DOE Office of Scientific and Technical Information (OSTI.GOV)
Grove, John W.
2016-08-16
The xRage code supports a variety of hydrodynamic equation of state (EOS) models. In practice these are generally accessed in the executing code via a pressure-temperature based table look up. This document will describe the various models supported by these codes and provide details on the algorithms used to evaluate the equation of state.
Modelling with Difference Equations Supported by GeoGebra: Exploring the Kepler Problem
ERIC Educational Resources Information Center
Kovacs, Zoltan
2010-01-01
The use of difference and differential equations in the modelling is a topic usually studied by advanced students in mathematics. However difference and differential equations appear in the school curriculum in many direct or hidden ways. Difference equations first enter in the curriculum when studying arithmetic sequences. Moreover Newtonian…
Nonlinear dynamics of a support-excited flexible rotor with hydrodynamic journal bearings
NASA Astrophysics Data System (ADS)
Dakel, Mzaki; Baguet, Sébastien; Dufour, Régis
2014-05-01
The major purpose of this study is to predict the dynamic behavior of an on-board rotor mounted on hydrodynamic journal bearings in the presence of rigid support movements, the target application being turbochargers of vehicles or rotating machines subject to seismic excitation. The proposed on-board rotor model is based on Timoshenko beam finite elements. The dynamic modeling takes into account the geometric asymmetry of shaft and/or rigid disk as well as the six deterministic translations and rotations of the rotor rigid support. Depending on the type of analysis used for the bearing, the fluid film forces computed with the Reynolds equation are linear/nonlinear. Thus the application of Lagrange's equations yields the linear/nonlinear equations of motion of the rotating rotor in bending with respect to the moving rigid support which represents a non-inertial frame of reference. These equations are solved using the implicit Newmark time-step integration scheme. Due to the geometric asymmetry of the rotor and to the rotational motions of the support, the equations of motion include time-varying parametric terms which can lead to lateral dynamic instability. The influence of sinusoidal rotational or translational motions of the support, the accuracy of the linear 8-coefficient bearing model and the interest of the nonlinear model for a hydrodynamic journal bearing are examined and discussed by means of stability charts, orbits of the rotor, time history responses, fast Fourier transforms, bifurcation diagrams as well as Poincaré maps.
NASA Technical Reports Server (NTRS)
Sopher, R.
1975-01-01
The equations of motion are derived for a multiblade rotor. A high twist capability and coupled flatwise-edgewise assumed normal modes are employed instead of uncoupled flatwise - edgewise assumed normal models. The torsion mode is uncoupled. Support system models, consisting of complete helicopters in free flight, or grounded flexible supports, arbitrary rotor-induced inflow, and arbitrary vertical gust models are also used.
Lump Solitons in Surface Tension Dominated Flows
NASA Astrophysics Data System (ADS)
Milewski, Paul; Berger, Kurt
1999-11-01
The Kadomtsev-Petviashvilli I equation (KPI) which models small-amplitude, weakly three-dimensional surface-tension dominated long waves is integrable and allows for algebraically decaying lump solitary waves. It is not known (theoretically or numerically) whether the full free-surface Euler equations support such solutions. We consider an intermediate model, the generalised Benney-Luke equation (gBL) which is isotropic (not weakly three-dimensional) and contains KPI as a limit. We show numerically that: 1. gBL supports lump solitary waves; 2. These waves collide elastically and are stable; 3. They are generated by resonant flow over an obstacle.
ERIC Educational Resources Information Center
Kim, Young-Mi; Neff, James Alan
2010-01-01
A model incorporating the direct and indirect effects of parental monitoring on adolescent alcohol use was evaluated by applying structural equation modeling (SEM) techniques to data on 4,765 tenth-graders in the 2001 Monitoring the Future Study. Analyses indicated good fit of hypothesized measurement and structural models. Analyses supported both…
The Protective Role of Supportive Friends against Bullying Perpetration and Victimization
ERIC Educational Resources Information Center
Kendrick, Kristin; Jutengren, Goran; Stattin, Hakan
2012-01-01
A crossed-lagged regression model was tested to investigate relationships between friendship support, bullying involvement, and its consequences during adolescence. Students, 12-16 years (N = 880), were administered questionnaires twice, one year apart. Using structural equation modeling, a model was specified and higher levels of support from…
Kowitt, Sarah D; Ayala, Guadalupe X; Cherrington, Andrea L; Horton, Lucy A; Safford, Monika M; Soto, Sandra; Tang, Tricia S; Fisher, Edwin B
2017-12-01
Little research has examined the characteristics of peer support. Pertinent to such examination may be characteristics such as the distinction between nondirective support (accepting recipients' feelings and cooperative with their plans) and directive (prescribing "correct" choices and feelings). In a peer support program for individuals with diabetes, this study examined (a) whether the distinction between nondirective and directive support was reflected in participants' ratings of support provided by peer supporters and (b) how nondirective and directive support were related to depressive symptoms, diabetes distress, and Hemoglobin A1c (HbA1c). Three hundred fourteen participants with type 2 diabetes provided data on depressive symptoms, diabetes distress, and HbA1c before and after a diabetes management intervention delivered by peer supporters. At post-intervention, participants reported how the support provided by peer supporters was nondirective or directive. Confirmatory factor analysis (CFA), correlation analyses, and structural equation modeling examined the relationships among reports of nondirective and directive support, depressive symptoms, diabetes distress, and measured HbA1c. CFA confirmed the factor structure distinguishing between nondirective and directive support in participants' reports of support delivered by peer supporters. Controlling for demographic factors, baseline clinical values, and site, structural equation models indicated that at post-intervention, participants' reports of nondirective support were significantly associated with lower, while reports of directive support were significantly associated with greater depressive symptoms, altogether (with control variables) accounting for 51% of the variance in depressive symptoms. Peer supporters' nondirective support was associated with lower, but directive support was associated with greater depressive symptoms.
Derivation and computation of discrete-delay and continuous-delay SDEs in mathematical biology.
Allen, Edward J
2014-06-01
Stochastic versions of several discrete-delay and continuous-delay differential equations, useful in mathematical biology, are derived from basic principles carefully taking into account the demographic, environmental, or physiological randomness in the dynamic processes. In particular, stochastic delay differential equation (SDDE) models are derived and studied for Nicholson's blowflies equation, Hutchinson's equation, an SIS epidemic model with delay, bacteria/phage dynamics, and glucose/insulin levels. Computational methods for approximating the SDDE models are described. Comparisons between computational solutions of the SDDEs and independently formulated Monte Carlo calculations support the accuracy of the derivations and of the computational methods.
Sample Invariance of the Structural Equation Model and the Item Response Model: A Case Study.
ERIC Educational Resources Information Center
Breithaupt, Krista; Zumbo, Bruno D.
2002-01-01
Evaluated the sample invariance of item discrimination statistics in a case study using real data, responses of 10 random samples of 500 people to a depression scale. Results lend some support to the hypothesized superiority of a two-parameter item response model over the common form of structural equation modeling, at least when responses are…
Regenerative life support system research
NASA Technical Reports Server (NTRS)
1988-01-01
Sections on modeling, experimental activities during the grant period, and topics under consideration for the future are contained. The sessions contain discussions of: four concurrent modeling approaches that were being integrated near the end of the period (knowledge-based modeling support infrastructure and data base management, object-oriented steady state simulations for three concepts, steady state mass-balance engineering tradeoff studies, and object-oriented time-step, quasidynamic simulations of generic concepts); interdisciplinary research activities, beginning with a discussion of RECON lab development and use, and followed with discussions of waste processing research, algae studies and subsystem modeling, low pressure growth testing of plants, subsystem modeling of plants, control of plant growth using lighting and CO2 supply as variables, search for and development of lunar soil simulants, preliminary design parameters for a lunar base life support system, and research considerations for food processing in space; and appendix materials, including a discussion of the CELSS Conference, detailed analytical equations for mass-balance modeling, plant modeling equations, and parametric data on existing life support systems for use in modeling.
An Application of the Social Support Deterioration Deterrence Model to Rescue Workers
ERIC Educational Resources Information Center
Prati, Gabriele; Pietrantoni, Luca
2010-01-01
This study examined the role of social support in promoting quality of life in the aftermath of critical incidents involvement. Participants were a sample of 586 Italian rescue workers. Structural equation modelling was used to test the social support deterioration deterrence model. Results showed that the impact of critical incident involvement…
A Structural Equation Model of Burnout and Job Exit among Child Protective Services Workers.
ERIC Educational Resources Information Center
Drake, Brett; Yadama, Gautam N.
1996-01-01
Uses a structural equation model to examine the three elements of the Maslach Burnout Inventory (MBI)--emotional exhaustion, depersonalization, and personal accomplishment--in relation to job exit among child protective services workers over a 15-month period. The model was supported, showing the relevance of all three MBI elements of job exit.…
An improved large signal model of InP HEMTs
NASA Astrophysics Data System (ADS)
Li, Tianhao; Li, Wenjun; Liu, Jun
2018-05-01
An improved large signal model for InP HEMTs is proposed in this paper. The channel current and charge model equations are constructed based on the Angelov model equations. Both the equations for channel current and gate charge models were all continuous and high order drivable, and the proposed gate charge model satisfied the charge conservation. For the strong leakage induced barrier reduction effect of InP HEMTs, the Angelov current model equations are improved. The channel current model could fit DC performance of devices. A 2 × 25 μm × 70 nm InP HEMT device is used to demonstrate the extraction and validation of the model, in which the model has predicted the DC I–V, C–V and bias related S parameters accurately. Project supported by the National Natural Science Foundation of China (No. 61331006).
NASA Technical Reports Server (NTRS)
Achtemeier, G. L.
1986-01-01
Since late 1982 NASA has supported research to develop a numerical variational model for the diagnostic assimilation of conventional and space-based meteorological data. In order to analyze the model components, four variational models are defined dividing the problem naturally according to increasing complexity. The first of these variational models (MODEL I), the subject of this report, contains the two nonlinear horizontal momentum equations, the integrated continuity equation, and the hydrostatic equation. This report summarizes the results of research (1) to improve the way the large nonmeteorological parts of the pressure gradient force are partitioned between the two terms of the pressure gradient force terms of the horizontal momentum equations, (2) to generalize the integrated continuity equation to account for variable pressure thickness over elevated terrain, and (3) to introduce horizontal variation in the precision modulus weights for the observations.
Mechanism test bed. Flexible body model report
NASA Technical Reports Server (NTRS)
Compton, Jimmy
1991-01-01
The Space Station Mechanism Test Bed is a six degree-of-freedom motion simulation facility used to evaluate docking and berthing hardware mechanisms. A generalized rigid body math model was developed which allowed the computation of vehicle relative motion in six DOF due to forces and moments from mechanism contact, attitude control systems, and gravity. No vehicle size limitations were imposed in the model. The equations of motion were based on Hill's equations for translational motion with respect to a nominal circular earth orbit and Newton-Euler equations for rotational motion. This rigid body model and supporting software were being refined.
[A Structural Equation Model on Family Strength of Married Working Women].
Hong, Yeong Seon; Han, Kuem Sun
2015-12-01
The purpose of this study was to identify the effect of predictive factors related to family strength and develop a structural equation model that explains family strength among married working women. A hypothesized model was developed based on literature reviews and predictors of family strength by Yoo. This constructed model was built of an eight pathway form. Two exogenous variables included in this model were ego-resilience and family support. Three endogenous variables included in this model were functional couple communication, family stress and family strength. Data were collected using a self-report questionnaire from 319 married working women who were 30~40 of age and lived in cities of Chungnam province in Korea. Data were analyzed with PASW/WIN 18.0 and AMOS 18.0 programs. Family support had a positive direct, indirect and total effect on family strength. Family stress had a negative direct, indirect and total effect on family strength. Functional couple communication had a positive direct and total effect on family strength. These predictive variables of family strength explained 61.8% of model. The results of the study show a structural equation model for family strength of married working women and that predicting factors for family strength are family support, family stress, and functional couple communication. To improve family strength of married working women, the results of this study suggest nursing access and mediative programs to improve family support and functional couple communication, and reduce family stress.
SIGMA: A Knowledge-Based Simulation Tool Applied to Ecosystem Modeling
NASA Technical Reports Server (NTRS)
Dungan, Jennifer L.; Keller, Richard; Lawless, James G. (Technical Monitor)
1994-01-01
The need for better technology to facilitate building, sharing and reusing models is generally recognized within the ecosystem modeling community. The Scientists' Intelligent Graphical Modelling Assistant (SIGMA) creates an environment for model building, sharing and reuse which provides an alternative to more conventional approaches which too often yield poorly documented, awkwardly structured model code. The SIGMA interface presents the user a list of model quantities which can be selected for computation. Equations to calculate the model quantities may be chosen from an existing library of ecosystem modeling equations, or built using a specialized equation editor. Inputs for dim equations may be supplied by data or by calculation from other equations. Each variable and equation is expressed using ecological terminology and scientific units, and is documented with explanatory descriptions and optional literature citations. Automatic scientific unit conversion is supported and only physically-consistent equations are accepted by the system. The system uses knowledge-based semantic conditions to decide which equations in its library make sense to apply in a given situation, and supplies these to the user for selection. "Me equations and variables are graphically represented as a flow diagram which provides a complete summary of the model. Forest-BGC, a stand-level model that simulates photosynthesis and evapo-transpiration for conifer canopies, was originally implemented in Fortran and subsequenty re-implemented using SIGMA. The SIGMA version reproduces daily results and also provides a knowledge base which greatly facilitates inspection, modification and extension of Forest-BGC.
Local Analysis of Shock Capturing Using Discontinuous Galerkin Methodology
NASA Technical Reports Server (NTRS)
Atkins, H. L.
1997-01-01
The compact form of the discontinuous Galerkin method allows for a detailed local analysis of the method in the neighborhood of the shock for a non-linear model problem. Insight gained from the analysis leads to new flux formulas that are stable and that preserve the compactness of the method. Although developed for a model equation, the flux formulas are applicable to systems such as the Euler equations. This article presents the analysis for methods with a degree up to 5. The analysis is accompanied by supporting numerical experiments using Burgers' equation and the Euler equations.
2000-04-01
natural systems (King 1993). Population modelers have used certain difference equations, sometimes called the Lotka - Volterra system of equations...environment 28 Step 5 - Simulate the hydraulic and/or water quality field 29 Step 6 - Generate biota response data for decision support 29 Step 7...Quality and Contaminant Modeling Branch (WQCMB), and Mr. R. Andrew Goodwin, contract student, WQCMB, under the general supervision of Dr. Mark S. Dortch
ERIC Educational Resources Information Center
Bice-Wigington, Tiffany; Huddleston-Casas, Catherine
2012-01-01
Using structural equation modeling, this study examined the mesosystemic processes among rural low-income women, and how these processes subsequently influenced self-reported health. Acknowledging the behavioral processes inherent in utilization of health care and formal social support services, this study moved beyond a behavioral focus by…
ERIC Educational Resources Information Center
Frielink, Noud; Schuengel, Carlo; Embregts, Petri J. C. M.
2018-01-01
The tenets of self-determination theory as applied to support were tested with structural equation modelling for 186 people with ID with a mild to borderline level of functioning. The results showed that (a) perceived autonomy support was positively associated with autonomous motivation and with satisfaction of need for autonomy, relatedness, and…
Personal computer study of finite-difference methods for the transonic small disturbance equation
NASA Technical Reports Server (NTRS)
Bland, Samuel R.
1989-01-01
Calculation of unsteady flow phenomena requires careful attention to the numerical treatment of the governing partial differential equations. The personal computer provides a convenient and useful tool for the development of meshes, algorithms, and boundary conditions needed to provide time accurate solution of these equations. The one-dimensional equation considered provides a suitable model for the study of wave propagation in the equations of transonic small disturbance potential flow. Numerical results for effects of mesh size, extent, and stretching, time step size, and choice of far-field boundary conditions are presented. Analysis of the discretized model problem supports these numerical results. Guidelines for suitable mesh and time step choices are given.
Cao, Weidan; Qi, Xiaona; Cai, Deborah A; Han, Xuanye
2018-01-01
The purpose of the study was to build a model to explain the relationships between social support, uncontrollability appraisal, adaptive coping, and posttraumatic growth (PTG) among cancer patients in China. The participants who were cancer patients in a cancer hospital in China filled out a survey. The final sample size was 201. Structural equation modeling was used to build a model explaining PTG. Structural equation modeling results indicated that higher levels of social support predicted higher levels of adaptive coping, higher levels of uncontrollability appraisal predicted lower levels of adaptive coping, and higher levels of adaptive coping predicted higher levels of PTG. Moreover, adaptive coping was a mediator between social support and growth, as well as a mediator between uncontrollability and growth. The direct effects of social support and uncontrollability on PTG were insignificant. The model demonstrated the relationships between social support, uncontrollability appraisal, adaptive coping, and PTG. It could be concluded that uncontrollability appraisal was a required but not sufficient condition for PTG. Neither social support nor uncontrollability appraisal had direct influence on PTG. However, social support and uncontrollability might indirectly influence PTG, through adaptive coping. It implies that both internal factors (eg, cognitive appraisal and coping) and external factors (eg, social support) are required in order for growth to happen. Copyright © 2017 John Wiley & Sons, Ltd.
Wright, Kevin B; King, Shawn; Rosenberg, Jenny
2014-01-01
This study investigated the influence of social support and self-verification on loneliness, depression, and stress among 477 college students. The authors propose and test a theoretical model using structural equation modeling. The results indicated empirical support for the model, with self-verification mediating the relation between social support and health outcomes. The results have implications for social support and self-verification research, which are discussed along with directions for future research and limitations of the study.
Lee, Hung Sa; Kim, Chunmi
2016-09-01
The purpose of this study was to find the relationship and conceptual model of discrimination, stress, support, and depression among the elderly in South Korea. This was a cross-sectional descriptive study involving 207 community-dwelling elders. Data were collected through questionnaires from May 5 to May 31, 2014 in community senior centers, and analyzed using descriptive statistics, t test, analysis of variance, Scheffé test, and structural equation modeling. There were significant effects of discrimination on stress, support on stress and stress on depression. Moreover, there were two significant indirect effects observed between discrimination and depression, and between support and depression. For each indirect effect, the mediating factor was stress. Additionally, there was no direct effect between discrimination and depression or support. This study found that social support and discrimination had indirect effects on depression through stress. More specifically, decreased stress led to a reduction of depression. Therefore, social support based on a thorough understanding of stress is very important for caring elderly who are depressive. Copyright © 2016. Published by Elsevier B.V.
ERIC Educational Resources Information Center
Savi Cakar, Firdevs; Karatas, Zeynep
2012-01-01
In this study, a developed model to explain a causal relationship between adolescent's self-esteem, perceived social support and hopelessness is tested. The purpose of the study is to explore the relationship between self-esteem, perceived social support and hopelessness in adolescents. A total of 257 adolescents, including 143 female and 114…
ERIC Educational Resources Information Center
Reinhold, Sarah; Gegenfurtner, Andreas; Lewalter, Doris
2018-01-01
Social support and motivation to transfer are important components in conceptual models on transfer of training. Previous research indicates that both support and motivation influence transfer. To date, however, it is not yet clear if social support influences transfer of training directly, or if this influence is mediated by motivation to…
Constraint reasoning in deep biomedical models.
Cruz, Jorge; Barahona, Pedro
2005-05-01
Deep biomedical models are often expressed by means of differential equations. Despite their expressive power, they are difficult to reason about and make decisions, given their non-linearity and the important effects that the uncertainty on data may cause. The objective of this work is to propose a constraint reasoning framework to support safe decisions based on deep biomedical models. The methods used in our approach include the generic constraint propagation techniques for reducing the bounds of uncertainty of the numerical variables complemented with new constraint reasoning techniques that we developed to handle differential equations. The results of our approach are illustrated in biomedical models for the diagnosis of diabetes, tuning of drug design and epidemiology where it was a valuable decision-supporting tool notwithstanding the uncertainty on data. The main conclusion that follows from the results is that, in biomedical decision support, constraint reasoning may be a worthwhile alternative to traditional simulation methods, especially when safe decisions are required.
ERIC Educational Resources Information Center
Cheng, Sheung-Tak; Chan, Alfred C. M.
2007-01-01
Two theoretical models were constructed to illustrate how stressful events, family and friends support, depression, substance use, and death attitude mutually influence to create cumulative risks for suicide. The models were evaluated using structural equation modeling. Results showed that suicidality was strongly predicted by death attitude,…
Impact of the Equation of State in Models for Surfactant Spreading Experiments
NASA Astrophysics Data System (ADS)
Levy, Rachel
2014-11-01
Pulmonary surfactant spreading models often rely on an equation of state relating surfactant concentration to surface tension. Mathematically, these models have been analyzed with simple functional relationships. However, to model an experiment with a given fluid and surfactant, a physically meaningful equation of state can be derived from experimentally obtained isotherms. We discuss the comparison between model and experiment for NBD-PC lipid (surfactant) spreading on glycerol for an empirically-determined equation of state, and compare those results to simulations with traditionally employed functional forms. In particular we compare the timescales by tracking the leading edge of surfactant, the central fluid height and dynamics of the Marangoni ridge. We consider both outward spreading of a disk-shaped region of surfactant and the hole-closure problem in which a disk-shaped surfactant-free region self-heals. Support from NSF-DMS-FRG 0968154, RCSA-CCS-19788, and HHMI.
Modifying Bagnold's Sediment Transport Equation for Use in Watershed-Scale Channel Incision Models
NASA Astrophysics Data System (ADS)
Lammers, R. W.; Bledsoe, B. P.
2016-12-01
Destabilized stream channels may evolve through a sequence of stages, initiated by bed incision and followed by bank erosion and widening. Channel incision can be modeled using Exner-type mass balance equations, but model accuracy is limited by the accuracy and applicability of the selected sediment transport equation. Additionally, many sediment transport relationships require significant data inputs, limiting their usefulness in data-poor environments. Bagnold's empirical relationship for bedload transport is attractive because it is based on stream power, a relatively straightforward parameter to estimate using remote sensing data. However, the equation is also dependent on flow depth, which is more difficult to measure or estimate for entire drainage networks. We recast Bagnold's original sediment transport equation using specific discharge in place of flow depth. Using a large dataset of sediment transport rates from the literature, we show that this approach yields similar predictive accuracy as other stream power based relationships. We also explore the applicability of various critical stream power equations, including Bagnold's original, and support previous conclusions that these critical values can be predicted well based solely on sediment grain size. In addition, we propagate error in these sediment transport equations through channel incision modeling to compare the errors associated with our equation to alternative formulations. This new version of Bagnold's bedload transport equation has utility for channel incision modeling at larger spatial scales using widely available and remote sensing data.
Schraiber, Lilia Blima; Bettiol, Heloisa; Barbieri, Marco Antônio
2017-01-01
Few studies have used structural equation modeling to analyze the effects of variables on violence against women. The present study analyzed the effects of socioeconomic status and social support on violence against pregnant women who used prenatal services. This was a cross-sectional study based on data from the Brazilian Ribeirão Preto and São Luís birth cohort studies (BRISA). The sample of the municipality of São Luís (Maranhão/Brazil) consisted of 1,446 pregnant women interviewed in 2010 and 2011. In the proposed model, socioeconomic status was the most distal predictor, followed by social support that determined general violence, psychological violence or physical/sexual violence, which were analyzed as latent variables. Violence was measured by the World Health Organization Violence against Women (WHO VAW) instrument. The São Luis model was estimated using structural equation modeling and validated with 1,378 pregnant women from Ribeirão Preto (São Paulo/Brazil). The proposed model showed good fit for general, psychological and physical/sexual violence for the São Luís sample. Socioeconomic status had no effect on general or psychological violence (p>0.05), but pregnant women with lower socioeconomic status reported more episodes of physical/sexual violence (standardized coefficient, SC = -0.136; p = 0.021). This effect of socioeconomic status was indirect and mediated by low social support (SC = -0.075; p<0.001). Low social support was associated with more episodes of general, psychological and physical/sexual violence (p<0.001). General and psychological violence indistinctly affected pregnant women of different socioeconomic status. Physical/sexual violence was more common for pregnant women with lower socioeconomic status and lower social support. Better social support contributed to reduction of all types of violence. Results were nearly the same for the validation sample of Ribeirão Preto except that SES was not associated with physical/sexual violence. PMID:28107428
Ribeiro, Marizélia Rodrigues Costa; Silva, Antônio Augusto Moura da; Alves, Maria Teresa Seabra Soares de Britto E; Batista, Rosângela Fernandes Lucena; Ribeiro, Cecília Cláudia Costa; Schraiber, Lilia Blima; Bettiol, Heloisa; Barbieri, Marco Antônio
2017-01-01
Few studies have used structural equation modeling to analyze the effects of variables on violence against women. The present study analyzed the effects of socioeconomic status and social support on violence against pregnant women who used prenatal services. This was a cross-sectional study based on data from the Brazilian Ribeirão Preto and São Luís birth cohort studies (BRISA). The sample of the municipality of São Luís (Maranhão/Brazil) consisted of 1,446 pregnant women interviewed in 2010 and 2011. In the proposed model, socioeconomic status was the most distal predictor, followed by social support that determined general violence, psychological violence or physical/sexual violence, which were analyzed as latent variables. Violence was measured by the World Health Organization Violence against Women (WHO VAW) instrument. The São Luis model was estimated using structural equation modeling and validated with 1,378 pregnant women from Ribeirão Preto (São Paulo/Brazil). The proposed model showed good fit for general, psychological and physical/sexual violence for the São Luís sample. Socioeconomic status had no effect on general or psychological violence (p>0.05), but pregnant women with lower socioeconomic status reported more episodes of physical/sexual violence (standardized coefficient, SC = -0.136; p = 0.021). This effect of socioeconomic status was indirect and mediated by low social support (SC = -0.075; p<0.001). Low social support was associated with more episodes of general, psychological and physical/sexual violence (p<0.001). General and psychological violence indistinctly affected pregnant women of different socioeconomic status. Physical/sexual violence was more common for pregnant women with lower socioeconomic status and lower social support. Better social support contributed to reduction of all types of violence. Results were nearly the same for the validation sample of Ribeirão Preto except that SES was not associated with physical/sexual violence.
Tanaka, Yoichi; Nishi, Yuki; Nishi, Yuki; Osumi, Michihiro; Morioka, Shu
2017-01-01
Pain is a subjective emotional experience that is influenced by psychosociological factors such as social skills, which are defined as problem-solving abilities in social interactions. This study aimed to reveal the relationships among pain, social skills, and other psychosociological factors by using structural equation modeling. A total of 101 healthy volunteers (41 men and 60 women; mean age: 36.6±12.7 years) participated in this study. To evoke participants' sense of inner pain, we showed them images of painful scenes on a PC screen and asked them to evaluate the pain intensity by using the visual analog scale (VAS). We examined the correlation between social skills and VAS, constructed a hypothetical model based on results from previous studies and the current correlational analysis results, and verified the model's fit using structural equation modeling. We found significant positive correlations between VAS and total social skills values, as well as between VAS and the "start of relationships" subscales. Structural equation modeling revealed that the values for "start of relationships" had a direct effect on VAS values (path coefficient =0.32, p <0.01). In addition, the "start of relationships" had both a direct and an indirect effect on psychological factors via social support. The results indicated that extroverted people are more sensitive to inner pain and tend to get more social support and maintain a better psychological condition.
Dynamics in a Maximally Symmetric Universe
NASA Astrophysics Data System (ADS)
Bewketu, Asnakew
2016-03-01
Our present understanding of the evolution of the universe relies upon the Friedmann- Robertson- Walker cosmological models. This model is so successful that it is now being considered as the Standard Model of Cosmology. So in this work we derive the Fried- mann equations using the Friedmann-Robertson-Walker metric together with Einstein field equation and then we give a simple method to reduce Friedmann equations to a second order linear differential equation when it is supplemented with a time dependent equation of state. Furthermore, as illustrative examples, we solve this equation for some specific time dependent equation of states. And also by using the Friedmann equations with some time dependent equation of state we try to determine the cosmic scale factor(the rate at which the universe expands) and age of the Friedmann universe, for the matter dominated era, radiation dominated era and for both matter and radiation dominated era by considering different cases. We have finally discussed the observable quantities that can be evidences for the accelerated expansion of the Friedmann universe. I would like to acknowledge Addis Ababa University for its financial and material support to my work on the title mentioned above.
Effect of Dust Coagulation Dynamics on the Geometry of Aggregates
NASA Technical Reports Server (NTRS)
Nakamura, R.
1996-01-01
Master equation gives a more fundamental description of stochastic coagulation processes rather than popular Smoluchowski's equation. In order to examine the effect of the dynamics on the geometry of resulting aggregates, we study Master equation with a rigorous Monte Carlo algorithm. It is found that Cluster-Cluster aggregation model is a good approximation of orderly growth and the aggregates have fluffy structures with a fractal dimension approx. 2. A scaling analysis of Smoluchowski's equation also supports this conclusion.
NASA Astrophysics Data System (ADS)
Hou, Boyu; Song, Xingchang
1998-04-01
By compactifying the four-dimensional Euclidean space into S2 × S2 manifold and introducing two topological relevant Wess-Zumino terms to Hn ≡ SL(n,c)/SU(n) nonlinear sigma model, we construct a Lagrangian form for SU(n) self-dual Yang-Mills field, from which the self-dual equations follow as the Euler-Lagrange equations. The project supported in part by the NSF Contract No. PHY-81-09110-A-01. One of the authors (X.C. SONG) was supported by a Fung King-Hey Fellowship through the Committee for Educational Exchange with China
ERIC Educational Resources Information Center
Crean, Hugh F.
2012-01-01
This study examines a cross-sectional structural equation model of participation in youth activities, neighborhood adult support, individual decision making skills, and delinquent behavior in urban middle school youths (n = 2611). Results indicate extracurricular activity participation had both direct and indirect associations with delinquent…
Modeling unsteady sound refraction by coherent structures in a high-speed jet
NASA Astrophysics Data System (ADS)
Kan, Pinqing; Lewalle, Jacques
2011-11-01
We construct a visual model for the unsteady refraction of sound waves from point sources in a Ma = 0.6 jet. The mass and inviscid momentum equations give an equation governing acoustic fluctuations, including anisotropic propagation, attenuation and sources; differences with Lighthill's equation will be discussed. On this basis, the theory of characteristics gives canonical equations for the acoustic paths from any source into the far field. We model a steady mean flow in the near-jet region including the potential core and the mixing region downstream of its collapse, and model the convection of coherent structures as traveling wave perturbations of this mean flow. For a regular distribution of point sources in this region, we present a visual rendition of fluctuating distortion, lensing and deaf spots from the viewpoint of a far-field observer. Supported in part by AFOSR Grant FA-9550-10-1-0536 and by a Syracuse University Graduate Fellowship.
NASA Astrophysics Data System (ADS)
Poroseva, Svetlana V.
2013-11-01
Simulations of turbulent boundary-layer flows are usually conducted using a set of the simplified Reynolds-Averaged Navier-Stokes (RANS) equations obtained by order-of-magnitude analysis (OMA) of the original RANS equations. The resultant equations for the mean-velocity components are closed using the Boussinesq approximation for the Reynolds stresses. In this study OMA is applied to the fourth-order RANS (FORANS) set of equations. The FORANS equations are chosen as they can be closed on the level of the 5th-order correlations without using unknown model coefficients, i.e. no turbulent diffusion modeling is required. New models for the 2nd-, 3rd- and 4th-order velocity-pressure gradient correlations are derived for the current FORANS equations. This set of FORANS equations and models are analyzed for the case of two-dimensional mean flow. The equations include familiar transport terms for the mean-velocity components along with algebraic expressions for velocity correlations of different orders specific to the FORANS approach. Flat plate DNS data (Spalart, 1988) are used to verify these expressions and the areas of the OMA applicability within the boundary layer. The material is based upon work supported by NASA under award NNX12AJ61A.
Prediction of light aircraft interior sound pressure level using the room equation
NASA Technical Reports Server (NTRS)
Atwal, M.; Bernhard, R.
1984-01-01
The room equation is investigated for predicting interior sound level. The method makes use of an acoustic power balance, by equating net power flow into the cabin volume to power dissipated within the cabin using the room equation. The sound power level transmitted through the panels was calculated by multiplying the measured space averaged transmitted intensity for each panel by its surface area. The sound pressure level was obtained by summing the mean square sound pressures radiated from each panel. The data obtained supported the room equation model in predicting the cabin interior sound pressure level.
Weil, Joyce; Hutchinson, Susan R; Traxler, Karen
2014-11-01
Data from the Women's Health and Aging Study were used to test a model of factors explaining depressive symptomology. The primary purpose of the study was to explore the association between performance-based measures of functional ability and depression and to examine the role of self-rated physical difficulties and perceived instrumental support in mediating the relationship between performance-based functioning and depression. The inclusion of performance-based measures allows for the testing of functional ability as a clinical precursor to disability and depression: a critical, but rarely examined, association in the disablement process. Structural equation modeling supported the overall fit of the model and found an indirect relationship between performance-based functioning and depression, with perceived physical difficulties serving as a significant mediator. Our results highlight the complementary nature of performance-based and self-rated measures and the importance of including perception of self-rated physical difficulties when examining depression in older persons. © The Author(s) 2014.
Riley, Bettina H; McDermott, Ryon C
2018-05-01
National health priorities identify adolescent sexual-risk behavior outcomes as research and intervention targets for mental health. Reduce sexual-risk behavioral outcomes by applying self-determination theory to focus on decision-making autonomy. This study examined late adolescents' recollections of parental autonomy support/sexual-risk communication experiences and autonomy motivation as predictors of sexual-risk behaviors/knowledge. A convenience sample ( N = 249) of 19- and 20-year-old university students completed self-report questionnaires. Structural equation modeling with latent variables examined direct/indirect effects in the hypothesized model. Parents contributed uniquely through sexual-risk communication and/or autonomy support to late adolescents' autonomous motivation. The final model evidenced acceptable fit and explained 12% of the variation in adolescent sexual-risk behavior, 7% in adolescent autonomous motivation, and 2% in adolescent sexual-risk knowledge. Psychiatric mental health nurses should conduct further research and design interventions promoting parent autonomy support and adolescent autonomous motivation to reduce sexual risk-behavior and increase sexual-risk knowledge.
On the effects of nonlinear boundary conditions in diffusive logistic equations on bounded domains
NASA Astrophysics Data System (ADS)
Cantrell, Robert Stephen; Cosner, Chris
We study a diffusive logistic equation with nonlinear boundary conditions. The equation arises as a model for a population that grows logistically inside a patch and crosses the patch boundary at a rate that depends on the population density. Specifically, the rate at which the population crosses the boundary is assumed to decrease as the density of the population increases. The model is motivated by empirical work on the Glanville fritillary butterfly. We derive local and global bifurcation results which show that the model can have multiple equilibria and in some parameter ranges can support Allee effects. The analysis leads to eigenvalue problems with nonstandard boundary conditions.
FracFit: A Robust Parameter Estimation Tool for Anomalous Transport Problems
NASA Astrophysics Data System (ADS)
Kelly, J. F.; Bolster, D.; Meerschaert, M. M.; Drummond, J. D.; Packman, A. I.
2016-12-01
Anomalous transport cannot be adequately described with classical Fickian advection-dispersion equations (ADE). Rather, fractional calculus models may be used, which capture non-Fickian behavior (e.g. skewness and power-law tails). FracFit is a robust parameter estimation tool based on space- and time-fractional models used to model anomalous transport. Currently, four fractional models are supported: 1) space fractional advection-dispersion equation (sFADE), 2) time-fractional dispersion equation with drift (TFDE), 3) fractional mobile-immobile equation (FMIE), and 4) tempered fractional mobile-immobile equation (TFMIE); additional models may be added in the future. Model solutions using pulse initial conditions and continuous injections are evaluated using stable distribution PDFs and CDFs or subordination integrals. Parameter estimates are extracted from measured breakthrough curves (BTCs) using a weighted nonlinear least squares (WNLS) algorithm. Optimal weights for BTCs for pulse initial conditions and continuous injections are presented, facilitating the estimation of power-law tails. Two sample applications are analyzed: 1) continuous injection laboratory experiments using natural organic matter and 2) pulse injection BTCs in the Selke river. Model parameters are compared across models and goodness-of-fit metrics are presented, assisting model evaluation. The sFADE and time-fractional models are compared using space-time duality (Baeumer et. al., 2009), which links the two paradigms.
A Riemann-Hilbert formulation for the finite temperature Hubbard model
NASA Astrophysics Data System (ADS)
Cavaglià, Andrea; Cornagliotto, Martina; Mattelliano, Massimo; Tateo, Roberto
2015-06-01
Inspired by recent results in the context of AdS/CFT integrability, we reconsider the Thermodynamic Bethe Ansatz equations describing the 1D fermionic Hubbard model at finite temperature. We prove that the infinite set of TBA equations are equivalent to a simple nonlinear Riemann-Hilbert problem for a finite number of unknown functions. The latter can be transformed into a set of three coupled nonlinear integral equations defined over a finite support, which can be easily solved numerically. We discuss the emergence of an exact Bethe Ansatz and the link between the TBA approach and the results by Jüttner, Klümper and Suzuki based on the Quantum Transfer Matrix method. We also comment on the analytic continuation mechanism leading to excited states and on the mirror equations describing the finite-size Hubbard model with twisted boundary conditions.
Spousal Support and Work--Family Balance in Launching a Family Business
ERIC Educational Resources Information Center
Gudmunson, Clinton G.; Danes, Sharon M.; Werbel, James D.; Loy, Johnben Teik-Cheok
2009-01-01
This study examines whether emotional spousal support contributes to business owners' perceived work-family balance while launching a family business. Hobfoll's Conservation of Resources theory of stress is applied to 109 family business owners and their spouses. Results from structural equation models support several hypotheses. First, reports of…
Computationally efficient statistical differential equation modeling using homogenization
Hooten, Mevin B.; Garlick, Martha J.; Powell, James A.
2013-01-01
Statistical models using partial differential equations (PDEs) to describe dynamically evolving natural systems are appearing in the scientific literature with some regularity in recent years. Often such studies seek to characterize the dynamics of temporal or spatio-temporal phenomena such as invasive species, consumer-resource interactions, community evolution, and resource selection. Specifically, in the spatial setting, data are often available at varying spatial and temporal scales. Additionally, the necessary numerical integration of a PDE may be computationally infeasible over the spatial support of interest. We present an approach to impose computationally advantageous changes of support in statistical implementations of PDE models and demonstrate its utility through simulation using a form of PDE known as “ecological diffusion.” We also apply a statistical ecological diffusion model to a data set involving the spread of mountain pine beetle (Dendroctonus ponderosae) in Idaho, USA.
Equations of motion of a space station with emphasis on the effects of the gravity gradient
NASA Technical Reports Server (NTRS)
Tuell, L. P.
1987-01-01
The derivation of the equations of motion is based upon the principle of virtual work. As developed, these equations apply only to a space vehicle whose physical model consists of a rigid central carrier supporting several flexible appendages (not interconnected), smaller rigid bodies, and point masses. Clearly evident in the equations is the respect paid to the influence of the Earth's gravity field, considerably more than has been the custom in simulating vehicle motion. The effect of unpredictable crew motion is ignored.
Calculation of Thermally-Induced Displacements in Spherically Domed Ion Engine Grids
NASA Technical Reports Server (NTRS)
Soulas, George C.
2006-01-01
An analytical method for predicting the thermally-induced normal and tangential displacements of spherically domed ion optics grids under an axisymmetric thermal loading is presented. A fixed edge support that could be thermally expanded is used for this analysis. Equations for the displacements both normal and tangential to the surface of the spherical shell are derived. A simplified equation for the displacement at the center of the spherical dome is also derived. The effects of plate perforation on displacements and stresses are determined by modeling the perforated plate as an equivalent solid plate with modified, or effective, material properties. Analytical model results are compared to the results from a finite element model. For the solid shell, comparisons showed that the analytical model produces results that closely match the finite element model results. The simplified equation for the normal displacement of the spherical dome center is also found to accurately predict this displacement. For the perforated shells, the analytical solution and simplified equation produce accurate results for materials with low thermal expansion coefficients.
Liao, David; Tlsty, Thea D.
2014-01-01
The use of mathematical equations to analyse population dynamics measurements is being increasingly applied to elucidate complex dynamic processes in biological systems, including cancer. Purely ‘empirical’ equations may provide sufficient accuracy to support predictions and therapy design. Nevertheless, interpretation of fitting equations in terms of physical and biological propositions can provide additional insights that can be used both to refine models that prove inconsistent with data and to understand the scope of applicability of models that validate. The purpose of this tutorial is to assist readers in mathematically associating interpretations with equations and to provide guidance in choosing interpretations and experimental systems to investigate based on currently available biological knowledge, techniques in mathematical and computational analysis and methods for in vitro and in vivo experiments. PMID:25097752
Peakompactons: Peaked compact nonlinear waves
Christov, Ivan C.; Kress, Tyler; Saxena, Avadh
2017-04-20
This paper is meant as an accessible introduction to/tutorial on the analytical construction and numerical simulation of a class of nonstandard solitary waves termed peakompactons. We present that these peaked compactly supported waves arise as solutions to nonlinear evolution equations from a hierarchy of nonlinearly dispersive Korteweg–de Vries-type models. Peakompactons, like the now-well-known compactons and unlike the soliton solutions of the Korteweg–de Vries equation, have finite support, i.e., they are of finite wavelength. However, unlike compactons, peakompactons are also peaked, i.e., a higher spatial derivative suffers a jump discontinuity at the wave’s crest. Here, we construct such solutions exactly bymore » reducing the governing partial differential equation to a nonlinear ordinary differential equation and employing a phase-plane analysis. Lastly, a simple, but reliable, finite-difference scheme is also designed and tested for the simulation of collisions of peakompactons. In addition to the peakompacton class of solutions, the general physical features of the so-called K #(n,m) hierarchy of nonlinearly dispersive Korteweg–de Vries-type models are discussed as well.« less
ERIC Educational Resources Information Center
Linville, Deanna; O'Neil, Maya; Huebner, Angela
2011-01-01
This study examined linkages between depression symptoms (DEP) and positive adult support (PAS) in female adolescents and the partially mediating influence of eating disturbances (ED). Structural equation modeling was used to establish measurement models for each of the latent constructs, determine the relationships among the latent constructs,…
ERIC Educational Resources Information Center
Han, Hyojung; Rojewski, Jay W.
2015-01-01
A Korean national database, the High School Graduates Occupational Mobility Survey, was used to examine the influence of perceived social supports (family and school) and career adaptability on the subsequent job satisfaction of work-bound adolescents 4 months after their transition from high school to work. Structural equation modeling analysis…
Overview of the ArbiTER edge plasma eigenvalue code
NASA Astrophysics Data System (ADS)
Baver, Derek; Myra, James; Umansky, Maxim
2011-10-01
The Arbitrary Topology Equation Reader, or ArbiTER, is a flexible eigenvalue solver that is currently under development for plasma physics applications. The ArbiTER code builds on the equation parser framework of the existing 2DX code, extending it to include a topology parser. This will give the code the capability to model problems with complicated geometries (such as multiple X-points and scrape-off layers) or model equations with arbitrary numbers of dimensions (e.g. for kinetic analysis). In the equation parser framework, model equations are not included in the program's source code. Instead, an input file contains instructions for building a matrix from profile functions and elementary differential operators. The program then executes these instructions in a sequential manner. These instructions may also be translated into analytic form, thus giving the code transparency as well as flexibility. We will present an overview of how the ArbiTER code is to work, as well as preliminary results from early versions of this code. Work supported by the U.S. DOE.
Predicting Homework Effort: Support for a Domain-Specific, Multilevel Homework Model
ERIC Educational Resources Information Center
Trautwein, Ulrich; Ludtke, Oliver; Schnyder, Inge; Niggli, Alois
2006-01-01
According to the domain-specific, multilevel homework model proposed in the present study, students' homework effort is influenced by expectancy and value beliefs, homework characteristics, parental homework behavior, and conscientiousness. The authors used structural equation modeling and hierarchical linear modeling analyses to test the model in…
Analysis of nonlocal neural fields for both general and gamma-distributed connectivities
NASA Astrophysics Data System (ADS)
Hutt, Axel; Atay, Fatihcan M.
2005-04-01
This work studies the stability of equilibria in spatially extended neuronal ensembles. We first derive the model equation from statistical properties of the neuron population. The obtained integro-differential equation includes synaptic and space-dependent transmission delay for both general and gamma-distributed synaptic connectivities. The latter connectivity type reveals infinite, finite, and vanishing self-connectivities. The work derives conditions for stationary and nonstationary instabilities for both kernel types. In addition, a nonlinear analysis for general kernels yields the order parameter equation of the Turing instability. To compare the results to findings for partial differential equations (PDEs), two typical PDE-types are derived from the examined model equation, namely the general reaction-diffusion equation and the Swift-Hohenberg equation. Hence, the discussed integro-differential equation generalizes these PDEs. In the case of the gamma-distributed kernels, the stability conditions are formulated in terms of the mean excitatory and inhibitory interaction ranges. As a novel finding, we obtain Turing instabilities in fields with local inhibition-lateral excitation, while wave instabilities occur in fields with local excitation and lateral inhibition. Numerical simulations support the analytical results.
NASA Technical Reports Server (NTRS)
Thompson, C. P.; Leaf, G. K.; Vanrosendale, J.
1991-01-01
An algorithm is described for the solution of the laminar, incompressible Navier-Stokes equations. The basic algorithm is a multigrid based on a robust, box-based smoothing step. Its most important feature is the incorporation of automatic, dynamic mesh refinement. This algorithm supports generalized simple domains. The program is based on a standard staggered-grid formulation of the Navier-Stokes equations for robustness and efficiency. Special grid transfer operators were introduced at grid interfaces in the multigrid algorithm to ensure discrete mass conservation. Results are presented for three models: the driven-cavity, a backward-facing step, and a sudden expansion/contraction.
Nonlinear analysis of 0-3 polarized PLZT microplate based on the new modified couple stress theory
NASA Astrophysics Data System (ADS)
Wang, Liming; Zheng, Shijie
2018-02-01
In this study, based on the new modified couple stress theory, the size- dependent model for nonlinear bending analysis of a pure 0-3 polarized PLZT plate is developed for the first time. The equilibrium equations are derived from a variational formulation based on the potential energy principle and the new modified couple stress theory. The Galerkin method is adopted to derive the nonlinear algebraic equations from governing differential equations. And then the nonlinear algebraic equations are solved by using Newton-Raphson method. After simplification, the new model includes only a material length scale parameter. In addition, numerical examples are carried out to study the effect of material length scale parameter on the nonlinear bending of a simply supported pure 0-3 polarized PLZT plate subjected to light illumination and uniform distributed load. The results indicate the new model is able to capture the size effect and geometric nonlinearity.
Social Support, Traumatic Events, and Depressive Symptoms among African Americans
ERIC Educational Resources Information Center
Lincoln, Karen D.; Chatters, Linda M.; Taylor, Robert Joseph
2005-01-01
Structural equation modeling was used to examine the relationships among stress, social support, negative interaction, and mental health in a sample of African American men and women between ages 18 and 54 (N = 591) from the National Comorbidity Study. The study findings indicated that social support decreased the number of depressive symptoms,…
Tanaka, Yoichi; Nishi, Yuki; Nishi, Yuki; Osumi, Michihiro; Morioka, Shu
2017-01-01
Pain is a subjective emotional experience that is influenced by psychosociological factors such as social skills, which are defined as problem-solving abilities in social interactions. This study aimed to reveal the relationships among pain, social skills, and other psychosociological factors by using structural equation modeling. A total of 101 healthy volunteers (41 men and 60 women; mean age: 36.6±12.7 years) participated in this study. To evoke participants’ sense of inner pain, we showed them images of painful scenes on a PC screen and asked them to evaluate the pain intensity by using the visual analog scale (VAS). We examined the correlation between social skills and VAS, constructed a hypothetical model based on results from previous studies and the current correlational analysis results, and verified the model’s fit using structural equation modeling. We found significant positive correlations between VAS and total social skills values, as well as between VAS and the “start of relationships” subscales. Structural equation modeling revealed that the values for “start of relationships” had a direct effect on VAS values (path coefficient =0.32, p<0.01). In addition, the “start of relationships” had both a direct and an indirect effect on psychological factors via social support. The results indicated that extroverted people are more sensitive to inner pain and tend to get more social support and maintain a better psychological condition. PMID:28979161
Social support for diabetes illness management: supporting adolescents and caregivers.
Idalski Carcone, April; Ellis, Deborah A; Weisz, Arlene; Naar-King, Sylvie
2011-10-01
The aim of this research study was to examine the relationship between 4 sources of social support (support for the adolescent from family, support for the adolescent from friends, support for the caregiver from another adult, and support to the family from the health care provider) and adolescents' diabetes outcomes (illness management behavior and health status) using a diverse sample of urban adolescents. One hundred forty-one adolescents with insulin-managed diabetes and their primary caregivers completed questionnaires assessing social support and illness management behavior. Glucose meters were downloaded and hemoglobin A1c assays were obtained. Structural equation modeling was used to test a model social support informed by social ecological theory. The results of the structural equation modeling indicated that support for the caregiver from another adult was directly and positively related to support for the adolescent from family and indirectly related to better illness management. Support for the adolescent from family was directly related to better diabetes management and, through better management, to better diabetes health. Support to the family from the health care provider was not related to support for the adolescent and support to the adolescent from friends was not related to illness management, as hypothesized. This study identifies a novel target for social support intervention to improve adolescents' illness management behavior-the caregivers of adolescents with diabetes. By enhancing the social support caregivers receive from other adults in their lives, caregivers' ability to support their adolescent children with diabetes might also be improved which, in turn, improves adolescents' illness outcomes.
ERIC Educational Resources Information Center
Lavee, Yoav; And Others
1985-01-01
Examined relationships among major variables of the Double ABCX model of family stress and adaptation using data on Army families' adaptation to the crisis of relocation overseas. Results support the notion of pile-up of demands. Family system resources and social support are both found to facilitate adaptation. (Author/BL)
NASA Astrophysics Data System (ADS)
Buyalich, G. D.; Buyalich, K. G.; Umrikhina, V. Yu
2016-08-01
One of the main reasons of roof support failures in production faces is mismatch of their parameters and parameters of dynamic impact on the metal structure from the falling roof during its secondary convergences. To assess the parameters of vibrational interaction of roof support with the roof, it was suggested to use computational models of forces application and a partial differential equation of fourth order describing this process, its numerical solution allowed to assess frequency, amplitude and speed of roof strata movement depending on physical and mechanical properties of the roof strata as well as on load bearing and geometry parameters of the roof support. To simplify solving of the differential equation, roof support response was taken as the concentrated force.
Fuel consumption modeling in support of ATM environmental decision-making
DOT National Transportation Integrated Search
2009-07-01
The FAA has recently updated the airport terminal : area fuel consumption methods used in its environmental models. : These methods are based on fitting manufacturers fuel : consumption data to empirical equations. The new fuel : consumption metho...
Costa, Danielle Cristina Silva; Ribeiro, Marizélia Rodrigues Costa; Batista, Rosângela Fernandes Lucena; Valente, Camila Maia; Ribeiro, João Victor Fonseca; Almeida, Laysa Andrade; Costa, Ludmilla Emilia Martins; Alves, Maria Teresa Seabra Soares de Britto E; Silva, Antônio Augusto Moura da
2017-01-23
The factors associated with physical violence against pregnant women were analyzed in a cross-sectional study of 1,446 pregnant women from a prenatal cohort who were interviewed in 2010 and 2011 in São Luís, Brazil. In the initial model, socioeconomic status occupied the most distal position, determining sociodemographic factors, social support and the behavioral factors that ultimately determined physical violence, which was investigated as a latent variable. Structural equation modeling was used in the analysis. Pregnant women who were from more disadvantaged backgrounds (p = 0.027), did not reside with intimate partners (p = 0.005), had low social support (p < 0.001) and had a high number of lifetime intimate partners (p = 0.001) reported more episodes of physical violence. Low social support was the primary mediator of the effect of socioeconomic status on physical violence. The effect of marital status was mainly mediated by a high number of lifetime intimate partners.
On the breakup of viscous liquid threads
NASA Technical Reports Server (NTRS)
Papageorgiou, Demetrios T.
1995-01-01
A one-dimensional model evolution equation is used to describe the nonlinear dynamics that can lead to the breakup of a cylindrical thread of Newtonian fluid when capillary forces drive the motion. The model is derived from the Stokes equations by use of rational asymptotic expansions and under a slender jet approximation. The equations are solved numerically and the jet radius is found to vanish after a finite time yielding breakup. The slender jet approximation is valid throughout the evolution leading to pinching. The model admits self-similar pinching solutions which yield symmetric shapes at breakup. These solutions are shown to be the ones selected by the initial boundary value problem, for general initial conditions. Further more, the terminal state of the model equation is shown to be identical to that predicted by a theory which looks for singular pinching solutions directly from the Stokes equations without invoking the slender jet approximation throughout the evolution. It is shown quantitatively, therefore, that the one-dimensional model gives a consistent terminal state with the jet shape being locally symmetric at breakup. The asymptotic expansion scheme is also extended to include unsteady and inerticial forces in the momentum equations to derive an evolution system modelling the breakup of Navier-Stokes jets. The model is employed in extensive simulations to compute breakup times for different initial conditions; satellite drop formation is also supported by the model and the dependence of satellite drop volumes on initial conditions is studied.
Bayly, Philip V.; Wilson, Kate S.
2014-01-01
The motion of flagella and cilia arises from the coordinated activity of dynein motor protein molecules arrayed along microtubule doublets that span the length of axoneme (the flagellar cytoskeleton). Dynein activity causes relative sliding between the doublets, which generates propulsive bending of the flagellum. The mechanism of dynein coordination remains incompletely understood, although it has been the focus of many studies, both theoretical and experimental. In one leading hypothesis, known as the geometric clutch (GC) model, local dynein activity is thought to be controlled by interdoublet separation. The GC model has been implemented as a numerical simulation in which the behavior of a discrete set of rigid links in viscous fluid, driven by active elements, was approximated using a simplified time-marching scheme. A continuum mechanical model and associated partial differential equations of the GC model have remained lacking. Such equations would provide insight into the underlying biophysics, enable mathematical analysis of the behavior, and facilitate rigorous comparison to other models. In this article, the equations of motion for the flagellum and its doublets are derived from mechanical equilibrium principles and simple constitutive models. These equations are analyzed to reveal mechanisms of wave propagation and instability in the GC model. With parameter values in the range expected for Chlamydomonas flagella, solutions to the fully nonlinear equations closely resemble observed waveforms. These results support the ability of the GC hypothesis to explain dynein coordination in flagella and provide a mathematical foundation for comparison to other leading models. PMID:25296329
Hpm of Estrogen Model on the Dynamics of Breast Cancer
NASA Astrophysics Data System (ADS)
Govindarajan, A.; Balamuralitharan, S.; Sundaresan, T.
2018-04-01
We enhance a deterministic mathematical model involving universal dynamics on breast cancer with immune response. This is population model so includes Normal cells class, Tumor cells, Immune cells and Estrogen. The eects regarding Estrogen are below incorporated in the model. The effects show to that amount the arrival of greater Estrogen increases the danger over growing breast cancer. Furthermore, approximate solution regarding nonlinear differential equations is arrived by Homotopy Perturbation Method (HPM). Hes HPM is good and correct technique after solve nonlinear differential equation directly. Approximate solution learnt with the support of that method is suitable same as like the actual results in accordance with this models.
Working covariance model selection for generalized estimating equations.
Carey, Vincent J; Wang, You-Gan
2011-11-20
We investigate methods for data-based selection of working covariance models in the analysis of correlated data with generalized estimating equations. We study two selection criteria: Gaussian pseudolikelihood and a geodesic distance based on discrepancy between model-sensitive and model-robust regression parameter covariance estimators. The Gaussian pseudolikelihood is found in simulation to be reasonably sensitive for several response distributions and noncanonical mean-variance relations for longitudinal data. Application is also made to a clinical dataset. Assessment of adequacy of both correlation and variance models for longitudinal data should be routine in applications, and we describe open-source software supporting this practice. Copyright © 2011 John Wiley & Sons, Ltd.
PROTO-PLASM: parallel language for adaptive and scalable modelling of biosystems.
