Sample records for equations modeling swelling

  1. A novel multiphysic model for simulation of swelling equilibrium of ionized thermal-stimulus responsive hydrogels

    NASA Astrophysics Data System (ADS)

    Li, Hua; Wang, Xiaogui; Yan, Guoping; Lam, K. Y.; Cheng, Sixue; Zou, Tao; Zhuo, Renxi

    2005-03-01

    In this paper, a novel multiphysic mathematical model is developed for simulation of swelling equilibrium of ionized temperature sensitive hydrogels with the volume phase transition, and it is termed the multi-effect-coupling thermal-stimulus (MECtherm) model. This model consists of the steady-state Nernst-Planck equation, Poisson equation and swelling equilibrium governing equation based on the Flory's mean field theory, in which two types of polymer-solvent interaction parameters, as the functions of temperature and polymer-network volume fraction, are specified with or without consideration of the hydrogen bond interaction. In order to examine the MECtherm model consisting of nonlinear partial differential equations, a meshless Hermite-Cloud method is used for numerical solution of one-dimensional swelling equilibrium of thermal-stimulus responsive hydrogels immersed in a bathing solution. The computed results are in very good agreements with experimental data for the variation of volume swelling ratio with temperature. The influences of the salt concentration and initial fixed-charge density are discussed in detail on the variations of volume swelling ratio of hydrogels, mobile ion concentrations and electric potential of both interior hydrogels and exterior bathing solution.

  2. Fractional cable equation for general geometry: A model of axons with swellings and anomalous diffusion.

    PubMed

    López-Sánchez, Erick J; Romero, Juan M; Yépez-Martínez, Huitzilin

    2017-09-01

    Different experimental studies have reported anomalous diffusion in brain tissues and notably this anomalous diffusion is expressed through fractional derivatives. Axons are important to understand neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Indeed, abnormal accumulation of proteins and organelles in axons is a hallmark of these diseases. The diffusion in the axons can become anomalous as a result of this abnormality. In this case the voltage propagation in axons is affected. Another hallmark of different neurodegenerative diseases is given by discrete swellings along the axon. In order to model the voltage propagation in axons with anomalous diffusion and swellings, in this paper we propose a fractional cable equation for a general geometry. This generalized equation depends on fractional parameters and geometric quantities such as the curvature and torsion of the cable. For a cable with a constant radius we show that the voltage decreases when the fractional effect increases. In cables with swellings we find that when the fractional effect or the swelling radius increases, the voltage decreases. Similar behavior is obtained when the number of swellings and the fractional effect increase. Moreover, we find that when the radius swelling (or the number of swellings) and the fractional effect increase at the same time, the voltage dramatically decreases.

  3. Fractional cable equation for general geometry: A model of axons with swellings and anomalous diffusion

    NASA Astrophysics Data System (ADS)

    López-Sánchez, Erick J.; Romero, Juan M.; Yépez-Martínez, Huitzilin

    2017-09-01

    Different experimental studies have reported anomalous diffusion in brain tissues and notably this anomalous diffusion is expressed through fractional derivatives. Axons are important to understand neurodegenerative diseases such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. Indeed, abnormal accumulation of proteins and organelles in axons is a hallmark of these diseases. The diffusion in the axons can become anomalous as a result of this abnormality. In this case the voltage propagation in axons is affected. Another hallmark of different neurodegenerative diseases is given by discrete swellings along the axon. In order to model the voltage propagation in axons with anomalous diffusion and swellings, in this paper we propose a fractional cable equation for a general geometry. This generalized equation depends on fractional parameters and geometric quantities such as the curvature and torsion of the cable. For a cable with a constant radius we show that the voltage decreases when the fractional effect increases. In cables with swellings we find that when the fractional effect or the swelling radius increases, the voltage decreases. Similar behavior is obtained when the number of swellings and the fractional effect increase. Moreover, we find that when the radius swelling (or the number of swellings) and the fractional effect increase at the same time, the voltage dramatically decreases.

  4. Modelling of wicking and moisture interactions of flax and viscose fibres.

    PubMed

    Stuart, T; McCall, R D; Sharma, H S S; Lyons, G

    2015-06-05

    Methods for assessing the wicking properties of individual fibre bundles have been developed from models based on the original Washburn equation (WE) and the modified Washburn equation (MWE), which also accounts for swelling. Both models gave indication of differences in wicking properties of flax and the viscose fibres, though MWE gave additional information that could be interpreted in terms of the physical model. Wicking of the viscose fibres is mainly via inter-fibre capillaries while that of flax is a combination of inter-fibre capillaries and lumen present in some elementary fibres. The degree of swelling and associated rotation of flax fibre in a vapour pressure range of 1-6torr were monitored using an environmental scanning electron microscope (ESEM). Viscose fibre exhibited swelling under the same conditions but did not rotate. The two techniques highlighted different mechanisms of wicking which can be used for monitoring moisture uptake/swelling of treated fibres for fabrication of composites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. An upscaling method and a numerical analysis of swelling/shrinking processes in a compacted bentonite/sand mixture

    NASA Astrophysics Data System (ADS)

    Xie, M.; Agus, S. S.; Schanz, T.; Kolditz, O.

    2004-12-01

    This paper presents an upscaling concept of swelling/shrinking processes of a compacted bentonite/sand mixture, which also applies to swelling of porous media in general. A constitutive approach for highly compacted bentonite/sand mixture is developed accordingly. The concept is based on the diffuse double layer theory and connects microstructural properties of the bentonite as well as chemical properties of the pore fluid with swelling potential. Main factors influencing the swelling potential of bentonite, i.e. variation of water content, dry density, chemical composition of pore fluid, as well as the microstructures and the amount of swelling minerals are taken into account. According to the proposed model, porosity is divided into interparticle and interlayer porosity. Swelling is the potential of interlayer porosity increase, which reveals itself as volume change in the case of free expansion, or turns to be swelling pressure in the case of constrained swelling. The constitutive equations for swelling/shrinking are implemented in the software GeoSys/RockFlow as a new chemo-hydro-mechanical model, which is able to simulate isothermal multiphase flow in bentonite. Details of the mathematical and numerical multiphase flow formulations, as well as the code implementation are described. The proposed model is verified using experimental data of tests on a highly compacted bentonite/sand mixture. Comparison of the 1D modelling results with the experimental data evidences the capability of the proposed model to satisfactorily predict free swelling of the material under investigation. Copyright

  6. Modeling multidomain hydraulic properties of shrink-swell soils

    NASA Astrophysics Data System (ADS)

    Stewart, Ryan D.; Abou Najm, Majdi R.; Rupp, David E.; Selker, John S.

    2016-10-01

    Shrink-swell soils crack and become compacted as they dry, changing properties such as bulk density and hydraulic conductivity. Multidomain models divide soil into independent realms that allow soil cracks to be incorporated into classical flow and transport models. Incongruously, most applications of multidomain models assume that the porosity distributions, bulk density, and effective saturated hydraulic conductivity of the soil are constant. This study builds on a recently derived soil shrinkage model to develop a new multidomain, dual-permeability model that can accurately predict variations in soil hydraulic properties due to dynamic changes in crack size and connectivity. The model only requires estimates of soil gravimetric water content and a minimal set of parameters, all of which can be determined using laboratory and/or field measurements. We apply the model to eight clayey soils, and demonstrate its ability to quantify variations in volumetric water content (as can be determined during measurement of a soil water characteristic curve) and transient saturated hydraulic conductivity, Ks (as can be measured using infiltration tests). The proposed model is able to capture observed variations in Ks of one to more than two orders of magnitude. In contrast, other dual-permeability models assume that Ks is constant, resulting in the potential for large error when predicting water movement through shrink-swell soils. Overall, the multidomain model presented here successfully quantifies fluctuations in the hydraulic properties of shrink-swell soil matrices, and are suitable for use in physical flow and transport models based on Darcy's Law, the Richards Equation, and the advection-dispersion equation.

  7. Geophysical aspects of underground fluid dynamics and mineral transformation process

    NASA Astrophysics Data System (ADS)

    Khramchenkov, Maxim; Khramchenkov, Eduard

    2014-05-01

    The description of processes of mass exchange between fluid and poly-minerals material in porous media from various kinds of rocks (primarily, sedimentary rocks) have been examined. It was shown that in some important cases there is a storage equation of non-linear diffusion equation type. In addition, process of filtration in un-swelling soils, swelling porous rocks and coupled process of consolidation and chemical interaction between fluid and particles material were considered. In the latter case equations of physical-chemical mechanics of conservation of mass for fluid and particles material were used. As it is well known, the mechanics of porous media is theoretical basis of such branches of science as rock mechanics, soil physics and so on. But at the same moment some complex processes in the geosystems lacks full theoretical description. The example of such processes is metamorphosis of rocks and correspondent variations of stress-strain state. In such processes chemical transformation of solid and fluid components, heat release and absorption, phase transitions, rock destruction occurs. Extensive usage of computational resources in limits of traditional models of the mechanics of porous media cannot guarantee full correctness of obtained models and results. The process of rocks consolidation which happens due to filtration of underground fluids is described from the position of rock mechanics. As an additional impact, let us consider the porous media consolidating under the weight of overlying rock with coupled complex geological processes, as a continuous porous medium of variable mass. Problems of obtaining of correct storage equations for coupled processes of consolidation and mass exchange between underground fluid and skeleton material are often met in catagenesi processes description. The example of such processes is metamorphosis of rocks and correspondent variations of stress-strain state. In such processes chemical transformation of solid and fluid components, heat release and absorption, phase transitions, rock destruction occurs. Extensive usage of computational resources in limits of traditional models of the mechanics of porous media cannot guarantee full correctness of obtained models and results. The present work is dedicated to the retrieval of new ways to formulate and construct such models. It was shown that in some important cases there is a governing equation of non-linear diffusion equation type (well-known Fisher equation). In addition, some geophysical aspects of filtration process in usual non-swelling soils, swelling porous rocks and coupled process of consolidation and chemical interaction between fluid and skeleton material, including earth quakes, are considered.

  8. Assessment of swelling-activated Cl- channels using the halide-sensitive fluorescent indicator 6-methoxy-N-(3-sulfopropyl)quinolinium.

    PubMed Central

    Srinivas, S P; Bonanno, J A; Hughes, B A

    1998-01-01

    This study describes a quantitative analysis of the enhancement in anion permeability through swelling-activated Cl- channels, using the halide-sensitive fluorescent dye 6-methoxy-N-(3-sulfopropyl)quinolinium (SPQ). Cultured bovine corneal endothelial monolayers perfused with NO3- Ringer's were exposed to I- pulses under isosmotic and, subsequently, hyposmotic conditions. Changes in SPQ fluorescence due to I- influx were significantly faster under hyposmotic than under isosmotic conditions. Plasma membrane potential (Em) was -58 and -32 mV under isosmotic and hyposmotic conditions, respectively. An expression for the ratio of I- permeability under hyposmotic condition to that under isosmotic condition (termed enhancement ratio or ER) was derived by combining the Stern-Volmer equation (for modeling SPQ fluorescence quenching by I-) and the Goldman flux equation (for modeling the electrodiffusive unidirectional I- influx). The fluorescence values and slopes at the inflection points of the SPQ fluorescence profile during I- influx, together with Em under isosmotic and hyposmotic conditions, were used to calculate ER. Based on this approach, endothelial cells were shown to express swelling-activated Cl- channels with ER = 4.9 when the hyposmotic shock was 110 +/- 10 mosM. These results illustrate the application of the SPQ-based method for quantitative characterization of swelling-activated Cl- channels in monolayers. PMID:9649372

  9. Modeling of the capillary wicking of flax fibers by considering the effects of fiber swelling and liquid absorption.

    PubMed

    Testoni, Guilherme Apolinario; Kim, Sihwan; Pisupati, Anurag; Park, Chung Hae

    2018-09-01

    We propose a new model for the capillary rise of liquid in flax fibers whose diameter is changed by liquid absorption. Liquid absorption into the flax fibers is taken into account in a new modified Washburn equation by considering the mass of the liquid absorbed inside the fibers as well as that imbibed between the fibers. The change of permeability and hydraulic radius of pores in a fibrous medium due to the fiber swelling is modeled by a statistical approach considering a non-uniform distribution of flax fiber diameter. By comparisons between capillary rise test results and modeling results, we prove the validity of the proposed modified Washburn model to take into account the effects from fiber swelling and liquid absorption on the decrease of capillary rise velocity. The experimental observation of long-term capillary rise tests show that the swelling behavior of the fibers highly packed in a closed volume and its influence on the capillary wicking are different from those of an individual single fiber in a free space. The current approach was useful to characterize the swelling of fibers highly packed in a closed volume and its influence of the long-term behavior of capillary wicking. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. The analytical solution for drug delivery system with nonhomogeneous moving boundary condition

    NASA Astrophysics Data System (ADS)

    Saudi, Muhamad Hakimi; Mahali, Shalela Mohd; Harun, Fatimah Noor

    2017-08-01

    This paper discusses the development and the analytical solution of a mathematical model based on drug release system from a swelling delivery device. The mathematical model is represented by a one-dimensional advection-diffusion equation with nonhomogeneous moving boundary condition. The solution procedures consist of three major steps. Firstly, the application of steady state solution method, which is used to transform the nonhomogeneous moving boundary condition to homogeneous boundary condition. Secondly, the application of the Landau transformation technique that gives a significant impact in removing the advection term in the system of equation and transforming the moving boundary condition to a fixed boundary condition. Thirdly, the used of separation of variables method to find the analytical solution for the resulted initial boundary value problem. The results show that the swelling rate of delivery device and drug release rate is influenced by value of growth factor r.

  11. Acute Hyperglycemia Does Not Affect Brain Swelling or Infarction Volume After Middle Cerebral Artery Occlusion in Rats.

    PubMed

    McBride, Devin W; Matei, Nathanael; Câmara, Justin R; Louis, Jean-Sébastien; Oudin, Guillaume; Walker, Corentin; Adam, Loic; Liang, Xiping; Hu, Qin; Tang, Jiping; Zhang, John H

    2016-01-01

    Stroke disproportionally affects diabetic and hyperglycemic patients with increased incidence and is associated with higher morbidity and mortality due to brain swelling. In this study, the intraluminal suture middle cerebral artery occlusion (MCAO) model was used to examine the effects of blood glucose on brain swelling and infarct volume in acutely hyperglycemic rats and normo-glycemic controls. Fifty-four rats were distributed into normo-glycemic sham surgery, hyperglycemic sham surgery, normo-glycemic MCAO, and hyperglycemic MCAO. To induce hyperglycemia, 15 min before MCAO surgery, animals were injected with 50 % dextrose. Animals were subjected to 90 min of MCAO and sacrificed 24 h after reperfusion for hemispheric brain swelling and infarct volume calculations using standard equations. While normo-glycemic and hyperglycemic animals after MCAO presented with significantly higher brain swelling and larger infarcts than their respective controls, no statistical difference was observed for either brain swelling or infarct volume between normo-glycemic shams and hyperglycemic shams or normo-glycemic MCAO animals and hyperglycemic MCAO animals. The findings of this study suggest that blood glucose does not have any significant effect on hemispheric brain swelling or infarct volume after MCAO in rats.

  12. Cable equation for general geometry

    NASA Astrophysics Data System (ADS)

    López-Sánchez, Erick J.; Romero, Juan M.

    2017-02-01

    The cable equation describes the voltage in a straight cylindrical cable, and this model has been employed to model electrical potential in dendrites and axons. However, sometimes this equation might give incorrect predictions for some realistic geometries, in particular when the radius of the cable changes significantly. Cables with a nonconstant radius are important for some phenomena, for example, discrete swellings along the axons appear in neurodegenerative diseases such as Alzheimers, Parkinsons, human immunodeficiency virus associated dementia, and multiple sclerosis. In this paper, using the Frenet-Serret frame, we propose a generalized cable equation for a general cable geometry. This generalized equation depends on geometric quantities such as the curvature and torsion of the cable. We show that when the cable has a constant circular cross section, the first fundamental form of the cable can be simplified and the generalized cable equation depends on neither the curvature nor the torsion of the cable. Additionally, we find an exact solution for an ideal cable which has a particular variable circular cross section and zero curvature. For this case we show that when the cross section of the cable increases the voltage decreases. Inspired by this ideal case, we rewrite the generalized cable equation as a diffusion equation with a source term generated by the cable geometry. This source term depends on the cable cross-sectional area and its derivates. In addition, we study different cables with swelling and provide their numerical solutions. The numerical solutions show that when the cross section of the cable has abrupt changes, its voltage is smaller than the voltage in the cylindrical cable. Furthermore, these numerical solutions show that the voltage can be affected by geometrical inhomogeneities on the cable.

  13. Evolution of midplate hotspot swells: Numerical solutions

    NASA Technical Reports Server (NTRS)

    Liu, Mian; Chase, Clement G.

    1990-01-01

    The evolution of midplate hotspot swells on an oceanic plate moving over a hot, upwelling mantle plume is numerically simulated. The plume supplies a Gaussian-shaped thermal perturbation and thermally-induced dynamic support. The lithosphere is treated as a thermal boundary layer with a strongly temperature-dependent viscosity. The two fundamental mechanisms of transferring heat, conduction and convection, during the interaction of the lithosphere with the mantle plume are considered. The transient heat transfer equations, with boundary conditions varying in both time and space, are solved in cylindrical coordinates using the finite difference ADI (alternating direction implicit) method on a 100 x 100 grid. The topography, geoid anomaly, and heat flow anomaly of the Hawaiian swell and the Bermuda rise are used to constrain the models. Results confirm the conclusion of previous works that the Hawaiian swell can not be explained by conductive heating alone, even if extremely high thermal perturbation is allowed. On the other hand, the model of convective thinning predicts successfully the topography, geoid anomaly, and the heat flow anomaly around the Hawaiian islands, as well as the changes in the topography and anomalous heat flow along the Hawaiian volcanic chain.

  14. Evaluation of the swelling behaviour of iota-carrageenan in monolithic matrix tablets.

    PubMed

    Kelemen, András; Buchholcz, Gyula; Sovány, Tamás; Pintye-Hódi, Klára

    2015-08-10

    The swelling properties of monolithic matrix tablets containing iota-carrageenan were studied at different pH values, with measurements of the swelling force and characterization of the profile of the swelling curve. The swelling force meter was linked to a PC by an RS232 cable and the measured data were evaluated with self-developed software. The monitor displayed the swelling force vs. time curve with the important parameters, which could be fitted with an Analysis menu. In the case of iota-carrageenan matrix tablets, it was concluded that the pH and the pressure did not influence the swelling process, and the first section of the swelling curve could be fitted by the Korsmeyer-Peppas equation. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Numerical Simulation of Rheological, Chemical and Hydromechanical Processes of Thrombolysis

    NASA Astrophysics Data System (ADS)

    Khramchenkov, E.; Khramchenkov, M.

    2015-04-01

    Mathematical model of clot lysis in blood vessels is developed on the basis of equations of convection-diffusion. Fibrin of the clot is considered stationary solid phase, and plasminogen, plasmin and plasminogen-activators - as dissolved fluid phases. As a result of numerical solution of the model predictions of lysis process are gained. Important influence of clot swelling on the process of lysis is revealed.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Linyun; Mei, Zhi -Gang; Kim, Yeon Soo

    A mesoscale model is developed by integrating the rate theory and phase-field models and is used to study the fission-induced recrystallization in U-7Mo alloy. The rate theory model is used to predict the dislocation density and the recrystallization nuclei density due to irradiation. The predicted fission rate and temperature dependences of the dislocation density are in good agreement with experimental measurements. This information is used as input for the multiphase phase-field model to investigate the fission-induced recrystallization kinetics. The simulated recrystallization volume fraction and bubble induced swelling agree well with experimental data. The effects of the fission rate, initial grainmore » size, and grain morphology on the recrystallization kinetics are discussed based on an analysis of recrystallization growth rate using the modified Avrami equation. Here, we conclude that the initial microstructure of the U-Mo fuels, especially the grain size, can be used to effectively control the rate of fission-induced recrystallization and therefore swelling.« less

  17. Characterization of poly(vinyl acetate) based floating matrix tablets.

    PubMed

    Strübing, Sandra; Metz, Hendrik; Mäder, Karsten

    2008-03-03

    Floating Kollidon SR matrix tablets containing Propranolol HCl were developed and characterized with respect to drug release characteristics and floating strength. Kollidon SR was able to delay Propranolol HCl release efficiently. Drug release kinetics was evaluated using the Korsmeyer-Peppas model and found to be governed by Fickian diffusion. Tablet floating started immediately and continued for 24 h. It was possible to monitor the floating strength of the matrix devices using a simple experimental setup. Floating strength was related to Kollidon SR level with improved floating characteristics for samples with a high polymer/drug ratio. Swelling characteristics of the tablets were analyzed by applying the equation according to Therien-Aubin et al. The influence of the polymer content on swelling characteristics was found to be only marginal. Furthermore, the new method of benchtop MRI was introduced to study the water diffusion and swelling behaviour non-invasively and continuously.

  18. Modeling the effects of pH and ionic strength on swelling of anionic polyelectrolyte gels

    NASA Astrophysics Data System (ADS)

    Drozdov, A. D.; deClaville Christiansen, J.

    2015-07-01

    A constitutive model is developed for the elastic response of an anionic polyelectrolyte gel under swelling in water with an arbitrary pH and an arbitrary molar fraction of dissolved monovalent salt. A gel is treated as a three-phase medium consisting of a solid phase (polymer network), solvent (water), and solute (mobile ions). Transport of solvent and solute is thought of as their diffusion through the polymer network accelerated by an electric field formed by mobile and fixed ions and accompanied by chemical reactions (dissociation of functional groups attached to polymer chains and formation of ion pairs between bound charges and mobile counter-ions). Constitutive equations are derived by means of the free energy imbalance inequality for an arbitrary three-dimensional deformation with finite strains. These relations are applied to analyze equilibrium swelling diagrams on poly(acrylic acid) gel, poly(methacrylic acid) gel, and three composite hydrogels under water uptake in a bath (i) with a fixed molar fraction of salt and varied pH, and (ii) with a fixed pH and varied molar fraction of salt. To validate the ability of the model to predict observations quantitatively, material constants are found by matching swelling curves under one type of experimental conditions and results of simulation are compared with experimental data in the other type of tests.

  19. Multicomponent, Multiphase Thermodynamics of Swelling Porous Media With Electroquasistatics. 1. Macroscale Field Equations

    DTIC Science & Technology

    2001-08-08

    entropy inequality with independent variables consistent with several natural systems and apply the resulting constitutive theory near equi- librium...1973. [3] L. S. Bennethum and J. H. Cushman. Multiscale , hybrid mixture theory for swelling systems - I: Balance laws. International Journal of...Engineering Science, 34(2):125–145, 1996. [4] L. S. Bennethum and J. H. Cushman. Multiscale , hybrid mixture theory for swelling systems - II: Constitutive

  20. Mesoscale model for fission-induced recrystallization in U-7Mo alloy

    DOE PAGES

    Liang, Linyun; Mei, Zhi -Gang; Kim, Yeon Soo; ...

    2016-08-09

    A mesoscale model is developed by integrating the rate theory and phase-field models and is used to study the fission-induced recrystallization in U-7Mo alloy. The rate theory model is used to predict the dislocation density and the recrystallization nuclei density due to irradiation. The predicted fission rate and temperature dependences of the dislocation density are in good agreement with experimental measurements. This information is used as input for the multiphase phase-field model to investigate the fission-induced recrystallization kinetics. The simulated recrystallization volume fraction and bubble induced swelling agree well with experimental data. The effects of the fission rate, initial grainmore » size, and grain morphology on the recrystallization kinetics are discussed based on an analysis of recrystallization growth rate using the modified Avrami equation. Here, we conclude that the initial microstructure of the U-Mo fuels, especially the grain size, can be used to effectively control the rate of fission-induced recrystallization and therefore swelling.« less

  1. Transient swelling behavior and drug delivery from a dissolving film deploying anti-HIV microbicide

    NASA Astrophysics Data System (ADS)

    Tasoglu, Savas; Katz, David F.; Szeri, Andrew J.

    2010-11-01

    Despite more than two decades of HIV vaccine research, there is still no efficacious HIV vaccine. Very recently, a research group has shown that a microbicide gel formulation of antiretroviral drug Tenofovir, significantly inhibits HIV transmission to women [1]. However, there is a widespread agreement that more effective and diverse drug delivery vehicles must be developed. In this setting, there is now great interest in developing different delivery vehicles such as vaginal rings, gels, and films. Here, we develop a model for transient fluid uptake and swelling behavior, and subsequent dissolution and drug deployment from a film containing anti-HIV microbicide. In the model, the polymer structural relaxation via water uptake is assumed to follow first order kinetics. In the case of a film loaded with an osmotically active solute, the kinetic equation is modified to account for the osmotic effect. The transport rate of solvent and solute within the matrix is characterized by a diffusion equation. After the matrix is relaxed to a specified concentration of solvent, lubrication theory and convective-diffusive transport are employed for flow of the liquefied matrix and drug dispersion respectively. [1] Karim, et al., Science, 2010.

  2. Effective equations governing an active poroelastic medium

    PubMed Central

    2017-01-01

    In this work, we consider the spatial homogenization of a coupled transport and fluid–structure interaction model, to the end of deriving a system of effective equations describing the flow, elastic deformation and transport in an active poroelastic medium. The ‘active’ nature of the material results from a morphoelastic response to a chemical stimulant, in which the growth time scale is strongly separated from other elastic time scales. The resulting effective model is broadly relevant to the study of biological tissue growth, geophysical flows (e.g. swelling in coals and clays) and a wide range of industrial applications (e.g. absorbant hygiene products). The key contribution of this work is the derivation of a system of homogenized partial differential equations describing macroscale growth, coupled to transport of solute, that explicitly incorporates details of the structure and dynamics of the microscopic system, and, moreover, admits finite growth and deformation at the pore scale. The resulting macroscale model comprises a Biot-type system, augmented with additional terms pertaining to growth, coupled to an advection–reaction–diffusion equation. The resultant system of effective equations is then compared with other recent models under a selection of appropriate simplifying asymptotic limits. PMID:28293138

  3. A simplified model for equilibrium and transient swelling of thermo-responsive gels.

    PubMed

    Drozdov, A D; deClaville Christiansen, J

    2017-11-01

    A simplified model is developed for the elastic response of thermo-responsive gels subjected to swelling under an arbitrary deformation with finite strains. The constitutive equations involve five adjustable parameters that are determined by fitting observations in equilibrium water uptake tests and T-jump transient tests on thin gel disks. Two scenarios for water release under heating are revealed by means of numerical simulation. When the final temperature in a T-jump test is below the volume-phase transition temperature, deswelling is characterized by smooth distribution of water molecules and small tensile stresses. When the final temperature exceeds the critical temperature, a gel disk is split into three regions (central part with a high concentration of water molecules and two domains near the boundaries with low water content) separated by sharp interfaces, whose propagation is accompanied by development of large (comparable with the elastic modulus) tensile stresses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Modelling chemo-hydro-mechanical behaviour of unsaturated clays: a feasibility study

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Boukpeti, N.; Li, X.; Collin, F.; Radu, J.-P.; Hueckel, T.; Charlier, R.

    2005-08-01

    Effective capabilities of combined chemo-elasto-plastic and unsaturated soil models to simulate chemo-hydro-mechanical (CHM) behaviour of clays are examined in numerical simulations through selected boundary value problems. The objective is to investigate the feasibility of approaching such complex material behaviour numerically by combining two existing models. The chemo-mechanical effects are described using the concept of chemical softening consisting of reduction of the pre-consolidation pressure proposed originally by Hueckel (Can. Geotech. J. 1992; 29:1071-1086; Int. J. Numer. Anal. Methods Geomech. 1997; 21:43-72). An additional chemical softening mechanism is considered, consisting in a decrease of cohesion with an increase in contaminant concentration. The influence of partial saturation on the constitutive behaviour is modelled following Barcelona basic model (BBM) formulation (Géotech. 1990; 40(3):405-430; Can. Geotech. J. 1992; 29:1013-1032).The equilibrium equations combined with the CHM constitutive relations, and the governing equations for flow of fluids and contaminant transport, are solved numerically using finite element. The emphasis is laid on understanding the role that the individual chemical effects such as chemo-elastic swelling, or chemo-plastic consolidation, or finally, chemical loss of cohesion have in the overall response of the soil mass. The numerical problems analysed concern the chemical effects in response to wetting of a clay specimen with an organic liquid in rigid wall consolidometer, during biaxial loading up to failure, and in response to fresh water influx during tunnel excavation in swelling clay.

  5. A coupled theory for chemically active and deformable solids with mass diffusion and heat conduction

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolong; Zhong, Zheng

    2017-10-01

    To analyse the frequently encountered thermo-chemo-mechanical problems in chemically active material applications, we develop a thermodynamically-consistent continuum theory of coupled deformation, mass diffusion, heat conduction and chemical reaction. Basic balance equations of force, mass and energy are presented at first, and then fully coupled constitutive laws interpreting multi-field interactions and evolving equations governing irreversible fluxes are constructed according to the energy dissipation inequality and the chemical kinetics. To consider the essential distinction between mass diffusion and chemical reactions in affecting free energy and dissipations of a highly coupled system, we regard both the concentrations of diffusive species and the extent of reaction as independent state variables. This new formulation then distinguishes between the energy contribution from the diffusive species entering the solid and that from the subsequent chemical reactions occurring among these species and the host solid, which not only interact with stresses or strains in different manners and on different time scales, but also induce different variations of solid microstructures and material properties. Taking advantage of this new description, we further establish a specialized isothermal model to predict precisely the transient chemo-mechanical response of a swelling solid with a proposed volumetric constraint that accounts for material incompressibility. Coupled kinetics is incorporated to capture the volumetric swelling of the solid caused by imbibition of external species and the simultaneous dilation arised from chemical reactions between the diffusing species and the solid. The model is then exemplified with two numerical examples of transient swelling accompanied by chemical reaction. Various ratios of characteristic times of diffusion and chemical reaction are taken into account to shed light on the dependency on kinetic time scales of evolution patterns for a diffusion-reaction controlled deformable solid.

  6. Modeling and optimization of dough recipe for breadsticks

    NASA Astrophysics Data System (ADS)

    Krivosheev, A. Yu; Ponomareva, E. I.; Zhuravlev, A. A.; Lukina, S. I.; Alekhina, N. N.

    2018-05-01

    During the work, the authors studied the combined effect of non-traditional raw materials on indicators of quality breadsticks, mathematical methods of experiment planning were applied. The main factors chosen were the dosages of flaxseed flour and grape seed oil. The output parameters were the swelling factor of the products and their strength. Optimization of the formulation composition of the dough for bread sticks was carried out by experimental- statistical methods. As a result of the experiment, mathematical models were constructed in the form of regression equations, adequately describing the process of studies. The statistical processing of the experimental data was carried out by the criteria of Student, Cochran and Fisher (with a confidence probability of 0.95). A mathematical interpretation of the regression equations was given. Optimization of the formulation of the dough for bread sticks was carried out by the method of uncertain Lagrange multipliers. The rational values of the factors were determined: the dosage of flaxseed flour - 14.22% and grape seed oil - 7.8%, ensuring the production of products with the best combination of swelling ratio and strength. On the basis of the data obtained, a recipe and a method for the production of breadsticks "Idea" were proposed (TU (Russian Technical Specifications) 9117-443-02068106-2017).

  7. A Finite Element Model for Mixed Porohyperelasticity with Transport, Swelling, and Growth.

    PubMed

    Armstrong, Michelle Hine; Buganza Tepole, Adrián; Kuhl, Ellen; Simon, Bruce R; Vande Geest, Jonathan P

    2016-01-01

    The purpose of this manuscript is to establish a unified theory of porohyperelasticity with transport and growth and to demonstrate the capability of this theory using a finite element model developed in MATLAB. We combine the theories of volumetric growth and mixed porohyperelasticity with transport and swelling (MPHETS) to derive a new method that models growth of biological soft tissues. The conservation equations and constitutive equations are developed for both solid-only growth and solid/fluid growth. An axisymmetric finite element framework is introduced for the new theory of growing MPHETS (GMPHETS). To illustrate the capabilities of this model, several example finite element test problems are considered using model geometry and material parameters based on experimental data from a porcine coronary artery. Multiple growth laws are considered, including time-driven, concentration-driven, and stress-driven growth. Time-driven growth is compared against an exact analytical solution to validate the model. For concentration-dependent growth, changing the diffusivity (representing a change in drug) fundamentally changes growth behavior. We further demonstrate that for stress-dependent, solid-only growth of an artery, growth of an MPHETS model results in a more uniform hoop stress than growth in a hyperelastic model for the same amount of growth time using the same growth law. This may have implications in the context of developing residual stresses in soft tissues under intraluminal pressure. To our knowledge, this manuscript provides the first full description of an MPHETS model with growth. The developed computational framework can be used in concert with novel in-vitro and in-vivo experimental approaches to identify the governing growth laws for various soft tissues.

  8. A Finite Element Model for Mixed Porohyperelasticity with Transport, Swelling, and Growth

    PubMed Central

    Armstrong, Michelle Hine; Buganza Tepole, Adrián; Kuhl, Ellen; Simon, Bruce R.; Vande Geest, Jonathan P.

    2016-01-01

    The purpose of this manuscript is to establish a unified theory of porohyperelasticity with transport and growth and to demonstrate the capability of this theory using a finite element model developed in MATLAB. We combine the theories of volumetric growth and mixed porohyperelasticity with transport and swelling (MPHETS) to derive a new method that models growth of biological soft tissues. The conservation equations and constitutive equations are developed for both solid-only growth and solid/fluid growth. An axisymmetric finite element framework is introduced for the new theory of growing MPHETS (GMPHETS). To illustrate the capabilities of this model, several example finite element test problems are considered using model geometry and material parameters based on experimental data from a porcine coronary artery. Multiple growth laws are considered, including time-driven, concentration-driven, and stress-driven growth. Time-driven growth is compared against an exact analytical solution to validate the model. For concentration-dependent growth, changing the diffusivity (representing a change in drug) fundamentally changes growth behavior. We further demonstrate that for stress-dependent, solid-only growth of an artery, growth of an MPHETS model results in a more uniform hoop stress than growth in a hyperelastic model for the same amount of growth time using the same growth law. This may have implications in the context of developing residual stresses in soft tissues under intraluminal pressure. To our knowledge, this manuscript provides the first full description of an MPHETS model with growth. The developed computational framework can be used in concert with novel in-vitro and in-vivo experimental approaches to identify the governing growth laws for various soft tissues. PMID:27078495

  9. A biphasic model for bleeding in soft tissue

    NASA Astrophysics Data System (ADS)

    Chang, Yi-Jui; Chong, Kwitae; Eldredge, Jeff D.; Teran, Joseph; Benharash, Peyman; Dutson, Erik

    2017-11-01

    The modeling of blood passing through soft tissues in the body is important for medical applications. The current study aims to capture the effect of tissue swelling and the transport of blood under bleeding or hemorrhaging conditions. The soft tissue is considered as a non-static poro-hyperelastic material with liquid-filled voids. A biphasic formulation effectively, a generalization of Darcy's law-is utilized, treating the phases as occupying fractions of the same volume. The interaction between phases is captured through a Stokes-like friction force on their relative velocities and a pressure that penalizes deviations from volume fractions summing to unity. The soft tissue is modeled as a hyperelastic material with a typical J-shaped stress-strain curve, while blood is considered as a Newtonian fluid. The method of Smoothed Particle Hydrodynamics is used to discretize the conservation equations based on the ease of treating free surfaces in the liquid. Simulations of swelling under acute hemorrhage and of draining under gravity and compression will be demonstrated. Ongoing progress in modeling of organ tissues under injuries and surgical conditions will be discussed.

  10. Modeling High-Pressure Gas-Polymer Sorpion Behavior Using the Sanchez-Lacombe Equation of State.

    DTIC Science & Technology

    1987-06-01

    The solubility of a gas in an amorphous or molten polymer is an important consideration in membrane and polymer processes . For instance, the efficacy...to a supercritical fluid during the impregnation process . Swelling the polymer effectively increases the diffusion coefficient of the heavy dopant by...dissolve the impurity, and then diffuse out of the swollen matrix thus removing the impurity. This supercritical fluid extraction process is somewhat

  11. Measurement and modeling of advanced coal conversion processes, Volume II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.

    1993-06-01

    A two dimensional, steady-state model for describing a variety of reactive and nonreactive flows, including pulverized coal combustion and gasification, is presented. The model, referred to as 93-PCGC-2 is applicable to cylindrical, axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using a discrete ordinates method. The particle phase is modeled in a lagrangian framework, such that mean paths of particle groups are followed. A new coal-general devolatilization submodel (FG-DVC) with coal swelling and char reactivity submodels has been added.

  12. Geophysics and Nanosciences: Nano to Micro to Meso to Macro Scale Swelling Soils

    NASA Astrophysics Data System (ADS)

    Cushman, J.

    2003-04-01

    We use statistical mechanical simulations of nanoporous materials to motivate a choice of independent constitutive variables for a multiscale mixture theory of swelling soils. A video will illustrate the structural behavior of fluids in nanopores when they are adsorbed from a bulk phase vapor to form capillaries on the nanoscale. These simulations suggest that when a swelling soil is very dry, the full strain tensor for the liquid phase should be included in the list of independent variables in any mixture theory. We use this information to develop a three-scale (micro, meso, macro) mixture theory for swelling soils. For a simplified case, we present the underlying multiscale field equations and constitutive theory, solve the resultant well posed system numerically, and present some graphical results for a drying and shrinking body.

  13. Combined infragravity wave and sea-swell runup over fringing reefs by super typhoon Haiyan

    NASA Astrophysics Data System (ADS)

    Shimozono, Takenori; Tajima, Yoshimitsu; Kennedy, Andrew B.; Nobuoka, Hisamichi; Sasaki, Jun; Sato, Shinji

    2015-06-01

    Super typhoon Haiyan struck the Philippines on 8 November 2013, marking one of the strongest typhoons at landfall in recorded history. Extreme storm waves attacked the Pacific coast of Eastern Samar where the violent typhoon first made landfall. Our field survey confirmed that storm overwash heights of 6-14 m above mean sea level were distributed along the southeastern coast and extensive inundation occurred in some coastal villages in spite of natural protection by wide fringing reefs. A wave model based on Boussinesq-type equations is constructed to simulate wave transformation over shallow fringing reefs and validated against existing laboratory data. Wave propagation and runup on the Eastern Samar coast are then reproduced using offshore boundary conditions based on a wave hindcast. The model results suggest that extreme waves on the shore are characterized as a superposition of the infragravity wave and sea-swell components. The balance of the two components is strongly affected by the reef width and beach slope through wave breaking, frictional dissipation, reef-flat resonances, and resonant runup amplification. Therefore, flood characteristics significantly differ from site to site due to a large variation of the two topographic parameters on the hilly coast. Strong coupling of infragravity waves and sea swells produces extreme runup on steep beaches fronted by narrow reefs, whereas the infragravity waves become dominant over wide reefs and they evolve into bores on steep beaches.

  14. A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics.

    PubMed

    Buschmann, M D; Grodzinsky, A J

    1995-05-01

    Measured values of the swelling pressure of charged proteoglycans (PG) in solution (Williams RPW, and Comper WD; Biophysical Chemistry 36:223, 1990) and the ionic strength dependence of the equilibrium modulus of PG-rich articular cartilage (Eisenberg SR, and Grodzinsky AJ; J Orthop Res 3: 148, 1985) are compared to the predictions of two models. Each model is a representation of electrostatic forces arising from charge present on spatially fixed macromolecules and spatially mobile micro-ions. The first is a macroscopic continuum model based on Donnan equilibrium that includes no molecular-level structure and assumes that the electrical potential is spatially invariant within the polyelectrolyte medium (i.e. zero electric field). The second model is based on a microstructural, molecular-level solution of the Poisson-Boltzmann (PB) equation within a unit cell containing a charged glycosaminoglycan (GAG) molecule and its surrounding atmosphere of mobile ions. This latter approach accounts for the space-varying electrical potential and electrical field between the GAG constituents of the PG. In computations involving no adjustable parameters, the PB-cell model agrees with the measured pressure of PG solutions to within experimental error (10%), whereas the ideal Donnan model overestimates the pressure by up to 3-fold. In computations involving one adjustable parameter for each model, the PB-cell model predicts the ionic strength dependence of the equilibrium modulus of articular cartilage. Near physiological ionic strength, the Donnan model overpredicts the modulus data by 2-fold, but the two models coincide for low ionic strengths (C0 < 0.025M) where the spatially invariant Donnan potential is a closer approximation to the PB potential distribution. The PB-cell model result indicates that electrostatic forces between adjacent GAGs predominate in determining the swelling pressure of PG in the concentration range found in articular cartilage (20-80 mg/ml). The PB-cell model is also consistent with data (Eisenberg and Grodzinsky, 1985, Lai WM, Hou JS, and Mow VC; J Biomech Eng 113: 245, 1991) showing that these electrostatic forces account for approximately 1/2 (290kPa) the equilibrium modulus of cartilage at physiological ionic strength while absolute swelling pressures may be as low as approximately 25-100kPa. This important property of electrostatic repulsion between GAGs that are highly charged but spaced a few Debye lengths apart allows cartilage to resist compression (high modulus) without generating excessive intratissue swelling pressures.

  15. Charge-regularized swelling kinetics of polyelectrolyte gels

    NASA Astrophysics Data System (ADS)

    Sen, Swati; Kundagrami, Arindam

    The swelling kinetics of polyelectrolyte gels with fixed and variable degrees of ionization in salt-free solvent is studied by solving the constitutive equation of motion of the spatially and temporally varying displacement variable. Two methods for the swelling kinetics - the Bulk Modulus Method (BMM), which uses a linear stress-strain relationship (and, hence a bulk modulus), and the Stress Relaxation Method (SRM), which uses a phenomenological expression of osmotic stress, are explored to provide the spatio-temporal profiles for polymer density, osmotic stress, and degree of ionization, along with the time evolution of the gel size. Further, we obtain an analytical expression for the elastic modulus for linearized stress in the limit of small deformations. We match our theoretical profiles with the experiments of swelling of PNIPAM (uncharged) and Imidazolium-based (charged) minigels available in the literature. Ministry of Human Resource Development (MHRD), Government of India.

  16. The Shrinkage Model And Expert System Of Plastic Lens Formation

    NASA Astrophysics Data System (ADS)

    Chang, Rong-Seng

    1988-06-01

    Shrinkage causes both the appearance & dimension defects of the injected plastic lens. We have built up a model of state equations with the help of finite element analysis program to estimate the volume change (shrinkage and swelling) under the combinations of injection variables such as pressure and temperature etc., then the personal computer expert system has been build up to make that knowledge conveniently available to the user in the model design, process planning, process operation and some other work. The domain knowledge is represented by a R-graph (Relationship-graph) model which states the relationships of variables & equations. This model could be compare with other models in the expert system. If the user has better model to solve the shrinkage problem, the program will evaluate it automatically and a learning file will be trigger by the expert system to teach the user to update their knowledge base and modify the old model by this better model. The Rubin's model and Gilmore's model have been input to the expert system. The conflict has been solved both from the user and the deeper knowledge base. A cube prism and the convex lens examples have been shown in this paper. This program is written by MULISP language in IBM PC-AT. The natural language provides English Explaination of know why and know how and the automatic English translation for the equation rules and the production rules.

  17. Effect of grain morphology on gas bubble swelling in UMo fuels – A 3D microstructure dependent Booth model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Shenyang; Burkes, Douglas; Lavender, Curt A.

    2016-11-01

    A three dimensional microstructure dependent swelling model is developed for studying the fission gas swelling kinetics in irradiated nuclear fuels. The model is extended from the Booth model [1] in order to investigate the effect of heterogeneous microstructures on gas bubble swelling kinetics. As an application of the model, the effect of grain morphology, fission gas diffusivity, and spatial dependent fission rate on swelling kinetics are simulated in UMo fuels. It is found that the decrease of grain size, the increase of grain aspect ratio for the grain having the same volume, and the increase of fission gas diffusivity (fissionmore » rate) cause the increase of swelling kinetics. Other heterogeneities such as second phases and spatial dependent thermodynamic properties including diffusivity of fission gas, sink and source strength of defects could be naturally integrated into the model to enhance the model capability.« less

  18. DART model for irradiation-induced swelling of uranium silicide dispersion fuel elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rest, J.; Hofman, G.L.

    1999-04-01

    Models for the interaction of uranium silicide dispersion fuels with an aluminum matrix, for the resultant reaction product swelling, and for the calculation of the stress gradient within the fuel particles are described within the context of DART fission-gas-induced swelling models. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by comparing DART calculations with irradiation data for the swelling of U{sub 3}SiAl-Al and U{sub 3}Si{sub 2}-Al in variously designed dispersion fuel elements.

  19. BISON Theory Manual The Equations behind Nuclear Fuel Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hales, J. D.; Williamson, R. L.; Novascone, S. R.

    2016-09-01

    BISON is a finite element-based nuclear fuel performance code applicable to a variety of fuel forms including light water reactor fuel rods, TRISO particle fuel, and metallic rod and plate fuel. It solves the fully-coupled equations of thermomechanics and species diffusion, for either 2D axisymmetric or 3D geometries. Fuel models are included to describe temperature and burnup dependent thermal properties, fission product swelling, densification, thermal and irradiation creep, fracture, and fission gas production and release. Plasticity, irradiation growth, and thermal and irradiation creep models are implemented for clad materials. Models are also available to simulate gap heat transfer, mechanical contact,more » and the evolution of the gap/plenum pressure with plenum volume, gas temperature, and fission gas addition. BISON is based on the MOOSE framework and can therefore efficiently solve problems using standard workstations or very large high-performance computers. This document describes the theoretical and numerical foundations of BISON.« less

  20. Capillary rise and swelling in cellulose sponges

    NASA Astrophysics Data System (ADS)

    Ha, Jonghyun; Kim, Jungchul; Kim, Ho-Young

    2015-11-01

    A cellulose sponge, which is a mundane example of a porous hydrophilic structure, can absorb and hold a significant amount of liquid. We present the results of experimental and theoretical investigation of the dynamics of the capillary imbibition of various aqueous solutions in the sponge that swells at the same time. We find that the rate of water rise against the resistance caused by gravitational and viscous effects deviates from Washburn's rule beyond a certain threshold height. We rationalize the novel power law of the rise height versus time by combining Darcy's law with hygroscopic swelling equation and also predict the threshold height. The scaling law constructed through this work agrees well with the experimental results, shedding light on the physics of capillary flow in deforming porous media.

  1. Two dimensional hydrological simulation in elastic swelling/shrinking peat soils

    NASA Astrophysics Data System (ADS)

    Camporese, M.; Ferraris, S.; Paniconi, C.; Putti, M.; Salandin, P.; Teatini, P.

    2005-12-01

    Peatlands respond to natural hydrologic cycles of precipitation and evapotranspiration with reversible deformations due to variations of water content in both the unsaturated and saturated zone. This phenomenon results in short-term vertical displacements of the soil surface that superimpose to the irreversible long-term subsidence naturally occurring in drained cropped peatlands because of bio-oxidation of the organic matter. The yearly sinking rates due to the irreversible process are usually comparable with the short-term deformation (swelling/shrinkage) and the latter must be evaluated to achieve a thorough understanding of the whole phenomenon. A mathematical model describing swelling/shrinkage dynamics in peat soils under unsaturated conditions has been derived from simple physical considerations, and validated by comparison with laboratory shrinkage data. The two-parameter model relates together the void and moisture ratios of the soil. This approach is implemented in a subsurface flow model describing variably saturated porous media flow (Richards' equation), by means of an appropriate modification of the general storage term. The contribution of the saturated zone to total deformation is considered by using information from the elastic storage coefficient. Simulations have been carried out for a drained cropped peatland south of the Venice Lagoon (Italy), for which a large data set of hydrological and deformation measurements has been collected since the end of 2001. The considered domain is representative of a field section bounded by ditches, subject to rainfall and evapotranspiration. The comparison between simulated and measured quantities demonstrates the capability of the model to accurately reproduce both the hydrological and deformation dynamics of peat, with values of the relevant parameters that are in good agreement with the literature.

  2. Formulation and optimization of mucoadhesive buccal patches of losartan potassium by using response surface methodology

    PubMed Central

    Ikram, Md.; Gilhotra, Neeraj; Gilhotra, Ritu Mehra

    2015-01-01

    Background: This study was undertaken with an aim to systematically design a model of factors that would yield an optimized sustained release dosage form of an anti-hypertensive agent, losartan potassium, using response surface methodology (RSM) by employing 32 full factorial design. Materials and Methods: Mucoadhesive buccal patches were prepared using different grades of hydroxypropyl methylcellulose (HPMC) (K4M and K100M) and polyvinylpyrrolidone-K30 by solvent casting method. The amount of the release retardant polymers – HPMC K4M (X1) and HPMC K100M (X2) was taken as an independent variable. The dependent variables were the burst release in 30 min (Y1), cumulative percentage release of drug after 8 h (Y2) and swelling index (Y3) of the patches. In vitro release and swelling studies were carried out and the data were fitted to kinetic equations. Results: The physicochemical, bioadhesive, and swelling properties of patches were found to vary significantly depending on the viscosity of the polymers and their combination. Patches showed an initial burst release preceding a more gradual sustained release phase following a nonfickian diffusion process. Discussion: The results indicate that suitable bioadhesive buccal patches with desired permeability could be prepared, facilitated with the RSM. PMID:26682205

  3. DART model for irradiation-induced swelling of dispersion fuel elements including aluminum-fuel interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rest, J.; Hofman, G.L.

    1997-12-01

    The Dispersion Analysis Research Tool (DART) contains models for fission-gas-induced fuel swelling, interaction of fuel with the matrix aluminum, for the resultant reaction-product swelling, and for the calculation of the stress gradient within the fuel particle. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by a comparison of DART calculations of fuel swelling of U{sub 3}SiAl-Al and U{sub 3}Si{sub 2}-Al for various dispersion fuel element designs with the data.

  4. Modelling heat and mass transfer in bread baking with mechanical deformation

    NASA Astrophysics Data System (ADS)

    Nicolas, V.; Salagnac, P.; Glouannec, P.; Ploteau, J.-P.; Jury, V.; Boillereaux, L.

    2012-11-01

    In this paper, the thermo-hydric behaviour of bread during baking is studied. A numerical model has been developed with Comsol Multiphysics© software. The model takes into account the heat and mass transfers in the bread and the phenomenon of swelling. This model predicts the evolution of temperature, moisture, gas pressure and deformation in French "baguette" during baking. Local deformation is included in equations using solid phase conservation and, global deformation is calculated using a viscous mechanic model. Boundary conditions are specified with the sole temperature model and vapour pressure estimation of the oven during baking. The model results are compared with experimental data for a classic baking. Then, the model is analysed according to physical properties of bread and solicitations for a better understanding of the interactions between different mechanisms within the porous matrix.

  5. Mathematical modelling of liquid transport in swelling pharmaceutical immediate release tablets.

    PubMed

    Markl, Daniel; Yassin, Samy; Wilson, D Ian; Goodwin, Daniel J; Anderson, Andrew; Zeitler, J Axel

    2017-06-30

    Oral dosage forms are an integral part of modern health care and account for the majority of drug delivery systems. Traditionally the analysis of the dissolution behaviour of a dosage form is used as the key parameter to assess the performance of a drug product. However, understanding the mechanisms of disintegration is of critical importance to improve the quality of drug delivery systems. The disintegration performance is primarily impacted by the hydration and subsequent swelling of the powder compact. Here we compare liquid ingress and swelling data obtained using terahertz pulsed imaging (TPI) to a set of mathematical models. The interlink between hydration kinetics and swelling is described by a model based on Darcy's law and a modified swelling model based on that of Schott. Our new model includes the evolution of porosity, pore size and permeability as a function of hydration time. Results obtained from two sets of samples prepared from pure micro-crystalline cellulose (MCC) indicate a clear difference in hydration and swelling for samples of different porosities and particle sizes, which are captured by the model. Coupling a novel imaging technique, such as TPI, and mathematical models allows better understanding of hydration and swelling and eventually tablet disintegration. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  6. Tracking the attenuation and nonbreaking dissipation of swells using altimeters

    NASA Astrophysics Data System (ADS)

    Jiang, Haoyu; Stopa, Justin E.; Wang, He; Husson, Romain; Mouche, Alexis; Chapron, Bertrand; Chen, Ge

    2016-02-01

    A method for systematically tracking swells across oceanic basins is developed by taking advantage of high-quality data from space-borne altimeters and wave model output. The evolution of swells is observed over large distances based on 202 swell events with periods ranging from 12 to 18 s. An empirical attenuation rate of swell energy of about 4 × 10-7 m-1 is estimated using these observations, and the nonbreaking energy dissipation rates of swells far away from their generating areas are also estimated using a point source model. The resulting acceptance range of nonbreaking dissipation rates is -2.5 to 5.0 × 10-7 m-1, which corresponds to a dissipation e-folding scales of at least 2000 km for steep swells, to almost infinite for small-amplitude swells. These resulting rates are consistent with previous studies using in-situ and synthetic aperture radar (SAR) observations. The frequency dispersion and angular spreading effects during swell propagation are discussed by comparing the results with other studies, demonstrating that they are the two dominant processes for swell height attenuation, especially in the near field. The resulting dissipation rates from these observations can be used as a reference for ocean engineering and wave modeling, and for related studies such as air-sea and wind-wave-turbulence interactions.

  7. Effect of accelerated aging on the cross-link density of medical grade silicones.

    PubMed

    Mahomed, Aziza; Pormehr, Negin Bagheri

    2016-11-25

    Four specimens of Nagor silicone of different hardness (soft, medium and hard) were swollen, until they reached equilibrium (i.e. constant mass) in five liquids at 25°C, before and after accelerated aging. For the specimens swollen before accelerated aging, the greatest swelling was obtained in methyl cyclohexane, while for the specimens swollen after accelerated aging, the greatest swelling was obtained in cyclohexane. The cross-link density, υ, was also calculated from the swelling measurements for all the specimens, before and after accelerated aging, using the Flory-Rehner equation. The softer silicones, which swelled the most, had lower υ values than harder silicones. The amount of swelling (measured in terms of ϕ) and υ varied significantly (p<0.05) in some cases, between the different silicone hardness and between different liquids. Furthermore, the cross-link density, υ, significantly (p<0.05) increased after accelerated aging in most liquids.Note: ϕ is defined as the volume fraction of polymer in its equilibrium swollen state. A probability value of statistical significance of 0.05 or 5% was selected, hence if a p value of less than 0.05 was obtained, the null hypothesis was rejected (i.e. significant if p<0.05).

  8. Kinetics of electrically and chemically induced swelling in polyelectrolyte gels

    NASA Astrophysics Data System (ADS)

    Grimshaw, P. E.; Nussbaum, J. H.; Grodzinsky, A. J.; Yarmush, M. L.

    1990-09-01

    Controlled swelling and shrinking of polyelectrolyte gels is useful for regulating the transport of solutes into, out of, and through these materials. A macroscopic continuum model is presented to predict the kinetics of swelling in polyelectrolyte gel membranes induced by augmentation of electrostatic swelling forces arising from membrane fixed charge groups. The model accounts for ionic transport within the membrane, electrodiffusion phenomena, dissociation of membrane charge groups, intramembrane fluid flow, and mechanical deformation of the membrane matrix. Model predictions are compared with measurements of chemically and electrically induced swelling and shrinking in crosslinked polymethacrylic acid (PMAA) membranes. Large, reversible changes in PMAA membrane hydration were observed after changing the bath pH or by applying an electric field to modify the intramembrane ionic environment and fixed charge density. A relatively slow swelling process and more rapid shrinking for both chemical and electrical modulation of the intramembrane pH are observed. The model indicates that retardation of membrane swelling is dominated by diffusion-limited reaction of H+ ions with membrane charge groups, and that the more rapid shrinking is limited primarily by mechanical processes.

  9. Effect of defect imbalance on void swelling distributions produced in pure iron irradiated with 3.5 MeV self-ions

    DOE PAGES

    Shao, Lin; Wei, C. -C.; Gigax, J.; ...

