellite structure. When receiving signals, at a satellite, from the Global Positioning System (GPS), reflected signals from the satellite structure result in multipath errors in the determination of the satellite position. Multipath error can be caused by diffraction of the reflected signals and a method of calculating this diffraction is required when using a facet model of the satellite. Several aspects of the Kirchhoff equation are discussed and numerical examples, in the near and far fields, are shown. The vector form of the extended Kirchhoff equation, by adding the Larmor-Tedone and Kottler edge terms, is given as a mathematical model in an appendix. The Kirchhoff equation was investigated as being easily implemented and of good accuracy in the basic form, especially in phase determination. The basic Kirchhoff can be extended for higher accuracy if desired. A brief discussion of the method of moments and the geometric theory of diffraction is included, but seems to offer no clear advantage in implementation over the Kirchhoff for facet models.

  9. Analysis of a resistance-energy balance method for estimating daily evaporation from wheat plots using one-time-of-day infrared temperature observations

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Idso, S. B.; Reginato, R. J.

    1986-01-01

    Accurate estimates of evaporation over field-scale or larger areas are needed in hydrologic studies, irrigation scheduling, and meteorology. Remotely sensed surface temperature might be used in a model to calculate evaporation. A resistance-energy balance model, which combines an energy balance equation, the Penman-Monteith (1981) evaporation equation, and van den Honert's (1948) equation for water extraction by plant roots, is analyzed for estimating daily evaporation from wheat using postnoon canopy temperature measurements. Additional data requirements are half-hourly averages of solar radiation, air and dew point temperatures, and wind speed, along with reasonable estimates of canopy emissivity, albedo, height, and leaf area index. Evaporation fluxes were measured in the field by precision weighing lysimeters for well-watered and water-stressed wheat. Errors in computed daily evaporation were generally less than 10 percent, while errors in cumulative evaporation for 10 clear sky days were less than 5 percent for both well-watered and water-stressed wheat. Some results from sensitivity analysis of the model are also given.

  10. Aeroelastic Stability of Rotor Blades Using Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Chopra, I.; Sivaneri, N.

    1982-01-01

    The flutter stability of flap bending, lead-lag bending, and torsion of helicopter rotor blades in hover is investigated using a finite element formulation based on Hamilton's principle. The blade is divided into a number of finite elements. Quasi-steady strip theory is used to evaluate the aerodynamic loads. The nonlinear equations of motion are solved for steady-state blade deflections through an iterative procedure. The equations of motion are linearized assuming blade motion to be a small perturbation about the steady deflected shape. The normal mode method based on the coupled rotating natural modes is used to reduce the number of equations in the flutter analysis. First the formulation is applied to single-load-path blades (articulated and hingeless blades). Numerical results show very good agreement with existing results obtained using the modal approach. The second part of the application concerns multiple-load-path blades, i.e. bearingless blades. Numerical results are presented for several analytical models of the bearingless blade. Results are also obtained using an equivalent beam approach wherein a bearingless blade is modelled as a single beam with equivalent properties. Results show the equivalent beam model.

  11. Rate equation analysis of hydrogen uptake on Si (100) surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inanaga, S.; Rahman, F.; Khanom, F.

    2005-09-15

    We have studied the uptake process of H on Si (100) surfaces by means of rate equation analysis. Flowers' quasiequilibrium model for adsorption and desorption of H [M. C. Flowers, N. B. H. Jonathan, A. Morris, and S. Wright, Surf. Sci. 396, 227 (1998)] is extended so that in addition to the H abstraction (ABS) and {beta}{sub 2}-channel thermal desorption (TD) the proposed rate equation further includes the adsorption-induced desorption (AID) and {beta}{sub 1}-TD. The validity of the model is tested by the experiments of ABS and AID rates in the reaction system H+D/Si (100). Consequently, we find it canmore » well reproduce the experimental results, validating the proposed model. We find the AID rate curve as a function of surface temperature T{sub s} exhibits a clear anti-correlation with the bulk dangling bond density versus T{sub s} curve reported in the plasma-enhanced chemical vapor deposition (CVD) for amorphous Si films. The significance of the H chemistry in plasma-enhanced CVD is discussed.« less

  12. 'Constraint consistency' at all orders in cosmological perturbation theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandi, Debottam; Shankaranarayanan, S., E-mail: debottam@iisertvm.ac.in, E-mail: shanki@iisertvm.ac.in