Bajaj, Chandrajit; DiCarlo, Antonio; Paoluzzi, Alberto
2008-09-13
This paper discusses the design goals and the first developments of PROTO-PLASM, a novel computational environment to produce libraries of executable, combinable and customizable computer models of natural and synthetic biosystems, aiming to provide a supporting framework for predictive understanding of structure and behaviour through multiscale geometric modelling and multiphysics simulations. Admittedly, the PROTO-PLASM platform is still in its infancy. Its computational framework--language, model library, integrated development environment and parallel engine--intends to provide patient-specific computational modelling and simulation of organs and biosystem, exploiting novel functionalities resulting from the symbolic combination of parametrized models of parts at various scales. PROTO-PLASM may define the model equations, but it is currently focused on the symbolic description of model geometry and on the parallel support of simulations. Conversely, CellML and SBML could be viewed as defining the behavioural functions (the model equations) to be used within a PROTO-PLASM program. Here we exemplify the basic functionalities of PROTO-PLASM, by constructing a schematic heart model. We also discuss multiscale issues with reference to the geometric and physical modelling of neuromuscular junctions.
Proto-Plasm: parallel language for adaptive and scalable modelling of biosystems
Bajaj, Chandrajit; DiCarlo, Antonio; Paoluzzi, Alberto
2008-01-01
This paper discusses the design goals and the first developments of Proto-Plasm, a novel computational environment to produce libraries of executable, combinable and customizable computer models of natural and synthetic biosystems, aiming to provide a supporting framework for predictive understanding of structure and behaviour through multiscale geometric modelling and multiphysics simulations. Admittedly, the Proto-Plasm platform is still in its infancy. Its computational framework—language, model library, integrated development environment and parallel engine—intends to provide patient-specific computational modelling and simulation of organs and biosystem, exploiting novel functionalities resulting from the symbolic combination of parametrized models of parts at various scales. Proto-Plasm may define the model equations, but it is currently focused on the symbolic description of model geometry and on the parallel support of simulations. Conversely, CellML and SBML could be viewed as defining the behavioural functions (the model equations) to be used within a Proto-Plasm program. Here we exemplify the basic functionalities of Proto-Plasm, by constructing a schematic heart model. We also discuss multiscale issues with reference to the geometric and physical modelling of neuromuscular junctions. PMID:18559320
Analytic Modeling of the Hydrodynamic, Thermal, and Structural Behavior of Foil Thrust Bearings
NASA Technical Reports Server (NTRS)
Bruckner, Robert J.; DellaCorte, Christopher; Prahl, Joseph M.
2005-01-01
A simulation and modeling effort is conducted on gas foil thrust bearings. A foil bearing is a self acting hydrodynamic device capable of separating stationary and rotating components of rotating machinery by a film of air or other gaseous lubricant. Although simple in appearance these bearings have proven to be complicated devices in analysis. They are sensitive to fluid structure interaction, use a compressible gas as a lubricant, may not be in the fully continuum range of fluid mechanics, and operate in the range where viscous heat generation is significant. These factors provide a challenge to the simulation and modeling task. The Reynolds equation with the addition of Knudsen number effects due to thin film thicknesses is used to simulate the hydrodynamics. The energy equation is manipulated to simulate the temperature field of the lubricant film and combined with the ideal gas relationship, provides density field input to the Reynolds equation. Heat transfer between the lubricant and the surroundings is also modeled. The structural deformations of the bearing are modeled with a single partial differential equation. The equation models the top foil as a thin, bending dominated membrane whose deflections are governed by the biharmonic equation. A linear superposition of hydrodynamic load and compliant foundation reaction is included. The stiffness of the compliant foundation is modeled as a distributed stiffness that supports the top foil. The system of governing equations is solved numerically by a computer program written in the Mathematica computing environment. Representative calculations and comparisons with experimental results are included for a generation I gas foil thrust bearing.
Standage, Martyn; Gillison, Fiona B; Ntoumanis, Nikos; Treasure, Darren C
2012-02-01
A three-wave prospective design was used to assess a model of motivation guided by self-determination theory (Ryan & Deci, 2008) spanning the contexts of school physical education (PE) and exercise. The outcome variables examined were health-related quality of life (HRQoL), physical self-concept (PSC), and 4 days of objectively assessed estimates of activity. Secondary school students (n = 494) completed questionnaires at three separate time points and were familiarized with how to use a sealed pedometer. Results of structural equation modeling supported a model in which perceptions of autonomy support from a PE teacher positively predicted PE-related need satisfaction (autonomy, competence, and relatedness). Competence predicted PSC, whereas relatedness predicted HRQoL. Autonomy and competence positively predicted autonomous motivation toward PE, which in turn positively predicted autonomous motivation toward exercise (i.e., 4-day pedometer step count). Autonomous motivation toward exercise positively predicted step count, HRQoL, and PSC. Results of multisample structural equation modeling supported gender invariance. Suggestions for future work are discussed.
A structural model of health behavior modification among patients with cardiovascular disease.
Goong, Hwasoo; Ryu, Seungmi; Xu, Lijuan
2016-02-01
The purpose of the study was to test a structural equation model in which social support, health beliefs, and stage of change predict the health behaviors of patients with cardiovascular disease. A cross-sectional correlational design was used. Using convenience sampling, a survey about social support, health belief, stage of change, and health behavior was completed by 314 adults with cardiovascular disease from outpatient clinics in 2 university hospitals in Korea. Data were analyzed using a structural equation model with the Analysis of Moment program. The participants were aged 53.44±13.19 years (mean±SD), and about 64% of them were male. The proposed model fit the data from the study well, explaining 19% and 60% of the variances in the stage of change and health behavior, respectively. The findings indicate that the performance of health behavior modification among the patients with cardiovascular disease can be explained by social support, health belief, and stage of change based on a health-belief and stage-of-change model. Further studies are warranted to confirm the efficacy of health-promoting strategies in initiating and maintaining the performance of health behaviors by providing social support from family and medical staff and enhancing health belief. Copyright © 2015 Elsevier Inc. All rights reserved.
The Impact of Parental Support and Perception of School on Hispanic Youth's Substance Use
ERIC Educational Resources Information Center
Shi, Qi; Steen, Sam; Weiss, Brandi A.
2013-01-01
With structural equation modeling, the National Survey on Drug Use and Health data were used to examine "parental support" and "perception of school" and their relation to Hispanic youth's substance use (alcohol, cigarettes, and marijuana).
ERIC Educational Resources Information Center
Hakimzadeh, Rezvan; Besharat, Mohammad-Ali; Khaleghinezhad, Seyed Ali; Ghorban Jahromi, Reza
2016-01-01
This study investigates the relationships among peers' perceived support, life satisfaction, and student engagement in academic activities. Three hundred and fifteen Iranian students (172 boys and 143 girls) who were studying in one suburb of Tehran participated in this study. All participants were asked to complete Peers' Perceived Support scale…
ERIC Educational Resources Information Center
Benson, Paul R.
2012-01-01
This study examined the characteristics of the support networks of 106 mothers of children with ASD and their relationship to perceived social support, depressed mood, and subjective well-being. Using structural equation modeling, two competing sets of hypotheses were assessed: (1) that network characteristics would impact psychological adjustment…
Optimism, Social Support, and Well-Being in Mothers of Children with Autism Spectrum Disorder
ERIC Educational Resources Information Center
Ekas, Naomi V.; Lickenbrock, Diane M.; Whitman, Thomas L.
2010-01-01
This study used structural equation modeling to examine the relationship between multiple sources of social support (e.g., partner, family, and friends), optimism, and well-being among mothers of children with ASD. Social support was examined as a mediator and moderator of the optimism-maternal well-being relationship. Moreover, the role of…
Modeling languages for biochemical network simulation: reaction vs equation based approaches.
Wiechert, Wolfgang; Noack, Stephan; Elsheikh, Atya
2010-01-01
Biochemical network modeling and simulation is an essential task in any systems biology project. The systems biology markup language (SBML) was established as a standardized model exchange language for mechanistic models. A specific strength of SBML is that numerous tools for formulating, processing, simulation and analysis of models are freely available. Interestingly, in the field of multidisciplinary simulation, the problem of model exchange between different simulation tools occurred much earlier. Several general modeling languages like Modelica have been developed in the 1990s. Modelica enables an equation based modular specification of arbitrary hierarchical differential algebraic equation models. Moreover, libraries for special application domains can be rapidly developed. This contribution compares the reaction based approach of SBML with the equation based approach of Modelica and explains the specific strengths of both tools. Several biological examples illustrating essential SBML and Modelica concepts are given. The chosen criteria for tool comparison are flexibility for constraint specification, different modeling flavors, hierarchical, modular and multidisciplinary modeling. Additionally, support for spatially distributed systems, event handling and network analysis features is discussed. As a major result it is shown that the choice of the modeling tool has a strong impact on the expressivity of the specified models but also strongly depends on the requirements of the application context.
Yang, Tianan; Shen, Yu-Ming; Zhu, Mingjing; Liu, Yuanling; Deng, Jianwei; Chen, Qian; See, Lai-Chu
2015-01-01
We examined the effects of co-worker and supervisor support on job stress and presenteeism in an aging workforce. Structural equation modelling was used to evaluate data from the 2010 wave of the Health and Retirement Survey in the United States (n = 1649). The level of presenteeism was low and the level of job stress was moderate among aging US workers. SEM revealed that co-worker support and supervisor support were strongly correlated (β = 0.67; p < 0.001). Job stress had a significant direct positive effect on presenteeism (β = 0.30; p < 0.001). Co-worker support had a significant direct negative effect on job stress (β = −0.10; p < 0.001) and presenteeism (β = −0.11; p < 0.001). Supervisor support had a significant direct negative effect on job stress (β = −0.40; p < 0.001) but not presenteeism. The findings suggest that presenteeism is reduced by increased respect and concern for employee stress at the workplace, by necessary support at work from colleagues and employers, and by the presence of comfortable interpersonal relationships among colleagues and between employers and employees. PMID:26703705
Yang, Tianan; Shen, Yu-Ming; Zhu, Mingjing; Liu, Yuanling; Deng, Jianwei; Chen, Qian; See, Lai-Chu
2015-12-23
We examined the effects of co-worker and supervisor support on job stress and presenteeism in an aging workforce. Structural equation modelling was used to evaluate data from the 2010 wave of the Health and Retirement Survey in the United States (n = 1649). The level of presenteeism was low and the level of job stress was moderate among aging US workers. SEM revealed that co-worker support and supervisor support were strongly correlated (β = 0.67; p < 0.001). Job stress had a significant direct positive effect on presenteeism (β = 0.30; p < 0.001). Co-worker support had a significant direct negative effect on job stress (β = -0.10; p < 0.001) and presenteeism (β = -0.11; p < 0.001). Supervisor support had a significant direct negative effect on job stress (β = -0.40; p < 0.001) but not presenteeism. The findings suggest that presenteeism is reduced by increased respect and concern for employee stress at the workplace, by necessary support at work from colleagues and employers, and by the presence of comfortable interpersonal relationships among colleagues and between employers and employees.
Modeling RF Fields in Hot Plasmas with Parallel Full Wave Code
NASA Astrophysics Data System (ADS)
Spencer, Andrew; Svidzinski, Vladimir; Zhao, Liangji; Galkin, Sergei; Kim, Jin-Soo
2016-10-01
FAR-TECH, Inc. is developing a suite of full wave RF plasma codes. It is based on a meshless formulation in configuration space with adapted cloud of computational points (CCP) capability and using the hot plasma conductivity kernel to model the nonlocal plasma dielectric response. The conductivity kernel is calculated by numerically integrating the linearized Vlasov equation along unperturbed particle trajectories. Work has been done on the following calculations: 1) the conductivity kernel in hot plasmas, 2) a monitor function based on analytic solutions of the cold-plasma dispersion relation, 3) an adaptive CCP based on the monitor function, 4) stencils to approximate the wave equations on the CCP, 5) the solution to the full wave equations in the cold-plasma model in tokamak geometry for ECRH and ICRH range of frequencies, and 6) the solution to the wave equations using the calculated hot plasma conductivity kernel. We will present results on using a meshless formulation on adaptive CCP to solve the wave equations and on implementing the non-local hot plasma dielectric response to the wave equations. The presentation will include numerical results of wave propagation and absorption in the cold and hot tokamak plasma RF models, using DIII-D geometry and plasma parameters. Work is supported by the U.S. DOE SBIR program.
Comet Gas and Dust Dynamics Modeling
NASA Technical Reports Server (NTRS)
Von Allmen, Paul A.; Lee, Seungwon
2010-01-01
This software models the gas and dust dynamics of comet coma (the head region of a comet) in order to support the Microwave Instrument for Rosetta Orbiter (MIRO) project. MIRO will study the evolution of the comet 67P/Churyumov-Gerasimenko's coma system. The instrument will measure surface temperature, gas-production rates and relative abundances, and velocity and excitation temperatures of each species along with their spatial temporal variability. This software will use these measurements to improve the understanding of coma dynamics. The modeling tool solves the equation of motion of a dust particle, the energy balance equation of the dust particle, the continuity equation for the dust and gas flow, and the dust and gas mixture energy equation. By solving these equations numerically, the software calculates the temperature and velocity of gas and dust as a function of time for a given initial gas and dust production rate, and a dust characteristic parameter that measures the ability of a dust particle to adjust its velocity to the local gas velocity. The software is written in a modular manner, thereby allowing the addition of more dynamics equations as needed. All of the numerical algorithms are added in-house and no third-party libraries are used.
Emergent user behavior on Twitter modelled by a stochastic differential equation.
Mollgaard, Anders; Mathiesen, Joachim
2015-01-01
Data from the social-media site, Twitter, is used to study the fluctuations in tweet rates of brand names. The tweet rates are the result of a strongly correlated user behavior, which leads to bursty collective dynamics with a characteristic 1/f noise. Here we use the aggregated "user interest" in a brand name to model collective human dynamics by a stochastic differential equation with multiplicative noise. The model is supported by a detailed analysis of the tweet rate fluctuations and it reproduces both the exact bursty dynamics found in the data and the 1/f noise.
Emergent User Behavior on Twitter Modelled by a Stochastic Differential Equation
Mollgaard, Anders; Mathiesen, Joachim
2015-01-01
Data from the social-media site, Twitter, is used to study the fluctuations in tweet rates of brand names. The tweet rates are the result of a strongly correlated user behavior, which leads to bursty collective dynamics with a characteristic 1/f noise. Here we use the aggregated "user interest" in a brand name to model collective human dynamics by a stochastic differential equation with multiplicative noise. The model is supported by a detailed analysis of the tweet rate fluctuations and it reproduces both the exact bursty dynamics found in the data and the 1/f noise. PMID:25955783
Evaluating a Model of Youth Physical Activity
ERIC Educational Resources Information Center
Heitzler, Carrie D.; Lytle, Leslie A.; Erickson, Darin J.; Barr-Anderson, Daheia; Sirard, John R.; Story, Mary
2010-01-01
Objective: To explore the relationship between social influences, self-efficacy, enjoyment, and barriers and physical activity. Methods: Structural equation modeling examined relationships between parent and peer support, parent physical activity, individual perceptions, and objectively measured physical activity using accelerometers among a…
Equation-based languages – A new paradigm for building energy modeling, simulation and optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetter, Michael; Bonvini, Marco; Nouidui, Thierry S.
Most of the state-of-the-art building simulation programs implement models in imperative programming languages. This complicates modeling and excludes the use of certain efficient methods for simulation and optimization. In contrast, equation-based modeling languages declare relations among variables, thereby allowing the use of computer algebra to enable much simpler schematic modeling and to generate efficient code for simulation and optimization. We contrast the two approaches in this paper. We explain how such manipulations support new use cases. In the first of two examples, we couple models of the electrical grid, multiple buildings, HVAC systems and controllers to test a controller thatmore » adjusts building room temperatures and PV inverter reactive power to maintain power quality. In the second example, we contrast the computing time for solving an optimal control problem for a room-level model predictive controller with and without symbolic manipulations. As a result, exploiting the equation-based language led to 2, 200 times faster solution« less
Equation-based languages – A new paradigm for building energy modeling, simulation and optimization
Wetter, Michael; Bonvini, Marco; Nouidui, Thierry S.
2016-04-01
Most of the state-of-the-art building simulation programs implement models in imperative programming languages. This complicates modeling and excludes the use of certain efficient methods for simulation and optimization. In contrast, equation-based modeling languages declare relations among variables, thereby allowing the use of computer algebra to enable much simpler schematic modeling and to generate efficient code for simulation and optimization. We contrast the two approaches in this paper. We explain how such manipulations support new use cases. In the first of two examples, we couple models of the electrical grid, multiple buildings, HVAC systems and controllers to test a controller thatmore » adjusts building room temperatures and PV inverter reactive power to maintain power quality. In the second example, we contrast the computing time for solving an optimal control problem for a room-level model predictive controller with and without symbolic manipulations. As a result, exploiting the equation-based language led to 2, 200 times faster solution« less
Wright, Kevin B; Rosenberg, Jenny; Egbert, Nicole; Ploeger, Nicole A; Bernard, Daniel R; King, Shawn
2013-01-01
This study examined the influence of the social networking site Facebook and face-to-face support networks on depression among (N = 361) college students. The authors used the Relational Health Communication Competence Model as a framework for examining the influence of communication competence on social support network satisfaction and depression. Moreover, they examined the influence of interpersonal and social integrative motives as exogenous variables. On the basis of previous work, the authors propose and test a theoretical model using structural equation modeling. The results indicated empirical support for the model, with interpersonal motives predicting increased face-to-face and computer-mediated competence, increased social support satisfaction with face-to-face and Facebook support, and lower depression scores. The implications of the findings for theory, key limitations, and directions for future research are discussed.
A numerical cloud model for the support of laboratory experimentation
NASA Technical Reports Server (NTRS)
Hagen, D. E.
1979-01-01
A numerical cloud model is presented which can describe the evolution of a cloud starting from moist aerosol-laden air through the diffusional growth regime. The model is designed for the direct support of cloud chamber laboratory experimentation, i.e., experiment preparation, real-time control and data analysis. In the model the thermodynamics is uncoupled from the droplet growth processes. Analytic solutions for the cloud droplet growth equations are developed which can be applied in most laboratory situations. The model is applied to a variety of representative experiments.
NASA Astrophysics Data System (ADS)
Yan, Zhen-Ya
2001-10-01
In this paper, similarity reductions of Boussinesq-like equations with nonlinear dispersion (simply called B(m,n) equations) utt=(u^n)xx+(u^m)xxxx, which is a generalized model of Boussinesq equation utt=(u^2)xx+uxxxx and modified Bousinesq equation utt=(u^3)xx+uxxxx, are considered by using the direct reduction method. As a result, several new types of similarity reductions are found. Based on the reduction equations and some simple transformations, we obtain the solitary wave solutions and compacton solutions (which are solitary waves with the property that after colliding with other compacton solutions, they re-emerge with the same coherent shape) of B(1,n) equations and B(m,m) equations, respectively. The project supported by National Key Basic Research Development Project Program of China under Grant No. G1998030600 and Doctoral Foundation of China under Grant No. 98014119
Simple equations guide high-frequency surface-wave investigation techniques
Xia, J.; Xu, Y.; Chen, C.; Kaufmann, R.D.; Luo, Y.
2006-01-01
We discuss five useful equations related to high-frequency surface-wave techniques and their implications in practice. These equations are theoretical results from published literature regarding source selection, data-acquisition parameters, resolution of a dispersion curve image in the frequency-velocity domain, and the cut-off frequency of high modes. The first equation suggests Rayleigh waves appear in the shortest offset when a source is located on the ground surface, which supports our observations that surface impact sources are the best source for surface-wave techniques. The second and third equations, based on the layered earth model, reveal a relationship between the optimal nearest offset in Rayleigh-wave data acquisition and seismic setting - the observed maximum and minimum phase velocities, and the maximum wavelength. Comparison among data acquired with different offsets at one test site confirms the better data were acquired with the suggested optimal nearest offset. The fourth equation illustrates that resolution of a dispersion curve image at a given frequency is directly proportional to the product of a length of a geophone array and the frequency. We used real-world data to verify the fourth equation. The last equation shows that the cut-off frequency of high modes of Love waves for a two-layer model is determined by shear-wave velocities and the thickness of the top layer. We applied this equation to Rayleigh waves and multi-layer models with the average velocity and obtained encouraging results. This equation not only endows with a criterion to distinguish high modes from numerical artifacts but also provides a straightforward means to resolve the depth to the half space of a layered earth model. ?? 2005 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Padrino, Juan C.; Sprittles, James; Lockerby, Duncan
2017-11-01
Thermophoresis refers to the forces on and motions of objects caused by temperature gradients when these objects are exposed to rarefied gases. This phenomenon can occur when the ratio of the gas mean free path to the characteristic physical length scale (Knudsen number) is not negligible. In this work, we obtain the thermophoretic force on a rigid, heat-conducting spherical particle immersed in a rarefied gas resulting from a uniform temperature gradient imposed far from the sphere. To this end, we model the gas dynamics using the steady, linearized version of the so-called regularized 13-moment equations (R13). This set of equations, derived from the Boltzmann equation using the moment method, provides closures to the mass, momentum, and energy conservation laws in the form of constitutive, transport equations for the stress and heat flux that extends the Navier-Stokes-Fourier model to include rarefaction effects. Integration of the pressure and stress on the surface of the sphere leads to the net force as a function of the Knudsen number, dimensionless temperature gradient, and particle-to-gas thermal conductivity ratio. Results from this expression are compared with predictions from other moment-based models as well as from kinetic models. Supported in the UK by the Engineering and Physical Sciences Research Council (EP/N016602/1).
NASA Astrophysics Data System (ADS)
Huang, Z.; Toth, G.; Gombosi, T. I.; Jia, X.; Rubin, M.; Hansen, K. C.; Fougere, N.; Bieler, A. M.; Shou, Y.; Altwegg, K.; Combi, M. R.; Tenishev, V.
2015-12-01
The neutral and plasma environment is critical in understanding the interaction of comet Churyumov-Gerasimenko (CG), the target of the Rosetta mission, and the solar wind. To serve this need and support the Rosetta mission, we develop a 3-D four fluid model, which is based on BATS-R-US within the SWMF (Space Weather Modeling Framework) that solves the governing multi-fluid MHD equations and the Euler equations for the neutral gas fluid. These equations describe the behavior and interactions of the cometary heavy ions, the solar wind protons, the electrons, and the neutrals. This model incorporates different mass loading processes, including photo and electron impact ionization, charge exchange, dissociative ion-electron recombination, and collisional interactions between different fluids. We simulate the near nucleus plasma and neutral gas environment near perihelion with a realistic shape model of CG and compare our simulation results with Rosetta observations.
Hajimiri, Khadijeh; Shakibazadeh, Elham; Mehrizi, Ali Asghar Haeri; Shabbidar, Sakineh
2018-01-01
Background and aim Postpartum is a critical period for mothers which often leads to neglect of their own health. Mothers’ new responsibilities may affect their health promoting lifestyle (HPL). The aim of this study was to determine the impact of both general health and social support on health-promoting lifestyle. Methods A cross-sectional survey was conducted on 310 women who gave birth over a one-year period in Zanjan (Iran), 2016. A proportionate stratified random sampling technique was used to select respondents from each stratum. Health-promoting lifestyle was assessed using the health-promoting lifestyle profile II (HPLP II) scale. A structure equation model (SEM) was used to determine the relationship between observed and latent variables. Data were analysed using SPSS version 22 and LISREL 8.5 software. Results The age of 42.6% of the participants was more than 30 years and 40.3% of them had an academic education. The mean score of the health-promoting lifestyle was 131.28 (15.37). The structural equation model fitted well with RMSEA =0.07, CFI=0.92, and GFI=0.94. Among the latent factors, general health, with a factor load of −0.68, had greater impact on health-promoting lifestyle than social support. Moreover, there was a significant correlation (−0.63) between general health and perceived social support in the postpartum period. Conclusion health-promoting lifestyle was not at appropriate levels among women in the first year after delivery. These findings suggest that strengthening general health and social support would improve a health-promoting lifestyle in Iranian postpartum women. PMID:29588825
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burley, J.B.
1999-07-01
Surface mine planners and designers are searching for scientifically based tools to assist in the pre-mine planning and post-mine development or surface mine sites. In this study, the author presents a science based visual and environmental quality predictive model useful in preparing and assessing landscape treatments for surface mine sites. The equation explains 67 percent of respondent preference, with an overall p-value for the equation >0.0001 and a p-value >0.05 for each regressor. Regressors employed in the equation include an environmental quality index, foreground vegetation, distant nonvegetation, people, vehicles, utilities, foreground flowers, foreground erosion, wildlife, landscape openness, landscape mystery, andmore » noosphericness (a measure of human disturbance). The equation can be explained with an Intrusion/Neutral Modifier/Temporal Enhancement Theory which suggests that human intrusions upon other humans results in landscape of low preference and which also suggests that landscape containing natural and special temporal features such as wildlife and flowers can enhance the value of a landscape scene. This research supports the importance of visual barriers such as berms and vegetation screens during mining operations and supports public perceptions concerning many types of industrial activities. In addition, the equation can be applied to study post-mining landscape development plans to maximize the efficiency and effectiveness of landscape treatments.« less
Volunteering for charity: pride, respect, and the commitment of volunteers.
Boezeman, Edwin J; Ellemers, Naomi
2007-05-01
This study builds upon and extends the social-identity-based model of cooperation with the organization (T. R. Tyler, 1999; T. R. Tyler & S. L. Blader, 2000) to examine commitment and cooperative intent among fundraising volunteers. In Study 1, structural equation modeling indicated that pride and respect related to the intent to remain a volunteer with an organization, and that this relation was mediated primarily by normative organizational commitment. In Study 2, structural equation modeling indicated that the perceived importance of volunteer work was related to pride, that perceived organizational support related to the experience of respect, and that pride and respect mediated the relation between perceived importance and support on the one hand and organizational commitment on the other. Overall, the results suggest that volunteer organizations may do well to implement pride and respect in their volunteer policy, for instance to address the reliability problem (J. L. Pearce, 1993). 2007 APA, all rights reserved
ERIC Educational Resources Information Center
Deane, Paul; Graf, Edith Aurora; Higgins, Derrick; Futagi, Yoko; Lawless, René
2006-01-01
This study focuses on the relationship between item modeling and evidence-centered design (ECD); it considers how an appropriately generalized item modeling software tool can support systematic identification and exploitation of task-model variables, and then examines the feasibility of this goal, using linear-equation items as a test case. The…
Nekouei, Zohreh Khayyam; Doost, Hamid Taher Neshat; Yousefy, Alireza; Manshaee, Gholamreza; Sadeghei, Masoumeh
2014-01-01
Although psychological factors are now recognized as playing a significant and independent role in the development of coronary heart disease (CHD) and its complications, many of these factors are correlated with each other. The present study is aimed at examining the association between alexithymia and anxiety depression, stress, quality of life, and social support in CHD patients. In this research 398 patients with coronary heart disease (166 females and 232 males) from the city of Isfahan were selected using random sampling. The tools used included depression, anxiety, and stress scale (DASS-21), Health-related to Quality Of Life (HRQOL-26), Multiple Scale Perceived Social Support (MSPSS-12), and the Toronto Alexithymia Scale (TAS-20). The data were analyzed using structural equation modeling by using the Statistical Package for Social Science (SPSS21) (IBM Corp: Armonk, New York.U.S.) and Asset Management Operating System (AMOS21) SPSS, an IBM Company: Chicago, U.S. Software. Results of the structural equation model showed an acceptable goodness of fit, for the explanation alexithymia that was significantly associated with lower HRQOL and social support and increasing anxiety, depression, and stress. Alexithymia may increase anxiety, depression, and stress and can be a predisposing factor to poorer HRQOL and social support.
TOPICAL REVIEW: The stability for the Cauchy problem for elliptic equations
NASA Astrophysics Data System (ADS)
Alessandrini, Giovanni; Rondi, Luca; Rosset, Edi; Vessella, Sergio
2009-12-01
We discuss the ill-posed Cauchy problem for elliptic equations, which is pervasive in inverse boundary value problems modeled by elliptic equations. We provide essentially optimal stability results, in wide generality and under substantially minimal assumptions. As a general scheme in our arguments, we show that all such stability results can be derived by the use of a single building brick, the three-spheres inequality. Due to the current absence of research funding from the Italian Ministry of University and Research, this work has been completed without any financial support.
Emergent equilibrium in many-body optical bistability
NASA Astrophysics Data System (ADS)
Foss-Feig, Michael; Niroula, Pradeep; Young, Jeremy; Hafezi, Mohammad; Gorshkov, Alexey; Wilson, Ryan; Maghrebi, Mohammad
2017-04-01
Many-body systems constructed of quantum-optical building blocks can now be realized in experimental platforms ranging from exciton-polariton fluids to Rydberg gases, establishing a fascinating interface between traditional many-body physics and the non-equilibrium setting of cavity-QED. At this interface the standard intuitions of both fields are called into question, obscuring issues as fundamental as the role of fluctuations, dimensionality, and symmetry on the nature of collective behavior and phase transitions. We study the driven-dissipative Bose-Hubbard model, a minimal description of atomic, optical, and solid-state systems in which particle loss is countered by coherent driving. Despite being a lattice version of optical bistability-a foundational and patently non-equilibrium model of cavity-QED-the steady state possesses an emergent equilibrium description in terms of an Ising model. We establish this picture by identifying a limit in which the quantum dynamics is asymptotically equivalent to non-equilibrium Langevin equations, which support a phase transition described by model A of the Hohenberg-Halperin classification. Simulations of the Langevin equations corroborate this picture, producing results consistent with the behavior of a finite-temperature Ising model. M.F.M., J.T.Y., and A.V.G. acknowledge support by ARL CDQI, ARO MURI, NSF QIS, ARO, NSF PFC at JQI, and AFOSR. R.M.W. acknowledges partial support from the NSF under Grant No. PHYS-1516421. M.H. acknowledges support by AFOSR-MURI, ONR and Sloan Foundation.
Post-partum blues among Korean mothers: a structural equation modelling approach.
Chung, Sung Suk; Yoo, Il Young; Joung, Kyoung Hwa
2013-08-01
The objective of this study was to propose the post-partum blues (PPB) model and to estimate the effects of self-esteem, social support, antenatal depression, and stressful events during pregnancy on PPB. Data were collected from 249 women post-partum during their stay in the maternity units of three hospitals in Korea using a self-administered questionnaire. A structural equation modelling approach using the Analysis of Moments Structure program was used to identify the direct and indirect effects of the variables on PPB. The full model had a good fit and accounted for 70.3% of the variance of PPB. Antenatal depression and stressful events during pregnancy had strong direct effects on PPB. Household income showed indirect effects on PPB via self-esteem and antenatal depression. Social support indirectly affected PPB via self-esteem, antenatal depression, and stressful events during pregnancy. © 2012 The Authors; International Journal of Mental Health Nursing © 2012 Australian College of Mental Health Nurses Inc.
A new computational method for reacting hypersonic flows
NASA Astrophysics Data System (ADS)
Niculescu, M. L.; Cojocaru, M. G.; Pricop, M. V.; Fadgyas, M. C.; Pepelea, D.; Stoican, M. G.
2017-07-01
Hypersonic gas dynamics computations are challenging due to the difficulties to have reliable and robust chemistry models that are usually added to Navier-Stokes equations. From the numerical point of view, it is very difficult to integrate together Navier-Stokes equations and chemistry model equations because these partial differential equations have different specific time scales. For these reasons, almost all known finite volume methods fail shortly to solve this second order partial differential system. Unfortunately, the heating of Earth reentry vehicles such as space shuttles and capsules is very close linked to endothermic chemical reactions. A better prediction of wall heat flux leads to smaller safety coefficient for thermal shield of space reentry vehicle; therefore, the size of thermal shield decreases and the payload increases. For these reasons, the present paper proposes a new computational method based on chemical equilibrium, which gives accurate prediction of hypersonic heating in order to support the Earth reentry capsule design.
Applying a Cognitive-Behavioral Model of HIV Risk to Youths in Psychiatric Care
ERIC Educational Resources Information Center
Donenberg, Geri R.; Schwartz, Rebecca Moss; Emerson, Erin; Wilson, Helen W.; Bryant, Fred B.; Coleman, Gloria
2005-01-01
This study examined the utility of cognitive and behavioral constructs (AIDS information, motivation, and behavioral skills) in explaining sexual risk taking among 172 12-20-year-old ethnically diverse urban youths in outpatient psychiatric care. Structural equation modeling revealed only moderate support for the model, explaining low to moderate…
Morais, Adriana Oliveira Dias de Sousa; Simões, Vanda Maria Ferreira; Rodrigues, Lívia Dos Santos; Batista, Rosângela Fernandes Lucena; Lamy, Zeni Carvalho; Carvalho, Carolina Abreu de; Silva, Antônio Augusto Moura da; Ribeiro, Marizélia Rodrigues Costa
2017-07-13
This study aimed to investigate the association between maternal depressive symptoms and anxiety and interference in the mother/child relationship, using structural equations modeling. Data were used from a prospective cohort study initiated during the prenatal period with 1,140 mothers in São Luís, Maranhão State, Brazil. Data were collected during prenatal care and when the children reached two years of age. Interference in the mother/child relationship was measured with the Postpartum Bonding Questionnaire - PBQ (N = 1,140). In the initial theoretical model, socioeconomic status determined the maternal demographic, psychosocial, and social support factors, which determined the outcome, i.e., the mother/child relationship. Adjustments were performed by structural equations modeling, using Mplus 7.0. The final model showed good fit (RMSEA = 0.047; CFI = 0.984; TLI = 0.981). Depressive symptoms in pregnancy and the postpartum were associated with higher PBQ scores, indicating interference in the mother/child relationship. The greatest effect was from depressive symptoms in pregnancy. Other factors associated with higher PBQ scores were lower social support, unfavorable socioeconomic status, and living without a partner, by indirect association. Anxiety symptoms and maternal age were not associated with the mother/child relationship. The results suggest that identifying and treating depression in pregnancy and postpartum can improve mother/child bonding in childhood.
Hypocalcemia in dairy cows: meta-analysis and dietary cation anion difference theory revisited.
Lean, I J; DeGaris, P J; McNeil, D M; Block, E
2006-02-01
Data from 137 published trials involving 2,545 calvings were analyzed using random effects normal logistic regression models to identify risk factors for clinical hypocalcemia in dairy cows. The aim of the study was to examine which form, if any, of the dietary cation anion difference (DCAD) equation provided the best estimate of milk fever risk and to clarify roles of calcium, magnesium, and phosphorus concentrations of prepartum diets in the pathogenesis of milk fever. Two statistically equivalent and biologically plausible models were developed that predict incidence of milk fever. These models were validated using data from 37 trials excluded from the original data used to generate the models; missing variables were replaced with mean values from the analyzed data. The preferred models differed slightly; Model 1 included prepartum DCAD, and Model 2 included prepartum dietary concentrations of potassium and sulfur alone, but not sodium and chloride. Other factors, included in both models were prepartum dietary concentrations of calcium, magnesium, phosphorus; days exposed to the prepartum diet; and breed. Jersey cows were at 2.25 times higher risk of milk fever than Holstein cows in Model 1. The results support the DCAD theory of greater risk of milk fever with higher prepartum dietary DCAD (odds ratio = 1.015). The only DCAD equation supported in statistical analyses was (Na(+) + K(+)) - (Cl(-) + S(2-)). This finding highlights the difference between developing equations to predict DCAD and those to predict milk fever. The results support a hypothesis of a quadratic role for Ca in the pathogenesis of milk fever (model 1, odds ratio = 0.131; Model 2, odds ratio = 0.115). Milk fever risk was highest with a prepartum dietary concentration of 1.35% calcium. Increasing prepartum dietary magnesium concentrations had the largest effect on decreasing incidence of milk fever in both Model 1 (odds ratio = 0.006) and Model 2 (odds ratio = 0.001). Increasing dietary phosphorus concentrations prepartum increased the risk of milk fever (Model 1, odds ratio = 6.376; Model 2, odds ratio = 9.872). The models presented provide the basis for the formulation of diets to reduce the risk of milk fever and strongly support the need to evaluate macro mineral nutrition apart from DCAD of the diet.
A Multi-Fidelity Surrogate Model for Handling Real Gas Equations of State
NASA Astrophysics Data System (ADS)
Ouellet, Frederick; Park, Chanyoung; Rollin, Bertrand; Balachandar, S."bala"
2016-11-01
The explosive dispersal of particles is an example of a complex multiphase and multi-species fluid flow problem. This problem has many engineering applications including particle-laden explosives. In these flows, the detonation products of the explosive cannot be treated as a perfect gas so a real gas equation of state is used to close the governing equations (unlike air, which uses the ideal gas equation for closure). As the products expand outward from the detonation point, they mix with ambient air and create a mixing region where both of the state equations must be satisfied. One of the more accurate, yet computationally expensive, methods to deal with this is a scheme that iterates between the two equations of state until pressure and thermal equilibrium are achieved inside of each computational cell. This work strives to create a multi-fidelity surrogate model of this process. We then study the performance of the model with respect to the iterative method by performing both gas-only and particle laden flow simulations using an Eulerian-Lagrangian approach with a finite volume code. Specifically, the model's (i) computational speed, (ii) memory requirements and (iii) computational accuracy are analyzed to show the benefits of this novel modeling approach. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA00023.
Towards a model of pion generalized parton distributions from Dyson-Schwinger equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moutarde, H.
2015-04-10
We compute the pion quark Generalized Parton Distribution H{sup q} and Double Distributions F{sup q} and G{sup q} in a coupled Bethe-Salpeter and Dyson-Schwinger approach. We use simple algebraic expressions inspired by the numerical resolution of Dyson-Schwinger and Bethe-Salpeter equations. We explicitly check the support and polynomiality properties, and the behavior under charge conjugation or time invariance of our model. We derive analytic expressions for the pion Double Distributions and Generalized Parton Distribution at vanishing pion momentum transfer at a low scale. Our model compares very well to experimental pion form factor or parton distribution function data.
Dong, Xiaoling; Li, Guopeng; Liu, Chunlei; Kong, Linghua; Fang, Yueyan; Kang, Xiaofei; Li, Ping
2017-08-01
Information on posttraumatic growth (PTG) among colorectal cancer (CRC) survivors with permanent intestinal ostomies is limited. The aim of this cross-sectional study was to investigate the occurrence of PTG among CRC survivors with permanent intestinal ostomies and its association with perceived social support and resilience. This study was conducted with 164 CRC survivors with permanent intestinal ostomies at least one month after surgery. Participants completed questionnaires assessing socio-demographic and clinical characteristics, perceived social support, resilience and PTG. The mean total score on the Post Traumatic Growth Inventory was 66.74 (SD = 13.99). Perceived social support (r = 0.450) and resilience (r = 0.545) were significantly positively correlated with PTG. Structural equation modeling analysis showed that resilience mediated the relationship between perceived social support and PTG in which the indirect effect of perceived social support on PTG through resilience was 0.203 (P < 0.001). Moderate to high PTG was found in CRC survivors with permanent intestinal ostomies. The most important implication of this study was that improving social support and resilience might be scientific intervention strategies for promoting PTG among CRC survivors. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Liu, Yih-Lan
2006-01-01
The aim of this study was to investigate how paternal and maternal attachment might relate to adolescents' peer support, social expectations of peer interaction, and depressive symptoms; 1,144 8th graders in Taiwan participated in the study. The relationships were examined through a structural equating modeling. Consistent with theoretical…
Family Income and Parenting: The Role of Parental Depression and Social Support
ERIC Educational Resources Information Center
Lee, Chih-Yuan S.; Anderson, Jared R.; Horowitz, Jason L.; August, Gerald J.
2009-01-01
This study examined the relations among family income, social support, parental depression, and parenting among 290 predominantly rural families with children at risk for disruptive or socially withdrawn behaviors. Structural equation modeling and multiple regression were used, and the results showed that low family income was related to high…
ERIC Educational Resources Information Center
Beets, Michael W.; Pitetti, Kenneth H.; Forlaw, Loretta
2007-01-01
Objective: To examine the role of social support (SS) and self-efficacy (SE) for physical activity (PA) in rural high school girls (N = 259, 15.5+1.2yrs). Methods: Using structural equation modeling, the relationships among PA, SS for PA from mother, father, and peers, and SE for overcoming barriers, seeking support, and resisting competing…
Uncertainty Quantification in Scale-Dependent Models of Flow in Porous Media: SCALE-DEPENDENT UQ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tartakovsky, A. M.; Panzeri, M.; Tartakovsky, G. D.
Equations governing flow and transport in heterogeneous porous media are scale-dependent. We demonstrate that it is possible to identify a support scalemore » $$\\eta^*$$, such that the typically employed approximate formulations of Moment Equations (ME) yield accurate (statistical) moments of a target environmental state variable. Under these circumstances, the ME approach can be used as an alternative to the Monte Carlo (MC) method for Uncertainty Quantification in diverse fields of Earth and environmental sciences. MEs are directly satisfied by the leading moments of the quantities of interest and are defined on the same support scale as the governing stochastic partial differential equations (PDEs). Computable approximations of the otherwise exact MEs can be obtained through perturbation expansion of moments of the state variables in orders of the standard deviation of the random model parameters. As such, their convergence is guaranteed only for the standard deviation smaller than one. We demonstrate our approach in the context of steady-state groundwater flow in a porous medium with a spatially random hydraulic conductivity.« less
Latino Adolescents' Academic Motivation: The Role of Siblings
ERIC Educational Resources Information Center
Alfaro, Edna C.; Umana-Taylor, Adriana J.
2010-01-01
Guided by an ecological perspective, two competing models were tested to examine how sibling relationship quality directly predicted or interacted with academic support from siblings to predict Latino adolescents' academic motivation (N = 258). Gender differences were examined utilizing multiple group analysis in structural equation modeling.…
Multiphase Equations of State for Polymer Materials at High Dynamic Pressures
NASA Astrophysics Data System (ADS)
Khishchenko, Konstantin V.
2015-06-01
Equations of state for materials over a wide range of pressures and temperatures are necessary for numerical simulations of shock-wave processes in condensed matter. Accuracy of calculation results is determined mainly by adequacy of equation of state of a medium. In this work, a new multiphase equation-of-state model is proposed with taking into account the polymorphic phase transformations, melting and evaporation. Thermodynamic calculations are carried out for 2 polymer materials (polymethylmethacrylate and polytetrafluoroethylene) in a broad region of the phase diagram. Obtained results are presented in comparison with available data of experiments at high dynamic pressures in shock and release waves. This work is supported by RSF, Grant 14-50-00124.
Westerman, Michiel; Teunissen, Pim W; Fokkema, Joanne P I; van der Vleuten, Cees P M; Scherpbier, Albert J J A; Siegert, Carl E H; Scheele, Fedde
2013-04-01
Insight into the transition from specialist registrar to hospital consultant is needed to better align specialty training with starting as a consultant and to facilitate this transition. This study investigates whether preparedness regarding medical and generic competencies, perceived intensity, and social support are associated with burnout among new consultants. A population-based study among all 2643 new consultants in the Netherlands (all specialties) was conducted in June 2010. A questionnaire covering preparedness for practice, intensity of the transition, social support, and burnout was used. Structural equation modelling was used for statistical analysis. Data from a third of the population were available (32% n = 840) (43% male/57% female). Preparation in generic competencies received lower ratings than in medical competencies. A total of 10% met the criteria for burnout and 18% scored high on the emotional exhaustion subscale. Perceived lack of preparation in generic competencies correlated with burnout (r = 0.15, p < 0.001). No such relation was found for medical competencies. Furthermore, social support protected against burnout. These findings illustrate the relevance of generic competencies for new hospital consultants. Furthermore, social support facilitates this intense and stressful stage within the medical career.
Computer program for Stirling engine performance calculations
NASA Technical Reports Server (NTRS)
Tew, R. C., Jr.
1983-01-01
The thermodynamic characteristics of the Stirling engine were analyzed and modeled on a computer to support its development as a possible alternative to the automobile spark ignition engine. The computer model is documented. The documentation includes a user's manual, symbols list, a test case, comparison of model predictions with test results, and a description of the analytical equations used in the model.
ERIC Educational Resources Information Center
Seo, Hyojeong; Little, Todd D.; Shogren, Karrie A.; Lang, Kyle M.
2016-01-01
Structural equation modeling (SEM) is a powerful and flexible analytic tool to model latent constructs and their relations with observed variables and other constructs. SEM applications offer advantages over classical models in dealing with statistical assumptions and in adjusting for measurement error. So far, however, SEM has not been fully used…
Numerical Simulation of a Chemically Reacting Sorbent Bed for LSS Applications
NASA Technical Reports Server (NTRS)
Luna, Bernadette; Mitchell, Reggie; Sheppard, Sheri; DeVincenzi, Donald (Technical Monitor)
2000-01-01
A detailed numerical model of a chemisorption bed has been developed. The model is based on the constant pressure mass transport equation for gaseous flow through a packed bed, and the equation for diffusion and reaction within a spherical particle. Because there is a wealth of data from the NASA and the Navy bodies of literature, the LiOH-H2O-CO2 system is chosen for application of the model and interpretation of results. Prior models of this system from the life support literature are limited. The current model incorporates many of the features of elaborate models developed for investigation of industrial systems or energy applications (e.g., coal, desulphurization): it distinguishes bulk convection and bed dispersion; mass transport to the particle surface, transport within the particle, and reaction. It uses the nonsteady (not pseudo-steady state) form of the equations. The chemistry is modeled as a multi-step, reversible reaction with evolving solid structure. The resulting system of equations is large. The ODEPACK family of solvers is used to integrate the system. Reaction coefficients are determined by experiment. Typical results of the model are illustrated with mission input parameters. Using the model, an explanation is offered for 1) the varied performance results found after pre-breathing (or after simulated pre-breathe conditions), 2) interrupted use and 3) low temperature use. In addition, options for a reusable canister are explored. The computational resource implications of adding energy equations are discussed briefly, as are applicability to other relevant space and undersea systems.
Carbon solids in oxygen-deficient explosives (LA-UR-13-21151)
NASA Astrophysics Data System (ADS)
Peery, Travis
2013-06-01
The phase behavior of excess carbon in oxygen-deficient explosives has a significant effect on detonation properties and product equations of state. Mixtures of fuel oil in ammonium nitrate (ANFO) above a stoichiometric ratio demonstrate that even small amounts of graphite, on the order of 5% by mole fraction, can substantially alter the Chapman-Jouget (CJ) state properties, a central ingredient in modeling the products equation of state. Similar effects can be seen for Composition B, which borders the carbon phase boundary between graphite and diamond. Nano-diamond formation adds complexity to the product modeling because of surface adsorption effects. I will discuss these carbon phase issues in our equation of state modeling of detonation products, including our statistical mechanics description of carbon clustering and surface chemistry to properly treat solid carbon formation. This work is supported by the Advanced Simulation and Computing Program, under the NNSA.
Numerical Simulation and Quantitative Uncertainty Assessment of Microchannel Flow
NASA Astrophysics Data System (ADS)
Debusschere, Bert; Najm, Habib; Knio, Omar; Matta, Alain; Ghanem, Roger; Le Maitre, Olivier
2002-11-01
This study investigates the effect of uncertainty in physical model parameters on computed electrokinetic flow of proteins in a microchannel with a potassium phosphate buffer. The coupled momentum, species transport, and electrostatic field equations give a detailed representation of electroosmotic and pressure-driven flow, including sample dispersion mechanisms. The chemistry model accounts for pH-dependent protein labeling reactions as well as detailed buffer electrochemistry in a mixed finite-rate/equilibrium formulation. To quantify uncertainty, the governing equations are reformulated using a pseudo-spectral stochastic methodology, which uses polynomial chaos expansions to describe uncertain/stochastic model parameters, boundary conditions, and flow quantities. Integration of the resulting equations for the spectral mode strengths gives the evolution of all stochastic modes for all variables. Results show the spatiotemporal evolution of uncertainties in predicted quantities and highlight the dominant parameters contributing to these uncertainties during various flow phases. This work is supported by DARPA.
NASA Astrophysics Data System (ADS)
Ab Hamid, Mohd Rashid; Mustafa, Zainol; Mohd Suradi, Nur Riza; Idris, Fazli; Abdullah, Mokhtar
2013-04-01
Culture and employee-focused criteria are important factors for the success of any organization. These factors have to be aligned with the productivity initiatives in the organization in order to gear ahead for excellence. Therefore, this article investigated the impact of culture and employee-focused criteria on productivity in Higher Education Institutions (HEIs) in Malaysia using intangible indicators through core values. The hypothesized relationship was tested using Structural Equation Modeling (SEM) with the PLS estimation technique. 429 questionnaires were returned from the target population. The results of the modelling revealed that the PLS estimation confirmed all the hypotheses tested as in the hypothesized model. The results generally support significant relationships between culture values, employee-focused values and productivity-focused values. The study also confirmed the mediating role of employee-focused values for the relationship between culture values and productivity-focused values. In conclusion, the empirically validated results supported the adequacy of the hypothezised model of the impact of culture and employee-focused criteria on productivity in HEI through value-based indicators.
Sagarduy, José Luis Ybarra; López, Julio Alfonso Piña; Ramírez, Mónica Teresa González; Dávila, Luis Enrique Fierros
2017-09-04
The objective of this study has been to test the ability of variables of a psychological model to predict antiretroviral therapy medication adherence behavior. We have conducted a cross-sectional study among 172 persons living with HIV/AIDS (PLWHA), who completed four self-administered assessments: 1) the Psychological Variables and Adherence Behaviors Questionnaire, 2) the Stress-Related Situation Scale to assess the variable of Personality, 3) The Zung Depression Scale, and 4) the Duke-UNC Functional Social Support Questionnaire. Structural equation modeling was used to construct a model to predict medication adherence behaviors. Out of all the participants, 141 (82%) have been considered 100% adherent to antiretroviral therapy. Structural equation modeling has confirmed the direct effect that personality (decision-making and tolerance of frustration) has on motives to behave, or act accordingly, which was in turn directly related to medication adherence behaviors. In addition, these behaviors have had a direct and significant effect on viral load, as well as an indirect effect on CD4 cell count. The final model demonstrates the congruence between theory and data (x2/df. = 1.480, goodness of fit index = 0.97, adjusted goodness of fit index = 0.94, comparative fit index = 0.98, root mean square error of approximation = 0.05), accounting for 55.7% of the variance. The results of this study support our theoretical model as a conceptual framework for the prediction of medication adherence behaviors in persons living with HIV/AIDS. Implications for designing, implementing, and evaluating intervention programs based on the model are to be discussed.
Lee, Jeong-Won; Lee, Kyung-Eun; Park, Dong-Jin; Kim, Seong-Ho; Nah, Seong-Su; Lee, Ji Hyun; Kim, Seong-Kyu; Lee, Yeon-Ah; Hong, Seung-Jae; Kim, Hyun-Sook; Lee, Hye-Soon; Kim, Hyoun Ah; Joung, Chung-Il; Kim, Sang-Hyon; Lee, Shin-Seok
2017-01-01
Health-related quality of life (HRQOL) in patients with fibromyalgia (FM) is lower than in patients with other chronic diseases and the general population. Although various factors affect HRQOL, no study has examined a structural equation model of HRQOL as an outcome variable in FM patients. The present study assessed relationships among physical function, social factors, psychological factors, and HRQOL, and the effects of these variables on HRQOL in a hypothesized model using structural equation modeling (SEM). HRQOL was measured using SF-36, and the Fibromyalgia Impact Questionnaire (FIQ) was used to assess physical dysfunction. Social and psychological statuses were assessed using the Beck Depression Inventory (BDI), the State-Trait Anxiety Inventory (STAI), the Arthritis Self-Efficacy Scale (ASES), and the Social Support Scale. SEM analysis was used to test the structural relationships of the model using the AMOS software. Of the 336 patients, 301 (89.6%) were women with an average age of 47.9±10.9 years. The SEM results supported the hypothesized structural model (χ2 = 2.336, df = 3, p = 0.506). The final model showed that Physical Component Summary (PCS) was directly related to self-efficacy and inversely related to FIQ, and that Mental Component Summary (MCS) was inversely related to FIQ, BDI, and STAI. In our model of FM patients, HRQOL was affected by physical, social, and psychological variables. In these patients, higher levels of physical function and self-efficacy can improve the PCS of HRQOL, while physical function, depression, and anxiety negatively affect the MCS of HRQOL.
Lee, Jeong-Won; Lee, Kyung-Eun; Park, Dong-Jin; Kim, Seong-Ho; Nah, Seong-Su; Lee, Ji Hyun; Kim, Seong-Kyu; Lee, Yeon-Ah; Hong, Seung-Jae; Kim, Hyun-Sook; Lee, Hye-Soon; Kim, Hyoun Ah; Joung, Chung-Il; Kim, Sang-Hyon
2017-01-01
Objective Health-related quality of life (HRQOL) in patients with fibromyalgia (FM) is lower than in patients with other chronic diseases and the general population. Although various factors affect HRQOL, no study has examined a structural equation model of HRQOL as an outcome variable in FM patients. The present study assessed relationships among physical function, social factors, psychological factors, and HRQOL, and the effects of these variables on HRQOL in a hypothesized model using structural equation modeling (SEM). Methods HRQOL was measured using SF-36, and the Fibromyalgia Impact Questionnaire (FIQ) was used to assess physical dysfunction. Social and psychological statuses were assessed using the Beck Depression Inventory (BDI), the State-Trait Anxiety Inventory (STAI), the Arthritis Self-Efficacy Scale (ASES), and the Social Support Scale. SEM analysis was used to test the structural relationships of the model using the AMOS software. Results Of the 336 patients, 301 (89.6%) were women with an average age of 47.9±10.9 years. The SEM results supported the hypothesized structural model (χ2 = 2.336, df = 3, p = 0.506). The final model showed that Physical Component Summary (PCS) was directly related to self-efficacy and inversely related to FIQ, and that Mental Component Summary (MCS) was inversely related to FIQ, BDI, and STAI. Conclusions In our model of FM patients, HRQOL was affected by physical, social, and psychological variables. In these patients, higher levels of physical function and self-efficacy can improve the PCS of HRQOL, while physical function, depression, and anxiety negatively affect the MCS of HRQOL. PMID:28158289
The Influence of the Superintendent of Schools on Student Academic Performance
ERIC Educational Resources Information Center
Hanks, Jeffrey Mark
2010-01-01
The purpose of this study was to model, through structural equation modeling techniques, the relationships among superintendent practices of collaborative goal-setting, establishment of nonnegotiable goals for achievement and instruction, board alignment with and support of district goals, monitoring goals for achievement and instruction, use of…
Equations of Motion for the g-LIMIT Microgravity Vibration Isolation System
NASA Technical Reports Server (NTRS)
Kim, Y. K.; Whorton, M. S.
2001-01-01
A desirable microgravity environment for experimental science payloads may require an active vibration isolation control system. A vibration isolation system named g-LIMIT (GLovebox Integrated Microgravity Isolation Technology) is being developed by NASA Marshall Space Flight Center to support microgravity science experiments using the microgravity science glovebox. In this technical memorandum, the full six-degree-of-freedom nonlinear equations of motion for g-LIMIT are derived. Although the motivation for this model development is control design and analysis of g-LIMIT, the equations are derived for a general configuration and may be used for other isolation systems as well.
NASA Astrophysics Data System (ADS)
Khan, Imad; Ullah, Shafquat; Malik, M. Y.; Hussain, Arif
2018-06-01
The current analysis concentrates on the numerical solution of MHD Carreau fluid flow over a stretching cylinder under the influences of homogeneous-heterogeneous reactions. Modelled non-linear partial differential equations are converted into ordinary differential equations by using suitable transformations. The resulting system of equations is solved with the aid of shooting algorithm supported by fifth order Runge-Kutta integration scheme. The impact of non-dimensional governing parameters on the velocity, temperature, skin friction coefficient and local Nusselt number are comprehensively delineated with the help of graphs and tables.
Dynamic Modeling for Development and Education: From Concepts to Numbers
ERIC Educational Resources Information Center
Van Geert, Paul
2014-01-01
The general aim of the article is to teach the reader how to transform conceptual models of change, development, and learning into mathematical expressions and how to use these equations to build dynamic models by means of the widely used spreadsheet program Excel. The explanation is supported by a number of Excel files, which the reader can…
ERIC Educational Resources Information Center
Chan, Wai
2007-01-01
In social science research, an indirect effect occurs when the influence of an antecedent variable on the effect variable is mediated by an intervening variable. To compare indirect effects within a sample or across different samples, structural equation modeling (SEM) can be used if the computer program supports model fitting with nonlinear…
Ledrich, Julie; Gana, Kamel
2013-12-01
The aim of this study was to examine the intricate relationship between some personality traits (i.e., attributional style, perceived control over consequences, self-esteem), and depressive mood in a nonclinical sample (N= 334). Method. Structural equation modelling was used to estimate five competing models: two vulnerability models describing the effects of personality traits on depressive mood, one scar model describing the effects of depression on personality traits, a mixed model describing the effects of attributional style and perceived control over consequences on depressive mood, which in turn affects self-esteem, and a reciprocal model which is a non-recursive version of the mixed model that specifies bidirectional effects between depressive mood and self-esteem. The best-fitting model was the mixed model. Moreover, we observed a significant negative effect of depression on self-esteem, but no effect in the opposite direction. These findings provide supporting arguments against the continuum model of the relationship between self-esteem and depression, and lend substantial support to the scar model, which claims that depressive mood damages and erodes self-esteem. In addition, the 'depressogenic' nature of the pessimistic attributional style, and the 'antidepressant' nature of perceived control over consequences plead in favour of the vulnerability model. © 2012 The British Psychological Society.