    2014-06-10

    Ion irradiation has been widely used to simulate radiation damage induced by neutrons. However, there are a number of features of ion-induced damage that differ from neutron-induced damage, and these differences require investigation before behavior arising from neutron bombardment can be confidently predicted from ion data. In this study 3.5 MeV self-ion irradiation of pure iron was used to study the influence on void swelling of the depth-dependent defect imbalance between vacancies and interstitials that arises from various surface effects, forward scattering of displaced atoms, and especially the injected interstitial effect. The depth dependence of void swelling was observed notmore » to follow the behavior anticipated from the depth dependence of the damage rate. Void nucleation and growth develop first in the lower-dose, near-surface region, and then, during continued irradiation, move to progressively deeper and higher-damage depths. This indicates a strong initial suppression of void nucleation in the peak damage region that continued irradiation eventually overcomes. This phenomenon is shown by the Boltzmann transport equation method to be due to depth-dependent defect imbalances created under ion irradiation. These findings thus demonstrate that void swelling does not depend solely on the local dose level and that this sensitivity of swelling to depth must be considered in extracting and interpreting ion-induced swelling data.« less

  10. A structural model for the in vivo human cornea including collagen-swelling interaction

    PubMed Central

    Cheng, Xi; Petsche, Steven J.; Pinsky, Peter M.

    2015-01-01

    A structural model of the in vivo cornea, which accounts for tissue swelling behaviour, for the three-dimensional organization of stromal fibres and for collagen-swelling interaction, is proposed. Modelled as a binary electrolyte gel in thermodynamic equilibrium, the stromal electrostatic free energy is based on the mean-field approximation. To account for active endothelial ionic transport in the in vivo cornea, which modulates osmotic pressure and hydration, stromal mobile ions are shown to satisfy a modified Boltzmann distribution. The elasticity of the stromal collagen network is modelled based on three-dimensional collagen orientation probability distributions for every point in the stroma obtained by synthesizing X-ray diffraction data for azimuthal angle distributions and second harmonic-generated image processing for inclination angle distributions. The model is implemented in a finite-element framework and employed to predict free and confined swelling of stroma in an ionic bath. For the in vivo cornea, the model is used to predict corneal swelling due to increasing intraocular pressure (IOP) and is adapted to model swelling in Fuchs' corneal dystrophy. The biomechanical response of the in vivo cornea to a typical LASIK surgery for myopia is analysed, including tissue fluid pressure and swelling responses. The model provides a new interpretation of the corneal active hydration control (pump-leak) mechanism based on osmotic pressure modulation. The results also illustrate the structural necessity of fibre inclination in stabilizing the corneal refractive surface with respect to changes in tissue hydration and IOP. PMID:26156299

  11. A three-dimensional transient mixed hybrid finite element model for superabsorbent polymers with strain-dependent permeability.

    PubMed

    Yu, Cong; Malakpoor, Kamyar; Huyghe, Jacques M

    2018-05-16

    A hydrogel is a cross-linked polymer network with water as solvent. Industrially widely used superabsorbent polymers (SAP) are partially neutralized sodium polyacrylate hydrogels. The extremely large degree of swelling is one of the most distinctive characteristics of such hydrogels, as the volume increase can be about 30 times its original volume when exposed to physiological solution. The large deformation resulting from the swelling demands careful numerical treatment. In this work, we present a biphasic continuum-level swelling model using the mixed hybrid finite element method (MHFEM) in three dimensions. The hydraulic permeability is highly dependent on the swelling ratio, resulting in values that are orders of magnitude apart from each other. The property of the local mass conservation of MHFEM contributes to a more accurate calculation of the deformation as the permeability across the swelling gel in a transient state is highly non-uniform. We show that the proposed model is able to simulate the free swelling of a random-shaped gel and the squeezing of fluid out of a swollen gel. Finally, we make use of the proposed numerical model to study the onset of surface instability in transient swelling.

  12. Dimensional stability and anisotropy of SiC and SiC-based composites in transition swelling regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katoh, Yutai; Koyanagi, Takaaki; McDuffee, Joel L.

    Swelling, or volumetric expansion, is an inevitable consequence of the atomic displacement damage in crystalline silicon carbide (SiC) caused by energetic neutron irradiation. Because of its steep temperature and dose dependence, understanding swelling is essential for designing SiC-based components for nuclear applications. Here in this study, swelling behaviors of monolithic CVD SiC and nuclear grade SiC fiber – SiC matrix (SiC/SiC) composites were accurately determined, supported by the irradiation temperature determination for individual samples, following neutron irradiation within the lower transition swelling temperature regime. Slightly anisotropic swelling behaviors were found for the SiC/SiC samples and attributed primarily to the combinedmore » effects of the pre-existing microcracking, fiber architecture, and specimen dimension. A semi-empirical model of SiC swelling was calibrated and presented. Finally, implications of the refined model to selected swelling-related issues for SiC-based nuclar reactor components are discussed.« less

  13. Dimensional stability and anisotropy of SiC and SiC-based composites in transition swelling regime

    DOE PAGES

    Katoh, Yutai; Koyanagi, Takaaki; McDuffee, Joel L.; ...

    2017-12-08

    Swelling, or volumetric expansion, is an inevitable consequence of the atomic displacement damage in crystalline silicon carbide (SiC) caused by energetic neutron irradiation. Because of its steep temperature and dose dependence, understanding swelling is essential for designing SiC-based components for nuclear applications. Here in this study, swelling behaviors of monolithic CVD SiC and nuclear grade SiC fiber – SiC matrix (SiC/SiC) composites were accurately determined, supported by the irradiation temperature determination for individual samples, following neutron irradiation within the lower transition swelling temperature regime. Slightly anisotropic swelling behaviors were found for the SiC/SiC samples and attributed primarily to the combinedmore » effects of the pre-existing microcracking, fiber architecture, and specimen dimension. A semi-empirical model of SiC swelling was calibrated and presented. Finally, implications of the refined model to selected swelling-related issues for SiC-based nuclar reactor components are discussed.« less

  14. Determination of Oriented Strandboard properties from a three-dimensional density distribution using the finite element method

    NASA Astrophysics Data System (ADS)

    Tackie, Alan Derek Nii

    Computer modeling of Oriented Strand Board (OSB) properties has gained widespread attention with numerous models created to better understand OBS behavior. Recent models allow researchers to observe multiple variables such as changes in moisture content, density and resin effects on panel performance. Thickness-swell variation influences panel durability and often has adverse effects on a structural panel's bending stiffness. The prediction of out-of-plane swell under changing moisture conditions was, therefore, the essence for developing a model in this research. The finite element model accounted for both vertical and horizontal density variations, the three-dimensional (3D) density variation of the board. The density variation, resulting from manufacturing processes, affects the uniformity of thickness-swell in OSB and is often exacerbated by continuous sorption of moisture that leads to potentially damaging internal stresses in the panel. The overall thickness-swell (the cumulative swell from non-uniform horizontal density profile, panel swell from free water, and spring-back from panel compression) was addressed through the finite element model in this research. The pursued goals in this study were, first and foremost, the development of a robust and comprehensive finite element model which integrated several component studies to investigate the effects of moisture variation on the out-of-plane thickness-swell of OSB panels, and second, the extension of the developed model to predict panel stiffness. It is hoped that this paper will encourage researchers to adopt the 3D density distribution approach as a viable approach to analyzing the physical and mechanical properties of OSB.

  15. Van der Waals model for phase transitions in thermoresponsive surface films.

    PubMed

    McCoy, John D; Curro, John G

    2009-05-21

    Phase transitions in polymeric surface films are studied with a simple model based on the van der Waals equation of state. Each chain is modeled by a single bead attached to the surface by an entropic-Hooke's law spring. The surface coverage is controlled by adjusting the chemical potential, and the equilibrium density profile is calculated with density functional theory. The interesting feature of this model is the multivalued nature of the density profile seen at low temperature. This van der Waals loop behavior is resolved with a Maxwell construction between a high-density phase near the wall and a low-density phase in a "vertical" phase transition. Signatures of the phase transition in experimentally measurable quantities are then found. Numerical calculations are presented for isotherms of surface pressure, for the Poisson ratio, and for the swelling ratio.

  16. Modeling the controllable pH-responsive swelling and pore size of networked alginate based biomaterials.

    PubMed

    Chan, Ariel W; Neufeld, Ronald J

    2009-10-01

    Semisynthetic network alginate polymer (SNAP), synthesized by acetalization of linear alginate with di-aldehyde, is a pH-responsive tetrafunctionally linked 3D gel network, and has potential application in oral delivery of protein therapeutics and active biologicals, and as tissue bioscaffold for regenerative medicine. A constitutive polyelectrolyte gel model based on non-Gaussian polymer elasticity, Flory-Huggins liquid lattice theory, and non-ideal Donnan membrane equilibria was derived, to describe SNAP gel swelling in dilute and ionic solutions containing uni-univalent, uni-bivalent, bi-univalent or bi-bi-valent electrolyte solutions. Flory-Huggins interaction parameters as a function of ionic strength and characteristic ratio of alginates of various molecular weights were determined experimentally to numerically predict SNAP hydrogel swelling. SNAP hydrogel swells pronouncedly to 1000 times in dilute solution, compared to its compact polymer volume, while behaving as a neutral polymer with limited swelling in high ionic strength or low pH solutions. The derived model accurately describes the pH-responsive swelling of SNAP hydrogel in acid and alkaline solutions of wide range of ionic strength. The pore sizes of the synthesized SNAP hydrogels of various crosslink densities were estimated from the derived model to be in the range of 30-450 nm which were comparable to that measured by thermoporometry, and diffusion of bovine serum albumin. The derived equilibrium swelling model can characterize hydrogel structure such as molecular weight between crosslinks and crosslinking density, or can be used as predictive model for swelling, pore size and mechanical properties if gel structural information is known, and can potentially be applied to other point-link network polyelectrolytes such as hyaluronic acid gel.

  17. ECOUL: an interactive computer tool to study hydraulic behavior of swelling and rigid soils

    NASA Astrophysics Data System (ADS)

    Perrier, Edith; Garnier, Patricia; Leclerc, Christian

    2002-11-01

    ECOUL is an interactive, didactic software package which simulates vertical water flow in unsaturated soils. End-users are given an easily-used tool to predict the evolution of the soil water profile, with a large range of possible boundary conditions, through a classical numerical solution scheme for the Richards equation. Soils must be characterized by water retention curves and hydraulic conductivity curves, the form of which can be chosen among different analytical expressions from the literature. When the parameters are unknown, an inverse method is provided to estimate them from available experimental flow data. A significant original feature of the software is to include recent algorithms extending the water flow model to deal with deforming porous media: widespread swelling soils, the volume of which varies as a function of water content, must be described by a third hydraulic characteristic property, the deformation curve. Again, estimation of the parameters by means of inverse procedures and visualization facilities enable exploration, understanding and then prediction of soil hydraulic behavior under various experimental conditions.

  18. Understanding the drug release mechanism from a montmorillonite matrix and its binary mixture with a hydrophilic polymer using a compartmental modelling approach

    NASA Astrophysics Data System (ADS)

    Choiri, S.; Ainurofiq, A.

    2018-03-01

    Drug release from a montmorillonite (MMT) matrix is a complex mechanism controlled by swelling mechanism of MMT and an interaction of drug and MMT. The aim of this research was to explain a suitable model of the drug release mechanism from MMT and its binary mixture with a hydrophilic polymer in the controlled release formulation based on a compartmental modelling approach. Theophylline was used as a drug model and incorporated into MMT and a binary mixture with hydroxyl propyl methyl cellulose (HPMC) as a hydrophilic polymer, by a kneading method. The dissolution test was performed and the modelling of drug release was assisted by a WinSAAM software. A 2 model was purposed based on the swelling capability and basal spacing of MMT compartments. The model evaluation was carried out to goodness of fit and statistical parameters and models were validated by a cross-validation technique. The drug release from MMT matrix regulated by a burst release mechanism of unloaded drug, swelling ability, basal spacing of MMT compartment, and equilibrium between basal spacing and swelling compartments. Furthermore, the addition of HPMC in MMT system altered the presence of swelling compartment and equilibrium between swelling and basal spacing compartment systems. In addition, a hydrophilic polymer reduced the burst release mechanism of unloaded drug.

  19. Thermodynamic model for polyelectrolyte hydrogels.

    PubMed

    Arndt, Markus C; Sadowski, Gabriele

    2014-09-04

    The composition and swelling behavior of hydrogels may be dramatically influenced by external stimuli. Polyelectrolyte hydrogels consisting of charged polymers are particularly well-known for a high sensitivity to the presence of ionic species. For a thermodynamic description of such systems, the polyelectrolyte Perturbed-Chain Statistical Association Fluid Theory (pePC-SAFT) equation of state was augmented and merged with an extension of the modeling of hydrogels. This combined approach allowed for two effects to be taken into account: first, charges along the polymer chain and their interaction with mobile ions of the same or opposite charge in aqueous solutions and, second, the elastic interactions of swellable networks and their effect on Helmholtz energy and pressure. Thus, predictions of the degree of counterion condensation on the polymer chains could be made both for vapor-liquid equilibria of aqueous polyelectrolyte solutions and for polyelectrolyte hydrogels in aqueous salt solutions. The influence of temperature and molecular weight thereon was predicted successfully, and the impact of the degree of neutralization and the effect of additional salts were examined in comparison to literature data. With the inclusion of the influence of the Donnan potential, our model gave good predictions of swellable polyelectrolyte hydrogel systems in salt solutions. Poly(acrylic acid) and poly(methacrylic acid) gels were studied along with their corresponding sodium salts. Their swelling behavior in aqueous NaCl and NaNO3 solutions was examined.

  20. Analytical model of the effect of misfit dislocation character on the bubble-to-void transition in metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez, Enrique; Schwen, Daniel; Hetherly, Jeffrey

    Here, this paper addresses the role of misfit dislocations in the nucleation and growth of nanoscale He bubbles at interfaces. In a recent work, we studied the nanoscale effects on the capillarity equation and on equilibrium conditions. We proposed an expression for surface energy and for the equation of state, EOS, for He in bubbles, which have a size dependence that captures the role of the interface forces, which become relevant at the nanoscale. Here we determine the EOS for several twist grain boundaries in Fe and Cu and incorporate these results into the rate equation that determines the bubble-to-voidmore » transition, focusing on the influence of interface dislocations on the evaporation rate of vacancies. We find a significant effect of the magnitude of the Burgers vector of the dislocations on the critical radius for the transition. In conclusion, these results give a quantitative way to characterize grain boundaries in their ability to capture He and alter the onset of swelling.« less

  1. Analytical model of the effect of misfit dislocation character on the bubble-to-void transition in metals

    DOE PAGES

    Martínez, Enrique; Schwen, Daniel; Hetherly, Jeffrey; ...

    2015-11-30

    Here, this paper addresses the role of misfit dislocations in the nucleation and growth of nanoscale He bubbles at interfaces. In a recent work, we studied the nanoscale effects on the capillarity equation and on equilibrium conditions. We proposed an expression for surface energy and for the equation of state, EOS, for He in bubbles, which have a size dependence that captures the role of the interface forces, which become relevant at the nanoscale. Here we determine the EOS for several twist grain boundaries in Fe and Cu and incorporate these results into the rate equation that determines the bubble-to-voidmore » transition, focusing on the influence of interface dislocations on the evaporation rate of vacancies. We find a significant effect of the magnitude of the Burgers vector of the dislocations on the critical radius for the transition. In conclusion, these results give a quantitative way to characterize grain boundaries in their ability to capture He and alter the onset of swelling.« less

  2. Numerical Modeling of Ablation Heat Transfer

    NASA Technical Reports Server (NTRS)

    Ewing, Mark E.; Laker, Travis S.; Walker, David T.

    2013-01-01

    A unique numerical method has been developed for solving one-dimensional ablation heat transfer problems. This paper provides a comprehensive description of the method, along with detailed derivations of the governing equations. This methodology supports solutions for traditional ablation modeling including such effects as heat transfer, material decomposition, pyrolysis gas permeation and heat exchange, and thermochemical surface erosion. The numerical scheme utilizes a control-volume approach with a variable grid to account for surface movement. This method directly supports implementation of nontraditional models such as material swelling and mechanical erosion, extending capabilities for modeling complex ablation phenomena. Verifications of the numerical implementation are provided using analytical solutions, code comparisons, and the method of manufactured solutions. These verifications are used to demonstrate solution accuracy and proper error convergence rates. A simple demonstration of a mechanical erosion (spallation) model is also provided to illustrate the unique capabilities of the method.

  3. Structural elucidation, molecular representation and solvent interactions of vitrinite-rich and inertinite-rich South African coals

    NASA Astrophysics Data System (ADS)

    van Niekerk, Daniel

    The structural differences and similarities of two Permian-aged South African coals, vitrinite-rich Waterberg and inertinite-rich Highveld coals (similar rank, carbon content and Permian age), were evaluated. With South African coals the opportunity presented itself to study not only Permian-aged Gondwana vitrinite but also inertinite. It was expected that these coals would differ from Northern hemisphere Carboniferous coals. It was concluded from various structural data that both coals, although different in maceral composition and depositional basins, are similar in their base structural composition. The main differences were that the inertinite-rich Highveld coal was more ordered, more aromatic, and had less hydrogen than the vitrinite-rich Waterberg coal. Analytical data were used to construct large-scale advanced molecular representations for vitrinite-rich Waterberg and inertinite-rich Highveld coals. The three-dimensional models were structurally diverse with a molecular weight range of 78 to 1900 amu. The vitrinite-rich coal model consisted of 18,572 atoms and 191 individual molecules and the inertinite-rich coal model consisted of 14,242 atoms and 158 individual molecules. This largescale modeling effort was enabled by the development of various PERL scripts to automate various visualization and analytical aspects. Coal swelling studies were conducted using the traditional pack-bed swelling method and a new novel single-particle stop-motion videography swelling method with NMP and CS2/NMP solvents. The pack-bed swelling showed that vitrinite-rich coal had a greater swelling extent and that swelling extent for both coals was greater in CS2/NMP binary solvent than for NMP. Single-particle swelling experiments showed that both coals, for both solvents, exhibit overshoot-type and climbing-type swelling behaviors. Inertinite-coal had a faster swelling rate, in both solvents, than the vitrinite-rich coal. The single-particle swelling data was used to calculate the kinetic parameters and it was found that the swelling was governed by relaxation of the coal structure (super-Case II swelling). X-ray computed tomography was conducted confirming anisotropic swelling. The petrographic transitions (maceral-group composition and reflectance) with solvent swelling and extraction were quantified. No changes in the maceral compositions were found, but changes in some coal particles were observed. Random reflectance analysis showed that, for both vitrinite and inertinite, there is a decrease in reflectance values with solvent treatment. Vitrinite reflectograms showed a shift from the dominant reflecting V-types to lower V-types. The inertinite reflectograms exhibited an increase in number of I-types (broadening of reflectrograms). Molecular simulation and visualization approaches to solvent swelling and extraction were performed on the proposed molecular models of vitrinite-rich and inertinite-rich coals. A theoretical extraction yield was determined using solubility parameters and showed agreement with experimental extraction yield trends. Statistical Associating Fluid Theory (SAFT) modeling was explored to test whether this method could predict swelling extent. The predicted swelling trends of SAFT were comparable to that of the experimental swelling results. SAFT was found to be a promising tool for solvent-coal interaction predictions. Partially solvent swollen structures were constructed by the addition of solvent molecules to the original coal molecules using a amorphous building approach. This method showed that coal-coal non-bonding interaction changed with the introduction of solvent. A disruption in the van der Waals interaction energies and a change in hydrogen bond distributions were observed in the swollen coal models and quantified. It was concluded that small changes in coal structure translates to significant changes in solvent interaction behavior. These changes were successfully visualized and simulated using atomistic molecular representations.

  4. Episodic swell growth inferred from variable uplift of the Cape Verde hotspot islands

    USGS Publications Warehouse

    Ramalho, R.; Helffrich, G.; Cosca, M.; Vance, D.; Hoffmann, D.; Schmidt, D.N.

    2010-01-01

    On the Beagle voyage, Charles Darwin first noted the creation and subsidence of ocean islands, establishing in geology's infancy that island freeboard changes with time. Hotspot ocean islands have an obvious mechanism for freeboard change through the growth of the bathymetric anomaly, or swell, on which the islands rest. Models for swell development indicate that flexural, thermal or dynamic pressure contributions, as well as spreading of melt residue from the hotspot, can all contribute to island uplift. Here we test various models for swell development using the uplift histories for the islands of the Cape Verde hotspot, derived from isotopic dating of marine terraces and subaerial to submarine lava-flow morphologies. The island uplift histories, in conjunction with inter-island spacing, uplift rate and timing differences, rule out flexural, thermal or dynamic pressure contributions. We also find that uplift cannot be reconciled with models that advocate the spreading of melt residue in swell development unless swell growth is episodic. Instead, we infer from the uplift histories that two processes have acted to raise the islands during the past 6 Myr. During an initial phase, mantle processes acted to build the swell. Subsequently, magmatic intrusions at the island edifice caused 350 m of local uplift at the scale of individual islands. Finally, swell-wide uplift contributed a further 100 m of surface rise.

  5. Episodic swell growth inferred from variable uplift of the Cape Verde hotspot islands

    NASA Astrophysics Data System (ADS)

    Ramalho, R.; Helffrich, G.; Cosca, M.; Vance, D.; Hoffmann, D.; Schmidt, D. N.

    2010-11-01

    On the Beagle voyage, Charles Darwin first noted the creation and subsidence of ocean islands, establishing in geology's infancy that island freeboard changes with time. Hotspot ocean islands have an obvious mechanism for freeboard change through the growth of the bathymetric anomaly, or swell, on which the islands rest. Models for swell development indicate that flexural, thermal or dynamic pressure contributions, as well as spreading of melt residue from the hotspot, can all contribute to island uplift. Here we test various models for swell development using the uplift histories for the islands of the Cape Verde hotspot, derived from isotopic dating of marine terraces and subaerial to submarine lava-flow morphologies. The island uplift histories, in conjunction with inter-island spacing, uplift rate and timing differences, rule out flexural, thermal or dynamic pressure contributions. We also find that uplift cannot be reconciled with models that advocate the spreading of melt residue in swell development unless swell growth is episodic. Instead, we infer from the uplift histories that two processes have acted to raise the islands during the past 6Myr. During an initial phase, mantle processes acted to build the swell. Subsequently, magmatic intrusions at the island edifice caused 350m of local uplift at the scale of individual islands. Finally, swell-wide uplift contributed a further 100m of surface rise.

  6. Mechanics of adsorption-deformation coupling in porous media

    NASA Astrophysics Data System (ADS)

    Zhang, Yida

    2018-05-01

    This work extends Coussy's macroscale theory for porous materials interacting with adsorptive fluid mixtures. The solid-fluid interface is treated as an independent phase that obeys its own mass, momentum and energy balance laws. As a result, a surface strain energy term appears in the free energy balance equation of the solid phase, which further introduces the so-called adsorption stress in the constitutive equations of the porous skeleton. This establishes a fundamental link between the adsorption characteristics of the solid-fluid interface and the mechanical response of the porous media. The thermodynamic framework is quite general in that it recovers the coupled conduction laws, Gibbs isotherm and the Shuttleworth's equation for surface stress, and imposes no constraints on the magnitude of deformation and the functional form of the adsorption isotherms. A rich variety of coupling between adsorption and deformation is recovered as a result of combining different poroelastic models (isotropic vs. anisotropic, linear vs. nonlinear) and adsorption models (unary vs. mixture adsorption, uncoupled vs. stretch-dependent adsorption). These predictions are discussed against the backdrop of recent experimental data on coal swelling subjected to CO2 and CO2sbnd CH4 injections, showing the capability and versatility of the theory in capturing adsorption-induced deformation of porous materials.

  7. Computational modeling of chemical reactions and interstitial growth and remodeling involving charged solutes and solid-bound molecules

    PubMed Central

    Nims, Robert J.; Maas, Steve; Weiss, Jeffrey A.

    2014-01-01

    Mechanobiological processes are rooted in mechanics and chemistry, and such processes may be modeled in a framework that couples their governing equations starting from fundamental principles. In many biological applications, the reactants and products of chemical reactions may be electrically charged, and these charge effects may produce driving forces and constraints that significantly influence outcomes. In this study, a novel formulation and computational implementation are presented for modeling chemical reactions in biological tissues that involve charged solutes and solid-bound molecules within a deformable porous hydrated solid matrix, coupling mechanics with chemistry while accounting for electric charges. The deposition or removal of solid-bound molecules contributes to the growth and remodeling of the solid matrix; in particular, volumetric growth may be driven by Donnan osmotic swelling, resulting from charged molecular species fixed to the solid matrix. This formulation incorporates the state of strain as a state variable in the production rate of chemical reactions, explicitly tying chemistry with mechanics for the purpose of modeling mechanobiology. To achieve these objectives, this treatment identifies the specific theoretical and computational challenges faced in modeling complex systems of interacting neutral and charged constituents while accommodating any number of simultaneous reactions where reactants and products may be modeled explicitly or implicitly. Several finite element verification problems are shown to agree with closed-form analytical solutions. An illustrative tissue engineering analysis demonstrates tissue growth and swelling resulting from the deposition of chondroitin sulfate, a charged solid-bound molecular species. This implementation is released in the open-source program FEBio (www.febio.org). The availability of this framework may be particularly beneficial to optimizing tissue engineering culture systems by examining the influence of nutrient availability on the evolution of inhomogeneous tissue composition and mechanical properties, the evolution of construct dimensions with growth, the influence of solute and solid matrix electric charge on the transport of cytokines, the influence of binding kinetics on transport, the influence of loading on binding kinetics, and the differential growth response to dynamically loaded versus free-swelling culture conditions. PMID:24558059

  8. Computational modeling of chemical reactions and interstitial growth and remodeling involving charged solutes and solid-bound molecules.

    PubMed

    Ateshian, Gerard A; Nims, Robert J; Maas, Steve; Weiss, Jeffrey A

    2014-10-01

    Mechanobiological processes are rooted in mechanics and chemistry, and such processes may be modeled in a framework that couples their governing equations starting from fundamental principles. In many biological applications, the reactants and products of chemical reactions may be electrically charged, and these charge effects may produce driving forces and constraints that significantly influence outcomes. In this study, a novel formulation and computational implementation are presented for modeling chemical reactions in biological tissues that involve charged solutes and solid-bound molecules within a deformable porous hydrated solid matrix, coupling mechanics with chemistry while accounting for electric charges. The deposition or removal of solid-bound molecules contributes to the growth and remodeling of the solid matrix; in particular, volumetric growth may be driven by Donnan osmotic swelling, resulting from charged molecular species fixed to the solid matrix. This formulation incorporates the state of strain as a state variable in the production rate of chemical reactions, explicitly tying chemistry with mechanics for the purpose of modeling mechanobiology. To achieve these objectives, this treatment identifies the specific theoretical and computational challenges faced in modeling complex systems of interacting neutral and charged constituents while accommodating any number of simultaneous reactions where reactants and products may be modeled explicitly or implicitly. Several finite element verification problems are shown to agree with closed-form analytical solutions. An illustrative tissue engineering analysis demonstrates tissue growth and swelling resulting from the deposition of chondroitin sulfate, a charged solid-bound molecular species. This implementation is released in the open-source program FEBio ( www.febio.org ). The availability of this framework may be particularly beneficial to optimizing tissue engineering culture systems by examining the influence of nutrient availability on the evolution of inhomogeneous tissue composition and mechanical properties, the evolution of construct dimensions with growth, the influence of solute and solid matrix electric charge on the transport of cytokines, the influence of binding kinetics on transport, the influence of loading on binding kinetics, and the differential growth response to dynamically loaded versus free-swelling culture conditions.

  9. Equilibrium swelling properties of polyampholytic hydrogels

    NASA Astrophysics Data System (ADS)

    English, Anthony E.; Mafé, Salvador; Manzanares, José A.; Yu, Xiahong; Grosberg, Alexander Yu.; Tanaka, Toyoichi

    1996-06-01

    The role of counter ions and ion dissociation in establishing the equilibrium swelling of balanced and unbalanced polyampholytic hydrogels has been investigated experimentally and theoretically. The swelling dependence on both the net charge offset and the external bath salt concentration has been examined using an acrylamide based polyampholytic hydrogels. By careful consideration of the swelling kinetics, we illustrate the effects of ion dissociation equilibria and counter ion shielding in polyampholytic hydrogels near their balance point where both polyelectrolyte and polyampholyte effects are present. The theory considers a Flory type swelling model where the Coulombic interactions between fixed ions in the hydrogel resemble those of an ionic solid with a Debye screening factor. Theoretical predictions from this model are in qualitative agreement with our experimental results.

  10. Optical scatter imaging of cellular and mitochondrial swelling in brain tissue models of stroke

    NASA Astrophysics Data System (ADS)

    Johnson, Lee James

    2001-08-01

    The severity of brain edema resulting from a stroke can determine a patient's survival and the extent of their recovery. Cellular swelling is the microscopic source of a significant part of brain edema. Mitochondrial swelling also appears to be a determining event in the death or survival of the cells that are injured during a stroke. Therapies for reducing brain edema are not effective in many cases and current treatments of stroke do not address mitochondrial swelling at all. This dissertation is motivated by the lack of a complete understanding of cellular swelling resulting from stroke and the lack of a good method to begin to study mitochondrial swelling resulting from stroke in living brain tissue. In this dissertation, a novel method of detecting mitochondrial and cellular swelling in living hippocampal slices is developed and validated. The system is used to obtain spatial and temporal information about cellular and mitochondrial swelling resulting from various models of stroke. The effect of changes in water content on light scatter and absorption are examined in two models of brain edema. The results of this study demonstrate that optical techniques can be used to detect changes in water content. Mie scatter theory, the theoretical basis of the dual- angle scatter ratio imaging system, is presented. Computer simulations based on Mie scatter theory are used to determine the optimal angles for imaging. A detailed account of the early systems is presented to explain the motivations for the system design, especially polarization, wavelength and light path. Mitochondrial sized latex particles are used to determine the system response to changes in scattering particle size and concentration. The dual-angle scatter ratio imaging system is used to distinguish between osmotic and excitotoxic models of stroke injury. Such distinction cannot be achieved using the current techniques to study cellular swelling in hippocampal slices. The change in the scatter ratio is then shown to correlate to mitochondrial swelling, as observed with electron microscopy. The system is finally used to study mitochondrial and cellular swelling. Evidence of the susceptibility of certain hippocampal regions, CA1 and the dentate gyrus, to exhibit mitochondrial swelling as the result of oxygen and glucose deprivation is presented. In addition, for the first time, the time course of mitochondrial swelling is seen. Finally, experiments with scatter imaging and measurement of nitric oxide with carbon fiber electrodes demonstrate a clear link between nitric oxide and cellular swelling. A potential mechanism of the action of nitric oxide is evaluated. Nitric oxide appears to act to cause cellular swelling without the release of glutamate. The use of targeted nitric oxide inhibitors may be useful for the reduction of edema.

  11. Random mechanics: Nonlinear vibrations, turbulences, seisms, swells, fatigue

    NASA Astrophysics Data System (ADS)

    Kree, P.; Soize, C.

    The random modeling of physical phenomena, together with probabilistic methods for the numerical calculation of random mechanical forces, are analytically explored. Attention is given to theoretical examinations such as probabilistic concepts, linear filtering techniques, and trajectory statistics. Applications of the methods to structures experiencing atmospheric turbulence, the quantification of turbulence, and the dynamic responses of the structures are considered. A probabilistic approach is taken to study the effects of earthquakes on structures and to the forces exerted by ocean waves on marine structures. Theoretical analyses by means of vector spaces and stochastic modeling are reviewed, as are Markovian formulations of Gaussian processes and the definition of stochastic differential equations. Finally, random vibrations with a variable number of links and linear oscillators undergoing the square of Gaussian processes are investigated.

  12. Analysis and prediction of ocean swell using instrumented buoys

    NASA Technical Reports Server (NTRS)

    Mettlach, Theodore; Wang, David; Wittmann, Paul

    1994-01-01

    During the period 20-23 September 1990, the remnants of Supertyphoon Flo moved into the central North Pacific Ocean with sustained wind speeds of 28 m/s. The strong wind and large fetch area associated with this storm generated long-period swell that propagated to the west coast of North America. National Data Buoy Center moored-buoy stations, located in a network that ranged from the Gulf of Alaska to the California Bight, provided wave spectral estimates of the swell from this storm. The greatest dominant wave periods measured were approximately 20-25 s, and significant wave heights measured ranged from 3 to 8 m. Wave spectra from an array of three nondirectional buoys are used to find the source of the long-period swell. Directional wave spectra from a heave-pitch-roll buoy are also used to make an independent estimate of the source of the swell. The ridge-line method, using time-frequency contour plots of wave spectral energy density, is used to determine the time of swell generation, which is used with the appropriate surface pressure analysis to infer the swell generation area. The diagnosed sources of the swell are also compared with nowcasts from the Global Spectral Ocean Wave Model of the Fleet Numerical Oceanography Center. A simple method of predicting the propagation of ocean swell, by applying a simple kinematic model of wave propagation to the estimated point and time source, is demonstrated.

  13. Nanosize effect of clay mineral nanoparticles on the drug diffusion processes in polyurethane nanocomposite hydrogels

    NASA Astrophysics Data System (ADS)

    Miotke, M.; Strankowska, J.; Kwela, J.; Strankowski, M.; Piszczyk, Ł.; Józefowicz, M.; Gazda, M.

    2017-09-01

    Studies of swelling and release of naproxen sodium (NAP) solution by polyurethane nanocomposite hydrogels containing Cloisite® 30B (organically modified montmorillonite (OMMT)) have been performed. Polyurethane nanocomposite hydrogels are hybrid, nontoxic biomaterials with unique swelling and release properties in comparison with unmodified hydrogels. These features enable to use nanocomposite hydrogels as a modern wound dressing. The presence of nanoparticles significantly improves the swelling. On the other hand, their presence hinders drug diffusion from polymer matrix and consequently causes delay of the drug release. The kinetics of swelling and release were carefully analyzed using the Korsmeyer-Peppas and the modified Hopfenberg models. The models were fitted to precise experimental data allowing accurate quantitative and qualitative analysis. We observed that 0.5% admixture of nanoparticles (Cloisite® 30B) is the best concentration for hydrogel swelling properties. The release process was studied using fluorescence excitation spectra of NAP. Furthermore, we studied swelling hysteresis; polymer chains have not been destroyed after the swelling and part of swelled solution with active substances which remained absorbed in the polymer matrix after the drying process. We have found that the amount of solution with NAP remained in the nanocomposite matrix is greater than in pure hydrogel, as a consequence of NAP-OMMT interactions (nanosize effect).

  14. Dart model for irradiation-induced swelling of dispersion fuel elements including aluminum-fuel interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rest, J.; Hofman, G.L.

    1997-06-01

    The Dispersion Analysis Research Tool (DART) contains models for fission-gas induced fuel swelling, interaction of fuel with the matrix aluminum, resultant reaction-product swelling, and calculation of the stress gradient within the fuel particle. The effects of an aluminide shell on fuel particle swelling are evaluated. Validation of the model is demonstrated by a comparison of DART calculations of fuel swelling of U{sub 3}SiAl-Al and U{sub 3}Si{sub 2}-Al for various dispersion fuel element designs with the data. DART results are compared with data for fuel swelling Of U{sub 3}SiAl-Al in plate, tube, and rod configurations as a function of fission density.more » Plate and tube calculations were performed at a constant fuel temperature of 373 K and 518 K, respectively. An irradiation temperature of 518 K results in a calculated aluminide layer thickness for the Russian tube that is in the center of the measured range (16 {mu}m). Rod calculations were performed with a temperature gradient across the rod characterized by surface and central temperatures of 373 K and 423 K, respectively. The effective yield stress of irradiated Al matrix material and the aluminide was determined by comparing the results of DART calculations with postirradiation immersion volume measurement of U{sub 3}SiAl plates. The values for the effective yield stress were used in all subsequent simulations. The lower calculated fuel swelling in the rod-type element is due to an assumed biaxial stress state. Fuel swelling in plates results in plate thickness increase only. Likewise, in tubes, only the wall thickness increases. Irradiation experiments have shown that plate-type dispersion fuel elements can develop blisters or pillows at high U-235 burnup when fuel compounds exhibiting breakaway swelling are used at moderate to high fuel volume fractions. DART-calculated interaction layer thickness and fuel swelling follows the trends of the observations. 3 refs., 2 figs.« less

  15. [The pharmacodynamic research on fuxiye, a Chinese herbal lotion for external wash].

    PubMed

    Chen, Xue-Qi; Ge, Bei-Fen; Shen, Wei; Liu, Pei; Cao, Jun-Ming; Chen, Zhe

    2013-05-01

    To observe antisepsis, anti-swelling, and therapeutic effects of Fuxiye (FXY), a Chinese medical lotion for external wash in treating vaginitis model rats. The cervicitis rat model was induced by agar plate diffusion, ear auricle swelling induced by dimethylbenzene, and chemical stimulus. The in vitro antibiotic actions of FXY were observed. Besides, its effects on the swelling and inflammation in model rats were also observed. FXY at 25 mg/mL could completely inhibit the growth of Pseudomonas aeruginosa, Escherichia coli, pyogenic Streptococcus, and Streptococcus agalactiae. FXY at 50 mg/mL could completely inhibit the growth of Staphylococcus aureus and Candida albicans. It obviously restrained dimethylbenzene induced ear auricle swelling. It significantly alleviated cervicitis induced by chemical stiumli. FXY showed better effects on antisepsis, anti-inflammation, and treating cervicitis.

  16. Charge-regularized swelling kinetics of polyelectrolyte gels: Elasticity and diffusion

    NASA Astrophysics Data System (ADS)

    Sen, Swati; Kundagrami, Arindam

    2017-11-01

    We apply a recently developed method [S. Sen and A. Kundagrami, J. Chem. Phys. 143, 224904 (2015)], using a phenomenological expression of osmotic stress, as a function of polymer and charge densities, hydrophobicity, and network elasticity for the swelling of spherical polyelectrolyte (PE) gels with fixed and variable charges in a salt-free solvent. This expression of stress is used in the equation of motion of swelling kinetics of spherical PE gels to numerically calculate the spatial profiles for the polymer and free ion densities at different time steps and the time evolution of the size of the gel. We compare the profiles of the same variables obtained from the classical linear theory of elasticity and quantitatively estimate the bulk modulus of the PE gel. Further, we obtain an analytical expression of the elastic modulus from the linearized expression of stress (in the small deformation limit). We find that the estimated bulk modulus of the PE gel decreases with the increase of its effective charge for a fixed degree of deformation during swelling. Finally, we match the gel-front locations with the experimental data, taken from the measurements of charged reversible addition-fragmentation chain transfer gels to show an increase in gel-size with charge and also match the same for PNIPAM (uncharged) and imidazolium-based (charged) minigels, which specifically confirms the decrease of the gel modulus value with the increase of the charge. The agreement between experimental and theoretical results confirms general diffusive behaviour for swelling of PE gels with a decreasing bulk modulus with increasing degree of ionization (charge). The new formalism captures large deformations as well with a significant variation of charge content of the gel. It is found that PE gels with large deformation but same initial size swell faster with a higher charge.

  17. Processes and controls in swelling anhydritic clay rocks

    NASA Astrophysics Data System (ADS)

    Mutschler, Thomas; Blum, Philipp; Butscher, Christoph

    2015-04-01

    Referring to the swelling of anhydritic clay rocks in tunneling, Leopold Müller-Salzburg noted in the third volume on tunneling of his fundamental text book on rock engineering that "a truly coherent explanation of these phenomena is still owing" (Müller-Salzburg 1978, p. 306). This valuation is still true after more than three decades of research in the field of swelling anhydritic clay rocks. One of the reasons is our limited knowledge of the processes involved in the swelling of such rocks, and of the geological, mineralogical, hydraulic, chemical and mechanical controls of the swelling. In this contribution, a review of processes in swelling anhydritic clay rocks and of associated controls is presented. Also numerical models that aim at simulating the swelling processes and controls are included in this review, and some of the remaining open questions are pointed out. By focusing on process-oriented work in this review, the presentation intends to stimulate further research across disciplines in the field of swelling anhydritic clay rocks to finally get a step further in managing the swelling problem in geotechnical engineering projects. Keywords: swelling; anhydritic clay rocks; review

  18. Validation and Parameter Sensitivity Tests for Reconstructing Swell Field Based on an Ensemble Kalman Filter

    PubMed Central

    Wang, Xuan; Tandeo, Pierre; Fablet, Ronan; Husson, Romain; Guan, Lei; Chen, Ge

    2016-01-01

    The swell propagation model built on geometric optics is known to work well when simulating radiated swells from a far located storm. Based on this simple approximation, satellites have acquired plenty of large samples on basin-traversing swells induced by fierce storms situated in mid-latitudes. How to routinely reconstruct swell fields with these irregularly sampled observations from space via known swell propagation principle requires more examination. In this study, we apply 3-h interval pseudo SAR observations in the ensemble Kalman filter (EnKF) to reconstruct a swell field in ocean basin, and compare it with buoy swell partitions and polynomial regression results. As validated against in situ measurements, EnKF works well in terms of spatial–temporal consistency in far-field swell propagation scenarios. Using this framework, we further address the influence of EnKF parameters, and perform a sensitivity analysis to evaluate estimations made under different sets of parameters. Such analysis is of key interest with respect to future multiple-source routinely recorded swell field data. Satellite-derived swell data can serve as a valuable complementary dataset to in situ or wave re-analysis datasets. PMID:27898005

  19. Bone pain caused by swelling of mouse ear capsule static xylene and effects on rat models of cervical spondylosis

    NASA Astrophysics Data System (ADS)

    Zhang, Xuhui; Xia, Lei; Hao, Shaojun; Chen, Weiliang; Guo, Junyi; Ma, Zhenzhen; Wang, Huamin; Kong, Xuejun; Wang, Hongyu; Zhang, Zhengchen

    2018-04-01

    To observe the effect of intravenous bone pain Capsule on the ear of mice induced by xylene, swelling of rat models of cervical spondylosis. Weighing 18 ˜ 21g 50 mice, male, were randomly divided into for five groups, which were fed with service for bone pain static capsule suspension, Jingfukang granule suspension 0.5%CMC liquid and the same volume of. Respectively to the mice ear drop of xylene 0.05 ml, 4h after cervical dislocation, the mice were sacrificed and the cut two ear, rapid analytical balance weighing, and calculate the ear swelling degree and the other to take the weight of 200 - 60 250g male SD rats, were randomly divided into for 6 groups, 10 rats in each group, of which 5 groups made cervical spondylosis model. Results: with the blank group than bone pain static capsule group and Jingfukang granule group can significantly reduce mouse auricular dimethylbenzene swelling, significantly reduce ear swelling degree (P < 0.01); the successful establishment of the rat model of cervical spondylosis. With the model group ratio, large, medium and small dose of bone pain static capsule group, Jingfukang granule group (P < 0.01) angle of swash plate of rats increased significantly, the high and middle dose of bone pain static capsule group, Jingfukang granule group can significantly reduce the rat X-ray scores (P < 0.05). Bone pain static capsule can significantly reduce mouse auricular dimethylbenzene swelling. The bone pain capsule has a good effect on the rat model of cervical spondylosis.

  20. Evaluation of the material and tablet formation properties of modified forms of Dioscorea starches.

    PubMed

    Odeku, Oluwatoyin A; Picker-Freyer, Katharina M

    2009-11-01

    Starches obtained from four different Dioscorea species-namely, White yam (Dioscorea rotundata), Bitter yam (Dioscorea dumetorum), Chinese yam (Dioscorea oppositifolia), and Water yam (Dioscorea alata)-were modified by cross-linking, hydroxypropylation, and dual modification-cross-linking followed by hydroxypropylation. The physicochemical, material, and tablet properties of the modified starches were investigated with the aim of understanding their properties to determine their potential use for different applications. The tablet formation properties were assessed using 3D modeling, the Heckel equation, and force-displacement profiles. The analyzed tablet properties were elastic recovery, compactibility, and disintegration. The result indicates that the modifications generally increased the swelling power for all the starches in the rank order hydroxypropyl > hydroxypropylated cross-linked > cross-linked (CL) while the solubility did not show a clear-cut pattern. This indicates that hydroxypropylation generally showed the strongest effects on swelling. Furthermore, hydroxypropylation improved the hot water swelling of the CL starches. The modifications did not cause any detectable morphological change in the starch granules shape or size although slight rupture was observed in some granules. CL starch had the lowest water sorption capacity and hydroxypropylation increased the sorption capacity of the CL starches. The material property results indicate that hydroxypropylation and cross-linking did not significantly improve the flowability and compressibility but improved bonding, which resulted in an increased compaction and higher tablet crushing force even though they all disintegrated rapidly. Thus, the modified Dioscorea starches showed potentials for development as new excipients in solid dosage form design, and they could be useful as disintegrants or for Soft tableting.

  1. Low Activation Joining of SiC/SiC Composites for Fusion Applications: Modeling Thermal and Irradiation-induced Swelling Effects on Integrity of Ti3SiC2/SiC Joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.

    This work developed a continuum damage mechanics model that incorporates thermal expansion combined with irradiation-induced swelling effects to study the origin of cracking observed in recent irradiation experiments. Micromechanical modeling using an Eshelby-Mori-Tanaka approach was used to compute the thermoelastic properties of the Ti3SiC2/SiC joint needed for the model. In addition, a microstructural dual-phase Ti3SiC2/SiC model was developed to determine irradiation-induced swelling of the composite joint at a given temperature resulting from differential swelling of SiC and the Ti3SiC2 MAX phase. Three cases for the miniature torsion hourglass (THG) specimens containing a Ti3SiC2/SiC joint were analyzed corresponding to three irradiationmore » temperatures: 800oC, 500oC, and 400oC.« less

  2. The extrudate swell of HDPE: Rheological effects

    NASA Astrophysics Data System (ADS)

    Konaganti, Vinod Kumar; Ansari, Mahmoud; Mitsoulis, Evan; Hatzikiriakos, Savvas G.

    2017-05-01

    The extrudate swell of an industrial grade high molecular weight high-density polyethylene (HDPE) in capillary dies is studied experimentally and numerically using the integral K-BKZ constitutive model. The non-linear viscoelastic flow properties of the polymer resin are studied for a broad range of large step shear strains and high shear rates using the cone partitioned plate (CPP) geometry of the stress/strain controlled rotational rheometer. This allowed the determination of the rheological parameters accurately, in particular the damping function, which is proven to be the most important in simulating transient flows such as extrudate swell. A series of simulations performed using the integral K-BKZ Wagner model with different values of the Wagner exponent n, ranging from n=0.15 to 0.5, demonstrates that the extrudate swell predictions are extremely sensitive to the Wagner damping function exponent. Using the correct n-value resulted in extrudate swell predictions that are in excellent agreement with experimental measurements.

  3. Swelling kinetics of spray-dried chitosan acetate assessed by magnetic resonance imaging and their relation to drug release kinetics of chitosan matrix tablets.

    PubMed

    Huanbutta, Kampanart; Sriamornsak, Pornsak; Limmatvapirat, Sontaya; Luangtana-anan, Manee; Yoshihashi, Yasuo; Yonemochi, Etsuo; Terada, Katsuhide; Nunthanid, Jurairat

    2011-02-01

    Magnetic resonance imaging (MRI) was used to assess in situ swelling behaviors of spray-dried chitosan acetate (CSA) in 0.1N HCl, pH 6.8 and pH 5.0 Tris-HCl buffers. The in vitro drug releases from CSA matrix tablets containing the model drugs, diclofenac sodium and theophylline were investigated in all media using USP-4 apparatus. The effect of chitosan molecular weight, especially in pH 6.8 Tris-HCl, was also studied. In 0.1N HCl, the drug release from the matrix tablets was the lowest in relation to the highest swelling of CSA. The swelling kinetics in Tris-HCl buffers are Fickian diffusion according to their best fit to Higuchi's model as well as the drug release kinetics in all the media. The high swelling rate (k(s)(')) was found to delay the drug release rate (k'). The linear relationship between the swelling and fractions of drug release in Tris-HCl buffers was observed, indicating an important role of the swelling on controlling the drug release mechanism. Additionally, CSA of 200 and 800 kDa chitosan did not swell in pH 6.8 Tris-HCl but disintegrated into fractions, and the drug release from the matrix tablets was the highest. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Investigation of voltage swell mitigation using STATCOM

    NASA Astrophysics Data System (ADS)

    Razak, N. A. Abdul; >S Jaafar, I. S.

    2013-06-01

    STATCOM is one of the best applications of a self commutated FACTS device to control power quality problems in the distribution system. This project proposed a STATCOM model with voltage control mechanism. DQ transformation was implemented in the controller system to achieve better estimation. Then, the model was used to investigate and analyse voltage swell problem in distribution system. The simulation results show that voltage swell could contaminate distribution network with unwanted harmonic frequencies. Negative sequence frequencies give harmful effects to the network. System connected with proposed STATCOM model illustrates that it could mitigate this problems efficiently.

  5. Brain anti-cytoxic edema agents.

    PubMed

    Kimelberg, H K; Barron, K D; Bourke, R S; Nelson, L R; Cragoe, E J

    1990-01-01

    The work described in this chapter has indicated that improved outcome from an experimental head injury model can be achieved by drugs which are non-diuretic derivatives of loop diuretics, namely indanyl and fluorenyl compounds which are derivatives of ethacrynic acid. These drugs were originally identified by us on the basis of their efficacy in inhibiting [K+]-stimulated, HCO3(-)-dependent swelling of brain cerebrocortical slices. Swelling of glial cells (astrocytes) has long been known to be associated with such slice swelling and astrocyte swelling is a major locus of cytotoxic or cellular brain edema. Qualitative and quantitative electron microscope studies have shown that L644,711, a particularly effective member of the fluorenyl class of drugs, inhibits astrocytic swelling associated with an experimental animal head injury model. We have suggested that astrocytic swelling in pathological states may be partly due to activation of Cl-/HCO3- and Na+/H+ exchange systems driven by increased astrocytic intracellular hydration of CO2, and recent work has indeed shown that the ability of the indanyl and fluorenyl drugs to inhibit brain slice swelling and protect against head injury correlates closely with their ability to inhibit Cl-/HCO3- exchange. All these data suggest that astrocytic swelling, which seems to precede neuronal degeneration and breakdown of the blood-brain barrier, is deleterious and that prevention of such swelling can lead to effective therapy. We have used primary astrocytic cultures to explore reasons why astrocytic swelling could be harmful. Exposing such astrocytes to hypotonic medium causes rapid swelling with a slower return to normal volume in the continued presence of hypotonic medium, a process known as regulatory volume decrease or RVD. Such RVD is associated with marked release of several amino acids, including L-glutamate. L644,711 and other Cl-/HCO3- transport inhibitors such as SITS and furosemide, but not the selective Na+ + K+ + 2Cl- co-transport inhibitor bumetanide, inhibit such swelling-induced release of L-glutamate. Thus, L644,711 and other drugs may be effective in promoting recovery from head injury and other pathological states in which astrocytic swelling occurs either by initially preventing the swelling or inhibiting the release of excitotoxic excitatory amino acids if swelling does occur, perhaps depending at what time the drug is given.

  6. Design and in vivo evaluation of carvedilol buccal mucoadhesive patches.

    PubMed

    Thimmasetty, J; Pandey, G S; Babu, P R Sathesh

    2008-07-01

    The buccal region offers an attractive route of administration for systemic drug delivery. Carvedilol (dose, 3.125-25 mg) is beta-adrenergic antagonist. Its oral bioavailability is 25-35% because of first pass metabolism. Buccal absorption studies of a carvedilol solution in human volunteers showed 32.86% drug absorption. FTIR and UV spectroscopic methods revealed that there was no interaction between carvedilol and polymers. Carvedilol patches were prepared using HPMC, carbopol 934, eudragit RS 100, and ethylcellulose. The patches were evaluated for their thickness uniformity, folding endurance, weight uniformity, content uniformity, swelling behaviour, tensile strength, and surface pH. In vitro release studies were conducted for carvedilol-loaded patches in phosphate buffer (pH, 6.6) solution. Patches exhibited drug release in the range of 86.26 to 98.32% in 90 min. Data of in vitro release from patches were fit to different equations and kinetic models to explain release profiles. Kinetic models used were zero and first-order equations, Hixon-Crowell, Higuchi, and Korsmeyer-Peppas models. In vivo drug release studies in rabbits showed 90.85% of drug release from HPMC-carbopol patch while it was 74.63 to 88.02% within 90 min in human volunteers. Good correlation among in vitro release and in vivo release of carvedilol was observed.

  7. Quantitative diffusion and swelling kinetic measurements using large-angle interferometric refractometry.

    PubMed

    Saunders, John E; Chen, Hao; Brauer, Chris; Clayton, McGregor; Chen, Weijian; Barnes, Jack A; Loock, Hans-Peter

    2015-12-07

    The uptake and release of sorbates into films and coatings is typically accompanied by changes of the films' refractive index and thickness. We provide a comprehensive model to calculate the concentration of the sorbate from the average refractive index and the film thickness, and validate the model experimentally. The mass fraction of the analyte partitioned into a film is described quantitatively by the Lorentz-Lorenz equation and the Clausius-Mosotti equation. To validate the model, the uptake kinetics of water and other solvents into SU-8 films (d = 40-45 μm) were explored. Large-angle interferometric refractometry measurements can be used to characterize films that are between 15 μm to 150 μm thick and, Fourier analysis, is used to determine independently the thickness, the average refractive index and the refractive index at the film-substrate interface at one-second time intervals. From these values the mass fraction of water in SU-8 was calculated. The kinetics were best described by two independent uptake processes having different rates. Each process followed one-dimensional Fickian diffusion kinetics with diffusion coefficients for water into SU-8 photoresist film of 5.67 × 10(-9) cm(2) s(-1) and 61.2 × 10(-9) cm(2) s(-1).

  8. Bowers Swell: Evidence for a zone of compressive deformation concentric with Bowers Ridge, Bering Sea

    USGS Publications Warehouse

    Marlow, M. S.; Cooper, A. K.; Dadisman, S.V.; Geist, E.L.; Carlson, P.R.

    1990-01-01

    Bowers Swell is a newly discovered bathymetric feature which is up to 90 m high, between 12 and 20 km wide, and which extends arcuately about 400 km along the northern and eastern sides of Bowers Ridge. The swell was first revealed on GLORIA sonographs and subsequently mapped on seismic reflection and 3.5 kHz bathymetric profiles. These geophysical data show that the swell caps an arcuate anticlinal ridge, which is composed of deformed strata in an ancient trench on the northern and eastern sides of Bowers Ridge. The trench fill beneath the swell is actively deforming, as shown by faulting of the sea floor and by thinning of the strata across the crest of the swell. Thinning and faulting of the trench strata preclude an origin for the swell by simple sediment draping over an older basement high. We considered several models for the origin of Bowers Swell, including folding and uplift of the underlying trench sediment during the interaction between the Pacific plate beneath the Aleutian Ridge and a remnant oceanic slab beneath Bowers Ridge. However, such plate motions should generate extensive seismicity beneath Bowers Ridge, which is aseismic, and refraction data do not show any remnant slab beneath Bowers Ridge. Another origin considered for Bowers Swell invokes sediment deformation resulting from differential loading and diapirism in the trench fill. However, diapirism is not evident on seismic reflection profiles across the swell. We favour a model in which sediment deformation and swell formation resulted from a few tens of kilometers of low seismicity motion by intraplate crustal blocks beneath the Aleutian Basin. This motion may result from the translation of blocks in western Alaska to the south-west, forcing the movement of the Bering Sea margin west of Alaska into the abyssal Aleutian Basin. ?? 1990.

  9. Experimental determination and modelling of the swelling speed of a hydrogel polymer

    NASA Astrophysics Data System (ADS)

    Lenk, Sándor; Majoros, Tamás; Beleznai, Szabolcs; Ujhelyi, Ferenc; Péczeli, Imre; Karda, Zsolt; Barócsi, Attila

    2018-03-01

    When a hydrophilic intraocular lens material is immersed, its volume and mass start increase due to the diffusion of water (or isotonic saline solution) reaching a quasi-equilibrium in a time scale of several hours. Here, we present a combination of atomic force and confocal microscopy to measure the axial swelling speed of such polymers in distilled water. The measurements are used for the experimental verification of a simplistic finite element model developed for engineering applications in COMSOL environment. The model is calibrated with the temporal change of the sample mass. The swelling velocity is found to be inversely proportional to the square root of time.

