Sample records for equations euler numerical

  1. Analysis of stability for stochastic delay integro-differential equations.

    PubMed

    Zhang, Yu; Li, Longsuo

    2018-01-01

    In this paper, we concern stability of numerical methods applied to stochastic delay integro-differential equations. For linear stochastic delay integro-differential equations, it is shown that the mean-square stability is derived by the split-step backward Euler method without any restriction on step-size, while the Euler-Maruyama method could reproduce the mean-square stability under a step-size constraint. We also confirm the mean-square stability of the split-step backward Euler method for nonlinear stochastic delay integro-differential equations. The numerical experiments further verify the theoretical results.

  2. Computation of transonic viscous-inviscid interacting flow

    NASA Technical Reports Server (NTRS)

    Whitfield, D. L.; Thomas, J. L.; Jameson, A.; Schmidt, W.

    1983-01-01

    Transonic viscous-inviscid interaction is considered using the Euler and inverse compressible turbulent boundary-layer equations. Certain improvements in the inverse boundary-layer method are mentioned, along with experiences in using various Runge-Kutta schemes to solve the Euler equations. Numerical conditions imposed on the Euler equations at a surface for viscous-inviscid interaction using the method of equivalent sources are developed, and numerical solutions are presented and compared with experimental data to illustrate essential points. Previously announced in STAR N83-17829

  3. Numerical solution of the two-dimensional time-dependent incompressible Euler equations

    NASA Technical Reports Server (NTRS)

    Whitfield, David L.; Taylor, Lafayette K.

    1994-01-01

    A numerical method is presented for solving the artificial compressibility form of the 2D time-dependent incompressible Euler equations. The approach is based on using an approximate Riemann solver for the cell face numerical flux of a finite volume discretization. Characteristic variable boundary conditions are developed and presented for all boundaries and in-flow out-flow situations. The system of algebraic equations is solved using the discretized Newton-relaxation (DNR) implicit method. Numerical results are presented for both steady and unsteady flow.

  4. Beyond Euler's Method: Implicit Finite Differences in an Introductory ODE Course

    ERIC Educational Resources Information Center

    Kull, Trent C.

    2011-01-01

    A typical introductory course in ordinary differential equations (ODEs) exposes students to exact solution methods. However, many differential equations must be approximated with numerical methods. Textbooks commonly include explicit methods such as Euler's and Improved Euler's. Implicit methods are typically introduced in more advanced courses…

  5. Towards Perfectly Absorbing Boundary Conditions for Euler Equations

    NASA Technical Reports Server (NTRS)

    Hayder, M. Ehtesham; Hu, Fang Q.; Hussaini, M. Yousuff

    1997-01-01

    In this paper, we examine the effectiveness of absorbing layers as non-reflecting computational boundaries for the Euler equations. The absorbing-layer equations are simply obtained by splitting the governing equations in the coordinate directions and introducing absorption coefficients in each split equation. This methodology is similar to that used by Berenger for the numerical solutions of Maxwell's equations. Specifically, we apply this methodology to three physical problems shock-vortex interactions, a plane free shear flow and an axisymmetric jet- with emphasis on acoustic wave propagation. Our numerical results indicate that the use of absorbing layers effectively minimizes numerical reflection in all three problems considered.

  6. Numerical simulation of vortical ideal fluid flow through curved channel

    NASA Astrophysics Data System (ADS)

    Moshkin, N. P.; Mounnamprang, P.

    2003-04-01

    A numerical algorithm to study the boundary-value problem in which the governing equations are the steady Euler equations and the vorticity is given on the inflow parts of the domain boundary is developed. The Euler equations are implemented in terms of the stream function and vorticity. An irregular physical domain is transformed into a rectangle in the computational domain and the Euler equations are rewritten with respect to a curvilinear co-ordinate system. The convergence of the finite-difference equations to the exact solution is shown experimentally for the test problems by comparing the computational results with the exact solutions on the sequence of grids. To find the pressure from the known vorticity and stream function, the Euler equations are utilized in the Gromeka-Lamb form. The numerical algorithm is illustrated with several examples of steady flow through a two-dimensional channel with curved walls. The analysis of calculations shows strong dependence of the pressure field on the vorticity given at the inflow parts of the boundary. Plots of the flow structure and isobars, for different geometries of channel and for different values of vorticity on entrance, are also presented.

  7. Embedding methods for the steady Euler equations

    NASA Technical Reports Server (NTRS)

    Chang, S. H.; Johnson, G. M.

    1983-01-01

    An approach to the numerical solution of the steady Euler equations is to embed the first-order Euler system in a second-order system and then to recapture the original solution by imposing additional boundary conditions. Initial development of this approach and computational experimentation with it were previously based on heuristic physical reasoning. This has led to the construction of a relaxation procedure for the solution of two-dimensional steady flow problems. The theoretical justification for the embedding approach is addressed. It is proven that, with the appropriate choice of embedding operator and additional boundary conditions, the solution to the embedded system is exactly the one to the original Euler equations. Hence, solving the embedded version of the Euler equations will not produce extraneous solutions.

  8. Prediction of Undsteady Flows in Turbomachinery Using the Linearized Euler Equations on Deforming Grids

    NASA Technical Reports Server (NTRS)

    Clark, William S.; Hall, Kenneth C.

    1994-01-01

    A linearized Euler solver for calculating unsteady flows in turbomachinery blade rows due to both incident gusts and blade motion is presented. The model accounts for blade loading, blade geometry, shock motion, and wake motion. Assuming that the unsteadiness in the flow is small relative to the nonlinear mean solution, the unsteady Euler equations can be linearized about the mean flow. This yields a set of linear variable coefficient equations that describe the small amplitude harmonic motion of the fluid. These linear equations are then discretized on a computational grid and solved using standard numerical techniques. For transonic flows, however, one must use a linear discretization which is a conservative linearization of the non-linear discretized Euler equations to ensure that shock impulse loads are accurately captured. Other important features of this analysis include a continuously deforming grid which eliminates extrapolation errors and hence, increases accuracy, and a new numerically exact, nonreflecting far-field boundary condition treatment based on an eigenanalysis of the discretized equations. Computational results are presented which demonstrate the computational accuracy and efficiency of the method and demonstrate the effectiveness of the deforming grid, far-field nonreflecting boundary conditions, and shock capturing techniques. A comparison of the present unsteady flow predictions to other numerical, semi-analytical, and experimental methods shows excellent agreement. In addition, the linearized Euler method presented requires one or two orders-of-magnitude less computational time than traditional time marching techniques making the present method a viable design tool for aeroelastic analyses.

  9. Given a one-step numerical scheme, on which ordinary differential equations is it exact?

    NASA Astrophysics Data System (ADS)

    Villatoro, Francisco R.

    2009-01-01

    A necessary condition for a (non-autonomous) ordinary differential equation to be exactly solved by a one-step, finite difference method is that the principal term of its local truncation error be null. A procedure to determine some ordinary differential equations exactly solved by a given numerical scheme is developed. Examples of differential equations exactly solved by the explicit Euler, implicit Euler, trapezoidal rule, second-order Taylor, third-order Taylor, van Niekerk's second-order rational, and van Niekerk's third-order rational methods are presented.

  10. Eigenmode Analysis of Boundary Conditions for One-Dimensional Preconditioned Euler Equations

    NASA Technical Reports Server (NTRS)

    Darmofal, David L.

    1998-01-01

    An analysis of the effect of local preconditioning on boundary conditions for the subsonic, one-dimensional Euler equations is presented. Decay rates for the eigenmodes of the initial boundary value problem are determined for different boundary conditions. Riemann invariant boundary conditions based on the unpreconditioned Euler equations are shown to be reflective with preconditioning, and, at low Mach numbers, disturbances do not decay. Other boundary conditions are investigated which are non-reflective with preconditioning and numerical results are presented confirming the analysis.

  11. The P1-RKDG method for two-dimensional Euler equations of gas dynamics

    NASA Technical Reports Server (NTRS)

    Cockburn, Bernardo; Shu, Chi-Wang

    1991-01-01

    A class of nonlinearly stable Runge-Kutta local projection discontinuous Galerkin (RKDG) finite element methods for conservation laws is investigated. Two dimensional Euler equations for gas dynamics are solved using P1 elements. The generalization of the local projections, which for scalar nonlinear conservation laws was designed to satisfy a local maximum principle, to systems of conservation laws such as the Euler equations of gas dynamics using local characteristic decompositions is discussed. Numerical examples include the standard regular shock reflection problem, the forward facing step problem, and the double Mach reflection problem. These preliminary numerical examples are chosen to show the capacity of the approach to obtain nonlinearly stable results comparable with the modern nonoscillatory finite difference methods.

  12. Adaptive Osher-type scheme for the Euler equations with highly nonlinear equations of state

    NASA Astrophysics Data System (ADS)

    Lee, Bok Jik; Toro, Eleuterio F.; Castro, Cristóbal E.; Nikiforakis, Nikolaos

    2013-08-01

    For the numerical simulation of detonation of condensed phase explosives, a complex equation of state (EOS), such as the Jones-Wilkins-Lee (JWL) EOS or the Cochran-Chan (C-C) EOS, are widely used. However, when a conservative scheme is used for solving the Euler equations with such equations of state, a spurious solution across the contact discontinuity, a well known phenomenon in multi-fluid systems, arises even for single materials. In this work, we develop a generalised Osher-type scheme in an adaptive primitive-conservative framework to overcome the aforementioned difficulties. Resulting numerical solutions are compared with the exact solutions and with the numerical solutions from the Godunov method in conjunction with the exact Riemann solver for the Euler equations with Mie-Grüneisen form of equations of state, such as the JWL and the C-C equations of state. The adaptive scheme is extended to second order and its empirical convergence rates are presented, verifying second order accuracy for smooth solutions. Through a suite of several tests problems in one and two space dimensions we illustrate the failure of conservative schemes and the capability of the methods of this paper to overcome the difficulties.

  13. Uniform high order spectral methods for one and two dimensional Euler equations

    NASA Technical Reports Server (NTRS)

    Cai, Wei; Shu, Chi-Wang

    1991-01-01

    Uniform high order spectral methods to solve multi-dimensional Euler equations for gas dynamics are discussed. Uniform high order spectral approximations with spectral accuracy in smooth regions of solutions are constructed by introducing the idea of the Essentially Non-Oscillatory (ENO) polynomial interpolations into the spectral methods. The authors present numerical results for the inviscid Burgers' equation, and for the one dimensional Euler equations including the interactions between a shock wave and density disturbance, Sod's and Lax's shock tube problems, and the blast wave problem. The interaction between a Mach 3 two dimensional shock wave and a rotating vortex is simulated.

  14. Solution of the Euler equations with viscous-inviscid interaction for high Reynolds number transonic flow past wing/body configurations

    NASA Technical Reports Server (NTRS)

    Koenig, Keith

    1986-01-01

    The theoretical and numerical bases of a program for the solution of the Euler equations with viscous-inviscid interaction for high Reynolds number transonic flow past wing/body configurations are explained. The emphasis is upon the logic behind the equation development. The program is fully detailed so that the user can quickly become familiar with its operation.

  15. Entropy Splitting for High Order Numerical Simulation of Vortex Sound at Low Mach Numbers

    NASA Technical Reports Server (NTRS)

    Mueller, B.; Yee, H. C.; Mansour, Nagi (Technical Monitor)

    2001-01-01

    A method of minimizing numerical errors, and improving nonlinear stability and accuracy associated with low Mach number computational aeroacoustics (CAA) is proposed. The method consists of two levels. From the governing equation level, we condition the Euler equations in two steps. The first step is to split the inviscid flux derivatives into a conservative and a non-conservative portion that satisfies a so called generalized energy estimate. This involves the symmetrization of the Euler equations via a transformation of variables that are functions of the physical entropy. Owing to the large disparity of acoustic and stagnation quantities in low Mach number aeroacoustics, the second step is to reformulate the split Euler equations in perturbation form with the new unknowns as the small changes of the conservative variables with respect to their large stagnation values. From the numerical scheme level, a stable sixth-order central interior scheme with a third-order boundary schemes that satisfies the discrete analogue of the integration-by-parts procedure used in the continuous energy estimate (summation-by-parts property) is employed.

  16. Extension of lattice Boltzmann flux solver for simulation of compressible multi-component flows

    NASA Astrophysics Data System (ADS)

    Yang, Li-Ming; Shu, Chang; Yang, Wen-Ming; Wang, Yan

    2018-05-01

    The lattice Boltzmann flux solver (LBFS), which was presented by Shu and his coworkers for solving compressible fluid flow problems, is extended to simulate compressible multi-component flows in this work. To solve the two-phase gas-liquid problems, the model equations with stiffened gas equation of state are adopted. In this model, two additional non-conservative equations are introduced to represent the material interfaces, apart from the classical Euler equations. We first convert the interface equations into the full conservative form by applying the mass equation. After that, we calculate the numerical fluxes of the classical Euler equations by the existing LBFS and the numerical fluxes of the interface equations by the passive scalar approach. Once all the numerical fluxes at the cell interface are obtained, the conservative variables at cell centers can be updated by marching the equations in time and the material interfaces can be identified via the distributions of the additional variables. The numerical accuracy and stability of present scheme are validated by its application to several compressible multi-component fluid flow problems.

  17. a Numerical Comparison of Langrange and Kane's Methods of AN Arm Segment

    NASA Astrophysics Data System (ADS)

    Rambely, Azmin Sham; Halim, Norhafiza Ab.; Ahmad, Rokiah Rozita

    A 2-D model of a two-link kinematic chain is developed using two dynamics equations of motion, namely Kane's and Lagrange Methods. The dynamics equations are reduced to first order differential equation and solved using modified Euler and fourth order Runge Kutta to approximate the shoulder and elbow joint angles during a smash performance in badminton. Results showed that Runge-Kutta produced a better and exact approximation than that of modified Euler and both dynamic equations produced better absolute errors.

  18. Numerical solution of special ultra-relativistic Euler equations using central upwind scheme

    NASA Astrophysics Data System (ADS)

    Ghaffar, Tayabia; Yousaf, Muhammad; Qamar, Shamsul

    2018-06-01

    This article is concerned with the numerical approximation of one and two-dimensional special ultra-relativistic Euler equations. The governing equations are coupled first-order nonlinear hyperbolic partial differential equations. These equations describe perfect fluid flow in terms of the particle density, the four-velocity and the pressure. A high-resolution shock-capturing central upwind scheme is employed to solve the model equations. To avoid excessive numerical diffusion, the considered scheme avails the specific information of local propagation speeds. By using Runge-Kutta time stepping method and MUSCL-type initial reconstruction, we have obtained 2nd order accuracy of the proposed scheme. After discussing the model equations and the numerical technique, several 1D and 2D test problems are investigated. For all the numerical test cases, our proposed scheme demonstrates very good agreement with the results obtained by well-established algorithms, even in the case of highly relativistic 2D test problems. For validation and comparison, the staggered central scheme and the kinetic flux-vector splitting (KFVS) method are also implemented to the same model. The robustness and efficiency of central upwind scheme is demonstrated by the numerical results.

  19. Concepts for radically increasing the numerical convergence rate of the Euler equations

    NASA Technical Reports Server (NTRS)

    Nixon, David; Tzuoo, Keh-Lih; Caruso, Steven C.; Farshchi, Mohammad; Klopfer, Goetz H.; Ayoub, Alfred

    1987-01-01

    Integral equation and finite difference methods have been developed for solving transonic flow problems using linearized forms of the transonic small disturbance and Euler equations. A key element is the use of a strained coordinate system in which the shock remains fixed. Additional criteria are developed to determine the free parameters in the coordinate straining; these free parameters are functions of the shock location. An integral equation analysis showed that the shock is located by ensuring that no expansion shocks exist in the solution. The expansion shock appears as oscillations in the solution near the sonic line, and the correct shock location is determined by removing these oscillations. A second objective was to study the ability of the Euler equation to model separated flow.

  20. Nonideal Rayleigh–Taylor mixing

    PubMed Central

    Lim, Hyunkyung; Iwerks, Justin; Glimm, James; Sharp, David H.

    2010-01-01

    Rayleigh–Taylor mixing is a classical hydrodynamic instability that occurs when a light fluid pushes against a heavy fluid. The two main sources of nonideal behavior in Rayleigh–Taylor (RT) mixing are regularizations (physical and numerical), which produce deviations from a pure Euler equation, scale invariant formulation, and nonideal (i.e., experimental) initial conditions. The Kolmogorov theory of turbulence predicts stirring at all length scales for the Euler fluid equations without regularization. We interpret mathematical theories of existence and nonuniqueness in this context, and we provide numerical evidence for dependence of the RT mixing rate on nonideal regularizations; in other words, indeterminacy when modeled by Euler equations. Operationally, indeterminacy shows up as nonunique solutions for RT mixing, parametrized by Schmidt and Prandtl numbers, in the large Reynolds number (Euler equation) limit. Verification and validation evidence is presented for the large eddy simulation algorithm used here. Mesh convergence depends on breaking the nonuniqueness with explicit use of the laminar Schmidt and Prandtl numbers and their turbulent counterparts, defined in terms of subgrid scale models. The dependence of the mixing rate on the Schmidt and Prandtl numbers and other physical parameters will be illustrated. We demonstrate numerically the influence of initial conditions on the mixing rate. Both the dominant short wavelength initial conditions and long wavelength perturbations are observed to play a role. By examination of two classes of experiments, we observe the absence of a single universal explanation, with long and short wavelength initial conditions, and the various physical and numerical regularizations contributing in different proportions in these two different contexts. PMID:20615983

  1. A second-order accurate kinetic-theory-based method for inviscid compressible flows

    NASA Technical Reports Server (NTRS)

    Deshpande, Suresh M.

    1986-01-01

    An upwind method for the numerical solution of the Euler equations is presented. This method, called the kinetic numerical method (KNM), is based on the fact that the Euler equations are moments of the Boltzmann equation of the kinetic theory of gases when the distribution function is Maxwellian. The KNM consists of two phases, the convection phase and the collision phase. The method is unconditionally stable and explicit. It is highly vectorizable and can be easily made total variation diminishing for the distribution function by a suitable choice of the interpolation strategy. The method is applied to a one-dimensional shock-propagation problem and to a two-dimensional shock-reflection problem.

  2. An explicit predictor-corrector solver with applications to Burgers' equation

    NASA Technical Reports Server (NTRS)

    Dey, S. K.; Dey, C.

    1983-01-01

    Forward Euler's explicit, finite-difference formula of extrapolation, is used as a predictor and a convex formula as a corrector to integrate differential equations numerically. An application has been made to Burger's equation.

  3. Comparison between Euler and quaternion parametrization in UAV dynamics

    NASA Astrophysics Data System (ADS)

    Alaimo, A.; Artale, V.; Milazzo, C.; Ricciardello, A.

    2013-10-01

    The main topic addressed in this paper is a comparison between Euler parametrization and Quaternion one in the description of the dynamics of a Unmanned Aerial Vehicle assumed as a rigid body. In details Newton Euler equations are re-written in terms of quaternions due to the singularities that the Euler angles lead. This formulation not only avoids the gimbal lock but also allows a better performance in numerical implementation thanks to the linearity of quaternion algebra. This kind of analysis, proved by some numerical results presented, has a great importance due to the applicability of quaternion to drone control. Indeed, this latter requires a time response as quick as possible, in order to be reliable.

  4. Polynomial elimination theory and non-linear stability analysis for the Euler equations

    NASA Technical Reports Server (NTRS)

    Kennon, S. R.; Dulikravich, G. S.; Jespersen, D. C.

    1986-01-01

    Numerical methods are presented that exploit the polynomial properties of discretizations of the Euler equations. It is noted that most finite difference or finite volume discretizations of the steady-state Euler equations produce a polynomial system of equations to be solved. These equations are solved using classical polynomial elimination theory, with some innovative modifications. This paper also presents some preliminary results of a new non-linear stability analysis technique. This technique is applicable to determining the stability of polynomial iterative schemes. Results are presented for applying the elimination technique to a one-dimensional test case. For this test case, the exact solution is computed in three iterations. The non-linear stability analysis is applied to determine the optimal time step for solving Burgers' equation using the MacCormack scheme. The estimated optimal time step is very close to the time step that arises from a linear stability analysis.

  5. Euler equation computations for the flow over a hovering helicopter rotor

    NASA Technical Reports Server (NTRS)

    Roberts, Thomas Wesley

    1988-01-01

    A numerical solution technique is developed for computing the flow field around an isolated helicopter rotor in hover. The flow is governed by the compressible Euler equations which are integrated using a finite volume approach. The Euler equations are coupled to a free wake model of the rotary wing vortical wake. This wake model is incorporated into the finite volume solver using a prescribed flow, or perturbation, technique which eliminates the numerical diffusion of vorticity due to the artificial viscosity of the scheme. The work is divided into three major parts: (1) comparisons of Euler solutions to experimental data for the flow around isolated wings show good agreement with the surface pressures, but poor agreement with the vortical wake structure; (2) the perturbation method is developed and used to compute the interaction of a streamwise vortex with a semispan wing. The rapid diffusion of the vortex when only the basic Euler solver is used is illustrated, and excellent agreement with experimental section lift coefficients is demonstrated when using the perturbation approach; and (3) the free wake solution technique is described and the coupling of the wake to the Euler solver for an isolated rotor is presented. Comparisons with experimental blade load data for several cases show good agreement, with discrepancies largely attributable to the neglect of viscous effects. The computed wake geometries agree less well with experiment, the primary difference being that too rapid a wake contraction is predicted for all the cases.

  6. On the interpretations of Langevin stochastic equation in different coordinate systems

    NASA Astrophysics Data System (ADS)

    Martínez, E.; López-Díaz, L.; Torres, L.; Alejos, O.

    2004-01-01

    The stochastic Langevin Landau-Lifshitz equation is usually utilized in micromagnetics formalism to account for thermal effects. Commonly, two different interpretations of the stochastic integrals can be made: Ito and Stratonovich. In this work, the Langevin-Landau-Lifshitz (LLL) equation is written in both Cartesian and Spherical coordinates. If Spherical coordinates are employed, the noise is additive, and therefore, Ito and Stratonovich solutions are equal. This is not the case when (LLL) equation is written in Cartesian coordinates. In this case, the Langevin equation must be interpreted in the Stratonovich sense in order to reproduce correct statistical results. Nevertheless, the statistics of the numerical results obtained from Euler-Ito and Euler-Stratonovich schemes are equivalent due to the additional numerical constraint imposed in Cartesian system after each time step, which itself assures that the magnitude of the magnetization is preserved.

  7. Nonlinear (time domain) and linearized (time and frequency domain) solutions to the compressible Euler equations in conservation law form

    NASA Technical Reports Server (NTRS)

    Sreenivas, Kidambi; Whitfield, David L.

    1995-01-01

    Two linearized solvers (time and frequency domain) based on a high resolution numerical scheme are presented. The basic approach is to linearize the flux vector by expressing it as a sum of a mean and a perturbation. This allows the governing equations to be maintained in conservation law form. A key difference between the time and frequency domain computations is that the frequency domain computations require only one grid block irrespective of the interblade phase angle for which the flow is being computed. As a result of this and due to the fact that the governing equations for this case are steady, frequency domain computations are substantially faster than the corresponding time domain computations. The linearized equations are used to compute flows in turbomachinery blade rows (cascades) arising due to blade vibrations. Numerical solutions are compared to linear theory (where available) and to numerical solutions of the nonlinear Euler equations.

  8. Local Analysis of Shock Capturing Using Discontinuous Galerkin Methodology

    NASA Technical Reports Server (NTRS)

    Atkins, H. L.

    1997-01-01

    The compact form of the discontinuous Galerkin method allows for a detailed local analysis of the method in the neighborhood of the shock for a non-linear model problem. Insight gained from the analysis leads to new flux formulas that are stable and that preserve the compactness of the method. Although developed for a model equation, the flux formulas are applicable to systems such as the Euler equations. This article presents the analysis for methods with a degree up to 5. The analysis is accompanied by supporting numerical experiments using Burgers' equation and the Euler equations.

  9. On the Maxwellian distribution, symmetric form, and entropy conservation for the Euler equations

    NASA Technical Reports Server (NTRS)

    Deshpande, S. M.

    1986-01-01

    The Euler equations of gas dynamics have some very interesting properties in that the flux vector is a homogeneous function of the unknowns and the equations can be cast in symmetric hyperbolic form and satisfy the entropy conservation. The Euler equations are the moments of the Boltzmann equation of the kinetic theory of gases when the velocity distribution function is a Maxwellian. The present paper shows the relationship between the symmetrizability and the Maxwellian velocity distribution. The entropy conservation is in terms of the H-function, which is a slight modification of the H-function first introduced by Boltzmann in his famous H-theorem. In view of the H-theorem, it is suggested that the development of total H-diminishing (THD) numerical methods may be more profitable than the usual total variation diminishing (TVD) methods for obtaining wiggle-free solutions.

  10. Non-dispersive conservative regularisation of nonlinear shallow water (and isentropic Euler equations)

    NASA Astrophysics Data System (ADS)

    Clamond, Didier; Dutykh, Denys

    2018-02-01

    A new regularisation of the shallow water (and isentropic Euler) equations is proposed. The regularised equations are non-dissipative, non-dispersive and posses a variational structure; thus, the mass, the momentum and the energy are conserved. Hence, for instance, regularised hydraulic jumps are smooth and non-oscillatory. Another particularly interesting feature of this regularisation is that smoothed 'shocks' propagates at exactly the same speed as the original discontinuous ones. The performance of the new model is illustrated numerically on some dam-break test cases, which are classical in the hyperbolic realm.

  11. Parallel discontinuous Galerkin FEM for computing hyperbolic conservation law on unstructured grids

    NASA Astrophysics Data System (ADS)

    Ma, Xinrong; Duan, Zhijian

    2018-04-01

    High-order resolution Discontinuous Galerkin finite element methods (DGFEM) has been known as a good method for solving Euler equations and Navier-Stokes equations on unstructured grid, but it costs too much computational resources. An efficient parallel algorithm was presented for solving the compressible Euler equations. Moreover, the multigrid strategy based on three-stage three-order TVD Runge-Kutta scheme was used in order to improve the computational efficiency of DGFEM and accelerate the convergence of the solution of unsteady compressible Euler equations. In order to make each processor maintain load balancing, the domain decomposition method was employed. Numerical experiment performed for the inviscid transonic flow fluid problems around NACA0012 airfoil and M6 wing. The results indicated that our parallel algorithm can improve acceleration and efficiency significantly, which is suitable for calculating the complex flow fluid.

  12. A rotationally biased upwind difference scheme for the Euler equations

    NASA Technical Reports Server (NTRS)

    Davis, S. F.

    1983-01-01

    The upwind difference schemes of Godunov, Osher, Roe and van Leer are able to resolve one dimensional steady shocks for the Euler equations within one or two mesh intervals. Unfortunately, this resolution is lost in two dimensions when the shock crosses the computing grid at an oblique angle. To correct this problem, a numerical scheme was developed which automatically locates the angle at which a shock might be expected to cross the computing grid and then constructs separate finite difference formulas for the flux components normal and tangential to this direction. Numerical results which illustrate the ability of this method to resolve steady oblique shocks are presented.

  13. Vortex methods for separated flows

    NASA Technical Reports Server (NTRS)

    Spalart, Philippe R.

    1988-01-01

    The numerical solution of the Euler or Navier-Stokes equations by Lagrangian vortex methods is discussed. The mathematical background is presented and includes the relationship with traditional point-vortex studies, convergence to smooth solutions of the Euler equations, and the essential differences between two and three-dimensional cases. The difficulties in extending the method to viscous or compressible flows are explained. Two-dimensional flows around bluff bodies are emphasized. Robustness of the method and the assessment of accuracy, vortex-core profiles, time-marching schemes, numerical dissipation, and efficient programming are treated. Operation counts for unbounded and periodic flows are given, and two algorithms designed to speed up the calculations are described.

  14. Development of a Chemically Reacting Flow Solver on the Graphic Processing Units

    DTIC Science & Technology

    2011-05-10

    been implemented on the GPU by Schive et al. (2010). The outcome of their work is the GAMER code for astrophysical simulation. Thibault and...Euler equations at each cell. For simplification, consider the Euler equations in one dimension with no source terms; the discretized form of the...is known to be more diffusive than the other fluxes due to the large bound of the numerical signal velocities: b+, b-. 3.4 Time Marching Methods

  15. Boundary and Interface Conditions for High Order Finite Difference Methods Applied to the Euler and Navier-Strokes Equations

    NASA Technical Reports Server (NTRS)

    Nordstrom, Jan; Carpenter, Mark H.

    1998-01-01

    Boundary and interface conditions for high order finite difference methods applied to the constant coefficient Euler and Navier-Stokes equations are derived. The boundary conditions lead to strict and strong stability. The interface conditions are stable and conservative even if the finite difference operators and mesh sizes vary from domain to domain. Numerical experiments show that the new conditions also lead to good results for the corresponding nonlinear problems.

  16. Modelling gas dynamics in 1D ducts with abrupt area change

    NASA Astrophysics Data System (ADS)

    Menina, R.; Saurel, R.; Zereg, M.; Houas, L.

    2011-09-01

    Most gas dynamic computations in industrial ducts are done in one dimension with cross-section-averaged Euler equations. This poses a fundamental difficulty as soon as geometrical discontinuities are present. The momentum equation contains a non-conservative term involving a surface pressure integral, responsible for momentum loss. Definition of this integral is very difficult from a mathematical standpoint as the flow may contain other discontinuities (shocks, contact discontinuities). From a physical standpoint, geometrical discontinuities induce multidimensional vortices that modify the surface pressure integral. In the present paper, an improved 1D flow model is proposed. An extra energy (or entropy) equation is added to the Euler equations expressing the energy and turbulent pressure stored in the vortices generated by the abrupt area variation. The turbulent energy created by the flow-area change interaction is determined by a specific estimate of the surface pressure integral. Model's predictions are compared with 2D-averaged results from numerical solution of the Euler equations. Comparison with shock tube experiments is also presented. The new 1D-averaged model improves the conventional cross-section-averaged Euler equations and is able to reproduce the main flow features.

  17. An Unconditionally Stable, Positivity-Preserving Splitting Scheme for Nonlinear Black-Scholes Equation with Transaction Costs

    PubMed Central

    Guo, Jianqiang; Wang, Wansheng

    2014-01-01

    This paper deals with the numerical analysis of nonlinear Black-Scholes equation with transaction costs. An unconditionally stable and monotone splitting method, ensuring positive numerical solution and avoiding unstable oscillations, is proposed. This numerical method is based on the LOD-Backward Euler method which allows us to solve the discrete equation explicitly. The numerical results for vanilla call option and for European butterfly spread are provided. It turns out that the proposed scheme is efficient and reliable. PMID:24895653

  18. An unconditionally stable, positivity-preserving splitting scheme for nonlinear Black-Scholes equation with transaction costs.

    PubMed

    Guo, Jianqiang; Wang, Wansheng

    2014-01-01

    This paper deals with the numerical analysis of nonlinear Black-Scholes equation with transaction costs. An unconditionally stable and monotone splitting method, ensuring positive numerical solution and avoiding unstable oscillations, is proposed. This numerical method is based on the LOD-Backward Euler method which allows us to solve the discrete equation explicitly. The numerical results for vanilla call option and for European butterfly spread are provided. It turns out that the proposed scheme is efficient and reliable.

  19. Control theory based airfoil design using the Euler equations

    NASA Technical Reports Server (NTRS)

    Jameson, Antony; Reuther, James

    1994-01-01

    This paper describes the implementation of optimization techniques based on control theory for airfoil design. In our previous work it was shown that control theory could be employed to devise effective optimization procedures for two-dimensional profiles by using the potential flow equation with either a conformal mapping or a general coordinate system. The goal of our present work is to extend the development to treat the Euler equations in two-dimensions by procedures that can readily be generalized to treat complex shapes in three-dimensions. Therefore, we have developed methods which can address airfoil design through either an analytic mapping or an arbitrary grid perturbation method applied to a finite volume discretization of the Euler equations. Here the control law serves to provide computationally inexpensive gradient information to a standard numerical optimization method. Results are presented for both the inverse problem and drag minimization problem.

  20. Two-dimensional Euler and Navier-Stokes Time accurate simulations of fan rotor flows

    NASA Technical Reports Server (NTRS)

    Boretti, A. A.

    1990-01-01

    Two numerical methods are presented which describe the unsteady flow field in the blade-to-blade plane of an axial fan rotor. These methods solve the compressible, time-dependent, Euler and the compressible, turbulent, time-dependent, Navier-Stokes conservation equations for mass, momentum, and energy. The Navier-Stokes equations are written in Favre-averaged form and are closed with an approximate two-equation turbulence model with low Reynolds number and compressibility effects included. The unsteady aerodynamic component is obtained by superposing inflow or outflow unsteadiness to the steady conditions through time-dependent boundary conditions. The integration in space is performed by using a finite volume scheme, and the integration in time is performed by using k-stage Runge-Kutta schemes, k = 2,5. The numerical integration algorithm allows the reduction of the computational cost of an unsteady simulation involving high frequency disturbances in both CPU time and memory requirements. Less than 200 sec of CPU time are required to advance the Euler equations in a computational grid made up of about 2000 grid during 10,000 time steps on a CRAY Y-MP computer, with a required memory of less than 0.3 megawords.

  1. Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Frederickson, Paul O.

    1990-01-01

    High order accurate finite-volume schemes for solving the Euler equations of gasdynamics are developed. Central to the development of these methods are the construction of a k-exact reconstruction operator given cell-averaged quantities and the use of high order flux quadrature formulas. General polygonal control volumes (with curved boundary edges) are considered. The formulations presented make no explicit assumption as to complexity or convexity of control volumes. Numerical examples are presented for Ringleb flow to validate the methodology.

  2. Stochastic Optimal Prediction with Application to Averaged Euler Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bell, John; Chorin, Alexandre J.; Crutchfield, William

    Optimal prediction (OP) methods compensate for a lack of resolution in the numerical solution of complex problems through the use of an invariant measure as a prior measure in the Bayesian sense. In first-order OP, unresolved information is approximated by its conditional expectation with respect to the invariant measure. In higher-order OP, unresolved information is approximated by a stochastic estimator, leading to a system of random or stochastic differential equations. We explain the ideas through a simple example, and then apply them to the solution of Averaged Euler equations in two space dimensions.

  3. On Bi-Grid Local Mode Analysis of Solution Techniques for 3-D Euler and Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Ibraheem, S. O.; Demuren, A. O.

    1994-01-01

    A procedure is presented for utilizing a bi-grid stability analysis as a practical tool for predicting multigrid performance in a range of numerical methods for solving Euler and Navier-Stokes equations. Model problems based on the convection, diffusion and Burger's equation are used to illustrate the superiority of the bi-grid analysis as a predictive tool for multigrid performance in comparison to the smoothing factor derived from conventional von Neumann analysis. For the Euler equations, bi-grid analysis is presented for three upwind difference based factorizations, namely Spatial, Eigenvalue and Combination splits, and two central difference based factorizations, namely LU and ADI methods. In the former, both the Steger-Warming and van Leer flux-vector splitting methods are considered. For the Navier-Stokes equations, only the Beam-Warming (ADI) central difference scheme is considered. In each case, estimates of multigrid convergence rates from the bi-grid analysis are compared to smoothing factors obtained from single-grid stability analysis. Effects of grid aspect ratio and flow skewness are examined. Both predictions are compared with practical multigrid convergence rates for 2-D Euler and Navier-Stokes solutions based on the Beam-Warming central scheme.

  4. The impact of the form of the Euler equations for radial flow in cylindrical and spherical coordinates on numerical conservation and accuracy

    NASA Astrophysics Data System (ADS)

    Crittenden, P. E.; Balachandar, S.

    2018-07-01

    The radial one-dimensional Euler equations are often rewritten in what is known as the geometric source form. The differential operator is identical to the Cartesian case, but source terms result. Since the theory and numerical methods for the Cartesian case are well-developed, they are often applied without modification to cylindrical and spherical geometries. However, numerical conservation is lost. In this article, AUSM^+-up is applied to a numerically conservative (discrete) form of the Euler equations labeled the geometric form, a nearly conservative variation termed the geometric flux form, and the geometric source form. The resulting numerical methods are compared analytically and numerically through three types of test problems: subsonic, smooth, steady-state solutions, Sedov's similarity solution for point or line-source explosions, and shock tube problems. Numerical conservation is analyzed for all three forms in both spherical and cylindrical coordinates. All three forms result in constant enthalpy for steady flows. The spatial truncation errors have essentially the same order of convergence, but the rate constants are superior for the geometric and geometric flux forms for the steady-state solutions. Only the geometric form produces the correct shock location for Sedov's solution, and a direct connection between the errors in the shock locations and energy conservation is found. The shock tube problems are evaluated with respect to feature location using an approximation with a very fine discretization as the benchmark. Extensions to second order appropriate for cylindrical and spherical coordinates are also presented and analyzed numerically. Conclusions are drawn, and recommendations are made. A derivation of the steady-state solution is given in the Appendix.

  5. The impact of the form of the Euler equations for radial flow in cylindrical and spherical coordinates on numerical conservation and accuracy

    NASA Astrophysics Data System (ADS)

    Crittenden, P. E.; Balachandar, S.

    2018-03-01

    The radial one-dimensional Euler equations are often rewritten in what is known as the geometric source form. The differential operator is identical to the Cartesian case, but source terms result. Since the theory and numerical methods for the Cartesian case are well-developed, they are often applied without modification to cylindrical and spherical geometries. However, numerical conservation is lost. In this article, AUSM^+ -up is applied to a numerically conservative (discrete) form of the Euler equations labeled the geometric form, a nearly conservative variation termed the geometric flux form, and the geometric source form. The resulting numerical methods are compared analytically and numerically through three types of test problems: subsonic, smooth, steady-state solutions, Sedov's similarity solution for point or line-source explosions, and shock tube problems. Numerical conservation is analyzed for all three forms in both spherical and cylindrical coordinates. All three forms result in constant enthalpy for steady flows. The spatial truncation errors have essentially the same order of convergence, but the rate constants are superior for the geometric and geometric flux forms for the steady-state solutions. Only the geometric form produces the correct shock location for Sedov's solution, and a direct connection between the errors in the shock locations and energy conservation is found. The shock tube problems are evaluated with respect to feature location using an approximation with a very fine discretization as the benchmark. Extensions to second order appropriate for cylindrical and spherical coordinates are also presented and analyzed numerically. Conclusions are drawn, and recommendations are made. A derivation of the steady-state solution is given in the Appendix.

  6. On buffer layers as non-reflecting computational boundaries

    NASA Technical Reports Server (NTRS)

    Hayder, M. Ehtesham; Turkel, Eli L.

    1996-01-01

    We examine an absorbing buffer layer technique for use as a non-reflecting boundary condition in the numerical simulation of flows. One such formulation was by Ta'asan and Nark for the linearized Euler equations. They modified the flow inside the buffer zone to artificially make it supersonic in the layer. We examine how this approach can be extended to the nonlinear Euler equations. We consider both a conservative and a non-conservative form modifying the governing equations in the buffer layer. We compare this with the case that the governing equations in the layer are the same as in the interior domain. We test the effectiveness of these buffer layers by a simulation of an excited axisymmetric jet based on a nonlinear compressible Navier-Stokes equations.

  7. Use of a residual distribution Euler solver to study the occurrence of transonic flow in Wells turbine rotor blades

    NASA Astrophysics Data System (ADS)

    Henriques, J. C. C.; Gato, L. M. C.

    The aim of the present study is to investigate the occurrence of transonic flow in several cascade geometries and blade sections that have been considered in the design of Wells turbine rotor blades. The calculations were performed using an implicit Euler solver for two-dimensional flow. The numerical method uses a multi-dimensional upwind matrix residual distribution scheme formulated on a new symmetrized form of the Euler equations, both in time and in space, that decouples the entropy and the enthalpy equations. Second-order accurate steady-state solutions where obtained using a compact three-point stencil. The results show that unwanted transonic flow may occur in the turbine rotor at relatively low mean-flow Mach numbers.

  8. Three-dimensional unstructured grid Euler computations using a fully-implicit, upwind method

    NASA Technical Reports Server (NTRS)

    Whitaker, David L.

    1993-01-01

    A method has been developed to solve the Euler equations on a three-dimensional unstructured grid composed of tetrahedra. The method uses an upwind flow solver with a linearized, backward-Euler time integration scheme. Each time step results in a sparse linear system of equations which is solved by an iterative, sparse matrix solver. Local-time stepping, switched evolution relaxation (SER), preconditioning and reuse of the Jacobian are employed to accelerate the convergence rate. Implicit boundary conditions were found to be extremely important for fast convergence. Numerical experiments have shown that convergence rates comparable to that of a multigrid, central-difference scheme are achievable on the same mesh. Results are presented for several grids about an ONERA M6 wing.

  9. Hyperbolic conservation laws and numerical methods

    NASA Technical Reports Server (NTRS)

    Leveque, Randall J.

    1990-01-01

    The mathematical structure of hyperbolic systems and the scalar equation case of conservation laws are discussed. Linear, nonlinear systems and the Riemann problem for the Euler equations are also studied. The numerical methods for conservation laws are presented in a nonstandard manner which leads to large time steps generalizations and computations on irregular grids. The solution of conservation laws with stiff source terms is examined.

  10. Airfoil Design Using a Coupled Euler and Integral Boundary Layer Method with Adjoint Based Sensitivities

    NASA Technical Reports Server (NTRS)

    Edwards, S.; Reuther, J.; Chattot, J. J.

    1997-01-01

    The objective of this paper is to present a control theory approach for the design of airfoils in the presence of viscous compressible flows. A coupled system of the integral boundary layer and the Euler equations is solved to provide rapid flow simulations. An adjunct approach consistent with the complete coupled state equations is employed to obtain the sensitivities needed to drive a numerical optimization algorithm. Design to target pressure distribution is demonstrated on an RAE 2822 airfoil at transonic speed.

  11. Potential Singularity for a Family of Models of the Axisymmetric Incompressible Flow

    NASA Astrophysics Data System (ADS)

    Hou, Thomas Y.; Jin, Tianling; Liu, Pengfei

    2017-03-01

    We study a family of 3D models for the incompressible axisymmetric Euler and Navier-Stokes equations. The models are derived by changing the strength of the convection terms in the equations written using a set of transformed variables. The models share several regularity results with the Euler and Navier-Stokes equations, including an energy identity, the conservation of a modified circulation quantity, the BKM criterion and the Prodi-Serrin criterion. The inviscid models with weak convection are numerically observed to develop stable self-similar singularity with the singular region traveling along the symmetric axis, and such singularity scenario does not seem to persist for strong convection.

  12. Bending of Euler-Bernoulli nanobeams based on the strain-driven and stress-driven nonlocal integral models: a numerical approach

    NASA Astrophysics Data System (ADS)

    Oskouie, M. Faraji; Ansari, R.; Rouhi, H.

    2018-04-01

    Eringen's nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects. Previous studies have revealed that using the differential form of the strain-driven version of this theory leads to paradoxical results in some cases, such as bending analysis of cantilevers, and recourse must be made to the integral version. In this article, a novel numerical approach is developed for the bending analysis of Euler-Bernoulli nanobeams in the context of strain- and stress-driven integral nonlocal models. This numerical approach is proposed for the direct solution to bypass the difficulties related to converting the integral governing equation into a differential equation. First, the governing equation is derived based on both strain-driven and stress-driven nonlocal models by means of the minimum total potential energy. Also, in each case, the governing equation is obtained in both strong and weak forms. To solve numerically the derived equations, matrix differential and integral operators are constructed based upon the finite difference technique and trapezoidal integration rule. It is shown that the proposed numerical approach can be efficiently applied to the strain-driven nonlocal model with the aim of resolving the mentioned paradoxes. Also, it is able to solve the problem based on the strain-driven model without inconsistencies of the application of this model that are reported in the literature.

  13. On reinitializing level set functions

    NASA Astrophysics Data System (ADS)

    Min, Chohong

    2010-04-01

    In this paper, we consider reinitializing level functions through equation ϕt+sgn(ϕ0)(‖∇ϕ‖-1)=0[16]. The method of Russo and Smereka [11] is taken in the spatial discretization of the equation. The spatial discretization is, simply speaking, the second order ENO finite difference with subcell resolution near the interface. Our main interest is on the temporal discretization of the equation. We compare the three temporal discretizations: the second order Runge-Kutta method, the forward Euler method, and a Gauss-Seidel iteration of the forward Euler method. The fact that the time in the equation is fictitious makes a hypothesis that all the temporal discretizations result in the same result in their stationary states. The fact that the absolute stability region of the forward Euler method is not wide enough to include all the eigenvalues of the linearized semi-discrete system of the second order ENO spatial discretization makes another hypothesis that the forward Euler temporal discretization should invoke numerical instability. Our results in this paper contradict both the hypotheses. The Runge-Kutta and Gauss-Seidel methods obtain the second order accuracy, and the forward Euler method converges with order between one and two. Examining all their properties, we conclude that the Gauss-Seidel method is the best among the three. Compared to the Runge-Kutta, it is twice faster and requires memory two times less with the same accuracy.

  14. Least-squares finite element methods for compressible Euler equations

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Carey, G. F.

    1990-01-01

    A method based on backward finite differencing in time and a least-squares finite element scheme for first-order systems of partial differential equations in space is applied to the Euler equations for gas dynamics. The scheme minimizes the L-sq-norm of the residual within each time step. The method naturally generates numerical dissipation proportional to the time step size. An implicit method employing linear elements has been implemented and proves robust. For high-order elements, computed solutions based on the L-sq method may have oscillations for calculations at similar time step sizes. To overcome this difficulty, a scheme which minimizes the weighted H1-norm of the residual is proposed and leads to a successful scheme with high-degree elements. Finally, a conservative least-squares finite element method is also developed. Numerical results for two-dimensional problems are given to demonstrate the shock resolution of the methods and compare different approaches.

  15. Second- and third-order upwind difference schemes for hyperbolic conservation laws

    NASA Technical Reports Server (NTRS)

    Yang, J. Y.

    1984-01-01

    Second- and third-order two time-level five-point explicit upwind-difference schemes are described for the numerical solution of hyperbolic systems of conservation laws and applied to the Euler equations of inviscid gas dynamics. Nonliner smoothing techniques are used to make the schemes total variation diminishing. In the method both hyperbolicity and conservation properties of the hyperbolic conservation laws are combined in a very natural way by introducing a normalized Jacobian matrix of the hyperbolic system. Entropy satisfying shock transition operators which are consistent with the upwind differencing are locally introduced when transonic shock transition is detected. Schemes thus constructed are suitable for shockcapturing calculations. The stability and the global order of accuracy of the proposed schemes are examined. Numerical experiments for the inviscid Burgers equation and the compressible Euler equations in one and two space dimensions involving various situations of aerodynamic interest are included and compared.

  16. Refinement Of Hexahedral Cells In Euler Flow Computations

    NASA Technical Reports Server (NTRS)

    Melton, John E.; Cappuccio, Gelsomina; Thomas, Scott D.

    1996-01-01

    Topologically Independent Grid, Euler Refinement (TIGER) computer program solves Euler equations of three-dimensional, unsteady flow of inviscid, compressible fluid by numerical integration on unstructured hexahedral coordinate grid refined where necessary to resolve shocks and other details. Hexahedral cells subdivided, each into eight smaller cells, as needed to refine computational grid in regions of high flow gradients. Grid Interactive Refinement and Flow-Field Examination (GIRAFFE) computer program written in conjunction with TIGER program to display computed flow-field data and to assist researcher in verifying specified boundary conditions and refining grid.

  17. Numerical computation of linear instability of detonations

    NASA Astrophysics Data System (ADS)

    Kabanov, Dmitry; Kasimov, Aslan

    2017-11-01

    We propose a method to study linear stability of detonations by direct numerical computation. The linearized governing equations together with the shock-evolution equation are solved in the shock-attached frame using a high-resolution numerical algorithm. The computed results are processed by the Dynamic Mode Decomposition technique to generate dispersion relations. The method is applied to the reactive Euler equations with simple-depletion chemistry as well as more complex multistep chemistry. The results are compared with those known from normal-mode analysis. We acknowledge financial support from King Abdullah University of Science and Technology.

  18. An efficient method for solving the steady Euler equations

    NASA Technical Reports Server (NTRS)

    Liou, M.-S.

    1986-01-01

    An efficient numerical procedure for solving a set of nonlinear partial differential equations, the steady Euler equations, using Newton's linearization procedure is presented. A theorem indicating quadratic convergence for the case of differential equations is demonstrated. A condition for the domain of quadratic convergence Omega(2) is obtained which indicates that whether an approximation lies in Omega(2) depends on the rate of change and the smoothness of the flow vectors, and hence is problem-dependent. The choice of spatial differencing, of particular importance for the present method, is discussed. The treatment of boundary conditions is addressed, and the system of equations resulting from the foregoing analysis is summarized and solution strategies are discussed. The convergence of calculated solutions is demonstrated by comparing them with exact solutions to one and two-dimensional problems.

  19. Generation and Radiation of Acoustic Waves from a 2-D Shear Layer using the CE/SE Method

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.; Wang, Xiao Y.; Chang, Sin-Chung; Jorgenson, Philip C. E.

    2000-01-01

    In the present work, the generation and radiation of acoustic waves from a 2-D shear layer problem is considered. An acoustic source inside of a 2-D jet excites an instability wave in the shear layer, resulting in sound Mach radiation. The numerical solution is obtained by solving the Euler equations using the space time conservation element and solution element (CE/SE) method. Linearization is achieved through choosing a small acoustic source amplitude. The Euler equations are nondimensionalized as instructed in the problem statement. All other conditions are the same except that the Crocco's relation has a slightly different form. In the following, after a brief sketch of the CE/SE method, the numerical results for this problem are presented.

  20. Fractional Bateman—Feshbach Tikochinsky Oscillator

    NASA Astrophysics Data System (ADS)

    Dumitru, Baleanu; Jihad, H. Asad; Ivo, Petras

    2014-02-01

    In the last few years the numerical methods for solving the fractional differential equations started to be applied intensively to real world phenomena. Having these things in mind in this manuscript we focus on the fractional Lagrangian and Hamiltonian of the complex Bateman—Feshbach Tikochinsky oscillator. The numerical analysis of the corresponding fractional Euler-Lagrange equations is given within the Grünwald—Letnikov approach, which is power series expansion of the generating function.

  1. Investigation of advanced counterrotation blade configuration concepts for high speed turboprop systems, task 1: Ducted propfan analysis

    NASA Technical Reports Server (NTRS)

    Hall, Edward J.; Delaney, Robert A.; Bettner, James L.

    1990-01-01

    The time-dependent three-dimensional Euler equations of gas dynamics were solved numerically to study the steady compressible transonic flow about ducted propfan propulsion systems. Aerodynamic calculations were based on a four-stage Runge-Kutta time-marching finite volume solution technique with added numerical dissipation. An implicit residual smoothing operator was used to aid convergence. Two calculation grids were employed in this study. The first grid utilized an H-type mesh network with a branch cut opening to represent the axisymmetric cowl. The second grid utilized a multiple-block mesh system with a C-type grid about the cowl. The individual blocks were numerically coupled in the Euler solver. Grid systems were generated by a combined algebraic/elliptic algortihm developed specifically for ducted propfans. Numerical calculations were initially performed for unducted propfans to verify the accuracy of the three-dimensional Euler formulation. The Euler analyses were then applied for the calculation of ducted propfan flows, and predicted results were compared with experimental data for two cases. The three-dimensional Euler analyses displayed exceptional accuracy, although certain parameters were observed to be very sensitive to geometric deflections. Both solution schemes were found to be very robust and demonstrated nearly equal efficiency and accuracy, although it was observed that the multi-block C-grid formulation provided somewhat better resolution of the cowl leading edge region.

  2. Numerical quadrature methods for integrals of singular periodic functions and their application to singular and weakly singular integral equations

    NASA Technical Reports Server (NTRS)

    Sidi, A.; Israeli, M.

    1986-01-01

    High accuracy numerical quadrature methods for integrals of singular periodic functions are proposed. These methods are based on the appropriate Euler-Maclaurin expansions of trapezoidal rule approximations and their extrapolations. They are used to obtain accurate quadrature methods for the solution of singular and weakly singular Fredholm integral equations. Such periodic equations are used in the solution of planar elliptic boundary value problems, elasticity, potential theory, conformal mapping, boundary element methods, free surface flows, etc. The use of the quadrature methods is demonstrated with numerical examples.

  3. Entropy Splitting and Numerical Dissipation

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Vinokur, M.; Djomehri, M. J.

    1999-01-01

    A rigorous stability estimate for arbitrary order of accuracy of spatial central difference schemes for initial-boundary value problems of nonlinear symmetrizable systems of hyperbolic conservation laws was established recently by Olsson and Oliger (1994) and Olsson (1995) and was applied to the two-dimensional compressible Euler equations for a perfect gas by Gerritsen and Olsson (1996) and Gerritsen (1996). The basic building block in developing the stability estimate is a generalized energy approach based on a special splitting of the flux derivative via a convex entropy function and certain homogeneous properties. Due to some of the unique properties of the compressible Euler equations for a perfect gas, the splitting resulted in the sum of a conservative portion and a non-conservative portion of the flux derivative. hereafter referred to as the "Entropy Splitting." There are several potential desirable attributes and side benefits of the entropy splitting for the compressible Euler equations that were not fully explored in Gerritsen and Olsson. The paper has several objectives. The first is to investigate the choice of the arbitrary parameter that determines the amount of splitting and its dependence on the type of physics of current interest to computational fluid dynamics. The second is to investigate in what manner the splitting affects the nonlinear stability of the central schemes for long time integrations of unsteady flows such as in nonlinear aeroacoustics and turbulence dynamics. If numerical dissipation indeed is needed to stabilize the central scheme, can the splitting help minimize the numerical dissipation compared to its un-split cousin? Extensive numerical study on the vortex preservation capability of the splitting in conjunction with central schemes for long time integrations will be presented. The third is to study the effect of the non-conservative proportion of splitting in obtaining the correct shock location for high speed complex shock-turbulence interactions. The fourth is to determine if this method can be extended to other physical equations of state and other evolutionary equation sets. If numerical dissipation is needed, the Yee, Sandham, and Djomehri (1999) numerical dissipation is employed. The Yee et al. schemes fit in the Olsson and Oliger framework.

  4. p-Euler equations and p-Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Li, Lei; Liu, Jian-Guo

    2018-04-01

    We propose in this work new systems of equations which we call p-Euler equations and p-Navier-Stokes equations. p-Euler equations are derived as the Euler-Lagrange equations for the action represented by the Benamou-Brenier characterization of Wasserstein-p distances, with incompressibility constraint. p-Euler equations have similar structures with the usual Euler equations but the 'momentum' is the signed (p - 1)-th power of the velocity. In the 2D case, the p-Euler equations have streamfunction-vorticity formulation, where the vorticity is given by the p-Laplacian of the streamfunction. By adding diffusion presented by γ-Laplacian of the velocity, we obtain what we call p-Navier-Stokes equations. If γ = p, the a priori energy estimates for the velocity and momentum have dual symmetries. Using these energy estimates and a time-shift estimate, we show the global existence of weak solutions for the p-Navier-Stokes equations in Rd for γ = p and p ≥ d ≥ 2 through a compactness criterion.

  5. A NURBS-enhanced finite volume solver for steady Euler equations

    NASA Astrophysics Data System (ADS)

    Meng, Xucheng; Hu, Guanghui

    2018-04-01

    In Hu and Yi (2016) [20], a non-oscillatory k-exact reconstruction method was proposed towards the high-order finite volume methods for steady Euler equations, which successfully demonstrated the high-order behavior in the simulations. However, the degeneracy of the numerical accuracy of the approximate solutions to problems with curved boundary can be observed obviously. In this paper, the issue is resolved by introducing the Non-Uniform Rational B-splines (NURBS) method, i.e., with given discrete description of the computational domain, an approximate NURBS curve is reconstructed to provide quality quadrature information along the curved boundary. The advantages of using NURBS include i). both the numerical accuracy of the approximate solutions and convergence rate of the numerical methods are improved simultaneously, and ii). the NURBS curve generation is independent of other modules of the numerical framework, which makes its application very flexible. It is also shown in the paper that by introducing more elements along the normal direction for the reconstruction patch of the boundary element, significant improvement in the convergence to steady state can be achieved. The numerical examples confirm the above features very well.

  6. A multiple-block multigrid method for the solution of the three-dimensional Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Atkins, Harold

    1991-01-01

    A multiple block multigrid method for the solution of the three dimensional Euler and Navier-Stokes equations is presented. The basic flow solver is a cell vertex method which employs central difference spatial approximations and Runge-Kutta time stepping. The use of local time stepping, implicit residual smoothing, multigrid techniques and variable coefficient numerical dissipation results in an efficient and robust scheme is discussed. The multiblock strategy places the block loop within the Runge-Kutta Loop such that accuracy and convergence are not affected by block boundaries. This has been verified by comparing the results of one and two block calculations in which the two block grid is generated by splitting the one block grid. Results are presented for both Euler and Navier-Stokes computations of wing/fuselage combinations.

  7. Development of advanced Navier-Stokes solver

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan

    1994-01-01

    The objective of research was to develop and validate new computational algorithms for solving the steady and unsteady Euler and Navier-Stokes equations. The end-products are new three-dimensional Euler and Navier-Stokes codes that are faster, more reliable, more accurate, and easier to use. The three-dimensional Euler and full/thin-layer Reynolds-averaged Navier-Stokes equations for compressible/incompressible flows are solved on structured hexahedral grids. The Baldwin-Lomax algebraic turbulence model is used for closure. The space discretization is based on a cell-centered finite-volume method augmented by a variety of numerical dissipation models with optional total variation diminishing limiters. The governing equations are integrated in time by an implicit method based on lower-upper factorization and symmetric Gauss-Seidel relaxation. The algorithm is vectorized on diagonal planes of sweep using two-dimensional indices in three dimensions. Convergence rates and the robustness of the codes are enhanced by the use of an implicit full approximation storage multigrid method.

  8. Manufactured solutions for the three-dimensional Euler equations with relevance to Inertial Confinement Fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waltz, J., E-mail: jwaltz@lanl.gov; Canfield, T.R.; Morgan, N.R.