Transcritical flow of a stratified fluid over topography: analysis of the forced Gardner equation
NASA Astrophysics Data System (ADS)
Kamchatnov, A. M.; Kuo, Y.-H.; Lin, T.-C.; Horng, T.-L.; Gou, S.-C.; Clift, R.; El, G. A.; Grimshaw, R. H. J.
2013-12-01
Transcritical flow of a stratified fluid past a broad localised topographic obstacle is studied analytically in the framework of the forced extended Korteweg--de Vries (eKdV), or Gardner, equation. We consider both possible signs for the cubic nonlinear term in the Gardner equation corresponding to different fluid density stratification profiles. We identify the range of the input parameters: the oncoming flow speed (the Froude number) and the topographic amplitude, for which the obstacle supports a stationary localised hydraulic transition from the subcritical flow upstream to the supercritical flow downstream. Such a localised transcritical flow is resolved back into the equilibrium flow state away from the obstacle with the aid of unsteady coherent nonlinear wave structures propagating upstream and downstream. Along with the regular, cnoidal undular bores occurring in the analogous problem for the single-layer flow modeled by the forced KdV equation, the transcritical internal wave flows support a diverse family of upstream and downstream wave structures, including solibores, rarefaction waves, reversed and trigonometric undular bores, which we describe using the recent development of the nonlinear modulation theory for the (unforced) Gardner equation. The predictions of the developed analytic construction are confirmed by direct numerical simulations of the forced Gardner equation for a broad range of input parameters.
Anisotropic neutron stars in R2 gravity
NASA Astrophysics Data System (ADS)
Folomeev, Vladimir
2018-06-01
We consider static neutron stars within the framework of R2 gravity. The neutron fluid is described by three different types of realistic equations of state (soft, moderately stiff, and stiff). Using the observational data on the neutron star mass-radius relation, it is demonstrated that the characteristics of the objects supported by the isotropic fluid agree with the observations only if one uses the soft equation of state. We show that the inclusion of the fluid anisotropy enables one also to employ more stiff equations of state to model configurations that will satisfy the observational constraints sufficiently. Also, using the standard thin accretion disk model, we demonstrate potentially observable differences, which allow us to distinguish the neutron stars constructed within the modified gravity framework from those described in Einstein's general relativity.
Yıldırım, N; Karaca, A; Cangur, S; Acıkgoz, F; Akkus, D
2017-01-01
Nursing education can be a stressful experience. To fully benefit from this experience and develop a positive professional identity, it is essential for nursing students to effectively cope with education-related stress. The aim of the study was to investigate the relationships between nursing students' education-related stress and stress coping, self-esteem, social support, and health status. This study utilized a cross-sectional, descriptive, and correlational design. The sample consisted 517 nursing students from a bachelor program in Turkey during the 2014-2015 academic year. Participants provided data on sociodemographic characteristics as well as completing the following instruments: Nursing Education Stress Scale, Coping Behavior Inventory for Nursing Students, Multidimensional Scale of Perceived Social Support, Rosenberg Self-Esteem Scale, and General Health Questionnaire. Relationships were examined using multivariate structural equation modeling. Results indicated that nursing students' stress coping levels were affected by self-esteem and social support. Additionally, this interaction appears to affect general health status. Although the direct effect of stress on coping was non-significant, its overall effect was significant within the model. It is necessary to conduct further intervention studies examining the role of self-esteem and social support in facilitating nursing students' stress-related coping during their education. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Ulriksen, Robin; Sagatun, Åse; Zachrisson, Henrik Daae; Waaktaar, Trine; Lervåg, Arne Ola
2015-01-01
Social support and socioeconomic status (SES) have received considerable attention in explaining academic achievement and the achievement gap between students with ethic majority and immigrant background, and between boys and girls. Using a Structural Equation Modeling approach we examine (1) if there exist a gap in school achievements between…
NASA Technical Reports Server (NTRS)
Yanosy, James L.
1988-01-01
Emulation/Simulation Computer Model (ESCM) computes the transient performance of a Space Station air revitalization subsystem with carbon dioxide removal provided by a solid amine water desorbed subsystem called SAWD. This manual describes the mathematical modeling and equations used in the ESCM. For the system as a whole and for each individual component, the fundamental physical and chemical laws which govern their operations are presented. Assumptions are stated, and when necessary, data is presented to support empirically developed relationships.
Temperature Variations in Lubricating Films Induced by Viscous Dissipation
NASA Astrophysics Data System (ADS)
Mozaffari, Farshad; Metcalfe, Ralph
2015-11-01
We have studied temperature distributions of lubricating films. The study has applications in tribology where temperature-reduced viscosity decreases load carrying capacity of bearings, or degrades elastomeric seals. The viscosity- temperature dependency is modeled according to ASTM D341-09. We have modeled the film temperature distribution by our finite element program. The program is made up of three modules: the first one solves the general form of Reynolds equation for the film pressure and velocity gradients. The other two solve the energy equation for the film and its solid boundary temperature distributions. The modules are numerically coupled and iteratively converged to the solutions. We have shown that the temperature distribution in the film is strongly coupled with the thermal response at the boundary. In addition, only thermal diffusion across film thickness is dominant. Moreover, thermal diffusion in the lateral directions, as well as all the convection terms, are negligible. The approximation reduces the energy equation to an ordinary differential equation, which significantly simplifies the modeling of temperature -viscosity effects in thin films. Supported by Kalsi Engineering, Inc.
Estimation of Missing Water-Level Data for the Everglades Depth Estimation Network (EDEN)
Conrads, Paul; Petkewich, Matthew D.
2009-01-01
The Everglades Depth Estimation Network (EDEN) is an integrated network of real-time water-level gaging stations, ground-elevation models, and water-surface elevation models designed to provide scientists, engineers, and water-resource managers with current (2000-2009) water-depth information for the entire freshwater portion of the greater Everglades. The U.S. Geological Survey Greater Everglades Priority Ecosystems Science provides support for EDEN and their goal of providing quality-assured monitoring data for the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan. To increase the accuracy of the daily water-surface elevation model, water-level estimation equations were developed to fill missing data. To minimize the occurrences of no estimation of data due to missing data for an input station, a minimum of three linear regression equations were developed for each station using different input stations. Of the 726 water-level estimation equations developed to fill missing data at 239 stations, more than 60 percent of the equations have coefficients of determination greater than 0.90, and 92 percent have an coefficient of determination greater than 0.70.
Linking customisation of ERP systems to support effort: an empirical study
NASA Astrophysics Data System (ADS)
Koch, Stefan; Mitteregger, Kurt
2016-01-01
The amount of customisation to an enterprise resource planning (ERP) system has always been a major concern in the context of the implementation. This article focuses on the phase of maintenance and presents an empirical study about the relationship between the amount of customising and the resulting support effort. We establish a structural equation modelling model that explains support effort using customisation effort, organisational characteristics and scope of implementation. The findings using data from an ERP provider show that there is a statistically significant effect: with an increasing amount of customisation, the quantity of telephone calls to support increases, as well as the duration of each call.
Butts, Marcus M; Vandenberg, Robert J; DeJoy, David M; Schaffer, Bryan S; Wilson, Mark G
2009-04-01
This study sought to understand how high involvement work processes (HIWP) are processed at the employee level. Using structural equation modeling techniques, the authors tested and supported a model in which psychological empowerment mediated the effects of HIWP on job satisfaction, organizational commitment, job performance, and job stress. Furthermore, perceived organizational support (POS) was hypothesized to moderate the relationships between empowerment and these outcomes. With exception for the empowerment-job satisfaction association, support was found for our predictions. Future directions for research and the practical implications of our findings for both employees and organizations are discussed.
Subjective well-being associated with size of social network and social support of elderly.
Wang, Xingmin
2016-06-01
The current study examined the impact of size of social network on subjective well-being of elderly, mainly focused on confirmation of the mediator role of perceived social support. The results revealed that both size of social network and perceived social support were significantly correlated with subjective well-being. Structural equation modeling indicated that perceived social support partially mediated size of social network to subjective well-being. The final model also revealed significant both paths from size of social network to subjective well-being through perceived social support. The findings extended prior researches and provided valuable evidence on how to promote mental health of the elderly. © The Author(s) 2014.
Multiphysics modeling of non-linear laser-matter interactions for optically active semiconductors
NASA Astrophysics Data System (ADS)
Kraczek, Brent; Kanp, Jaroslaw
Development of photonic devices for sensors and communications devices has been significantly enhanced by computational modeling. We present a new computational method for modelling laser propagation in optically-active semiconductors within the paraxial wave approximation (PWA). Light propagation is modeled using the Streamline-upwind/Petrov-Galerkin finite element method (FEM). Material response enters through the non-linear polarization, which serves as the right-hand side of the FEM calculation. Maxwell's equations for classical light propagation within the PWA can be written solely in terms of the electric field, producing a wave equation that is a form of the advection-diffusion-reaction equations (ADREs). This allows adaptation of the computational machinery developed for solving ADREs in fluid dynamics to light-propagation modeling. The non-linear polarization is incorporated using a flexible framework to enable the use of multiple methods for carrier-carrier interactions (e.g. relaxation-time-based or Monte Carlo) to enter through the non-linear polarization, as appropriate to the material type. We demonstrate using a simple carrier-carrier model approximating the response of GaN. Supported by ARL Materials Enterprise.
Self-Assembled Magnetic Surface Swimmers: Theoretical Model
NASA Astrophysics Data System (ADS)
Aranson, Igor; Belkin, Maxim; Snezhko, Alexey
2009-03-01
The mechanisms of self-propulsion of living microorganisms are a fascinating phenomenon attracting enormous attention in the physics community. A new type of self-assembled micro-swimmers, magnetic snakes, is an excellent tool to model locomotion in a simple table-top experiment. The snakes self-assemble from a dispersion of magnetic microparticles suspended on the liquid-air interface and subjected to an alternating magnetic field. Formation and dynamics of these swimmers are captured in the framework of theoretical model coupling paradigm equation for the amplitude of surface waves, conservation law for the density of particles, and the Navier-Stokes equation for hydrodynamic flows. The results of continuum modeling are supported by hybrid molecular dynamics simulations of magnetic particles floating on the surface of fluid.
NASA Astrophysics Data System (ADS)
Petrie, Ruth Elizabeth; Bannister, Ross Noel; Priestley Cullen, Michael John
2017-12-01
In developing methods for convective-scale data assimilation (DA), it is necessary to consider the full range of motions governed by the compressible Navier-Stokes equations (including non-hydrostatic and ageostrophic flow). These equations describe motion on a wide range of timescales with non-linear coupling. For the purpose of developing new DA techniques that suit the convective-scale problem, it is helpful to use so-called toy models
that are easy to run and contain the same types of motion as the full equation set. Such a model needs to permit hydrostatic and geostrophic balance at large scales but allow imbalance at small scales, and in particular, it needs to exhibit intermittent convection-like behaviour. Existing toy models
are not always sufficient for investigating these issues. A simplified system of intermediate complexity derived from the Euler equations is presented, which supports dispersive gravity and acoustic modes. In this system, the separation of timescales can be greatly reduced by changing the physical parameters. Unlike in existing toy models, this allows the acoustic modes to be treated explicitly and hence inexpensively. In addition, the non-linear coupling induced by the equation of state is simplified. This means that the gravity and acoustic modes are less coupled than in conventional models. A vertical slice formulation is used which contains only dry dynamics. The model is shown to give physically reasonable results, and convective behaviour is generated by localised compressible effects. This model provides an affordable and flexible framework within which some of the complex issues of convective-scale DA can later be investigated. The model is called the ABC model
after the three tunable parameters introduced: A (the pure gravity wave frequency), B (the modulation of the divergent term in the continuity equation), and C (defining the compressibility).
NASA Astrophysics Data System (ADS)
Wu, X. L.; Xiang, X. H.; Wang, C. H.; Shao, Q. Q.
2012-04-01
Soil freezing occurs in winter in many parts of the world. The transfer of heat and moisture in freezing and thawing soil is interrelated, and this heat and moisture transport plays an important role in hydrological activity of seasonal frozen region especially for three rivers sources area of China. Soil freezing depth and ice content in frozen zone will significantly influence runoff and groundwater recharge. The purpose of this research is to develop a numerical model to simulate water and heat movement in the soil under freezing and thawing conditions. The basic elements of the model are the heat and water flow equations, which are heat conduction equation and unsaturated soil fluid mass conservation equation. A full-implicit finite volume scheme is used to solve the coupled equations in space. The model is calibrated and verified against the observed moisture and temperature of soil during freezing and thawing period from 2005 to 2007. Different characters of heat and moisture transfer are testified, such as frozen depth, temperature field of 40 cm depth and topsoil moisture content, et al. The model is calibrated and verified against observed value, which indicate that the new model can be used successfully to simulate numerically the coupled heat and mass transfer process in permafrost regions. By simulating the runoff generation process and the driven factors of seasonal changes, the agreement illustrates that the coupled model can be used to describe the local phonemes of hydrologic activities and provide a support to the local Ecosystem services. This research was supported by the National Natural Science Foundation of China (No. 51009045; 40930635; 41001011; 41101018; 51079038), the National Key Program for Developing Basic Science (No. 2009CB421105), the Fundamental Research Funds for the Central Universities (No. 2009B06614; 2010B00414), the National Non Profit Research Program of China (No. 200905013-8; 201101024; 20101224).
Iterative Methods to Solve Linear RF Fields in Hot Plasma
NASA Astrophysics Data System (ADS)
Spencer, Joseph; Svidzinski, Vladimir; Evstatiev, Evstati; Galkin, Sergei; Kim, Jin-Soo
2014-10-01
Most magnetic plasma confinement devices use radio frequency (RF) waves for current drive and/or heating. Numerical modeling of RF fields is an important part of performance analysis of such devices and a predictive tool aiding design and development of future devices. Prior attempts at this modeling have mostly used direct solvers to solve the formulated linear equations. Full wave modeling of RF fields in hot plasma with 3D nonuniformities is mostly prohibited, with memory demands of a direct solver placing a significant limitation on spatial resolution. Iterative methods can significantly increase spatial resolution. We explore the feasibility of using iterative methods in 3D full wave modeling. The linear wave equation is formulated using two approaches: for cold plasmas the local cold plasma dielectric tensor is used (resolving resonances by particle collisions), while for hot plasmas the conductivity kernel (which includes a nonlocal dielectric response) is calculated by integrating along test particle orbits. The wave equation is discretized using a finite difference approach. The initial guess is important in iterative methods, and we examine different initial guesses including the solution to the cold plasma wave equation. Work is supported by the U.S. DOE SBIR program.
Powdthavee, Nattavudh; Lekfuangfu, Warn N.; Wooden, Mark
2017-01-01
Many economists and educators favour public support for education on the premise that education improves the overall quality of life of citizens. However, little is known about the different pathways through which education shapes people’s satisfaction with life overall. One reason for this is because previous studies have traditionally analysed the effect of education on life satisfaction using single-equation models that ignore interrelationships between different theoretical explanatory variables. In order to advance our understanding of how education may be related to overall quality of life, the current study estimates a structural equation model using nationally representative data for Australia to obtain the direct and indirect associations between education and life satisfaction through five different adult outcomes: income, employment, marriage, children, and health. Although we find the estimated direct (or net) effect of education on life satisfaction to be negative and statistically significant in Australia, the total indirect effect is positive, sizeable and statistically significant for both men and women. This implies that misleading conclusions regarding the influence of education on life satisfaction might be obtained if only single-equation models were used in the analysis. PMID:28713668
Wind-US User's Guide, Version 2.0
NASA Technical Reports Server (NTRS)
Towne, Charles E.
2009-01-01
Wind-US is a computational platform which may be used to numerically solve various sets of equations governing physical phenomena. Currently, the code supports the solution of the Euler and Navier-Stokes equations of fluid mechanics, along with supporting equation sets governing turbulent and chemically reacting flows. Wind-US is a product of the NPARC Alliance, a partnership between the NASA Glenn Research Center (GRC) and the Arnold Engineering Development Center (AEDC) dedicated to the establishment of a national, applications-oriented flow simulation capability. The Boeing Company has also been closely associated with the Alliance since its inception, and represents the interests of the NPARC User's Association. The "Wind-US User's Guide" describes the operation and use of Wind-US, including: a basic tutorial; the physical and numerical models that are used; the boundary conditions; monitoring convergence; the files that are read and/or written; parallel execution; and a complete list of input keywords and test options.
Distributed support modelling for vertical track dynamic analysis
NASA Astrophysics Data System (ADS)
Blanco, B.; Alonso, A.; Kari, L.; Gil-Negrete, N.; Giménez, J. G.
2018-04-01
The finite length nature of rail-pad supports is characterised by a Timoshenko beam element formulation over an elastic foundation, giving rise to the distributed support element. The new element is integrated into a vertical track model, which is solved in frequency and time domain. The developed formulation is obtained by solving the governing equations of a Timoshenko beam for this particular case. The interaction between sleeper and rail via the elastic connection is considered in an analytical, compact and efficient way. The modelling technique results in realistic amplitudes of the 'pinned-pinned' vibration mode and, additionally, it leads to a smooth evolution of the contact force temporal response and to reduced amplitudes of the rail vertical oscillation, as compared to the results from concentrated support models. Simulations are performed for both parametric and sinusoidal roughness excitation. The model of support proposed here is compared with a previous finite length model developed by other authors, coming to the conclusion that the proposed model gives accurate results at a reduced computational cost.
Electromagnetic field computation at fractal dimensions
NASA Astrophysics Data System (ADS)
Zubair, M.; Ang, Y. S.; Ang, L. K.
According to Mandelbrot's work on fractals, many objects are in fractional dimensions that the traditional calculus or differential equations are not sufficient. Thus fractional models solving the relevant differential equations are critical to understand the physical dynamics of such objects. In this work, we develop computational electromagnetics or Maxwell equations in fractional dimensions. For a given degree of imperfection, impurity, roughness, anisotropy or inhomogeneity, we consider the complicated object can be formulated into a fractional dimensional continuous object characterized by an effective fractional dimension D, which can be calculated from a self-developed algorithm. With this non-integer value of D, we develop the computational methods to design and analyze the EM scattering problems involving rough surfaces or irregularities in an efficient framework. The fractional electromagnetic based model can be extended to other key differential equations such as Schrodinger or Dirac equations, which will be useful for design of novel 2D materials stacked up in complicated device configuration for applications in electronics and photonics. This work is supported by Singapore Temasek Laboratories (TL) Seed Grant (IGDS S16 02 05 1).
Penke, Lars; Deary, Ian J
2010-09-01
Charlton et al. (2008) (Charlton, R.A., Landua, S., Schiavone, F., Barrick, T.R., Clark, C.A., Markus, H.S., Morris, R.G.A., 2008. Structural equation modelling investigation of age-related variance in executive function and DTI-measured white matter change. Neurobiol. Aging 29, 1547-1555) presented a model that suggests a specific age-related effect of white matter integrity on working memory. We illustrate potential pitfalls of structural equation modelling by criticizing their model for (a) its neglect of latent variables, (b) its complexity, (c) its questionable causal assumptions, (d) the use of empirical model reduction, (e) the mix-up of theoretical perspectives, and (f) the failure to compare alternative models. We show that a more parsimonious model, based solely on the well-established general factor of cognitive ability, fits their data at least as well. Importantly, when modelled this way there is no support for a role of white matter integrity in cognitive aging in this sample, indicating that their conclusion is strongly dependent on how the data are analysed. We suggest that evidence from more conclusive study designs is needed. Copyright 2009 Elsevier Inc. All rights reserved.
The Relationship Between Social Support and Subjective Well-Being Across Age
Salthouse, Timothy A.; Oishi, Shigehiro; Jeswani, Sheena
2014-01-01
The relationships among types of social support and different facets of subjective well-being (i.e., life satisfaction, positive affect, and negative affect) were examined in a sample of 1,111 individuals between the ages of 18 and 95. Using structural equation modeling we found that life satisfaction was predicted by enacted and perceived support, positive affect was predicted by family embeddedness and provided support, and negative affect was predicted by perceived support. When personality variables were included in a subsequent model, the influence of the social support variables were generally reduced. Invariance analyses conducted across age groups indicated that there were no substantial differences in predictors of the different types of subjective well-being across age. PMID:25045200
Simons, R L; Lorenz, F O; Conger, R D; Wu, C I
1992-10-01
A model is presented regarding associations between economic strain, support from spouse, and quality of parenting. The model was tested using a sample of 451 2-parent families, each of which included a seventh grader (age 12-13). Parent and adolescent reports, as well as observational ratings, were used as indicators of constructs. Analysis using structural equation modeling procedures indicated that level of spouse support was positively related to supportive parenting, whereas economic strain operated to undermine parental involvement. As posited, economic strain produced its effect through a direct relation with parenting and indirectly through its association with spouse support. These findings held for mothers and fathers, regardless of the gender of the child. Spouse support moderated the impact of economic strain on supportive parenting for mothers but not fathers. Possible explanations for this gender difference are presented.
ERIC Educational Resources Information Center
Abu-Hilal, Maher M.
A study tested predictions for I/E (internal external) frame of reference model and extended this model to include locus of control. A sample of upper elementary (n=181) and junior high (n=191) students in the United Arab Emirates participated in the study. Structural equation modeling (SEM) analyses provided support to the external comparison…
ERIC Educational Resources Information Center
Seo, Hyojeong; Little, Todd D.; Shogren, Karrie A.; Lang, Kyle M.
2016-01-01
Structural equation modeling (SEM) is a powerful and flexible analytic tool to model latent constructs and their relations with observed variables and other constructs. SEM applications offer advantages over classical models in dealing with statistical assumptions and in adjusting for measurement error. So far, however, SEM has not been fully used…
Numerical modelling of multiphase liquid-vapor-gas flows with interfaces and cavitation
NASA Astrophysics Data System (ADS)
Pelanti, Marica
2017-11-01
We are interested in the simulation of multiphase flows where the dynamical appearance of vapor cavities and evaporation fronts in a liquid is coupled to the dynamics of a third non-condensable gaseous phase. We describe these flows by a single-velocity three-phase compressible flow model composed of the phasic mass and total energy equations, the volume fraction equations, and the mixture momentum equation. The model includes stiff mechanical and thermal relaxation source terms for all the phases, and chemical relaxation terms to describe mass transfer between the liquid and vapor phases of the species that may undergo transition. The flow equations are solved by a mixture-energy-consistent finite volume wave propagation scheme, combined with simple and robust procedures for the treatment of the stiff relaxation terms. An analytical study of the characteristic wave speeds of the hierarchy of relaxed models associated to the parent model system is also presented. We show several numerical experiments, including two-dimensional simulations of underwater explosive phenomena where highly pressurized gases trigger cavitation processes close to a rigid surface or to a free surface. This work was supported by the French Government Grant DGA N. 2012.60.0011.00.470.75.01, and partially by the Norwegian Grant RCN N. 234126/E30.
Stability of Inhomogeneous Equilibria of Hamiltonian Continuous Media Field Theories
NASA Astrophysics Data System (ADS)
Hagstrom, George
2013-10-01
There are a wide variety of 1 + 1 Hamiltonian continuous media field theories that exhibit phase space pattern formation. In plasma physics, the most famous of these is the Vlasov-Poisson equation, but other examples include the incompressible Euler equation in two-dimensions and the Hamiltonian Mean Field (or XY) model. One of the characteristic phenomenon that occurs in systems described by these equations is the formation of cat's eye patterns in phase space as a result of the nonlinear saturation of instabilities. Corresponding to each of these cat's eyes is a spatially inhomogeneous equilibrium solution of the underlying model, in plasma physics these are called BGK modes, but analogous solutions exist in all of the above systems. Here we analyze the stability of inhomogeneous equilibria in the Hamiltonian Mean Field model and in the Single Wave model, which is an equation that was derived to provide a model of the formation of electron holes in plasmas. We use action angle variables and the properties of elliptic functions to analyze the resulting dispersion relation construct linearly stable inhomogeneous equilibria for in the limit of small numbers of particles and study the behavior of solutions near these equilibria. Work supported by USDOE grant no. DE-FG02-ER53223.
Mobile computing acceptance factors in the healthcare industry: a structural equation model.
Wu, Jen-Her; Wang, Shu-Ching; Lin, Li-Min
2007-01-01
This paper presents a revised technology acceptance model to examine what determines mobile healthcare systems (MHS) acceptance by healthcare professionals. Conformation factor analysis was performed to test the reliability and validity of the measurement model. The structural equation modeling technique was used to evaluate the causal model. The results indicated that compatibility, perceived usefulness and perceived ease of use significantly affected healthcare professional behavioral intent. MHS self-efficacy had strong indirect impact on healthcare professional behavioral intent through the mediators of perceived usefulness and perceived ease of use. Yet, the hypotheses for technical support and training effects on the perceived usefulness and perceived ease of use were not supported. This paper provides initial insights into factors that are likely to be significant antecedents of planning and implementing mobile healthcare to enhance professionals' MHS acceptance. The proposed model variables explained 70% of the variance in behavioral intention to use MHS; further study is needed to explore extra significant antecedents of new IT/IS acceptance for mobile healthcare. Such as privacy and security issue, system and information quality, limitations of mobile devices; the above may be other interesting factors for implementing mobile healthcare and could be conducted by qualitative research.
Finlay-Jones, Amy L.; Rees, Clare S.; Kane, Robert T.
2015-01-01
Psychologists tend to report high levels of occupational stress, with serious implications for themselves, their clients, and the discipline as a whole. Recent research suggests that self-compassion is a promising construct for psychologists in terms of its ability to promote psychological wellbeing and resilience to stress; however, the potential benefits of self-compassion are yet to be thoroughly explored amongst this occupational group. Additionally, while a growing body of research supports self-compassion as a key predictor of psychopathology, understanding of the processes by which self-compassion exerts effects on mental health outcomes is limited. Structural equation modelling (SEM) was used to test an emotion regulation model of self-compassion and stress among psychologists, including postgraduate trainees undertaking clinical work (n = 198). Self-compassion significantly negatively predicted emotion regulation difficulties and stress symptoms. Support was also found for our preliminary explanatory model of self-compassion, which demonstrates the mediating role of emotion regulation difficulties in the self-compassion-stress relationship. The final self-compassion model accounted for 26.2% of variance in stress symptoms. Implications of the findings and limitations of the study are discussed. PMID:26207900
Large Eddy Simulation of a Supercritical Turbulent Mixing Layer
NASA Astrophysics Data System (ADS)
Sheikhi, Reza; Hadi, Fatemeh; Safari, Mehdi
2017-11-01
Supercritical turbulent flows are relevant to a wide range of applications such as supercritical power cycles, gas turbine combustors, rocket propulsion and internal combustion engines. Large eddy simulation (LES) analysis of such flows involves solving mass, momentum, energy and scalar transport equations with inclusion of generalized diffusion fluxes. These equations are combined with a real gas equation of state and the corresponding thermodynamic mixture variables. Subgrid scale models are needed for not only the conventional convective terms but also the additional high pressure effects arising due to the nonlinearity associated with generalized diffusion fluxes and real gas equation of state. In this study, LES is carried out to study the high pressure turbulent mixing of methane with carbon dioxide in a temporally developing mixing layer under supercritical condition. LES results are assessed by comparing with data obtained from direct numerical simulation (DNS) of the same layer. LES predictions agree favorably with DNS data and represent several key supercritical turbulent flow features such as high density gradient regions. Supported by DOE Grant SC0017097; computational support is provided by DOE National Energy Research Scientific Computing Center.
1995-12-01
Contingency Plan ............................... 10 Table 2: Summary of Inhalation Emission Factors (K) for Equation ( 1 ...surveys for exposure factors commonly used in risk assessment (EPA, 1989a: 1 - 1 ). Exposure can take place via three possible routes, the inhalation ...Equation ( 1 ) calculates the dose for the inhalation route (USEPA, 1991 a:51-52; USEPA, 1989b:6-44). Dose - (C)(IRXETXEFXED) (K)(BWXAT) where C
Dynamic Behavior of Wind Turbine by a Mixed Flexible-Rigid Multi-Body Model
NASA Astrophysics Data System (ADS)
Wang, Jianhong; Qin, Datong; Ding, Yi
A mixed flexible-rigid multi-body model is presented to study the dynamic behavior of a horizontal axis wind turbine. The special attention is given to flexible body: flexible rotor is modeled by a newly developed blade finite element, support bearing elasticities, variations in the number of teeth in contact as well as contact tooth's elasticities are mainly flexible components in the power train. The couple conditions between different subsystems are established by constraint equations. The wind turbine model is generated by coupling models of rotor, power train and generator with constraint equations together. Based on this model, an eigenproblem analysis is carried out to show the mode shape of rotor and power train at a few natural frequencies. The dynamic responses and contact forces among gears under constant wind speed and fixed pitch angle are analyzed.
Dark energy fingerprints in the nonminimal Wu-Yang wormhole structure
NASA Astrophysics Data System (ADS)
Balakin, Alexander B.; Zayats, Alexei E.
2014-08-01
We discuss new exact solutions to nonminimally extended Einstein-Yang-Mills equations describing spherically symmetric static wormholes supported by the gauge field of the Wu-Yang type in a dark energy environment. We focus on the analysis of three types of exact solutions to the gravitational field equations. Solutions of the first type relate to the model, in which the dark energy is anisotropic; i.e., the radial and tangential pressures do not coincide. Solutions of the second type correspond to the isotropic pressure tensor; in particular, we discuss the exact solution, for which the dark energy is characterized by the equation of state for a string gas. Solutions of the third type describe the dark energy model with constant pressure and energy density. For the solutions of the third type, we consider in detail the problem of horizons and find constraints for the parameters of nonminimal coupling and for the constitutive parameters of the dark energy equation of state, which guarantee that the nonminimal wormholes are traversable.
Spatiotemporal chaos and two-dimensional dissipative rogue waves in Lugiato-Lefever model
NASA Astrophysics Data System (ADS)
Panajotov, Krassimir; Clerc, Marcel G.; Tlidi, Mustapha
2017-06-01
Driven nonlinear optical cavities can exhibit complex spatiotemporal dynamics. We consider the paradigmatic Lugiato-Lefever model describing driven nonlinear optical resonator. This model is one of the most-studied nonlinear equations in optics. It describes a large spectrum of nonlinear phenomena from bistability, to periodic patterns, localized structures, self-pulsating localized structures and to a complex spatiotemporal behavior. The model is considered also as prototype model to describe several optical nonlinear devices such as Kerr media, liquid crystals, left handed materials, nonlinear fiber cavity, and frequency comb generation. We focus our analysis on a spatiotemporal chaotic dynamics in one-dimension. We identify a route to spatiotemporal chaos through an extended quasiperiodicity. We have estimated the Kaplan-Yorke dimension that provides a measure of the strange attractor complexity. Likewise, we show that the Lugiato-Leferver equation supports rogues waves in two-dimensional settings. We characterize rogue-wave formation by computing the probability distribution of the pulse height. Contribution to the Topical Issue "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.
ERIC Educational Resources Information Center
Kim, Eun Sil; Kim, Byeong Seok
2009-01-01
The purpose of this study was to explore how social support, mother's psychological status, and maternal sensitivity affected attachment security in children with disabilities by using the structural equation model (SEM). Subjects were 141 pairs of children with disabilities and theirs mothers. Empirical data was obtained through a series of…
ERIC Educational Resources Information Center
Aldridge, Jill M.; Afari, Ernest; Fraser, Barry J.
2012-01-01
The purpose of our study was to examine the effects of two psychosocial features of the classroom environment (teacher support and personal relevance) on college students' academic self-efficacy and enjoyment of mathematics lessons. Data collected from 352 mathematics students attending three higher education institutions in the United Arab…
Coping efficacy and psychological problems of children of divorce.
Sandler, I N; Tein, J Y; Mehta, P; Wolchik, S; Ayers, T
2000-01-01
Three models of the relations of coping efficacy, coping, and psychological problems of children of divorce were investigated. A structural equation model using cross-sectional data of 356 nine- to twelve-year-old children of divorce yielded results that supported coping efficacy as a mediator of the relations between both active coping and avoiding coping and psychological problems. In a prospective longitudinal model with a subsample of 162 of these children, support was found for Time 2 coping efficacy as a mediator of the relations between Time 1 active coping and Time 2 internalizing of problems. Individual growth curve models over four waves also found support for coping efficacy as a mediator of the relations between active coping and psychological problems. No support was found for alternative models of coping as a mediator of the relations between efficacy and symptoms or for coping efficacy as a moderator of the relations between coping and symptoms.
Williams, Geoffrey C; McGregor, Holly A; Sharp, Daryl; Levesque, Chantal; Kouides, Ruth W; Ryan, Richard M; Deci, Edward L
2006-01-01
A longitudinal randomized trial tested the self-determination theory (SDT) intervention and process model of health behavior change for tobacco cessation (N = 1006). Adult smokers were recruited for a study of smokers' health and were assigned to intensive treatment or community care. Participants were relatively poor and undereducated. Intervention patients perceived greater autonomy support and reported greater autonomous and competence motivations than did control patients. They also reported greater medication use and significantly greater abstinence. Structural equation modeling analyses confirmed the SDT process model in which perceived autonomy support led to increases in autonomous and competence motivations, which in turn led to greater cessation. The causal role of autonomy support in the internalization of autonomous motivation, perceived competence, and smoking cessation was supported. Copyright 2006 APA, all rights reserved.
Organizational influences on the work life conflict and health of shiftworkers.
Pisarski, Anne; Lawrence, Sandra A; Bohle, Philip; Brook, Christine
2008-09-01
This study examined organizational factors affecting the impact of shiftwork on work life conflict and subjective health. A model was proposed in which support from supervisors, support from colleagues, and team identity influence time-based work life conflict through two mediating variables: team climate and control over the working environment. Reduced conflict, in turn, produces enhanced psychological well-being and diminished physical symptoms. A structural equation model based on survey data from 530 nurses supported the proposed model. It also identified unpredicted direct links between team identity and physical symptoms, and between supervisor support and both control over the work environment and psychological well-being. The results indicate that organizational interventions focused on social support, team identity, team climate, and control can diminish the negative effects of shiftwork on work life conflict and health in shiftworkers.
Sagarduy, José Luis Ybarra; López, Julio Alfonso Piña; Ramírez, Mónica Teresa González; Dávila, Luis Enrique Fierros
2017-01-01
ABSTRACT OBJECTIVE The objective of this study has been to test the ability of variables of a psychological model to predict antiretroviral therapy medication adherence behavior. METHODS We have conducted a cross-sectional study among 172 persons living with HIV/AIDS (PLWHA), who completed four self-administered assessments: 1) the Psychological Variables and Adherence Behaviors Questionnaire, 2) the Stress-Related Situation Scale to assess the variable of Personality, 3) The Zung Depression Scale, and 4) the Duke-UNC Functional Social Support Questionnaire. Structural equation modeling was used to construct a model to predict medication adherence behaviors. RESULTS Out of all the participants, 141 (82%) have been considered 100% adherent to antiretroviral therapy. Structural equation modeling has confirmed the direct effect that personality (decision-making and tolerance of frustration) has on motives to behave, or act accordingly, which was in turn directly related to medication adherence behaviors. In addition, these behaviors have had a direct and significant effect on viral load, as well as an indirect effect on CD4 cell count. The final model demonstrates the congruence between theory and data (x 2/df. = 1.480, goodness of fit index = 0.97, adjusted goodness of fit index = 0.94, comparative fit index = 0.98, root mean square error of approximation = 0.05), accounting for 55.7% of the variance. CONCLUSIONS The results of this study support our theoretical model as a conceptual framework for the prediction of medication adherence behaviors in persons living with HIV/AIDS. Implications for designing, implementing, and evaluating intervention programs based on the model are to be discussed. PMID:28876412
Nosratabadi, Mehdi; Halvaiepour, Zohreh
2016-01-01
Military service is a crucial period in the lives of young people and during this period soldier facing with multiple psychosocial problems. The present study aimed to explore structural analysis of the relationships between depression, drug abuse, social support and the risk of suicidal ideation among Military Medical University soldiers in Iran. In the present correlational research, a sample of 176 soldiers, from three units, was selected using randomly stratified sampling. Data were collected through the Social Support Questionnaire (SSQ), the Beck Depression Inventory-II (BDI-II), the Beck Scale for Suicide Ideation (BSS) and the Possibility of Drug Abuse Scale (LDAS). Structural equation modeling was used to test the fit of the model, identify direct and indirect effects of the psychosocial correlates. Data were analyzed using the SPSS and AMOS software (Verson22). out of the whole subjects, 28.4% had suicidal ideation and 65.3% had degrees of depression (mild to severe). A significant reverse relationship was observed between social support and suicidal ideation (p<0.05). The strongest relationship was detected between drug abuse and suicidal ideation. The final structural model indicated that 74% of the variance in suicidal ideation was explained by the three examined variables of depression, social support and drug abuse. The overall results showed that the risk of suicidal ideation, depression and drug abuse are relatively significant in Military Medical University soldiers requiring taking serious actions by the authorities and other relevant organizations in order to improve the psychosocial health status of these soldiers.
A Multi-Fidelity Surrogate Model for the Equation of State for Mixtures of Real Gases
NASA Astrophysics Data System (ADS)
Ouellet, Frederick; Park, Chanyoung; Koneru, Rahul; Balachandar, S.; Rollin, Bertrand
2017-11-01
The explosive dispersal of particles is a complex multiphase and multi-species fluid flow problem. In these flows, the products of detonated explosives must be treated as real gases while the ideal gas equation of state is used for the ambient air. As the products expand outward, they mix with the air and create a region where both state equations must be satisfied. One of the most accurate, yet expensive, methods to handle this problem is an algorithm that iterates between both state equations until both pressure and thermal equilibrium are achieved inside of each computational cell. This work creates a multi-fidelity surrogate model to replace this process. This is achieved by using a Kriging model to produce a curve fit which interpolates selected data from the iterative algorithm. The surrogate is optimized for computing speed and model accuracy by varying the number of sampling points chosen to construct the model. The performance of the surrogate with respect to the iterative method is tested in simulations using a finite volume code. The model's computational speed and accuracy are analyzed to show the benefits of this novel approach. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA00023.
NASA Technical Reports Server (NTRS)
Shapiro, Bruce E.; Levchenko, Andre; Meyerowitz, Elliot M.; Wold, Barbara J.; Mjolsness, Eric D.
2003-01-01
Cellerator describes single and multi-cellular signal transduction networks (STN) with a compact, optionally palette-driven, arrow-based notation to represent biochemical reactions and transcriptional activation. Multi-compartment systems are represented as graphs with STNs embedded in each node. Interactions include mass-action, enzymatic, allosteric and connectionist models. Reactions are translated into differential equations and can be solved numerically to generate predictive time courses or output as systems of equations that can be read by other programs. Cellerator simulations are fully extensible and portable to any operating system that supports Mathematica, and can be indefinitely nested within larger data structures to produce highly scaleable models.
Green, Michelle; Decourville, Nancy; Sadava, Stanley
2012-01-01
Structural equation modeling was used to test a model in which positive affect, negative affect, perceived stress, and social support were hypothesized to mediate the relationship between forgiveness and mental and physical health. Six hundred and twenty-three undergraduates completed a battery of self-report measures. Results of the analyses indicated that the forgiveness-health relation was mediated by positive affect, negative affect, stress, and the interrelationship between negative affect and stress. There was limited support for social support and the interrelationship between positive affect and social support as mediators. The results suggested that the relationship between forgiveness and health is mediated rather than direct. Implications and directions for future research are discussed.
Titan I propulsion system modeling and possible performance improvements
NASA Astrophysics Data System (ADS)
Giusti, Oreste
This thesis features the Titan I propulsion systems and offers data-supported suggestions for improvements to increase performance. The original propulsion systems were modeled both graphically in CAD and via equations. Due to the limited availability of published information, it was necessary to create a more detailed, secondary set of models. Various engineering equations---pertinent to rocket engine design---were implemented in order to generate the desired extra detail. This study describes how these new models were then imported into the ESI CFD Suite. Various parameters are applied to these imported models as inputs that include, for example, bi-propellant combinations, pressure, temperatures, and mass flow rates. The results were then processed with ESI VIEW, which is visualization software. The output files were analyzed for forces in the nozzle, and various results were generated, including sea level thrust and ISP. Experimental data are provided to compare the original engine configuration models to the derivative suggested improvement models.
Validation of theoretical pathway between discrimination, diabetes self-care and glycemic control.
Dawson, Aprill Z; Walker, Rebekah J; Campbell, Jennifer A; Egede, Leonard E
2016-07-01
This study examined the mechanisms through which discrimination influences diabetes self-care and glycemic control in patients with diabetes by using structured equation modeling. 615 patients were recruited from two adult primary care clinics in the southeastern United States. Measures were based on a theoretical model and included perceived discrimination, social support, social cohesion, and perceived stress. Structured equation modeling examined the relationship with diabetes self-care and glycemic control. The final model (chi2(211)=328.82, p<0.0001, R(2)=0.99, RMSEA=0.03 and CFI=0.98) shows that higher stress is directly significantly related to a decreased self-care (r=-0.59, p <0.001) and increased HbA1c (r=0.27, p<0.05). There was no significant direct association between discrimination, social support or social cohesion, and glycemic control or self-care. There was, however, a direct significant association between increased discrimination (r=0.46, p<0.001), decreased social support (r=-0.34, p<0.001), increased social cohesion (r=0.14, p<0.05) and increased stress. These results support the hypothesized pathway of discrimination on health outcomes, showing both a direct and indirect influence through stress on HbA1c in adults with diabetes. Understanding the pathways through which discrimination influences diabetes outcomes is important for providing more comprehensive and effective care. These results suggest future interventions targeting patients with diabetes should take discrimination-induced stress into account. Copyright © 2016 Elsevier Inc. All rights reserved.
Diurnal forcing of planetary atmospheres
NASA Technical Reports Server (NTRS)
Houben, Howard C.
1991-01-01
The utility of the Mars Planetary Boundary Layer Model (MPBL) for calculations in support of the Mars 94 balloon mission was substantially enhanced by the introduction of a balloon equation of motion into the model. Both vertical and horizontal excursions of the balloon are calculated along with its volume, temperature, and pressure. The simulations reproduce the expected 5-min vertical oscillations of a constant density balloon at altitude on Mars. The results of these calculations are presented for the nominal target location of the balloon. A nonlinear balanced model was developed for the Martian atmosphere. It was used to initialize a primitive equation model for the simulations of the Earth's atmosphere at the time of the El Chichon eruption in 1982. It is also used as an assimilation model to update the temperature and wind fields at frequent intervals.
Hashim, Hairul A; Freddy, Golok; Rosmatunisah, Ali
2012-09-01
The current study was undertaken to examine the associations between self-determination, exercise habit, anxiety, depression, stress, and academic achievement among adolescents aged 13 and 14 years in eastern Malaysia. The sample consisted of 750 secondary school students (mean age = 13.4 years, SD = 0.49). Participants completed self-report measures of exercise behavioral regulation, negative affect, and exercise habit strength. Midyear exam results were used as an indicator of academic performance. Structural equation modeling was used to analyze the data. The results of structural equation modeling revealed a close model fit for the hypothesized model, which indicates that higher levels of self-determination were positively associated with habituated exercise behavior. In turn, exercise habit strength fostered academic achievement and buffered the debilitative effect of stress, depression, and anxiety on student academic performance. The analysis of model invariance revealed a nonsignificant difference between male and female subjects. The findings support the notion that habituated exercise fosters academic performance. In addition, we found that habituated exercise buffers the combined effects of stress, anxiety and depression on academic performance. The finding also supports the roles of self-determination in promoting exercise habituation.
Frielink, Noud; Schuengel, Carlo; Embregts, Petri J C M
2018-01-01
The tenets of self-determination theory as applied to support were tested with structural equation modelling for 186 people with ID with a mild to borderline level of functioning. The results showed that (a) perceived autonomy support was positively associated with autonomous motivation and with satisfaction of need for autonomy, relatedness, and competence; (b) autonomous motivation and need satisfaction were associated with higher psychological well-being; (c) autonomous motivation and need satisfaction statistically mediated the association between autonomy support and well-being; and (d) satisfaction of need for autonomy and relatedness was negatively associated with controlled motivation, whereas satisfaction of need for relatedness was positively associated with autonomous motivation. The self-determination theory provides insights relevant for improving support for people with intellectual disability.
2017-01-05
module. 15. SUBJECT TERMS Logistics, attrition, discrete event simulation, Simkit, LBC 16. SECURITY CLASSIFICATION OF: Unclassified 17. LIMITATION...stochastics, and discrete event model programmed in Java building largely on the Simkit library. The primary purpose of the LBC model is to support...equations makes them incompatible with the discrete event construct of LBC. Bullard further advances this methodology by developing a stochastic
On mathematical modelling of aeroelastic problems with finite element method
NASA Astrophysics Data System (ADS)
Sváček, Petr
2018-06-01
This paper is interested in solution of two-dimensional aeroelastic problems. Two mathematical models are compared for a benchmark problem. First, the classical approach of linearized aerodynamical forces is described to determine the aeroelastic instability and the aeroelastic response in terms of frequency and damping coefficient. This approach is compared to the coupled fluid-structure model solved with the aid of finite element method used for approximation of the incompressible Navier-Stokes equations. The finite element approximations are coupled to the non-linear motion equations of a flexibly supported airfoil. Both methods are first compared for the case of small displacement, where the linearized approach can be well adopted. The influence of nonlinearities for the case of post-critical regime is discussed.
Recent Advances in Modeling Hugoniots with Cheetah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glaesemann, K R; Fried, L E
2005-07-26
We describe improvements to the Cheetah thermochemical-kinetics code's equilibrium solver to enable it to find a wider range of thermodynamic states. Cheetah supports a wide range of elements, condensed detonation products, and gas phase reactions. Therefore, Cheetah can be applied to a wide range of shock problems involving both energetic and non-energetic materials. An improve equation of state is also introduced. New experimental validations of Cheetah's equation of state methodology have been performed, including both reacted and unreacted Hugoniots.
Recent Advances in Modeling Hugoniots with Cheetah
NASA Astrophysics Data System (ADS)
Glaesemann, K. R.; Fried, L. E.
2006-07-01
We describe improvements to the Cheetah thermochemical-kinetics code's equilibrium solver to enable it to find a wider range of thermodynamic states. Cheetah supports a wide range of elements, condensed detonation products, and gas phase reactions. Therefore, Cheetah can be applied to a wide range of shock problems involving both energetic and non-energetic materials. An improve equation of state is also introduced. New experimental validations of Cheetah's equation of state methodology have been performed, including both reacted and unreacted Hugoniots.
The influence of thermal and conductive temperatures in a nanoscale resonator
NASA Astrophysics Data System (ADS)
Hobiny, Aatef; Abbas, Ibrahim A.
2018-06-01
In this work, the thermoelastic interaction in a nano-scale resonator based on two-temperature Green-Naghdi model is established. The nanoscale resonator ends were simply supported. In the Laplace's domain, the analytical solution of conductivity temperature and thermodynamic temperature, the displacement and the stress components are obtained. The eigenvalue approach resorted to for solutions. In the vector-matrix differential equations form, the essential equations were written. The numerical results for all variables are presented and are illustrated graphically.
Engelhardt, Benjamin; Kschischo, Maik; Fröhlich, Holger
2017-06-01
Ordinary differential equations (ODEs) are a popular approach to quantitatively model molecular networks based on biological knowledge. However, such knowledge is typically restricted. Wrongly modelled biological mechanisms as well as relevant external influence factors that are not included into the model are likely to manifest in major discrepancies between model predictions and experimental data. Finding the exact reasons for such observed discrepancies can be quite challenging in practice. In order to address this issue, we suggest a Bayesian approach to estimate hidden influences in ODE-based models. The method can distinguish between exogenous and endogenous hidden influences. Thus, we can detect wrongly specified as well as missed molecular interactions in the model. We demonstrate the performance of our Bayesian dynamic elastic-net with several ordinary differential equation models from the literature, such as human JAK-STAT signalling, information processing at the erythropoietin receptor, isomerization of liquid α -Pinene, G protein cycling in yeast and UV-B triggered signalling in plants. Moreover, we investigate a set of commonly known network motifs and a gene-regulatory network. Altogether our method supports the modeller in an algorithmic manner to identify possible sources of errors in ODE-based models on the basis of experimental data. © 2017 The Author(s).
Multiple-parameter bifurcation analysis in a Kuramoto model with time delay and distributed shear
NASA Astrophysics Data System (ADS)
Niu, Ben; Zhang, Jiaming; Wei, Junjie
2018-05-01
In this paper, time delay effect and distributed shear are considered in the Kuramoto model. On the Ott-Antonsen's manifold, through analyzing the associated characteristic equation of the reduced functional differential equation, the stability boundary of the incoherent state is derived in multiple-parameter space. Moreover, very rich dynamical behavior such as stability switches inducing synchronization switches can occur in this equation. With the loss of stability, Hopf bifurcating coherent states arise, and the criticality of Hopf bifurcations is determined by applying the normal form theory and the center manifold theorem. On one hand, theoretical analysis indicates that the width of shear distribution and time delay can both eliminate the synchronization then lead the Kuramoto model to incoherence. On the other, time delay can induce several coexisting coherent states. Finally, some numerical simulations are given to support the obtained results where several bifurcation diagrams are drawn, and the effect of time delay and shear is discussed.
ERIC Educational Resources Information Center
Seo, Hyojeong; Shaw, Leslie A.; Shogren, Karrie A.; Lang, Kyle M.; Little, Todd D.
2017-01-01
This article demonstrates the use of structural equation modeling to develop norms for a translated version of a standardized scale, the Supports Intensity Scale-Children's Version (SIS-C). The latent variable norming method proposed is useful when the standardization sample for a translated version is relatively small to derive norms…
Kim, Miji; Ryu, Eunjung
2015-12-01
The purpose of this study was to construct and test a structural equation model of quality of work life for clinical nurses based on Peterson and Wilson's Culture-Work-Health model (CWHM). A structured questionnaire was completed by 523 clinical nurses to analyze the relationships between concepts of CWHM-organizational culture, social support, employee health, organizational health, and quality of work life. Among these conceptual variables of CWHM, employee health was measured by perceived health status, and organizational health was measured by presenteeism. SPSS21.0 and AMOS 21.0 programs were used to analyze the efficiency of the hypothesized model and calculate the direct and indirect effects of factors affecting quality of work life among clinical nurses. The goodness-of-fit statistics of the final modified hypothetical model are as follows: χ²=586.03, χ²/df=4.19, GFI=.89, AGFI=.85, CFI=.91, TLI=.90, NFI=.89, and RMSEA=.08. The results revealed that organizational culture, social support, organizational health, and employee health accounted for 69% of clinical nurses' quality of work life. The major findings of this study indicate that it is essential to create a positive organizational culture and provide adequate organizational support to maintain a balance between the health of clinical nurses and the organization. Further repeated and expanded studies are needed to explore the multidimensional aspects of clinical nurses' quality of work life in Korea, including various factors, such as work environment, work stress, and burnout.
Dissolution process analysis using model-free Noyes-Whitney integral equation.
Hattori, Yusuke; Haruna, Yoshimasa; Otsuka, Makoto
2013-02-01
Drug dissolution process of solid dosages is theoretically described by Noyes-Whitney-Nernst equation. However, the analysis of the process is demonstrated assuming some models. Normally, the model-dependent methods are idealized and require some limitations. In this study, Noyes-Whitney integral equation was proposed and applied to represent the drug dissolution profiles of a solid formulation via the non-linear least squares (NLLS) method. The integral equation is a model-free formula involving the dissolution rate constant as a parameter. In the present study, several solid formulations were prepared via changing the blending time of magnesium stearate (MgSt) with theophylline monohydrate, α-lactose monohydrate, and crystalline cellulose. The formula could excellently represent the dissolution profile, and thereby the rate constant and specific surface area could be obtained by NLLS method. Since the long time blending coated the particle surface with MgSt, it was found that the water permeation was disturbed by its layer dissociating into disintegrant particles. In the end, the solid formulations were not disintegrated; however, the specific surface area gradually increased during the process of dissolution. The X-ray CT observation supported this result and demonstrated that the rough surface was dominant as compared to dissolution, and thus, specific surface area of the solid formulation gradually increased. Copyright © 2012 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Bhatti, Muhammad Awais; Battour, Mohamed Mohamed; Sundram, Veera Pandiyan Kaliani; Othman, Akmal Aini
2013-01-01
Purpose: The purpose of this study is to highlight the importance of selected environmental, situational and individual factors in the training transfer process. Design/methodology/approach: This study proposes and tests a framework via structural equation modelling by including supervisor and peer support, instrumentality and learner readiness on…
Effective equations for matter-wave gap solitons in higher-order transversal states.
Mateo, A Muñoz; Delgado, V
2013-10-01
We demonstrate that an important class of nonlinear stationary solutions of the three-dimensional (3D) Gross-Pitaevskii equation (GPE) exhibiting nontrivial transversal configurations can be found and characterized in terms of an effective one-dimensional (1D) model. Using a variational approach we derive effective equations of lower dimensionality for BECs in (m,n(r)) transversal states (states featuring a central vortex of charge m as well as n(r) concentric zero-density rings at every z plane) which provides us with a good approximate solution of the original 3D problem. Since the specifics of the transversal dynamics can be absorbed in the renormalization of a couple of parameters, the functional form of the equations obtained is universal. The model proposed finds its principal application in the study of the existence and classification of 3D gap solitons supported by 1D optical lattices, where in addition to providing a good estimate for the 3D wave functions it is able to make very good predictions for the μ(N) curves characterizing the different fundamental families. We have corroborated the validity of our model by comparing its predictions with those from the exact numerical solution of the full 3D GPE.
Wang, Wei; Wang, Yuanyuan; Xiao, Chenchang; Yao, Xing; Yang, Yinmei; Yan, Hong; Li, Shiyue
2017-11-29
People living with HIV/AIDS (PLWHA) have higher rates of suicide than does the general population. It is critical to interpret the intricate relationships among various psychological variables that increase the risk of suicidal ideation among PLWHA in China. An institutional based cross-sectional study was conducted from Jul to Aug 2016 in Nanjing, China, using a self-reporting questionnaire. A total of 465 PLWHA participated. Sociodemographic, psychological variables and suicide information about the participants were collected. Structural equation modeling (SEM)-path analysis was used to analyze the cross-sectional data. The final structural equation model had a highly satisfactory fit. Among PLWHA, perceived stigma had the greatest accumulated total effect on suicidal ideation, with both a direct effect and indirect effect through self-esteem and depression. Additionally, self-esteem had the second greatest total effect on suicidal ideation and was influenced by social support. Depression contributed directly to suicidal ideation and partly mediated the association of perceived stigma and self-esteem with suicidal ideation. These findings suggest that self-esteem and depression, particularly perceived stigma, play important roles in suicidal ideation among PLWHA. Enhancing personal self-esteem or social support might also reduce perceived stigma and may be an important target for intervention to decrease suicidal ideation among PLWHA. Copyright © 2017 Elsevier B.V. All rights reserved.
Dynamical patterns and regime shifts in the nonlinear model of soil microorganisms growth
NASA Astrophysics Data System (ADS)
Zaitseva, Maria; Vladimirov, Artem; Winter, Anna-Marie; Vasilyeva, Nadezda
2017-04-01
Dynamical model of soil microorganisms growth and turnover is formulated as a system of nonlinear partial differential equations of reaction-diffusion type. We consider spatial distributions of concentrations of several substrates and microorganisms. Biochemical reactions are modelled by chemical kinetic equations. Transport is modelled by simple linear diffusion for all chemical substances, while for microorganisms we use different transport functions, e.g. some of them can actively move along gradient of substrate concentration, while others cannot move. We solve our model in two dimensions, starting from uniform state with small initial perturbations for various parameters and find parameter range, where small initial perturbations grow and evolve. We search for bifurcation points and critical regime shifts in our model and analyze time-space profile and phase portraits of these solutions approaching critical regime shifts in the system, exploring possibility to detect such shifts in advance. This work is supported by NordForsk, project #81513.