  10. Mechanisms of astrocytic K(+) clearance and swelling under high extracellular K(+) concentrations.

    PubMed

    Murakami, Shingo; Kurachi, Yoshihisa

    2016-03-01

    In response to the elevation of extracellular K(+) concentration ([K(+)]out), astrocytes clear excessive K(+) to maintain conditions necessary for neural activity. K(+) clearance in astrocytes occurs via two processes: K(+) uptake and K(+) spatial buffering. High [K(+)]out also induces swelling in astrocytes, leading to edema and cell death in the brain. Despite the importance of astrocytic K(+) clearance and swelling, the underlying mechanisms remain unclear. Here, we report results from a simulation analysis of astrocytic K(+) clearance and swelling. Astrocyte models were constructed by incorporating various mechanisms such as intra/extracellular ion concentrations of Na(+), K(+), and Cl(-), cell volume, and models of Na,K-ATPase, Na-K-Cl cotransporter (NKCC), K-Cl cotransporter, inwardly-rectifying K(+) (KIR) channel, passive Cl(-) current, and aquaporin channel. The simulated response of astrocyte models under the uniform distribution of high [K(+)]out revealed significant contributions of NKCC and Na,K-ATPase to increases of intracellular K(+) and Cl(-) concentrations, and swelling. Moreover, we found that, under the non-uniform distribution of high [K(+)]out, KIR channels localized at synaptic clefts absorbed excess K(+) by depolarizing the equivalent potential of K(+) (E K) above membrane potential, while K(+) released through perivascular KIR channels was enhanced by hyperpolarizing E K and depolarizing membrane potential. Further analysis of simulated drug effects revealed that astrocyte swelling was modulated by blocking each of the ion channels and transporters. Our simulation analysis revealed controversial mechanisms of astrocytic K(+) clearance and swelling resulting from complex interactions among ion channels and transporters.

  11. Climatology of Global Swell-Atmosphere Interaction

    NASA Astrophysics Data System (ADS)

    Semedo, Alvaro

    2016-04-01

    At the ocean surface wind sea and swell waves coexist. Wind sea waves are locally generated growing waves strongly linked to the overlaying wind field. Waves that propagate away from their generation area, throughout entire ocean basins, are called swell. Swell waves do not receive energy from local wind. Ocean wind waves can be seen as the "gearbox" between the atmosphere and the ocean, and are of critical importance to the coupled atmosphere-ocean system, since they modulate most of the air-sea interaction processes and exchanges, particularly the exchange of momentum. This modulation is most of the times sea-state dependent, i.e., it is a function of the prevalence of one type of waves over the other. The wave age parameter, defined as the relative speed between the peak wave and the wind (c_p⁄U_10), has been largely used in different aspects of the air-sea interaction theory and in practical modeling solutions of wave-atmosphere coupled model systems. The wave age can be used to assess the development of the sea state but also the prevalence (domination) of wind sea or swell waves at the ocean surface. The presence of fast-running waves (swell) during light winds (at high wave age regimes) induces an upward momentum flux, directed from the water surface to the atmosphere. This upward directed momentum has an impact in the lower marine atmospheric boundary layer (MABL): on the one hand it changes the vertical wind speed profile by accelerating the flow at the first few meters (inducing the so called "wave-driven wind"), and on the other hand it changes the overall MABL turbulence structure by limiting the wind shear - in some observed and modeled situations the turbulence is said to have "collapse". The swell interaction with the lower MABL is a function of the wave age but also of the swell steepness, since steeper waves loose more energy into the atmosphere as their energy attenuates. This interaction can be seen as highest in areas where swells are steepest, but also where the wind speed is lowest and consequently the wave age is high. A detailed global climatology of the wave age and swell steepness parameters, based on the ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-Interim reanalysis is presented. It will be shown, in line with previous studies, that the global climatological patterns of the wave age confirm the global dominance of the World Ocean by swell waves. The areas of the ocean where the highest interaction of swell waves and the lower atmosphere can be expected are also presented.

  12. Shrink-swell behavior of soil across a vertisol catena

    USDA-ARS?s Scientific Manuscript database

    Shrinking and swelling of soils and the associated formation and closing of cracks can vary spatially within the smallest hydrologic unit subdivision utilized in surface hydrology models. Usually in the application of surface hydrology models, cracking is not considered to vary within a hydrologic u...

  13. A model describing intra-granular fission gas behaviour in oxide fuel for advanced engineering tools

    NASA Astrophysics Data System (ADS)

    Pizzocri, D.; Pastore, G.; Barani, T.; Magni, A.; Luzzi, L.; Van Uffelen, P.; Pitts, S. A.; Alfonsi, A.; Hales, J. D.

    2018-04-01

    The description of intra-granular fission gas behaviour is a fundamental part of any model for the prediction of fission gas release and swelling in nuclear fuel. In this work we present a model describing the evolution of intra-granular fission gas bubbles in terms of bubble number density and average size, coupled to gas release to grain boundaries. The model considers the fundamental processes of single gas atom diffusion, gas bubble nucleation, re-solution and gas atom trapping at bubbles. The model is derived from a detailed cluster dynamics formulation, yet it consists of only three differential equations in its final form; hence, it can be efficiently applied in engineering fuel performance codes while retaining a physical basis. We discuss improvements relative to previous single-size models for intra-granular bubble evolution. We validate the model against experimental data, both in terms of bubble number density and average bubble radius. Lastly, we perform an uncertainty and sensitivity analysis by propagating the uncertainties in the parameters to model results.

  14. Theoretical analysis of swelling characteristics of cylindrical uranium dioxide fuel pins with a niobium - 1-percent-zirconium clad

    NASA Technical Reports Server (NTRS)

    Saltsman, J. F.

    1973-01-01

    The relations between clad creep strain and fuel volume swelling are shown for cylindrical UO2 fuel pins with a Nb-1Zr clad. These relations were obtained by using the computer code CYGRO-2. These clad-strain - fuel-volume-swelling relations may be used with any fuel-volume-swelling model, provided the fuel volume swelling is isotropic and independent of the clad restraints. The effects of clad temperature (over a range from 118 to 1642 K (2010 to 2960 R)), pin diameter, clad thickness and central hole size in the fuel have been investigated. In all calculations the irradiation time was 500 hours. The burnup rate was varied.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Linyun; Mei, Zhi-Gang; Yacout, Abdellatif M.

    We have developed a mesoscale phase-field model for studying the effect of recrystallization on the gas-bubble-driven swelling in irradiated U-Mo alloy fuel. The model can simulate the microstructural evolution of the intergranular gas bubbles on the grain boundaries as well as the recrystallization process. Our simulation results show that the intergranular gas-bubble-induced fuel swelling exhibits two stages: slow swelling kinetics before recrystallization and rapid swelling kinetics with recrystallization. We observe that the recrystallization can significantly expedite the formation and growth of gas bubbles at high fission densities. The reason is that the recrystallization process increases the nucleation probability of gasmore » bubbles and reduces the diffusion time of fission gases from grain interior to grain boundaries by increasing the grain boundary area and decreasing the diffusion distance. The simulated gas bubble shape, size distribution, and density on the grain boundaries are consistent with experimental measurements. We investigate the effect of the recrystallization on the gas-bubble-driven fuel swelling in UMo through varying the initial grain size and grain aspect ratio. We conclude that the initial microstructure of fuel, such as grain size and grain aspect ratio, can be used to effectively control the recrystallization and therefore reduce the swelling in U-Mo fuel.« less

  16. Trident Warrior Buoy Testing

    DTIC Science & Technology

    2013-09-30

    the data to track swell events, accurately model swell refraction, and use the data to drive surf -forecasting and other nearshore models (e.g...Temperature (SST). • Addition of a 8GB Micro-SD card for on board time series storage (can be unpopulated or disabled ). • A complete rewrite of the

  17. Water Absorption and Thickness Swelling Behavior of Polypropylene Reinforced with Hybrid Recycled Newspaper and Glass Fiber

    NASA Astrophysics Data System (ADS)

    Shakeri, Alireza; Ghasemian, Ali

    2010-04-01

    This study aims to investigate the moisture absorption of recycled newspaper fiber and recycled newspaper-glass fiber hybrid reinforced polypropylene composites to study their suitability in outdoor applications. In this work composite materials were made from E-glass fiber (G), recycled newspaper (NP) and polypropylene (PP), by using internal mixing and hot-pressing molding. Long-term water absorption (WA) and thickness swelling (TS) kinetics of the composites was investigated with water immersion. It was found that the WA and TS increase with NP content in composite and water immersion time before an equilibrium condition was reached. Composites made from the NP show comparable results as those made of the hybrid fiber. The results suggest that the water absorption and thickness swelling composite decrease with increasing glass fiber contents in hybrid fiber composite. It is interesting to find that the WA and TS can be reduced significantly with incorporation of a coupling agent (maleated polypropylene) in the composite formulation. Further studies were conducted to model the water diffusion and thickness swelling of the composites. Diffusion coefficients and swelling rate parameters in the models were obtained by fitting the model predictions with the experimental data.

  18. Modeling of the morphological change of cellulose microfibrils caused with aqueous NaOH solution: the longitudinal contraction and laterally swelling during decrystallization.

    PubMed

    Nakano, Takato

    2017-04-01

    The conformation of cellulose microfibrils treated with aqueous NaOH was modeled as partially decrystallized cellulose chains before completing conversion to cellulose II, in order to elucidate the change in morphology of ramie fiber caused by NaOH treatment. Equations for the relative length and width of the microfibrils were derived on the basis of partially decrystallized microfibrils modeling. Each equation contains four parameters, n, β, w c , and c r , which correspond to the number of glucose residues between periodic defects along the untreated ramie cellulose microfibrils, the extension ratio of amorphous cellulose chain along length, the cross-section crystallinity, and the correction term of crystallinity, respectively. The validity of the derived equations was confirmed by two types of simulations. One is performed using experimental data L/L 0 and W/W 0 as a function of crystallinity, while the other is done using the relationship between the relative length and width obtained from the experimental data, which is independent of crystallinity, was performed. The best-fit simulation was obtained under n = 277, β = 2.813, and c r w c  = 0.671 for the former and under n = 301 and β = 2.792 for the latter. These values of n and β correspond closely to the values reported in references for ramie microfibrils. Both simulation results show that macroscopic changes in the morphology of ramie fibers is attributable to the changes in cellulose chain conformation in the decrystallized regions created along the microfibrils upon NaOH treatment.

  19. Ammonia-induced brain swelling and neurotoxicity in an organotypic slice model

    PubMed Central

    Back, Adam; Tupper, Kelsey Y.; Bai, Tao; Chiranand, Paulpoj; Goldenberg, Fernando D.; Frank, Jeffrey I.; Brorson, James R.

    2013-01-01

    Objectives Acute liver failure produces cerebral dysfunction and edema, mediated in part by elevated ammonia concentrations, often leading to coma and death. The pathophysiology of cerebral edema in acute liver failure is incompletely understood. In vitro models of the cerebral effects of acute liver failure have predominately consisted of dissociated astrocyte cultures or acute brain slices. We describe a stable long-term culture model incorporating both neural and glial elements in a three-dimensional tissue structure offering significant advantages to the study of astrocytic-neuronal interactions in the pathophysiology of cerebral edema and dysfunction in acute liver failure. Methods We utilized chronic organotypic slice cultures from mouse forebrain, applying ammonium acetate in iso-osmolar fashion for 72 hours. Imaging of slice thickness to assess for tissue swelling was accomplished in living slices with optical coherence tomography, and confocal microscopy of fluorescence immunochemical and histochemical staining served to assess astrocyte and neuronal numbers, morphology, and volume in the fixed brain slices. Results Ammonia exposure at 1–10 mM produced swelling of immunochemically-identified astrocytes, and at 10 mM resulted in macroscopic tissue swelling, with slice thickness increasing by about 30%. Astrocytes were unchanged in number. In contrast, 10 mM ammonia treatment severely disrupted neuronal morphology and reduced neuronal survival at 72 hours by one-half. Discussion Elevated ammonia produces astrocytic swelling, tissue swelling, and neuronal toxicity in cerebral tissues. Ammonia-treated organotypic brain slice cultures provide an in vitro model of cerebral effects of conditions relevant to acute liver failure, applicable to pathophysiological investigations. PMID:22196764

  20. Release of Water Soluble Drugs from Dynamically Swelling POLY(2-HYDROXYETHYL Methacrylate - CO - Methacrylic Acid) Hydrogels.

    NASA Astrophysics Data System (ADS)

    Kou, Jim Hwai-Cher

    In this study, ionizable copolymers of HEMA and methacrylic acid (MA) are investigated for their potential use in developing pH dependent oral delivery systems. Because of the MA units, these gels swell extensively at high pH. Since solute diffusion in the hydrophilic polymers depends highly on the water content of the matrix, it is anticipated that the release rate will be modulated by this pH induced swelling. From a practical point of view, the advantage of the present system is that one can minimize drug loss in the stomach and achieve a programmed release in intestine. This approach is expected to improve delivery of acid labile drugs or drugs that cause severe gastrointestinal side effects. This work mainly focuses on the basic understanding of the mechanism involved in drug release from the poly(HEMA -co- MA) gels, especially under dynamic swelling conditions. Equilibrium swelling is first characterized since water content is the major determinant of transport properties in these gels. Phenylpropanolamine (PPA) is chosen as the model drug for the release study and its diffusion characteristics in the gel matrix determined. The data obtained show that the PPA diffusivity follows the free volume theory of Yasuda, which explains the accelerating effect of swelling on drug release. A mathematical model based on a diffusion mechanism has been developed to describe PPA release from the swelling gels. Based on this model, several significant conclusions can be drawn. First, the release rate can be modulated by the aspect ratio of the cylindrical geometry, and this has a practical implication in dosage form design. Second, the release rate can be lowered quite considerably if the dimensional increase due to swelling is significant. Consequently, it is the balance between the drug diffusivity increase and the gel dimensional growth that determines the release rate from the swelling matrix. Third, quasi-steady release kinetics, which are characteristic of swelling release systems, can also be predicted by this model. PPA release from initially dry poly(HEMA -co- MA) gels has also been studied. The data show that the release rate is mainly controlled by the PPA loading level and quite insensitive to the methacrylic acid composition of the gels. These phenomena can be adequately explained by analyzing the transport resistances in the gels. The overall time scale of release from these gels were shown to be in the range which was suitable for oral controlled release applications. (Abstract shortened with permission of author.).

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szlufarska, Izabela; Voyles, Paul; Sridharan, Kumar

    Silicon carbide is a promising cladding material because of its high strength and relatively good corrosion resistance. However, SiC is brittle and therefore SiC-based components need to be carefully designed to avoid cracking and failure by fracture. In design of SiC-based composites for nuclear reactor applications it is essential to take into account how mechanical properties are affected by radiation and temperature, or in other words, what strains and stresses develop in this material due to environmental conditions. While thermal strains in SiC can be predicted using classical theories, radiation-induced strains are much less understood. In particular, it is criticalmore » to correctly account for radiation swelling and radiation creep, which contribute significantly to dimensional instability of SiC under radiation. Swelling typically increases logarithmically with radiation dose and saturates at relatively low doses (damage levels of a few dpa). Consequently, swelling-induced stresses are likely to develop within a few months of operation of a reactor. Radiation-induced volume swelling in SiC can be as high as 2%, which is significantly higher than the cracking strain of 0.1% in SiC. Swelling-induced strains will lead to enormous stresses and fracture, unless these stresses can be relaxed via some other mechanism. An effective way to achieve stress relaxation is via radiation creep. Although it has been hypothesized that both radiation swelling and radiation creep are driven by formation of defect clusters, existing models for swelling and creep in SiC are limited by the lack of understanding of specific defects that form due to radiation in the range of temperatures relevant to fuel cladding in light water reactors (LWRs) (<1000°C). For example, defects that can be detected with traditional transmission electron microscopy (TEM) techniques account only for 10-45% of the swelling measured in irradiated SiC. Here, we have undertaken an integrated experimental and modeling effort to discover the previously invisible defects in irradiated SiC and to determine the contributions of these defects to radiation swelling. Knowledge of the most stable defect structures and the rate controlling processes during defect evolution is essential for development of predictive models for swelling and creep as a function of temperature and radiation dose. This research has been enabled by state-of-the-art imaging techniques, such as the aberration corrected scanning transmission electron microscopy (STEM) (FEI TITAN) closely coupled with multi-scale models of stable defect clusters and their evolution.« less

  2. Radiative transfer theory for a random distribution of low velocity spheres as resonant isotropic scatterers

    NASA Astrophysics Data System (ADS)

    Sato, Haruo; Hayakawa, Toshihiko

    2014-10-01

    Short-period seismograms of earthquakes are complex especially beneath volcanoes, where the S wave mean free path is short and low velocity bodies composed of melt or fluid are expected in addition to random velocity inhomogeneities as scattering sources. Resonant scattering inherent in a low velocity body shows trap and release of waves with a delay time. Focusing of the delay time phenomenon, we have to consider seriously multiple resonant scattering processes. Since wave phases are complex in such a scattering medium, the radiative transfer theory has been often used to synthesize the variation of mean square (MS) amplitude of waves; however, resonant scattering has not been well adopted in the conventional radiative transfer theory. Here, as a simple mathematical model, we study the sequence of isotropic resonant scattering of a scalar wavelet by low velocity spheres at low frequencies, where the inside velocity is supposed to be low enough. We first derive the total scattering cross-section per time for each order of scattering as the convolution kernel representing the decaying scattering response. Then, for a random and uniform distribution of such identical resonant isotropic scatterers, we build the propagator of the MS amplitude by using causality, a geometrical spreading factor and the scattering loss. Using those propagators and convolution kernels, we formulate the radiative transfer equation for a spherically impulsive radiation from a point source. The synthesized MS amplitude time trace shows a dip just after the direct arrival and a delayed swelling, and then a decaying tail at large lapse times. The delayed swelling is a prominent effect of resonant scattering. The space distribution of synthesized MS amplitude shows a swelling near the source region in space, and it becomes a bell shape like a diffusion solution at large lapse times.

  3. Effects of osmotic pressure in the extracellular matrix on tissue deformation.

    PubMed

    Lu, Y; Parker, K H; Wang, W

    2006-06-15

    In soft tissues, large molecules such as proteoglycans trapped in the extracellular matrix (ECM) generate high levels of osmotic pressure to counter-balance external pressures. The semi-permeable matrix and fixed negative charges on these molecules serve to promote the swelling of tissues when there is an imbalance of molecular concentrations. Structural molecules, such as collagen fibres, form a network of stretch-resistant matrix, which prevents tissue from over-swelling and keeps tissue integrity. However, collagen makes little contribution to load bearing; the osmotic pressure in the ECM is the main contributor balancing external pressures. Although there have been a number of studies on tissue deformation, there is no rigorous analysis focusing on the contribution of the osmotic pressure in the ECM on the viscoelastic behaviour of soft tissues. Furthermore, most previous works were carried out based on the assumption of infinitesimal deformation, whereas tissue deformation is finite under physiological conditions. In the current study, a simplified mathematical model is proposed. Analytic solutions for solute distribution in the ECM and the free-moving boundary were derived by solving integro-differential equations under constant and dynamic loading conditions. Osmotic pressure in the ECM is found to contribute significantly to the viscoelastic characteristics of soft tissues during their deformation.

  4. Polyelectrolyte hydrogel instabilities in ionic solutions

    NASA Astrophysics Data System (ADS)

    English, Anthony E.; Tanaka, Toyoichi; Edelman, Elazer R.

    1996-12-01

    The phase behavior of polyelectrolyte hydrogels has been examined as a function of relative charge composition, bath salt concentration, and solvent quality. Nonlinear swelling instabilities of 2-hydroxyethyl methacrylate (HEMA) and methacrylic acid (MAAc) copolymer hydrogels manifested themselves as discontinuous first order swelling transitions as a function of bath salt concentration. A modified Flory-Huggins model was used to describe the regions of instability when bath salt concentration and solvent quality are considered as control variables. The role of ion dissociation equilibrium in the change from local or smooth transitions to nonlocal or discontinuous swelling transitions is illustrated within the framework of our model.

  5. Dynamic Regulation of Cell Volume and Extracellular ATP of Human Erythrocytes

    PubMed Central

    Leal Denis, M. Florencia; Alvarez, H. Ariel; Lauri, Natalia; Alvarez, Cora L.; Chara, Osvaldo; Schwarzbaum, Pablo J.

    2016-01-01

    Introduction The peptide mastoparan 7 (MST7) triggered in human erythrocytes (rbcs) the release of ATP and swelling. Since swelling is a well-known inducer of ATP release, and extracellular (ATPe), interacting with P (purinergic) receptors, can affect cell volume (Vr), we explored the dynamic regulation between Vr and ATPe. Methods and Treatments We made a quantitative assessment of MST7-dependent kinetics of Vr and of [ATPe], both in the absence and presence of blockers of ATP efflux, swelling and P receptors. Results In rbcs 10 μM MST7 promoted acute, strongly correlated changes in [ATPe] and Vr. Whereas MST7 induced increases of 10% in Vr and 190 nM in [ATPe], blocking swelling in a hyperosmotic medium + MST7 reduced [ATPe] by 40%. Pre-incubation of rbcs with 10 μM of either carbenoxolone or probenecid, two inhibitors of the ATP conduit pannexin 1, reduced [ATPe] by 40–50% and swelling by 40–60%, while in the presence of 80 U/mL apyrase, an ATPe scavenger, cell swelling was prevented. While exposure to 10 μM NF110, a blocker of ATP-P2X receptors mediating sodium influx, reduced [ATPe] by 48%, and swelling by 80%, incubation of cells in sodium free medium reduced swelling by 92%. Analysis and Discussion Results were analyzed by means of a mathematical model where ATPe kinetics and Vr kinetics were mutually regulated. Model dependent fit to experimental data showed that, upon MST7 exposure, ATP efflux required a fast 1960-fold increase of ATP permeability, mediated by two kinetically different conduits, both of which were activated by swelling and inactivated by time. Both experimental and theoretical results suggest that, following MST7 exposure, ATP is released via two conduits, one of which is mediated by pannexin 1. The accumulated ATPe activates P2X receptors, followed by sodium influx, resulting in cell swelling, which in turn further activates ATP release. Thus swelling and P2X receptors constitute essential components of a positive feedback loop underlying ATP-induced ATP release of rbcs. PMID:27355484

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Shenyang; Lavender, Curt A.; Joshi, Vineet V.

    Recrystallization plays an important role in swelling kinetics of irradiated metallic nuclear fuels. This talk will present a three-dimensional microstructure-dependent swelling model by integrating the evolution of intra-and inter- granular gas bubbles, dislocation loop density, and recrystallization.

  7. Characterisation of a cell swelling-activated K+-selective conductance of Ehrlich mouse ascites tumour cells

    PubMed Central

    Niemeyer, María Isabel; Hougaard, Charlotte; Hoffmann, Else K; Jørgensen, Finn; Stutzin, Andrés; Sepúlveda, Francisco V

    2000-01-01

    The K+ and Cl− currents activated by hypotonic cell swelling were studied in Ehrlich ascites tumour cells using the whole-cell recording mode of the patch-clamp technique. Currents were measured in the absence of added intracellular Ca2+ and with strong buffering of Ca2+. K+ current activated by cell swelling was measured as outward current at the Cl− equilibrium potential (ECl) under quasi-physiological gradients. It could be abolished by replacing extracellular Na+ with K+, thereby cancelling the driving force. Replacement with other cations suggested a selectivity sequence of K+ > Rb+ > NH4≈ Na+≈ Li+; Cs+ appeared to be inhibitory. The current-voltage relationship of the volume-sensitive K+ current was well fitted with the Goldman-Hodgkin-Katz current equation between -130 and +20 mV with a permeability coefficient of around 10−6 cm s−1 with both physiological and high-K+ extracellular solutions. The class III antiarrhythmic drug clofilium blocked the volume-sensitive K+ current in a voltage-independent manner with an IC50 of 32 μM. Clofilium was also found to be a strong inhibitor of the regulatory volume decrease response of Ehrlich cells. Cell swelling-activated K+ currents of Ehrlich cells are voltage and calcium insensitive and are resistant to a range of K+ channel inhibitors. These characteristics are similar to those of the so-called background K+ channels. Noise analysis of whole-cell current was consistent with a unitary conductance of 5.5 pS for the single channels underlying the K+ current evoked by cell swelling, measured at 0 mV under a quasi-physiological K+ gradient. PMID:10790156

  8. Cracking up (and down): Linking multi-domain hydraulic properties with multi-scale hydrological processes in shrink-swell soils

    NASA Astrophysics Data System (ADS)

    Stewart, R. D.; Rupp, D. E.; Abou Najm, M. R.; Selker, J. S.

    2017-12-01

    Shrink-swell soils, often classified as Vertisols or vertic intergrades, are found on every continent except Antarctica and within many agricultural and urban regions. These soils are characterized by cyclical shrinking and swelling, in which bulk density and porosity distributions vary as functions of time and soil moisture. Crack networks that form in these soils act as dominant environmental controls on the movement of water, contaminants, and gases, making it important to develop fundamental understanding and tractable models of their hydrologic characteristics and behaviors. In this study, which took place primarily in the Secano Interior region of South-Central Chile, we quantified soil-water interactions across scales using a diverse and innovative dataset. These measurements were then utilized to develop a set of parsimonious multi-domain models for describing hydraulic properties and hydrological processes in shrink-swell soils. In a series of examples, we show how this model can predict porosity distributions, crack widths, saturated hydraulic conductivities, and surface runoff (i.e., overland flow) thresholds, by capturing the dominant mechanisms by which water moves through and interacts with clayey soils. Altogether, these models successfully link small-scale shrinkage/swelling behaviors with large-scale thresholds, and can be applied to describe important processes such as infiltration, overland flow development, and the preferential flow and transport of fluids and gases.

  9. Temperature dependence of helium-implantation-induced lattice swelling in polycrystalline tungsten: X-ray micro-diffraction and Eigenstrain modelling

    DOE PAGES

    de Broglie, I.; Beck, C. E.; Liu, W.; ...

    2015-05-30

    Using synchrotron X-ray micro-diffraction and Eigenstrain analysis the distribution of lattice swelling near grain boundaries in helium-implanted polycrystalline tungsten is quantified. Samples heat-treated at up to 1473 K after implantation show less uniform lattice swelling that varies significantly from grain to grain compared to as-implanted samples. An increase in lattice swelling is found in the vicinity of some grain boundaries, even at depths beyond the implanted layer. As a result, these findings are discussed in terms of the evolution of helium-ion-implantation-induced defects.

  10. Temperature dependence of helium-implantation-induced lattice swelling in polycrystalline tungsten: X-ray micro-diffraction and Eigenstrain modelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Broglie, I.; Beck, C. E.; Liu, W.

    Using synchrotron X-ray micro-diffraction and Eigenstrain analysis the distribution of lattice swelling near grain boundaries in helium-implanted polycrystalline tungsten is quantified. Samples heat-treated at up to 1473 K after implantation show less uniform lattice swelling that varies significantly from grain to grain compared to as-implanted samples. An increase in lattice swelling is found in the vicinity of some grain boundaries, even at depths beyond the implanted layer. As a result, these findings are discussed in terms of the evolution of helium-ion-implantation-induced defects.

  11. Dermal Collagen and Lipid Deposition Correlate with Tissue Swelling and Hydraulic Conductivity in Murine Primary Lymphedema

    PubMed Central

    Rutkowski, Joseph M.; Markhus, Carl Erik; Gyenge, Christina C.; Alitalo, Kari; Wiig, Helge; Swartz, Melody A.

    2010-01-01

    Primary lymphedema is a congenital pathology of dysfunctional lymphatic drainage characterized by swelling of the limbs, thickening of the dermis, and fluid and lipid accumulation in the underlying tissue. Two mouse models of primary lymphedema, the Chy mouse and the K14-VEGFR-3-Ig mouse, both lack dermal lymphatic capillaries and exhibit a lymphedematous phenotype attributable to disrupted VEGFR-3 signaling. Here we show that the differences in edematous tissue composition between these two models correlated with drastic differences in hydraulic conductivity. The skin of Chy mice possessed significantly higher levels of collagen and fat, whereas K14-VEGFR-3-Ig mouse skin composition was relatively normal, as compared with their respective wild-type controls. Functionally, this resulted in a greatly increased dermal hydraulic conductivity in K14-VEGFR3-Ig, but not Chy, mice. Our data suggest that lymphedema associated with increased collagen and lipid accumulation counteracts an increased hydraulic conductivity associated with dermal swelling, which in turn further limits interstitial transport and swelling. Without lipid and collagen accumulation, hydraulic conductivity is increased and overall swelling is minimized. These opposing tissue responses to primary lymphedema imply that tissue remodeling—predominantly collagen and fat deposition—may dictate tissue swelling and govern interstitial transport in lymphedema. PMID:20110415

  12. Dermal collagen and lipid deposition correlate with tissue swelling and hydraulic conductivity in murine primary lymphedema.

    PubMed

    Rutkowski, Joseph M; Markhus, Carl Erik; Gyenge, Christina C; Alitalo, Kari; Wiig, Helge; Swartz, Melody A

    2010-03-01

    Primary lymphedema is a congenital pathology of dysfunctional lymphatic drainage characterized by swelling of the limbs, thickening of the dermis, and fluid and lipid accumulation in the underlying tissue. Two mouse models of primary lymphedema, the Chy mouse and the K14-VEGFR-3-Ig mouse, both lack dermal lymphatic capillaries and exhibit a lymphedematous phenotype attributable to disrupted VEGFR-3 signaling. Here we show that the differences in edematous tissue composition between these two models correlated with drastic differences in hydraulic conductivity. The skin of Chy mice possessed significantly higher levels of collagen and fat, whereas K14-VEGFR-3-Ig mouse skin composition was relatively normal, as compared with their respective wild-type controls. Functionally, this resulted in a greatly increased dermal hydraulic conductivity in K14-VEGFR3-Ig, but not Chy, mice. Our data suggest that lymphedema associated with increased collagen and lipid accumulation counteracts an increased hydraulic conductivity associated with dermal swelling, which in turn further limits interstitial transport and swelling. Without lipid and collagen accumulation, hydraulic conductivity is increased and overall swelling is minimized. These opposing tissue responses to primary lymphedema imply that tissue remodeling--predominantly collagen and fat deposition--may dictate tissue swelling and govern interstitial transport in lymphedema.

  13. Effect of Guci powder on toe swelling induced by egg white in rats

    NASA Astrophysics Data System (ADS)

    Xie, Guoqi; Hao, Shaojun; Shen, Huiling; Ma, Zhenzhen; Zhang, Xuehui; Zhang, Zhengchen

    2018-04-01

    To observe the effect of Guci Powder on foot swelling induced by egg white in rats. 50 male rats were randomly divided into normal saline group (n=10), white vinegar group (n=10) and Guning lotion group (n=10). There were 10 rats in the high-dose group and 10 in the low-dose group. The rats in each group were treated with the drug on the left and right feet of the rats. 0.5 hours after the last administration, the rats in each group were inflamed. The left hindsole plantar volume was measured respectively, so that the difference of the posterior toe volume before inflammation was taken as the swelling degree, and the swelling degree of each group was calculated. Compared with physiological saline group, the rats' egg white toe swelling (P<0.01) was significantly inhibited at 0.5˜6h after administration. The swelling of egg white toe in rats was inhibited at 0.5˜2h (P<0.05). Bone spur powder has a good intervention effect on the model of toe swelling induced by egg white in rats, and the external application of bone spur powder has anti-inflammatory and swelling effect.

  14. Deformation mechanisms in a coal mine roadway in extremely swelling soft rock.

    PubMed

    Li, Qinghai; Shi, Weiping; Yang, Renshu

    2016-01-01

    The problem of roadway support in swelling soft rock was one of the challenging problems during mining. For most geological conditions, combinations of two or more supporting approaches could meet the requirements of most roadways; however, in extremely swelling soft rock, combined approaches even could not control large deformations. The purpose of this work was to probe the roadway deformation mechanisms in extremely swelling soft rock. Based on the main return air-way in a coal mine, deformation monitoring and geomechanical analysis were conducted, as well as plastic zone mechanical model was analysed. Results indicated that this soft rock was potentially very swelling. When the ground stress acted alone, the support strength needed in situ was not too large and combined supporting approaches could meet this requirement; however, when this potential released, the roadway would undergo permanent deformation. When the loose zone reached 3 m within surrounding rock, remote stress p ∞ and supporting stress P presented a linear relationship. Namely, the greater the swelling stress, the more difficult it would be in roadway supporting. So in this extremely swelling soft rock, a better way to control roadway deformation was to control the releasing of surrounding rock's swelling potential.

  15. The wind sea and swell waves climate in the Nordic seas

    NASA Astrophysics Data System (ADS)

    Semedo, Alvaro; Vettor, Roberto; Breivik, Øyvind; Sterl, Andreas; Reistad, Magnar; Soares, Carlos Guedes; Lima, Daniela

    2015-02-01

    A detailed climatology of wind sea and swell waves in the Nordic Seas (North Sea, Norwegian Sea, and Barents Sea), based on the high-resolution reanalysis NORA10, developed by the Norwegian Meteorological Institute, is presented. The higher resolution of the wind forcing fields, and the wave model (10 km in both cases), along with the inclusion of the bottom effect, allowed a better description of the wind sea and swell features, compared to previous global studies. The spatial patterns of the swell-dominated regional wave fields are shown to be different from the open ocean, due to coastal geometry, fetch dimensions, and island sheltering. Nevertheless, swell waves are still more prevalent and carry more energy in the Nordic Seas, with the exception of the North Sea. The influence of the North Atlantic Oscillation on the winter regional wind sea and swell patterns is also presented. The analysis of the decadal trends of wind sea and swell heights during the NORA10 period (1958-2001) shows that the long-term trends of the total significant wave height (SWH) in the Nordic Seas are mostly due to swell and to the wave propagation effect.

  16. Evaluation on expansive performance of the expansive soil using electrical responses

    NASA Astrophysics Data System (ADS)

    Chu, Ya; Liu, Songyu; Bate, Bate; Xu, Lei

    2018-01-01

    Light structures, such as highways and railroads, built on expansive soils are prone to damages from the swelling of their underlain soil layers. Considerable amount of research has been conducted to characterize the swelling properties of expansive soils. Current swell characterization models, however, are limited by lack of standardized tests. Electrical methods are non-destructive, and are faster and less expensive than the traditional geotechnical methods. Therefore, geo-electrical methods are attractive for defining soil characteristics, including the swelling behavior. In this study, comprehensive laboratory experiments were undertaken to measure the free swelling and electrical resistivity of the mixtures of commercial kaolinite and bentonite. The electrical conductivity of kaolinite-bentonite mixtures was measured by a self-developed four-electrode soil resistivity box. Increasing the free swelling rate of the kaolinite-bentonite mixtures (0.72 to 1 of porosity of soils samples) led to a reduction in the electrical resistivity and an increase in conductivity. A unique relationship between free swelling rate and normalized surface conductivity was constructed for expensive soils by eliminating influences of porosity and m exponent. Therefore, electrical response measurement can be used to characterize the free swelling rate of expensive soils.

  17. Temporal and Spatial Scales of Sub-Continental Mantle Convection: Comparison of Modern and Geological Observations of Dynamic Support

    NASA Astrophysics Data System (ADS)

    Jones, S. M.; Lovell, B.; Crosby, A. G.

    2011-12-01

    The topographies of Africa and Antarctica form patterns of interlocking swells. The admittance between swell topography and free-air gravity indicates that these swells are dynamically supported by mantle convection, with swell diameters of 1850±450 km and full heights between 800 and 1800 m. The implication is that mantle convection not only supports swells surrounding hotspots but also influences topography across the entire surface areas of Africa and Antarctica. Topographic swells and associated gravity anomalies with diameters over 1000 km are observed on other continents and throughout the oceans. Numerical models support the idea that dynamically supported swell topography is a worldwide phenomenon. We investigate whether dynamically supported swells are also observed throughout the geological record, focussing on intensively studied Mesozoic- Cenozoic sedimentary rocks around Britain and Ireland. Since 200 Ma, this region was affected by three dynamically supported swells that peaked during the Middle Jurassic, Early Cretaceous and Eocene (c. 175, 146 and 56 Ma), each several thousand kilometres in diameter, and the region now lies on the edge of the modern swell centred on Iceland. The diameters and maximum heights of the Mesozoic British swells and the modern African and Antarctic swells are similar. The ancient British swells grew in 5--10 Myr and decayed over 20--30 Myr, suggesting vertical motion rates comparable to those estimated from geomorphological studies of Africa. Igneous production rate and swell height are not correlated in the modern and the geological records. Vertical motions of Britain and Ireland, a typical piece of continental lithosphere far from a destructive plate boundary, have been demonstrably affected by convective support for over half of the past 200 Ma period. Mantle convection should be considered as a common control on regional sea-level at time periods from 10s down to 1 Myr or less, and with vertical motion rates in the order 10s to 100s m/Myr.

  18. Hygroscopic Swelling Determination of Cellulose Nanocrystal (CNC) Films by Polarized Light Microscopy Digital Image Correlation.

    PubMed

    Shrestha, Shikha; Diaz, Jairo A; Ghanbari, Siavash; Youngblood, Jeffrey P

    2017-05-08

    The coefficient of hygroscopic swelling (CHS) of self-organized and shear-oriented cellulose nanocrystal (CNC) films was determined by capturing hygroscopic strains produced as result of isothermal water vapor intake in equilibrium. Contrast enhanced microscopy digital image correlation enabled the characterization of dimensional changes induced by the hygroscopic swelling of the films. The distinct microstructure and birefringence of CNC films served in exploring the in-plane hygroscopic swelling at relative humidity values ranging from 0% to 97%. Water vapor intake in CNC films was measured using dynamic vapor sorption (DVS) at constant temperature. The obtained experimental moisture sorption and kinetic profiles were analyzed by fitting with Guggenheim, Anderson, and deBoer (GAB) and Parallel Exponential Kinetics (PEK) models, respectively. Self-organized CNC films showed isotropic swelling, CHS ∼0.040 %strain/%C. By contrast, shear-oriented CNC films exhibited an anisotropic swelling, resulting in CHS ∼0.02 and ∼0.30 %strain/%C, parallel and perpendicular to CNC alignment, respectively. Finite element analysis (FEA) further predicted moisture diffusion as the predominant mechanism for swelling of CNC films.

  19. Fabrication and optimization of fast disintegrating tablets employing interpolymeric chitosan-alginate complex and chitin as novel superdisintegrants.

    PubMed

    Goel, Honey; Tiwary, Ashok K; Rana, Vikas

    2011-01-01

    The objective of the present work was to optimize the formulation of fast disintegrating tablets (FDTs) of ondansetron HCl containing novel superdisintegrants, possessing sufficient mechanical strength and disintegration time comparable to those containing crospovidone or croscarmellose sodium. The FDTs were formulated using a novel superdisintegrant (chitosan-alginate (1:1) interpolymer complex and chitin) to achieve a sweet tasting disintegrating system. The results revealed that chitin (5-20%) increased the porosity and decreased the DT of tablets. At higher concentrations chitin maintained tablet porosity even at 5.5 kg crushing strength. Ondansetron HCl was found to antagonize the wicking action of glycine. Further, evaluation of the mechanism of disintegration revealed that glycine transported the aqueous medium to different parts of the tablets while the chitosan-alginate complex swelled up due to transfer of moisture from glycine. This phenomenon resulted in breakage of the tablet within seconds. For preparing optimized FDTs, the reduced model equations generated from Box-Behnken design (BBD) were solved after substituting the known disintegration time of FDTs containing superdisintegrants in the reduced model equations. The results suggested that excipient system under investigation not only improved the disintegration time but also made it possible to prepare FDTs with higher crushing strength as compared to tablets containing known superdisintegrants.

  20. Test and Evaluation of an Improved Sea, Swell and Surf Program.

    DTIC Science & Technology

    1985-09-01

    104 A. WAVE...HEIGHT AND BREAKER LOCATION------------------ 104 B. LONGSHORE CURRENT DISTRIBUTION-------------------- 112 VI. SUMMARY AND CONCLUSIONS...8217 , .’¢ , .’ . , , ,,,, ’ ,. , , o, "." "- -" " -" " "’’" - " : " ’’--" ,’-’’’-’ ’’ ’’ " " " " ’ - I "l. the following equation: h = 0.025X + rhb (-L)

  1. Characterization and swelling-deswelling properties of wheat straw cellulose based semi-IPNs hydrogel.

    PubMed

    Liu, Jia; Li, Qian; Su, Yuan; Yue, Qinyan; Gao, Baoyu

    2014-07-17

    A novel wheat straw cellulose-g-poly(potassium acrylate)/polyvinyl alcohol (WSC-g-PKA/PVA) semi-interpenetrating polymer networks (semi-IPNs) hydrogel was prepared by polymerizing wheat straw and an aqueous solution of acrylic acid (AA), and further semi-interpenetrating with PVA occurred during the chemosynthesis. The swelling and deswelling properties of WSC-g-PKA/PVA semi-IPNs hydrogel and WSC-g-PKA hydrogel were studied and compared in various pH solutions, salt solutions, temperatures, particle sizes and ionic strength. The results indicated that both hydrogels had the largest swelling capacity at pH=6, and the effect of ions on the swelling of hydrogels was in the order: Na(+)>K(+)>Mg(2+)>Ca(2+). The Schott's pseudo second order model can be effectively used to evaluate swelling kinetics of hydrogels. Moreover, the semi-IPNs hydrogel had improved swelling-deswelling properties compared with that of WSC-g-PKA hydrogel. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A phenomenological force model of Li-ion battery packs for enhanced performance and health management

    NASA Astrophysics Data System (ADS)

    Oh, Ki-Yong; Epureanu, Bogdan I.

    2017-10-01

    A 1-D phenomenological force model of a Li-ion battery pack is proposed to enhance the control performance of Li-ion battery cells in pack conditions for efficient performance and health management. The force model accounts for multiple swelling sources under the operational environment of electric vehicles to predict swelling-induced forces in pack conditions, i.e. mechanically constrained. The proposed force model not only incorporates structural nonlinearities due to Li-ion intercalation swelling, but also separates the overall range of states of charge into three ranges to account for phase transitions. Moreover, an approach to study cell-to-cell variations in pack conditions is proposed with serial and parallel combinations of linear and nonlinear stiffness, which account for battery cells and other components in the battery pack. The model is shown not only to accurately estimate the reaction force caused by swelling as a function of the state of charge, battery temperature and environmental temperature, but also to account for cell-to-cell variations due to temperature variations, SOC differences, and local degradation in a wide range of operational conditions of electric vehicles. Considering that the force model of Li-ion battery packs can account for many possible situations in actual operation, the proposed approach and model offer potential utility for the enhancement of current battery management systems and power management strategies.

  3. Monitoring austral and cyclonic swells in the "Iles Eparses" (Mozambique channel) from microseismic noise

    NASA Astrophysics Data System (ADS)

    Barruol, Guilhem; Davy, Céline; Fontaine, Fabrice R.; Schlindwein, V.; Sigloch, K.

    2016-04-01

    We deployed five broadband three-components seismic stations in the Iles Eparses in the south-west Indian Ocean and on Mayotte Island, between April 2011 and January 2014. These small and remote oceanic islands suffer the effects of strong ocean swells that affect their coastal environments but most islands are not instrumented by wave gauges to characterize the swells. However, wave action on the coast causes high levels of ground vibrations in the solid earth, so-called microseismic noise. We use this link between the solid earth and ocean wave activity to quantify the swells locally. Spectral analyses of the continuous seismic data show clear peaks in the 0.05-0.10 Hz frequency band (periods between 10 and 20 s), corresponding to the ocean wave periods of the local swells. We analyze an example of austral swell occurring in August 2013 and a cyclonic event (Felleng) that developed in January 2013, and quantify the ground motion at each station induced by these events. In both cases, we find a linear polarization in the horizontal plane with microseismic amplitude directly correlated to the swell height (as predicted by the global swell model WaveWatchIII), and a direction of polarization close to the predicted swell propagation direction. Although this analysis has not been performed in real time, it demonstrates that terrestrial seismic stations can be efficiently used as wave gauges, and are particularly well suited for quantifying extreme swell events. This approach may therefore provide useful and cheaper alternatives to wave buoys for monitoring swells and the related environmental processes such as beach erosion or coral reef damages.

  4. Swelling/Floating Capability and Drug Release Characterizations of Gastroretentive Drug Delivery System Based on a Combination of Hydroxyethyl Cellulose and Sodium Carboxymethyl Cellulose

    PubMed Central

    Chen, Ying-Chen; Ho, Hsiu-O; Liu, Der-Zen; Siow, Wen-Shian; Sheu, Ming-Thau

    2015-01-01

    The aim of this study was to characterize the swelling and floating behaviors of gastroretentive drug delivery system (GRDDS) composed of hydroxyethyl cellulose (HEC) and sodium carboxymethyl cellulose (NaCMC) and to optimize HEC/NaCMC GRDDS to incorporate three model drugs with different solubilities (metformin, ciprofloxacin, and esomeprazole). Various ratios of NaCMC to HEC were formulated, and their swelling and floating behaviors were characterized. Influences of media containing various NaCl concentrations on the swelling and floating behaviors and drug solubility were also characterized. Finally, release profiles of the three model drugs from GRDDS formulation (F1-4) and formulation (F1-1) were examined. Results demonstrated when the GRDDS tablets were tested in simulated gastric solution, the degree of swelling at 6 h was decreased for each formulation that contained NaCMC in comparison to those in de-ionized water (DIW). Of note, floating duration was enhanced when in simulated gastric solution compared to DIW. Further, the hydration of tablets was found to be retarded as the NaCl concentration in the medium increased resulting in smaller gel layers and swelling sizes. Dissolution profiles of the three model drugs in media containing various concentrations of NaCl showed that the addition of NaCl to the media affected the solubility of the drugs, and also their gelling behaviors, resulting in different mechanisms for controlling a drug’s release. The release mechanism of the freely water-soluble drug, metformin, was mainly diffusion-controlled, while those of the water-soluble drug, ciprofloxacin, and the slightly water-soluble drug, esomeprazole, were mainly anomalous diffusion. Overall results showed that the developed GRDDS composed of HEC 250HHX and NaCMC of 450 cps possessed proper swelling extents and desired floating periods with sustained-release characteristics. PMID:25617891

  5. Carbohydrate gel beads as model probes for quantifying non-ionic and ionic contributions behind the swelling of delignified plant fibers.

    PubMed

    Karlsson, Rose-Marie Pernilla; Larsson, Per Tomas; Yu, Shun; Pendergraph, Samuel Allen; Pettersson, Torbjörn; Hellwig, Johannes; Wågberg, Lars

    2018-06-01

    Macroscopic beads of water-based gels consisting of uncharged and partially charged β-(1,4)-d-glucan polymers were developed to be used as a novel model material for studying the water induced swelling of the delignified plant fiber walls. The gel beads were prepared by drop-wise precipitation of solutions of dissolving grade fibers carboxymethylated to different degrees. The internal structure was analyzed using Solid State Cross-Polarization Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance and Small Angle X-ray Scattering showing that the internal structure could be considered a homogeneous, non-crystalline and molecularly dispersed polymer network. When beads with different charge densities were equilibrated with aqueous solutions of different ionic strengths and/or pH, the change in water uptake followed the trends expected for weak polyelectrolyte gels and the trends found for cellulose-rich fibers. When dried and subsequently immersed in water the beads also showed an irreversible loss of swelling depending on the charge and type of counter-ion which is commonly also found for cellulose-rich fibers. Taken all these results together it is clear that the model cellulose-based beads constitute an excellent tool for studying the fundamentals of swelling of cellulose rich plant fibers, aiding in the elucidation of the different molecular and supramolecular contributions to the swelling. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. New Green Polymeric Composites Based on Hemp and Natural Rubber Processed by Electron Beam Irradiation

    PubMed Central

    Stelescu, Maria-Daniela; Craciun, Gabriela; Dumitrascu, Maria

    2014-01-01

    A new polymeric composite based on natural rubber reinforced with hemp has been processed by electron beam irradiation and characterized by several methods. The mechanical characteristics: gel fraction, crosslink density, water uptake, swelling parameters, and FTIR of natural rubber/hemp fiber composites have been investigated as a function of the hemp content and absorbed dose. Physical and mechanical properties present a significant improvement as a result of adding hemp fibres in blends. Our experiments showed that the hemp fibers have a reinforcing effect on natural rubber similar to mineral fillers (chalk, carbon black, silica). The crosslinking rates of samples, measured using the Flory-Rehner equation, increase as a result of the amount of hemp in blends and the electron beam irradiation dose increasing. The swelling parameters of samples significantly depend on the amount of hemp in blends, because the latter have hydrophilic characteristics. PMID:24688419

  7. New green polymeric composites based on hemp and natural rubber processed by electron beam irradiation.

    PubMed

    Stelescu, Maria-Daniela; Manaila, Elena; Craciun, Gabriela; Dumitrascu, Maria

    2014-01-01

    A new polymeric composite based on natural rubber reinforced with hemp has been processed by electron beam irradiation and characterized by several methods. The mechanical characteristics: gel fraction, crosslink density, water uptake, swelling parameters, and FTIR of natural rubber/hemp fiber composites have been investigated as a function of the hemp content and absorbed dose. Physical and mechanical properties present a significant improvement as a result of adding hemp fibres in blends. Our experiments showed that the hemp fibers have a reinforcing effect on natural rubber similar to mineral fillers (chalk, carbon black, silica). The crosslinking rates of samples, measured using the Flory-Rehner equation, increase as a result of the amount of hemp in blends and the electron beam irradiation dose increasing. The swelling parameters of samples significantly depend on the amount of hemp in blends, because the latter have hydrophilic characteristics.

  8. The DART dispersion analysis research tool: A mechanistic model for predicting fission-product-induced swelling of aluminum dispersion fuels. User`s guide for mainframe, workstation, and personal computer applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rest, J.

    1995-08-01

    This report describes the primary physical models that form the basis of the DART mechanistic computer model for calculating fission-product-induced swelling of aluminum dispersion fuels; the calculated results are compared with test data. In addition, DART calculates irradiation-induced changes in the thermal conductivity of the dispersion fuel, as well as fuel restructuring due to aluminum fuel reaction, amorphization, and recrystallization. Input instructions for execution on mainframe, workstation, and personal computers are provided, as is a description of DART output. The theory of fission gas behavior and its effect on fuel swelling is discussed. The behavior of these fission products inmore » both crystalline and amorphous fuel and in the presence of irradiation-induced recrystallization and crystalline-to-amorphous-phase change phenomena is presented, as are models for these irradiation-induced processes.« less

  9. Novel pH- and temperature-responsive blend hydrogel microspheres of sodium alginate and PNIPAAm-g-GG for controlled release of isoniazid.

    PubMed

    Kajjari, Praveen B; Manjeshwar, Lata S; Aminabhavi, Tejraj M

    2012-12-01

    This paper reports the preparation and characterization of novel pH- and thermo-responsive blend hydrogel microspheres of sodium alginate (NaAlg) and poly(N-isopropylacrylamide)(PNIPAAm)-grafted-guar gum (GG) i.e., PNIPAAm-g-GG by emulsion cross-linking method using glutaraldehyde (GA) as a cross-linker. Isoniazid (INZ) was chosen as the model antituberculosis drug to achieve encapsulation up to 62%. INZ has a plasma half-life of 1.5 h, whose release was extended up to 12 h. Fourier transform infrared spectroscopy was used to confirm the grafting reaction and chemical stability of INZ during the encapsulation. Differential scanning calorimetry was used to investigate the drug's physical state, while powder X-ray diffraction confirmed the molecular level dispersion of INZ in the matrix. Scanning electron microscopy confirmed varying surface morphologies of the drug-loaded microspheres. Temperature- and pH-responsive nature of the blend hydrogel microspheres were investigated by equilibrium swelling, and in vitro release experiments were performed in pH 1.2 and pH 7.4 buffer media at 37°C as well as at 25°C. Kinetics of INZ release was analyzed by Ritger-Peppas empirical equation to compute the diffusional exponent parameter (n), whose value ranged between 0.27 and 0.58, indicating the release of INZ follows a diffusion swelling controlled release mechanism.

  10. Modeling and simulation of a chemically stimulated hydrogel bilayer bending actuator

    NASA Astrophysics Data System (ADS)

    Sobczyk, Martin; Wallmersperger, Thomas

    2017-04-01

    Stimuli-sensitive hydrogels are polymeric materials, which are able to reversibly swell in water in response to evironmental changes. Relevant stimuli include variations of pH, temperature, concentration of specific ions etc. Stacked layers composed of multiple thin hydrogels - also referred to as hydrogel-layer composites - combine the distinct sensing properties of different hydrogels. This approach enables the development of sophisticated microfluidic devices such as bisensitive valves or fluid-sensitive deflectors. In order to numerically simulate the swelling of a polyelectrolyte hydrogel in response to an ion concentration change the multifield theory is adopted. The set of partial differential equations - including the description of the chemical, the electrical and the mechanical field - are solved using the Finite Element Method. Simulations are carried out on a two-dimensional domain in order to capture interactions between the different fields. In the present work, the ion transport is governed by diffusive and migrative fluxes. The distribution of ions in the gel and the solution bath result in an osmotic pressure difference, which is responsible for the mechanical deformation of the hydrogel-layer composite. The realized numerical investigation gives an insight into the evolution of the displacement field, the distribution of ions and the electric potential within the bulk material and the interface between gel and solution bath. The predicted behavior of the relevant field variables is in excellent agreement with results available in the literature.

  11. Impact of grain size evolution on necking and pinch-and-swell formation in calcite layers

    NASA Astrophysics Data System (ADS)

    Schmalholz, Stefan Markus; Duretz, Thibault

    2017-04-01

    The formation of necking zones and the associated formation of pinch-and-swell structure is one form of strain localization in extending, competent layers. Natural pinch-and-swell structure in centimetre-thick calcite layers typically shows a reduction of grain size from swell towards pinch. However, the impact of grain size evolution on necking and pinch-and-swell formation is incompletely understood. We perform zero-dimensional (0D) and 2D thermo-mechanical numerical simulations to quantify the impact of grain size evolution on necking for extension rates between 10-12s^-1and10^-14 s-1 and temperatures around 350°C. For a combination of diffusion and dislocation creep we calculate grain size evolution according to the paleowattmeter (grain size is proportional to mechanical work rate) or the paleopiezometer (grain size is proportional to stress). Numerical results fit two observations: (i) grain size reduction from swells towards pinches, and (ii) dislocation creep dominated deformation in swells and significant contribution of diffusion creep in pinches. Modelled grain size in pinches (10 to 60 μm) and swells (70 to 800 μm) is close to observed grain size in pinches (15 to 27 μm) and in swells (250 to 1500 μm). Grain size evolution has only a minor impact on necking suggesting that grain size evolution is a consequence, and not the cause of necking. Viscous shear heating and grain size evolution had a negligible thermal impact in the simulations.

  12. Modeling of Nonlinear Hydrodynamics of the Coastal Areas of the Black Sea by the Chain of the Proprietary and Open Source Models

    NASA Astrophysics Data System (ADS)

    Kantardgi, Igor; Zheleznyak, Mark; Demchenko, Raisa; Dykyi, Pavlo; Kivva, Sergei; Kolomiets, Pavlo; Sorokin, Maxim

    2014-05-01

    The nearshore hydrodynamic fields are produced by the nonlinear interactions of the shoaling waves of different time scales and currents. To simulate the wind wave and swells propagated to the coasts, wave generated near shore currents, nonlinear-dispersive wave transformation and wave diffraction in interaction with coastal and port structure, sediment transport and coastal erosion the chains of the models should be used. The objective of this presentation is to provide an overview of the results of the application of the model chains for the assessment of the wave impacts on new construction designed at the Black Sea coasts and the impacts of these constructions on the coastal erosion/ accretion processes to demonstrate needs for further development of the nonlinear models for the coastal engineering applications. The open source models Wave Watch III and SWAN has been used to simulate wave statistics of the dedicated areas of the Black Sea in high resolution to calculated the statistical parameters of the extreme wave approaching coastal zone construction in accordance with coastal engineering standards. As the main tool for the costal hydrodynamic simulations the modeling system COASTOX-MORPHO has been used, that includes the following models. HWAVE -code based on hyperbolic version of mild slope equations., HWAVE-S - spectral version of HWAVE., BOUSS-FNL - fully nonlinear system of Boussinesq equations for simulation wave nonlinear -dispersive wave transformation in coastal areas. COASTOX-CUR - the code provided the numerical solution of the Nonlinear Shallow Water Equations (NLSWE) by finite-volume methods on the unstructured grid describing the long wave transformation in the coastal zone with the efficient drying -wetting algorithms to simulate the inundation of the coastal areas including tsunami wave runup. Coastox -Cur equations with the radiation stress term calculated via near shore wave fields simulate the wave generated nearhore currents. COASTOX-SED - the module of the simulation of the sediment transport in which the suspended sediments are simulated on the basis of the solution of 2-D advection -diffusion equation and the bottom sediment transport calculations are provided the basis of a library of the most popular semi-empirical formulas. MORPH - the module of the simulation of the morphological transformation of coastal zone based on the mass balance equation, on the basis of the sediment fluxes, calculated in the SED module. MORPH management submodel is responsible for the execution of the model chain "waves- current- sediments - morphodynamics- waves". The open source model SWASH has been used to simulate nonlinear resonance phenomena in coastal waters. The model chain was applied to simulate the potential impact of the designed shore protection structures at the Sochi Olympic Park on coastal morphodynamics, the wave parameters and nonlinear oscillations in the new ports designed in Gelenddjik and Taman at North-East coast of the Black Sea. The modeling results are compared with the results of the physical modeling in the hydraulic flumes of Moscow University of Civil Engineering.