    2014-06-15

    We present a set of manufactured solutions for the three-dimensional (3D) Euler equations. The purpose of these solutions is to allow for code verification against true 3D flows with physical relevance, as opposed to 3D simulations of lower-dimensional problems or manufactured solutions that lack physical relevance. Of particular interest are solutions with relevance to Inertial Confinement Fusion (ICF) capsules. While ICF capsules are designed for spherical symmetry, they are hypothesized to become highly 3D at late time due to phenomena such as Rayleigh–Taylor instability, drive asymmetry, and vortex decay. ICF capsules also involve highly nonlinear coupling between the fluid dynamicsmore » and other physics, such as radiation transport and thermonuclear fusion. The manufactured solutions we present are specifically designed to test the terms and couplings in the Euler equations that are relevant to these phenomena. Example numerical results generated with a 3D Finite Element hydrodynamics code are presented, including mesh convergence studies.« less

  9. Existence of Corotating and Counter-Rotating Vortex Pairs for Active Scalar Equations

    NASA Astrophysics Data System (ADS)

    Hmidi, Taoufik; Mateu, Joan

    2017-03-01

    In this paper, we study the existence of corotating and counter-rotating pairs of simply connected patches for Euler equations and the {(SQG)_{α}} equations with {α in (0,1)}. From the numerical experiments implemented for Euler equations in Deem and Zabusky (Phys Rev Lett 40(13):859-862, 1978), Pierrehumbert (J Fluid Mech 99:129-144, 1980), Saffman and Szeto (Phys Fluids 23(12):2339-2342, 1980) it is conjectured the existence of a curve of steady vortex pairs passing through the point vortex pairs. There are some analytical proofs based on variational principle (Keady in J Aust Math Soc Ser B 26:487-502, 1985; Turkington in Nonlinear Anal Theory Methods Appl 9(4):351-369, 1985); however, they do not give enough information about the pairs, such as the uniqueness or the topological structure of each single vortex. We intend in this paper to give direct proofs confirming the numerical experiments and extend these results for the {(SQG)_{α}} equation when {α in (0,1)}. The proofs rely on the contour dynamics equations combined with a desingularization of the point vortex pairs and the application of the implicit function theorem.

  10. Numerical Simulations of Shock Wave Refraction at Inclined Gas Contact Discontinuity

    ERIC Educational Resources Information Center

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    When a shock wave interacts with a contact discontinuity, there may appear a reflected rarefaction wave, a deflected contact discontinuity and a refracted supersonic shock. The numerical simulation of shock wave refraction at a plane contact discontinuity separating gases with different densities is performed. Euler equations describing inviscid…

  11. Moving overlapping grids with adaptive mesh refinement for high-speed reactive and non-reactive flow

    NASA Astrophysics Data System (ADS)

    Henshaw, William D.; Schwendeman, Donald W.

    2006-08-01

    We consider the solution of the reactive and non-reactive Euler equations on two-dimensional domains that evolve in time. The domains are discretized using moving overlapping grids. In a typical grid construction, boundary-fitted grids are used to represent moving boundaries, and these grids overlap with stationary background Cartesian grids. Block-structured adaptive mesh refinement (AMR) is used to resolve fine-scale features in the flow such as shocks and detonations. Refinement grids are added to base-level grids according to an estimate of the error, and these refinement grids move with their corresponding base-level grids. The numerical approximation of the governing equations takes place in the parameter space of each component grid which is defined by a mapping from (fixed) parameter space to (moving) physical space. The mapped equations are solved numerically using a second-order extension of Godunov's method. The stiff source term in the reactive case is handled using a Runge-Kutta error-control scheme. We consider cases when the boundaries move according to a prescribed function of time and when the boundaries of embedded bodies move according to the surface stress exerted by the fluid. In the latter case, the Newton-Euler equations describe the motion of the center of mass of the each body and the rotation about it, and these equations are integrated numerically using a second-order predictor-corrector scheme. Numerical boundary conditions at slip walls are described, and numerical results are presented for both reactive and non-reactive flows that demonstrate the use and accuracy of the numerical approach.

  12. Nonlinear Hyperbolic Equations - Theory, Computation Methods, and Applications. Volume 24. Note on Numerical Fluid Mechanics

    DTIC Science & Technology

    1989-01-01

    Calculations and Experiments (B.van den Berg/ D.A. Humphreysl E. Krause /J.P. F. Lindhout) Volume 20 Proceedings of the Seventh GAMM-Conference on...GRID METHODS FOR HYPERBOLIC PROBLEMS Wolfgang Hackbusch Sigrid Hagemann Institut fUr Informatik und Praktische Mathematik Christian-Albrechts...Euler Equations. Proceedings of the 8th Inter- national Conference on Numerical Methods in Fluid Dynamics (E. Krause , ed.), Aachen, 1988. Springer

  13. Numerical simulation of solitary waves on deep water with constant vorticity

    NASA Astrophysics Data System (ADS)

    Dosaev, A. S.; Shishina, M. I.; Troitskaya, Yu I.

    2018-01-01

    Characteristics of solitary deep water waves on a flow with constant vorticity are investigated by numerical simulation within the framework of fully nonlinear equations of motion (Euler equations) using the method of surface-tracking conformal coordinates. To ensure that solutions observed are stable, soliton formation as a result of disintegration of an initial pulse-like disturbance is modeled. Evidence is obtained that solitary waves with height above a certain threshold are unstable.

  14. A computational investigation of the finite-time blow-up of the 3D incompressible Euler equations based on the Voigt regularization

    DOE PAGES

    Larios, Adam; Petersen, Mark R.; Titi, Edriss S.; ...

    2017-04-29

    We report the results of a computational investigation of two blow-up criteria for the 3D incompressible Euler equations. One criterion was proven in a previous work, and a related criterion is proved here. These criteria are based on an inviscid regularization of the Euler equations known as the 3D Euler-Voigt equations, which are known to be globally well-posed. Moreover, simulations of the 3D Euler-Voigt equations also require less resolution than simulations of the 3D Euler equations for xed values of the regularization parameter α > 0. Therefore, the new blow-up criteria allow one to gain information about possible singularity formationmore » in the 3D Euler equations indirectly; namely, by simulating the better-behaved 3D Euler-Voigt equations. The new criteria are only known to be suficient for blow-up. Therefore, to test the robustness of the inviscid-regularization approach, we also investigate analogous criteria for blow-up of the 1D Burgers equation, where blow-up is well-known to occur.« less

  15. A computational investigation of the finite-time blow-up of the 3D incompressible Euler equations based on the Voigt regularization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larios, Adam; Petersen, Mark R.; Titi, Edriss S.

    We report the results of a computational investigation of two blow-up criteria for the 3D incompressible Euler equations. One criterion was proven in a previous work, and a related criterion is proved here. These criteria are based on an inviscid regularization of the Euler equations known as the 3D Euler-Voigt equations, which are known to be globally well-posed. Moreover, simulations of the 3D Euler-Voigt equations also require less resolution than simulations of the 3D Euler equations for xed values of the regularization parameter α > 0. Therefore, the new blow-up criteria allow one to gain information about possible singularity formationmore » in the 3D Euler equations indirectly; namely, by simulating the better-behaved 3D Euler-Voigt equations. The new criteria are only known to be suficient for blow-up. Therefore, to test the robustness of the inviscid-regularization approach, we also investigate analogous criteria for blow-up of the 1D Burgers equation, where blow-up is well-known to occur.« less

  16. Nonlinear Conservation Laws and Finite Volume Methods

    NASA Astrophysics Data System (ADS)

    Leveque, Randall J.

    Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References

  17. Numerical simulation of the transonic flow past the blunted wedge in the diverging channel

    NASA Astrophysics Data System (ADS)

    Ryabinin, Anatoly

    2018-05-01

    Positions of shock waves in the 2D channel with a blunted wedge are studied numerically. Solutions of the Euler equations are obtained with finite-volume solver SU2 for 15 variants of channel geometry. Numerical simulations reveal a considerable hysteresis in the shock wave position versus the supersonic Mach number given at the inlet. In the certain range of inlet Mach number, there are asymmetrical solutions of the equations. Small change in the geometry of the channel leads to shift of boundaries of the hysteresis range.

  18. Multiscale Numerical Methods for Non-Equilibrium Plasma

    DTIC Science & Technology

    2015-08-01

    current paper reports on the implementation of a numerical solver on the Graphic Processing Units (GPUs) to model reactive gas mixtures with detailed...Governing equations The flow ismodeled as amixture of gas specieswhile neglecting viscous effects. The chemical reactions taken place between the gas ...components are to be modeled in great detail. The set of the Euler equations for a reactive gas mixture can be written as: ∂Q ∂t + ∇ · F̄ = Ω̇ (1) where Q

  19. Extremely Fast Numerical Integration of Ocean Surface Wave Dynamics: Building Blocks for a Higher Order Method

    DTIC Science & Technology

    2006-09-30

    equation known as the Kadomtsev - Petviashvili (KP) equation ): (ηt + coηx +αηηx + βη )x +γηyy = 0 (4) where γ = co / 2 . The KdV equation ...using the spectral formulation of the Kadomtsev - Petviashvili equation , a standard equation for nonlinear, shallow water wave dynamics that is a... Petviashvili and nonlinear Schroedinger equations and higher order corrections have been developed as prerequisites to coding the Boussinesq and Euler

  20. Diffraction of a shock wave by a compression corner; regular and single Mach reflection

    NASA Technical Reports Server (NTRS)

    Vijayashankar, V. S.; Kutler, P.; Anderson, D.

    1976-01-01

    The two dimensional, time dependent Euler equations which govern the flow field resulting from the injection of a planar shock with a compression corner are solved with initial conditions that result in either regular reflection or single Mach reflection of the incident planar shock. The Euler equations which are hyperbolic are transformed to include the self similarity of the problem. A normalization procedure is employed to align the reflected shock and the Mach stem as computational boundaries to implement the shock fitting procedure. A special floating fitting scheme is developed in conjunction with the method of characteristics to fit the slip surface. The reflected shock, the Mach stem, and the slip surface are all treated as harp discontinuities, thus, resulting in a more accurate description of the inviscid flow field. The resulting numerical solutions are compared with available experimental data and existing first-order, shock-capturing numerical solutions.

  1. Numerical Analysis of Ginzburg-Landau Models for Superconductivity.

    NASA Astrophysics Data System (ADS)

    Coskun, Erhan

    Thin film conventional, as well as High T _{c} superconductors of various geometric shapes placed under both uniform and variable strength magnetic field are studied using the universially accepted macroscopic Ginzburg-Landau model. A series of new theoretical results concerning the properties of solution is presented using the semi -discrete time-dependent Ginzburg-Landau equations, staggered grid setup and natural boundary conditions. Efficient serial algorithms including a novel adaptive algorithm is developed and successfully implemented for solving the governing highly nonlinear parabolic system of equations. Refinement technique used in the adaptive algorithm is based on modified forward Euler method which was also developed by us to ease the restriction on time step size for stability considerations. Stability and convergence properties of forward and modified forward Euler schemes are studied. Numerical simulations of various recent physical experiments of technological importance such as vortes motion and pinning are performed. The numerical code for solving time-dependent Ginzburg-Landau equations is parallelized using BlockComm -Chameleon and PCN. The parallel code was run on the distributed memory multiprocessors intel iPSC/860, IBM-SP1 and cluster of Sun Sparc workstations, all located at Mathematics and Computer Science Division, Argonne National Laboratory.

  2. A highly parallel multigrid-like method for the solution of the Euler equations

    NASA Technical Reports Server (NTRS)

    Tuminaro, Ray S.

    1989-01-01

    We consider a highly parallel multigrid-like method for the solution of the two dimensional steady Euler equations. The new method, introduced as filtering multigrid, is similar to a standard multigrid scheme in that convergence on the finest grid is accelerated by iterations on coarser grids. In the filtering method, however, additional fine grid subproblems are processed concurrently with coarse grid computations to further accelerate convergence. These additional problems are obtained by splitting the residual into a smooth and an oscillatory component. The smooth component is then used to form a coarse grid problem (similar to standard multigrid) while the oscillatory component is used for a fine grid subproblem. The primary advantage in the filtering approach is that fewer iterations are required and that most of the additional work per iteration can be performed in parallel with the standard coarse grid computations. We generalize the filtering algorithm to a version suitable for nonlinear problems. We emphasize that this generalization is conceptually straight-forward and relatively easy to implement. In particular, no explicit linearization (e.g., formation of Jacobians) needs to be performed (similar to the FAS multigrid approach). We illustrate the nonlinear version by applying it to the Euler equations, and presenting numerical results. Finally, a performance evaluation is made based on execution time models and convergence information obtained from numerical experiments.

  3. Development of a linearized unsteady Euler analysis for turbomachinery blade rows

    NASA Technical Reports Server (NTRS)

    Verdon, Joseph M.; Montgomery, Matthew D.; Kousen, Kenneth A.

    1995-01-01

    A linearized unsteady aerodynamic analysis for axial-flow turbomachinery blading is described in this report. The linearization is based on the Euler equations of fluid motion and is motivated by the need for an efficient aerodynamic analysis that can be used in predicting the aeroelastic and aeroacoustic responses of blade rows. The field equations and surface conditions required for inviscid, nonlinear and linearized, unsteady aerodynamic analyses of three-dimensional flow through a single, blade row operating within a cylindrical duct, are derived. An existing numerical algorithm for determining time-accurate solutions of the nonlinear unsteady flow problem is described, and a numerical model, based upon this nonlinear flow solver, is formulated for the first-harmonic linear unsteady problem. The linearized aerodynamic and numerical models have been implemented into a first-harmonic unsteady flow code, called LINFLUX. At present this code applies only to two-dimensional flows, but an extension to three-dimensions is planned as future work. The three-dimensional aerodynamic and numerical formulations are described in this report. Numerical results for two-dimensional unsteady cascade flows, excited by prescribed blade motions and prescribed aerodynamic disturbances at inlet and exit, are also provided to illustrate the present capabilities of the LINFLUX analysis.

  4. Numerical Boundary Conditions for Computational Aeroacoustics Benchmark Problems

    NASA Technical Reports Server (NTRS)

    Tam, Chritsopher K. W.; Kurbatskii, Konstantin A.; Fang, Jun

    1997-01-01

    Category 1, Problems 1 and 2, Category 2, Problem 2, and Category 3, Problem 2 are solved computationally using the Dispersion-Relation-Preserving (DRP) scheme. All these problems are governed by the linearized Euler equations. The resolution requirements of the DRP scheme for maintaining low numerical dispersion and dissipation as well as accurate wave speeds in solving the linearized Euler equations are now well understood. As long as 8 or more mesh points per wavelength is employed in the numerical computation, high quality results are assured. For the first three categories of benchmark problems, therefore, the real challenge is to develop high quality numerical boundary conditions. For Category 1, Problems 1 and 2, it is the curved wall boundary conditions. For Category 2, Problem 2, it is the internal radiation boundary conditions inside the duct. For Category 3, Problem 2, they are the inflow and outflow boundary conditions upstream and downstream of the blade row. These are the foci of the present investigation. Special nonhomogeneous radiation boundary conditions that generate the incoming disturbances and at the same time allow the outgoing reflected or scattered acoustic disturbances to leave the computation domain without significant reflection are developed. Numerical results based on these boundary conditions are provided.

  5. Hamilton's Equations with Euler Parameters for Rigid Body Dynamics Modeling. Chapter 3

    NASA Technical Reports Server (NTRS)

    Shivarama, Ravishankar; Fahrenthold, Eric P.

    2004-01-01

    A combination of Euler parameter kinematics and Hamiltonian mechanics provides a rigid body dynamics model well suited for use in strongly nonlinear problems involving arbitrarily large rotations. The model is unconstrained, free of singularities, includes a general potential energy function and a minimum set of momentum variables, and takes an explicit state space form convenient for numerical implementation. The general formulation may be specialized to address particular applications, as illustrated in several three dimensional example problems.

  6. Application of TVD schemes for the Euler equations of gas dynamics. [total variation diminishing for nonlinear hyperbolic systems

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Warming, R. F.; Harten, A.

    1985-01-01

    First-order, second-order, and implicit total variation diminishing (TVD) schemes are reviewed using the modified flux approach. Some transient and steady-state calculations are then carried out to illustrate the applicability of these schemes to the Euler equations. It is shown that the second-order explicit TVD schemes generate good shock resolution for both transient and steady-state one-dimensional and two-dimensional problems. Numerical experiments for a quasi-one-dimensional nozzle problem show that the second-order implicit TVD scheme produces a fairly rapid convergence rate and remains stable even when running with a Courant number of 10 to the 6th.

  7. An implict LU scheme for the Euler equations applied to arbitrary cascades. [new method of factoring

    NASA Technical Reports Server (NTRS)

    Buratynski, E. K.; Caughey, D. A.

    1984-01-01

    An implicit scheme for solving the Euler equations is derived and demonstrated. The alternating-direction implicit (ADI) technique is modified, using two implicit-operator factors corresponding to lower-block-diagonal (L) or upper-block-diagonal (U) algebraic systems which can be easily inverted. The resulting LU scheme is implemented in finite-volume mode and applied to 2D subsonic and transonic cascade flows with differing degrees of geometric complexity. The results are presented graphically and found to be in good agreement with those of other numerical and analytical approaches. The LU method is also 2.0-3.4 times faster than ADI, suggesting its value in calculating 3D problems.

  8. Numerical solution of Euler's equation by perturbed functionals

    NASA Technical Reports Server (NTRS)

    Dey, S. K.

    1985-01-01

    A perturbed functional iteration has been developed to solve nonlinear systems. It adds at each iteration level, unique perturbation parameters to nonlinear Gauss-Seidel iterates which enhances its convergence properties. As convergence is approached these parameters are damped out. Local linearization along the diagonal has been used to compute these parameters. The method requires no computation of Jacobian or factorization of matrices. Analysis of convergence depends on properties of certain contraction-type mappings, known as D-mappings. In this article, application of this method to solve an implicit finite difference approximation of Euler's equation is studied. Some representative results for the well known shock tube problem and compressible flows in a nozzle are given.

  9. Studies on the interference of wings and propeller slipstreams

    NASA Technical Reports Server (NTRS)

    Prabhu, R. K.; Tiwari, S. N.

    1985-01-01

    The small disturbance potential flow theory is applied to determine the lift of an airfoil in a nonuniform parallel stream. The given stream is replaced by an equivalent stream with a certain number of velocity discontinuities, and the influence of these discontinuities is obtained by the method of images. Next, this method is extended to the problem of an airfoil in a nonuniform stream of smooth velocity profile. This model allows perturbation velocity potential in a rotational undisturbed stream. A comparison of these results with numerical solutions of Euler equations indicates that, although approximate, the present method provides useful information about the interaction problem while avoiding the need to solve the Euler equations.

  10. Newton-Euler Dynamic Equations of Motion for a Multi-body Spacecraft

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric

    2007-01-01

    The Magnetospheric MultiScale (MMS) mission employs a formation of spinning spacecraft with several flexible appendages and thruster-based control. To understand the complex dynamic interaction of thruster actuation, appendage motion, and spin dynamics, each spacecraft is modeled as a tree of rigid bodies connected by spherical or gimballed joints. The method presented facilitates assembling by inspection the exact, nonlinear dynamic equations of motion for a multibody spacecraft suitable for solution by numerical integration. The building block equations are derived by applying Newton's and Euler's equations of motion to an "element" consisting of two bodies and one joint (spherical and gimballed joints are considered separately). Patterns in the "mass" and L'force" matrices guide assembly by inspection of a general N-body tree-topology system. Straightforward linear algebra operations are employed to eliminate extraneous constraint equations, resulting in a minimum-dimension system of equations to solve. This method thus combines a straightforward, easily-extendable, easily-mechanized formulation with an efficient computer implementation.

  11. Lump Solitons in Surface Tension Dominated Flows

    NASA Astrophysics Data System (ADS)

    Milewski, Paul; Berger, Kurt

    1999-11-01

    The Kadomtsev-Petviashvilli I equation (KPI) which models small-amplitude, weakly three-dimensional surface-tension dominated long waves is integrable and allows for algebraically decaying lump solitary waves. It is not known (theoretically or numerically) whether the full free-surface Euler equations support such solutions. We consider an intermediate model, the generalised Benney-Luke equation (gBL) which is isotropic (not weakly three-dimensional) and contains KPI as a limit. We show numerically that: 1. gBL supports lump solitary waves; 2. These waves collide elastically and are stable; 3. They are generated by resonant flow over an obstacle.

  12. On a modified streamline curvature method for the Euler equations

    NASA Technical Reports Server (NTRS)

    Cordova, Jeffrey Q.; Pearson, Carl E.

    1988-01-01

    A modification of the streamline curvature method leads to a quasilinear second-order partial differential equation for the streamline coordinate function. The existence of a stream function is not required. The method is applied to subsonic and supersonic nozzle flow, and to axially symmetric flow with swirl. For many situations, the associated numerical method is both fast and accurate.

  13. The Numerical Simulation of the Shock Wave of Coal Gas Explosions in Gas Pipe*

    NASA Astrophysics Data System (ADS)

    Chen, Zhenxing; Hou, Kepeng; Chen, Longwei

    2018-03-01

    For the problem of large deformation and vortex, the method of Euler and Lagrange has both advantage and disadvantage. In this paper we adopt special fuzzy interface method(volume of fluid). Gas satisfies the conditions of conservation equations of mass, momentum, and energy. Based on explosion and three-dimension fluid dynamics theory, using unsteady, compressible, inviscid hydrodynamic equations and state equations, this paper considers pressure gradient’s effects to velocity, mass and energy in Lagrange steps by the finite difference method. To minimize transport errors of material, energy and volume in Finite Difference mesh, it also considers material transport in Euler steps. Programmed with Fortran PowerStation 4.0 and visualized with the software designed independently, we design the numerical simulation of gas explosion with specific pipeline structure, check the key points of the pressure change in the flow field, reproduce the gas explosion in pipeline of shock wave propagation, from the initial development, flame and accelerate the process of shock wave. This offers beneficial reference and experience to coal gas explosion accidents or safety precautions.

  14. Attempts at a numerical realisation of stochastic differential equations containing Preisach operator

    NASA Astrophysics Data System (ADS)

    McCarthy, S.; Rachinskii, D.

    2011-01-01

    We describe two Euler type numerical schemes obtained by discretisation of a stochastic differential equation which contains the Preisach memory operator. Equations of this type are of interest in areas such as macroeconomics and terrestrial hydrology where deterministic models containing the Preisach operator have been developed but do not fully encapsulate stochastic aspects of the area. A simple price dynamics model is presented as one motivating example for our studies. Some numerical evidence is given that the two numerical schemes converge to the same limit as the time step decreases. We show that the Preisach term introduces a damping effect which increases on the parts of the trajectory demonstrating a stronger upwards or downwards trend. The results are preliminary to a broader programme of research of stochastic differential equations with the Preisach hysteresis operator.

  15. Multistage Schemes with Multigrid for Euler and Navier-Strokes Equations: Components and Analysis

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Turkel, Eli

    1997-01-01

    A class of explicit multistage time-stepping schemes with centered spatial differencing and multigrids are considered for the compressible Euler and Navier-Stokes equations. These schemes are the basis for a family of computer programs (flow codes with multigrid (FLOMG) series) currently used to solve a wide range of fluid dynamics problems, including internal and external flows. In this paper, the components of these multistage time-stepping schemes are defined, discussed, and in many cases analyzed to provide additional insight into their behavior. Special emphasis is given to numerical dissipation, stability of Runge-Kutta schemes, and the convergence acceleration techniques of multigrid and implicit residual smoothing. Both the Baldwin and Lomax algebraic equilibrium model and the Johnson and King one-half equation nonequilibrium model are used to establish turbulence closure. Implementation of these models is described.

  16. Perfectly Matched Layer for Linearized Euler Equations in Open and Ducted Domains

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Auriault, Laurent; Cambuli, Francesco

    1998-01-01

    Recently, perfectly matched layer (PML) as an absorbing boundary condition has widespread applications. The idea was first introduced by Berenger for electromagnetic waves computations. In this paper, it is shown that the PML equations for the linearized Euler equations support unstable solutions when the mean flow has a component normal to the layer. To suppress such unstable solutions so as to render the PML concept useful for this class of problems, it is proposed that artificial selective damping terms be added to the discretized PML equations. It is demonstrated that with a proper choice of artificial mesh Reynolds number, the PML equations can be made stable. Numerical examples are provided to illustrate that the stabilized PML performs well as an absorbing boundary condition. In a ducted environment, the wave mode are dispersive. It will be shown that the group velocity and phase velocity of these modes can have opposite signs. This results in a confined environment, PML may not be suitable as an absorbing boundary condition.

  17. Evaluating a linearized Euler equations model for strong turbulence effects on sound propagation.

    PubMed

    Ehrhardt, Loïc; Cheinet, Sylvain; Juvé, Daniel; Blanc-Benon, Philippe

    2013-04-01

    Sound propagation outdoors is strongly affected by atmospheric turbulence. Under strongly perturbed conditions or long propagation paths, the sound fluctuations reach their asymptotic behavior, e.g., the intensity variance progressively saturates. The present study evaluates the ability of a numerical propagation model based on the finite-difference time-domain solving of the linearized Euler equations in quantitatively reproducing the wave statistics under strong and saturated intensity fluctuations. It is the continuation of a previous study where weak intensity fluctuations were considered. The numerical propagation model is presented and tested with two-dimensional harmonic sound propagation over long paths and strong atmospheric perturbations. The results are compared to quantitative theoretical or numerical predictions available on the wave statistics, including the log-amplitude variance and the probability density functions of the complex acoustic pressure. The match is excellent for the evaluated source frequencies and all sound fluctuations strengths. Hence, this model captures these many aspects of strong atmospheric turbulence effects on sound propagation. Finally, the model results for the intensity probability density function are compared with a standard fit by a generalized gamma function.

  18. Solution of steady and unsteady transonic-vortex flows using Euler and full-potential equations

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Chuang, Andrew H.; Hu, Hong

    1989-01-01

    Two methods are presented for inviscid transonic flows: unsteady Euler equations in a rotating frame of reference for transonic-vortex flows and integral solution of full-potential equation with and without embedded Euler domains for transonic airfoil flows. The computational results covered: steady and unsteady conical vortex flows; 3-D steady transonic vortex flow; and transonic airfoil flows. The results are in good agreement with other computational results and experimental data. The rotating frame of reference solution is potentially efficient as compared with the space fixed reference formulation with dynamic gridding. The integral equation solution with embedded Euler domain is computationally efficient and as accurate as the Euler equations.

  19. Researched applied to transonic compressors in numerical fluid mechanics of inviscid flow and viscous flow

    NASA Technical Reports Server (NTRS)

    Thompkins, W. T., Jr.

    1985-01-01

    A streamline Euler solver which combines high accuracy and good convergence rates with capabilities for inverse or direct mode solution modes and an analysis technique for finite difference models of hyperbolic partial difference equations were developed.

  20. The Modelling of Axially Translating Flexible Beams

    NASA Astrophysics Data System (ADS)

    Theodore, R. J.; Arakeri, J. H.; Ghosal, A.

    1996-04-01

    The axially translating flexible beam with a prismatic joint can be modelled by using the Euler-Bernoulli beam equation together with the convective terms. In general, the method of separation of variables cannot be applied to solve this partial differential equation. In this paper, a non-dimensional form of the Euler Bernoulli beam equation is presented, obtained by using the concept of group velocity, and also the conditions under which separation of variables and assumed modes method can be used. The use of clamped-mass boundary conditions leads to a time-dependent frequency equation for the translating flexible beam. A novel method is presented for solving this time dependent frequency equation by using a differential form of the frequency equation. The assume mode/Lagrangian formulation of dynamics is employed to derive closed form equations of motion. It is shown by using Lyapunov's first method that the dynamic responses of flexural modal variables become unstable during retraction of the flexible beam, which the dynamic response during extension of the beam is stable. Numerical simulation results are presented for the uniform axial motion induced transverse vibration for a typical flexible beam.

  1. Adaptive grid embedding for the two-dimensional flux-split Euler equations. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Warren, Gary Patrick

    1990-01-01

    A numerical algorithm is presented for solving the 2-D flux-split Euler equations using a multigrid method with adaptive grid embedding. The method uses an unstructured data set along with a system of pointers for communication on the irregularly shaped grid topologies. An explicit two-stage time advancement scheme is implemented. A multigrid algorithm is used to provide grid level communication and to accelerate the convergence of the solution to steady state. Results are presented for a subcritical airfoil and a transonic airfoil with 3 levels of adaptation. Comparisons are made with a structured upwind Euler code which uses the same flux integration techniques of the present algorithm. Good agreement is obtained with converged surface pressure coefficients. The lift coefficients of the adaptive code are within 2 1/2 percent of the structured code for the sub-critical case and within 4 1/2 percent of the structured code for the transonic case using approximately one-third the number of grid points.

  2. A new fractional nonlocal model and its application in free vibration of Timoshenko and Euler-Bernoulli beams

    NASA Astrophysics Data System (ADS)

    Rahimi, Zaher; Sumelka, Wojciech; Yang, Xiao-Jun

    2017-11-01

    The application of fractional calculus in fractional models (FMs) makes them more flexible than integer models inasmuch they can conclude all of integer and non-integer operators. In other words FMs let us use more potential of mathematics to modeling physical phenomena due to the use of both integer and fractional operators to present a better modeling of problems, which makes them more flexible and powerful. In the present work, a new fractional nonlocal model has been proposed, which has a simple form and can be used in different problems due to the simple form of numerical solutions. Then the model has been used to govern equations of the motion of the Timoshenko beam theory (TBT) and Euler-Bernoulli beam theory (EBT). Next, free vibration of the Timoshenko and Euler-Bernoulli simply-supported (S-S) beam has been investigated. The Galerkin weighted residual method has been used to solve the non-linear governing equations.

  3. Supercomputer modeling of flow past hypersonic flight vehicles

    NASA Astrophysics Data System (ADS)

    Ermakov, M. K.; Kryukov, I. A.

    2017-02-01

    A software platform for MPI-based parallel solution of the Navier-Stokes (Euler) equations for viscous heat-conductive compressible perfect gas on 3-D unstructured meshes is developed. The discretization and solution of the Navier-Stokes equations are constructed on generalized S.K. Godunov’s method and the second order approximation in space and time. Developed software platform allows to carry out effectively flow past hypersonic flight vehicles simulations for the Mach numbers 6 and higher, and numerical meshes with up to 1 billion numerical cells and with up to 128 processors.

  4. Perturbational blowup solutions to the compressible Euler equations with damping.

    PubMed

    Cheung, Ka Luen

    2016-01-01

    The N-dimensional isentropic compressible Euler system with a damping term is one of the most fundamental equations in fluid dynamics. Since it does not have a general solution in a closed form for arbitrary well-posed initial value problems. Constructing exact solutions to the system is a useful way to obtain important information on the properties of its solutions. In this article, we construct two families of exact solutions for the one-dimensional isentropic compressible Euler equations with damping by the perturbational method. The two families of exact solutions found include the cases [Formula: see text] and [Formula: see text], where [Formula: see text] is the adiabatic constant. With analysis of the key ordinary differential equation, we show that the classes of solutions include both blowup type and global existence type when the parameters are suitably chosen. Moreover, in the blowup cases, we show that the singularities are of essential type in the sense that they cannot be smoothed by redefining values at the odd points. The two families of exact solutions obtained in this paper can be useful to study of related numerical methods and algorithms such as the finite difference method, the finite element method and the finite volume method that are applied by scientists to simulate the fluids for applications.

  5. Hydrodynamical Aspects of the Formation of Spiral-Vortical Structures in Rotating Gaseous Disks

    NASA Astrophysics Data System (ADS)

    Elizarova, T. G.; Zlotnik, A. A.; Istomina, M. A.

    2018-01-01

    This paper is dedicated to numerical simulations of spiral-vortical structures in rotating gaseous disks using a simple model based on two-dimensional, non-stationary, barotropic Euler equations with a body force. The results suggest the possibility of a purely hydrodynamical basis for the formation and evolution of such structures. New, axially symmetric, stationary solutions of these equations are derived that modify known approximate solutions. These solutions with added small perturbations are used as initial data in the non-stationary problem, whose solution demonstrates the formation of density arms with bifurcation. The associated redistribution of angular momentum is analyzed. The correctness of laboratory experiments using shallow water to describe the formation of large-scale vortical structures in thin gaseous disks is confirmed. The computations are based on a special quasi-gas-dynamical regularization of the Euler equations in polar coordinates.

  6. Finite difference and Runge-Kutta methods for solving vibration problems

    NASA Astrophysics Data System (ADS)

    Lintang Renganis Radityani, Scolastika; Mungkasi, Sudi

    2017-11-01

    The vibration of a storey building can be modelled into a system of second order ordinary differential equations. If the number of floors of a building is large, then the result is a large scale system of second order ordinary differential equations. The large scale system is difficult to solve, and if it can be solved, the solution may not be accurate. Therefore, in this paper, we seek for accurate methods for solving vibration problems. We compare the performance of numerical finite difference and Runge-Kutta methods for solving large scale systems of second order ordinary differential equations. The finite difference methods include the forward and central differences. The Runge-Kutta methods include the Euler and Heun methods. Our research results show that the central finite difference and the Heun methods produce more accurate solutions than the forward finite difference and the Euler methods do.

  7. The Glimm scheme for perfect fluids on plane-symmetric Gowdy spacetimes

    NASA Astrophysics Data System (ADS)

    Barnes, A. P.; Lefloch, P. G.; Schmidt, B. G.; Stewart, J. M.

    2004-11-01

    We propose a new, augmented formulation of the coupled Euler Einstein equations for perfect fluids on plane-symmetric Gowdy spacetimes. The unknowns of the augmented system are the density and velocity of the fluid and the first- and second-order spacetime derivatives of the metric. We solve the Riemann problem for the augmented system, allowing propagating discontinuities in both the fluid variables and the first- and second-order derivatives of the geometry coefficients. Our main result, based on Glimm's random choice scheme, is the existence of solutions with bounded total variation of the Euler Einstein equations, up to the first time where a blow-up singularity (unbounded first-order derivatives of the geometry coefficients) occurs. We demonstrate the relevance of the augmented system for numerical relativity. We also consider general vacuum spacetimes and solve a Riemann problem, by relying on a theorem by Rendall on the characteristic value problem for the Einstein equations.

  8. Supersonic wing and wing-body shape optimization using an adjoint formulation

    NASA Technical Reports Server (NTRS)

    Reuther, James; Jameson, Antony

    1995-01-01

    This paper describes the implementation of optimization techniques based on control theory for wing and wing-body design of supersonic configurations. The work represents an extension of our earlier research in which control theory is used to devise a design procedure that significantly reduces the computational cost by employing an adjoint equation. In previous studies it was shown that control theory could be used toeviseransonic design methods for airfoils and wings in which the shape and the surrounding body-fitted mesh are both generated analytically, and the control is the mapping function. The method has also been implemented for both transonic potential flows and transonic flows governed by the Euler equations using an alternative formulation which employs numerically generated grids, so that it can treat more general configurations. Here results are presented for three-dimensional design cases subject to supersonic flows governed by the Euler equation.

  9. Well-balanced schemes for the Euler equations with gravitation: Conservative formulation using global fluxes

    NASA Astrophysics Data System (ADS)

    Chertock, Alina; Cui, Shumo; Kurganov, Alexander; Özcan, Şeyma Nur; Tadmor, Eitan

    2018-04-01

    We develop a second-order well-balanced central-upwind scheme for the compressible Euler equations with gravitational source term. Here, we advocate a new paradigm based on a purely conservative reformulation of the equations using global fluxes. The proposed scheme is capable of exactly preserving steady-state solutions expressed in terms of a nonlocal equilibrium variable. A crucial step in the construction of the second-order scheme is a well-balanced piecewise linear reconstruction of equilibrium variables combined with a well-balanced central-upwind evolution in time, which is adapted to reduce the amount of numerical viscosity when the flow is at (near) steady-state regime. We show the performance of our newly developed central-upwind scheme and demonstrate importance of perfect balance between the fluxes and gravitational forces in a series of one- and two-dimensional examples.

  10. Numerical results on the transcendence of constants involving pi, e, and Euler's constant

    NASA Technical Reports Server (NTRS)

    Bailey, David H.

    1988-01-01

    The existence of simple polynomial equations (integer relations) for the constants e/pi, e + pi, log pi, gamma (Euler's constant), e exp gamma, gamma/e, gamma/pi, and log gamma is investigated by means of numerical computations. The recursive form of the Ferguson-Fourcade algorithm (Ferguson and Fourcade, 1979; Ferguson, 1986 and 1987) is implemented on the Cray-2 supercomputer at NASA Ames, applying multiprecision techniques similar to those described by Bailey (1988) except that FFTs are used instead of dual-prime-modulus transforms for multiplication. It is shown that none of the constants has an integer relation of degree eight or less with coefficients of Euclidean norm 10 to the 9th or less.

  11. Numerical calculations of two dimensional, unsteady transonic flows with circulation

    NASA Technical Reports Server (NTRS)

    Beam, R. M.; Warming, R. F.

    1974-01-01

    The feasibility of obtaining two-dimensional, unsteady transonic aerodynamic data by numerically integrating the Euler equations is investigated. An explicit, third-order-accurate, noncentered, finite-difference scheme is used to compute unsteady flows about airfoils. Solutions for lifting and nonlifting airfoils are presented and compared with subsonic linear theory. The applicability and efficiency of the numerical indicial function method are outlined. Numerically computed subsonic and transonic oscillatory aerodynamic coefficients are presented and compared with those obtained from subsonic linear theory and transonic wind-tunnel data.

  12. The Scaling Group of the 1-D Invisicid Euler Equations

    NASA Astrophysics Data System (ADS)

    Schmidt, Emma; Ramsey, Scott; Boyd, Zachary; Baty, Roy

    2017-11-01

    The one dimensional (1-D) compressible Euler equations in non-ideal media support scale invariant solutions under a variety of initial conditions. Famous scale invariant solutions include the Noh, Sedov, Guderley, and collapsing cavity hydrodynamic test problems. We unify many classical scale invariant solutions under a single scaling group analysis. The scaling symmetry group generator provides a framework for determining all scale invariant solutions emitted by the 1-D Euler equations for arbitrary geometry, initial conditions, and equation of state. We approach the Euler equations from a geometric standpoint, and conduct scaling analyses for a broad class of materials.

  13. Application of shifted Jacobi pseudospectral method for solving (in)finite-horizon min-max optimal control problems with uncertainty

    NASA Astrophysics Data System (ADS)

    Nikooeinejad, Z.; Delavarkhalafi, A.; Heydari, M.

    2018-03-01

    The difficulty of solving the min-max optimal control problems (M-MOCPs) with uncertainty using generalised Euler-Lagrange equations is caused by the combination of split boundary conditions, nonlinear differential equations and the manner in which the final time is treated. In this investigation, the shifted Jacobi pseudospectral method (SJPM) as a numerical technique for solving two-point boundary value problems (TPBVPs) in M-MOCPs for several boundary states is proposed. At first, a novel framework of approximate solutions which satisfied the split boundary conditions automatically for various boundary states is presented. Then, by applying the generalised Euler-Lagrange equations and expanding the required approximate solutions as elements of shifted Jacobi polynomials, finding a solution of TPBVPs in nonlinear M-MOCPs with uncertainty is reduced to the solution of a system of algebraic equations. Moreover, the Jacobi polynomials are particularly useful for boundary value problems in unbounded domain, which allow us to solve infinite- as well as finite and free final time problems by domain truncation method. Some numerical examples are given to demonstrate the accuracy and efficiency of the proposed method. A comparative study between the proposed method and other existing methods shows that the SJPM is simple and accurate.

  14. Symmetry-plane model of 3D Euler flows: Mapping to regular systems and numerical solutions of blowup

    NASA Astrophysics Data System (ADS)

    Mulungye, Rachel M.; Lucas, Dan; Bustamante, Miguel D.

    2014-11-01

    We introduce a family of 2D models describing the dynamics on the so-called symmetry plane of the full 3D Euler fluid equations. These models depend on a free real parameter and can be solved analytically. For selected representative values of the free parameter, we apply the method introduced in [M.D. Bustamante, Physica D: Nonlinear Phenom. 240, 1092 (2011)] to map the fluid equations bijectively to globally regular systems. By comparing the analytical solutions with the results of numerical simulations, we establish that the numerical simulations of the mapped regular systems are far more accurate than the numerical simulations of the original systems, at the same spatial resolution and CPU time. In particular, the numerical integrations of the mapped regular systems produce robust estimates for the growth exponent and singularity time of the main blowup quantity (vorticity stretching rate), converging well to the analytically-predicted values even beyond the time at which the flow becomes under-resolved (i.e. the reliability time). In contrast, direct numerical integrations of the original systems develop unstable oscillations near the reliability time. We discuss the reasons for this improvement in accuracy, and explain how to extend the analysis to the full 3D case. Supported under the programme for Research in Third Level Institutions (PRTLI) Cycle 5 and co-funded by the European Regional Development Fund.

  15. Runge-Kutta methods combined with compact difference schemes for the unsteady Euler equations

    NASA Technical Reports Server (NTRS)

    Yu, Sheng-Tao

    1992-01-01

    Recent development using compact difference schemes to solve the Navier-Stokes equations show spectral-like accuracy. A study was made of the numerical characteristics of various combinations of the Runge-Kutta (RK) methods and compact difference schemes to calculate the unsteady Euler equations. The accuracy of finite difference schemes is assessed based on the evaluations of dissipative error. The objectives are reducing the numerical damping and, at the same time, preserving numerical stability. While this approach has tremendous success solving steady flows, numerical characteristics of unsteady calculations remain largely unclear. For unsteady flows, in addition to the dissipative errors, phase velocity and harmonic content of the numerical results are of concern. As a result of the discretization procedure, the simulated unsteady flow motions actually propagate in a dispersive numerical medium. Consequently, the dispersion characteristics of the numerical schemes which relate the phase velocity and wave number may greatly impact the numerical accuracy. The aim is to assess the numerical accuracy of the simulated results. To this end, the Fourier analysis is to provide the dispersive correlations of various numerical schemes. First, a detailed investigation of the existing RK methods is carried out. A generalized form of an N-step RK method is derived. With this generalized form, the criteria are derived for the three and four-step RK methods to be third and fourth-order time accurate for the non-linear equations, e.g., flow equations. These criteria are then applied to commonly used RK methods such as Jameson's 3-step and 4-step schemes and Wray's algorithm to identify the accuracy of the methods. For the spatial discretization, compact difference schemes are presented. The schemes are formulated in the operator-type to render themselves suitable for the Fourier analyses. The performance of the numerical methods is shown by numerical examples. These examples are detailed. described. The third case is a two-dimensional simulation of a Lamb vortex in an uniform flow. This calculation provides a realistic assessment of various finite difference schemes in terms of the conservation of the vortex strength and the harmonic content after travelling a substantial distance. The numerical implementation of Giles' non-refelctive equations coupled with the characteristic equations as the boundary condition is discussed in detail. Finally, the single vortex calculation is extended to simulate vortex pairing. For the distance between two vortices less than a threshold value, numerical results show crisp resolution of the vortex merging.

  16. A well-balanced finite volume scheme for the Euler equations with gravitation. The exact preservation of hydrostatic equilibrium with arbitrary entropy stratification

    NASA Astrophysics Data System (ADS)

    Käppeli, R.; Mishra, S.

    2016-03-01

    Context. Many problems in astrophysics feature flows which are close to hydrostatic equilibrium. However, standard numerical schemes for compressible hydrodynamics may be deficient in approximating this stationary state, where the pressure gradient is nearly balanced by gravitational forces. Aims: We aim to develop a second-order well-balanced scheme for the Euler equations. The scheme is designed to mimic a discrete version of the hydrostatic balance. It therefore can resolve a discrete hydrostatic equilibrium exactly (up to machine precision) and propagate perturbations, on top of this equilibrium, very accurately. Methods: A local second-order hydrostatic equilibrium preserving pressure reconstruction is developed. Combined with a standard central gravitational source term discretization and numerical fluxes that resolve stationary contact discontinuities exactly, the well-balanced property is achieved. Results: The resulting well-balanced scheme is robust and simple enough to be very easily implemented within any existing computer code that solves time explicitly or implicitly the compressible hydrodynamics equations. We demonstrate the performance of the well-balanced scheme for several astrophysically relevant applications: wave propagation in stellar atmospheres, a toy model for core-collapse supernovae, convection in carbon shell burning, and a realistic proto-neutron star.

  17. An Euler-Lagrange method considering bubble radial dynamics for modeling sonochemical reactors.

    PubMed

    Jamshidi, Rashid; Brenner, Gunther

    2014-01-01

    Unsteady numerical computations are performed to investigate the flow field, wave propagation and the structure of bubbles in sonochemical reactors. The turbulent flow field is simulated using a two-equation Reynolds-Averaged Navier-Stokes (RANS) model. The distribution of the acoustic pressure is solved based on the Helmholtz equation using a finite volume method (FVM). The radial dynamics of a single bubble are considered by applying the Keller-Miksis equation to consider the compressibility of the liquid to the first order of acoustical Mach number. To investigate the structure of bubbles, a one-way coupling Euler-Lagrange approach is used to simulate the bulk medium and the bubbles as the dispersed phase. Drag, gravity, buoyancy, added mass, volume change and first Bjerknes forces are considered and their orders of magnitude are compared. To verify the implemented numerical algorithms, results for one- and two-dimensional simplified test cases are compared with analytical solutions. The results show good agreement with experimental results for the relationship between the acoustic pressure amplitude and the volume fraction of the bubbles. The two-dimensional axi-symmetric results are in good agreement with experimentally observed structure of bubbles close to sonotrode. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Statistical Extremes of Turbulence and a Cascade Generalisation of Euler's Gyroscope Equation

    NASA Astrophysics Data System (ADS)

    Tchiguirinskaia, Ioulia; Scherzer, Daniel

    2016-04-01

    Turbulence refers to a rather well defined hydrodynamical phenomenon uncovered by Reynolds. Nowadays, the word turbulence is used to designate the loss of order in many different geophysical fields and the related fundamental extreme variability of environmental data over a wide range of scales. Classical statistical techniques for estimating the extremes, being largely limited to statistical distributions, do not take into account the mechanisms generating such extreme variability. An alternative approaches to nonlinear variability are based on a fundamental property of the non-linear equations: scale invariance, which means that these equations are formally invariant under given scale transforms. Its specific framework is that of multifractals. In this framework extreme variability builds up scale by scale leading to non-classical statistics. Although multifractals are increasingly understood as a basic framework for handling such variability, there is still a gap between their potential and their actual use. In this presentation we discuss how to dealt with highly theoretical problems of mathematical physics together with a wide range of geophysical applications. We use Euler's gyroscope equation as a basic element in constructing a complex deterministic system that preserves not only the scale symmetry of the Navier-Stokes equations, but some more of their symmetries. Euler's equation has been not only the object of many theoretical investigations of the gyroscope device, but also generalised enough to become the basic equation of fluid mechanics. Therefore, there is no surprise that a cascade generalisation of this equation can be used to characterise the intermittency of turbulence, to better understand the links between the multifractal exponents and the structure of a simplified, but not simplistic, version of the Navier-Stokes equations. In a given way, this approach is similar to that of Lorenz, who studied how the flap of a butterfly wing could generate a cyclone with the help of a 3D ordinary differential system. Being well supported by the extensive numerical results, the cascade generalisation of Euler's gyroscope equation opens new horizons for predictability and predictions of processes having long-range dependences.

  19. Kalman filters for assimilating near-surface observations into the Richards equation - Part 1: Retrieving state profiles with linear and nonlinear numerical schemes

    NASA Astrophysics Data System (ADS)

    Chirico, G. B.; Medina, H.; Romano, N.

    2014-07-01

    This paper examines the potential of different algorithms, based on the Kalman filtering approach, for assimilating near-surface observations into a one-dimensional Richards equation governing soil water flow in soil. Our specific objectives are: (i) to compare the efficiency of different Kalman filter algorithms in retrieving matric pressure head profiles when they are implemented with different numerical schemes of the Richards equation; (ii) to evaluate the performance of these algorithms when nonlinearities arise from the nonlinearity of the observation equation, i.e. when surface soil water content observations are assimilated to retrieve matric pressure head values. The study is based on a synthetic simulation of an evaporation process from a homogeneous soil column. Our first objective is achieved by implementing a Standard Kalman Filter (SKF) algorithm with both an explicit finite difference scheme (EX) and a Crank-Nicolson (CN) linear finite difference scheme of the Richards equation. The Unscented (UKF) and Ensemble Kalman Filters (EnKF) are applied to handle the nonlinearity of a backward Euler finite difference scheme. To accomplish the second objective, an analogous framework is applied, with the exception of replacing SKF with the Extended Kalman Filter (EKF) in combination with a CN numerical scheme, so as to handle the nonlinearity of the observation equation. While the EX scheme is computationally too inefficient to be implemented in an operational assimilation scheme, the retrieval algorithm implemented with a CN scheme is found to be computationally more feasible and accurate than those implemented with the backward Euler scheme, at least for the examined one-dimensional problem. The UKF appears to be as feasible as the EnKF when one has to handle nonlinear numerical schemes or additional nonlinearities arising from the observation equation, at least for systems of small dimensionality as the one examined in this study.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Debojyoti; Constantinescu, Emil M.

    The numerical simulation of meso-, convective-, and microscale atmospheric flows requires the solution of the Euler or the Navier-Stokes equations. Nonhydrostatic weather prediction algorithms often solve the equations in terms of derived quantities such as Exner pressure and potential temperature (and are thus not conservative) and/or as perturbations to the hydrostatically balanced equilibrium state. This paper presents a well-balanced, conservative finite difference formulation for the Euler equations with a gravitational source term, where the governing equations are solved as conservation laws for mass, momentum, and energy. Preservation of the hydrostatic balance to machine precision by the discretized equations is essentialmore » because atmospheric phenomena are often small perturbations to this balance. The proposed algorithm uses the weighted essentially nonoscillatory and compact-reconstruction weighted essentially nonoscillatory schemes for spatial discretization that yields high-order accurate solutions for smooth flows and is essentially nonoscillatory across strong gradients; however, the well-balanced formulation may be used with other conservative finite difference methods. The performance of the algorithm is demonstrated on test problems as well as benchmark atmospheric flow problems, and the results are verified with those in the literature.« less

  1. Symmetry investigations on the incompressible stationary axisymmetric Euler equations with swirl

    NASA Astrophysics Data System (ADS)

    Frewer, M.; Oberlack, M.; Guenther, S.

    2007-08-01

    We discuss the incompressible stationary axisymmetric Euler equations with swirl, for which we derive via a scalar stream function an equivalent representation, the Bragg-Hawthorne equation [Bragg, S.L., Hawthorne, W.R., 1950. Some exact solutions of the flow through annular cascade actuator discs. J. Aero. Sci. 17, 243]. Despite this obvious equivalence, we will show that under a local Lie point symmetry analysis the Bragg-Hawthorne equation exposes itself as not being fully equivalent to the original Euler equations. This is reflected in the way that it possesses additional symmetries not being admitted by its counterpart. In other words, a symmetry of the Bragg-Hawthorne equation is in general not a symmetry of the Euler equations. Not the differential Euler equations but rather a set of integro-differential equations attains full equivalence to the Bragg-Hawthorne equation. For these intermediate Euler equations, it is interesting to note that local symmetries of the Bragg-Hawthorne equation transform to local as well as to nonlocal symmetries. This behaviour, on the one hand, is in accordance with Zawistowski's result [Zawistowski, Z.J., 2001. Symmetries of integro-differential equations. Rep. Math. Phys. 48, 269; Zawistowski, Z.J., 2004. General criterion of invariance for integro-differential equations. Rep. Math. Phys. 54, 341] that it is possible for integro-differential equations to admit local Lie point symmetries. On the other hand, with this transformation process we collect symmetries which cannot be obtained when carrying out a usual local Lie point symmetry analysis. Finally, the symmetry classification of the Bragg-Hawthorne equation is used to find analytical solutions for the phenomenon of vortex breakdown.

  2. Hybrid control of the Neimark-Sacker bifurcation in a delayed Nicholson's blowflies equation.

    PubMed

    Wang, Yuanyuan; Wang, Lisha

    In this article, for delayed Nicholson's blowflies equation, we propose a hybrid control nonstandard finite-difference (NSFD) scheme in which state feedback and parameter perturbation are used to control the Neimark-Sacker bifurcation. Firstly, the local stability of the positive equilibria for hybrid control delay differential equation is discussed according to Hopf bifurcation theory. Then, for any step-size, a hybrid control numerical algorithm is introduced to generate the Neimark-Sacker bifurcation at a desired point. Finally, numerical simulation results confirm that the control strategy is efficient in controlling the Neimark-Sacker bifurcation. At the same time, the results show that the NSFD control scheme is better than the Euler control method.

  3. A minimum entropy principle in the gas dynamics equations

    NASA Technical Reports Server (NTRS)

    Tadmor, E.

    1986-01-01

    Let u(x bar,t) be a weak solution of the Euler equations, governing the inviscid polytropic gas dynamics; in addition, u(x bar, t) is assumed to respect the usual entropy conditions connected with the conservative Euler equations. We show that such entropy solutions of the gas dynamics equations satisfy a minimum entropy principle, namely, that the spatial minimum of their specific entropy, (Ess inf s(u(x,t)))/x, is an increasing function of time. This principle equally applies to discrete approximations of the Euler equations such as the Godunov-type and Lax-Friedrichs schemes. Our derivation of this minimum principle makes use of the fact that there is a family of generalized entrophy functions connected with the conservative Euler equations.

  4. Super-rogue waves in simulations based on weakly nonlinear and fully nonlinear hydrodynamic equations.

    PubMed

    Slunyaev, A; Pelinovsky, E; Sergeeva, A; Chabchoub, A; Hoffmann, N; Onorato, M; Akhmediev, N

    2013-07-01

    The rogue wave solutions (rational multibreathers) of the nonlinear Schrödinger equation (NLS) are tested in numerical simulations of weakly nonlinear and fully nonlinear hydrodynamic equations. Only the lowest order solutions from 1 to 5 are considered. A higher accuracy of wave propagation in space is reached using the modified NLS equation, also known as the Dysthe equation. This numerical modeling allowed us to directly compare simulations with recent results of laboratory measurements in Chabchoub et al. [Phys. Rev. E 86, 056601 (2012)]. In order to achieve even higher physical accuracy, we employed fully nonlinear simulations of potential Euler equations. These simulations provided us with basic characteristics of long time evolution of rational solutions of the NLS equation in the case of near-breaking conditions. The analytic NLS solutions are found to describe the actual wave dynamics of steep waves reasonably well.

  5. An Adaptively-Refined, Cartesian, Cell-Based Scheme for the Euler and Navier-Stokes Equations. Ph.D. Thesis - Michigan Univ.

    NASA Technical Reports Server (NTRS)

    Coirier, William John

    1994-01-01

    A Cartesian, cell-based scheme for solving the Euler and Navier-Stokes equations in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, polygonal 'cut' cells are created. The geometry of the cut cells is computed using polygon-clipping algorithms. The grid is stored in a binary-tree data structure which provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite-volume formulation. The convective terms are upwinded, with a limited linear reconstruction of the primitive variables used to provide input states to an approximate Riemann solver for computing the fluxes between neighboring cells. A multi-stage time-stepping scheme is used to reach a steady-state solution. Validation of the Euler solver with benchmark numerical and exact solutions is presented. An assessment of the accuracy of the approach is made by uniform and adaptive grid refinements for a steady, transonic, exact solution to the Euler equations. The error of the approach is directly compared to a structured solver formulation. A non smooth flow is also assessed for grid convergence, comparing uniform and adaptively refined results. Several formulations of the viscous terms are assessed analytically, both for accuracy and positivity. The two best formulations are used to compute adaptively refined solutions of the Navier-Stokes equations. These solutions are compared to each other, to experimental results and/or theory for a series of low and moderate Reynolds numbers flow fields. The most suitable viscous discretization is demonstrated for geometrically-complicated internal flows. For flows at high Reynolds numbers, both an altered grid-generation procedure and a different formulation of the viscous terms are shown to be necessary. A hybrid Cartesian/body-fitted grid generation approach is demonstrated. In addition, a grid-generation procedure based on body-aligned cell cutting coupled with a viscous stensil-construction procedure based on quadratic programming is presented.

  6. Second order upwind Lagrangian particle method for Euler equations

    DOE PAGES

    Samulyak, Roman; Chen, Hsin -Chiang; Yu, Kwangmin

    2016-06-01

    A new second order upwind Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) an upwind second-order particle-based algorithm with limiter, providing accuracy and longmore » term stability, and (c) accurate resolution of states at free interfaces. In conclusion, numerical verification tests demonstrating the convergence order for fixed domain and free surface problems are presented.« less

  7. Second order upwind Lagrangian particle method for Euler equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samulyak, Roman; Chen, Hsin -Chiang; Yu, Kwangmin

    A new second order upwind Lagrangian particle method for solving Euler equations for compressible inviscid fluid or gas flows is proposed. Similar to smoothed particle hydrodynamics (SPH), the method represents fluid cells with Lagrangian particles and is suitable for the simulation of complex free surface / multiphase flows. The main contributions of our method, which is different from SPH in all other aspects, are (a) significant improvement of approximation of differential operators based on a polynomial fit via weighted least squares approximation and the convergence of prescribed order, (b) an upwind second-order particle-based algorithm with limiter, providing accuracy and longmore » term stability, and (c) accurate resolution of states at free interfaces. In conclusion, numerical verification tests demonstrating the convergence order for fixed domain and free surface problems are presented.« less

  8. A hybrid formulation for the numerical simulation of condensed phase explosives

    NASA Astrophysics Data System (ADS)

    Michael, L.; Nikiforakis, N.

    2016-07-01

    In this article we present a new formulation and an associated numerical algorithm, for the simulation of combustion and transition to detonation of condensed-phase commercial- and military-grade explosives, which are confined by (or in general interacting with one or more) compliant inert materials. Examples include confined rate-stick problems and interaction of shock waves with gas cavities or solid particles in explosives. This formulation is based on an augmented Euler approach to account for the mixture of the explosive and its products, and a multi-phase diffuse interface approach to solve for the immiscible interaction between the mixture and the inert materials, so it is in essence a hybrid (augmented Euler and multi-phase) model. As such, it has many of the desirable features of the two approaches and, critically for our applications of interest, it provides the accurate recovery of temperature fields across all components. Moreover, it conveys a lot more physical information than augmented Euler, without the complexity of full multi-phase Baer-Nunziato-type models or the lack of robustness of augmented Euler models in the presence of more than two components. The model can sustain large density differences across material interfaces without the presence of spurious oscillations in velocity and pressure, and it can accommodate realistic equations of state and arbitrary (pressure- or temperature-based) reaction-rate laws. Under certain conditions, we show that the formulation reduces to well-known augmented Euler or multi-phase models, which have been extensively validated and used in practice. The full hybrid model and its reduced forms are validated against problems with exact (or independently-verified numerical) solutions and evaluated for robustness for rate-stick and shock-induced cavity collapse case-studies.

  9. Modelling the cancer growth process by Stochastic Differential Equations with the effect of Chondroitin Sulfate (CS) as anticancer therapeutics

    NASA Astrophysics Data System (ADS)

    Syahidatul Ayuni Mazlan, Mazma; Rosli, Norhayati; Jauhari Arief Ichwan, Solachuddin; Suhaity Azmi, Nina

    2017-09-01

    A stochastic model is introduced to describe the growth of cancer affected by anti-cancer therapeutics of Chondroitin Sulfate (CS). The parameters values of the stochastic model are estimated via maximum likelihood function. The numerical method of Euler-Maruyama will be employed to solve the model numerically. The efficiency of the stochastic model is measured by comparing the simulated result with the experimental data.

  10. Monotonic Derivative Correction for Calculation of Supersonic Flows

    ERIC Educational Resources Information Center

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    Aim of the study: This study examines numerical methods for solving the problems in gas dynamics, which are based on an exact or approximate solution to the problem of breakdown of an arbitrary discontinuity (the Riemann problem). Results: Comparative analysis of finite difference schemes for the Euler equations integration is conducted on the…

  11. Application of advanced grid generation techniques for flow field computations about complex configurations

    NASA Technical Reports Server (NTRS)

    Kathong, Monchai; Tiwari, Surendra N.