Simşek, Omer Faruk; Demir, Melikşah
2014-01-01
A significant number of empirical studies have reported that parental support for basic psychological needs is a robust correlate of adolescent happiness. Yet, less is known about the mechanisms responsible for this link. The present study proposed a model suggesting that personal sense of uniqueness explains why satisfaction of basic psychological needs in parent-child relationships is related to happiness. This mediational model was tested among late adolescents in Turkey and the United States. Analyses relying on structural equation modeling and bootstrapping supported the model in both cultures. Implications of the findings for theory and cross-cultural research are discussed. Directions for future research that could improve our understanding of the dynamic interplay between basic needs, sense of uniqueness and well-being are provided.
More than just "plug-and-chug": Exploring how physics students make sense with equations
NASA Astrophysics Data System (ADS)
Kuo, Eric
Although a large part the Physics Education Research (PER) literature investigates students' conceptual understanding in physics, these investigations focus on qualitative, conceptual reasoning. Even in modeling expert problem solving, attention to conceptual understanding means a focus on initial qualitative analysis of the problem; the equations are typically conceived of as tools for "plug-and-chug" calculations. In this dissertation, I explore the ways that undergraduate physics students make conceptual sense of physics equations and the factors that support this type of reasoning through three separate studies. In the first study, I investigate how students' can understand physics equations intuitively through use of a particular class of cognitive elements, symbolic forms (Sherin, 2001). Additionally, I show how students leverage this intuitive, conceptual meaning of equations in problem solving. By doing so, these students avoid algorithmic manipulations, instead using a heuristic approach that leverages the equation in a conceptual argument. The second study asks the question why some students use symbolic forms and others don't. Although it is possible that students simply lack the knowledge required, I argue that this is not the only explanation. Rather, symbolic forms use is connected to particular epistemological stances, in-the-moment views on what kinds of knowledge and reasoning are appropriate in physics. Specifically, stances that value coherence between formal, mathematical knowledge and intuitive, conceptual knowledge are likely to support symbolic forms use. Through the case study of one student, I argue that both reasoning with equations and epistemological stances are dynamic, and that shifts in epistemological stance can produce shifts in whether symbolic forms are used to reason with equations. The third study expands the focus to what influences how students reason with equations across disciplinary problem contexts. In seeking to understand differences in how the same student reasons on two similar problems in calculus and physics, I show two factors, beyond the content or structure of the problems, that can help explain why reasoning on these two problems would be so different. This contributes to an understanding of what can support or impede transfer of content knowledge across disciplinary boundaries.
Development of full wave code for modeling RF fields in hot non-uniform plasmas
NASA Astrophysics Data System (ADS)
Zhao, Liangji; Svidzinski, Vladimir; Spencer, Andrew; Kim, Jin-Soo
2016-10-01
FAR-TECH, Inc. is developing a full wave RF modeling code to model RF fields in fusion devices and in general plasma applications. As an important component of the code, an adaptive meshless technique is introduced to solve the wave equations, which allows resolving plasma resonances efficiently and adapting to the complexity of antenna geometry and device boundary. The computational points are generated using either a point elimination method or a force balancing method based on the monitor function, which is calculated by solving the cold plasma dispersion equation locally. Another part of the code is the conductivity kernel calculation, used for modeling the nonlocal hot plasma dielectric response. The conductivity kernel is calculated on a coarse grid of test points and then interpolated linearly onto the computational points. All the components of the code are parallelized using MPI and OpenMP libraries to optimize the execution speed and memory. The algorithm and the results of our numerical approach to solving 2-D wave equations in a tokamak geometry will be presented. Work is supported by the U.S. DOE SBIR program.
Modal Substructuring of Geometrically Nonlinear Finite Element Models with Interface Reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuether, Robert J.; Allen, Matthew S.; Hollkamp, Joseph J.
Substructuring methods have been widely used in structural dynamics to divide large, complicated finite element models into smaller substructures. For linear systems, many methods have been developed to reduce the subcomponents down to a low order set of equations using a special set of component modes, and these are then assembled to approximate the dynamics of a large scale model. In this paper, a substructuring approach is developed for coupling geometrically nonlinear structures, where each subcomponent is drastically reduced to a low order set of nonlinear equations using a truncated set of fixedinterface and characteristic constraint modes. The method usedmore » to extract the coefficients of the nonlinear reduced order model (NLROM) is non-intrusive in that it does not require any modification to the commercial FEA code, but computes the NLROM from the results of several nonlinear static analyses. The NLROMs are then assembled to approximate the nonlinear differential equations of the global assembly. The method is demonstrated on the coupling of two geometrically nonlinear plates with simple supports at all edges. The plates are joined at a continuous interface through the rotational degrees-of-freedom (DOF), and the nonlinear normal modes (NNMs) of the assembled equations are computed to validate the models. The proposed substructuring approach reduces a 12,861 DOF nonlinear finite element model down to only 23 DOF, while still accurately reproducing the first three NNMs of the full order model.« less
Modal Substructuring of Geometrically Nonlinear Finite Element Models with Interface Reduction
Kuether, Robert J.; Allen, Matthew S.; Hollkamp, Joseph J.
2017-03-29
Substructuring methods have been widely used in structural dynamics to divide large, complicated finite element models into smaller substructures. For linear systems, many methods have been developed to reduce the subcomponents down to a low order set of equations using a special set of component modes, and these are then assembled to approximate the dynamics of a large scale model. In this paper, a substructuring approach is developed for coupling geometrically nonlinear structures, where each subcomponent is drastically reduced to a low order set of nonlinear equations using a truncated set of fixedinterface and characteristic constraint modes. The method usedmore » to extract the coefficients of the nonlinear reduced order model (NLROM) is non-intrusive in that it does not require any modification to the commercial FEA code, but computes the NLROM from the results of several nonlinear static analyses. The NLROMs are then assembled to approximate the nonlinear differential equations of the global assembly. The method is demonstrated on the coupling of two geometrically nonlinear plates with simple supports at all edges. The plates are joined at a continuous interface through the rotational degrees-of-freedom (DOF), and the nonlinear normal modes (NNMs) of the assembled equations are computed to validate the models. The proposed substructuring approach reduces a 12,861 DOF nonlinear finite element model down to only 23 DOF, while still accurately reproducing the first three NNMs of the full order model.« less
Hee, S.; Vázquez, J. A.; Handley, W. J.; ...
2016-12-01
Data-driven model-independent reconstructions of the dark energy equation of state w(z) are presented using Planck 2015 era CMB, BAO, SNIa and Lyman-α data. These reconstructions identify the w(z) behaviour supported by the data and show a bifurcation of the equation of state posterior in the range 1.5 < z < 3. Although the concordance ΛCDM model is consistent with the data at all redshifts in one of the bifurcated spaces, in the other a supernegative equation of state (also known as ‘phantom dark energy’) is identified within the 1.5σ confidence intervals of the posterior distribution. In order to identify themore » power of different datasets in constraining the dark energy equation of state, we use a novel formulation of the Kullback–Leibler divergence. Moreover, this formalism quantifies the information the data add when moving from priors to posteriors for each possible dataset combination. The SNIa and BAO datasets are shown to provide much more constraining power in comparison to the Lyman-α datasets. Furthermore, SNIa and BAO constrain most strongly around redshift range 0.1 - 0.5, whilst the Lyman-α data constrains weakly over a broader range. We do not attribute the supernegative favouring to any particular dataset, and note that the ΛCDM model was favoured at more than 2 log-units in Bayes factors over all the models tested despite the weakly preferred w(z) structure in the data.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hee, S.; Vázquez, J. A.; Handley, W. J.
Data-driven model-independent reconstructions of the dark energy equation of state w(z) are presented using Planck 2015 era CMB, BAO, SNIa and Lyman-α data. These reconstructions identify the w(z) behaviour supported by the data and show a bifurcation of the equation of state posterior in the range 1.5 < z < 3. Although the concordance ΛCDM model is consistent with the data at all redshifts in one of the bifurcated spaces, in the other a supernegative equation of state (also known as ‘phantom dark energy’) is identified within the 1.5σ confidence intervals of the posterior distribution. In order to identify themore » power of different datasets in constraining the dark energy equation of state, we use a novel formulation of the Kullback–Leibler divergence. Moreover, this formalism quantifies the information the data add when moving from priors to posteriors for each possible dataset combination. The SNIa and BAO datasets are shown to provide much more constraining power in comparison to the Lyman-α datasets. Furthermore, SNIa and BAO constrain most strongly around redshift range 0.1 - 0.5, whilst the Lyman-α data constrains weakly over a broader range. We do not attribute the supernegative favouring to any particular dataset, and note that the ΛCDM model was favoured at more than 2 log-units in Bayes factors over all the models tested despite the weakly preferred w(z) structure in the data.« less
Analysis of a Multi-Fidelity Surrogate for Handling Real Gas Equations of State
NASA Astrophysics Data System (ADS)
Ouellet, Frederick; Park, Chanyoung; Rollin, Bertrand; Balachandar, S.
2017-06-01
The explosive dispersal of particles is a complex multiphase and multi-species fluid flow problem. In these flows, the detonation products of the explosive must be treated as real gas while the ideal gas equation of state is used for the surrounding air. As the products expand outward from the detonation point, they mix with ambient air and create a mixing region where both state equations must be satisfied. One of the most accurate, yet computationally expensive, methods to handle this problem is an algorithm that iterates between both equations of state until pressure and thermal equilibrium are achieved inside of each computational cell. This work aims to use a multi-fidelity surrogate model to replace this process. A Kriging model is used to produce a curve fit which interpolates selected data from the iterative algorithm using Bayesian statistics. We study the model performance with respect to the iterative method in simulations using a finite volume code. The model's (i) computational speed, (ii) memory requirements and (iii) computational accuracy are analyzed to show the benefits of this novel approach. Also, optimizing the combination of model accuracy and computational speed through the choice of sampling points is explained. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program as a Cooperative Agreement under the Predictive Science Academic Alliance Program under Contract No. DE-NA0002378.
Mo, Phoenix K H; Chan, Virginia W Y; Chan, Samuel W; Lau, Joseph T F
2018-07-01
Internet addiction is prevalent among adolescents and is associated with various negative outcomes. Relatively few studies examined the role of emotion dysregulation and social support on Internet addiction in this population. The present examined the association between emotion dysregulation, social support, and Internet addiction among junior secondary school students in Hong Kong. The mediating role of emotion dysregulation and Internet use on the relationship between social support and Internet addiction and the gender difference in such association were also tested. A total of 862 junior secondary school students (grade 7 to 8) from 4 schools completed a cross-sectional survey. 10.9% scored above the cut-off for Internet addiction based on the Chen Internet Addiction Scale. Results from structural equation modeling revealed that social support was negatively related to emotion dysregulation and Internet usage, which in turn, were positively related to Internet addiction. Results from multi-group analysis by gender showed that the relationship between social support and emotion dysregulation, Internet usage, and Internet addiction, and those between emotion dysregulation and Internet addiction and between Internet usage and Internet addiction were stronger among female participants. Emotion dysregulation is a potential risk factor while social support is a potential protective factor for Internet addiction. The role of social support on emotion dysregulation and Internet addiction were stronger among female students. Gender-sensitive interventions on Internet Addiction for adolescents are warranted, such interventions should increase social support and improve emotion regulation. Copyright © 2018. Published by Elsevier Ltd.
Nonlinear diffusion and viral spread through the leaf of a plant
NASA Astrophysics Data System (ADS)
Edwards, Maureen P.; Waterhouse, Peter M.; Munoz-Lopez, María Jesús; Anderssen, Robert S.
2016-10-01
The spread of a virus through the leaf of a plant is both spatially and temporally causal in that the present status depends on the past and the spatial spread is compactly supported and progresses outwards. Such spatial spread is known to occur for certain nonlinear diffusion processes. The first compactly supported solution for nonlinear diffusion equations appears to be that of Pattle published in 1959. In that paper, no explanation is given as to how the solution was derived. Here, we show how the solution can be derived using Lie symmetry analysis. This lays a foundation for exploring the behavior of other choices for nonlinear diffusion and exploring the addition of reaction terms which do not eliminate the compactly supported structure. The implications associated with using the reaction-diffusion equation to model the spatial-temporal spread of a virus through the leaf of a plant are discussed.
SCBUCKLE user's manual: Buckling analysis program for simple supported and clamped panels
NASA Technical Reports Server (NTRS)
Cruz, Juan R.
1993-01-01
The program SCBUCKLE calculates the buckling loads and mode shapes of cylindrically curved, rectangular panels. The panel is assumed to have no imperfections. SCBUCKLE is capable of analyzing specially orthotropic symmetric panels (i.e., A(sub 16) = A(sub 26) = 0.0, D(sub 16) = D(sub 26) = 0.0, B(sub ij) = 0.0). The analysis includes first-order transverse shear theory and is capable of modeling sandwich panels. The analysis supports two types of boundary conditions: either simply supported or clamped on all four edges. The panel can be subjected to linearly varying normal loads N(sub x) and N(sub y) in addition to a constant shear load N(sub xy). The applied loads can be divided into two parts: a preload component; and a variable (eigenvalue-dependent) component. The analysis is based on the modified Donnell's equations for shallow shells. The governing equations are solved by Galerkin's method.
NASA Technical Reports Server (NTRS)
Kao, G. C.
1973-01-01
Method has been developed for predicting interaction between components and corresponding support structures subjected to acoustic excitations. Force environments determined in spectral form are called force spectra. Force-spectra equation is determined based on one-dimensional structural impedance model.
Parents, Siblings, and Peers: Close Social Relationships and Adolescent Deviance.
ERIC Educational Resources Information Center
Ardelt, Monika; Day, Laurie
2002-01-01
Examined relations between parents, older siblings, peers, adolescents' individual characteristics, and adolescents' deviant attitudes and behaviors among inner-city families. Structural equation models showed that older deviant siblings had the strongest effect on adolescent deviance. Positive family relationships, parental support, and…
Sohn, S Y; Gyu Joo, Yong; Kyu Han, Hong
2007-02-01
Financial support on the R&D in Science & Technology for SMEs at the governmental level plays a crucial role on the improvement of the national competitiveness. Korea Science & Engineering Foundation (KOSEF) has supported the R&D projects of SMEs with the competitive technology ability by way of the Science and Technology Promotion Fund. In this paper, we propose a structural equation model (SEM) to evaluate the performance of such a funding program in terms of three aspects: output, outcome and impact under given funding inputs, R&D environment of a recipient company, and external evaluation programs of funding organization. We adopt Malcolm Baldrige National Quality Award (MBNQA) criteria to assess the R&D environmental factors of recipient companies. In addition, we test the effect of interim evaluation of the funded project. The proposed model is applied to the real case and is used to identify the best practices as well as to provide feedback information for the improvement of the government funding programs of the R&D projects of SMEs.
Prediction of intention to continue sport in athlete students: A self-determination theory approach
Keshtidar, Mohammad; Behzadnia, Behzad
2017-01-01
Grounded on the self-determination theory (Deci & Ryan, 1985, 2000) and achievement goals theory (Ames, 1992; Nicholls, 1989), this study via structural equation modelling, predicted intention to continue in sport from goal orientations and motivations among athlete students. 268 athlete students (Mage = 21.9), in Iranian universities completed a multi-section questionnaire tapping the targeted variables. Structural equation modelling (SEM) offered an overall support for the proposed model. The results showed that there are positive relationships between intention to continue in sport and both orientations as well as both motivations. A task-involving orientation emerged as a positive predictor of the autonomous motivation, while an ego-involving orientation was a positive predictor controlled motivation as well as autonomous motivation. The results also support positive paths between autonomous motivation and future intention to participate in sport. Autonomous motivation also was a positive mediator in relationship between task orientation and the intentions. As a conclusion, the implications of the task-involving orientation are discussabled in the light of its importance for the quality and potential maintenance of sport involvement among athlete students. PMID:28178308
Prediction of intention to continue sport in athlete students: A self-determination theory approach.
Keshtidar, Mohammad; Behzadnia, Behzad
2017-01-01
Grounded on the self-determination theory (Deci & Ryan, 1985, 2000) and achievement goals theory (Ames, 1992; Nicholls, 1989), this study via structural equation modelling, predicted intention to continue in sport from goal orientations and motivations among athlete students. 268 athlete students (Mage = 21.9), in Iranian universities completed a multi-section questionnaire tapping the targeted variables. Structural equation modelling (SEM) offered an overall support for the proposed model. The results showed that there are positive relationships between intention to continue in sport and both orientations as well as both motivations. A task-involving orientation emerged as a positive predictor of the autonomous motivation, while an ego-involving orientation was a positive predictor controlled motivation as well as autonomous motivation. The results also support positive paths between autonomous motivation and future intention to participate in sport. Autonomous motivation also was a positive mediator in relationship between task orientation and the intentions. As a conclusion, the implications of the task-involving orientation are discussabled in the light of its importance for the quality and potential maintenance of sport involvement among athlete students.
Cha, Susan; Masho, Saba W; Heh, Victor
2017-04-01
Intimate partner violence (IPV) is a pervasive public health problem in the U.S., affecting nearly one in every three women over their lifetimes. Using structural equation modeling, we evaluated the association between IPV and unintended pregnancy, mediated by condom use and perceived spousal/partner support among Latina and Asian women. Data came from the 2002-2003 National Latino and Asian American Study (NLAAS). The analysis was restricted to married or cohabiting female respondents aged 18+ years (n = 1,595). Dependent variables included unintended pregnancy, condom use, and perceived partner support. Independent variables included physical abuse or threats by current partner and primary decision-maker. Weighted least squares was used to fit path models to data comprising dichotomous and ordinal variables. More than 13% of women reported IPV during their relationship with their partner/spouse. Abused women were twice as likely as non-abused women to have had an unintended pregnancy. This association was partially mediated by perceived partner support. Condom use had a positive, but non-significant association with unintended pregnancy, and IPV had a negative, but non-significant association with condom use. Results highlight the importance of IPV screening for minority women. Efforts to combine family planning and violence prevention services may help reduce unintended pregnancy.
Ha, Jong Goon; Man Kim, Ji; Hwang, Won Ju; Lee, Sang Gyu
2014-09-01
The aim of the present study was to analyse the impact of organisational characteristics on the turnover intention of care workers working at nursing homes in Korea. Study participants included 504 care workers working at 14 nursing homes in Korea. The variables measured were: high-performance work practices, consisting of five subfactors (official training, employment stability, autonomy, employee participation and group-based payment); organisational commitment, consisting of three subfactors (affective, normative and continuance commitment); organisational support; and turnover intention. The inter-relationship between high-performance work practices, organisational support, organisational commitment and turnover intention and the fit of the hypothetical model were analysed using structural equation modelling. According to our analysis, high-performance work practices not only had a direct effect on turnover intention, but also an indirect effect by mediating organisational support and commitment. The factor having the largest direct influence on turnover intention was organisational commitment. The results of the present study suggest that to improve health conditions for frail elderly patients at nursing homes, as well as the efficiency of nursing homes through the continuance of nursing service and enhancement of quality of service, long-term care facilities should reduce the turnover intention of care workers by increasing their organisational commitment by actively implementing high-performance work practices.
NASA Technical Reports Server (NTRS)
Ting, P. C.
1982-01-01
Thermodynamic energy balance equations are derived and applied to midsection Orbiter-payload atmospheric thermal math models (TMMs) to predict Orbiter component, element, compartment, internal insolation and structure temperatures in support of NASA/JSC mission planning, postflight thermal analysis and payload thermal integration planning. The equations are extended and applied to the forward section, midsection, and aft section of the TMMs for five Orbiter mission phases: prelaunch on pad with purge, lift-off to ascent, re-entry to touchdown, post landing without purge, and post-landing with purge. Predicted results from the 390 node/DFI atmospheric TMM are in good agreement with STS-1 flight measurement data.
Testing a Model of Functional Impairment in Telephone Crisis Support Workers.
Kitchingman, Taneile A; Wilson, Coralie J; Caputi, Peter; Wilson, Ian; Woodward, Alan
2017-11-01
It is well known that helping professionals experience functional impairment related to elevated symptoms of psychological distress as a result of frequent empathic engagement with distressed others. Whether telephone crisis support workers are impacted in a similar way is not currently reported in the literature. The purpose of this study was to test a hypothesized model of factors contributing to functional impairment in telephone crisis support workers. A national sample of 210 telephone crisis support workers completed an online survey including measures of emotion regulation, symptoms of general psychological distress and suicidal ideation, intentions to seek help for symptoms, and functional impairment. Structural equation modeling was used to test the fit of the data to the hypothesized model. Goodness-of-fit indices were adequate and supported the interactive effects of emotion regulation, general psychological distress, suicidal ideation, and intentions to seek help for ideation on functional impairment. These results warrant the deliberate management of telephone crisis support workers' impairment through service selection, training, supervision, and professional development strategies. Future research replicating and extending this model will further inform the modification and/or development of strategies to optimize telephone crisis support workers' well-being and delivery of support to callers.
NASA Astrophysics Data System (ADS)
Nursyahidah, F.; Saputro, B. A.; Rubowo, M. R.
2018-03-01
The aim of this research is to know the students’ understanding of linear equation system in two variables using Ethnomathematics and to acquire learning trajectory of linear equation system in two variables for the second grade of lower secondary school students. This research used methodology of design research that consists of three phases, there are preliminary design, teaching experiment, and retrospective analysis. Subject of this study is 28 second grade students of Sekolah Menengah Pertama (SMP) 37 Semarang. The result of this research shows that the students’ understanding in linear equation system in two variables can be stimulated by using Ethnomathematics in selling buying tradition in Peterongan traditional market in Central Java as a context. All of strategies and model that was applied by students and also their result discussion shows how construction and contribution of students can help them to understand concept of linear equation system in two variables. All the activities that were done by students produce learning trajectory to gain the goal of learning. Each steps of learning trajectory of students have an important role in understanding the concept from informal to the formal level. Learning trajectory using Ethnomathematics that is produced consist of watching video of selling buying activity in Peterongan traditional market to construct linear equation in two variables, determine the solution of linear equation in two variables, construct model of linear equation system in two variables from contextual problem, and solving a contextual problem related to linear equation system in two variables.
Alcântara, Marcus A; Sampaio, Rosana F; Assunção, Ada Ávila; Silva, Fabiana C Martins
2014-01-01
The Work Ability Model has a holistic structure that incorporates individual characteristics, work-related factors and life outside of work. The model has been explored in the context of Finland but still needs to be applied in other countries. The aim of this study was to examine the relationships between age, health, work and work ability in a sample of Brazilian municipal employees. A sample of 5,646 workers answered a web-survey questionnaire that collected information about socio-demographics, health, work characteristics and work ability. Structural equation modeling (SEM) was used to examine the simultaneous relationships between the variables that comprise the Work Ability Model. The sample was predominantly female (68.0%), between 30 and 49 years old (60.0%) and highly educated (66.0%). SEM produced good fit indexes that supported the Work Ability Model. Age was positively related to work ability and negatively related to health. Health and work characteristics positively influenced work ability. The results produced additional support for the conceptualization of work ability as a complex and dynamic phenomenon: a system composed of an individual and various elements of his/her work interact in time and space in a nonlinear way.
NASA Astrophysics Data System (ADS)
Sun, Yuan; Bhattacherjee, Anol
2011-11-01
Information technology (IT) usage within organisations is a multi-level phenomenon that is influenced by individual-level and organisational-level variables. Yet, current theories, such as the unified theory of acceptance and use of technology, describe IT usage as solely an individual-level phenomenon. This article postulates a model of organisational IT usage that integrates salient organisational-level variables such as user training, top management support and technical support within an individual-level model to postulate a multi-level model of IT usage. The multi-level model was then empirically validated using multi-level data collected from 128 end users and 26 managers in 26 firms in China regarding their use of enterprise resource planning systems and analysed using the multi-level structural equation modelling (MSEM) technique. We demonstrate the utility of MSEM analysis of multi-level data relative to the more common structural equation modelling analysis of single-level data and show how single-level data can be aggregated to approximate multi-level analysis when multi-level data collection is not possible. We hope that this article will motivate future scholars to employ multi-level data and multi-level analysis for understanding organisational phenomena that are truly multi-level in nature.
Yang, Qinghua; Chen, Yixin; Wendorf Muhamad, Jessica
2017-09-01
We proposed a conceptual model to predict health information-seeking behaviors (HISBs) from three different sources (family, the Internet, doctors). To test the model, a structural equation modeling (SEM) analysis was conducted using data from the 2012 Annenberg National Health Communication Survey (ANHCS) (N = 3,285). Findings suggest higher social support from family predicts higher trust in health information from family members (abbreviated as trust in this article). Trust is positively related to HISBs from all three sources, with the path linking trust to HISB from family being the strongest. The effect of social support on HISB from family is partially mediated by trust, while effect of social support on HISBs from the Internet/doctors is fully mediated by trust. Implications of the study are discussed.
Milner, Karen; Greyling, Michael; Goetzel, Ron; Da Silva, Roseanne; Kolbe-Alexander, Tracey; Patel, Deepak; Nossel, Craig; Beckowski, Megan
2015-09-01
Leadership support has been identified as an essential component of successful workplace health promotion (WHP) programs. However, there is little research in this area and even less theoretical conceptualization on ways in which leadership support for WHP is related to improved employee wellbeing. In this paper, we developed and tested a model of leadership support for WHP and employee wellbeing outcomes using employer and employee data gathered from 71 South African organizations. A theoretical model based on social exchange theory was developed. It was hypothesized that perceptions of company commitment to health promotion mediates the relationship between leadership support, the provision of WHP facilities and employee wellbeing. A hierarchical structural equation modeling technique was used to test the model. We determined that leaders' support for WHP was important insofar as they also provided health promotion facilities to their employees. No direct relationship was found between leadership support alone and employee wellbeing. © The Author (2013). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Osczevski, Randall J.
2014-08-01
Ben Shabat et al. (Int J Biometeorol 56(4):639-51, 2013) present revised charts for wind chill equivalent temperatures (WCET) and facial skin temperatures (FST) that differ significantly from currently accepted charts. They credit these differences to their more sophisticated calculation model and to the human-based equation that it used for finding the convective heat transfer coefficient (Ben Shabat and Shitzer, Int J Biometeorol 56:639-651, 2012). Because a version of the simple model that was used to create the current charts accurately reproduces their results when it uses the human-based equation, the differences that they found must be entirely due to this equation. In deriving it, Ben Shabat and Shitzer assumed that all of the heat transfer from the surface of their cylindrical model was due to forced convection alone. Because several modes of heat transfer were occurring in the human experiments they were attempting to simulate, notably radiation, their coefficients are actually total external heat transfer coefficients, not purely convective ones, as the calculation models assume. Data from the one human experiment that used heat flux sensors supports this conclusion and exposes the hazard of using a numerical model with several adjustable parameters that cannot be measured. Because the human-based equation is faulty, the values in the proposed charts are not correct. The equation that Ben Shabat et al. (Int J Biometeorol 56(4):639-51, 2013) propose to calculate WCET should not be used.
OpenCMISS: a multi-physics & multi-scale computational infrastructure for the VPH/Physiome project.
Bradley, Chris; Bowery, Andy; Britten, Randall; Budelmann, Vincent; Camara, Oscar; Christie, Richard; Cookson, Andrew; Frangi, Alejandro F; Gamage, Thiranja Babarenda; Heidlauf, Thomas; Krittian, Sebastian; Ladd, David; Little, Caton; Mithraratne, Kumar; Nash, Martyn; Nickerson, David; Nielsen, Poul; Nordbø, Oyvind; Omholt, Stig; Pashaei, Ali; Paterson, David; Rajagopal, Vijayaraghavan; Reeve, Adam; Röhrle, Oliver; Safaei, Soroush; Sebastián, Rafael; Steghöfer, Martin; Wu, Tim; Yu, Ting; Zhang, Heye; Hunter, Peter
2011-10-01
The VPH/Physiome Project is developing the model encoding standards CellML (cellml.org) and FieldML (fieldml.org) as well as web-accessible model repositories based on these standards (models.physiome.org). Freely available open source computational modelling software is also being developed to solve the partial differential equations described by the models and to visualise results. The OpenCMISS code (opencmiss.org), described here, has been developed by the authors over the last six years to replace the CMISS code that has supported a number of organ system Physiome projects. OpenCMISS is designed to encompass multiple sets of physical equations and to link subcellular and tissue-level biophysical processes into organ-level processes. In the Heart Physiome project, for example, the large deformation mechanics of the myocardial wall need to be coupled to both ventricular flow and embedded coronary flow, and the reaction-diffusion equations that govern the propagation of electrical waves through myocardial tissue need to be coupled with equations that describe the ion channel currents that flow through the cardiac cell membranes. In this paper we discuss the design principles and distributed memory architecture behind the OpenCMISS code. We also discuss the design of the interfaces that link the sets of physical equations across common boundaries (such as fluid-structure coupling), or between spatial fields over the same domain (such as coupled electromechanics), and the concepts behind CellML and FieldML that are embodied in the OpenCMISS data structures. We show how all of these provide a flexible infrastructure for combining models developed across the VPH/Physiome community. Copyright © 2011 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Herman, Keith C.; Lambert, Sharon F.; Reinke, Wendy M.; Ialongo, Nicholas S.
2008-01-01
The present study investigated the role of low academic competence in the emergence of depressive cognitions and symptoms. Structural equation modeling was conducted on a longitudinal sample of African American boys (n = 253) and girls (n = 221). Results supported the hypothesized path models from academic competence in 1st grade to depressive…
ERIC Educational Resources Information Center
Dembo, Richard; Wothke, Werner; Seeberger, William; Shemwell, Marina; Pacheco, Kimberly; Rollie, Matthew; Schmeidler, James; Livingston, Stephen; Hartsfield, Amy
2002-01-01
Baseline, one-year and two-year follow-up interviews were obtained from 164 arrested youths processed at a juvenile assessment center in a prospective longitudinal study. A structural equation model that included cross-sectional and longitudinal associations among drug (alcohol and marijuana), drug sales and index offenses was supported by the…
A Stochastic Differential Equation Model for the Spread of HIV amongst People Who Inject Drugs.
Liang, Yanfeng; Greenhalgh, David; Mao, Xuerong
2016-01-01
We introduce stochasticity into the deterministic differential equation model for the spread of HIV amongst people who inject drugs (PWIDs) studied by Greenhalgh and Hay (1997). This was based on the original model constructed by Kaplan (1989) which analyses the behaviour of HIV/AIDS amongst a population of PWIDs. We derive a stochastic differential equation (SDE) for the fraction of PWIDs who are infected with HIV at time. The stochasticity is introduced using the well-known standard technique of parameter perturbation. We first prove that the resulting SDE for the fraction of infected PWIDs has a unique solution in (0, 1) provided that some infected PWIDs are initially present and next construct the conditions required for extinction and persistence. Furthermore, we show that there exists a stationary distribution for the persistence case. Simulations using realistic parameter values are then constructed to illustrate and support our theoretical results. Our results provide new insight into the spread of HIV amongst PWIDs. The results show that the introduction of stochastic noise into a model for the spread of HIV amongst PWIDs can cause the disease to die out in scenarios where deterministic models predict disease persistence.
Li, Rui; Cai, Yong; Wang, Ying; Gan, Feng; Shi, Rong
2016-12-01
We aimed to explore the relationships and develop an inter-theoretical model among psychological variables in the progression to suicidal ideation among men who have sex with men (MSM). A cross-sectional study was conducted among 547 MSM in four districts in Shanghai from March to May in 2014. Socio-demographic, psychological, and behavioral information of the participants was collected. A structural equation model (SEM)-Path Analysis was constructed to interpret the intricate relationships among various psychological variables. Suicidal ideation among MSM during the past year was 10.6%. The developed model agreed well with existing suicide models and had a good fit to the data (χ 2 /df = 2.497, comparative fit index = 0.983, root mean squared error of approximation = 0.052). Suicidal ideation was predicted by perceived defeat and entrapment (β = 0.21, p < 0.001), which was in turn predicted by temperament (β = 0.60, p < 0.001) and perceived social support (β = 0.34, p < 0.001). Perceived social support fully mediated the relationships among mood states, perceived social status, and perceived defeat and entrapment. MSM with certain types of temperament might be predisposed to a higher perception of defeat and entrapment. Perceived social support can effectively alleviate the negative appraisals and emotions and lower the risk for suicidal ideation among MSM. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ravangard, Ramin; Yasami, Shamim; Shokrpour, Nasrin; Sajjadnia, Zahra; Farhadi, Payam
2015-01-01
Nurses are the largest group and an important part of the providers in the health care systems that who a key role in hospitals. Any defect and deficiency in their work can result in irreversible outcomes. This study aimed to determine the effect of supervisors' support and mediating factors on the job performance (JOBPER) of 400 nurses working in the teaching hospitals affiliated to Shiraz University of Medical Sciences, using structural equation modeling. The results showed that the supervisor's support had a significant negative effect on work-family conflict (t = -2.57) and a positive effect on organizational commitment (t = 4.03); Work-family conflict had a significant positive effect on job stress (t = 11.24) and a negative effect on organizational commitment (t = -3.35) and JOBPER (t = -2.29). Family-work conflict had a positive effect on job stress (t = 4.48) and a negative effect on organizational commitment (t = -2.54). Finally, job stress had a negative effect (t = -3.30), and organizational commitment showed a positive effect (t = 5.96) on the studied nurses' JOBPER. According to the results, supervisor's support could influence JOBPER through reducing work-family conflict and increasing organizational commitment. Therefore, to improve the nurses' JOBPER in the hospitals, some strategies are recommended.
NASA Astrophysics Data System (ADS)
Yan, Zhen-Ya; Xie, Fu-Ding; Zhang, Hong-Qing
2001-07-01
Both the direct method due to Clarkson and Kruskal and the improved direct method due to Lou are extended to reduce the high-order modified Boussinesq equation with the damping term (HMBEDT) arising in the general Fermi-Pasta-Ulam model. As a result, several types of similarity reductions are obtained. It is easy to show that the nonlinear wave equation is not integrable under the sense of Ablowitz's conjecture from the reduction results obtained. In addition, kink-shaped solitary wave solutions, which are of important physical significance, are found for HMBEDT based on the obtained reduction equation. The project supported by National Natural Science Foundation of China under Grant No. 19572022, the National Key Basic Research Development Project Program of China under Grant No. G1998030600 and Doctoral Foundation of China under Grant No. 98014119
Evaluating a Model of Youth Physical Activity
Heitzler, Carrie D.; Lytle, Leslie A.; Erickson, Darin J.; Barr-Anderson, Daheia; Sirard, John R.; Story, Mary
2011-01-01
Objective To explore the relationship between social influences, self-efficacy, enjoyment, and barriers and physical activity. Methods Structural equation modeling examined relationships between parent and peer support, parent physical activity, individual perceptions, and objectively measured physical activity using accelerometers among a sample of youth aged 10–17 years (N=720). Results Peer support, parent physical activity, and perceived barriers were directly related to youth activity. The proposed model accounted for 14.7% of the variance in physical activity. Conclusions The results demonstrate a need to further explore additional individual, social, and environmental factors that may influence youth’s regular participation in physical activity. PMID:20524889
Orlov, S V; Kanykin, A Iu; Moskalev, V P; Shchedrenok, V V; Sedov, R L
2009-01-01
A mathematical model of a three-vertebra complex was developed in order to make an exact calculation of loss of supporting ability of the vertebral column in trauma. Mathematical description of the dynamic processes was based on Lagrange differential equation of the second order. The degree of compression and instability of the three-vertebra complex, established using mathematical modeling, determines the decision on the surgical treatment and might be considered as a prognostic criterion of the course of the compression trauma of the spine. The method of mathematical modeling of supporting ability of the vertebral column was used in 72 patients.
BADGER v1.0: A Fortran equation of state library
NASA Astrophysics Data System (ADS)
Heltemes, T. A.; Moses, G. A.
2012-12-01
The BADGER equation of state library was developed to enable inertial confinement fusion plasma codes to more accurately model plasmas in the high-density, low-temperature regime. The code had the capability to calculate 1- and 2-T plasmas using the Thomas-Fermi model and an individual electron accounting model. Ion equation of state data can be calculated using an ideal gas model or via a quotidian equation of state with scaled binding energies. Electron equation of state data can be calculated via the ideal gas model or with an adaptation of the screened hydrogenic model with ℓ-splitting. The ionization and equation of state calculations can be done in local thermodynamic equilibrium or in a non-LTE mode using a variant of the Busquet equivalent temperature method. The code was written as a stand-alone Fortran library for ease of implementation by external codes. EOS results for aluminum are presented that show good agreement with the SESAME library and ionization calculations show good agreement with the FLYCHK code. Program summaryProgram title: BADGERLIB v1.0 Catalogue identifier: AEND_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEND_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 41 480 No. of bytes in distributed program, including test data, etc.: 2 904 451 Distribution format: tar.gz Programming language: Fortran 90. Computer: 32- or 64-bit PC, or Mac. Operating system: Windows, Linux, MacOS X. RAM: 249.496 kB plus 195.630 kB per isotope record in memory Classification: 19.1, 19.7. Nature of problem: Equation of State (EOS) calculations are necessary for the accurate simulation of high energy density plasmas. Historically, most EOS codes used in these simulations have relied on an ideal gas model. This model is inadequate for low-temperature, high-density plasma conditions; the gaseous and liquid phases; and the solid phase. The BADGER code was developed to give more realistic EOS data in these regimes. Solution method: BADGER has multiple, user-selectable models to treat the ions, average-atom ionization state and electrons. Ion models are ideal gas and quotidian equation of state (QEOS), ionization models are Thomas-Fermi and individual accounting method (IEM) formulation of the screened hydrogenic model (SHM) with l-splitting, electron ionization models are ideal gas and a Helmholtz free energy minimization method derived from the SHM. The default equation of state and ionization models are appropriate for plasmas in local thermodynamic equilibrium (LTE). The code can calculate non-LTE equation of state (EOS) and ionization data using a simplified form of the Busquet equivalent-temperature method. Restrictions: Physical data are only provided for elements Z=1 to Z=86. Multiple solid phases are not currently supported. Liquid, gas and plasma phases are combined into a generalized "fluid" phase. Unusual features: BADGER divorces the calculation of average-atom ionization from the electron equation of state model, allowing the user to select ionization and electron EOS models that are most appropriate to the simulation. The included ion ideal gas model uses ground-state nuclear spin data to differentiate between isotopes of a given element. Running time: Example provided only takes a few seconds to run.
Testosterone and Occupational Achievement.
ERIC Educational Resources Information Center
Dabbs, James M., Jr.
1992-01-01
Archival data on 4,462 military veterans linked higher levels of serum testosterone to lower-status occupations. A structural equation model was supported in which higher testosterone, mediated through lower intellectual ability, greater antisocial behavior, and lower education, leads away from white-collar occupations. Contains 49 references.…
The Graphical Representation of the Digital Astronaut Physiology Backbone
NASA Technical Reports Server (NTRS)
Briers, Demarcus
2010-01-01
This report summarizes my internship project with the NASA Digital Astronaut Project to analyze the Digital Astronaut (DA) physiology backbone model. The Digital Astronaut Project (DAP) applies integrated physiology models to support space biomedical operations, and to assist NASA researchers in closing knowledge gaps related to human physiologic responses to space flight. The DA physiology backbone is a set of integrated physiological equations and functions that model the interacting systems of the human body. The current release of the model is HumMod (Human Model) version 1.5 and was developed over forty years at the University of Mississippi Medical Center (UMMC). The physiology equations and functions are scripted in an XML schema specifically designed for physiology modeling by Dr. Thomas G. Coleman at UMMC. Currently it is difficult to examine the physiology backbone without being knowledgeable of the XML schema. While investigating and documenting the tags and algorithms used in the XML schema, I proposed a standard methodology for a graphical representation. This standard methodology may be used to transcribe graphical representations from the DA physiology backbone. In turn, the graphical representations can allow examination of the physiological functions and equations without the need to be familiar with the computer programming languages or markup languages used by DA modeling software.
Activation of the marine ecosystem model 3D CEMBS for the Baltic Sea in operational mode
NASA Astrophysics Data System (ADS)
Dzierzbicka-Glowacka, Lidia; Jakacki, Jaromir; Janecki, Maciej; Nowicki, Artur
2013-04-01
The paper presents a new marine ecosystem model 3D CEMBS designed for the Baltic Sea. The ecosystem model is incorporated into the 3D POPCICE ocean-ice model. The Current Baltic Sea model is based on the Community Earth System Model (CESM from the National Center for Atmospheric Research) which was adapted for the Baltic Sea as a coupled sea-ice model. It consists of the Community Ice Code (CICE model, version 4.0) and the Parallel Ocean Program (version 2.1). The ecosystem model is a biological submodel of the 3D CEMBS. It consists of eleven mass conservation equations. There are eleven partial second-order differential equations of the diffusion type with the advective term for phytoplankton, zooplankton, nutrients, dissolved oxygen, and dissolved and particulate organic matter. This model is an effective tool for solving the problem of ecosystem bioproductivity. The model is forced by 48-hour atmospheric forecasts provided by the UM model from the Interdisciplinary Centre for Mathematical and Computational Modelling of Warsaw University (ICM). The study was financially supported by the Polish State Committee of Scientific Research (grants: No N N305 111636, N N306 353239). The partial support for this study was also provided by the project Satellite Monitoring of the Baltic Sea Environment - SatBaltyk founded by European Union through European Regional Development Fund contract no. POIG 01.01.02-22-011/09. Calculations were carried out at the Academy Computer Centre in Gdańsk.
Wilks, Scott E; Croom, Beth
2008-05-01
The study examined whether social support functioned as a protective, resilience factor among Alzheimer's disease (AD) caregivers. Moderation and mediation models were used to test social support amid stress and resilience. A cross-sectional analysis of self-reported data was conducted. Measures of demographics, perceived stress, family support, friend support, overall social support, and resilience were administered to caregiver attendees (N=229) of two AD caregiver conferences. Hierarchical regression analysis showed the compounded impact of predictors on resilience. Odds ratios generated probability of high resilience given high stress and social supports. Social support moderation and mediation were tested via distinct series of regression equations. Path analyses illustrated effects on the models for significant moderation and/or mediation. Stress negatively influenced and accounted for most variation in resilience. Social support positively influenced resilience, and caregivers with high family support had the highest probability of elevated resilience. Moderation was observed among all support factors. No social support fulfilled the complete mediation criteria. Evidence of social support as a protective, moderating factor yields implications for health care practitioners who deliver services to assist AD caregivers, particularly the promotion of identification and utilization of supportive familial and peer relations.
Vilar-Compte, Mireya; Giraldo-Rodríguez, Liliana; Ochoa-Laginas, Adriana; Gaitan-Rossi, Pablo
2018-04-01
We assessed the association between depression and elder abuse, and the mediation effect of social support among elder women in Mexico City. A total of 526 noninstitutionalized elder women, residing in Mexico City and attending public community centers were selected. Logistic regressions and structural equation models (SEM) were estimated. One fifth of the elderly women were at risk of depression, one third suffered some type of abuse in the past 12 months, and 82% reported low social support. Logistic models confirmed that depression was statistically associated with elder abuse and vice versa (odds ratio [OR] = 1.97 and 1.96, respectively). In both models, social support significantly reduced the association between these variables leading to study these associations through SEM. This approach highlighted that social support buffers the association between depression and elder abuse. Findings underline the relevance of programs and strategies targeted at increasing social support among urban older adults.
Gan, Yiqun; Gan, Tingting; Chen, Zhiyan; Miao, Miao; Zhang, Kan
2015-10-01
This study investigated the role of social support in the complex pattern of associations among stressors, work-family interferences and depression in the domains of work and family. A questionnaire was administered to a nationwide sample of 11,419 Chinese science and technology professionals. Several structural equation models were specified to determine whether social support functioned as a predictor or a mediator. Using Mplus 5.0, we compared the moderation model, the independence model, the antecedent model and the mediation model. The results revealed that the relationship between work-family interference and social support was domain specific. The independence model fit the data best in the work domain. Both the moderation model and the antecedent model fit the family domain data equally well. The current study was conducted to answer the need for comprehensive investigations of cultural uniqueness in the antecedents of work-family interference. The domain specificity, i.e. the multiple channels of the functions of support in the family domain and not in the work domain, ensures that this study is unique and culturally specific. Copyright © 2014 John Wiley & Sons, Ltd.
Energy harvesting from torsions of patterned piezoelectrics
NASA Astrophysics Data System (ADS)
Cha, Youngsu; You, Hangil
2018-03-01
In this paper, we investigate the feasibility of energy harvesting from the torsions using a piezoelectric beam. The piezoelectric beam is partially patterned and is tested in an experimental setup to force pure torsional deformation. In particular, the beam consists of two identical piezoelectric parts attached on one side of a supporting substrate. We propose a model for the energy harvesting system through the equations for a slender composite beam with the physical properties and the electromechanical coupling equations of the piezoelectric material. The theoretical predictions are validated by the comparison with the experimental results.
The mechanics of solids in the plastically-deformable state
NASA Technical Reports Server (NTRS)
Mises, R. V.
1986-01-01
The mechanics of continua, which is based on the general stress model of Cauchy, up to the present has almost exclusively been applied to liquid and solid elastic bodies. Saint-Venant has developed a theory for the plastic or remaining form changes of solids, but it does not give the required number of equations for determining motion. A complete set of equations of motion for plastic deformable bodies is derived. This is done within the framework of Cauch mechanics. And it is supported by certain experimental facts which characterize the range of applications.
Goong, Hwasoo; Xu, Lijuan; Li, Chun-Yu
2016-11-01
To examine the effects of work-family-school role conflicts and role-related social support (RRSS) on burnout of nurses pursuing an advanced degree. A predictive correlational cross-sectional study design was used. Nurses were found to be a high-risk group for burnout, even more so among nurses pursuing an advanced degree. When nurses with a professional career marry and decide to become students, inter-role conflicts and burnout are possible outcomes of the resulting multiple roles. Using convenience sampling, data were collected from October 2011-May 2012. A questionnaire about work-family-school role conflicts, RRSS, burnout and general information was completed by 286 nurses pursuing an advanced degree at 12 hospitals in Korea. Data were analysed using SPSS and structural equation modelling with the Analysis of Moment Structures program. The proposed model provided a good fit to the obtained data. Work-family-school role conflicts and social support exerted significant effects on burnout. Role-related social support was found to play a partial mediating role between work-family-school role conflicts and burnout. The findings of this study imply that RRSS significantly directly and indirectly influences burnout among the nurses pursuing an advanced degree. It is necessary for nursing managers to consider implementing family- and school-friendly policies (e.g. flexible work schedules) to help nurses to manage their multiple roles and thereby decrease their burnout rate. © 2016 John Wiley & Sons Ltd.
Object-oriented biomedical system modelling--the language.
Hakman, M; Groth, T
1999-11-01
The paper describes a new object-oriented biomedical continuous system modelling language (OOBSML). It is fully object-oriented and supports model inheritance, encapsulation, and model component instantiation and behaviour polymorphism. Besides the traditional differential and algebraic equation expressions the language includes also formal expressions for documenting models and defining model quantity types and quantity units. It supports explicit definition of model input-, output- and state quantities, model components and component connections. The OOBSML model compiler produces self-contained, independent, executable model components that can be instantiated and used within other OOBSML models and/or stored within model and model component libraries. In this way complex models can be structured as multilevel, multi-component model hierarchies. Technically the model components produced by the OOBSML compiler are executable computer code objects based on distributed object and object request broker technology. This paper includes both the language tutorial and the formal language syntax and semantic description.
SARAH 4: A tool for (not only SUSY) model builders
NASA Astrophysics Data System (ADS)
Staub, Florian
2014-06-01
We present the new version of the Mathematica package SARAH which provides the same features for a non-supersymmetric model as previous versions for supersymmetric models. This includes an easy and straightforward definition of the model, the calculation of all vertices, mass matrices, tadpole equations, and self-energies. Also the two-loop renormalization group equations for a general gauge theory are now included and have been validated with the independent Python code PyR@TE. Model files for FeynArts, CalcHep/CompHep, WHIZARD and in the UFO format can be written, and source code for SPheno for the calculation of the mass spectrum, a set of precision observables, and the decay widths and branching ratios of all states can be generated. Furthermore, the new version includes routines to output model files for Vevacious for both, supersymmetric and non-supersymmetric, models. Global symmetries are also supported with this version and by linking Susyno the handling of Lie groups has been improved and extended.
NASA Astrophysics Data System (ADS)
Hess, Julian; Wang, Yongqi
2016-11-01
A new mixture model for granular-fluid flows, which is thermodynamically consistent with the entropy principle, is presented. The extra pore pressure described by a pressure diffusion equation and the hypoplastic material behavior obeying a transport equation are taken into account. The model is applied to granular-fluid flows, using a closing assumption in conjunction with the dynamic fluid pressure to describe the pressure-like residual unknowns, hereby overcoming previous uncertainties in the modeling process. Besides the thermodynamically consistent modeling, numerical simulations are carried out and demonstrate physically reasonable results, including simple shear flow in order to investigate the vertical distribution of the physical quantities, and a mixture flow down an inclined plane by means of the depth-integrated model. Results presented give insight in the ability of the deduced model to capture the key characteristics of granular-fluid flows. We acknowledge the support of the Deutsche Forschungsgemeinschaft (DFG) for this work within the Project Number WA 2610/3-1.
Improvements in continuum modeling for biomolecular systems
NASA Astrophysics Data System (ADS)
Yu, Qiao; Ben-Zhuo, Lu
2016-01-01
Modeling of biomolecular systems plays an essential role in understanding biological processes, such as ionic flow across channels, protein modification or interaction, and cell signaling. The continuum model described by the Poisson- Boltzmann (PB)/Poisson-Nernst-Planck (PNP) equations has made great contributions towards simulation of these processes. However, the model has shortcomings in its commonly used form and cannot capture (or cannot accurately capture) some important physical properties of the biological systems. Considerable efforts have been made to improve the continuum model to account for discrete particle interactions and to make progress in numerical methods to provide accurate and efficient simulations. This review will summarize recent main improvements in continuum modeling for biomolecular systems, with focus on the size-modified models, the coupling of the classical density functional theory and the PNP equations, the coupling of polar and nonpolar interactions, and numerical progress. Project supported by the National Natural Science Foundation of China (Grant No. 91230106) and the Chinese Academy of Sciences Program for Cross & Cooperative Team of the Science & Technology Innovation.
NASA Astrophysics Data System (ADS)
Rahimi, Zaher; Sumelka, Wojciech; Yang, Xiao-Jun
2017-11-01
The application of fractional calculus in fractional models (FMs) makes them more flexible than integer models inasmuch they can conclude all of integer and non-integer operators. In other words FMs let us use more potential of mathematics to modeling physical phenomena due to the use of both integer and fractional operators to present a better modeling of problems, which makes them more flexible and powerful. In the present work, a new fractional nonlocal model has been proposed, which has a simple form and can be used in different problems due to the simple form of numerical solutions. Then the model has been used to govern equations of the motion of the Timoshenko beam theory (TBT) and Euler-Bernoulli beam theory (EBT). Next, free vibration of the Timoshenko and Euler-Bernoulli simply-supported (S-S) beam has been investigated. The Galerkin weighted residual method has been used to solve the non-linear governing equations.
Tervo, Christopher J.; Reed, Jennifer L.
2013-01-01
The success of genome-scale metabolic modeling is contingent on a model's ability to accurately predict growth and metabolic behaviors. To date, little focus has been directed towards developing systematic methods of proposing, modifying and interrogating an organism's biomass requirements that are used in constraint-based models. To address this gap, the biomass modification and generation (BioMog) framework was created and used to generate lists of biomass components de novo, as well as to modify predefined biomass component lists, for models of Escherichia coli (iJO1366) and of Shewanella oneidensis (iSO783) from high-throughput growth phenotype and fitness datasets. BioMog's de novo biomass component lists included, either implicitly or explicitly, up to seventy percent of the components included in the predefined biomass equations, and the resulting de novo biomass equations outperformed the predefined biomass equations at qualitatively predicting mutant growth phenotypes by up to five percent. Additionally, the BioMog procedure can quantify how many experiments support or refute a particular metabolite's essentiality to a cell, and it facilitates the determination of inconsistent experiments and inaccurate reaction and/or gene to reaction associations. To further interrogate metabolite essentiality, the BioMog framework includes an experiment generation algorithm that allows for the design of experiments to test whether a metabolite is essential. Using BioMog, we correct experimental results relating to the essentiality of thyA gene in E. coli, as well as perform knockout experiments supporting the essentiality of protoheme. With these capabilities, BioMog can be a valuable resource for analyzing growth phenotyping data and component of a model developer's toolbox. PMID:24339916
D3-Equivariant coupled advertising oscillators model
NASA Astrophysics Data System (ADS)
Zhang, Chunrui; Zheng, Huifeng
2011-04-01
A ring of three coupled advertising oscillators with delay is considered. Using the symmetric functional differential equation theories, the multiple Hopf bifurcations of the equilibrium at the origin are demonstrated. The existence of multiple branches of bifurcating periodic solution is obtained. Numerical simulation supports our analysis results.
Work-Family Balance and Psychosocial Adjustment of Married International Students
ERIC Educational Resources Information Center
Bulgan, Gökçe; Çiftçi, Ayse
2018-01-01
The authors investigated how work-family balance mediated the relationship between personality traits, gender roles, social support, and psychosocial adjustment. Data were collected from 243 married international graduate students (MIGSs) studying in the United States. Results of structural equation modeling indicated that personality traits…
Two-dimensional extended fluid model for a dc glow discharge with nonlocal ionization source term
NASA Astrophysics Data System (ADS)
Rafatov, Ismail; Bogdanov, Eugeny; Kudryavtsev, Anatoliy
2013-09-01
Numerical techniques applied to the gas discharge plasma modelling are generally grouped into fluid and kinetic (particle) methods, and their combinations which lead to the hybrid models. Hybrid models usually employ Monte Carlo method to simulate fast electron dynamics, while slow plasma species are described as fluids. However, since fast electrons contribution to these models is limited to deriving the ionization rate distribution, their effect can be expressed by the analytical approximation of the ionization source function, and then integrating it into the fluid model. In the context of this approach, we incorporated effect of fast electrons into the ``extended fluid model'' of glow discharge, using two spatial dimensions. Slow electrons, ions and excited neutral species are described by the fluid plasma equations. Slow electron transport (diffusion and mobility) coefficients as well as electron induced reaction rates are determined from the solutions of the electron Boltzmann equation. The self-consistent electric field is calculated using the Poisson equation. We carried out test calculations for the discharge in argon gas. Comparison with the experimental data as well as with the hybrid model results exhibits good applicability of the proposed model. The work was supported by the joint research grant from the Scientific and Technical Research Council of Turkey (TUBITAK) 212T164 and Russian Foundation for Basic Research (RFBR).
NASA Astrophysics Data System (ADS)
Reyes, Jonathan; Shadwick, B. A.
2016-10-01
Modeling the evolution of a short, intense laser pulse propagating through an underdense plasma is of particular interest in the physics of laser-plasma interactions. Numerical models are typically created by first discretizing the equations of motion and then imposing boundary conditions. Using the variational principle of Chen and Sudan, we spatially discretize the Lagrangian density to obtain discrete equations of motion and a discrete energy conservation law which is exactly satisfied regardless of the spatial grid resolution. Modifying the derived equations of motion (e.g., enforcing boundary conditions) generally ruins energy conservation. However, time-dependent terms can be added to the Lagrangian which force the equations of motion to have the desired boundary conditions. Although some foresight is needed to choose these time-dependent terms, this approach provides a mechanism for energy to exit the closed system while allowing the conservation law to account for the loss. An appropriate time discretization scheme is selected based on stability analysis and resolution requirements. We present results using this variational approach in a co-moving coordinate system and compare such results to those using traditional second-order methods. This work was supported by the U. S. Department of Energy under Contract No. DE-SC0008382 and by the National Science Foundation under Contract No. PHY- 1104683.
Using explanatory crop models to develop simple tools for Advanced Life Support system studies
NASA Technical Reports Server (NTRS)
Cavazzoni, J.
2004-01-01
System-level analyses for Advanced Life Support require mathematical models for various processes, such as for biomass production and waste management, which would ideally be integrated into overall system models. Explanatory models (also referred to as mechanistic or process models) would provide the basis for a more robust system model, as these would be based on an understanding of specific processes. However, implementing such models at the system level may not always be practicable because of their complexity. For the area of biomass production, explanatory models were used to generate parameters and multivariable polynomial equations for basic models that are suitable for estimating the direction and magnitude of daily changes in canopy gas-exchange, harvest index, and production scheduling for both nominal and off-nominal growing conditions. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.
Liu, Yih-Lan
2006-01-01
The aim of this study was to investigate how paternal and maternal attachment might relate to adolescents' peer support, social expectations of peer interaction, and depressive symptoms; 1,144 8th graders in Taiwan participated in the study. The relationships were examined through a structural equating modeling. Consistent with theoretical formulations, adolescents with secure attachments to parents reported higher peer support, fewer negative expectations, and fewer depressive symptoms. Paternal and maternal attachment contribute almost equally to adolescents' social expectations of peer interaction and depressive symptoms. Attachment to the same-sex parent was related to adolescents' perceived peer support.