  13. Swelling-induced and controlled curving in layered gel beams

    PubMed Central

    Lucantonio, A.; Nardinocchi, P.; Pezzulla, M.

    2014-01-01

    We describe swelling-driven curving in originally straight and non-homogeneous beams. We present and verify a structural model of swollen beams, based on a new point of view adopted to describe swelling-induced deformation processes in bilayered gel beams, that is based on the split of the swelling-induced deformation of the beam at equilibrium into two components, both depending on the elastic properties of the gel. The method allows us to: (i) determine beam stretching and curving, once assigned the characteristics of the solvent bath and of the non-homogeneous beam, and (ii) estimate the characteristics of non-homogeneous flat gel beams in such a way as to obtain, under free-swelling conditions, three-dimensional shapes. The study was pursued by means of analytical, semi-analytical and numerical tools; excellent agreement of the outcomes of the different techniques was found, thus confirming the strength of the method. PMID:25383031

  14. Theoretical Evaluation of Crosslink Density of Chain Extended Polyurethane Networks Based on Hydroxyl Terminated Polybutadiene and Butanediol and Comparison with Experimental Data

    NASA Astrophysics Data System (ADS)

    Sekkar, Venkataraman; Alex, Ancy Smitha; Kumar, Vijendra; Bandyopadhyay, G. G.

    2018-01-01

    Polyurethane networks between hydroxyl terminated polybutadiene (HTPB) and butanediol (BD) were prepared using toluene diisocyanate (TDI) as the curative. HTPB and BD were taken at equivalent ratios viz.: 1:0, 1:1, 1:2, 1:4, and 1:8. Crosslink density (CLD) was theoretically calculated using α-model equations developed by Marsh. CLD for the polyurethane networks was experimentally evaluated from equilibrium swell and stress-strain data. Young's modulus and Mooney-Rivlin approaches were adopted to calculate CLD from stress-strain data. Experimentally obtained CLD values were enormously higher than theoretical values especially at higher BD/HTPB equivalent ratios. The difference in the theoretical and experimental values for CLD was explained in terms of local crystallization due to the formation of hard segments and hydrogen bonded interactions.

  15. A dual-phase microstructural approach to damage and fracture of Ti3SiC2/SiC joints

    NASA Astrophysics Data System (ADS)

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.

    2018-02-01

    The microcracking mechanisms responsible for Ti3SiC2/SiC joint damage observed at the macroscopic scale after neutron irradiation experiments are investigated in detail. A dual-phase microstructural approach to damage and fracture of Ti3SiC2/SiC joints is developed that uses a finely discretized two-phase domain based on a digital image of an actual microstructure involving embedded Ti3SiC2 and SiC phases. The behaviors of SiC and Ti3SiC2 in the domain are described by the continuum damage mechanics (CDM) model reported in Nguyen et al., J. Nucl. Mater., 2017, 495:504-515. This CDM model describes microcracking damage in brittle ceramics caused by thermomechanical loading and irradiation-induced swelling. The dual-phase microstructural model is applied to predict the microcracking mechanisms occurring in a typical Ti3SiC2/SiC joint subjected to heating to 800 °C followed by irradiation-induced swelling at this temperature and cooling to room temperature after the applied swelling has reached the maximum swelling levels observed in the experiments for SiC and Ti3SiC2. The model predicts minor damage of the joint after heating but significant microcracking in the SiC phase and along the boundaries between SiC and Ti3SiC2 as well as along the bonding joint during irradiation-induced swelling and cooling to room temperature. These predictions qualitatively agree with the limited experimental observations of joint damage at this irradiation temperature.

  16. Clayey Landslide Initiation and Acceleration Strongly Modulated by Soil Swelling

    NASA Astrophysics Data System (ADS)

    Schulz, William H.; Smith, Joel B.; Wang, Gonghui; Jiang, Yao; Roering, Joshua J.

    2018-02-01

    Largely unknown mechanisms restrain motion of clay-rich, slow-moving landslides that are widespread worldwide and rarely accelerate catastrophically. We studied a clayey, slow-moving landslide typical of thousands in Northern California, USA, to decipher hydrologic-mechanical interactions that modulate landslide dynamics. Similar to some other studies, observed pore-water pressures correlated poorly with landslide reactivation and speed. In situ and laboratory measurements strongly suggested that variable pressure along the landslide's lateral shear boundaries resulting from seasonal soil expansion and contraction modulated its reactivation and speed. Slope-stability modeling suggested that the landslide's observed behavior could be predicted by including transient swell pressure as a resistance term, whereas modeling considering only transient hydrologic conditions predicted movement five to six months prior to when it was observed. All clayey soils swell to some degree; hence, our findings suggest that swell pressure likely modulates motion of many landslides and should be considered to improve forecasts of clayey landslide initiation and mobility.

  17. Clayey landslide initiation and acceleration strongly modulated by soil swelling

    USGS Publications Warehouse

    Schulz, William; Smith, Joel B.; Wang, Gonghui; Jiang, Yao; Roering, Joshua J.

    2018-01-01

    Largely unknown mechanisms restrain motion of clay-rich, slow-moving landslides that are widespread worldwide and rarely accelerate catastrophically. We studied a clayey, slow-moving landslide typical of thousands in northern California, USA, to decipher hydrologic-mechanical interactions that modulate landslide dynamics. Similar to some other studies, observed pore-water pressures correlated poorly with landslide reactivation and speed. In situ and laboratory measurements strongly suggested that variable pressure along the landslide's lateral shear boundaries resulting from seasonal soil expansion and contraction modulated its reactivation and speed. Slope-stability modeling suggested that the landslide's observed behavior could be predicted by including transient swell pressure as a resistance term, whereas modeling considering only transient hydrologic conditions predicted movement 5–6 months prior to when it was observed. All clayey soils swell to some degree; hence, our findings suggest that swell pressure likely modulates motion of many landslides and should be considered to improve forecasts of clayey landslide initiation and mobility.

  18. Observation and parametrization of wave attenuation through the MIZ

    NASA Astrophysics Data System (ADS)

    Ardhuin, F.; Stopa, J.; Dumont, D.; Sévigny, C.; Collard, F.; Boutin, G.

    2016-02-01

    Swell evolution from the open ocean into sea ice is poorly understood, in particular the amplitude attenuation expected from scattering and dissipation. New synthetic aperture radar (SAR) data from Sentinel-1 wave mode reveal intriguing patterns of bright oscillating lines shaped like instant noodles. We investigate cases in which the oscillations are in the azimuth direction, around a straight line in the range direction. This observation is interpreted as the distortion by the SAR processing of crests from a first swell, due to the presence of a second swell. Since deviations from a straight line should be proportional to the orbital velocity towards the satellite, swell height can be estimated. The intensity of the backscatter modulation with a single swell can also be used to retrieve swell height as it is found that the constructive velocity bunching is very sensitive to wave height. Using a novel algorithm to invert the wave directional spectrum, we investigate several cases of attenuation in the Arctic and southern ocean. On this basis we have adjusted an empirical wave-ice dissipation source term in the WAVEWATCH III model.

  19. Modeling growth and dissemination of lymphoma in a co-evolving lymph node: a diffuse-domain approach

    NASA Astrophysics Data System (ADS)

    Chuang, Yao-Li; Cristini, Vittorio; Chen, Ying; Li, Xiangrong; Frieboes, Hermann; Lowengrub, John

    2013-03-01

    While partial differential equation models of tumor growth have successfully described various spatiotemporal phenomena observed for in-vitro tumor spheroid experiments, one challenge towards taking these models to further study in-vivo tumors is that instead of relatively static tissue culture with regular boundary conditions, in-vivo tumors are often confined in organ tissues that co-evolve with the tumor growth. Here we adopt a recently developed diffuse-domain method to account for the co-evolving domain boundaries, adapting our previous in-vitro tumor model for the development of lymphoma encapsulated in a lymph node, which may swell or shrink due to proliferation and dissemination of lymphoma cells and treatment by chemotherapy. We use the model to study the induced spatial heterogeneity, which may arise as an emerging phenomenon in experimental observations and model analysis. Spatial heterogeneity is believed to lead to tumor infiltration patterns and reduce the efficacy of chemotherapy, leaving residuals that cause cancer relapse after the treatment. Understanding the spatiotemporal evolution of in-vivo tumors can be an essential step towards more effective strategies of curing cancer. Supported by NIH-PSOC grant 1U54CA143907-01.

  20. Enhanced cell volume regulation: a key protective mechanism of ischemic preconditioning in rabbit ventricular myocytes.

    PubMed

    Diaz, Roberto J; Armstrong, Stephen C; Batthish, Michelle; Backx, Peter H; Ganote, Charles E; Wilson, Gregory J

    2003-01-01

    Accumulation of osmotically active metabolites, which create an osmotic gradient estimated at ~60 mOsM, and cell swelling are prominent features of ischemic myocardial cell death. This study tests the hypothesis that reduction of ischemic swelling by enhanced cell volume regulation is a key mechanism in the delay of ischemic myocardial cell death by ischemic preconditioning (IPC). Experimental protocols address whether: (i) IPC triggers a cell volume regulation mechanism that reduces cardiomyocyte swelling during subsequent index ischemia; (ii) this reduction in ischemic cell swelling is sufficient in magnitude to account for the IPC protection; (iii) the molecular mechanism that mediates IPC also mediates cell volume regulation. Two experimental models with rabbit ventricular myocytes were studied: freshly isolated pelleted myocytes and 48-h cultured myocytes. Myocytes were preconditioned either by distinct short simulated ischemia (SI)/simulated reperfusion protocols (IPC), or by subjecting myocytes to a pharmacological preconditioning (PPC) protocol (1 microM calyculin A, or 1 microM N(6)-2-(4-aminophenyl)ethyladenosine (APNEA), prior to subjecting them to either different durations of long SI or 30 min hypo-osmotic stress. Cell death (percent blue square myocytes) was monitored by trypan blue staining. Cell swelling was determined by either the bromododecane cell flotation assay (qualitative) or video/confocal microscopy (quantitative). Simulated ischemia induced myocyte swelling in both the models. In pelleted myocytes, IPC or PPC with either calyculin A or APNEA produced a marked reduction of ischemic cell swelling as determined by the cell floatation assay. In cultured myocytes, IPC substantially reduced ischemic cell swelling (P < 0.001). This IPC effect on ischemic cell swelling was related to an IPC and PPC (with APNEA) mediated triggering of cell volume regulatory decrease (RVD). IPC and APNEA also significantly (P < 0.001) reduced hypo-osmotic cell swelling. This IPC and APNEA effect was blocked by either adenosine receptor, PKC or Cl(-) channel inhibition. The osmolar equivalent for IPC protection approximated 50-60 mOsM, an osmotic gradient similar to the estimated ischemic osmotic load for preconditioned and non-preconditioned myocytes. The results suggest that cell volume regulation is a key mechanism that accounts for most of the IPC protection in cardiomyocytes.

  1. Modeling the Pore Formation Mechanism in UMo/AL Dispersion Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Yeon Soo; Jamison, L.; Hofman, G.

    In UMo/Al dispersion fuel meat, pores formed in the ILs or at IL-Al interfaces tend to increase in size with irradiation, potentially limiting performance of this fuel. There has been no universally accepted mechanism for the formation and growth of this type of pore. However, there is a consensus that the stress state determined by meat swelling and fission- induced creep is one of the determinants, and fission gas availability at the pore site is another. Five dispersion RERTR miniplates that have well defined irradiation conditions and PIE data were selected for examination. Meat swelling and pore volume were measuredmore » in each plate. ABAQUS finite element analysis (FEA) package was utilized to obtain the time-dependent evolution of mechanical states in the plates while matching the measured meat swelling and creep. Interpretation of these results give insights on how to model a failure function – a predictor for large pore formation – using variables such as meat swelling, interaction layer growth, stress, and creep. This model can be used for optimizing fuel design parameters to reach the desired goal: meeting high power and performance reactor demand.« less

  2. Modeling thermal and irradiation-induced swelling effects on the integrity of Ti 3 SiC 2 /SiC joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.

    Previously, results for CVD-SiC joints created using solid state displacement reactions to form a dual-phase SiC/MAX phase irradiated at 800°C and 5 dpa indicated some extent of cracking in the joint and along the CVD-SiC/joint interface. This paper elucidates the origin of cracking by thermomechanical modeling combined with irradiation-induced swelling effects using a continuum damage approach with support of micromechanical modeling. Three irradiation temperatures (400°C, 500°C and 800°C) are considered assuming experimental irradiation doses in a range leading to saturation swelling in SiC. The analyses indicate that a SiC/MAX joint heated to 400°C fails during irradiation-induced swelling at this temperaturemore » while it experiences some damage after being heated to 500°C and irradiated at the same temperature. However, it fails during cooling from 500°C to room temperature. The joint experiences minor damage when heated to and irradiated at 800°C but does not fail after cooling. The prediction agrees with the experimental findings available for this case.« less

  3. Heavy-Load Lifting: Acute Response in Breast Cancer Survivors at Risk for Lymphedema

    PubMed Central

    BLOOMQUIST, KIRA; OTURAI, PETER; STEELE, MEGAN L.; ADAMSEN, LIS; MØLLER, TOM; CHRISTENSEN, KARL BANG; EJLERTSEN, BENT; HAYES, SANDRA C.

    2018-01-01

    ABSTRACT Purpose Despite a paucity of evidence, prevention guidelines typically advise avoidance of heavy lifting in an effort to protect against breast cancer–related lymphedema. This study compared acute responses in arm swelling and related symptoms after low- and heavy-load resistance exercise among women at risk for lymphedema while receiving adjuvant taxane-based chemotherapy. Methods This is a randomized, crossover equivalence trial. Women receiving adjuvant taxane-based chemotherapy for breast cancer who had undergone axillary lymph node dissection (n = 21) participated in low-load (60%–65% 1-repetition maximum, two sets of 15–20 repetitions) and heavy-load (85%–90% 1-repetition maximum, three sets of 5–8 repetitions) upper-extremity resistance exercise separated by a 1-wk wash-out period. Swelling was determined by bioimpedance spectroscopy and dual-energy x-ray absorptiometry, with breast cancer–related lymphedema symptoms (heaviness, swelling, pain, tightness) reported using a numeric rating scale (0–10). Order of low- versus heavy-load was randomized. All outcomes were assessed before, immediately after, and 24 and 72 h after exercise. Generalized estimating equations were used to evaluate changes over time between groups, with equivalence between resistance exercise loads determined using the principle of confidence interval inclusion. Results The acute response to resistance exercise was equivalent for all outcomes at all time points irrespective of loads lifted, with the exception of extracellular fluid at 72 h after exercise with less swelling after heavy loads (estimated mean difference, −1.00; 95% confidence interval, −3.17 to 1.17). Conclusions Low- and heavy-load resistance exercise elicited similar acute responses in arm swelling and breast cancer–related lymphedema symptoms in women at risk for lymphedema receiving adjuvant taxane-based chemotherapy. These represent important preliminary findings, which can be used to inform future prospective evaluation of the long-term effects of repeated exposure to heavy-load resistance exercise. PMID:28991039

  4. Blockade of the swelling-induced chloride current attenuates the mouse neonatal hypoxic-ischemic brain injury in vivo.

    PubMed

    Wong, Raymond; Abussaud, Ahmed; Leung, Joseph Wh; Xu, Bao-Feng; Li, Fei-Ya; Huang, Sammen; Chen, Nai-Hong; Wang, Guan-Lei; Feng, Zhong-Ping; Sun, Hong-Shuo

    2018-05-01

    Activation of swelling-induced Cl - current (I Cl,swell ) during neonatal hypoxia-ischemia (HI) may induce brain damage. Hypoxic-ischemic brain injury causes chronic neurological morbidity in neonates as well as acute mortality. In this study, we investigated the role of I Cl,swell in hypoxic-ischemic brain injury using a selective blocker, 4-(2-butyl-6,7-dichloro-2-cyclopentylindan-1-on-5-yl) oxybutyric acid (DCPIB). In primary cultured cortical neurons perfusion of a 30% hypotonic solution activated I Cl,swell , which was completely blocked by the application of DCPIB (10 μmol/L). The role of I Cl,swell in neonatal hypoxic-ischemic brain injury in vivo was evaluated in a modified neonatal hypoxic-ischemic brain injury model. Before receiving the ischemic insult, the mouse pups were injected with DCPIB (10 mg/kg, ip). We found that pretreatment with DCPIB significantly reduced the brain damage assessed using TTC staining, Nissl staining and whole brain imaging, and improved the sensorimotor and vestibular recovery outcomes evaluated in neurobehavioural tests (i.e. geotaxis reflex, and cliff avoidance reflex). These results show that DCPIB has neuroprotective effects on neonatal hypoxic-ischemic brain injury, and that the I Cl,swell may serve as a therapeutic target for treatment of hypoxic-ischemic encephalopathy.

  5. Curcumin inhibits epigen and amphiregulin upregulated by 2,4,6-trinitrochlorobenzene associated with attenuation of skin swelling.

    PubMed

    Sakai, Hiroyasu; Sato, Ken; Sato, Fumiaki; Kai, Yuki; Mandokoro, Kazutaka; Matsumoto, Kenjiro; Kato, Shinichi; Yumoto, Tetsuro; Narita, Minoru; Chiba, Yoshihiko

    2017-08-01

    Contact dermatitis model involving repeated application of hapten is used as a tool to assess dermatitis, as characterized by thickening. Involvement of cell proliferation, elicited by repeated hapten-stimulation, in this swelling has been unclear. Curcumin is reported to reduce inflammation. We examined involvement of cell proliferation and the role of extracellular regulated kinase (ERK) in 2,4,6-trinitrochlorobenzene (TNCB) challenge-induced ear swelling. We also examined the effects of curcumin in this model. Mice were sensitized with TNCB to the abdominal skin. Then, they were challenged with TNCB to the ear three times. The ERK activation inhibitor U0126 or curcumin was applied 30 min before each TNCB challenge. TNCB challenge-induced increased epidermal cell number and dermal thickening. Gene expressions of epithelial mitogen (EPGN), amphiregulin (AREG) and heparin-binding-epidermal growth factor (HB-EGF) were increased in the ears after the last TNCB challenge. Ki-67 immunoreactivity was increased in the dermis in TNCB-challenged ears. TNCB-induced swelling was inhibited by U0126 and curcumin. Curcumin also attenuated TNCB-induced ERK phosphorylation and expression of EPGN and AREG genes. Ear swelling induced by TNCB challenge might be mediated, in part, by the EPGN- and AREG-ERK proliferation pathway and was inhibited by curcumin.

  6. Contribution to irradiation creep arising from gas-driven bubbles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, C.H.; Garner, F.A.

    1998-03-01

    In a previous paper the relationship was defined between void swelling and irradiation creep arising from the interaction of the SIPA and SIG creep-driven deformation and swelling-driven deformation was highly interactive in nature, and that the two contributions could not be independently calculated and then considered as directly additive. This model could be used to explain the recent experimental observation that the creep-swelling coupling coefficient was not a constant as previously assumed, but declined continuously as the swelling rate increased. Such a model thereby explained the creep-disappearance and creep-damping anomalies observed in conditions where significant void swelling occurred before substantialmore » creep deformation developed. At lower irradiation temperatures and high helium/hydrogen generation rates, such as found in light water cooled reactors and some fusion concepts, gas-filled cavities that have not yet exceeded the critical radius for bubble-void conversion should also exert an influence on irradiation creep. In this paper the original concept is adapted to include such conditions, and its predictions then compared with available data. It is shown that a measurable increase in the creep rate is expected compared to the rate found in low gas-generating environments. The creep rate is directly related to the gas generation rate and thereby to the neutron flux and spectrum.« less

  7. Linking Upper Mantle Processes and Long-wavelength Topographic Swells in Cenozoic Africa

    NASA Astrophysics Data System (ADS)

    Nixon, S.; Maclennan, J.; White, N.; Fishwick, S.

    2008-12-01

    The topography of present day Africa is influenced by two different wavelengths of dynamic support. The South African Superplume sits beneath Sub-equatorial Africa and is thought to be supported by a lower mantle thermo-chemical anomaly. On a smaller scale a series of topographic domal swells, 1000km in diameter, occur across the continent. The swells are characterised by elevated dynamic topography, a positive long-wavelength gravity anomaly and a negative velocity perturbation from a higher mode surface wave tomography model. In addition, where the lithosphere is thinner than 100km, the swells are capped with volcanic products, erupted periodically since ~30 Ma. These areas include the Cameroon Volcanic line, Hoggar, Tibesti and Darfur in North Africa, and the Ethiopian Plateau and the Kenyan dome found along the East African Rift system. The given relationships suggest the domal swells result from and are supported by upper mantle convection. In order to investigate these relationships a database of 3000 geochemical analyses has been assembled for Cenozoic African volcanism, from both literature search and by new analyses of samples collected from the Al Haruj volcanic field in Libya. Incompatible trace element ratios and REE trends from primitive basalts (>7wt% MgO) erupted less then 10Ma, representing the products of mantle melting, are compared with the upper mantle velocity structure. At depths of 75-100km the greatest velocity perturbation is associated with the Afar/Ethiopia region, where as smaller perturbations are found beneath the North African swells of Hoggar, Tibesti and Darfur. The comparison of absolute velocities, taken from the higher mode tomography model, with trace element ratios has found the low seismic velocity Afar/Ethiopia region to have shallow melting at high melt fractions (La/Yb~9) whereas North African swells with faster seismic velocities at 100 km depth, show deeper melting with smaller melt fractions (La/Yb~30). This positive correlation continues to depths of 150km and is believed to represent variations in mantle potential temperature beneath the African continent. With further modelling of major, trace and REE data we hope to provide insights into variations in mantle potential temperature, melt fraction and velocity structure beneath the topographic swells across the African continent.

  8. Prediction of Adsorption Equilibrium of VOCs onto Hyper-Cross-Linked Polymeric Resin at Environmentally Relevant Temperatures and Concentrations Using Inverse Gas Chromatography.

    PubMed

    Jia, Lijuan; Ma, Jiakai; Shi, Qiuyi; Long, Chao

    2017-01-03

    Hyper-cross-linked polymeric resin (HPR) represents a class of predominantly microporous adsorbents and has good adsorption performance toward VOCs. However, adsorption equilibrium of VOCs onto HPR are limited. In this research, a novel method for predicting adsorption capacities of VOCs on HPR at environmentally relevant temperatures and concentrations using inverse gas chromatography data was proposed. Adsorption equilibrium of six VOCs (n-pentane, n-hexane, dichloromethane, acetone, benzene, 1, 2-dichloroethane) onto HPR in the temperature range of 403-443 K were measured by inverse gas chromatography (IGC). Adsorption capacities at environmentally relevant temperatures (293-328 K) and concentrations (P/P s = 0.1-0.7) were predicted using Dubinin-Radushkevich (DR) equation based on Polany's theory. Taking consideration of the swelling properties of HPR, the volume swelling ratio (r) was introduced and r·V micro was used instead of V micro determined by N 2 adsorption data at 77 K as the parameter q 0 (limiting micropore volume) of the DR equation. The results showed that the adsorption capacities of VOCs at environmentally relevant temperatures and concentrations can be predicted effectively using IGC data, the root-mean-square errors between the predicted and experimental data was below 9.63%. The results are meaningful because they allow accurate prediction of adsorption capacities of adsorbents more quickly and conveniently using IGC data.

  9. Dynamic response of gold nanoparticle chemiresistors to organic analytes in aqueous solution.

    PubMed

    Müller, Karl-Heinz; Chow, Edith; Wieczorek, Lech; Raguse, Burkhard; Cooper, James S; Hubble, Lee J

    2011-10-28

    We investigate the response dynamics of 1-hexanethiol-functionalized gold nanoparticle chemiresistors exposed to the analyte octane in aqueous solution. The dynamic response is studied as a function of the analyte-water flow velocity, the thickness of the gold nanoparticle film and the analyte concentration. A theoretical model for analyte limited mass-transport is used to model the analyte diffusion into the film, the partitioning of the analyte into the 1-hexanethiol capping layers and the subsequent swelling of the film. The degree of swelling is then used to calculate the increase of the electron tunnel resistance between adjacent nanoparticles which determines the resistance change of the film. In particular, the effect of the nonlinear relationship between resistance and swelling on the dynamic response is investigated at high analyte concentration. Good agreement between experiment and the theoretical model is achieved. This journal is © the Owner Societies 2011

  10. Transient swelling, spreading, and drug delivery by a dissolved anti-HIV microbicide-bearing film

    NASA Astrophysics Data System (ADS)

    Tasoglu, Savas; Rohan, Lisa C.; Katz, David F.; Szeri, Andrew J.

    2013-03-01

    There is a widespread agreement that more effective drug delivery vehicles with more alternatives, as well as better active pharmaceutical ingredients (APIs), must be developed to improve the efficacy of microbicide products. For instance, in tropical regions, films are more appropriate than gels due to better stability of drugs at extremes of moisture and temperature. Here, we apply fundamental fluid mechanical and physicochemical transport theory to help better understand how successful microbicide API delivery depends upon properties of a film and the human reproductive tract environment. Several critical components of successful drug delivery are addressed. Among these are: elastohydrodynamic flow of a dissolved non-Newtonian film; mass transfer due to inhomogeneous dilution of the film by vaginal fluid contacting it along a moving boundary (the locally deforming vaginal epithelial surface); and drug absorption by the epithelium. Local rheological properties of the film are dependent on local volume fraction of the vaginal fluid. We evaluated this experimentally, delineating the way that constitutive parameters of a shear-thinning dissolved film are modified by dilution. To develop the mathematical model, we integrate the Reynolds lubrication equation with a mass conservation equation to model diluting fluid movement across the moving vaginal epithelial surface and into the film. This is a complex physicochemical phenomenon that is not well understood. We explore time- and space-varying boundary flux model based upon osmotic gradients. Results show that the model produces fluxes that are comparable to experimental data. Further experimental characterization of the vaginal wall is required for a more precise set of parameters and a more sophisticated theoretical treatment of epithelium.

  11. A dual-phase microstructural approach to damage and fracture of Ti 3SiC 2/SiC joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.

    We investigate the microcracking mechanisms responsible for Ti 3SiC 2/SiC joint damage observed at the macroscopic scale after neutron irradiation experiments in detail. A dual-phase microstructural approach to damage and fracture of Ti 3SiC 2/SiC joints is developed that uses a finely discretized two-phase domain based on a digital image of an actual microstructure involving embedded Ti 3SiC 2 and SiC phases. The behaviors of SiC and Ti 3SiC 2 in the domain are described by the continuum damage mechanics (CDM) model reported in Nguyen et al., J. Nucl. Mater., 2017, 495:504–515. This CDM model describes microcracking damage in brittlemore » ceramics caused by thermomechanical loading and irradiation-induced swelling. The dual-phase microstructural model is applied to predict the microcracking mechanisms occurring in a typical Ti 3SiC 2/SiC joint subjected to heating to 800 °C followed by irradiation-induced swelling at this temperature and cooling to room temperature after the applied swelling has reached the maximum swelling levels observed in the experiments for SiC and Ti 3SiC 2. The model predicts minor damage of the joint after heating but significant microcracking in the SiC phase and along the boundaries between SiC and Ti 3SiC 2 as well as along the bonding joint during irradiation-induced swelling and cooling to room temperature. Our predictions qualitatively agree with the limited experimental observations of joint damage at this irradiation temperature.« less

  12. A dual-phase microstructural approach to damage and fracture of Ti 3SiC 2/SiC joints

    DOE PAGES

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.

    2017-12-05

    We investigate the microcracking mechanisms responsible for Ti 3SiC 2/SiC joint damage observed at the macroscopic scale after neutron irradiation experiments in detail. A dual-phase microstructural approach to damage and fracture of Ti 3SiC 2/SiC joints is developed that uses a finely discretized two-phase domain based on a digital image of an actual microstructure involving embedded Ti 3SiC 2 and SiC phases. The behaviors of SiC and Ti 3SiC 2 in the domain are described by the continuum damage mechanics (CDM) model reported in Nguyen et al., J. Nucl. Mater., 2017, 495:504–515. This CDM model describes microcracking damage in brittlemore » ceramics caused by thermomechanical loading and irradiation-induced swelling. The dual-phase microstructural model is applied to predict the microcracking mechanisms occurring in a typical Ti 3SiC 2/SiC joint subjected to heating to 800 °C followed by irradiation-induced swelling at this temperature and cooling to room temperature after the applied swelling has reached the maximum swelling levels observed in the experiments for SiC and Ti 3SiC 2. The model predicts minor damage of the joint after heating but significant microcracking in the SiC phase and along the boundaries between SiC and Ti 3SiC 2 as well as along the bonding joint during irradiation-induced swelling and cooling to room temperature. Our predictions qualitatively agree with the limited experimental observations of joint damage at this irradiation temperature.« less

  13. GRIZZLY Model of Multi-Reactive Species Diffusion, Moisture/Heat Transfer and Alkali-Silica Reaction for Simulating Concrete Aging and Degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Hai; Spencer, Benjamin W.; Cai, Guowei

    Concrete is widely used in the construction of nuclear facilities because of its structural strength and its ability to shield radiation. The use of concrete in nuclear power plants for containment and shielding of radiation and radioactive materials has made its performance crucial for the safe operation of the facility. As such, when life extension is considered for nuclear power plants, it is critical to have accurate and reliable predictive tools to address concerns related to various aging processes of concrete structures and the capacity of structures subjected to age-related degradation. The goal of this report is to document themore » progress of the development and implementation of a fully coupled thermo-hydro-mechanical-chemical model in GRIZZLY code with the ultimate goal to reliably simulate and predict long-term performance and response of aged NPP concrete structures subjected to a number of aging mechanisms including external chemical attacks and volume-changing chemical reactions within concrete structures induced by alkali-silica reactions and long-term exposure to irradiation. Based on a number of survey reports of concrete aging mechanisms relevant to nuclear power plants and recommendations from researchers in concrete community, we’ve implemented three modules during FY15 in GRIZZLY code, (1) multi-species reactive diffusion model within cement materials; (2) coupled moisture and heat transfer model in concrete; and (3) anisotropic, stress-dependent, alkali-silica reaction induced swelling model. The multi-species reactive diffusion model was implemented with the objective to model aging of concrete structures subjected to aggressive external chemical attacks (e.g., chloride attack, sulfate attack, etc.). It considers multiple processes relevant to external chemical attacks such as diffusion of ions in aqueous phase within pore spaces, equilibrium chemical speciation reactions and kinetic mineral dissolution/precipitation. The moisture/heat transfer module was implemented to simulate long-term spatial and temporal evolutions of the moisture and temperature fields within concrete structures at both room and elevated temperatures. The ASR swelling model implemented in GRIZZLY code can simulate anisotropic expansions of ASR gel under either uniaxial, biaxial and triaxial stress states, and can be run simultaneously with the moisture/heat transfer model and coupled with various elastic/inelastic solid mechanics models that were implemented in GRIZZLY code previously. This report provides detailed descriptions of the governing equations, constitutive equations and numerical algorithms of the three modules implemented in GRIZZLY during FY15, simulation results of example problems and model validation results by comparing simulations with available experimental data reported in the literature. The close match between the experiments and simulations clearly demonstrate the potential of GRIZZLY code for reliable evaluation and prediction of long-term performance and response of aged concrete structures in nuclear power plants.« less

  14. Synthesis and characterization of psyllium-NVP based drug delivery system through radiation crosslinking polymerization

    NASA Astrophysics Data System (ADS)

    Singh, Baljit; Kumar, S.

    2008-08-01

    In order to develop the hydrogels meant for the drug delivery, we have prepared psyllium- N-vinylpyrrolidone (NVP) based hydrogels by radiation induced crosslinking. Polymers were characterized with SEMs, FTIR and swelling studies. Swelling of the hydrogels was studied as a function of monomer concentration, total radiation dose, temperature, pH and [NaCl] of the swelling medium. The swelling kinetics of the hydrogels and release dynamics of anticancer model drug (5-fluorouracil) from the hydrogels have been carried out for the evaluation of swelling and drug release mechanism. It has been observed that diffusion exponent ' n' have 0.8, 0.9, 0.8 and gel characteristics constant ' k' have 9.22 × 10 -3, 2.06 × 10 -3, 11.72 × 10 -3 values for the release of drug from the drug loaded hydrogels in distilled water, pH 2.2 buffer and pH 7.4 buffer, respectively. The present study shows that the release of drug from the hydrogels occurred through Non-Fickian diffusion mechanism.

  15. [Effects of mercazolyl and L-thyroxine on the antiedematous activity of immunotropic preparations during development of toxic brain edema and swelling].

    PubMed

    Platonov, I A; Anashchenkova, T A; Andreeva, T A

    2008-01-01

    Dysfunction of thyroid gland plays an important role in the pathogenesis of brain edema and swelling. Toxic brain edema and swelling was modeled under condition of hypo- and hyperfunction of thyroid gland. Mercazolyl and L-thyroxine ambiguously influence the development of toxic brain edema and swelling in rats. L-thyroxin (35.7 microg/kg) favors increase in the water content in brain tissue, which can be considered as synergism with the edematous factor and the formation of brain tissue susceptibility to the development of brain edema and swelling. The administration of mercazolyl (5 mg/kg) and L-thyroxin (35.7 microg/kg) with thymogen (10 microg/kg), thymalin (1.2 mg/kg), cycloferon (0.5 mg/kg) results in decreasing brain tissue density as compared to intact animals. Dysfunction of the thyroid gland leads to changes in pharmacodynamics of immune preparations, which results in a decrease of their antiedematous activity.

  16. An investigation on "nano-swelling" phenomenon during resist dissolution using in situ high-speed atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Santillan, Julius Joseph; Itani, Toshiro

    2017-03-01

    This work focuses on the application of a high-speed atomic force microscope (HS-AFM) for the in situ observation / quantification of the resist dissolution process. Specifically, this paper discusses on the existence of what the authors refer to as "nano-swelling" which occurs in the extreme ultraviolet (EUV) exposed areas of a positive-tone chemically amplified resist, just before it dissolves into the aqueous tetramethylammonium hydroxide (TMAH) developer solution. In earlier experiments using typical EUVL resist materials (e.g. polyhydroxystyrene (PHS) polymer and hybrid PHS-methacryl polymer model resists), it was understood that nano-swelling is mainly material type-dependent. As shown in the investigations/results in this paper, nano-swelling has variations in the timing of occurrence and amount/size depending on the size of the dissolvable areas (i.e. larger dissolvable areas dissolve faster, swell more compared to smaller ones). Lastly, a comparison of surface analyses results of a resist pattern before, during, and after the occurrence of nano-swelling suggests the significant impact of these kinds of non-uniformities in the formation of line edge/line width roughness (LER/LWR).

  17. Swelling properties of montmorillonite and beidellite clay minerals from molecular simulation: Comparison of temperature interlayer cation, and charge location effects

    DOE PAGES

    Teich-McGoldrick, Stephanie L.; Greathouse, Jeffery A.; Jove-Colon, Carlos F.; ...

    2015-08-27

    In this study, the swelling properties of smectite clay minerals are relevant to many engineering applications including environmental remediation, repository design for nuclear waste disposal, borehole stability in drilling operations, and additives for numerous industrial processes and commercial products. We used molecular dynamics and grand canonical Monte Carlo simulations to study the effects of layer charge location, interlayer cation, and temperature on intracrystalline swelling of montmorillonite and beidellite clay minerals. For a beidellite model with layer charge exclusively in the tetrahedral sheet, strong ion–surface interactions shift the onset of the two-layer hydrate to higher water contents. In contrast, for amore » montmorillonite model with layer charge exclusively in the octahedral sheet, weaker ion–surface interactions result in the formation of fully hydrated ions (two-layer hydrate) at much lower water contents. Clay hydration enthalpies and interlayer atomic density profiles are consistent with the swelling results. Water adsorption isotherms from grand canonical Monte Carlo simulations are used to relate interlayer hydration states to relative humidity, in good agreement with experimental findings.« less

  18. Development of a novel drug release system, time-controlled explosion system (TES). I. Concept and design.

    PubMed

    Ueda, S; Hata, T; Asakura, S; Yamaguchi, H; Kotani, M; Ueda, Y

    1994-01-01

    A novel controlled drug release system. Time-Controlled Explosion System (TES) has been developed. TES has a four-layered spherical structure, which consists of core, drug, swelling agent and water insoluble polymer membrane. TES is characterized by a rapid drug release with a precisely programmed lag time; i.e. expansion of the swelling agent by water penetrating through the outer membrane, destruction of the membrane by stress due to swelling force and subsequent rapid drug release. For establishing the concept and development strategy, TES was designed using metoprolol and polystyrene balls (size: 3.2 mm in diameter) as a model drug and core particles. Among the polymers screened, low-substituted hydroxypropylcellulose (L-HPC) and ethylcellulose (EC) were selected for a swelling agent and an outer water insoluble membrane, respectively. The release profiles of metoprolol from the system were not affected by the pH of the dissolution media. Lag time was controlled by the thickness of the outer EC membrane; thus, a combination of TES particles possessing different lag times could offer any desired release profile of the model compound, metoprolol.

  19. PolyPole-1: An accurate numerical algorithm for intra-granular fission gas release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pizzocri, D.; Rabiti, C.; Luzzi, L.

    2016-09-01

    This paper describes the development of a new numerical algorithm (called PolyPole-1) to efficiently solve the equation for intra-granular fission gas release in nuclear fuel. The work was carried out in collaboration with Politecnico di Milano and Institute for Transuranium Elements. The PolyPole-1 algorithms is being implemented in INL's fuels code BISON code as part of BISON's fission gas release model. The transport of fission gas from within the fuel grains to the grain boundaries (intra-granular fission gas release) is a fundamental controlling mechanism of fission gas release and gaseous swelling in nuclear fuel. Hence, accurate numerical solution of themore » corresponding mathematical problem needs to be included in fission gas behaviour models used in fuel performance codes. Under the assumption of equilibrium between trapping and resolution, the process can be described mathematically by a single diffusion equation for the gas atom concentration in a grain. In this work, we propose a new numerical algorithm (PolyPole-1) to efficiently solve the fission gas diffusion equation in time-varying conditions. The PolyPole-1 algorithm is based on the analytic modal solution of the diffusion equation for constant conditions, with the addition of polynomial corrective terms that embody the information on the deviation from constant conditions. The new algorithm is verified by comparing the results to a finite difference solution over a large number of randomly generated operation histories. Furthermore, comparison to state-of-the-art algorithms used in fuel performance codes demonstrates that the accuracy of the PolyPole-1 solution is superior to other algorithms, with similar computational effort. Finally, the concept of PolyPole-1 may be extended to the solution of the general problem of intra-granular fission gas diffusion during non-equilibrium trapping and resolution, which will be the subject of future work.« less

  20. Modeling thermal and irradiation-induced swelling effects on the integrity of Ti3SiC2/SiC joints

    NASA Astrophysics Data System (ADS)

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.

    2017-11-01

    Previously, results for CVD-SiC joined by a solid state displacement reaction to form a dual-phase SiC/MAX phase joint subsequently irradiated at 800 °C to 5 dpa indicated some cracking in the joint. This paper elucidates the cracking origin by developing a model that accounts for differential thermal expansion and irradiation-induced swelling between the substrate and joint materials by using a continuum damage mechanics approach with support from micromechanical modeling. Damage accumulation in joined specimens irradiated at four temperatures (300 °C, 400 °C, 500 °C and 800 °C) is analyzed. We assume the experimental irradiation dose is sufficient to cause saturation swelling in SiC. The analyses indicate that the SiC/MAX joint survives irradiation-induced swelling at all the irradiation temperatures considered. The joint experiences only minor damage when heated to and irradiated at 800 °C as well as cooling to room temperature. The prediction agrees with the experimental findings available for this case. However, the joint heated to 300 °C suffers severe damage during irradiation-induced swelling at this temperature, and additional damage after cooling to room temperature. Irradiation at 400 °C and subsequent cooling to room temperature produced similar damage to the irradiation 300 °C case, but to a lesser extent. The joint heated to 500 °C and irradiated at this temperature suffered only very minor damage, but further moderate damage occurred after cooling to room temperature.

  1. Advanced fuels modeling: Evaluating the steady-state performance of carbide fuel in helium-cooled reactors using FRAPCON 3.4

    NASA Astrophysics Data System (ADS)

    Hallman, Luther, Jr.

    Uranium carbide (UC) has long been considered a potential alternative to uranium dioxide (UO2) fuel, especially in the context of Gen IV gas-cooled reactors. It has shown promise because of its high uranium density, good irradiation stability, and especially high thermal conductivity. Despite its many benefits, UC is known to swell at a rate twice that of UO2. However, the swelling phenomenon is not well understood, and we are limited to a weak empirical understanding of the swelling mechanism. One suggested cladding for UC is silicon carbide (SiC), a ceramic that demonstrates a number of desirable properties. Among them are an increased corrosion resistance, high mechanical strength, and irradiation stability. However, with increased temperatures, SiC exhibits an extremely brittle nature. The brittle behavior of SiC is not fully understood and thus it is unknown how SiC would respond to the added stress of a swelling UC fuel. To better understand the interaction between these advanced materials, each has been implemented into FRAPCON, the preferred fuel performance code of the Nuclear Regulatory Commission (NRC); additionally, the material properties for a helium coolant have been incorporated. The implementation of UC within FRAPCON required the development of material models that described not only the thermophysical properties of UC, such as thermal conductivity and thermal expansion, but also models for the swelling, densification, and fission gas release associated with the fuel's irradiation behavior. This research is intended to supplement ongoing analysis of the performance and behavior of uranium carbide and silicon carbide in a helium-cooled reactor.

  2. Modeling thermal and irradiation-induced swelling effects on the integrity of Ti 3SiC 2/SiC joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.

    Previously, results for CVD-SiC joined by a solid state displacement reaction to form a dual-phase SiC/MAX phase joint subsequently irradiated at 800 °C to 5 dpa indicated some cracking in the joint. Here, this paper elucidates the cracking origin by developing a model that accounts for differential thermal expansion and irradiation-induced swelling between the substrate and joint materials by using a continuum damage mechanics approach with support from micromechanical modeling. Damage accumulation in joined specimens irradiated at four temperatures (300 °C, 400 °C, 500 °C and 800 °C) is analyzed. We assume the experimental irradiation dose is sufficient to causemore » saturation swelling in SiC. The analyses indicate that the SiC/MAX joint survives irradiation-induced swelling at all the irradiation temperatures considered. The joint experiences only minor damage when heated to and irradiated at 800 °C as well as cooling to room temperature. The prediction agrees with the experimental findings available for this case. However, the joint heated to 300 °C suffers severe damage during irradiation-induced swelling at this temperature, and additional damage after cooling to room temperature. Irradiation at 400 °C and subsequent cooling to room temperature produced similar damage to the irradiation 300 °C case, but to a lesser extent. Finally, the joint heated to 500 °C and irradiated at this temperature suffered only very minor damage, but further moderate damage occurred after cooling to room temperature.« less

  3. Modeling thermal and irradiation-induced swelling effects on the integrity of Ti 3SiC 2/SiC joints

    DOE PAGES

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.

    2017-09-08

    Previously, results for CVD-SiC joined by a solid state displacement reaction to form a dual-phase SiC/MAX phase joint subsequently irradiated at 800 °C to 5 dpa indicated some cracking in the joint. Here, this paper elucidates the cracking origin by developing a model that accounts for differential thermal expansion and irradiation-induced swelling between the substrate and joint materials by using a continuum damage mechanics approach with support from micromechanical modeling. Damage accumulation in joined specimens irradiated at four temperatures (300 °C, 400 °C, 500 °C and 800 °C) is analyzed. We assume the experimental irradiation dose is sufficient to causemore » saturation swelling in SiC. The analyses indicate that the SiC/MAX joint survives irradiation-induced swelling at all the irradiation temperatures considered. The joint experiences only minor damage when heated to and irradiated at 800 °C as well as cooling to room temperature. The prediction agrees with the experimental findings available for this case. However, the joint heated to 300 °C suffers severe damage during irradiation-induced swelling at this temperature, and additional damage after cooling to room temperature. Irradiation at 400 °C and subsequent cooling to room temperature produced similar damage to the irradiation 300 °C case, but to a lesser extent. Finally, the joint heated to 500 °C and irradiated at this temperature suffered only very minor damage, but further moderate damage occurred after cooling to room temperature.« less

  4. Studying Nearshore Ocean Waves Using X-Band Radar

    NASA Astrophysics Data System (ADS)

    Laughlin, B.; Bland, R. W.

    2014-12-01

    In January of 2010, ocean waves generated by an unusually large storm caused major erosion damage to the San Francisco coastline, with an erosion "hot spot" partially collapsing a four-lane throughway and threatening important infrastructure. Every winter, swells from the northwest approach San Francisco's Ocean Beach by passing over the southern limb of the San Francisco Bar, an ebb-tidal delta seaward of the Golden Gate Bridge. Refraction of approaching wave-fronts causes focusing of wave energy at the southern end of Ocean Beach where the S.F. Bar meets the coast, possibly explaining the location of the 2010 hot spot. In 2011 an x-band radar system was installed on a site near the erosion hot spot, at an elevation of 13 m above low tide, about 40 m back from the high-tide line. The radar system collects images of wave crests out to 3 km from the scanner. Study of these images when offshore buoys report a single NW swell shows two swell patterns arriving at Ocean Beach, separated in direction by about 30 degrees, and producing a quilted interference pattern, as seen in the accompanying figure. We interpret these swells as following two different paths around the Bar. Preliminary ray-tracing studies tend to confirm this interpretation. To enhance these images we have employed two techniques. The first technique, which is concerned with identification and visualization of swells in the region of interest, involves iteration over possible swell periods: scans taken at integral multiples of a given period are added together, with the sharpest image determining the swell period (see figure) and providing an enhanced image for further analysis. The second technique involves displacement of images in time by phase incrementation in k-space, with subsequent addition of images. We will present results concerning the stability of the relative phase of the two swells, and the applicability to models for propagation of waves. Establishment of a tested propagation model would permit prediction of erosion hazards for hypothetical enhanced storms and rising sea level due to global climate change.

  5. Targeted Drug Delivery in the Suprachoroidal Space by Swollen Hydrogel Pushing.

    PubMed

    Jung, Jae Hwan; Desit, Patcharin; Prausnitz, Mark R

    2018-04-01

    The purpose is to target model drug particles to the posterior region of the suprachoroidal space (SCS) of the eye controlled via pushing by hydrogel swelling. A particle formulation containing 1% hyaluronic acid (HA) with fluorescent polymer particles and a hydrogel formulation containing 4% HA were introduced in a single syringe as two layers without mixing, and injected sequentially into the SCS of the rabbit eye ex vivo and in vivo using a microneedle. Distribution of particles in the eye was determined by microscopy. During injection, the particle formulation was pushed toward the middle of the SCS by the viscous hydrogel formulation, but less than 12% of particles reached the posterior SCS. After injection, the particle formulation was pushed further toward the macula and optic nerve in the posterior SCS by hydrogel swelling and spreading. Heating the eye to 37°C, or injecting in vivo decreased viscosity and mechanical strength of the hydrogel, thereby allowing it to swell and flow further in the SCS. A high salt concentration (9% NaCl) in the hydrogel formulation further increased hydrogel swelling due to osmotic flow into the hydrogel. In this way, up to 76% of particles were delivered to the posterior SCS from an injection made near the limbus. This study shows that model drug particles can be targeted to the posterior SCS by HA hydrogel swelling and pushing without particle functionalization or administering external driving forces.

  6. Water Sorption in Electron-Beam Evaporated SiO2 on QCM Crystals and Its Influence on Polymer Thin Film Hydration Measurements.

    PubMed

    Kushner, Douglas I; Hickner, Michael A

    2017-05-30

    Spectroscopic ellipsometry (SE) and quartz crystal microbalance (QCM) measurements are two critical characterization techniques routinely employed for hydration studies of polymer thin films. Water uptake by thin polymer films is an important area of study to investigate antifouling surfaces, to probe the swelling of thin water-containing ionomer films, and to conduct fundamental studies of polymer brush hydration and swelling. SiO 2 -coated QCM crystals, employed as substrates in many of these hydration studies, show porosity in the thin electron-beam (e-beam) evaporated SiO 2 layer. The water sorption into this porous SiO 2 layer requires correction of the optical and mass characterization of the hydrated polymer due to changes in the SiO 2 layer as it sorbs water. This correction is especially important when experiments on SiO 2 -coated QCM crystals are compared to measurements on Si wafers with dense native SiO 2 layers. Water adsorption filling void space during hydration in ∼200-260 nm thick SiO 2 layers deposited on a QCM crystal resulted in increased refractive index of the layer during water uptake experiments. The increased refractive index led to artificially higher polymer swelling in the optical modeling of the hydration experiments. The SiO 2 -coated QCM crystals showed between 6 and 8% void as measured by QCM and SE, accounting for 60%-85% of the measured polymer swelling in the low humidity regime (<20% RH) and 25%-40% of the polymer swelling in the high humidity regime (>70% RH) from optical modeling for 105 and 47 nm thick sulfonated polymer films. Correcting the refractive index of the SiO 2 layer for its water content resulted in polymer swelling that successfully resembled swelling measured on a silicon wafer with nonporous native oxide.

  7. A thermodynamically-consistent large deformation theory coupling photochemical reaction and electrochemistry for light-responsive gels

    NASA Astrophysics Data System (ADS)

    Dehghany, Mohammad; Zhang, Haohui; Naghdabadi, Reza; Hu, Yuhang

    2018-07-01

    Gels are composed of crosslinked polymer network and solvent molecules. When the main chain network is incorporated with functional groups that can undergo photo-chemical reaction upon light irradiation, the gel becomes light-responsive. Under irradiation, the photosensitive groups may undergo photo-ionization process and generate charges that are attached to the main chain or diffuse into the solvent. The newly generated ions disturb the osmotic balance of the gel medium. As a result, water molecules and mobile ions are driven into or out of the network to compensate the osmotic imbalance, which eventually leads to macroscopic swelling or shrinking of the gel. In this work, we develop a rigorous nonequilibrium thermodynamic framework to study the coupled photo-chemo-electro-mechanical responses of the photo-ionizable gels. We first discuss the mathematical descriptions of the light propagation and photo-induced chemical reactions inside the gel, as well as the equations governing the kinetics of the photo-chemical reactions. We then explore the consequences of the fundamental laws of thermodynamics in deriving the governing equations of the photo-ionizable gels. The continuous light irradiation drives the gel system towards a new thermodynamic stationary state that is away from equilibrium and is accompanied by energy dissipation. Next, we focus on the photo stationary state of the gel and explore the consequences of the continuous irradiation on the mechanical response of the gel in both optically thin and optically thick configurations. In the optically thin cases, we quantitatively compare the theoretical prediction with experimental data available in the literature. In one example, we show that the model can quantitatively capture the photo-tunable volume-phase transition of the Poly(N-isopropylacrylamide) (PNIPAM) gel grafted with photo-responsive triphenylmethane leucocyanide groups. In another example, we show that the model can quantitatively study the effect of salt concentration and pH value of the external solution on the photo-induced swelling of the polyacrylamide gels incorporated with triphenylmethane leucohydroxide groups. Finally, for the optically thick gels, we develop a finite element code to study their inhomogeneous deformations due to the light attenuation. This work will be of great importance for precise control and optimal design of photo-ionizable gels in future applications.

  8. Myosin light chain kinase and Src control membrane dynamics in volume recovery from cell swelling

    PubMed Central

    Barfod, Elisabeth T.; Moore, Ann L.; Van de Graaf, Benjamin G.; Lidofsky, Steven D.

    2011-01-01

     The expansion of the plasma membrane, which occurs during osmotic swelling of epithelia, must be retrieved for volume recovery, but the mechanisms are unknown. Here we have identified myosin light chain kinase (MLCK) as a regulator of membrane internalization in response to osmotic swelling in a model liver cell line. On hypotonic exposure, we found that there was time-dependent phosphorylation of the MLCK substrate myosin II regulatory light chain. At the sides of the cell, MLCK and myosin II localized to swelling-induced membrane blebs with actin just before retraction, and MLCK inhibition led to persistent blebbing and attenuated cell volume recovery. At the base of the cell, MLCK also localized to dynamic actin-coated rings and patches upon swelling, which were associated with uptake of the membrane marker FM4-64X, consistent with sites of membrane internalization. Hypotonic exposure evoked increased biochemical association of the cell volume regulator Src with MLCK and with the endocytosis regulators cortactin and dynamin, which colocalized within these structures. Inhibition of either Src or MLCK led to altered patch and ring lifetimes, consistent with the concept that Src and MLCK form a swelling-induced protein complex that regulates volume recovery through membrane turnover and compensatory endocytosis under osmotic stress. PMID:21209319

  9. Impact of swelling characteristics on the permselective ...

    EPA Pesticide Factsheets

    The removal of water from organic solvents and biofuels, including lower alcohols (i.e., methanol, ethanol, propanol, and butanol), is necessary for the production, blending, and reuse of those organic compounds. Water forms an azeotrope with many hydrophilic solvents, complicating the separation of water/solvent mixtures. The use of water-selective membranes in a pervaporation or vapor permeation process enables the removal of water from the solvents, even when an azeotrope is present. Common hydrophilic polymer membranes often swell in water, resulting in permeabilities and selectivities that are dependent on the water content of the feed mixture. Recent work has shown the benefit of overcoating a hydrophilic water-permselective membrane with a non-swelling perfluoropolymer film [1,2]. The perfluoropolymer layer reduces the activity of water the hydrophilic polymer layer experiences, thereby reducing swelling in that layer and increasing the water selectivity of the multi-layer membrane relative to the selectivity of the base hydrophilic polymer, usually at the expense of permeability. In this work, the effect of overcoating the hydrophilic layer with polymer films of various swelling characteristics was modelled. Top layers that swell in the solvent offer some advantages, particularly with regard to the water permeance of the multi-layer composite. 1. Huang, Y.; Baker, R. W.; Wijmans, J. G. Perfluoro-coated hydrophilic membranes with improved selectivity. In

  10. Clinical and Radiographic Characteristics as Predictive Factors of Swelling and Trismus after Mandibular Third Molar Surgery: A Longitudinal Approach

    PubMed Central

    Pérez-González, José Manuel; Esparza-Villalpando, Vicente; Martínez-Rider, Ricardo; Noyola-Frías, Miguel Ángel

    2018-01-01

    Introduction Factors that contribute to swelling and trismus are complex, and they are originated by surgical trauma. The aim of the present study was to determine whether clinical and radiographic factors could predict the level of swelling and trismus after lower third molar surgery, through longitudinal approach. Methodology A prospective longitudinal trial was carried out. Forty-five patients of both genders with clinical and radiographic diagnosis of asymptomatic mandibular impacted third molar and with no intake of analgesic or anti-inflammatory drugs 12 h prior to surgery were recruited and evaluated in a 72 h follow-up period. A mixed repeated measures model and backward and restricted maximal likelihood methods were used to analyze the data. Results Male gender, body mass index (BMI), the relation to the lingual and buccal walls, and age were determinants for predicting postoperative swelling and for exerting a significant influence (P < 0.05). Conclusions This study suggests the association of male gender, the relation to lingual and buccal walls, BMI, and age with measurement of swelling. PMID:29849848

  11. On possible microscopic origins of the swelling of neutral lipid bilayers induced by simple salts.

    PubMed

    Manciu, Marian; Ruckenstein, Eli

    2007-05-01

    It was recently suggested that the swelling of neutral multilipid bilayers upon addition of a salt can be simply explained only by the electrolyte screening of the van der Waals attractions, while assuming that the hydration force and the repulsion due to thermal undulations of membranes are unaffected by the salt. While we agree that the screening of the van der Waals interactions plays a role, we suggest that the increase in the hydration force upon addition of a salt has also to be taken into account. In a statistical model, which accounts for the membrane undulations, parameters could be found to explain the multibilayer swelling even when the van der Waals attraction is considered unaffected by the electrolyte screening. These results point out that the decrease by a factor of three of the Hamaker constant upon addition of a salt, suggested recently to be responsible for the swelling of neutral multilipid bilayers, is perhaps too large, and a smaller decrease in Hamaker constant, coupled with the above mentioned effects might explain the swelling.