    1988-01-01

    In the computation of flowfields about complex configurations, it is very difficult to construct a boundary-fitted coordinate system. An alternative approach is to use several grids at once, each of which is generated independently. This procedure is called the multiple grids or zonal grids approach; its applications are investigated. The method conservative providing conservation of fluxes at grid interfaces. The Euler equations are solved numerically on such grids for various configurations. The numerical scheme used is the finite-volume technique with a three-stage Runge-Kutta time integration. The code is vectorized and programmed to run on the CDC VPS-32 computer. Steady state solutions of the Euler equations are presented and discussed. The solutions include: low speed flow over a sphere, high speed flow over a slender body, supersonic flow through a duct, and supersonic internal/external flow interaction for an aircraft configuration at various angles of attack. The results demonstrate that the multiple grids approach along with the conservative interfacing is capable of computing the flows about the complex configurations where the use of a single grid system is not possible.

  12. Spatiotemporal motion boundary detection and motion boundary velocity estimation for tracking moving objects with a moving camera: a level sets PDEs approach with concurrent camera motion compensation.

    PubMed

    Feghali, Rosario; Mitiche, Amar

    2004-11-01

    The purpose of this study is to investigate a method of tracking moving objects with a moving camera. This method estimates simultaneously the motion induced by camera movement. The problem is formulated as a Bayesian motion-based partitioning problem in the spatiotemporal domain of the image quence. An energy functional is derived from the Bayesian formulation. The Euler-Lagrange descent equations determine imultaneously an estimate of the image motion field induced by camera motion and an estimate of the spatiotemporal motion undary surface. The Euler-Lagrange equation corresponding to the surface is expressed as a level-set partial differential equation for topology independence and numerically stable implementation. The method can be initialized simply and can track multiple objects with nonsimultaneous motions. Velocities on motion boundaries can be estimated from geometrical properties of the motion boundary. Several examples of experimental verification are given using synthetic and real-image sequences.

  13. A Kinetic Approach to Propagation and Stability of Detonation Waves

    NASA Astrophysics Data System (ADS)

    Monaco, R.; Bianchi, M. Pandolfi; Soares, A. J.

    2008-12-01

    The problem of the steady propagation and linear stability of a detonation wave is formulated in the kinetic frame for a quaternary gas mixture in which a reversible bimolecular reaction takes place. The reactive Euler equations and related Rankine-Hugoniot conditions are deduced from the mesoscopic description of the process. The steady propagation problem is solved for a Zeldovich, von Neuman and Doering (ZND) wave, providing the detonation profiles and the wave thickness for different overdrive degrees. The one-dimensional stability of such detonation wave is then studied in terms of an initial value problem coupled with an acoustic radiation condition at the equilibrium final state. The stability equations and their initial data are deduced from the linearized reactive Euler equations and related Rankine-Hugoniot conditions through a normal mode analysis referred to the complex disturbances of the steady state variables. Some numerical simulations for an elementary reaction of the hydrogen-oxygen chain are proposed in order to describe the time and space evolution of the instabilities induced by the shock front perturbation.

  14. Benchmark problems in computational aeroacoustics

    NASA Technical Reports Server (NTRS)

    Porter-Locklear, Freda

    1994-01-01

    A recent directive at NASA Langley is aimed at numerically predicting principal noise sources. During my summer stay, I worked with high-order ENO code, developed by Dr. Harold Atkins, for solving the unsteady compressible Navier-Stokes equations, as it applies to computational aeroacoustics (CAA). A CAA workshop, composed of six categories of benchmark problems, has been organized to test various numerical properties of code. My task was to determine the robustness of Atkins' code for these test problems. In one category, we tested the nonlinear wave propagation of the code for the one-dimensional Euler equations, with initial pressure, density, and velocity conditions. Using freestream boundary conditions, our results were plausible. In another category, we solved the linearized two-dimensional Euler equations to test the effectiveness of radiation boundary conditions. Here we utilized MAPLE to compute eigenvalues and eigenvectors of the Jacobian given variable and flux vectors. We experienced a minor problem with inflow and outflow boundary conditions. Next, we solved the quasi one dimensional unsteady flow equations with an incoming acoustic wave of amplitude 10(exp -6). The small amplitude sound wave was incident on a convergent-divergent nozzle. After finding a steady-state solution and then marching forward, our solution indicated that after 30 periods the acoustic wave had dissipated (a period is time required for sound wave to traverse one end of nozzle to other end).

  15. Large-scale computations in fluid mechanics; Proceedings of the Fifteenth Summer Seminar on Applied Mathematics, University of California, La Jolla, CA, June 27-July 8, 1983. Parts 1 & 2

    NASA Technical Reports Server (NTRS)

    Engquist, B. E. (Editor); Osher, S. (Editor); Somerville, R. C. J. (Editor)

    1985-01-01

    Papers are presented on such topics as the use of semi-Lagrangian advective schemes in meteorological modeling; computation with high-resolution upwind schemes for hyperbolic equations; dynamics of flame propagation in a turbulent field; a modified finite element method for solving the incompressible Navier-Stokes equations; computational fusion magnetohydrodynamics; and a nonoscillatory shock capturing scheme using flux-limited dissipation. Consideration is also given to the use of spectral techniques in numerical weather prediction; numerical methods for the incorporation of mountains in atmospheric models; techniques for the numerical simulation of large-scale eddies in geophysical fluid dynamics; high-resolution TVD schemes using flux limiters; upwind-difference methods for aerodynamic problems governed by the Euler equations; and an MHD model of the earth's magnetosphere.

  16. Splitting methods for low Mach number Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Abarbanel, Saul; Dutt, Pravir; Gottlieb, David

    1987-01-01

    Examined are some splitting techniques for low Mach number Euler flows. Shortcomings of some of the proposed methods are pointed out and an explanation for their inadequacy suggested. A symmetric splitting for both the Euler and Navier-Stokes equations is then presented which removes the stiffness of these equations when the Mach number is small. The splitting is shown to be stable.

  17. A high-order relaxation method with projective integration for solving nonlinear systems of hyperbolic conservation laws

    NASA Astrophysics Data System (ADS)

    Lafitte, Pauline; Melis, Ward; Samaey, Giovanni

    2017-07-01

    We present a general, high-order, fully explicit relaxation scheme which can be applied to any system of nonlinear hyperbolic conservation laws in multiple dimensions. The scheme consists of two steps. In a first (relaxation) step, the nonlinear hyperbolic conservation law is approximated by a kinetic equation with stiff BGK source term. Then, this kinetic equation is integrated in time using a projective integration method. After taking a few small (inner) steps with a simple, explicit method (such as direct forward Euler) to damp out the stiff components of the solution, the time derivative is estimated and used in an (outer) Runge-Kutta method of arbitrary order. We show that, with an appropriate choice of inner step size, the time step restriction on the outer time step is similar to the CFL condition for the hyperbolic conservation law. Moreover, the number of inner time steps is also independent of the stiffness of the BGK source term. We discuss stability and consistency, and illustrate with numerical results (linear advection, Burgers' equation and the shallow water and Euler equations) in one and two spatial dimensions.

  18. Memory efficient solution of the primitive equations for numerical weather prediction on the CYBER 205

    NASA Technical Reports Server (NTRS)

    Tuccillo, J. J.

    1984-01-01

    Numerical Weather Prediction (NWP), for both operational and research purposes, requires only fast computational speed but also large memory. A technique for solving the Primitive Equations for atmospheric motion on the CYBER 205, as implemented in the Mesoscale Atmospheric Simulation System, which is fully vectorized and requires substantially less memory than other techniques such as the Leapfrog or Adams-Bashforth Schemes is discussed. The technique presented uses the Euler-Backard time marching scheme. Also discussed are several techniques for reducing computational time of the model by replacing slow intrinsic routines by faster algorithms which use only hardware vector instructions.

  19. Use of artificial bee colonies algorithm as numerical approximation of differential equations solution

    NASA Astrophysics Data System (ADS)

    Fikri, Fariz Fahmi; Nuraini, Nuning

    2018-03-01

    The differential equation is one of the branches in mathematics which is closely related to human life problems. Some problems that occur in our life can be modeled into differential equations as well as systems of differential equations such as the Lotka-Volterra model and SIR model. Therefore, solving a problem of differential equations is very important. Some differential equations are difficult to solve, so numerical methods are needed to solve that problems. Some numerical methods for solving differential equations that have been widely used are Euler Method, Heun Method, Runge-Kutta and others. However, some of these methods still have some restrictions that cause the method cannot be used to solve more complex problems such as an evaluation interval that we cannot change freely. New methods are needed to improve that problems. One of the method that can be used is the artificial bees colony algorithm. This algorithm is one of metaheuristic algorithm method, which can come out from local search space and do exploration in solution search space so that will get better solution than other method.

  20. Unsteady transonic viscous-inviscid interaction using Euler and boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar; Whitfield, Dave

    1989-01-01

    The Euler code is used extensively for computation of transonic unsteady aerodynamics. The boundary layer code solves the 3-D, compressible, unsteady, mean flow kinetic energy integral boundary layer equations in the direct mode. Inviscid-viscous coupling is handled using porosity boundary conditions. Some of the advantages and disadvantages of using the Euler and boundary layer equations for investigating unsteady viscous-inviscid interaction is examined.

  1. An Onsager Singularity Theorem for Turbulent Solutions of Compressible Euler Equations

    NASA Astrophysics Data System (ADS)

    Drivas, Theodore D.; Eyink, Gregory L.

    2017-12-01

    We prove that bounded weak solutions of the compressible Euler equations will conserve thermodynamic entropy unless the solution fields have sufficiently low space-time Besov regularity. A quantity measuring kinetic energy cascade will also vanish for such Euler solutions, unless the same singularity conditions are satisfied. It is shown furthermore that strong limits of solutions of compressible Navier-Stokes equations that are bounded and exhibit anomalous dissipation are weak Euler solutions. These inviscid limit solutions have non-negative anomalous entropy production and kinetic energy dissipation, with both vanishing when solutions are above the critical degree of Besov regularity. Stationary, planar shocks in Euclidean space with an ideal-gas equation of state provide simple examples that satisfy the conditions of our theorems and which demonstrate sharpness of our L 3-based conditions. These conditions involve space-time Besov regularity, but we show that they are satisfied by Euler solutions that possess similar space regularity uniformly in time.

  2. Evaluation of the Performance of the Hybrid Lattice Boltzmann Based Numerical Flux

    NASA Astrophysics Data System (ADS)

    Zheng, H. W.; Shu, C.

    2016-06-01

    It is well known that the numerical scheme is a key factor to the stability and accuracy of a Navier-Stokes solver. Recently, a new hybrid lattice Boltzmann numerical flux (HLBFS) is developed by Shu's group. It combines two different LBFS schemes by a switch function. It solves the Boltzmann equation instead of the Euler equation. In this article, the main object is to evaluate the ability of this HLBFS scheme by our in-house cell centered hybrid mesh based Navier-Stokes code. Its performance is examined by several widely-used bench-mark test cases. The comparisons on results between calculation and experiment are conducted. They show that the scheme can capture the shock wave as well as the resolving of boundary layer.

  3. Numerical Simulation of the Interaction of a Vortex with Stationary Airfoil in Transonic Flow,

    DTIC Science & Technology

    1984-01-12

    Goorjian, P. M., "Implicit Vortex Wakes ," AIAA Journal, Vol. 15, No. 4, April Finite- Difference Computations of Unsteady Transonic 1977, pp. 581-590... Difference Simulations of Three- tion of Wing- Vortex Interaction in Transonic Flow Dimensional Flow," AIAA Journal, Vol. 18, No. 2, Using Implicit...assumptions are made in p = density modeling the nonlinear vortex wake structure. Numerical algorithms based on the Euler equations p_ = free stream density

  4. Finite elements and finite differences for transonic flow calculations

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Murman, E. M.; Wellford, L. C.

    1978-01-01

    The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.

  5. Asymptotics and numerics of a family of two-dimensional generalized surface quasi-geostrophic equations

    NASA Astrophysics Data System (ADS)

    Ohkitani, Koji

    2012-09-01

    We study the generalised 2D surface quasi-geostrophic (SQG) equation, where the active scalar is given by a fractional power α of Laplacian applied to the stream function. This includes the 2D SQG and Euler equations as special cases. Using Poincaré's successive approximation to higher α-derivatives of the active scalar, we derive a variational equation for describing perturbations in the generalized SQG equation. In particular, in the limit α → 0, an asymptotic equation is derived on a stretched time variable τ = αt, which unifies equations in the family near α = 0. The successive approximation is also discussed at the other extreme of the 2D Euler limit α = 2-0. Numerical experiments are presented for both limits. We consider whether the solution behaves in a more singular fashion, with more effective nonlinearity, when α is increased. Two competing effects are identified: the regularizing effect of a fractional inverse Laplacian (control by conservation) and cancellation by symmetry (nonlinearity depletion). Near α = 0 (complete depletion), the solution behaves in a more singular fashion as α increases. Near α = 2 (maximal control by conservation), the solution behave in a more singular fashion, as α decreases, suggesting that there may be some α in [0, 2] at which the solution behaves in the most singular manner. We also present some numerical results of the family for α = 0.5, 1, and 1.5. On the original time t, the H1 norm of θ generally grows more rapidly with increasing α. However, on the new time τ, this order is reversed. On the other hand, contour patterns for different α appear to be similar at fixed τ, even though the norms are markedly different in magnitude. Finally, point-vortex systems for the generalized SQG family are discussed to shed light on the above problems of time scale.

  6. Application of Newtonian Physics to Predict the Speed of a Gravity Racer

    ERIC Educational Resources Information Center

    Driscoll, H. F.; Bullas, A. M.; King, C. E.; Senior, T.; Haake, S. J.; Hart, J.

    2016-01-01

    Gravity racing can be studied using numerical solutions to the equations of motion derived from Newton's second law. This allows students to explore the physics of gravity racing and to understand how design and course selection influences vehicle speed. Using Euler's method, we have developed a spreadsheet application that can be used to predict…

  7. Dynamics of 3D Timoshenko gyroelastic beams with large attitude changes for the gyros

    NASA Astrophysics Data System (ADS)

    Hassanpour, Soroosh; Heppler, G. R.

    2016-01-01

    This work is concerned with the theoretical development of dynamic equations for undamped gyroelastic beams which are dynamic systems with continuous inertia, elasticity, and gyricity. Assuming unrestricted or large attitude changes for the axes of the gyros and utilizing generalized Hooke's law, Duleau torsion theory, and Timoshenko bending theory, the energy expressions and equations of motion for the gyroelastic beams in three-dimensional space are derived. The so-obtained comprehensive gyroelastic beam model is compared against earlier gyroelastic beam models developed using Euler-Bernoulli beam models and is used to study the dynamics of gyroelastic beams through numerical examples. It is shown that there are significant differences between the developed unrestricted Timoshenko gyroelastic beam model and the previously derived zero-order restricted Euler-Bernoulli gyroelastic beam models. These differences are more pronounced in the short beam and transverse gyricity cases.

  8. A mixed volume grid approach for the Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Coirier, William J.; Jorgenson, Philip C. E.

    1996-01-01

    An approach for solving the compressible Euler and Navier-Stokes equations upon meshes composed of nearly arbitrary polyhedra is described. Each polyhedron is constructed from an arbitrary number of triangular and quadrilateral face elements, allowing the unified treatment of tetrahedral, prismatic, pyramidal, and hexahedral cells, as well the general cut cells produced by Cartesian mesh approaches. The basics behind the numerical approach and the resulting data structures are described. The accuracy of the mixed volume grid approach is assessed by performing a grid refinement study upon a series of hexahedral, tetrahedral, prismatic, and Cartesian meshes for an analytic inviscid problem. A series of laminar validation cases are made, comparing the results upon differing grid topologies to each other, to theory, and experimental data. A computation upon a prismatic/tetrahedral mesh is made simulating the laminar flow over a wall/cylinder combination.

  9. Multipole Vortex Blobs (MVB): Symplectic Geometry and Dynamics.

    PubMed

    Holm, Darryl D; Jacobs, Henry O

    2017-01-01

    Vortex blob methods are typically characterized by a regularization length scale, below which the dynamics are trivial for isolated blobs. In this article, we observe that the dynamics need not be trivial if one is willing to consider distributional derivatives of Dirac delta functionals as valid vorticity distributions. More specifically, a new singular vortex theory is presented for regularized Euler fluid equations of ideal incompressible flow in the plane. We determine the conditions under which such regularized Euler fluid equations may admit vorticity singularities which are stronger than delta functions, e.g., derivatives of delta functions. We also describe the symplectic geometry associated with these augmented vortex structures, and we characterize the dynamics as Hamiltonian. Applications to the design of numerical methods similar to vortex blob methods are also discussed. Such findings illuminate the rich dynamics which occur below the regularization length scale and enlighten our perspective on the potential for regularized fluid models to capture multiscale phenomena.

  10. An efficient iteration strategy for the solution of the Euler equations

    NASA Technical Reports Server (NTRS)

    Walters, R. W.; Dwoyer, D. L.

    1985-01-01

    A line Gauss-Seidel (LGS) relaxation algorithm in conjunction with a one-parameter family of upwind discretizations of the Euler equations in two-dimensions is described. The basic algorithm has the property that convergence to the steady-state is quadratic for fully supersonic flows and linear otherwise. This is in contrast to the block ADI methods (either central or upwind differenced) and the upwind biased relaxation schemes, all of which converge linearly, independent of the flow regime. Moreover, the algorithm presented here is easily enhanced to detect regions of subsonic flow embedded in supersonic flow. This allows marching by lines in the supersonic regions, converging each line quadratically, and iterating in the subsonic regions, thus yielding a very efficient iteration strategy. Numerical results are presented for two-dimensional supersonic and transonic flows containing both oblique and normal shock waves which confirm the efficiency of the iteration strategy.

  11. Efficient solutions to the Euler equations for supersonic flow with embedded subsonic regions

    NASA Technical Reports Server (NTRS)

    Walters, Robert W.; Dwoyer, Douglas L.

    1987-01-01

    A line Gauss-Seidel (LGS) relaxation algorithm in conjunction with a one-parameter family of upwind discretizations of the Euler equations in two dimensions is described. Convergence of the basic algorithm to the steady state is quadratic for fully supersonic flows and is linear for other flows. This is in contrast to the block alternating direction implicit methods (either central or upwind differenced) and the upwind biased relaxation schemes, all of which converge linearly, independent of the flow regime. Moreover, the algorithm presented herein is easily coupled with methods to detect regions of subsonic flow embedded in supersonic flow. This allows marching by lines in the supersonic regions, converging each line quadratically, and iterating in the subsonic regions, and yields a very efficient iteration strategy. Numerical results are presented for two-dimensional supersonic and transonic flows containing oblique and normal shock waves which confirm the efficiency of the iteration strategy.

  12. Implicit flux-split schemes for the Euler equations

    NASA Technical Reports Server (NTRS)

    Thomas, J. L.; Walters, R. W.; Van Leer, B.

    1985-01-01

    Recent progress in the development of implicit algorithms for the Euler equations using the flux-vector splitting method is described. Comparisons of the relative efficiency of relaxation and spatially-split approximately factored methods on a vector processor for two-dimensional flows are made. For transonic flows, the higher convergence rate per iteration of the Gauss-Seidel relaxation algorithms, which are only partially vectorizable, is amply compensated for by the faster computational rate per iteration of the approximately factored algorithm. For supersonic flows, the fully-upwind line-relaxation method is more efficient since the numerical domain of dependence is more closely matched to the physical domain of dependence. A hybrid three-dimensional algorithm using relaxation in one coordinate direction and approximate factorization in the cross-flow plane is developed and applied to a forebody shape at supersonic speeds and a swept, tapered wing at transonic speeds.

  13. Stress and Fracture Analyses Under Elastic-plastic and Creep Conditions: Some Basic Developments and Computational Approaches

    NASA Technical Reports Server (NTRS)

    Reed, K. W.; Stonesifer, R. B.; Atluri, S. N.

    1983-01-01

    A new hybrid-stress finite element algorith, suitable for analyses of large quasi-static deformations of inelastic solids, is presented. Principal variables in the formulation are the nominal stress-rate and spin. A such, a consistent reformulation of the constitutive equation is necessary, and is discussed. The finite element equations give rise to an initial value problem. Time integration has been accomplished by Euler and Runge-Kutta schemes and the superior accuracy of the higher order schemes is noted. In the course of integration of stress in time, it has been demonstrated that classical schemes such as Euler's and Runge-Kutta may lead to strong frame-dependence. As a remedy, modified integration schemes are proposed and the potential of the new schemes for suppressing frame dependence of numerically integrated stress is demonstrated. The topic of the development of valid creep fracture criteria is also addressed.

  14. A physical approach to the numerical treatment of boundaries in gas dynamics

    NASA Technical Reports Server (NTRS)

    Moretti, G.

    1981-01-01

    Two types of boundaries are considered: rigid walls, and artificial (open) boundaries which were arbitrarily drawn somewhere across a wider flow field. A set of partial differential equations (typically, the Euler equations) has an infinite number of solutions, each one defined by a set of initial and boundary conditions. The initial conditions remaining the same, any change in the boundary conditions will produce a new solution. To pose the problem well, a necessary and sufficient number of boundary conditions are prescribed.

  15. Multiscale techniques for parabolic equations.

    PubMed

    Målqvist, Axel; Persson, Anna

    2018-01-01

    We use the local orthogonal decomposition technique introduced in Målqvist and Peterseim (Math Comput 83(290):2583-2603, 2014) to derive a generalized finite element method for linear and semilinear parabolic equations with spatial multiscale coefficients. We consider nonsmooth initial data and a backward Euler scheme for the temporal discretization. Optimal order convergence rate, depending only on the contrast, but not on the variations of the coefficients, is proven in the [Formula: see text]-norm. We present numerical examples, which confirm our theoretical findings.

  16. Research in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Murman, Earll M.

    1987-01-01

    The numerical integration of quasi-one-dimensional unsteady flow problems which involve finite rate chemistry are discussed, and are expressed in terms of conservative form Euler and species conservation equations. Hypersonic viscous calculations for delta wing geometries is also examined. The conical Navier-Stokes equations model was selected in order to investigate the effects of viscous-inviscid interations. The more complete three-dimensional model is beyond the available computing resources. The flux vector splitting method with van Leer's MUSCL differencing is being used. Preliminary results were computed for several conditions.

  17. Efficient Numerical Methods for Nonequilibrium Re-Entry Flows

    DTIC Science & Technology

    2014-01-14

    right-hand side is the only quadratic operation). The number of sub- iterations , kmax, used in this update needs to be chosen for optimal convergence and...Upper Symmetric Gauss - Seidel Method for the Euler and Navier-Stokes Equations,”, AIAA Journal, Vol. 26, No. 9, pp. 1025-1026, Sept. 1988. 11Edwards, J.R...Candler, “The Solution of the Navier-Stokes Equations Using Gauss - Seidel Line Relaxation,” Computers and Fluids, Vol. 17, No. 1, pp. 135-150, 1989

  18. Hydrodynamic Coherence and Vortex Solutions of the Euler-Helmholtz Equation

    NASA Astrophysics Data System (ADS)

    Fimin, N. N.; Chechetkin, V. M.

    2018-03-01

    The form of the general solution of the steady-state Euler-Helmholtz equation (reducible to the Joyce-Montgomery one) in arbitrary domains on the plane is considered. This equation describes the dynamics of vortex hydrodynamic structures.

  19. Prediction of a Densely Loaded Particle-Laden Jet using a Euler-Lagrange Dense Spray Model

    NASA Astrophysics Data System (ADS)

    Pakseresht, Pedram; Apte, Sourabh V.

    2017-11-01

    Modeling of a dense spray regime using an Euler-Lagrange discrete-element approach is challenging because of local high volume loading. A subgrid cluster of droplets can lead to locally high void fractions for the disperse phase. Under these conditions, spatio-temporal changes in the carrier phase volume fractions, which are commonly neglected in spray simulations in an Euler-Lagrange two-way coupling model, could become important. Accounting for the carrier phase volume fraction variations, leads to zero-Mach number, variable density governing equations. Using pressure-based solvers, this gives rise to a source term in the pressure Poisson equation and a non-divergence free velocity field. To test the validity and predictive capability of such an approach, a round jet laden with solid particles is investigated using Direct Numerical Simulation and compared with available experimental data for different loadings. Various volume fractions spanning from dilute to dense regimes are investigated with and without taking into account the volume displacement effects. The predictions of the two approaches are compared and analyzed to investigate the effectiveness of the dense spray model. Financial support was provided by National Aeronautics and Space Administration (NASA).

  20. A new Euler scheme based on harmonic-polygon approach for solving first order ordinary differential equation

    NASA Astrophysics Data System (ADS)

    Yusop, Nurhafizah Moziyana Mohd; Hasan, Mohammad Khatim; Wook, Muslihah; Amran, Mohd Fahmi Mohamad; Ahmad, Siti Rohaidah

    2017-10-01

    There are many benefits to improve Euler scheme for solving the Ordinary Differential Equation Problems. Among the benefits are simple implementation and low-cost computational. However, the problem of accuracy in Euler scheme persuade scholar to use complex method. Therefore, the main purpose of this research are show the construction a new modified Euler scheme that improve accuracy of Polygon scheme in various step size. The implementing of new scheme are used Polygon scheme and Harmonic mean concept that called as Harmonic-Polygon scheme. This Harmonic-Polygon can provide new advantages that Euler scheme could offer by solving Ordinary Differential Equation problem. Four set of problems are solved via Harmonic-Polygon. Findings show that new scheme or Harmonic-Polygon scheme can produce much better accuracy result.

  1. Discretizing singular point sources in hyperbolic wave propagation problems

    DOE PAGES

    Petersson, N. Anders; O'Reilly, Ossian; Sjogreen, Bjorn; ...

    2016-06-01

    Here, we develop high order accurate source discretizations for hyperbolic wave propagation problems in first order formulation that are discretized by finite difference schemes. By studying the Fourier series expansions of the source discretization and the finite difference operator, we derive sufficient conditions for achieving design accuracy in the numerical solution. Only half of the conditions in Fourier space can be satisfied through moment conditions on the source discretization, and we develop smoothness conditions for satisfying the remaining accuracy conditions. The resulting source discretization has compact support in physical space, and is spread over as many grid points as themore » number of moment and smoothness conditions. In numerical experiments we demonstrate high order of accuracy in the numerical solution of the 1-D advection equation (both in the interior and near a boundary), the 3-D elastic wave equation, and the 3-D linearized Euler equations.« less

  2. A Lagrangian meshfree method applied to linear and nonlinear elasticity.

    PubMed

    Walker, Wade A

    2017-01-01

    The repeated replacement method (RRM) is a Lagrangian meshfree method which we have previously applied to the Euler equations for compressible fluid flow. In this paper we present new enhancements to RRM, and we apply the enhanced method to both linear and nonlinear elasticity. We compare the results of ten test problems to those of analytic solvers, to demonstrate that RRM can successfully simulate these elastic systems without many of the requirements of traditional numerical methods such as numerical derivatives, equation system solvers, or Riemann solvers. We also show the relationship between error and computational effort for RRM on these systems, and compare RRM to other methods to highlight its strengths and weaknesses. And to further explain the two elastic equations used in the paper, we demonstrate the mathematical procedure used to create Riemann and Sedov-Taylor solvers for them, and detail the numerical techniques needed to embody those solvers in code.

  3. A Lagrangian meshfree method applied to linear and nonlinear elasticity

    PubMed Central

    2017-01-01

    The repeated replacement method (RRM) is a Lagrangian meshfree method which we have previously applied to the Euler equations for compressible fluid flow. In this paper we present new enhancements to RRM, and we apply the enhanced method to both linear and nonlinear elasticity. We compare the results of ten test problems to those of analytic solvers, to demonstrate that RRM can successfully simulate these elastic systems without many of the requirements of traditional numerical methods such as numerical derivatives, equation system solvers, or Riemann solvers. We also show the relationship between error and computational effort for RRM on these systems, and compare RRM to other methods to highlight its strengths and weaknesses. And to further explain the two elastic equations used in the paper, we demonstrate the mathematical procedure used to create Riemann and Sedov-Taylor solvers for them, and detail the numerical techniques needed to embody those solvers in code. PMID:29045443

  4. Stability of Blowup for a 1D Model of Axisymmetric 3D Euler Equation

    NASA Astrophysics Data System (ADS)

    Do, Tam; Kiselev, Alexander; Xu, Xiaoqian

    2016-10-01

    The question of the global regularity versus finite- time blowup in solutions of the 3D incompressible Euler equation is a major open problem of modern applied analysis. In this paper, we study a class of one-dimensional models of the axisymmetric hyperbolic boundary blow-up scenario for the 3D Euler equation proposed by Hou and Luo (Multiscale Model Simul 12:1722-1776, 2014) based on extensive numerical simulations. These models generalize the 1D Hou-Luo model suggested in Hou and Luo Luo and Hou (2014), for which finite-time blowup has been established in Choi et al. (arXiv preprint. arXiv:1407.4776, 2014). The main new aspects of this work are twofold. First, we establish finite-time blowup for a model that is a closer approximation of the three-dimensional case than the original Hou-Luo model, in the sense that it contains relevant lower-order terms in the Biot-Savart law that have been discarded in Hou and Luo Choi et al. (2014). Secondly, we show that the blow-up mechanism is quite robust, by considering a broader family of models with the same main term as in the Hou-Luo model. Such blow-up stability result may be useful in further work on understanding the 3D hyperbolic blow-up scenario.

  5. Congruence Approximations for Entrophy Endowed Hyperbolic Systems

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Saini, Subhash (Technical Monitor)

    1998-01-01

    Building upon the standard symmetrization theory for hyperbolic systems of conservation laws, congruence properties of the symmetrized system are explored. These congruence properties suggest variants of several stabilized numerical discretization procedures for hyperbolic equations (upwind finite-volume, Galerkin least-squares, discontinuous Galerkin) that benefit computationally from congruence approximation. Specifically, it becomes straightforward to construct the spatial discretization and Jacobian linearization for these schemes (given a small amount of derivative information) for possible use in Newton's method, discrete optimization, homotopy algorithms, etc. Some examples will be given for the compressible Euler equations and the nonrelativistic MHD equations using linear and quadratic spatial approximation.

  6. On a Non-Reflecting Boundary Condition for Hyperbolic Conservation Laws

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.

    2003-01-01

    A non-reflecting boundary condition (NRBC) for practical computations in fluid dynamics and aeroacoustics is presented. The technique is based on the hyperbolicity of the Euler equation system and the first principle of plane (simple) wave propagation. The NRBC is simple and effective, provided the numerical scheme maintains locally a C(sup 1) continuous solution at the boundary. Several numerical examples in ID, 2D and 3D space are illustrated to demonstrate its robustness in practical computations.

  7. On a Non-Reflecting Boundary Condition for Hyperbolic Conservation Laws

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.

    2003-01-01

    A non-reflecting boundary condition (NRBC) for practical computations in fluid dynamics and aeroacoustics is presented. The technique is based on the first principle of non-reflecting, plane wave propagation and the hyperbolicity of the Euler equation system. The NRBC is simple and effective, provided the numerical scheme maintains locally a C(sup 1) continuous solution at the boundary. Several numerical examples in 1D, 2D, and 3D space are illustrated to demonstrate its robustness in practical computations.

  8. Remarks on High Reynolds Numbers Hydrodynamics and the Inviscid Limit

    NASA Astrophysics Data System (ADS)

    Constantin, Peter; Vicol, Vlad

    2018-04-01

    We prove that any weak space-time L^2 vanishing viscosity limit of a sequence of strong solutions of Navier-Stokes equations in a bounded domain of R^2 satisfies the Euler equation if the solutions' local enstrophies are uniformly bounded. We also prove that t-a.e. weak L^2 inviscid limits of solutions of 3D Navier-Stokes equations in bounded domains are weak solutions of the Euler equation if they locally satisfy a scaling property of their second-order structure function. The conditions imposed are far away from boundaries, and wild solutions of Euler equations are not a priori excluded in the limit.

  9. Development of a numerical model for vehicle-bridge interaction analysis of railway bridges

    NASA Astrophysics Data System (ADS)

    Kim, Hee Ju; Cho, Eun Sang; Ham, Jun Su; Park, Ki Tae; Kim, Tae Heon

    2016-04-01

    In the field of civil engineering, analyzing dynamic response was main concern for a long time. These analysis methods can be divided into moving load analysis method and moving mass analysis method, and formulating each an equation of motion has recently been studied after dividing vehicles and bridges. In this study, the numerical method is presented, which can consider the various train types and can solve the equations of motion for a vehicle-bridge interaction analysis by non-iteration procedure through formulating the coupled equations for motion. Also, 3 dimensional accurate numerical models was developed by KTX-vehicle in order to analyze dynamic response characteristics. The equations of motion for the conventional trains are derived, and the numerical models of the conventional trains are idealized by a set of linear springs and dashpots with 18 degrees of freedom. The bridge models are simplified by the 3 dimensional space frame element which is based on the Euler-Bernoulli theory. The rail irregularities of vertical and lateral directions are generated by PSD functions of the Federal Railroad Administration (FRA).

  10. Development of an unstructured solution adaptive method for the quasi-three-dimensional Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Jiang, Yi-Tsann

    1993-01-01

    A general solution adaptive scheme-based on a remeshing technique is developed for solving the two-dimensional and quasi-three-dimensional Euler and Favre-averaged Navier-Stokes equations. The numerical scheme is formulated on an unstructured triangular mesh utilizing an edge-based pointer system which defines the edge connectivity of the mesh structure. Jameson's four-stage hybrid Runge-Kutta scheme is used to march the solution in time. The convergence rate is enhanced through the use of local time stepping and implicit residual averaging. As the solution evolves, the mesh is regenerated adaptively using flow field information. Mesh adaptation parameters are evaluated such that an estimated local numerical error is equally distributed over the whole domain. For inviscid flows, the present approach generates a complete unstructured triangular mesh using the advancing front method. For turbulent flows, the approach combines a local highly stretched structured triangular mesh in the boundary layer region with an unstructured mesh in the remaining regions to efficiently resolve the important flow features. One-equation and two-equation turbulence models are incorporated into the present unstructured approach. Results are presented for a wide range of flow problems including two-dimensional multi-element airfoils, two-dimensional cascades, and quasi-three-dimensional cascades. This approach is shown to gain flow resolution in the refined regions while achieving a great reduction in the computational effort and storage requirements since solution points are not wasted in regions where they are not required.

  11. Development of an unstructured solution adaptive method for the quasi-three-dimensional Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Jiang, Yi-Tsann; Usab, William J., Jr.

    1993-01-01

    A general solution adaptive scheme based on a remeshing technique is developed for solving the two-dimensional and quasi-three-dimensional Euler and Favre-averaged Navier-Stokes equations. The numerical scheme is formulated on an unstructured triangular mesh utilizing an edge-based pointer system which defines the edge connectivity of the mesh structure. Jameson's four-stage hybrid Runge-Kutta scheme is used to march the solution in time. The convergence rate is enhanced through the use of local time stepping and implicit residual averaging. As the solution evolves, the mesh is regenerated adaptively using flow field information. Mesh adaptation parameters are evaluated such that an estimated local numerical error is equally distributed over the whole domain. For inviscid flows, the present approach generates a complete unstructured triangular mesh using the advancing front method. For turbulent flows, the approach combines a local highly stretched structured triangular mesh in the boundary layer region with an unstructured mesh in the remaining regions to efficiently resolve the important flow features. One-equation and two-equation turbulence models are incorporated into the present unstructured approach. Results are presented for a wide range of flow problems including two-dimensional multi-element airfoils, two-dimensional cascades, and quasi-three-dimensional cascades. This approach is shown to gain flow resolution in the refined regions while achieving a great reduction in the computational effort and storage requirements since solution points are not wasted in regions where they are not required.

  12. Building Blocks for Reliable Complex Nonlinear Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Mansour, Nagi N. (Technical Monitor)

    2002-01-01

    This talk describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations. Examples relevant to turbulent flow computations are included.

  13. Building Blocks for Reliable Complex Nonlinear Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    2005-01-01

    This chapter describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations.

  14. Building Blocks for Reliable Complex Nonlinear Numerical Simulations. Chapter 2

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Mansour, Nagi N. (Technical Monitor)

    2001-01-01

    This chapter describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations. Examples relevant to turbulent flow computations are included.

  15. Recursive Newton-Euler formulation of manipulator dynamics

    NASA Technical Reports Server (NTRS)

    Nasser, M. G.

    1989-01-01

    A recursive Newton-Euler procedure is presented for the formulation and solution of manipulator dynamical equations. The procedure includes rotational and translational joints and a topological tree. This model was verified analytically using a planar two-link manipulator. Also, the model was tested numerically against the Walker-Orin model using the Shuttle Remote Manipulator System data. The hinge accelerations obtained from both models were identical. The computational requirements of the model vary linearly with the number of joints. The computational efficiency of this method exceeds that of Walker-Orin methods. This procedure may be viewed as a considerable generalization of Armstrong's method. A six-by-six formulation is adopted which enhances both the computational efficiency and simplicity of the model.

  16. A Zonal Approach for the Solution of Coupled Euler and Potential Solutions of Flows with Complex Geometries.

    DTIC Science & Technology

    1987-06-01

    obtained from: A simple numerical intergration scheme is employed to perform the integral in Equations (B2) and (86) along the dividing streamline. A 11 4...angle of attack was small, the dividing streamline remained almost horizontal in this case. Results of a higher angle of attack case, in which the mesh

  17. Approximated analytical solution to an Ebola optimal control problem

    NASA Astrophysics Data System (ADS)

    Hincapié-Palacio, Doracelly; Ospina, Juan; Torres, Delfim F. M.

    2016-11-01

    An analytical expression for the optimal control of an Ebola problem is obtained. The analytical solution is found as a first-order approximation to the Pontryagin Maximum Principle via the Euler-Lagrange equation. An implementation of the method is given using the computer algebra system Maple. Our analytical solutions confirm the results recently reported in the literature using numerical methods.

  18. Numerical Modelling with Spreadsheets as a Means to Promote STEM to High School Students

    ERIC Educational Resources Information Center

    Benacka, Jan

    2016-01-01

    The article gives an account of an experiment in which sixty-eight high school students of age 16 - 19 developed spreadsheet applications that simulated fall and projectile motion in the air. The students applied the Euler method to solve the governing differential equations. The aim was to promote STEM to the students and motivate them to study…

  19. Numerical Simulation of the Detonation of Condensed Explosives

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Ye, Ting; Ning, Jianguo

    Detonation process of a condensed explosive was simulated using a finite difference method. Euler equations were applied to describe the detonation flow field, an ignition and growth model for the chemical reaction and Jones-Wilkins-Lee (JWL) equations of state for the state of explosives and detonation products. Based on the simple mixture rule that assumes the reacting explosives to be a mixture of the reactant and product components, 1D and 2D codes were developed to simulate the detonation process of high explosive PBX9404. The numerical results are in good agreement with the experimental results, which demonstrates that the finite difference method, mixture rule and chemical reaction proposed in this paper are adequate and feasible.

  20. A hierarchical uniformly high order DG-IMEX scheme for the 1D BGK equation

    NASA Astrophysics Data System (ADS)

    Xiong, Tao; Qiu, Jing-Mei

    2017-05-01

    A class of high order nodal discontinuous Galerkin implicit-explicit (DG-IMEX) schemes with asymptotic preserving (AP) property has been developed for the one-dimensional (1D) BGK equation in Xiong et al. (2015) [40], based on a micro-macro reformulation. The schemes are globally stiffly accurate and asymptotically consistent, and as the Knudsen number becomes small or goes to zero, they recover first the compressible Navier-Stokes (CNS) and then the Euler limit. Motivated by the recent work of Filbet and Rey (2015) [27] and the references therein, in this paper, we propose a hierarchical high order AP method, namely kinetic, CNS and Euler solvers are automatically applied in regions where their corresponding models are appropriate. The numerical solvers for different regimes are coupled naturally by interface conditions. To the best of our knowledge, the resulting scheme is the very first hierarchical one being proposed in the literature, that enjoys AP property as well as uniform high order accuracy. Numerical experiments demonstrate the efficiency and effectiveness of the proposed approach. As time evolves, three different regimes are dynamically identified and naturally coupled, leading to significant CPU time savings (more than 80% for some of our test problems).

  1. Vortex methods for separated flows

    NASA Technical Reports Server (NTRS)

    Spalart, Philippe R.

    1988-01-01

    The numerical solution of the Euler or Navier-Stokes equations by Lagrangian vortex methods is discussed. The mathematical background is presented in an elementary fashion and includes the relationship with traditional point-vortex studies, the convergence to smooth solutions of the Euler equations, and the essential differences between two- and three-dimensional cases. The difficulties in extending the method to viscous or compressible flows are explained. The overlap with the excellent review articles available is kept to a minimum and more emphasis is placed on the area of expertise, namely two-dimensional flows around bluff bodies. When solid walls are present, complete mathematical models are not available and a more heuristic attitude must be adopted. The imposition of inviscid and viscous boundary conditions without conformal mappings or image vortices and the creation of vorticity along solid walls are examined in detail. Methods for boundary-layer treatment and the question of the Kutta condition are discussed. Practical aspects and tips helpful in creating a method that really works are explained. The topics include the robustness of the method and the assessment of accuracy, vortex-core profiles, timemarching schemes, numerical dissipation, and efficient programming. Calculations of flows past streamlined or bluff bodies are used as examples when appropriate.

  2. Tensor-product preconditioners for higher-order space-time discontinuous Galerkin methods

    NASA Astrophysics Data System (ADS)

    Diosady, Laslo T.; Murman, Scott M.

    2017-02-01

    A space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equations. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high-order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows.

  3. Tensor-Product Preconditioners for Higher-Order Space-Time Discontinuous Galerkin Methods

    NASA Technical Reports Server (NTRS)

    Diosady, Laslo T.; Murman, Scott M.

    2016-01-01

    space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equat ions. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows.

  4. Singularities of the Euler equation and hydrodynamic stability

    NASA Technical Reports Server (NTRS)

    Tanveer, S.; Speziale, Charles G.

    1993-01-01

    Equations governing the motion of a specific class of singularities of the Euler equation in the extended complex spatial domain are derived. Under some assumptions, it is shown how this motion is dictated by the smooth part of the complex velocity at a singular point in the unphysical domain. These results are used to relate the motion of complex singularities to the stability of steady solutions of the Euler equation. A sufficient condition for instability is conjectured. Several examples are presented to demonstrate the efficacy of this sufficient condition which include the class of elliptical flows and the Kelvin-Stuart Cat's Eye.

  5. Singularities of the Euler equation and hydrodynamic stability

    NASA Technical Reports Server (NTRS)

    Tanveer, S.; Speziale, Charles G.

    1992-01-01

    Equations governing the motion of a specific class of singularities of the Euler equation in the extended complex spatial domain are derived. Under some assumptions, it is shown how this motion is dictated by the smooth part of the complex velocity at a singular point in the unphysical domain. These results are used to relate the motion of complex singularities to the stability of steady solutions of the Euler equation. A sufficient condition for instability is conjectured. Several examples are presented to demonstrate the efficacy of this sufficient condition which include the class of elliptical flows and the Kelvin-Stuart Cat's Eye.

  6. A Computational Study of Shear Layer Receptivity

    NASA Astrophysics Data System (ADS)

    Barone, Matthew; Lele, Sanjiva

    2002-11-01

    The receptivity of two-dimensional, compressible shear layers to local and external excitation sources is examined using a computational approach. The family of base flows considered consists of a laminar supersonic stream separated from nearly quiescent fluid by a thin, rigid splitter plate with a rounded trailing edge. The linearized Euler and linearized Navier-Stokes equations are solved numerically in the frequency domain. The flow solver is based on a high order finite difference scheme, coupled with an overset mesh technique developed for computational aeroacoustics applications. Solutions are obtained for acoustic plane wave forcing near the most unstable shear layer frequency, and are compared to the existing low frequency theory. An adjoint formulation to the present problem is developed, and adjoint equation calculations are performed using the same numerical methods as for the regular equation sets. Solutions to the adjoint equations are used to shed light on the mechanisms which control the receptivity of finite-width compressible shear layers.

  7. Computation of the stability derivatives via CFD and the sensitivity equations

    NASA Astrophysics Data System (ADS)

    Lei, Guo-Dong; Ren, Yu-Xin

    2011-04-01

    The method to calculate the aerodynamic stability derivates of aircrafts by using the sensitivity equations is extended to flows with shock waves in this paper. Using the newly developed second-order cell-centered finite volume scheme on the unstructured-grid, the unsteady Euler equations and sensitivity equations are solved simultaneously in a non-inertial frame of reference, so that the aerodynamic stability derivatives can be calculated for aircrafts with complex geometries. Based on the numerical results, behavior of the aerodynamic sensitivity parameters near the shock wave is discussed. Furthermore, the stability derivatives are analyzed for supersonic and hypersonic flows. The numerical results of the stability derivatives are found in good agreement with theoretical results for supersonic flows, and variations of the aerodynamic force and moment predicted by the stability derivatives are very close to those obtained by CFD simulation for both supersonic and hypersonic flows.

  8. The development of flux-split algorithms for flows with non-equilibrium thermodynamics and chemical reactions

    NASA Technical Reports Server (NTRS)

    Grossman, B.; Cinella, P.

    1988-01-01

    A finite-volume method for the numerical computation of flows with nonequilibrium thermodynamics and chemistry is presented. A thermodynamic model is described which simplifies the coupling between the chemistry and thermodynamics and also results in the retention of the homogeneity property of the Euler equations (including all the species continuity and vibrational energy conservation equations). Flux-splitting procedures are developed for the fully coupled equations involving fluid dynamics, chemical production and thermodynamic relaxation processes. New forms of flux-vector split and flux-difference split algorithms are embodied in a fully coupled, implicit, large-block structure, including all the species conservation and energy production equations. Several numerical examples are presented, including high-temperature shock tube and nozzle flows. The methodology is compared to other existing techniques, including spectral and central-differenced procedures, and favorable comparisons are shown regarding accuracy, shock-capturing and convergence rates.

  9. An efficient numerical method for solving the Boltzmann equation in multidimensions

    NASA Astrophysics Data System (ADS)

    Dimarco, Giacomo; Loubère, Raphaël; Narski, Jacek; Rey, Thomas

    2018-01-01

    In this paper we deal with the extension of the Fast Kinetic Scheme (FKS) (Dimarco and Loubère, 2013 [26]) originally constructed for solving the BGK equation, to the more challenging case of the Boltzmann equation. The scheme combines a robust and fast method for treating the transport part based on an innovative Lagrangian technique supplemented with conservative fast spectral schemes to treat the collisional operator by means of an operator splitting approach. This approach along with several implementation features related to the parallelization of the algorithm permits to construct an efficient simulation tool which is numerically tested against exact and reference solutions on classical problems arising in rarefied gas dynamic. We present results up to the 3 D × 3 D case for unsteady flows for the Variable Hard Sphere model which may serve as benchmark for future comparisons between different numerical methods for solving the multidimensional Boltzmann equation. For this reason, we also provide for each problem studied details on the computational cost and memory consumption as well as comparisons with the BGK model or the limit model of compressible Euler equations.

  10. An Entropy-Based Approach to Nonlinear Stability

    NASA Technical Reports Server (NTRS)

    Merriam, Marshal L.

    1989-01-01

    Many numerical methods used in computational fluid dynamics (CFD) incorporate an artificial dissipation term to suppress spurious oscillations and control nonlinear instabilities. The same effect can be accomplished by using upwind techniques, sometimes augmented with limiters to form Total Variation Diminishing (TVD) schemes. An analysis based on numerical satisfaction of the second law of thermodynamics allows many such methods to be compared and improved upon. A nonlinear stability proof is given for discrete scalar equations arising from a conservation law. Solutions to such equations are bounded in the L sub 2 norm if the second law of thermodynamics is satisfied in a global sense over a periodic domain. It is conjectured that an analogous statement is true for discrete equations arising from systems of conservation laws. Analysis and numerical experiments suggest that a more restrictive condition, a positive entropy production rate in each cell, is sufficient to exclude unphysical phenomena such as oscillations and expansion shocks. Construction of schemes which satisfy this condition is demonstrated for linear and nonlinear wave equations and for the one-dimensional Euler equations.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkatesan, R.C., E-mail: ravi@systemsresearchcorp.com; Plastino, A., E-mail: plastino@fisica.unlp.edu.ar

    The (i) reciprocity relations for the relative Fisher information (RFI, hereafter) and (ii) a generalized RFI–Euler theorem are self-consistently derived from the Hellmann–Feynman theorem. These new reciprocity relations generalize the RFI–Euler theorem and constitute the basis for building up a mathematical Legendre transform structure (LTS, hereafter), akin to that of thermodynamics, that underlies the RFI scenario. This demonstrates the possibility of translating the entire mathematical structure of thermodynamics into a RFI-based theoretical framework. Virial theorems play a prominent role in this endeavor, as a Schrödinger-like equation can be associated to the RFI. Lagrange multipliers are determined invoking the RFI–LTS linkmore » and the quantum mechanical virial theorem. An appropriate ansatz allows for the inference of probability density functions (pdf’s, hereafter) and energy-eigenvalues of the above mentioned Schrödinger-like equation. The energy-eigenvalues obtained here via inference are benchmarked against established theoretical and numerical results. A principled theoretical basis to reconstruct the RFI-framework from the FIM framework is established. Numerical examples for exemplary cases are provided. - Highlights: • Legendre transform structure for the RFI is obtained with the Hellmann–Feynman theorem. • Inference of the energy-eigenvalues of the SWE-like equation for the RFI is accomplished. • Basis for reconstruction of the RFI framework from the FIM-case is established. • Substantial qualitative and quantitative distinctions with prior studies are discussed.« less

  12. A linearized Euler analysis of unsteady flows in turbomachinery

    NASA Technical Reports Server (NTRS)

    Hall, Kenneth C.; Crawley, Edward F.

    1987-01-01

    A method for calculating unsteady flows in cascades is presented. The model, which is based on the linearized unsteady Euler equations, accounts for blade loading shock motion, wake motion, and blade geometry. The mean flow through the cascade is determined by solving the full nonlinear Euler equations. Assuming the unsteadiness in the flow is small, then the Euler equations are linearized about the mean flow to obtain a set of linear variable coefficient equations which describe the small amplitude, harmonic motion of the flow. These equations are discretized on a computational grid via a finite volume operator and solved directly subject to an appropriate set of linearized boundary conditions. The steady flow, which is calculated prior to the unsteady flow, is found via a Newton iteration procedure. An important feature of the analysis is the use of shock fitting to model steady and unsteady shocks. Use of the Euler equations with the unsteady Rankine-Hugoniot shock jump conditions correctly models the generation of steady and unsteady entropy and vorticity at shocks. In particular, the low frequency shock displacement is correctly predicted. Results of this method are presented for a variety of test cases. Predicted unsteady transonic flows in channels are compared to full nonlinear Euler solutions obtained using time-accurate, time-marching methods. The agreement between the two methods is excellent for small to moderate levels of flow unsteadiness. The method is also used to predict unsteady flows in cascades due to blade motion (flutter problem) and incoming disturbances (gust response problem).

  13. The instanton method and its numerical implementation in fluid mechanics

    NASA Astrophysics Data System (ADS)

    Grafke, Tobias; Grauer, Rainer; Schäfer, Tobias

    2015-08-01

    A precise characterization of structures occurring in turbulent fluid flows at high Reynolds numbers is one of the last open problems of classical physics. In this review we discuss recent developments related to the application of instanton methods to turbulence. Instantons are saddle point configurations of the underlying path integrals. They are equivalent to minimizers of the related Freidlin-Wentzell action and known to be able to characterize rare events in such systems. While there is an impressive body of work concerning their analytical description, this review focuses on the question on how to compute these minimizers numerically. In a short introduction we present the relevant mathematical and physical background before we discuss the stochastic Burgers equation in detail. We present algorithms to compute instantons numerically by an efficient solution of the corresponding Euler-Lagrange equations. A second focus is the discussion of a recently developed numerical filtering technique that allows to extract instantons from direct numerical simulations. In the following we present modifications of the algorithms to make them efficient when applied to two- or three-dimensional (2D or 3D) fluid dynamical problems. We illustrate these ideas using the 2D Burgers equation and the 3D Navier-Stokes equations.

  14. Algorithm and code development for unsteady three-dimensional Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Obayashi, Shigeru

    1994-01-01

    Aeroelastic tests require extensive cost and risk. An aeroelastic wind-tunnel experiment is an order of magnitude more expensive than a parallel experiment involving only aerodynamics. By complementing the wind-tunnel experiments with numerical simulations, the overall cost of the development of aircraft can be considerably reduced. In order to accurately compute aeroelastic phenomenon it is necessary to solve the unsteady Euler/Navier-Stokes equations simultaneously with the structural equations of motion. These equations accurately describe the flow phenomena for aeroelastic applications. At ARC a code, ENSAERO, is being developed for computing the unsteady aerodynamics and aeroelasticity of aircraft, and it solves the Euler/Navier-Stokes equations. The purpose of this cooperative agreement was to enhance ENSAERO in both algorithm and geometric capabilities. During the last five years, the algorithms of the code have been enhanced extensively by using high-resolution upwind algorithms and efficient implicit solvers. The zonal capability of the code has been extended from a one-to-one grid interface to a mismatching unsteady zonal interface. The geometric capability of the code has been extended from a single oscillating wing case to a full-span wing-body configuration with oscillating control surfaces. Each time a new capability was added, a proper validation case was simulated, and the capability of the code was demonstrated.

  15. Local-in-Time Adjoint-Based Method for Optimal Control/Design Optimization of Unsteady Compressible Flows

    NASA Technical Reports Server (NTRS)

    Yamaleev, N. K.; Diskin, B.; Nielsen, E. J.

    2009-01-01

    .We study local-in-time adjoint-based methods for minimization of ow matching functionals subject to the 2-D unsteady compressible Euler equations. The key idea of the local-in-time method is to construct a very accurate approximation of the global-in-time adjoint equations and the corresponding sensitivity derivative by using only local information available on each time subinterval. In contrast to conventional time-dependent adjoint-based optimization methods which require backward-in-time integration of the adjoint equations over the entire time interval, the local-in-time method solves local adjoint equations sequentially over each time subinterval. Since each subinterval contains relatively few time steps, the storage cost of the local-in-time method is much lower than that of the global adjoint formulation, thus making the time-dependent optimization feasible for practical applications. The paper presents a detailed comparison of the local- and global-in-time adjoint-based methods for minimization of a tracking functional governed by the Euler equations describing the ow around a circular bump. Our numerical results show that the local-in-time method converges to the same optimal solution obtained with the global counterpart, while drastically reducing the memory cost as compared to the global-in-time adjoint formulation.

  16. The Effects of Dissipation and Coarse Grid Resolution for Multigrid in Flow Problems

    NASA Technical Reports Server (NTRS)

    Eliasson, Peter; Engquist, Bjoern

    1996-01-01

    The objective of this paper is to investigate the effects of the numerical dissipation and the resolution of the solution on coarser grids for multigrid with the Euler equation approximations. The convergence is accomplished by multi-stage explicit time-stepping to steady state accelerated by FAS multigrid. A theoretical investigation is carried out for linear hyperbolic equations in one and two dimensions. The spectra reveals that for stability and hence robustness of spatial discretizations with a small amount of numerical dissipation the grid transfer operators have to be accurate enough and the smoother of low temporal accuracy. Numerical results give grid independent convergence in one dimension. For two-dimensional problems with a small amount of numerical dissipation, however, only a few grid levels contribute to an increased speed of convergence. This is explained by the small numerical dissipation leading to dispersion. Increasing the mesh density and hence making the problem over resolved increases the number of mesh levels contributing to an increased speed of convergence. If the steady state equations are elliptic, all grid levels contribute to the convergence regardless of the mesh density.

  17. Oscillation Amplitude Growth for a Decelerating Object with Constant Pitch Damping

    NASA Technical Reports Server (NTRS)

    Schoenenberger, Mark; Queen, Eric M.; Litton, Daniel

    2006-01-01

    The equations governing the deceleration and oscillation of a blunt body moving along a planar trajectory are re-expressed in the form of the Euler-Cauchy equation. An analytic solution of this equation describes the oscillation amplitude growth and frequency dilation with time for a statically stable decelerating body with constant pitch damping. The oscillation histories for several constant pitch damping values, predicted by the solution of the Euler-Cauchy equation are compared to POST six degree-of-freedom (6-DoF) trajectory simulations. The simulations use simplified aerodynamic coefficients matching the Euler-Cauchy approximations. Agreement between the model predictions and simulation results are excellent. Euler-Cauchy curves are also fit through nonlinear 6-DoF simulations and ballistic range data to identify static stability and pitch damping coefficients. The model os shown to closely fit through the data points and capture the behavior of the blunt body observed in simulation and experiment. The extracted coefficients are in reasonable agreement with higher fidelity, nonlinear parameter identification results. Finally, a nondimensional version of the Euler-Cauchy equation is presented and shown to be a simple and effective tool for designing dynamically scaled experiments for decelerating blunt capsule flight.

  18. Investigation of the hysteresis phenomena in steady shock reflection using kinetic and continuum methods

    NASA Astrophysics Data System (ADS)

    Ivanov, M.; Zeitoun, D.; Vuillon, J.; Gimelshein, S.; Markelov, G.

    1996-05-01

    The problem of transition of planar shock waves over straight wedges in steady flows from regular to Mach reflection and back was numerically studied by the DSMC method for solving the Boltzmann equation and finite difference method with FCT algorithm for solving the Euler equations. It is shown that the transition from regular to Mach reflection takes place in accordance with detachment criterion while the opposite transition occurs at smaller angles. The hysteresis effect was observed at increasing and decreasing shock wave angle.

  19. An analysis of the flow field near the fuel injection location in a gas core reactor.

    NASA Technical Reports Server (NTRS)

    Weinstein, H.; Murty, B. G. K.; Porter, R. W.

    1971-01-01

    An analytical study is presented which shows the effects of large energy release and the concurrent high acceleration of inner stream fluid on the coaxial flow field in a gas core reactor. The governing equations include the assumptions of only radial radiative transport of energy represented as an energy diffusion term in the Euler equations. The method of integral relations is used to obtain the numerical solution. Results show that the rapidly accelerating, heat generating inner stream actually shrinks in radius as it expands axially.

  20. Multiplicative noise removal through fractional order tv-based model and fast numerical schemes for its approximation

    NASA Astrophysics Data System (ADS)

    Ullah, Asmat; Chen, Wen; Khan, Mushtaq Ahmad

    2017-07-01

    This paper introduces a fractional order total variation (FOTV) based model with three different weights in the fractional order derivative definition for multiplicative noise removal purpose. The fractional-order Euler Lagrange equation which is a highly non-linear partial differential equation (PDE) is obtained by the minimization of the energy functional for image restoration. Two numerical schemes namely an iterative scheme based on the dual theory and majorization- minimization algorithm (MMA) are used. To improve the restoration results, we opt for an adaptive parameter selection procedure for the proposed model by applying the trial and error method. We report numerical simulations which show the validity and state of the art performance of the fractional-order model in visual improvement as well as an increase in the peak signal to noise ratio comparing to corresponding methods. Numerical experiments also demonstrate that MMAbased methodology is slightly better than that of an iterative scheme.