    2015-08-01

    We study the equivalence of two—order-by-order Einstein's equation and Reduced action—approaches to cosmological perturbation theory at all orders for different models of inflation. We point out a crucial consistency check which we refer to as 'Constraint consistency' condition that needs to be satisfied in order for the two approaches to lead to identical single variable equation of motion. The method we propose here is quick and efficient to check the consistency for any model including modified gravity models. Our analysis points out an important feature which is crucial for inflationary model building i.e., all 'constraint' inconsistent models have higher ordermore » Ostrogradsky's instabilities but the reverse is not true. In other words, one can have models with constraint Lapse function and Shift vector, though it may have Ostrogradsky's instabilities. We also obtain single variable equation for non-canonical scalar field in the limit of power-law inflation for the second-order perturbed variables.« less

  13. Spectral Elements Analysis for Viscoelastic Fluids at High Weissenberg Number Using Logarithmic conformation Tensor Model

    NASA Astrophysics Data System (ADS)

    Jafari, Azadeh; Deville, Michel O.; Fiétier, Nicolas

    2008-09-01

    This study discusses the capability of the constitutive laws for the matrix logarithm of the conformation tensor (LCT model) within the framework of the spectral elements method. The high Weissenberg number problems (HWNP) usually produce a lack of convergence of the numerical algorithms. Even though the question whether the HWNP is a purely numerical problem or rather a breakdown of the constitutive law of the model has remained somewhat of a mystery, it has been recognized that the selection of an appropriate constitutive equation constitutes a very crucial step although implementing a suitable numerical technique is still important for successful discrete modeling of non-Newtonian flows. The LCT model formulation of the viscoelastic equations originally suggested by Fattal and Kupferman is applied for 2-dimensional (2D) FENE-CR model. The Planar Poiseuille flow is considered as a benchmark problem to test this representation at high Weissenberg number. The numerical results are compared with numerical solution of the standard constitutive equation.

  14. Constraint Force Equation Methodology for Modeling Multi-Body Stage Separation Dynamics

    NASA Technical Reports Server (NTRS)

    Toniolo, Matthew D.; Tartabini, Paul V.; Pamadi, Bandu N.; Hotchko, Nathaniel

    2008-01-01

    This paper discusses a generalized approach to the multi-body separation problems in a launch vehicle staging environment based on constraint force methodology and its implementation into the Program to Optimize Simulated Trajectories II (POST2), a widely used trajectory design and optimization tool. This development facilitates the inclusion of stage separation analysis into POST2 for seamless end-to-end simulations of launch vehicle trajectories, thus simplifying the overall implementation and providing a range of modeling and optimization capabilities that are standard features in POST2. Analysis and results are presented for two test cases that validate the constraint force equation methodology in a stand-alone mode and its implementation in POST2.

  15. Non-linear analysis of wave progagation using transform methods and plates and shells using integral equations

    NASA Astrophysics Data System (ADS)

    Pipkins, Daniel Scott

    Two diverse topics of relevance in modern computational mechanics are treated. The first involves the modeling of linear and non-linear wave propagation in flexible, lattice structures. The technique used combines the Laplace Transform with the Finite Element Method (FEM). The procedure is to transform the governing differential equations and boundary conditions into the transform domain where the FEM formulation is carried out. For linear problems, the transformed differential equations can be solved exactly, hence the method is exact. As a result, each member of the lattice structure is modeled using only one element. In the non-linear problem, the method is no longer exact. The approximation introduced is a spatial discretization of the transformed non-linear terms. The non-linear terms are represented in the transform domain by making use of the complex convolution theorem. A weak formulation of the resulting transformed non-linear equations yields a set of element level matrix equations. The trial and test functions used in the weak formulation correspond to the exact solution of the linear part of the transformed governing differential equation. Numerical results are presented for both linear and non-linear systems. The linear systems modeled are longitudinal and torsional rods and Bernoulli-Euler and Timoshenko beams. For non-linear systems, a viscoelastic rod and Von Karman type beam are modeled. The second topic is the analysis of plates and shallow shells under-going finite deflections by the Field/Boundary Element Method. Numerical results are presented for two plate problems. The first is the bifurcation problem associated with a square plate having free boundaries which is loaded by four, self equilibrating corner forces. The results are compared to two existing numerical solutions of the problem which differ substantially.