  12. Soft mechanical metamaterials with unusual swelling behavior and tunable stress-strain curves

    PubMed Central

    Guo, Xiaogang; Wu, Jun

    2018-01-01

    Soft adaptable materials that change their shapes, volumes, and properties in response to changes under ambient conditions have important applications in tissue engineering, soft robotics, biosensing, and flexible displays. Upon water absorption, most existing soft materials, such as hydrogels, show a positive volume change, corresponding to a positive swelling. By contrast, the negative swelling represents a relatively unusual phenomenon that does not exist in most natural materials. The development of material systems capable of large or anisotropic negative swelling remains a challenge. We combine analytic modeling, finite element analyses, and experiments to design a type of soft mechanical metamaterials that can achieve large effective negative swelling ratios and tunable stress-strain curves, with desired isotropic/anisotropic features. This material system exploits horseshoe-shaped composite microstructures of hydrogel and passive materials as the building blocks, which extend into a periodic network, following the lattice constructions. The building block structure leverages a sandwiched configuration to convert the hydraulic swelling deformations of hydrogel into bending deformations, thereby resulting in an effective shrinkage (up to around −47% linear strain) of the entire network. By introducing spatially heterogeneous designs, we demonstrated a range of unusual, anisotropic swelling responses, including those with expansion in one direction and, simultaneously, shrinkage along the perpendicular direction. The design approach, as validated by experiments, allows the determination of tailored microstructure geometries to yield desired length/area changes. These design concepts expand the capabilities of existing soft materials and hold promising potential for applications in a diverse range of areas.

  13. Molecular simulation of the swelling of polyelectrolyte gels by monovalent and divalent counterions

    PubMed Central

    Yin, De-Wei; Horkay, Ferenc; Douglas, Jack F.; de Pablo, Juan J.

    2008-01-01

    Permanently crosslinked polyelectrolyte gels are known to undergo discontinuous first-order volume phase transitions, the onset of which may be caused by a number of factors. In this study we examine the volumetric properties of such polyelectrolyte gels in relation to the progressive substitution of monovalent counterions by divalent counterions as the gels are equilibrated in solvents of different dielectric qualities. We compare the results of coarse-grained molecular dynamics simulations of polyelectrolyte gels with previous experimental measurements by others on polyacrylate gels. The simulations show that under equilibrium conditions there is an approximate cancellation between the electrostatic contribution and the counterion excluded-volume contribution to the osmotic pressure in the gel-solvent system; these two contributions to the osmotic pressure have, respectively, energetic and entropic origins. The finding of such a cancellation between the two contributions to the osmotic pressure of the gel-solvent system is consistent with experimental observations that the swelling behavior of polyelectrolyte gels can be described by equations of state for neutral gels. Based on these results, we show and explain that a modified form of the Flory–Huggins model for nonionic polymer solutions, which accounts for neither electrostatic effects nor counterion excluded-volume effects, fits both experimental and simulated data for polyelectrolyte gels. The Flory–Huggins interaction parameters obtained from regression to the simulation data are characteristic of ideal polymer solutions, whereas the experimentally obtained interaction parameters, particularly that associated with the third virial coefficient, exhibit a significant departure from ideality, leading us to conclude that further enhancements to the simulation model, such as the inclusion of excess salt, the allowance for size asymmetric electrolytes, or the use of a distance-dependent solvent dielectricity model, may be required. Molecular simulations also reveal that the condensation of divalent counterions onto the polyelectrolyte network backbone occurs preferentially over that of monovalent counterions. PMID:19045224

  14. Molecular simulation of the swelling of polyelectrolyte gels by monovalent and divalent counterions.

    PubMed

    Yin, De-Wei; Horkay, Ferenc; Douglas, Jack F; de Pablo, Juan J

    2008-10-21

    Permanently crosslinked polyelectrolyte gels are known to undergo discontinuous first-order volume phase transitions, the onset of which may be caused by a number of factors. In this study we examine the volumetric properties of such polyelectrolyte gels in relation to the progressive substitution of monovalent counterions by divalent counterions as the gels are equilibrated in solvents of different dielectric qualities. We compare the results of coarse-grained molecular dynamics simulations of polyelectrolyte gels with previous experimental measurements by others on polyacrylate gels. The simulations show that under equilibrium conditions there is an approximate cancellation between the electrostatic contribution and the counterion excluded-volume contribution to the osmotic pressure in the gel-solvent system; these two contributions to the osmotic pressure have, respectively, energetic and entropic origins. The finding of such a cancellation between the two contributions to the osmotic pressure of the gel-solvent system is consistent with experimental observations that the swelling behavior of polyelectrolyte gels can be described by equations of state for neutral gels. Based on these results, we show and explain that a modified form of the Flory-Huggins model for nonionic polymer solutions, which accounts for neither electrostatic effects nor counterion excluded-volume effects, fits both experimental and simulated data for polyelectrolyte gels. The Flory-Huggins interaction parameters obtained from regression to the simulation data are characteristic of ideal polymer solutions, whereas the experimentally obtained interaction parameters, particularly that associated with the third virial coefficient, exhibit a significant departure from ideality, leading us to conclude that further enhancements to the simulation model, such as the inclusion of excess salt, the allowance for size asymmetric electrolytes, or the use of a distance-dependent solvent dielectricity model, may be required. Molecular simulations also reveal that the condensation of divalent counterions onto the polyelectrolyte network backbone occurs preferentially over that of monovalent counterions.

  15. Exposure of natural rubber to personal lubricants--swelling and stress relaxation as potential indicators of reduced seal integrity of non-lubricated male condoms.

    PubMed

    Sarkar Das, Srilekha; Coburn, James C; Tack, Charles; Schwerin, Matthew R; Richardson, D Coleman

    2014-07-01

    Male condoms act as mechanical barriers to prevent passage of body fluids. For effective use of condoms the mechanical seal is also expected to remain intact under reasonable use conditions, including with personal lubricants. Absorption of low molecular weight lubricant components into the material of male condoms may initiate material changes leading to swelling and stress relaxation of the polymer network chains that could affect performance of the sealing function of the device. Swelling indicates both a rubber-solvent interaction and stress relaxation, the latter of which may indicate and/or result in a reduced seal pressure in the current context. Swelling and stress relaxation of natural rubber latex condoms were assessed in a laboratory model in the presence of silicone-, glycol-, and water-based lubricants. Within 15 minutes, significant swelling (≥6 %) and stress reduction (≥12 %) of condoms were observed with 2 out of 4 silicone-based lubricants tested, but neither was observed with glycol- or water-based lubricants tested. Under a given strain, reduction in stress was prominent during the swelling processes, but not after the process was complete. Lubricant induced swelling and stress relaxation may loosen the circumferential stress responsible for the mechanical seal. Swelling and stress relaxation behavior of latex condoms in the presence of personal lubricants may be useful tests to identify lubricant-rooted changes in condom-materials. For non-lubricated latex condoms, material characteristics--which are relevant to failure--may change in the presence of a few silicone-based personal lubricants. These changes may in turn induce a loss of condom seal during use, specifically at low strain conditions. Published by Elsevier Inc.

  16. Swellable elastomers under constraint

    NASA Astrophysics Data System (ADS)

    Lou, Yucun; Robisson, Agathe; Cai, Shengqiang; Suo, Zhigang

    2012-08-01

    Swellable elastomers are widely used in the oilfield to seal the flow of downhole fluids. For example, when a crack appears in self-healing cement, the liquid in the surroundings flows into the crack and permeates into the cement, causing small particles of elastomers in the cement to swell, resulting in the blocking of the flow. Elastomers are also used as large components in swellable packers, which can swell and seal zones in the borehole. In these applications, the elastomers swell against the constraint of stiff materials, such as cement, metal, and rock. The pressure generated by the elastomer against the confinement is a key factor that affects the quality of the sealing. This work develops a systematic approach to predict the magnitude of the pressure in such components. Experiments are carried out to determine the stress-stretch curve, free swelling ratio, and confining pressure. The data are interpreted in terms of a modified Flory-Rehner model.

  17. Effects of tunneling on groundwater flow and swelling of clay-sulfate rocks

    NASA Astrophysics Data System (ADS)

    Butscher, Christoph; Einstein, Herbert H.; Huggenberger, Peter

    2011-11-01

    Swelling of clay-sulfate rocks is a major threat in tunneling. It is triggered by the transformation of the sulfate mineral anhydrite into gypsum as a result of water inflow in anhydrite-containing layers after tunnel excavation. The present study investigates the hydraulic effects of tunneling on groundwater flow and analyzes how hydraulic changes caused by excavation lead to water inflow into anhydrite-containing layers in the tunnel area. Numerical groundwater models are used to conduct scenario simulations that allow one to relate hydrogeological conditions to rock swelling. The influence of the topographic setting, the excavation-damaged zone around the tunnel, the sealing effect of the tunnel liner, and the geological configuration are analyzed separately. The analysis is performed for synthetic situations and is complemented by a case study from a tunnel in Switzerland. The results illustrate the importance of geological and hydraulic information when assessing the risk of swelling at an actual site.

  18. Molecularly imprinted polymer doped with Hectorite for selective recognition of sinomenine hydrochloride.

    PubMed

    Zhang, W; Fu, H L; Li, X Y; Zhang, H; Wang, N; Li, W; Zhang, X X

    2016-01-01

    In this work, a new and facile method was introduced to prepare molecularly imprinted polymers (MIPs) based on nano clay hectorite (Hec) for sinomenine hydrochloride (SM) analysis. Hec was firstly dissolved in distilled water in order to swell adequately, followed by a common precipitation polymerization with SM as the template, methacrylic acid as monomer, ethylene glycol dimethacrylate as a crosslinker and 2,2-azobisisobutyronitrile as an initiator. Hec@SM-MIPs were characterized by Fourier transform infrared spectrometer, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. The maximum binding capacity of Hec@SM-MIPs, SM-MIPs and non-imprinted polymers (NIPs) (Hec@NIPs) was 57.4, 16.8 and 11.6 mg/g, respectively. The reason for this result may be that Hec@SM-MIPs have more binding sites and imprinted cavities for template molecule. Equilibrium data were described by the Langmuir and Freundlich isotherm models. The results showed that the Hec@SM-MIPs adsorption data correlated better with the Langmuir equation than the Freundlich equation under the studied concentration range. In vitro drug release experiment, Hec@SM-MIPs have a better ability to control SM release than SM-MIPs. Therefore, Hec@SM-MIPs were successfully applied to extraction of SM and used as the materials for drug delivery system.

  19. Targeted Drug Delivery in the Suprachoroidal Space by Swollen Hydrogel Pushing

    PubMed Central

    Jung, Jae Hwan; Desit, Patcharin; Prausnitz, Mark R.

    2018-01-01

    Purpose The purpose is to target model drug particles to the posterior region of the suprachoroidal space (SCS) of the eye controlled via pushing by hydrogel swelling. Methods A particle formulation containing 1% hyaluronic acid (HA) with fluorescent polymer particles and a hydrogel formulation containing 4% HA were introduced in a single syringe as two layers without mixing, and injected sequentially into the SCS of the rabbit eye ex vivo and in vivo using a microneedle. Distribution of particles in the eye was determined by microscopy. Results During injection, the particle formulation was pushed toward the middle of the SCS by the viscous hydrogel formulation, but less than 12% of particles reached the posterior SCS. After injection, the particle formulation was pushed further toward the macula and optic nerve in the posterior SCS by hydrogel swelling and spreading. Heating the eye to 37°C, or injecting in vivo decreased viscosity and mechanical strength of the hydrogel, thereby allowing it to swell and flow further in the SCS. A high salt concentration (9% NaCl) in the hydrogel formulation further increased hydrogel swelling due to osmotic flow into the hydrogel. In this way, up to 76% of particles were delivered to the posterior SCS from an injection made near the limbus. Conclusions This study shows that model drug particles can be targeted to the posterior SCS by HA hydrogel swelling and pushing without particle functionalization or administering external driving forces. PMID:29677369

  20. Hydrogels for engineering: normalization of swelling due to arbitrary stimulus

    NASA Astrophysics Data System (ADS)

    Ehrenhofer, Adrian; Wallmersperger, Thomas

    2017-04-01

    In engineering, materials are chosen from databases: Engineers orient on specific parameters such as Young's modulus, yield stress or thermal expansion coefficients for a desired application. For hydrogels, the choice of materials is rather tedious since no generalized material parameters are currently available to quantify the swelling behavior. The normalization of swelling, which we present in the current work, allows an easy comparison of different hydrogel materials. Thus, for a specific application like a sensor or an actuator, an adequate material can be chosen. In the current work, we present the process of normalization and provide a course of action for the data analysis. Special challenges for hydrogels like hysteresis, conditional multi-sensitivity and anisotropic swelling are addressed. Then, the Temperature Expansion Model is shortly described and applied. Using the derived normalized swelling curves, a nonlinear expansion coefficient ß(F) is derived. The derived material behavior is used in an analytical model to predict the bending behavior of a beam made of thermo-responsive hydrogel material under an anisotropic temperature load. A bending behavior of the beam can be observed and the impact of other geometry and material parameters can be investigated. To overcome the limitations of the one-dimensional beam theory, the material behavior and geometry can be implemented in Finite Element analysis tools. Thus, novel applications for hydrogels in various fields can be envisioned, designed and tested. This can lead to a wider use of smart materials in sensor or actuator devices even by engineers without chemical background.

  1. Towards the determination of deformation rates - pinch-and-swell structures as a natural and simulated paleo-strain rate gage

    NASA Astrophysics Data System (ADS)

    Peters, Max; Poulet, Thomas; Karrech, Ali; Regenauer-Lieb, Klaus; Herwegh, Marco

    2014-05-01

    Layered rocks deformed under viscous deformation conditions frequently show boudinage, a phenomenon that results from differences in effective viscosity between the involved layers. In the case of continuous necking of a mechanically stiffer layer embedded in a weaker matrix, symmetric boudins are interpreted as the result of dominant visco-plastic deformation (Goscombe et al., 2004). However, information on the physical conditions, material properties and deformation processes are yet unknown. Natural samples deformed under low-grade (T<350°C) metamorphic conditions were studied in detail in the Dent de Morcles and Doldenhorn nappes of the Helvetic Alps in order to accurately simulate their deformation styles by numerical models. In these samples, monomineralic calcite (Cc) veins were repeatedly boudinaged on cm- to µm-scale. Remnants of incompletely recrystallized original vein Cc grains in the swells indicate a sequence of deformation twinning, followed by progressive dynamic recrystallization along former twin planes up to complete recrystallization in the pinches (Schmalholz and Maeder, 2012). This sequence suggests dislocation creep to be active as important deformation mechanism. In contrast to the pinch-and-swell structures, the grain size of the Cc in the surrounding matrix is much finer-grained due to pinning by secondary particles, forcing the matrix to deform under viscous granular creep, i.e. by diffusion accommodated grain boundary sliding. The deformation processes observed in the natural samples were incorporated into a numerical model in order to evaluate the rheology of both layer and matrix, using an extension to a user material subroutine (Karrech et al., 2011a) for the finite element solver ABAQUS. We implemented thermo-mechanical coupling allowing elastic, viscous and plastic deformation of Cc (Herwegh et al., in press). We simulate a pure-shear box using finite elements, each representing a grain size distribution, which undergo layer-parallel extension. The box is built up by 3 layers, consisting of a central layer of coarse-grained populations, surrounded by finer-grained populations on bottom and top. The rheology evolves from transient stages (elasticity and strain hardening) to composite viscous flow (GSI & GSS) with increasing shear strain. The small grain sizes in top and bottom layers are strain-invariant and limited in their growth (comparable to Zener pinning) forcing the matrix to deform by exclusively by GSS creep. In contrast, the initially coarse grain sizes of the central layer are allowed to adapt to the physical deformation conditions by either grain growth or grain size reduction following the Paleowattmeter of Austin and Evans (2007) combined with the thermodynamic approach of Regenauer-Lieb and Yuen (2004). Depending on the dissipated energy, grain sizes in these domains vary substantially in space and time. While low strain rates (low stresses) in the swells favor grain growth and GSI dominated deformation, high strain rates in the pinches provoke dramatic grain size reduction with an increasing contribution of GSS as a function of decreasing grain size. The development of symmetric necks observed in nature thus seems to coincide with the transition from dislocation to diffusion creep dominated flow with continuous grain size reduction and growth from swell to neck at relatively high extensional strains. REFERENCES Austin, N. and Evans, B. (2007). Paleowattmeters: A scaling relation for dynamically recrystallized grain size. Geology, 35. Goscombe, B.D., Passchier, C.W. and Hand, M. (2004). Boudinage classification: End-member boudin types and modified boudin structures, Journal of Structural Geology, 26. Herwegh, M., Poulet, T., Karrech, A. and Regenauer-Lieb, K. (in press). From transient to steady state deformation and grain size: A thermodynamic approach using elasto-visco-plastic numerical modeling. Journal of Geophysical Research. Karrech, A., Regenauer-Lieb, K. and Poulet, T. (2011a). A Damaged visco-plasticity model for pressure and temperature sensitive geomaterials. Journal of Engineering Science 49. Regenauer-Lieb, K. and Yuen, D. (2004). Positive feedback of interacting ductile faults from coupling of equation of state, rheology and thermal-mechanics. Physics of the Earth and Planetary Interiors, 142. Schmalholz, S.M. and Maeder, X. (2012). Pinch-and-swell structure and shear zones in viscoplastic layers. Journal of Structural Geology, 34.

  2. Tensile and thickness swelling properties of strands from Southern hardwoods and Southern pine : effect of hot-pressing and resin application

    Treesearch

    Zhiyong Cai; Qinglin Wu; Guangping Han; Jong N. Lee

    2007-01-01

    Tensile and the moisture-induced thickness swelling properties of wood strands are among the most fundamental parameters in modeling and predicting engineering constants of strand-based composites such as oriented strandboard (OSB). The effects of hot-pressing and resin-curing on individual strand properties were investigated in this study. Strands from four Louisiana-...

  3. A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis.

    PubMed

    Zheng, Liange; Samper, Javier; Montenegro, Luis

    2011-09-25

    The performance assessment of a geological repository for radioactive waste requires quantifying the geochemical evolution of the bentonite engineered barrier. This barrier will be exposed to coupled thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. This paper presents a coupled THC model of the FEBEX (Full-scale Engineered Barrier EXperiment) in situ test which accounts for bentonite swelling and chemical and thermal osmosis. Model results attest the relevance of thermal osmosis and bentonite swelling for the geochemical evolution of the bentonite barrier while chemical osmosis is found to be almost irrelevant. The model has been tested with data collected after the dismantling of heater 1 of the in situ test. The model reproduces reasonably well the measured temperature, relative humidity, water content and inferred geochemical data. However, it fails to mimic the solute concentrations at the heater-bentonite and bentonite-granite interfaces because the model does not account for the volume change of bentonite, the CO(2)(g) degassing and the transport of vapor from the bentonite into the granite. The inferred HCO(3)(-) and pH data cannot be explained solely by solute transport, calcite dissolution and protonation/deprotonation by surface complexation, suggesting that such data may be affected also by other reactions. Published by Elsevier B.V.

  4. The Effect of Vegetation on Sea-Swell Waves, Infragravity Waves and Wave-Induced Setup

    NASA Astrophysics Data System (ADS)

    Roelvink, J. A.; van Rooijen, A.; McCall, R. T.; Van Dongeren, A.; Reniers, A.; van Thiel de Vries, J.

    2016-02-01

    Aquatic vegetation in the coastal zone (e.g. mangrove trees) attenuates wave energy and thereby reduces flood risk along many shorelines worldwide. However, in addition to the attenuation of incident-band (sea-swell) waves, vegetation may also affect infragravity-band (IG) waves and the wave-induced water level setup (in short: wave setup). Currently, knowledge on the effect of vegetation on IG waves and wave setup is lacking, while they are they are key parameters for coastal risk assessment. In this study, the process-based storm impact model XBeach was extended with formulations for attenuation of sea-swell and IG waves as well as the effect on the wave setup, in two modes: the sea-swell wave phase-resolving (non-hydrostatic) and the phase-averaged (surfbeat) mode. In surfbeat mode a wave shape model was implemented to estimate the wave phase and to capture the intra-wave scale effect of emergent vegetation and nonlinear waves on the wave setup. Both modeling modes were validated using data from two flume experiments and show good skill in computing the attenuation of both sea-swell and IG waves as well as the effect on the wave-induced water level setup. In surfbeat mode, the prediction of nearshore mean water levels greatly improved when using the wave shape model, while in non-hydrostatic mode this effect is directly accounted for. Subsequently, the model was used to study the influence of the bottom profile slope and the location of the vegetation field on the computed wave setup with and without vegetation. It was found that the reduction is wave setup is strongly related to the location of vegetation relative to the wave breaking point, and that the wave setup is lower for milder slopes. The extended version of XBeach developed within this study can be used to study the nearshore hydrodynamics on coasts fronted by vegetation such as mangroves. It can also serve as tool for storm impact studies on coasts with aquatic vegetation, and can help to quantify the coastal protection function of vegetation.

  5. Altered swelling and ion fluxes in articular cartilage as a biomarker in osteoarthritis and joint immobilization: a computational analysis

    PubMed Central

    Manzano, Sara; Manzano, Raquel; Doblaré, Manuel; Doweidar, Mohamed Hamdy

    2015-01-01

    In healthy cartilage, mechano-electrochemical phenomena act together to maintain tissue homeostasis. Osteoarthritis (OA) and degenerative diseases disrupt this biological equilibrium by causing structural deterioration and subsequent dysfunction of the tissue. Swelling and ion flux alteration as well as abnormal ion distribution are proposed as primary indicators of tissue degradation. In this paper, we present an extension of a previous three-dimensional computational model of the cartilage behaviour developed by the authors to simulate the contribution of the main tissue components in its behaviour. The model considers the mechano-electrochemical events as concurrent phenomena in a three-dimensional environment. This model has been extended here to include the effect of repulsion of negative charges attached to proteoglycans. Moreover, we have studied the fluctuation of these charges owning to proteoglycan variations in healthy and pathological articular cartilage. In this sense, standard patterns of healthy and degraded tissue behaviour can be obtained which could be a helpful diagnostic tool. By introducing measured properties of unhealthy cartilage into the computational model, the severity of tissue degeneration can be predicted avoiding complex tissue extraction and subsequent in vitro analysis. In this work, the model has been applied to monitor and analyse cartilage behaviour at different stages of OA and in both short (four, six and eight weeks) and long-term (11 weeks) fully immobilized joints. Simulation results showed marked differences in the corresponding swelling phenomena, in outgoing cation fluxes and in cation distributions. Furthermore, long-term immobilized patients display similar swelling as well as fluxes and distribution of cations to patients in the early stages of OA, thus, preventive treatments are highly recommended to avoid tissue deterioration. PMID:25392400

  6. Dynamic swelling of tunable full-color block copolymer photonic gels via counterion exchange.

    PubMed

    Lim, Ho Sun; Lee, Jae-Hwang; Walish, Joseph J; Thomas, Edwin L

    2012-10-23

    One-dimensionally periodic block copolymer photonic lamellar gels with full-color tunability as a result of a direct exchange of counteranions were fabricated via a two-step procedure comprising the self-assembly of a hydrophobic block-hydrophilic polyelectrolyte block copolymer, polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP), followed by sequential quaternization of the P2VP layers in 1-bromoethane solution. Depending on the hydration characteristics of each counteranion, the selective swelling of the block copolymer lamellar structures leads to large tunability of the photonic stop band from blue to red wavelengths. More extensive quaternization of the P2VP block allows the photonic lamellar gels to swell more and red shift to longer wavelength. Here, we investigate the dynamic swelling behavior in the photonic gel films through time-resolved in situ measurement of UV-vis transmission. We model the swelling behavior using the transfer matrix method based on the experimentally observed reflectivity data with substitution of appropriate counterions. These tunable structural color materials may be attractive for numerous applications such as high-contrast displays without using a backlight, color filters, and optical mirrors for flexible lasing.

  7. Multicycle Wilhelmy plate method for wetting properties, swelling and liquid sorption of wood.

    PubMed

    Moghaddam, Maziar Sedighi; Wålinder, Magnus E P; Claesson, Per M; Swerin, Agne

    2013-10-01

    A multicycle Wilhelmy plate method has been developed to investigate wetting properties, liquid sorption, and swelling of porous substrates such as wood. The use of the method is exemplified by studies of wood veneers of Scots pine sapwood and heartwood, which were subjected to repeated immersion and withdrawal in a swelling liquid (water) and in a nonswelling liquid (octane). The swelling liquid changes the sample dimensions during measurements, in particular its perimeter. This, in turn, influences the force registered. A model based on a linear combination of the measured force and final change in sample perimeter is suggested, and validated to elucidate the dynamic perimeter change of wood veneer samples. We show that pine heartwood and pine sapwood differ in several respects in their interaction with water. Pine heartwood showed (i) lower liquid uptake, (ii) lower swelling, (iii) higher contact angle, and (iv) lower level of dissolution of surface active components (extractives) than pine sapwood. We conclude that the method is also suitable for studying wetting properties of other porous and swellable materials. The wettability results were supported by surface chemical analysis using X-ray photoelectron spectroscopy, showing higher extractives and lignin content on heartwood than on sapwood surfaces.

  8. Hydrogel films and coatings by swelling-induced gelation

    PubMed Central

    Moreau, David; Chauvet, Caroline; Etienne, François; Rannou, François P.

    2016-01-01

    Hydrogel films used as membranes or coatings are essential components of devices interfaced with biological systems. Their design is greatly challenged by the need to find mild synthesis and processing conditions that preserve their biocompatibility and the integrity of encapsulated compounds. Here, we report an approach to produce hydrogel films spontaneously in aqueous polymer solutions. This method uses the solvent depletion created at the surface of swelling polymer substrates to induce the gelation of a thin layer of polymer solution. Using a biocompatible polymer that self-assembles at high concentration [poly(vinyl alcohol)], hydrogel films were produced within minutes to hours with thicknesses ranging from tens to hundreds of micrometers. A simple model and numerical simulations of mass transport during swelling capture the experiments and predict how film growth depends on the solution composition, substrate geometry, and swelling properties. The versatility of the approach was verified with a variety of swelling substrates and hydrogel-forming solutions. We also demonstrate the potential of this technique by incorporating other solutes such as inorganic particles to fabricate ceramic-hydrogel coatings for bone anchoring and cells to fabricate cell-laden membranes for cell culture or tissue engineering. PMID:27821765

  9. Effects of Acutely Elevated Hydrostatic Pressure in a Rat Ex Vivo Retinal Preparation

    PubMed Central

    Yoshitomi, Takeshi; Zorumski, Charles F.; Izumi, Yukitoshi

    2010-01-01

    Purpose. A new experimental glaucoma model was developed by using an ex vivo rat retinal preparation to examine the effects of elevated hydrostatic pressure on retinal morphology and glutamine synthetase (GS) activity. Methods. Ex vivo rat retinas were exposed to elevated hydrostatic pressure for 24 hours in the presence of glutamate or glutamate receptor antagonists and examined histologically. GS activity was assessed by colorimetric assay. Results. Pressure elevation induced axonal swelling in the nerve fiber layer. Axonal swelling was prevented by a combination of non-N-methyl-d-aspartate (non-NMDA) receptor antagonist and an NMDA receptor antagonist, indicating that the damage results from activation of both types of glutamate receptor. When glial function was preserved, the typical changes induced by glutamate consisted of reversible Müller cell swelling resulting from excessive glial glutamate uptake. The irreversible Müller cell swelling in hyperbaric conditions may indicate that pressure disrupts glutamate metabolism. Indeed, elevated pressure inhibited GS activity. In addition, glutamate exposure after termination of pressure exposure exhibited apparent Müller cell swelling. Conclusions. These results suggest that the neural degeneration observed during pressure elevation is caused by impaired glial glutamate metabolism after uptake. PMID:20688725

  10. Hydrodynamics of a bathymetrically complex fringing coral reef embayment: Wave climate, in situ observations, and wave prediction

    USGS Publications Warehouse

    Hoeke, R.; Storlazzi, C.; Ridd, P.

    2011-01-01

    This paper examines the relationship between offshore wave climate and nearshore waves and currents at Hanalei Bay, Hawaii, an exposed bay fringed with coral reefs. Analysis of both offshore in situ data and numerical hindcasts identify the predominance of two wave conditions: a mode associated with local trade winds and an episodic pattern associated with distant source long-period swells. Analysis of 10 months of in situ data within the bay show that current velocities are up to an order of magnitude greater during long-period swell episodes than during trade wind conditions; overall circulation patterns are also fundamentally different. The current velocities are highly correlated with incident wave heights during the swell episodes, while they are not during the modal trade wind conditions. A phase-averaged wave model was implemented with the dual purpose of evaluating application to bathymetrically complex fringing reefs and to examine the propagation of waves into the nearshore in an effort to better explain the large difference in observed circulation during the two offshore wave conditions. The prediction quality of this model was poorer for the episodic condition than for the lower-energy mode, however, it illustrated how longer-period swells are preferentially refracted into the bay and make available far more nearshore wave energy to drive currents compared to waves during modal conditions. The highly episodic circulation, the nature of which is dependent on complex refraction patterns of episodic, long-period swell has implications for flushing and sediment dynamics for incised fringing reef-lined bays that characterize many high islands at low latitudes around the world.

  11. Ocean wave characteristic in the Sunda Strait using Wave Spectrum Model

    NASA Astrophysics Data System (ADS)

    Rachmayani, R.; Ningsih, N. S.; Adiprabowo, S. R.; Nurfitri, S.

    2018-03-01

    The wave characteristics including significant wave height and direction, seas and swell in the Sunda Strait are analyzed seasonally to provide marine weather information. This is crucial for establishing secured marine activities between islands of Sumatera and Java. Ocean wave characteristics in the Sunda Strait are simulated for one year (July 1996–June 1977) by using SWAN numerical model. The ocean wave characteristics in the Sunda Strait are divided into three areas of interest; southern, centre and northern part of the Sunda Strait. Despite a weaker local wind, the maximum significant wave height is captured at the southern part with its height of 2.6 m in November compared to other seasonally months. This is associated with the dominated swell from the Indian Ocean contributes on wave energy toward the Sunda Strait. The 2D spectrum analysis exhibits the monthly wave characteristic at southern part that is dominated by seas along the year and swell propagating from the Indian Ocean to the Sunda Strait during December to February (northwest monsoon), May, and November. Seas and swell at northern part of the Sunda Strait are apprehended weaker compared to other parts of the Sunda Strait due to its location is farther from the Indian Ocean.

  12. Inferring nonlinear mantle rheology from the shape of the Hawaiian swell.

    PubMed

    Asaadi, N; Ribe, N M; Sobouti, F

    2011-05-26

    The convective circulation generated within the Earth's mantle by buoyancy forces of thermal and compositional origin is intimately controlled by the rheology of the rocks that compose it. These can deform either by the diffusion of point defects (diffusion creep, with a linear relationship between strain rate and stress) or by the movement of intracrystalline dislocations (nonlinear dislocation creep). However, there is still no reliable map showing where in the mantle each of these mechanisms is dominant, and so it is important to identify regions where the operative mechanism can be inferred directly from surface geophysical observations. Here we identify a new observable quantity--the rate of downstream decay of the anomalous seafloor topography (swell) produced by a mantle plume--which depends only on the value of the exponent in the strain rate versus stress relationship that defines the difference between diffusion and dislocation creep. Comparison of the Hawaiian swell topography with the predictions of a simple fluid mechanical model shows that the swell shape is poorly explained by diffusion creep, and requires a dislocation creep rheology. The rheology predicted by the model is reasonably consistent with laboratory deformation data for both olivine and clinopyroxene, suggesting that the source of Hawaiian lavas could contain either or both of these components.

  13. A comparison/validation of a fractional derivative model with an empirical model of non-linear shock waves in swelling shales

    NASA Astrophysics Data System (ADS)

    Droghei, Riccardo; Salusti, Ettore

    2013-04-01

    Control of drilling parameters, as fluid pressure, mud weight, salt concentration is essential to avoid instabilities when drilling through shale sections. To investigate shale deformation, fundamental for deep oil drilling and hydraulic fracturing for gas extraction ("fracking"), a non-linear model of mechanic and chemo-poroelastic interactions among fluid, solute and the solid matrix is here discussed. The two equations of this model describe the isothermal evolution of fluid pressure and solute density in a fluid saturated porous rock. Their solutions are quick non-linear Burger's solitary waves, potentially destructive for deep operations. In such analysis the effect of diffusion, that can play a particular role in fracking, is investigated. Then, following Civan (1998), both diffusive and shock waves are applied to fine particles filtration due to such quick transients , their effect on the adjacent rocks and the resulting time-delayed evolution. Notice how time delays in simple porous media dynamics have recently been analyzed using a fractional derivative approach. To make a tentative comparison of these two deeply different methods,in our model we insert fractional time derivatives, i.e. a kind of time-average of the fluid-rocks interactions. Then the delaying effects of fine particles filtration is compared with fractional model time delays. All this can be seen as an empirical check of these fractional models.

  14. A mechanistic modelling approach to polymer dissolution using magnetic resonance microimaging.

    PubMed

    Kaunisto, Erik; Abrahmsen-Alami, Susanna; Borgquist, Per; Larsson, Anette; Nilsson, Bernt; Axelsson, Anders

    2010-10-15

    In this paper a computationally efficient mathematical model describing the swelling and dissolution of a polyethylene oxide tablet is presented. The model was calibrated against polymer release, front position and water concentration profile data inside the gel layer, using two different diffusion models. The water concentration profiles were obtained from magnetic resonance microimaging data which, in addition to the previously used texture analysis method, can help to validate and discriminate between the mechanisms of swelling, diffusion and erosion in relation to the dissolution process. Critical parameters were identified through a comprehensive sensitivity analysis, and the effect of hydrodynamic shearing was investigated by using two different stirring rates. Good agreement was obtained between the experimental results and the model. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Swelling and morphology of the skin layer of polyamide composite membranes: an atomic force microscopy study.

    PubMed

    Freger, Viatcheslav

    2004-06-01

    The paper introduces a new methodology for studying polyamide composite membranes for reverse osmosis (RO) and nanofiltration (NF) in liquid environments. The methodology is based on atomic force microscopy of the active layer, which had been separated from the support and placed on a solid substrate. The approach was employed to determine the thickness, interfacial morphology, and dimensional changes in solution (swelling) of polyamide films. The face (active) and back (facing the support) surfaces of the RO films appeared morphologically similar, in agreement with the recently proposed model of skin formation. Measured thickness and swelling data in conjunction with the intrinsic permeability of the membranes suggest that the selective barrier in RO membrane constitutes only a fraction of the polyamide skin, whereas NF membranes behave as nearly uniform films. For NF membranes, there was reasonable correlation between the changes in the swelling and in the permeability of the membrane and the salinity and pH of the feed.

  16. What can asymmetry tell us? Investigation of asymmetric versus symmetric pinch and swell structures in nature and simulation

    NASA Astrophysics Data System (ADS)

    Gardner, Robyn; Piazolo, Sandra; Daczko, Nathan

    2015-04-01

    Pinch and swell structures occur from microscopic to landscape scales where a more competent layer in a weaker matrix is deformed by pure shear, often in rifting environments. The Anita Shear Zone (ASZ) in Fiordland, New Zealand has an example of landscape scale (1 km width) asymmetric pinch and swell structures developed in ultramafic rocks. Field work suggests that the asymmetry is a result of variations in the surrounding 'matrix' flow properties as the ultramafic band is surrounded to the east by an orthogneiss (Milford Orthogneiss) and to the west by a paragneiss (Thurso Paragneiss). In addition, there is a narrow and a much wider shear zone between the ultramafics and the orthogneiss and paragneiss, respectively. Detailed EBSD analysis of samples from a traverse across the pinch and swell structure indicate the ultramafics in the shear zone on the orthogneiss side have larger grain size than the ultramafics in the shear zone on the paragneiss side. Ultramafic samples from the highly strained paragneiss and orthogneiss shear zones show dislocation creep behaviour, and, on the paragneiss side, also significant deformation by grain boundary sliding. To test if asymmetry of pinch and swell structures can be used to derive the rheological properties of not only the pinch and swell lithologies, but also of the matrix, numerical simulations were performed. Numerical modelling of pure shear (extension) was undertaken with (I) initially three layers and then (II) five layers by adding soft high strain zones on both sides of the rheological hard layer. The matrix was given first symmetric, then asymmetric viscosity. Matrix viscosity was found to impact the formation of pinch and swell structures with the weaker layer causing increased tortuosity of the competent layer edge due to increased local differential stress. Results highlight that local, rheologically soft layers and the relative viscosity of matrix both impact significantly the shape and symmetry of developing pinch and swell structures.

  17. Cinematic modeling of local morphostructures evolution

    NASA Astrophysics Data System (ADS)

    Bronguleev, Vadim

    2013-04-01

    With the use of a simple 3-dimensional cinematic model of slope development some characteristic features of morphostructure evolution were shown. We assume that the velocity of slope degradation along normal vector to a surface is determined by three morphological parameters: slope angle, its profile curvature and its plan curvature. This leads to the equation of parabolic type: where h=h(x,y,t) is the altitude of slope surface, Kpr(x,y,t)is the profile curvature of the slope, Kpl(x,y,t) is the plan curvature, f(x,y,t) is the velocity of tectonic deformation (or base level movement), A, B, and C are the coefficients which may depend on coordinates and time. The first term in the right part of the equation describes parallel slope retreat, typical to arid environment, the second term describes slope vertical grading due to viscous flow, typical to humid conditions, and the third term is responsible for slope plan grading due to such processes as desquamation, frost weathering, etc. This simple model describes a wide range of local morphostructures evolution: stepped slopes and piedmont benchlands, lithogenic forms - terraces and passages, flattened summits and rounded hills. Using different types of the function f (block rise, swell, tilt), we obtained interesting reformations of initial tectonic landforms during the concurrent action of denudation processes. The result of such action differs from that of the successive action of tectonic movements and denudation. The relation of rates of the endogenous and exogenous processes strongly affects the formation of local morphostructures. Preservation of initial features of slope such as steps or bends as well as their formation due to tectonics or lithology is possible if coefficients B and Care small in comparison toA.

  18. Development of the West Virginia University Small Microgravity Research Facility (WVU SMiRF)

    NASA Astrophysics Data System (ADS)

    Phillips, Kyle G.

    West Virginia University (WVU) has created the Small Microgravity Research Facility (SMiRF) drop tower through a WVU Research Corporation Program to Stimulate Competitive Research (PSCoR) grant on its campus to increase direct access to inexpensive and repeatable reduced gravity research. In short, a drop tower is a tall structure from which experimental payloads are dropped, in a controlled environment, and experience reduced gravity or microgravity (i.e. "weightlessness") during free fall. Currently, there are several methods for conducting scientific research in microgravity including drop towers, parabolic flights, sounding rockets, suborbital flights, NanoSats, CubeSats, full-sized satellites, manned orbital flight, and the International Space Station (ISS). However, none of the aforementioned techniques is more inexpensive or has the capability of frequent experimentation repeatability as drop tower research. These advantages are conducive to a wide variety of experiments that can be inexpensively validated, and potentially accredited, through repeated, reliable research that permits frequent experiment modification and re-testing. Development of the WVU SMiRF, or any drop tower, must take a systems engineering approach that may include the detailed design of several main components, namely: the payload release system, the payload deceleration system, the payload lifting and transfer system, the drop tower structure, and the instrumentation and controls system, as well as a standardized drop tower payload frame for use by those researchers who cannot afford to spend money on a data acquisition system or frame. In addition to detailed technical development, a budgetary model by which development took place is also presented throughout, summarized, and detailed in an appendix. After design and construction of the WVU SMiRF was complete, initial calibration provided performance characteristics at various payload weights, and full-scale checkout via experimentation provided repeatability characteristics of the facility. Based on checkout instrumentation, Initial repeatability results indicated a drop time of 1.26 seconds at an average of 0.06g, with a standard deviation of 0.085g over the period of the drop, and a peak impact load of 28.72g, with a standard deviation of 10.73g, for a payload weight of 113.8 lbs. In order to thoroughly check out the facility, a full-scale, fully operational experiment was developed to create an experience that provides a comprehensive perspective of the end-user experience to the developer, so as to incorporate the details that may have been overlooked to the designer and/or developer, in this case, Kyle Phillips. The experiment that was chosen was to determine the effects of die swell, or extrudate swell, in reduced gravity. Die swell is a viscoelastic phenomenon that occurs when a dilatant, or shear-thickening substance is forced through a sufficient constriction, or "die," such that the substance expands, or "swells," downstream of the constriction, even while forming and maintaining a free jet at ambient sea level conditions. A wide range of dilatants exhibit die swell when subjected to the correct conditions, ranging from simple substances such as ketchup, oobleck, and shampoo to complex specially-formulated substances to be used for next generation body armor and high performance braking systems. To date, very few, if any, have researched the stabilizing effect that gravity may have on the phenomenon of die swell. By studying a fluid phenomenon in a reduced gravity environment, both the effect of gravity can be studied and the predominant forces acting on the fluid can be concluded. Furthermore, a hypothesis describing the behavior of a viscoelastic fluid particle employing the viscous Navier-Stokes Equations was derived to attempt to push the fluid mechanics community toward further integrating more fluid behavior into a unified mathematical model of fluid mechanics. While inconclusive in this experiment, several suggestions for future research were made in order to further the science behind die swell, and a comprehensive checkout of the facility and its operations were characterized. As a result of this checkout experience, several details were modified or added to the facility in order for the drop tower to be properly operated and provide the optimal user experience, such that open operation of the WVU SMiRF may begin in the Fall of 2014.

  19. Solvent and solute ingress into hydrogels resolved by a combination of imaging techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, D.; Burbach, J.; Egelhaaf, S. U.

    2016-05-28

    Using simultaneous neutron, fluorescence, and optical brightfield transmission imaging, the diffusion of solvent, fluorescent dyes, and macromolecules into a crosslinked polyacrylamide hydrogel was investigated. This novel combination of different imaging techniques enables us to distinguish the movements of the solvent and fluorescent molecules. Additionally, the swelling or deswelling of the hydrogels can be monitored. From the sequence of images, dye and solvent concentrations were extracted spatially and temporally resolved. Diffusion equations and different boundary conditions, represented by different models, were used to quantitatively analyze the temporal evolution of these concentration profiles and to determine the diffusion coefficients of solvent andmore » solutes. Solute size and network properties were varied and their effect was investigated. Increasing the crosslinking ratio or partially drying the hydrogel was found to hinder solute diffusion due to the reduced pore size. By contrast, solvent diffusion seemed to be slightly faster if the hydrogel was only partially swollen and hence solvent uptake enhanced.« less

  20. Differential growth of wrinkled biofilms

    NASA Astrophysics Data System (ADS)

    Espeso, D. R.; Carpio, A.; Einarsson, B.

    2015-02-01

    Biofilms are antibiotic-resistant bacterial aggregates that grow on moist surfaces and can trigger hospital-acquired infections. They provide a classical example in biology where the dynamics of cellular communities may be observed and studied. Gene expression regulates cell division and differentiation, which affect the biofilm architecture. Mechanical and chemical processes shape the resulting structure. We gain insight into the interplay between cellular and mechanical processes during biofilm development on air-agar interfaces by means of a hybrid model. Cellular behavior is governed by stochastic rules informed by a cascade of concentration fields for nutrients, waste, and autoinducers. Cellular differentiation and death alter the structure and the mechanical properties of the biofilm, which is deformed according to Föppl-Von Kármán equations informed by cellular processes and the interaction with the substratum. Stiffness gradients due to growth and swelling produce wrinkle branching. We are able to reproduce wrinkled structures often formed by biofilms on air-agar interfaces, as well as spatial distributions of differentiated cells commonly observed with B. subtilis.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stimpson, Shane G.

    Activities to incorporate fuel performance capabilities into the Virtual Environment for Reactor Applications (VERA) are receiving increasing attention. The multiphysics emphasis is expanding as the neutronics (MPACT) and thermal-hydraulics (CTF) packages are becoming more mature. Capturing the finer details of fuel phenomena (swelling, densification, relocation, gap closure, etc.) is the natural next step in the VERA Core Simulator (VERA-CS) development process since these phenomena are currently not directly taken into account. While several codes could be used to accomplish this, the BISON fuel performance code being developed by the Idaho National Laboratory (INL) is the focus of ongoing work inmore » the Consortium for Advanced Simulation of Light Water Reactors (CASL). Built on INL’s MOOSE framework, BISON uses the finite element method for geometric representation and a Jacobian-free Newton-Krylov (JFNK) scheme to solve systems of partial differential equations for various fuel characteristic relationships. There are several modes of operation in BISON, but, for this work, it uses a 2D azimuthally symmetric (R-Z) smeared-pellet model.« less

  2. Dielectric strength, swelling and weight loss of the ITER Toroidal Field Model Coil insulation after low temperature reactor irradiation

    NASA Astrophysics Data System (ADS)

    Humer, K.; Weber, H. W.; Hastik, R.; Hauser, H.; Gerstenberg, H.

    2000-04-01

    The insulation system for the Toroidal Field Model Coil of ITER is a fiber reinforced plastic (FRP) laminate, which consists of a combined Kapton/R-glass-fiber reinforcement tape, vacuum-impregnated with an epoxy DGEBA system. Pure disk shaped laminates, FRP/stainless-steel sandwiches, and conductor insulation prototypes were irradiated at 5 K in a fission reactor up to a fast neutron fluence of 10 22 m -2 ( E>0.1 MeV) to investigate the radiation induced degradation of the dielectric strength of the insulation system. After warm-up to room temperature, swelling, weight loss, and the breakdown strength were measured at 77 K. The sandwich swells by 4% at a fluence of 5×10 21 m-2 and by 9% at 1×10 22 m-2. The weight loss of the FRP is 2% at 1×10 22 m-2. The dielectric strength remained unchanged over the whole dose range.

  3. Impaired JIP3-dependent axonal lysosome transport promotes amyloid plaque pathology

    PubMed Central

    Gowrishankar, Swetha; Wu, Yumei

    2017-01-01

    Lysosomes robustly accumulate within axonal swellings at Alzheimer’s disease (AD) amyloid plaques. However, the underlying mechanisms and disease relevance of such lysosome accumulations are not well understood. Motivated by these problems, we identified JNK-interacting protein 3 (JIP3) as an important regulator of axonal lysosome transport and maturation. JIP3 knockout mouse neuron primary cultures accumulate lysosomes within focal axonal swellings that resemble the dystrophic axons at amyloid plaques. These swellings contain high levels of amyloid precursor protein processing enzymes (BACE1 and presenilin 2) and are accompanied by elevated Aβ peptide levels. The in vivo importance of the JIP3-dependent regulation of axonal lysosomes was revealed by the worsening of the amyloid plaque pathology arising from JIP3 haploinsufficiency in a mouse model of AD. These results establish the critical role of JIP3-dependent axonal lysosome transport in regulating amyloidogenic amyloid precursor protein processing and support a model wherein Aβ production is amplified by plaque-induced axonal lysosome transport defects. PMID:28784610

  4. Magnetic resonance imaging and X-ray microtomography studies of a gel-forming tablet formulation.

    PubMed

    Laity, P R; Mantle, M D; Gladden, L F; Cameron, R E

    2010-01-01

    The capabilities of two methods for investigating tablet swelling are investigated, based on a study of a model gel-forming system. Results from magnetic resonance imaging (MRI) were compared with results from a novel application of X-ray microtomography (XmicroT) to track the movements of embedded glass microsphere tracers as the model tablets swelled. MRI provided information concerning the movement of hydration fronts into the tablets and the composition of the swollen gel layer, which formed at the tablet surface and progressively thickened with time. Conversely, XmicroT revealed significant axial expansion within the tablet core, at short times and ahead of the hydration fronts, where there was insufficient water to be observed by MRI (estimated to be around 15% by weight for the system used here). Thus, MRI and XmicroT may be regarded as complementary methods for studying the hydration and swelling behaviour of tablets. Copyright 2009 Elsevier B.V. All rights reserved.

  5. Drainage and Landscape Evolution in the Bighorn Basin Accompanying Advection of the Yellowstone Hotspot Swell Through North America

    NASA Astrophysics Data System (ADS)

    Guerrero, E. F.; Meigs, A.

    2012-12-01

    Mantle plumes have been recognized to express themselves on the surface as long wavelength and low amplitude topographic swells. These swells are measured as positive geoid anomalies and include shorter wavelength topographic features such as volcanic edifices and pre-exisitng topography. Advection of the topographic swell is expected as the lithosphere passes over the plume uplift source. The hot spot swell occurs in the landscape as transient signal that is expressed with waxing and waning topography. Waxing topography occurs at the leading edge of the swell and is expressed as an increase in rock uplift that is preserved by rivers and landscapes. Advection of topography predicts a shift in a basin from deposition to incision, an increase in convexity of a transverse river's long profile and a lateral river migration in the direction of advection. The Yellowstone region has a strong positive geoid anomaly and the volcanic signal, which have been interpreted as the longer and shorter wavelength topographic expressions of the hot spot. These expressions of the hot spot developed in a part of North America with a compounded deformation and topographic history. Previous studies of the Yellowstone topographic swell have concentrated on the waning or trailing signal preserved in the Snake River Plain. Our project revisits the classic geomorphology study area in the Bighorn Basin of Wyoming and Montana, which is in leading edge of the swell. Present models identify the swell as having a 400 km in diameter and that it is centered on the Yellowstone caldera. If we assume advection to occur in concert with the caldera eruptive track, the Yellowstone swell has migrated to the northeast at a rate of 3 cm yr-1 and began acting on the Bighorn Basin's landscape between 3 and 2 Ma. The Bighorn Basin has an established history of a basin-wide switch from deposition to incision during the late Pliocene, yet the age control on the erosional evolution of the region is relative. This basin is an ideal location to quantify long wavelength dynamic topography due to its low relief. Long river profiles streams that are transverse to the topographic swell in the basin suggest a transient advective signal preserved as profile knickpoints. Abandoned strath terraces, stream piracy, drainage reorganization, and lateral channel migration within the Bighorn Basin are all consistent indicators of the advection of a topographic swell. However, the lack of a high-resolution absolute age chronology precludes us from attributing the primary landscape and drainage forcing to climate change or dynamic topography. Our future work will focus on the timing of geomorphic and river profile evolution to disentangle competing effects of topographic advection, climate, and other factors.

  6. Anti histaminic activity of cissus quadragularis.

    PubMed

    Begum, V H; Sadique, J

    1999-01-01

    Anti histaminic activity of cissus quadrangularis stem powder was carried out determining the histamine activity and histamine content in carrageenin induced rat paw swelling model and formalin induced peritonitis respectively. The crude powder at the dose of 100mg/1QQ00 gm exerted reduction to the maximum of 44% in the early hisamine phase swelling. Further it significantly reduced the histamine content in the peritoneal fluid. For comparison standard steroidal drug hydrocortisone and avil were used.

  7. Application of a constant hole volume Sanchez-Lacombe equation of state to mixtures relevant to polymeric foaming.

    PubMed

    von Konigslow, Kier; Park, Chul B; Thompson, Russell B

    2018-06-06

    A variant of the Sanchez-Lacombe equation of state is applied to several polymers, blowing agents, and saturated mixtures of interest to the polymer foaming industry. These are low-density polyethylene-carbon dioxide and polylactide-carbon dioxide saturated mixtures as well as polystyrene-carbon dioxide-dimethyl ether and polystyrene-carbon dioxide-nitrogen ternary saturated mixtures. Good agreement is achieved between theoretically predicted and experimentally determined solubilities, both for binary and ternary mixtures. Acceptable agreement with swelling ratios is found with no free parameters. Up-to-date pure component Sanchez-Lacombe characteristic parameters are provided for carbon dioxide, dimethyl ether, low-density polyethylene, nitrogen, polylactide, linear and branched polypropylene, and polystyrene. Pure fluid low-density polyethylene and nitrogen parameters exhibit more moderate success while still providing acceptable quantitative estimations. Mixture estimations are found to have more moderate success where pure components are not as well represented. The Sanchez-Lacombe equation of state is found to correctly predict the anomalous reversal of solubility temperature dependence for low critical point fluids through the observation of this behaviour in polystyrene nitrogen mixtures.

  8. Anti-inflammatory effect of combined tetramethylpyrazine, resveratrol and curcumin in vivo.

    PubMed

    Chen, Long; Liu, Tianjun; Wang, Qiangsong; Liu, Juan

    2017-04-27

    Resveratrol and curcumin, as natural flavones products, have good therapeutic effect in acute and chronic inflammation; on the other hand, tetramethylpyrazine (TMP) has angiogenesis and vessel protection effect as well as anti-inflammatory function. In this paper, the anti-inflammatory effect of the tetramethylpyrazine, resveratrol and curcumin (TRC) combination in acute and chronic inflammation was reported in vivo. The dose of the combined three natural products was optimized based on the acute paw swelling mouse model with a Uniform Design methodology. The therapeutic effect of TRC combination on chronic inflammation was investigated by using the collagen-induced arthritis (CIA) rat model based upon the following indexes: the volume of paw swelling, arthritis score, serum mediators and histological examination as well as immunohistochemical staining. The levels of alanine aminotransferase (ALT) and aspartate transaminase (AST) in serum were measured and the pathological sections of liver and kidney were analysed. LD 50 was measured based on the acute oral toxicity (AOT) standard method. The best formulation was the three components combined at the same mass proportion revealed by the Uniform Design methodology. This combination could significantly reduce the paw swelling in acute paw swelling mouse model, could reduce paw swelling and alleviate the damage in joint structural of ankle, cartilages and fibrous tissue in CIA rat model. The dose relationship was clear in both cases. Immunohistochemical staining of ankle tissue revealed that TRC combination was able to inhibit the expression of NF-κB p65 and TNF-α which were closely related to the inflammatory process. Analysis of serum mediators revealed TRC combination could inhibit the production of TNF-α, IL-1β, and IL-6 in the serum. Toxic study revealed this formulation was low toxic, LD 50 was larger than 5 g/kg, both the level of ALT and AST and histopathology in the liver and kidney exhibited no distinctions between the TRC combination and the blank group, no mortality occurred at the administered doses of 5 g/kg. The results showed this formulation could provide a novel potent treatment for acute and chronic inflammation (RA) without side effect like gastric injury occurring in NSAIDs.

  9. Traumatic brain injury and hemorrhagic shock: evaluation of different resuscitation strategies in a large animal model of combined insults.

    PubMed

    Jin, Guang; DeMoya, Marc A; Duggan, Michael; Knightly, Thomas; Mejaddam, Ali Y; Hwabejire, John; Lu, Jennifer; Smith, William Michael; Kasotakis, Georgios; Velmahos, George C; Socrate, Simona; Alam, Hasan B

    2012-07-01

    Traumatic brain injury (TBI) and hemorrhagic shock (HS) are the leading causes of trauma-related mortality and morbidity. Combination of TBI and HS (TBI + HS) is highly lethal, and the optimal resuscitation strategy for this combined insult remains unclear. A critical limitation is the lack of suitable large animal models to test different treatment strategies. We have developed a clinically relevant large animal model of TBI + HS, which was used to evaluate the impact of different treatments on brain lesion size and associated edema. Yorkshire swine (42-50 kg) were instrumented to measure hemodynamic parameters and intracranial pressure. A computer-controlled cortical impact device was used to create a TBI through a 20-mm craniotomy: 15-mm cylindrical tip impactor at 4 m/s velocity, 100-ms dwell time, and 12-mm penetration depth. Volume-controlled hemorrhage was started (40% blood volume) concurrent with the TBI. After 2 h of shock, animals were randomized to one of three resuscitation groups (n = 5/group): (a) normal saline (NS); (b) 6% hetastarch, Hextend (Hex); and (c) fresh frozen plasma (FFP). Volumes of Hex and FFP matched the shed blood, whereas NS was three times the volume. After 6 h of postresuscitation monitoring, brains were sectioned into 5-mm slices and stained with TTC (2,3,5-triphenyltetrazolium chloride) to quantify the lesion size and brain swelling. Combination of 40% blood loss with cortical impact and a period of shock (2 h) resulted in a highly reproducible brain injury. Total fluid requirements were lower in the Hex and FFP groups. Lesion size and brain swelling in the FFP group (2,160 ± 202.63 mm and 22% ± 1.0%, respectively) were significantly smaller than those in the NS group (3,285 ± 130.8 mm3 and 37% ± 1.6%, respectively) (P < 0.05). Hex treatment decreased the swelling (29% ± 1.6%) without reducing the lesion size. Early administration of FFP reduces the size of brain lesion and associated swelling in a large animal model of TBI + HS. In contrast, artificial colloid (Hex) decreases swelling without reducing the actual size of the brain lesion.

  10. A coupled THC model of the FEBEX in situ test with bentonite swelling and chemical and thermal osmosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, L.; Samper, J.; Montenegro, L.