  1. Lagrangian averages, averaged Lagrangians, and the mean effects of fluctuations in fluid dynamics.

    PubMed

    Holm, Darryl D.

    2002-06-01

    We begin by placing the generalized Lagrangian mean (GLM) equations for a compressible adiabatic fluid into the Euler-Poincare (EP) variational framework of fluid dynamics, for an averaged Lagrangian. This is the Lagrangian averaged Euler-Poincare (LAEP) theorem. Next, we derive a set of approximate small amplitude GLM equations (glm equations) at second order in the fluctuating displacement of a Lagrangian trajectory from its mean position. These equations express the linear and nonlinear back-reaction effects on the Eulerian mean fluid quantities by the fluctuating displacements of the Lagrangian trajectories in terms of their Eulerian second moments. The derivation of the glm equations uses the linearized relations between Eulerian and Lagrangian fluctuations, in the tradition of Lagrangian stability analysis for fluids. The glm derivation also uses the method of averaged Lagrangians, in the tradition of wave, mean flow interaction. Next, the new glm EP motion equations for incompressible ideal fluids are compared with the Euler-alpha turbulence closure equations. An alpha model is a GLM (or glm) fluid theory with a Taylor hypothesis closure. Such closures are based on the linearized fluctuation relations that determine the dynamics of the Lagrangian statistical quantities in the Euler-alpha equations. Thus, by using the LAEP theorem, we bridge between the GLM equations and the Euler-alpha closure equations, through the small-amplitude glm approximation in the EP variational framework. We conclude by highlighting a new application of the GLM, glm, and alpha-model results for Lagrangian averaged ideal magnetohydrodynamics. (c) 2002 American Institute of Physics.

  2. A Solution Adaptive Structured/Unstructured Overset Grid Flow Solver with Applications to Helicopter Rotor Flows

    NASA Technical Reports Server (NTRS)

    Duque, Earl P. N.; Biswas, Rupak; Strawn, Roger C.

    1995-01-01

    This paper summarizes a method that solves both the three dimensional thin-layer Navier-Stokes equations and the Euler equations using overset structured and solution adaptive unstructured grids with applications to helicopter rotor flowfields. The overset structured grids use an implicit finite-difference method to solve the thin-layer Navier-Stokes/Euler equations while the unstructured grid uses an explicit finite-volume method to solve the Euler equations. Solutions on a helicopter rotor in hover show the ability to accurately convect the rotor wake. However, isotropic subdivision of the tetrahedral mesh rapidly increases the overall problem size.

  3. Numerical simulation of electrophoresis separation processes

    NASA Technical Reports Server (NTRS)

    Ganjoo, D. K.; Tezduyar, T. E.

    1986-01-01

    A new Petrov-Galerkin finite element formulation has been proposed for transient convection-diffusion problems. Most Petrov-Galerkin formulations take into account the spatial discretization, and the weighting functions so developed give satisfactory solutions for steady state problems. Though these schemes can be used for transient problems, there is scope for improvement. The schemes proposed here, which consider temporal as well as spatial discretization, provide improved solutions. Electrophoresis, which involves the motion of charged entities under the influence of an applied electric field, is governed by equations similiar to those encountered in fluid flow problems, i.e., transient convection-diffusion equations. Test problems are solved in electrophoresis and fluid flow. The results obtained are satisfactory. It is also expected that these schemes, suitably adapted, will improve the numerical solutions of the compressible Euler and the Navier-Stokes equations.

  4. Confined Detonations and Pulse Detonation Engines

    DTIC Science & Technology

    2003-01-01

    chemically reacting flow was described by the 2D Euler equations &q OF(q) +G(q) W (1) 75 CONFINED DETONATIONS AND PULSE DETONATION ENGINES where q = (p...DETONATIONS AND PULSE DETONATION ENGINES 5 CONCLUDING REMARKS Numerical investigations of RR and MR in a supersonic chemically reacting flows have...formalism of hetero- geneous medium mechanics supplemented with an overall chemical reaction was 141 CONFINED DETONATIONS AND PULSE DETONATION ENGINES

  5. A Gas-Kinetic Scheme for Turbulent Flow

    DTIC Science & Technology

    2014-09-19

    is dΞ = dv1dv2dv3 dξ and: ψ = [ 1 v1 v2 v3 1 2 ( ui 2 + ξ2 )]T . (2) The numerical fluxes F related to a unit interface length normal to direction n... Rockets , 44(6):1232–1240. [Mandal and Deshpande, 1994] Mandal, J. and Desh- pande, S. (1994). Kinetic flux vector splitting for Euler equations. Comput

  6. One-dimensional high-order compact method for solving Euler's equations

    NASA Astrophysics Data System (ADS)

    Mohamad, M. A. H.; Basri, S.; Basuno, B.

    2012-06-01

    In the field of computational fluid dynamics, many numerical algorithms have been developed to simulate inviscid, compressible flows problems. Among those most famous and relevant are based on flux vector splitting and Godunov-type schemes. Previously, this system was developed through computational studies by Mawlood [1]. However the new test cases for compressible flows, the shock tube problems namely the receding flow and shock waves were not investigated before by Mawlood [1]. Thus, the objective of this study is to develop a high-order compact (HOC) finite difference solver for onedimensional Euler equation. Before developing the solver, a detailed investigation was conducted to assess the performance of the basic third-order compact central discretization schemes. Spatial discretization of the Euler equation is based on flux-vector splitting. From this observation, discretization of the convective flux terms of the Euler equation is based on a hybrid flux-vector splitting, known as the advection upstream splitting method (AUSM) scheme which combines the accuracy of flux-difference splitting and the robustness of flux-vector splitting. The AUSM scheme is based on the third-order compact scheme to the approximate finite difference equation was completely analyzed consequently. In one-dimensional problem for the first order schemes, an explicit method is adopted by using time integration method. In addition to that, development and modification of source code for the one-dimensional flow is validated with four test cases namely, unsteady shock tube, quasi-one-dimensional supersonic-subsonic nozzle flow, receding flow and shock waves in shock tubes. From these results, it was also carried out to ensure that the definition of Riemann problem can be identified. Further analysis had also been done in comparing the characteristic of AUSM scheme against experimental results, obtained from previous works and also comparative analysis with computational results generated by van Leer, KFVS and AUSMPW schemes. Furthermore, there is a remarkable improvement with the extension of the AUSM scheme from first-order to third-order accuracy in terms of shocks, contact discontinuities and rarefaction waves.

  7. Multigrid calculation of three-dimensional turbomachinery flows

    NASA Technical Reports Server (NTRS)

    Caughey, David A.

    1989-01-01

    Research was performed in the general area of computational aerodynamics, with particular emphasis on the development of efficient techniques for the solution of the Euler and Navier-Stokes equations for transonic flows through the complex blade passages associated with turbomachines. In particular, multigrid methods were developed, using both explicit and implicit time-stepping schemes as smoothing algorithms. The specific accomplishments of the research have included: (1) the development of an explicit multigrid method to solve the Euler equations for three-dimensional turbomachinery flows based upon the multigrid implementation of Jameson's explicit Runge-Kutta scheme (Jameson 1983); (2) the development of an implicit multigrid scheme for the three-dimensional Euler equations based upon lower-upper factorization; (3) the development of a multigrid scheme using a diagonalized alternating direction implicit (ADI) algorithm; (4) the extension of the diagonalized ADI multigrid method to solve the Euler equations of inviscid flow for three-dimensional turbomachinery flows; and also (5) the extension of the diagonalized ADI multigrid scheme to solve the Reynolds-averaged Navier-Stokes equations for two-dimensional turbomachinery flows.

  8. An efficient model for coupling structural vibrations with acoustic radiation

    NASA Technical Reports Server (NTRS)

    Frendi, Abdelkader; Maestrello, Lucio; Ting, LU

    1993-01-01

    The scattering of an incident wave by a flexible panel is studied. The panel vibration is governed by the nonlinear plate equations while the loading on the panel, which is the pressure difference across the panel, depends on the reflected and transmitted waves. Two models are used to calculate this structural-acoustic interaction problem. One solves the three dimensional nonlinear Euler equations for the flow-field coupled with the plate equations (the fully coupled model). The second uses the linear wave equation for the acoustic field and expresses the load as a double integral involving the panel oscillation (the decoupled model). The panel oscillation governed by a system of integro-differential equations is solved numerically and the acoustic field is then defined by an explicit formula. Numerical results are obtained using the two models for linear and nonlinear panel vibrations. The predictions given by these two models are in good agreement but the computational time needed for the 'fully coupled model' is 60 times longer than that for 'the decoupled model'.

  9. A new stream function formulation for the Euler equations

    NASA Technical Reports Server (NTRS)

    Atkins, H. L.; Hassan, H. A.

    1983-01-01

    A new stream function formulation is developed for the solution of Euler's equations in the transonic flow region. The stream function and the density are the dependent variables in this method, while the governing equations for adiabatic flow are the momentum equations which are solved in the strong conservation law form. The application of this method does not require a knowledge of the vorticity. The algorithm is combined with the automatic grid solver (GRAPE) of Steger and Sorenson (1979) in order to study arbitrary geometries. Results of the application of this method are presented for the NACA 0012 airfoil at various Mach numbers and angles of attack, and cylinders. In addition, detailed comparisons are made with other solutions of the Euler equations.

  10. Solution of the surface Euler equations for accurate three-dimensional boundary-layer analysis of aerodynamic configurations

    NASA Technical Reports Server (NTRS)

    Iyer, V.; Harris, J. E.

    1987-01-01

    The three-dimensional boundary-layer equations in the limit as the normal coordinate tends to infinity are called the surface Euler equations. The present paper describes an accurate method for generating edge conditions for three-dimensional boundary-layer codes using these equations. The inviscid pressure distribution is first interpolated to the boundary-layer grid. The surface Euler equations are then solved with this pressure field and a prescribed set of initial and boundary conditions to yield the velocities along the two surface coordinate directions. Results for typical wing and fuselage geometries are presented. The smoothness and accuracy of the edge conditions obtained are found to be superior to the conventional interpolation procedures.

  11. Nonlinear truncation error analysis of finite difference schemes for the Euler equations

    NASA Technical Reports Server (NTRS)

    Klopfer, G. H.; Mcrae, D. S.

    1983-01-01

    It is pointed out that, in general, dissipative finite difference integration schemes have been found to be quite robust when applied to the Euler equations of gas dynamics. The present investigation considers a modified equation analysis of both implicit and explicit finite difference techniques as applied to the Euler equations. The analysis is used to identify those error terms which contribute most to the observed solution errors. A technique for analytically removing the dominant error terms is demonstrated, resulting in a greatly improved solution for the explicit Lax-Wendroff schemes. It is shown that the nonlinear truncation errors are quite large and distributed quite differently for each of the three conservation equations as applied to a one-dimensional shock tube problem.

  12. Textbook Multigrid Efficiency for the Steady Euler Equations

    NASA Technical Reports Server (NTRS)

    Roberts, Thomas W.; Sidilkover, David; Swanson, R. C.

    2004-01-01

    A fast multigrid solver for the steady incompressible Euler equations is presented. Unlike time-marching schemes, this approach uses relaxation of the steady equations. Application of this method results in a discretization that correctly distinguishes between the advection and elliptic parts of the operator, allowing efficient smoothers to be constructed. Solvers for both unstructured triangular grids and structured quadrilateral grids have been written. Computations for channel flow and flow over a nonlifting airfoil have computed. Using Gauss-Seidel relaxation ordered in the flow direction, textbook multigrid convergence rates of nearly one order-of-magnitude residual reduction per multigrid cycle are achieved, independent of the grid spacing. This approach also may be applied to the compressible Euler equations and the incompressible Navier-Stokes equations.

  13. Restoration of the contact surface in FORCE-type centred schemes I: Homogeneous two-dimensional shallow water equations

    NASA Astrophysics Data System (ADS)

    Canestrelli, Alberto; Toro, Eleuterio F.

    2012-10-01

    Recently, the FORCE centred scheme for conservative hyperbolic multi-dimensional systems has been introduced in [34] and has been applied to Euler and relativistic MHD equations, solved on unstructured meshes. In this work we propose a modification of the FORCE scheme, named FORCE-Contact, that provides improved resolution of contact and shear waves. This paper presents the technique in full detail as applied to the two-dimensional homogeneous shallow water equations. The improvements due to the new method are particularly evident when an additional equation is solved for a tracer, since the modified scheme exactly resolves isolated and steady contact discontinuities. The improvement is considerable also for slowly moving contact discontinuities, for shear waves and for steady states in meandering channels. For these types of flow fields, the numerical results provided by the new FORCE-Contact scheme are comparable with, and sometimes better than, the results obtained from upwind schemes, such as Roes scheme for example. In a companion paper, a similar approach to restoring the missing contact wave and preserving well-balanced properties for non-conservative one- and two-layer shallow water equations is introduced. However, the procedure is general and it is in principle applicable to other multidimensional hyperbolic systems in conservative and non-conservative form, such as the Euler equations for compressible gas dynamics.

  14. An efficient method for solving the steady Euler equations

    NASA Technical Reports Server (NTRS)

    Liou, M. S.

    1986-01-01

    An efficient numerical procedure for solving a set of nonlinear partial differential equations is given, specifically for the steady Euler equations. Solutions of the equations were obtained by Newton's linearization procedure, commonly used to solve the roots of nonlinear algebraic equations. In application of the same procedure for solving a set of differential equations we give a theorem showing that a quadratic convergence rate can be achieved. While the domain of quadratic convergence depends on the problems studied and is unknown a priori, we show that firstand second-order derivatives of flux vectors determine whether the condition for quadratic convergence is satisfied. The first derivatives enter as an implicit operator for yielding new iterates and the second derivatives indicates smoothness of the flows considered. Consequently flows involving shocks are expected to require larger number of iterations. First-order upwind discretization in conjunction with the Steger-Warming flux-vector splitting is employed on the implicit operator and a diagonal dominant matrix results. However the explicit operator is represented by first- and seond-order upwind differencings, using both Steger-Warming's and van Leer's splittings. We discuss treatment of boundary conditions and solution procedures for solving the resulting block matrix system. With a set of test problems for one- and two-dimensional flows, we show detailed study as to the efficiency, accuracy, and convergence of the present method.

  15. A Comparison of Three PML Treatments for CAA (and CFD)

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    2008-01-01

    In this paper we compare three Perfectly Matched Layer (PML) treatments by means of a series of numerical experiments, using common numerical algorithms, computational grids, and code implementations. These comparisons are with the Linearized Euler Equations, for base uniform base flow. We see that there are two very good PML candidates, and that can both control the introduced error. Furthermore, we also show that corners can be handled with essentially no increase in the introduced error, and that with a good PML, the outer boundary is the most significant source of err

  16. A projection method for low speed flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colella, P.; Pao, K.

    The authors propose a decomposition applicable to low speed, inviscid flows of all Mach numbers less than 1. By using the Hodge decomposition, they may write the velocity field as the sum of a divergence-free vector field and a gradient of a scalar function. Evolution equations for these parts are presented. A numerical procedure based on this decomposition is designed, using projection methods for solving the incompressible variables and a backward-Euler method for solving the potential variables. Numerical experiments are included to illustrate various aspects of the algorithm.

  17. High-order ENO schemes applied to two- and three-dimensional compressible flow

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang; Erlebacher, Gordon; Zang, Thomas A.; Whitaker, David; Osher, Stanley

    1991-01-01

    High order essentially non-oscillatory (ENO) finite difference schemes are applied to the 2-D and 3-D compressible Euler and Navier-Stokes equations. Practical issues, such as vectorization, efficiency of coding, cost comparison with other numerical methods, and accuracy degeneracy effects, are discussed. Numerical examples are provided which are representative of computational problems of current interest in transition and turbulence physics. These require both nonoscillatory shock capturing and high resolution for detailed structures in the smooth regions and demonstrate the advantage of ENO schemes.

  18. Numerical modeling of the interaction of liquid drops and jets with shock waves and gas jets

    NASA Astrophysics Data System (ADS)

    Surov, V. S.

    1993-02-01

    The motion of a liquid drop (jet) and of the ambient gas is described, in the general case, by Navier-Stokes equations. An approximate solution to the interaction of a plane shock wave with a single liquid drop is presented. Based on the analysis, the general system of Navier-Stokes equations is reduced to two groups of equations, Euler equations for gas and Navier-Stokes equations for liquid; solutions to these equations are presented. The discussion also covers the modeling of the interaction of a shock wave with a drop screen, interaction of a liquid jet with a counterpropagating supersonic gas flow, and modeling of processes in a shock layer during the impact of a drop against an obstacle in gas flow.

  19. An efficient and accurate two-stage fourth-order gas-kinetic scheme for the Euler and Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Pan, Liang; Xu, Kun; Li, Qibing; Li, Jiequan

    2016-12-01

    For computational fluid dynamics (CFD), the generalized Riemann problem (GRP) solver and the second-order gas-kinetic scheme (GKS) provide a time-accurate flux function starting from a discontinuous piecewise linear flow distributions around a cell interface. With the adoption of time derivative of the flux function, a two-stage Lax-Wendroff-type (L-W for short) time stepping method has been recently proposed in the design of a fourth-order time accurate method for inviscid flow [21]. In this paper, based on the same time-stepping method and the second-order GKS flux function [42], a fourth-order gas-kinetic scheme is constructed for the Euler and Navier-Stokes (NS) equations. In comparison with the formal one-stage time-stepping third-order gas-kinetic solver [24], the current fourth-order method not only reduces the complexity of the flux function, but also improves the accuracy of the scheme. In terms of the computational cost, a two-dimensional third-order GKS flux function takes about six times of the computational time of a second-order GKS flux function. However, a fifth-order WENO reconstruction may take more than ten times of the computational cost of a second-order GKS flux function. Therefore, it is fully legitimate to develop a two-stage fourth order time accurate method (two reconstruction) instead of standard four stage fourth-order Runge-Kutta method (four reconstruction). Most importantly, the robustness of the fourth-order GKS is as good as the second-order one. In the current computational fluid dynamics (CFD) research, it is still a difficult problem to extend the higher-order Euler solver to the NS one due to the change of governing equations from hyperbolic to parabolic type and the initial interface discontinuity. This problem remains distinctively for the hypersonic viscous and heat conducting flow. The GKS is based on the kinetic equation with the hyperbolic transport and the relaxation source term. The time-dependent GKS flux function provides a dynamic process of evolution from the kinetic scale particle free transport to the hydrodynamic scale wave propagation, which provides the physics for the non-equilibrium numerical shock structure construction to the near equilibrium NS solution. As a result, with the implementation of the fifth-order WENO initial reconstruction, in the smooth region the current two-stage GKS provides an accuracy of O ((Δx) 5 ,(Δt) 4) for the Euler equations, and O ((Δx) 5 ,τ2 Δt) for the NS equations, where τ is the time between particle collisions. Many numerical tests, including difficult ones for the Navier-Stokes solvers, have been used to validate the current method. Perfect numerical solutions can be obtained from the high Reynolds number boundary layer to the hypersonic viscous heat conducting flow. Following the two-stage time-stepping framework, the third-order GKS flux function can be used as well to construct a fifth-order method with the usage of both first-order and second-order time derivatives of the flux function. The use of time-accurate flux function may have great advantages on the development of higher-order CFD methods.

  20. Entropy-stable summation-by-parts discretization of the Euler equations on general curved elements

    NASA Astrophysics Data System (ADS)

    Crean, Jared; Hicken, Jason E.; Del Rey Fernández, David C.; Zingg, David W.; Carpenter, Mark H.

    2018-03-01

    We present and analyze an entropy-stable semi-discretization of the Euler equations based on high-order summation-by-parts (SBP) operators. In particular, we consider general multidimensional SBP elements, building on and generalizing previous work with tensor-product discretizations. In the absence of dissipation, we prove that the semi-discrete scheme conserves entropy; significantly, this proof of nonlinear L2 stability does not rely on integral exactness. Furthermore, interior penalties can be incorporated into the discretization to ensure that the total (mathematical) entropy decreases monotonically, producing an entropy-stable scheme. SBP discretizations with curved elements remain accurate, conservative, and entropy stable provided the mapping Jacobian satisfies the discrete metric invariants; polynomial mappings at most one degree higher than the SBP operators automatically satisfy the metric invariants in two dimensions. In three-dimensions, we describe an elementwise optimization that leads to suitable Jacobians in the case of polynomial mappings. The properties of the semi-discrete scheme are verified and investigated using numerical experiments.

  1. A Reconstructed Discontinuous Galerkin Method for the Euler Equations on Arbitrary Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong Luo; Luqing Luo; Robert Nourgaliev

    2012-11-01

    A reconstruction-based discontinuous Galerkin (RDG(P1P2)) method, a variant of P1P2 method, is presented for the solution of the compressible Euler equations on arbitrary grids. In this method, an in-cell reconstruction, designed to enhance the accuracy of the discontinuous Galerkin method, is used to obtain a quadratic polynomial solution (P2) from the underlying linear polynomial (P1) discontinuous Galerkin solution using a least-squares method. The stencils used in the reconstruction involve only the von Neumann neighborhood (face-neighboring cells) and are compact and consistent with the underlying DG method. The developed RDG method is used to compute a variety of flow problems onmore » arbitrary meshes to demonstrate its accuracy, efficiency, robustness, and versatility. The numerical results indicate that this RDG(P1P2) method is third-order accurate, and outperforms the third-order DG method (DG(P2)) in terms of both computing costs and storage requirements.« less

  2. Sequential limiting in continuous and discontinuous Galerkin methods for the Euler equations

    NASA Astrophysics Data System (ADS)

    Dobrev, V.; Kolev, Tz.; Kuzmin, D.; Rieben, R.; Tomov, V.

    2018-03-01

    We present a new predictor-corrector approach to enforcing local maximum principles in piecewise-linear finite element schemes for the compressible Euler equations. The new element-based limiting strategy is suitable for continuous and discontinuous Galerkin methods alike. In contrast to synchronized limiting techniques for systems of conservation laws, we constrain the density, momentum, and total energy in a sequential manner which guarantees positivity preservation for the pressure and internal energy. After the density limiting step, the total energy and momentum gradients are adjusted to incorporate the irreversible effect of density changes. Antidiffusive corrections to bounds-compatible low-order approximations are limited to satisfy inequality constraints for the specific total and kinetic energy. An accuracy-preserving smoothness indicator is introduced to gradually adjust lower bounds for the element-based correction factors. The employed smoothness criterion is based on a Hessian determinant test for the density. A numerical study is performed for test problems with smooth and discontinuous solutions.

  3. High order finite volume WENO schemes for the Euler equations under gravitational fields

    NASA Astrophysics Data System (ADS)

    Li, Gang; Xing, Yulong

    2016-07-01

    Euler equations with gravitational source terms are used to model many astrophysical and atmospheric phenomena. This system admits hydrostatic balance where the flux produced by the pressure is exactly canceled by the gravitational source term, and two commonly seen equilibria are the isothermal and polytropic hydrostatic solutions. Exact preservation of these equilibria is desirable as many practical problems are small perturbations of such balance. High order finite difference weighted essentially non-oscillatory (WENO) schemes have been proposed in [22], but only for the isothermal equilibrium state. In this paper, we design high order well-balanced finite volume WENO schemes, which can preserve not only the isothermal equilibrium but also the polytropic hydrostatic balance state exactly, and maintain genuine high order accuracy for general solutions. The well-balanced property is obtained by novel source term reformulation and discretization, combined with well-balanced numerical fluxes. Extensive one- and two-dimensional simulations are performed to verify well-balanced property, high order accuracy, as well as good resolution for smooth and discontinuous solutions.

  4. Vorticity Transport and Wave Emission in the Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Davis, S. S.; DeVincenzi, Donald (Technical Monitor)

    2001-01-01

    Higher order numerical algorithms (4th order in time, 3rd order in space) are applied to the Euler/Energy equations and are used to examine vorticity transport and wave motion in a non-self gravitating, initially isentropic Keplerian disk. In this talk we will examine the response of the nebula to an isolated vortex with a circulation about equal to the rotation rate of Jupiter. The vortex is located on the 4 AU circle and the nebula is simulated from 1 to 24 AU. We show that the vortex emits pressure-supported density and Rossby-type wave packets before it decays within a few orbits. The acoustic density waves evolve into weak (non entropy preserving) shock waves that propagate over the entire disk. The Rossby waves remain in the vicinity of the initial vortex disturbance, but are rapidly damped. Temporal frequencies and spatial wavenumbers are derived using the simulation data and compared with analytical dispersion relations from the linearized Euler/Energy equations.

  5. Vorticity Transport and Wave Emission In A Protoplanetary Disk

    NASA Technical Reports Server (NTRS)

    Davis, S. S.; Davis, Sanford (Technical Monitor)

    2002-01-01

    Higher order numerical algorithms (4th order in time, 3rd order in space) are applied to the Euler equations and are used to examine vorticity transport and wave motion in a non-self gravitating, initially isentropic Keplerian disk. In this talk we will examine the response of the disk to an isolated vortex with a circulation about equal to the rotation rate of Jupiter. The vortex is located on the 4 AU circle and the nebula is simulated from 1 to 24 AU. We show that the vortex emits pressure-supported density and Rossby-type wave packets before it decays within a few orbits. The acoustic density waves evolve into weak (non entropy preserving) shock waves that propagate over the entire disk. The Rossby waves remain in the vicinity of the initial vortex disturbance, but are rapidly damped. Temporal frequencies and spatial wavenumbers are derived from the nonlinear simulation data and correlated with analytical dispersion relations from the linearized Euler and energy equations.

  6. Computational methods for the identification of spatially varying stiffness and damping in beams

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Rosen, I. G.

    1986-01-01

    A numerical approximation scheme for the estimation of functional parameters in Euler-Bernoulli models for the transverse vibration of flexible beams with tip bodies is developed. The method permits the identification of spatially varying flexural stiffness and Voigt-Kelvin viscoelastic damping coefficients which appear in the hybrid system of ordinary and partial differential equations and boundary conditions describing the dynamics of such structures. An inverse problem is formulated as a least squares fit to data subject to constraints in the form of a vector system of abstract first order evolution equations. Spline-based finite element approximations are used to finite dimensionalize the problem. Theoretical convergence results are given and numerical studies carried out on both conventional (serial) and vector computers are discussed.

  7. A Three-Dimensional Linearized Unsteady Euler Analysis for Turbomachinery Blade Rows

    NASA Technical Reports Server (NTRS)

    Montgomery, Matthew D.; Verdon, Joseph M.

    1996-01-01

    A three-dimensional, linearized, Euler analysis is being developed to provide an efficient unsteady aerodynamic analysis that can be used to predict the aeroelastic and aeroacoustic response characteristics of axial-flow turbomachinery blading. The field equations and boundary conditions needed to describe nonlinear and linearized inviscid unsteady flows through a blade row operating within a cylindrical annular duct are presented. In addition, a numerical model for linearized inviscid unsteady flow, which is based upon an existing nonlinear, implicit, wave-split, finite volume analysis, is described. These aerodynamic and numerical models have been implemented into an unsteady flow code, called LINFLUX. A preliminary version of the LINFLUX code is applied herein to selected, benchmark three-dimensional, subsonic, unsteady flows, to illustrate its current capabilities and to uncover existing problems and deficiencies. The numerical results indicate that good progress has been made toward developing a reliable and useful three-dimensional prediction capability. However, some problems, associated with the implementation of an unsteady displacement field and numerical errors near solid boundaries, still exist. Also, accurate far-field conditions must be incorporated into the FINFLUX analysis, so that this analysis can be applied to unsteady flows driven be external aerodynamic excitations.

  8. Computation of steady and unsteady quasi-one-dimensional viscous/inviscid interacting internal flows at subsonic, transonic, and supersonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Swafford, Timothy W.; Huddleston, David H.; Busby, Judy A.; Chesser, B. Lawrence

    1992-01-01

    Computations of viscous-inviscid interacting internal flowfields are presented for steady and unsteady quasi-one-dimensional (Q1D) test cases. The unsteady Q1D Euler equations are coupled with integral boundary-layer equations for unsteady, two-dimensional (planar or axisymmetric), turbulent flow over impermeable, adiabatic walls. The coupling methodology differs from that used in most techniques reported previously in that the above mentioned equation sets are written as a complete system and solved simultaneously; that is, the coupling is carried out directly through the equations as opposed to coupling the solutions of the different equation sets. Solutions to the coupled system of equations are obtained using both explicit and implicit numerical schemes for steady subsonic, steady transonic, and both steady and unsteady supersonic internal flowfields. Computed solutions are compared with measurements as well as Navier-Stokes and inverse boundary-layer methods. An analysis of the eigenvalues of the coefficient matrix associated with the quasi-linear form of the coupled system of equations indicates the presence of complex eigenvalues for certain flow conditions. It is concluded that although reasonable solutions can be obtained numerically, these complex eigenvalues contribute to the overall difficulty in obtaining numerical solutions to the coupled system of equations.

  9. Modeling Solar Wind Flow with the Multi-Scale Fluid-Kinetic Simulation Suite

    DOE PAGES

    Pogorelov, N.V.; Borovikov, S. N.; Bedford, M. C.; ...

    2013-04-01

    Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS) is a package of numerical codes capable of performing adaptive mesh refinement simulations of complex plasma flows in the presence of discontinuities and charge exchange between ions and neutral atoms. The flow of the ionized component is described with the ideal MHD equations, while the transport of atoms is governed either by the Boltzmann equation or multiple Euler gas dynamics equations. We have enhanced the code with additional physical treatments for the transport of turbulence and acceleration of pickup ions in the interplanetary space and at the termination shock. In this article, we present themore » results of our numerical simulation of the solar wind (SW) interaction with the local interstellar medium (LISM) in different time-dependent and stationary formulations. Numerical results are compared with the Ulysses, Voyager, and OMNI observations. Finally, the SW boundary conditions are derived from in-situ spacecraft measurements and remote observations.« less

  10. On the commutator of C^{\\infty}} -symmetries and the reduction of Euler-Lagrange equations

    NASA Astrophysics Data System (ADS)

    Ruiz, A.; Muriel, C.; Olver, P. J.

    2018-04-01

    A novel procedure to reduce by four the order of Euler-Lagrange equations associated to nth order variational problems involving single variable integrals is presented. In preparation, a new formula for the commutator of two \

  11. Implicit flux-split Euler schemes for unsteady aerodynamic analysis involving unstructured dynamic meshes

    NASA Technical Reports Server (NTRS)

    Batina, John T.

    1990-01-01

    Improved algorithms for the solution of the time-dependent Euler equations are presented for unsteady aerodynamic analysis involving unstructured dynamic meshes. The improvements have been developed recently to the spatial and temporal discretizations used by unstructured grid flow solvers. The spatial discretization involves a flux-split approach which is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves an implicit time-integration shceme using a Gauss-Seidel relaxation procedure which is computationally efficient for either steady or unsteady flow problems. For example, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady and unsteady flow results are presented for the NACA 0012 airfoil to demonstrate applications of the new Euler solvers. The unsteady results were obtained for the airfoil pitching harmonically about the quarter chord. The resulting instantaneous pressure distributions and lift and moment coefficients during a cycle of motion compare well with experimental data. The paper presents a description of the Euler solvers along with results and comparisons which assess the capability.

  12. Accuracy of an unstructured-grid upwind-Euler algorithm for the ONERA M6 wing

    NASA Technical Reports Server (NTRS)

    Batina, John T.

    1991-01-01

    Improved algorithms for the solution of the three-dimensional, time-dependent Euler equations are presented for aerodynamic analysis involving unstructured dynamic meshes. The improvements have been developed recently to the spatial and temporal discretizations used by unstructured-grid flow solvers. The spatial discretization involves a flux-split approach that is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves either an explicit time-integration scheme using a multistage Runge-Kutta procedure or an implicit time-integration scheme using a Gauss-Seidel relaxation procedure, which is computationally efficient for either steady or unsteady flow problems. With the implicit Gauss-Seidel procedure, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady flow results are presented for both the NACA 0012 airfoil and the Office National d'Etudes et de Recherches Aerospatiales M6 wing to demonstrate applications of the new Euler solvers. The paper presents a description of the Euler solvers along with results and comparisons that assess the capability.

  13. Implicit flux-split Euler schemes for unsteady aerodynamic analysis involving unstructured dynamic meshes

    NASA Technical Reports Server (NTRS)

    Batina, John T.

    1990-01-01

    Improved algorithm for the solution of the time-dependent Euler equations are presented for unsteady aerodynamic analysis involving unstructured dynamic meshes. The improvements were developed recently to the spatial and temporal discretizations used by unstructured grid flow solvers. The spatial discretization involves a flux-split approach which is naturally dissipative and captures shock waves sharply with at most one grid point within the shock structure. The temporal discretization involves an implicit time-integration scheme using a Gauss-Seidel relaxation procedure which is computationally efficient for either steady or unsteady flow problems. For example, very large time steps may be used for rapid convergence to steady state, and the step size for unsteady cases may be selected for temporal accuracy rather than for numerical stability. Steady and unsteady flow results are presented for the NACA 0012 airfoil to demonstrate applications of the new Euler solvers. The unsteady results were obtained for the airfoil pitching harmonically about the quarter chord. The resulting instantaneous pressure distributions and lift and moment coefficients during a cycle of motion compare well with experimental data. A description of the Euler solvers is presented along with results and comparisons which assess the capability.

  14. On the Local Type I Conditions for the 3D Euler Equations

    NASA Astrophysics Data System (ADS)

    Chae, Dongho; Wolf, Jörg

    2018-05-01

    We prove local non blow-up theorems for the 3D incompressible Euler equations under local Type I conditions. More specifically, for a classical solution {v\\in L^∞ (-1,0; L^2 ( B(x_0,r)))\\cap L^∞_{loc} (-1,0; W^{1, ∞} (B(x_0, r)))} of the 3D Euler equations, where {B(x_0,r)} is the ball with radius r and the center at x 0, if the limiting values of certain scale invariant quantities for a solution v(·, t) as {t\\to 0} are small enough, then { \

  15. Asymptotic of the Solutions of Hyperbolic Equations with a Skew-Symmetric Perturbation

    NASA Astrophysics Data System (ADS)

    Gallagher, Isabelle

    1998-12-01

    Using methods introduced by S. Schochet inJ. Differential Equations114(1994), 476-512, we compute the first term of an asymptotic expansion of the solutions of hyperbolic equations perturbated by a skew-symmetric linear operator. That result is first applied to two systems describing the motion of geophysic fluids: the rotating Euler equations and the primitive system of the quasigeostrophic equations. Finally in the last part, we study the slightly compressible Euler equations by application of that same result.

  16. A higher-order conservation element solution element method for solving hyperbolic differential equations on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Bilyeu, David

    This dissertation presents an extension of the Conservation Element Solution Element (CESE) method from second- to higher-order accuracy. The new method retains the favorable characteristics of the original second-order CESE scheme, including (i) the use of the space-time integral equation for conservation laws, (ii) a compact mesh stencil, (iii) the scheme will remain stable up to a CFL number of unity, (iv) a fully explicit, time-marching integration scheme, (v) true multidimensionality without using directional splitting, and (vi) the ability to handle two- and three-dimensional geometries by using unstructured meshes. This algorithm has been thoroughly tested in one, two and three spatial dimensions and has been shown to obtain the desired order of accuracy for solving both linear and non-linear hyperbolic partial differential equations. The scheme has also shown its ability to accurately resolve discontinuities in the solutions. Higher order unstructured methods such as the Discontinuous Galerkin (DG) method and the Spectral Volume (SV) methods have been developed for one-, two- and three-dimensional application. Although these schemes have seen extensive development and use, certain drawbacks of these methods have been well documented. For example, the explicit versions of these two methods have very stringent stability criteria. This stability criteria requires that the time step be reduced as the order of the solver increases, for a given simulation on a given mesh. The research presented in this dissertation builds upon the work of Chang, who developed a fourth-order CESE scheme to solve a scalar one-dimensional hyperbolic partial differential equation. The completed research has resulted in two key deliverables. The first is a detailed derivation of a high-order CESE methods on unstructured meshes for solving the conservation laws in two- and three-dimensional spaces. The second is the code implementation of these numerical methods in a computer code. For code development, a one-dimensional solver for the Euler equations was developed. This work is an extension of Chang's work on the fourth-order CESE method for solving a one-dimensional scalar convection equation. A generic formulation for the nth-order CESE method, where n ≥ 4, was derived. Indeed, numerical implementation of the scheme confirmed that the order of convergence was consistent with the order of the scheme. For the two- and three-dimensional solvers, SOLVCON was used as the basic framework for code implementation. A new solver kernel for the fourth-order CESE method has been developed and integrated into the framework provided by SOLVCON. The main part of SOLVCON, which deals with unstructured meshes and parallel computing, remains intact. The SOLVCON code for data transmission between computer nodes for High Performance Computing (HPC). To validate and verify the newly developed high-order CESE algorithms, several one-, two- and three-dimensional simulations where conducted. For the arbitrary order, one-dimensional, CESE solver, three sets of governing equations were selected for simulation: (i) the linear convection equation, (ii) the linear acoustic equations, (iii) the nonlinear Euler equations. All three systems of equations were used to verify the order of convergence through mesh refinement. In addition the Euler equations were used to solve the Shu-Osher and Blastwave problems. These two simulations demonstrated that the new high-order CESE methods can accurately resolve discontinuities in the flow field.For the two-dimensional, fourth-order CESE solver, the Euler equation was employed in four different test cases. The first case was used to verify the order of convergence through mesh refinement. The next three cases demonstrated the ability of the new solver to accurately resolve discontinuities in the flows. This was demonstrated through: (i) the interaction between acoustic waves and an entropy pulse, (ii) supersonic flow over a circular blunt body, (iii) supersonic flow over a guttered wedge. To validate and verify the three-dimensional, fourth-order CESE solver, two different simulations where selected. The first used the linear convection equations to demonstrate fourth-order convergence. The second used the Euler equations to simulate supersonic flow over a spherical body to demonstrate the scheme's ability to accurately resolve shocks. All test cases used are well known benchmark problems and as such, there are multiple sources available to validate the numerical results. Furthermore, the simulations showed that the high-order CESE solver was stable at a CFL number near unity.

  17. WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions

    NASA Astrophysics Data System (ADS)

    Tsoutsanis, P.; Titarev, V. A.; Drikakis, D.

    2011-02-01

    The paper extends weighted essentially non-oscillatory (WENO) methods to three dimensional mixed-element unstructured meshes, comprising tetrahedral, hexahedral, prismatic and pyramidal elements. Numerical results illustrate the convergence rates and non-oscillatory properties of the schemes for various smooth and discontinuous solutions test cases and the compressible Euler equations on various types of grids. Schemes of up to fifth order of spatial accuracy are considered.

  18. Continuous analog of multiplicative algebraic reconstruction technique for computed tomography

    NASA Astrophysics Data System (ADS)

    Tateishi, Kiyoko; Yamaguchi, Yusaku; Abou Al-Ola, Omar M.; Kojima, Takeshi; Yoshinaga, Tetsuya

    2016-03-01

    We propose a hybrid dynamical system as a continuous analog to the block-iterative multiplicative algebraic reconstruction technique (BI-MART), which is a well-known iterative image reconstruction algorithm for computed tomography. The hybrid system is described by a switched nonlinear system with a piecewise smooth vector field or differential equation and, for consistent inverse problems, the convergence of non-negatively constrained solutions to a globally stable equilibrium is guaranteed by the Lyapunov theorem. Namely, we can prove theoretically that a weighted Kullback-Leibler divergence measure can be a common Lyapunov function for the switched system. We show that discretizing the differential equation by using the first-order approximation (Euler's method) based on the geometric multiplicative calculus leads to the same iterative formula of the BI-MART with the scaling parameter as a time-step of numerical discretization. The present paper is the first to reveal that a kind of iterative image reconstruction algorithm is constructed by the discretization of a continuous-time dynamical system for solving tomographic inverse problems. Iterative algorithms with not only the Euler method but also the Runge-Kutta methods of lower-orders applied for discretizing the continuous-time system can be used for image reconstruction. A numerical example showing the characteristics of the discretized iterative methods is presented.

  19. Vibrations of an Euler-Bernoulli beam with hysteretic damping arising from dispersed frictional microcracks

    NASA Astrophysics Data System (ADS)

    Maiti, Soumyabrata; Bandyopadhyay, Ritwik; Chatterjee, Anindya

    2018-01-01

    We study free and harmonically forced vibrations of an Euler-Bernoulli beam with rate-independent hysteretic dissipation. The dissipation follows a model proposed elsewhere for materials with randomly dispersed frictional microcracks. The virtual work of distributed dissipative moments is approximated using Gaussian quadrature, yielding a few discrete internal hysteretic states. Lagrange's equations are obtained for the modal coordinates. Differential equations for the modal coordinates and internal states are integrated together. Free vibrations decay exponentially when a single mode dominates. With multiple modes active, higher modes initially decay rapidly while lower modes decay relatively slowly. Subsequently, lower modes show their own characteristic modal damping, while small amplitude higher modes show more erratic decay. Large dissipation, for the adopted model, leads mathematically to fast and damped oscillations in the limit, unlike viscously overdamped systems. Next, harmonically forced, lightly damped responses of the beam are studied using both a slow frequency sweep and a shooting-method based search for periodic solutions along with numerical continuation. Shooting method and frequency sweep results match for large ranges of frequency. The shooting method struggles near resonances, where internal states collapse into lower dimensional behavior and Newton-Raphson iterations fail. Near the primary resonances, simple numerically-aided harmonic balance gives excellent results. Insights are also obtained into the harmonic content of secondary resonances.

  20. Baseline Computational Fluid Dynamics Methodology for Longitudinal-Mode Liquid-Propellant Rocket Combustion Instability

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.

    2005-01-01

    A computational method for the analysis of longitudinal-mode liquid rocket combustion instability has been developed based on the unsteady, quasi-one-dimensional Euler equations where the combustion process source terms were introduced through the incorporation of a two-zone, linearized representation: (1) A two-parameter collapsed combustion zone at the injector face, and (2) a two-parameter distributed combustion zone based on a Lagrangian treatment of the propellant spray. The unsteady Euler equations in inhomogeneous form retain full hyperbolicity and are integrated implicitly in time using second-order, high-resolution, characteristic-based, flux-differencing spatial discretization with Roe-averaging of the Jacobian matrix. This method was initially validated against an analytical solution for nonreacting, isentropic duct acoustics with specified admittances at the inflow and outflow boundaries. For small amplitude perturbations, numerical predictions for the amplification coefficient and oscillation period were found to compare favorably with predictions from linearized small-disturbance theory as long as the grid exceeded a critical density (100 nodes/wavelength). The numerical methodology was then exercised on a generic combustor configuration using both collapsed and distributed combustion zone models with a short nozzle admittance approximation for the outflow boundary. In these cases, the response parameters were varied to determine stability limits defining resonant coupling onset.

  1. New developments in the method of space-time conservation element and solution element: Applications to the Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung

    1993-01-01

    A new numerical framework for solving conservation laws is being developed. This new approach differs substantially in both concept and methodology from the well-established methods--i.e., finite difference, finite volume, finite element, and spectral methods. It is conceptually simple and designed to avoid several key limitations to the above traditional methods. An explicit model scheme for solving a simple 1-D unsteady convection-diffusion equation is constructed and used to illuminate major differences between the current method and those mentioned above. Unexpectedly, its amplification factors for the pure convection and pure diffusion cases are identical to those of the Leapfrog and the DuFort-Frankel schemes, respectively. Also, this explicit scheme and its Navier-Stokes extension have the unusual property that their stabilities are limited only by the CFL condition. Moreover, despite the fact that it does not use any flux-limiter or slope-limiter, the Navier-Stokes solver is capable of generating highly accurate shock tube solutions with shock discontinuities being resolved within one mesh interval. An accurate Euler solver also is constructed through another extension. It has many unusual properties, e.g., numerical diffusion at all mesh points can be controlled by a set of local parameters.

  2. On the Solution of the Three-Dimensional Flowfield About a Flow-Through Nacelle. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Compton, William Bernard

    1985-01-01

    The solution of the three dimensional flow field for a flow through nacelle was studied. Both inviscid and viscous inviscid interacting solutions were examined. Inviscid solutions were obtained with two different computational procedures for solving the three dimensional Euler equations. The first procedure employs an alternating direction implicit numerical algorithm, and required the development of a complete computational model for the nacelle problem. The second computational technique employs a fourth order Runge-Kutta numerical algorithm which was modified to fit the nacelle problem. Viscous effects on the flow field were evaluated with a viscous inviscid interacting computational model. This model was constructed by coupling the explicit Euler solution procedure with a flag entrainment boundary layer solution procedure in a global iteration scheme. The computational techniques were used to compute the flow field for a long duct turbofan engine nacelle at free stream Mach numbers of 0.80 and 0.94 and angles of attack of 0 and 4 deg.

  3. Second order accurate finite difference approximations for the transonic small disturbance equation and the full potential equation

    NASA Technical Reports Server (NTRS)

    Mostrel, M. M.

    1988-01-01

    New shock-capturing finite difference approximations for solving two scalar conservation law nonlinear partial differential equations describing inviscid, isentropic, compressible flows of aerodynamics at transonic speeds are presented. A global linear stability theorem is applied to these schemes in order to derive a necessary and sufficient condition for the finite element method. A technique is proposed to render the described approximations total variation-stable by applying the flux limiters to the nonlinear terms of the difference equation dimension by dimension. An entropy theorem applying to the approximations is proved, and an implicit, forward Euler-type time discretization of the approximation is presented. Results of some numerical experiments using the approximations are reported.

  4. Effect of helicity on the correlation time of large scales in turbulent flows

    NASA Astrophysics Data System (ADS)

    Cameron, Alexandre; Alexakis, Alexandros; Brachet, Marc-Étienne

    2017-11-01

    Solutions of the forced Navier-Stokes equation have been conjectured to thermalize at scales larger than the forcing scale, similar to an absolute equilibrium obtained for the spectrally truncated Euler equation. Using direct numeric simulations of Taylor-Green flows and general-periodic helical flows, we present results on the probability density function, energy spectrum, autocorrelation function, and correlation time that compare the two systems. In the case of highly helical flows, we derive an analytic expression describing the correlation time for the absolute equilibrium of helical flows that is different from the E-1 /2k-1 scaling law of weakly helical flows. This model predicts a new helicity-based scaling law for the correlation time as τ (k ) ˜H-1 /2k-1 /2 . This scaling law is verified in simulations of the truncated Euler equation. In simulations of the Navier-Stokes equations the large-scale modes of forced Taylor-Green symmetric flows (with zero total helicity and large separation of scales) follow the same properties as absolute equilibrium including a τ (k ) ˜E-1 /2k-1 scaling for the correlation time. General-periodic helical flows also show similarities between the two systems; however, the largest scales of the forced flows deviate from the absolute equilibrium solutions.

  5. Wind-US User's Guide, Version 2.0

    NASA Technical Reports Server (NTRS)

    Towne, Charles E.

    2009-01-01

    Wind-US is a computational platform which may be used to numerically solve various sets of equations governing physical phenomena. Currently, the code supports the solution of the Euler and Navier-Stokes equations of fluid mechanics, along with supporting equation sets governing turbulent and chemically reacting flows. Wind-US is a product of the NPARC Alliance, a partnership between the NASA Glenn Research Center (GRC) and the Arnold Engineering Development Center (AEDC) dedicated to the establishment of a national, applications-oriented flow simulation capability. The Boeing Company has also been closely associated with the Alliance since its inception, and represents the interests of the NPARC User's Association. The "Wind-US User's Guide" describes the operation and use of Wind-US, including: a basic tutorial; the physical and numerical models that are used; the boundary conditions; monitoring convergence; the files that are read and/or written; parallel execution; and a complete list of input keywords and test options.

  6. A Runge-Kutta discontinuous finite element method for high speed flows

    NASA Technical Reports Server (NTRS)

    Bey, Kim S.; Oden, J. T.

    1991-01-01

    A Runge-Kutta discontinuous finite element method is developed for hyperbolic systems of conservation laws in two space variables. The discontinuous Galerkin spatial approximation to the conservation laws results in a system of ordinary differential equations which are marched in time using Runge-Kutta methods. Numerical results for the two-dimensional Burger's equation show that the method is (p+1)-order accurate in time and space, where p is the degree of the polynomial approximation of the solution within an element and is capable of capturing shocks over a single element without oscillations. Results for this problem also show that the accuracy of the solution in smooth regions is unaffected by the local projection and that the accuracy in smooth regions increases as p increases. Numerical results for the Euler equations show that the method captures shocks without oscillations and with higher resolution than a first-order scheme.

  7. New Developments in the Method of Space-Time Conservation Element and Solution Element-Applications to Two-Dimensional Time-Marching Problems

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Wang, Xiao-Yen; Chow, Chuen-Yen

    1994-01-01

    A new numerical discretization method for solving conservation laws is being developed. This new approach differs substantially in both concept and methodology from the well-established methods, i.e., finite difference, finite volume, finite element, and spectral methods. It is motivated by several important physical/numerical considerations and designed to avoid several key limitations of the above traditional methods. As a result of the above considerations, a set of key principles for the design of numerical schemes was put forth in a previous report. These principles were used to construct several numerical schemes that model a 1-D time-dependent convection-diffusion equation. These schemes were then extended to solve the time-dependent Euler and Navier-Stokes equations of a perfect gas. It was shown that the above schemes compared favorably with the traditional schemes in simplicity, generality, and accuracy. In this report, the 2-D versions of the above schemes, except the Navier-Stokes solver, are constructed using the same set of design principles. Their constructions are simplified greatly by the use of a nontraditional space-time mesh. Its use results in the simplest stencil possible, i.e., a tetrahedron in a 3-D space-time with a vertex at the upper time level and other three at the lower time level. Because of the similarity in their design, each of the present 2-D solvers virtually shares with its 1-D counterpart the same fundamental characteristics. Moreover, it is shown that the present Euler solver is capable of generating highly accurate solutions for a famous 2-D shock reflection problem. Specifically, both the incident and the reflected shocks can be resolved by a single data point without the presence of numerical oscillations near the discontinuity.

  8. Reprint of Solution of Ambrosio-Tortorelli model for image segmentation by generalized relaxation method

    NASA Astrophysics Data System (ADS)

    D'Ambra, Pasqua; Tartaglione, Gaetano

    2015-04-01

    Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.

  9. Solution of Ambrosio-Tortorelli model for image segmentation by generalized relaxation method

    NASA Astrophysics Data System (ADS)

    D'Ambra, Pasqua; Tartaglione, Gaetano

    2015-03-01

    Image segmentation addresses the problem to partition a given image into its constituent objects and then to identify the boundaries of the objects. This problem can be formulated in terms of a variational model aimed to find optimal approximations of a bounded function by piecewise-smooth functions, minimizing a given functional. The corresponding Euler-Lagrange equations are a set of two coupled elliptic partial differential equations with varying coefficients. Numerical solution of the above system often relies on alternating minimization techniques involving descent methods coupled with explicit or semi-implicit finite-difference discretization schemes, which are slowly convergent and poorly scalable with respect to image size. In this work we focus on generalized relaxation methods also coupled with multigrid linear solvers, when a finite-difference discretization is applied to the Euler-Lagrange equations of Ambrosio-Tortorelli model. We show that non-linear Gauss-Seidel, accelerated by inner linear iterations, is an effective method for large-scale image analysis as those arising from high-throughput screening platforms for stem cells targeted differentiation, where one of the main goal is segmentation of thousand of images to analyze cell colonies morphology.

  10. Exact solutions for the static bending of Euler-Bernoulli beams using Eringen's two-phase local/nonlocal model

    NASA Astrophysics Data System (ADS)

    Wang, Y. B.; Zhu, X. W.; Dai, H. H.

    2016-08-01

    Though widely used in modelling nano- and micro- structures, Eringen's differential model shows some inconsistencies and recent study has demonstrated its differences between the integral model, which then implies the necessity of using the latter model. In this paper, an analytical study is taken to analyze static bending of nonlocal Euler-Bernoulli beams using Eringen's two-phase local/nonlocal model. Firstly, a reduction method is proved rigorously, with which the integral equation in consideration can be reduced to a differential equation with mixed boundary value conditions. Then, the static bending problem is formulated and four types of boundary conditions with various loadings are considered. By solving the corresponding differential equations, exact solutions are obtained explicitly in all of the cases, especially for the paradoxical cantilever beam problem. Finally, asymptotic analysis of the exact solutions reveals clearly that, unlike the differential model, the integral model adopted herein has a consistent softening effect. Comparisons are also made with existing analytical and numerical results, which further shows the advantages of the analytical results obtained. Additionally, it seems that the once controversial nonlocal bar problem in the literature is well resolved by the reduction method.

  11. Efficient spectral computation of the stationary states of rotating Bose-Einstein condensates by preconditioned nonlinear conjugate gradient methods

    NASA Astrophysics Data System (ADS)

    Antoine, Xavier; Levitt, Antoine; Tang, Qinglin

    2017-08-01

    We propose a preconditioned nonlinear conjugate gradient method coupled with a spectral spatial discretization scheme for computing the ground states (GS) of rotating Bose-Einstein condensates (BEC), modeled by the Gross-Pitaevskii Equation (GPE). We first start by reviewing the classical gradient flow (also known as imaginary time (IMT)) method which considers the problem from the PDE standpoint, leading to numerically solve a dissipative equation. Based on this IMT equation, we analyze the forward Euler (FE), Crank-Nicolson (CN) and the classical backward Euler (BE) schemes for linear problems and recognize classical power iterations, allowing us to derive convergence rates. By considering the alternative point of view of minimization problems, we propose the preconditioned steepest descent (PSD) and conjugate gradient (PCG) methods for the GS computation of the GPE. We investigate the choice of the preconditioner, which plays a key role in the acceleration of the convergence process. The performance of the new algorithms is tested in 1D, 2D and 3D. We conclude that the PCG method outperforms all the previous methods, most particularly for 2D and 3D fast rotating BECs, while being simple to implement.

  12. A constitutive material model for nonlinear finite element structural analysis using an iterative matrix approach

    NASA Technical Reports Server (NTRS)

    Koenig, Herbert A.; Chan, Kwai S.; Cassenti, Brice N.; Weber, Richard

    1988-01-01

    A unified numerical method for the integration of stiff time dependent constitutive equations is presented. The solution process is directly applied to a constitutive model proposed by Bodner. The theory confronts time dependent inelastic behavior coupled with both isotropic hardening and directional hardening behaviors. Predicted stress-strain responses from this model are compared to experimental data from cyclic tests on uniaxial specimens. An algorithm is developed for the efficient integration of the Bodner flow equation. A comparison is made with the Euler integration method. An analysis of computational time is presented for the three algorithms.

  13. Lagrangian averaging, nonlinear waves, and shock regularization

    NASA Astrophysics Data System (ADS)

    Bhat, Harish S.

    In this thesis, we explore various models for the flow of a compressible fluid as well as model equations for shock formation, one of the main features of compressible fluid flows. We begin by reviewing the variational structure of compressible fluid mechanics. We derive the barotropic compressible Euler equations from a variational principle in both material and spatial frames. Writing the resulting equations of motion requires certain Lie-algebraic calculations that we carry out in detail for expository purposes. Next, we extend the derivation of the Lagrangian averaged Euler (LAE-alpha) equations to the case of barotropic compressible flows. The derivation in this thesis involves averaging over a tube of trajectories etaepsilon centered around a given Lagrangian flow eta. With this tube framework, the LAE-alpha equations are derived by following a simple procedure: start with a given action, expand via Taylor series in terms of small-scale fluid fluctuations xi, truncate, average, and then model those terms that are nonlinear functions of xi. We then analyze a one-dimensional subcase of the general models derived above. We prove the existence of a large family of traveling wave solutions. Computing the dispersion relation for this model, we find it is nonlinear, implying that the equation is dispersive. We carry out numerical experiments that show that the model possesses smooth, bounded solutions that display interesting pattern formation. Finally, we examine a Hamiltonian partial differential equation (PDE) that regularizes the inviscid Burgers equation without the addition of standard viscosity. Here alpha is a small parameter that controls a nonlinear smoothing term that we have added to the inviscid Burgers equation. We show the existence of a large family of traveling front solutions. We analyze the initial-value problem and prove well-posedness for a certain class of initial data. We prove that in the zero-alpha limit, without any standard viscosity, solutions of the PDE converge strongly to weak solutions of the inviscid Burgers equation. We provide numerical evidence that this limit satisfies an entropy inequality for the inviscid Burgers equation. We demonstrate a Hamiltonian structure for the PDE.

  14. An assessment of viscous effects in computational simulation of benign and burst vortex flows on generic fighter wind-tunnel models using TEAM code

    NASA Technical Reports Server (NTRS)

    Kinard, Tim A.; Harris, Brenda W.; Raj, Pradeep

    1995-01-01

    Vortex flows on a twin-tail and a single-tail modular transonic vortex interaction (MTVI) model, representative of a generic fighter configuration, are computationally simulated in this study using the Three-dimensional Euler/Navier-Stokes Aerodynamic Method (TEAM). The primary objective is to provide an assessment of viscous effects on benign (10 deg angle of attack) and burst (35 deg angle of attack) vortex flow solutions. This study was conducted in support of a NASA project aimed at assessing the viability of using Euler technology to predict aerodynamic characteristics of aircraft configurations at moderate-to-high angles of attack in a preliminary design environment. The TEAM code solves the Euler and Reynolds-average Navier-Stokes equations on patched multiblock structured grids. Its algorithm is based on a cell-centered finite-volume formulation with multistage time-stepping scheme. Viscous effects are assessed by comparing the computed inviscid and viscous solutions with each other and experimental data. Also, results of Euler solution sensitivity to grid density and numerical dissipation are presented for the twin-tail model. The results show that proper accounting of viscous effects is necessary for detailed design and optimization but Euler solutions can provide meaningful guidelines for preliminary design of flight vehicles which exhibit vortex flows in parts of their flight envelope.

  15. A hybrid approach for nonlinear computational aeroacoustics predictions

    NASA Astrophysics Data System (ADS)

    Sassanis, Vasileios; Sescu, Adrian; Collins, Eric M.; Harris, Robert E.; Luke, Edward A.

    2017-01-01

    In many aeroacoustics applications involving nonlinear waves and obstructions in the far-field, approaches based on the classical acoustic analogy theory or the linearised Euler equations are unable to fully characterise the acoustic field. Therefore, computational aeroacoustics hybrid methods that incorporate nonlinear wave propagation have to be constructed. In this study, a hybrid approach coupling Navier-Stokes equations in the acoustic source region with nonlinear Euler equations in the acoustic propagation region is introduced and tested. The full Navier-Stokes equations are solved in the source region to identify the acoustic sources. The flow variables of interest are then transferred from the source region to the acoustic propagation region, where the full nonlinear Euler equations with source terms are solved. The transition between the two regions is made through a buffer zone where the flow variables are penalised via a source term added to the Euler equations. Tests were conducted on simple acoustic and vorticity disturbances, two-dimensional jets (Mach 0.9 and 2), and a three-dimensional jet (Mach 1.5), impinging on a wall. The method is proven to be effective and accurate in predicting sound pressure levels associated with the propagation of linear and nonlinear waves in the near- and far-field regions.