  16. A stochastic differential equation model of diurnal cortisol patterns

    NASA Technical Reports Server (NTRS)

    Brown, E. N.; Meehan, P. M.; Dempster, A. P.

    2001-01-01

    Circadian modulation of episodic bursts is recognized as the normal physiological pattern of diurnal variation in plasma cortisol levels. The primary physiological factors underlying these diurnal patterns are the ultradian timing of secretory events, circadian modulation of the amplitude of secretory events, infusion of the hormone from the adrenal gland into the plasma, and clearance of the hormone from the plasma by the liver. Each measured plasma cortisol level has an error arising from the cortisol immunoassay. We demonstrate that all of these three physiological principles can be succinctly summarized in a single stochastic differential equation plus measurement error model and show that physiologically consistent ranges of the model parameters can be determined from published reports. We summarize the model parameters in terms of the multivariate Gaussian probability density and establish the plausibility of the model with a series of simulation studies. Our framework makes possible a sensitivity analysis in which all model parameters are allowed to vary simultaneously. The model offers an approach for simultaneously representing cortisol's ultradian, circadian, and kinetic properties. Our modeling paradigm provides a framework for simulation studies and data analysis that should be readily adaptable to the analysis of other endocrine hormone systems.

  17. Traveling waves and conservation laws for highly nonlinear wave equations modeling Hertz chains

    NASA Astrophysics Data System (ADS)

    Przedborski, Michelle; Anco, Stephen C.

    2017-09-01

    A highly nonlinear, fourth-order wave equation that models the continuum theory of long wavelength pulses in weakly compressed, homogeneous, discrete chains with a general power-law contact interaction is studied. For this wave equation, all solitary wave solutions and all nonlinear periodic wave solutions, along with all conservation laws, are derived. The solutions are explicitly parameterized in terms of the asymptotic value of the wave amplitude in the case of solitary waves and the peak of the wave amplitude in the case of nonlinear periodic waves. All cases in which the solution expressions can be stated in an explicit analytic form using elementary functions are worked out. In these cases, explicit expressions for the total energy and total momentum for all solutions are obtained as well. The derivation of the solutions uses the conservation laws combined with an energy analysis argument to reduce the wave equation directly to a separable first-order differential equation that determines the wave amplitude in terms of the traveling wave variable. This method can be applied more generally to other highly nonlinear wave equations.

  18. Numerical Modeling of Unsteady Thermofluid Dynamics in Cryogenic Systems

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok

    2003-01-01

    A finite volume based network analysis procedure has been applied to model unsteady flow without and with heat transfer. Liquid has been modeled as compressible fluid where the compressibility factor is computed from the equation of state for a real fluid. The modeling approach recognizes that the pressure oscillation is linked with the variation of the compressibility factor; therefore, the speed of sound does not explicitly appear in the governing equations. The numerical results of chilldown process also suggest that the flow and heat transfer are strongly coupled. This is evident by observing that the mass flow rate during 90-second chilldown process increases by factor of ten.

  19. Aircraft Structural Mass Property Prediction Using Conceptual-Level Structural Analysis

    NASA Technical Reports Server (NTRS)

    Sexstone, Matthew G.

    1998-01-01

    This paper describes a methodology that extends the use of the Equivalent LAminated Plate Solution (ELAPS) structural analysis code from conceptual-level aircraft structural analysis to conceptual-level aircraft mass property analysis. Mass property analysis in aircraft structures has historically depended upon parametric weight equations at the conceptual design level and Finite Element Analysis (FEA) at the detailed design level. ELAPS allows for the modeling of detailed geometry, metallic and composite materials, and non-structural mass coupled with analytical structural sizing to produce high-fidelity mass property analyses representing fully configured vehicles early in the design process. This capability is especially valuable for unusual configuration and advanced concept development where existing parametric weight equations are inapplicable and FEA is too time consuming for conceptual design. This paper contrasts the use of ELAPS relative to empirical weight equations and FEA. ELAPS modeling techniques are described and the ELAPS-based mass property analysis process is detailed. Examples of mass property stochastic calculations produced during a recent systems study are provided. This study involved the analysis of three remotely piloted aircraft required to carry scientific payloads to very high altitudes at subsonic speeds. Due to the extreme nature of this high-altitude flight regime, few existing vehicle designs are available for use in performance and weight prediction. ELAPS was employed within a concurrent engineering analysis process that simultaneously produces aerodynamic, structural, and static aeroelastic results for input to aircraft performance analyses. The ELAPS models produced for each concept were also used to provide stochastic analyses of wing structural mass properties. The results of this effort indicate that ELAPS is an efficient means to conduct multidisciplinary trade studies at the conceptual design level.