    The performance assessment of a geological repository for radioactive waste requires quantifying the geochemical evolution of the bentonite engineered barrier. This barrier will be exposed to coupled thermal (T), hydrodynamic (H), mechanical (M) and chemical (C) processes. This paper presents a coupled THC model of the FEBEX (Full-scale Engineered Barrier EXperiment) in situ test which accounts for bentonite swelling and chemical and thermal osmosis. Model results attest the relevance of thermal osmosis and bentonite swelling for the geochemical evolution of the bentonite barrier while chemical osmosis is found to be almost irrelevant. The model has been tested with data collectedmore » after the dismantling of heater 1 of the in situ test. The model reproduces reasonably well the measured temperature, relative humidity, water content and inferred geochemical data. However, it fails to mimic the solute concentrations at the heater-bentonite and bentonite-granite interfaces because the model does not account for the volume change of bentonite, the CO{sub 2}(g) degassing and the transport of vapor from the bentonite into the granite. The inferred HCO{sub 3}{sup -} and pH data cannot be explained solely by solute transport, calcite dissolution and protonation/deprotonation by surface complexation, suggesting that such data may be affected also by other reactions.« less

  11. The co-evolution of microstructure features in self-ion irradiated HT9 at very high damage levels

    NASA Astrophysics Data System (ADS)

    Getto, E.; Vancoevering, G.; Was, G. S.

    2017-02-01

    Understanding the void swelling and phase evolution of reactor structural materials at very high damage levels is essential to maintaining safety and longevity of components in Gen IV fast reactors. A combination of ion irradiation and modeling was utilized to understand the microstructure evolution of ferritic-martensitic alloy HT9 at high dpa. Self-ion irradiation experiments were performed on alloy HT9 to determine the co-evolution of voids, dislocations and precipitates up to 650 dpa at 460 °C. Modeling of microstructure evolution was conducted using the modified Radiation Induced Microstructure Evolution (RIME) model, which utilizes a mean field rate theory approach with grouped cluster dynamics. Irradiations were performed with 5 MeV raster-scanned Fe2+ ions on samples pre-implanted with 10 atom parts per million He. The swelling, dislocation and precipitate evolution at very high dpa was determined using Analytical Electron Microscopy in Scanning Transmission Electron Microscopy (STEM) mode. Experimental results were then interpreted using the RIME model. A microstructure consisting only of dislocations and voids is insufficient to account for the swelling evolution observed experimentally at high damage levels in a complicated microstructure such as irradiated alloy HT9. G phase was found to have a minimal effect on either void or dislocation evolution. M2X played two roles; a variable biased sink for defects, and as a vehicle for removal of carbon from solution, thus promoting void growth. When accounting for all microstructure interactions, swelling at high damage levels is a dynamic process that continues to respond to other changes in the microstructure as long as they occur.

  12. A technique to remove the tensile instability in weakly compressible SPH

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyang; Yu, Peng

    2018-01-01

    When smoothed particle hydrodynamics (SPH) is directly applied for the numerical simulations of transient viscoelastic free surface flows, a numerical problem called tensile instability arises. In this paper, we develop an optimized particle shifting technique to remove the tensile instability in SPH. The basic equations governing free surface flow of an Oldroyd-B fluid are considered, and approximated by an improved SPH scheme. This includes the implementations of the correction of kernel gradient and the introduction of Rusanov flux into the continuity equation. To verify the effectiveness of the optimized particle shifting technique in removing the tensile instability, the impacting drop, the injection molding of a C-shaped cavity, and the extrudate swell, are conducted. The numerical results obtained are compared with those simulated by other numerical methods. A comparison among different numerical techniques (e.g., the artificial stress) to remove the tensile instability is further performed. All numerical results agree well with the available data.

  13. Antiarthritis effect of a novel Bruton's tyrosine kinase (BTK) inhibitor in rat collagen-induced arthritis and mechanism-based pharmacokinetic/pharmacodynamic modeling: relationships between inhibition of BTK phosphorylation and efficacy.

    PubMed

    Liu, Lichuan; Di Paolo, Julie; Barbosa, Jim; Rong, Hong; Reif, Karin; Wong, Harvey

    2011-07-01

    Bruton's tyrosine kinase (BTK) plays a critical role in the development, differentiation, and proliferation of B-lineage cells, making it an attractive target for the treatment of rheumatoid arthritis. The objective of this study was to evaluate the antiarthritis effect of GDC-0834 [R-N-(3-(6-(4-(1,4-dimethyl-3-oxopiperazin-2-yl)phenylamino)-4-methyl-5-oxo-4,5-dihydropyrazin-2-yl)-2-methylphenyl)-4,5,6,7-tetrahydrobenzo[b]thiophene-2-carboxamide], a potent and selective BTK inhibitor, and characterize the relationship between inhibition of BTK phosphorylation (pBTK) and efficacy. GDC-0834 inhibited BTK with an in vitro IC(50) of 5.9 and 6.4 nM in biochemical and cellular assays, respectively, and in vivo IC(50) of 1.1 and 5.6 μM in mouse and rat, respectively. Administration of GDC-0834 (30-100 mg/kg) in a rat collagen-induced arthritis (CIA) model resulted in a dose-dependent decrease of ankle swelling and reduction of morphologic pathology. An integrated disease progression pharmacokinetic/pharmacodynamic model where efficacy is driven by pBTK inhibition was fit to ankle-diameter time-course data. This model incorporated a transit model to characterize nondrug-related decreases in ankle swelling occurring at later stages of disease progression in CIA rats. The time course of ankle swelling in vehicle animals was described well by the base model. Simultaneous fitting of data from vehicle- and GDC-0834-treated groups showed that overall 73% inhibition of pBTK was needed to decrease the rate constant describing the ankle swelling increase (k(in)) by half. These findings suggest a high degree of pBTK inhibition is required for maximal activity of the pathway on inflammatory arthritis in rats.

  14. Thermal modeling of carbon-epoxy laminates in fire environments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGurn, Matthew T.; DesJardin, Paul Edward; Dodd, Amanda B.

    2010-10-01

    A thermal model is developed for the response of carbon-epoxy composite laminates in fire environments. The model is based on a porous media description that includes the effects of gas transport within the laminate along with swelling. Model comparisons are conducted against the data from Quintere et al. Simulations are conducted for both coupon level and intermediate scale one-sided heating tests. Comparisons of the heat release rate (HRR) as well as the final products (mass fractions, volume percentages, porosity, etc.) are conducted. Overall, the agreement between available the data and model is excellent considering the simplified approximations to account formore » flame heat flux. A sensitivity study using a newly developed swelling model shows the importance of accounting for laminate expansion for the prediction of burnout. Excellent agreement is observed between the model and data of the final product composition that includes porosity, mass fractions and volume expansion ratio.« less

  15. Observational Constraints on Lithospheric Rheology and Their Implications for Lithospheric Dynamics and Plate Tectonics

    NASA Astrophysics Data System (ADS)

    Zhong, S.; Watts, A. B.

    2014-12-01

    Lithospheric rheology and strength are important for understanding crust and lithosphere dynamics, and the conditions for plate tectonics. Laboratory studies suggest that lithospheric rheology is controlled by frictional sliding, semi-brittle, low-temperature plasticity, and high-temperature creep deformation mechanisms as pressure and temperature increase from shallow to large depths. Although rheological equations for these deformation mechanisms have been determined in laboratory settings, it is necessary to validate them using field observations. Here we present an overview of lithospheric rheology constrained by observations of seismic structure and load-induced flexure. Together with mantle dynamic modeling, rheological equations for high-temperature creep derived from laboratory studies (Hirth and Kohlstedt, 2003; Karato and Jung, 2003) satisfactorily explain the seismic structure of the Pacific upper mantle (Hunen et al., 2005) and Hawaiian swell topography (Asaadi et al., 2011). In a recent study that compared modeled surface flexure and stress induced by volcano loads in the Hawaiian Islands region with the observed flexure and seismicity, Zhong and Watts (2013) showed that the coefficient of friction is between 0.25 and 0.7, and is consistent with laboratory studies and also in-situ borehole measurements. However, this study indicated that the rheological equation for the low-temperature plasticity from laboratory studies (e.g., Mei et al., 2010) significantly over-predicts lithospheric strength and viscosity. Zhong and Watts (2013) also showed that the maximum lithospheric stress beneath Hawaiian volcano loads is about 100-200 MPa, which may be viewed as the largest lithospheric stress in the Earth's lithosphere. We show that the relatively weak lithospheric strength in the low-temperature plasticity regime is consistent with seismic observation of reactivated mantle lithosphere in the western US and the eastern North China. We discuss here the causes of this weakening in the context of the potential effects on laboratory studies of reduced grain size and Peierls stress on the low-temperature deformation regime.

  16. The targeted anti-oxidant MitoQ causes mitochondrial swelling and depolarization in kidney tissue.

    PubMed

    Gottwald, Esther M; Duss, Michael; Bugarski, Milica; Haenni, Dominik; Schuh, Claus D; Landau, Ehud M; Hall, Andrew M

    2018-04-01

    Kidney proximal tubules (PTs) contain a high density of mitochondria, which are required to generate ATP to power solute transport. Mitochondrial dysfunction is implicated in the pathogenesis of numerous kidney diseases. Damaged mitochondria are thought to produce excess reactive oxygen species (ROS), which can lead to oxidative stress and activation of cell death pathways. MitoQ is a mitochondrial targeted anti-oxidant that has shown promise in preclinical models of renal diseases. However, recent studies in nonkidney cells have suggested that MitoQ might also have adverse effects. Here, using a live imaging approach, and both in vitro and ex vivo models, we show that MitoQ induces rapid swelling and depolarization of mitochondria in PT cells, but these effects were not observed with SS-31, another targeted anti-oxidant. MitoQ consists of a lipophilic cation (Tetraphenylphosphonium [TPP]) joined to an anti-oxidant component (quinone) by a 10-carbon alkyl chain, which is thought to insert into the inner mitochondrial membrane (IMM). We found that mitochondrial swelling and depolarization was also induced by dodecyltriphenylphosphomium (DTPP), which consists of TPP and the alkyl chain, but not by TPP alone. Surprisingly, MitoQ-induced mitochondrial swelling occurred in the absence of a decrease in oxygen consumption rate. We also found that DTPP directly increased the permeability of artificial liposomes with a cardiolipin content similar to that of the IMM. In summary, MitoQ causes mitochondrial swelling and depolarization in PT cells by a mechanism unrelated to anti-oxidant activity, most likely because of increased IMM permeability due to insertion of the alkyl chain. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  17. The co-evolution of microstructure features in self-ion irradiated HT9 at very high damage levels

    NASA Astrophysics Data System (ADS)

    Getto, Elizabeth Margaret

    The objective of this study was to understand the co-evolution of microstructure features in self-ion irradiated HT9 at very high damage levels. HT9 (heat 84425) was pre-implanted with 10 atom parts per million helium and then irradiated with 5 MeV Fe++ in the temperature range of 440-480°C to 188 dpa. A damage dependence study from 75 to 650 dpa was performed at the peak swelling temperature of 460°C. The swelling, dislocation and precipitate evolution was determined using Analytic Electron Microscopes in both Conventional Transmission electron microscopy (CTEM) and Scanning Transmission Electron Microscopy (STEM) modes. Void swelling reached a nominally linear rate of 0.03%/dpa from 188 to 650 dpa at 460°C. G phase precipitates were observed by 75 dpa and grew linearly up to 650 dpa. M 2X was observed by 250 dpa and peaked in volume fraction at 450 dpa. Dislocation loop evolution was observed up to 650 dpa including a step change in diameter between 375 and 450 dpa; which correlated with nucleation and growth of M2X. The experimental results were interpreted using a rate theory model, the Radiation Induced Microstructure Evolution (RIME), in the damage range from 188 to 650 dpa. A simple system of voids and dislocations was modeled in which the dislocations measured from experiment were used as input, or the dislocations were allowed to evolve dynamically, resulting in swelling that was overestimated by 63% relative to that observed experimentally. G phase had limited effect on the void or dislocation behavior. The behavior of M2X within the microstructure was characterized as a direct effect as a coherent sink, and as an indirect effect in consuming carbon from the matrix, which had the largest impact on both void and dislocation behavior. A slowly monotonically increasing swelling rate was observed both experimentally and computationally, with swelling rates of ˜0.025%/dpa and ˜0.036%/dpa before and after 450 dpa. The agreement in void behavior between experiment and model when all effects (loops, network, G phase, M2X formation and growth, and removal of carbon) are accounted for demonstrates the importance of characterizing the evolution of the full microstructure over a large dpa range.

  18. Improved hemocompatibility of silicone rubber extracorporeal tubing via solvent swelling-impregnation of S-nitroso-N-acetylpenicillamine (SNAP) and evaluation in rabbit thrombogenicity model.

    PubMed

    Brisbois, Elizabeth J; Major, Terry C; Goudie, Marcus J; Bartlett, Robert H; Meyerhoff, Mark E; Handa, Hitesh

    2016-06-01

    Blood-contacting devices, including extracorporeal circulation (ECC) circuits, can suffer from complications due to platelet activation and thrombus formation. Development of nitric oxide (NO) releasing polymers is one method to improve hemocompatibility, taking advantage of the ability of low levels of NO to prevent platelet activation/adhesion. In this study a novel solvent swelling method is used to load the walls of silicone rubber tubing with the NO donor S-nitroso-N-acetylpenicillamine (SNAP). This SNAP-silicone rubber tubing exhibits an NO flux of ca. 1×10(-10)molcm(-2)min(-1), which mimics the range of NO release from the normal endothelium, which is stable for at least 4h. Images of the tubing before and after swelling, obtained via scanning electron microscopy, demonstrate that this swelling method has little effect on the surface properties of the tubing. The SNAP-loaded silicone rubber and silicone rubber control tubing are used to fabricate ECC circuits that are evaluated in a rabbit model of thrombogenicity. After 4h of blood flow, the SNAP-loaded silicone rubber circuits were able to preserve the blood platelet count at 64% of baseline (vs. 12% for silicone rubber control). A 67% reduction in the degree of thrombus formation within the thrombogenicity chamber was also observed. This study demonstrates the ability to improve the hemocompatibility of existing/commercial silicone rubber tubing via a simple solvent swelling-impregnation technique, which may also be applicable to other silicone-based blood-contacting devices. Localized nitric oxide (NO) release can be achieved from biomedical grade polymers doped with S-nitroso-N-acetylpenicillamine (SNAP). Despite the promising in vitro and in vivo biocompatibility results reported for these NO releasing polymers, many of these materials may face challenges in being translated to clinical applications, especially in the areas of polymer processing and manufacturing. In this study, we report a solvent swelling-impregnation technique to incorporate SNAP into extracorporeal circuit (ECC) tubing. These NO-releasing ECCs were able to attenuate the activation of platelets and maintain their functionality, while significantly reducing the extent of thrombus formation during 4h blood flow in the rabbit model of thrombogenicity. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. ANTI HISTAMINIC ACTIVITY OF CISSUS QUADRAGULARIS

    PubMed Central

    Begum, V. Hazeena; Sadique, J.

    1999-01-01

    Anti histaminic activity of cissus quadrangularis stem powder was carried out determining the histamine activity and histamine content in carrageenin induced rat paw swelling model and formalin induced peritonitis respectively. The crude powder at the dose of 100mg/1QQ00 gm exerted reduction to the maximum of 44% in the early hisamine phase swelling. Further it significantly reduced the histamine content in the peritoneal fluid. For comparison standard steroidal drug hydrocortisone and avil were used. PMID:22556903

  20. Integrating field research, modeling and remote sensing to quantify morphodynamics in a high-energy coastal setting, ocean beach, San Francisco, California

    USGS Publications Warehouse

    Barnard, P.L.; Hanes, D.M.

    2006-01-01

    Wave and coastal circulation modeling are combined with multibeam bathymetry, high-resolution beach surveys, cross-shore Personal Water Craft surveys, digital bed sediment camera surveys, and real-time video monitoring to quantify morphological change and nearshore processes at Ocean Beach, San Francisco. Initial SWAN (Simulating Waves Nearshore) wave modeling results show a focusing of wave energy at the location of an erosion hot spot on the southern end of Ocean Beach during prevailing northwest swell conditions. During El Nin??o winters, swell out of the west and southwest dominates the region, and although the wave energy is focused further to the north on Ocean Beach, the oblique wave approach sets up a strong northerly littoral drift, thereby starving the southern end of sediment, leaving it increasingly vulnerable to wave attack when the persistent northwest swell returns. An accurate assessment of the interaction between wave and tidal processes is crucial for evaluating coastal management options in an area that includes the annual dredging and disposal of ship channel sediment and an erosion hot spot that is posing a threat to local infrastructure. Copyright ASCE 2006.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vilarrasa, Víctor; Rutqvist, Jonny; Blanco Martin, Laura

    Expansive soils are suitable as backfill and buffer materials in engineered barrier systems to isolate heat-generating nuclear waste in deep geological formations. The canisters containing nuclear waste would be placed in tunnels excavated at a depth of several hundred meters. The expansive soil should provide enough swelling capacity to support the tunnel walls, thereby reducing the impact of the excavation-damaged zone on the long-term mechanical and flow-barrier performance. In addition to their swelling capacity, expansive soils are characterized by accumulating irreversible strain on suction cycles and by effects of microstructural swelling on water permeability that for backfill or buffer materialsmore » can significantly delay the time it takes to reach full saturation. In order to simulate these characteristics of expansive soils, a dual-structure constitutive model that includes two porosity levels is necessary. The authors present the formulation of a dual-structure model and describe its implementation into a coupled fluid flow and geomechanical numerical simulator. The authors use the Barcelona Basic Model (BBM), which is an elastoplastic constitutive model for unsaturated soils, to model the macrostructure, and it is assumed that the strains of the microstructure, which are volumetric and elastic, induce plastic strain to the macrostructure. The authors tested and demonstrated the capabilities of the implemented dual-structure model by modeling and reproducing observed behavior in two laboratory tests of expansive clay. As observed in the experiments, the simulations yielded nonreversible strain accumulation with suction cycles and a decreasing swelling capacity with increasing confining stress. Finally, the authors modeled, for the first time using a dual-structure model, the long-term (100,000 years) performance of a generic heat-generating nuclear waste repository with waste emplacement in horizontal tunnels backfilled with expansive clay and hosted in a clay rock formation. The thermo-hydro-mechanical results of the dual-structure model were compared with those of the standard single-structure BBM. The main difference between the simulation results from the two models is that the dual-structure model predicted a time to fully saturate the expansive clay barrier on the order of thousands of years, whereas the standard single-structure BBM yielded a time on the order of tens of years. These examples show that a dual-structure model, such as the one presented here, is necessary to properly model the thermo-hydro-mechanical behavior of expansive soils.« less

  2. A coupled mechanical-chemical model for reflecting the influence of stress on oxidation reactions in thermal barrier coating

    NASA Astrophysics Data System (ADS)

    Chen, Lin; Yueming, Li

    2018-06-01

    In this paper, a coupled mechanical-chemical model is established based on the thermodynamic framework, in which the contribution of chemical expansion to free energy is introduced. The stress-dependent chemical potential equilibrium at the gas-solid interface and the stress gradient-dependent diffusion equation as well as a so-called generalized force which is conjugate to the oxidation rate are derived from the proposed model, which could reflect the influence of stresses on the oxidation reaction. Based on the proposed coupled mechanical-chemical model, a user element subroutine is developed in ABAQUS. The numerical simulation of the high temperature oxidation in the thermal barrier coating is carried out to verify the accuracy of the proposed model, and then the influence of stresses on the oxidation reaction is investigated. In thermally grown oxide, the considerable stresses would be induced by permanent volumetric swelling during the oxidation. The stresses play an important role in the chemical potential equilibrium at the gas-solid interface and strongly affect the oxidation reaction. The gradient of the stresses, however, only occurs in the extremely thin oxidation front layer, which plays a very limited role in the oxidation reaction. The generalized force could be divided into the stress-dependent and the stress-independent parts. Comparing with the stress-independent part, the stress-dependent part is smaller, which has little influence on oxidation reaction.

  3. Differential Response of Neural Cells to Trauma-Induced Swelling In Vitro.

    PubMed

    Jayakumar, A R; Taherian, M; Panickar, K S; Shamaladevi, N; Rodriguez, M E; Price, B G; Norenberg, M D

    2018-02-01

    Brain edema and the associated increase in intracranial pressure are major consequences of traumatic brain injury (TBI) that accounts for most early deaths after TBI. We recently showed that acute severe trauma to cultured astrocytes results in cell swelling. We further examined whether trauma induces cell swelling in neurons and microglia. We found that severe trauma also caused cell swelling in cultured neurons, whereas no swelling was observed in microglia. While severe trauma caused cell swelling in both astrocytes and neurons, mild trauma to astrocytes, neurons, and microglia failed to cell swelling. Since extracellular levels of glutamate are increased in brain post-TBI and microglia are known to release cytokine, and direct exposure of astrocytes to these molecules are known to stimulate cell swelling, we examined whether glutamate or cytokines have any additive effect on trauma-induced cell swelling. Exposure of cultured astrocytes to trauma caused cell swelling, and such swelling was potentiated by the exposure of traumatized astrocytes to glutamate and cytokines. Conditioned medium (CM) from traumatized astrocytes had no effect on neuronal swelling post-trauma, while CM from traumatized neurons and microglia potentiated the effect of trauma on astrocyte swelling. Further, trauma significantly increased the Na-K-Cl co-transporter (NKCC) activity in neurons, and that inhibition of NKCC activity diminished the trauma-induced neuronal swelling. Our results indicate that a differential sensitivity to trauma-induced cell swelling exists in neural cells and that neurons and microglia are likely to be involved in the potentiation of the astrocyte swelling post-trauma.

  4. Competition between excluded-volume and electrostatic interactions for nanogel swelling: effects of the counterion valence and nanogel charge.

    PubMed

    Adroher-Benítez, Irene; Martín-Molina, Alberto; Ahualli, Silvia; Quesada-Pérez, Manuel; Odriozola, Gerardo; Moncho-Jordá, Arturo

    2017-03-01

    In this work the equilibrium distribution of ions around a thermo-responsive charged nanogel particle in an electrolyte aqueous suspension is explored using coarse-grained Monte Carlo computer simulations and the Ornstein-Zernike integral equation theory. We explicitly consider the ionic size in both methods and study the interplay between electrostatic and excluded-volume effects for swollen and shrunken nanogels, monovalent and trivalent counterions, and for two different nanogel charges. We find good quantitative agreement between the ionic density profiles obtained using both methods when the excluded repulsive force exerted by the cross-linked polymer network is taken into account. For the shrunken conformation, the electrostatic repulsion between the charged groups provokes a heterogeneous polymer density profile, leading to a nanogel structure with an internal low density hole surrounded by a dense corona. The results show that the excluded-volume repulsion strongly hinders the ion permeation for shrunken nanogels, where volume exclusion is able to significantly reduce the concentration of counterions in the more dense regions of the nanogel. In general, we demonstrate that the thermosensitive behaviour of nanogels, as well as their internal structure, is strongly influenced by the valence of the counterions and also by the charge of the particles. On the one hand, an increase of the counterion valence moves the swelling transition to lower temperatures, and induces a major structuring of the charged monomers into internal and external layers around the crown for shrunken nanogels. On the other hand, increasing the particle charge shifts the swelling curve to larger values of the effective radius of the nanogel.

  5. Poststreptococcal glomerulonephritis (GN)

    MedlinePlus

    ... following: Decreased urine output Rust-colored urine Swelling (edema), general swelling, swelling of the abdomen, swelling of ... A physical examination shows swelling (edema), especially in the face. ... to the heart and lungs with a stethoscope. Blood pressure ...

  6. Direct coupling between stress, strain and adsorption reactions - A study on coal-CO2 systems

    NASA Astrophysics Data System (ADS)

    Hol, S.; Peach, C. J.; Spiers, C. J.

    2012-12-01

    Though it is well-known that adsorption reactions frequently assist deformation of porous rocks, very little understanding exists on the direct coupling with stress state and strain. One of the materials in which adsorption plays a large role is coal, as is observed in the particular case of Enhanced Coalbed Methane Production (ECBM), which involves the geological storage of CO2 and the recovery of CH4. In this case, adsorption and the associated swelling cause significant injectivity problems, which is experienced in almost all pilot field projects to date. This suggests that indeed a strong fundamental coupling exists between CO2 sorption, changes in the mechanical state of the coal matrix and changes in the transport properties of the system, and illustrates the need to understand coupled stress-strain-sorption behaviour. In this contribution, we describe several important observations made on coal-CO2 systems that can learn us about many other natural, stressed adsorbate-adsorbent systems. In our experiments, first of all, the adsorption of CO2 in the coal matrix gave rise to swelling. Although this is well-known, we found that the total volumetric strain occurring under unconfined conditions can be realistically modelled (up to at least 100 MPa) as the sum of an adsorption-related expansion term and an elastic compression term. Second, effective in situ stresses will directly reduce the sorption capacity, and associated swelling of the coal matrix significantly. Our general thermodynamic model for the effect of a 3D stress state on adsorbed CO2 concentration supports this observation, and also shows that "self-stressing", as a result of CO2 adsorption occurring under conditions of restricted or zero strain (i.e. fully constrained conditions), will more than double the expected in situ stresses. A constitutive equation was developed to describe the full coupling between stress state, total strain (i.e. combined strain of adsorption processes and poroelasticity) and sorption, and was found to be consistent with experimental data. Third, it was observed that microfractures form in coal due to exposure to CO2 under unconfined conditions, which illustrates the potentially high forces and the large thermodynamic work term involved in adsorption reactions. The findings of this study all lead to the conclusion that direct effects of stress can have a considerable impact on adsorption processes. If this is the case for coal, also other adsorbate-rock interactions (e.g. clay-fluids in shale formations and deep fault rocks) may be subject to such a coupling. We believe that this topic deserved attention in future research.

  7. Viscosity of diluted suspensions of vegetal particles in water

    NASA Astrophysics Data System (ADS)

    Szydłowska, Adriana; Hapanowicz, Jerzy

    2017-10-01

    Viscosity and rheological behaviour of sewage as well as sludge are essential while designing apparatuses and operations employed in the sewage treatment process and its processing. With reference to these substances, the bio-suspensions samples of three size fractions ((i) 150÷212 μm, (ii) 106÷150 μm and (iii) below106 μm) of dry grass in water with solid volume fraction 8%, 10% and 11% were prepared. After twenty four hours prior to their preparation time, the suspension samples underwent rheometeric measurements with the use of a rotational rheometer with coaxial cylinders. On the basis of the obtained results, flow curves were plotted and described with both the power model and Herschel-Bulkley model. Moreover, the viscosity of the studied substances was determined that allowed to conclude that the studied bio-suspensions display features of viscoelastic fluids. The experimentally established viscosity was compared to the calculated one according to Manley and Manson equation, recommended in the literature. It occurred that the measured viscosity values substantially exceed the calculation viscosity values, even by 105 times. The observations suggest that it stems from water imbibition of fibrous vegetal particles, which causes their swelling and decreases the amount of liquid phase in the suspension.

  8. Magnetic resonance imaging (MRI) and relaxation spectrum analysis as methods to investigate swelling in whey protein gels.

    PubMed

    Oztop, Mecit H; Rosenberg, Moshe; Rosenberg, Yael; McCarthy, Kathryn L; McCarthy, Michael J

    2010-10-01

    Effective means for controlled delivery of nutrients and nutraceuticals are needed. Whey protein-based gels, as a model system and as a potential delivery system, exhibit pH-dependent swelling when placed in aqueous solutions. Understanding the physics that govern gel swelling is thus important when designing gel-based delivery platforms. The extent of swelling over time was monitored gravimetrically. In addition to gravimetric measurements, magnetic resonance imaging (MRI) a real-time noninvasive imaging technique that quantified changes in geometry and water content of these gels was utilized. Heat-set whey protein gels were prepared at pH 7 and swelling was monitored in aqueous solutions with pH values of 2.5, 7, and 10. Changes in dimension over time, as characterized by the number of voxels in an image, were correlated to gravimetric measurements. Excellent correlations between mass uptake and volume change (R(2)= 0.99) were obtained for the gels in aqueous solutions at pH 7 and 10, but not for gels in the aqueous solution at pH 2.5. To provide insight into the mechanisms for water uptake, nuclear magnetic resonance (NMR) relaxation times were measured in independent experiments. The relaxation spectrum for the spin-spin relaxation time (T(2)) showed the presence of 3 proton pools for pH 7 and 10 trials and 4 proton pools for pH 2.5 trials. Results demonstrate that MRI and NMR relaxation measurements provided information about swelling in whey protein gels that can constitute a new means for investigating and developing effective delivery systems for foods.

  9. Multiple Irradiation Capsule Experiment (MICE)-3B Irradiation Test of Space Fuel Specimens in the Advanced Test Reactor (ATR) - Close Out Documentation for Naval Reactors (NR) Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Chen; CM Regan; D. Noe

    2006-01-09

    Few data exist for UO{sub 2} or UN within the notional design space for the Prometheus-1 reactor (low fission rate, high temperature, long duration). As such, basic testing is required to validate predictions (and in some cases determine) performance aspects of these fuels. Therefore, the MICE-3B test of UO{sub 2} pellets was designed to provide data on gas release, unrestrained swelling, and restrained swelling at the upper range of fission rates expected for a space reactor. These data would be compared with model predictions and used to determine adequacy of a space reactor design basis relative to fission gas releasemore » and swelling of UO{sub 2} fuel and to assess potential pellet-clad interactions. A primary goal of an irradiation test for UN fuel was to assess performance issues currently associated with this fuel type such as gas release, swelling and transient performance. Information learned from this effort may have enabled use of UN fuel for future applications.« less

  10. Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications

    NASA Astrophysics Data System (ADS)

    Raafat, Amany I.; Eid, Mona; El-Arnaouty, Magda B.

    2012-07-01

    A series of superabsorbent hydrogel based on carboxymethylcellulose (CMC) and polyvinylpyrrolidone (PVP) crosslinked with gamma irradiation have been proposed for agriculture application. The effect of preparation conditions such as feed solution composition and absorbed irradiation dose on the gelation and swelling degree was evaluated. The structure and the morphology of the superabsorbent CMC/PVP hydrogel were characterized using Fourier transform infrared spectroscopy technique (FTIR), and scanning electron microscope (SEM). Effect of ionic strength and cationic and anionic kinds on the swelling behavior of the obtained hydrogel was investigated. Urea as an agrochemical model was loaded onto the obtained hydrogel to provide nitrogen (N) nutrients. The water retention capability and the urea release behavior of the CMC/PVP hydrogels were investigated. It was found that, the obtained CMC/PVP hydrogels have good swelling degree that greatly affected by its composition and absorbed dose. The swelling was also extremely sensitive to the ionic strength and cationic kind. Owing to its considerable slow urea release, good water retention capacity, being economical, and environment-friendly, it might be useful for its application in agriculture field.

  11. Thermo-sensitive and swelling properties of cellouronic acid sodium/poly (acrylamide-co-diallyldimethylammonium chloride) semi-IPN.

    PubMed

    Zhang, Heng; Gao, Xin; Chen, Keli; Li, Hui; Peng, Lincai

    2018-02-01

    In current study, cellouronic acid sodium (CAS), obtained from bagasse pith, has been introduced into poly(acrylamide-co-diallyldimethylammonium chloride) (poly(AM-co-DAC)) network to form novel thermo-sensitive semi-IPNs. The structure and morphology of the hydrogels were proved by Fourier transformation infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The effects of CAS content, initiator charge, cross-linker dosage and swelling-medium property on the thermo-responsive water absorptivity were investigated in detail. The results elucidated that the prepared gels exhibited a thermo-sensibility with an upper critical solution temperature (UCST) and a high water-absorbency. And the values of UCST and equilibrium swelling ratio largely depended on the inner structure of the semi-IPNs and the external solvent property. It was also revealed that the swelling process conformed to the Schott's pseudo second order model and diffusion type was non-Fickian diffusion. The value of activation energy for this polyelectrolyte was found to be 8.74kJ/mol. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. An improved correlation to predict molecular weight between crosslinks based on equilibrium degree of swelling of hydrogel networks.

    PubMed

    Jimenez-Vergara, Andrea C; Lewis, John; Hahn, Mariah S; Munoz-Pinto, Dany J

    2018-04-01

    Accurate characterization of hydrogel diffusional properties is of substantial importance for a range of biotechnological applications. The diffusional capacity of hydrogels has commonly been estimated using the average molecular weight between crosslinks (M c ), which is calculated based on the equilibrium degree of swelling. However, the existing correlation linking M c and equilibrium swelling fails to accurately reflect the diffusional properties of highly crosslinked hydrogel networks. Also, as demonstrated herein, the current model fails to accurately predict the diffusional properties of hydrogels when polymer concentration and molecular weight are varied simultaneously. To address these limitations, we evaluated the diffusional properties of 48 distinct hydrogel formulations using two different photoinitiator systems, employing molecular size exclusion as an alternative methodology to calculate average hydrogel mesh size. The resulting data were then utilized to develop a revised correlation between M c and hydrogel equilibrium swelling that substantially reduces the limitations associated with the current correlation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1339-1348, 2018. © 2017 Wiley Periodicals, Inc.

  13. The System of Inventory Forecasting in PT. XYZ by using the Method of Holt Winter Multiplicative

    NASA Astrophysics Data System (ADS)

    Shaleh, W.; Rasim; Wahyudin

    2018-01-01

    Problems at PT. XYZ currently only rely on manual bookkeeping, then the cost of production will swell and all investments invested to be less to predict sales and inventory of goods. If the inventory prediction of goods is to large, then the cost of production will swell and all investments invested to be less efficient. Vice versa, if the inventory prediction is too small it will impact on consumers, so that consumers are forced to wait for the desired product. Therefore, in this era of globalization, the development of computer technology has become a very important part in every business plan. Almost of all companies, both large and small, use computer technology. By utilizing computer technology, people can make time in solving complex business problems. Computer technology for companies has become an indispensable activity to provide enhancements to the business services they manage but systems and technologies are not limited to the distribution model and data processing but the existing system must be able to analyze the possibilities of future company capabilities. Therefore, the company must be able to forecast conditions and circumstances, either from inventory of goods, force, or profits to be obtained. To forecast it, the data of total sales from December 2014 to December 2016 will be calculated by using the method of Holt Winters, which is the method of time series prediction (Multiplicative Seasonal Method) it is seasonal data that has increased and decreased, also has 4 equations i.e. Single Smoothing, Trending Smoothing, Seasonal Smoothing and Forecasting. From the results of research conducted, error value in the form of MAPE is below 1%, so it can be concluded that forecasting with the method of Holt Winter Multiplicative.

  14. Model Filled Polymers. 6. Determination of the Crosslink Density of Polymeric Beads by Swelling

    DTIC Science & Technology

    1990-08-22

    7 References [1] M. Mooney , J. AppI. Phys., 11, 582 (1940). [2] R. S. Rivlin , and D. W. Sanders, Trans. Faraday Soc., 48, 200 (1952). [31 P. J. Flory...microbeads ranging in diameter from 0.2 to 1 p were prepared by emulsion polymerization in the absence of emulsifier [23]. Polytetrafluorethylene ( PTFE ...density of polymethyl methacrylate is 1.17 g/cm3 [201. Swelling A PTFE ultrafiltration membrane is weighed and inserted in a concave configuration

  15. Use of molecular modeling to determine the interaction and competition of gases within coal for carbon dioxide sequestration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffrey D. Evanseck; Jeffry D. Madura; Jonathan P. Mathews

    2006-04-21

    Molecular modeling was employed to both visualize and probe our understanding of carbon dioxide sequestration within a bituminous coal. A large-scale (>20,000 atoms) 3D molecular representation of Pocahontas No. 3 coal was generated. This model was constructed based on a the review data of Stock and Muntean, oxidation and decarboxylation data for aromatic clustersize frequency of Stock and Obeng, and the combination of Laser Desorption Mass Spectrometry data with HRTEM, enabled the inclusion of a molecular weight distribution. The model contains 21,931 atoms, with a molecular mass of 174,873 amu, and an average molecular weight of 714 amu, with 201more » structural components. The structure was evaluated based on several characteristics to ensure a reasonable constitution (chemical and physical representation). The helium density of Pocahontas No. 3 coal is 1.34 g/cm{sup 3} (dmmf) and the model was 1.27 g/cm{sup 3}. The structure is microporous, with a pore volume comprising 34% of the volume as expected for a coal of this rank. The representation was used to visualize CO{sub 2}, and CH{sub 4} capacity, and the role of moisture in swelling and CO{sub 2}, and CH{sub 4} capacity reduction. Inclusion of 0.68% moisture by mass (ash-free) enabled the model to swell by 1.2% (volume). Inclusion of CO{sub 2} enabled volumetric swelling of 4%.« less

  16. The role of satellite directional wave spectra for the improvement of the ocean-waves coupling

    NASA Astrophysics Data System (ADS)

    Aouf, Lotfi; Hauser, Danièle; Chapron, Bertrand

    2017-04-01

    Swell waves are well captured by the Synthetic Aperture Radar (SAR) which provides the directional wave spectra for waves roughly larger than 200 m. Since the launch of sentinel-1A and 1B SAR directional wave spectra are available to improve the swell wave forecasting and the coupling processes at the air-sea interface. Moreover next year CFOSAT mission will provide directional wave spectra for waves with wavelengths comprised between 70 to 500 m. This study aims to evaluate the assimilation of SAR and synthetic CFOSAT wave spectra on the coupling between the wave model MFWAM and the ocean model NEMO. Three coupling processes as described in Breivik et al. (2014) of Stokes-Coriolis forcing, the ocean side stress and the turbulence injected by the wave breaking in the ocean mixed layer have been used. a coupling run is performed with and without assimilation of directional wave spectra. the impact of SAR wave data on key parameters such as surface sea temperature, currents and salinity is investigated. Particular attention is carried out for ocean areas with swell dominant wave climate.

  17. Experimental and Modeling Study of Solvent Diffusion in PDMS for Nanoparticle-Polymer Cosuspension Imprint Lithography.

    PubMed

    Gervasio, Michelle; Lu, Kathy; Davis, Richey

    2015-09-15

    This study is the first that focuses on solvent migration in a polydimethylsiloxane (PDMS) stamp during the imprint lithography of ZnO-poly(methyl methacrylate) (PMMA) hybrid suspensions. Using suspensions with varying solids loading levels and ZnO/PMMA ratios, the uptake of the anisole solvent in the stamp is evaluated as a function of time. Laser confocal microscopy is employed as a unique technique to measure the penetration depth of the solvent into the stamp. The suspension solids loading affects the anisole saturation depth in the PDMS stamp. For the suspensions with low solids loading, the experimental data agree with the model for non-Fickian diffusion through a rubbery-elastic polymer. For the suspensions with high solids loading, the data agree more with a sigmoidal diffusion curve, reflecting the rubbery-viscous behavior of a swelling polymer. This difference is due to the degree of swelling in the PDMS. Higher solids loadings induce more swelling because the rate of anisole diffusing into the stamp is increased, likely due to the less dense buildup of the solids as the suspension dries.

  18. Simulating the swelling and deformation behaviour in soft tissues using a convective thermal analogy

    PubMed Central

    Wu, John Z; Herzog, Walter

    2002-01-01

    Background It is generally accepted that cartilage adaptation and degeneration are mechanically mediated. Investigating the swelling behaviour of cartilage is important because the stress and strain state of cartilage is associated with the swelling and deformation behaviour. It is well accepted that the swelling of soft tissues is associated with mechanical, chemical, and electrical events. Method The purpose of the present study was to implement the triphasic theory into a commercial finite element tool (ABAQUS) to solve practical problems in cartilage mechanics. Because of the mathematical identity between thermal and mass diffusion processes, the triphasic model was transferred into a convective thermal diffusion process in the commercial finite element software. The problem was solved using an iterative procedure. Results The proposed approach was validated using the one-dimensional numerical solutions and the experimental results of confined compression of articular cartilage described in the literature. The time-history of the force response of a cartilage specimen in confined compression, which was subjected to swelling caused by a sudden change of saline concentration, was predicted using the proposed approach and compared with the published experimental data. Conclusion The advantage of the proposed thermal analogy technique over previous studies is that it accounts for the convective diffusion of ion concentrations and the Donnan osmotic pressure in the interstitial fluid. PMID:12685940

  19. Controlling the extrudate swell in melt extrusion additive manufacturing of 3D scaffolds: a designed experiment.

    PubMed

    Yousefi, Azizeh-Mitra; Smucker, Byran; Naber, Alex; Wyrick, Cara; Shaw, Charles; Bennett, Katelyn; Szekely, Sarah; Focke, Carlie; Wood, Katherine A

    2018-02-01

    Tissue engineering using three-dimensional porous scaffolds has shown promise for the restoration of normal function in injured and diseased tissues and organs. Rigorous control over scaffold architecture in melt extrusion additive manufacturing is highly restricted mainly due to pronounced variations in the deposited strand diameter upon any variations in process conditions and polymer viscoelasticity. We have designed an I-optimal, split-plot experiment to study the extrudate swell in melt extrusion additive manufacturing and to control the scaffold architecture. The designed experiment was used to generate data to relate three responses (swell, density, and modulus) to a set of controllable factors (plotting needle diameter, temperature, pressure, and the dispensing speed). The fitted regression relationships were used to optimize the three responses simultaneously. The swell response was constrained to be close to 1 while maximizing the modulus and minimizing the density. Constraining the extrudate swell to 1 generates design-driven scaffolds, with strand diameters equal to the plotting needle diameter, and allows a greater control over scaffold pore size. Hence, the modulus of the scaffolds can be fully controlled by adjusting the in-plane distance between the deposited strands. To the extent of the model's validity, we can eliminate the effect of extrudate swell in designing these scaffolds, while targeting a range of porosity and modulus appropriate for bone tissue engineering. The result of this optimization was a predicted modulus of 14 MPa and a predicted density of 0.29 g/cm 3 (porosity ≈ 75%) using polycaprolactone as scaffold material. These predicted responses corresponded to factor levels of 0.6 μm for the plotting needle diameter, plotting pressure of 2.5 bar, melt temperature of 113.5 °C, and dispensing speed of 2 mm/s. The validation scaffold enabled us to quantify the percentage difference for the predictions, which was 9.5% for the extrudate swell, 19% for the density, and 29% for the modulus.

  20. Size-Tunable and Functional Core-Shell Structured Silica Nanoparticles for Drug Release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Fangli; Guo, Ya Nan; Liu, Jun

    2010-02-18

    Size-tunable silica cross-linked micellar core-shell nanoparticles (SCMCSNs) were successfully synthesized from a Pluronic nonionic surfactant (F127) template system with organic swelling agents such as 1,3,5-trimethylbenzene (TMB) and octanoic acid at room temperature. The size and morphology of SCMCSNs were directly evidenced by TEM imaging and DLS measurements (up to ~90 nm). Pyrene and coumarin 153 (C153) were used as fluorescent probe molecules to investigate the effect and location of swelling agent molecules. Papaverine as a model drug was used to measure the loading capacity and release property of nanoparticles. The swelling agents can enlarge the nanoparticle size and improve themore » drug loading capacity of nanoparticles. Moreover, the carboxylic acid group of fatty acid can adjust the release behavior of the nanoparticles.« less

  1. The use of the Petri net method in the simulation modeling of mitochondrial swelling.

    PubMed

    Danylovych, Yu V; Chunikhin, A Y; Danylovych, G V; Kolomiets, O V

    2016-01-01

    Using photon correlation spectroscopy, which allows investigating changes in the hydrodynamic dia­meter of the particles in suspension, it was shown that ultrahigh concentrations of Ca2+ (over 10 mM) induce swelling of isolated mitochondria. An increase in hydrodynamic diameter was caused by an increase of non-specific mitochondrial membrane permeability to Ca ions, matrix Ca2+ overload, activation of ATP- and Ca2+-sensitive K+-channels, as well as activation of cyclosporin-sensitive permeability transition pore. To formalize the experimental data and to assess conformity of experimental results with theoretical predictions we developed a simulation model using the hybrid functional Petri net method.

  2. Numerical Analysis of the Sea State Bias for Satellite Altimetry

    NASA Technical Reports Server (NTRS)

    Glazman, R. E.; Fabrikant, A.; Srokosz, M. A.

    1996-01-01

    Theoretical understanding of the dependence of sea state bias (SSB) on wind wave conditions has been achieved only for the case of a unidirectional wind-driven sea. Recent analysis of Geosat and TOPEX altimeter data showed that additional factors, such as swell, ocean currents, and complex directional properties of realistic wave fields, may influence SSB behavior. Here we investigate effects of two-dimensional multimodal wave spectra using a numerical model of radar reflection from a random, non-Gaussian surface. A recently proposed ocean wave spectrum is employed to describe sea surface statistics. The following findings appear to be of particular interest: (1) Sea swell has an appreciable effect in reducing the SSB coefficient compared with the pure wind sea case but has less effect on the actual SSB owing to the corresponding increase in significant wave height. (2) Hidden multimodal structure (the two-dimensional wavenumber spectrum contains separate peaks, for swell and wind seas, while the frequency spectrum looks unimodal) results in an appreciable change of SSB. (3) For unimodal, purely wind-driven seas, the influence of the angular spectral width is relatively unimportant; that is, a unidirectional sea provides a good qualitative model for SSB if the swell is absent. (4) The pseudo wave age is generally much better fo parametrization the SSB coefficient than the actual wave age (which is ill-defined for a multimodal sea) or wind speed. (5) SSB can be as high as 5% of the significant wave height, which is significantly greater than predicted by present empirical model functions tuned on global data sets. (6) Parameterization of SSB in terms of wind speed is likely to lead to errors due to the dependence on the (in practice, unknown) fetch.

  3. Identification of Multiple QTLs Linked to Neuropathology in the Engrailed-1 Heterozygous Mouse Model of Parkinson's Disease.

    PubMed

    Kurowska, Zuzanna; Jewett, Michael; Brattås, Per Ludvik; Jimenez-Ferrer, Itzia; Kenéz, Xuyian; Björklund, Tomas; Nordström, Ulrika; Brundin, Patrik; Swanberg, Maria

    2016-08-23

    Motor symptoms in Parkinson's disease are attributed to degeneration of midbrain dopaminergic neurons (DNs). Heterozygosity for Engrailed-1 (En1), one of the key factors for programming and maintenance of DNs, results in a parkinsonian phenotype featuring progressive degeneration of DNs in substantia nigra pars compacta (SNpc), decreased striatal dopamine levels and swellings of nigro-striatal axons in the SwissOF1-En1+/- mouse strain. In contrast, C57Bl/6-En1+/- mice do not display this neurodegenerative phenotype, suggesting that susceptibility to En1 heterozygosity is genetically regulated. Our goal was to identify quantitative trait loci (QTLs) that regulate the susceptibility to PD-like neurodegenerative changes in response to loss of one En1 allele. We intercrossed SwissOF1-En1+/- and C57Bl/6 mice to obtain F2 mice with mixed genomes and analyzed number of DNs in SNpc and striatal axonal swellings in 120 F2-En1+/- 17 week-old male mice. Linkage analyses revealed 8 QTLs linked to number of DNs (p = 2.4e-09, variance explained = 74%), 7 QTLs linked to load of axonal swellings (p = 1.7e-12, variance explained = 80%) and 8 QTLs linked to size of axonal swellings (p = 7.0e-11, variance explained = 74%). These loci should be of prime interest for studies of susceptibility to Parkinson's disease-like damage in rodent disease models and considered in clinical association studies in PD.

  4. Numerical simulation model of hyperacute/acute stage white matter infarction.

    PubMed

    Sakai, Koji; Yamada, Kei; Oouchi, Hiroyuki; Nishimura, Tsunehiko

    2008-01-01

    Although previous studies have revealed the mechanisms of changes in diffusivity (apparent diffusion coefficient [ADC]) in acute brain infarction, changes in diffusion anisotropy (fractional anisotropy [FA]) in white matter have not been examined. We hypothesized that membrane permeability as well as axonal swelling play important roles, and we therefore constructed a simulation model using random walk simulation to replicate the diffusion of water molecules. We implemented a numerical diffusion simulation model of normal and infarcted human brains using C++ language. We constructed this 2-pool model using simple tubes aligned in a single direction. Random walk simulation diffused water. Axon diameters and membrane permeability were then altered in step-wise fashion. To estimate the effects of axonal swelling, axon diameters were changed from 6 to 10 microm. Membrane permeability was altered from 0% to 40%. Finally, both elements were combined to explain increasing FA in the hyperacute stage of white matter infarction. The simulation demonstrated that simple water shift into the intracellular space reduces ADC and increases FA, but not to the extent expected from actual human cases (ADC approximately 50%; FA approximately +20%). Similarly, membrane permeability alone was insufficient to explain this phenomenon. However, a combination of both factors successfully replicated changes in diffusivity indices. Both axonal swelling and reduced membrane permeability appear important in explaining changes in ADC and FA based on eigenvalues in hyperacute-stage white matter infarction.

  5. Mesoporous block-copolymer nanospheres prepared by selective swelling.

    PubMed

    Mei, Shilin; Jin, Zhaoxia

    2013-01-28

    Block-copolymer (BCP) nanospheres with hierarchical inner structure are of great interest and importance due to their possible applications in nanotechnology and biomedical engineering. Mesoporous BCP nanospheres with multilayered inner channels are considered as potential drug-delivery systems and templates for multifunctional nanomaterials. Selective swelling is a facile pore-making strategy for BCP materials. Herein, the selective swelling-induced reconstruction of BCP nanospheres is reported. Two poly(styrene-block-2-vinylpyridine) (PS-b-P2VP) samples with different compositions (PS(23600)-b-P2VP(10400) and PS(27700)-b-P2VP(4300)) are used as model systems. The swelling reconstruction of PS-b-P2VP in ethanol, 1-pyrenebutyric acid (PBA)/ethanol, or HCl/ethanol (pH = 2.61) is characterized by scanning electron microscopy and transmission electron microscopy. It is observed that the length of the swellable block in BCP is a critical factor in determining the behavior and nanostructures of mesoporous BCP nanospheres in selective swelling. Moreover, it is demonstrated that the addition of PBA modifies the swelling structure of PS(23600)-b-P2VP(10400) through the interaction between PBA and P2VP blocks, which results in BCP nanospheres with patterned pores of controllable size. The patterned pores can be reversibly closed by annealing the mesoporous BCP nanospheres in different selective solvents. The controllable and reversible open/closed reconstruction of BCP nanospheres can be used to enclose functional nanoparticles or drugs inside the nanospheres. These mesoporous BCP nanospheres are further decorated with gold nanoparticles by UV photoreduction. The enlarged decoration area in mesoporous BCP nanospheres will enhance their activity and sensitivity as a catalyst and electrochemical sensor. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Mathematical Modeling Of A Nuclear/Thermionic Power Source

    NASA Technical Reports Server (NTRS)

    Vandersande, Jan W.; Ewell, Richard C.

    1992-01-01

    Report discusses mathematical modeling to predict performance and lifetime of spacecraft power source that is integrated combination of nuclear-fission reactor and thermionic converters. Details of nuclear reaction, thermal conditions in core, and thermionic performance combined with model of swelling of fuel.

  7. Gaseous swelling of U 3 Si 2 during steady-state LWR operation: A rate theory investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Yinbin; Gamble, Kyle A.; Andersson, David

    Rate theory simulations of fission gas behavior in U 3Si 2 are reported for light water reactor (LWR) steady-state operation scenarios. We developed a model of U 3Si 2 and implemented into the GRASS-SST code based on available research reactor post-irradiation examination (PIE) data, and density functional theory (DFT) calculations of key material properties. Simplified peripheral models were also introduced to capture the fuel-cladding interaction. The simulations identified three regimes of U 3Si 2 swelling behavior between 390 K and 1190 K. Under typical steady-state LWR operating conditions where U 3Si 2 temperature is expected to be below 1000 K,more » intragranular bubbles are dominant and fission gas is retained in those bubbles. The consequent gaseous swelling is low and associated degradation in the fuel thermal conductivity is also limited. Those predictions of U 3Si 2 performance during steady-state operations in LWRs suggest that this fuel material is an appropriate LWR candidate fuel material. Fission gas behavior models established based on this work are being coupled to the thermo-mechanical simulation of the fuel behavior using the BISON fuel performance multi-dimensional finite element code.« less

  8. Gaseous swelling of U 3 Si 2 during steady-state LWR operation: A rate theory investigation

    DOE PAGES

    Miao, Yinbin; Gamble, Kyle A.; Andersson, David; ...

    2017-07-25

    Rate theory simulations of fission gas behavior in U 3Si 2 are reported for light water reactor (LWR) steady-state operation scenarios. We developed a model of U 3Si 2 and implemented into the GRASS-SST code based on available research reactor post-irradiation examination (PIE) data, and density functional theory (DFT) calculations of key material properties. Simplified peripheral models were also introduced to capture the fuel-cladding interaction. The simulations identified three regimes of U 3Si 2 swelling behavior between 390 K and 1190 K. Under typical steady-state LWR operating conditions where U 3Si 2 temperature is expected to be below 1000 K,more » intragranular bubbles are dominant and fission gas is retained in those bubbles. The consequent gaseous swelling is low and associated degradation in the fuel thermal conductivity is also limited. Those predictions of U 3Si 2 performance during steady-state operations in LWRs suggest that this fuel material is an appropriate LWR candidate fuel material. Fission gas behavior models established based on this work are being coupled to the thermo-mechanical simulation of the fuel behavior using the BISON fuel performance multi-dimensional finite element code.« less

  9. Clay, Water, and Salt: Controls on the Permeability of Fine-Grained Sedimentary Rocks.

    PubMed

    Bourg, Ian C; Ajo-Franklin, Jonathan B

    2017-09-19

    The ability to predict the permeability of fine-grained soils, sediments, and sedimentary rocks is a fundamental challenge in the geosciences with potentially transformative implications in subsurface hydrology. In particular, fine-grained sedimentary rocks (shale, mudstone) constitute about two-thirds of the sedimentary rock mass and play important roles in three energy technologies: petroleum geology, geologic carbon sequestration, and radioactive waste management. The problem is a challenging one that requires understanding the properties of complex natural porous media on several length scales. One inherent length scale, referred to hereafter as the mesoscale, is associated with the assemblages of large grains of quartz, feldspar, and carbonates over distances of tens of micrometers. Its importance is highlighted by the existence of a threshold in the core scale mechanical properties and regional scale energy uses of shale formations at a clay content X clay ≈ 1/3, as predicted by an ideal packing model where a fine-grained clay matrix fills the gaps between the larger grains. A second important length scale, referred to hereafter as the nanoscale, is associated with the aggregation and swelling of clay particles (in particular, smectite clay minerals) over distances of tens of nanometers. Mesoscale phenomena that influence permeability are primarily mechanical and include, for example, the ability of contacts between large grains to prevent the compaction of the clay matrix. Nanoscale phenomena that influence permeability tend to be chemomechanical in nature, because they involve strong impacts of aqueous chemistry on clay swelling. The second length scale remains much less well characterized than the first, because of the inherent challenges associated with the study of strongly coupled nanoscale phenomena. Advanced models of the nanoscale properties of fine-grained media rely predominantly on the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, a mean field theory of colloidal interactions that accurately predicts clay swelling in a narrow range of conditions (low salinity, low compaction, Na + counterion). An important feature of clay swelling that is not predicted by these models is the coexistence, in most conditions of aqueous chemistry and dry bulk density, of two types of pores between parallel smectite particles: mesopores with a pore width of >3 nm that are controlled by long-range interactions (the osmotic swelling regime) and nanopores with a pore width <1 nm that are controlled by short-range interactions (the crystalline swelling regime). Nanogeochemical characterization and simulation techniques, including coarse-grained and all-atom molecular dynamics simulations, hold significant promise for the development of advanced constitutive relations that predict this coexistence and its dependence on aqueous chemistry.