NASA Astrophysics Data System (ADS)
Hee, S.; Vázquez, J. A.; Handley, W. J.; Hobson, M. P.; Lasenby, A. N.
2017-04-01
Data-driven model-independent reconstructions of the dark energy equation of state w(z) are presented using Planck 2015 era cosmic microwave background, baryonic acoustic oscillations (BAO), Type Ia supernova (SNIa) and Lyman α (Lyα) data. These reconstructions identify the w(z) behaviour supported by the data and show a bifurcation of the equation of state posterior in the range 1.5 < z < 3. Although the concordance Λ cold dark matter (ΛCDM) model is consistent with the data at all redshifts in one of the bifurcated spaces, in the other, a supernegative equation of state (also known as 'phantom dark energy') is identified within the 1.5σ confidence intervals of the posterior distribution. To identify the power of different data sets in constraining the dark energy equation of state, we use a novel formulation of the Kullback-Leibler divergence. This formalism quantifies the information the data add when moving from priors to posteriors for each possible data set combination. The SNIa and BAO data sets are shown to provide much more constraining power in comparison to the Lyα data sets. Further, SNIa and BAO constrain most strongly around redshift range 0.1-0.5, whilst the Lyα data constrain weakly over a broader range. We do not attribute the supernegative favouring to any particular data set, and note that the ΛCDM model was favoured at more than 2 log-units in Bayes factors over all the models tested despite the weakly preferred w(z) structure in the data.
Effects of slope smoothing in river channel modeling
NASA Astrophysics Data System (ADS)
Kim, Kyungmin; Liu, Frank; Hodges, Ben R.
2017-04-01
In extending dynamic river modeling with the 1D Saint-Venant equations from a single reach to a large watershed there are critical questions as to how much bathymetric knowledge is necessary and how it should be represented parsimoniously. The ideal model will include the detail necessary to provide realism, but not include extraneous detail that should not exert a control on a 1D (cross-section averaged) solution. In a Saint-Venant model, the overall complexity of the river channel morphometry is typically abstracted into metrics for the channel slope, cross-sectional area, hydraulic radius, and roughness. In stream segments where cross-section surveys are closely spaced, it is not uncommon to have sharp changes in slope or even negative values (where a positive slope is the downstream direction). However, solving river flow with the Saint-Venant equations requires a degree of smoothness in the equation parameters or the equation set with the directly measured channel slopes may not be Lipschitz continuous. The results of non-smoothness are typically extended computational time to converge solutions (or complete failure to converge) and/or numerical instabilities under transient conditions. We have investigated using cubic splines to smooth the bottom slope and ensure always positive reference slopes within a 1D model. This method has been implemented in the Simulation Program for River Networks (SPRNT) and is compared to the standard HEC-RAS river solver. It is shown that the reformulation of the reference slope is both in keeping with the underlying derivation of the Saint-Venant equations and provides practical numerical stability without altering the realism of the simulation. This research was supported in part by the National Science Foundation under grant number CCF-1331610.
NASA Astrophysics Data System (ADS)
Alsing, Justin; Silva, Hector O.; Berti, Emanuele
2018-04-01
We infer the mass distribution of neutron stars in binary systems using a flexible Gaussian mixture model and use Bayesian model selection to explore evidence for multi-modality and a sharp cut-off in the mass distribution. We find overwhelming evidence for a bimodal distribution, in agreement with previous literature, and report for the first time positive evidence for a sharp cut-off at a maximum neutron star mass. We measure the maximum mass to be 2.0M⊙ < mmax < 2.2M⊙ (68%), 2.0M⊙ < mmax < 2.6M⊙ (90%), and evidence for a cut-off is robust against the choice of model for the mass distribution and to removing the most extreme (highest mass) neutron stars from the dataset. If this sharp cut-off is interpreted as the maximum stable neutron star mass allowed by the equation of state of dense matter, our measurement puts constraints on the equation of state. For a set of realistic equations of state that support >2M⊙ neutron stars, our inference of mmax is able to distinguish between models at odds ratios of up to 12: 1, whilst under a flexible piecewise polytropic equation of state model our maximum mass measurement improves constraints on the pressure at 3 - 7 × the nuclear saturation density by ˜30 - 50% compared to simply requiring mmax > 2M⊙. We obtain a lower bound on the maximum sound speed attained inside the neutron star of c_s^max > 0.63c (99.8%), ruling out c_s^max < c/√{3} at high significance. Our constraints on the maximum neutron star mass strengthen the case for neutron star-neutron star mergers as the primary source of short gamma-ray bursts.
Undular bore theory for the Gardner equation
NASA Astrophysics Data System (ADS)
Kamchatnov, A. M.; Kuo, Y.-H.; Lin, T.-C.; Horng, T.-L.; Gou, S.-C.; Clift, R.; El, G. A.; Grimshaw, R. H. J.
2012-09-01
We develop modulation theory for undular bores (dispersive shock waves) in the framework of the Gardner, or extended Korteweg-de Vries (KdV), equation, which is a generic mathematical model for weakly nonlinear and weakly dispersive wave propagation, when effects of higher order nonlinearity become important. Using a reduced version of the finite-gap integration method we derive the Gardner-Whitham modulation system in a Riemann invariant form and show that it can be mapped onto the well-known modulation system for the Korteweg-de Vries equation. The transformation between the two counterpart modulation systems is, however, not invertible. As a result, the study of the resolution of an initial discontinuity for the Gardner equation reveals a rich phenomenology of solutions which, along with the KdV-type simple undular bores, include nonlinear trigonometric bores, solibores, rarefaction waves, and composite solutions representing various combinations of the above structures. We construct full parametric maps of such solutions for both signs of the cubic nonlinear term in the Gardner equation. Our classification is supported by numerical simulations.
Modelling, Information, Processing, and Control
1989-01-15
PAGE COUNT Sc..JA I, ll4,4 FROM I S*,LTON SepSk 15. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necenary and...and graduate re- search assistants, and also short term consultants and visitors. In addition to salary support, funds were used to support scien- tific...and Optimization, 34 (1986), pp. 1276-1308. 2. D. L. Russell: A Floquet Decomposition for Volterra Equations with Periodic Kernel and a Transform
Construct validity of the Moral Development Scale for Professionals (MDSP).
Söderhamn, Olle; Bjørnestad, John Olav; Skisland, Anne; Cliffordson, Christina
2011-01-01
The aim of this study was to investigate the construct validity of the Moral Development Scale for Professionals (MDSP) using structural equation modeling. The instrument is a 12-item self-report instrument, developed in the Scandinavian cultural context and based on Kohlberg's theory. A hypothesized simplex structure model underlying the MDSP was tested through structural equation modeling. Validity was also tested as the proportion of respondents older than 20 years that reached the highest moral level, which according to the theory should be small. A convenience sample of 339 nursing students with a mean age of 25.3 years participated. Results confirmed the simplex model structure, indicating that MDSP reflects a moral construct empirically organized from low to high. A minority of respondents >20 years of age (13.5%) scored more than 80% on the highest moral level. The findings support the construct validity of the MDSP and the stages and levels in Kohlberg's theory.
NASA Astrophysics Data System (ADS)
Liao, Sheng-Lun; Ho, Tak-San; Rabitz, Herschel; Chu, Shih-I.
2017-04-01
Solving and analyzing the exact time-dependent optimized effective potential (TDOEP) integral equation has been a longstanding challenge due to its highly nonlinear and nonlocal nature. To meet the challenge, we derive an exact time-local TDOEP equation that admits a unique real-time solution in terms of time-dependent Kohn-Sham orbitals and effective memory orbitals. For illustration, the dipole evolution dynamics of a one-dimension-model chain of hydrogen atoms is numerically evaluated and examined to demonstrate the utility of the proposed time-local formulation. Importantly, it is shown that the zero-force theorem, violated by the time-dependent Krieger-Li-Iafrate approximation, is fulfilled in the current TDOEP framework. This work was partially supported by DOE.
Proposed Framework for Determining Added Mass of Orion Drogue Parachutes
NASA Technical Reports Server (NTRS)
Fraire, Usbaldo, Jr.; Dearman, James; Morris, Aaron
2011-01-01
The Crew Exploration Vehicle (CEV) Parachute Assembly System (CPAS) project is executing a program to qualify a parachute system for a next generation human spacecraft. Part of the qualification process involves predicting parachute riser tension during system descent with flight simulations. Human rating the CPAS hardware requires a high degree of confidence in the simulation models used to predict parachute loads. However, uncertainty exists in the heritage added mass models used for loads predictions due to a lack of supporting documentation and data. Even though CPAS anchors flight simulation loads predictions to flight tests, extrapolation of these models outside the test regime carries the risk of producing non-bounding loads. A set of equations based on empirically derived functions of skirt radius is recommended as the simplest and most viable method to test and derive an enhanced added mass model for an inflating parachute. This will increase confidence in the capability to predict parachute loads. The selected equations are based on those published in A Simplified Dynamic Model of Parachute Inflation by Dean Wolf. An Ames 80x120 wind tunnel test campaign is recommended to acquire the reefing line tension and canopy photogrammetric data needed to quantify the terms in the Wolf equations and reduce uncertainties in parachute loads predictions. Once the campaign is completed, the Wolf equations can be used to predict loads in a typical CPAS Drogue Flight test. Comprehensive descriptions of added mass test techniques from the Apollo Era to the current CPAS project are included for reference.
Thermal noise model of antiferromagnetic dynamics: A macroscopic approach
NASA Astrophysics Data System (ADS)
Li, Xilai; Semenov, Yuriy; Kim, Ki Wook
In the search for post-silicon technologies, antiferromagnetic (AFM) spintronics is receiving widespread attention. Due to faster dynamics when compared with its ferromagnetic counterpart, AFM enables ultra-fast magnetization switching and THz oscillations. A crucial factor that affects the stability of antiferromagnetic dynamics is the thermal fluctuation, rarely considered in AFM research. Here, we derive from theory both stochastic dynamic equations for the macroscopic AFM Neel vector (L-vector) and the corresponding Fokker-Plank equation for the L-vector distribution function. For the dynamic equation approach, thermal noise is modeled by a stochastic fluctuating magnetic field that affects the AFM dynamics. The field is correlated within the correlation time and the amplitude is derived from the energy dissipation theory. For the distribution function approach, the inertial behavior of AFM dynamics forces consideration of the generalized space, including both coordinates and velocities. Finally, applying the proposed thermal noise model, we analyze a particular case of L-vector reversal of AFM nanoparticles by voltage controlled perpendicular magnetic anisotropy (PMA) with a tailored pulse width. This work was supported, in part, by SRC/NRI SWAN.
Analysis of an algae-based CELSS. I - Model development
NASA Technical Reports Server (NTRS)
Holtzapple, Mark T.; Little, Frank E.; Makela, Merry E.; Patterson, C. O.
1989-01-01
A steady state chemical model and computer program have been developed for a life support system and applied to trade-off studies. The model is based on human demand for food and oxygen determined from crew metabolic needs. The model includes modules for water recycle, waste treatment, CO2 removal and treatment, and food production. The computer program calculates rates of use and material balance for food, O2, the recycle of human waste and trash, H2O, N2, and food production/supply. A simple noniterative solution for the model has been developed using the steady state rate equations for the chemical reactions. The model and program have been used in system sizing and subsystem trade-off studies of a partially closed life support system.
Analysis of an algae-based CELSS. Part 1: model development
NASA Technical Reports Server (NTRS)
Holtzapple, M. T.; Little, F. E.; Makela, M. E.; Patterson, C. O.
1989-01-01
A steady state chemical model and computer program have been developed for a life support system and applied to trade-off studies. The model is based on human demand for food and oxygen determined from crew metabolic needs. The model includes modules for water recycle, waste treatment, CO2 removal and treatment, and food production. The computer program calculates rates of use and material balance for food. O2, the recycle of human waste and trash, H2O, N2, and food production supply. A simple non-iterative solution for the model has been developed using the steady state rate equations for the chemical reactions. The model and program have been used in system sizing and subsystem trade-off studies of a partially closed life support system.
Treglown, Luke; Zivkov, Katarina; Zarola, Anthony; Furnham, Adrian
2018-01-01
This study investigated the role of individual differences (dark personality) and situational factors (perceived organisational support) in explaining intention to quit. Four hundred and fifty-one (50 of which females) ambulance personnel completed three questionnaires (Hogan Development Survey; Perceived Organisational Support Survey; and a single item Intention to Quit measure) as a part of a selection and development assessment. Employees high on Excitable, Sceptical, and Mischievous, but low on Colourful were found to have greater intentions to quit. Additionally, employees high on Excitable, Sceptical, Reserved, and Leisurely, but low on Dutiful and Diligent had lower perceptions of organisational support. Structural Equation Modelling revealed that perceived organisational support plays both a mediating and moderating role on dark personality and intention to quit. Theoretical implications of personality's role in perceived organisational support and intention to quit are discussed.
Zivkov, Katarina; Zarola, Anthony; Furnham, Adrian
2018-01-01
This study investigated the role of individual differences (dark personality) and situational factors (perceived organisational support) in explaining intention to quit. Four hundred and fifty-one (50 of which females) ambulance personnel completed three questionnaires (Hogan Development Survey; Perceived Organisational Support Survey; and a single item Intention to Quit measure) as a part of a selection and development assessment. Employees high on Excitable, Sceptical, and Mischievous, but low on Colourful were found to have greater intentions to quit. Additionally, employees high on Excitable, Sceptical, Reserved, and Leisurely, but low on Dutiful and Diligent had lower perceptions of organisational support. Structural Equation Modelling revealed that perceived organisational support plays both a mediating and moderating role on dark personality and intention to quit. Theoretical implications of personality’s role in perceived organisational support and intention to quit are discussed. PMID:29596532
Impact of value congruence on work-family conflicts: the mediating role of work-related support.
Pan, Su-Ying; Yeh, Ying-Jung Yvonne
2012-01-01
Based on past research regarding the relationship between person-environment fit and work-family conflict (WFC), we examined the mediating effects of perceived organization/supervisor support on the relationship between person-organization/supervisor value congruence and WFC. A structural equation model was used to test three hypotheses using data collected from 637 workers in Taiwan. Person-organization value congruence regarding role boundaries was found to be positively correlated with employee perception of organizational support, resulting in reduced WFC. Person-supervisor value congruence regarding role boundaries also increased employee perception of organizational support, mediated by perceived supervisor support. Research and managerial implications are discussed.
Effect of perceived social support and dispositional optimism on the depression of burn patients.
He, Fei; Zhou, Qin; Zhao, Zhijing; Zhang, Yuan; Guan, Hao
2016-06-01
Burn wounds have a significant impact on the mental health of patients. This study aimed to investigate the impact of perceived social support and dispositional optimism on depression of burn patients. A total of 246 burn patients accomplished the Multidimensional Scale of Perceived Social Support, the Revised Life Orientation Test, and Depression Scale. The results revealed that both perceived social support and optimism were significantly correlated with depression. Structural equation modeling indicated that optimism partially mediated the relationship between perceived social support and depression. Implications for prevention of depression in burn patients were discussed. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Min-Hui, XU; Man, JIA
2017-10-01
A coupled KdV equation is studied in this manuscript. The exact solutions, such as the periodic wave solutions and solitary wave solutions by means of the deformation and mapping approach from the solutions of the nonlinear ϕ 4 model are given. Using the symmetry theory, the Lie point symmetries and symmetry reductions of the coupled KdV equation are presented. The results show that the coupled KdV equation possesses infinitely many symmetries and may be considered as an integrable system. Also, the Painlevé test shows the coupled KdV equation possesses Painlevé property. The Bäcklund transformations of the coupled KdV equation related to Painlevé property and residual symmetry are shown. Supported by the National Natural Science Foundation of China under Grant Nos. 11675084 and 11435005, Ningbo Natural Science Foundation under Grant No. 2015A610159 and granted by the Opening Project of Zhejiang Provincial Top Key Discipline of Physics Sciences in Ningbo University under Grant No. xkzwl1502, and the authors are sponsored by K. C. Wong Magna Fund in Ningbo University
A new dimension of organizational justice: procedural voice.
Jepsen, Denise; Rodwell, John
2009-10-01
Dimensionality of the Colquitt justice measures was investigated across a wide range of service occupations. Structural equation modeling of data from 410 survey respondents found support for the 4-factor model of justice (procedural, distributive, interpersonal, and informational), although significant improvement of model fit was obtained by including a new latent variable, "procedural voice," which taps employees' desire to express their views and feelings and influence results. The model was confirmed in a second sample (N = 505) in the same organization six months later.
Can role models boost entrepreneurial attitudes?
Fellnhofer, Katharina; Puumalainen, Kaisu
2017-01-01
This multi-country study used role models to boost perceptions of entrepreneurial feasibility and desirability. The results of a structural equation model based on a sample comprising 426 individuals who were primarily from Austria, Finland and Greece revealed a significant positive influence on perceived entrepreneurial desirability and feasibility. These findings support the argument for embedding entrepreneurial role models in entrepreneurship education courses to promote entrepreneurial activities. This direction is not only relevant for the academic community but also essential for nascent entrepreneurs, policymakers and society at large. PMID:28458611
Can role models boost entrepreneurial attitudes?
Fellnhofer, Katharina; Puumalainen, Kaisu
2017-01-01
This multi-country study used role models to boost perceptions of entrepreneurial feasibility and desirability. The results of a structural equation model based on a sample comprising 426 individuals who were primarily from Austria, Finland and Greece revealed a significant positive influence on perceived entrepreneurial desirability and feasibility. These findings support the argument for embedding entrepreneurial role models in entrepreneurship education courses to promote entrepreneurial activities. This direction is not only relevant for the academic community but also essential for nascent entrepreneurs, policymakers and society at large.
A comprehensive cost model for NASA data archiving
NASA Technical Reports Server (NTRS)
Green, J. L.; Klenk, K. F.; Treinish, L. A.
1990-01-01
A simple archive cost model has been developed to help predict NASA's archiving costs. The model covers data management activities from the beginning of the mission through launch, acquisition, and support of retrospective users by the long-term archive; it is capable of determining the life cycle costs for archived data depending on how the data need to be managed to meet user requirements. The model, which currently contains 48 equations with a menu-driven user interface, is available for use on an IBM PC or AT.
McHugh Power, Joanna; Carney, Sile; Hannigan, Caoimhe; Brennan, Sabina; Wolfe, Hannah; Lynch, Marina; Kee, Frank; Lawlor, Brian
2016-11-01
Potential associations between systemic inflammation and social support received by a sample of 120 older adults were examined here. Inflammatory markers, cognitive function, social support and psychosocial wellbeing were evaluated. A structural equation modelling approach was used to analyse the data. The model was a good fit [Formula: see text], p < 0.001; comparative fit index = 0.973; Tucker-Lewis Index = 0.962; root mean square error of approximation = 0.021; standardised root mean-square residual = 0.074). Chemokine levels were associated with increased age ( β = 0.276), receipt of less social support from friends ( β = -0.256) and body mass index ( β = -0.256). Results are discussed in relation to social signal transduction theory.
Peridynamic Multiscale Finite Element Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, Timothy; Bond, Stephen D.; Littlewood, David John
The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic andmore » local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the art of local models with the flexibility and accuracy of the nonlocal peridynamic model. In the mixed locality method this coupling occurs across scales, so that the nonlocal model can be used to communicate material heterogeneity at scales inappropriate to local partial differential equation models. Additionally, the computational burden of the weak form of the peridynamic model is reduced dramatically by only requiring that the model be solved on local patches of the simulation domain which may be computed in parallel, taking advantage of the heterogeneous nature of next generation computing platforms. Addition- ally, we present a novel Galerkin framework, the 'Ambulant Galerkin Method', which represents a first step towards a unified mathematical analysis of local and nonlocal multiscale finite element methods, and whose future extension will allow the analysis of multiscale finite element methods that mix models across scales under certain assumptions of the consistency of those models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Katherine H.; Cutler, Dylan S.; Olis, Daniel R.
REopt is a techno-economic decision support model used to optimize energy systems for buildings, campuses, communities, and microgrids. The primary application of the model is for optimizing the integration and operation of behind-the-meter energy assets. This report provides an overview of the model, including its capabilities and typical applications; inputs and outputs; economic calculations; technology descriptions; and model parameters, variables, and equations. The model is highly flexible, and is continually evolving to meet the needs of each analysis. Therefore, this report is not an exhaustive description of all capabilities, but rather a summary of the core components of the model.
Spence Laschinger, Heather K; Zhu, Junhong; Read, Emily
2016-07-01
To test a model examining the effects of structural empowerment and support for professional practice on new graduate nurses' perceived professional practice behaviours, perceptions of care quality and subsequent job satisfaction and career turnover intentions. The nursing worklife model describes relationships between supportive nursing work environments and nurse and patient outcomes. The influence of support for professional practice on new nurses' perceptions of professional nursing behaviours within this model has not been tested. Structural equation modelling in Mplus was used to analyse data from a national survey of new nurses across Canada (n = 393). The hypothesised model was supported: χ²(122) = 346.726, P = 0.000; CFI = 0.917; TLI = 0.896; RMSEA = 0.069. Professional practice behaviour was an important mechanism through which empowerment and supportive professional practice environments influenced nurse-assessed quality of care, which was related to job satisfaction and lower intentions to leave nursing. Job satisfaction and career retention of new nurses are related to perceptions of work environment factors that support their professional practice behaviours and high-quality patient care. Nurse managers can support new graduate nurses' professional practice behaviour by providing empowering supportive professional practice environments. © 2016 John Wiley & Sons Ltd.
Large eddy simulation of hydrodynamic cavitation
NASA Astrophysics Data System (ADS)
Bhatt, Mrugank; Mahesh, Krishnan
2017-11-01
Large eddy simulation is used to study sheet to cloud cavitation over a wedge. The mixture of water and water vapor is represented using a homogeneous mixture model. Compressible Navier-Stokes equations for mixture quantities along with transport equation for vapor mass fraction employing finite rate mass transfer between the two phases, are solved using the numerical method of Gnanaskandan and Mahesh. The method is implemented on unstructured grid with parallel MPI capabilities. Flow over a wedge is simulated at Re = 200 , 000 and the performance of the homogeneous mixture model is analyzed in predicting different regimes of sheet to cloud cavitation; namely, incipient, transitory and periodic, as observed in the experimental investigation of Harish et al.. This work is supported by the Office of Naval Research.
Spousal Capital as a Resource for Couples Starting a Business
ERIC Educational Resources Information Center
Matzek, Amanda E.; Gudmunson, Clinton G.; Danes, Sharon M.
2010-01-01
This longitudinal study finds that spousal capital is an important resource for entrepreneurs starting a business because it has implications for business sustainability and couple relationship quality. Structural equation modeling supported a process whereby gender had an impact on spousal involvement in the business, which was positively…
Latino Parent Home-Based Practices that Bolster Student Academic Persistence
ERIC Educational Resources Information Center
Mena, Jasmine A.
2011-01-01
Home-based parental involvement practices (i.e., educational encouragement, monitoring, and support) and their impact on students' academic persistence were investigated with a sample of 137, ninth-grade Latino students in a northeast high school. Structural Equation Modeling results indicate that the relationship between home-based parental…
Support, Belonging, Motivation, and Engagement in the College Classroom: A Mixed Method Study
ERIC Educational Resources Information Center
Zumbrunn, Sharon; McKim, Courtney; Buhs, Eric; Hawley, Leslie R.
2014-01-01
This explanatory sequential mixed methods study examined how belonging perceptions, academic motivation, and engagement might mediate the relationship between academic contextual characteristics and achievement using structural equation modeling and qualitative follow-up interviews with college students from a large, Midwestern university. In the…
Conceptualizing Public Attitudes toward the Welfare State: A Comment on Hasenfeld and Rafferty.
ERIC Educational Resources Information Center
Emerson, Michael O.; Van Buren, Mark E.
1992-01-01
Using structural equation technique to replicate results of Hasenfeld and Rafferty's causal model predicting public attitudes toward welfare state programs with the social ideologies of work ethic and social rights. By incorporating estimates of measurement error, results failed to support the authors' original conclusions. Operationalizing key…
Affect Regulation as a Mediator of Attachment and Deliberate Self-Harm
ERIC Educational Resources Information Center
Kimball, Joan S.; Diddams, Margaret
2007-01-01
The authors used structural equation modeling to test the mediational role of affect regulation on attachment and deliberate self-harm in 216 undergraduates. Results suggest that affect regulation mediates the relationship between attachment and deliberate self-harm, providing support for the theoretical importance of attachment and affect…
The Mediating Role of School Motivation in Linking Student Victimization and Academic Achievement
ERIC Educational Resources Information Center
Fan, Weihua; Dempsey, Allison G.
2017-01-01
This study examined the mediating role of student school motivation in linking student victimization experiences and academic achievement among a nationally representative sample of students in 10th grade. Structural equation modeling supported that there were significant associations between student victimization and academic achievement for high…
Petkewich, Matthew D.; Conrads, Paul
2013-01-01
The Everglades Depth Estimation Network is an integrated network of real-time water-level gaging stations, a ground-elevation model, and a water-surface elevation model designed to provide scientists, engineers, and water-resource managers with water-level and water-depth information (1991-2013) for the entire freshwater portion of the Greater Everglades. The U.S. Geological Survey Greater Everglades Priority Ecosystems Science provides support for the Everglades Depth Estimation Network in order for the Network to provide quality-assured monitoring data for the U.S. Army Corps of Engineers Comprehensive Everglades Restoration Plan. In a previous study, water-level estimation equations were developed to fill in missing data to increase the accuracy of the daily water-surface elevation model. During this study, those equations were updated because of the addition and removal of water-level gaging stations, the consistent use of water-level data relative to the North American Vertical Datum of 1988, and availability of recent data (March 1, 2006, to September 30, 2011). Up to three linear regression equations were developed for each station by using three different input stations to minimize the occurrences of missing data for an input station. Of the 667 water-level estimation equations developed to fill missing data at 223 stations, more than 72 percent of the equations have coefficients of determination greater than 0.90, and 97 percent have coefficients of determination greater than 0.70.
Rapcsak, Steven Z; Henry, Maya L; Teague, Sommer L; Carnahan, Susan D; Beeson, Pélagie M
2007-06-18
Coltheart and co-workers [Castles, A., Bates, T. C., & Coltheart, M. (2006). John Marshall and the developmental dyslexias. Aphasiology, 20, 871-892; Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, J. (2001). DRC: A dual route cascaded model of visual word recognition and reading aloud. Psychological Review, 108, 204-256] have demonstrated that an equation derived from dual-route theory accurately predicts reading performance in young normal readers and in children with reading impairment due to developmental dyslexia or stroke. In this paper, we present evidence that the dual-route equation and a related multiple regression model also accurately predict both reading and spelling performance in adult neurological patients with acquired alexia and agraphia. These findings provide empirical support for dual-route theories of written language processing.
What Are We Doing When We Translate from Quantitative Models?
Critchfield, Thomas S; Reed, Derek D
2009-01-01
Although quantitative analysis (in which behavior principles are defined in terms of equations) has become common in basic behavior analysis, translational efforts often examine everyday events through the lens of narrative versions of laboratory-derived principles. This approach to translation, although useful, is incomplete because equations may convey concepts that are difficult to capture in words. To support this point, we provide a nontechnical introduction to selected aspects of quantitative analysis; consider some issues that translational investigators (and, potentially, practitioners) confront when attempting to translate from quantitative models; and discuss examples of relevant translational studies. We conclude that, where behavior-science translation is concerned, the quantitative features of quantitative models cannot be ignored without sacrificing conceptual precision, scientific and practical insights, and the capacity of the basic and applied wings of behavior analysis to communicate effectively. PMID:22478533
Analytical study of Cattaneo-Christov heat flux model for a boundary layer flow of Oldroyd-B fluid
NASA Astrophysics Data System (ADS)
F, M. Abbasi; M, Mustafa; S, A. Shehzad; M, S. Alhuthali; T, Hayat
2016-01-01
We investigate the Cattaneo-Christov heat flux model for a two-dimensional laminar boundary layer flow of an incompressible Oldroyd-B fluid over a linearly stretching sheet. Mathematical formulation of the boundary layer problems is given. The nonlinear partial differential equations are converted into the ordinary differential equations using similarity transformations. The dimensionless velocity and temperature profiles are obtained through optimal homotopy analysis method (OHAM). The influences of the physical parameters on the velocity and the temperature are pointed out. The results show that the temperature and the thermal boundary layer thickness are smaller in the Cattaneo-Christov heat flux model than those in the Fourier’s law of heat conduction. Project supported by the Deanship of Scientific Research (DSR) King Abdulaziz University, Jeddah, Saudi Arabia (Grant No. 32-130-36-HiCi).
Multistream hydrodynamic modeling of interhemispheric plasma flow
NASA Technical Reports Server (NTRS)
Rasmussen, C. E.; Schunk, R. W.
1988-01-01
Interhemispheric plasma flow was simulated using one-stream and two-stream hydrodymic models in order to test the suggestion of Banks et al. (1971) and others that the collision of high-speed flows originating from the conjugate hemispheres will cause the formation of a pair of shocks. The single-fluid hydrodynamic equations were modified to include multiple ion streams, allowing for the possibility of counterstreaming flow. It was found that a counterstreaming of ion streams from conjugate hemispheres does occur during the early stages of the refilling of plamaspheric flux tubes, and that a pair of reverse shocks does form. These shocks form away from the equator, and their subsequent motion creates conditions similar to those predicted by the single-stream hydrodynamic models. The findings support the conclusion of earlier studies that the refilling of the plasmasphere occurs from the equatorial region downward.
Gao, Fengsong; Newcombe, Peter; Tilse, Cheryl; Wilson, Jill; Tuckett, Anthony
2014-09-01
Nurse turnover in the residential aged care industry is a pressing issue. Researchers have shown ongoing interest in exploring how the factors that are amendable to change in aged care policy, regulation and funding and in organizational procedures (e.g. job demands, coping resources and psychological health of nurses) impact on turnover. However, the findings are mixed. This study tested two theoretical models of turnover to examine the structural relationships among job demands, coping resources, psychological health and turnover of residential aged care nurses. Although many previous studies operationalized turnover as intention to leave, the present study investigated actual turnover by following up with the same individuals over time, and thus provided more accurate predictive models of turnover behaviour. The sample, 239 Australian residential aged care nurses, came from the Nurses and Midwives e-cohort Study. Job demands, coping resources, and psychological health were measured using standardized instruments. Structural equation modelling was used to test the measurement and structural models. Controlling for a number of workforce and individual characteristics, coping resources (measured by job control, supervisor support, and co-worker support) were negatively and directly associated with turnover. Additionally, the findings supported the Job Demand-Control-Support model in that higher coping resources and lower job demands (indicated by psychological demands, physical demands, and effort) were related to better psychological health (measured by vitality, social functioning, role emotional, and mental health), and higher job demands were related to lower coping resources. Findings suggest that aged care policy makers and service providers might consider increasing coping resources available to nurses and minimizing job demands of care work to reduce turnover and improve nurses' psychological health. Moreover, findings from this Australian study may provide valuable practical and policy implications for other developed countries. Copyright © 2014 Elsevier Ltd. All rights reserved.
Arán Filippetti, Vanessa; Richaud, María Cristina
2017-10-01
Though the relationship between executive functions (EFs) and mathematical skills has been well documented, little is known about how both EFs and IQ differentially support diverse math domains in primary students. Inconsistency of results may be due to the statistical techniques employed, specifically, if the analysis is conducted with observed variables, i.e., regression analysis, or at the latent level, i.e., structural equation modeling (SEM). The current study explores the contribution of both EFs and IQ in mathematics through an SEM approach. A total of 118 8- to 12-year-olds were administered measures of EFs, crystallized (Gc) and fluid (Gf) intelligence, and math abilities (i.e., number production, mental calculus and arithmetical problem-solving). Confirmatory factor analysis (CFA) offered support for the three-factor solution of EFs: (1) working memory (WM), (2) shifting, and (3) inhibition. Regarding the relationship among EFs, IQ and math abilities, the results of the SEM analysis showed that (i) WM and age predict number production and mental calculus, and (ii) shifting and sex predict arithmetical problem-solving. In all of the SEM models, EFs partially or totally mediated the relationship between IQ, age and math achievement. These results suggest that EFs differentially supports math abilities in primary-school children and is a more significant predictor of math achievement than IQ level.
McNeill, Lorna Haughton; Wyrwich, Kathleen W; Brownson, Ross C; Clark, Eddie M; Kreuter, Matthew W
2006-02-01
Social ecological models suggest that conditions in the social and physical environment, in addition to individual factors, play important roles in health behavior change. Using structural equation modeling, this study tested a theoretically and empirically based explanatory model of physical activity to examine theorized direct and indirect effects of individual (e.g., motivation and self-efficacy), social environmental (e.g., social support), and physical environmental factors (e.g., neighborhood quality and availability of facilities). A community-based sample of adults (N = 910) was recruited from 2 public health centers (67% female, 43% African American, 43% < $20,000/year, M age = 33 years) and completed a self-administered survey assessing their current physical activity level, intrinsic and extrinsic motivation for physical activity, perceived social support, self-efficacy, and perceptions of the physical environment. Results indicated that (a) perceptions of the physical environment had direct effects on physical activity, (b) both the social and physical environments had indirect effects on physical activity through motivation and self-efficacy, and (c) social support influenced physical activity indirectly through intrinsic and extrinsic motivation. For all forms of activity, self-efficacy was the strongest direct correlate of physical activity, and evidence of a positive dose-response relation emerged between self-efficacy and intensity of physical activity. Findings from this research highlight the interactive role of individual and environmental influences on physical activity.
Rajaraman, Prathish K; Manteuffel, T A; Belohlavek, M; Heys, Jeffrey J
2017-01-01
A new approach has been developed for combining and enhancing the results from an existing computational fluid dynamics model with experimental data using the weighted least-squares finite element method (WLSFEM). Development of the approach was motivated by the existence of both limited experimental blood velocity in the left ventricle and inexact numerical models of the same flow. Limitations of the experimental data include measurement noise and having data only along a two-dimensional plane. Most numerical modeling approaches do not provide the flexibility to assimilate noisy experimental data. We previously developed an approach that could assimilate experimental data into the process of numerically solving the Navier-Stokes equations, but the approach was limited because it required the use of specific finite element methods for solving all model equations and did not support alternative numerical approximation methods. The new approach presented here allows virtually any numerical method to be used for approximately solving the Navier-Stokes equations, and then the WLSFEM is used to combine the experimental data with the numerical solution of the model equations in a final step. The approach dynamically adjusts the influence of the experimental data on the numerical solution so that more accurate data are more closely matched by the final solution and less accurate data are not closely matched. The new approach is demonstrated on different test problems and provides significantly reduced computational costs compared with many previous methods for data assimilation. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Evaluation of Loss Due to Storm Surge Disasters in China Based on Econometric Model Groups.
Jin, Xue; Shi, Xiaoxia; Gao, Jintian; Xu, Tongbin; Yin, Kedong
2018-03-27
Storm surge has become an important factor restricting the economic and social development of China's coastal regions. In order to improve the scientific judgment of future storm surge damage, a method of model groups is proposed to refine the evaluation of the loss due to storm surges. Due to the relative dispersion and poor regularity of the natural property data (login center air pressure, maximum wind speed, maximum storm water, super warning water level, etc.), storm surge disaster is divided based on eight kinds of storm surge disaster grade division methods combined with storm surge water, hypervigilance tide level, and disaster loss. The storm surge disaster loss measurement model groups consist of eight equations, and six major modules are constructed: storm surge disaster in agricultural loss, fishery loss, human resource loss, engineering facility loss, living facility loss, and direct economic loss. Finally, the support vector machine (SVM) model is used to evaluate the loss and the intra-sample prediction. It is indicated that the equations of the model groups can reflect in detail the relationship between the damage of storm surges and other related variables. Based on a comparison of the original value and the predicted value error, the model groups pass the test, providing scientific support and a decision basis for the early layout of disaster prevention and mitigation.
A Modelica-based Model Library for Building Energy and Control Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetter, Michael
2009-04-07
This paper describes an open-source library with component models for building energy and control systems that is based on Modelica, an equation-based objectoriented language that is well positioned to become the standard for modeling of dynamic systems in various industrial sectors. The library is currently developed to support computational science and engineering for innovative building energy and control systems. Early applications will include controls design and analysis, rapid prototyping to support innovation of new building systems and the use of models during operation for controls, fault detection and diagnostics. This paper discusses the motivation for selecting an equation-based object-oriented language.more » It presents the architecture of the library and explains how base models can be used to rapidly implement new models. To demonstrate the capability of analyzing novel energy and control systems, the paper closes with an example where we compare the dynamic performance of a conventional hydronic heating system with thermostatic radiator valves to an innovative heating system. In the new system, instead of a centralized circulation pump, each of the 18 radiators has a pump whose speed is controlled using a room temperature feedback loop, and the temperature of the boiler is controlled based on the speed of the radiator pump. All flows are computed by solving for the pressure distribution in the piping network, and the controls include continuous and discrete time controls.« less
Evaluation of Loss Due to Storm Surge Disasters in China Based on Econometric Model Groups
Shi, Xiaoxia; Xu, Tongbin; Yin, Kedong
2018-01-01
Storm surge has become an important factor restricting the economic and social development of China’s coastal regions. In order to improve the scientific judgment of future storm surge damage, a method of model groups is proposed to refine the evaluation of the loss due to storm surges. Due to the relative dispersion and poor regularity of the natural property data (login center air pressure, maximum wind speed, maximum storm water, super warning water level, etc.), storm surge disaster is divided based on eight kinds of storm surge disaster grade division methods combined with storm surge water, hypervigilance tide level, and disaster loss. The storm surge disaster loss measurement model groups consist of eight equations, and six major modules are constructed: storm surge disaster in agricultural loss, fishery loss, human resource loss, engineering facility loss, living facility loss, and direct economic loss. Finally, the support vector machine (SVM) model is used to evaluate the loss and the intra-sample prediction. It is indicated that the equations of the model groups can reflect in detail the relationship between the damage of storm surges and other related variables. Based on a comparison of the original value and the predicted value error, the model groups pass the test, providing scientific support and a decision basis for the early layout of disaster prevention and mitigation. PMID:29584628
NASA Astrophysics Data System (ADS)
Lassoued, R.; Lecheheb, M.; Bonnet, G.
2012-08-01
This paper describes an analytical method for the wave field induced by a moving load on a periodically supported beam. The Green's function for an Euler beam without support is evaluated by using the direct integration. Afterwards, it introduces the supports into the model established by using the superposition principle which states that the response from all the sleeper points and from the external point force add up linearly to give a total response. The periodicity of the supports is described by Bloch's theorem. The homogeneous system thus obtained represents a linear differential equation which governs rail response. It is initially solved in the homogeneous case, and it admits a no null solution if its determinant is null, this permits the establishment the dispersion equation to Bloch waves and wave bands. The Bloch waves and dispersion curves contain all the physics of the dynamic problem and the wave field induced by a dynamic load applied to the system is finally obtained by decomposition into Bloch waves, similarly to the usual decomposition into dynamic modes on a finite structure. The method is applied to obtain the field induced by a load moving at constant velocity on a thin beam supported by periodic elastic supports.
Paving the road to war with group membership, appraisal antecedents, and anger.
Cheung-Blunden, Violet; Blunden, Bill
2008-01-01
This study uses appraisal theory, functionalist approach to emotions, and recent theory on group emotions as a basic framework to model the genesis of supporting military action. During the year after the events of 9/11, 588 college students participated in a series of four studies that assessed religious affiliation, appraisal antecedents, anger response to viewing photographs of the 9/11 attack, and support for military action. Structural equation modeling demonstrated that the relation between support for the war and attitudes toward terrorism and relevance could be explained adequately by a model in which anger mediated the effects of attitudes and relevance on support. Attitudes toward terrorism were further identified as mediators that could explain the group effect by Christians. The result was not only generalizable across the conflict in Afghanistan and Iraq, but also in terms of how consent for war manifests itself--outright calls for bloodshed versus more subtle, politically loaded, posturing (e.g. entreaties to "support our troops"). Copyright 2008 Wiley-Liss, Inc.
Stephens, Christine; Noone, Jack; Alpass, Fiona
2014-01-01
This study tested the effects of social network engagement and social support on the health of older people moving into retirement, using a model which includes social context variables. A prospective survey of a New Zealand population sample aged 54-70 at baseline (N = 2,282) was used to assess the effects on mental and physical health across time. A structural equation model assessed pathways from the social context variables through network engagement to social support and then to mental and physical health 2 years later. The proposed model of effects on mental health was supported when gender, economic living standards, and ethnicity were included along with the direct effects of these variables on social support. These findings confirm the importance of taking social context variables into account when considering social support networks. Social engagement appears to be an important aspect of social network functioning which could be investigated further.
Mexican-Origin Parents' Stress and Satisfaction: The Role of Emotional Support.
Popp, Tierney K; Delgado, Melissa Y; Wheeler, Lorey A
2018-01-24
Guided by a process model of parenting and the integrative model, this study examined sources of emotional support (i.e., partner, maternal, paternal) as related to stress and satisfaction resulting from the parenting role in a sample of Mexican-origin young adult parents who participated in the National Longitudinal Study of Adolescent to Adult Health (Add Health) during Wave IV. Participants were male and female parents (26-35 years of age; 59% female; N = 737) who had children and a partner. Results from structural equation modeling revealed support from mothers as salient; high levels of maternal support were associated with high levels of parenting satisfaction. Tests of indirect effects suggested that parenting satisfaction played an intervening role in the link between maternal support and parenting stress. The pattern of results held across levels of linguistic acculturation but varied by gender. Understanding the mechanisms that predict parenting stress and satisfaction within the Mexican-origin population may help in the identification of culturally sensitive intervention strategies. © 2018 Family Process Institute.
Research activities at the Center for Modeling of Turbulence and Transition
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing
1993-01-01
The main research activities at the Center for Modeling of Turbulence and Transition (CMOTT) are described. The research objective of CMOTT is to improve and/or develop turbulence and transition models for propulsion systems. The flows of interest in propulsion systems can be both compressible and incompressible, three dimensional, bounded by complex wall geometries, chemically reacting, and involve 'bypass' transition. The most relevant turbulence and transition models for the above flows are one- and two-equation eddy viscosity models, Reynolds stress algebraic- and transport-equation models, pdf models, and multiple-scale models. All these models are classified as one-point closure schemes since only one-point (in time and space) turbulent correlations, such as second moments (Reynolds stresses and turbulent heat fluxes) and third moments, are involved. In computational fluid dynamics, all turbulent quantities are one-point correlations. Therefore, the study of one-point turbulent closure schemes is the focus of our turbulence research. However, other research, such as the renormalization group theory, the direct interaction approximation method, and numerical simulations are also pursued to support the development of turbulence modeling.
A cost-constrained model of strategic service quality emphasis in nursing homes.
Davis, M A; Provan, K G
1996-02-01
This study employed structural equation modeling to test the relationship between three aspects of the environmental context of nursing homes; Medicaid dependence, ownership status, and market demand, and two basic strategic orientations: low cost and differentiation based on service quality emphasis. Hypotheses were proposed and tested against data collected from a sample of nursing homes operating in a single state. Because of the overwhelming importance of cost control in the nursing home industry, a cost constrained strategy perspective was supported. Specifically, while the three contextual variables had no direct effect on service quality emphasis, the entire model was supported when cost control orientation was introduced as a mediating variable.
NASA Astrophysics Data System (ADS)
Wamba, Etienne; Tchakoutio Nguetcho, Aurélien S.
2018-05-01
We use the time-dependent variational method to examine the formation of localized patterns in dynamically unstable anharmonic lattices with cubic-quintic nonlinearities and fourth-order dispersion. The governing equation is an extended nonlinear Schrödinger equation known for modified Frankel-Kontorova models of atomic lattices and here derived from an extended Bose-Hubbard model of bosonic lattices with local three-body interactions. In presence of modulated waves, we derive and investigate the ordinary differential equations for the time evolution of the amplitude and phase of dynamical perturbation. Through an effective potential, we find the modulationally unstable domains of the lattice and discuss the effect of the fourth-order dispersion in the dynamics. Direct numerical simulations are performed to support our analytical results, and a good agreement is found. Various types of localized patterns, including breathers and solitonic chirped-like pulses, form in the system as a result of interplay between the cubic-quintic nonlinearities and the second- and fourth-order dispersions.
Unsteady flow of a thixotropic or antithixotropic fluid
NASA Astrophysics Data System (ADS)
Wilson, Stephen; Pritchard, David; Croudace, Andrew
2016-11-01
We describe a general formulation of the governing equations for the unsteady, axisymmetric flow of a thixotropic or antithixotropic fluid in a channel of slowly varying width. These equations are equivalent to the equations of classical lubrication theory for a Newtonian fluid, but incorporate the evolving microstructure of the fluid, described in terms of a scalar structure parameter; they extend and generalise the corresponding results for steady, two-dimensional flow obtained recently by Pritchard, Wilson and McArdle. The magnitudes of temporal and advective thixotropic effects are gauged by naturally defined temporal and advective Deborah numbers. To gain insight into the complicated behaviour of the flow, we explore regimes in which these thixotropic effects first appear at first order in powers of the small aspect ratio. We present illustrative analytical and semi-analytical solutions for particular choices of the constitutive and kinetic laws, including a purely viscous Moore-Mewis-Wagner model and a regularised viscoplastic Hou\\vska model. Partly supported by a United Kingdom EPSRC DTA Studentship and Leverhulme Trust Research Fellowship RF-2013-355.
Analytical study of laser supported combustion waves in hydrogen
NASA Technical Reports Server (NTRS)
Kemp, N. H.; Root, R. G.
1977-01-01
A one-dimensional energy equation, with constant pressure and area, was used to model the LSC wave. This equation balances convection, conduction, laser energy absorption, radiation energy loss and radiation energy transport. Solutions of this energy equation were obtained to give profiles of temperature and other properties, as well as the relation between laser intensity and mass flux through the wave. The flow through the LSC wave was then conducted through a variable pressure, variable area streamtube to accelerate it to high speed, with the propulsion application in mind. A numerical method for coupling the LSC wave model to the streamtube flow was developed, and a sample calculation was performed. The result shows that 42% of the laser power has been radiated away by the time the gas reaches the throat. It was concluded that in the radially confined flows of interest for propulsion applications, transverse velocities would be less important than in the unconfined flows where air experiments have been conducted.
A symbiotic approach to fluid equations and non-linear flux-driven simulations of plasma dynamics
NASA Astrophysics Data System (ADS)
Halpern, Federico
2017-10-01
The fluid framework is ubiquitous in studies of plasma transport and stability. Typical forms of the fluid equations are motivated by analytical work dating several decades ago, before computer simulations were indispensable, and can be, therefore, not optimal for numerical computation. We demonstrate a new first-principles approach to obtaining manifestly consistent, skew-symmetric fluid models, ensuring internal consistency and conservation properties even in discrete form. Mass, kinetic, and internal energy become quadratic (and always positive) invariants of the system. The model lends itself to a robust, straightforward discretization scheme with inherent non-linear stability. A simpler, drift-ordered form of the equations is obtained, and first results of their numerical implementation as a binary framework for bulk-fluid global plasma simulations are demonstrated. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, Theory Program, under Award No. DE-FG02-95ER54309.
Discrete Variational Approach for Modeling Laser-Plasma Interactions
NASA Astrophysics Data System (ADS)
Reyes, J. Paxon; Shadwick, B. A.
2014-10-01
The traditional approach for fluid models of laser-plasma interactions begins by approximating fields and derivatives on a grid in space and time, leading to difference equations that are manipulated to create a time-advance algorithm. In contrast, by introducing the spatial discretization at the level of the action, the resulting Euler-Lagrange equations have particular differencing approximations that will exactly satisfy discrete versions of the relevant conservation laws. For example, applying a spatial discretization in the Lagrangian density leads to continuous-time, discrete-space equations and exact energy conservation regardless of the spatial grid resolution. We compare the results of two discrete variational methods using the variational principles from Chen and Sudan and Brizard. Since the fluid system conserves energy and momentum, the relative errors in these conserved quantities are well-motivated physically as figures of merit for a particular method. This work was supported by the U. S. Department of Energy under Contract No. DE-SC0008382 and by the National Science Foundation under Contract No. PHY-1104683.
Hall, Jeffrey A
2010-01-01
This article explores the relationships between communication and social support of parents of children with cancer (N = 44), and the importance of gender-role conflict in fathers. Structural equation modeling and the Actor-Partner Interdependence Model were used to test the expected relationships between communication, social support, gender-role conflict, and anxiety, and to control for sample nonindependence. Results suggest communication increases perceived emotional and instrumental social support between parents, and instrumental support from fathers results in less anxiety for mothers. When fathers experienced more conflict about their role as financial supporter for the family (i.e., career achievement gender-role conflict), fathers perceived less instrumental and emotional support from their wives. However, fathers who experienced more conflict about career achievement were also less anxious. A second measure of fathers' gender-role conflict (i.e., emotional expression) was unrelated to either mothers' or fathers' outcomes. The role of gender, communication, and social support in the context of pediatric oncology is discussed.
Program of research in severe storms
NASA Technical Reports Server (NTRS)
1979-01-01
Two modeling areas, the development of a mesoscale chemistry-meteorology interaction model, and the development of a combined urban chemical kinetics-transport model are examined. The problems associated with developing a three dimensional combined meteorological-chemical kinetics computer program package are defined. A similar three dimensional hydrostatic real time model which solves the fundamental Navier-Stokes equations for nonviscous flow is described. An urban air quality simulation model, developed to predict the temporal and spatial distribution of reactive and nonreactive gases in and around an urban area and to support a remote sensor evaluation program is reported.
Recommendations for the U.S. Coast Guard Survival Prediction Tool
2009-04-01
model. Not enough data to support modeling of how alcohol impairs swimming ability. Experimental evidence shows no significant cooling effect 50...equation. When matched for physical attributes, females cool more quickly than males due to lower metabolic response and greater surface-area-to-mass...April 2009 However, the average female has about 10% more body fat than the average male so, on average, males cool faster than females. (Tipton
[Mobbing: a meta-analysis and integrative model of its antecedents and consequences].
Topa Cantisano, Gabriela; Depolo, Marco; Morales Domínguez, J Francisco
2007-02-01
Although mobbing has been extensively studied, empirical research has not led to firm conclusions regarding its antecedents and consequences, both at personal and organizational levels. An extensive literature search yielded 86 empirical studies with 93 samples. The matrix correlation obtained through meta-analytic techniques was used to test a structural equation model. Results supported hypotheses regarding organizational environmental factors as main predictors of mobbing.
Fong, Ted C T; Ho, Rainbow T H
2015-01-01
The aim of this study was to reexamine the dimensionality of the widely used 9-item Utrecht Work Engagement Scale using the maximum likelihood (ML) approach and Bayesian structural equation modeling (BSEM) approach. Three measurement models (1-factor, 3-factor, and bi-factor models) were evaluated in two split samples of 1,112 health-care workers using confirmatory factor analysis and BSEM, which specified small-variance informative priors for cross-loadings and residual covariances. Model fit and comparisons were evaluated by posterior predictive p-value (PPP), deviance information criterion, and Bayesian information criterion (BIC). None of the three ML-based models showed an adequate fit to the data. The use of informative priors for cross-loadings did not improve the PPP for the models. The 1-factor BSEM model with approximately zero residual covariances displayed a good fit (PPP>0.10) to both samples and a substantially lower BIC than its 3-factor and bi-factor counterparts. The BSEM results demonstrate empirical support for the 1-factor model as a parsimonious and reasonable representation of work engagement.
Rigorous derivation of porous-media phase-field equations
NASA Astrophysics Data System (ADS)
Schmuck, Markus; Kalliadasis, Serafim
2017-11-01
The evolution of interfaces in Complex heterogeneous Multiphase Systems (CheMSs) plays a fundamental role in a wide range of scientific fields such as thermodynamic modelling of phase transitions, materials science, or as a computational tool for interfacial flow studies or material design. Here, we focus on phase-field equations in CheMSs such as porous media. To the best of our knowledge, we present the first rigorous derivation of error estimates for fourth order, upscaled, and nonlinear evolution equations. For CheMs with heterogeneity ɛ, we obtain the convergence rate ɛ 1 / 4 , which governs the error between the solution of the new upscaled formulation and the solution of the microscopic phase-field problem. This error behaviour has recently been validated computationally in. Due to the wide range of application of phase-field equations, we expect this upscaled formulation to allow for new modelling, analytic, and computational perspectives for interfacial transport and phase transformations in CheMSs. This work was supported by EPSRC, UK, through Grant Nos. EP/H034587/1, EP/L027186/1, EP/L025159/1, EP/L020564/1, EP/K008595/1, and EP/P011713/1 and from ERC via Advanced Grant No. 247031.
Hedge, Jasmine M.; Sianko, Natallia; McDonell, James R.
2016-01-01
Structural equation modeling with three waves of data was used to assess a mediation model investigating the relationship between perceived social support, informal help-seeking intentions, and professional help-seeking intentions in the context of adolescent dating violence. The sample included 589 adolescents from a rural, southern county who participated in a longitudinal study of teen dating violence victimization and perpetration. Results suggest that informal help-seeking intentions are an important link between perceived social support and professional help-seeking intentions. Findings highlight the importance of informal help-seeking and informal help-giving in fostering professional help-seeking for adolescent victims and perpetrators of dating violence. PMID:27580981
Formulation of the aeroelastic stability and response problem of coupled rotor/support systems
NASA Technical Reports Server (NTRS)
Warmbrodt, W.; Friedmann, P.
1979-01-01
The consistent formulation of the governing nonlinear equations of motion for a coupled rotor/support system is presented. Rotor/support coupling is clearly documented by enforcing dynamic equilibrium between the rotor and the moving flexible support. The nonlinear periodic coefficient equations of motion are applicable to both coupled rotor/fuselage aeroelastic problems of helicopters in hover or forward flight and coupled rotor/tower dynamics of a large horizontal axis wind turbine (HAWT). Finally, the equations of motion are used to study the influence of flexible supports and nonlinear terms on rotor aeroelastic stability and response of a large two-bladed HAWT.
Narrowing the creativity gap: the moderating effects of perceived support for creativity.
DiLiello, Trudy C; Houghton, Jeffery D; Dawley, David
2011-01-01
This article examines the role of 3 types of perceived support for creativity in moderating the relation between creative self-efficacy and self-perceived creativity. The findings suggest significant interaction effects for perceived work-group support and supervisor support, but not for perceived organizational support. This study is among the first to (a) examine the importance of perceived support for creativity in unlocking creative potential and increasing creativity in organizations and (b) use interaction terms in structural equation modeling (SEM) to investigate moderator effects in an applied research setting. These results imply that organizational interventions focused on training supervisors and work-group members to support creativity in the workplace may be more effective than broader and less focused interventions at the organizational level.
Integrating O/S models during conceptual design, part 1
NASA Technical Reports Server (NTRS)
Ebeling, Charles E.
1994-01-01
The University of Dayton is pleased to submit this report to the National Aeronautics and Space Administration (NASA), Langley Research Center, which integrates a set of models for determining operational capabilities and support requirements during the conceptual design of proposed space systems. This research provides for the integration of the reliability and maintainability (R&M) model, both new and existing simulation models, and existing operations and support (O&S) costing equations in arriving at a complete analysis methodology. Details concerning the R&M model and the O&S costing model may be found in previous reports accomplished under this grant (NASA Research Grant NAG1-1327). In the process of developing this comprehensive analysis approach, significant enhancements were made to the R&M model, updates to the O&S costing model were accomplished, and a new simulation model developed. This is the 1st part of a 3 part technical report.
Ajoudani, Fardin; Jasemi, Madineh; Lotfi, Mojgan
2018-05-15
Psychosocial outcomes of burn survivors in the first year of rehabilitation are not well studied. Considering the interrelationships among psychosocial processes in burn survivors, we assessed three psychosocial variables (i.e., social support, social participation, and body image) simultaneously in a longitudinal study. This study aimed at identifying the developmental trajectory of the main study variables and also discovering the causal pathways between social support, body image, and social participation of burn survivors in the first year of rehabilitation. One hundred individuals were enrolled in the study. The analysis was based on three waves of data collected at the time of discharge, 6 months after discharge, and 12 months after discharge. We used MSPSS, SWAP, and the p-scale for measuring the variables social support, body image, and social participation, respectively. A repeated-measures analysis of variance (ANOVA) was performed to identify the major differences in the mean levels of the main study variables across the three evaluation times. A structural equation modeling (SEM) approach was implemented in four hypothesized cross-lagged models (M1, M2, M3, and M4) to evaluate the bidirectional relationships among the main variables. All hypothesized models were tested, and their goodness-of-fit indexes were compared to identify the best fitting model. All three main variables worsen during the first six months after burn and then do not return to their earlier level. The M4 (final model) chosen to represent the data showed the best goodness-of-fit indexes (χ 2 (9)=51.76, p<.01, RMSEA=0.060, IFI=0.97, and CFI=0.98) among all hypothesized models. The effect of social participation on body image, and vice versa, seems to be relatively constant and steady. Social support at the time of discharge predicted social participation at 12 months after burn, with the relationship mediated by body image at 6 months after burn. Our study findings suggest that persistent care should be provided for burn survivors even after discharge. Copyright © 2018 Elsevier Ltd and ISBI. All rights reserved.