  20. Aircraft Structural Mass Property Prediction Using Conceptual-Level Structural Analysis

    NASA Technical Reports Server (NTRS)

    Sexstone, Matthew G.

    1998-01-01

    This paper describes a methodology that extends the use of the Equivalent LAminated Plate Solution (ELAPS) structural analysis code from conceptual-level aircraft structural analysis to conceptual-level aircraft mass property analysis. Mass property analysis in aircraft structures has historically depended upon parametric weight equations at the conceptual design level and Finite Element Analysis (FEA) at the detailed design level ELAPS allows for the modeling of detailed geometry, metallic and composite materials, and non-structural mass coupled with analytical structural sizing to produce high-fidelity mass property analyses representing fully configured vehicles early in the design process. This capability is especially valuable for unusual configuration and advanced concept development where existing parametric weight equations are inapplicable and FEA is too time consuming for conceptual design. This paper contrasts the use of ELAPS relative to empirical weight equations and FEA. ELAPS modeling techniques are described and the ELAPS-based mass property analysis process is detailed Examples of mass property stochastic calculations produced during a recent systems study are provided This study involved the analysis of three remotely piloted aircraft required to carry scientific payloads to very high altitudes at subsonic speeds. Due to the extreme nature of this high-altitude flight regime,few existing vehicle designs are available for use in performance and weight prediction. ELAPS was employed within a concurrent engineering analysis process that simultaneously produces aerodynamic, structural, and static aeroelastic results for input to aircraft performance analyses. The ELAPS models produced for each concept were also used to provide stochastic analyses of wing structural mass properties. The results of this effort indicate that ELAPS is an efficient means to conduct multidisciplinary trade studies at the conceptual design level.

  1. The analysis of solutions behaviour of Van der Pol Duffing equation describing local brain hemodynamics

    NASA Astrophysics Data System (ADS)

    Cherevko, A. A.; Bord, E. E.; Khe, A. K.; Panarin, V. A.; Orlov, K. J.

    2017-10-01

    This article proposes the generalized model of Van der Pol — Duffing equation for describing the relaxation oscillations in local brain hemodynamics. This equation connects the velocity and pressure of blood flow in cerebral vessels. The equation is individual for each patient, since the coefficients are unique. Each set of coefficients is built based on clinical data obtained during neurosurgical operation in Siberian Federal Biomedical Research Center named after Academician E. N. Meshalkin. The equation has solutions of different structure defined by the coefficients and right side. We investigate the equations for different patients considering peculiarities of their vessel systems. The properties of approximate analytical solutions are studied. Amplitude-frequency and phase-frequency characteristics are built for the small-dimensional solution approximations.

  2. Finite element analysis of notch behavior using a state variable constitutive equation

    NASA Technical Reports Server (NTRS)

    Dame, L. T.; Stouffer, D. C.; Abuelfoutouh, N.

    1985-01-01

    The state variable constitutive equation of Bodner and Partom was used to calculate the load-strain response of Inconel 718 at 649 C in the root of a notch. The constitutive equation was used with the Bodner-Partom evolution equation and with a second evolution equation that was derived from a potential function of the stress and state variable. Data used in determining constants for the constitutive models was from one-dimensional smooth bar tests. The response was calculated for a plane stress condition at the root of the notch with a finite element code using constant strain triangular elements. Results from both evolution equations compared favorably with the observed experimental response. The accuracy and efficiency of the finite element calculations also compared favorably to existing methods.

  3. Calculation of the flow field including boundary layer effects for supersonic mixed compression inlets at angles of attack

    NASA Technical Reports Server (NTRS)

    Vadyak, J.; Hoffman, J. D.