  10. TRPV4 and AQP4 Channels Synergistically Regulate Cell Volume and Calcium Homeostasis in Retinal Müller Glia

    PubMed Central

    Jo, Andrew O.; Phuong, Tam T.T.; Verkman, Alan S.; Yarishkin, Oleg; MacAulay, Nanna

    2015-01-01

    Brain edema formation occurs after dysfunctional control of extracellular volume partly through impaired astrocytic ion and water transport. Here, we show that such processes might involve synergistic cooperation between the glial water channel aquaporin 4 (AQP4) and the transient receptor potential isoform 4 (TRPV4), a polymodal swelling-sensitive cation channel. In mouse retinas, TRPV4 colocalized with AQP4 in the end feet and radial processes of Müller astroglia. Genetic ablation of TRPV4 did not affect the distribution of AQP4 and vice versa. However, retinas from Trpv4−/− and Aqp4−/− mice exhibited suppressed transcription of genes encoding Trpv4, Aqp4, and the Kir4.1 subunit of inwardly rectifying potassium channels. Swelling and [Ca2+]i elevations evoked in Müller cells by hypotonic stimulation were antagonized by the selective TRPV4 antagonist HC-067047 (2-methyl-1-[3-(4-morpholinyl)propyl]-5-phenyl-N-[3-(trifluoromethyl)phenyl]-1H-pyrrole-3-carboxamide) or Trpv4 ablation. Elimination of Aqp4 suppressed swelling-induced [Ca2+]i elevations but only modestly attenuated the amplitude of Ca2+ signals evoked by the TRPV4 agonist GSK1016790A [(N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide]. Glial cells lacking TRPV4 but not AQP4 showed deficits in hypotonic swelling and regulatory volume decrease. Functional synergy between TRPV4 and AQP4 during cell swelling was confirmed in the heterologously expressing Xenopus oocyte model. Importantly, when the swelling rate was osmotically matched for AQP4-positive and AQP4-negative oocytes, TRPV4 activation became independent of AQP4. We conclude that AQP4-mediated water fluxes promote the activation of the swelling sensor, whereas Ca2+ entry through TRPV4 channels reciprocally modulates volume regulation, swelling, and Aqp4 gene expression. Therefore, TRPV4–AQP4 interactions constitute a molecular system that fine-tunes astroglial volume regulation by integrating osmosensing, calcium signaling, and water transport and, when overactivated, triggers pathological swelling. SIGNIFICANCE STATEMENT We characterize the physiological features of interactions between the astroglial swelling sensor transient receptor potential isoform 4 (TRPV4) and the aquaporin 4 (AQP4) water channel in retinal Müller cells. Our data reveal an elegant and complex set of mechanisms involving reciprocal interactions at the level of glial gene expression, calcium homeostasis, swelling, and volume regulation. Specifically, water influx through AQP4 drives calcium influx via TRPV4 in the glial end foot, which regulates expression of Aqp4 and Kir4.1 genes and facilitates the time course and amplitude of hypotonicity-induced swelling and regulatory volume decrease. We confirm the crucial facets of the signaling mechanism in heterologously expressing oocytes. These results identify the molecular mechanism that contributes to dynamic regulation of glial volume but also provide new insights into the pathophysiology of glial reactivity and edema formation. PMID:26424896

  11. Use of a Dual-Structure Constitutive Model for Predicting the Long-Term Behavior of an Expansive Clay Buffer in a Nuclear Waste Repository

    DOE PAGES

    Vilarrasa, Víctor; Rutqvist, Jonny; Blanco Martin, Laura; ...

    2015-12-31

    Expansive soils are suitable as backfill and buffer materials in engineered barrier systems to isolate heat-generating nuclear waste in deep geological formations. The canisters containing nuclear waste would be placed in tunnels excavated at a depth of several hundred meters. The expansive soil should provide enough swelling capacity to support the tunnel walls, thereby reducing the impact of the excavation-damaged zone on the long-term mechanical and flow-barrier performance. In addition to their swelling capacity, expansive soils are characterized by accumulating irreversible strain on suction cycles and by effects of microstructural swelling on water permeability that for backfill or buffer materialsmore » can significantly delay the time it takes to reach full saturation. In order to simulate these characteristics of expansive soils, a dual-structure constitutive model that includes two porosity levels is necessary. The authors present the formulation of a dual-structure model and describe its implementation into a coupled fluid flow and geomechanical numerical simulator. The authors use the Barcelona Basic Model (BBM), which is an elastoplastic constitutive model for unsaturated soils, to model the macrostructure, and it is assumed that the strains of the microstructure, which are volumetric and elastic, induce plastic strain to the macrostructure. The authors tested and demonstrated the capabilities of the implemented dual-structure model by modeling and reproducing observed behavior in two laboratory tests of expansive clay. As observed in the experiments, the simulations yielded nonreversible strain accumulation with suction cycles and a decreasing swelling capacity with increasing confining stress. Finally, the authors modeled, for the first time using a dual-structure model, the long-term (100,000 years) performance of a generic heat-generating nuclear waste repository with waste emplacement in horizontal tunnels backfilled with expansive clay and hosted in a clay rock formation. The thermo-hydro-mechanical results of the dual-structure model were compared with those of the standard single-structure BBM. The main difference between the simulation results from the two models is that the dual-structure model predicted a time to fully saturate the expansive clay barrier on the order of thousands of years, whereas the standard single-structure BBM yielded a time on the order of tens of years. These examples show that a dual-structure model, such as the one presented here, is necessary to properly model the thermo-hydro-mechanical behavior of expansive soils.« less

  12. Foot, leg, and ankle swelling

    MedlinePlus

    ... feet - legs; Ankle swelling; Foot swelling; Leg swelling; Edema - peripheral; Peripheral edema ... 31. Trayes KP, Studdiford JS, Pickle S, Tully AS. Edema: diagnosis and management. Am Fam Physician . 2013;88( ...

  13. Analytical modeling of intumescent coating thermal protection system in a JP-5 fuel fire environment

    NASA Technical Reports Server (NTRS)

    Clark, K. J.; Shimizu, A. B.; Suchsland, K. E.; Moyer, C. B.

    1974-01-01

    The thermochemical response of Coating 313 when exposed to a fuel fire environment was studied to provide a tool for predicting the reaction time. The existing Aerotherm Charring Material Thermal Response and Ablation (CMA) computer program was modified to treat swelling materials. The modified code is now designated Aerotherm Transient Response of Intumescing Materials (TRIM) code. In addition, thermophysical property data for Coating 313 were analyzed and reduced for use in the TRIM code. An input data sensitivity study was performed, and performance tests of Coating 313/steel substrate models were carried out. The end product is a reliable computational model, the TRIM code, which was thoroughly validated for Coating 313. The tasks reported include: generation of input data, development of swell model and implementation in TRIM code, sensitivity study, acquisition of experimental data, comparisons of predictions with data, and predictions with intermediate insulation.

  14. Combustion properties of Kraft Black Liquors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederick, W.J. Jr.; Hupa, M.

    1993-04-01

    In a previous study of the phenomena involved in the combustion of black liquor droplets a numerical model was developed. The model required certain black liquor specific combustion information which was then not currently available, and additional data were needed for evaluating the model. The overall objectives of the project reported here was to provide experimental data on key aspects of black liquor combustion, to interpret the data, and to put it into a form which would be useful for computational models for recovery boilers. The specific topics to be investigated were the volatiles and char carbon yields from pyrolysismore » of single black liquor droplets; a criterion for the onset of devolatilization and the accompanying rapid swelling; and the surface temperature of black liquor droplets during pyrolysis, combustion, and gasification. Additional information on the swelling characteristics of black liquor droplets was also obtained as part of the experiments conducted.« less

  15. Mechanistic modelling of drug release from polymer-coated and swelling and dissolving polymer matrix systems.

    PubMed

    Kaunisto, Erik; Marucci, Mariagrazia; Borgquist, Per; Axelsson, Anders

    2011-10-10

    The time required for the design of a new delivery device can be sensibly reduced if the release mechanism is understood and an appropriate mathematical model is used to characterize the system. Once all the model parameters are obtained, in silico experiments can be performed, to provide estimates of the release from devices with different geometries and compositions. In this review coated and matrix systems are considered. For coated formulations, models describing the diffusional drug release, the osmotic pumping drug release, and the lag phase of pellets undergoing cracking in the coating due to the build-up of a hydrostatic pressure are reviewed. For matrix systems, models describing pure polymer dissolution, diffusion in the polymer and drug release from swelling and eroding polymer matrix formulations are reviewed. Importantly, the experiments used to characterize the processes occurring during the release and to validate the models are presented and discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Clinical synovitis in a particular joint is associated with progression of erosions and joint space narrowing in that same joint, but not in patients initially treated with infliximab.

    PubMed

    Klarenbeek, N B; Güler-Yüksel, M; van der Heijde, D M F M; Hulsmans, H M J; Kerstens, P J S M; Molenaar, T H E; de Sonnaville, P B J; Huizinga, T W J; Dijkmans, B A C; Allaart, C F

    2010-12-01

    To assess the relationship between joint tenderness, swelling and joint damage progression in individual joints and to evaluate the influence of treatment on these relationships. First-year data of the Behandel Strategieën (BeSt) study were used, in which patients recently diagnosed as having rheumatoid arthritis (RA) were randomly assigned into four different treatment strategies. Baseline and 1-year x-rays of the hands and feet were assessed using the Sharp-van der Heijde score (SHS). With generalised estimating equations, 3-monthly assessments of tender and swollen joints of year 1 were related to erosion progression, joint space narrowing (JSN) progression and total SHS progression at the individual joint level (definition > 0.5 SHS units) in year 1, corrected for potential confounders and within-patient correlation for multiple joints per patient. During year 1, 59% of all 13 959 joints analysed were ever tender and 45% ever swollen, 2.1% showed erosion progression, 1.9% JSN progression and 3.6% SHS progression. Swelling and tenderness were both independently associated with erosion and JSN progression with comparable OR, although with higher OR in the hands than in the feet. Local swelling and tenderness were not associated with local damage progression in patients initially treated with infliximab. Clinical signs of synovitis are associated with erosion and JSN progression in individual joints after 1 year in RA. A disconnect between synovitis and joint damage progression was observed at joint level in patients who were treated with methotrexate and infliximab as initial treatment, confirming the disconnect between synovitis and the development of joint damage in tumour necrosis factor blockers seen at patient level.

  17. Kinetics of swelling of polyelectrolyte gels: Fixed degree of ionization

    NASA Astrophysics Data System (ADS)

    Sen, Swati; Kundagrami, Arindam

    2015-12-01

    The swelling kinetics of uncharged and charged polymer (polyelectrolyte) gels in salt-free conditions is studied in one dimension by solving the constitutive equation of motion (Newton's law for the elementary gel volume) of the displacement variable by two theoretical methods: one in which the classical definition of stress is used with the bulk modulus taken as a parameter, and the other in which a phenomenological expression of the osmotic stress as a function of polymer density and degree of ionization is taken as an input to the dynamics. The time-evolution profiles for spatially varying polymer density and stress, along with the location of the gel-solvent interface, are obtained from the two methods. We show that both the polymer density (volume fraction) and stress inside the gel follow expected behaviours of being maximum for the uniformly shrunken gel, and relaxing slowly to the lowest values as the gel approaches equilibrium. We further show that, by comparing the temporal profiles of the gel-solvent interface and other variables between the two methods, one may attempt to assign an effective bulk modulus to the polyelectrolyte gel as a function of the degree of ionization and other parameters of the gel such as hydrophobicity, cross-link density, and the temperature. The major result we get is that the effective bulk modulus of a polyelectrolyte gel increases monotonically with its degree of ionization. In the process of identifying the parameters for a monotonic swelling, we calculated using a well-known expression of the free energy the equilibrium results of two-phase co-existence and the critical point of a polyelectrolyte gel with a fixed degree of ionization.

  18. Changes in the Refractive Index of the Stroma and Its Extrafibrillar Matrix When the Cornea Swells

    PubMed Central

    Meek, Keith M.; Dennis, Sally; Khan, Shukria

    2003-01-01

    The transparency of the corneal stroma is critically dependent on the hydration of the tissue; if the cornea swells, light scattering increases. Although this scattering has been ascribed to the disruption caused to the arrangement of the collagen fibrils, theory predicts that light scattering could increase if there is an increased mismatch in the refractive indices of the collagen fibrils and the material between them. The purpose of this article is to use Gladstone and Dale's law of mixtures to calculate volume fractions for a number of different constituents in the stroma, and use these to show how the refractive indices of the stroma and its constituent extrafibrillar material would be expected to change as more solvent enters the tissue. Our calculations predict that solvent entering the extrafibrillar space causes a reduction in its refractive index, and hence a reduction in the overall refractive index of the bovine stroma according to the equation n′s = 1.335 + 0.04/(0.22 + 0.24 H′), where n′s is the refractive index and H′ is the hydration of the swollen stroma. This expression is in reasonable agreement with our experimental measurements of refractive index versus hydration in bovine corneas. When the hydration of the stroma increases from H = 3.2 to H = 8.0, we predict that the ratio of the refractive index of the collagen fibrils to that of the material between them increases from 1.041 to 1.052. This change would be expected to make only a small contribution to the large increase in light scattering observed when the cornea swells to H = 8. PMID:14507686

  19. Kinetics of swelling of polyelectrolyte gels: Fixed degree of ionization.

    PubMed

    Sen, Swati; Kundagrami, Arindam

    2015-12-14

    The swelling kinetics of uncharged and charged polymer (polyelectrolyte) gels in salt-free conditions is studied in one dimension by solving the constitutive equation of motion (Newton's law for the elementary gel volume) of the displacement variable by two theoretical methods: one in which the classical definition of stress is used with the bulk modulus taken as a parameter, and the other in which a phenomenological expression of the osmotic stress as a function of polymer density and degree of ionization is taken as an input to the dynamics. The time-evolution profiles for spatially varying polymer density and stress, along with the location of the gel-solvent interface, are obtained from the two methods. We show that both the polymer density (volume fraction) and stress inside the gel follow expected behaviours of being maximum for the uniformly shrunken gel, and relaxing slowly to the lowest values as the gel approaches equilibrium. We further show that, by comparing the temporal profiles of the gel-solvent interface and other variables between the two methods, one may attempt to assign an effective bulk modulus to the polyelectrolyte gel as a function of the degree of ionization and other parameters of the gel such as hydrophobicity, cross-link density, and the temperature. The major result we get is that the effective bulk modulus of a polyelectrolyte gel increases monotonically with its degree of ionization. In the process of identifying the parameters for a monotonic swelling, we calculated using a well-known expression of the free energy the equilibrium results of two-phase co-existence and the critical point of a polyelectrolyte gel with a fixed degree of ionization.

  20. Interferon-alpha/beta deficiency greatly exacerbates arthritogenic disease in mice infected with wild-type chikungunya virus but not with the cell culture-adapted live-attenuated 181/25 vaccine candidate

    PubMed Central

    Gardner, Christina L.; Burke, Crystal W.; Higgs, Stephen T.; Klimstra, William B.; Ryman, Kate D.

    2012-01-01

    In humans, chikungunya virus (CHIKV) infection causes fever, rash, and acute and persisting polyarthalgia/arthritis associated with joint swelling. We report a new CHIKV disease model in adult mice that distinguishes the wild-type CHIKV-LR strain from the live-attenuated vaccine strain (CHIKV-181/25). Although eight-week old normal mice inoculated in the hind footpad developed no hind limb swelling with either virus, CHIKV-LR replicated in musculoskeletal tissues and caused detectable inflammation. In mice deficient in STAT1-dependent interferon (IFN) responses, CHIKV-LR caused significant swelling of the inoculated and contralateral limbs and dramatic inflammatory lesions, while CHIKV-181/25 vaccine and another arthritogenic alphavirus, Sindbis, failed to induce swelling. IFN responses suppressed CHIKV-LR and CHIKV-181/25 replication equally in dendritic cells in vitro whereas macrophages were refractory to infection independently of STAT1-mediated IFN responses. Glycosaminoglycan (GAG) binding may be a CHIKV vaccine attenuation mechanism as CHIKV-LR infectivity was not dependent upon GAG, while CHIKV-181/25 was highly dependent. PMID:22305131

  1. Culture of preantral follicles in poly(ethylene) glycol-based, three-dimensional hydrogel: a relationship between swelling ratio and follicular developments

    PubMed Central

    Ahn, Jong Il; Kim, Gil Ah; Kwon, Hyo Suk; Ahn, Ji Yeon; Hubbell, Jeffrey A; Song, Yong Sang; Lee, Seung Tae; Lim, Jeong Mook

    2015-01-01

    This study was undertaken to examine how the softness of poly(ethylene) glycol (PEG)-based hydrogels, creating a three-dimensional (3D) microenvironment, influences the in vitro growth of mouse ovarian follicles. Early secondary, preantral follicles of 2 week-old mice were cultured in a crosslinked four-arm PEG hydrogel. The hydrogel swelling ratio, which relates to softness, was modified within the range 25.7–15.5 by increasing the reactive PEG concentration in the precursor solution from 5% to 15% w/v, but it did not influence follicular growth to form the pseudoantrum (60–80%; p = 0.76). Significant (p < 0.04) model effects, however, were detected in the maturation and developmental competence of the follicle-derived oocytes. A swelling ratio of > 21.4 yielded better oocyte maturation than other levels, while the highest competence to develop pronuclear and blastocyst formation was detected at 20.6. In conclusion, gel softness, as reflected in swelling ratio, was one of the essential factors for supporting folliculogenesis in vivo within a hydrogel-based, 3D microenvironment. © 2014 The Authors. Journal of Tissue Engineering and Regenerative Medicine published by John Wiley & Sons, Ltd. PMID:24493269

  2. Novel biochar-impregnated calcium alginate beads with improved water holding and nutrient retention properties.

    PubMed

    Wang, Bing; Gao, Bin; Zimmerman, Andrew R; Zheng, Yulin; Lyu, Honghong

    2018-03-01

    Drought conditions and nutrients loss have serious impacts on soil quality as well as crop yields in agroecosystems. New techniques are needed to carry out effective soil water and nutrient conservation and fertilizer application tools. Here, calcium alginate (CA) beads impregnated with ball-milled biochar (BMB) were investigated as a new type of water/nutrients retention agent. Both CA and Ca-alginate/ball milled biochar composite (CA-BMB) beads showed high kinetic swelling ratios in KNO 3 solution and low kinetic swelling ratios in water, indicating that CA-BMB beads have the potential to retain mineral nitrogen and nutrients by ion exchange. Pseudo-second-order kinetic model well-described the swelling kinetics of both beads in KNO 3 solution. Over a range of temperatures, the characteristics of dehydration suggested that impregnation with BMB improved the water holding capacity and postponed the dehydration time of Ca-alginate. The cumulative swelling and release characteristics of water, K + , and NO 3 - indicated that CA-BMB beads have great potential as a soil amendment to improve its nutrient retention and water holding capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Oesophageal bioadhesion of sodium alginate suspensions 2. Suspension behaviour on oesophageal mucosa.

    PubMed

    Richardson, J Craig; Dettmar, Peter W; Hampson, Frank C; Melia, Colin D

    2005-01-01

    Sodium alginate suspensions in a range of water miscible vehicles were investigated as novel bioadhesive liquids for targeting the oesophageal mucosa. Such a dosage form might be utilised to coat the oesophageal surface and provide a protective barrier against gastric reflux, or to deliver therapeutic agents site-specifically. Alginate suspensions swelled and formed an adherent viscous layer on contact with the mucosa. The swelling kinetics of alginate particles on the oesophageal surface was examined with respect to vehicle composition and related to the extent, duration and location of bioadhesion within the oesophagus. Mucosal retention was evaluated in two in vitro models utilising tissue immersion and a peristaltic tube. By varying the vehicle composition it was possible to modulate the rate of swelling of alginate particles on the mucosa and the mucosal retention of suspensions. Suspensions containing predominantly glycerol exhibited superior retention and were preferentially retained within the lower oesophagus. The propensity of these suspensions to rapidly swell on the mucosa and establish adhesive/cohesive bonds may explain their enhanced retention. The potential to control, through vehicle composition, the extent, duration and location of oesophageal retention could provide a useful tool for site targeting of viscous polymers to the oesophagus.

  4. Experimental studies on the nature of bonding of DNA/bipyridyl-(ethylenediamine)platinum(II) and DNA/netropsin complexes in solution and oriented wet-spun films

    NASA Astrophysics Data System (ADS)

    Marlowe, R. L.; Szabo, A.; Lee, S. A.; Rupprecht, A.

    2002-03-01

    The stability of complexes of NaDNA with bipyridyl-(ethylenediamine)platinum(II) (abbreviated [(bipy)Pt(en)]) and with netropsin has been studied using two techniques: (i) ultraviolet melting experiments were done on NaDNA/[(bipy)Pt(en)], showing that the [(bipy)Pt(en)] ligand stabilizes the DNA double helix structure; and (ii) swelling measurements (via optical microscopy) as a function of relative humidity were done on wet-spun oriented films of NaDNA/[(bipy)Pt(en)] and of NaDNA/netropsin. The swelling data shows that an irreversible transition of the films occurs at high relative humidity, first for the NaDNA/netropsin, then for pure NaDNA, and lastly for the NaDNA/[(bipy)Pt(en)]. These results are indicative that the [(bipy)Pt(en)] complex stabilizes the intermolecular bonds which mediate the film swelling characteristics. A model is suggested for the binding of [(bipy)Pt(en)] to DNA to explain why the swelling experiments show this ligand as increasing the intermolecular bond strength between the DNA double helices, while netropsin decreases this degree of stabilization.

  5. Swell Sleeves for Testing Explosive Devices

    NASA Technical Reports Server (NTRS)

    Hinkel, Todd J.; Dean, Richard J.; Hohmann, Carl W.; Hacker, Scott C.; Harrington, Douglas W.; Bacak, James W.

    2003-01-01

    A method of testing explosive and pyrotechnic devices involves exploding the devices inside swell sleeves. Swell sleeves have been used previously for measuring forces. In the present method, they are used to obtain quantitative indications of the energy released in explosions of the devices under test. A swell sleeve is basically a thick-walled, hollow metal cylinder threaded at one end to accept a threaded surface on a device to be tested (see Figure 1). Once the device has been tightly threaded in place in the swell sleeve, the device-and-swell-sleeve assembly is placed in a test fixture, then the device is detonated. After the explosion, the assembly is removed from the test fixture and placed in a coordinate-measuring machine for measurement of the diameter of the swell sleeve as a function of axial position. For each axial position, the original diameter of the sleeve is subtracted from the diameter of the sleeve as swollen by the explosion to obtain the diametral swelling as a function of axial position (see Figure 2). The amount of swelling is taken as a measure of the energy released in the explosion. The amount of swelling can be compared to a standard amount of swelling to determine whether the pyrotechnic device functioned as specified.

  6. Common symptoms during pregnancy

    MedlinePlus

    ... keep your gums healthy Swelling, Varicose Veins, and Hemorrhoids Swelling in your legs is common. You may ... In your rectum, veins that swell are called hemorrhoids. To reduce swelling: Raise your legs and rest ...

  7. [Study on ultra-structural pathological changes of rats poisoned by tetramine].

    PubMed

    Zhi, Chuan-hong; Liu, Liang; Liu, Yan

    2005-05-01

    To observe ultra-structural pathological changes of materiality viscera of rats poisoned by different dose of tetramine and to study the toxic mechanism. Acute and subacute tetramine toxicity models were made by oral administration with different dose of tetramine. Brain, heart, liver, spleen and kidney were extracted and observed by electromicroscopic examination. The injuries of brain cells, cardiocytes and liver cells were induced by different dose of tetramine. These were not obviously different of the injuries of the kindy cells and spleen cells of rats poisoned by different dose of tetramine. Ultra-structural pathological changes were abserved including mitochondria slight swelling and neurolemma's array turbulence in the brain cells, mitochondria swelling or abolish and rupture of muscle fiber in the heart cells, mitochondria swelling and the glycogen decreased in the liver cells. The toxic target organs of tetramine are the heart, brain and liver.

  8. Swelling and hydrolysis kinetics of Kraft pulp fibers in aqueous 1-butyl-3-methylimidazolium hydrogen sulfate solutions.

    PubMed

    Mao, Jia; Abushammala, Hatem; Pereira, Laura Barcellos; Laborie, Marie-Pierre

    2016-11-20

    1Butyl-3-methylimidazolium hydrogen sulfate ([Bmim]HSO4) is efficient at extracting cellulose nanocrystals from pulp fibers. To shed some light on the respective contributions of swelling and hydrolysis of pulp fibers by [Bmim]HSO4, the physical, structural and morphological characteristics of hardwood Kraft pulp fibers were monitored under various conditions of temperature, water content and time. Swelling was largely compounded by hydrolysis at the highest temperatures (120°C) as evidenced by mass loss and reduced degree of polymerization (DPn) at this temperature. At 120°C only, water content appeared to play a significant role on the extent of hydrolysis. At this temperature, a heterogeneous kinetic model involving weak links and amorphous regions best described the experimental data. Hydrolysis rates were maximum at 25% water content in the aqueous ionic liquid. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Synthesis and characterization of superabsorbent polymer prepared by radiation-induced graft copolymerization of acrylamide onto carboxymethyl cellulose for controlled release of agrochemicals

    NASA Astrophysics Data System (ADS)

    Hemvichian, Kasinee; Chanthawong, Auraruk; Suwanmala, Phiriyatorn

    2014-10-01

    Superabsorbent polymer (SAP) was synthesized by radiation-induced grafting of acrylamide (AM) onto carboxymethyl cellulose (CMC) in the presence of a crosslinking agent, N,N‧-methylenebisacrylamide (MBA). The effects of various parameters, such as dose, the amount of CMC, AM, MBA and ionic strength on the swelling ratio were investigated. In order to evaluate its controlled release potential, SAP was loaded with potassium nitrate (KNO3) as an agrochemical model and its potential for controlled release of KNO3 was studied. The amount of released KNO3 was analyzed by an inductively coupled plasma mass spectrometry (ICP-MS). The results from controlled release experiment agreed very well with the results from swelling experiment. The synthesized SAP was characterized by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The obtained SAP exhibited a swelling ratio of 190 g/g of dry gel.

  10. Improvement of Expansive Soils Using Chemical Stabilizers

    NASA Astrophysics Data System (ADS)

    Ikizler, S. B.; Senol, A.; Khosrowshahi, S. K.; Hatipoğlu, M.

    2014-12-01

    The aim of this study is to investigate the effect of two chemical stabilizers on the swelling potential of expansive soil. A high plasticity sodium bentonite was used as the expansive soil. The additive materials including fly ash (FA) and lime (L) were evaluated as potential stabilizers to decrease the swelling pressure of bentonite. Depending on the type of additive materials, they were blended with bentonite in different percentages to assess the optimum state and approch the maximum swell pressure reduction. According to the results of swell pressure test, both fly ash and lime reduce the swelling potential of bentonite but the maximum improvement occurs using bentonite-lime mixture while the swelling pressure reduction approaches to 49%. The results reveal a significant reduction of swelling potential of expansive soil using chemical stabilizers. Keywords: Expansive soil; swell pressure; chemical stabilization; fly ash; lime

  11. Efficient computer algebra algorithms for polynomial matrices in control design

    NASA Technical Reports Server (NTRS)

    Baras, J. S.; Macenany, D. C.; Munach, R.

    1989-01-01

    The theory of polynomial matrices plays a key role in the design and analysis of multi-input multi-output control and communications systems using frequency domain methods. Examples include coprime factorizations of transfer functions, cannonical realizations from matrix fraction descriptions, and the transfer function design of feedback compensators. Typically, such problems abstract in a natural way to the need to solve systems of Diophantine equations or systems of linear equations over polynomials. These and other problems involving polynomial matrices can in turn be reduced to polynomial matrix triangularization procedures, a result which is not surprising given the importance of matrix triangularization techniques in numerical linear algebra. Matrices with entries from a field and Gaussian elimination play a fundamental role in understanding the triangularization process. In the case of polynomial matrices, matrices with entries from a ring for which Gaussian elimination is not defined and triangularization is accomplished by what is quite properly called Euclidean elimination. Unfortunately, the numerical stability and sensitivity issues which accompany floating point approaches to Euclidean elimination are not very well understood. New algorithms are presented which circumvent entirely such numerical issues through the use of exact, symbolic methods in computer algebra. The use of such error-free algorithms guarantees that the results are accurate to within the precision of the model data--the best that can be hoped for. Care must be taken in the design of such algorithms due to the phenomenon of intermediate expressions swell.

  12. Development of PRIME for irradiation performance analysis of U-Mo/Al dispersion fuel

    NASA Astrophysics Data System (ADS)

    Jeong, Gwan Yoon; Kim, Yeon Soo; Jeong, Yong Jin; Park, Jong Man; Sohn, Dong-Seong

    2018-04-01

    A prediction code for the thermo-mechanical performance of research reactor fuel (PRIME) has been developed with the implementation of developed models to analyze the irradiation behavior of U-Mo dispersion fuel. The code is capable of predicting the two-dimensional thermal and mechanical performance of U-Mo dispersion fuel during irradiation. A finite element method was employed to solve the governing equations for thermal and mechanical equilibria. Temperature- and burnup-dependent material properties of the fuel meat constituents and cladding were used. The numerical solution schemes in PRIME were verified by benchmarking solutions obtained using a commercial finite element analysis program (ABAQUS). The code was validated using irradiation data from RERTR, HAMP-1, and E-FUTURE tests. The measured irradiation data used in the validation were IL thickness, volume fractions of fuel meat constituents for the thermal analysis, and profiles of the plate thickness changes and fuel meat swelling for the mechanical analysis. The prediction results were in good agreement with the measurement data for both thermal and mechanical analyses, confirming the validity of the code.

  13. Appraisal of jaw swellings in a Nigerian tertiary healthcare facility.

    PubMed

    Lasisi, Taye J; Adisa, Akinyele O; Olusanya, Adeola A

    2013-02-01

    The mandible and maxilla can be the site of myriads of lesions that may be categorized as neoplastic, cystic, reactive and infective or inflammatory. Literature reviewing jaw swellings in an amalgamated fashion are uncommon, probably because aetiologies for these swellings are varied. However, to appreciate their relative relationship, it is essential to evaluate the clinico-pathologic profile of jaw swellings. The aim of this appraisal is to describe the array of jaw swellings seen at our hospital from 1990 to 2011, to serve as a reference database. Biopsy records of all histologically diagnosed cases of jaw swellings seen at the department of Oral Pathology, University College Hospital between January 1990 and December 2011 were retrieved, coded and inputted into SPSS version 20. Data on prevalence, age, sex, site and histological diagnosis were analysed descriptively for each category of jaw swellings. All patients below 16 years were regarded as children. A total of 638 jaw swellings were recorded in the 22-year study period. The Non Odontogenic Tumours (NOT) were the commonest, accounting for 46.2% of all jaw swellings. Odontogenic Tumours (OT) formed 45% of all adult jaw swelling while it formed 25.2% in children and adolescents. Ameloblastoma was the commonest while the most common NOT was ossifying fibroma (OF). Chronic osteomyelitis of the jaws was about 6 times commoner in adult females than males and mostly involved the mandible. The most common malignant jaw swelling was Burkitts' lymphoma (BL) that was about 7 times more in children than adults. Osteogenic sarcoma was the most common malignancy in adults. Jaw swellings are extensively varied in types and pattern of occurrence. This study has categorized jaw swellings in a simple but comprehensive fashion to allow for easy referencing in local and international data acquisition and epidemiological comparison. Key words:Jaw swellings, odontogenic, Nigeria.

  14. Site-Specific Pre-Swelling-Directed Morphing Structures of Patterned Hydrogels.

    PubMed

    Wang, Zhi Jian; Hong, Wei; Wu, Zi Liang; Zheng, Qiang

    2017-12-11

    Morphing materials have promising applications in various fields, yet how to program the self-shaping process for specific configurations remains a challenge. Herein we show a versatile approach to control the buckling of individual domains and thus the outcome configurations of planar-patterned hydrogels. By photolithography, high-swelling disc gels were positioned in a non-swelling gel sheet; the swelling mismatch resulted in out-of-plain buckling of the disc gels. To locally control the buckling direction, masks with holes were used to guide site-specific swelling of the high-swelling gel under the holes, which built a transient through-thickness gradient and thus directed the buckling during the subsequent unmasked swelling process. Therefore, various configurations of an identical patterned hydrogel can be programmed by the pre-swelling step with different masks to encode the buckling directions of separate domains. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effects of matrix shrinkage and swelling on the economics of enhanced-coalbed-methane production and CO{sub 2} sequestration in coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorucu, F.B.; Jikich, S.A.; Bromhal, G.S.

    2007-08-15

    In this work, the Palmer-Mansoori model for coal shrinkage and permeability increases during primary methane production was rewritten to also account for coal swelling caused by CO{sub 2} sorption. The generalized model was added to a compositional, dual porosity coalbed-methane reservoir simulator for primary (CBM) and ECBM production. A standard five-spot of vertical wells and representative coal properties for Appalachian coals was used. Simulations and sensitivity analyses were performed with the modified simulator for nine different parameters, including coal seam and operational parameters and economic criteria. The coal properties and operating parameters that were varied included Young's modulus, Poisson's ratio,more » cleat porosity, and injection pressure. The economic variables included CH{sub 4}, price, Col Cost, CO{sub 2} credit, water disposal cost, and interest rate. Net-present value (NPV) analyses of the simulation results included profits resulting from CH{sub 4}, production and potential incentives for sequestered CO{sub 2}, This work shows that for some coal seams, the combination of compressibility, cleat porosity, and shrinkage/swelling of the coal may have a significant impact on project economics.« less

  16. Detection of CFTR function and modulation in primary human nasal cell spheroids.

    PubMed

    Brewington, John J; Filbrandt, Erin T; LaRosa, F J; Ostmann, Alicia J; Strecker, Lauren M; Szczesniak, Rhonda D; Clancy, John P

    2018-01-01

    Expansion of CFTR modulators to patients with rare/undescribed mutations will be facilitated by patient-derived models quantifying CFTR function and restoration. We aimed to generate a personalized model system of CFTR function and modulation using non-surgically obtained nasal epithelial cells (NECs). NECs obtained by curettage from healthy volunteers and CF patients were expanded and grown in 3-dimensional culture as spheroids, characterized, and stimulated with cAMP-inducing agents to activate CFTR. Spheroid swelling was quantified as a proxy for CFTR function. NEC spheroids recapitulated characteristics of pseudostratified respiratory epithelia. When stimulated with forskolin/IBMX, spheroids swelled in the presence of functional CFTR, and shrank in its absence. Spheroid swelling quantified mutant CFTR restoration in F508del homozygous cells using clinically available CFTR modulators. NEC spheroids hold promise for understanding rare CFTR mutations and personalized modulator testing to drive evaluation for CF patients with common, rare or undescribed mutations. Portions of this data have previously been presented in abstract form at the 2016 meetings of the American Thoracic Society and the 2016 North American Cystic Fibrosis Conference. Copyright © 2017 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  17. Modeling of thermo-mechanical and irradiation behavior of mixed oxide fuel for sodium fast reactors

    NASA Astrophysics Data System (ADS)

    Karahan, Aydın; Buongiorno, Jacopo

    2010-01-01

    An engineering code to model the irradiation behavior of UO2-PuO2 mixed oxide fuel pins in sodium-cooled fast reactors was developed. The code was named fuel engineering and structural analysis tool (FEAST-OXIDE). FEAST-OXIDE has several modules working in coupled form with an explicit numerical algorithm. These modules describe: (1) fission gas release and swelling, (2) fuel chemistry and restructuring, (3) temperature distribution, (4) fuel-clad chemical interaction and (5) fuel-clad mechanical analysis. Given the fuel pin geometry, composition and irradiation history, FEAST-OXIDE can analyze fuel and cladding thermo-mechanical behavior at both steady-state and design-basis transient scenarios. The code was written in FORTRAN-90 program language. The mechanical analysis module implements the LIFE algorithm. Fission gas release and swelling behavior is described by the OGRES and NEFIG models. However, the original OGRES model has been extended to include the effects of joint oxide gain (JOG) formation on fission gas release and swelling. A detailed fuel chemistry model has been included to describe the cesium radial migration and JOG formation, oxygen and plutonium radial distribution and the axial migration of cesium. The fuel restructuring model includes the effects of as-fabricated porosity migration, irradiation-induced fuel densification, grain growth, hot pressing and fuel cracking and relocation. Finally, a kinetics model is included to predict the clad wastage formation. FEAST-OXIDE predictions have been compared to the available FFTF, EBR-II and JOYO databases, as well as the LIFE-4 code predictions. The agreement was found to be satisfactory for steady-state and slow-ramp over-power accidents.

  18. Identification of Multiple QTLs Linked to Neuropathology in the Engrailed-1 Heterozygous Mouse Model of Parkinson’s Disease

    PubMed Central

    Kurowska, Zuzanna; Jewett, Michael; Brattås, Per Ludvik; Jimenez-Ferrer, Itzia; Kenéz, Xuyian; Björklund, Tomas; Nordström, Ulrika; Brundin, Patrik; Swanberg, Maria

    2016-01-01

    Motor symptoms in Parkinson’s disease are attributed to degeneration of midbrain dopaminergic neurons (DNs). Heterozygosity for Engrailed-1 (En1), one of the key factors for programming and maintenance of DNs, results in a parkinsonian phenotype featuring progressive degeneration of DNs in substantia nigra pars compacta (SNpc), decreased striatal dopamine levels and swellings of nigro-striatal axons in the SwissOF1-En1+/− mouse strain. In contrast, C57Bl/6-En1+/− mice do not display this neurodegenerative phenotype, suggesting that susceptibility to En1 heterozygosity is genetically regulated. Our goal was to identify quantitative trait loci (QTLs) that regulate the susceptibility to PD-like neurodegenerative changes in response to loss of one En1 allele. We intercrossed SwissOF1-En1+/− and C57Bl/6 mice to obtain F2 mice with mixed genomes and analyzed number of DNs in SNpc and striatal axonal swellings in 120 F2-En1+/− 17 week-old male mice. Linkage analyses revealed 8 QTLs linked to number of DNs (p = 2.4e-09, variance explained = 74%), 7 QTLs linked to load of axonal swellings (p = 1.7e-12, variance explained = 80%) and 8 QTLs linked to size of axonal swellings (p = 7.0e-11, variance explained = 74%). These loci should be of prime interest for studies of susceptibility to Parkinson’s disease-like damage in rodent disease models and considered in clinical association studies in PD. PMID:27550741

  19. Swelling equilibrium of dentin adhesive polymers formed on the water-adhesive phase boundary: Experiments and micromechanical model

    PubMed Central

    Misra, Anil; Parthasarathy, Ranganathan; Ye, Qiang; Singh, Viraj; Spencer, Paulette

    2013-01-01

    During their application to the wet, oral environment, dentin adhesives can experience phase separation and composition change which can compromise the quality of the hybrid layer formed at the dentin-adhesive interface. The chemical composition of polymer phases formed in the hybrid layer can be represented using a ternary water-adhesive phase diagram. In this paper, these polymer phases have been characterized using a suite of mechanical tests and swelling experiments. The experimental results were evaluated using granular micromechanics based model that incorporates poro-mechanical effects and polymer-solvent thermodynamics. The variation of the model parameters and model-predicted polymer properties has been studied as a function of composition along the phase boundary. The resulting structure-property correlations provide insight into interactions occurring at the molecular level in the saturated polymer system. These correlations can be used for modeling the mechanical behavior of hybrid layer, and are expected to aid in the design and improvement of water-compatible dentin adhesive polymers. PMID:24076070

  20. Assessment of corneal properties based on statistical modeling of OCT speckle.

    PubMed

    Jesus, Danilo A; Iskander, D Robert

    2017-01-01

    A new approach to assess the properties of the corneal micro-structure in vivo based on the statistical modeling of speckle obtained from Optical Coherence Tomography (OCT) is presented. A number of statistical models were proposed to fit the corneal speckle data obtained from OCT raw image. Short-term changes in corneal properties were studied by inducing corneal swelling whereas age-related changes were observed analyzing data of sixty-five subjects aged between twenty-four and seventy-three years. Generalized Gamma distribution has shown to be the best model, in terms of the Akaike's Information Criterion, to fit the OCT corneal speckle. Its parameters have shown statistically significant differences (Kruskal-Wallis, p < 0.001) for short and age-related corneal changes. In addition, it was observed that age-related changes influence the corneal biomechanical behaviour when corneal swelling is induced. This study shows that Generalized Gamma distribution can be utilized to modeling corneal speckle in OCT in vivo providing complementary quantified information where micro-structure of corneal tissue is of essence.

  1. Application of laboratory reflectance spectroscopy to target and map expansive soils: example of the western Loiret, France

    NASA Astrophysics Data System (ADS)

    Hohmann, Audrey; Dufréchou, Grégory; Grandjean, Gilles; Bourguignon, Anne

    2014-05-01

    Swelling soils contain clay minerals that change volume with water content and cause extensive and expensive damage on infrastructures. Based on spatial distribution of infrastructure damages and existing geological maps, the Bureau de Recherches Géologiques et Minières (BRGM, i.e. the French Geological Survey) published in 2010 a 1:50 000 swelling hazard map of France, indexing the territory to low, moderate, or high swelling risk. This study aims to use SWIR (1100-2500 nm) reflectance spectra of soils acquired under laboratory controlled conditions to estimate the swelling potential of soils and improve the swelling risk map of France. 332 samples were collected at the W of Orléans (France) in various geological formations and swelling risk areas. Comparisons of swelling potential of soil samples and swelling risk areas of the map show several inconsistent associations that confirm the necessity to redraw the actual swelling risk map of France. New swelling risk maps of the sampling area were produce from soil samples using three interpolation methods. Maps produce using kriging and Natural neighbour interpolation methods did not permit to show discrete lithological units, introduced unsupported swelling risk zones, and did not appear useful to refine swelling risk map of France. Voronoi polygon was also used to produce map where swelling potential estimated from each samples were extrapolated to a polygon and all polygons were thus supported by field information. From methods tested here, Voronoi polygon appears thus the most adapted method to produce expansive soils maps. However, size of polygon is highly dependent of the samples spacing and samples may not be representative of the entire polygon. More samples are thus needed to provide reliable map at the scale of the sampling area. Soils were also sampled along two sections with a sampling interval of ca. 260 m and ca. 50 m. Sample interval of 50 m appears more adapted for mapping of smallest lithological units. The presence of several samples close to themselves indicating the same swelling potential is a good indication of the presence of a zone with constant swelling potential. Combination of Voronoi method and sampling interval of ca. 50 m appear adapted to produce local swelling potential maps in areas where doubt remain or where infrastructure damages attributed to expansive soils are knew.

  2. Thirty-four years of Hawaii wave hindcast from downscaling of climate forecast system reanalysis

    NASA Astrophysics Data System (ADS)

    Li, Ning; Cheung, Kwok Fai; Stopa, Justin E.; Hsiao, Feng; Chen, Yi-Leng; Vega, Luis; Cross, Patrick

    2016-04-01

    The complex wave climate of Hawaii includes a mix of seasonal swells and wind waves from all directions across the Pacific. Numerical hindcasting from surface winds provides essential space-time information to complement buoy and satellite observations for studies of the marine environment. We utilize WAVEWATCH III and SWAN (Simulating WAves Nearshore) in a nested grid system to model basin-wide processes as well as high-resolution wave conditions around the Hawaiian Islands from 1979 to 2013. The wind forcing includes the Climate Forecast System Reanalysis (CFSR) for the globe and downscaled regional winds from the Weather Research and Forecasting (WRF) model. Long-term in-situ buoy measurements and remotely-sensed wind speeds and wave heights allow thorough assessment of the modeling approach and data products for practical application. The high-resolution WRF winds, which include orographic and land-surface effects, are validated with QuickSCAT observations from 2000 to 2009. The wave hindcast reproduces the spatial patterns of swell and wind wave events detected by altimeters on multiple platforms between 1991 and 2009 as well as the seasonal variations recorded at 16 offshore and nearshore buoys around the Hawaiian Islands from 1979 to 2013. The hindcast captures heightened seas in interisland channels and around prominent headlands, but tends to overestimate the heights of approaching northwest swells and give lower estimates in sheltered areas. The validated high-resolution hindcast sets a baseline for future improvement of spectral wave models.

  3. Swelling of two-dimensional polymer rings by trapped particles.

    PubMed

    Haleva, E; Diamant, H

    2006-09-01

    The mean area of a two-dimensional Gaussian ring of N monomers is known to diverge when the ring is subject to a critical pressure differential, p c ~ N -1. In a recent publication (Eur. Phys. J. E 19, 461 (2006)) we have shown that for an inextensible freely jointed ring this divergence turns into a second-order transition from a crumpled state, where the mean area scales as [A]~N-1, to a smooth state with [A]~N(2). In the current work we extend these two models to the case where the swelling of the ring is caused by trapped ideal-gas particles. The Gaussian model is solved exactly, and the freely jointed one is treated using a Flory argument, mean-field theory, and Monte Carlo simulations. For a fixed number Q of trapped particles the criticality disappears in both models through an unusual mechanism, arising from the absence of an area constraint. In the Gaussian case the ring swells to such a mean area, [A]~ NQ, that the pressure exerted by the particles is at p c for any Q. In the freely jointed model the mean area is such that the particle pressure is always higher than p c, and [A] consequently follows a single scaling law, [A]~N(2) f (Q/N), for any Q. By contrast, when the particles are in contact with a reservoir of fixed chemical potential, the criticality is retained. Thus, the two ensembles are manifestly inequivalent in these systems.

  4. DART model for thermal conductivity of U{sub 3}Si{sub 2} aluminum dispersion fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rest, J.; Snelgrove, J.L.; Hofman, G.L.

    1995-09-01

    This paper describes the primary physical models that form the basis of the DART model for calculating irradiation-induced changes in the thermal conductivity of aluminium dispersion fuel. DART calculations of fuel swelling, pore closure, and thermal conductivity are compared with measured values.

  5. An analytic model of axisymmetric mantle plume due to thermal and chemical diffusion

    NASA Technical Reports Server (NTRS)

    Liu, Mian; Chase, Clement G.

    1990-01-01

    An analytic model of axisymmetric mantle plumes driven by either thermal diffusion or combined diffusion of both heat and chemical species from a point source is presented. The governing equations are solved numerically in cylindrical coordinates for a Newtonian fluid with constant viscosity. Instead of starting from an assumed plume source, constraints on the source parameters, such as the depth of the source regions and the total heat input from the plume sources, are deduced using the geophysical characteristics of mantle plumes inferred from modelling of hotspot swells. The Hawaiian hotspot and the Bermuda hotspot are used as examples. Narrow mantle plumes are expected for likely mantle viscosities. The temperature anomaly and the size of thermal plumes underneath the lithosphere can be sensitive indicators of plume depth. The Hawaiian plume is likely to originate at a much greater depth than the Bermuda plume. One suggestive result puts the Hawaiian plume source at a depth near the core-mantle boundary and the source of the Bermuda plume in the upper mantle, close to the 700 km discontinuity. The total thermal energy input by the source region to the Hawaiian plume is about 5 x 10(10) watts. The corresponding diameter of the source region is about 100 to 150 km. Chemical diffusion from the same source does not affect the thermal structure of the plume.

  6. A model framework for actuation and sensing of ionic polymer-metal composites: prospective on frequency and shear response through simulation tools

    NASA Astrophysics Data System (ADS)

    Stalbaum, Tyler; Shen, Qi; Kim, Kwang J.

    2017-04-01

    Ionic polymer-metal composite (IPMC) is a promising material for soft-robotic actuator and sensor applications. This material system offers large deformation response for low input voltage and has an aptitude for operation in hydrated environments. Researchers have been developing IPMC actuators and sensors for applications with examples of self-sensing actuators, artificial fish fins and biomimicry of other aquatic lifeforms, and in medical operations such as in guided catheter devices. IPMCs have been developed in a range of geometric configurations, with tube or cylindrical and flat-plate rectangular as the most common shapes. Several mathematical and physics-based models have been developed for describing the transduction effects of IPMCs. In this work, the underlying theories of electromechanical and mechanoelectrical transduction in IPMCs are discussed, and simulated results of frequency response and shear response are presented. A model backbone is utilized which is primarily based on ion-transport and charge dynamics within the polymer membrane. The electromechanical model, that is with an IPMC as an actuator, is caused when an electric field is applied across the membrane causing ionic migration and swelling in the polymer membrane, which is based on the Poisson-Nernst-Planck equations and solid mechanics models. The mechanoelectric model is similar in underlying physics; however, the primary mechanisms of transduction are of different significance, where anion concentrations are as important as cations. COMSOL Multiphysics is utilized for simulations. Example applications of the modeling framework are presented. The simulated results provide additional support for the underlying physics theories discussed.

  7. The structural, morphological and thermal properties of grafted pH-sensitive interpenetrating highly porous polymeric composites of sodium alginate/acrylic acid copolymers for controlled delivery of diclofenac potassium.

    PubMed

    Jalil, Aamir; Khan, Samiullah; Naeem, Fahad; Haider, Malik Suleman; Sarwar, Shoaib; Riaz, Amna; Ranjha, Nazar Muhammad

    2017-01-01

    In present investigation new formulations of Sodium Alginate/Acrylic acid hydrogels with high porous structure were synthesized by free radical polymerization technique for the controlled drug delivery of analgesic agent to colon. Many structural parameters like molecular weight between crosslinks ( M c ), crosslink density ( M r ), volume interaction parameter ( v 2, s ), Flory Huggins water interaction parameter and diffusion coefficient ( Q ) were calculated. Water uptake studies was conducted in different USP phosphate buffer solutions. All samples showed higher swelling ratio with increasing pH values because of ionization of carboxylic groups at higher pH values. Porosity and gel fraction of all the samples were calculated. New selected samples were loaded with the model drug (diclofenac potassium).The amount of drug loaded and released was determined and it was found that all the samples showed higher release of drug at higher pH values. Release of diclofenac potassium was found to be dependent on the ratio of sodium alginate/acrylic acid, EGDMA and pH of the medium. Experimental data was fitted to various model equations and corresponding parameters were calculated to study the release mechanism. The Structural, Morphological and Thermal Properties of interpenetrating hydrogels were studied by FTIR, XRD, DSC, and SEM.

  8. Counterion-induced swelling of ionic microgels

    NASA Astrophysics Data System (ADS)

    Denton, Alan R.; Tang, Qiyun

    2016-10-01

    Ionic microgel particles, when dispersed in a solvent, swell to equilibrium sizes that are governed by a balance between electrostatic and elastic forces. Tuning of particle size by varying external stimuli, such as pH, salt concentration, and temperature, has relevance for drug delivery, microfluidics, and filtration. To model swelling of ionic microgels, we derive a statistical mechanical theorem, which proves exact within the cell model, for the electrostatic contribution to the osmotic pressure inside a permeable colloidal macroion. Applying the theorem, we demonstrate how the distribution of counterions within an ionic microgel determines the internal osmotic pressure. By combining the electrostatic pressure, which we compute via both Poisson-Boltzmann theory and molecular dynamics simulation, with the elastic pressure, modeled via the Flory-Rehner theory of swollen polymer networks, we show how deswelling of ionic microgels with increasing concentration of particles can result from a redistribution of counterions that reduces electrostatic pressure. A linearized approximation for the electrostatic pressure, which proves remarkably accurate, provides physical insight and greatly eases numerical calculations for practical applications. Comparing with experiments, we explain why soft particles in deionized suspensions deswell upon increasing concentration and why this effect may be suppressed at higher ionic strength. The failure of the uniform ideal-gas approximation to adequately account for counterion-induced deswelling below close packing of microgels is attributed to neglect of spatial variation of the counterion density profile and the electrostatic pressure of incompletely neutralized macroions.

  9. In vitro measurement of nucleus pulposus swelling pressure: A new technique for studies of spinal adaptation to gravity

    NASA Technical Reports Server (NTRS)

    Hargens, A. R.; Glover, M. G.; Mahmood, M. M.; Gott, S.; Garfin, S. R.; Ballard, R.; Murthy, G.; Brown, M. D.

    1992-01-01

    Swelling of the intervertebral disc nucleus pulposus is altered by posture and gravity. We have designed and tested a new osmometer for in vitro determination of nucleus pulposus swelling pressure. The functional principle of the osmometer involves compressing a sample of nucleus pulposus with nitrogen gas until saline pressure gradients across a 0.45 microns Millipore filter are eliminated. Swelling pressure of both pooled dog and pooled pig lumbar disc nucleus pulposus were measured on the new osmometer and compared to swelling pressures determined using the equilibrium dialysis technique. The osmometer measured swelling pressures comparable to those obtained by the dialysis technique. This osmometer provides a rapid, direct, and accurate measurement of swelling pressure of the nucleus pulposus.

  10. Crocin reduces the inflammation response in rheumatoid arthritis.

    PubMed

    Li, Xiang; Jiang, Chao; Zhu, Wenyong

    2017-05-01

    This study is to determine the role and mechanism of crocin in rheumatoid arthritis (RA). Totally 60 Wistar SD rats were randomly divided into control group, RA model group, methotrexate group, crocin high dose, middle dose, and low dose groups. The paw swelling degree, arthritis score, thymus and spleen index, the mRNA and protein levels of iNOS, and the serum content of TNF-α, IL-1β, and IL-6 were evaluated. Crocin treatment significantly alleviated the paw swelling of RA rats. The arthritis score in crocin treatment groups was significantly lower than that in RA model group. Additionally, the thymus index, but not the spleen index, declined remarkably in crocin treatment groups than in RA model group. Besides, crocin administration significantly reduced the iNOS production and the serum content of TNF-α, IL-1β, and IL-6. Crocin may exert potent anti-RA effects through inhibiting cytokine.

  11. Creep and Sliding in Clay Slopes: Mutual Effects of Interlayer Swelling and Ice Jacking.

    DTIC Science & Technology

    1983-08-24

    project, swelling and freezing, have been treated as well. The extent of swell heave of the montmorillonite clay under investigation depends on the...the amount of clay size particles: up to 70% and the amount of montmorillonite : up to 35%. 1.2. Grain Size Distribution Twelve hydrometer tests were...in physical conditions and exhibit swelling again upon subsequent wetting. Another important swelling parameter is the montmorillonite content, that

  12. MOELCULAR SIZE EXCLUSION BY SOIL ORGANIC MATERIALS ESTIMATED FROM THEIR SWELLING IN ORGANIC SOLVENTS

    EPA Science Inventory

    A published method previously developed to measure the swelling characteristics of pow dered coal samples has been adapted for swelling measurements on various peat, pollen, chain, and cellulose samples The swelling of these macromolecular materials is the volumetric manifestatio...

  13. MOLECULAR SIZE EXCLUSION BY SOIL ORGANIC MATERIALS ESTIMATED FROM THEIR SWELLING IN ORGANIC SOLVENTS

    EPA Science Inventory

    A published method previously developed to measure the swelling characteristics of powdered coal samples has been adapted for swelling measurements on various peat, pollen, chitin, and cellulose samples. he swelling of these macromolecular materials is the volumetric manifestatio...

  14. Dissecting anode swelling in commercial lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Ningxin; Tang, Huaqiong

    2012-11-01

    An innovative method is applied to investigate anode swelling during electrochemical processes in commercial lithium-ion batteries. Cathode surface is partially covered with a piece of paste to block the transportation of lithium ion from active material during charging/discharging, and the corresponding part on the anode film shows no formation of Li-graphite compounds during different electrochemical processes, which is confirmed by XRD analysis. The increases of anode thickness within and outside lithiated zone are measured, and defined as electrochemical swelling and physical swelling respectively. The microscopic lattice expansion of graphite due to lithiation process correlates to mesoscopic electrochemical swelling synchronically, while physical swelling tends to decrease steadily with time. The relationship among the microscopic stress due to lithium-ion intercalation, the mesoscopic stress resulting in anode swelling, and the macroscopic rippling of pouch cell after a large number of cycle test, is analyzed and correlated in terms of stress evolution across different scales, and suggestions for solving anode swelling are provided.

  15. Effect of synthesis parameters on polymethacrylic acid xerogel structures and equilibrium swelling

    NASA Astrophysics Data System (ADS)

    Panić, V.; Jovanović, J.; Adnadjević, B.; Velicković, S.

    2009-09-01

    Hydrogels based on crosslinked polymethacrylic acid were synthesized via free-radical polymerization in aqueous solution, using N,N'-methylene bisacrylamide as a crosslinking agent and 2,2'-azobis-[2-(2-imidazolin-2-yl)propane] dihydrochloride as an initiator. The influence of the reaction parameters (the neutralization degree of methacrylic acid and the initial monomer concentration) on the equilibrium swelling degree, the swelling kinetic parameters and the basic structural properties of xerogels was investigated. The change of synthesis parameters leads to the change of the basic structural parameters of xerogel, as well as the equilibrium swelling degree and the initial swelling rate of the hydrogels. It is found that there are power form relationships between the equilibrium swelling degree, the initial swelling rate and the structural xerogel’s properties and the change of the neutralization degree of monomer, i.e. the monomer concentration. The examined correlations proved that the crosslinking density is the crucial parameter which determines all the other investigated structural and swelling parameters.

  16. Tuning the Hydrophilic/Hydrophobic Balance to Control the Structure of Chitosan Films and Their Protein Release Behavior.