  16. On controlling nonlinear dissipation in high order filter methods for ideal and non-ideal MHD

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjogreen, B.

    2004-01-01

    The newly developed adaptive numerical dissipation control in spatially high order filter schemes for the compressible Euler and Navier-Stokes equations has been recently extended to the ideal and non-ideal magnetohydrodynamics (MHD) equations. These filter schemes are applicable to complex unsteady MHD high-speed shock/shear/turbulence problems. They also provide a natural and efficient way for the minimization of Div(B) numerical error. The adaptive numerical dissipation mechanism consists of automatic detection of different flow features as distinct sensors to signal the appropriate type and amount of numerical dissipation/filter where needed and leave the rest of the region free from numerical dissipation contamination. The numerical dissipation considered consists of high order linear dissipation for the suppression of high frequency oscillation and the nonlinear dissipative portion of high-resolution shock-capturing methods for discontinuity capturing. The applicable nonlinear dissipative portion of high-resolution shock-capturing methods is very general. The objective of this paper is to investigate the performance of three commonly used types of nonlinear numerical dissipation for both the ideal and non-ideal MHD.

  17. Variance reduction through robust design of boundary conditions for stochastic hyperbolic systems of equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordström, Jan, E-mail: jan.nordstrom@liu.se; Wahlsten, Markus, E-mail: markus.wahlsten@liu.se

    We consider a hyperbolic system with uncertainty in the boundary and initial data. Our aim is to show that different boundary conditions give different convergence rates of the variance of the solution. This means that we can with the same knowledge of data get a more or less accurate description of the uncertainty in the solution. A variety of boundary conditions are compared and both analytical and numerical estimates of the variance of the solution are presented. As an application, we study the effect of this technique on Maxwell's equations as well as on a subsonic outflow boundary for themore » Euler equations.« less

  18. Canonical forms of multidimensional steady inviscid flows

    NASA Technical Reports Server (NTRS)

    Taasan, Shlomo

    1993-01-01

    Canonical forms and canonical variables for inviscid flow problems are derived. In these forms the components of the system governed by different types of operators (elliptic and hyperbolic) are separated. Both the incompressible and compressible cases are analyzed, and their similarities and differences are discussed. The canonical forms obtained are block upper triangular operator form in which the elliptic and non-elliptic parts reside in different blocks. The full nonlinear equations are treated without using any linearization process. This form enables a better analysis of the equations as well as better numerical treatment. These forms are the analog of the decomposition of the one dimensional Euler equations into characteristic directions and Riemann invariants.

  19. Implementation of Kane's Method for a Spacecraft Composed of Multiple Rigid Bodies

    NASA Technical Reports Server (NTRS)

    Stoneking, Eric T.

    2013-01-01

    Equations of motion are derived for a general spacecraft composed of rigid bodies connected via rotary (spherical or gimballed) joints in a tree topology. Several supporting concepts are developed in depth. Basis dyads aid in the transition from basis-free vector equations to component-wise equations. Joint partials allow abstraction of 1-DOF, 2-DOF, 3-DOF gimballed and spherical rotational joints to a common notation. The basic building block consisting of an "inner" body and an "outer" body connected by a joint enables efficient organization of arbitrary tree structures. Kane's equation is recast in a form which facilitates systematic assembly of large systems of equations, and exposes a relationship of Kane's equation to Newton and Euler's equations which is obscured by the usual presentation. The resulting system of dynamic equations is of minimum dimension, and is suitable for numerical solution by computer. Implementation is ·discussed, and illustrative simulation results are presented.

  20. Development of a grid-independent approximate Riemannsolver. Ph.D. Thesis - Michigan Univ.

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher Lockwood

    1991-01-01

    A grid-independent approximate Riemann solver for use with the Euler and Navier-Stokes equations was introduced and explored. The two-dimensional Euler and Navier-Stokes equations are described in Cartesian and generalized coordinates, as well as the traveling wave form of the Euler equations. The spatial and temporal discretization are described for both explicit and implicit time-marching schemes. The grid-aligned flux function of Roe is outlined, while the 5-wave grid-independent flux function is derived. The stability and monotonicity analysis of the 5-wave model are presented. Two-dimensional results are provided and extended to three dimensions. The corresponding results are presented.

  1. Transonic flow analysis for rotors. Part 3: Three-dimensional, quasi-steady, Euler calculation

    NASA Technical Reports Server (NTRS)

    Chang, I-Chung

    1990-01-01

    A new method is presented for calculating the quasi-steady transonic flow over a lifting or non-lifting rotor blade in both hover and forward flight by using Euler equations. The approach is to solve Euler equations in a rotor-fixed frame of reference using a finite volume method. A computer program was developed and was then verified by comparison with wind-tunnel data. In all cases considered, good agreement was found with published experimental data.

  2. The most precise computations using Euler's method in standard floating-point arithmetic applied to modelling of biological systems.

    PubMed

    Kalinina, Elizabeth A

    2013-08-01

    The explicit Euler's method is known to be very easy and effective in implementation for many applications. This article extends results previously obtained for the systems of linear differential equations with constant coefficients to arbitrary systems of ordinary differential equations. Optimal (providing minimum total error) step size is calculated at each step of Euler's method. Several examples of solving stiff systems are included. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Equations with Arithmetic Functions of Pell Numbers

    DTIC Science & Technology

    2014-01-01

    Bull. Math. Soc. Sci. Math. Roumanie Tome 57(105) No. 4, 2014, 409–413 Equations with arithmetic functions of Pell numbers by 1Florian Luca...2Pantelimon Stănică Abstract Here, we prove some diophantine results about the Euler function of Pell numbers and their Pell –Lucas companion sequence. For...example, if the Euler function of the nth Pell number Pn or Pell –Lucas companion number Qn is a power of 2, then n ≤ 8. Key Words: Euler function, Pell

  4. Cooperatively surrounding control for multiple Euler-Lagrange systems subjected to uncertain dynamics and input constraints

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Ming; Lv, Yue-Yong; Li, Chuan-Jiang; Ma, Guang-Fu

    2016-12-01

    In this paper, we investigate cooperatively surrounding control (CSC) of multi-agent systems modeled by Euler-Lagrange (EL) equations under a directed graph. With the consideration of the uncertain dynamics in an EL system, a backstepping CSC algorithm combined with neural-networks is proposed first such that the agents can move cooperatively to surround the stationary target. Then, a command filtered backstepping CSC algorithm is further proposed to deal with the constraints on control input and the absence of neighbors’ velocity information. Numerical examples of eight satellites surrounding one space target illustrate the effectiveness of the theoretical results. Project supported by the National Basic Research Program of China (Grant No. 2012CB720000) and the National Natural Science Foundation of China (Grant Nos. 61304005 and 61403103).

  5. An Astronomical Test of CCD Photometric Precision

    NASA Technical Reports Server (NTRS)

    Koch, David; Dunham, Edward; Borucki, William; Jenkins, Jon; DeVingenzi, D. (Technical Monitor)

    1998-01-01

    This article considers a posteriori error estimation of specified functionals for first-order systems of conservation laws discretized using the discontinuous Galerkin (DG) finite element method. Using duality techniques. we derive exact error representation formulas for both linear and nonlinear functionals given an associated bilinear or nonlinear variational form. Weighted residual approximations of the exact error representation formula are then proposed and numerically evaluated for Ringleb flow, an exact solution of the 2-D Euler equations.

  6. Existence of small loops in a bifurcation diagram near degenerate eigenvalues

    NASA Astrophysics Data System (ADS)

    Hmidi, Taoufik; Renault, Coralie

    2017-10-01

    In this paper, we study the global structure of a bifurcation diagram for rotating doubly connected patches near a degenerate case for incompressible Euler equations. We show that branches with the same symmetry merge, forming a small loop, provided that they are close enough. This gives an analytical proof for the numerical observations conducted in the recent work by de la Hoz et al (2016 SIAM J. Math. Anal. 48 1892-928).

  7. A numerical code for the simulation of non-equilibrium chemically reacting flows on hybrid CPU-GPU clusters

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Alexey N.; Kashkovsky, Alexander V.; Borisov, Semyon P.; Shershnev, Anton A.

    2017-10-01

    In the present work a computer code RCFS for numerical simulation of chemically reacting compressible flows on hybrid CPU/GPU supercomputers is developed. It solves 3D unsteady Euler equations for multispecies chemically reacting flows in general curvilinear coordinates using shock-capturing TVD schemes. Time advancement is carried out using the explicit Runge-Kutta TVD schemes. Program implementation uses CUDA application programming interface to perform GPU computations. Data between GPUs is distributed via domain decomposition technique. The developed code is verified on the number of test cases including supersonic flow over a cylinder.

  8. Linear stability analysis of detonations via numerical computation and dynamic mode decomposition

    NASA Astrophysics Data System (ADS)

    Kabanov, Dmitry I.; Kasimov, Aslan R.

    2018-03-01

    We introduce a new method to investigate linear stability of gaseous detonations that is based on an accurate shock-fitting numerical integration of the linearized reactive Euler equations with a subsequent analysis of the computed solution via the dynamic mode decomposition. The method is applied to the detonation models based on both the standard one-step Arrhenius kinetics and two-step exothermic-endothermic reaction kinetics. Stability spectra for all cases are computed and analyzed. The new approach is shown to be a viable alternative to the traditional normal-mode analysis used in detonation theory.

  9. Aeroelastic Analyses of the SemiSpan SuperSonic Transport (S4T) Wind Tunnel Model at Mach 0.95

    NASA Technical Reports Server (NTRS)

    Hur, Jiyoung

    2014-01-01

    Detailed aeroelastic analyses of the SemiSpan SuperSonic Transport (S4T) wind tunnel model at Mach 0.95 with a 1.75deg fixed angle of attack are presented. First, a numerical procedure using the Computational Fluids Laboratory 3-Dimensional (CFL3D) Version 6.4 flow solver is investigated. The mesh update method for structured multi-block grids was successfully applied to the Navier-Stokes simulations. Second, the steady aerodynamic analyses with a rigid structure of the S4T wind tunnel model are reviewed in transonic flow. Third, the static analyses were performed for both the Euler and Navier-Stokes equations. Both the Euler and Navier-Stokes equations predicted a significant increase of lift forces, compared to the results from the rigid structure of the S4T wind-tunnel model, over various dynamic pressures. Finally, dynamic aeroelastic analyses were performed to investigate the flutter condition of the S4T wind tunnel model at the transonic Mach number. The condition of flutter was observed at a dynamic pressure of approximately 75.0-psf for the Navier-Stokes simulations. However, it was observed that the flutter condition occurred a dynamic pressure of approximately 47.27-psf for the Euler simulations. Also, the computational efficiency of the aeroelastic analyses for the S4T wind tunnel model has been assessed.

  10. Effect of Coannular Flow on Linearized Euler Equation Predictions of Jet Noise

    NASA Technical Reports Server (NTRS)

    Hixon, R.; Shih, S.-H.; Mankbadi, Reda R.

    1997-01-01

    An improved version of a previously validated linearized Euler equation solver is used to compute the noise generated by coannular supersonic jets. Results for a single supersonic jet are compared to the results from both a normal velocity profile and an inverted velocity profile supersonic jet.

  11. Algorithms for the Euler and Navier-Stokes equations for supercomputers

    NASA Technical Reports Server (NTRS)

    Turkel, E.

    1985-01-01

    The steady state Euler and Navier-Stokes equations are considered for both compressible and incompressible flow. Methods are found for accelerating the convergence to a steady state. This acceleration is based on preconditioning the system so that it is no longer time consistent. In order that the acceleration technique be scheme-independent, this preconditioning is done at the differential equation level. Applications are presented for very slow flows and also for the incompressible equations.

  12. The Camassa-Holm equation as an incompressible Euler equation: A geometric point of view

    NASA Astrophysics Data System (ADS)

    Gallouët, Thomas; Vialard, François-Xavier

    2018-04-01

    The group of diffeomorphisms of a compact manifold endowed with the L2 metric acting on the space of probability densities gives a unifying framework for the incompressible Euler equation and the theory of optimal mass transport. Recently, several authors have extended optimal transport to the space of positive Radon measures where the Wasserstein-Fisher-Rao distance is a natural extension of the classical L2-Wasserstein distance. In this paper, we show a similar relation between this unbalanced optimal transport problem and the Hdiv right-invariant metric on the group of diffeomorphisms, which corresponds to the Camassa-Holm (CH) equation in one dimension. Geometrically, we present an isometric embedding of the group of diffeomorphisms endowed with this right-invariant metric in the automorphisms group of the fiber bundle of half densities endowed with an L2 type of cone metric. This leads to a new formulation of the (generalized) CH equation as a geodesic equation on an isotropy subgroup of this automorphisms group; On S1, solutions to the standard CH thus give radially 1-homogeneous solutions of the incompressible Euler equation on R2 which preserves a radial density that has a singularity at 0. An other application consists in proving that smooth solutions of the Euler-Arnold equation for the Hdiv right-invariant metric are length minimizing geodesics for sufficiently short times.

  13. Marching iterative methods for the parabolized and thin layer Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Israeli, M.

    1985-01-01

    Downstream marching iterative schemes for the solution of the Parabolized or Thin Layer (PNS or TL) Navier-Stokes equations are described. Modifications of the primitive equation global relaxation sweep procedure result in efficient second-order marching schemes. These schemes take full account of the reduced order of the approximate equations as they behave like the SLOR for a single elliptic equation. The improved smoothing properties permit the introduction of Multi-Grid acceleration. The proposed algorithm is essentially Reynolds number independent and therefore can be applied to the solution of the subsonic Euler equations. The convergence rates are similar to those obtained by the Multi-Grid solution of a single elliptic equation; the storage is also comparable as only the pressure has to be stored on all levels. Extensions to three-dimensional and compressible subsonic flows are discussed. Numerical results are presented.

  14. Global Regularity for Several Incompressible Fluid Models with Partial Dissipation

    NASA Astrophysics Data System (ADS)

    Wu, Jiahong; Xu, Xiaojing; Ye, Zhuan

    2017-09-01

    This paper examines the global regularity problem on several 2D incompressible fluid models with partial dissipation. They are the surface quasi-geostrophic (SQG) equation, the 2D Euler equation and the 2D Boussinesq equations. These are well-known models in fluid mechanics and geophysics. The fundamental issue of whether or not they are globally well-posed has attracted enormous attention. The corresponding models with partial dissipation may arise in physical circumstances when the dissipation varies in different directions. We show that the SQG equation with either horizontal or vertical dissipation always has global solutions. This is in sharp contrast with the inviscid SQG equation for which the global regularity problem remains outstandingly open. Although the 2D Euler is globally well-posed for sufficiently smooth data, the associated equations with partial dissipation no longer conserve the vorticity and the global regularity is not trivial. We are able to prove the global regularity for two partially dissipated Euler equations. Several global bounds are also obtained for a partially dissipated Boussinesq system.

  15. General invertible transformation and physical degrees of freedom

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazufumi; Motohashi, Hayato; Suyama, Teruaki; Kobayashi, Tsutomu

    2017-04-01

    An invertible field transformation is such that the old field variables correspond one-to-one to the new variables. As such, one may think that two systems that are related by an invertible transformation are physically equivalent. However, if the transformation depends on field derivatives, the equivalence between the two systems is nontrivial due to the appearance of higher derivative terms in the equations of motion. To address this problem, we prove the following theorem on the relation between an invertible transformation and Euler-Lagrange equations: If the field transformation is invertible, then any solution of the original set of Euler-Lagrange equations is mapped to a solution of the new set of Euler-Lagrange equations, and vice versa. We also present applications of the theorem to scalar-tensor theories.

  16. A Three-Dimensional Linearized Unsteady Euler Analysis for Turbomachinery Blade Rows

    NASA Technical Reports Server (NTRS)

    Montgomery, Matthew D.; Verdon, Joseph M.

    1997-01-01

    A three-dimensional, linearized, Euler analysis is being developed to provide an efficient unsteady aerodynamic analysis that can be used to predict the aeroelastic and aeroacoustic responses of axial-flow turbo-machinery blading.The field equations and boundary conditions needed to describe nonlinear and linearized inviscid unsteady flows through a blade row operating within a cylindrical annular duct are presented. A numerical model for linearized inviscid unsteady flows, which couples a near-field, implicit, wave-split, finite volume analysis to a far-field eigenanalysis, is also described. The linearized aerodynamic and numerical models have been implemented into a three-dimensional linearized unsteady flow code, called LINFLUX. This code has been applied to selected, benchmark, unsteady, subsonic flows to establish its accuracy and to demonstrate its current capabilities. The unsteady flows considered, have been chosen to allow convenient comparisons between the LINFLUX results and those of well-known, two-dimensional, unsteady flow codes. Detailed numerical results for a helical fan and a three-dimensional version of the 10th Standard Cascade indicate that important progress has been made towards the development of a reliable and useful, three-dimensional, prediction capability that can be used in aeroelastic and aeroacoustic design studies.

  17. Free Vibration Analysis of DWCNTs Using CDM and Rayleigh-Schmidt Based on Nonlocal Euler-Bernoulli Beam Theory

    PubMed Central

    2014-01-01

    The free vibration response of double-walled carbon nanotubes (DWCNTs) is investigated. The DWCNTs are modelled as two beams, interacting between them through the van der Waals forces, and the nonlocal Euler-Bernoulli beam theory is used. The governing equations of motion are derived using a variational approach and the free frequencies of vibrations are obtained employing two different approaches. In the first method, the two double-walled carbon nanotubes are discretized by means of the so-called “cell discretization method” (CDM) in which each nanotube is reduced to a set of rigid bars linked together by elastic cells. The resulting discrete system takes into account nonlocal effects, constraint elasticities, and the van der Waals forces. The second proposed approach, belonging to the semianalytical methods, is an optimized version of the classical Rayleigh quotient, as proposed originally by Schmidt. The resulting conditions are solved numerically. Numerical examples end the paper, in which the two approaches give lower-upper bounds to the true values, and some comparisons with existing results are offered. Comparisons of the present numerical results with those from the open literature show an excellent agreement. PMID:24715807

  18. A method for solution of the Euler-Bernoulli beam equation in flexible-link robotic systems

    NASA Technical Reports Server (NTRS)

    Tzes, Anthony P.; Yurkovich, Stephen; Langer, F. Dieter

    1989-01-01

    An efficient numerical method for solving the partial differential equation (PDE) governing the flexible manipulator control dynamics is presented. A finite-dimensional model of the equation is obtained through discretization in both time and space coordinates by using finite-difference approximations to the PDE. An expert program written in the Macsyma symbolic language is utilized in order to embed the boundary conditions into the program, accounting for a mass carried at the tip of the manipulator. The advantages of the proposed algorithm are many, including the ability to (1) include any distributed actuation term in the partial differential equation, (2) provide distributed sensing of the beam displacement, (3) easily modify the boundary conditions through an expert program, and (4) modify the structure for running under a multiprocessor environment.

  19. A derivation of the beam equation

    NASA Astrophysics Data System (ADS)

    Duque, Daniel

    2016-01-01

    The Euler-Bernoulli equation describing the deflection of a beam is a vital tool in structural and mechanical engineering. However, its derivation usually entails a number of intermediate steps that may confuse engineering or science students at the beginnig of their undergraduate studies. We explain how this equation may be deduced, beginning with an approximate expression for the energy, from which the forces and finally the equation itself may be obtained. The description is begun at the level of small ‘particles’, and the continuum level is taken later on. However, when a computational solution is sought, the description turns back to the discrete level again. We first consider the easier case of a string under tension, and then focus on the beam. Numerical solutions for several loads are obtained.

  20. Boundary states at reflective moving boundaries

    NASA Astrophysics Data System (ADS)

    Acosta Minoli, Cesar A.; Kopriva, David A.

    2012-06-01

    We derive and evaluate boundary states for Maxwell's equations, the linear, and the nonlinear Euler gas-dynamics equations to compute wave reflection from moving boundaries. In this study we use a Discontinuous Galerkin Spectral Element method (DGSEM) with Arbitrary Lagrangian-Eulerian (ALE) mapping for the spatial approximation, but the boundary states can be used with other methods, like finite volume schemes. We present four studies using Maxwell's equations, one for the linear Euler equations, and one more for the nonlinear Euler equations. These are: reflection of light from a plane mirror moving at constant velocity, reflection of light from a moving cylinder, reflection of light from a vibrating mirror, reflection of sound from a plane wall and dipole sound generation by an oscillating cylinder in an inviscid flow. The studies show that the boundary states preserve spectral convergence in the solution and in derived quantities like divergence and vorticity.

  1. Advances in the U.S. Navy Non-hydrostatic Unified Model of the Atmosphere (NUMA): LES as a Stabilization Methodology for High-Order Spectral Elements in the Simulation of Deep Convection

    NASA Astrophysics Data System (ADS)

    Marras, Simone; Giraldo, Frank

    2015-04-01

    The prediction of extreme weather sufficiently ahead of its occurrence impacts society as a whole and coastal communities specifically (e.g. Hurricane Sandy that impacted the eastern seaboard of the U.S. in the fall of 2012). With the final goal of solving hurricanes at very high resolution and numerical accuracy, we have been developing the Non-hydrostatic Unified Model of the Atmosphere (NUMA) to solve the Euler and Navier-Stokes equations by arbitrary high-order element-based Galerkin methods on massively parallel computers. NUMA is a unified model with respect to the following criteria: (a) it is based on unified numerics in that element-based Galerkin methods allow the user to choose between continuous (spectral elements, CG) or discontinuous Galerkin (DG) methods and from a large spectrum of time integrators, (b) it is unified across scales in that it can solve flow in limited-area mode (flow in a box) or in global mode (flow on the sphere). NUMA is the dynamical core that powers the U.S. Naval Research Laboratory's next-generation global weather prediction system NEPTUNE (Navy's Environmental Prediction sysTem Utilizing the NUMA corE). Because the solution of the Euler equations by high order methods is prone to instabilities that must be damped in some way, we approach the problem of stabilization via an adaptive Large Eddy Simulation (LES) scheme meant to treat such instabilities by modeling the sub-grid scale features of the flow. The novelty of our effort lies in the extension to high order spectral elements for low Mach number stratified flows of a method that was originally designed for low order, adaptive finite elements in the high Mach number regime [1]. The Euler equations are regularized by means of a dynamically adaptive stress tensor that is proportional to the residual of the unperturbed equations. Its effect is close to none where the solution is sufficiently smooth, whereas it increases elsewhere, with a direct contribution to the stabilization of the otherwise oscillatory solution. As a first step toward the Large Eddy Simulation of a hurricane, we verify the model via a high-order and high resolution idealized simulation of deep convection on the sphere. References [1] M. Nazarov and J. Hoffman (2013) Residual-based artificial viscosity for simulation of turbulent compressible flow using adaptive finite element methods Int. J. Numer. Methods Fluids, 71:339-357

  2. Convergence of the flow of a chemically reacting gaseous mixture to incompressible Euler equations in a unbounded domain

    NASA Astrophysics Data System (ADS)

    Kwon, Young-Sam

    2017-12-01

    The flow of chemically reacting gaseous mixture is associated with a variety of phenomena and processes. We study the combined quasineutral and inviscid limit from the flow of chemically reacting gaseous mixture governed by Poisson equation to incompressible Euler equations with the ill-prepared initial data in the unbounded domain R^2× T. Furthermore, the convergence rates are obtained.

  3. Conformal field theory as microscopic dynamics of incompressible Euler and Navier-Stokes equations.

    PubMed

    Fouxon, Itzhak; Oz, Yaron

    2008-12-31

    We consider the hydrodynamics of relativistic conformal field theories at finite temperature. We show that the limit of slow motions of the ideal hydrodynamics leads to the nonrelativistic incompressible Euler equation. For viscous hydrodynamics we show that the limit of slow motions leads to the nonrelativistic incompressible Navier-Stokes equation. We explain the physical reasons for the reduction and discuss the implications. We propose that conformal field theories provide a fundamental microscopic viewpoint of the equations and the dynamics governed by them.

  4. Recursive linearization of multibody dynamics equations of motion

    NASA Technical Reports Server (NTRS)

    Lin, Tsung-Chieh; Yae, K. Harold

    1989-01-01

    The equations of motion of a multibody system are nonlinear in nature, and thus pose a difficult problem in linear control design. One approach is to have a first-order approximation through the numerical perturbations at a given configuration, and to design a control law based on the linearized model. Here, a linearized model is generated analytically by following the footsteps of the recursive derivation of the equations of motion. The equations of motion are first written in a Newton-Euler form, which is systematic and easy to construct; then, they are transformed into a relative coordinate representation, which is more efficient in computation. A new computational method for linearization is obtained by applying a series of first-order analytical approximations to the recursive kinematic relationships. The method has proved to be computationally more efficient because of its recursive nature. It has also turned out to be more accurate because of the fact that analytical perturbation circumvents numerical differentiation and other associated numerical operations that may accumulate computational error, thus requiring only analytical operations of matrices and vectors. The power of the proposed linearization algorithm is demonstrated, in comparison to a numerical perturbation method, with a two-link manipulator and a seven degrees of freedom robotic manipulator. Its application to control design is also demonstrated.

  5. A third-order gas-kinetic CPR method for the Euler and Navier-Stokes equations on triangular meshes

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Li, Qibing; Fu, Song; Wang, Z. J.

    2018-06-01

    A third-order accurate gas-kinetic scheme based on the correction procedure via reconstruction (CPR) framework is developed for the Euler and Navier-Stokes equations on triangular meshes. The scheme combines the accuracy and efficiency of the CPR formulation with the multidimensional characteristics and robustness of the gas-kinetic flux solver. Comparing with high-order finite volume gas-kinetic methods, the current scheme is more compact and efficient by avoiding wide stencils on unstructured meshes. Unlike the traditional CPR method where the inviscid and viscous terms are treated differently, the inviscid and viscous fluxes in the current scheme are coupled and computed uniformly through the kinetic evolution model. In addition, the present scheme adopts a fully coupled spatial and temporal gas distribution function for the flux evaluation, achieving high-order accuracy in both space and time within a single step. Numerical tests with a wide range of flow problems, from nearly incompressible to supersonic flows with strong shocks, for both inviscid and viscous problems, demonstrate the high accuracy and efficiency of the present scheme.

  6. Generalization of the Euler-type solution to the wave equation

    NASA Astrophysics Data System (ADS)

    Borisov, Victor V.

    2001-08-01

    Generalization of the Euler-type solution to the wave equation is given. Peculiarities of the space-time structure of obtained waves are considered. For some particular cases interpretation of these waves as `subliminal' and `superluminal' is discussed. The possibility of description of electromagnetic waves by means of the scalar solutions is shown.

  7. Essentially nonoscillatory postprocessing filtering methods

    NASA Technical Reports Server (NTRS)

    Lafon, F.; Osher, S.

    1992-01-01

    High order accurate centered flux approximations used in the computation of numerical solutions to nonlinear partial differential equations produce large oscillations in regions of sharp transitions. Here, we present a new class of filtering methods denoted by Essentially Nonoscillatory Least Squares (ENOLS), which constructs an upgraded filtered solution that is close to the physically correct weak solution of the original evolution equation. Our method relies on the evaluation of a least squares polynomial approximation to oscillatory data using a set of points which is determined via the ENO network. Numerical results are given in one and two space dimensions for both scalar and systems of hyperbolic conservation laws. Computational running time, efficiency, and robustness of method are illustrated in various examples such as Riemann initial data for both Burgers' and Euler's equations of gas dynamics. In all standard cases, the filtered solution appears to converge numerically to the correct solution of the original problem. Some interesting results based on nonstandard central difference schemes, which exactly preserve entropy, and have been recently shown generally not to be weakly convergent to a solution of the conservation law, are also obtained using our filters.

  8. Leonhard Euler and the mechanics of rigid bodies

    NASA Astrophysics Data System (ADS)

    Marquina, J. E.; Marquina, M. L.; Marquina, V.; Hernández-Gómez, J. J.

    2017-01-01

    In this work we present the original ideas and the construction of the rigid bodies theory realised by Leonhard Euler between 1738 and 1775. The number of treatises written by Euler on this subject is enormous, including the most notorious Scientia Navalis (1749), Decouverte d’un noveau principe de mecanique (1752), Du mouvement de rotation des corps solides autour d’un axe variable (1765), Theoria motus corporum solidorum seu rigidorum (1765) and Nova methodus motu corporum rigidorum determinandi (1776), in which he developed the ideas of the instantaneous rotation axis, the so-called Euler equations and angles, the components of what is now known as the inertia tensor, the principal axes of inertia, and, finally, the generalisation of the translation and rotation movement equations for any system. Euler, the man who ‘put most of mechanics into its modern form’ (Truesdell 1968 Essays in the History of Mechanics (Berlin: Springer) p 106).

  9. Residual Distribution Schemes for Conservation Laws Via Adaptive Quadrature

    NASA Technical Reports Server (NTRS)

    Barth, Timothy; Abgrall, Remi; Biegel, Bryan (Technical Monitor)

    2000-01-01

    This paper considers a family of nonconservative numerical discretizations for conservation laws which retains the correct weak solution behavior in the limit of mesh refinement whenever sufficient order numerical quadrature is used. Our analysis of 2-D discretizations in nonconservative form follows the 1-D analysis of Hou and Le Floch. For a specific family of nonconservative discretizations, it is shown under mild assumptions that the error arising from non-conservation is strictly smaller than the discretization error in the scheme. In the limit of mesh refinement under the same assumptions, solutions are shown to satisfy an entropy inequality. Using results from this analysis, a variant of the "N" (Narrow) residual distribution scheme of van der Weide and Deconinck is developed for first-order systems of conservation laws. The modified form of the N-scheme supplants the usual exact single-state mean-value linearization of flux divergence, typically used for the Euler equations of gasdynamics, by an equivalent integral form on simplex interiors. This integral form is then numerically approximated using an adaptive quadrature procedure. This renders the scheme nonconservative in the sense described earlier so that correct weak solutions are still obtained in the limit of mesh refinement. Consequently, we then show that the modified form of the N-scheme can be easily applied to general (non-simplicial) element shapes and general systems of first-order conservation laws equipped with an entropy inequality where exact mean-value linearization of the flux divergence is not readily obtained, e.g. magnetohydrodynamics, the Euler equations with certain forms of chemistry, etc. Numerical examples of subsonic, transonic and supersonic flows containing discontinuities together with multi-level mesh refinement are provided to verify the analysis.

  10. Three-dimensional simulation of vortex breakdown

    NASA Technical Reports Server (NTRS)

    Kuruvila, G.; Salas, M. D.

    1990-01-01

    The integral form of the complete, unsteady, compressible, three-dimensional Navier-Stokes equations in the conservation form, cast in generalized coordinate system, are solved, numerically, to simulate the vortex breakdown phenomenon. The inviscid fluxes are discretized using Roe's upwind-biased flux-difference splitting scheme and the viscous fluxes are discretized using central differencing. Time integration is performed using a backward Euler ADI (alternating direction implicit) scheme. A full approximation multigrid is used to accelerate the convergence to steady state.

  11. A Posteriori Error Estimation for Discontinuous Galerkin Approximations of Hyperbolic Systems

    NASA Technical Reports Server (NTRS)

    Larson, Mats G.; Barth, Timothy J.

    1999-01-01

    This article considers a posteriori error estimation of specified functionals for first-order systems of conservation laws discretized using the discontinuous Galerkin (DG) finite element method. Using duality techniques, we derive exact error representation formulas for both linear and nonlinear functionals given an associated bilinear or nonlinear variational form. Weighted residual approximations of the exact error representation formula are then proposed and numerically evaluated for Ringleb flow, an exact solution of the 2-D Euler equations.

  12. Constructing space difference schemes which satisfy a cell entropy inequality

    NASA Technical Reports Server (NTRS)

    Merriam, Marshal L.

    1989-01-01

    A numerical methodology for solving convection problems is presented, using finite difference schemes which satisfy the second law of thermodynamics on a cell-by-cell basis in addition to the usual conservation laws. It is shown that satisfaction of a cell entropy inequality is sufficient, in some cases, to guarantee nonlinear stability. Some details are given for several one-dimensional problems, including the quasi-one-dimensional Euler equations applied to flow in a nozzle.

  13. Description of Jet Breakup

    NASA Technical Reports Server (NTRS)

    Papageorgiou, Demetrios T.

    1996-01-01

    In this article we review recent results on the breakup of cylindrical jets of a Newtonian fluid. Capillary forces provide the main driving mechanism and our interest is in the description of the flow as the jet pinches to form drops. The approach is to describe such topological singularities by constructing local (in time and space) similarity solutions from the governing equations. This is described for breakup according to the Euler, Stokes or Navier-Stokes equations. It is found that slender jet theories can be applied when viscosity is present, but for inviscid jets the local shape of the jet at breakup is most likely of a non-slender geometry. Systems of one-dimensional models of the governing equations are solved numerically in order to illustrate these differences.

  14. Stable boundary conditions and difference schemes for Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Dutt, P.

    1985-01-01

    The Navier-Stokes equations can be viewed as an incompletely elliptic perturbation of the Euler equations. By using the entropy function for the Euler equations as a measure of energy for the Navier-Stokes equations, it was possible to obtain nonlinear energy estimates for the mixed initial boundary value problem. These estimates are used to derive boundary conditions which guarantee L2 boundedness even when the Reynolds number tends to infinity. Finally, a new difference scheme for modelling the Navier-Stokes equations in multidimensions for which it is possible to obtain discrete energy estimates exactly analogous to those we obtained for the differential equation was proposed.

  15. The method of space-time and conservation element and solution element: A new approach for solving the Navier-Stokes and Euler equations

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung

    1995-01-01

    A new numerical framework for solving conservation laws is being developed. This new framework differs substantially in both concept and methodology from the well-established methods, i.e., finite difference, finite volume, finite element, and spectral methods. It is conceptually simple and designed to overcome several key limitations of the above traditional methods. A two-level scheme for solving the convection-diffusion equation is constructed and used to illuminate the major differences between the present method and those previously mentioned. This explicit scheme, referred to as the a-mu scheme, has two independent marching variables.

  16. Aerothermodynamic shape optimization of hypersonic blunt bodies

    NASA Astrophysics Data System (ADS)

    Eyi, Sinan; Yumuşak, Mine

    2015-07-01

    The aim of this study is to develop a reliable and efficient design tool that can be used in hypersonic flows. The flow analysis is based on the axisymmetric Euler/Navier-Stokes and finite-rate chemical reaction equations. The equations are coupled simultaneously and solved implicitly using Newton's method. The Jacobian matrix is evaluated analytically. A gradient-based numerical optimization is used. The adjoint method is utilized for sensitivity calculations. The objective of the design is to generate a hypersonic blunt geometry that produces the minimum drag with low aerodynamic heating. Bezier curves are used for geometry parameterization. The performances of the design optimization method are demonstrated for different hypersonic flow conditions.

  17. Control of sound radiation from a wavepacket over a curved surface

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio; El Hady, Nabil M.

    1989-01-01

    Active control of acoustic pressure in the far field resulting from the growth and decay of a wavepacket convecting in a boundary layer over a concave-convex surface is investigated numerically using direct computations of the Navier-Stokes equations. The resulting sound radiation is computed using linearized Euler equations with the pressure from the Navier-Stokes solution as a time-dependent boundary condition. The acoustic far field exhibits directivity type of behavior that points upstream to the flow direction. A fixed control algorithm is used where the attenuation signal is synthesized by a filter which actively adapt it to the amplitude-time response of the outgoing acoustic wave.

  18. Letter: Modeling reactive shock waves in heterogeneous solids at the continuum level with stochastic differential equations

    NASA Astrophysics Data System (ADS)

    Kittell, D. E.; Yarrington, C. D.; Lechman, J. B.; Baer, M. R.

    2018-05-01

    A new paradigm is introduced for modeling reactive shock waves in heterogeneous solids at the continuum level. Inspired by the probability density function methods from turbulent reactive flows, it is hypothesized that the unreacted material microstructures lead to a distribution of heat release rates from chemical reaction. Fluctuations in heat release, rather than velocity, are coupled to the reactive Euler equations which are then solved via the Riemann problem. A numerically efficient, one-dimensional hydrocode is used to demonstrate this new approach, and simulation results of a representative impact calculation (inert flyer into explosive target) are discussed.

  19. Planar incompressible Navier-Stokes and Euler equations: A geometric formulation

    NASA Astrophysics Data System (ADS)

    Dimitriou, Ioannis

    2017-11-01

    In this paper, a novel geometric approach for studying steady, two-dimensional, incompressible flows has been thoroughly developed. The continuity and momentum equations were expressed in the flow's intrinsic coordinate system in order to "accommodate" the geometric parameters characterizing it, namely, the local curvatures of the streamlines and their orthogonal trajectories. As a result, a new description of the governing equations was obtained, in which the concerned variables are the velocity magnitude v and a new quantity which was named geometric vorticity, Γ. The latter is defined by the curl of the global curvature vector KG and can be interpreted as the geometric signature of the known vorticity Ω. This approach leads to a new formulation of the Navier-Stokes and Euler equations, the so-called "velocity-curvature" formulation. In this framework, an expression for the flow velocity as a function of geometric parameters only was developed. This reveals that the physical information of a steady incompressible flow is imprinted in its geometry. It is this insight that makes the aforementioned formulation not only conceptually different to the existing classical descriptions, traditionally employed in both analytical and numerical applications, but also attractive, due to the advantages that it could provide at a theoretical and an experimental level. Finally, the derived results are briefly discussed, while emphasizing the implications that the identified geometry-physics interface might have in the future for planar flow analysis.

  20. Development of Implicit Methods in CFD NASA Ames Research Center 1970's - 1980's

    NASA Technical Reports Server (NTRS)

    Pulliam, Thomas H.

    2010-01-01

    The focus here is on the early development (mid 1970's-1980's) at NASA Ames Research Center of implicit methods in Computational Fluid Dynamics (CFD). A class of implicit finite difference schemes of the Beam and Warming approximate factorization type will be addressed. The emphasis will be on the Euler equations. A review of material pertinent to the solution of the Euler equations within the framework of implicit methods will be presented. The eigensystem of the equations will be used extensively in developing a framework for various methods applied to the Euler equations. The development and analysis of various aspects of this class of schemes will be given along with the motivations behind many of the choices. Various acceleration and efficiency modifications such as matrix reduction, diagonalization and flux split schemes will be presented.

  1. Lower Bounds for Possible Singular Solutions for the Navier-Stokes and Euler Equations Revisited

    NASA Astrophysics Data System (ADS)

    Cortissoz, Jean C.; Montero, Julio A.

    2018-03-01

    In this paper we give optimal lower bounds for the blow-up rate of the \\dot{H}s( T^3) -norm, 1/25/2.

  2. A high-resolution Godunov method for compressible multi-material flow on overlapping grids

    NASA Astrophysics Data System (ADS)

    Banks, J. W.; Schwendeman, D. W.; Kapila, A. K.; Henshaw, W. D.

    2007-04-01

    A numerical method is described for inviscid, compressible, multi-material flow in two space dimensions. The flow is governed by the multi-material Euler equations with a general mixture equation of state. Composite overlapping grids are used to handle complex flow geometry and block-structured adaptive mesh refinement (AMR) is used to locally increase grid resolution near shocks and material interfaces. The discretization of the governing equations is based on a high-resolution Godunov method, but includes an energy correction designed to suppress numerical errors that develop near a material interface for standard, conservative shock-capturing schemes. The energy correction is constructed based on a uniform-pressure-velocity flow and is significant only near the captured interface. A variety of two-material flows are presented to verify the accuracy of the numerical approach and to illustrate its use. These flows assume an equation of state for the mixture based on the Jones-Wilkins-Lee (JWL) forms for the components. This equation of state includes a mixture of ideal gases as a special case. Flow problems considered include unsteady one-dimensional shock-interface collision, steady interaction of a planar interface and an oblique shock, planar shock interaction with a collection of gas-filled cylindrical inhomogeneities, and the impulsive motion of the two-component mixture in a rigid cylindrical vessel.

  3. User's manual for three-dimensional analysis of propeller flow fields

    NASA Technical Reports Server (NTRS)

    Chaussee, D. S.; Kutler, P.

    1983-01-01

    A detailed operating manual is presented for the prop-fan computer code (in addition to supporting programs) recently developed by Kutler, Chaussee, Sorenson, and Pulliam while at the NASA'S Ames Research Center. This code solves the inviscid Euler equations using an implicit numerical procedure developed by Beam and Warming of Ames. A description of the underlying theory, numerical techniques, and boundary conditions with equations, formulas, and methods for the mesh generation program (MGP), three dimensional prop-fan flow field program (3DPFP), and data reduction program (DRP) is provided, together with complete operating instructions. In addition, a programmer's manual is also provided to assist the user interested in modifying the codes. Included in the programmer's manual for each program is a description of the input and output variables, flow charts, program listings, sample input and output data, and operating hints.

  4. Damping of structural vibrations in beams and elliptical plates using the acoustic black hole effect

    NASA Astrophysics Data System (ADS)

    Georgiev, V. B.; Cuenca, J.; Gautier, F.; Simon, L.; Krylov, V. V.

    2011-05-01

    Flexural waves in beams and plates slow down if their thickness decreases. Such property was used in the past for establishing the theory of acoustic black holes (ABH). The aim of the present paper is to establish reliable numerical and experimental approaches for designing, modelling and manufacturing an effective passive vibration damper using the ABH effect. The effectiveness of such vibration absorbers increases with frequency. Initially, the dynamic behaviour of an Euler-Bernoulli beam is expressed using the Impedance Method, which in turn leads to a Riccati equation for the beam impedance. This equation is numerically integrated using an adaptive Runge-Kutta-Fehlberg method, yielding the frequency- and spatially-dependent impedance matrix of the beam, from which the reflection matrix is obtained. Moreover, the mathematical model can be extended to incorporate an absorbing film that assists for reducing reflected waves from the truncated edge. Therefore, the influence of the geometrical and material characteristics of the absorbing film is then studied and an optimal configuration of these parameters is proposed. An experiment consisting of an elliptical plate with a pit of power-law profile placed in one of its foci is presented. The elliptical shape of the plate induces a complete focalisation of the waves towards ABH in case they are generated in the other focus. Consequently, the derived 1-D method for an Euler-Bernoulli beam can be used as a phenomenological model assisting for better understanding the complex processes in 2-D elliptical structure. Finally, both, numerical simulations and experimental measurements show significant reduction of vibration levels.

  5. Progress in multi-dimensional upwind differencing

    NASA Technical Reports Server (NTRS)

    Vanleer, Bram

    1992-01-01

    Multi-dimensional upwind-differencing schemes for the Euler equations are reviewed. On the basis of the first-order upwind scheme for a one-dimensional convection equation, the two approaches to upwind differencing are discussed: the fluctuation approach and the finite-volume approach. The usual extension of the finite-volume method to the multi-dimensional Euler equations is not entirely satisfactory, because the direction of wave propagation is always assumed to be normal to the cell faces. This leads to smearing of shock and shear waves when these are not grid-aligned. Multi-directional methods, in which upwind-biased fluxes are computed in a frame aligned with a dominant wave, overcome this problem, but at the expense of robustness. The same is true for the schemes incorporating a multi-dimensional wave model not based on multi-dimensional data but on an 'educated guess' of what they could be. The fluctuation approach offers the best possibilities for the development of genuinely multi-dimensional upwind schemes. Three building blocks are needed for such schemes: a wave model, a way to achieve conservation, and a compact convection scheme. Recent advances in each of these components are discussed; putting them all together is the present focus of a worldwide research effort. Some numerical results are presented, illustrating the potential of the new multi-dimensional schemes.

  6. Robust and Simple Non-Reflecting Boundary Conditions for the Euler Equations: A New Approach Based on the Space-Time CE/SE Method

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Himansu, Ananda; Loh, Ching-Yuen; Wang, Xiao-Yen; Yu, Shang-Tao

    2003-01-01

    This paper reports on a significant advance in the area of non-reflecting boundary conditions (NRBCs) for unsteady flow computations. As a part of the development of the space-time conservation element and solution element (CE/SE) method, sets of NRBCs for 1D Euler problems are developed without using any characteristics-based techniques. These conditions are much simpler than those commonly reported in the literature, yet so robust that they are applicable to subsonic, transonic and supersonic flows even in the presence of discontinuities. In addition, the straightforward multidimensional extensions of the present 1D NRBCs have been shown numerically to be equally simple and robust. The paper details the theoretical underpinning of these NRBCs, and explains their unique robustness and accuracy in terms of the conservation of space-time fluxes. Some numerical results for an extended Sod's shock-tube problem, illustrating the effectiveness of the present NRBCs are included, together with an associated simple Fortran computer program. As a preliminary to the present development, a review of the basic CE/SE schemes is also included.

  7. Accurate upwind methods for the Euler equations

    NASA Technical Reports Server (NTRS)

    Huynh, Hung T.

    1993-01-01

    A new class of piecewise linear methods for the numerical solution of the one-dimensional Euler equations of gas dynamics is presented. These methods are uniformly second-order accurate, and can be considered as extensions of Godunov's scheme. With an appropriate definition of monotonicity preservation for the case of linear convection, it can be shown that they preserve monotonicity. Similar to Van Leer's MUSCL scheme, they consist of two key steps: a reconstruction step followed by an upwind step. For the reconstruction step, a monotonicity constraint that preserves uniform second-order accuracy is introduced. Computational efficiency is enhanced by devising a criterion that detects the 'smooth' part of the data where the constraint is redundant. The concept and coding of the constraint are simplified by the use of the median function. A slope steepening technique, which has no effect at smooth regions and can resolve a contact discontinuity in four cells, is described. As for the upwind step, existing and new methods are applied in a manner slightly different from those in the literature. These methods are derived by approximating the Euler equations via linearization and diagonalization. At a 'smooth' interface, Harten, Lax, and Van Leer's one intermediate state model is employed. A modification for this model that can resolve contact discontinuities is presented. Near a discontinuity, either this modified model or a more accurate one, namely, Roe's flux-difference splitting. is used. The current presentation of Roe's method, via the conceptually simple flux-vector splitting, not only establishes a connection between the two splittings, but also leads to an admissibility correction with no conditional statement, and an efficient approximation to Osher's approximate Riemann solver. These reconstruction and upwind steps result in schemes that are uniformly second-order accurate and economical at smooth regions, and yield high resolution at discontinuities.

  8. Numerical Simulation of a Solar Domestic Hot Water System

    NASA Astrophysics Data System (ADS)

    Mongibello, L.; Bianco, N.; Di Somma, M.; Graditi, G.; Naso, V.

    2014-11-01

    An innovative transient numerical model is presented for the simulation of a solar Domestic Hot Water (DHW) system. The solar collectors have been simulated by using a zerodimensional analytical model. The temperature distributions in the heat transfer fluid and in the water inside the tank have been evaluated by one-dimensional models. The reversion elimination algorithm has been used to include the effects of natural convection among the water layers at different heights in the tank on the thermal stratification. A finite difference implicit scheme has been implemented to solve the energy conservation equation in the coil heat exchanger, and the energy conservation equation in the tank has been solved by using the finite difference Euler implicit scheme. Energy conservation equations for the solar DHW components models have been coupled by means of a home-made implicit algorithm. Results of the simulation performed using as input data the experimental values of the ambient temperature and the solar irradiance in a summer day are presented and discussed.

  9. The upwind control volume scheme for unstructured triangular grids

    NASA Technical Reports Server (NTRS)

    Giles, Michael; Anderson, W. Kyle; Roberts, Thomas W.

    1989-01-01

    A new algorithm for the numerical solution of the Euler equations is presented. This algorithm is particularly suited to the use of unstructured triangular meshes, allowing geometric flexibility. Solutions are second-order accurate in the steady state. Implementation of the algorithm requires minimal grid connectivity information, resulting in modest storage requirements, and should enhance the implementation of the scheme on massively parallel computers. A novel form of upwind differencing is developed, and is shown to yield sharp resolution of shocks. Two new artificial viscosity models are introduced that enhance the performance of the new scheme. Numerical results for transonic airfoil flows are presented, which demonstrate the performance of the algorithm.

  10. Shock capturing finite difference algorithms for supersonic flow past fighter and missile type configurations

    NASA Technical Reports Server (NTRS)

    Osher, S.

    1984-01-01

    The construction of a reliable, shock capturing finite difference method to solve the Euler equations for inviscid, supersonic flow past fighter and missile type configurations is highly desirable. The numerical method must have a firm theoretical foundation and must be robust and efficient. It should be able to treat subsonic pockets in a predominantly supersonic flow. The method must also be easily applicable to the complex topologies of the aerodynamic configuration under consideration. The ongoing approach to this task is described and for steady supersonic flows is presented. This scheme is the basic numerical method. Results of work obtained during previous years are presented.

  11. Cascade flow analysis by Navier-Stokes equation

    NASA Astrophysics Data System (ADS)

    Nozaki, Osamu

    1987-06-01

    As the performance of the large electronic computer has improved, numerical simulation of the flow around the blade of the aircraft, for instance, is being actively conducted. In the compressor and turbine cascades of aircraft engine, multiple blades are put side by side closely, and the pressure gradient in the flow direction is large. Thus they have more complicated properties than the independent blade. At present, therefore, it is the mainstream to use potential, Euler's equation, etc., as the basic equation but, for knowing the phenomenon caused by the viscosity like the interference of shock waves and boundary layers, it is necessary to solve the Navier-Stokes (N-S) equation. A two-dimensional cascade analysis program was developed by the N-S equation by expanding the two-dimensional high Reynolds number transonic profile analysis code NSFOIL and the lattice formation program AFMESH for the independent blade, which were already developed so as to fit the cascade flow.

  12. Development of Computational Aeroacoustics Code for Jet Noise and Flow Prediction

    NASA Astrophysics Data System (ADS)

    Keith, Theo G., Jr.; Hixon, Duane R.

    2002-07-01

    Accurate prediction of jet fan and exhaust plume flow and noise generation and propagation is very important in developing advanced aircraft engines that will pass current and future noise regulations. In jet fan flows as well as exhaust plumes, two major sources of noise are present: large-scale, coherent instabilities and small-scale turbulent eddies. In previous work for the NASA Glenn Research Center, three strategies have been explored in an effort to computationally predict the noise radiation from supersonic jet exhaust plumes. In order from the least expensive computationally to the most expensive computationally, these are: 1) Linearized Euler equations (LEE). 2) Very Large Eddy Simulations (VLES). 3) Large Eddy Simulations (LES). The first method solves the linearized Euler equations (LEE). These equations are obtained by linearizing about a given mean flow and the neglecting viscous effects. In this way, the noise from large-scale instabilities can be found for a given mean flow. The linearized Euler equations are computationally inexpensive, and have produced good noise results for supersonic jets where the large-scale instability noise dominates, as well as for the tone noise from a jet engine blade row. However, these linear equations do not predict the absolute magnitude of the noise; instead, only the relative magnitude is predicted. Also, the predicted disturbances do not modify the mean flow, removing a physical mechanism by which the amplitude of the disturbance may be controlled. Recent research for isolated airfoils' indicates that this may not affect the solution greatly at low frequencies. The second method addresses some of the concerns raised by the LEE method. In this approach, called Very Large Eddy Simulation (VLES), the unsteady Reynolds averaged Navier-Stokes equations are solved directly using a high-accuracy computational aeroacoustics numerical scheme. With the addition of a two-equation turbulence model and the use of a relatively coarse grid, the numerical solution is effectively filtered into a directly calculated mean flow with the small-scale turbulence being modeled, and an unsteady large-scale component that is also being directly calculated. In this way, the unsteady disturbances are calculated in a nonlinear way, with a direct effect on the mean flow. This method is not as fast as the LEE approach, but does have many advantages to recommend it; however, like the LEE approach, only the effect of the largest unsteady structures will be captured. An initial calculation was performed on a supersonic jet exhaust plume, with promising results, but the calculation was hampered by the explicit time marching scheme that was employed. This explicit scheme required a very small time step to resolve the nozzle boundary layer, which caused a long run time. Current work is focused on testing a lower-order implicit time marching method to combat this problem.

  13. Variational formulation for dissipative continua and an incremental J-integral

    NASA Astrophysics Data System (ADS)

    Rahaman, Md. Masiur; Dhas, Bensingh; Roy, D.; Reddy, J. N.

    2018-01-01

    Our aim is to rationally formulate a proper variational principle for dissipative (viscoplastic) solids in the presence of inertia forces. As a first step, a consistent linearization of the governing nonlinear partial differential equations (PDEs) is carried out. An additional set of complementary (adjoint) equations is then formed to recover an underlying variational structure for the augmented system of linearized balance laws. This makes it possible to introduce an incremental Lagrangian such that the linearized PDEs, including the complementary equations, become the Euler-Lagrange equations. Continuous groups of symmetries of the linearized PDEs are computed and an analysis is undertaken to identify the variational groups of symmetries of the linearized dissipative system. Application of Noether's theorem leads to the conservation laws (conserved currents) of motion corresponding to the variational symmetries. As a specific outcome, we exploit translational symmetries of the functional in the material space and recover, via Noether's theorem, an incremental J-integral for viscoplastic solids in the presence of inertia forces. Numerical demonstrations are provided through a two-dimensional plane strain numerical simulation of a compact tension specimen of annealed mild steel under dynamic loading.

  14. The research of the coupled orbital-attitude controlled motion of celestial body in the neighborhood of the collinear libration point L1

    NASA Astrophysics Data System (ADS)

    Shmyrov, A.; Shmyrov, V.; Shymanchuk, D.

    2017-10-01

    This article considers the motion of a celestial body within the restricted three-body problem of the Sun-Earth system. The equations of controlled coupled attitude-orbit motion in the neighborhood of collinear libration point L1 are investigated. The translational orbital motion of a celestial body is described using Hill's equations of circular restricted three-body problem of the Sun-Earth system. Rotational orbital motion is described using Euler's dynamic equations and quaternion kinematic equation. We investigate the problem of stability of celestial body rotational orbital motion in relative equilibrium positions and stabilization of celestial body rotational orbital motion with proposed control laws in the neighborhood of collinear libration point L1. To study stabilization problem, Lyapunov function is constructed in the form of the sum of the kinetic energy and special "kinematic function" of the Rodriguez-Hamiltonian parameters. Numerical modeling of the controlled rotational motion of a celestial body at libration point L1 is carried out. The numerical characteristics of the control parameters and rotational motion are given.

  15. Numerical methods for solving moment equations in kinetic theory of neuronal network dynamics

    NASA Astrophysics Data System (ADS)

    Rangan, Aaditya V.; Cai, David; Tao, Louis

    2007-02-01

    Recently developed kinetic theory and related closures for neuronal network dynamics have been demonstrated to be a powerful theoretical framework for investigating coarse-grained dynamical properties of neuronal networks. The moment equations arising from the kinetic theory are a system of (1 + 1)-dimensional nonlinear partial differential equations (PDE) on a bounded domain with nonlinear boundary conditions. The PDEs themselves are self-consistently specified by parameters which are functions of the boundary values of the solution. The moment equations can be stiff in space and time. Numerical methods are presented here for efficiently and accurately solving these moment equations. The essential ingredients in our numerical methods include: (i) the system is discretized in time with an implicit Euler method within a spectral deferred correction framework, therefore, the PDEs of the kinetic theory are reduced to a sequence, in time, of boundary value problems (BVPs) with nonlinear boundary conditions; (ii) a set of auxiliary parameters is introduced to recast the original BVP with nonlinear boundary conditions as BVPs with linear boundary conditions - with additional algebraic constraints on the auxiliary parameters; (iii) a careful combination of two Newton's iterates for the nonlinear BVP with linear boundary condition, interlaced with a Newton's iterate for solving the associated algebraic constraints is constructed to achieve quadratic convergence for obtaining the solutions with self-consistent parameters. It is shown that a simple fixed-point iteration can only achieve a linear convergence for the self-consistent parameters. The practicability and efficiency of our numerical methods for solving the moment equations of the kinetic theory are illustrated with numerical examples. It is further demonstrated that the moment equations derived from the kinetic theory of neuronal network dynamics can very well capture the coarse-grained dynamical properties of integrate-and-fire neuronal networks.

  16. A note on singularities of the 3-D Euler equation

    NASA Technical Reports Server (NTRS)

    Tanveer, S.

    1994-01-01

    In this paper, we consider analytic initial conditions with finite energy, whose complex spatial continuation is a superposition of a smooth background flow and a singular field. Through explicit calculation in the complex plane, we show that under some assumptions, the solution to the 3-D Euler equation ceases to be analytic in the real domain in finite time.

  17. Entropy Analysis of Kinetic Flux Vector Splitting Schemes for the Compressible Euler Equations

    NASA Technical Reports Server (NTRS)

    Shiuhong, Lui; Xu, Jun

    1999-01-01

    Flux Vector Splitting (FVS) scheme is one group of approximate Riemann solvers for the compressible Euler equations. In this paper, the discretized entropy condition of the Kinetic Flux Vector Splitting (KFVS) scheme based on the gas-kinetic theory is proved. The proof of the entropy condition involves the entropy definition difference between the distinguishable and indistinguishable particles.

  18. A multigrid LU-SSOR scheme for approximate Newton iteration applied to the Euler equations

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Jameson, Antony

    1986-01-01

    A new efficient relaxation scheme in conjunction with a multigrid method is developed for the Euler equations. The LU SSOR scheme is based on a central difference scheme and does not need flux splitting for Newton iteration. Application to transonic flow shows that the new method surpasses the performance of the LU implicit scheme.

  19. Solving Nonlinear Euler Equations with Arbitrary Accuracy

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger W.

    2005-01-01

    A computer program that efficiently solves the time-dependent, nonlinear Euler equations in two dimensions to an arbitrarily high order of accuracy has been developed. The program implements a modified form of a prior arbitrary- accuracy simulation algorithm that is a member of the class of algorithms known in the art as modified expansion solution approximation (MESA) schemes. Whereas millions of lines of code were needed to implement the prior MESA algorithm, it is possible to implement the present MESA algorithm by use of one or a few pages of Fortran code, the exact amount depending on the specific application. The ability to solve the Euler equations to arbitrarily high accuracy is especially beneficial in simulations of aeroacoustic effects in settings in which fully nonlinear behavior is expected - for example, at stagnation points of fan blades, where linearizing assumptions break down. At these locations, it is necessary to solve the full nonlinear Euler equations, and inasmuch as the acoustical energy is of the order of 4 to 5 orders of magnitude below that of the mean flow, it is necessary to achieve an overall fractional error of less than 10-6 in order to faithfully simulate entropy, vortical, and acoustical waves.

  20. Mathematical and computational model for the analysis of micro hybrid rocket motor

    NASA Astrophysics Data System (ADS)

    Stoia-Djeska, Marius; Mingireanu, Florin

    2012-11-01

    The hybrid rockets use a two-phase propellant system. In the present work we first develop a simplified model of the coupling of the hybrid combustion process with the complete unsteady flow, starting from the combustion port and ending with the nozzle. The physical and mathematical model are adapted to the simulations of micro hybrid rocket motors. The flow model is based on the one-dimensional Euler equations with source terms. The flow equations and the fuel regression rate law are solved in a coupled manner. The platform of the numerical simulations is an implicit fourth-order Runge-Kutta second order cell-centred finite volume method. The numerical results obtained with this model show a good agreement with published experimental and numerical results. The computational model developed in this work is simple, computationally efficient and offers the advantage of taking into account a large number of functional and constructive parameters that are used by the engineers.