    1982-01-01

    The flow field in supersonic mixed compression aircraft inlets at angle of attack is calculated. A zonal modeling technique is employed to obtain the solution which divides the flow field into different computational regions. The computational regions consist of a supersonic core flow, boundary layer flows adjacent to both the forebody/centerbody and cowl contours, and flow in the shock wave boundary layer interaction regions. The zonal modeling analysis is described and some computational results are presented. The governing equations for the supersonic core flow form a hyperbolic system of partial differential equations. The equations for the characteristic surfaces and the compatibility equations applicable along these surfaces are derived. The characteristic surfaces are the stream surfaces, which are surfaces composed of streamlines, and the wave surfaces, which are surfaces tangent to a Mach conoid. The compatibility equations are expressed as directional derivatives along streamlines and bicharacteristics, which are the lines of tangency between a wave surface and a Mach conoid.

  4. A Modified Double Multiple Nonlinear Regression Constitutive Equation for Modeling and Prediction of High Temperature Flow Behavior of BFe10-1-2 Alloy

    NASA Astrophysics Data System (ADS)

    Cai, Jun; Wang, Kuaishe; Shi, Jiamin; Wang, Wen; Liu, Yingying

    2018-01-01

    Constitutive analysis for hot working of BFe10-1-2 alloy was carried out by using experimental stress-strain data from isothermal hot compression tests, in a wide range of temperature of 1,023 1,273 K, and strain rate range of 0.001 10 s-1. A constitutive equation based on modified double multiple nonlinear regression was proposed considering the independent effects of strain, strain rate, temperature and their interrelation. The predicted flow stress data calculated from the developed equation was compared with the experimental data. Correlation coefficient (R), average absolute relative error (AARE) and relative errors were introduced to verify the validity of the developed constitutive equation. Subsequently, a comparative study was made on the capability of strain-compensated Arrhenius-type constitutive model. The results showed that the developed constitutive equation based on modified double multiple nonlinear regression could predict flow stress of BFe10-1-2 alloy with good correlation and generalization.

  5. A new analysis of the Fornberg-Whitham equation pertaining to a fractional derivative with Mittag-Leffler-type kernel

    NASA Astrophysics Data System (ADS)

    Kumar, Devendra; Singh, Jagdev; Baleanu, Dumitru

    2018-02-01

    The mathematical model of breaking of non-linear dispersive water waves with memory effect is very important in mathematical physics. In the present article, we examine a novel fractional extension of the non-linear Fornberg-Whitham equation occurring in wave breaking. We consider the most recent theory of differentiation involving the non-singular kernel based on the extended Mittag-Leffler-type function to modify the Fornberg-Whitham equation. We examine the existence of the solution of the non-linear Fornberg-Whitham equation of fractional order. Further, we show the uniqueness of the solution. We obtain the numerical solution of the new arbitrary order model of the non-linear Fornberg-Whitham equation with the aid of the Laplace decomposition technique. The numerical outcomes are displayed in the form of graphs and tables. The results indicate that the Laplace decomposition algorithm is a very user-friendly and reliable scheme for handling such type of non-linear problems of fractional order.

  6. A boundary integral approach to the scattering of nonplanar acoustic waves by rigid bodies

    NASA Technical Reports Server (NTRS)

    Gallman, Judith M.; Myers, M. K.; Farassat, F.

    1990-01-01

    The acoustic scattering of an incident wave by a rigid body can be described by a singular Fredholm integral equation of the second kind. This equation is derived by solving the wave equation using generalized function theory, Green's function for the wave equation in unbounded space, and the acoustic boundary condition for a perfectly rigid body. This paper will discuss the derivation of the wave equation, its reformulation as a boundary integral equation, and the solution of the integral equation by the Galerkin method. The accuracy of the Galerkin method can be assessed by applying the technique outlined in the paper to reproduce the known pressure fields that are due to various point sources. From the analysis of these simpler cases, the accuracy of the Galerkin solution can be inferred for the scattered pressure field caused by the incidence of a dipole field on a rigid sphere. The solution by the Galerkin technique can then be applied to such problems as a dipole model of a propeller whose pressure field is incident on a rigid cylinder. This is the groundwork for modeling the scattering of rotating blade noise by airplane fuselages.

  7. Mathematical Models for Doppler Measurements

    NASA Technical Reports Server (NTRS)

    Lear, William M.

    1987-01-01

    Error analysis increases precision of navigation. Report presents improved mathematical models of analysis of Doppler measurements and measurement errors of spacecraft navigation. To take advantage of potential navigational accuracy of Doppler measurements, precise equations relate measured cycle count to position and velocity. Drifts and random variations in transmitter and receiver oscillator frequencies taken into account. Mathematical models also adapted to aircraft navigation, radar, sonar, lidar, and interferometry.