Huang, Mei-Feng; Yen, Cheng-Fang; Lung, For-Wey
2010-01-01
The most important change of the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-V) is the use of dimensional approach to assess the severity of symptoms across different diagnosis. There are 2 purposes in this study: the first purpose was to identify the proportion of outpatients with panic disorder who have suicidal ideation. The second aim was to examine the relationships among panic, agoraphobic symptoms, and suicidal ideation in patients with panic disorder, adjusting by age, social support, and alcohol use. Sixty patients with panic disorder were recruited from outpatient psychiatric clinics in southern Taiwan. Suicidal ideation in the preceding 2 weeks was measured. The Panic and Agoraphobic Symptoms Checklist, Social Support Scale, Questionnaire for Adverse Effects of Medication for Panic Disorder, and Social Status Rating Scale were used to understand the severity of panic and agoraphobia, social support, drug adverse effects, and social status. Significant variables from the univariate analysis were included in a forward regression model. Then, we used structural equation modeling to fit the model. We found that 31.7% of outpatients with panic disorder had had suicidal ideation in the preceding 2 weeks. Multiple regression analysis showed that younger age, current alcohol use, more severe panic symptoms, and less social support were associated with suicidal ideation. In addition, the structural equation model illustrated the recursive model from panic to agoraphobia and suicidal ideation. Agoraphobia had no association with suicidal ideation. Panic symptom was a mediator to suicidal ideation but not agoraphobic symptoms. A high proportion of patients with panic disorder had suicidal ideation. We found that panic symptoms, social support, age, and alcohol use affected suicide and could be identified. The 3-level model from panic to agoraphobia revealed that panic was a predictor of agoraphobia and agoraphobia was not a predictor of panic. This verified the evolution of the diagnostic view of the DSM. Panic symptom was a mediator to suicidal ideation. With the dimensional model in DSM-V, panic symptoms can be used as a marker for greater morbidity and severity. 2010 Elsevier Inc. All rights reserved.
Jeon, Haesang; Lubben, James
The current cross-cultural study examines the pathways underlying different formations of social networks and social support systems, which affect depression symptoms among older Korean immigrants and non-Hispanic Whites in the United States. Data for this study came from a panel survey of 223 older Korean American immigrants and 201 non-Hispanic White older adults 65 years of age and older living in Los Angeles. Structural equation modeling (SEM) is used to test the proposed conceptual model designed to explain the direct and indirect relationships between social networks and social support on depression symptoms. Empirical evidence from this study indicated different effect of one's social networks and social support on depression by race/ethnicity. The work discussed in this article pointed to the need to recognize the role of culture in assessing the relationships between social networks, social support, and health among older adults.
Jeon, Hyunsoo; Lee, Keunchul; Kwon, Sungho
2016-08-01
The study examined whether self-compassion mediates the relationship between social support and subjective well-being, as perceived by athletes. It also investigated the structural relationships between these variables. Participants were 333 athletes attending high school or university. Structural equation analysis showed that self-compassion partially mediated the relationship between social support and subjective well-being. To test the stability of the model, a multiple group analysis was performed according to sex of participant and school level, and this demonstrated that the model had similar fit to the data regardless of group. The confirmation that self-compassion plays an intermediary role in the relationship between social support and subjective well-being demonstrates that self-compassionate attitudes can be fostered by social support, and that, in turn, has a positive effect on an individual's subjective well-being. © The Author(s) 2016.
Eating disorders and non-suicidal self-injury: Structural equation modelling of a conceptual model.
Vieira, Ana Isabel; Machado, Bárbara C; Moreira, Célia S; Machado, Paulo P P; Brandão, Isabel; Roma-Torres, António; Gonçalves, Sónia
2018-06-14
Evidence suggests several risk factors for both eating disorders (ED) and nonsuicidal self-injury (NSSI), but the relationships between these factors are not well understood. Considering our previous work and a conceptual model, this cross-sectional study aimed to assess the relationships among distal and proximal factors for the presence of NSSI in ED. We assessed 245 ED patients with the Oxford Risk Factor Interview for ED. Structural equation modelling revealed that both distal and proximal factors were related to the presence of NSSI in ED, disclosing a mediating role of the proximal factors. Stressful life events mediated the relationship between childhood sexual abuse, peer aggression, and both ED and NSSI. Childhood physical abuse was related to ED and NSSI via substance use, negative self-evaluation, and suicide attempts. Findings provided support for the conceptual model and highlight the possible mechanisms by which psychosocial factors may lead to ED and NSSI. Copyright © 2018 John Wiley & Sons, Ltd and Eating Disorders Association.
A new traffic model with a lane-changing viscosity term
NASA Astrophysics Data System (ADS)
Ko, Hung-Tang; Liu, Xiao-He; Guo, Ming-Min; Wu, Zheng
2015-09-01
In this paper, a new continuum traffic flow model is proposed, with a lane-changing source term in the continuity equation and a lane-changing viscosity term in the acceleration equation. Based on previous literature, the source term addresses the impact of speed difference and density difference between adjacent lanes, which provides better precision for free lane-changing simulation; the viscosity term turns lane-changing behavior to a “force” that may influence speed distribution. Using a flux-splitting scheme for the model discretization, two cases are investigated numerically. The case under a homogeneous initial condition shows that the numerical results by our model agree well with the analytical ones; the case with a small initial disturbance shows that our model can simulate the evolution of perturbation, including propagation, dissipation, cluster effect and stop-and-go phenomenon. Project supported by the National Natural Science Foundation of China (Grant Nos. 11002035 and 11372147) and Hui-Chun Chin and Tsung-Dao Lee Chinese Undergraduate Research Endowment (Grant No. CURE 14024).
Ryberg, Karen R.; Blomquist, Joel; Sprague, Lori A.; Sekellick, Andrew J.; Keisman, Jennifer
2018-01-01
Causal attribution of changes in water quality often consists of correlation, qualitative reasoning, listing references to the work of others, or speculation. To better support statements of attribution for water-quality trends, structural equation modeling was used to model the causal factors of total phosphorus loads in the Chesapeake Bay watershed. By transforming, scaling, and standardizing variables, grouping similar sites, grouping some causal factors into latent variable models, and using methods that correct for assumption violations, we developed a structural equation model to show how causal factors interact to produce total phosphorus loads. Climate (in the form of annual total precipitation and the Palmer Hydrologic Drought Index) and anthropogenic inputs are the major drivers of total phosphorus load in the Chesapeake Bay watershed. Increasing runoff due to natural climate variability is offsetting purposeful management actions that are otherwise decreasing phosphorus loading; consequently, management actions may need to be reexamined to achieve target reductions in the face of climate variability.
NASA Astrophysics Data System (ADS)
Perkins, S. J.; Marais, P. C.; Zwart, J. T. L.; Natarajan, I.; Tasse, C.; Smirnov, O.
2015-09-01
We present Montblanc, a GPU implementation of the Radio interferometer measurement equation (RIME) in support of the Bayesian inference for radio observations (BIRO) technique. BIRO uses Bayesian inference to select sky models that best match the visibilities observed by a radio interferometer. To accomplish this, BIRO evaluates the RIME multiple times, varying sky model parameters to produce multiple model visibilities. χ2 values computed from the model and observed visibilities are used as likelihood values to drive the Bayesian sampling process and select the best sky model. As most of the elements of the RIME and χ2 calculation are independent of one another, they are highly amenable to parallel computation. Additionally, Montblanc caters for iterative RIME evaluation to produce multiple χ2 values. Modified model parameters are transferred to the GPU between each iteration. We implemented Montblanc as a Python package based upon NVIDIA's CUDA architecture. As such, it is easy to extend and implement different pipelines. At present, Montblanc supports point and Gaussian morphologies, but is designed for easy addition of new source profiles. Montblanc's RIME implementation is performant: On an NVIDIA K40, it is approximately 250 times faster than MEQTREES on a dual hexacore Intel E5-2620v2 CPU. Compared to the OSKAR simulator's GPU-implemented RIME components it is 7.7 and 12 times faster on the same K40 for single and double-precision floating point respectively. However, OSKAR's RIME implementation is more general than Montblanc's BIRO-tailored RIME. Theoretical analysis of Montblanc's dominant CUDA kernel suggests that it is memory bound. In practice, profiling shows that is balanced between compute and memory, as much of the data required by the problem is retained in L1 and L2 caches.
Study of Parameters And Methods of LL-Ⅳ Distributed Hydrological Model in DMIP2
NASA Astrophysics Data System (ADS)
Li, L.; Wu, J.; Wang, X.; Yang, C.; Zhao, Y.; Zhou, H.
2008-05-01
: The Physics-based distributed hydrological model is considered as an important developing period from the traditional experience-hydrology to the physical hydrology. The Hydrology Laboratory of the NOAA National Weather Service proposes the first and second phase of the Distributed Model Intercomparison Project (DMIP),that it is a great epoch-making work. LL distributed hydrological model has been developed to the fourth generation since it was established in 1997 on the Fengman-I district reservoir area (11000 km2).The LL-I distributed hydrological model was born with the applications of flood control system in the Fengman-I in China. LL-II was developed under the DMIP-I support, it is combined with GIS, RS, GPS, radar rainfall measurement.LL-III was established along with Applications of LL Distributed Model on Water Resources which was supported by the 973-projects of The Ministry of Science and Technology of the People's Republic of China. LL-Ⅳ was developed to face China's water problem. Combined with Blue River and the Baron Fork River basin of DMIP-II, the convection-diffusion equation of non-saturated and saturated seepage was derived from the soil water dynamics and continuous equation. In view of the technical characteristics of the model, the advantage of using convection-diffusion equation to compute confluence overall is longer period of predictable, saving memory space, fast budgeting, clear physical concepts, etc. The determination of parameters of hydrological model is the key, including experience coefficients and parameters of physical parameters. There are methods of experience, inversion, and the optimization to determine the model parameters, and each has advantages and disadvantages. This paper briefly introduces the LL-Ⅳ distribution hydrological model equations, and particularly introduces methods of parameters determination and simulation results on Blue River and Baron Fork River basin for DMIP-II. The soil moisture diffusion coefficient and coefficient of hydraulic conductivity are involved all through the LL-Ⅳ distribution of runoff and slope convergence model, used mainly empirical formula to determine. It's used optimization methods to calculate the two parameters of evaporation capacity (coefficient of bare land and vegetation land), two parameters of interception and wave velocity of Overland Flow, interflow and groundwater. The approach of determining wave velocity of River Network confluence and diffusion coefficient is: 1. Estimate roughness based mainly on digital information such as land use, soil texture, etc. 2.Establish the empirical formula. Another method is called convection-diffusion numerical inversion.
A Korteweg-de Vries description of dark solitons in polariton superfluids
NASA Astrophysics Data System (ADS)
Carretero-González, R.; Cuevas-Maraver, J.; Frantzeskakis, D. J.; Horikis, T. P.; Kevrekidis, P. G.; Rodrigues, A. S.
2017-12-01
We study the dynamics of dark solitons in an incoherently pumped exciton-polariton condensate by means of a system composed of a generalized open-dissipative Gross-Pitaevskii equation for the polaritons' wavefunction and a rate equation for the exciton reservoir density. Considering a perturbative regime of sufficiently small reservoir excitations, we use the reductive perturbation method, to reduce the system to a Korteweg-de Vries (KdV) equation with linear loss. This model is used to describe the analytical form and the dynamics of dark solitons. We show that the polariton field supports decaying dark soliton solutions with a decay rate determined analytically in the weak pumping regime. We also find that the dark soliton evolution is accompanied by a shelf, whose dynamics follows qualitatively the effective KdV picture.
Automating the generation of finite element dynamical cores with Firedrake
NASA Astrophysics Data System (ADS)
Ham, David; Mitchell, Lawrence; Homolya, Miklós; Luporini, Fabio; Gibson, Thomas; Kelly, Paul; Cotter, Colin; Lange, Michael; Kramer, Stephan; Shipton, Jemma; Yamazaki, Hiroe; Paganini, Alberto; Kärnä, Tuomas
2017-04-01
The development of a dynamical core is an increasingly complex software engineering undertaking. As the equations become more complete, the discretisations more sophisticated and the hardware acquires ever more fine-grained parallelism and deeper memory hierarchies, the problem of building, testing and modifying dynamical cores becomes increasingly complex. Here we present Firedrake, a code generation system for the finite element method with specialist features designed to support the creation of geoscientific models. Using Firedrake, the dynamical core developer writes the partial differential equations in weak form in a high level mathematical notation. Appropriate function spaces are chosen and time stepping loops written at the same high level. When the programme is run, Firedrake generates high performance C code for the resulting numerics which are executed in parallel. Models in Firedrake typically take a tiny fraction of the lines of code required by traditional hand-coding techniques. They support more sophisticated numerics than are easily achieved by hand, and the resulting code is frequently higher performance. Critically, debugging, modifying and extending a model written in Firedrake is vastly easier than by traditional methods due to the small, highly mathematical code base. Firedrake supports a wide range of key features for dynamical core creation: A vast range of discretisations, including both continuous and discontinuous spaces and mimetic (C-grid-like) elements which optimally represent force balances in geophysical flows. High aspect ratio layered meshes suitable for ocean and atmosphere domains. Curved elements for high accuracy representations of the sphere. Support for non-finite element operators, such as parametrisations. Access to PETSc, a world-leading library of programmable linear and nonlinear solvers. High performance adjoint models generated automatically by symbolically reasoning about the forward model. This poster will present the key features of the Firedrake system, as well as those of Gusto, an atmospheric dynamical core, and Thetis, a coastal ocean model, both of which are written in Firedrake.
Ion Dynamics Model for Collisionless Radio Frequency Sheaths
NASA Technical Reports Server (NTRS)
Bose, Deepak; Govindan, T.R.; Meyyappan, M.
2000-01-01
Full scale reactor model based on fluid equations is widely used to analyze high density plasma reactors. It is well known that the submillimeter scale sheath in front of a biased electrode supporting the wafer is difficult to resolve in numerical simulations, and the common practice is to use results for electric field from some form of analytical sheath model as boundary conditions for full scale reactor simulation. There are several sheath models in the literature ranging from Child's law to a recent unified sheath model [P. A. Miller and M. E. Riley, J. Appl. Phys. 82, 3689 (1997)l. In the present work, the cold ion fluid equations in the radio frequency sheath are solved numerically to show that the spatiotemporal variation of ion flux inside the sheath, commonly ignored in analytical models, is important in determining the electric field and ion energy at the electrode. Consequently, a semianalytical model that includes the spatiotemporal variation of ion flux is developed for use as boundary condition in reactor simulations. This semianalytical model is shown to yield results for sheath properties in close agreement with numerical solutions.
Scherer, Ronny; Nilsen, Trude; Jansen, Malte
2016-01-01
Students' perceptions of instructional quality are among the most important criteria for evaluating teaching effectiveness. The present study evaluates different latent variable modeling approaches (confirmatory factor analysis, exploratory structural equation modeling, and bifactor modeling), which are used to describe these individual perceptions with respect to their factor structure, measurement invariance, and the relations to selected educational outcomes (achievement, self-concept, and motivation in mathematics). On the basis of the Programme for International Student Assessment (PISA) 2012 large-scale data sets of Australia, Canada, and the USA (N = 26,746 students), we find support for the distinction between three factors of individual students' perceptions and full measurement invariance across countries for all modeling approaches. In this regard, bifactor exploratory structural equation modeling outperformed alternative approaches with respect to model fit. Our findings reveal significant relations to the educational outcomes. This study synthesizes different modeling approaches of individual students' perceptions of instructional quality and provides insights into the nature of these perceptions from an individual differences perspective. Implications for the measurement and modeling of individually perceived instructional quality are discussed.
Vieno, Alessio; Santinello, Massimo; Pastore, Massimiliano; Perkins, Douglas D
2007-03-01
Influences of different sources of social support (from parents and friends), school sense of community, and self-efficacy on psychosocial well being (as measured by self-reported life satisfaction and psychological symptoms) in early adolescence were investigated in an integrative model. The model was tested using structural equation modeling. Multi-group comparisons were used to estimate differences between sex and age groups. The survey sample was composed of 7,097 students in Northern Italy (51.4% male) divided into three age cohorts (equivalent to 6th, 8th, and 10th grades with median ages of 11, 13, and 15). Findings obtained using SEM were consistent with self-efficacy and school sense of community mediating effects of social support on psychosocial adjustment. The multi-group comparison indicates a need for more complex developmental models and more research on how changing forms of support interact with each other as their effects also change during this important stage of the life. Implications for primary prevention and cross-cultural comparisons are discussed.
Social support and youth physical activity: the role of provider and type.
Beets, Michael W; Vogel, Randy; Forlaw, Loretta; Pitetti, Kenneth H; Cardinal, Bradley J
2006-01-01
To examine provider and type variation in social support (SS) for activity. Three hundred sixty-three fifth to eighth-grade students completed a questionnaire assessing self-reported activity and social support (SS) from 3 providers: mom, dad, and peers. Important covariates of activity were included in the analysis: age, BMI, sex, and maturation. Structural equation modeling indicated peers, transportation, and praise affected activity levels. Boys reported greater SS than girls did. Maturation, age, and BMI exhibited unique affects on SS. Increasing positive feedback, transportation to places to be active, and peer support may prove advantageous in improving activity levels in this age-group.
2010-12-01
Soil Survey Geographic database USDA U.S. Department of Agriculture USLE Universal Soil Loss Equation USPED Unit-Stream-Power Erosion and...2003). A suite of models has been developed to simulate soil erosion and deposition, ranging from empirical (e.g., USLE and MUSLE at http... Soil Erosion and Deposition 4.4.1 USPED The algorithm for the simulation of soil erosion in USPED is similar to that of the USLE or RUSLE model
Atmospheric model development in support of SEASAT. Volume 2: Analysis models
NASA Technical Reports Server (NTRS)
Langland, R. A.
1977-01-01
As part of the SEASAT program of NASA, two sets of analysis programs were developed for the Jet Propulsion Laboratory. One set of programs produce 63 x 63 horizontal mesh analyses on a polar stereographic grid. The other set produces 187 x 187 third mesh analyses. The parameters analyzed include sea surface temperature, sea level pressure and twelve levels of upper air temperature, height and wind analyses. The analysis output is used to initialize the primitive equation forecast models.
NASA Astrophysics Data System (ADS)
Jaradat, Imad; Alquran, Marwan; Ali, Mohammed
2018-04-01
The purpose of this study is threefold. First, it derives newly developed two-mode nonlinear equations, two-mode perturbed Burgers' and two-mode Ostrovsky models. Second, it investigates the values of the nonlinearity and dispersion parameters that support the existence of two right-left (R-L) moving wave solutions to these models. Finally, it provides a graphical analysis of the "two-mode" concept and the impact of its phase velocity on the field function.
Ariza-Montes, Antonio; Leal-Rodríguez, Antonio L; Rodríguez-Félix, Lucía; Albort-Morant, Gema
2017-09-01
The aim of this article is to assess the role played by both individual and contextual factors in reducing the manager's levels of stress and strain within the workplace setting. This article also highlights the manager's locus of control (LOC) as an internal factor and emphasizes the social support variable as a contextual factor. We use a sample of 332 respondents belonging to Spanish manufacturing and services firms and a structural equation modeling technique (partial least squares path modeling). The results reveal that there are significant differences between managers and owners about stress-strain relationship. The study provides support for the literature on stress management, which emphasizes the importance of a LOC and social support in influencing stress and strain between managers and owners.
Formal Abstraction in Engineering Education--Challenges and Technology Support
ERIC Educational Resources Information Center
Neuper, Walther A.
2017-01-01
This is a position paper in the field of Engineering Education, which is at the very beginning in Europe. It relates challenges in the new field to the emerging technology of (Computer) Theorem Proving (TP). Experience shows, that "teaching" abstract models, for instance the wave equation in mechanical engineering and in electrical…
Determining Difficulty of Questions in Intelligent Tutoring Systems
ERIC Educational Resources Information Center
Gunel, Korhan; Asliyan, Rifat
2009-01-01
The object of this study is to model the level of a question difficulty by a differential equation at a pre-specified domain knowledge, to be used in an educational support system. For this purpose, we have developed an intelligent tutoring system for mathematics education. Intelligent Tutoring Systems are computer systems designed for improvement…
ERIC Educational Resources Information Center
Ali, Muhammad; Raza, Syed Ali; Qazi, Wasim; Puah, Chin-Hong
2018-01-01
Purpose: This study aims to examine university students' acceptance of e-learning systems in Pakistan. A Web-based learning system is a new form of utilizing technological features. Although, developed countries have initiated and established the concept for e-learning, developing countries require empirical support to implement e-learning.…
Finding the Roots of Adolescent Aggressive Behaviour: A Test of Three Developmental Pathways
ERIC Educational Resources Information Center
Glowacz, Fabienne; Veronneau, Marie-Helene; Boet, Sylvie; Born, Michel
2013-01-01
Aggressive behaviours in adolescence often originate in early development. This study tested three longitudinal pathways starting in early childhood, in a sample of 325 Belgian participants (162 girls) assessed every 1 or 2 years from birth through age 14. Structural equation models supported the "mother early dissatisfaction" pathway…
ERIC Educational Resources Information Center
Prelow, Hazel M.; Weaver, Scott R.; Bowman, Marvella A.; Swenson, Rebecca R.
2010-01-01
Structural equation modeling was used to examine the role of ecological risk factors, maternal psychological distress, and social network support on the parenting behaviors of 535 economically disadvantaged Latina mothers, who were surveyed for the Welfare Children, & Families: A Three City Study. We predicted that ecological risk would…
ERIC Educational Resources Information Center
Phillips, Lorraine J.
2010-01-01
Multiple sclerosis and fibromyalgia syndrome may spur substantial disability for those affected. Using structural equation modeling, this secondary analysis examined predictors of disability in women with multiple sclerosis (n = 118) and fibromyalgia syndrome (n = 197) recruited for separate wellness studies. Greater functional limitations, lower…
Mediating Links between Maternal Childhood Trauma and Preadolescent Behavioral Adjustment
ERIC Educational Resources Information Center
Min, Meeyoung O.; Singer, Lynn T.; Minnes, Sonia; Kim, Hyunsoo; Short, Elizabeth
2013-01-01
Structural equation modeling was used to simultaneously examine maternal psychological distress and social support as mediators linking maternal childhood trauma (MCT) to both maternal and child-reported behavior at 9 years of age in 231 birth mother-child dyads, who were primarily poor, urban, and African American. One half of the mothers…
Organizational Support and Volunteering Benefits for Older Adults
ERIC Educational Resources Information Center
Tang, Fengyan; Choi, Eunhee; Morrow-Howell, Nancy
2010-01-01
Purpose: This study tested a theoretical model of volunteering benefits and examined the mechanism through which volunteering benefits older adults. Design and Methods: This is a 2-wave study of 253 older adult volunteers serving in 10 volunteer programs. Older volunteers completed the mailed surveys in 2005 and 2006. Structural equation modeling…
The Subjective Well-Being Construct: A Test of Its Convergent, Discriminant, and Factorial Validity
ERIC Educational Resources Information Center
Arthaud-day, Marne L.; Rode, Joseph C.; Mooney, Christine H.; Near, Janet P.
2005-01-01
Using structural equation modeling, we found empirical support for the prevailing theory that subjective well-being consists of three domains: (1) cognitive evaluations of one's life (i.e., life satisfaction or happiness); (2) positive affect; and (3) negative affect. Multiple indicators of satisfaction/happiness were shown to have strong…
Predicting Achievement, Distress, and Retention among Lower-Income Latino Youth
ERIC Educational Resources Information Center
Close, Wendy; Solberg, Scott
2008-01-01
This study used structural equation modeling to evaluate whether a combination of social cognitive and self-determination theories [Bandura, A. (1986). "Social foundations of thought and action: A social cognitive theory." Englewood Cliffs, NJ: Prentice-Hall; Deci, E. L., & Ryan, R. M. (1987). The support of autonomy and the control of behavior.…
Happy Spouses, Happy Parents? Family Relationships among Finnish and Dutch Dual Earners
ERIC Educational Resources Information Center
Malinen, Kaisa; Kinnunen, Ulla; Tolvanen, Asko; Ronka, Anna; Wierda-Boer, Hilde; Gerris, Jan
2010-01-01
In this study links between spousal and parent-child relationships among Finnish (n = 157 couples) and Dutch (n = 276 couples) dual earners with young children were examined using paired questionnaire data. Variable-oriented analyses (structural equation modeling with a multigroup procedure) supported the spillover hypothesis, as higher levels of…
ERIC Educational Resources Information Center
Yu, Rongrong; Singh, Kusum
2018-01-01
The authors examined the relationships among teacher classroom practices, student motivation, and mathematics achievement in high school. The data for this study was drawn from the base-year data of High School Longitudinal Study of 2009. Structural equation modeling method was used to estimate the relationships among variables. The results…
ERIC Educational Resources Information Center
Rahaman, Jeenath; Agrawal, Harshit; Srivastava, Nisheeth; Chandrasekharan, Sanjay
2018-01-01
Manipulation of physical models such as tangrams and tiles is a popular approach to teaching early mathematics concepts. This pedagogical approach is extended by new computational media, where mathematical entities such as equations and vectors can be virtually manipulated. The cognitive and neural mechanisms supporting such manipulation-based…
NASA Astrophysics Data System (ADS)
Pipkins, Daniel Scott
Two diverse topics of relevance in modern computational mechanics are treated. The first involves the modeling of linear and non-linear wave propagation in flexible, lattice structures. The technique used combines the Laplace Transform with the Finite Element Method (FEM). The procedure is to transform the governing differential equations and boundary conditions into the transform domain where the FEM formulation is carried out. For linear problems, the transformed differential equations can be solved exactly, hence the method is exact. As a result, each member of the lattice structure is modeled using only one element. In the non-linear problem, the method is no longer exact. The approximation introduced is a spatial discretization of the transformed non-linear terms. The non-linear terms are represented in the transform domain by making use of the complex convolution theorem. A weak formulation of the resulting transformed non-linear equations yields a set of element level matrix equations. The trial and test functions used in the weak formulation correspond to the exact solution of the linear part of the transformed governing differential equation. Numerical results are presented for both linear and non-linear systems. The linear systems modeled are longitudinal and torsional rods and Bernoulli-Euler and Timoshenko beams. For non-linear systems, a viscoelastic rod and Von Karman type beam are modeled. The second topic is the analysis of plates and shallow shells under-going finite deflections by the Field/Boundary Element Method. Numerical results are presented for two plate problems. The first is the bifurcation problem associated with a square plate having free boundaries which is loaded by four, self equilibrating corner forces. The results are compared to two existing numerical solutions of the problem which differ substantially.
Angelis, Alessia De; Pancani, Luca; Steca, Patrizia; Colaceci, Sofia; Giusti, Angela; Tibaldi, Laura; Alvaro, Rosaria; Ausili, Davide; Vellone, Ercole
2017-05-01
To test an explanatory model of nurses' intention to report adverse drug reactions in hospital settings, based on the theory of planned behaviour. Under-reporting of adverse drug reactions is an important problem among nurses. A cross-sectional design was used. Data were collected with the adverse drug reporting nurses' questionnaire. Confirmatory factor analysis was performed to test the factor validity of the adverse drug reporting nurses' questionnaire, and structural equation modelling was used to test the explanatory model. The convenience sample comprised 500 Italian hospital nurses (mean age = 43.52). Confirmatory factor analysis supported the factor validity of the adverse drug reporting nurses' questionnaire. The structural equation modelling showed a good fit with the data. Nurses' intention to report adverse drug reactions was significantly predicted by attitudes, subjective norms and perceived behavioural control (R² = 0.16). The theory of planned behaviour effectively explained the mechanisms behind nurses' intention to report adverse drug reactions, showing how several factors come into play. In a scenario of organisational empowerment towards adverse drug reaction reporting, the major predictors of the intention to report are support for the decision to report adverse drug reactions from other health care practitioners, perceptions about the value of adverse drug reaction reporting and nurses' favourable self-assessment of their adverse drug reaction reporting skills. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Subasic, E.; Huang, C.; Jakumeit, J.; Hediger, F.
2015-06-01
The ongoing increase in the size and capacity of state-of-the-art wind power plants is highlighting the need to reduce the weight of critical components, such as hubs, main shaft bearing housings, gear box housings and support bases. These components are manufactured as nodular iron castings (spheroid graphite iron, or SGI). A weight reduction of up to 20% is achievable by optimizing the geometry to minimize volume, thus enabling significant downsizing of wind power plants. One method for enhancing quality control in the production of thick-walled SGI castings, and thus reducing tolerances and, consequently, enabling castings of smaller volume is via a casting simulation of mould filling and solidification based on a combination of microscopic model and VoF-multiphase approach. Coupled fluid flow with heat transport and phase transformation kinetics during solidification is described by partial differential equations and solved using the finite volume method. The flow of multiple phases is described using a volume of fluid approach. Mass conservation equations are solved separately for both liquid and solid phases. At the micro-level, the diffusion-controlled growth model for grey iron eutectic grains by Wetterfall et al. is combined with a growth model for white iron eutectic grains. The micro-solidification model is coupled with macro-transport equations via source terms in the energy and continuity equations. As a first step the methodology was applied to a simple geometry to investigate the impact of mould-filling on the grey-to-white transition prediction in nodular cast iron.
Optimal distributed control of a diffuse interface model of tumor growth
NASA Astrophysics Data System (ADS)
Colli, Pierluigi; Gilardi, Gianni; Rocca, Elisabetta; Sprekels, Jürgen
2017-06-01
In this paper, a distributed optimal control problem is studied for a diffuse interface model of tumor growth which was proposed by Hawkins-Daruud et al in Hawkins-Daruud et al (2011 Int. J. Numer. Math. Biomed. Eng. 28 3-24). The model consists of a Cahn-Hilliard equation for the tumor cell fraction φ coupled to a reaction-diffusion equation for a function σ representing the nutrient-rich extracellular water volume fraction. The distributed control u monitors as a right-hand side of the equation for σ and can be interpreted as a nutrient supply or a medication, while the cost function, which is of standard tracking type, is meant to keep the tumor cell fraction under control during the evolution. We show that the control-to-state operator is Fréchet differentiable between appropriate Banach spaces and derive the first-order necessary optimality conditions in terms of a variational inequality involving the adjoint state variables. The financial support of the FP7-IDEAS-ERC-StG #256872 (EntroPhase) and of the project Fondazione Cariplo-Regione Lombardia MEGAsTAR ‘Matematica d’Eccellenza in biologia ed ingegneria come accelleratore di una nuona strateGia per l’ATtRattività dell’ateneo pavese’ is gratefully acknowledged. The paper also benefited from the support of the MIUR-PRIN Grant 2015PA5MP7 ‘Calculus of Variations’ for PC and GG, and the GNAMPA (Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni) of INdAM (Istituto Nazionale di Alta Matematica) for PC, GG and ER.
Hansen, Nathan B.; Vaughan, Ellen L.; Cavanaugh, Courtenay E.; Connell, Christian M.; Sikkema, Kathleen J.
2008-01-01
Objective This study evaluated a model of the impact of borderline and antisocial personality disorder indications on HIV symptoms and health-related quality of life (HRQoL) in AIDS-bereaved adults, accounting for grief severity, social support and years since HIV diagnosis. Design Structural Equation modeling was used to test the proposed model in a sample of 268 HIV-seropositive adults enrolled in an intervention for coping with AIDS-related bereavement. Main Outcome Measures Functional Assessment of HIV Infection, HIV symptoms. Results The proposed model demonstrated excellent fit with study data and all hypothesized paths were supported. Personality disorder indication was directly related to HIV symptoms and HRQoL, and indirectly related through both social support and grief severity. Social support was negatively related to HIV symptoms and positively related to HRQoL, while grief severity was positively related to HIV symptoms and negatively related to HRQoL. Finally, HIV symptoms had a direct negative relationship with HRQoL. Conclusion Personality disorders have a direct negative effect on HIV symptoms and HRQoL, and indirect effects through grief severity and social support. PMID:19290717
On the Connection Between One-and Two-Equation Models of Turbulence
NASA Technical Reports Server (NTRS)
Menter, F. R.; Rai, Man Mohan (Technical Monitor)
1994-01-01
A formalism will be presented that allows the transformation of two-equation eddy viscosity turbulence models into one-equation models. The transformation is based on an assumption that is widely accepted over a large range of boundary layer flows and that has been shown to actually improve predictions when incorporated into two-equation models of turbulence. Based on that assumption, a new one-equation turbulence model will be derived. The new model will be tested in great detail against a previously introduced one-equation model and against its parent two-equation model.
Supporting Students' Understanding of Linear Equations with One Variable Using Algebra Tiles
ERIC Educational Resources Information Center
Saraswati, Sari; Putri, Ratu Ilma Indra; Somakim
2016-01-01
This research aimed to describe how algebra tiles can support students' understanding of linear equations with one variable. This article is a part of a larger research on learning design of linear equations with one variable using algebra tiles combined with balancing method. Therefore, it will merely discuss one activity focused on how students…
Appraisals of negative events by preadolescent children of divorce.
Sheets, V; Sandler, I; West, S G
1996-10-01
This study investigated the appraisals of the significance of negative events made by 256 preadolescent children of divorce. Appraisals were assessed by a 24-item self-report scale. Confirmatory factor analysis of this scale found support for a 3-dimensional model: negative self-appraisal, negative other-appraisal, and material loss. Differentiation between the dimensions of appraisal increased with age in both cross-sectional and over-time data. Evidence for convergent and discriminant validity of the self-report measure of appraisals was found with scores derived from children's open-ended descriptions of their appraisals. Cross-sectional structural equation models found significant paths between negative appraisal and psychological symptoms, over and above the direct effects of the traditional life event measure of stress. Structural equation modeling of longitudinal (5.5 months) data found a significant path from Time 1 appraisal to Time 2 anxiety for the older children.
Bernoulli substitution in the Ramsey model: Optimal trajectories under control constraints
NASA Astrophysics Data System (ADS)
Krasovskii, A. A.; Lebedev, P. D.; Tarasyev, A. M.
2017-05-01
We consider a neoclassical (economic) growth model. A nonlinear Ramsey equation, modeling capital dynamics, in the case of Cobb-Douglas production function is reduced to the linear differential equation via a Bernoulli substitution. This considerably facilitates the search for a solution to the optimal growth problem with logarithmic preferences. The study deals with solving the corresponding infinite horizon optimal control problem. We consider a vector field of the Hamiltonian system in the Pontryagin maximum principle, taking into account control constraints. We prove the existence of two alternative steady states, depending on the constraints. A proposed algorithm for constructing growth trajectories combines methods of open-loop control and closed-loop regulatory control. For some levels of constraints and initial conditions, a closed-form solution is obtained. We also demonstrate the impact of technological change on the economic equilibrium dynamics. Results are supported by computer calculations.
In-plane free vibration analysis of cable arch structure
NASA Astrophysics Data System (ADS)
Zhao, Yueyu; Kang, Houjun
2008-05-01
Cable-stayed arch bridge is a new type of composite bridge, which utilizes the mechanical characters of cable and arch. Based on the supporting members of cable-stayed arch bridge and of erection of arch bridge using of the cantilever construction method with tiebacks, we propose a novel mechanical model of cable-arch structure. In this model, the equations governing vibrations of the cable-arch are derived according to Hamilton's principle for dynamic problems in elastic body under equilibrium state. Then, the program of solving the dynamic governing equations is ultimately established by the transfer matrix method for free vibration of uniform and variable cross-section, and the internal characteristics of the cable-arch are investigated. After analyzing step by step, the research results approve that the program is accurate; meanwhile, the mechanical model and method are both valuable and significant not only in theoretical research and calculation but also in design of engineering.
OpenFOAM: Open source CFD in research and industry
NASA Astrophysics Data System (ADS)
Jasak, Hrvoje
2009-12-01
The current focus of development in industrial Computational Fluid Dynamics (CFD) is integration of CFD into Computer-Aided product development, geometrical optimisation, robust design and similar. On the other hand, in CFD research aims to extend the boundaries ofpractical engineering use in "non-traditional " areas. Requirements of computational flexibility and code integration are contradictory: a change of coding paradigm, with object orientation, library components, equation mimicking is proposed as a way forward. This paper describes OpenFOAM, a C++ object oriented library for Computational Continuum Mechanics (CCM) developed by the author. Efficient and flexible implementation of complex physical models is achieved by mimicking the form ofpartial differential equation in software, with code functionality provided in library form. Open Source deployment and development model allows the user to achieve desired versatility in physical modeling without the sacrifice of complex geometry support and execution efficiency.
Optimization of life support systems and their systems reliability
NASA Technical Reports Server (NTRS)
Fan, L. T.; Hwang, C. L.; Erickson, L. E.
1971-01-01
The identification, analysis, and optimization of life support systems and subsystems have been investigated. For each system or subsystem that has been considered, the procedure involves the establishment of a set of system equations (or mathematical model) based on theory and experimental evidences; the analysis and simulation of the model; the optimization of the operation, control, and reliability; analysis of sensitivity of the system based on the model; and, if possible, experimental verification of the theoretical and computational results. Research activities include: (1) modeling of air flow in a confined space; (2) review of several different gas-liquid contactors utilizing centrifugal force: (3) review of carbon dioxide reduction contactors in space vehicles and other enclosed structures: (4) application of modern optimal control theory to environmental control of confined spaces; (5) optimal control of class of nonlinear diffusional distributed parameter systems: (6) optimization of system reliability of life support systems and sub-systems: (7) modeling, simulation and optimal control of the human thermal system: and (8) analysis and optimization of the water-vapor eletrolysis cell.
Gillet, Nicolas; Colombat, Philippe; Michinov, Estelle; Pronost, Anne-Marie; Fouquereau, Evelyne
2013-11-01
To test a model linking procedural justice, supervisor autonomy support, need satisfaction, organizational support, work satisfaction, organizational identification and job performance. Research in industrial and organizational psychology has shown that procedural justice and supervisor autonomy support lead to positive outcomes. However, very little research related to this subject has been conducted in healthcare settings. Moreover, few studies have examined mechanisms that could account for these positive relationships. A cross-sectional correlational design was used. Convenience sampling was used and a sample of 500 nurses working in haematology, oncology and haematology/oncology units in France was surveyed in 2011. The final sample consisted of 323 nurses (64.6% response rate). The hypothesized model was tested using structural equation modelling. Procedural justice and supervisor autonomy support significantly and positively influenced need satisfaction and perceived organizational support, which in turn positively predicted work satisfaction, organizational identification and job performance. Organizations could deliver training programmes for their managers aimed at enhancing the use of fair procedures in allocating outcomes and developing their autonomy-supportive behaviours to improve nurses' work satisfaction, organizational identification and job performance. © 2013 Blackwell Publishing Ltd.
Effective model development of internal auditors in the village financial institution
NASA Astrophysics Data System (ADS)
Arsana, I. M. M.; Sugiarta, I. N.
2018-01-01
Designing an effective audit system is complex and challenging, and a focus on examining how internal audit drive improvement in three core performance dimensions ethicality, efficiency, and effectiveness in organization is needed. The problem of research is how the desain model and peripheral of supporter of effective supervation Village Credit Institution? Research of objectives is yielding the desain model and peripheral of supporter of effective supervation Village Credit Institution. Method Research use data collecting technique interview, observation and enquette. Data analysis, data qualitative before analysed to be turned into quantitative data in the form of scale. Each variable made to become five classificat pursuant to scale of likert. Data analysed descriptively to find supervation level, Structural Equation Model (SEM) to find internal and eksternal factor. So that desain model supervation with descriptive analysis. Result of research desain model and peripheral of supporter of effective supervation Village Credit Institution. The conclusion desain model supported by three sub system: sub system institute yield body supervisor of Village Credit Institution, sub system standardization and working procedure yield standard operating procedure supervisor of Village Credit Institution, sub system education and training yield supervisor professional of Village Credit Institution.
From patterns to causal understanding: Structural equation modeling (SEM) in soil ecology
Eisenhauer, Nico; Powell, Jeff R; Grace, James B.; Bowker, Matthew A.
2015-01-01
In this perspectives paper we highlight a heretofore underused statistical method in soil ecological research, structural equation modeling (SEM). SEM is commonly used in the general ecological literature to develop causal understanding from observational data, but has been more slowly adopted by soil ecologists. We provide some basic information on the many advantages and possibilities associated with using SEM and provide some examples of how SEM can be used by soil ecologists to shift focus from describing patterns to developing causal understanding and inspiring new types of experimental tests. SEM is a promising tool to aid the growth of soil ecology as a discipline, particularly by supporting research that is increasingly hypothesis-driven and interdisciplinary, thus shining light into the black box of interactions belowground.
Robust criticality of an Ising model on rewired directed networks
NASA Astrophysics Data System (ADS)
Lipowski, Adam; Gontarek, Krzysztof; Lipowska, Dorota
2015-06-01
We show that preferential rewiring, which is supposed to mimic the behavior of financial agents, changes a directed-network Ising ferromagnet with a single critical point into a model with robust critical behavior. For the nonrewired random graph version, due to a constant number of out-links for each site, we write a simple mean-field-like equation describing the behavior of magnetization; we argue that it is exact and support the claim with extensive Monte Carlo simulations. For the rewired version, this equation is obeyed only at low temperatures. At higher temperatures, rewiring leads to strong heterogeneities, which apparently invalidates mean-field arguments and induces large fluctuations and divergent susceptibility. Such behavior is traced back to the formation of a relatively small core of agents that influence the entire system.
Nitzsche, Anika; Pfaff, Holger; Jung, Julia; Driller, Elke
2013-01-01
To examine the relationships among employees' emotional exhaustion, positive and negative work-home interaction, and perceived work-life balance culture in companies. Data for this study were collected through online surveys of employees from companies in the micro- and nanotechnology sectors (N = 509). A structural equation modeling analysis was performed. A company culture perceived by employees as supportive of their work-life balance was found to have both a direct negative effect on emotional exhaustion and an indirect negative effect meditated by negative work-home interaction. In addition, whereas negative work-home interaction associated positively with emotional exhaustion, positive work-home interaction had no significant effect. The direct and indirect relationship between work-life balance culture and emotional exhaustion has practical implications for health promotion in companies.
A rumor transmission model with incubation in social networks
NASA Astrophysics Data System (ADS)
Jia, Jianwen; Wu, Wenjiang
2018-02-01
In this paper, we propose a rumor transmission model with incubation period and constant recruitment in social networks. By carrying out an analysis of the model, we study the stability of rumor-free equilibrium and come to the local stable condition of the rumor equilibrium. We use the geometric approach for ordinary differential equations for showing the global stability of the rumor equilibrium. And when ℜ0 = 1, the new model occurs a transcritical bifurcation. Furthermore, numerical simulations are used to support the analysis. At last, some conclusions are presented.
O/S analysis of conceptual space vehicles. Part 1
NASA Technical Reports Server (NTRS)
Ebeling, Charles E.
1995-01-01
The application of recently developed computer models in determining operational capabilities and support requirements during the conceptual design of proposed space systems is discussed. The models used are the reliability and maintainability (R&M) model, the maintenance simulation model, and the operations and support (O&S) cost model. In the process of applying these models, the R&M and O&S cost models were updated. The more significant enhancements include (1) improved R&M equations for the tank subsystems, (2) the ability to allocate schedule maintenance by subsystem, (3) redefined spares calculations, (4) computing a weighted average of the working days and mission days per month, (5) the use of a position manning factor, and (6) the incorporation into the O&S model of new formulas for computing depot and organizational recurring and nonrecurring training costs and documentation costs, and depot support equipment costs. The case study used is based upon a winged, single-stage, vertical-takeoff vehicle (SSV) designed to deliver to the Space Station Freedom (SSF) a 25,000 lb payload including passengers without a crew.
Numerical uncertainty in computational engineering and physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemez, Francois M
2009-01-01
Obtaining a solution that approximates ordinary or partial differential equations on a computational mesh or grid does not necessarily mean that the solution is accurate or even 'correct'. Unfortunately assessing the quality of discrete solutions by questioning the role played by spatial and temporal discretizations generally comes as a distant third to test-analysis comparison and model calibration. This publication is contributed to raise awareness of the fact that discrete solutions introduce numerical uncertainty. This uncertainty may, in some cases, overwhelm in complexity and magnitude other sources of uncertainty that include experimental variability, parametric uncertainty and modeling assumptions. The concepts ofmore » consistency, convergence and truncation error are overviewed to explain the articulation between the exact solution of continuous equations, the solution of modified equations and discrete solutions computed by a code. The current state-of-the-practice of code and solution verification activities is discussed. An example in the discipline of hydro-dynamics illustrates the significant effect that meshing can have on the quality of code predictions. A simple method is proposed to derive bounds of solution uncertainty in cases where the exact solution of the continuous equations, or its modified equations, is unknown. It is argued that numerical uncertainty originating from mesh discretization should always be quantified and accounted for in the overall uncertainty 'budget' that supports decision-making for applications in computational physics and engineering.« less
A model for simulation of flow in singular and interconnected channels
Schaffranek, Raymond W.; Baltzer, R.A.; Goldberg, D.E.
1981-01-01
A one-dimensional numerical model is presented for simulating the unsteady flow in singular riverine or estuarine reaches and in networks of reaches composed of interconnected channels. The model is both general and flexible in that it can be used to simulate a wide range of flow conditions for various channel configurations. The channel geometry of the network to be modeled should be sufficiently simple so as to lend itself to characterization in one spatial dimension. The flow must be substantially homogenous in density, and hydrostatic pressure must prevail everywhere in the network channels. The slope of each channel bottom ought to be mild and reasonably constant over its length so that the flow remains subcritical. The model accommodates tributary inflows and diversions and includes the effects of wind shear on the water surface as a forcing function in the flow equations. Water-surface elevations and flow discharges are computed at channel junctions, as well as at specified intermediate locations within the network channels. The one-dimensional branch-network flow model uses a four-point, implicit, finite-difference approximation of the unsteady-flow equations. The flow equations are linearized over a time step, and branch transformations are formulated that describe the relationship between the unknowns at the end points of the channels. The resultant matrix of branch-transformation equations and required boundary-condition equations is solved by Gaussian elimination using maximum pivot strategy. Five example applications of the flow model are illustrated. The applications cover such diverse conditions as a singular upland river reach in which unsteady flow results from hydropower regulations, coastal rivers composed of sequentially connected reaches subject to unsteady tide-driven flow, and a multiply connected network of channels whose flow is principally governed by wind tides and seiches in adjoining lakes. The report includes a listing of the FORTRAN IV computer program and a description of the input data requirements. Model supporting programs for the processing and input of initial and boundary-value data are identified, various model output formats are illustrated, and instructions are given to permit the production of graphical output using the line printer, electromechanical pen plotters, cathode-ray-tube display units, or microfilm recorders.
An ambient agent model for analyzing managers' performance during stress
NASA Astrophysics Data System (ADS)
ChePa, Noraziah; Aziz, Azizi Ab; Gratim, Haned
2016-08-01
Stress at work have been reported everywhere. Work related performance during stress is a pattern of reactions that occurs when managers are presented with work demands that are not matched with their knowledge, skills, or abilities, and which challenge their ability to cope. Although there are many prior findings pertaining to explain the development of manager performance during stress, less attention has been given to explain the same concept through computational models. In such, a descriptive nature in psychological theories about managers' performance during stress can be transformed into a causal-mechanistic stage that explains the relationship between a series of observed phenomena. This paper proposed an ambient agent model for analyzing managers' performance during stress. Set of properties and variables are identified through past literatures to construct the model. Differential equations have been used in formalizing the model. Set of equations reflecting relations involved in the proposed model are presented. The proposed model is essential and can be encapsulated within an intelligent agent or robots that can be used to support managers during stress.
On the Generalized Heisenberg Supermagnetic Model
NASA Astrophysics Data System (ADS)
Yan, Zhao-Wen; Zhang, Xiao-Jing; Han, Rong; Li, Chuan-Zhong
2018-05-01
In this paper, we construct the generalized Heisenberg supermagnetic models with two different constraints and investigate the integrability of the super integrable systems. By virtue of the gauge transformation, their corresponding gauge equivalent counterparts are derived, i.e., the super and fermionic mixed derivative nonlinear Schrödinger equations, respectively. Supported by National Natural Science Foundation of China under Grant Nos. 11605096, 11571192, and 11601247 and innovation Foundation of Inner Mongolia University for the College Students (201711208)
Modeling and Control of Intelligent Flexible Structures
1994-03-26
can be approximated as a simply supported beam in transverse vibration. Assuming that the Euler- Bernoulli beam assumptions hold, linear equations of...The assumptions made during the derivation are that the element can be modeled as an Euler- Bernoulli beam, that the cross-section is symmetric, and...parametes A,. and ,%. andc input maces 3,,. The closed loop system. ecuation (7), is stable when the 3.. 8 and output gain mantices H1., H., H. for
A hybrid multigroup neutron-pattern model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pogosbekyan, L.R.; Lysov, D.A.
In this paper, we use the general approach to construct a multigroup hybrid model for the neutron pattern. The equations are given together with a reasonably economic and simple iterative method of solving them. The algorithm can be used to calculate the pattern and the functionals as well as to correct the constants from the experimental data and to adapt the support over the constants to the engineering programs by reference to precision ones.
Topa Cantisano, Gabriela; Morales Domínguez, J F; Depolo, Marco
2008-05-01
Although sexual harassment has been extensively studied, empirical research has not led to firm conclusions about its antecedents and consequences, both at the personal and organizational level. An extensive literature search yielded 42 empirical studies with 60 samples. The matrix correlation obtained through meta-analytic techniques was used to test a structural equation model. Results supported the hypotheses regarding organizational environmental factors as main predictors of harassment.
Modeling and Analysis of Power Processing Systems (MAPPS). Volume 2: Appendices
NASA Technical Reports Server (NTRS)
Lee, F. C.; Radman, S.; Carter, R. A.; Wu, C. H.; Yu, Y.; Chang, R.
1980-01-01
The computer programs and derivations generated in support of the modeling and design optimization program are presented. Programs for the buck regulator, boost regulator, and buck-boost regulator are described. The computer program for the design optimization calculations is presented. Constraints for the boost and buck-boost converter were derived. Derivations of state-space equations and transfer functions are presented. Computer lists for the converters are presented, and the input parameters justified.
A Bayesian Nonparametric Approach to Test Equating
ERIC Educational Resources Information Center
Karabatsos, George; Walker, Stephen G.
2009-01-01
A Bayesian nonparametric model is introduced for score equating. It is applicable to all major equating designs, and has advantages over previous equating models. Unlike the previous models, the Bayesian model accounts for positive dependence between distributions of scores from two tests. The Bayesian model and the previous equating models are…
Delay-feedback control strategy for reducing CO2 emission of traffic flow system
NASA Astrophysics Data System (ADS)
Zhang, Li-Dong; Zhu, Wen-Xing
2015-06-01
To study the signal control strategy for reducing traffic emission theoretically, we first presented a kind of discrete traffic flow model with relative speed term based on traditional coupled map car-following model. In the model, the relative speed difference between two successive running cars is incorporated into following vehicle's acceleration running equation. Then we analyzed its stability condition with discrete control system stability theory. Third, we designed a delay-feedback controller to suppress traffic jam and decrease traffic emission based on modern controller theory. Last, numerical simulations are made to support our theoretical results, including the comparison of models' stability analysis, the influence of model type and signal control on CO2 emissions. The results show that the temporal behavior of our model is superior to other models, and the traffic signal controller has good effect on traffic jam suppression and traffic CO2 emission, which fully supports the theoretical conclusions.
NASA Astrophysics Data System (ADS)
Liu, Tianyang; Chan, Hiu Ning; Grimshaw, Roger; Chow, Kwok Wing
2017-11-01
The spatial structure of small disturbances in stratified flows without background shear, usually named the `Taylor-Goldstein equation', is studied by employing the Boussinesq approximation (variation in density ignored except in the buoyancy). Analytical solutions are derived for special wavenumbers when the Brunt-Väisälä frequency is quadratic in hyperbolic secant, by comparison with coupled systems of nonlinear Schrödinger equations intensively studied in the literature. Cases of coupled Schrödinger equations with four, five and six components are utilized as concrete examples. Dispersion curves for arbitrary wavenumbers are obtained numerically. The computations of the group velocity, second harmonic, induced mean flow, and the second derivative of the angular frequency can all be facilitated by these exact linear eigenfunctions of the Taylor-Goldstein equation in terms of hyperbolic function, leading to a cubic Schrödinger equation for the evolution of a wavepacket. The occurrence of internal rogue waves can be predicted if the dispersion and cubic nonlinearity terms of the Schrödinger equations are of the same sign. Partial financial support has been provided by the Research Grants Council contract HKU 17200815.
Exact analytic solutions for a global equation of plant cell growth.
Pietruszka, Mariusz
2010-05-21
A generalization of the Lockhart equation for plant cell expansion in isotropic case is presented. The goal is to account for the temporal variation in the wall mechanical properties--in this case by making the wall extensibility a time dependent parameter. We introduce a time-differential equation describing the plant growth process with some key biophysical aspects considered. The aim of this work was to improve prior modeling efforts by taking into account the dynamic character of the plant cell wall with characteristics reminiscent of damped (aperiodic) motion. The equations selected to encapsulate the time evolution of the wall extensibility offer a new insight into the control of cell wall expansion. We find that the solutions to the time dependent second order differential equation reproduce much of the known experimental data for long- and short-time scales. Additionally, in order to support the biomechanical approach, a new growth equation based on the action of expansin proteins is proposed. Remarkably, both methods independently converge to the same kind, sigmoid-shaped, growth description functional V(t) proportional, exp(-exp(-t)), properly describing the volumetric growth and, consequently, growth rate as its time derivative. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Modeling contextual influences on parents with intellectual disability and their children.
Wade, Catherine; Llewellyn, Gwynnyth; Matthews, Jan
2011-11-01
Many parents with intellectual disability experience living conditions associated with risk for children and parents. This study used structural equation modeling to test a theoretical model of the relationships among parent, child, family, and contextual variables in 120 Australian families where a parent had an intellectual disability. Findings revealed that parenting practices had a direct effect on children's well being, that social support was associated with children's well being through the mediator of parenting practices, and that access to social support had a direct influence on parenting practices. Implications of the findings for research, intervention, and policy are explored, with the goal of promoting optimal well being for children who are raised by parents with intellectual disability.
Hot Strange Hadronic Matter in an Effective Model
NASA Astrophysics Data System (ADS)
Qian, Wei-Liang; Su, Ru-Keng; Song, Hong-Qiu
2003-10-01
An effective model used to describe the strange hadronic matter with nucleons, Λ-hyperons, and Ξ-hyperons is extended to finite temperature. The extended model is used to study the density, temperature, and strangeness fraction dependence of the effective masses of baryons in the matter. The thermodynamical quantities, such as free energy and pressure, as well as the equation of state of the matter, are given. The project supported in part by National Natural Science Foundation of China under Grant Nos. 10075071, 10047005, 19947001, 19975010, and 10235030, and the CAS Knowledge Innovation Project No. KJCX2-N11. Also supported by the State Key Basic Research Development Program under Grant No. G200077400 and the Exploration Project of Knowledge Innovation Program of the Chinese Academy of Sciences
Development of FullWave : Hot Plasma RF Simulation Tool
NASA Astrophysics Data System (ADS)
Svidzinski, Vladimir; Kim, Jin-Soo; Spencer, J. Andrew; Zhao, Liangji; Galkin, Sergei
2017-10-01
Full wave simulation tool, modeling RF fields in hot inhomogeneous magnetized plasma, is being developed. The wave equations with linearized hot plasma dielectric response are solved in configuration space on adaptive cloud of computational points. The nonlocal hot plasma dielectric response is formulated in configuration space without limiting approximations by calculating the plasma conductivity kernel based on the solution of the linearized Vlasov equation in inhomogeneous magnetic field. This approach allows for better resolution of plasma resonances, antenna structures and complex boundaries. The formulation of FullWave and preliminary results will be presented: construction of the finite differences for approximation of derivatives on adaptive cloud of computational points; model and results of nonlocal conductivity kernel calculation in tokamak geometry; results of 2-D full wave simulations in the cold plasma model in tokamak geometry using the formulated approach; results of self-consistent calculations of hot plasma dielectric response and RF fields in 1-D mirror magnetic field; preliminary results of self-consistent simulations of 2-D RF fields in tokamak using the calculated hot plasma conductivity kernel; development of iterative solver for wave equations. Work is supported by the U.S. DOE SBIR program.