  1. Accuracy Study of the Space-Time CE/SE Method for Computational Aeroacoustics Problems Involving Shock Waves

    NASA Technical Reports Server (NTRS)

    Wang, Xiao Yen; Chang, Sin-Chung; Jorgenson, Philip C. E.

    1999-01-01

    The space-time conservation element and solution element(CE/SE) method is used to study the sound-shock interaction problem. The order of accuracy of numerical schemes is investigated. The linear model problem.govemed by the 1-D scalar convection equation, sound-shock interaction problem governed by the 1-D Euler equations, and the 1-D shock-tube problem which involves moving shock waves and contact surfaces are solved to investigate the order of accuracy of numerical schemes. It is concluded that the accuracy of the CE/SE numerical scheme with designed 2nd-order accuracy becomes 1st order when a moving shock wave exists. However, the absolute error in the CE/SE solution downstream of the shock wave is on the same order as that obtained using a fourth-order accurate essentially nonoscillatory (ENO) scheme. No special techniques are used for either high-frequency low-amplitude waves or shock waves.

  2. Numerical solutions of the linearized Euler equations for unsteady vortical flows around lifting airfoils

    NASA Technical Reports Server (NTRS)

    Scott, James R.; Atassi, Hafiz M.

    1990-01-01

    A linearized unsteady aerodynamic analysis is presented for unsteady, subsonic vortical flows around lifting airfoils. The analysis fully accounts for the distortion effects of the nonuniform mean flow on the imposed vortical disturbances. A frequency domain numerical scheme which implements this linearized approach is described, and numerical results are presented for a large variety of flow configurations. The results demonstrate the effects of airfoil thickness, angle of attack, camber, and Mach number on the unsteady lift and moment of airfoils subjected to periodic vortical gusts. The results show that mean flow distortion can have a very strong effect on the airfoil unsteady response, and that the effect depends strongly upon the reduced frequency, Mach number, and gust wave numbers.

  3. Development of upwind schemes for the Euler equations

    NASA Technical Reports Server (NTRS)

    Chakravarthy, Sukumar R.

    1987-01-01

    Described are many algorithmic and computational aspects of upwind schemes and their second-order accurate formulations based on Total-Variation-Diminishing (TVD) approaches. An operational unification of the underlying first-order scheme is first presented encompassing Godunov's, Roe's, Osher's, and Split-Flux methods. For higher order versions, the preprocessing and postprocessing approaches to constructing TVD discretizations are considered. TVD formulations can be used to construct relaxation methods for unfactored implicit upwind schemes, which in turn can be exploited to construct space-marching procedures for even the unsteady Euler equations. A major part of the report describes time- and space-marching procedures for solving the Euler equations in 2-D, 3-D, Cartesian, and curvilinear coordinates. Along with many illustrative examples, several results of efficient computations on 3-D supersonic flows with subsonic pockets are presented.

  4. An accuracy assessment of Cartesian-mesh approaches for the Euler equations

    NASA Technical Reports Server (NTRS)

    Coirier, William J.; Powell, Kenneth G.

    1995-01-01

    A critical assessment of the accuracy of Cartesian-mesh approaches for steady, transonic solutions of the Euler equations of gas dynamics is made. An exact solution of the Euler equations (Ringleb's flow) is used not only to infer the order of the truncation error of the Cartesian-mesh approaches, but also to compare the magnitude of the discrete error directly to that obtained with a structured mesh approach. Uniformly and adaptively refined solutions using a Cartesian-mesh approach are obtained and compared to each other and to uniformly refined structured mesh results. The effect of cell merging is investigated as well as the use of two different K-exact reconstruction procedures. The solution methodology of the schemes is explained and tabulated results are presented to compare the solution accuracies.

  5. Exploration of POD-Galerkin Techniques for Developing Reduced Order Models of the Euler Equations

    DTIC Science & Technology

    2015-07-01

    modes [1]. Barone et al [15, 16] proposed to stabilize the reduced system by symmetrizing the higher-order PDE with a preconditioning matrix. Rowley et...advection scalar equation. The ROM is obtained by employing Galerkin’s method to reduce the high-order PDEs to a lower- order ODE system by means of POD...high-order PDEs to a lower-order ODE system by means of POD eigen-bases. For purposes of this study, a linearized version of the Euler equations is

  6. Computational Aerodynamics Based on the Euler Equations (L’aerodynamique Numerique a Partir des Equations d’Euler)

    DTIC Science & Technology

    1994-01-01

    0 The Mission of AGARD 0 According to its Charter, the mission of AGARD is to bring together the leading personalities of the NATO nations in the...advances in the aerospace sciences relevant to strengthening the common defence posture; • - Improving the co-operation among member nations in aerospace...for the physical principles. To construct the relevant equations for fluid gas consisting of pseudo particles, 10 is the internal energy due motion it

  7. Numerical Simulation of Transit-Time Ultrasonic Flowmeters by a Direct Approach.

    PubMed

    Luca, Adrian; Marchiano, Regis; Chassaing, Jean-Camille

    2016-06-01

    This paper deals with the development of a computational code for the numerical simulation of wave propagation through domains with a complex geometry consisting in both solids and moving fluids. The emphasis is on the numerical simulation of ultrasonic flowmeters (UFMs) by modeling the wave propagation in solids with the equations of linear elasticity (ELE) and in fluids with the linearized Euler equations (LEEs). This approach requires high performance computing because of the high number of degrees of freedom and the long propagation distances. Therefore, the numerical method should be chosen with care. In order to minimize the numerical dissipation which may occur in this kind of configuration, the numerical method employed here is the nodal discontinuous Galerkin (DG) method. Also, this method is well suited for parallel computing. To speed up the code, almost all the computational stages have been implemented to run on graphical processing unit (GPU) by using the compute unified device architecture (CUDA) programming model from NVIDIA. This approach has been validated and then used for the two-dimensional simulation of gas UFMs. The large contrast of acoustic impedance characteristic to gas UFMs makes their simulation a real challenge.

  8. Convergence and stability of the exponential Euler method for semi-linear stochastic delay differential equations.

    PubMed

    Zhang, Ling

    2017-01-01

    The main purpose of this paper is to investigate the strong convergence and exponential stability in mean square of the exponential Euler method to semi-linear stochastic delay differential equations (SLSDDEs). It is proved that the exponential Euler approximation solution converges to the analytic solution with the strong order [Formula: see text] to SLSDDEs. On the one hand, the classical stability theorem to SLSDDEs is given by the Lyapunov functions. However, in this paper we study the exponential stability in mean square of the exact solution to SLSDDEs by using the definition of logarithmic norm. On the other hand, the implicit Euler scheme to SLSDDEs is known to be exponentially stable in mean square for any step size. However, in this article we propose an explicit method to show that the exponential Euler method to SLSDDEs is proved to share the same stability for any step size by the property of logarithmic norm.

  9. Final Report for''Numerical Methods and Studies of High-Speed Reactive and Non-Reactive Flows''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwendeman, D W

    2002-11-20

    The work carried out under this subcontract involved the development and use of an adaptive numerical method for the accurate calculation of high-speed reactive flows on overlapping grids. The flow is modeled by the reactive Euler equations with an assumed equation of state and with various reaction rate models. A numerical method has been developed to solve the nonlinear hyperbolic partial differential equations in the model. The method uses an unsplit, shock-capturing scheme, and uses a Godunov-type scheme to compute fluxes and a Runge-Kutta error control scheme to compute the source term modeling the chemical reactions. An adaptive mesh refinementmore » (AMR) scheme has been implemented in order to locally increase grid resolution. The numerical method uses composite overlapping grids to handle complex flow geometries. The code is part of the ''Overture-OverBlown'' framework of object-oriented codes [1, 2], and the development has occurred in close collaboration with Bill Henshaw and David Brown, and other members of the Overture team within CASC. During the period of this subcontract, a number of tasks were accomplished, including: (1) an extension of the numerical method to handle ''ignition and grow'' reaction models and a JWL equations of state; (2) an improvement in the efficiency of the AMR scheme and the error estimator; (3) an addition of a scheme of numerical dissipation designed to suppress numerical oscillations/instabilities near expanding detonations and along grid overlaps; and (4) an exploration of the evolution to detonation in an annulus and of detonation failure in an expanding channel.« less

  10. A regularization of the Burgers equation using a filtered convective velocity

    NASA Astrophysics Data System (ADS)

    Norgard, Greg; Mohseni, Kamran

    2008-08-01

    This paper examines the properties of a regularization of the Burgers equation in one and multiple dimensions using a filtered convective velocity, which we have dubbed as the convectively filtered Burgers (CFB) equation. A physical motivation behind the filtering technique is presented. An existence and uniqueness theorem for multiple dimensions and a general class of filters is proven. Multiple invariants of motion are found for the CFB equation which are shown to be shared with the viscous and inviscid Burgers equations. Traveling wave solutions are found for a general class of filters and are shown to converge to weak solutions of the inviscid Burgers equation with the correct wave speed. Numerical simulations are conducted in 1D and 2D cases where the shock behavior, shock thickness and kinetic energy decay are examined. Energy spectra are also examined and are shown to be related to the smoothness of the solutions. This approach is presented with the hope of being extended to shock regularization of compressible Euler equations.

  11. Numerical simulation of two-phase flow for sediment transport in the inner-surf and swash zones

    NASA Astrophysics Data System (ADS)

    Bakhtyar, R.; Barry, D. A.; Yeganeh-Bakhtiary, A.; Li, L.; Parlange, J.-Y.; Sander, G. C.

    2010-03-01

    A two-dimensional two-phase flow framework for fluid-sediment flow simulation in the surf and swash zones was described. Propagation, breaking, uprush and backwash of waves on sloping beaches were studied numerically with an emphasis on fluid hydrodynamics and sediment transport characteristics. The model includes interactive fluid-solid forces and intergranular stresses in the moving sediment layer. In the Euler-Euler approach adopted, two phases were defined using the Navier-Stokes equations with interphase coupling for momentum conservation. The k-ɛ closure model and volume of fluid approach were used to describe the turbulence and tracking of the free surface, respectively. Numerical simulations explored incident wave conditions, specifically spilling and plunging breakers, on both dissipative and intermediate beaches. It was found that the spatial variation of sediment concentration in the swash zone is asymmetric, while the temporal behavior is characterized by maximum sediment concentrations at the start and end of the swash cycle. The numerical results also indicated that the maximum turbulent kinetic energy and sediment flux occurs near the wave-breaking point. These predictions are in general agreement with previous observations, while the model describes the fluid and sediment phase characteristics in much more detail than existing measurements. With direct quantifications of velocity, turbulent kinetic energy, sediment concentration and flux, the model provides a useful approach to improve mechanistic understanding of hydrodynamic and sediment transport in the nearshore zone.

  12. Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.

    1992-01-01

    One of the major achievements in engineering science has been the development of computer algorithms for solving nonlinear differential equations such as the Navier-Stokes equations. In the past, limited computer resources have motivated the development of efficient numerical schemes in computational fluid dynamics (CFD) utilizing structured meshes. The use of structured meshes greatly simplifies the implementation of CFD algorithms on conventional computers. Unstructured grids on the other hand offer an alternative to modeling complex geometries. Unstructured meshes have irregular connectivity and usually contain combinations of triangles, quadrilaterals, tetrahedra, and hexahedra. The generation and use of unstructured grids poses new challenges in CFD. The purpose of this note is to present recent developments in the unstructured grid generation and flow solution technology.

  13. Elliptic Euler-Poisson-Darboux equation, critical points and integrable systems

    NASA Astrophysics Data System (ADS)

    Konopelchenko, B. G.; Ortenzi, G.

    2013-12-01

    The structure and properties of families of critical points for classes of functions W(z,{\\overline{z}}) obeying the elliptic Euler-Poisson-Darboux equation E(1/2, 1/2) are studied. General variational and differential equations governing the dependence of critical points in variational (deformation) parameters are found. Explicit examples of the corresponding integrable quasi-linear differential systems and hierarchies are presented. There are the extended dispersionless Toda/nonlinear Schrödinger hierarchies, the ‘inverse’ hierarchy and equations associated with the real-analytic Eisenstein series E(\\beta ,{\\overline{\\beta }};1/2) among them. The specific bi-Hamiltonian structure of these equations is also discussed.

  14. Admitting the Inadmissible: Adjoint Formulation for Incomplete Cost Functionals in Aerodynamic Optimization

    NASA Technical Reports Server (NTRS)

    Arian, Eyal; Salas, Manuel D.

    1997-01-01

    We derive the adjoint equations for problems in aerodynamic optimization which are improperly considered as "inadmissible." For example, a cost functional which depends on the density, rather than on the pressure, is considered "inadmissible" for an optimization problem governed by the Euler equations. We show that for such problems additional terms should be included in the Lagrangian functional when deriving the adjoint equations. These terms are obtained from the restriction of the interior PDE to the control surface. Demonstrations of the explicit derivation of the adjoint equations for "inadmissible" cost functionals are given for the potential, Euler, and Navier-Stokes equations.

  15. An entropy correction method for unsteady full potential flows with strong shocks

    NASA Technical Reports Server (NTRS)

    Whitlow, W., Jr.; Hafez, M. M.; Osher, S. J.

    1986-01-01

    An entropy correction method for the unsteady full potential equation is presented. The unsteady potential equation is modified to account for entropy jumps across shock waves. The conservative form of the modified equation is solved in generalized coordinates using an implicit, approximate factorization method. A flux-biasing differencing method, which generates the proper amounts of artificial viscosity in supersonic regions, is used to discretize the flow equations in space. Comparisons between the present method and solutions of the Euler equations and between the present method and experimental data are presented. The comparisons show that the present method more accurately models solutions of the Euler equations and experiment than does the isentropic potential formulation.

  16. Modelling of creep hysteresis in ferroelectrics

    NASA Astrophysics Data System (ADS)

    He, Xuan; Wang, Dan; Wang, Linxiang; Melnik, Roderick

    2018-05-01

    In the current paper, a macroscopic model is proposed to simulate the hysteretic dynamics of ferroelectric ceramics with creep phenomenon incorporated. The creep phenomenon in the hysteretic dynamics is attributed to the rate-dependent characteristic of the polarisation switching processes induced in the materials. A non-convex Helmholtz free energy based on Landau theory is proposed to model the switching dynamics. The governing equation of single-crystal model is formulated by applying the Euler-Lagrange equation. The polycrystalline model is obtained by combining the single crystal dynamics with a density function which is constructed to model the weighted contributions of different grains with different principle axis orientations. In addition, numerical simulations of hysteretic dynamics with creep phenomenon are presented. Comparison of the numerical results and their experimental counterparts is also presented. It is shown that the creep phenomenon is captured precisely, validating the capability of the proposed model in a range of its potential applications.

  17. Lagrangian trajectories, residual currents and rectification process in the Northern Gulf of California

    NASA Astrophysics Data System (ADS)

    Rodríguez, Pablo Alonso; Carbajal, Noel; Rodríguez, Juan Heberto Gaviño

    2017-07-01

    Considering a semi-implicit approximation of the Coriolis terms, a numerical solution of the vertically integrated equations of motion is proposed. To test the two-dimensional numerical model, several experiments for the calculation of Euler, Stokes and Lagrange residual currents in the Gulf of California were carried out. To estimate the Lagrangian residual current, trajectories of particles were also simulated. The applied tidal constituents were M2, S2, K2, N2, K1, P1 and O1. At spring tides, strong tidal velocities occur in the northern half of the gulf. In this region of complex geometry, depths change from a few meter in the northern shelf zone to more than 3000 m in the southern part. In the archipelago region, the presence of islands alters amplitude and direction of tidal currents producing a rectification process which is reflected in a clockwise circulation around Tiburón Island in the Lagrangian residual current. The rectification process is explained by the superposition of the Euler and Stokes residual currents. Residual current patterns show several cyclonic and anticyclonic gyres in the Northern Gulf of California. Numerical experiments for individual and combinations of several tidal constituents revealed a large variability of Lagrangian trajectories.

  18. Numerical discretization-based estimation methods for ordinary differential equation models via penalized spline smoothing with applications in biomedical research.

    PubMed

    Wu, Hulin; Xue, Hongqi; Kumar, Arun

    2012-06-01

    Differential equations are extensively used for modeling dynamics of physical processes in many scientific fields such as engineering, physics, and biomedical sciences. Parameter estimation of differential equation models is a challenging problem because of high computational cost and high-dimensional parameter space. In this article, we propose a novel class of methods for estimating parameters in ordinary differential equation (ODE) models, which is motivated by HIV dynamics modeling. The new methods exploit the form of numerical discretization algorithms for an ODE solver to formulate estimating equations. First, a penalized-spline approach is employed to estimate the state variables and the estimated state variables are then plugged in a discretization formula of an ODE solver to obtain the ODE parameter estimates via a regression approach. We consider three different order of discretization methods, Euler's method, trapezoidal rule, and Runge-Kutta method. A higher-order numerical algorithm reduces numerical error in the approximation of the derivative, which produces a more accurate estimate, but its computational cost is higher. To balance the computational cost and estimation accuracy, we demonstrate, via simulation studies, that the trapezoidal discretization-based estimate is the best and is recommended for practical use. The asymptotic properties for the proposed numerical discretization-based estimators are established. Comparisons between the proposed methods and existing methods show a clear benefit of the proposed methods in regards to the trade-off between computational cost and estimation accuracy. We apply the proposed methods t an HIV study to further illustrate the usefulness of the proposed approaches. © 2012, The International Biometric Society.

  19. Corrected simulations for one-dimensional diffusion processes with naturally occurring boundaries.

    PubMed

    Shafiey, Hassan; Gan, Xinjun; Waxman, David

    2017-11-01

    To simulate a diffusion process, a usual approach is to discretize the time in the associated stochastic differential equation. This is the approach used in the Euler method. In the present work we consider a one-dimensional diffusion process where the terms occurring, within the stochastic differential equation, prevent the process entering a region. The outcome is a naturally occurring boundary (which may be absorbing or reflecting). A complication occurs in a simulation of this situation. The term involving a random variable, within the discretized stochastic differential equation, may take a trajectory across the boundary into a "forbidden region." The naive way of dealing with this problem, which we refer to as the "standard" approach, is simply to reset the trajectory to the boundary, based on the argument that crossing the boundary actually signifies achieving the boundary. In this work we show, within the framework of the Euler method, that such resetting introduces a spurious force into the original diffusion process. This force may have a significant influence on trajectories that come close to a boundary. We propose a corrected numerical scheme, for simulating one-dimensional diffusion processes with naturally occurring boundaries. This involves correcting the standard approach, so that an exact property of the diffusion process is precisely respected. As a consequence, the proposed scheme does not introduce a spurious force into the dynamics. We present numerical test cases, based on exactly soluble one-dimensional problems with one or two boundaries, which suggest that, for a given value of the discrete time step, the proposed scheme leads to substantially more accurate results than the standard approach. Alternatively, the standard approach needs considerably more computation time to obtain a comparable level of accuracy to the proposed scheme, because the standard approach requires a significantly smaller time step.

  20. Corrected simulations for one-dimensional diffusion processes with naturally occurring boundaries

    NASA Astrophysics Data System (ADS)

    Shafiey, Hassan; Gan, Xinjun; Waxman, David

    2017-11-01

    To simulate a diffusion process, a usual approach is to discretize the time in the associated stochastic differential equation. This is the approach used in the Euler method. In the present work we consider a one-dimensional diffusion process where the terms occurring, within the stochastic differential equation, prevent the process entering a region. The outcome is a naturally occurring boundary (which may be absorbing or reflecting). A complication occurs in a simulation of this situation. The term involving a random variable, within the discretized stochastic differential equation, may take a trajectory across the boundary into a "forbidden region." The naive way of dealing with this problem, which we refer to as the "standard" approach, is simply to reset the trajectory to the boundary, based on the argument that crossing the boundary actually signifies achieving the boundary. In this work we show, within the framework of the Euler method, that such resetting introduces a spurious force into the original diffusion process. This force may have a significant influence on trajectories that come close to a boundary. We propose a corrected numerical scheme, for simulating one-dimensional diffusion processes with naturally occurring boundaries. This involves correcting the standard approach, so that an exact property of the diffusion process is precisely respected. As a consequence, the proposed scheme does not introduce a spurious force into the dynamics. We present numerical test cases, based on exactly soluble one-dimensional problems with one or two boundaries, which suggest that, for a given value of the discrete time step, the proposed scheme leads to substantially more accurate results than the standard approach. Alternatively, the standard approach needs considerably more computation time to obtain a comparable level of accuracy to the proposed scheme, because the standard approach requires a significantly smaller time step.

  1. Adaptive finite-volume WENO schemes on dynamically redistributed grids for compressible Euler equations

    NASA Astrophysics Data System (ADS)

    Pathak, Harshavardhana S.; Shukla, Ratnesh K.

    2016-08-01

    A high-order adaptive finite-volume method is presented for simulating inviscid compressible flows on time-dependent redistributed grids. The method achieves dynamic adaptation through a combination of time-dependent mesh node clustering in regions characterized by strong solution gradients and an optimal selection of the order of accuracy and the associated reconstruction stencil in a conservative finite-volume framework. This combined approach maximizes spatial resolution in discontinuous regions that require low-order approximations for oscillation-free shock capturing. Over smooth regions, high-order discretization through finite-volume WENO schemes minimizes numerical dissipation and provides excellent resolution of intricate flow features. The method including the moving mesh equations and the compressible flow solver is formulated entirely on a transformed time-independent computational domain discretized using a simple uniform Cartesian mesh. Approximations for the metric terms that enforce discrete geometric conservation law while preserving the fourth-order accuracy of the two-point Gaussian quadrature rule are developed. Spurious Cartesian grid induced shock instabilities such as carbuncles that feature in a local one-dimensional contact capturing treatment along the cell face normals are effectively eliminated through upwind flux calculation using a rotated Hartex-Lax-van Leer contact resolving (HLLC) approximate Riemann solver for the Euler equations in generalized coordinates. Numerical experiments with the fifth and ninth-order WENO reconstructions at the two-point Gaussian quadrature nodes, over a range of challenging test cases, indicate that the redistributed mesh effectively adapts to the dynamic flow gradients thereby improving the solution accuracy substantially even when the initial starting mesh is non-adaptive. The high adaptivity combined with the fifth and especially the ninth-order WENO reconstruction allows remarkably sharp capture of discontinuous propagating shocks with simultaneous resolution of smooth yet complex small scale unsteady flow features to an exceptional detail.

  2. Characteristics of steady vibration in a rotating hub-beam system

    NASA Astrophysics Data System (ADS)

    Zhao, Zhen; Liu, Caishan; Ma, Wei

    2016-02-01

    A rotating beam features a puzzling character in which its frequencies and modal shapes may vary with the hub's inertia and its rotating speed. To highlight the essential nature behind the vibration phenomena, we analyze the steady vibration of a rotating Euler-Bernoulli beam with a quasi-steady-state stretch. Newton's law is used to derive the equations governing the beam's elastic motion and the hub's rotation. A combination of these equations results in a nonlinear partial differential equation (PDE) that fully reflects the mutual interaction between the two kinds of motion. Via the Fourier series expansion within a finite interval of time, we reduce the PDE into an infinite system of a nonlinear ordinary differential equation (ODE) in spatial domain. We further nondimensionalize the ODE and discretize it via a difference method. The frequencies and modal shapes of a general rotating beam are then determined numerically. For a low-speed beam where the ignorance of geometric stiffening is feasible, the beam's vibration characteristics are solved analytically. We validate our numerical method and the analytical solutions by comparing with either the past experiments or the past numerical findings reported in existing literature. Finally, systematic simulations are performed to demonstrate how the beam's eigenfrequencies vary with the hub's inertia and rotating speed.

  3. A Non-Linear Simulation for an Autonomous Unmanned Air Vehicle

    DTIC Science & Technology

    1993-09-01

    4D cos T cos 4D cos T r These equations can now be integrated to find the time history of the Euler angles . 2. Quaternions Another choice for the...is associated with the Euler angles . Quaternions haxe been in 15 use for quite some time. having been discovered by Euler in a search for complex... quaternions has the following advantages over Euler angles in repre- senting spatial orientation of a rigid body: "* Four states required to express the

  4. Staggered solution procedures for multibody dynamics simulation

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Chiou, J. C.; Downer, J. D.

    1990-01-01

    The numerical solution procedure for multibody dynamics (MBD) systems is termed a staggered MBD solution procedure that solves the generalized coordinates in a separate module from that for the constraint force. This requires a reformulation of the constraint conditions so that the constraint forces can also be integrated in time. A major advantage of such a partitioned solution procedure is that additional analysis capabilities such as active controller and design optimization modules can be easily interfaced without embedding them into a monolithic program. After introducing the basic equations of motion for MBD system in the second section, Section 3 briefly reviews some constraint handling techniques and introduces the staggered stabilized technique for the solution of the constraint forces as independent variables. The numerical direct time integration of the equations of motion is described in Section 4. As accurate damping treatment is important for the dynamics of space structures, we have employed the central difference method and the mid-point form of the trapezoidal rule since they engender no numerical damping. This is in contrast to the current practice in dynamic simulations of ground vehicles by employing a set of backward difference formulas. First, the equations of motion are partitioned according to the translational and the rotational coordinates. This sets the stage for an efficient treatment of the rotational motions via the singularity-free Euler parameters. The resulting partitioned equations of motion are then integrated via a two-stage explicit stabilized algorithm for updating both the translational coordinates and angular velocities. Once the angular velocities are obtained, the angular orientations are updated via the mid-point implicit formula employing the Euler parameters. When the two algorithms, namely, the two-stage explicit algorithm for the generalized coordinates and the implicit staggered procedure for the constraint Lagrange multipliers, are brought together in a staggered manner, they constitute a staggered explicit-implicit procedure which is summarized in Section 5. Section 6 presents some example problems and discussions concerning several salient features of the staggered MBD solution procedure are offered in Section 7.

  5. On the statistical mechanics of the 2D stochastic Euler equation

    NASA Astrophysics Data System (ADS)

    Bouchet, Freddy; Laurie, Jason; Zaboronski, Oleg

    2011-12-01

    The dynamics of vortices and large scale structures is qualitatively very different in two dimensional flows compared to its three dimensional counterparts, due to the presence of multiple integrals of motion. These are believed to be responsible for a variety of phenomena observed in Euler flow such as the formation of large scale coherent structures, the existence of meta-stable states and random abrupt changes in the topology of the flow. In this paper we study stochastic dynamics of the finite dimensional approximation of the 2D Euler flow based on Lie algebra su(N) which preserves all integrals of motion. In particular, we exploit rich algebraic structure responsible for the existence of Euler's conservation laws to calculate the invariant measures and explore their properties and also study the approach to equilibrium. Unexpectedly, we find deep connections between equilibrium measures of finite dimensional su(N) truncations of the stochastic Euler equations and random matrix models. Our work can be regarded as a preparation for addressing the questions of large scale structures, meta-stability and the dynamics of random transitions between different flow topologies in stochastic 2D Euler flows.

  6. Numerical study on the incompressible Euler equations as a Hamiltonian system: Sectional curvature and Jacobi field

    NASA Astrophysics Data System (ADS)

    Ohkitani, K.

    2010-05-01

    We study some of the key quantities arising in the theory of [Arnold "Sur la geometrie differentielle des groupes de Lie de dimension infinie et ses applications a l'hydrodynamique des fluides parfaits," Annales de l'institut Fourier 16, 319 (1966)] of the incompressible Euler equations both in two and three dimensions. The sectional curvatures for the Taylor-Green vortex and the ABC flow initial conditions are calculated exactly in three dimensions. We trace the time evolution of the Jacobi fields by direct numerical simulations and, in particular, see how the sectional curvatures get more and more negative in time. The spatial structure of the Jacobi fields is compared to the vorticity fields by visualizations. The Jacobi fields are found to grow exponentially in time for the flows with negative sectional curvatures. In two dimensions, a family of initial data proposed by Arnold (1966) is considered. The sectional curvature is observed to change its sign quickly even if it starts from a positive value. The Jacobi field is shown to be correlated with the passive scalar gradient in spatial structure. On the basis of Rouchon's physical-space based expression for the sectional curvature (1984), the origin of negative curvature is investigated. It is found that a "potential" αξ appearing in the definition of covariant time derivative plays an important role, in that a rapid growth in its gradient makes a major contribution to the negative curvature.

  7. A numerical model for density-and-viscosity-dependent flows in two-dimensional variably saturated porous media

    NASA Astrophysics Data System (ADS)

    Boufadel, Michel C.; Suidan, Makram T.; Venosa, Albert D.

    1999-04-01

    We present a formulation for water flow and solute transport in two-dimensional variably saturated media that accounts for the effects of the solute on water density and viscosity. The governing equations are cast in a dimensionless form that depends on six dimensionless groups of parameters. These equations are discretized in space using the Galerkin finite element formulation and integrated in time using the backward Euler scheme with mass lumping. The modified Picard method is used to linearize the water flow equation. The resulting numerical model, the MARUN model, is verified by comparison to published numerical results. It is then used to investigate beach hydraulics at seawater concentration (about 30 g l -1) in the context of nutrients delivery for bioremediation of oil spills on beaches. Numerical simulations that we conducted in a rectangular section of a hypothetical beach revealed that buoyancy in the unsaturated zone is significant in soils that are fine textured, with low anisotropy ratio, and/or exhibiting low physical dispersion. In such situations, application of dissolved nutrients to a contaminated beach in a freshwater solution is superior to their application in a seawater solution. Concentration-engendered viscosity effects were negligible with respect to concentration-engendered density effects for the cases that we considered.

  8. Optimized Hypernetted-Chain Solutions for Helium -4 Surfaces and Metal Surfaces

    NASA Astrophysics Data System (ADS)

    Qian, Guo-Xin

    This thesis is a study of inhomogeneous Bose systems such as liquid ('4)He slabs and inhomogeneous Fermi systems such as the electron gas in metal films, at zero temperature. Using a Jastrow-type many-body wavefunction, the ground state energy is expressed by means of Bogoliubov-Born-Green-Kirkwood -Yvon and Hypernetted-Chain techniques. For Bose systems, Euler-Lagrange equations are derived for the one- and two -body functions and systematic approximation methods are physically motivated. It is shown that the optimized variational method includes a self-consistent summation of ladder- and ring-diagrams of conventional many-body theory. For Fermi systems, a linear potential model is adopted to generate the optimized Hartree-Fock basis. Euler-Lagrange equations are derived for the two-body correlations which serve to screen the strong bare Coulomb interaction. The optimization of the pair correlation leads to an expression of correlation energy in which the state averaged RPA part is separated. Numerical applications are presented for the density profile and pair distribution function for both ('4)He surfaces and metal surfaces. Both the bulk and surface energies are calculated in good agreement with experiments.

  9. Estimation of diastolic intraventricular pressure gradients by Doppler M-mode echocardiography

    NASA Technical Reports Server (NTRS)

    Greenberg, N. L.; Vandervoort, P. M.; Firstenberg, M. S.; Garcia, M. J.; Thomas, J. D.

    2001-01-01

    Previous studies have shown that small intraventricular pressure gradients (IVPG) are important for efficient filling of the left ventricle (LV) and as a sensitive marker for ischemia. Unfortunately, there has previously been no way of measuring these noninvasively, severely limiting their research and clinical utility. Color Doppler M-mode (CMM) echocardiography provides a spatiotemporal velocity distribution along the inflow tract throughout diastole, which we hypothesized would allow direct estimation of IVPG by using the Euler equation. Digital CMM images, obtained simultaneously with intracardiac pressure waveforms in six dogs, were processed by numerical differentiation for the Euler equation, then integrated to estimate IVPG and the total (left atrial to left ventricular apex) pressure drop. CMM-derived estimates agreed well with invasive measurements (IVPG: y = 0.87x + 0.22, r = 0.96, P < 0.001, standard error of the estimate = 0.35 mmHg). Quantitative processing of CMM data allows accurate estimation of IVPG and tracking of changes induced by beta-adrenergic stimulation. This novel approach provides unique information on LV filling dynamics in an entirely noninvasive way that has previously not been available for assessment of diastolic filling and function.

  10. An engineering closure for heavily under-resolved coarse-grid CFD in large applications

    NASA Astrophysics Data System (ADS)

    Class, Andreas G.; Yu, Fujiang; Jordan, Thomas

    2016-11-01

    Even though high performance computation allows very detailed description of a wide range of scales in scientific computations, engineering simulations used for design studies commonly merely resolve the large scales thus speeding up simulation time. The coarse-grid CFD (CGCFD) methodology is developed for flows with repeated flow patterns as often observed in heat exchangers or porous structures. It is proposed to use inviscid Euler equations on a very coarse numerical mesh. This coarse mesh needs not to conform to the geometry in all details. To reinstall physics on all smaller scales cheap subgrid models are employed. Subgrid models are systematically constructed by analyzing well-resolved generic representative simulations. By varying the flow conditions in these simulations correlations are obtained. These comprehend for each individual coarse mesh cell a volume force vector and volume porosity. Moreover, for all vertices, surface porosities are derived. CGCFD is related to the immersed boundary method as both exploit volume forces and non-body conformal meshes. Yet, CGCFD differs with respect to the coarser mesh and the use of Euler equations. We will describe the methodology based on a simple test case and the application of the method to a 127 pin wire-wrap fuel bundle.

  11. A High-Resolution Godunov Method for Compressible Multi-Material Flow on Overlapping Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banks, J W; Schwendeman, D W; Kapila, A K

    2006-02-13

    A numerical method is described for inviscid, compressible, multi-material flow in two space dimensions. The flow is governed by the multi-material Euler equations with a general mixture equation of state. Composite overlapping grids are used to handle complex flow geometry and block-structured adaptive mesh refinement (AMR) is used to locally increase grid resolution near shocks and material interfaces. The discretization of the governing equations is based on a high-resolution Godunov method, but includes an energy correction designed to suppress numerical errors that develop near a material interface for standard, conservative shock-capturing schemes. The energy correction is constructed based on amore » uniform pressure-velocity flow and is significant only near the captured interface. A variety of two-material flows are presented to verify the accuracy of the numerical approach and to illustrate its use. These flows assume an equation of state for the mixture based on Jones-Wilkins-Lee (JWL) forms for the components. This equation of state includes a mixture of ideal gases as a special case. Flow problems considered include unsteady one-dimensional shock-interface collision, steady interaction of an planar interface and an oblique shock, planar shock interaction with a collection of gas-filled cylindrical inhomogeneities, and the impulsive motion of the two-component mixture in a rigid cylindrical vessel.« less

  12. Prediction of unsteady transonic flow around missile configurations

    NASA Technical Reports Server (NTRS)

    Nixon, D.; Reisenthel, P. H.; Torres, T. O.; Klopfer, G. H.

    1990-01-01

    This paper describes the preliminary development of a method for predicting the unsteady transonic flow around missiles at transonic and supersonic speeds, with the final goal of developing a computer code for use in aeroelastic calculations or during maneuvers. The basic equations derived for this method are an extension of those derived by Klopfer and Nixon (1989) for steady flow and are a subset of the Euler equations. In this approach, the five Euler equations are reduced to an equation similar to the three-dimensional unsteady potential equation, and a two-dimensional Poisson equation. In addition, one of the equations in this method is almost identical to the potential equation for which there are well tested computer codes, allowing the development of a prediction method based in part on proved technology.

  13. On the Use of Linearized Euler Equations in the Prediction of Jet Noise

    NASA Technical Reports Server (NTRS)

    Mankbadi, Reda R.; Hixon, R.; Shih, S.-H.; Povinelli, L. A.

    1995-01-01

    Linearized Euler equations are used to simulate supersonic jet noise generation and propagation. Special attention is given to boundary treatment. The resulting solution is stable and nearly free from boundary reflections without the need for artificial dissipation, filtering, or a sponge layer. The computed solution is in good agreement with theory and observation and is much less CPU-intensive as compared to large-eddy simulations.

  14. Euler equation existence, non-uniqueness and mesh converged statistics

    PubMed Central

    Glimm, James; Sharp, David H.; Lim, Hyunkyung; Kaufman, Ryan; Hu, Wenlin

    2015-01-01

    We review existence and non-uniqueness results for the Euler equation of fluid flow. These results are placed in the context of physical models and their solutions. Non-uniqueness is in direct conflict with the purpose of practical simulations, so that a mitigating strategy, outlined here, is important. We illustrate these issues in an examination of mesh converged turbulent statistics, with comparison to laboratory experiments. PMID:26261361

  15. L{sup {infinity}} Variational Problems with Running Costs and Constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aronsson, G., E-mail: gunnar.aronsson@liu.se; Barron, E. N., E-mail: enbarron@math.luc.edu

    2012-02-15

    Various approaches are used to derive the Aronsson-Euler equations for L{sup {infinity}} calculus of variations problems with constraints. The problems considered involve holonomic, nonholonomic, isoperimetric, and isosupremic constraints on the minimizer. In addition, we derive the Aronsson-Euler equation for the basic L{sup {infinity}} problem with a running cost and then consider properties of an absolute minimizer. Many open problems are introduced for further study.

  16. Error Control with Perfectly Matched Layer or Damping Layer Treatments for Computational Aeroacoustics with Jet Flows

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    2009-01-01

    In this paper we show by means of numerical experiments that the error introduced in a numerical domain because of a Perfectly Matched Layer or Damping Layer boundary treatment can be controlled. These experimental demonstrations are for acoustic propagation with the Linearized Euler Equations with both uniform and steady jet flows. The propagating signal is driven by a time harmonic pressure source. Combinations of Perfectly Matched and Damping Layers are used with different damping profiles. These layer and profile combinations allow the relative error introduced by a layer to be kept as small as desired, in principle. Tradeoffs between error and cost are explored.

  17. Progress on a Taylor weak statement finite element algorithm for high-speed aerodynamic flows

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Freels, J. D.

    1989-01-01

    A new finite element numerical Computational Fluid Dynamics (CFD) algorithm has matured to the point of efficiently solving two-dimensional high speed real-gas compressible flow problems in generalized coordinates on modern vector computer systems. The algorithm employs a Taylor Weak Statement classical Galerkin formulation, a variably implicit Newton iteration, and a tensor matrix product factorization of the linear algebra Jacobian under a generalized coordinate transformation. Allowing for a general two-dimensional conservation law system, the algorithm has been exercised on the Euler and laminar forms of the Navier-Stokes equations. Real-gas fluid properties are admitted, and numerical results verify solution accuracy, efficiency, and stability over a range of test problem parameters.

  18. Inverse problems in the modeling of vibrations of flexible beams

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Powers, R. K.; Rosen, I. G.

    1987-01-01

    The formulation and solution of inverse problems for the estimation of parameters which describe damping and other dynamic properties in distributed models for the vibration of flexible structures is considered. Motivated by a slewing beam experiment, the identification of a nonlinear velocity dependent term which models air drag damping in the Euler-Bernoulli equation is investigated. Galerkin techniques are used to generate finite dimensional approximations. Convergence estimates and numerical results are given. The modeling of, and related inverse problems for the dynamics of a high pressure hose line feeding a gas thruster actuator at the tip of a cantilevered beam are then considered. Approximation and convergence are discussed and numerical results involving experimental data are presented.

  19. Linearly first- and second-order, unconditionally energy stable schemes for the phase field crystal model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiaofeng, E-mail: xfyang@math.sc.edu; Han, Daozhi, E-mail: djhan@iu.edu

    2017-02-01

    In this paper, we develop a series of linear, unconditionally energy stable numerical schemes for solving the classical phase field crystal model. The temporal discretizations are based on the first order Euler method, the second order backward differentiation formulas (BDF2) and the second order Crank–Nicolson method, respectively. The schemes lead to linear elliptic equations to be solved at each time step, and the induced linear systems are symmetric positive definite. We prove that all three schemes are unconditionally energy stable rigorously. Various classical numerical experiments in 2D and 3D are performed to validate the accuracy and efficiency of the proposedmore » schemes.« less

  20. A High Order Finite Difference Scheme with Sharp Shock Resolution for the Euler Equations

    NASA Technical Reports Server (NTRS)

    Gerritsen, Margot; Olsson, Pelle

    1996-01-01

    We derive a high-order finite difference scheme for the Euler equations that satisfies a semi-discrete energy estimate, and present an efficient strategy for the treatment of discontinuities that leads to sharp shock resolution. The formulation of the semi-discrete energy estimate is based on a symmetrization of the Euler equations that preserves the homogeneity of the flux vector, a canonical splitting of the flux derivative vector, and the use of difference operators that satisfy a discrete analogue to the integration by parts procedure used in the continuous energy estimate. Around discontinuities or sharp gradients, refined grids are created on which the discrete equations are solved after adding a newly constructed artificial viscosity. The positioning of the sub-grids and computation of the viscosity are aided by a detection algorithm which is based on a multi-scale wavelet analysis of the pressure grid function. The wavelet theory provides easy to implement mathematical criteria to detect discontinuities, sharp gradients and spurious oscillations quickly and efficiently.

  1. A macroscopic plasma Lagrangian and its application to wave interactions and resonances

    NASA Technical Reports Server (NTRS)

    Peng, Y. K. M.

    1974-01-01

    The derivation of a macroscopic plasma Lagrangian is considered, along with its application to the description of nonlinear three-wave interaction in a homogeneous plasma and linear resonance oscillations in a inhomogeneous plasma. One approach to obtain the Lagrangian is via the inverse problem of the calculus of variations for arbitrary first and second order quasilinear partial differential systems. Necessary and sufficient conditions for the given equations to be Euler-Lagrange equations of a Lagrangian are obtained. These conditions are then used to determine the transformations that convert some classes of non-Euler-Lagrange equations to Euler-Lagrange equation form. The Lagrangians for a linear resistive transmission line and a linear warm collisional plasma are derived as examples. Using energy considerations, the correct macroscopic plasma Lagrangian is shown to differ from the velocity-integrated low Lagrangian by a macroscopic potential energy that equals twice the particle thermal kinetic energy plus the energy lost by heat conduction.

  2. An Argument Against Augmenting the Lagrangean for Nonholonomic Systems

    NASA Technical Reports Server (NTRS)

    Roithmayr, Carlos M.; Hodges, Dewey H.

    2009-01-01

    Although it is known that correct dynamical equations of motion for a nonholonomic system cannot be obtained from a Lagrangean that has been augmented with a sum of the nonholonomic constraint equations weighted with multipliers, previous publications suggest otherwise. An example has been proposed in support of augmentation and purportedly demonstrates that an accepted method fails to produce correct equations of motion whereas augmentation leads to correct equations; this paper shows that in fact the opposite is true. The correct equations, previously discounted on the basis of a flawed application of the Newton-Euler method, are verified by using Kane's method and a new approach to determining the directions of constraint forces. A correct application of the Newton-Euler method reproduces valid equations.

  3. Comparison of Fully-Compressible Equation Sets for Atmospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Ahmad, Nashat N.

    2016-01-01

    Traditionally, the equation for the conservation of energy used in atmospheric models is based on potential temperature and is used in place of the total energy conservation. This paper compares the application of the two equations sets for both the Euler and the Navier-Stokes solutions using several benchmark test cases. A high-resolution wave-propagation method which accurately takes into account the source term due to gravity is used for computing the non-hydrostatic atmospheric flows. It is demonstrated that there is little to no difference between the results obtained using the two different equation sets for Euler as well as Navier-Stokes solutions.

  4. A Constructive Approach to Regularity of Lagrangian Trajectories for Incompressible Euler Flow in a Bounded Domain

    NASA Astrophysics Data System (ADS)

    Besse, Nicolas; Frisch, Uriel

    2017-04-01

    The 3D incompressible Euler equations are an important research topic in the mathematical study of fluid dynamics. Not only is the global regularity for smooth initial data an open issue, but the behaviour may also depend on the presence or absence of boundaries. For a good understanding, it is crucial to carry out, besides mathematical studies, high-accuracy and well-resolved numerical exploration. Such studies can be very demanding in computational resources, but recently it has been shown that very substantial gains can be achieved first, by using Cauchy's Lagrangian formulation of the Euler equations and second, by taking advantage of analyticity results of the Lagrangian trajectories for flows whose initial vorticity is Hölder-continuous. The latter has been known for about 20 years (Serfati in J Math Pures Appl 74:95-104, 1995), but the combination of the two, which makes use of recursion relations among time-Taylor coefficients to obtain constructively the time-Taylor series of the Lagrangian map, has been achieved only recently (Frisch and Zheligovsky in Commun Math Phys 326:499-505, 2014; Podvigina et al. in J Comput Phys 306:320-342, 2016 and references therein). Here we extend this methodology to incompressible Euler flow in an impermeable bounded domain whose boundary may be either analytic or have a regularity between indefinite differentiability and analyticity. Non-constructive regularity results for these cases have already been obtained by Glass et al. (Ann Sci Éc Norm Sup 45:1-51, 2012). Using the invariance of the boundary under the Lagrangian flow, we establish novel recursion relations that include contributions from the boundary. This leads to a constructive proof of time-analyticity of the Lagrangian trajectories with analytic boundaries, which can then be used subsequently for the design of a very high-order Cauchy-Lagrangian method.

  5. Robust and Simple Non-Reflecting Boundary Conditions for the Euler Equations - A New Approach based on the Space-Time CE/SE Method

    NASA Technical Reports Server (NTRS)

    Chang, S.-C.; Himansu, A.; Loh, C.-Y.; Wang, X.-Y.; Yu, S.-T.J.

    2005-01-01

    This paper reports on a significant advance in the area of nonreflecting boundary conditions (NRBCs) for unsteady flow computations. As a part of t he development of t he space-time conservation element and solution element (CE/SE) method, sets of NRBCs for 1D Euler problems are developed without using any characteristics- based techniques. These conditions are much simpler than those commonly reported in the literature, yet so robust that they are applicable to subsonic, transonic and supersonic flows even in the presence of discontinuities. In addition, the straightforward multidimensional extensions of the present 1D NRBCs have been shown numerically to be equally simple and robust. The paper details the theoretical underpinning of these NRBCs, and explains t heir unique robustness and accuracy in terms of t he conservation of space-time fluxes. Some numerical results for an extended Sod's shock-tube problem, illustrating the effectiveness of the present NRBCs are included, together with an associated simple Fortran computer program. As a preliminary to the present development, a review of the basic CE/SE schemes is also included.

  6. Energy Stable Flux Formulas For The Discontinuous Galerkin Discretization Of First Order Nonlinear Conservation Laws

    NASA Technical Reports Server (NTRS)

    Barth, Timothy; Charrier, Pierre; Mansour, Nagi N. (Technical Monitor)

    2001-01-01

    We consider the discontinuous Galerkin (DG) finite element discretization of first order systems of conservation laws derivable as moments of the kinetic Boltzmann equation. This includes well known conservation law systems such as the Euler For the class of first order nonlinear conservation laws equipped with an entropy extension, an energy analysis of the DG method for the Cauchy initial value problem is developed. Using this DG energy analysis, several new variants of existing numerical flux functions are derived and shown to be energy stable.

  7. Error analysis of analytic solutions for self-excited near-symmetric rigid bodies - A numerical study

    NASA Technical Reports Server (NTRS)

    Kia, T.; Longuski, J. M.

    1984-01-01

    Analytic error bounds are presented for the solutions of approximate models for self-excited near-symmetric rigid bodies. The error bounds are developed for analytic solutions to Euler's equations of motion. The results are applied to obtain a simplified analytic solution for Eulerian rates and angles. The results of a sample application of the range and error bound expressions for the case of the Galileo spacecraft experiencing transverse torques demonstrate the use of the bounds in analyses of rigid body spin change maneuvers.

  8. Accurate Monotonicity - Preserving Schemes With Runge-Kutta Time Stepping

    NASA Technical Reports Server (NTRS)

    Suresh, A.; Huynh, H. T.

    1997-01-01

    A new class of high-order monotonicity-preserving schemes for the numerical solution of conservation laws is presented. The interface value in these schemes is obtained by limiting a higher-order polynominal reconstruction. The limiting is designed to preserve accuracy near extrema and to work well with Runge-Kutta time stepping. Computational efficiency is enhanced by a simple test that determines whether the limiting procedure is needed. For linear advection in one dimension, these schemes are shown as well as the Euler equations also confirm their high accuracy, good shock resolution, and computational efficiency.

  9. A numerical simulation of the NFAC (National Full-scale Aerodynamics Complex) open-return wind tunnel inlet flow

    NASA Technical Reports Server (NTRS)

    Kaul, U. K.; Ross, J. C.; Jacocks, J. L.

    1985-01-01

    The flow into an open return wind tunnel inlet was simulated using Euler equations. An explicit predictor-corrector method was employed to solve the system. The calculation is time-accurate and was performed to achieve a steady-state solution. The predictions are in reasonable agreement with the experimental data. Wall pressures are accurately predicted except in a region of recirculating flow. Flow-field surveys agree qualitatively with laser velocimeter measurements. The method can be used in the design process for open return wind tunnels.

  10. Pulmonary Hypertension and Computed Tomography Measurement of Small Pulmonary Vessels in Severe Emphysema

    PubMed Central

    Matsuoka, Shin; Washko, George R.; Yamashiro, Tsuneo; Estepar, Raul San Jose; Diaz, Alejandro; Silverman, Edwin K.; Hoffman, Eric; Fessler, Henry E.; Criner, Gerard J.; Marchetti, Nathaniel; Scharf, Steven M.; Martinez, Fernando J.; Reilly, John J.; Hatabu, Hiroto

    2010-01-01

    Rationale: Vascular alteration of small pulmonary vessels is one of the characteristic features of pulmonary hypertension in chronic obstructive pulmonary disease. The in vivo relationship between pulmonary hypertension and morphological alteration of the small pulmonary vessels has not been assessed in patients with severe emphysema. Objectives: We evaluated the correlation of total cross-sectional area of small pulmonary vessels (CSA) assessed on computed tomography (CT) scans with the degree of pulmonary hypertension estimated by right heart catheterization. Methods: In 79 patients with severe emphysema enrolled in the National Emphysema Treatment Trial (NETT), we measured CSA less than 5 mm2 (CSA<5) and 5 to 10 mm2 (CSA5−10), and calculated the percentage of total CSA for the lung area (%CSA<5 and %CSA5–10, respectively). The correlations of %CSA<5 and %CSA5–10 with pulmonary arterial mean pressure (\\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}\\overline{Ppa}\\end{equation*}\\end{document}) obtained by right heart catheterization were evaluated. Multiple linear regression analysis using \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}\\overline{Ppa}\\end{equation*}\\end{document} as the dependent outcome was also performed. Measurements and Main Results: The %CSA<5 had a significant negative correlation with \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}\\overline{Ppa}\\end{equation*}\\end{document} (r = −0.512, P < 0.0001), whereas the correlation between %CSA5–10 and \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}\\overline{Ppa}\\end{equation*}\\end{document} did not reach statistical significance (r = −0.196, P = 0.083). Multiple linear regression analysis showed that %CSA<5 and diffusing capacity of carbon monoxide (DlCO) % predicted were independent predictors of \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}\\overline{Ppa}\\end{equation*}\\end{document} (r2 = 0.541): %CSA <5 (P < 0.0001), and DlCO % predicted (P = 0.022). Conclusions: The %CSA<5 measured on CT images is significantly correlated to \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}\\overline{Ppa}\\end{equation*}\\end{document} in severe emphysema and can estimate the degree of pulmonary hypertension. PMID:19875683

  11. Mixing of the Interstellar and Solar Plasmas at the Heliospheric Interface

    DOE PAGES

    Pogorelov, N. V.; Borovikov, S. N.

    2015-10-12

    From the ideal MHD perspective, the heliopause is a tangential discontinuity that separates the solar wind plasma from the local interstellar medium plasma. There are physical processes, however, that make the heliopause permeable. They can be subdivided into kinetic and MHD categories. Kinetic processes occur on small length and time scales, and cannot be resolved with MHD equations. On the other hand, MHD instabilities of the heliopause have much larger scales and can be easily observed by spacecraft. The heliopause may also be a subject of magnetic reconnection. In this paper, we discuss mechanisms of plasma mixing at the heliopausemore » in the context of Voyager 1 observations. Numerical results are obtained with a Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS), which is a package of numerical codes capable of performing adaptive mesh refinement simulations of complex plasma flows in the presence of discontinuities and charge exchange between ions and neutral atoms. The flow of the ionized component is described with the ideal MHD equations, while the transport of atoms is governed either by the Boltzmann equation or multiple Euler gas dynamics equations. The code can also treat nonthermal ions and turbulence produced by them.« less

  12. A Finite-Volume approach for compressible single- and two-phase flows in flexible pipelines with fluid-structure interaction

    NASA Astrophysics Data System (ADS)

    Daude, F.; Galon, P.

    2018-06-01

    A Finite-Volume scheme for the numerical computations of compressible single- and two-phase flows in flexible pipelines is proposed based on an approximate Godunov-type approach. The spatial discretization is here obtained using the HLLC scheme. In addition, the numerical treatment of abrupt changes in area and network including several pipelines connected at junctions is also considered. The proposed approach is based on the integral form of the governing equations making it possible to tackle general equations of state. A coupled approach for the resolution of fluid-structure interaction of compressible fluid flowing in flexible pipes is considered. The structural problem is solved using Euler-Bernoulli beam finite elements. The present Finite-Volume method is applied to ideal gas and two-phase steam-water based on the Homogeneous Equilibrium Model (HEM) in conjunction with a tabulated equation of state in order to demonstrate its ability to tackle general equations of state. The extensive application of the scheme for both shock tube and other transient flow problems demonstrates its capability to resolve such problems accurately and robustly. Finally, the proposed 1-D fluid-structure interaction model appears to be computationally efficient.

  13. A hybrid numerical technique for predicting the aerodynamic and acoustic fields of advanced turboprops

    NASA Technical Reports Server (NTRS)

    Homicz, G. F.; Moselle, J. R.

    1985-01-01

    A hybrid numerical procedure is presented for the prediction of the aerodynamic and acoustic performance of advanced turboprops. A hybrid scheme is proposed which in principle leads to a consistent simultaneous prediction of both fields. In the inner flow a finite difference method, the Approximate-Factorization Alternating-Direction-Implicit (ADI) scheme, is used to solve the nonlinear Euler equations. In the outer flow the linearized acoustic equations are solved via a Boundary-Integral Equation (BIE) method. The two solutions are iteratively matched across a fictitious interface in the flow so as to maintain continuity. At convergence the resulting aerodynamic load prediction will automatically satisfy the appropriate free-field boundary conditions at the edge of the finite difference grid, while the acoustic predictions will reflect the back-reaction of the radiated field on the magnitude of the loading source terms, as well as refractive effects in the inner flow. The equations and logic needed to match the two solutions are developed and the computer program implementing the procedure is described. Unfortunately, no converged solutions were obtained, due to unexpectedly large running times. The reasons for this are discussed and several means to alleviate the situation are suggested.

  14. High Order Accurate Finite Difference Modeling of Seismo-Acoustic Wave Propagation in a Moving Atmosphere and a Heterogeneous Earth Model Coupled Across a Realistic Topography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersson, N. Anders; Sjogreen, Bjorn

    Here, we develop a numerical method for simultaneously simulating acoustic waves in a realistic moving atmosphere and seismic waves in a heterogeneous earth model, where the motions are coupled across a realistic topography. We model acoustic wave propagation by solving the linearized Euler equations of compressible fluid mechanics. The seismic waves are modeled by the elastic wave equation in a heterogeneous anisotropic material. The motion is coupled by imposing continuity of normal velocity and normal stresses across the topographic interface. Realistic topography is resolved on a curvilinear grid that follows the interface. The governing equations are discretized using high ordermore » accurate finite difference methods that satisfy the principle of summation by parts. We apply the energy method to derive the discrete interface conditions and to show that the coupled discretization is stable. The implementation is verified by numerical experiments, and we demonstrate a simulation of coupled wave propagation in a windy atmosphere and a realistic earth model with non-planar topography.« less

  15. High Order Accurate Finite Difference Modeling of Seismo-Acoustic Wave Propagation in a Moving Atmosphere and a Heterogeneous Earth Model Coupled Across a Realistic Topography

    DOE PAGES

    Petersson, N. Anders; Sjogreen, Bjorn

    2017-04-18

    Here, we develop a numerical method for simultaneously simulating acoustic waves in a realistic moving atmosphere and seismic waves in a heterogeneous earth model, where the motions are coupled across a realistic topography. We model acoustic wave propagation by solving the linearized Euler equations of compressible fluid mechanics. The seismic waves are modeled by the elastic wave equation in a heterogeneous anisotropic material. The motion is coupled by imposing continuity of normal velocity and normal stresses across the topographic interface. Realistic topography is resolved on a curvilinear grid that follows the interface. The governing equations are discretized using high ordermore » accurate finite difference methods that satisfy the principle of summation by parts. We apply the energy method to derive the discrete interface conditions and to show that the coupled discretization is stable. The implementation is verified by numerical experiments, and we demonstrate a simulation of coupled wave propagation in a windy atmosphere and a realistic earth model with non-planar topography.« less

  16. Airburst-Generated Tsunamis

    NASA Astrophysics Data System (ADS)

    Berger, Marsha; Goodman, Jonathan

    2018-04-01

    This paper examines the questions of whether smaller asteroids that burst in the air over water can generate tsunamis that could pose a threat to distant locations. Such airburst-generated tsunamis are qualitatively different than the more frequently studied earthquake-generated tsunamis, and differ as well from tsunamis generated by asteroids that strike the ocean. Numerical simulations are presented using the shallow water equations in several settings, demonstrating very little tsunami threat from this scenario. A model problem with an explicit solution that demonstrates and explains the same phenomena found in the computations is analyzed. We discuss the question of whether compressibility and dispersion are important effects that should be included, and show results from a more sophisticated model problem using the linearized Euler equations that begins to addresses this.

  17. Comparison of Several Dissipation Algorithms for Central Difference Schemes

    NASA Technical Reports Server (NTRS)

    Swanson, R. C.; Radespiel, R.; Turkel, E.

    1997-01-01

    Several algorithms for introducing artificial dissipation into a central difference approximation to the Euler and Navier Stokes equations are considered. The focus of the paper is on the convective upwind and split pressure (CUSP) scheme, which is designed to support single interior point discrete shock waves. This scheme is analyzed and compared in detail with scalar and matrix dissipation (MATD) schemes. Resolution capability is determined by solving subsonic, transonic, and hypersonic flow problems. A finite-volume discretization and a multistage time-stepping scheme with multigrid are used to compute solutions to the flow equations. Numerical results are also compared with either theoretical solutions or experimental data. For transonic airfoil flows the best accuracy on coarse meshes for aerodynamic coefficients is obtained with a simple MATD scheme.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K.; Petersson, N. A.; Rodgers, A.

    Acoustic waveform modeling is a computationally intensive task and full three-dimensional simulations are often impractical for some geophysical applications such as long-range wave propagation and high-frequency sound simulation. In this study, we develop a two-dimensional high-order accurate finite-difference code for acoustic wave modeling. We solve the linearized Euler equations by discretizing them with the sixth order accurate finite difference stencils away from the boundary and the third order summation-by-parts (SBP) closure near the boundary. Non-planar topographic boundary is resolved by formulating the governing equation in curvilinear coordinates following the interface. We verify the implementation of the algorithm by numerical examplesmore » and demonstrate the capability of the proposed method for practical acoustic wave propagation problems in the atmosphere.« less

  19. Instability and sound emission from a flow over a curved surface

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Parikh, P.; Bayliss, A.