  8. Numerical solution of boundary-integral equations for molecular electrostatics.

    PubMed

    Bardhan, Jaydeep P

    2009-03-07

    Numerous molecular processes, such as ion permeation through channel proteins, are governed by relatively small changes in energetics. As a result, theoretical investigations of these processes require accurate numerical methods. In the present paper, we evaluate the accuracy of two approaches to simulating boundary-integral equations for continuum models of the electrostatics of solvation. The analysis emphasizes boundary-element method simulations of the integral-equation formulation known as the apparent-surface-charge (ASC) method or polarizable-continuum model (PCM). In many numerical implementations of the ASC/PCM model, one forces the integral equation to be satisfied exactly at a set of discrete points on the boundary. We demonstrate in this paper that this approach to discretization, known as point collocation, is significantly less accurate than an alternative approach known as qualocation. Furthermore, the qualocation method offers this improvement in accuracy without increasing simulation time. Numerical examples demonstrate that electrostatic part of the solvation free energy, when calculated using the collocation and qualocation methods, can differ significantly; for a polypeptide, the answers can differ by as much as 10 kcal/mol (approximately 4% of the total electrostatic contribution to solvation). The applicability of the qualocation discretization to other integral-equation formulations is also discussed, and two equivalences between integral-equation methods are derived.

  9. Emergent user behavior on Twitter modelled by a stochastic differential equation.

    PubMed

    Mollgaard, Anders; Mathiesen, Joachim

    2015-01-01

    Data from the social-media site, Twitter, is used to study the fluctuations in tweet rates of brand names. The tweet rates are the result of a strongly correlated user behavior, which leads to bursty collective dynamics with a characteristic 1/f noise. Here we use the aggregated "user interest" in a brand name to model collective human dynamics by a stochastic differential equation with multiplicative noise. The model is supported by a detailed analysis of the tweet rate fluctuations and it reproduces both the exact bursty dynamics found in the data and the 1/f noise.

  10. Improvement of the low frequency oscillation model for Hall thrusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chunsheng, E-mail: wangcs@hit.edu.cn; Wang, Huashan

    2016-08-15

    The low frequency oscillation of the discharge current in Hall thrusters is a major aspect of these devices that requires further study. While the existing model captures the ionization mechanism of the low frequency oscillation, it unfortunately fails to express the dynamic characteristics of the ion acceleration. The analysis in this paper shows this is because of the simplification of the electron equation, which affects both the electric field distribution and the ion acceleration process. Additionally, the electron density equation is revised and a new model that is based on the physical properties of ion movement is proposed.

  11. Emergent User Behavior on Twitter Modelled by a Stochastic Differential Equation

    PubMed Central

    Mollgaard, Anders; Mathiesen, Joachim

    2015-01-01

    Data from the social-media site, Twitter, is used to study the fluctuations in tweet rates of brand names. The tweet rates are the result of a strongly correlated user behavior, which leads to bursty collective dynamics with a characteristic 1/f noise. Here we use the aggregated "user interest" in a brand name to model collective human dynamics by a stochastic differential equation with multiplicative noise. The model is supported by a detailed analysis of the tweet rate fluctuations and it reproduces both the exact bursty dynamics found in the data and the 1/f noise. PMID:25955783

  12. Full nonlinear treatment of the global thermospheric wind system. Part 1: Mathematical method and analysis of forces

    NASA Technical Reports Server (NTRS)

    Blum, P. W.; Harris, I.

    1973-01-01

    The equations of horizontal motion of the neutral atmosphere between 120 and 500 km are integrated with the inclusion of all the nonlinear terms of the convective derivative and the viscous forces due to vertical and horizontal velocity gradients. Empirical models of the distribution of neutral and charged particles are assumed to be known. The model of velocities developed is a steady state model. In part 1 the mathematical method used in the integration of the Navier-Stokes equations is described and the various forces are analysed.

  13. Combustion-acoustic stability analysis for premixed gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Darling, Douglas; Radhakrishnan, Krishnan; Oyediran, Ayo; Cowan, Lizabeth

    1995-01-01

    Lean, prevaporized, premixed combustors are susceptible to combustion-acoustic instabilities. A model was developed to predict eigenvalues of axial modes for combustion-acoustic interactions in a premixed combustor. This work extends previous work by including variable area and detailed chemical kinetics mechanisms, using the code LSENS. Thus the acoustic equations could be integrated through the flame zone. Linear perturbations were made of the continuity, momentum, energy, chemical species, and state equations. The qualitative accuracy of our approach was checked by examining its predictions for various unsteady heat release rate models. Perturbations in fuel flow rate are currently being added to the model.