On supporting students' understanding of solving linear equation by using flowchart
NASA Astrophysics Data System (ADS)
Toyib, Muhamad; Kusmayadi, Tri Atmojo; Riyadi
2017-05-01
The aim of this study was to support 7th graders to gradually understand the concepts and procedures of solving linear equation. Thirty-two 7th graders of a Junior High School in Surakarta, Indonesia were involved in this study. Design research was used as the research approach to achieve the aim. A set of learning activities in solving linear equation with one unknown were designed based on Realistic Mathematics Education (RME) approach. The activities were started by playing LEGO to find a linear equation then solve the equation by using flowchart. The results indicate that using the realistic problems, playing LEGO could stimulate students to construct linear equation. Furthermore, Flowchart used to encourage students' reasoning and understanding on the concepts and procedures of solving linear equation with one unknown.
Ahadian, Samad; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki
2010-12-15
A molecular dynamics (MD) approach was employed to simulate the imbibition of a designed nanopore by a simple fluid (i.e., a Lennard-Jones (LJ) fluid). The length of imbibition as a function of time for various interactions between the LJ fluid and the pore wall was recorded for this system (i.e., the LJ fluid and the nanopore). By and large, the kinetics of imbibition was successfully described by the Lucas-Washburn (LW) equation, although deviation from it was observed in some cases. This lack of agreement is due to the neglect of the dynamic contact angle (DCA) in the LW equation. Two commonly used models (i.e., hydrodynamic and molecular-kinetic (MK) models) were thus employed to calculate the DCA. It is demonstrated that the MK model is able to justify the simulation results in which are not in good agreement with the simple LW equation. However, the hydrodynamic model is not capable of doing that. Further investigation of the MD simulation data revealed an interesting fact that there is a direct relationship between the wall-fluid interaction and the speed of the capillary imbibition. More evidence to support this claim is presented. Copyright © 2010 Elsevier Inc. All rights reserved.
Variational objective analysis for cyclone studies
NASA Technical Reports Server (NTRS)
Achtemeier, Gary L.
1989-01-01
Significant accomplishments during 1987 to 1988 are summarized with regard to each of the major project components. Model 1 requires satisfaction of two nonlinear horizontal momentum equations, the integrated continuity equation, and the hydrostatic equation. Model 2 requires satisfaction of model 1 plus the thermodynamic equation for a dry atmosphere. Model 3 requires satisfaction of model 2 plus the radiative transfer equation. Model 4 requires satisfaction of model 3 plus a moisture conservation equation and a parameterization for moist processes.
Dambrun, Michaël; Duarte, Sandra; Guimond, Serge
2004-06-01
Arguing from a sociobiological perspective, Sidanius and Pratto (1999) have shown that the male/female difference in social dominance orientation (SDO) is largely invariant across cultural, situational and contextual boundaries. The main objective of this study was to test the validity of Social Dominance Theory (SDT) by contrasting it with a model derived from Social Identity Theory (SIT). More specifically, while SIT predicts that gender identification mediates the effect of gender on SDO, SDT predicts the reverse. According to SDT, the degree to which men and women endorse status legitimizing ideology should determine to what extent they identify with their gender group. Using structural equation modelling, the results provide strong support for the SIT model and no support for SDT predictions. Implications of these results for social dominance theory and its sociobiologically based invariance hypothesis are discussed.
Evaluation of Proteus as a Tool for the Rapid Development of Models of Hydrologic Systems
NASA Astrophysics Data System (ADS)
Weigand, T. M.; Farthing, M. W.; Kees, C. E.; Miller, C. T.
2013-12-01
Models of modern hydrologic systems can be complex and involve a variety of operators with varying character. The goal is to implement approximations of such models that are both efficient for the developer and computationally efficient, which is a set of naturally competing objectives. Proteus is a Python-based toolbox that supports prototyping of model formulations as well as a wide variety of modern numerical methods and parallel computing. We used Proteus to develop numerical approximations for three models: Richards' equation, a brine flow model derived using the Thermodynamically Constrained Averaging Theory (TCAT), and a multiphase TCAT-based tumor growth model. For Richards' equation, we investigated discontinuous Galerkin solutions with higher order time integration based on the backward difference formulas. The TCAT brine flow model was implemented using Proteus and a variety of numerical methods were compared to hand coded solutions. Finally, an existing tumor growth model was implemented in Proteus to introduce more advanced numerics and allow the code to be run in parallel. From these three example models, Proteus was found to be an attractive open-source option for rapidly developing high quality code for solving existing and evolving computational science models.
Modeling snail breeding in Bioregenerative Life Support System
NASA Astrophysics Data System (ADS)
Kovalev, Vladimir; Tikhomirov, Alexander A.; Nickolay Manukovsky, D..
It is known that snail meat is a high quality food that is rich in protein. Hence, heliciculture or land snail farming spreads worldwide because it is a profitable business. The possibility to use the snails of Helix pomatia in Biological Life Support System (BLSS) was studied by Japanese Researches. In that study land snails were considered to be producers of animal protein. Also, snail breeding was an important part of waste processing, because snails were capable to eat the inedible plant biomass. As opposed to the agricultural snail farming, heliciculture in BLSS should be more carefully planned. The purpose of our work was to develop a model for snail breeding in BLSS that can predict mass flow rates in and out of snail facility. There are three linked parts in the model called “Stoichiometry”, “Population” and “Mass balance”, which are used in turn. Snail population is divided into 12 age groups from oviposition to one year. In the submodel “Stoichiometry” the individual snail growth and metabolism in each of 12 age groups are described with stoichiometry equations. Reactants are written on the left side of the equations, while products are written on the right side. Stoichiometry formulas of reactants and products consist of four chemical elements: C, H, O, N. The reactants are feed and oxygen, products are carbon dioxide, metabolic water, snail meat, shell, feces, slime and eggs. If formulas of substances in the stoichiometry equations are substituted with their molar masses, then stoichiometry equations are transformed to the equations of molar mass balance. To get the real mass balance of individual snail growth and metabolism one should multiply the value of each molar mass in the equations on the scale parameter, which is the ratio between mass of monthly consumed feed and molar mass of feed. Mass of monthly consumed feed and stoichiometry coefficients of formulas of meat, shell, feces, slime and eggs should be determined experimentally. An age structure and size of snail population are optimized on the base of individual growth and metabolic characteristics with the help of the second submodel "Population". In this simulation a daily amount of snail meat consumed by crewmembers is a guideline which specifies population productivity. Also, the daily amount of snail meat may have an optional value. Prescribed population characteristics are used in the third submodel "Mass balance" to equalize input and output mass flow rates of snail facility. In this submodel we add a water and ash to the organic masses of feed, meat, feces, shell and eggs. Moreover, masses of calcium carbonate and potable water are added to the left side of mass balance equations. Mass of calcium carbonate is distributed among shell, feces and eggs. Summarizing the twelve equations for each snail age, we get the mass balance equation for the snail facility. All simulations are performed by using Solver Add-In for Excel 2007.
McLean, Carmen P; Zang, Yinyin; Zandberg, Laurie; Bryan, Craig J; Gay, Natalie; Yarvis, Jeffrey S; Foa, Edna B
2017-01-15
Given the alarming rate of military suicides, it is critical to identify the factors that increase risk of suicidal thoughts and behaviors among active duty military personnel. This study examined a predictive model of suicidal ideation among 366 treatment-seeking active duty military personnel with posttraumatic stress disorder (PTSD) following deployments to or near Iraq or Afghanistan. Structural equation modeling was employed to examine the relative contribution of combat exposure, social support, PTSD severity, depressive symptoms, guilt, and trauma-related cognitions on suicidal ideation. The final structural equation model had a highly satisfactory fit [χ 2 (2) =2.023, p=.364; RMSEA =.006; CFI =1; GFI =.998]. PTSD severity had an indirect effect on suicidal ideation via trauma-related cognitions. Depression had a direct positive effect on suicidal ideation; it also had an indirect effect via trauma-related cognitions and interpersonal support. Among participants who had made a previous suicide attempt, only depression symptom severity was significantly linked to suicidal ideation. Data are cross-sectional, precluding causal interpretations. Findings may only generalize to treatment seeking active duty military personnel with PTSD reporting no more than moderate suicidal ideation. These findings suggest that depression and trauma-related cognitions, particularly negative thoughts about the self, play an important role in suicidal ideation among active duty military personnel with PTSD. Negative cognitions about the self and interpersonal support may be important targets for intervention to decrease suicidal ideation. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wetter, Michael; Zuo, Wangda; Nouidui, Thierry S.
This paper describes the Buildings library, a free open-source library that is implemented in Modelica, an equation-based object-oriented modeling language. The library supports rapid prototyping, as well as design and operation of building energy and control systems. First, we describe the scope of the library, which covers HVAC systems, multi-zone heat transfer and multi-zone airflow and contaminant transport. Next, we describe differentiability requirements and address how we implemented them. We describe the class hierarchy that allows implementing component models by extending partial implementations of base models of heat and mass exchangers, and by instantiating basic models for conservation equations andmore » flow resistances. We also describe associated tools for pre- and post-processing, regression tests, co-simulation and real-time data exchange with building automation systems. Furthermore, the paper closes with an example of a chilled water plant, with and without water-side economizer, in which we analyzed the system-level efficiency for different control setpoints.« less
Wetter, Michael; Zuo, Wangda; Nouidui, Thierry S.; ...
2013-03-13
This paper describes the Buildings library, a free open-source library that is implemented in Modelica, an equation-based object-oriented modeling language. The library supports rapid prototyping, as well as design and operation of building energy and control systems. First, we describe the scope of the library, which covers HVAC systems, multi-zone heat transfer and multi-zone airflow and contaminant transport. Next, we describe differentiability requirements and address how we implemented them. We describe the class hierarchy that allows implementing component models by extending partial implementations of base models of heat and mass exchangers, and by instantiating basic models for conservation equations andmore » flow resistances. We also describe associated tools for pre- and post-processing, regression tests, co-simulation and real-time data exchange with building automation systems. Furthermore, the paper closes with an example of a chilled water plant, with and without water-side economizer, in which we analyzed the system-level efficiency for different control setpoints.« less
How Hot Precursor Modify Island Nucleation: A Rate-Equation Model
NASA Astrophysics Data System (ADS)
Morales-Cifuentes, Josue; Einstein, T. L.; Pimpinelli, Alberto
2015-03-01
We describe the analysis, based on rate equations, of the hot precursor model mentioned in the previous talk. Two key parameters are the competing times of ballistic monomers decaying into thermalized monomers vs. being captured by an island, which naturally define a ``thermalization'' scale for the system. We interpret the energies and dimmensionless parameters used in the model, and provide both an implicit analytic solution and a convenient asymptotic approximation. Further analysis reveals novel scaling regimes and nonmonotonic crossovers between them. To test our model, we applied it to experiments on parahexaphenyl (6P) on sputtered mica. With the resulting parameters, the curves derived from our analytic treatment account very well for the data at the 4 different temperatures. The fit shows that the high-flux regime corresponds not to ALA (attachment-limited aggregation) or HMA (hot monomer aggregation) but rather to an intermediate scaling regime related to DLA (diffusion-limited aggregation). We hope this work stimulates further experimental investigations. Work at UMD supported by NSF CHE 13-05892.
Construct validity of the Moral Development Scale for Professionals (MDSP)
Söderhamn, Olle; Bjørnestad, John Olav; Skisland, Anne; Cliffordson, Christina
2011-01-01
The aim of this study was to investigate the construct validity of the Moral Development Scale for Professionals (MDSP) using structural equation modeling. The instrument is a 12-item self-report instrument, developed in the Scandinavian cultural context and based on Kohlberg’s theory. A hypothesized simplex structure model underlying the MDSP was tested through structural equation modeling. Validity was also tested as the proportion of respondents older than 20 years that reached the highest moral level, which according to the theory should be small. A convenience sample of 339 nursing students with a mean age of 25.3 years participated. Results confirmed the simplex model structure, indicating that MDSP reflects a moral construct empirically organized from low to high. A minority of respondents >20 years of age (13.5%) scored more than 80% on the highest moral level. The findings support the construct validity of the MDSP and the stages and levels in Kohlberg’s theory. PMID:21655343
GenSSI 2.0: multi-experiment structural identifiability analysis of SBML models.
Ligon, Thomas S; Fröhlich, Fabian; Chis, Oana T; Banga, Julio R; Balsa-Canto, Eva; Hasenauer, Jan
2018-04-15
Mathematical modeling using ordinary differential equations is used in systems biology to improve the understanding of dynamic biological processes. The parameters of ordinary differential equation models are usually estimated from experimental data. To analyze a priori the uniqueness of the solution of the estimation problem, structural identifiability analysis methods have been developed. We introduce GenSSI 2.0, an advancement of the software toolbox GenSSI (Generating Series for testing Structural Identifiability). GenSSI 2.0 is the first toolbox for structural identifiability analysis to implement Systems Biology Markup Language import, state/parameter transformations and multi-experiment structural identifiability analysis. In addition, GenSSI 2.0 supports a range of MATLAB versions and is computationally more efficient than its previous version, enabling the analysis of more complex models. GenSSI 2.0 is an open-source MATLAB toolbox and available at https://github.com/genssi-developer/GenSSI. thomas.ligon@physik.uni-muenchen.de or jan.hasenauer@helmholtz-muenchen.de. Supplementary data are available at Bioinformatics online.
Workaholism and relationship quality: a spillover-crossover perspective.
Bakker, Arnold B; Demerouti, Evangelia; Burke, Ronald
2009-01-01
This study of 168 dual-earner couples examined the relationship between workaholism and relationship satisfaction. More specifically, on the basis of the literature, it was hypothesized that workaholism is positively related to work-family conflict. In addition, the authors predicted that workaholism is related to reduced support provided to the partner, through work-family conflict, and that individuals who receive considerable support from their partners are more satisfied with their relationship. Finally, the authors hypothesized direct crossover of relationship satisfaction between partners. The results of structural equation modeling analyses using the matched responses of both partners supported these hypotheses. Moreover, in line with predictions, the authors found that gender did not affect the strength of the relationships in the proposed model. The authors discuss workplace interventions as possible ways to help workaholics and their partners.
Marsh, Herbert W; Chanal, Julien P; Sarrazin, Philippe G
2006-01-01
A large body of research in support of the reciprocal effects model of causal ordering demonstrates that prior academic self-concept predicts subsequent academic achievement beyond what can be explained in terms of prior achievement. Here we evaluate the generalizability of this support for the reciprocal effects model to a physical activity context in which achievement is reflected in gymnastics skills on a standardized gymnastics performance test evaluated by expert judges. Based on the responses of 376 adolescents collected at the start (T1) and end (T2) of a gymnastics training programme, there is support for a reciprocal effects model in which there are significant paths leading from both T1 gymnastics self-concept to T2 gymnastics skills and from T1 gymnastics skills to T2 self-concept. Although there were gender and age effects (girls and older participants had better gymnastics skills, boys had higher self-concepts), multiple group structural equation models indicated that support for the reciprocal effects model generalized over responses by boys and girls. In summary, self-concept and performance are both determinants and consequences of each other.
Urbonas, Gvidas; Kubilienė, Loreta; Kubilius, Raimondas; Urbonienė, Aušra
2015-03-01
As a member of a pharmacy organization, a pharmacist is not only bound to fulfill his/her professional obligations but is also affected by different personal and organizational factors that may influence his/her behavior and, consequently, the quality of the services he/she provides to patients. The main purpose of the research was to test a hypothesized model of the relationships among several organizational variables, and to investigate whether any of these variables affects the service of provision of medication information at community pharmacies. During the survey, pharmacists working at community pharmacies in Lithuania were asked to express their opinions on the community pharmacies at which they worked and to reflect on their actions when providing information on medicines to their patients. The statistical data were analyzed by applying a structural equation modeling technique to test the hypothesized model of the relationships among the variables of Perceived Organizational Support, Organizational Commitment, Turnover Intention, and Provision of Medication Information. The final model revealed that Organizational Commitment had a positive direct effect on Provision of Medication Information (standardized estimate = 0.27) and a negative direct effect (standardized estimate = -0.66) on Turnover Intention. Organizational Commitment mediated the indirect effects of Perceived Organizational Support on Turnover Intention (standardized estimate = -0.48) and on Provision of Medication Information (standardized estimate = 0.20). Pharmacists' Turnover Intention had no significant effect on Provision of Medication Information. Community pharmacies may be viewed as encouraging, to some extent, the service of provision of medication information. Pharmacists who felt higher levels of support from their organizations also expressed, to a certain extent, higher commitment to their organizations by providing more consistent medication information to patients. However, the effect of organizational variables on the variable of Provision of Medication Information appeared to be limited.
Model-independent cosmological constraints from growth and expansion
NASA Astrophysics Data System (ADS)
L'Huillier, Benjamin; Shafieloo, Arman; Kim, Hyungjin
2018-05-01
Reconstructing the expansion history of the Universe from Type Ia supernovae data, we fit the growth rate measurements and put model-independent constraints on some key cosmological parameters, namely, Ωm, γ, and σ8. The constraints are consistent with those from the concordance model within the framework of general relativity, but the current quality of the data is not sufficient to rule out modified gravity models. Adding the condition that dark energy density should be positive at all redshifts, independently of its equation of state, further constrains the parameters and interestingly supports the concordance model.
A new 3D immersed boundary method for non-Newtonian fluid-structure-interaction with application
NASA Astrophysics Data System (ADS)
Zhu, Luoding
2017-11-01
Motivated by fluid-structure-interaction (FSI) phenomena in life sciences (e.g., motions of sperm and cytoskeleton in complex fluids), we introduce a new immersed boundary method for FSI problems involving non-Newtonian fluids in three dimensions. The non-Newtonian fluids are modelled by the FENE-P model (including the Oldroyd-B model as an especial case) and numerically solved by a lattice Boltzmann scheme (the D3Q7 model). The fluid flow is modelled by the lattice Boltzmann equations and numerically solved by the D3Q19 model. The deformable structure and the fluid-structure-interaction are handled by the immersed boundary method. As an application, we study a FSI toy problem - interaction of an elastic plate (flapped at its leading edge and restricted nowhere else) with a non-Newtonian fluid in a 3D flow. Thanks to the support of NSF-DMS support under research Grant 1522554.
Modeling social reintegration in persons with spinal cord injury.
Song, Hee-Young
2005-02-04
This study was undertaken to identify and develop a model of the factors related to social reintegration in persons with spinal cord injury (SCI). A convenience sample of 145 persons with SCI living in two cities in South Korea anonymously completed a questionnaire that comprised the assessment of social reintegration, a tool developed to measure the degree of adjustment to community living in persons with SCI. Structural equation modeling was used to examine the direct and indirect effects of self-esteem, social barriers, physical function, family support, informational support, perceived stress, emotion-focused coping (EFC), and problem-focused coping (PFC) on social reintegration. The model explained 65% of the variance in social reintegration in persons with SCI. The results indicated that the social integration of persons with SCI was influenced most by EFC. Family support, informational support, perceived stress and social barriers were also significantly related to social reintegration. These findings suggest implications for developing the interventions at various levels including family and community and specific to individual coping strategies to enhance social reintegration in persons with SCI.
Large eddy simulation of cavitating flows
NASA Astrophysics Data System (ADS)
Gnanaskandan, Aswin; Mahesh, Krishnan
2014-11-01
Large eddy simulation on unstructured grids is used to study hydrodynamic cavitation. The multiphase medium is represented using a homogeneous equilibrium model that assumes thermal equilibrium between the liquid and the vapor phase. Surface tension effects are ignored and the governing equations are the compressible Navier Stokes equations for the liquid/vapor mixture along with a transport equation for the vapor mass fraction. A characteristic-based filtering scheme is developed to handle shocks and material discontinuities in non-ideal gases and mixtures. A TVD filter is applied as a corrector step in a predictor-corrector approach with the predictor scheme being non-dissipative and symmetric. The method is validated for canonical one dimensional flows and leading edge cavitation over a hydrofoil, and applied to study sheet to cloud cavitation over a wedge. This work is supported by the Office of Naval Research.
Analysis of internal ablation for the thermal control of aerospace vehicles
NASA Technical Reports Server (NTRS)
Camberos, Jose A.; Roberts, Leonard
1989-01-01
A new method of thermal protection for transatmospheric vehicles is introduced. The method involves the combination of radiation, ablation and transpiration cooling. By placing an ablating material behind a fixed-shape, porous outer shield, the effectiveness of transpiration cooling is made possible while retaining the simplicity of a passive mechanism. A simplified one-dimensional approach is used to derive the governing equations. Reduction of these equations to non-dimensional form yields two parameters which characterize the thermal protection effectiveness of the shield and ablator combination for a given trajectory. The non-dimensional equations are solved numerically for a sample trajectory corresponding to glide re-entry. Four typical ablators are tested and compared with results obtained by using the thermal properties of water. For the present level of analysis, the numerical computations adequately support the analytical model.
Implementation of parallel moment equations in NIMROD
NASA Astrophysics Data System (ADS)
Lee, Hankyu Q.; Held, Eric D.; Ji, Jeong-Young
2017-10-01
As collisionality is low (the Knudsen number is large) in many plasma applications, kinetic effects become important, particularly in parallel dynamics for magnetized plasmas. Fluid models can capture some kinetic effects when integral parallel closures are adopted. The adiabatic and linear approximations are used in solving general moment equations to obtain the integral closures. In this work, we present an effort to incorporate non-adiabatic (time-dependent) and nonlinear effects into parallel closures. Instead of analytically solving the approximate moment system, we implement exact parallel moment equations in the NIMROD fluid code. The moment code is expected to provide a natural convergence scheme by increasing the number of moments. Work in collaboration with the PSI Center and supported by the U.S. DOE under Grant Nos. DE-SC0014033, DE-SC0016256, and DE-FG02-04ER54746.
ERIC Educational Resources Information Center
Alexander, Mandi M.; Santo, Jonathan B.; Da Cunha, Josafa; Weber, Lidia; Russell, Stephen T.
2011-01-01
This study investigated homophobic victimization, teacher support, and school commitment in Brazilian schools. Participants were 339 students, ages 11 to 18 years old, in two public schools in Brazil. Data were obtained using the Brazil Preventing School Harassment Survey. Structural equation modeling revealed that both homophobic and…
ERIC Educational Resources Information Center
Huang, Wenhao David; Johnson, Tristan E.; Han, Seung-Hyun Caleb
2013-01-01
Colleges and universities have begun to understand the instructional potential of digital game-based learning (DGBL) due to digital games' immersive features. These features, however, might overload learners as excessive motivational and cognitive stimuli thus impeding intended learning. Current research, however, lacks empirical evidences to…
Long-Term Stability of Core Language Skill in Children with Contrasting Language Skills
ERIC Educational Resources Information Center
Bornstein, Marc H.; Hahn, Chun-Shin; Putnick, Diane L.
2016-01-01
This 4-wave longitudinal study evaluated stability of core language skill in 421 European American and African American children, half of whom were identified as low (n = 201) and half of whom were average-to-high (n = 220) in later language skill. Structural equation modeling supported loadings of multivariate age-appropriate multisource measures…
Stability of Core Language Skill from Early Childhood to Adolescence: A Latent Variable Approach
ERIC Educational Resources Information Center
Bornstein, Marc H.; Hahn, Chun-Shin; Putnick, Diane L.; Suwalsky, Joan T. D.
2014-01-01
This four-wave prospective longitudinal study evaluated stability of language in 324 children from early childhood to adolescence. Structural equation modeling supported loadings of multiple age-appropriate multisource measures of child language on single-factor core language skills at 20 months and 4, 10, and 14 years. Large stability…
ERIC Educational Resources Information Center
Badri, Masood; Al Rashedi, Asma; Yang, Guang; Mohaidat, Jihad; Al Hammadi, Arif
2016-01-01
Offering an online integrated high-school course or subject for the first time involves many challenges. Better understanding the factors that affect students' willingness to participate in the experience could provide support for better implementation of such a strategic initiative. In addition, it is important to understand how personal factors…
A demographic study of the exponential distribution applied to uneven-aged forests
Jeffrey H. Gove
2016-01-01
A demographic approach based on a size-structured version of the McKendrick-Von Foerster equation is used to demonstrate a theoretical link between the population size distribution and the underlying vital rates (recruitment, mortality and diameter growth) for the population of individuals whose diameter distribution is negative exponential. This model supports the...
ERIC Educational Resources Information Center
Puente-Díaz, Rogelio; Cavazos-Arroyo, Judith
2017-01-01
Two studies examined the influence of encouragement for creativity, curiosity, harmonious passion, and autonomy support as antecedents of creative self-efficacy and imagination and divergent thinking as consequences. College students completed a battery of questionnaires. Structural equation modeling treating the variables as latent and not…
Pre-Service Special Education Teachers Acceptance and Use of ICT: A Structural Equation Model
ERIC Educational Resources Information Center
Yeni, Sabiha; Gecu-Parmaksiz, Zeynep
2016-01-01
Information and communication technology (ICT) supported education helps the individuals with special educational needs to take their attention to the course content and to concentrate their attention on the task they need to perform. The mechanical advantages of ICT tools make them attractive for individuals with special educational needs. If…
The Impact of Maternal Characteristics and Contextual Variables on Infant-Mother Attachment
ERIC Educational Resources Information Center
Huth-Bocks, Alissa C.; Levendosky, Alytia A.; Bogat, G. Anne; von Eye, Alexander
2004-01-01
This prospective study examined the effects of maternal characteristics, social support, and risk factors on infant-mother attachment in a heterogeneous sample. Two hundred and six women between the ages of 18 and 40 were interviewed during their last trimester of pregnancy and 1 year postpartum. Structural equation modeling revealed that maternal…
ERIC Educational Resources Information Center
González, Antonio; Paoloni, Paola-Verónica
2015-01-01
Research in chemistry education has highlighted a number of variables that predict learning and performance, such as teacher-student interactions, academic motivation and metacognition. Most of this chemistry research has examined these variables by identifying dyadic relationships through bivariate correlations. The main purpose of this study was…
ERIC Educational Resources Information Center
Hirschi, Andreas; Niles, Spencer G.; Akos, Patrick
2011-01-01
This longitudinal panel study investigated predictors and outcomes of active engagement in career preparation among 349 Swiss adolescents from the beginning to the end of eighth grade. Latent variable structural equation modeling was applied. The results showed that engagement in terms of self- and environmental-exploration and active career…
Theoretical analysis of multiphase flow during oil-well drilling by a conservative model
NASA Astrophysics Data System (ADS)
Nicolas-Lopez, Ruben
2005-11-01
In order to decrease cost and improve drilling operations is necessary a better understood of the flow mechanisms. Therefore, it was carried out a multiphase conservative model that includes three mass equations and a momentum equation. Also, the measured geothermal gradient is utilized by state equations for estimating physical properties of the phases flowing. The mathematical model is solved by numerical conservative schemes. It is used to analyze the interaction among solid-liquid-gas phases. The circulating system consists as follow, the circulating fluid is pumped downward into the drilling pipe until the bottom of the open hole then it flows through the drill bit, and at this point formation cuttings are incorporated to the circulating fluid and carried upward to the surface. The mixture returns up to the surface by an annular flow area. The real operational conditions are fed to conservative model and the results are matched up to field measurements in several oil wells. Mainly, flow rates, drilling rate, well and tool geometries are data to estimate the profiles of pressure, mixture density, equivalent circulating density, gas fraction and solid carrying capacity. Even though the problem is very complex, the model describes, properly, the hydrodynamics of drilling techniques applied at oil fields. *Authors want to thank to Instituto Mexicano del Petroleo and Petroleos Mexicanos for supporting this research.
Modeling ARRM Xenon Tank Pressurization Using 1D Thermodynamic and Heat Transfer Equations
NASA Technical Reports Server (NTRS)
Gilligan, Patrick; Tomsik, Thomas
2016-01-01
As a first step in understanding what ground support equipment (GSE) is required to provide external cooling during the loading of 5,000 kg of xenon into 4 aluminum lined composite overwrapped pressure vessels (COPVs), a modeling analysis was performed using Microsoft Excel. The goals of the analysis were to predict xenon temperature and pressure throughout loading at the launch facility, estimate the time required to load one tank, and to get an early estimate of what provisions for cooling xenon might be needed while the tanks are being filled. The model uses the governing thermodynamic and heat transfer equations to achieve these goals. Results indicate that a single tank can be loaded in about 15 hours with reasonable external coolant requirements. The model developed in this study was successfully validated against flight and test data. The first data set is from the Dawn mission which also utilizes solar electric propulsion with xenon propellant, and the second is test data from the rapid loading of a hydrogen cylindrical COPV. The main benefit of this type of model is that the governing physical equations using bulk fluid solid temperatures can provide a quick and accurate estimate of the state of the propellant throughout loading which is much cheaper in terms of computational time and licensing costs than a Computation Fluid Dynamics (CFD) analysis while capturing the majority of the thermodynamics and heat transfer.
Modeling Xenon Tank Pressurization using One-Dimensional Thermodynamic and Heat Transfer Equations
NASA Technical Reports Server (NTRS)
Gilligan, Ryan P.; Tomsik, Thomas M.
2017-01-01
As a first step in understanding what ground support equipment (GSE) is required to provide external cooling during the loading of 5,000 kg of xenon into 4 aluminum lined composite overwrapped pressure vessels (COPVs), a modeling analysis was performed using Microsoft Excel. The goals of the analysis were to predict xenon temperature and pressure throughout loading at the launch facility, estimate the time required to load one tank, and to get an early estimate of what provisions for cooling xenon might be needed while the tanks are being filled. The model uses the governing thermodynamic and heat transfer equations to achieve these goals. Results indicate that a single tank can be loaded in about 15 hours with reasonable external coolant requirements. The model developed in this study was successfully validated against flight and test data. The first data set is from the Dawn mission which also utilizes solar electric propulsion with xenon propellant, and the second is test data from the rapid loading of a hydrogen cylindrical COPV. The main benefit of this type of model is that the governing physical equations using bulk fluid solid temperatures can provide a quick and accurate estimate of the state of the propellant throughout loading which is much cheaper in terms of computational time and licensing costs than a Computation Fluid Dynamics (CFD) analysis while capturing the majority of the thermodynamics and heat transfer.
NASA Astrophysics Data System (ADS)
Alsing, Justin; Silva, Hector O.; Berti, Emanuele
2018-07-01
We infer the mass distribution of neutron stars in binary systems using a flexible Gaussian mixture model and use Bayesian model selection to explore evidence for multimodality and a sharp cut-off in the mass distribution. We find overwhelming evidence for a bimodal distribution, in agreement with previous literature, and report for the first time positive evidence for a sharp cut-off at a maximum neutron star mass. We measure the maximum mass to be 2.0 M⊙ < mmax < 2.2 M⊙ (68 per cent), 2.0 M⊙ < mmax < 2.6 M⊙ (90 per cent), and evidence for a cut-off is robust against the choice of model for the mass distribution and to removing the most extreme (highest mass) neutron stars from the data set. If this sharp cut-off is interpreted as the maximum stable neutron star mass allowed by the equation of state of dense matter, our measurement puts constraints on the equation of state. For a set of realistic equations of state that support >2 M⊙ neutron stars, our inference of mmax is able to distinguish between models at odds ratios of up to 12:1, whilst under a flexible piecewise polytropic equation-of-state model our maximum mass measurement improves constraints on the pressure at 3-7× the nuclear saturation density by ˜ 30-50 per cent compared to simply requiring mmax > 2 M⊙. We obtain a lower bound on the maximum sound speed attained inside the neutron star of c_ s^max > 0.63c (99.8 per cent), ruling out c_ s^max < c/√{3} at high significance. Our constraints on the maximum neutron star mass strengthen the case for neutron star-neutron star mergers as the primary source of short gamma-ray bursts.
Li, Jinghua; Mo, Phoenix K H; Wu, Anise M S; Lau, Joseph T F
2017-01-01
Poor mental health was prevalent among HIV positive men who have sex with men (HIVMSM), and a tremendous burden extents on their families and society. The present study investigated the prevalence of depression and its relationship with social support, HIV self-stigma, positive affect and negative affect among 321 HIVMSM in Chengdu, China. The study was conducted during July 2013 through October 2013. Findings showed that 55.8 % of the participants had mild to severe depression. The results of structural equation modeling showed that social support and positive affect were negatively associated with depression, while HIV self-stigma and negative affect were positively associated with depression. Social support, positive affect, and negative affect mediated the association between HIV self-stigma and depression. The hypothesized model had a satisfactory fit. Interventions improving mental health among this population are warranted.
Li, Jinghua; Mo, Phoenix K. H.; Wu, Anise M. S.; Lau, Joseph T. F.
2016-01-01
Poor mental health was prevalent among HIV positive men who have sex with men (HIVMSM), and a tremendous burden extents on their families and society. The present study investigated the prevalence of depression and its relationship with social support, HIV self-stigma, positive affect and negative affect among 321 HIVMSM in Chengdu, China. The study was conducted during July 2013 through October 2013. Findings showed that 55.8% of the participants had mild to severe depression. The results of structural equation modeling showed that social support and positive affect were negatively associated with depression, while HIV self-stigma and negative affect were positively associated with depression. Social support, positive affect, and negative affect mediated the association between HIV self-stigma and depression. The hypothesized model had a satisfactory fit. Interventions improving mental health among this population are warranted. PMID:26896120
Nonlinear vibration analysis of an eccentric rotor with unbalance magnetic pull
NASA Astrophysics Data System (ADS)
Song, Z.; Ma, Z.
2010-08-01
The unbalance magnetic pull of an eccentric water turbine generator set rotor has important influence on its vibration. The magnetic stiffness matrix is introduced to express the energy of the air gap magnetic field. Two vibration models are constructed through the Lagrange Equation. The difference of the two models is the boundary supporting conditions: one is rigid support and the other is elastic support through bearing. The influence of the magnetic stiffness and the elastic support on the critical speed of the rotor is studied using the Liapunov nonlinear vibration theory. The vibration amplitude of the rotor is calculated taking the magnetic stiffness and level eccentricity force into account. The sensitivity of the magnetic, mechanical and bearing parameters to the critical speed is analyzed. Some conclusions may be benefit to the study the dynamic characters of the generator set shaft system which concludes all the magnetic, mechanical and hydraulic parameters.
Eigenvalue sensitivity analysis of planar frames with variable joint and support locations
NASA Technical Reports Server (NTRS)
Chuang, Ching H.; Hou, Gene J. W.
1991-01-01
Two sensitivity equations are derived in this study based upon the continuum approach for eigenvalue sensitivity analysis of planar frame structures with variable joint and support locations. A variational form of an eigenvalue equation is first derived in which all of the quantities are expressed in the local coordinate system attached to each member. Material derivative of this variational equation is then sought to account for changes in member's length and orientation resulting form the perturbation of joint and support locations. Finally, eigenvalue sensitivity equations are formulated in either domain quantities (by the domain method) or boundary quantities (by the boundary method). It is concluded that the sensitivity equation derived by the boundary method is more efficient in computation but less accurate than that of the domain method. Nevertheless, both of them in terms of computational efficiency are superior to the conventional direct differentiation method and the finite difference method.
Heinen, Ines; Bullinger, Monika; Kocalevent, Rüya-Daniela
2017-01-06
Medical students have been found to report high levels of perceived stress, yet there is a lack of theoretical frameworks examining possible reasons. This cross-sectional study examines correlates of perceived stress in medical students on the basis of a conceptual stress model originally developed for and applied to the general population. The aim was to identify via structural equation modeling the associations between perceived stress and emotional distress (anxiety and depression), taking into account the activation of personal resources (optimism, self-efficacy and resilient coping). Within this cross-sectional study, 321 first year medical students (age 22 ± 4 years, 39.3% men) completed the Perceived Stress Questionnaire (PSQ-20), the Self-Efficacy Optimism Scale (SWOP) and the Brief Resilient Coping Scale (BRCS) as well as the Patient Health Questionnaire (PHQ-4). The statistical analyses used t-tests, ANOVA, Spearman Rho correlation and multiple regression analysis as well as structural equation modeling. Medical students reported higher levels of perceived stress and higher levels of anxiety and depression than reference samples. No statistically significant differences in stress levels were found within the sample according to gender, migration background or employment status. Students reported more self-efficacy, optimism, and resilient coping and higher emotional distress compared to validation samples and results in other studies. Structural equation analysis revealed a satisfactory fit between empirical data and the proposed stress model indicating that personal resources modulated perceived stress, which in turn had an impact on emotional distress. Medical students' perceived stress and emotional distress levels are generally high, with personal resources acting as a buffer, thus supporting the population-based general stress model. Results suggest providing individual interventions for those students, who need support in dealing with the challenges of the medical curriculum as well as addressing structural determinants of student stress such as course load and timing of exams.
Field Markup Language: biological field representation in XML.
Chang, David; Lovell, Nigel H; Dokos, Socrates
2007-01-01
With an ever increasing number of biological models available on the internet, a standardized modeling framework is required to allow information to be accessed or visualized. Based on the Physiome Modeling Framework, the Field Markup Language (FML) is being developed to describe and exchange field information for biological models. In this paper, we describe the basic features of FML, its supporting application framework and its ability to incorporate CellML models to construct tissue-scale biological models. As a typical application example, we present a spatially-heterogeneous cardiac pacemaker model which utilizes both FML and CellML to describe and solve the underlying equations of electrical activation and propagation.
Wang, Zhizhong; Koenig, Harold G; Ma, Hui; Shohaib, Saad Al
2016-06-01
We examined the relationship between religious involvement and psychological distress and explored the mediating effects of social support and purpose in life in university students in western, mid-western, and eastern China. Cross-sectional survey of a representative sample of 1812 university students was conducted. The Purpose in Life scale, Duke Social Support Index, and Religious Commitment Inventory-10 were administered, along with Kessler's Psychological Distress Scale. Structural equation modeling was used to test two models of the mediation hypothesis, examining direct, indirect, and total effects. Model 1 (with direction of effect hypothesized from religiosity to psychological distress) indicated that religious involvement had a direct effect on increasing psychological distress (β = 0.23, p < .01) with minor mediated effects. However, Model 2 (with direction of effect hypothesized from psychological distress to religiosity) indicated strong indirect protective effects of religiosity on psychological distress through purpose in life and social support (β = -.40, p < .01). The findings are consistent with the hypothesis that psychological distress increases religious involvement, which then increases purpose in life and social support that then lead to lower psychological distress.
Shift-Variant Multidimensional Systems.
1985-05-29
i=0,1,** *N-1 in (3.1), one will get 0() i_0,1,* ,N-1 which is nonnegative due to the Perron - Frobenius Theorem [24]. That is, the A nonnegativity ...and the current input. The state-space model was extended in order to model 2-D discrete LSV systems with support on a causality cone . Subsequently...formulated as a special system of linear equations with nonnegative coefficients whose solution is required to satisfy con- straints like nonnegativity in
NASA Technical Reports Server (NTRS)
Venkatesan, C.; Friedmann, P. P.
1987-01-01
This report is a sequel to the earlier report titled, Aeroelastic Effects in Multi-Rotor Vehicles with Application to Hybrid Heavy Lift System, Part 1: Formulation of Equations of Motion (NASA CR-3822). The trim and stability equations are presented for a twin rotor system with a buoyant envelope and an underslung load attached to a flexible supporting structure. These equations are specialized for the case of hovering flight. A stability analysis, for such a vehicle with 31 degrees of freedom, yields a total of 62 eigenvalues. A careful parametric study is performed to identify the various blade and vehicle modes, as well as the coupling between various modes. Finally, it is shown that the coupled rotor/vehicle stability analysis provides information on both the aeroelastic stability as well as complete vehicle dynamic stability. Also presented are the results of an analytical study aimed at predicting the aeromechanical stability of a single rotor helicopter in ground resonance. The theoretical results are found to be in good agreement with the experimental results, thereby validating the analytical model for the dynamics of the coupled rotor/support system.
Wind-US Users Guide Version 4.0
NASA Technical Reports Server (NTRS)
Yoder, Dennis A.
2016-01-01
Wind-US is a computational platform which may be used to numerically solve various sets of equations governing physical phenomena. Currently, the code supports the solution of the Euler and Navier-Stokes equations of fluid mechanics, along with supporting equation sets governing turbulent and chemically reacting flows. Wind-US is a product of the NPARC Alliance, a partnership between the NASA Glenn Research Center (GRC) and the Arnold Engineering Development Complex (AEDC) dedicated to the establishment of a national, applications-oriented flow simulation capability. The Boeing Company has also been closely associated with the Alliance since its inception, and represents the interests of the NPARC User's Association. The "Wind-US User's Guide" describes the operation and use of Wind-US, including: a basic tutorial; the physical and numerical models that are used; the boundary conditions; monitoring convergence; the files that are read and/or written; parallel execution; and a complete list of input keywords and test options. For current information about Wind-US and the NPARC Alliance, please see the Wind-US home page at http://www.grc.nasa.gov/WWW/winddocs/ and the NPARC Alliance home page at http://www.grc.nasa.gov/WWW/wind/.
Teacher Support Resources, Need Satisfaction and Well-Being.
Doménech-Betoret, Fernando; Lloret-Segura, Susana; Gómez-Artiga, Amparo
2015-03-03
Based on Job Demands-Resources Model (JD-R), this study examines the relationships among teacher support resources, psychological need satisfaction, engagement and burnout in a sample of 282 Spanish secondary school teachers. Nine teacher psychological needs were identified based on the study of Bess and on the Self-Determination Theory (SDT). Self-report questionnaires were used to measure the constructs selected for this study and their interrelationships were examined by structural equation modeling. The results reveal a good model fit to the data (NNFI = .88; CFI = .90; GFI = .90; RMSEA = .061). The analyses indicate a positive and significant effect of latent variable Psychological Need Satisfaction on engagement (β = .74, p < .05), and a negative and significant effect on burnout (β = -.78, p ≤ .05). Furthermore, the results show the mediator role played by Psychological Need Satisfaction in the relationship between teacher support resources and both engagement and burnout (additional paths did not improve the model fit: Δχ2(2) = 2.428, p = .29). Finally, practical implications of these findings are discussed.
Baeriswyl, Sophie; Krause, Andreas; Schwaninger, Adrian
2016-01-01
The growing threat of terrorism has increased the importance of aviation security and the work of airport security officers (screeners). Nonetheless, airport security research has yet to focus on emotional exhaustion and job satisfaction as major determinants of screeners' job performance. The present study bridges this research gap by applying the job demands-resources (JD-R) model and using work-family conflict (WFC) as an intervening variable to study relationships between work characteristics (workload and supervisor support), emotional exhaustion, and job satisfaction in 1,127 screeners at a European airport. Results of structural equation modeling revealed that (a) supervisor support as a major job resource predicted job satisfaction among screeners; (b) workload as a major job demand predicted their emotional exhaustion; and (c) WFC proved to be a promising extension to the JD-R model that partially mediated the impact of supervisor support and workload on job satisfaction and emotional exhaustion. Theoretical and practical implications are discussed.
Baeriswyl, Sophie; Krause, Andreas; Schwaninger, Adrian
2016-01-01
The growing threat of terrorism has increased the importance of aviation security and the work of airport security officers (screeners). Nonetheless, airport security research has yet to focus on emotional exhaustion and job satisfaction as major determinants of screeners’ job performance. The present study bridges this research gap by applying the job demands–resources (JD–R) model and using work–family conflict (WFC) as an intervening variable to study relationships between work characteristics (workload and supervisor support), emotional exhaustion, and job satisfaction in 1,127 screeners at a European airport. Results of structural equation modeling revealed that (a) supervisor support as a major job resource predicted job satisfaction among screeners; (b) workload as a major job demand predicted their emotional exhaustion; and (c) WFC proved to be a promising extension to the JD–R model that partially mediated the impact of supervisor support and workload on job satisfaction and emotional exhaustion. Theoretical and practical implications are discussed. PMID:27242581
Smith, Alison; Ntoumanis, Nikos; Duda, Joan
2007-12-01
Grounded in self-determination theory (Deci & Ryan, 1985) and the self-concordance model (Sheldon & Elliot, 1999), this study examined the motivational processes underlying goal striving in sport as well as the role of perceived coach autonomy support in the goal process. Structural equation modeling with a sample of 210 British athletes showed that autonomous goal motives positively predicted effort, which, in turn, predicted goal attainment. Goal attainment was positively linked to need satisfaction, which, in turn, predicted psychological well-being. Effort and need satisfaction were found to mediate the associations between autonomous motives and goal attainment and between attainment and well-being, respectively. Controlled motives negatively predicted well-being, and coach autonomy support positively predicted both autonomous motives and need satisfaction. Associations of autonomous motives with effort were not reducible to goal difficulty, goal specificity, or goal efficacy. These findings support the self-concordance model as a framework for further research on goal setting in sport.
Banzon-Librojo, Lorelie Ann; Garabiles, Melissa R; Alampay, Liane Peña
2017-06-01
This study examined how the experience of harsh discipline from teachers is related to students' experience of bullying victimization in a Philippine high school. Respondents were 401 first- to fourth-year high school students of an urban public school in the Philippines. Using structural equation modeling, a hypothesized model with direct associations between harsh discipline and bullying victimization, and an indirect path via students' perception of teacher support, was tested. The data adequately fit the model and showed that experiences of harsh teacher discipline predicted higher bullying victimization and students' negative perception of teacher support. There were no significant indirect effects. The findings suggest that school discipline strategies may have repercussions on students' behaviors and relationships, highlighting the teacher's role in modeling and setting norms for acceptable behaviors. Future studies can examine further how teachers' harsh or positive discipline behaviors relate to bullying. Copyright © 2017 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Scrutinizing Homophobia: A Model of Perception of Homosexuals in Russia.
Gulevich, Olga A; Osin, Evgeny N; Isaenko, Nadezhda A; Brainis, Lilia M
2017-10-10
We aimed to develop and validate a model of associations of perceived threat of homosexuals with lay beliefs about causes of homosexuality, group entitativity of homosexuals, approval of social action strategies targeting homosexuals, and support for their rights using original Russian-language measures. We tested the model in two samples of social network users (n = 1,007) and student respondents (n = 292) using structural equation modeling and path analysis. Attribution of homosexuality to social causes was a positive predictor of perceived threat of homosexuals, whereas biological causes showed an inverse effect. Perceived threat predicted approval of discriminatory strategies targeting homosexuals and lack of support for their rights and fully mediated the effects of causal beliefs on these variables. Group entitativity of homosexuals was a positive predictor of perceived threat and a significant moderator of its effects on support for punishment and medical treatment of homosexuals. We discuss the findings with reference to the Russian social context.
Dynamic Characteristics of Micro-Beams Considering the Effect of Flexible Supports
Zhong, Zuo-Yang; Zhang, Wen-Ming; Meng, Guang
2013-01-01
Normally, the boundaries are assumed to allow small deflections and moments for MEMS beams with flexible supports. The non-ideal boundary conditions have a significant effect on the qualitative dynamical behavior. In this paper, by employing the principle of energy equivalence, rigorous theoretical solutions of the tangential and rotational equivalent stiffness are derived based on the Boussinesq's and Cerruti's displacement equations. The non-dimensional differential partial equation of the motion, as well as coupled boundary conditions, are solved analytically using the method of multiple time scales. The closed-form solution provides a direct insight into the relationship between the boundary conditions and vibration characteristics of the dynamic system, in which resonance frequencies increase with the nonlinear mechanical spring effect but decrease with the effect of flexible supports. The obtained results of frequencies and mode shapes are compared with the cases of ideal boundary conditions, and the differences between them are contrasted on frequency response curves. The influences of the support material property on the equivalent stiffness and resonance frequency shift are also discussed. It is demonstrated that the proposed model with the flexible supports boundary conditions has significant effect on the rigorous quantitative dynamical analysis of the MEMS beams. Moreover, the proposed analytical solutions are in good agreement with those obtained from finite element analyses.
On whole Abelian model dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauca, J.; Doria, R.; Aprendanet, Petropolis, 25600
2012-09-24
Physics challenge is to determine the objects dynamics. However, there are two ways for deciphering the part. The first one is to search for the ultimate constituents; the second one is to understand its behaviour in whole terms. Therefore, the parts can be defined either from elementary constituents or as whole functions. Historically, science has been moving through the first aspect, however, quarks confinement and complexity are interrupting this usual approach. These relevant facts are supporting for a systemic vision be introduced. Our effort here is to study on the whole meaning through gauge theory. Consider a systemic dynamics orientedmore » through the U(1) - systemic gauge parameter which function is to collect a fields set {l_brace}A{sub {mu}I}{r_brace}. Derive the corresponding whole gauge invariant Lagrangian, equations of motion, Bianchi identities, Noether relationships, charges and Ward-Takahashi equations. Whole Lorentz force and BRST symmetry are also studied. These expressions bring new interpretations further than the usual abelian model. They are generating a systemic system governed by 2N+ 10 classical equations plus Ward-Takahashi identities. A whole dynamics based on the notions of directive and circumstance is producing a set determinism where the parts dynamics are inserted in the whole evolution. A dynamics based on state, collective and individual equations with a systemic interdependence.« less
On the inclusion of mass source terms in a single-relaxation-time lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Aursjø, Olav; Jettestuen, Espen; Vinningland, Jan Ludvig; Hiorth, Aksel
2018-05-01
We present a lattice Boltzmann algorithm for incorporating a mass source in a fluid flow system. The proposed mass source/sink term, included in the lattice Boltzmann equation, maintains the Galilean invariance and the accuracy of the overall method, while introducing a mass source/sink term in the fluid dynamical equations. The method can, for instance, be used to inject or withdraw fluid from any preferred lattice node in a system. This suggests that injection and withdrawal of fluid does not have to be introduced through cumbersome, and sometimes less accurate, boundary conditions. The method also suggests that, through a chosen equation of state relating mass density to pressure, the proposed mass source term will render it possible to set a preferred pressure at any lattice node in a system. We demonstrate how this model handles injection and withdrawal of a fluid. And we show how it can be used to incorporate pressure boundaries. The accuracy of the algorithm is identified through a Chapman-Enskog expansion of the model and supported by the numerical simulations.
De Sitter universe described by a binary mixture with a variable cosmological constant λ
NASA Astrophysics Data System (ADS)
Biswal, S. K.
2018-04-01
We have constructed a self-consistent system of Bianchi Type VI0 cosmology, and mingling of perfect fluid and dark energy in five dimensions. The usual equation of state p = γ ρ with γ \\in [0, 1] is chosen by the perfect fluid. The dark energy assumed to be chosen is taken into consideration to be either the quintessence or Chaplygin gas. The same solutions pertaining to the corresponding the field equations of Einstein are obtained as a quadrature. State parameter's equations for dark energy ω is found to be consistent enough with the recent observations of SNe Ia data (SNe Ia data with CMBR anisotropy) and galaxy clustering statistics. Here our models predict that the rate of expansion of Universe would increase with passage of time. The cosmological constant Λ is traced as a declining function of time and it gets nearer to a small positive value later on which is supported by the results from the current supernovae Ia observations. Also a detail discussion is made on the physical and geometrical aspects of the models.
Emergence of spacetime dynamics in entropy corrected and braneworld models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheykhi, A.; Dehghani, M.H.; Hosseini, S.E., E-mail: asheykhi@shirazu.ac.ir, E-mail: mhd@shirazu.ac.ir, E-mail: elahehhosseini90@gmail.com
2013-04-01
A very interesting new proposal on the origin of the cosmic expansion was recently suggested by Padmanabhan [arXiv:1206.4916]. He argued that the difference between the surface degrees of freedom and the bulk degrees of freedom in a region of space drives the accelerated expansion of the universe, as well as the standard Friedmann equation through relation ΔV = Δt(N{sub sur}−N{sub bulk}). In this paper, we first present the general expression for the number of degrees of freedom on the holographic surface, N{sub sur}, using the general entropy corrected formula S = A/(4L{sub p}{sup 2})+s(A). Then, as two example, by applyingmore » the Padmanabhan's idea we extract the corresponding Friedmann equations in the presence of power-law and logarithmic correction terms in the entropy. We also extend the study to RS II and DGP braneworld models and derive successfully the correct form of the Friedmann equations in these theories. Our study further supports the viability of Padmanabhan's proposal.« less
A New Global Regression Analysis Method for the Prediction of Wind Tunnel Model Weight Corrections
NASA Technical Reports Server (NTRS)
Ulbrich, Norbert Manfred; Bridge, Thomas M.; Amaya, Max A.
2014-01-01
A new global regression analysis method is discussed that predicts wind tunnel model weight corrections for strain-gage balance loads during a wind tunnel test. The method determines corrections by combining "wind-on" model attitude measurements with least squares estimates of the model weight and center of gravity coordinates that are obtained from "wind-off" data points. The method treats the least squares fit of the model weight separate from the fit of the center of gravity coordinates. Therefore, it performs two fits of "wind- off" data points and uses the least squares estimator of the model weight as an input for the fit of the center of gravity coordinates. Explicit equations for the least squares estimators of the weight and center of gravity coordinates are derived that simplify the implementation of the method in the data system software of a wind tunnel. In addition, recommendations for sets of "wind-off" data points are made that take typical model support system constraints into account. Explicit equations of the confidence intervals on the model weight and center of gravity coordinates and two different error analyses of the model weight prediction are also discussed in the appendices of the paper.
NASA Astrophysics Data System (ADS)
Zhang, Honghui; Su, Jianzhong; Wang, Qingyun; Liu, Yueming; Good, Levi; Pascual, Juan M.
2018-03-01
This paper explores the internal dynamical mechanisms of epileptic seizures through quantitative modeling based on full brain electroencephalogram (EEG) signals. Our goal is to provide seizure prediction and facilitate treatment for epileptic patients. Motivated by an earlier mathematical model with incorporated synaptic plasticity, we studied the nonlinear dynamics of inherited seizures through a differential equation model. First, driven by a set of clinical inherited electroencephalogram data recorded from a patient with diagnosed Glucose Transporter Deficiency, we developed a dynamic seizure model on a system of ordinary differential equations. The model was reduced in complexity after considering and removing redundancy of each EEG channel. Then we verified that the proposed model produces qualitatively relevant behavior which matches the basic experimental observations of inherited seizure, including synchronization index and frequency. Meanwhile, the rationality of the connectivity structure hypothesis in the modeling process was verified. Further, through varying the threshold condition and excitation strength of synaptic plasticity, we elucidated the effect of synaptic plasticity to our seizure model. Results suggest that synaptic plasticity has great effect on the duration of seizure activities, which support the plausibility of therapeutic interventions for seizure control.
Improved estimation of random vibration loads in launch vehicles
NASA Technical Reports Server (NTRS)
Mehta, R.; Erwin, E.; Suryanarayan, S.; Krishna, Murali M. R.
1993-01-01
Random vibration induced load is an important component of the total design load environment for payload and launch vehicle components and their support structures. The current approach to random vibration load estimation is based, particularly at the preliminary design stage, on the use of Miles' equation which assumes a single degree-of-freedom (DOF) system and white noise excitation. This paper examines the implications of the use of multi-DOF system models and response calculation based on numerical integration using the actual excitation spectra for random vibration load estimation. The analytical study presented considers a two-DOF system and brings out the effects of modal mass, damping and frequency ratios on the random vibration load factor. The results indicate that load estimates based on the Miles' equation can be significantly different from the more accurate estimates based on multi-DOF models.
Dynamos driven by weak thermal convection and heterogeneous outer boundary heat flux
NASA Astrophysics Data System (ADS)
Sahoo, Swarandeep; Sreenivasan, Binod; Amit, Hagay
2016-01-01
We use numerical dynamo models with heterogeneous core-mantle boundary (CMB) heat flux to show that lower mantle lateral thermal variability may help support a dynamo under weak thermal convection. In our reference models with homogeneous CMB heat flux, convection is either marginally supercritical or absent, always below the threshold for dynamo onset. We find that lateral CMB heat flux variations organize the flow in the core into patterns that favour the growth of an early magnetic field. Heat flux patterns symmetric about the equator produce non-reversing magnetic fields, whereas anti-symmetric patterns produce polarity reversals. Our results may explain the existence of the geodynamo prior to inner core nucleation under a tight energy budget. Furthermore, in order to sustain a strong geomagnetic field, the lower mantle thermal distribution was likely dominantly symmetric about the equator.