    1988-01-01

    The growth and decay of a wavepacket convecting in a boundary layer over a concave-convex surface is studied numerically using direct computations of the Navier-Stokes equations. The resulting sound radiation is computed using the linearized Euler equations with the pressure from the Navier-Stokes solution as a time-dependent boundary condition. It is shown that on the concave portion the amplitude of the wavepacket increases and its bandwidth broadens while on the convex portion some of the components in the packet are stabilized. The pressure field decays exponentially away from the surface and then algebraically exhibits a decay characteristic of acoustic waves in two dimensions. The far-field acoustic pressure exhibits a peak at a frequency corresponding to the inflow instability frequency.

  20. Adaptive computational methods for aerothermal heating analysis

    NASA Technical Reports Server (NTRS)

    Price, John M.; Oden, J. Tinsley

    1988-01-01

    The development of adaptive gridding techniques for finite-element analysis of fluid dynamics equations is described. The developmental work was done with the Euler equations with concentration on shock and inviscid flow field capturing. Ultimately this methodology is to be applied to a viscous analysis for the purpose of predicting accurate aerothermal loads on complex shapes subjected to high speed flow environments. The development of local error estimate strategies as a basis for refinement strategies is discussed, as well as the refinement strategies themselves. The application of the strategies to triangular elements and a finite-element flux-corrected-transport numerical scheme are presented. The implementation of these strategies in the GIM/PAGE code for 2-D and 3-D applications is documented and demonstrated.

  1. Multigrid Method for Modeling Multi-Dimensional Combustion with Detailed Chemistry

    NASA Technical Reports Server (NTRS)

    Zheng, Xiaoqing; Liu, Chaoqun; Liao, Changming; Liu, Zhining; McCormick, Steve

    1996-01-01

    A highly accurate and efficient numerical method is developed for modeling 3-D reacting flows with detailed chemistry. A contravariant velocity-based governing system is developed for general curvilinear coordinates to maintain simplicity of the continuity equation and compactness of the discretization stencil. A fully-implicit backward Euler technique and a third-order monotone upwind-biased scheme on a staggered grid are used for the respective temporal and spatial terms. An efficient semi-coarsening multigrid method based on line-distributive relaxation is used as the flow solver. The species equations are solved in a fully coupled way and the chemical reaction source terms are treated implicitly. Example results are shown for a 3-D gas turbine combustor with strong swirling inflows.

  2. Rapid detonation initiation by sparks in a short duct: a numerical study

    NASA Astrophysics Data System (ADS)

    Hu, Z. M.; Dou, H. S.; Khoo, B. C.

    2010-06-01

    Rapid onset of detonation can efficiently increase the working frequency of a pulse detonation engine (PDE). In the present study, computations of detonation initiation in a duct are conducted to investigate the mechanisms of detonation initiation. The governing equations are the Euler equations and the chemical kinetic model consists of 19 elementary reactions and nine species. Different techniques of initiation have been studied for the purpose of accelerating detonation onset with a relatively weak ignition energy. It is found that detonation ignition induced by means of multiple sparks is applicable to auto-ignition for a PDE. The interaction among shock waves, flame fronts and the strip of pre-compressed fresh (unburned) mixture plays an important role in rapid onset of detonation.

  3. Numerical analysis and design of upwind sails

    NASA Astrophysics Data System (ADS)

    Shankaran, Sriram

    The use of computational techniques that solve the Euler or the Navier-Stokes equations are increasingly being used by competing syndicates in races like the Americas Cup. For sail configurations, this desire stems from a need to understand the influence of the mast on the boundary layer and pressure distribution on the main sail, the effect of camber and planform variations of the sails on the driving and heeling force produced by them and the interaction of the boundary layer profile of the air over the surface of the water and the gap between the boom and the deck on the performance of the sail. Traditionally, experimental methods along with potential flow solvers have been widely used to quantify these effects. While these approaches are invaluable either for validation purposes or during the early stages of design, the potential advantages of high fidelity computational methods makes them attractive candidates during the later stages of the design process. The aim of this study is to develop and validate numerical methods that solve the inviscid field equations (Euler) to simulate and design upwind sails. The three dimensional compressible Euler equations are modified using the idea of artificial compressibility and discretized on unstructured tetrahedral grids to provide estimates of lift and drag for upwind sail configurations. Convergence acceleration techniques like multigrid and residual averaging are used along with parallel computing platforms to enable these simulations to be performed in a few minutes. To account for the elastic nature of the sail cloth, this flow solver was coupled to NASTRAN to provide estimates of the deflections caused by the pressure loading. The results of this aeroclastic simulation, showed that the major effect of the sail elasticity; was in altering the pressure distribution around the leading edge of the head and the main sail. Adjoint based design methods were developed next and were used to induce changes to the camber distribution of the main sail. The goal of the design process was to reduce the leading edge suction peaks that were considered to be detrimental to the growth of the boundary layer. The deflected shape of the sails obtained from the aeroelastic simulation were used by the design process. The design process resulted in an camber distribution that allowed smooth entry of the flow through the leading edge of the main sail thereby, reducing the leading edge suction peaks.

  4. A Numerical Method of Calculating Propeller Noise Including Acoustic Nonlinear Effects

    NASA Technical Reports Server (NTRS)

    Korkan, K. D.

    1985-01-01

    Using the transonic flow fields(s) generated by the NASPROP-E computer code for an eight blade SR3-series propeller, a theoretical method is investigated to calculate the total noise values and frequency content in the acoustic near and far field without using the Ffowcs Williams - Hawkings equation. The flow field is numerically generated using an implicit three dimensional Euler equation solver in weak conservation law form. Numerical damping is required by the differencing method for stability in three dimensions, and the influence of the damping on the calculated acoustic values is investigated. The acoustic near field is solved by integrating with respect to time the pressure oscillations induced at a stationary observer location. The acoustic far field is calculated from the near field primitive variables as generated by NASPROP-E computer code using a method involving a perturbation velocity potential as suggested by Hawkings in the calculation of the acoustic pressure time-history at a specified far field observed location. the methodologies described are valid for calculating total noise levels and are applicable to any propeller geometry for which a flow field solution is available.

  5. Electrostatic and aerodynamic forced vibrations of a thin flexible electrode: Quasi-periodic vs. chaotic oscillations.

    PubMed

    Madanu, Sushma B; Barbel, Stanley I; Ward, Thomas

    2016-06-01

    In this paper, transverse vibrations of an electrostatically actuated thin flexible cantilever perturbed by low-speed air flow are studied using both experiments and numerical modeling. In the experiments, the dynamic characteristics of the cantilever are studied by supplying a DC voltage with an AC component for electrostatic forcing and a constant uniform air flow around the cantilever system for aerodynamic forcing. A range of control parameters leading to stable vibrations are established using a dimensionless operating parameter that is the ratio of the induced and the free stream velocities. Numerical results are validated with experimental data. Assuming the amplitude of vibrations are small, then a non-linear dynamic Euler-Bernoulli beam equation with viscous damping and gravitational effects is used to model the equation of motion. Aerodynamic forcing is modelled as a temporally sinusoidal and uniform force acting perpendicular to the beam length. The forcing amplitude is found to be proportional to the square of the air flow velocity. Numerical results strongly agree with the experiments predicting accurate vibration amplitude, displacement frequency, and quasi-periodic displacement of the cantilever tip.

  6. Computational methods for vortex dominated compressible flows

    NASA Technical Reports Server (NTRS)

    Murman, Earll M.

    1987-01-01

    The principal objectives were to: understand the mechanisms by which Euler equation computations model leading edge vortex flows; understand the vortical and shock wave structures that may exist for different wing shapes, angles of incidence, and Mach numbers; and compare calculations with experiments in order to ascertain the limitations and advantages of Euler equation models. The initial approach utilized the cell centered finite volume Jameson scheme. The final calculation utilized a cell vertex finite volume method on an unstructured grid. Both methods used Runge-Kutta four stage schemes for integrating the equations. The principal findings are briefly summarized.

  7. Numerical Flight Mechanics Analysis Of The SHEFEX I Ascent And Re-Entry Phases

    NASA Astrophysics Data System (ADS)

    Bartolome Calvo, Javier; Eggers, Thino

    2011-08-01

    The SHarp Edge Flight EXperiment (SHEFEX) I provides a huge amount of scientific data to validate numerical tools in hypersonic flows. These data allow the direct comparison of flight measurements with the current numerical tools available at DLR. Therefore, this paper is devoted to apply a recently developed direct coupling between aerodynamics and flight dynamics to the SHEFEX I flight. In a first step, mission analyses are carried out using the trajectory optimization program REENT 6D coupled to missile DATCOM. In a second step, the direct coupling between the trajectory program and the DLR TAU code, in which the unsteady Euler equations including rigid body motion are solved, is applied to analyze some interesting parts of ascent and re-entry phases of the flight experiment. The agreement of the numerical predictions with the obtained flight data is satisfactory assuming a variable fin deflection angle.

  8. Solution algorithms for the two-dimensional Euler equations on unstructured meshes

    NASA Technical Reports Server (NTRS)

    Whitaker, D. L.; Slack, David C.; Walters, Robert W.

    1990-01-01

    The objective of the study was to analyze implicit techniques employed in structured grid algorithms for solving two-dimensional Euler equations and extend them to unstructured solvers in order to accelerate convergence rates. A comparison is made between nine different algorithms for both first-order and second-order accurate solutions. Higher-order accuracy is achieved by using multidimensional monotone linear reconstruction procedures. The discussion is illustrated by results for flow over a transonic circular arc.

  9. Vanishing Viscosity Approach to the Compressible Euler Equations for Transonic Nozzle and Spherically Symmetric Flows

    NASA Astrophysics Data System (ADS)

    Chen, Gui-Qiang G.; Schrecker, Matthew R. I.

    2018-04-01

    We are concerned with globally defined entropy solutions to the Euler equations for compressible fluid flows in transonic nozzles with general cross-sectional areas. Such nozzles include the de Laval nozzles and other more general nozzles whose cross-sectional area functions are allowed at the nozzle ends to be either zero (closed ends) or infinity (unbounded ends). To achieve this, in this paper, we develop a vanishing viscosity method to construct globally defined approximate solutions and then establish essential uniform estimates in weighted L p norms for the whole range of physical adiabatic exponents γ\\in (1, ∞) , so that the viscosity approximate solutions satisfy the general L p compensated compactness framework. The viscosity method is designed to incorporate artificial viscosity terms with the natural Dirichlet boundary conditions to ensure the uniform estimates. Then such estimates lead to both the convergence of the approximate solutions and the existence theory of globally defined finite-energy entropy solutions to the Euler equations for transonic flows that may have different end-states in the class of nozzles with general cross-sectional areas for all γ\\in (1, ∞) . The approach and techniques developed here apply to other problems with similar difficulties. In particular, we successfully apply them to construct globally defined spherically symmetric entropy solutions to the Euler equations for all γ\\in (1, ∞).

  10. User's Guide for ECAP2D: an Euler Unsteady Aerodynamic and Aeroelastic Analysis Program for Two Dimensional Oscillating Cascades, Version 1.0

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.

    1995-01-01

    This guide describes the input data required for using ECAP2D (Euler Cascade Aeroelastic Program-Two Dimensional). ECAP2D can be used for steady or unsteady aerodynamic and aeroelastic analysis of two dimensional cascades. Euler equations are used to obtain aerodynamic forces. The structural dynamic equations are written for a rigid typical section undergoing pitching (torsion) and plunging (bending) motion. The solution methods include harmonic oscillation method, influence coefficient method, pulse response method, and time integration method. For harmonic oscillation method, example inputs and outputs are provided for pitching motion and plunging motion. For the rest of the methods, input and output for pitching motion only are given.

  11. Fast Numerical Solution of the Plasma Response Matrix for Real-time Ideal MHD Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glasser, Alexander; Kolemen, Egemen; Glasser, Alan H.

    To help effectuate near real-time feedback control of ideal MHD instabilities in tokamak geometries, a parallelized version of A.H. Glasser’s DCON (Direct Criterion of Newcomb) code is developed. To motivate the numerical implementation, we first solve DCON’s δW formulation with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD Riccati equation. We then describe our adaptation of DCON with numerical methods natural to solutions of the Riccati equation, parallelizing it to enable its operation in near real-time. We replace DCON’s serial integration of perturbed modes—which satisfy a singular Euler- Lagrange equation—with a domain-decomposed integration of state transition matrices. Output is shown to match results from DCON with high accuracy, and with computation time < 1s. Such computational speed may enable active feedback ideal MHD stability control, especially in plasmas whose ideal MHD equilibria evolve with inductive timescalemore » $$\\tau$$ ≳ 1s—as in ITER. Further potential applications of this theory are discussed.« less

  12. Fast Numerical Solution of the Plasma Response Matrix for Real-time Ideal MHD Control

    DOE PAGES

    Glasser, Alexander; Kolemen, Egemen; Glasser, Alan H.

    2018-03-26

    To help effectuate near real-time feedback control of ideal MHD instabilities in tokamak geometries, a parallelized version of A.H. Glasser’s DCON (Direct Criterion of Newcomb) code is developed. To motivate the numerical implementation, we first solve DCON’s δW formulation with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD Riccati equation. We then describe our adaptation of DCON with numerical methods natural to solutions of the Riccati equation, parallelizing it to enable its operation in near real-time. We replace DCON’s serial integration of perturbed modes—which satisfy a singular Euler- Lagrange equation—with a domain-decomposed integration of state transition matrices. Output is shown to match results from DCON with high accuracy, and with computation time < 1s. Such computational speed may enable active feedback ideal MHD stability control, especially in plasmas whose ideal MHD equilibria evolve with inductive timescalemore » $$\\tau$$ ≳ 1s—as in ITER. Further potential applications of this theory are discussed.« less

  13. Euler solutions for an unbladed jet engine configuration

    NASA Technical Reports Server (NTRS)

    Stewart, Mark E. M.

    1991-01-01

    A Euler solution for an axisymmetric jet engine configuration without blade effects is presented. The Euler equations are solved on a multiblock grid which covers a domain including the inlet, bypass duct, core passage, nozzle, and the far field surrounding the engine. The simulation is verified by considering five theoretical properties of the solution. The solution demonstrates both multiblock grid generation techniques and a foundation for a full jet engine throughflow calculation.

  14. Well-balanced Arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming meshes for the Euler equations of gas dynamics with gravity

    NASA Astrophysics Data System (ADS)

    Gaburro, Elena; Castro, Manuel J.; Dumbser, Michael

    2018-06-01

    In this work, we present a novel second-order accurate well-balanced arbitrary Lagrangian-Eulerian (ALE) finite volume scheme on moving nonconforming meshes for the Euler equations of compressible gas dynamics with gravity in cylindrical coordinates. The main feature of the proposed algorithm is the capability of preserving many of the physical properties of the system exactly also on the discrete level: besides being conservative for mass, momentum and total energy, also any known steady equilibrium between pressure gradient, centrifugal force, and gravity force can be exactly maintained up to machine precision. Perturbations around such equilibrium solutions are resolved with high accuracy and with minimal dissipation on moving contact discontinuities even for very long computational times. This is achieved by the novel combination of well-balanced path-conservative finite volume schemes, which are expressly designed to deal with source terms written via non-conservative products, with ALE schemes on moving grids, which exhibit only very little numerical dissipation on moving contact waves. In particular, we have formulated a new HLL-type and a novel Osher-type flux that are both able to guarantee the well balancing in a gas cloud rotating around a central object. Moreover, to maintain a high level of quality of the moving mesh, we have adopted a nonconforming treatment of the sliding interfaces that appear due to the differential rotation. A large set of numerical tests has been carried out in order to check the accuracy of the method close and far away from the equilibrium, both, in one- and two-space dimensions.

  15. Euler/Navier-Stokes calculations of transonic flow past fixed- and rotary-wing aircraft configurations

    NASA Technical Reports Server (NTRS)

    Deese, J. E.; Agarwal, R. K.

    1989-01-01

    Computational fluid dynamics has an increasingly important role in the design and analysis of aircraft as computer hardware becomes faster and algorithms become more efficient. Progress is being made in two directions: more complex and realistic configurations are being treated and algorithms based on higher approximations to the complete Navier-Stokes equations are being developed. The literature indicates that linear panel methods can model detailed, realistic aircraft geometries in flow regimes where this approximation is valid. As algorithms including higher approximations to the Navier-Stokes equations are developed, computer resource requirements increase rapidly. Generation of suitable grids become more difficult and the number of grid points required to resolve flow features of interest increases. Recently, the development of large vector computers has enabled researchers to attempt more complex geometries with Euler and Navier-Stokes algorithms. The results of calculations for transonic flow about a typical transport and fighter wing-body configuration using thin layer Navier-Stokes equations are described along with flow about helicopter rotor blades using both Euler/Navier-Stokes equations.

  16. On the stability analysis of approximate factorization methods for 3D Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.; Ibraheem, S. O.

    1993-01-01

    The convergence characteristics of various approximate factorizations for the 3D Euler and Navier-Stokes equations are examined using the von-Neumann stability analysis method. Three upwind-difference based factorizations and several central-difference based factorizations are considered for the Euler equations. In the upwind factorizations both the flux-vector splitting methods of Steger and Warming and van Leer are considered. Analysis of the Navier-Stokes equations is performed only on the Beam and Warming central-difference scheme. The range of CFL numbers over which each factorization is stable is presented for one-, two-, and three-dimensional flow. Also presented for each factorization is the CFL number at which the maximum eigenvalue is minimized, for all Fourier components, as well as for the high frequency range only. The latter is useful for predicting the effectiveness of multigrid procedures with these schemes as smoothers. Further, local mode analysis is performed to test the suitability of using a uniform flow field in the stability analysis. Some inconsistencies in the results from previous analyses are resolved.

  17. Hydrodynamic Simulations of Protoplanetary Disks with GIZMO

    NASA Astrophysics Data System (ADS)

    Rice, Malena; Laughlin, Greg

    2018-01-01

    Over the past several decades, the field of computational fluid dynamics has rapidly advanced as the range of available numerical algorithms and computationally feasible physical problems has expanded. The development of modern numerical solvers has provided a compelling opportunity to reconsider previously obtained results in search for yet undiscovered effects that may be revealed through longer integration times and more precise numerical approaches. In this study, we compare the results of past hydrodynamic disk simulations with those obtained from modern analytical resources. We focus our study on the GIZMO code (Hopkins 2015), which uses meshless methods to solve the homogeneous Euler equations of hydrodynamics while eliminating problems arising as a result of advection between grid cells. By comparing modern simulations with prior results, we hope to provide an improved understanding of the impact of fluid mechanics upon the evolution of protoplanetary disks.

  18. Impulse propagation over a complex site: a comparison of experimental results and numerical predictions.

    PubMed

    Dragna, Didier; Blanc-Benon, Philippe; Poisson, Franck

    2014-03-01

    Results from outdoor acoustic measurements performed in a railway site near Reims in France in May 2010 are compared to those obtained from a finite-difference time-domain solver of the linearized Euler equations. During the experiments, the ground profile and the different ground surface impedances were determined. Meteorological measurements were also performed to deduce mean vertical profiles of wind and temperature. An alarm pistol was used as a source of impulse signals and three microphones were located along a propagation path. The various measured parameters are introduced as input data into the numerical solver. In the frequency domain, the numerical results are in good accordance with the measurements up to a frequency of 2 kHz. In the time domain, except a time shift, the predicted waveforms match the measured waveforms with a close agreement.

  19. Numerical study of rotating detonation engine with an array of injection holes

    NASA Astrophysics Data System (ADS)

    Yao, S.; Han, X.; Liu, Y.; Wang, J.

    2017-05-01

    This paper aims to adopt the method of injection via an array of holes in three-dimensional numerical simulations of a rotating detonation engine (RDE). The calculation is based on the Euler equations coupled with a one-step Arrhenius chemistry model. A pre-mixed stoichiometric hydrogen-air mixture is used. The present study uses a more practical fuel injection method in RDE simulations, injection via an array of holes, which is different from the previous conventional simulations where a relatively simple full injection method is usually adopted. The computational results capture some important experimental observations and a transient period after initiation. These phenomena are usually absent in conventional RDE simulations due to the use of an idealistic injection approximation. The results are compared with those obtained from other numerical studies and experiments with RDEs.

  20. Effect of Mach number on the efficiency of microwave energy deposition in supersonic flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lashkov, V. A., E-mail: valerial180150@gmail.com; Karpenko, A. G., E-mail: aspera.2003.ru@mail.ru; Khoronzhuk, R. S.

    The article is devoted to experimental and numerical studies of the efficiency of microwave energy deposition into a supersonic flow around the blunt cylinder at different Mach numbers. Identical conditions for energy deposition have been kept in the experiments, thus allowing to evaluate the pure effect of varying Mach number on the pressure drop. Euler equations are solved numerically to model the corresponding unsteady flow compressed gas. The results of numerical simulations are compared to the data obtained from the physical experiments. It is shown that the momentum, which the body receives during interaction of the gas domain modified bymore » microwave discharge with a shock layer before the body, increases almost linearly with rising of Mach number and the efficiency of energy deposition also rises.« less

  1. Flow transition with 2-D roughness elements in a 3-D channel

    NASA Technical Reports Server (NTRS)

    Liu, Zhining; Liu, Chaoquin; Mccormick, Stephen F.

    1993-01-01

    We develop a new numerical approach to study the spatially evolving instability of the streamwise dominant flow in the presence of roughness elements. The difficulty in handling the flow over the boundary surface with general geometry is removed by using a new conservative form of the governing equations and an analytical mapping. The numerical scheme uses second-order backward Euler in time, fourth-order central differences in all three spatial directions, and boundary-fitted staggered grids. A three-dimensional channel with multiple two-dimensional-type roughness elements is employed as the test case. Fourier analysis is used to decompose different Fourier modes of the disturbance. The results show that surface roughness leads to transition at lower Reynolds number than for smooth channels.

  2. Direct numerical simulation of axisymmetric turbulence

    NASA Astrophysics Data System (ADS)

    Qu, Bo; Bos, Wouter J. T.; Naso, Aurore

    2017-09-01

    The dynamics of decaying, strictly axisymmetric, incompressible turbulence is investigated using direct numerical simulations. It is found that the angular momentum is a robust invariant of the system. It is further shown that long-lived coherent structures are generated by the flow. These structures can be associated with stationary solutions of the Euler equations. The structures obey relations in agreement with predictions from selective decay principles, compatible with the decay laws of the system. Two different types of decay scenarios are highlighted. The first case results in a quasi-two-dimensional flow with a dynamical behavior in the poloidal plane similar to freely decaying two-dimensional turbulence. In a second regime, the long-time dynamics is dominated by a single three-dimensional mode.

  3. Extended bounds limiter for high-order finite-volume schemes on unstructured meshes

    NASA Astrophysics Data System (ADS)

    Tsoutsanis, Panagiotis

    2018-06-01

    This paper explores the impact of the definition of the bounds of the limiter proposed by Michalak and Ollivier-Gooch in [56] (2009), for higher-order Monotone-Upstream Central Scheme for Conservation Laws (MUSCL) numerical schemes on unstructured meshes in the finite-volume (FV) framework. A new modification of the limiter is proposed where the bounds are redefined by utilising all the spatial information provided by all the elements in the reconstruction stencil. Numerical results obtained on smooth and discontinuous test problems of the Euler equations on unstructured meshes, highlight that the newly proposed extended bounds limiter exhibits superior performance in terms of accuracy and mesh sensitivity compared to the cell-based or vertex-based bounds implementations.

  4. On performing of interference technique based on self-adjusting Zernike filters (SA-AVT method) to investigate flows and validate 3D flow numerical simulations

    NASA Astrophysics Data System (ADS)

    Pavlov, Al. A.; Shevchenko, A. M.; Khotyanovsky, D. V.; Pavlov, A. A.; Shmakov, A. S.; Golubev, M. P.

    2017-10-01

    We present a method for and results of determination of the field of integral density in the structure of flow corresponding to the Mach interaction of shock waves at Mach number M = 3. The optical diagnostics of flow was performed using an interference technique based on self-adjusting Zernike filters (SA-AVT method). Numerical simulations were carried out using the CFS3D program package for solving the Euler and Navier-Stokes equations. Quantitative data on the distribution of integral density on the path of probing radiation in one direction of 3D flow transillumination in the region of Mach interaction of shock waves were obtained for the first time.

  5. The Legacy of Leonhard Euler--A Tricentennial Tribute

    ERIC Educational Resources Information Center

    Debnath, Lokenath

    2009-01-01

    This tricentennial tribute commemorates Euler's major contributions to mathematical and physical sciences. A brief biographical sketch is presented with his major contributions to certain selected areas of number theory, differential and integral calculus, differential equations, solid and fluid mechanics, topology and graph theory, infinite…

  6. Three dimensional steady subsonic Euler flows in bounded nozzles

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Xie, Chunjing

    The existence and uniqueness of three dimensional steady subsonic Euler flows in rectangular nozzles were obtained when prescribing normal component of momentum at both the entrance and exit. If, in addition, the normal component of the voriticity and the variation of Bernoulli's function at the entrance are both zero, then there exists a unique subsonic potential flow when the magnitude of the normal component of the momentum is less than a critical number. As the magnitude of the normal component of the momentum approaches the critical number, the associated flows converge to a subsonic-sonic flow. Furthermore, when the normal component of vorticity and the variation of Bernoulli function are both small, the existence and uniqueness of subsonic Euler flows with non-zero vorticity are established. The proof of these results is based on a new formulation for the Euler system, a priori estimate for nonlinear elliptic equations with nonlinear boundary conditions, detailed study for a linear div-curl system, and delicate estimate for the transport equations.

  7. A Semi-implicit Treatment of Porous Media in Steady-State CFD.

    PubMed

    Domaingo, Andreas; Langmayr, Daniel; Somogyi, Bence; Almbauer, Raimund

    There are many situations in computational fluid dynamics which require the definition of source terms in the Navier-Stokes equations. These source terms not only allow to model the physics of interest but also have a strong impact on the reliability, stability, and convergence of the numerics involved. Therefore, sophisticated numerical approaches exist for the description of such source terms. In this paper, we focus on the source terms present in the Navier-Stokes or Euler equations due to porous media-in particular the Darcy-Forchheimer equation. We introduce a method for the numerical treatment of the source term which is independent of the spatial discretization and based on linearization. In this description, the source term is treated in a fully implicit way whereas the other flow variables can be computed in an implicit or explicit manner. This leads to a more robust description in comparison with a fully explicit approach. The method is well suited to be combined with coarse-grid-CFD on Cartesian grids, which makes it especially favorable for accelerated solution of coupled 1D-3D problems. To demonstrate the applicability and robustness of the proposed method, a proof-of-concept example in 1D, as well as more complex examples in 2D and 3D, is presented.

  8. Robust and Accurate Shock Capturing Method for High-Order Discontinuous Galerkin Methods

    NASA Technical Reports Server (NTRS)

    Atkins, Harold L.; Pampell, Alyssa

    2011-01-01

    A simple yet robust and accurate approach for capturing shock waves using a high-order discontinuous Galerkin (DG) method is presented. The method uses the physical viscous terms of the Navier-Stokes equations as suggested by others; however, the proposed formulation of the numerical viscosity is continuous and compact by construction, and does not require the solution of an auxiliary diffusion equation. This work also presents two analyses that guided the formulation of the numerical viscosity and certain aspects of the DG implementation. A local eigenvalue analysis of the DG discretization applied to a shock containing element is used to evaluate the robustness of several Riemann flux functions, and to evaluate algorithm choices that exist within the underlying DG discretization. A second analysis examines exact solutions to the DG discretization in a shock containing element, and identifies a "model" instability that will inevitably arise when solving the Euler equations using the DG method. This analysis identifies the minimum viscosity required for stability. The shock capturing method is demonstrated for high-speed flow over an inviscid cylinder and for an unsteady disturbance in a hypersonic boundary layer. Numerical tests are presented that evaluate several aspects of the shock detection terms. The sensitivity of the results to model parameters is examined with grid and order refinement studies.

  9. A note on blowup of smooth solutions for relativistic Euler equations with infinite initial energy

    NASA Astrophysics Data System (ADS)

    Dong, Jianwei; Zhu, Junhui

    2018-04-01

    We study the singularity formation of smooth solutions of the relativistic Euler equations in (3+1)-dimensional spacetime for infinite initial energy. We prove that the smooth solution blows up in finite time provided that the radial component of the initial generalized momentum is sufficiently large without the conditions M(0)>0 and s2<1/3c2 , which were two key constraints stated in Pan and Smoller (Commun Math Phys 262:729-755, 2006).

  10. A Survey of the Isentropic Euler Vortex Problem Using High-Order Methods

    NASA Technical Reports Server (NTRS)

    Spiegel, Seth C.; Huynh, H. T.; DeBonis, James R.

    2015-01-01

    The flux reconstruction (FR) method offers a simple, efficient, and easy to implement method, and it has been shown to equate to a differential approach to discontinuous Galerkin (DG) methods. The FR method is also accurate to an arbitrary order and the isentropic Euler vortex problem is used here to empirically verify this claim. This problem is widely used in computational fluid dynamics (CFD) to verify the accuracy of a given numerical method due to its simplicity and known exact solution at any given time. While verifying our FR solver, multiple obstacles emerged that prevented us from achieving the expected order of accuracy over short and long amounts of simulation time. It was found that these complications stemmed from a few overlooked details in the original problem definition combined with the FR and DG methods achieving high-accuracy with minimal dissipation. This paper is intended to consolidate the many versions of the vortex problem found in literature and to highlight some of the consequences if these overlooked details remain neglected.

  11. An implicit time-marching method for the three-dimensional Navier-Stokes equations of contravariant velocity components

    NASA Astrophysics Data System (ADS)

    Daiguji, Hisaaki; Yamamoto, Satoru

    1988-12-01

    The implicit time-marching finite-difference method for solving the three-dimensional compressible Euler equations developed by the authors is extended to the Navier-Stokes equations. The distinctive features of this method are to make use of momentum equations of contravariant velocities instead of physical boundaries, and to be able to treat the periodic boundary condition for the three-dimensional impeller flow easily. These equations can be solved by using the same techniques as the Euler equations, such as the delta-form approximate factorization, diagonalization and upstreaming. In addition to them, a simplified total variation diminishing scheme by the authors is applied to the present method in order to capture strong shock waves clearly. Finally, the computed results of the three-dimensional flow through a transonic compressor rotor with tip clearance are shown.

  12. Program manual for HILTOP, a heliocentric interplanetary low thrust trajectory optimization program. Part 1: User's guide

    NASA Technical Reports Server (NTRS)

    Mann, F. I.; Horsewood, J. L.

    1974-01-01

    A performance-analysis computer program, that was developed explicitly to generate optimum electric propulsion trajectory data for missions of interest in the exploration of the solar system is presented. The program was primarily designed to evaluate the performance capabilities of electric propulsion systems, and in the simulation of a wide variety of interplanetary missions. A numerical integration of the two-body, three-dimensional equations of motion and the Euler-Lagrange equations was used in the program. Transversality conditions which permit the rapid generation of converged maximum-payload trajectory data, and the optimization of numerous other performance indices for which no transversality conditions exist are included. The ability to simulate constrained optimum solutions, including trajectories having specified propulsion time and constant thrust cone angle, is also in the program. The program was designed to handle multiple-target missions with various types of encounters, such as rendezvous, stopover, orbital capture, and flyby. Performance requirements for a variety of launch vehicles can be determined.

  13. Long-time stability effects of quadrature and artificial viscosity on nodal discontinuous Galerkin methods for gas dynamics

    NASA Astrophysics Data System (ADS)

    Durant, Bradford; Hackl, Jason; Balachandar, Sivaramakrishnan

    2017-11-01

    Nodal discontinuous Galerkin schemes present an attractive approach to robust high-order solution of the equations of fluid mechanics, but remain accompanied by subtle challenges in their consistent stabilization. The effect of quadrature choices (full mass matrix vs spectral elements), over-integration to manage aliasing errors, and explicit artificial viscosity on the numerical solution of a steady homentropic vortex are assessed over a wide range of resolutions and polynomial orders using quadrilateral elements. In both stagnant and advected vortices in periodic and non-periodic domains the need arises for explicit stabilization beyond the numerical surface fluxes of discontinuous Galerkin spectral elements. Artificial viscosity via the entropy viscosity method is assessed as a stabilizing mechanism. It is shown that the regularity of the artificial viscosity field is essential to its use for long-time stabilization of small-scale features in nodal discontinuous Galerkin solutions of the Euler equations of gas dynamics. Supported by the Department of Energy Predictive Science Academic Alliance Program Contract DE-NA0002378.

  14. A second-order shock-adaptive Godunov scheme based on the generalized Lagrangian formulation

    NASA Astrophysics Data System (ADS)

    Lepage, Claude

    Application of the Godunov scheme to the Euler equations of gas dynamics, based on the Eulerian formulation of flow, smears discontinuities (especially sliplines) over several computational cells, while the accuracy in the smooth flow regions is of the order of a function of the cell width. Based on the generalized Lagrangian formulation (GLF), the Godunov scheme yields far superior results. By the use of coordinate streamlines in the GLF, the slipline (itself a streamline) is resolved crisply. Infinite shock resolution is achieved through the splitting of shock cells, while the accuracy in the smooth flow regions is improved using a nonconservative formulation of the governing equations coupled to a second order extension of the Godunov scheme. Furthermore, GLF requires no grid generation for boundary value problems and the simple structure of the solution to the Riemann problem in the GLF is exploited in the numerical implementation of the shock adaptive scheme. Numerical experiments reveal high efficiency and unprecedented resolution of shock and slipline discontinuities.

  15. Time-Accurate, Unstructured-Mesh Navier-Stokes Computations with the Space-Time CESE Method

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan

    2006-01-01

    Application of the newly emerged space-time conservation element solution element (CESE) method to compressible Navier-Stokes equations is studied. In contrast to Euler equations solvers, several issues such as boundary conditions, numerical dissipation, and grid stiffness warrant systematic investigations and validations. Non-reflecting boundary conditions applied at the truncated boundary are also investigated from the stand point of acoustic wave propagation. Validations of the numerical solutions are performed by comparing with exact solutions for steady-state as well as time-accurate viscous flow problems. The test cases cover a broad speed regime for problems ranging from acoustic wave propagation to 3D hypersonic configurations. Model problems pertinent to hypersonic configurations demonstrate the effectiveness of the CESE method in treating flows with shocks, unsteady waves, and separations. Good agreement with exact solutions suggests that the space-time CESE method provides a viable alternative for time-accurate Navier-Stokes calculations of a broad range of problems.

  16. An approach to the development of numerical algorithms for first order linear hyperbolic systems in multiple space dimensions: The constant coefficient case

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    1995-01-01

    Two methods for developing high order single step explicit algorithms on symmetric stencils with data on only one time level are presented. Examples are given for the convection and linearized Euler equations with up to the eighth order accuracy in both space and time in one space dimension, and up to the sixth in two space dimensions. The method of characteristics is generalized to nondiagonalizable hyperbolic systems by using exact local polynominal solutions of the system, and the resulting exact propagator methods automatically incorporate the correct multidimensional wave propagation dynamics. Multivariate Taylor or Cauchy-Kowaleskaya expansions are also used to develop algorithms. Both of these methods can be applied to obtain algorithms of arbitrarily high order for hyperbolic systems in multiple space dimensions. Cross derivatives are included in the local approximations used to develop the algorithms in this paper in order to obtain high order accuracy, and improved isotropy and stability. Efficiency in meeting global error bounds is an important criterion for evaluating algorithms, and the higher order algorithms are shown to be up to several orders of magnitude more efficient even though they are more complex. Stable high order boundary conditions for the linearized Euler equations are developed in one space dimension, and demonstrated in two space dimensions.

  17. A Reconstructed Discontinuous Galerkin Method for the Compressible Euler Equations on Arbitrary Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong Luo; Luquing Luo; Robert Nourgaliev

    2009-06-01

    A reconstruction-based discontinuous Galerkin (DG) method is presented for the solution of the compressible Euler equations on arbitrary grids. By taking advantage of handily available and yet invaluable information, namely the derivatives, in the context of the discontinuous Galerkin methods, a solution polynomial of one degree higher is reconstructed using a least-squares method. The stencils used in the reconstruction involve only the van Neumann neighborhood (face-neighboring cells) and are compact and consistent with the underlying DG method. The resulting DG method can be regarded as an improvement of a recovery-based DG method in the sense that it shares the samemore » nice features as the recovery-based DG method, such as high accuracy and efficiency, and yet overcomes some of its shortcomings such as a lack of flexibility, compactness, and robustness. The developed DG method is used to compute a variety of flow problems on arbitrary meshes to demonstrate the accuracy and efficiency of the method. The numerical results indicate that this reconstructed DG method is able to obtain a third-order accurate solution at a slightly higher cost than its second-order DG method and provide an increase in performance over the third order DG method in terms of computing time and storage requirement.« less

  18. Second order symmetry-preserving conservative Lagrangian scheme for compressible Euler equations in two-dimensional cylindrical coordinates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Juan, E-mail: cheng_juan@iapcm.ac.cn; Shu, Chi-Wang, E-mail: shu@dam.brown.edu

    In applications such as astrophysics and inertial confinement fusion, there are many three-dimensional cylindrical-symmetric multi-material problems which are usually simulated by Lagrangian schemes in the two-dimensional cylindrical coordinates. For this type of simulation, a critical issue for the schemes is to keep spherical symmetry in the cylindrical coordinate system if the original physical problem has this symmetry. In the past decades, several Lagrangian schemes with such symmetry property have been developed, but all of them are only first order accurate. In this paper, we develop a second order cell-centered Lagrangian scheme for solving compressible Euler equations in cylindrical coordinates, basedmore » on the control volume discretizations, which is designed to have uniformly second order accuracy and capability to preserve one-dimensional spherical symmetry in a two-dimensional cylindrical geometry when computed on an equal-angle-zoned initial grid. The scheme maintains several good properties such as conservation for mass, momentum and total energy, and the geometric conservation law. Several two-dimensional numerical examples in cylindrical coordinates are presented to demonstrate the good performance of the scheme in terms of accuracy, symmetry, non-oscillation and robustness. The advantage of higher order accuracy is demonstrated in these examples.« less

  19. Efficient construction of unified continuous and discontinuous Galerkin formulations for the 3D Euler equations

    NASA Astrophysics Data System (ADS)

    Abdi, Daniel S.; Giraldo, Francis X.

    2016-09-01

    A unified approach for the numerical solution of the 3D hyperbolic Euler equations using high order methods, namely continuous Galerkin (CG) and discontinuous Galerkin (DG) methods, is presented. First, we examine how classical CG that uses a global storage scheme can be constructed within the DG framework using constraint imposition techniques commonly used in the finite element literature. Then, we implement and test a simplified version in the Non-hydrostatic Unified Model of the Atmosphere (NUMA) for the case of explicit time integration and a diagonal mass matrix. Constructing CG within the DG framework allows CG to benefit from the desirable properties of DG such as, easier hp-refinement, better stability etc. Moreover, this representation allows for regional mixing of CG and DG depending on the flow regime in an area. The different flavors of CG and DG in the unified implementation are then tested for accuracy and performance using a suite of benchmark problems representative of cloud-resolving scale, meso-scale and global-scale atmospheric dynamics. The value of our unified approach is that we are able to show how to carry both CG and DG methods within the same code and also offer a simple recipe for modifying an existing CG code to DG and vice versa.

  20. A Robust and Efficient Method for Steady State Patterns in Reaction-Diffusion Systems

    PubMed Central

    Lo, Wing-Cheong; Chen, Long; Wang, Ming; Nie, Qing

    2012-01-01

    An inhomogeneous steady state pattern of nonlinear reaction-diffusion equations with no-flux boundary conditions is usually computed by solving the corresponding time-dependent reaction-diffusion equations using temporal schemes. Nonlinear solvers (e.g., Newton’s method) take less CPU time in direct computation for the steady state; however, their convergence is sensitive to the initial guess, often leading to divergence or convergence to spatially homogeneous solution. Systematically numerical exploration of spatial patterns of reaction-diffusion equations under different parameter regimes requires that the numerical method be efficient and robust to initial condition or initial guess, with better likelihood of convergence to an inhomogeneous pattern. Here, a new approach that combines the advantages of temporal schemes in robustness and Newton’s method in fast convergence in solving steady states of reaction-diffusion equations is proposed. In particular, an adaptive implicit Euler with inexact solver (AIIE) method is found to be much more efficient than temporal schemes and more robust in convergence than typical nonlinear solvers (e.g., Newton’s method) in finding the inhomogeneous pattern. Application of this new approach to two reaction-diffusion equations in one, two, and three spatial dimensions, along with direct comparisons to several other existing methods, demonstrates that AIIE is a more desirable method for searching inhomogeneous spatial patterns of reaction-diffusion equations in a large parameter space. PMID:22773849

  1. The solution of non-linear hyperbolic equation systems by the finite element method

    NASA Technical Reports Server (NTRS)

    Loehner, R.; Morgan, K.; Zienkiewicz, O. C.

    1984-01-01

    A finite-element method for the solution of nonlinear hyperbolic systems of equations, such as those encountered in non-self-adjoint problems of transient phenomena in convection-diffusion or in the mixed representation of wave problems, is developed and demonstrated. The problem is rewritten in moving coordinates and reinterpolated to the original mesh by a Taylor expansion prior to a standard Galerkin spatial discretization, and it is shown that this procedure is equivalent to the time-discretization approach of Donea (1984). Numerical results for sample problems are presented graphically, including such shallow-water problems as the breaking of a dam, the shoaling of a wave, and the outflow of a river; compressible flows such as the isothermal flow in a nozzle and the Riemann shock-tube problem; and the two-dimensional scalar-advection, nonlinear-shallow-water, and Euler equations.

  2. A fast efficient implicit scheme for the gasdynamic equations using a matrix reduction technique

    NASA Technical Reports Server (NTRS)

    Barth, T. J.; Steger, J. L.

    1985-01-01

    An efficient implicit finite-difference algorithm for the gasdynamic equations utilizing matrix reduction techniques is presented. A significant reduction in arithmetic operations is achieved without loss of the stability characteristics generality found in the Beam and Warming approximate factorization algorithm. Steady-state solutions to the conservative Euler equations in generalized coordinates are obtained for transonic flows and used to show that the method offers computational advantages over the conventional Beam and Warming scheme. Existing Beam and Warming codes can be retrofit with minimal effort. The theoretical extension of the matrix reduction technique to the full Navier-Stokes equations in Cartesian coordinates is presented in detail. Linear stability, using a Fourier stability analysis, is demonstrated and discussed for the one-dimensional Euler equations.

  3. Numerical Modelling and Prediction of Erosion Induced by Hydrodynamic Cavitation

    NASA Astrophysics Data System (ADS)

    Peters, A.; Lantermann, U.; el Moctar, O.

    2015-12-01

    The present work aims to predict cavitation erosion using a numerical flow solver together with a new developed erosion model. The erosion model is based on the hypothesis that collapses of single cavitation bubbles near solid boundaries form high velocity microjets, which cause sonic impacts with high pressure amplitudes damaging the surface. The erosion model uses information from a numerical Euler-Euler flow simulation to predict erosion sensitive areas and assess the erosion aggressiveness of the flow. The obtained numerical results were compared to experimental results from tests of an axisymmetric nozzle.

  4. A Ritz approach for the static analysis of planar pantographic structures modeled with nonlinear Euler-Bernoulli beams

    NASA Astrophysics Data System (ADS)

    Andreaus, Ugo; Spagnuolo, Mario; Lekszycki, Tomasz; Eugster, Simon R.

    2018-04-01

    We present a finite element discrete model for pantographic lattices, based on a continuous Euler-Bernoulli beam for modeling the fibers composing the pantographic sheet. This model takes into account large displacements, rotations and deformations; the Euler-Bernoulli beam is described by using nonlinear interpolation functions, a Green-Lagrange strain for elongation and a curvature depending on elongation. On the basis of the introduced discrete model of a pantographic lattice, we perform some numerical simulations. We then compare the obtained results to an experimental BIAS extension test on a pantograph printed with polyamide PA2200. The pantographic structures involved in the numerical as well as in the experimental investigations are not proper fabrics: They are composed by just a few fibers for theoretically allowing the use of the Euler-Bernoulli beam theory in the description of the fibers. We compare the experiments to numerical simulations in which we allow the fibers to elastically slide one with respect to the other in correspondence of the interconnecting pivot. We present as result a very good agreement between the numerical simulation, based on the introduced model, and the experimental measures.

  5. Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations

    NASA Astrophysics Data System (ADS)

    Loseille, A.; Dervieux, A.; Alauzet, F.

    2010-04-01

    This paper studies the coupling between anisotropic mesh adaptation and goal-oriented error estimate. The former is very well suited to the control of the interpolation error. It is generally interpreted as a local geometric error estimate. On the contrary, the latter is preferred when studying approximation errors for PDEs. It generally involves non local error contributions. Consequently, a full and strong coupling between both is hard to achieve due to this apparent incompatibility. This paper shows how to achieve this coupling in three steps. First, a new a priori error estimate is proved in a formal framework adapted to goal-oriented mesh adaptation for output functionals. This estimate is based on a careful analysis of the contributions of the implicit error and of the interpolation error. Second, the error estimate is applied to the set of steady compressible Euler equations which are solved by a stabilized Galerkin finite element discretization. A goal-oriented error estimation is derived. It involves the interpolation error of the Euler fluxes weighted by the gradient of the adjoint state associated with the observed functional. Third, rewritten in the continuous mesh framework, the previous estimate is minimized on the set of continuous meshes thanks to a calculus of variations. The optimal continuous mesh is then derived analytically. Thus, it can be used as a metric tensor field to drive the mesh adaptation. From a numerical point of view, this method is completely automatic, intrinsically anisotropic, and does not depend on any a priori choice of variables to perform the adaptation. 3D examples of steady flows around supersonic and transsonic jets are presented to validate the current approach and to demonstrate its efficiency.

  6. Formulation of boundary conditions for the multigrid acceleration of the Euler and Navier Stokes equations

    NASA Technical Reports Server (NTRS)

    Jentink, Thomas Neil; Usab, William J., Jr.

    1990-01-01

    An explicit, Multigrid algorithm was written to solve the Euler and Navier-Stokes equations with special consideration given to the coarse mesh boundary conditions. These are formulated in a manner consistent with the interior solution, utilizing forcing terms to prevent coarse-mesh truncation error from affecting the fine-mesh solution. A 4-Stage Hybrid Runge-Kutta Scheme is used to advance the solution in time, and Multigrid convergence is further enhanced by using local time-stepping and implicit residual smoothing. Details of the algorithm are presented along with a description of Jameson's standard Multigrid method and a new approach to formulating the Multigrid equations.

  7. Testing the equivalence principle on cosmological scales

    NASA Astrophysics Data System (ADS)

    Bonvin, Camille; Fleury, Pierre

    2018-05-01

    The equivalence principle, that is one of the main pillars of general relativity, is very well tested in the Solar system; however, its validity is more uncertain on cosmological scales, or when dark matter is concerned. This article shows that relativistic effects in the large-scale structure can be used to directly test whether dark matter satisfies Euler's equation, i.e. whether its free fall is characterised by geodesic motion, just like baryons and light. After having proposed a general parametrisation for deviations from Euler's equation, we perform Fisher-matrix forecasts for future surveys like DESI and the SKA, and show that such deviations can be constrained with a precision of order 10%. Deviations from Euler's equation cannot be tested directly with standard methods like redshift-space distortions and gravitational lensing, since these observables are not sensitive to the time component of the metric. Our analysis shows therefore that relativistic effects bring new and complementary constraints to alternative theories of gravity.

  8. On the self-similar solution to the Euler equations for an incompressible fluid in three dimensions

    NASA Astrophysics Data System (ADS)

    Pomeau, Yves

    2018-03-01

    The equations for a self-similar solution to an inviscid incompressible fluid are mapped into an integral equation that hopefully can be solved by iteration. It is argued that the exponents of the similarity are ruled by Kelvin's theorem of conservation of circulation. The end result is an iteration with a nonlinear term entering a kernel given by a 3D integral for a swirling flow, likely within reach of present-day computational power. Because of the slow decay of the similarity solution at large distances, its kinetic energy diverges, and some mathematical results excluding non-trivial solutions of the Euler equations in the self-similar case do not apply. xml:lang="fr"

  9. Adjoint-Based Methodology for Time-Dependent Optimization

    NASA Technical Reports Server (NTRS)

    Yamaleev, N. K.; Diskin, B.; Nielsen, E. J.

    2008-01-01

    This paper presents a discrete adjoint method for a broad class of time-dependent optimization problems. The time-dependent adjoint equations are derived in terms of the discrete residual of an arbitrary finite volume scheme which approximates unsteady conservation law equations. Although only the 2-D unsteady Euler equations are considered in the present analysis, this time-dependent adjoint method is applicable to the 3-D unsteady Reynolds-averaged Navier-Stokes equations with minor modifications. The discrete adjoint operators involving the derivatives of the discrete residual and the cost functional with respect to the flow variables are computed using a complex-variable approach, which provides discrete consistency and drastically reduces the implementation and debugging cycle. The implementation of the time-dependent adjoint method is validated by comparing the sensitivity derivative with that obtained by forward mode differentiation. Our numerical results show that O(10) optimization iterations of the steepest descent method are needed to reduce the objective functional by 3-6 orders of magnitude for test problems considered.

  10. A fully Sinc-Galerkin method for Euler-Bernoulli beam models

    NASA Technical Reports Server (NTRS)

    Smith, R. C.; Bowers, K. L.; Lund, J.

    1990-01-01

    A fully Sinc-Galerkin method in both space and time is presented for fourth-order time-dependent partial differential equations with fixed and cantilever boundary conditions. The Sinc discretizations for the second-order temporal problem and the fourth-order spatial problems are presented. Alternate formulations for variable parameter fourth-order problems are given which prove to be especially useful when applying the forward techniques to parameter recovery problems. The discrete system which corresponds to the time-dependent partial differential equations of interest are then formulated. Computational issues are discussed and a robust and efficient algorithm for solving the resulting matrix system is outlined. Numerical results which highlight the method are given for problems with both analytic and singular solutions as well as fixed and cantilever boundary conditions.

  11. Earth-moon system: Dynamics and parameter estimation

    NASA Technical Reports Server (NTRS)

    Breedlove, W. J., Jr.

    1975-01-01

    A theoretical development of the equations of motion governing the earth-moon system is presented. The earth and moon were treated as finite rigid bodies and a mutual potential was utilized. The sun and remaining planets were treated as particles. Relativistic, non-rigid, and dissipative effects were not included. The translational and rotational motion of the earth and moon were derived in a fully coupled set of equations. Euler parameters were used to model the rotational motions. The mathematical model is intended for use with data analysis software to estimate physical parameters of the earth-moon system using primarily LURE type data. Two program listings are included. Program ANEAMO computes the translational/rotational motion of the earth and moon from analytical solutions. Program RIGEM numerically integrates the fully coupled motions as described above.

  12. Effect of Prestresses on the Dispersion of Quasi-Lamb Waves in the System Consisting of an Ideal Liquid Layer and a Compressible Elastic Layer

    NASA Astrophysics Data System (ADS)

    Bagno, A. M.

    2017-03-01

    The propagation of quasi-Lamb waves in a prestrained compressible elastic layer interacting with a layer of an ideal compressible fluid is studied. The three-dimensional equations of linearized elasticity and the assumption of finite strains for the elastic layer and the three-dimensional linearized Euler equations for the fluid are used. The dispersion curves for the quasi-Lamb modes are plotted over a wide frequency range. The effect of prestresses and the thickness of the elastic and liquid layers on the frequency spectrum of normal quasi-Lamb waves is analyzed. The localization properties of the lower quasi-Lamb modes in the elastic-fluid waveguides are studied. The numerical results are presented in the form of graphs and analyzed

  13. Three-Dimensional Incompressible Navier-Stokes Flow Computations about Complete Configurations Using a Multiblock Unstructured Grid Approach

    NASA Technical Reports Server (NTRS)

    Sheng, Chunhua; Hyams, Daniel G.; Sreenivas, Kidambi; Gaither, J. Adam; Marcum, David L.; Whitfield, David L.

    2000-01-01

    A multiblock unstructured grid approach is presented for solving three-dimensional incompressible inviscid and viscous turbulent flows about complete configurations. The artificial compressibility form of the governing equations is solved by a node-based, finite volume implicit scheme which uses a backward Euler time discretization. Point Gauss-Seidel relaxations are used to solve the linear system of equations at each time step. This work employs a multiblock strategy to the solution procedure, which greatly improves the efficiency of the algorithm by significantly reducing the memory requirements by a factor of 5 over the single-grid algorithm while maintaining a similar convergence behavior. The numerical accuracy of solutions is assessed by comparing with the experimental data for a submarine with stem appendages and a high-lift configuration.

  14. Baseline Experiments on Coulomb Damping due to Rotational Slip

    DTIC Science & Technology

    1992-12-01

    by Griffe121 . As expected Equation (2-39) matches the result given by Griffel . 2.2.2. Euler-Bernoulli Beam versus Timeshenko Beam. Omitted from Euler...McGraw-Hill, Inc., 1983. 20. Clark, S. K., Dynamics of Continuous Elements, New Jersey, Prentice-Hall, Inc., 1972. 21. Griffel , W., Beam Formulas

  15. Optimal positions and parameters of translational and rotational mass dampers in beams subjected to random excitation

    NASA Astrophysics Data System (ADS)

    Łatas, Waldemar

    2018-01-01

    The problem of vibrations of the beam with the attached system of translational and rotational dynamic mass dampers subjected to random excitations with peaked power spectral densities, is presented in the hereby paper. The Euler-Bernoulli beam model is applied, while for solving the equation of motion the Galerkin method and the Laplace time transform are used. The obtained transfer functions allow to determine power spectral densities of the beam deflection and other dependent variables. Numerical examples present simple optimization problems of mass dampers parameters for local and global objective functions.

  16. On the prediction of far field computational aeroacoustics of advanced propellers

    NASA Technical Reports Server (NTRS)

    Jaeger, Stephen M.; Korkan, Kenneth D.

    1990-01-01

    A numerical method for determining the acoustic far field generated by a high-speed subsonic aircraft propeller was developed. The approach used in this method was to generate the entire three-dimensional pressure field about the propeller (using an Euler flowfield solver) and then to apply a solution of the wave equation on a cylindrical surface enveloping the propeller. The method is applied to generate the three-dimensional flowfield between two blades of an advanced propeller. The results are compared with experimental data obtained in a wind-tunnel test at a Mach number of 0.6.

  17. Convergence acceleration of the Proteus computer code with multigrid methods

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.; Ibraheem, S. O.

    1992-01-01

    Presented here is the first part of a study to implement convergence acceleration techniques based on the multigrid concept in the Proteus computer code. A review is given of previous studies on the implementation of multigrid methods in computer codes for compressible flow analysis. Also presented is a detailed stability analysis of upwind and central-difference based numerical schemes for solving the Euler and Navier-Stokes equations. Results are given of a convergence study of the Proteus code on computational grids of different sizes. The results presented here form the foundation for the implementation of multigrid methods in the Proteus code.

  18. Algorithm For Hypersonic Flow In Chemical Equilibrium

    NASA Technical Reports Server (NTRS)

    Palmer, Grant

    1989-01-01

    Implicit, finite-difference, shock-capturing algorithm calculates inviscid, hypersonic flows in chemical equilibrium. Implicit formulation chosen because overcomes limitation on mathematical stability encountered in explicit formulations. For dynamical portion of problem, Euler equations written in conservation-law form in Cartesian coordinate system for two-dimensional or axisymmetric flow. For chemical portion of problem, equilibrium state of gas at each point in computational grid determined by minimizing local Gibbs free energy, subject to local conservation of molecules, atoms, ions, and total enthalpy. Major advantage: resulting algorithm naturally stable and captures strong shocks without help of artificial-dissipation terms to damp out spurious numerical oscillations.

  19. Fractal attractors and singular invariant measures in two-sector growth models with random factor shares

    NASA Astrophysics Data System (ADS)

    La Torre, Davide; Marsiglio, Simone; Mendivil, Franklin; Privileggi, Fabio

    2018-05-01

    We analyze a multi-sector growth model subject to random shocks affecting the two sector-specific production functions twofold: the evolution of both productivity and factor shares is the result of such exogenous shocks. We determine the optimal dynamics via Euler-Lagrange equations, and show how these dynamics can be described in terms of an iterated function system with probability. We also provide conditions that imply the singularity of the invariant measure associated with the fractal attractor. Numerical examples show how specific parameter configurations might generate distorted copies of the Barnsley's fern attractor.

  20. Radiation of sound from unflanged cylindrical ducts

    NASA Technical Reports Server (NTRS)

    Hartharan, S. L.; Bayliss, A.

    1983-01-01

    Calculations of sound radiated from unflanged cylindrical ducts are presented. The numerical simulation models the problem of an aero-engine inlet. The time dependent linearized Euler equations are solved from a state of rest until a harmonic solution is attained. A fourth order accurate finite difference scheme is used and solutions are obtained from a fully vectorized Cyber-203 computer program. Cases of both plane waves and spin modes are treated. Spin modes model the sound generated by a turbofan engine. Boundary conditions for both plane waves and spin modes are treated. Solutions obtained are compared with experiments conducted at NASA Langley Research Center.

  1. Construction of stable explicit finite-difference schemes for Schroedinger type differential equations

    NASA Technical Reports Server (NTRS)

    Mickens, Ronald E.

    1989-01-01

    A family of conditionally stable, forward Euler finite difference equations can be constructed for the simplest equation of Schroedinger type, namely u sub t - iu sub xx. Generalization of this result to physically realistic Schroedinger type equations is presented.

  2. Variational Methods in Sensitivity Analysis and Optimization for Aerodynamic Applications

    NASA Technical Reports Server (NTRS)

    Ibrahim, A. H.; Hou, G. J.-W.; Tiwari, S. N. (Principal Investigator)

    1996-01-01

    Variational methods (VM) sensitivity analysis, which is the continuous alternative to the discrete sensitivity analysis, is employed to derive the costate (adjoint) equations, the transversality conditions, and the functional sensitivity derivatives. In the derivation of the sensitivity equations, the variational methods use the generalized calculus of variations, in which the variable boundary is considered as the design function. The converged solution of the state equations together with the converged solution of the costate equations are integrated along the domain boundary to uniquely determine the functional sensitivity derivatives with respect to the design function. The determination of the sensitivity derivatives of the performance index or functional entails the coupled solutions of the state and costate equations. As the stable and converged numerical solution of the costate equations with their boundary conditions are a priori unknown, numerical stability analysis is performed on both the state and costate equations. Thereafter, based on the amplification factors obtained by solving the generalized eigenvalue equations, the stability behavior of the costate equations is discussed and compared with the state (Euler) equations. The stability analysis of the costate equations suggests that the converged and stable solution of the costate equation is possible only if the computational domain of the costate equations is transformed to take into account the reverse flow nature of the costate equations. The application of the variational methods to aerodynamic shape optimization problems is demonstrated for internal flow problems at supersonic Mach number range. The study shows, that while maintaining the accuracy of the functional sensitivity derivatives within the reasonable range for engineering prediction purposes, the variational methods show a substantial gain in computational efficiency, i.e., computer time and memory, when compared with the finite difference sensitivity analysis.