  14. Linear stiff string vibrations in musical acoustics: Assessment and comparison of models.

    PubMed

    Ducceschi, Michele; Bilbao, Stefan

    2016-10-01

    Strings are amongst the most common elements found in musical instruments and an appropriate physical description of string dynamics is essential to modelling, analysis, and simulation. For linear vibration in a single polarisation, the most common model is based on the Euler-Bernoulli beam equation under tension. In spite of its simple form, such a model gives unbounded phase and group velocities at large wavenumbers, and such behaviour may be interpreted as unphysical. The Timoshenko model has, therefore, been employed in more recent works to overcome such shortcoming. This paper presents a third model based on the shear beam equations. The three models are here assessed and compared with regard to the perceptual considerations in musical acoustics.

  15. Microscopic modeling of gas-surface scattering. I. A combined molecular dynamics-rate equation approach

    NASA Astrophysics Data System (ADS)

    Filinov, A.; Bonitz, M.; Loffhagen, D.

    2018-06-01

    A combination of first principle molecular dynamics (MD) simulations with a rate equation model (MD-RE approach) is presented to study the trapping and the scattering of rare gas atoms from metal surfaces. The temporal evolution of the atom fractions that are either adsorbed or scattered into the continuum is investigated in detail. We demonstrate that for this description one has to consider trapped, quasi-trapped and scattering states, and present an energetic definition of these states. The rate equations contain the transition probabilities between the states. We demonstrate how these rate equations can be derived from kinetic theory. Moreover, we present a rigorous way to determine the transition probabilities from a microscopic analysis of the particle trajectories generated by MD simulations. Once the system reaches quasi-equilibrium, the rates converge to stationary values, and the subsequent thermal adsorption/desorption dynamics is completely described by the rate equations without the need to perform further time-consuming MD simulations. As a proof of concept of our approach, MD simulations for argon atoms interacting with a platinum (111) surface are presented. A detailed deterministic trajectory analysis is performed, and the transition rates are constructed. The dependence of the rates on the incidence conditions and the lattice temperature is analyzed. Based on this example, we analyze the time scale of the gas-surface system to approach the quasi-stationary state. The MD-RE model has great relevance for the plasma-surface modeling as it makes an extension of accurate simulations to long, experimentally relevant time scales possible. Its application to the computation of atomic sticking probabilities is given in the second part (paper II).

  16. Nonlinear integral equations for the sausage model

    NASA Astrophysics Data System (ADS)

    Ahn, Changrim; Balog, Janos; Ravanini, Francesco

    2017-08-01

    The sausage model, first proposed by Fateev, Onofri, and Zamolodchikov, is a deformation of the O(3) sigma model preserving integrability. The target space is deformed from the sphere to ‘sausage’ shape by a deformation parameter ν. This model is defined by a factorizable S-matrix which is obtained by deforming that of the O(3) sigma model by a parameter λ. Clues for the deformed sigma model are provided by various UV and IR information through the thermodynamic Bethe ansatz (TBA) analysis based on the S-matrix. Application of TBA to the sausage model is, however, limited to the case of 1/λ integer where the coupled integral equations can be truncated to a finite number. In this paper, we propose a finite set of nonlinear integral equations (NLIEs), which are applicable to generic value of λ. Our derivation is based on T-Q relations extracted from the truncated TBA equations. For a consistency check, we compute next-leading order corrections of the vacuum energy and extract the S-matrix information in the IR limit. We also solved the NLIE both analytically and numerically in the UV limit to get the effective central charge and compared with that of the zero-mode dynamics to obtain exact relation between ν and λ. Dedicated to the memory of Petr Petrovich Kulish.

  17. Solubility modeling of refrigerant/lubricant mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michels, H.H.; Sienel, T.H.