Büssing, Arndt; Recchia, Daniela R
2016-06-01
In an anonym cross-sectional survey (using standardized questionnaires) among 1092 German soldiers, we found that 21 % regard their faith as a "strong hold in difficult times." Only a few had specific religious needs. Rather, a consistent theme from the participants was the need to communicate their own fears, worries and desire to attain states of inner peace. "Soldiers" stress perception and posttraumatic stress disorder symptoms were associated particularly with existential and Inner Peace Needs. Structural equation modeling indicated that stress perception has a negative influence on soldiers' life satisfaction, which in turn gives rise to specific unmet spiritual needs. These specific needs may indicate psycho-emotional problems which could be supported very early to prevent health affections and service failure.
A structural equation modeling analysis of students' understanding in basic mathematics
NASA Astrophysics Data System (ADS)
Oktavia, Rini; Arif, Salmawaty; Ferdhiana, Ridha; Yuni, Syarifah Meurah; Ihsan, Mahyus
2017-11-01
This research, in general, aims to identify incoming students' understanding and misconceptions of several basic concepts in mathematics. The participants of this study are the 2015 incoming students of Faculty of Mathematics and Natural Science of Syiah Kuala University, Indonesia. Using an instrument that were developed based on some anecdotal and empirical evidences on students' misconceptions, a survey involving 325 participants was administered and several quantitative and qualitative analysis of the survey data were conducted. In this article, we discuss the confirmatory factor analysis using Structural Equation Modeling (SEM) on factors that determine the new students' overall understanding of basic mathematics. The results showed that students' understanding on algebra, arithmetic, and geometry were significant predictors for their overall understanding of basic mathematics. This result supported that arithmetic and algebra are not the only predictors of students' understanding of basic mathematics.
Restricted Complexity Framework for Nonlinear Adaptive Control in Complex Systems
NASA Astrophysics Data System (ADS)
Williams, Rube B.
2004-02-01
Control law adaptation that includes implicit or explicit adaptive state estimation, can be a fundamental underpinning for the success of intelligent control in complex systems, particularly during subsystem failures, where vital system states and parameters can be impractical or impossible to measure directly. A practical algorithm is proposed for adaptive state filtering and control in nonlinear dynamic systems when the state equations are unknown or are too complex to model analytically. The state equations and inverse plant model are approximated by using neural networks. A framework for a neural network based nonlinear dynamic inversion control law is proposed, as an extrapolation of prior developed restricted complexity methodology used to formulate the adaptive state filter. Examples of adaptive filter performance are presented for an SSME simulation with high pressure turbine failure to support extrapolations to adaptive control problems.
Effect of social support on depression of internet addicts and the mediating role of loneliness.
He, Fei; Zhou, Qin; Li, Jing; Cao, Rong; Guan, Hao
2014-01-01
Many studies have determined the existence of an extremely close association between Internet addiction and depression. However, the reasons for the depression of Internet addicts have not been fully investigated. This cross-sectional study aims to explore the factors that influence depression among Internet addicts. A total of 162 male Internet addicts completed the Emotional and Social Loneliness Scale, Multidimensional Scale of Perceived Social Support, and Self-Rating Depression Scale. Loneliness and lack of social support are significantly correlated with depression among Internet addicts. Structural Equation Modeling results indicate that social support partially mediates loneliness and depression. Both social support and loneliness were negatively associated with depression of Internet addicts whereas loneliness plays a mediating role between social support and depression.
Wang, Edward Shih-Tse; Wang, Michael Chih-Hung
2013-11-01
This study explores the relationship between social support and social interaction ties on Internet addiction by integrating both online and offline social encounters. A total of 1,642 members of online social communities participated in this research, for which structural equation modeling was used for analysis. The findings show that social support is positively associated with social interaction ties in both online and offline contexts. In addition, online social support and online social interaction ties are positively associated with Internet addiction, whereas offline social support and social interaction ties on Internet addiction are negatively associated. This finding has important implications not only for understanding the cause of Internet addiction but also for understanding the diminishing Internet addiction due to social support and social interaction ties.
Model Comparison of Bayesian Semiparametric and Parametric Structural Equation Models
ERIC Educational Resources Information Center
Song, Xin-Yuan; Xia, Ye-Mao; Pan, Jun-Hao; Lee, Sik-Yum
2011-01-01
Structural equation models have wide applications. One of the most important issues in analyzing structural equation models is model comparison. This article proposes a Bayesian model comparison statistic, namely the "L[subscript nu]"-measure for both semiparametric and parametric structural equation models. For illustration purposes, we consider…
Rusli, Bin Nordin; Edimansyah, Bin Abdin; Naing, Lin
2008-01-01
Background The relationships between working conditions [job demand, job control and social support]; stress, anxiety, and depression; and perceived quality of life factors [physical health, psychological wellbeing, social relationships and environmental conditions] were assessed using a sample of 698 male automotive assembly workers in Malaysia. Methods The validated Malay version of the Job Content Questionnaire (JCQ), Depression Anxiety Stress Scales (DASS) and the World Health Organization Quality of Life-Brief (WHOQOL-BREF) were used. A structural equation modelling (SEM) analysis was applied to test the structural relationships of the model using AMOS version 6.0, with the maximum likelihood ratio as the method of estimation. Results The results of the SEM supported the hypothesized structural model (χ2 = 22.801, df = 19, p = 0.246). The final model shows that social support (JCQ) was directly related to all 4 factors of the WHOQOL-BREF and inversely related to depression and stress (DASS). Job demand (JCQ) was directly related to stress (DASS) and inversely related to the environmental conditions (WHOQOL-BREF). Job control (JCQ) was directly related to social relationships (WHOQOL-BREF). Stress (DASS) was directly related to anxiety and depression (DASS) and inversely related to physical health, environment conditions and social relationships (WHOQOL-BREF). Anxiety (DASS) was directly related to depression (DASS) and inversely related to physical health (WHOQOL-BREF). Depression (DASS) was inversely related to the psychological wellbeing (WHOQOL-BREF). Finally, stress, anxiety and depression (DASS) mediate the relationships between job demand and social support (JCQ) to the 4 factors of WHOQOL-BREF. Conclusion These findings suggest that higher social support increases the self-reported quality of life of these workers. Higher job control increases the social relationships, whilst higher job demand increases the self-perceived stress and decreases the self-perceived quality of life related to environmental factors. The mediating role of depression, anxiety and stress on the relationship between working conditions and perceived quality of life in automotive workers should be taken into account in managing stress amongst these workers. PMID:18254966
Rusli, Bin Nordin; Edimansyah, Bin Abdin; Naing, Lin
2008-02-06
The relationships between working conditions [job demand, job control and social support]; stress, anxiety, and depression; and perceived quality of life factors [physical health, psychological wellbeing, social relationships and environmental conditions] were assessed using a sample of 698 male automotive assembly workers in Malaysia. The validated Malay version of the Job Content Questionnaire (JCQ), Depression Anxiety Stress Scales (DASS) and the World Health Organization Quality of Life-Brief (WHOQOL-BREF) were used. A structural equation modelling (SEM) analysis was applied to test the structural relationships of the model using AMOS version 6.0, with the maximum likelihood ratio as the method of estimation. The results of the SEM supported the hypothesized structural model (chi2 = 22.801, df = 19, p = 0.246). The final model shows that social support (JCQ) was directly related to all 4 factors of the WHOQOL-BREF and inversely related to depression and stress (DASS). Job demand (JCQ) was directly related to stress (DASS) and inversely related to the environmental conditions (WHOQOL-BREF). Job control (JCQ) was directly related to social relationships (WHOQOL-BREF). Stress (DASS) was directly related to anxiety and depression (DASS) and inversely related to physical health, environment conditions and social relationships (WHOQOL-BREF). Anxiety (DASS) was directly related to depression (DASS) and inversely related to physical health (WHOQOL-BREF). Depression (DASS) was inversely related to the psychological wellbeing (WHOQOL-BREF). Finally, stress, anxiety and depression (DASS) mediate the relationships between job demand and social support (JCQ) to the 4 factors of WHOQOL-BREF. These findings suggest that higher social support increases the self-reported quality of life of these workers. Higher job control increases the social relationships, whilst higher job demand increases the self-perceived stress and decreases the self-perceived quality of life related to environmental factors. The mediating role of depression, anxiety and stress on the relationship between working conditions and perceived quality of life in automotive workers should be taken into account in managing stress amongst these workers.
Inequity in work and intimate relationships: a Spillover-Crossover model.
Bakker, Arnold B; Petrou, Paraskevas; Tsaousis, Ioannis
2012-01-01
This study among 267 Greek teachers and their partners tested and expanded the recently proposed Spillover-Crossover model (SCM) of well-being. Accordingly, experiences built up at work spill over to the home domain, and then influence the partner. The authors integrated equity theory in the model by formulating hypotheses about exchange in interpersonal relationships. Structural equation modeling analyses supported the spillover hypothesis that teachers who lose their work engagement as a result of an inequitable relationship with their students invest less in the relationship with their partner. In addition, the results supported the crossover hypothesis that teachers' relationship investments, in turn, show a negative relationship with inequity in the intimate relationship as perceived by the partner; and inequity in the intimate relationship contributed to partner depression. The findings are discussed in light of the SCM of well-being.
Modeling Adsorption Kinetics (Bio-remediation of Heavy Metal Contaminated Water)
NASA Astrophysics Data System (ADS)
McCarthy, Chris
My talk will focus on modeling the kinetics of the adsorption and filtering process using differential equations, stochastic methods, and recursive functions. The models have been developed in support of our interdisciplinary lab group which is conducting research into bio-remediation of heavy metal contaminated water via filtration through biomass such as spent tea leaves. The spent tea leaves are available in large quantities as a result of the industrial production of tea beverages. The heavy metals bond with the surfaces of the tea leaves (adsorption). Funding: CUNY Collaborative Incentive Research Grant.
Design Oriented Structural Modeling for Airplane Conceptual Design Optimization
NASA Technical Reports Server (NTRS)
Livne, Eli
1999-01-01
The main goal for research conducted with the support of this grant was to develop design oriented structural optimization methods for the conceptual design of airplanes. Traditionally in conceptual design airframe weight is estimated based on statistical equations developed over years of fitting airplane weight data in data bases of similar existing air- planes. Utilization of such regression equations for the design of new airplanes can be justified only if the new air-planes use structural technology similar to the technology on the airplanes in those weight data bases. If any new structural technology is to be pursued or any new unconventional configurations designed the statistical weight equations cannot be used. In such cases any structural weight estimation must be based on rigorous "physics based" structural analysis and optimization of the airframes under consideration. Work under this grant progressed to explore airframe design-oriented structural optimization techniques along two lines of research: methods based on "fast" design oriented finite element technology and methods based on equivalent plate / equivalent shell models of airframes, in which the vehicle is modelled as an assembly of plate and shell components, each simulating a lifting surface or nacelle / fuselage pieces. Since response to changes in geometry are essential in conceptual design of airplanes, as well as the capability to optimize the shape itself, research supported by this grant sought to develop efficient techniques for parametrization of airplane shape and sensitivity analysis with respect to shape design variables. Towards the end of the grant period a prototype automated structural analysis code designed to work with the NASA Aircraft Synthesis conceptual design code ACS= was delivered to NASA Ames.
Modelling wildland fire propagation by tracking random fronts
NASA Astrophysics Data System (ADS)
Pagnini, G.; Mentrelli, A.
2013-11-01
Wildland fire propagation is studied in literature by two alternative approaches, namely the reaction-diffusion equation and the level-set method. These two approaches are considered alternative each other because the solution of the reaction-diffusion equation is generally a continuous smooth function that has an exponential decay and an infinite support, while the level-set method, which is a front tracking technique, generates a sharp function with a finite support. However, these two approaches can indeed be considered complementary and reconciled. Turbulent hot-air transport and fire spotting are phenomena with a random character that are extremely important in wildland fire propagation. As a consequence the fire front gets a random character, too. Hence a tracking method for random fronts is needed. In particular, the level-set contourn is here randomized accordingly to the probability density function of the interface particle displacement. Actually, when the level-set method is developed for tracking a front interface with a random motion, the resulting averaged process emerges to be governed by an evolution equation of the reaction-diffusion type. In this reconciled approach, the rate of spread of the fire keeps the same key and characterizing role proper to the level-set approach. The resulting model emerges to be suitable to simulate effects due to turbulent convection as fire flank and backing fire, the faster fire spread because of the actions by hot air pre-heating and by ember landing, and also the fire overcoming a firebreak zone that is a case not resolved by models based on the level-set method. Moreover, from the proposed formulation it follows a correction for the rate of spread formula due to the mean jump-length of firebrands in the downwind direction for the leeward sector of the fireline contour.
Tang, Shan-Mei; Chen, Shu-Wen; Wang, Ruey-Hsia
2013-12-01
Life satisfaction is associated with positive development in adolescents. Understanding a path model of life satisfaction can help healthcare providers design interventions to improve positive development in adolescents with type 1 diabetes. The aim of this study was to construct a model that assesses the effects of school support and self-care behaviors on life satisfaction in adolescents with type 1 diabetes in Taiwan. This study used a cross-sectional design. One hundred and thirty-nine adolescents aged 10-18 years and diagnosed with type 1 diabetes were recruited. Participants completed questionnaires that assessed perceived school support, self-care behaviors, and life satisfaction. The hypothesized model was tested using structural equation modeling. School support significantly and directly affected self-care behaviors (β = .46, p = .022) and life satisfaction (β = .39, p = .034), self-care behaviors directly affected life satisfaction (β = .56, p = .048), and school support indirectly affected life satisfaction (β = .26, p = .015) through the mediation of self-care behaviors. The fix indices were as follows: χ2 = 8.141, df = 11, p = .701, goodness of fit index = .984, normed fit index = .949, and root mean square residual = .001. The model explained 66.1% of total life satisfaction variance. School support and self-care behaviors positively influence the life satisfaction of adolescents with type 1 diabetes. Improvements in school support and self-care behaviors are necessary to improve life satisfaction in this vulnerable group.
Reference Solutions for Benchmark Turbulent Flows in Three Dimensions
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.; Pandya, Mohagna J.; Rumsey, Christopher L.
2016-01-01
A grid convergence study is performed to establish benchmark solutions for turbulent flows in three dimensions (3D) in support of turbulence-model verification campaign at the Turbulence Modeling Resource (TMR) website. The three benchmark cases are subsonic flows around a 3D bump and a hemisphere-cylinder configuration and a supersonic internal flow through a square duct. Reference solutions are computed for Reynolds Averaged Navier Stokes equations with the Spalart-Allmaras turbulence model using a linear eddy-viscosity model for the external flows and a nonlinear eddy-viscosity model based on a quadratic constitutive relation for the internal flow. The study involves three widely-used practical computational fluid dynamics codes developed and supported at NASA Langley Research Center: FUN3D, USM3D, and CFL3D. Reference steady-state solutions computed with these three codes on families of consistently refined grids are presented. Grid-to-grid and code-to-code variations are described in detail.
Making work safer: testing a model of social exchange and safety management.
DeJoy, David M; Della, Lindsay J; Vandenberg, Robert J; Wilson, Mark G
2010-04-01
This study tests a conceptual model that focuses on social exchange in the context of safety management. The model hypothesizes that supportive safety policies and programs should impact both safety climate and organizational commitment. Further, perceived organizational support is predicted to partially mediate both of these relationships. Study outcomes included traditional outcomes for both organizational commitment (e.g., withdrawal behaviors) as well as safety climate (e.g., self-reported work accidents). Questionnaire responses were obtained from 1,723 employees of a large national retailer. Using structural equation modeling (SEM) techniques, all of the model's hypothesized relationships were statistically significant and in the expected directions. The results are discussed in terms of social exchange in organizations and research on safety climate. Maximizing safety is a social-technical enterprise. Expectations related to social exchange and reciprocity figure prominently in creating a positive climate for safety within the organization. Copyright 2010 Elsevier Ltd. All rights reserved.
Numerical Modeling of Ablation Heat Transfer
NASA Technical Reports Server (NTRS)
Ewing, Mark E.; Laker, Travis S.; Walker, David T.
2013-01-01
A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.
SBML-PET: a Systems Biology Markup Language-based parameter estimation tool.
Zi, Zhike; Klipp, Edda
2006-11-01
The estimation of model parameters from experimental data remains a bottleneck for a major breakthrough in systems biology. We present a Systems Biology Markup Language (SBML) based Parameter Estimation Tool (SBML-PET). The tool is designed to enable parameter estimation for biological models including signaling pathways, gene regulation networks and metabolic pathways. SBML-PET supports import and export of the models in the SBML format. It can estimate the parameters by fitting a variety of experimental data from different experimental conditions. SBML-PET has a unique feature of supporting event definition in the SMBL model. SBML models can also be simulated in SBML-PET. Stochastic Ranking Evolution Strategy (SRES) is incorporated in SBML-PET for parameter estimation jobs. A classic ODE Solver called ODEPACK is used to solve the Ordinary Differential Equation (ODE) system. http://sysbio.molgen.mpg.de/SBML-PET/. The website also contains detailed documentation for SBML-PET.
[Structural Equation Modeling of Self-Management in Patients with Hemodialysis].
Cha, Jieun
2017-02-01
The purpose of this study was to construct and test a hypothetical model of self-management in patients with hemodialysis based on the Self-Regulation Model and resource-coping perspective. Data were collected from 215 adults receiving hemodialysis in 17 local clinics and one tertiary hospital in 2016. The Hemodialysis Self-management Instrument, the Revised Illness Perception Questionnaire, Herth Hope Index and Multidimensional Scale of Perceived Social Support were used. The exogenous variable was social context; the endogenous variables were cognitive illness representation, hope, self-management behavior, and illness outcome. For data analysis, descriptive statistics, Pearson correlation analysis, factor analysis, and structural equation modeling were performed. The hypothetical model with six paths showed a good fitness to the empirical data: GFI=.96, AGFI=.90, CFI=.95, RMSEA=.08, SRMR=.04. The factors that had an influence on self-management behavior were social context (β=.84), hope and cognitive illness representation (β=.37 and β=.27) explaining 92.4% of the variance. Self-management behavior mediated the relationship between psychosocial coping resources and illness outcome. This research specifies a more complete spectrum of the self-management process. It is important to recognize the array of clinical resources available to support patients' self-management. Healthcare providers can facilitate self-management through collaborative care and understanding the ideas and emotions that each patient has about the illness, and ultimately improve the health outcomes. This framework can be used to guide self-management intervention development and assure effective clinical assessment. © 2017 Korean Society of Nursing Science
Nonlocal Models of Cosmic Acceleration
NASA Astrophysics Data System (ADS)
Woodard, R. P.
2014-02-01
I review a class of nonlocally modified gravity models which were proposed to explain the current phase of cosmic acceleration without dark energy. Among the topics considered are deriving causal and conserved field equations, adjusting the model to make it support a given expansion history, why these models do not require an elaborate screening mechanism to evade solar system tests, degrees of freedom and kinetic stability, and the negative verdict of structure formation. Although these simple models are not consistent with data on the growth of cosmic structures many of their features are likely to carry over to more complicated models which are in better agreement with the data.
Strong Langmuir Turbulence and Four-Wave Mixing
NASA Astrophysics Data System (ADS)
Glanz, James
1991-02-01
The staircase expansion is a new mathematical technique for deriving reduced, nonlinear-PDE descriptions from the plasma-moment equations. Such descriptions incorporate only the most significant linear and nonlinear terms of more complex systems. The technique is used to derive a set of Dawson-Zakharov or "master" equations, which unify and generalize previous work and show the limitations of models commonly used to describe nonlinear plasma waves. Fundamentally new wave-evolution equations are derived that admit of exact nonlinear solutions (solitary waves). Analytic calculations illustrate the competition between well-known effects of self-focusing, which require coupling to ion motion, and pure-electron nonlinearities, which are shown to be especially important in curved geometries. Also presented is an N -moment hydrodynamic model derived from the Vlasov equation. In this connection, the staircase expansion is shown to remain useful for all values of N >= 3. The relevance of the present work to nonlocally truncated hierarchies, which more accurately model dissipation, is briefly discussed. Finally, the general formalism is applied to the problem of electromagnetic emission from counterpropagating Langmuir pumps. It is found that previous treatments have neglected order-unity effects that increase the emission significantly. Detailed numerical results are presented to support these conclusions. The staircase expansion--so called because of its appearance when written out--should be effective whenever the largest contribution to the nonlinear wave remains "close" to some given frequency. Thus the technique should have application to studies of wake-field acceleration schemes and anomalous damping of plasma waves.
A toolbox for discrete modelling of cell signalling dynamics.
Paterson, Yasmin Z; Shorthouse, David; Pleijzier, Markus W; Piterman, Nir; Bendtsen, Claus; Hall, Benjamin A; Fisher, Jasmin
2018-06-18
In an age where the volume of data regarding biological systems exceeds our ability to analyse it, many researchers are looking towards systems biology and computational modelling to help unravel the complexities of gene and protein regulatory networks. In particular, the use of discrete modelling allows generation of signalling networks in the absence of full quantitative descriptions of systems, which are necessary for ordinary differential equation (ODE) models. In order to make such techniques more accessible to mainstream researchers, tools such as the BioModelAnalyzer (BMA) have been developed to provide a user-friendly graphical interface for discrete modelling of biological systems. Here we use the BMA to build a library of discrete target functions of known canonical molecular interactions, translated from ordinary differential equations (ODEs). We then show that these BMA target functions can be used to reconstruct complex networks, which can correctly predict many known genetic perturbations. This new library supports the accessibility ethos behind the creation of BMA, providing a toolbox for the construction of complex cell signalling models without the need for extensive experience in computer programming or mathematical modelling, and allows for construction and simulation of complex biological systems with only small amounts of quantitative data.
Scherer, Ronny; Nilsen, Trude; Jansen, Malte
2016-01-01
Students' perceptions of instructional quality are among the most important criteria for evaluating teaching effectiveness. The present study evaluates different latent variable modeling approaches (confirmatory factor analysis, exploratory structural equation modeling, and bifactor modeling), which are used to describe these individual perceptions with respect to their factor structure, measurement invariance, and the relations to selected educational outcomes (achievement, self-concept, and motivation in mathematics). On the basis of the Programme for International Student Assessment (PISA) 2012 large-scale data sets of Australia, Canada, and the USA (N = 26,746 students), we find support for the distinction between three factors of individual students' perceptions and full measurement invariance across countries for all modeling approaches. In this regard, bifactor exploratory structural equation modeling outperformed alternative approaches with respect to model fit. Our findings reveal significant relations to the educational outcomes. This study synthesizes different modeling approaches of individual students' perceptions of instructional quality and provides insights into the nature of these perceptions from an individual differences perspective. Implications for the measurement and modeling of individually perceived instructional quality are discussed. PMID:26903917
NASA Technical Reports Server (NTRS)
Goldman, Benjamin D.; Dowell, Earl H.; Scott, Robert C.
2014-01-01
Conical shell theory and piston theory aerodynamics are used to study the aeroelastic stability of the thermal protection system (TPS) on the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). Structural models of the TPS consist of single or multiple orthotropic conical shell systems resting on several circumferential linear elastic supports. The shells in each model may have pinned (simply-supported) or elastically-supported edges. The Lagrangian is formulated in terms of the generalized coordinates for all displacements and the Rayleigh-Ritz method is used to derive the equations of motion. The natural modes of vibration and aeroelastic stability boundaries are found by calculating the eigenvalues and eigenvectors of a large coefficient matrix. When the in-flight configuration of the TPS is approximated as a single shell without elastic supports, asymmetric flutter in many circumferential waves is observed. When the elastic supports are included, the shell flutters symmetrically in zero circumferential waves. Structural damping is found to be important in this case. Aeroelastic models that consider the individual TPS layers as separate shells tend to flutter asymmetrically at high dynamic pressures relative to the single shell models. Several parameter studies also examine the effects of tension, orthotropicity, and elastic support stiffness.
Hanusaik, Nancy; Sabiston, Catherine M.; Kishchuk, Natalie; Maximova, Katerina; O’Loughlin, Jennifer
2015-01-01
In the context of the emerging field of public health services and systems research, this study (i) tested a model of the relationships between public health organizational capacity (OC) for chronic disease prevention, its determinants (organizational supports for evaluation, partnership effectiveness) and one possible outcome of OC (involvement in core chronic disease prevention practices) and (ii) examined differences in the nature of these relationships among organizations operating in more and less facilitating external environments. OC was conceptualized as skills and resources/supports for chronic disease prevention programming. Data were from a census of 210 Canadian public health organizations with mandates for chronic disease prevention. The hypothesized relationships were tested using structural equation modeling. Overall, the results supported the model. Organizational supports for evaluation accounted for 33% of the variance in skills. Skills and resources/supports were directly and strongly related to involvement. Organizations operating within facilitating external contexts for chronic disease prevention had more effective partnerships, more resources/supports, stronger skills and greater involvement in core chronic disease prevention practices. Results also suggested that organizations functioning in less facilitating environments may not benefit as expected from partnerships. Empirical testing of this conceptual model helps develop a better understanding of public health OC. PMID:25361958
De Bondt, Niki; Van Petegem, Peter
2015-01-01
The Overexcitability Questionnaire-Two (OEQ-II) measures the degree and nature of overexcitability, which assists in determining the developmental potential of an individual according to Dabrowski's Theory of Positive Disintegration. Previous validation studies using frequentist confirmatory factor analysis, which postulates exact parameter constraints, led to model rejection and a long series of model modifications. Bayesian structural equation modeling (BSEM) allows the application of zero-mean, small-variance priors for cross-loadings, residual covariances, and differences in measurement parameters across groups, better reflecting substantive theory and leading to better model fit and less overestimation of factor correlations. Our BSEM analysis with a sample of 516 students in higher education yields positive results regarding the factorial validity of the OEQ-II. Likewise, applying BSEM-based alignment with approximate measurement invariance, the absence of non-invariant factor loadings and intercepts across gender is supportive of the psychometric quality of the OEQ-II. Compared to males, females scored significantly higher on emotional and sensual overexcitability, and significantly lower on psychomotor overexcitability. PMID:26733931
De Bondt, Niki; Van Petegem, Peter
2015-01-01
The Overexcitability Questionnaire-Two (OEQ-II) measures the degree and nature of overexcitability, which assists in determining the developmental potential of an individual according to Dabrowski's Theory of Positive Disintegration. Previous validation studies using frequentist confirmatory factor analysis, which postulates exact parameter constraints, led to model rejection and a long series of model modifications. Bayesian structural equation modeling (BSEM) allows the application of zero-mean, small-variance priors for cross-loadings, residual covariances, and differences in measurement parameters across groups, better reflecting substantive theory and leading to better model fit and less overestimation of factor correlations. Our BSEM analysis with a sample of 516 students in higher education yields positive results regarding the factorial validity of the OEQ-II. Likewise, applying BSEM-based alignment with approximate measurement invariance, the absence of non-invariant factor loadings and intercepts across gender is supportive of the psychometric quality of the OEQ-II. Compared to males, females scored significantly higher on emotional and sensual overexcitability, and significantly lower on psychomotor overexcitability.
A generalized computer code for developing dynamic gas turbine engine models (DIGTEM)
NASA Technical Reports Server (NTRS)
Daniele, C. J.
1984-01-01
This paper describes DIGTEM (digital turbofan engine model), a computer program that simulates two spool, two stream (turbofan) engines. DIGTEM was developed to support the development of a real time multiprocessor based engine simulator being designed at the Lewis Research Center. The turbofan engine model in DIGTEM contains steady state performance maps for all the components and has control volumes where continuity and energy balances are maintained. Rotor dynamics and duct momentum dynamics are also included. DIGTEM features an implicit integration scheme for integrating stiff systems and trims the model equations to match a prescribed design point by calculating correction coefficients that balance out the dynamic equations. It uses the same coefficients at off design points and iterates to a balanced engine condition. Transients are generated by defining the engine inputs as functions of time in a user written subroutine (TMRSP). Closed loop controls can also be simulated. DIGTEM is generalized in the aerothermodynamic treatment of components. This feature, along with DIGTEM's trimming at a design point, make it a very useful tool for developing a model of a specific turbofan engine.
A generalized computer code for developing dynamic gas turbine engine models (DIGTEM)
NASA Technical Reports Server (NTRS)
Daniele, C. J.
1983-01-01
This paper describes DIGTEM (digital turbofan engine model), a computer program that simulates two spool, two stream (turbofan) engines. DIGTEM was developed to support the development of a real time multiprocessor based engine simulator being designed at the Lewis Research Center. The turbofan engine model in DIGTEM contains steady state performance maps for all the components and has control volumes where continuity and energy balances are maintained. Rotor dynamics and duct momentum dynamics are also included. DIGTEM features an implicit integration scheme for integrating stiff systems and trims the model equations to match a prescribed design point by calculating correction coefficients that balance out the dynamic equations. It uses the same coefficients at off design points and iterates to a balanced engine condition. Transients are generated by defining the engine inputs as functions of time in a user written subroutine (TMRSP). Closed loop controls can also be simulated. DIGTEM is generalized in the aerothermodynamic treatment of components. This feature, along with DIGTEM's trimming at a design point, make it a very useful tool for developing a model of a specific turbofan engine.
Modeling the effects of inflammation in bone fracture healing
NASA Astrophysics Data System (ADS)
Kojouharov, H. V.; Trejo, I.; Chen-Charpentier, B. M.
2017-10-01
A new mathematical model is presented to study the early inflammatory effects in bone healing. It consists of a system of nonlinear ordinary differential equations that represents the interactions among macrophages, mesenchymal stem cells, and osteoblasts. A qualitative analysis of the model is performed to determine the equilibria and their corresponding stability properties. A set of numerical simulations is performed to support the theoretical results. The model is also used to numerically monitor the evolution of a broken bone for different types of fractures and to explore possible treatments to accelerate bone healing by administrating anti-inflammatory drugs.
Interaction of gliding motion of bacteria with rheological properties of the slime.
Asghar, Z; Ali, N; Sajid, M
2017-08-01
Bacteria which do not have organelles of motility, such as flagella, adopt gliding as a mode of locomotion. In gliding motility bacterium moves under its own power by secreting a layer of slime on the substrate. The exact mechanism by which a glider achieves motility is yet in controversy but there are evidences which support the wave-like undulation on the surface of the organism, as a possible mechanism of motility. Based on this observation, a model of undulating sheet over a layer of slime is examined as a possible model of the gliding motion of a bacterium. Three different non-Newtonian constitutive equations namely, finite extendable nonlinear elastic-peterline (FENE-P), Simplified Phan-Thien-Tanner (SPTT) and Rabinowitsch equations are used to capture the rheological properties of the slime. It is found that the governing equation describing the fluid mechanics of the model under lubrication approximation is same for all the considered three constitutive equations. In fact, it involves a single non-Newtonian parameter which assumes different values for each of the considered constitutive relations. This differential equation is solved using both perturbation and semi-analytic procedure. The perturbation solution is exploited to get an estimate of the speed of the glider for different values of the non-Newtonian parameter. The solution obtained via semi-analytic procedure is used to investigate the important features of the flow field in the layer of the slime beneath the glider when the glider is held fixed. The expression of forces generated by the organism and power required for propulsion are also derived based on the perturbation analysis. Copyright © 2017 Elsevier Inc. All rights reserved.
Siu, Oi Ling; Bakker, Arnold B; Brough, Paula; Lu, Chang-Qin; Wang, Haijiang; Kalliath, Thomas; O'Driscoll, Michael; Lu, Jiafang; Timms, Carolyn
2015-10-01
On the basis of conservation of resources theory (Hobfoll, ) and the resource-gain-development perspective (Wayne, Grzywacz, Carlson, & Kacmar, ), this paper examines the differential impact of specific social resources (supervisory support and family support) on specific types of affect (job satisfaction and family satisfaction, respectively), which, in turn, influence work-to-family enrichment and family-to-work enrichment, respectively. A sample of 276 Chinese workers completed questionnaires in a three-wave survey. The model was tested with structural equation modelling. Job satisfaction at time 2 partially mediated the relationship between time 1 supervisory support and time 3 work-to-family enrichment (capital), and the effect of supervisory support on work-to-family enrichment (affect) was fully mediated by job satisfaction. Family satisfaction at time 2 fully mediated the relationship between time 1 family support and time 3 family-to-work enrichment (affect, efficiency). Implications for theory, practice and future research are discussed. Copyright © 2013 John Wiley & Sons, Ltd.
Religiosity, Social Support and Care Associated with Health in Older Mexicans with Diabetes
2016-01-01
The main purpose of this study was to examine the relationships between religiosity, social support, diabetes care and control and self-rated health of people living in Mexico who have been diagnosed with diabetes. Structural equation modeling was used to examine these associations using the Mexican Health and Aging Study, a national representative survey of older Mexicans. Findings indicate that emotional support from one’s spouse/partner directly affects diabetes care and control and health. Although there is no direct relationship between religiosity and health, religiosity was positively associated with diabetes care and control, but not significantly related to health. PMID:26316196
Schwartz, Carolyn E; Zhang, Jie; Michael, Wesley; Eton, David T; Rapkin, Bruce D
2018-01-01
This study examines the importance of four psychosocial factors—personality, cognitive appraisal of quality of life, social support, and current reserve-building—in predicting treatment burden in chronically ill patients. Chronically ill patients (n = 446) completed web-based measures. Structural equation modeling was used to investigate psychosocial factors predicting treatment burden. Reserve-building activities indirectly reduced treatment burden by: (1) reducing health worries appraisals, (2) reducing financial difficulties, (3) increasing calm and peaceful appraisals, and (4) increasing perceived social support. These findings point to key behaviors that chronically ill people can use to attenuate their treatment burden. PMID:29785278
Determinants for the success of regional ICT ventures: a close examination of South Korea.
Park, Eunil; Kim, Ki Joon; Kwon, Sang Jib; Ohm, Jay Y; Del Pobil, Angel P; Yoo, Kyeongsik
2016-01-01
This study identifies the key motivational factors in enhancing economic performance and increasing new job opportunities for information and communication technology ventures (ICTVs) in South Korea and examines their potential causal relationships through structural equation modeling analysis on data collected from over 200 ICTVs located in Daedeok Innopolis. The results indicate that the economic performance of ICTVs is determined mainly by government support, innovation effort, and private equity and support. Government support and innovation effort are also positively associated with new job opportunities. The theoretical, industrial implications of the key findings, and recommendations for the Korean government are discussed.
Liu, Jing-Dong; Chung, Pak-Kwong
2017-08-01
The purpose of the current study was to examine the factor structure and measurement invariance of a scale measuring students' perceptions of need-supportive teaching (Need-Supportive Teaching Style Scale in Physical Education; NSTSSPE). We sampled 615 secondary school students in Hong Kong, 200 of whom also completed a follow-up assessment two months later. Factor structure of the scale was examined through exploratory structural equation modeling (ESEM). Further, nomological validity of the NSTSSPE was evaluated by examining the relationships between need-supportive teaching style and student satisfaction of psychological needs. Finally, four measurement models-configural, metric invariance, scalar invariance, and item uniqueness invariance-were assessed using multiple group ESEM to test the measurement invariance of the scale across gender, grade, and time. ESEM results suggested a three-factor structure of the NSTSSPE. Nomological validity was supported, and weak, strong, and strict measurement invariance of the NSTSSPE was evidenced across gender, grade, and time. The current study provides initial psychometric support for the NSTSSPE to assess student perceptions of teachers' need-supportive teaching style in physical education classes.
Deng, Zhaohua; Liu, Shan
2017-09-01
This study integrates the risk perception attitude framework and social support to examine factors influencing consumers' intentions to seek health information in mobile social media websites. We develop a research model consisting of four social support dimensions, perceived health risk, health self-efficacy, and health information-seeking intention. A survey is conducted among patients with non-serious conditions. A two-step approach of structural equation modeling is used to test the research model. Among the four dimensions of social support, tangible support and appraisal support significantly influence perceived risk, whereas emotional support and esteem support significantly influence health self-efficacy. Perceived health risk and health self-efficacy significantly influence the health information-seeking behavior intention of consumers. Specifically, health self-efficacy significantly moderates the relationship between perceived risk and behavior intention. This study highlights the integrated effects of social capital and risk perception attitude framework on health information-seeking intention. It examines relationships among perceived health risk, health self-efficacy, and behavior intention in the mobile social media context. The findings help understand effects of social capital factors on perceived health risk and health self-efficacy. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Robinson, D. N.
1985-01-01
Three major categories of testing are identified that are necessary to provide support for the development of constitutive equations for high temperature alloys. These are exploratory, charactrization and verification tests. Each category is addressed and specific examples of each are given. An extensive, but not exhaustive, set of references is provided concerning pertinent experimental results and their relationships to theoretical development. This guide to formulating a meaningful testing effort in support of consitutive equation development can also aid in defining the necessary testing equipment and instrumentation for the establishment of a deformation and structures testing laboratory.
Compartmental and Spatial Rule-Based Modeling with Virtual Cell.
Blinov, Michael L; Schaff, James C; Vasilescu, Dan; Moraru, Ion I; Bloom, Judy E; Loew, Leslie M
2017-10-03
In rule-based modeling, molecular interactions are systematically specified in the form of reaction rules that serve as generators of reactions. This provides a way to account for all the potential molecular complexes and interactions among multivalent or multistate molecules. Recently, we introduced rule-based modeling into the Virtual Cell (VCell) modeling framework, permitting graphical specification of rules and merger of networks generated automatically (using the BioNetGen modeling engine) with hand-specified reaction networks. VCell provides a number of ordinary differential equation and stochastic numerical solvers for single-compartment simulations of the kinetic systems derived from these networks, and agent-based network-free simulation of the rules. In this work, compartmental and spatial modeling of rule-based models has been implemented within VCell. To enable rule-based deterministic and stochastic spatial simulations and network-free agent-based compartmental simulations, the BioNetGen and NFSim engines were each modified to support compartments. In the new rule-based formalism, every reactant and product pattern and every reaction rule are assigned locations. We also introduce the rule-based concept of molecular anchors. This assures that any species that has a molecule anchored to a predefined compartment will remain in this compartment. Importantly, in addition to formulation of compartmental models, this now permits VCell users to seamlessly connect reaction networks derived from rules to explicit geometries to automatically generate a system of reaction-diffusion equations. These may then be simulated using either the VCell partial differential equations deterministic solvers or the Smoldyn stochastic simulator. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Zullig, Keith J; Collins, Rani; Ghani, Nadia; Patton, Jon M; Scott Huebner, E; Ajamie, Jean
2014-02-01
The School Climate Measure (SCM) was developed and validated in 2010 in response to a dearth of psychometrically sound school climate instruments. This study sought to further validate the SCM on a large, diverse sample of Arizona public school adolescents (N = 20,953). Four SCM domains (positive student-teacher relationships, academic support, order and discipline, and physical environment) were available for the analysis. Confirmatory factor analysis and structural equation modeling were established to construct validity, and criterion-related validity was assessed via selected Youth Risk Behavior Survey (YRBS) school safety items and self-reported grade (GPA) point average. Analyses confirmed the 4 SCM school climate domains explained approximately 63% of the variance (factor loading range .45-.92). Structural equation models fit the data well χ(2) = 14,325 (df = 293, p < .001), comparative fit index (CFI) = .951, Tuker-Lewis index (TLI) = .952, root mean square error of approximation (RMSEA) = .05). The goodness-of-fit index was .940. Coefficient alphas ranged from .82 to .93. Analyses of variance with post hoc comparisons suggested the SCM domains related in hypothesized directions with the school safety items and GPA. Additional evidence supports the validity and reliability of the SCM. Measures, such as the SCM, can facilitate data-driven decisions and may be incorporated into evidenced-based processes designed to improve student outcomes. © 2014, American School Health Association.
Yen, Cheng-Fang; Hsu, Chia-Chuang; Liu, Shu-Chun; Huang, Chi-Fen; Ko, Chih-Hung; Yen, Ju-Yu; Cheng, Chung-Ping
2006-10-01
The purposes of this study were to examine the relationships among mental health status, demographic characteristics, and social contexts, including family conflict and support, connectedness to school, and affiliation with peers who exhibit delinquent behavior and who use substances, among Taiwanese aboriginal adolescents. A total of 251 aboriginal junior high school students in an isolated mountainous area of southern Taiwan were recruited, and the relationships among mental health status, demographic characteristics, and social contexts among them were examined using a structural equation model (SEM). The SEM revealed that family conflict and support had direct influences on mental health status and connectedness to school. Family conflict had a direct relationship with affiliation with peers who use substances, and family conflict and support were both indirectly linked with affiliation with peers who exhibit delinquent behavior and who used substances; these were mediated by a poor mental health status. Female and older age were directly linked with a poor mental health status and were indirectly linked with a greater number of peers who exhibit delinquent behavior and who use substances via the poor mental health status. Disruptive parenting was directly linked with affiliation with peers who use substances. The authors suggest that those who devise strategies to improve aboriginal adolescents' mental health and discourage substance use should take these relationships among mental health, demographic characteristics, and social contexts into account.
ERIC Educational Resources Information Center
Hewitt, Dave
2014-01-01
This article analyzes the use of the software Grid Algebra with a mixed ability class of 21 nine-to-ten-year-old students who worked with complex formal notation involving all four arithmetic operations. Unlike many other models to support learning, Grid Algebra has formal notation ever present and allows students to "look through" that…
Optimal tactics for close support operations. III - Degraded intelligence and communications
NASA Astrophysics Data System (ADS)
Hess, J.; Kalaba, R.; Kagiwada, H.; Spingarn, K.; Tsokos, C.
1980-04-01
A new generation of C3 (command, control, and communication) models for military cybernetics is developed. Recursive equations for the solution of the C3 problem are derived for an amphibious campaign with linear time-varying dynamics. Air and ground commanders are assumed to have no intelligence and no communications. Numerical results are given for the optimal decision rules.
Research and Development of Rapid Design Systems for Aerospace Structure
NASA Technical Reports Server (NTRS)
Schaeffer, Harry G.
1999-01-01
This report describes the results of research activities associated with the development of rapid design systems for aerospace structures in support of the Intelligent Synthesis Environment (ISE). The specific subsystems investigated were the interface between model assembly and analysis; and, the high performance NASA GPS equation solver software system in the Windows NT environment on low cost high-performance PCs.
Center for modeling of turbulence and transition: Research briefs, 1993
NASA Technical Reports Server (NTRS)
Liou, William W. (Editor)
1994-01-01
This research brief contains the progress reports of the research staff of the Center for Modeling of Turbulence and Transition (CMOTT) from June 1992 to July 1993. It is also an annual report to the Institute for Computational Mechanics in Propulsion located at Ohio Aerospace Institute and NASA Lewis Research Center. The main objectives of the research activities at CMOTT are to develop, validate, and implement turbulence and transition models for flows of interest in propulsion systems. Currently, our research covers eddy viscosity one- and two-equation models, Reynolds-stress algebraic equation models, Reynolds-stress transport equation models, nonequilibrium multiple-scale models, bypass transition models, joint scalar probability density function models, and Renormalization Group Theory and Direct Interaction Approximation methods. Some numerical simulations (LES and DNS) have also been carried out to support the development of turbulence modeling. Last year was CMOTT's third year in operation. During this period, in addition to the above mentioned research, CMOTT has also hosted the following programs: an eighteen-hour short course on 'Turbulence--Fundamentals and Computational Modeling (Part I)' given by CMOTT at the NASA Lewis Research Center; a productive summer visitor research program that has generated many encouraging results; collaborative programs with industry customers to help improve their turbulent flow calculations for propulsion system designs; a biweekly CMOTT seminar series with speakers from within and without the NASA Lewis Research Center including foreign speakers. In addition, CMOTT members have been actively involved in the national and international turbulence research activities. The current CMOTT roster and organization are listed in Appendix A. Listed in Appendix B are the abstracts of the biweekly CMOTT seminar. Appendix C lists the papers contributed by CMOTT members.
Levant, Ronald F; Hall, Rosalie J; Weigold, Ingrid K; McCurdy, Eric R
2016-10-01
The construct validity of the Male Role Norms Inventory-Short Form (MRNI-SF) was assessed using a latent variable approach implemented with structural equation modeling (SEM). The MRNI-SF was specified as having a bifactor structure, and validation scales were also specified as latent variables. The latent variable approach had the advantages of separating effects of general and specific factors and controlling for some sources of measurement error. Data (N = 484) were from a diverse sample (38.8% men of color, 22.3% men of diverse sexualities) of community-dwelling and college men who responded to an online survey. The construct validity of the MRNI-SF General Traditional Masculinity Ideology factor was supported for all 4 of the proposed latent correlations with: (a) Male Role Attitudes Scale; (b) general factor of Conformity to Masculine Norms Inventory-46; (c) higher-order factor of Gender Role Conflict Scale; and (d) Personal Attributes Questionnaire-Masculinity Scale. Significant correlations with relevant other latent factors provided concurrent validity evidence for the MRNI-SF specific factors of Negativity toward Sexual Minorities, Importance of Sex, Restrictive Emotionality, and Toughness, with all 8 of the hypothesized relationships supported. However, 3 relationships concerning Dominance were not supported. (The construct validity of the remaining 2 MRNI-SF specific factors-Avoidance of Femininity and Self-Reliance through Mechanical Skills was not assessed.) Comparisons were made, and meaningful differences noted, between the latent correlations emphasized in this study and their raw variable counterparts. Results are discussed in terms of the advantages of an SEM approach and the unique characteristics of the bifactor model. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Field, Richard J.; Gallas, Jason A. C.; Schuldberg, David
2017-08-01
Recent work has introduced social dynamic models of people's stress-related processes, some including amelioration of stress symptoms by support from others. The effects of support may be ;direct;, depending only on the level of support, or ;buffering;, depending on the product of the level of support and level of stress. We focus here on the nonlinear buffering term and use a model involving three variables (and 12 control parameters), including stress as perceived by the individual, physical and psychological symptoms, and currently active social support. This model is quantified by a set of three nonlinear differential equations governing its stationary-state stability, temporal evolution (sometimes oscillatory), and how each variable affects the others. Chaos may appear with periodic forcing of an environmental stress parameter. Here we explore this model carefully as the strength and amplitude of this forcing, and an important psychological parameter relating to self-kindling in the stress response, are varied. Three significant observations are made: 1. There exist many complex but orderly regions of periodicity and chaos, 2. there are nested regions of increasing number of peaks per cycle that may cascade to chaos, and 3. there are areas where more than one state, e.g., a period-2 oscillation and chaos, coexist for the same parameters; which one is reached depends on initial conditions.
Consistent three-equation model for thin films
NASA Astrophysics Data System (ADS)
Richard, Gael; Gisclon, Marguerite; Ruyer-Quil, Christian; Vila, Jean-Paul
2017-11-01
Numerical simulations of thin films of newtonian fluids down an inclined plane use reduced models for computational cost reasons. These models are usually derived by averaging over the fluid depth the physical equations of fluid mechanics with an asymptotic method in the long-wave limit. Two-equation models are based on the mass conservation equation and either on the momentum balance equation or on the work-energy theorem. We show that there is no two-equation model that is both consistent and theoretically coherent and that a third variable and a three-equation model are required to solve all theoretical contradictions. The linear and nonlinear properties of two and three-equation models are tested on various practical problems. We present a new consistent three-equation model with a simple mathematical structure which allows an easy and reliable numerical resolution. The numerical calculations agree fairly well with experimental measurements or with direct numerical resolutions for neutral stability curves, speed of kinematic waves and of solitary waves and depth profiles of wavy films. The model can also predict the flow reversal at the first capillary trough ahead of the main wave hump.
ERIC Educational Resources Information Center
Cheung, Mike W.-L.; Cheung, Shu Fai
2016-01-01
Meta-analytic structural equation modeling (MASEM) combines the techniques of meta-analysis and structural equation modeling for the purpose of synthesizing correlation or covariance matrices and fitting structural equation models on the pooled correlation or covariance matrix. Both fixed-effects and random-effects models can be defined in MASEM.…
Structural empowerment and burnout among Portuguese nursing staff: An explicative model.
Orgambídez-Ramos, Alejandro; Borrego-Alés, Yolanda; Vázquez-Aguado, Octavio; March-Amegual, Jaume
2017-11-01
Kanter's structural empowerment model was used to assess the influence of access to opportunities, resources, information and support on core burnout through global empowerment in a nursing sample in Portugal. The empowerment experience increases the levels of nursing professionals' satisfaction and performance preventing the emergence of burnout. However, the relationship between structural empowerment and burnout has been scarcely studied in Portugal. We conducted a cross-sectional correlational study assessing a final sample of 297 participants (62.13% response rate, 63.64% women). Model fit and mediation test were examined using structural equation modelling (path analysis). Access to opportunities and access to support had direct impact, through global empowerment, on core burnout, whereas access to resources had both direct and indirect impact on core burnout. The results validated the structural empowerment model and its application in nursing staff in Portugal. Professional training plans, the development of formal and informal support networks, and the availability of resources increase the levels of empowerment and decrease the likelihood of experiencing burnout in nursing professionals. © 2017 John Wiley & Sons Ltd.
Kim-Spoon, Jungmeen; Longo, Gregory S.; Holmes, Christopher J.
2015-01-01
Religiousness is important to adolescents in the U.S., and the significant link between high religiousness and low substance use is well known. There is a debate between multidimensional and unidimensional perspectives of religiousness (Gorsuch, 1984); yet, no empirical study has tested this hierarchical model of religiousness related to adolescent health outcomes. The current study presents the first attempt to test a bifactor model of religiousness related to substance use among adolescents (N = 220, 45% female). Our bifactor model using structural equation modeling suggested the multidimensional nature of religiousness as well as the presence of a superordinate general religiousness factor directly explaining the covariation among the specific factors including organizational and personal religiousness and religious social support. The general religiousness factor was inversely related to substance use. After accounting for the contribution of the general religiousness factor, high organizational religiousness related to low substance use, whereas personal religiousness and religious support were positively related to substance use. The findings present the first evidence that supports hierarchical structures of adolescent religiousness that contribute differentially to adolescent substance use. PMID:26043168
Image model: new perspective for image processing and computer vision
NASA Astrophysics Data System (ADS)
Ziou, Djemel; Allili, Madjid
2004-05-01
We propose a new image model in which the image support and image quantities are modeled using algebraic topology concepts. The image support is viewed as a collection of chains encoding combination of pixels grouped by dimension and linking different dimensions with the boundary operators. Image quantities are encoded using the notion of cochain which associates values for pixels of given dimension that can be scalar, vector, or tensor depending on the problem that is considered. This allows obtaining algebraic equations directly from the physical laws. The coboundary and codual operators, which are generic operations on cochains allow to formulate the classical differential operators as applied for field functions and differential forms in both global and local forms. This image model makes the association between the image support and the image quantities explicit which results in several advantages: it allows the derivation of efficient algorithms that operate in any dimension and the unification of mathematics and physics to solve classical problems in image processing and computer vision. We show the effectiveness of this model by considering the isotropic diffusion.
Non-Deterministic Modelling of Food-Web Dynamics
Planque, Benjamin; Lindstrøm, Ulf; Subbey, Sam
2014-01-01
A novel approach to model food-web dynamics, based on a combination of chance (randomness) and necessity (system constraints), was presented by Mullon et al. in 2009. Based on simulations for the Benguela ecosystem, they concluded that observed patterns of ecosystem variability may simply result from basic structural constraints within which the ecosystem functions. To date, and despite the importance of these conclusions, this work has received little attention. The objective of the present paper is to replicate this original model and evaluate the conclusions that were derived from its simulations. For this purpose, we revisit the equations and input parameters that form the structure of the original model and implement a comparable simulation model. We restate the model principles and provide a detailed account of the model structure, equations, and parameters. Our model can reproduce several ecosystem dynamic patterns: pseudo-cycles, variation and volatility, diet, stock-recruitment relationships, and correlations between species biomass series. The original conclusions are supported to a large extent by the current replication of the model. Model parameterisation and computational aspects remain difficult and these need to be investigated further. Hopefully, the present contribution will make this approach available to a larger research community and will promote the use of non-deterministic-network-dynamics models as ‘null models of food-webs’ as originally advocated. PMID:25299245
NASA Astrophysics Data System (ADS)
Xiang-Guo, Meng; Ji-Suo, Wang; Hong-Yi, Fan; Cheng-Wei, Xia
2016-04-01
We solve the fermionic master equation for a thermal bath to obtain its explicit Kraus operator solutions via the fermionic state approach. The normalization condition of the Kraus operators is proved. The matrix representation for these solutions is obtained, which is incongruous with the result in the book completed by Nielsen and Chuang [Quantum Computation and Quantum Information, Cambridge University Press, 2000]. As especial cases, we also present the Kraus operator solutions to master equations for describing the amplitude-decay model and the diffusion process at finite temperature. Project supported by the National Natural Science Foundation of China (Grant No. 11347026), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2013AM012 and ZR2012AM004), and the Research Fund for the Doctoral Program and Scientific Research Project of Liaocheng University, Shandong Province, China.
NASA Astrophysics Data System (ADS)
Curbelo, Jezabel; Alboussiere, Thierry; Labrosse, Stephane; Dubuffet, Fabien; Ricard, Yanick
2015-11-01
In this talk we describe the numerical method implemented to study convection in a fully compressible two-dimensional model, which may be reduced to the different simplifications such as the anelastic approximation and the anelastic liquid approximation. Various equations of state are considered, from the ideal gas equation to equations related to liquid or solid condensed matter. We are particularly interested in the total value and spatial distribution of viscous dissipation. We analyze the solutions obtained with each approximation in a wide range of dimensionless parameters and compare the domain of validity of each of them. The authors are grateful to the LABEX Lyon Institute of Origins (ANR-10-LABX-0066) of the Universite de Lyon for its financial support ``Investissements d'Avenir'' (ANR-11-IDEX-0007) of the French government operated by the National Research Agency (ANR).
Anomalous transport in fluid field with random waiting time depending on the preceding jump length
NASA Astrophysics Data System (ADS)
Zhang, Hong; Li, Guo-Hua
2016-11-01
Anomalous (or non-Fickian) transport behaviors of particles have been widely observed in complex porous media. To capture the energy-dependent characteristics of non-Fickian transport of a particle in flow fields, in the present paper a generalized continuous time random walk model whose waiting time probability distribution depends on the preceding jump length is introduced, and the corresponding master equation in Fourier-Laplace space for the distribution of particles is derived. As examples, two generalized advection-dispersion equations for Gaussian distribution and lévy flight with the probability density function of waiting time being quadratic dependent on the preceding jump length are obtained by applying the derived master equation. Project supported by the Foundation for Young Key Teachers of Chengdu University of Technology, China (Grant No. KYGG201414) and the Opening Foundation of Geomathematics Key Laboratory of Sichuan Province, China (Grant No. scsxdz2013009).
Equation of State for Shock Compression of High Distension Solids
NASA Astrophysics Data System (ADS)
Grady, Dennis
2013-06-01
Shock Hugoniot data for full-density and porous compounds of boron carbide, silicon dioxide, tantalum pentoxide, uranium dioxide and playa alluvium are investigated for the purpose of equation-of-state representation of intense shock compression. Complications of multivalued Hugoniot behavior characteristic of highly distended solids are addressed through the application of enthalpy-based equations of state of the form originally proposed by Rice and Walsh in the late 1950's. Additivity of cold and thermal pressure intrinsic to the Mie-Gruneisen EOS framework is replaced by isobaric additive functions of the cold and thermal specific volume components in the enthalpy-based formulation. Additionally, experimental evidence supports acceleration of shock-induced phase transformation on the Hugoniot with increasing levels of initial distention for silicon dioxide, uranium dioxide and possibly boron carbide. Methods for addressing this experimentally observed facet of the shock compression are introduced into the EOS model.
A Multivariate Model of Stakeholder Preference for Lethal Cat Management
Wald, Dara M.; Jacobson, Susan K.
2014-01-01
Identifying stakeholder beliefs and attitudes is critical for resolving management conflicts. Debate over outdoor cat management is often described as a conflict between two groups, environmental advocates and animal welfare advocates, but little is known about the variables predicting differences among these critical stakeholder groups. We administered a mail survey to randomly selected stakeholders representing both of these groups (n = 1,596) in Florida, where contention over the management of outdoor cats has been widespread. We used a structural equation model to evaluate stakeholder intention to support non-lethal management. The cognitive hierarchy model predicted that values influenced beliefs, which predicted general and specific attitudes, which in turn, influenced behavioral intentions. We posited that specific attitudes would mediate the effect of general attitudes, beliefs, and values on management support. Model fit statistics suggested that the final model fit the data well (CFI = 0.94, RMSEA = 0.062). The final model explained 74% of the variance in management support, and positive attitudes toward lethal management (humaneness) had the largest direct effect on management support. Specific attitudes toward lethal management and general attitudes toward outdoor cats mediated the relationship between positive (p<0.05) and negative cat-related impact beliefs (p<0.05) and support for management. These results supported the specificity hypothesis and the use of the cognitive hierarchy to assess stakeholder intention to support non-lethal cat management. Our findings suggest that stakeholders can simultaneously perceive both positive and negative beliefs about outdoor cats, which influence attitudes toward and support for non-lethal management. PMID:24736744