  3. Two-layer interfacial flows beyond the Boussinesq approximation: a Hamiltonian approach

    NASA Astrophysics Data System (ADS)

    Camassa, R.; Falqui, G.; Ortenzi, G.

    2017-02-01

    The theory of integrable systems of Hamiltonian PDEs and their near-integrable deformations is used to study evolution equations resulting from vertical-averages of the Euler system for two-layer stratified flows in an infinite two-dimensional channel. The Hamiltonian structure of the averaged equations is obtained directly from that of the Euler equations through the process of Hamiltonian reduction. Long-wave asymptotics together with the Boussinesq approximation of neglecting the fluids’ inertia is then applied to reduce the leading order vertically averaged equations to the shallow-water Airy system, albeit in a non-trivial way. The full non-Boussinesq system for the dispersionless limit can then be viewed as a deformation of this well known equation. In a perturbative study of this deformation, a family of approximate constants of the motion are explicitly constructed and used to find local solutions of the evolution equations by means of hodograph-like formulae.

  4. Vibrational analysis of vertical axis wind turbine blades

    NASA Astrophysics Data System (ADS)

    Kapucu, Onur

    The goal of this research is to derive a vibration model for a vertical axis wind turbine blade. This model accommodates the affects of varying relative flow angle caused by rotating the blade in the flow field, uses a simple aerodynamic model that assumes constant wind speed and constant rotation rate, and neglects the disturbance of wind due to upstream blade or post. The blade is modeled as elastic Euler-Bernoulli beam under transverse bending and twist deflections. Kinetic and potential energy equations for a rotating blade under deflections are obtained, expressed in terms of assumed modal coordinates and then plugged into Lagrangian equations where the non-conservative forces are the lift and drag forces and moments. An aeroelastic model for lift and drag forces, approximated with third degree polynomials, on the blade are obtained assuming an airfoil under variable angle of attack and airflow magnitudes. A simplified quasi-static airfoil theory is used, in which the lift and drag coefficients are not dependent on the history of the changing angle of attack. Linear terms on the resulting equations of motion will be used to conduct a numerical analysis and simulation, where numeric specifications are modified from the Sandia-17m Darrieus wind turbine by Sandia Laboratories.

  5. Wind-US Users Guide Version 4.0

    NASA Technical Reports Server (NTRS)

    Yoder, Dennis A.

    2016-01-01

    Wind-US is a computational platform which may be used to numerically solve various sets of equations governing physical phenomena. Currently, the code supports the solution of the Euler and Navier-Stokes equations of fluid mechanics, along with supporting equation sets governing turbulent and chemically reacting flows. Wind-US is a product of the NPARC Alliance, a partnership between the NASA Glenn Research Center (GRC) and the Arnold Engineering Development Complex (AEDC) dedicated to the establishment of a national, applications-oriented flow simulation capability. The Boeing Company has also been closely associated with the Alliance since its inception, and represents the interests of the NPARC User's Association. The "Wind-US User's Guide" describes the operation and use of Wind-US, including: a basic tutorial; the physical and numerical models that are used; the boundary conditions; monitoring convergence; the files that are read and/or written; parallel execution; and a complete list of input keywords and test options. For current information about Wind-US and the NPARC Alliance, please see the Wind-US home page at http://www.grc.nasa.gov/WWW/winddocs/ and the NPARC Alliance home page at http://www.grc.nasa.gov/WWW/wind/.

  6. Degenerate variational integrators for magnetic field line flow and guiding center trajectories

    NASA Astrophysics Data System (ADS)

    Ellison, C. L.; Finn, J. M.; Burby, J. W.; Kraus, M.; Qin, H.; Tang, W. M.

    2018-05-01

    Symplectic integrators offer many benefits for numerically approximating solutions to Hamiltonian differential equations, including bounded energy error and the preservation of invariant sets. Two important Hamiltonian systems encountered in plasma physics—the flow of magnetic field lines and the guiding center motion of magnetized charged particles—resist symplectic integration by conventional means because the dynamics are most naturally formulated in non-canonical coordinates. New algorithms were recently developed using the variational integration formalism; however, those integrators were found to admit parasitic mode instabilities due to their multistep character. This work eliminates the multistep character, and therefore the parasitic mode instabilities via an adaptation of the variational integration formalism that we deem "degenerate variational integration." Both the magnetic field line and guiding center Lagrangians are degenerate in the sense that the resultant Euler-Lagrange equations are systems of first-order ordinary differential equations. We show that retaining the same degree of degeneracy when constructing discrete Lagrangians yields one-step variational integrators preserving a non-canonical symplectic structure. Numerical examples demonstrate the benefits of the new algorithms, including superior stability relative to the existing variational integrators for these systems and superior qualitative behavior relative to non-conservative algorithms.

  7. A dynamic-solver-consistent minimum action method: With an application to 2D Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Wan, Xiaoliang; Yu, Haijun

    2017-02-01

    This paper discusses the necessity and strategy to unify the development of a dynamic solver and a minimum action method (MAM) for a spatially extended system when employing the large deviation principle (LDP) to study the effects of small random perturbations. A dynamic solver is used to approximate the unperturbed system, and a minimum action method is used to approximate the LDP, which corresponds to solving an Euler-Lagrange equation related to but more complicated than the unperturbed system. We will clarify possible inconsistencies induced by independent numerical approximations of the unperturbed system and the LDP, based on which we propose to define both the dynamic solver and the MAM on the same approximation space for spatial discretization. The semi-discrete LDP can then be regarded as the exact LDP of the semi-discrete unperturbed system, which is a finite-dimensional ODE system. We achieve this methodology for the two-dimensional Navier-Stokes equations using a divergence-free approximation space. The method developed can be used to study the nonlinear instability of wall-bounded parallel shear flows, and be generalized straightforwardly to three-dimensional cases. Numerical experiments are presented.

  8. The SIR model of Zika virus disease outbreak in Brazil at year 2015

    NASA Astrophysics Data System (ADS)

    Aik, Lim Eng; Kiang, Lam Chee; Hong, Tan Wei; Abu, Mohd Syafarudy

    2017-05-01

    This research study demonstrates a numerical model intended for comprehension the spread of the year 2015 Zika virus disease utilizing the standard SIR framework. In modeling virulent disease dynamics, it is important to explore whether the illness spread could accomplish a pandemic level or it could be eradicated. Information from the year 2015 Zika virus disease event is utilized and Brazil where the event began is considered in this research study. A three dimensional nonlinear differential equation is formulated and solved numerically utilizing the Euler's method in MS excel. It is appeared from the research study that, with health intercessions of public, the viable regenerative number can be decreased making it feasible for the event to cease to exist. It is additionally indicated numerically that the pandemic can just cease to exist when there are no new infected people in the populace.

  9. Numerical simulation of tip vortices of wings in subsonic and transonic flows

    NASA Technical Reports Server (NTRS)

    Srinivasan, G. R.; Mccroskey, W. J.; Baeder, J. D.; Edwards, T. A.

    1986-01-01

    A multi block zonal algorithm which solves the thin-layer Navier-Stokes and the Euler equations is used to numerically simulate the formation and roll-up of the tip vortex in both subsonic and transonic flows. Four test cases which used small and large aspect ratio wings have been considered to examine the influence of the tip-cap shape, the tip planform and the free-stream Mach number. It appears that both the tip-planform and the tip-cap shape have some influence on the formation of the tip vortex, but its subsequent roll-up seems to be more influenced by the tip-planform shape. In general, a good definition of the formation and the roll-up of the tip vortex has been observed for all the cases considered here. Comparions of the numerical results with the limited, available experimental data show good agreement with both the surface pressures and the tip-vortex strength.

  10. Numerical methods for engine-airframe integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murthy, S.N.B.; Paynter, G.C.

    1986-01-01

    Various papers on numerical methods for engine-airframe integration are presented. The individual topics considered include: scientific computing environment for the 1980s, overview of prediction of complex turbulent flows, numerical solutions of the compressible Navier-Stokes equations, elements of computational engine/airframe integrations, computational requirements for efficient engine installation, application of CAE and CFD techniques to complete tactical missile design, CFD applications to engine/airframe integration, and application of a second-generation low-order panel methods to powerplant installation studies. Also addressed are: three-dimensional flow analysis of turboprop inlet and nacelle configurations, application of computational methods to the design of large turbofan engine nacelles, comparison ofmore » full potential and Euler solution algorithms for aeropropulsive flow field computations, subsonic/transonic, supersonic nozzle flows and nozzle integration, subsonic/transonic prediction capabilities for nozzle/afterbody configurations, three-dimensional viscous design methodology of supersonic inlet systems for advanced technology aircraft, and a user's technology assessment.« less

  11. Interactive boundary-layer calculations of a transonic wing flow

    NASA Technical Reports Server (NTRS)

    Kaups, Kalle; Cebeci, Tuncer; Mehta, Unmeel

    1989-01-01

    Results obtained from iterative solutions of inviscid and boundary-layer equations are presented and compared with experimental values. The calculated results were obtained with an Euler code and a transonic potential code in order to furnish solutions for the inviscid flow; they were interacted with solutions of two-dimensional boundary-layer equations having a strip-theory approximation. Euler code results are found to be in better agreement with the experimental data than with the full potential code, especially in the presence of shock waves, (with the sole exception of the near-tip region).

  12. Euler-Lagrange formulas for pseudo-Kähler manifolds

    NASA Astrophysics Data System (ADS)

    Park, JeongHyeong

    2016-01-01

    Let c be a characteristic form of degree k which is defined on a Kähler manifold of real dimension m > 2 k. Taking the inner product with the Kähler form Ωk gives a scalar invariant which can be considered as a generalized Lovelock functional. The associated Euler-Lagrange equations are a generalized Einstein-Gauss-Bonnet gravity theory; this theory restricts to the canonical formalism if c =c2 is the second Chern form. We extend previous work studying these equations from the Kähler to the pseudo-Kähler setting.

  13. Linear Equations with the Euler Totient Function

    DTIC Science & Technology

    2007-02-13

    unclassified c . THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 2 FLORIAN LUCA, PANTELIMON STĂNICĂ...of positive integers n such that φ(n) = φ(n+ 1), and that the set of Phibonacci numbers is A(1,1,−1) + 2. Theorem 2.1. Let C (t, a) = t3 logH(a). Then...the estimate #Aa(x) C (t, a) x log log log x√ log log x LINEAR EQUATIONS WITH THE EULER TOTIENT FUNCTION 3 holds uniformly in a and 1 ≤ t < y. Note

  14. A Cartesian, cell-based approach for adaptively-refined solutions of the Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Coirier, William J.; Powell, Kenneth G.

    1994-01-01

    A Cartesian, cell-based approach for adaptively-refined solutions of the Euler and Navier-Stokes equations in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, N-sided 'cut' cells are created using polygon-clipping algorithms. The grid is stored in a binary-tree structure which provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite-volume formulation. The convective terms are upwinded: a gradient-limited, linear reconstruction of the primitive variables is performed, providing input states to an approximate Riemann solver for computing the fluxes between neighboring cells. The more robust of a series of viscous flux functions is used to provide the viscous fluxes at the cell interfaces. Adaptively-refined solutions of the Navier-Stokes equations using the Cartesian, cell-based approach are obtained and compared to theory, experiment, and other accepted computational results for a series of low and moderate Reynolds number flows.

  15. A Cartesian, cell-based approach for adaptively-refined solutions of the Euler and Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Coirier, William J.; Powell, Kenneth G.

    1995-01-01

    A Cartesian, cell-based approach for adaptively-refined solutions of the Euler and Navier-Stokes equations in two dimensions is developed and tested. Grids about geometrically complicated bodies are generated automatically, by recursive subdivision of a single Cartesian cell encompassing the entire flow domain. Where the resulting cells intersect bodies, N-sided 'cut' cells are created using polygon-clipping algorithms. The grid is stored in a binary-tree data structure which provides a natural means of obtaining cell-to-cell connectivity and of carrying out solution-adaptive mesh refinement. The Euler and Navier-Stokes equations are solved on the resulting grids using a finite-volume formulation. The convective terms are upwinded: A gradient-limited, linear reconstruction of the primitive variables is performed, providing input states to an approximate Riemann solver for computing the fluxes between neighboring cells. The more robust of a series of viscous flux functions is used to provide the viscous fluxes at the cell interfaces. Adaptively-refined solutions of the Navier-Stokes equations using the Cartesian, cell-based approach are obtained and compared to theory, experiment and other accepted computational results for a series of low and moderate Reynolds number flows.

  16. An evaluation of three two-dimensional computational fluid dynamics codes including low Reynolds numbers and transonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Hicks, Raymond M.; Cliff, Susan E.

    1991-01-01

    Full-potential, Euler, and Navier-Stokes computational fluid dynamics (CFD) codes were evaluated for use in analyzing the flow field about airfoils sections operating at Mach numbers from 0.20 to 0.60 and Reynolds numbers from 500,000 to 2,000,000. The potential code (LBAUER) includes weakly coupled integral boundary layer equations for laminar and turbulent flow with simple transition and separation models. The Navier-Stokes code (ARC2D) uses the thin-layer formulation of the Reynolds-averaged equations with an algebraic turbulence model. The Euler code (ISES) includes strongly coupled integral boundary layer equations and advanced transition and separation calculations with the capability to model laminar separation bubbles and limited zones of turbulent separation. The best experiment/CFD correlation was obtained with the Euler code because its boundary layer equations model the physics of the flow better than the other two codes. An unusual reversal of boundary layer separation with increasing angle of attack, following initial shock formation on the upper surface of the airfoil, was found in the experiment data. This phenomenon was not predicted by the CFD codes evaluated.

  17. Modelling biochemical reaction systems by stochastic differential equations with reflection.

    PubMed

    Niu, Yuanling; Burrage, Kevin; Chen, Luonan

    2016-05-07

    In this paper, we gave a new framework for modelling and simulating biochemical reaction systems by stochastic differential equations with reflection not in a heuristic way but in a mathematical way. The model is computationally efficient compared with the discrete-state Markov chain approach, and it ensures that both analytic and numerical solutions remain in a biologically plausible region. Specifically, our model mathematically ensures that species numbers lie in the domain D, which is a physical constraint for biochemical reactions, in contrast to the previous models. The domain D is actually obtained according to the structure of the corresponding chemical Langevin equations, i.e., the boundary is inherent in the biochemical reaction system. A variant of projection method was employed to solve the reflected stochastic differential equation model, and it includes three simple steps, i.e., Euler-Maruyama method was applied to the equations first, and then check whether or not the point lies within the domain D, and if not perform an orthogonal projection. It is found that the projection onto the closure D¯ is the solution to a convex quadratic programming problem. Thus, existing methods for the convex quadratic programming problem can be employed for the orthogonal projection map. Numerical tests on several important problems in biological systems confirmed the efficiency and accuracy of this approach. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Orientational Order on Surfaces: The Coupling of Topology, Geometry, and Dynamics

    NASA Astrophysics Data System (ADS)

    Nestler, M.; Nitschke, I.; Praetorius, S.; Voigt, A.

    2018-02-01

    We consider the numerical investigation of surface bound orientational order using unit tangential vector fields by means of a gradient flow equation of a weak surface Frank-Oseen energy. The energy is composed of intrinsic and extrinsic contributions, as well as a penalization term to enforce the unity of the vector field. Four different numerical discretizations, namely a discrete exterior calculus approach, a method based on vector spherical harmonics, a surface finite element method, and an approach utilizing an implicit surface description, the diffuse interface method, are described and compared with each other for surfaces with Euler characteristic 2. We demonstrate the influence of geometric properties on realizations of the Poincaré-Hopf theorem and show examples where the energy is decreased by introducing additional orientational defects.

  19. A Discrete Analysis of Non-reflecting Boundary Conditions for Discontinuous Galerkin Method

    NASA Technical Reports Server (NTRS)

    Hu, Fang Q.; Atkins, Harold L.

    2003-01-01

    We present a discrete analysis of non-reflecting boundary conditions for the discontinuous Galerkin method. The boundary conditions considered in this paper include the recently proposed Perfectly Matched Layer absorbing boundary condition for the linearized Euler equation and two non-reflecting boundary conditions based on the characteristic decomposition of the flux on the boundary. The analyses for the three boundary conditions are carried out in a unifled way. In each case, eigensolutions of the discrete system are obtained and applied to compute the numerical reflection coefficients of a specified out-going wave. The dependencies of the reflections at the boundary on the out-going wave angle and frequency as well as the mesh sizes arc? studied. Comparisons with direct numerical simulation results are also presented.

  20. Numerical Simulation of Subsonic and Transonic Propeller Flow. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Snyder, Aaron

    1988-01-01

    The numerical simulation of 3-D transonic flow about a system of propeller blades is investigated. In particular, it is shown that the use of helical coordinates significantly simplifies the form of the governing equation when the propeller system is assumed to be surrounded by an irrotational flow field of an inviscid fluid. The unsteady small disturbance equation, valid for lightly loaded blades and expressed in helical coordinates, is derived from the general blade-fixed potential equation, given for an arbitrary coordinate system. The use of a coordinate system which inherently adapts to the mean flow results in a disturbance equation requiring relatively few terms to accurately model the physics of the flow. Furthermore, the helical coordinate system presented here is novel in that it is periodic in the circumferential direction while, simultaneously, maintaining orthogonal properties at the mean blade locations. The periodic characteristic allows a complete cascade of blades to be treated, and the orthogonality property affords straightforward treatment of blade boundary conditions. An ADI numerical scheme is used to compute the solution of the steady flow as an asymptotic limit of an unsteady flow. As an example of the method, solutions are presented for subsonic and transonic flow about a 5 percent thick bicircular arc blade of an 8-bladed cascade. Both high and low advance ratio cases are computed and include a lifting as well as nonlifting cases. The nonlifting solutions obtained are compared to solutions from a Euler code.

  1. Geometric constraints on potentially singular solutions for the 3-D Euler equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantin, P.; Fefferman, C.; Majda, A.J.

    1996-12-31

    We discuss necessary and sufficient conditions for the formation of finite time singularities (blow up) in the incompressible three dimensional Euler equations. The well-known result of Beale, Kato and Majda states that these equations have smooth solutions on the time interval (0,t) if, and only if lim/t{r_arrow}T {integral}{sup t}{sub 0} {parallel}{Omega}({center_dot},s){parallel}{sub L}{sup {infinity}} (dx)dx < {infinity} where {Omega} = {triangledown} X u is the vorticity of the fluid and u is its divergence=free velocity. In this paper we prove criteria in which the direction of vorticity {xi} = {Omega}/{vert_bar}{Omega}{vert_bar} plays an important role.

  2. Causal dissipation for the relativistic dynamics of ideal gases

    NASA Astrophysics Data System (ADS)

    Freistühler, Heinrich; Temple, Blake

    2017-05-01

    We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a second-order system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that make the Euler equations symmetric hyperbolic in the first-order sense. We show that this class contains a unique element representing a causal formulation of relativistic dissipative fluid dynamics which (i) is equivalent to the classical descriptions by Eckart and Landau to first order in the coefficients of viscosity and heat conduction and (ii) has its signal speeds bounded sharply by the speed of light. Based on these properties, we propose this system as a natural candidate for the relativistic counterpart of the classical Navier-Stokes equations.

  3. Transonic flow solutions using a composite velocity procedure for potential, Euler and RNS equations

    NASA Technical Reports Server (NTRS)

    Gordnier, R. E.; Rubin, S. G.

    1986-01-01

    Solutions for transonic viscous and inviscid flows using a composite velocity procedure are presented. The velocity components of the compressible flow equations are written in terms of a multiplicative composite consisting of a viscous or rotational velocity and an inviscid, irrotational, potential-like function. This provides for an efficient solution procedure that is locally representative of both asymptotic inviscid and boundary layer theories. A modified conservative form of the axial momentum equation that is required to obtain rotational solutions in the inviscid region is presented and a combined conservation/nonconservation form is applied for evaluation of the reduced Navier-Stokes (RNS), Euler and potential equations. A variety of results is presented and the effects of the approximations on entropy production, shock capturing, and viscous interaction are discussed.

  4. Causal dissipation for the relativistic dynamics of ideal gases

    PubMed Central

    2017-01-01

    We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a second-order system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that make the Euler equations symmetric hyperbolic in the first-order sense. We show that this class contains a unique element representing a causal formulation of relativistic dissipative fluid dynamics which (i) is equivalent to the classical descriptions by Eckart and Landau to first order in the coefficients of viscosity and heat conduction and (ii) has its signal speeds bounded sharply by the speed of light. Based on these properties, we propose this system as a natural candidate for the relativistic counterpart of the classical Navier–Stokes equations. PMID:28588397

  5. Causal dissipation for the relativistic dynamics of ideal gases.

    PubMed

    Freistühler, Heinrich; Temple, Blake

    2017-05-01

    We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a second-order system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that make the Euler equations symmetric hyperbolic in the first-order sense. We show that this class contains a unique element representing a causal formulation of relativistic dissipative fluid dynamics which (i) is equivalent to the classical descriptions by Eckart and Landau to first order in the coefficients of viscosity and heat conduction and (ii) has its signal speeds bounded sharply by the speed of light. Based on these properties, we propose this system as a natural candidate for the relativistic counterpart of the classical Navier-Stokes equations.

  6. Electrostatic and aerodynamic forced vibrations of a thin flexible electrode: Quasi-periodic vs. chaotic oscillations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madanu, Sushma B.; Barbel, Stanley I.; Ward, Thomas

    In this paper, transverse vibrations of an electrostatically actuated thin flexible cantilever perturbed by low-speed air flow are studied using both experiments and numerical modeling. In the experiments, the dynamic characteristics of the cantilever are studied by supplying a DC voltage with an AC component for electrostatic forcing and a constant uniform air flow around the cantilever system for aerodynamic forcing. A range of control parameters leading to stable vibrations are established using a dimensionless operating parameter that is the ratio of the induced and the free stream velocities. Numerical results are validated with experimental data. Assuming the amplitude ofmore » vibrations are small, then a non-linear dynamic Euler-Bernoulli beam equation with viscous damping and gravitational effects is used to model the equation of motion. Aerodynamic forcing is modelled as a temporally sinusoidal and uniform force acting perpendicular to the beam length. The forcing amplitude is found to be proportional to the square of the air flow velocity. Numerical results strongly agree with the experiments predicting accurate vibration amplitude, displacement frequency, and quasi-periodic displacement of the cantilever tip.« less

  7. On Accuracy of Adaptive Grid Methods for Captured Shocks

    NASA Technical Reports Server (NTRS)

    Yamaleev, Nail K.; Carpenter, Mark H.

    2002-01-01

    The accuracy of two grid adaptation strategies, grid redistribution and local grid refinement, is examined by solving the 2-D Euler equations for the supersonic steady flow around a cylinder. Second- and fourth-order linear finite difference shock-capturing schemes, based on the Lax-Friedrichs flux splitting, are used to discretize the governing equations. The grid refinement study shows that for the second-order scheme, neither grid adaptation strategy improves the numerical solution accuracy compared to that calculated on a uniform grid with the same number of grid points. For the fourth-order scheme, the dominant first-order error component is reduced by the grid adaptation, while the design-order error component drastically increases because of the grid nonuniformity. As a result, both grid adaptation techniques improve the numerical solution accuracy only on the coarsest mesh or on very fine grids that are seldom found in practical applications because of the computational cost involved. Similar error behavior has been obtained for the pressure integral across the shock. A simple analysis shows that both grid adaptation strategies are not without penalties in the numerical solution accuracy. Based on these results, a new grid adaptation criterion for captured shocks is proposed.

  8. Eigensensitivity analysis of rotating clamped uniform beams with the asymptotic numerical method

    NASA Astrophysics Data System (ADS)

    Bekhoucha, F.; Rechak, S.; Cadou, J. M.

    2016-12-01

    In this paper, free vibrations of a rotating clamped Euler-Bernoulli beams with uniform cross section are studied using continuation method, namely asymptotic numerical method. The governing equations of motion are derived using Lagrange's method. The kinetic and strain energy expression are derived from Rayleigh-Ritz method using a set of hybrid variables and based on a linear deflection assumption. The derived equations are transformed in two eigenvalue problems, where the first is a linear gyroscopic eigenvalue problem and presents the coupled lagging and stretch motions through gyroscopic terms. While the second is standard eigenvalue problem and corresponds to the flapping motion. Those two eigenvalue problems are transformed into two functionals treated by continuation method, the Asymptotic Numerical Method. New method proposed for the solution of the linear gyroscopic system based on an augmented system, which transforms the original problem to a standard form with real symmetric matrices. By using some techniques to resolve these singular problems by the continuation method, evolution curves of the natural frequencies against dimensionless angular velocity are determined. At high angular velocity, some singular points, due to the linear elastic assumption, are computed. Numerical tests of convergence are conducted and the obtained results are compared to the exact values. Results obtained by continuation are compared to those computed with discrete eigenvalue problem.

  9. A moist Boussinesq shallow water equations set for testing atmospheric models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zerroukat, M., E-mail: mohamed.zerroukat@metoffice.gov.uk; Allen, T.

    The shallow water equations have long been used as an initial test for numerical methods applied to atmospheric models with the test suite of Williamson et al. being used extensively for validating new schemes and assessing their accuracy. However the lack of physics forcing within this simplified framework often requires numerical techniques to be reworked when applied to fully three dimensional models. In this paper a novel two-dimensional shallow water equations system that retains moist processes is derived. This system is derived from three-dimensional Boussinesq approximation of the hydrostatic Euler equations where, unlike the classical shallow water set, we allowmore » the density to vary slightly with temperature. This results in extra (or buoyancy) terms for the momentum equations, through which a two-way moist-physics dynamics feedback is achieved. The temperature and moisture variables are advected as separate tracers with sources that interact with the mean-flow through a simplified yet realistic bulk moist-thermodynamic phase-change model. This moist shallow water system provides a unique tool to assess the usually complex and highly non-linear dynamics–physics interactions in atmospheric models in a simple yet realistic way. The full non-linear shallow water equations are solved numerically on several case studies and the results suggest quite realistic interaction between the dynamics and physics and in particular the generation of cloud and rain. - Highlights: • Novel shallow water equations which retains moist processes are derived from the three-dimensional hydrostatic Boussinesq equations. • The new shallow water set can be seen as a more general one, where the classical equations are a special case of these equations. • This moist shallow water system naturally allows a feedback mechanism from the moist physics increments to the momentum via buoyancy. • Like full models, temperature and moistures are advected as tracers that interact through a simplified yet realistic phase-change model. • This model is a unique tool to test numerical methods for atmospheric models, and physics–dynamics coupling, in a very realistic and simple way.« less

  10. Three-dimensional elliptic grid generation for an F-16

    NASA Technical Reports Server (NTRS)

    Sorenson, Reese L.

    1988-01-01

    A case history depicting the effort to generate a computational grid for the simulation of transonic flow about an F-16 aircraft at realistic flight conditions is presented. The flow solver for which this grid is designed is a zonal one, using the Reynolds averaged Navier-Stokes equations near the surface of the aircraft, and the Euler equations in regions removed from the aircraft. A body conforming global grid, suitable for the Euler equation, is first generated using 3-D Poisson equations having inhomogeneous terms modeled after the 2-D GRAPE code. Regions of the global grid are then designated for zonal refinement as appropriate to accurately model the flow physics. Grid spacing suitable for solution of the Navier-Stokes equations is generated in the refinement zones by simple subdivision of the given coarse grid intervals. That grid generation project is described, with particular emphasis on the global coarse grid.

  11. Fast numerics for the spin orbit equation with realistic tidal dissipation and constant eccentricity

    NASA Astrophysics Data System (ADS)

    Bartuccelli, Michele; Deane, Jonathan; Gentile, Guido

    2017-08-01

    We present an algorithm for the rapid numerical integration of a time-periodic ODE with a small dissipation term that is C^1 in the velocity. Such an ODE arises as a model of spin-orbit coupling in a star/planet system, and the motivation for devising a fast algorithm for its solution comes from the desire to estimate probability of capture in various solutions, via Monte Carlo simulation: the integration times are very long, since we are interested in phenomena occurring on timescales of the order of 10^6-10^7 years. The proposed algorithm is based on the high-order Euler method which was described in Bartuccelli et al. (Celest Mech Dyn Astron 121(3):233-260, 2015), and it requires computer algebra to set up the code for its implementation. The payoff is an overall increase in speed by a factor of about 7.5 compared to standard numerical methods. Means for accelerating the purely numerical computation are also discussed.

  12. Molecular Dynamics Studies of Polyethylene Oxide and Polyethylene Glycol: Hydrodynamic Radius and Shape Anisotropy

    PubMed Central

    Lee, Hwankyu; Venable, Richard M.; MacKerell, Alexander D.; Pastor, Richard W.

    2008-01-01

    A revision (C35r) to the CHARMM ether force field is shown to reproduce experimentally observed conformational populations of dimethoxyethane. Molecular dynamics simulations of 9, 18, 27, and 36-mers of polyethylene oxide (PEO) and 27-mers of polyethylene glycol (PEG) in water based on C35r yield a persistence length λ = 3.7 Å, in quantitative agreement with experimentally obtained values of 3.7 Å for PEO and 3.8 Å for PEG; agreement with experimental values for hydrodynamic radii of comparably sized PEG is also excellent. The exponent υ relating the radius of gyration and molecular weight (\\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}R_{{\\mathrm{g}}}{\\propto}M_{{\\mathrm{w}}}^{{\\upsilon}}\\end{equation*}\\end{document}) of PEO from the simulations equals 0.515 ± 0.023, consistent with experimental observations that low molecular weight PEG behaves as an ideal chain. The shape anisotropy of hydrated PEO is 2.59:1.44:1.00. The dimension of the middle length for each of the polymers nearly equals the hydrodynamic radius \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}R_{{\\mathrm{h}}}\\end{equation*}\\end{document}obtained from diffusion measurements in solution. This explains the correspondence of \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}R_{{\\mathrm{h}}}\\end{equation*}\\end{document} and \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\usepackage[Euler]{upgreek} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}R_{{\\mathrm{p}}},\\end{equation*}\\end{document} the pore radius of membrane channels: a polymer such as PEG diffuses with its long axis parallel to the membrane channel, and passes through the channel without substantial distortion. PMID:18456821

  13. Quality assessment of two- and three-dimensional unstructured meshes and validation of an upwind Euler flow solver

    NASA Technical Reports Server (NTRS)

    Woodard, Paul R.; Batina, John T.; Yang, Henry T. Y.

    1992-01-01

    Quality assessment procedures are described for two-dimensional unstructured meshes. The procedures include measurement of minimum angles, element aspect ratios, stretching, and element skewness. Meshes about the ONERA M6 wing and the Boeing 747 transport configuration are generated using an advancing front method grid generation package of programs. Solutions of Euler's equations for these meshes are obtained at low angle-of-attack, transonic conditions. Results for these cases, obtained as part of a validation study demonstrate accuracy of an implicit upwind Euler solution algorithm.

  14. Faddeev-Jackiw quantization of topological invariants: Euler and Pontryagin classes

    NASA Astrophysics Data System (ADS)

    Escalante, Alberto; Medel-Portugal, C.

    2018-04-01

    The symplectic analysis for the four dimensional Pontryagin and Euler invariants is performed within the Faddeev-Jackiw context. The Faddeev-Jackiw constraints and the generalized Faddeev-Jackiw brackets are reported; we show that in spite of the Pontryagin and Euler classes give rise the same equations of motion, its respective symplectic structures are different to each other. In addition, a quantum state that solves the Faddeev-Jackiw constraints is found, and we show that the quantum states for these invariants are different to each other. Finally, we present some remarks and conclusions.

  15. On the Euler Function of the Catalan Numbers

    DTIC Science & Technology

    2012-02-26

    ON THE EULER FUNCTION OF THE CATALAN NUMBERS FLORIAN LUCA AND PANTELIMON STĂNICĂ Abstract. We study the solutions of the equation φ(Cm)/φ(Cn) = r...where r is a fixed rational number , Ck is the kth Catalan number and φ is the Euler function. We note that the number r = 4 is special for this...observation concerning φ(Cn+1)/φ(Cn) For a positive integer n, let (1) Cn = 1 n+ 1 ( 2n n ) be the n-th Catalan number . For a positive integer m we put φ(m) for

  16. Motions about a fixed point by hypergeometric functions: new non-complex analytical solutions and integration of the herpolhode

    NASA Astrophysics Data System (ADS)

    Mingari Scarpello, Giovanni; Ritelli, Daniele

    2018-06-01

    The present study highlights the dynamics of a body moving about a fixed point and provides analytical closed form solutions. Firstly, for the symmetrical heavy body, that is the Lagrange-Poisson case, we compute the second (precession, ψ ) and third (spin, φ) Euler angles in explicit and real form by means of multiple hypergeometric (Lauricella) functions. Secondly, releasing the weight assumption but adding the complication of the asymmetry, by means of elliptic integrals of third kind, we provide the precession angle ψ completing the treatment of the Euler-Poinsot case. Thirdly, by integrating the relevant differential equation, we reach the finite polar equation of a special motion trajectory named the herpolhode. Finally, we keep the symmetry of the first problem, but without weight, and take into account a viscous dissipation. The use of motion first integrals—adopted for the first two problems—is no longer practicable in this situation; therefore, the Euler equations, faced directly, are driving to particular occurrences of Bessel functions of order - 1/2.

  17. Zeros of Schrödinger's Radial Function Rnl(r) and Kummer's Function 1F1(-a c; z) and Their ``Angle'' Distributions

    NASA Astrophysics Data System (ADS)

    Tarasov, V. F.

    In the present paper exact formulae for the calculation of zeros of Rnl(r) and 1F1(-a c; z), where z = 2 λ r, a = n - l - 1 >= 0 and c = 2l + 2 >= 2 are presented. For a <= 4 the method due to Tartallia and Cardono, and that due to L. Ferrai, L. Euler and J. L. Lagrange are used. In other cases (a > 4) numerical methods are employed to obtain the results (to within 10-15). For greater geometrical obviousness of the irregulary distribution (as a > 3) of zeros xk = zk - (c + a - 1) on the axis y = 0, the circular diagrams with the radius Ra = (a - 1) √ {c + a - 1} are presented for the first time. It is possible to notice some singularities of distribution of these zeros and their images - the points Tk - on the circle. For a = 3 and 4 their exact ``angle'' asymptotics (as c --> ∞) are obtained. It is shown that in the basis of the L. Ferrari, L. Euler and J.-L. Lagrange methods, using for solving the equation 1F1(-4 c; z) = 0, one Common for all these methods. equation is obtained viz., the cubic resolvent equation of FEL-type. Calculating of zeros xk of the Rnl(r) and 1F1(z) functions enable us to show the ``singular'' cases (a, c) = (4, 6), (6, 4), (8, 14), ...

  18. Exact vibration analysis of a double-nanobeam-systems embedded in an elastic medium by a Hamiltonian-based method

    NASA Astrophysics Data System (ADS)

    Zhou, Zhenhuan; Li, Yuejie; Fan, Junhai; Rong, Dalun; Sui, Guohao; Xu, Chenghui

    2018-05-01

    A new Hamiltonian-based approach is presented for finding exact solutions for transverse vibrations of double-nanobeam-systems embedded in an elastic medium. The continuum model is established within the frameworks of the symplectic methodology and the nonlocal Euler-Bernoulli and Timoshenko beam beams. The symplectic eigenfunctions are obtained after expressing the governing equations in a Hamiltonian form. Exact frequency equations, vibration modes and displacement amplitudes are obtained by using symplectic eigenfunctions and end conditions. Comparisons with previously published work are presented to illustrate the accuracy and reliability of the proposed method. The comprehensive results for arbitrary boundary conditions could serve as benchmark results for verifying numerically obtained solutions. In addition, a study on the difference between the nonlocal beam and the nonlocal plate is also included.

  19. Reconstruction of Attitude Dynamics of Free Falling Units

    NASA Astrophysics Data System (ADS)

    Yuan, Y.; Ivchenko, N.; Tibert, G.; Schlatter, N. M.

    2015-09-01

    Attitude reconstruction of a free falling sphere for the experiment Multiple Spheres for Characterization of Atmosphere Temperatures (MUSCAT) is studied in this paper. The attitude dynamics is modeled through Euler's rotational equations of motion. To estimate uncertain parameters in this model such as the matrix of inertia and the lever arm for the dynamic pressure with respect to the center of mass, the dynamics reconstruction can be formulated as an optimization problem. The goal is to minimize the deviation between the measurements and the propagation from the system equations. This approach was tested against a couple of flight data sets which correspond to different periods of time. The result is very reasonable compared to the laboratory test. The estimate can be improved further through allowing drag coefficients variable and taking advantage of measurements from a magnetometer in numerical calculation.

  20. A Space-Time Conservation Element and Solution Element Method for Solving the Two- and Three-Dimensional Unsteady Euler Equations Using Quadrilateral and Hexahedral Meshes

    NASA Technical Reports Server (NTRS)

    Zhang, Zeng-Chan; Yu, S. T. John; Chang, Sin-Chung; Jorgenson, Philip (Technical Monitor)

    2001-01-01

    In this paper, we report a version of the Space-Time Conservation Element and Solution Element (CE/SE) Method in which the 2D and 3D unsteady Euler equations are simulated using structured or unstructured quadrilateral and hexahedral meshes, respectively. In the present method, mesh values of flow variables and their spatial derivatives are treated as independent unknowns to be solved for. At each mesh point, the value of a flow variable is obtained by imposing a flux conservation condition. On the other hand, the spatial derivatives are evaluated using a finite-difference/weighted-average procedure. Note that the present extension retains many key advantages of the original CE/SE method which uses triangular and tetrahedral meshes, respectively, for its 2D and 3D applications. These advantages include efficient parallel computing ease of implementing non-reflecting boundary conditions, high-fidelity resolution of shocks and waves, and a genuinely multidimensional formulation without using a dimensional-splitting approach. In particular, because Riemann solvers, the cornerstones of the Godunov-type upwind schemes, are not needed to capture shocks, the computational logic of the present method is considerably simpler. To demonstrate the capability of the present method, numerical results are presented for several benchmark problems including oblique shock reflection, supersonic flow over a wedge, and a 3D detonation flow.

  1. Efficient Numerical Methods for Nonlinear-Facilitated Transport and Exchange in a Blood-Tissue Exchange Unit

    PubMed Central

    Poulain, Christophe A.; Finlayson, Bruce A.; Bassingthwaighte, James B.

    2010-01-01

    The analysis of experimental data obtained by the multiple-indicator method requires complex mathematical models for which capillary blood-tissue exchange (BTEX) units are the building blocks. This study presents a new, nonlinear, two-region, axially distributed, single capillary, BTEX model. A facilitated transporter model is used to describe mass transfer between plasma and intracellular spaces. To provide fast and accurate solutions, numerical techniques suited to nonlinear convection-dominated problems are implemented. These techniques are the random choice method, an explicit Euler-Lagrange scheme, and the MacCormack method with and without flux correction. The accuracy of the numerical techniques is demonstrated, and their efficiencies are compared. The random choice, Euler-Lagrange and plain MacCormack method are the best numerical techniques for BTEX modeling. However, the random choice and Euler-Lagrange methods are preferred over the MacCormack method because they allow for the derivation of a heuristic criterion that makes the numerical methods stable without degrading their efficiency. Numerical solutions are also used to illustrate some nonlinear behaviors of the model and to show how the new BTEX model can be used to estimate parameters from experimental data. PMID:9146808

  2. Conical Euler solution for a highly-swept delta wing undergoing wing-rock motion

    NASA Technical Reports Server (NTRS)

    Lee, Elizabeth M.; Batina, John T.

    1990-01-01

    Modifications to an unsteady conical Euler code for the free-to-roll analysis of highly-swept delta wings are described. The modifications involve the addition of the rolling rigid-body equation of motion for its simultaneous time-integration with the governing flow equations. The flow solver utilized in the Euler code includes a multistage Runge-Kutta time-stepping scheme which uses a finite-volume spatial discretization on an unstructured mesh made up of triangles. Steady and unsteady results are presented for a 75 deg swept delta wing at a freestream Mach number of 1.2 and an angle of attack of 30 deg. The unsteady results consist of forced harmonic and free-to-roll calculations. The free-to-roll case exhibits a wing rock response produced by unsteady aerodynamics consistent with the aerodynamics of the forced harmonic results. Similarities are shown with a wing-rock time history from a low-speed wind tunnel test.

  3. Analysis of real-time numerical integration methods applied to dynamic clamp experiments.

    PubMed

    Butera, Robert J; McCarthy, Maeve L

    2004-12-01

    Real-time systems are frequently used as an experimental tool, whereby simulated models interact in real time with neurophysiological experiments. The most demanding of these techniques is known as the dynamic clamp, where simulated ion channel conductances are artificially injected into a neuron via intracellular electrodes for measurement and stimulation. Methodologies for implementing the numerical integration of the gating variables in real time typically employ first-order numerical methods, either Euler or exponential Euler (EE). EE is often used for rapidly integrating ion channel gating variables. We find via simulation studies that for small time steps, both methods are comparable, but at larger time steps, EE performs worse than Euler. We derive error bounds for both methods, and find that the error can be characterized in terms of two ratios: time step over time constant, and voltage measurement error over the slope factor of the steady-state activation curve of the voltage-dependent gating variable. These ratios reliably bound the simulation error and yield results consistent with the simulation analysis. Our bounds quantitatively illustrate how measurement error restricts the accuracy that can be obtained by using smaller step sizes. Finally, we demonstrate that Euler can be computed with identical computational efficiency as EE.

  4. Adjoint Method and Predictive Control for 1-D Flow in NASA Ames 11-Foot Transonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ardema, Mark

    2006-01-01

    This paper describes a modeling method and a new optimal control approach to investigate a Mach number control problem for the NASA Ames 11-Foot Transonic Wind Tunnel. The flow in the wind tunnel is modeled by the 1-D unsteady Euler equations whose boundary conditions prescribe a controlling action by a compressor. The boundary control inputs to the compressor are in turn controlled by a drive motor system and an inlet guide vane system whose dynamics are modeled by ordinary differential equations. The resulting Euler equations are thus coupled to the ordinary differential equations via the boundary conditions. Optimality conditions are established by an adjoint method and are used to develop a model predictive linear-quadratic optimal control for regulating the Mach number due to a test model disturbance during a continuous pitch

  5. Three-dimensional unsteady Euler equations solutions on dynamic grids

    NASA Technical Reports Server (NTRS)

    Belk, D. M.; Janus, J. M.; Whitfield, D. L.

    1985-01-01

    A method is presented for solving the three-dimensional unsteady Euler equations on dynamic grids based on flux vector splitting. The equations are cast in curvilinear coordinates and a finite volume discretization is used for handling arbitrary geometries. The discretized equations are solved using an explicit upwind second-order predictor corrector scheme that is stable for a CFL of 2. Characteristic variable boundary conditions are developed and used for unsteady impermeable surfaces and for the far-field boundary. Dynamic-grid results are presented for an oscillating air-foil and for a store separating from a reflection plate. For the cases considered of stores separating from a reflection plate, the unsteady aerodynamic forces on the store are significantly different from forces obtained by steady-state aerodynamics with the body inclination angle changed to account for plunge velocity.

  6. Prediction and control of slender-wing rock

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Salman, Ahmed A.

    1992-01-01

    The unsteady Euler equations and the Euler equations of rigid-body dynamics, both written in the moving frame of reference, are sequentially solved to simulate the limit-cycle rock motion of slender delta wings. The governing equations of the fluid flow and the dynamics of the present multidisciplinary problem are solved using an implicit, approximately-factored, central-difference-like, finite-volume scheme and a four-stage Runge-Kutta scheme, respectively. For the control of wing-rock motion, leading-edge flaps are forced to oscillate anti-symmetrically at prescribed frequency and amplitude, which are tuned in order to suppress the rock motion. Since the computational grid deforms due to the leading-edge flaps motion, the grid is dynamically deformed using the Navier-displacement equations. Computational applications cover locally-conical and three-dimensional solutions for the wing-rock simulation and its control.

  7. A Study of Flow Separation in Transonic Flow Using Inviscid and Viscous Computational Fluid Dynamics (CFD) Schemes

    NASA Technical Reports Server (NTRS)

    Rhodes, J. A.; Tiwari, S. N.; Vonlavante, E.

    1988-01-01

    A comparison of flow separation in transonic flows is made using various computational schemes which solve the Euler and the Navier-Stokes equations of fluid mechanics. The flows examined are computed using several simple two-dimensional configurations including a backward facing step and a bump in a channel. Comparison of the results obtained using shock fitting and flux vector splitting methods are presented and the results obtained using the Euler codes are compared to results on the same configurations using a code which solves the Navier-Stokes equations.

  8. The block adaptive multigrid method applied to the solution of the Euler equations

    NASA Technical Reports Server (NTRS)

    Pantelelis, Nikos

    1993-01-01

    In the present study, a scheme capable of solving very fast and robust complex nonlinear systems of equations is presented. The Block Adaptive Multigrid (BAM) solution method offers multigrid acceleration and adaptive grid refinement based on the prediction of the solution error. The proposed solution method was used with an implicit upwind Euler solver for the solution of complex transonic flows around airfoils. Very fast results were obtained (18-fold acceleration of the solution) using one fourth of the volumes of a global grid with the same solution accuracy for two test cases.

  9. Computation of Large-Scale Structure Jet Noise Sources With Weak Nonlinear Effects Using Linear Euler

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Hixon, Ray; Mankbadi, Reda R.

    2003-01-01

    An approximate technique is presented for the prediction of the large-scale turbulent structure sound source in a supersonic jet. A linearized Euler equations code is used to solve for the flow disturbances within and near a jet with a given mean flow. Assuming a normal mode composition for the wave-like disturbances, the linear radial profiles are used in an integration of the Navier-Stokes equations. This results in a set of ordinary differential equations representing the weakly nonlinear self-interactions of the modes along with their interaction with the mean flow. Solutions are then used to correct the amplitude of the disturbances that represent the source of large-scale turbulent structure sound in the jet.

  10. A finite element approach for solution of the 3D Euler equations

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Ramakrishnan, R.; Dechaumphai, P.

    1986-01-01

    Prediction of thermal deformations and stresses has prime importance in the design of the next generation of high speed flight vehicles. Aerothermal load computations for complex three-dimensional shapes necessitate development of procedures to solve the full Navier-Stokes equations. This paper details the development of a three-dimensional inviscid flow approach which can be extended for three-dimensional viscous flows. A finite element formulation, based on a Taylor series expansion in time, is employed to solve the compressible Euler equations. Model generation and results display are done using a commercially available program, PATRAN, and vectorizing strategies are incorporated to ensure computational efficiency. Sample problems are presented to demonstrate the validity of the approach for analyzing high speed compressible flows.

  11. Progress and supercomputing in computational fluid dynamics; Proceedings of U.S.-Israel Workshop, Jerusalem, Israel, December 1984

    NASA Technical Reports Server (NTRS)

    Murman, E. M. (Editor); Abarbanel, S. S. (Editor)

    1985-01-01

    Current developments and future trends in the application of supercomputers to computational fluid dynamics are discussed in reviews and reports. Topics examined include algorithm development for personal-size supercomputers, a multiblock three-dimensional Euler code for out-of-core and multiprocessor calculations, simulation of compressible inviscid and viscous flow, high-resolution solutions of the Euler equations for vortex flows, algorithms for the Navier-Stokes equations, and viscous-flow simulation by FEM and related techniques. Consideration is given to marching iterative methods for the parabolized and thin-layer Navier-Stokes equations, multigrid solutions to quasi-elliptic schemes, secondary instability of free shear flows, simulation of turbulent flow, and problems connected with weather prediction.

  12. A new uniformly valid asymptotic integration algorithm for elasto-plastic creep and unified viscoplastic theories including continuum damage

    NASA Technical Reports Server (NTRS)

    Chulya, Abhisak; Walker, Kevin P.

    1991-01-01

    A new scheme to integrate a system of stiff differential equations for both the elasto-plastic creep and the unified viscoplastic theories is presented. The method has high stability, allows large time increments, and is implicit and iterative. It is suitable for use with continuum damage theories. The scheme was incorporated into MARC, a commercial finite element code through a user subroutine called HYPELA. Results from numerical problems under complex loading histories are presented for both small and large scale analysis. To demonstrate the scheme's accuracy and efficiency, comparisons to a self-adaptive forward Euler method are made.

  13. A new uniformly valid asymptotic integration algorithm for elasto-plastic-creep and unified viscoplastic theories including continuum damage

    NASA Technical Reports Server (NTRS)

    Chulya, A.; Walker, K. P.

    1989-01-01

    A new scheme to integrate a system of stiff differential equations for both the elasto-plastic creep and the unified viscoplastic theories is presented. The method has high stability, allows large time increments, and is implicit and iterative. It is suitable for use with continuum damage theories. The scheme was incorporated into MARC, a commercial finite element code through a user subroutine called HYPELA. Results from numerical problems under complex loading histories are presented for both small and large scale analysis. To demonstrate the scheme's accuracy and efficiency, comparisons to a self-adaptive forward Euler method are made.

  14. Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows

    NASA Technical Reports Server (NTRS)

    Sjoegreen, Bjoern; Yee, Helen C.; Mansour, Nagi (Technical Monitor)

    2002-01-01

    Accurate numerical simulations of complex multiscale compressible viscous flows, especially high speed turbulence combustion and acoustics, demand high order schemes with adaptive numerical dissipation controls. Standard high resolution shock-capturing methods are too dissipative to capture the small scales and/or long-time wave propagations without extreme grid refinements and small time steps. An integrated approach for the control of numerical dissipation in high order schemes for the compressible Euler and Navier-Stokes equations has been developed and verified by the authors and collaborators. These schemes are suitable for the problems in question. Basically, the scheme consists of sixth-order or higher non-dissipative spatial difference operators as the base scheme. To control the amount of numerical dissipation, multiresolution wavelets are used as sensors to adaptively limit the amount and to aid the selection and/or blending of the appropriate types of numerical dissipation to be used. Magnetohydrodynamics (MHD) waves play a key role in drag reduction in highly maneuverable high speed combat aircraft, in space weather forecasting, and in the understanding of the dynamics of the evolution of our solar system and the main sequence stars. Although there exist a few well-studied second and third-order high-resolution shock-capturing schemes for the MHD in the literature, these schemes are too diffusive and not practical for turbulence/combustion MHD flows. On the other hand, extension of higher than third-order high-resolution schemes to the MHD system of equations is not straightforward. Unlike the hydrodynamic equations, the inviscid MHD system is non-strictly hyperbolic with non-convex fluxes. The wave structures and shock types are different from their hydrodynamic counterparts. Many of the non-traditional hydrodynamic shocks are not fully understood. Consequently, reliable and highly accurate numerical schemes for multiscale MHD equations pose a great challenge to algorithm development. In addition, controlling the numerical error of the divergence free condition of the magnetic fields for high order methods has been a stumbling block. Lower order methods are not practical for the astrophysical problems in question. We propose to extend our hydrodynamics schemes to the MHD equations with several desired properties over commonly used MHD schemes.

  15. MUSTA fluxes for systems of conservation laws

    NASA Astrophysics Data System (ADS)

    Toro, E. F.; Titarev, V. A.

    2006-08-01

    This paper is about numerical fluxes for hyperbolic systems and we first present a numerical flux, called GFORCE, that is a weighted average of the Lax-Friedrichs and Lax-Wendroff fluxes. For the linear advection equation with constant coefficient, the new flux reduces identically to that of the Godunov first-order upwind method. Then we incorporate GFORCE in the framework of the MUSTA approach [E.F. Toro, Multi-Stage Predictor-Corrector Fluxes for Hyperbolic Equations. Technical Report NI03037-NPA, Isaac Newton Institute for Mathematical Sciences, University of Cambridge, UK, 17th June, 2003], resulting in a version that we call GMUSTA. For non-linear systems this gives results that are comparable to those of the Godunov method in conjunction with the exact Riemann solver or complete approximate Riemann solvers, noting however that in our approach, the solution of the Riemann problem in the conventional sense is avoided. Both the GFORCE and GMUSTA fluxes are extended to multi-dimensional non-linear systems in a straightforward unsplit manner, resulting in linearly stable schemes that have the same stability regions as the straightforward multi-dimensional extension of Godunov's method. The methods are applicable to general meshes. The schemes of this paper share with the family of centred methods the common properties of being simple and applicable to a large class of hyperbolic systems, but the schemes of this paper are distinctly more accurate. Finally, we proceed to the practical implementation of our numerical fluxes in the framework of high-order finite volume WENO methods for multi-dimensional non-linear hyperbolic systems. Numerical results are presented for the Euler equations and for the equations of magnetohydrodynamics.

  16. Estimation of the Thermal Process in the Honeycomb Panel by a Monte Carlo Method

    NASA Astrophysics Data System (ADS)

    Gusev, S. A.; Nikolaev, V. N.

    2018-01-01

    A new Monte Carlo method for estimating the thermal state of the heat insulation containing honeycomb panels is proposed in the paper. The heat transfer in the honeycomb panel is described by a boundary value problem for a parabolic equation with discontinuous diffusion coefficient and boundary conditions of the third kind. To obtain an approximate solution, it is proposed to use the smoothing of the diffusion coefficient. After that, the obtained problem is solved on the basis of the probability representation. The probability representation is the expectation of the functional of the diffusion process corresponding to the boundary value problem. The process of solving the problem is reduced to numerical statistical modelling of a large number of trajectories of the diffusion process corresponding to the parabolic problem. It was used earlier the Euler method for this object, but that requires a large computational effort. In this paper the method is modified by using combination of the Euler and the random walk on moving spheres methods. The new approach allows us to significantly reduce the computation costs.

  17. Mode Identification of High-Amplitude Pressure Waves in Liquid Rocket Engines

    NASA Astrophysics Data System (ADS)

    EBRAHIMI, R.; MAZAHERI, K.; GHAFOURIAN, A.

    2000-01-01

    Identification of existing instability modes from experimental pressure measurements of rocket engines is difficult, specially when steep waves are present. Actual pressure waves are often non-linear and include steep shocks followed by gradual expansions. It is generally believed that interaction of these non-linear waves is difficult to analyze. A method of mode identification is introduced. After presumption of constituent modes, they are superposed by using a standard finite difference scheme for solution of the classical wave equation. Waves are numerically produced at each end of the combustion tube with different wavelengths, amplitudes, and phases with respect to each other. Pressure amplitude histories and phase diagrams along the tube are computed. To determine the validity of the presented method for steep non-linear waves, the Euler equations are numerically solved for non-linear waves, and negligible interactions between these waves are observed. To show the applicability of this method, other's experimental results in which modes were identified are used. Results indicate that this simple method can be used in analyzing complicated pressure signal measurements.

  18. Finite element formulation of viscoelastic sandwich beams using fractional derivative operators

    NASA Astrophysics Data System (ADS)

    Galucio, A. C.; Deü, J.-F.; Ohayon, R.

    This paper presents a finite element formulation for transient dynamic analysis of sandwich beams with embedded viscoelastic material using fractional derivative constitutive equations. The sandwich configuration is composed of a viscoelastic core (based on Timoshenko theory) sandwiched between elastic faces (based on Euler-Bernoulli assumptions). The viscoelastic model used to describe the behavior of the core is a four-parameter fractional derivative model. Concerning the parameter identification, a strategy to estimate the fractional order of the time derivative and the relaxation time is outlined. Curve-fitting aspects are focused, showing a good agreement with experimental data. In order to implement the viscoelastic model into the finite element formulation, the Grünwald definition of the fractional operator is employed. To solve the equation of motion, a direct time integration method based on the implicit Newmark scheme is used. One of the particularities of the proposed algorithm lies in the storage of displacement history only, reducing considerably the numerical efforts related to the non-locality of fractional operators. After validations, numerical applications are presented in order to analyze truncation effects (fading memory phenomena) and solution convergence aspects.

  19. Alternate Solution to Generalized Bernoulli Equations via an Integrating Factor: An Exact Differential Equation Approach

    ERIC Educational Resources Information Center

    Tisdell, C. C.

    2017-01-01

    Solution methods to exact differential equations via integrating factors have a rich history dating back to Euler (1740) and the ideas enjoy applications to thermodynamics and electromagnetism. Recently, Azevedo and Valentino presented an analysis of the generalized Bernoulli equation, constructing a general solution by linearizing the problem…

  20. Investigation of instabilities affecting detonations: Improving the resolution using block-structured adaptive mesh refinement

    NASA Astrophysics Data System (ADS)

    Ravindran, Prashaanth

    The unstable nature of detonation waves is a result of the critical relationship between the hydrodynamic shock and the chemical reactions sustaining the shock. A perturbative analysis of the critical point is quite challenging due to the multiple spatio-temporal scales involved along with the non-linear nature of the shock-reaction mechanism. The author's research attempts to provide detailed resolution of the instabilities at the shock front. Another key aspect of the present research is to develop an understanding of the causality between the non-linear dynamics of the front and the eventual breakdown of the sub-structures. An accurate numerical simulation of detonation waves requires a very efficient solution of the Euler equations in conservation form with detailed, non-equilibrium chemistry. The difference in the flow and reaction length scales results in very stiff source terms, requiring the problem to be solved with adaptive mesh refinement. For this purpose, Berger-Colella's block-structured adaptive mesh refinement (AMR) strategy has been developed and applied to time-explicit finite volume methods. The block-structured technique uses a hierarchy of parent-child sub-grids, integrated recursively over time. One novel approach to partition the problem within a large supercomputer was the use of modified Peano-Hilbert space filling curves. The AMR framework was merged with CLAWPACK, a package providing finite volume numerical methods tailored for wave-propagation problems. The stiffness problem is bypassed by using a 1st order Godunov or a 2nd order Strang splitting technique, where the flow variables and source terms are integrated independently. A linearly explicit fourth-order Runge-Kutta integrator is used for the flow, and an ODE solver was used to overcome the numerical stiffness. Second-order spatial resolution is obtained by using a second-order Roe-HLL scheme with the inclusion of numerical viscosity to stabilize the solution near the discontinuity. The scheme is made monotonic by coupling the van Albada limiter with the higher order MUSCL-Hancock extrapolation to the primitive variables of the Euler equations. Simulations using simplified single-step and detailed chemical kinetics have been provided. In detonations with simplified chemistry, the one-dimensional longitudinal instabilities have been simulated, and a mechanism forcing the collapse of the period-doubling modes was identified. The transverse instabilities were simulated for a 2D detonation, and the corresponding transverse wave was shown to be unstable with a periodic normal mode. Also, a Floquet analysis was carried out with the three-dimensional inviscid Euler equations for a longitudinally stable case. Using domain decomposition to identify the global eigenfunctions corresponding to the two least stable eigenvalues, it was found that the bifurcation of limit cycles in three dimensions follows a period doubling process similar to that proven to occur in one dimension and it is because of transverse instabilities. For detonations with detailed chemistry, the one dimensional simulations for two cases were presented and validated with experimental results. The 2D simulation shows the re-initiation of the triple point leading to the formation of cellular structure of the detonation wave. Some of the important features in the front were identified and explained.

Top