    1996-12-31

    A general model for predicting the solubility properties of refrigerant/lubricant mixtures has been developed based on applicable theory for the excess Gibbs energy of non-ideal solutions. In our approach, flexible thermodynamic forms are chosen to describe the properties of both the gas and liquid phases of refrigerant/lubricant mixtures. After an extensive study of models for describing non-ideal liquid effects, the Wohl-suffix equations, which have been extensively utilized in the analysis of hydrocarbon mixtures, have been developed into a general form applicable to mixtures where one component is a POE lubricant. In the present study we have analyzed several POEs wheremore » structural and thermophysical property data were available. Data were also collected from several sources on the solubility of refrigerant/lubricant binary pairs. We have developed a computer code (NISC), based on the Wohl model, that predicts dew point or bubble point conditions over a wide range of composition and temperature. Our present analysis covers mixtures containing up to three refrigerant molecules and one lubricant. The present code can be used to analyze the properties of R-410a and R-407c in mixtures with a POE lubricant. Comparisons with other models, such as the Wilson or modified Wilson equations, indicate that the Wohl-suffix equations yield more reliable predictions for HFC/POE mixtures.« less

  18. Interactivity and Trust as Antecedents of E-Training Use Intention in Nigeria: A Structural Equation Modelling Approach.

    PubMed

    Alkali, A U; Abu Mansor, Nur Naha

    2017-07-18

    The last few decades saw an intense development in information technology (IT) and it has affected the ways organisations achieve their goals. Training, in every organisation is an ongoing process that aims to update employees' knowledge and skills towards goals attainment. Through adequate deployment of IT, organisations can effectively meet their training needs. However, for successful IT integration in training, the employees who will use the system should be positively disposed towards it. This study predicts employees' intention to use the e-training system by extending the technology acceptance model (TAM) using interactivity and trust. Two hundred and fourteen employees participated in the study and structural equation modelling was used in the analysis. The findings of the structural equation modelling reveal that interactivity, trust, perceived usefulness and perceived ease of use have direct and positive effects on employees' intention to use e-training. It was also shown that perceived ease of use had no effects on perceived usefulness, while trust has the strongest indirect effects on employees' intention. In addition, the results of Importance-Performance Map Analysis (IPMA), which compares the contributions of each construct to the importance and performance of the model, indicate that to predict intention to use e-training, priorities should be accorded to trust and perceived usefulness.

  19. Modeling and Analysis of the Reverse Water Gas Shift Process for In-Situ Propellant Production

    NASA Technical Reports Server (NTRS)

    Whitlow, Jonathan E.

    2000-01-01

    This report focuses on the development of mathematical models and simulation tools developed for the Reverse Water Gas Shift (RWGS) process. This process is a candidate technology for oxygen production on Mars under the In-Situ Propellant Production (ISPP) project. An analysis of the RWGS process was performed using a material balance for the system. The material balance is very complex due to the downstream separations and subsequent recycle inherent with the process. A numerical simulation was developed for the RWGS process to provide a tool for analysis and optimization of experimental hardware, which will be constructed later this year at Kennedy Space Center (KSC). Attempts to solve the material balance for the system, which can be defined by 27 nonlinear equations, initially failed. A convergence scheme was developed which led to successful solution of the material balance, however the simplified equations used for the gas separation membrane were found insufficient. Additional more rigorous models were successfully developed and solved for the membrane separation. Sample results from these models are included in this report, with recommendations for experimental work needed for model validation.

  20. Harmonic Balance Computations of Fan Aeroelastic Stability

    NASA Technical Reports Server (NTRS)

    Bakhle, Milind A.; Reddy, T. S. R.

    2010-01-01

    A harmonic balance (HB) aeroelastic analysis, which has been recently developed, was used to determine the aeroelastic stability (flutter) characteristics of an experimental fan. To assess the numerical accuracy of this HB aeroelastic analysis, a time-domain aeroelastic analysis was also used to determine the aeroelastic stability characteristics of the same fan. Both of these three-dimensional analysis codes model the unsteady flowfield due to blade vibrations using the Reynolds-averaged Navier-Stokes (RANS) equations. In the HB analysis, the unsteady flow equations are converted to a HB form and solved using a pseudo-time marching method. In the time-domain analysis, the unsteady flow equations are solved using an implicit time-marching approach. Steady and unsteady computations for two vibration modes were carried out at two rotational speeds: 100 percent (design) and 70 percent (part-speed). The steady and unsteady results obtained from the two analysis methods compare well, thus verifying the recently developed HB aeroelastic analysis. Based on the results, the experimental fan was found to have no aeroelastic instability (flutter) at the conditions examined in this study.

Top