    PubMed

    Becerra, Jose; Sudre, Guillaume; Royaud, Isabelle; Montserret, Roland; Verrier, Bernard; Rochas, Cyrille; Delair, Thierry; David, Laurent

    2017-05-01

    The control over the crystallinity of chitosan and chitosan/ovalbumin films can be achieved via an appropriate balance of the hydrophilic/hydrophobic interactions during the film formation process, which then controls the release kinetics of ovalbumin. Chitosan films were prepared by solvent casting. The presence of the anhydrous allomorph can be viewed as a probe of the hydrophobic conditions at the neutralization step. The semicrystalline structure, the swelling behavior of the films, the protein/chitosan interactions, and the release behavior of the films were impacted by the DA and the film processing parameters. At low DAs, the chitosan films neutralized in the solid state corresponded to the most hydrophobic environment, inducing the crystallization of the anhydrous allomorph with and without protein. The most hydrophilic conditions, leading to the hydrated allomorph, corresponded to non-neutralized films for the highest DAs. For the non-neutralized chitosan acetate (amorphous) films, the swelling increased when the DA decreased, whereas for the neutralized chitosan films, the swelling decreased. The in vitro release of ovalbumin (model protein) from chitosan films was controlled by their swelling behavior. For fast swelling films (DA = 45%), a burst effect was observed. On the contrary, a lag time was evidenced for DA = 2.5% with a limited release of the protein. Furthermore, by blending chitosans (DA = 2.5% and 45%), the release behavior was improved by reducing the burst effect and the lag time. The secondary structure of ovalbumin was partially maintained in the solid state, and the ovalbumin was released under its native form.

  17. Protein kinase C enhances the swelling-induced chloride current in human atrial myocytes.

    PubMed

    Li, Ye-Tao; Du, Xin-Ling

    2016-06-01

    Swelling-activated chloride currents (ICl.swell) are thought to play a role in several physiologic and pathophysiologic processes and thus represent a target for therapeutic approaches. However, the mechanism of ICl.swell regulation remains unclear. In this study, we used the whole-cell patch-clamp technique to examine the role of protein kinase C (PKC) in the regulation of ICl.swell in human atrial myocytes. Atrial myocytes were isolated from the right atrial appendages of patients undergoing coronary artery bypass and enzymatically dissociated. ICl.swell was evoked in hypotonic solution and recorded using the whole-cell patch-clamp technique. The PKC agonist phorbol dibutyrate (PDBu) enhanced ICl.swell in a concentration-dependent manner, which was reversed in isotonic solution and by a chloride current inhibitor, 9-anthracenecarboxylicacid. Furthermore, the PKC inhibitor bis-indolylmaleimide attenuated the effect and 4α-PDBu, an inactive PDBu analog, had no effect on ICl.swell. These results, obtained using the whole-cell patch-clamp technique, demonstrate the ability of PKC to activate ICl,swell in human atrial myocytes. This observation was consistent with a previous study using a single-channel patch-clamp technique, but differed from some findings in other species.

  18. Modulation of monocytic leukemia cell function and survival by high gradient magnetic fields and mathematical modeling studies.

    PubMed

    Zablotskii, Vitalii; Syrovets, Tatiana; Schmidt, Zoe W; Dejneka, Alexandr; Simmet, Thomas

    2014-03-01

    The influence of spatially modulated high gradient magnetic fields on cellular functions of human THP-1 leukemia cells is studied. We demonstrate that arrays of high-gradient micrometer-sized magnets induce i) cell swelling, ii) prolonged increased ROS production, and iii) inhibit cell proliferation, and iv) elicit apoptosis of THP-1 monocytic leukemia cells in the absence of chemical or biological agents. Mathematical modeling indicates that mechanical stress exerted on the cells by high magnetic gradient forces is responsible for triggering cell swelling and formation of reactive oxygen species followed by apoptosis. We discuss physical aspects of controlling cell functions by focused magnetic gradient forces, i.e. by a noninvasive and nondestructive physical approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Wicking Tests for Unidirectional Fabrics: Measurements of Capillary Parameters to Evaluate Capillary Pressure in Liquid Composite Molding Processes.

    PubMed

    Pucci, Monica Francesca; Liotier, Pierre-Jacques; Drapier, Sylvain

    2017-01-27

    During impregnation of a fibrous reinforcement in liquid composite molding (LCM) processes, capillary effects have to be understood in order to identify their influence on void formation in composite parts. Wicking in a fibrous medium described by the Washburn equation was considered equivalent to a flow under the effect of capillary pressure according to the Darcy law. Experimental tests for the characterization of wicking were conducted with both carbon and flax fiber reinforcement. Quasi-unidirectional fabrics were then tested by means of a tensiometer to determine the morphological and wetting parameters along the fiber direction. The procedure was shown to be promising when the morphology of the fabric is unchanged during capillary wicking. In the case of carbon fabrics, the capillary pressure can be calculated. Flax fibers are sensitive to moisture sorption and swell in water. This phenomenon has to be taken into account to assess the wetting parameters. In order to make fibers less sensitive to water sorption, a thermal treatment was carried out on flax reinforcements. This treatment enhances fiber morphological stability and prevents swelling in water. It was shown that treated fabrics have a linear wicking trend similar to those found in carbon fabrics, allowing for the determination of capillary pressure.

  20. Formulation and optimization of zinc-pectinate beads for the controlled delivery of resveratrol.

    PubMed

    Das, Surajit; Ng, Ka-Yun; Ho, Paul C

    2010-06-01

    Preventive and therapeutic efficacies of resveratrol on several lower gastrointestinal (GI) diseases (e.g., colorectal cancer, colitis) are well documented. To overcome the problems due to its rapid absorption and metabolism at the upper GI tract, a delayed release formulation of resveratrol was designed to treat these lower GI diseases. The current study aimed to develop a delayed release formulation of resveratrol as multiparticulate pectinate beads by varying different formulation parameters. Zinc-pectinate (Zn-pectinate) beads exhibited better delayed drug release pattern than calcium-pectinate (Ca-pectinate) beads. The effects of the formulation parameters were investigated on shape, size, Zn content, moisture content, drug encapsulation efficiency, swelling-erosion, and resveratrol retention pattern of the formulated beads. Upon optimization of the formulation parameters in relative to the drug release profiles, the optimized beads were further subjected to morphological, chemical interaction, enzymatic degradation, and stability studies. Almost all prepared beads were spherical with approximately 1 mm diameter and efficiently encapsulated resveratrol. The formulation parameters revealed great influence on resveratrol retention and swelling-erosion behavior. In most of the cases, the drug release data more appropriately fitted with zero-order equation. This study demonstrates that the optimized Zn-pectinate beads can encapsulate very high amount of resveratrol and can be used as delayed release formulation of resveratrol.

  1. Kinetics of shear-induced gel deswelling/solvent release.

    PubMed

    Zeo, Undina; Tarabukina, Elena; Budtova, Tatiana

    2005-11-02

    The kinetics of shear-induced deswelling of gel particles based on synthetic (sodium polyacrylate) and natural (alginate) polymers was studied by rheo-optical technique. A swollen spherical gel particle of 100+/-50 microm diameter was placed in silicone oil and the evolution of the gel size as a function of time and shear rate was monitored. Different aqueous polymer solutions were used as synthetic gel solvent: polyvinylpyrrolidone, hydroxypropyl cellulose and glucose-based polymer. The interfacial tension (gel solvent)/(silicone oil), gel degree of swelling, solvent quality and viscosity are the main parameters influencing the kinetics of shear-induced gel deswelling. The kinetics of gel volume loss was approximated by a modified Weibull equation.

  2. Detecting self-ion irradiation-induced void swelling in pure copper using transient grating spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennett, C. A.; So, K. P.; Kushima, A.

    Irradiation-induced void swelling remains a major challenge to nuclear reactor operation. Swelling may take years to initiate and often results in rapid material property degradation once started. Alloy development for advanced nuclear systems will require rapid characterization of the swelling breakaway dose in new alloys, yet this capability does not yet exist. In this paper, we demonstrate that transient grating spectroscopy (TGS) can detect void swelling in single crystal copper via changes in surface acoustic wave (SAW) velocity. Scanning transmission electron microscopy (STEM) links the TGS-observed changes with void swelling-induced microstructural evolution. Finally, these results are considered in the contextmore » of previous work to suggest that in situ TGS will be able to rapidly determine when new bulk materials begin void swelling, shortening alloy development and testing times.« less

  3. Detecting self-ion irradiation-induced void swelling in pure copper using transient grating spectroscopy

    DOE PAGES

    Dennett, C. A.; So, K. P.; Kushima, A.; ...

    2017-12-20

    Irradiation-induced void swelling remains a major challenge to nuclear reactor operation. Swelling may take years to initiate and often results in rapid material property degradation once started. Alloy development for advanced nuclear systems will require rapid characterization of the swelling breakaway dose in new alloys, yet this capability does not yet exist. In this paper, we demonstrate that transient grating spectroscopy (TGS) can detect void swelling in single crystal copper via changes in surface acoustic wave (SAW) velocity. Scanning transmission electron microscopy (STEM) links the TGS-observed changes with void swelling-induced microstructural evolution. Finally, these results are considered in the contextmore » of previous work to suggest that in situ TGS will be able to rapidly determine when new bulk materials begin void swelling, shortening alloy development and testing times.« less

  4. Modeling of Coupled Thermo-Hydro-Mechanical-Chemical Processes for Bentonite in a Clay-rock Repository for Heat-generating Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Xu, H.; Rutqvist, J.; Zheng, L.; Birkholzer, J. T.

    2016-12-01

    Engineered Barrier Systems (EBS) that include a bentonite-based buffer are designed to isolate the high-level radioactive waste emplaced in tunnels in deep geological formations. The heat emanated from the waste can drive the moisture flow transport and induce strongly coupled Thermal (T), Hydrological (H), Mechanical (M) and Chemical (C) processes within the bentonite buffer and may also impact the evolution of the excavation disturbed zone and the sealing between the buffer and walls of an emplacement tunnel The flow and contaminant transport potential along the disturbed zone can be minimized by backfilling the tunnels with bentonite, if it provides enough swelling stress when hydrated by the host rock. The swelling capability of clay minerals within the bentonite is important for sealing gaps between bentonite block, and between the EBS and the surrounding host rock. However, a high temperature could result in chemical alteration of bentonite-based buffer and backfill materials through illitization, which may compromise the function of these EBS components by reducing their plasticity and capability to swell under wetting. Therefore, an adequate THMC coupling scheme is required to understand and to predict the changes of bentonite for identifying whether EBS bentonite can sustain higher temperatures. More comprehensive links between chemistry and mechanics, taking advantage of the framework provided by a dual-structure model, named Barcelona Expansive Model (BExM), was implemented in TOUGHREACT-FLAC3D and is used to simulate the response of EBS bentonite in in clay formation for a generic case. The current work is to evaluate the chemical changes in EBS bentonite and the effects on the bentonite swelling stress under high temperature. This work sheds light on the interaction between THMC processes, evaluates the potential deterioration of EBS bentonite and supports the decision making in the design of a nuclear waste repository in light of the maximum allowance temperature.

  5. Polyelectrolyte gels as bending actuators: modeling and numerical simulation

    NASA Astrophysics Data System (ADS)

    Wallmersperger, Thomas; Keller, Karsten; Attaran, Abdolhamid

    2013-04-01

    Polyelectrolyte gels are ionic electroactivematerials. They have the ability to react as both, sensors and actuators. As actuators they can be used e.g. as artificial muscles or drug delivery control; as sensors they may be used for measuring e.g. pressure, pH or other ion concentrations in the solution. In this research both, anionic and cationic polyelectrolyte gels placed in aqueous solution with mobile anions and cations are investigated. Due to external stimuli the polyelectrolyte gels can swell or shrink enormously by the uptake or delivery of solvent. In the present research a coupled multi-field problem within a continuum mechanics framework is proposed. The modeling approach introduces a set of equations governing multiple fields of the problem, including the chemical field of the ionic species, the electrical field and the mechanical field. The numerical simulation is performed by using the Finite Element Method. Within the study some test cases will be carried out to validate our model. In the works by Gülch et al., the application of combined anionic-cationic gels as grippers was shown. In the present research for an applied electric field, the change of the concentrations and the electric potential in the complete polymer is simulated by the given formulation. These changes lead to variations in the osmotic pressure resulting in a bending of different polyelectrolyte gels. In the present research it is shown that our model is capable of describing the bending behavior of anionic or cationic gels towards the different electrodes (cathode or anode).

  6. Modeling Bacteria-Water Interactions in Soil: EPS Dynamics Under Evaporative Conditions

    NASA Astrophysics Data System (ADS)

    Furrer, J.; Hinestroza, H. F.; Guo, Y. S.; Gage, D. J.; Cho, Y. K.; Shor, L. M.

    2017-12-01

    The soil habitat represents a major linkage between the water and carbon cycles: the ability of soils to sequester or release carbon is determined primarily by soil moisture. Water retention and distribution in soils controls the abundance and activity of soil microbes. Microbes in turn impact water retention by creating biofilms, composed of extracellular polymeric substances (EPS). We model the effects of bacterial EPS on water retention at the pore scale. We use the lattice Boltzmann method (LBM), a well-established fluid dynamics modeling platform, and modify it to include the effects of water uptake and release by the swelling/shrinking EPS phase. The LB model is implemented in 2-D, with a non-ideal gas equation of state that allows condensation and evaporation of fluid in pore spaces. Soil particles are modeled according to experimentally determined particle size distributions and include realistic pore geometries, in contrast to many soil models which use spherical soil particles for simplicity. Model results are compared with evaporation experiments in soil micromodels and other simpler experimental systems, and model parameters are tuned to match experimental results. Drying behavior and solid-gel contact angle of EPS produced by the soil bacteria Sinorhizobium meliloti has been characterized and compared to the behavior of deionized water under the same conditions. The difference in behavior between the fluids is used to parameterize the model. The model shows excellent qualitative agreement for soil micromodels with both aggregated and non-aggregated particle arrangements under no-EPS conditions, and reproduces realistic drying behavior for EPS. This work represents a multi-disciplinary approach to understanding microbe-soil interactions at the pore scale.

  7. Model behavior and sensitivity in an application of the cohesive bed component of the community sediment transport modeling system for the York River estuary, VA, USA

    USGS Publications Warehouse

    Fall, Kelsey A.; Harris, Courtney K.; Friedrichs, Carl T.; Rinehimer, J. Paul; Sherwood, Christopher R.

    2014-01-01

    The Community Sediment Transport Modeling System (CSTMS) cohesive bed sub-model that accounts for erosion, deposition, consolidation, and swelling was implemented in a three-dimensional domain to represent the York River estuary, Virginia. The objectives of this paper are to (1) describe the application of the three-dimensional hydrodynamic York Cohesive Bed Model, (2) compare calculations to observations, and (3) investigate sensitivities of the cohesive bed sub-model to user-defined parameters. Model results for summer 2007 showed good agreement with tidal-phase averaged estimates of sediment concentration, bed stress, and current velocity derived from Acoustic Doppler Velocimeter (ADV) field measurements. An important step in implementing the cohesive bed model was specification of both the initial and equilibrium critical shear stress profiles, in addition to choosing other parameters like the consolidation and swelling timescales. This model promises to be a useful tool for investigating the fundamental controls on bed erodibility and settling velocity in the York River, a classical muddy estuary, provided that appropriate data exists to inform the choice of model parameters.

  8. MTR plates modeling with MAIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marelle, V.; Dubois, S.; Ripert, M.

    2008-07-15

    MAIA is a thermo-mechanical code dedicated to the modeling of MTR fuel plates. The main physical phenomena modeled in the code are the cladding oxidation, the interaction between fuel and Al-matrix, the swelling due to fission products and the Al/fuel particles interaction. The creeping of the plate can be modeled in the mechanical calculation. MAIA has been validated on U-Mo dispersion fuel experiments such as IRIS 1 and 2 and FUTURE. The results are in rather good agreement with post-irradiation examinations. MAIA can also be used to calculate in-pile behavior of U{sub 3}Si{sub 2} plates as in the SHARE experimentmore » irradiated in the SCK/Mol BR2 reactor. The main outputs given by MAIA throughout the irradiation are temperatures, cladding oxidation thickness, interaction thickness, volume fraction of meat constituents, swelling, displacements, strains and stresses. MAIA is originally a two-dimensional code but a three-dimensional version is currently under development. (author)« less

  9. The Time Course of Knee Swelling Post Total Knee Arthroplasty and Its Associations with Quadriceps Strength and Gait Speed.

    PubMed

    Pua, Yong-Hao

    2015-07-01

    This study examines the time course of knee swelling post total knee arthroplasty (TKA) and its associations with quadriceps strength and gait speed. Eighty-five patients with unilateral TKA participated. Preoperatively and on post-operative days (PODs) 1, 4, 14, and 90, knee swelling was measured using bioimpedance spectrometry. Preoperatively and on PODs 14 and 90, quadriceps strength was measured using isokinetic dynamometry while fast gait speed was measured using the timed 10-meter walk. On POD1, knee swelling increased ~35% from preoperative levels after which, knee swelling reduced but remained at ~11% above preoperative levels on POD90. In longitudinal, multivariable analyses, knee swelling was associated with quadriceps weakness (P<0.01) and slower gait speed (P=0.03). Interventions to reduce post-TKA knee swelling may be indicated to improve quadriceps strength and gait speed. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Swelling soils in the road structures

    NASA Astrophysics Data System (ADS)

    Pruška, Jan; Šedivý, Miroslav

    2017-09-01

    There are frequent problems with the soil swelling in the road construction in the past time. This phenomenon is known for decades. This situation is notably given by insufficient knowledge of this problem and difficulties with input parameters describing the swelling process. The paper in the first part proposed regression relations to predict swelling pressure, time of swelling and swelling strain for different initial water contents for soils and improvement soils. The relations were developed by using artificial neural network and QCExpert Professional software (on the data from site investigations by GeoTec-GS, a.s. and experimental data from CTU in Prague). The advantage of the relations is based on using the results of the basic soil tests (plasticity index, consistency index and colloidal activity) as input parameters. The authors inform the technical public with their current knowledge of the problems with the soil swelling on the motorway in the second part of the paper.

  11. Temporal Role for MyD88 in a Model of Brucella-Induced Arthritis and Musculoskeletal Inflammation

    PubMed Central

    Lacey, Carolyn A.; Mitchell, William J.; Brown, Charles R.

    2017-01-01

    ABSTRACT Brucella spp. are facultative intracellular Gram-negative bacteria that cause the zoonotic disease brucellosis, one of the most common global zoonoses. Osteomyelitis, arthritis, and musculoskeletal inflammation are common focal complications of brucellosis in humans; however, wild-type (WT) mice infected systemically with conventional doses of Brucella do not develop these complications. Here we report C57BL/6 WT mice infected via the footpad with 103 to 106 CFU of Brucella spp. display neutrophil and monocyte infiltration of the joint space and surrounding musculoskeletal tissue. Joint inflammation is detectable as early as 1 day postinfection and peaks 1 to 2 weeks later, after which WT mice are able to slowly resolve inflammation. B and T cells were dispensable for the onset of swelling but required for resolution of joint inflammation and infection. At early time points, MyD88−/− mice display decreased joint inflammation, swelling, and proinflammatory cytokine levels relative to WT mice. Subsequently, swelling of MyD88−/− joints surpassed WT joint swelling, and resolution of joint inflammation was prolonged. Joint bacterial loads in MyD88−/− mice were significantly greater than those in WT mice by day 3 postinfection and at all time points thereafter. In addition, MyD88−/− joint inflammatory cytokine levels on day 3 and beyond were similar to WT levels. Collectively these data demonstrate MyD88 signaling mediates early inflammatory responses in the joint but also contributes to subsequent clearance of Brucella and resolution of inflammation. This work also establishes a mouse model for studying Brucella-induced arthritis, musculoskeletal complications, and systemic responses, which will lead to a better understanding of focal complications of brucellosis. PMID:28069819

  12. Temporal Role for MyD88 in a Model of Brucella-Induced Arthritis and Musculoskeletal Inflammation.

    PubMed

    Lacey, Carolyn A; Mitchell, William J; Brown, Charles R; Skyberg, Jerod A

    2017-03-01

    Brucella spp. are facultative intracellular Gram-negative bacteria that cause the zoonotic disease brucellosis, one of the most common global zoonoses. Osteomyelitis, arthritis, and musculoskeletal inflammation are common focal complications of brucellosis in humans; however, wild-type (WT) mice infected systemically with conventional doses of Brucella do not develop these complications. Here we report C57BL/6 WT mice infected via the footpad with 10 3 to 10 6 CFU of Brucella spp. display neutrophil and monocyte infiltration of the joint space and surrounding musculoskeletal tissue. Joint inflammation is detectable as early as 1 day postinfection and peaks 1 to 2 weeks later, after which WT mice are able to slowly resolve inflammation. B and T cells were dispensable for the onset of swelling but required for resolution of joint inflammation and infection. At early time points, MyD88 -/- mice display decreased joint inflammation, swelling, and proinflammatory cytokine levels relative to WT mice. Subsequently, swelling of MyD88 -/- joints surpassed WT joint swelling, and resolution of joint inflammation was prolonged. Joint bacterial loads in MyD88 -/- mice were significantly greater than those in WT mice by day 3 postinfection and at all time points thereafter. In addition, MyD88 -/- joint inflammatory cytokine levels on day 3 and beyond were similar to WT levels. Collectively these data demonstrate MyD88 signaling mediates early inflammatory responses in the joint but also contributes to subsequent clearance of Brucella and resolution of inflammation. This work also establishes a mouse model for studying Brucella -induced arthritis, musculoskeletal complications, and systemic responses, which will lead to a better understanding of focal complications of brucellosis. Copyright © 2017 American Society for Microbiology.

  13. Molecular Dynamics Study of Crystalline Swelling of Montmorillonite as Affected by Interlayer Cation Hydration

    NASA Astrophysics Data System (ADS)

    Li, Hongliang; Song, Shaoxian; Dong, Xianshu; Min, Fanfei; Zhao, Yunliang; Peng, Chenliang; Nahmad, Yuri

    2018-04-01

    Swelling of montmorillonite (Mt) is an important factor for many industrial applications. In this study, crystalline swelling of alkali-metal- and alkaline-earth-metal-Mt has been studied through energy optimization and molecular dynamics simulations using the clay force field by Materials Studio 8.0. The delamination and exfoliation of Mt are primarily realized by crystalline swelling caused by the enhanced interlayer cation hydration. The initial position of the interlayer cations and water molecules is the dominated factor for the accuracy of the Mt simulations. Crystalline swelling can be carried out in alkali-metal-Mt and Mg-Mt but with difficulty in Ca-Mt, Sr-Mt and Ba-Mt. The crystalline swelling capacity values are in the order Na-Mt > K-Mt > Cs-Mt > Mg-Mt. This order of crystalline swelling of Mt in the same group can be attributed to the differences between the interlayer cation hydration strengths. In addition, the differences in the crystalline swelling between the alkali-metal-Mt and alkaline-earth-metal-Mt can be primarily attributed to the valence of the interlayer cations.

  14. Propagation Route and Speed of Swell in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Zheng, C. W.; Li, C. Y.; Pan, J.

    2018-01-01

    The characteristics of swell propagation play an important role in the forecasting of ocean waves as well as on research on global climate change, wave energy development, and disaster prevention and reduction. To reveal the propagation routes, terminal targets and speeds of swells that originate from the southern Indian Ocean westerly (SIOW), an intraseasonal swell index (SI) was defined based on the 45 year (September 1957 to August 2002) ERA-40 wave reanalysis data product from the European Center for Medium-Range Weather Forecasts (ECMWF). The results show that the main body of the SIOW-related swells typically spread to the waters off Sri Lanka and Christmas Island, while the branches spread to the Arabian Sea and other waters. The propagation speeds of swells originated in the SIOW were fastest in May and August, followed by November, and were slowest in February. Swells usually required 4-6 days to propagate from the western part of the SIOW to the waters off Sri Lanka and Christmas Island, whereas swells usually required 2-4 days to propagate from the eastern part of the SIOW to the waters off Christmas Island.

  15. Self-Sealing Cementitious Materials by Using Water-Swelling Rubber Particles

    PubMed Central

    Lv, Leyang; Schlangen, Erik; Xing, Feng

    2017-01-01

    Water ingress into cracked concrete structures is a serious problem, as it can cause leakage and reinforcement corrosion and thus reduce functionality and safety of the structures. In this study, the application of water-swelling rubber particles for providing the cracked concrete a self-sealing function was developed. The feasibility of applying water-swelling rubber particles and the influence of incorporating water-swelling rubber particles on the mechanical properties of concrete was investigated. The self-sealing efficiency of water-swelling rubber particles with different content and particle size was quantified through a permeability test. The sealing effect of the water swelling rubber particles was monitored by X-ray computed tomography. The experimental results show that, by using 6% of these water swelling rubber particles as a replacement of aggregates in concrete, up to 64% and 61% decrease of water permeability was realized for 0.7 mm and 1.0 mm cracks. Furthermore, when the concrete cracks, the water swelling rubber particles can act as a crack bridging filler, preventing the crack from fully separating the specimens in two pieces. PMID:28829384

  16. Influence of injected interstitials on the void swelling in two structural variants of 304L stainless steel induced by self-ion irradiation at 500 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, C.; Garner, F. A.; Shao, L.

    The two variants of AISI 304L stainless steel (SS) with different grain size distributions were ion irradiated at 500 °C to a peak dose of ~60 dpa. In the coarse-grained annealed variant, a peak swelling of ~12% was observed closer to the specimen surface rather than at the depth of peak displacement damage. The forward shift in depth between peak swelling and peak dose is proposed to be a consequence of suppression of void nucleation by injected interstitials. The swelling behavior in the front portion of the ion range mirrors that of neutron-induced swelling in this steel, exhibiting significant curvaturemore » with increasing dose as the swelling rate approaches the terminal swelling rate of 1%/dpa. Furthermore, an ultrafine grain variant of this steel produced by severely plastic deformation exhibits a similar suppression of void nucleation in the injected interstitial region, but also shows a significantly extended transient regime, not reaching the terminal swelling rate by 60 dpa.« less

  17. Influence of injected interstitials on the void swelling in two structural variants of 304L stainless steel induced by self-ion irradiation at 500 °C

    DOE PAGES

    Sun, C.; Garner, F. A.; Shao, L.; ...

    2017-03-28

    The two variants of AISI 304L stainless steel (SS) with different grain size distributions were ion irradiated at 500 °C to a peak dose of ~60 dpa. In the coarse-grained annealed variant, a peak swelling of ~12% was observed closer to the specimen surface rather than at the depth of peak displacement damage. The forward shift in depth between peak swelling and peak dose is proposed to be a consequence of suppression of void nucleation by injected interstitials. The swelling behavior in the front portion of the ion range mirrors that of neutron-induced swelling in this steel, exhibiting significant curvaturemore » with increasing dose as the swelling rate approaches the terminal swelling rate of 1%/dpa. Furthermore, an ultrafine grain variant of this steel produced by severely plastic deformation exhibits a similar suppression of void nucleation in the injected interstitial region, but also shows a significantly extended transient regime, not reaching the terminal swelling rate by 60 dpa.« less

  18. Synthesis, characterization, swelling and dye adsorption properties of starch incorporated acrylic gels.

    PubMed

    Mandal, Bidyadhar; Ray, Samit Kumar

    2015-11-01

    Several hydrogels were prepared by a free radical polymerization of acrylic acid (AA), sodium acrylate (SA) and AA/hydroxy ethyl methacrylate (HEMA) in the presence of starch in water. These starch incorporated acrylic gels were prepared by varying the concentration of the initiator, monomer, crosslinker and the starch. The resulting gels were characterized by FTIR, SEM, XRD, DTA-TGA, pH at point zero charge (PZC), swelling and the diffusion in water. The gels showed high adsorption and removal% of Safranine T (ST) and Brilliant Cresyl Blue (BCB) dyes from water. The swelling and the adsorption data were fitted to different kinetic models and isotherms. Amongst the three kinds of gels, the starch incorporated sodium polyacrylate gel showed the highest adsorption of 9.7-85.3mg/L (97-61% removal) of BCB dye and 9.1-83mg/L (91-60% removal) of ST dye for a feed dye concentration of 10-140mg/L. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Effect of engraving speeds of CO₂ laser irradiation on In-Ceram Alumina roughness: a pilot study.

    PubMed

    Ersu, Bahadır; Ersoy, Orkun; Yuzugullu, Bulem; Canay, Senay

    2015-05-01

    The aim of the study was to determine the effect of CO₂ laser on surface roughness of In-Ceram-Alumina-ceramic. Four aluminum-oxide ceramic disc specimens were prepared of In-Ceram Alumina. Discs received CO₂ laser irradiation with different engraving speeds (100, 400, 600 and 800 mm/min) as a surface treatment. The roughness of the surfaces was measured on digital elevation models reconstructed from stereoscopic images acquired by scanning-electron-microscope. Surface roughness data were analyzed with One-Way-Analysis-of-Variance at a significance level of p<0.05. There was no significant difference between the roughness values (p=0.82). Due to higher laser durations, partial melting signs were observed on the surfaces. Tearing, smearing and swelling occurred on melted surfaces. Swelling accompanying melting increased the surface roughness, while laser power was fixed and different laser engraving speeds were applied. Although different laser irradiation speeds did not affect the roughness of ceramic surfaces, swelling was observed which led to changes on surfaces.

  20. Swelling, Structure, and Phase Stability of Soft, Compressible Microgels

    NASA Astrophysics Data System (ADS)

    Denton, Alan R.; Urich, Matthew

    Microgels are soft colloidal particles that swell when dispersed in a solvent. The equilibrium particle size is governed by a delicate balance of osmotic pressures, which can be tuned by varying single-particle properties and externally controlled conditions, such as temperature, pH, ionic strength, and concentration. Because of their tunable size and ability to encapsulate dye or drug molecules, microgels have practical relevance for biosensing, drug delivery, carbon capture, and filtration. Using Monte Carlo simulation, we model suspensions of microgels that interact via Hertzian elastic interparticle forces and can expand or contract via trial size changes governed by the Flory-Rehner free energy of cross-linked polymer gels. We analyze the influence of particle compressibility and size fluctuations on bulk structural and thermal properties by computing swelling ratios, radial distribution functions, static structure factors, osmotic pressures, and freezing densities. With increasing density, microgels progressively deswell and their intrinsic polydispersity broadens, while compressibility acts to forestall crystallization. This work was supported by the National Science Foundation under Grant No. DMR- 1106331.

  1. Upper crustal structure of the Hawaiian Swell from seafloor compliance measurements

    NASA Astrophysics Data System (ADS)

    Doran, A. K.; Laske, G.

    2017-12-01

    We present new constraints on elastic properties of the marine sediments and crust surrounding the Hawaiian Islands derived from seafloor compliance measurements. We analyze long-period seismic and pressure data collected during the Plume-Lithosphere Undersea Mantle Experiment [Laske et al, 2009], a deployment consisting of nearly 70 broadband ocean-bottom seismometers with an array aperture of over 1000 kilometers. Our results are supported by previous reflection & refraction studies and by direct sampling of the crust from regional drilling logs. We demonstrate the importance of simultaneously modeling density, compressional velocity, and shear velocity, the former two of which are often ignored during compliance investigations. We find variable sediment thickness and composition across the Hawaiian Swell, with the thickest sediments located within the Hawaiian Moat. Improved resolution of near-surface structure of the Hawaiian Swell is crucially important to improve tomographic images of the underlying lithosphere and asthenosphere and to address outstanding questions regarding the size, source, and location of the hypothesized mantle plume.

  2. Inhibition of VEGF Signaling Reduces Diabetes-Exacerbated Brain Swelling, but Not Infarct Size, in Large Cerebral Infarction in Mice.

    PubMed

    Kim, Eunhee; Yang, Jiwon; Park, Keun Woo; Cho, Sunghee

    2017-12-30

    In light of repeated translational failures with preclinical neuroprotection-based strategies, this preclinical study reevaluates brain swelling as an important pathological event in diabetic stroke and investigates underlying mechanism of the comorbidity-enhanced brain edema formation. Type 2 (mild), type 1 (moderate), and mixed type 1/2 (severe) diabetic mice were subjected to transient focal ischemia. Infarct volume, brain swelling, and IgG extravasation were assessed at 3 days post-stroke. Expression of vascular endothelial growth factor (VEGF)-A, endothelial-specific molecule-1 (Esm1), and the VEGF receptor 2 (VEGFR2) was determined in the ischemic brain. Additionally, SU5416, a VEGFR2 inhibitor, was treated in the type 1/2 diabetic mice, and stroke outcomes were determined. All diabetic groups displayed bigger infarct volume and brain swelling compared to nondiabetic mice, and the increased swelling was disproportionately larger relative to infarct enlargement. Diabetic conditions significantly increased VEGF-A, Esm1, and VEGFR2 expressions in the ischemic brain compared to nondiabetic mice. Notably, in diabetic mice, VEGFR2 mRNA levels were positively correlated with brain swelling, but not with infarct volume. Treatment with SU5416 in diabetic mice significantly reduced brain swelling. The study shows that brain swelling is a predominant pathological event in diabetic stroke and that an underlying event for diabetes-enhanced brain swelling includes the activation of VEGF signaling. This study suggests consideration of stroke therapies aiming at primarily reducing brain swelling for subjects with diabetes.

  3. Antisense oligodeoxynucleotide inhibition of a swelling-activated cation channel in osteoblast-like osteosarcoma cells

    NASA Technical Reports Server (NTRS)

    Duncan, R. L.; Kizer, N.; Barry, E. L.; Friedman, P. A.; Hruska, K. A.

    1996-01-01

    By patch-clamp analysis, we have shown that chronic, intermittent mechanical strain (CMS) increases the activity of stretch-activated cation channels of osteoblast-like UMR-106.01 cells. CMS also produces a swelling-activated whole-cell conductance (Gm) regulated by varying strain levels. We questioned whether the swelling-activated conductance was produced by stretch-activated cation channel activity. We have identified a gene involved in the increase in conductance by using antisense oligodeoxynucleotides (ODN) derived from the alpha 1-subunit genes of calcium channels found in UMR-106.01 cells (alpha1S, alpha1C, and alpha1D). We demonstrate that alpha 1C antisense ODNs abolish the increase in Gm in response to hypotonic swelling following CMS. Antisense ODNs to alpha1S and alpha1D, sense ODNs to alpha1C, and sham permeabilization had no effect on the conductance increase. In addition, during cell-attached patch-clamp studies, antisense ODNs to alpha1c completely blocked the swelling-activated and stretch-activated nonselective cation channel response to strain. Antisense ODNs to alpha1S treatment produced no effect on either swelling-activated or stretch-activated cation channel activity. There were differences in the stretch-activated and swelling-activated cation channel activity, but whether they represent different channels could not be determined from our data. Our data indicate that the alpha1C gene product is involved in the Gm and the activation of the swelling-activated cation channels induced by CMS. The possibility that swelling-activated cation channel genes are members of the calcium channel superfamily exists, but if alpha1c is not the swelling-activated cation channel itself, then its expression is required for induction of swelling-activated cation channel activity by CMS.

  4. Microstructural characterization and density change of 304 stainless steel reflector blocks after long-term irradiation in EBR-II

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Wiezorek, J. M. K.; Garner, F. A.; Freyer, P. D.; Okita, T.; Sagisaka, M.; Isobe, Y.; Allen, T. R.

    2015-10-01

    While thin reactor structural components such as cladding and ducts do not experience significant gradients in dpa rate, gamma heating rate, temperature or stress, thick components can develop strong local variations in void swelling and irradiation creep in response to gradients in these variables. In this study we conducted microstructural investigations by transmission electron microscopy of two 52 mm thick 304-type stainless steel hex-blocks irradiated for 12 years in the EBR-II reactor with accumulated doses ranging from ∼0.4 to 33 dpa. Spatial variations in the populations of voids, precipitates, Frank loops and dislocation lines have been determined for 304 stainless steel sections exposed to different temperatures, different dpa levels and at different dpa rates, demonstrating the existence of spatial gradients in the resulting void swelling. The microstructural measurements compare very well with complementary density change measurements regarding void swelling gradients in the 304 stainless steel hex-block components. The TEM studies revealed that the original cold-worked-state microstructure of the unirradiated blocks was completely erased by irradiation, replaced by high densities of interstitial Frank loops, voids and carbide precipitates at both the lowest and highest doses. At large dose levels the amount of volumetric void swelling correlated directly with the gamma heating gradient-related temperature increase (e.g. for 28 dpa, ∼2% swelling at 418 °C and ∼2.9% swelling at 448 °C). Under approximately iso-thermal local conditions, volumetric void swelling was found to increase with dose level (e.g. ∼0.2% swelling at 0.4 dpa, ∼0.5% swelling at 4 dpa and ∼2% swelling at 28 dpa). Carbide precipitate formation levels were found to be relatively independent of both dpa level and temperature and induced a measurable densification. Void swelling was dominant at the higher dose levels and caused measurable decreases in density. Void swelling at the lowest doses was larger than might be expected based on the dpa level, an observation in agreement with earlier studies showing that the onset of void swelling is accelerated by decreasing dpa rates.

  5. Muscle wasting associated with pathologic change is a risk factor for the exacerbation of joint swelling in collagen-induced arthritis in cynomolgus monkeys

    PubMed Central

    2013-01-01

    Background Not only joint destruction but also muscle wasting due to rheumatoid cachexia has been problem in terms of quality of life of patients with rheumatoid arthritis (RA). In the present study, we performed histopathological examination and assessed relationships between characteristic parameters relating to muscle and joint swelling in a collagen-induced arthritis (CIA) model using cynomolgus monkeys (CMs). Methods Female CMs were used and CIA was induced by twice immunizations using bovine type II collagen with Freund’s complete adjuvant. Arthritis level was evaluated from the degree of swelling at the peripheral joints of the fore and hind limbs. Food consumption, body weight, and serum biochemical parameters were measured sequentially. Five or 6 animals per time point were sacrificed at 2, 3, 5 and 9 weeks after the first immunization to obtain quadriceps femoris specimens for histopathology. Pimonidazole hydrochloride was intravenously administered to determine tissue hypoxia in skeletal muscle. Results Gradual joint swelling was observed and the maximum arthritis score was noted at Week 5. In histopathology, necrosis of muscle fiber in the quadriceps femoris was observed only at Week 2 and the most significant findings such as degeneration, atrophy, and regeneration of muscle fiber were mainly observed at Week 5. Food consumption was decreased up to Week 4 but recovered thereafter. Body weight decreased up to Week 5 and did not completely recover thereafter. A biphasic increase in serum cortisol was also observed at Weeks 2 and 5. Histopathology showed that muscle lesions were mainly composed of degeneration and atrophy of the muscle fibers, and ATPase staining revealed that the changes were more pronounced in type II muscle fiber than type I muscle fiber. In the pimonidazole experiment, mosaic pattern in skeletal muscle was demonstrated in the intact animal, but not the CIA animal. Increased arthritis score was accompanied by a decrease in serum creatinine, a marker that reflects muscle mass. Conclusions Muscle wasting might exacerbate joint swelling in a collagen-induced arthritis model of cynomolgus monkeys. PMID:23834772

  6. Extending FEAST-METAL for analysis of low content minor actinide bearing and zirconium rich metallic fuels for sodium fast reactors

    NASA Astrophysics Data System (ADS)

    Karahan, Aydın

    2011-07-01

    Computational models in FEAST-METAL fuel behaviour code have been upgraded to simulate minor actinide bearing zirconium rich metallic fuels for use in sodium fast reactors. Increasing the zirconium content to 20-40 wt.% causes significant changes in fuel slug microstructure affecting thermal, mechanical, chemical, and fission gas behaviour. Inclusion of zirconium rich phase reduces the fission gas swelling rate significantly in early irradiation. Above the threshold fission gas swelling, formation of micro-cracks, and open pores increase material compliancy enhance diffusivity, leading to rapid fuel gas swelling, interconnected porosity development and release of the fission gases and helium. Production and release of helium was modelled empirically as a function of americium content and fission gas production, consistent with previous Idaho National Laboratory studies. Predicted fuel constituent redistribution is much smaller compared to typical U-Pu-10Zr fuel operated at EBR-II. Material properties such as fuel thermal conductivity, modulus of elasticity, and thermal expansion coefficient have been approximated using the available database. Creep rate and fission gas diffusivity of high zirconium fuel is lowered by an order of magnitude with respect to the reference low zirconium fuel based on limited database and in order to match experimental observations. The new code is benchmarked against the AFC-1F fuel assembly post irradiation examination results. Satisfactory match was obtained for fission gas release and swelling behaviour. Finally, the study considers a comparison of fuel behaviour between high zirconium content minor actinide bearing fuel and typical U-15Pu-6Zr fuel pins with 75% smear density. The new fuel has much higher fissile content, allowing for operating at lower neutron flux level compared to fuel with lower fissile density. This feature allows the designer to reach a much higher burnup before reaching the cladding dose limit. On the other hand, in order to accommodate solid fission product swelling and to control fuel clad mechanical interaction of the stiffer fuel, the fuel smear density is reduced to 70%. In addition, plenum height is increased to accommodate for fission gases.

  7. Activation of a Ca-bentonite as buffer material

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Hsing; Chen, Wen-Chuan

    2016-04-01

    Swelling behavior is an important criterion in achieving the low-permeability sealing function of buffer material. A potential buffer material may be used for radioactive waste repository in Taiwan is a locally available clayey material known as Zhisin clay, which has been identified as a Ca-bentonite. Due to its Ca-based origin, Zhisin was found to exhibit swelling capacity much lower than that of Na-bentonite. To enhance the swelling potential of Zhisin clay, a cation exchange process by addition of Na2CO3 powder was introduced in this paper. The addition of Na2CO3 reagent to Zhisin clay, in a liquid phase, caused the precipitation of CaCO3 and thereby induced a replacement of Ca2+ ions by Na+ ions on the surface of bentonite. Characterization test conducted on Zhisin clay includes chemical analysis, cation exchange capacity, X-ray diffraction, and thermogravimetry (TG). Free-swelling test apparatus was developed according to International Society of Rock Mechanics recommendations. A series of free-swelling tests were conducted on untreated and activated specimens to characterize the effect of activation on the swelling capacity of Zhisin clay. Efforts were made to determine an optimum dosage for the activation, and to evaluate the aging effect. Also, the activated material was evaluated for its stability in various hydrothermal conditions for potential applications as buffer material in a repository. Experimental results show that Na2CO3-activated Zhisin clay is superior in swelling potential to untreated Zhisin clay. Also, there exists an optimum amount of activator in terms of improvements in the swelling capacity. A distinct time-swell relationship was discovered for activated Zhisin clay. The corresponding mechanism refers to exchange of cations and breakdown of quasi-crystal, which results in ion exchange hysteresis of Ca-bentonite. Due to the ion exchange hysteresis, activated bentonite shows a post-rise time-swell relationship different than the sigmoid-shaped time-swell curves of typical bentonites. That is, a greater part of swelling strain develops after the completion of primary swelling strain. At an optimal amount of 1% Na2CO3 in weight, the maximum swelling strain was found to be 3 times as much as that of untreated Zhisin clay. Furthermore, the Na2CO3-activated Zhisin clay exhibited improved resistance to thermal environments and behaved similar to Na-type bentonites under various hydrothermal temperatures.

  8. Africa's Megafans and Their Tectonic Setting

    NASA Technical Reports Server (NTRS)

    Wilkinson, M. J.; Burke, K.

    2016-01-01

    Megafans are a really extensive continental sediment bodies, fluvially derived, and fan-shaped in planform. Only those >80 km long were included in this study. Africa's megafans were mapped for purposes of both comprehensive geomorphic description and as a method of mapping by remote sensing large probable fluvial sediment bodies (we exclude sediment bodies deposited in well defined, modern floodplains and coastal deltas). Our criteria included a length dimension of >80 km and maximum width >40 km, partial cone morphology, and a radial drainage pattern. Visible and especially IR imagery were used to identify the features, combined with topographic SRTM data. We identified 99 megafans most of which are unstudied thus far. Their feeder rivers responsible for depositing megafan sediments rise on, and are consequent drainages oriented down the slopes of the swells that have dominated African landscapes since approximately 34 Ma (the high points in Africa's so-called basin-and-swell topography [1]). Most megafans (66%) have developed along these consequent rivers relatively near the swell cores, oriented radially away from the swells. The vast basins between the swells provide accommodation for megafan sediment wedges. Although clearly visible remotely, most megafans are inactive as a result of incision by the feeder river (which then no longer operates on the fan surface). Two tectonic settings control the location of Africa's megafans, 66% on swell flanks, and 33% related to rifts. (i) Swell flanks Most megafans are apexed relatively near the core of the parent swell, and are often clustered in groups: e.g., six on the west and north flanks of the Hoggar Swell (Algeria), seven on the north and south flanks of the Tibesti Swell (Libya-Chad borderlands), twelve on the west flank of the Ethiopian Swell, four on the east flank of the East African Swell (Kenya), Africa's largest, and eight around Angola's Bié Swell (western Zambia, northern Namibia). A cluster of possible fans lies on the western margin of the Congo Basin (Mayombe Swell), and on the coastal slopes of the Namibia Swell. Sheer size may have militated aginst the recognition of many megafans: the largest in the Sahara are the Teghahart (378 km, Hoggar Swell, Algeria), and the Wadi Albalata (340 km, Uweinat Swell, Egypt). In southern Africa the largest are the Cubango (320 km, Bié Swell, Angola/ Namibia), and the Limpopo (230 km, Mozambique). (ii) Rift zones (a) Steer's horns basins-wide depressions centered on rifts. The largest contiguous group (n=14) developed in a steer's-horns basin occupies the wide Muglad depression (200-350 km, South Sudan). Four rift-related megafans lie SE of Lake Chad (Chad). Nine megafans occupy the complex Anza Rift in Kenya/South Somalia. The Salamat megafan (Chad), is unusual because it oriented parallel with the linked Salamat, Doseo and Doba rift axes, and is consequently one of the longest in Africa (465 km). (b) Rift depressions sensu stricto. Most rifts are too narrow to provide a transverse dimension large enough to accommodate megafans. Although well-known, the Okavango Rift (NW Botswana, NE Namibia) is unique in Africa in hosting three megafans within identifiable faulted margins. The Nile megafan is Africa's largest (476 km) and comprises the vast Sudd wetland (South Sudan). An explanation for its remarkable size may be its location in a depression at the junction of two conducive tectonic zones, the East African Swell margin and the Muglad steer's-horns depression. Discharge of the River Nile, the largest in the region, has allowed the Nile megafan to outcompete neighboring megafans for space.

  9. The Influence of High Drug Loading in Xanthan Tablets and Media with Different Physiological pH and Ionic Strength on Swelling and Release.

    PubMed

    Mikac, Urša; Sepe, Ana; Baumgartner, Saša; Kristl, Julijana

    2016-03-07

    The formation of a gel coat around xanthan (Xan) tablets, empty or loaded with pentoxifylline (PF), and its release in media differing in pH and ionic strength by NMR, MR imaging, and two release methods were studied. The T1 and T2 NMR relaxation times in gels depend predominantly on Xan concentration; the presence of PF has negligible influence on them. It is interesting that the matrix swelling is primarily regulated by Xan despite high drug loading (25%, 50%). The gastric pH and high ionic strength of the media do not influence the position of the penetration and swelling fronts but do affect the erosion front and gel thickness. The different release profiles obtained in mixing and nonmixing in vitro methods are the consequence of matrix hydration level and erosion at the surface. In water and in diluted acid medium with low ionic strength, the main release mechanism is erosion, whereas in other media (pH 1.2, μ ≥ 0.20 M), anomalous transport dominates as was found out by fitting of measured data with theoretical model. Besides the in vitro investigation that mimics gastric conditions, mathematical modeling makes the product development more successful.

  10. The influence of product brand-to-brand variability on superdisintegrant Performance. A case study with croscarmellose sodium.

    PubMed

    Zhao, Na; Augsburger, L L

    2006-01-01

    The purpose of this study is to investigate factors influencing croscarmellose sodium functionality with special emphasis on developing a discriminating model tablet formulation to evaluate product brand-to-brand variability. The particle size distribution, water uptake, and swelling properties of five brands of croscarmellose sodium in either neutral water or 0.1 N HCl were studied. Differences were observed in all properties between brands. Media with acidic pH had a negative impact, but to different extents, on both the water uptake and swelling of all croscarmellose sodium brands due to the presence of carboxymethyl sodium substituents. A tablet matrix composed of lactose (75% w/w) and dicalcium phosphate (25% wt/wt) was used to compare the functional equivalency of the five brands of croscarmellose sodium. The tablet disintegration times were inversely proportional to the swelling ability of superdisintegrant in the testing medium regardless of medium temperature and disintegrant concentration. In conclusion; the particle size, total degree of substitution, and the ratio of basic to acidic substituents are important factors that should be considered during product optimization. The tablet matrix composed of lactose and dicalcium phosphate at a weight ratio of 3:1 can be used as a model formulation for product lot-to-lot consistency and product brand-to-brand comparison purposes.

  11. Synthesis and swelling characteristics of chitosan and CMC grafted sodium acrylate-co-acrylamide using modified nanoclay and examining its efficacy for removal of dyes.

    PubMed

    Nagarpita, M V; Roy, Pratik; Shruthi, S B; Sailaja, R R N

    2017-09-01

    Chitosan/carboxy methyl chitosan (CMC) grafted sodium acrylate-co-acrylamide/nanoclay superabsorbent nanocomposites have been synthesized in this study by following conventional and microwave assisted grafting methods. Microwave assisted grafting method showed higher grafting yield with enhanced reaction rate. Effect of nanoclay on water adsorption and swelling behaviour of both the composites in acidic, neutral and alkaline medium has been studied. Results showed enhanced swelling rate and water adsorption of both composites after adding 5% of silane treated nanoclay. Dye adsorption capacity of both the composites has been investigated for crystal violet, napthol green and sunset yellow dyes. It was observed that addition of 5% nanoclay enhanced the dye adsorption in both the composites. Langmuir and Freundlich isotherm models have been used to explain the dye adsorption capabilities. The chitosan and CMC nanocomposites follow both the models with R 2 value more than 0.97. Both the composites showed enhanced dye adsorption with 5% nanoclay. Effect of pH on dye adsorption has also been studied in both the composites. Chitosan nanocomposites showed better performance in dye removal as compared to CMC nanocomposites. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Coupled THMC models for bentonite in clay repository for nuclear waste

    NASA Astrophysics Data System (ADS)

    Zheng, L.; Rutqvist, J.; Birkholzer, J. T.; Li, Y.; Anguiano, H. H.

    2015-12-01

    Illitization, the transformation of smectite to illite, could compromise some beneficiary features of an engineered barrier system (EBS) that is composed primarily of bentonite and clay host rock. It is a major determining factor to establish the maximum design temperature of the repositories because it is believed that illitization could be greatly enhanced at temperatures higher than 100 oC and thus significantly lower the sorption and swelling capacity of bentonite and clay rock. However, existing experimental and modeling studies on the occurrence of illitization and related performance impacts are not conclusive, in part because the relevant couplings between the thermal, hydrological, chemical, and mechanical (THMC) processes have not been fully represented in the models. Here we present fully coupled THMC simulations of a generic nuclear waste repository in a clay formation with bentonite-backfilled EBS. Two scenarios were simulated for comparison: a case in which the temperature in the bentonite near the waste canister can reach about 200 oC and a case in which the temperature in the bentonite near the waste canister peaks at about 100 oC. The model simulations demonstrate that illitization is in general more significant at higher temperatures. We also compared the chemical changes and the resulting swelling stress change for two types of bentonite: Kunigel-VI and FEBEX bentonite. Higher temperatures also lead to much higher stress in the near field, caused by thermal pressurization and vapor pressure buildup in the EBS bentonite and clay host rock. Chemical changes lead to a reduction in swelling stress, which is more pronounced for Kunigel-VI bentonite than for FEBEX bentonite.

  13. Synthesis and evaluation of chondroitin sulfate based hydrogels of loxoprofen with adjustable properties as controlled release carriers.

    PubMed

    Khalid, Ikrima; Ahmad, Mahmood; Usman Minhas, Muhammad; Barkat, Kashif

    2018-02-01

    Mixtures of polymer (chondroitin sulfate) and monomer (AMPS) in the presence of co-monomer (MBA) were employed for the production of hydrogels, with adjustable properties, following free radical copolymerization. The hydrogel's structural properties were assessed by FTIR, DSC, TGA, SEM and XRD which confirmed the development and stability of synthesized structure. The results from FTIR analysis showed that CS react with the AMPS monomer during the polymerization process and confirmed the grafting of AMPS chains onto CS backbone. The surface morphology of CS-co-poly(AMPS) hydrogels, as evident by SEM, corresponds to their improved swelling ability due to high porosity. Thermal analysis showed that crosslinking formed a stable hydrogel network which is thermally more stable than its basic ingredients. The effects of pH revealed an increasing trend in swelling with increasing concentration of either CS or AMPS. In addition, different modalities for drug loading were studied with respect to drug homogeneous distribution; loxoprofen sodium was employed as model drug and was loaded by swelling-diffusion method. In vitro drug release profiles and kinetics were assessed to confirm their reproducibility and reliability. Higuchi model is the best fit model to explain drug release from formed gels indicating diffusion-controlled release. Similarly, Korsmeyer-Peppas model yields remarkably good adjustments where release kinetics involves a combination of diffusion in hydrated matrix and polymer relaxation. Conclusively, CS-co-poly(AMPS) hydrogels could be a potential alternate to conventional dosage forms for controlled delivery of loxoprofen sodium for extended period of time. Copyright © 2017. Published by Elsevier Ltd.

  14. Loss of spastin function results in disease-specific axonal defects in human pluripotent stem cell-based models of hereditary spastic paraplegia

    PubMed Central

    Denton, Kyle R.; Lei, Ling; Grenier, Jeremy; Rodionov, Vladimir; Blackstone, Craig; Li, Xue-Jun

    2013-01-01

    Human neuronal models of hereditary spastic paraplegias (HSP) that recapitulate disease-specific axonal pathology hold the key to understanding why certain axons degenerate in patients and to developing therapies. SPG4, the most common form of HSP, is caused by autosomal dominant mutations in the SPAST gene, which encodes the microtubule-severing ATPase spastin. Here, we have generated a human neuronal model of SPG4 by establishing induced pluripotent stem cells (iPSCs) from an SPG4 patient and differentiating these cells into telencephalic glutamatergic neurons. The SPG4 neurons displayed a significant increase in axonal swellings, which stained strongly for mitochondria and tau, indicating the accumulation of axonal transport cargoes. In addition, mitochondrial transport was decreased in SPG4 neurons, revealing that these patient iPSC-derived neurons recapitulate disease-specific axonal phenotypes. Interestingly, spastin protein levels were significantly decreased in SPG4 neurons, supporting a haploinsufficiency mechanism. Furthermore, cortical neurons derived from spastin-knockdown human embryonic stem cells (hESCs) exhibited similar axonal swellings, confirming that the axonal defects can be caused by loss of spastin function. These spastin-knockdown hESCs serve as an additional model for studying HSP. Finally, levels of stabilized acetylated-tubulin were significantly increased in SPG4 neurons. Vinblastine, a microtubule-destabilizing drug, rescued this axonal swelling phenotype in neurons derived from both SPG4 iPSCs and spastin-knockdown hESCs. Thus, this study demonstrates the successful establishment of human pluripotent stem cell-based neuronal models of SPG4, which will be valuable for dissecting the pathogenic cellular mechanisms and screening compounds to rescue the axonal degeneration in HSP. PMID:24123785

  15. Utility of the sore throat pain model in a multiple-dose assessment of the acute analgesic flurbiprofen: a randomized controlled study.

    PubMed

    Schachtel, Bernard; Aspley, Sue; Shephard, Adrian; Shea, Timothy; Smith, Gary; Schachtel, Emily

    2014-07-03

    The sore throat pain model has been conducted by different clinical investigators to demonstrate the efficacy of acute analgesic drugs in single-dose randomized clinical trials. The model used here was designed to study the multiple-dose safety and efficacy of lozenges containing flurbiprofen at 8.75 mg. Adults (n=198) with moderate or severe acute sore throat and findings of pharyngitis on a Tonsillo-Pharyngitis Assessment (TPA) were randomly assigned to use either flurbiprofen 8.75 mg lozenges (n=101) or matching placebo lozenges (n=97) under double-blind conditions. Patients sucked one lozenge every three to six hours as needed, up to five lozenges per day, and rated symptoms on 100-mm scales: the Sore Throat Pain Intensity Scale (STPIS), the Difficulty Swallowing Scale (DSS), and the Swollen Throat Scale (SwoTS). Reductions in pain (lasting for three hours) and in difficulty swallowing and throat swelling (for four hours) were observed after a single dose of the flurbiprofen 8.75 mg lozenge (P<0.05 compared with placebo). After using multiple doses over 24 hours, flurbiprofen-treated patients experienced a 59% greater reduction in throat pain, 45% less difficulty swallowing, and 44% less throat swelling than placebo-treated patients (all P<0.01). There were no serious adverse events. Utilizing the sore throat pain model with multiple doses over 24 hours, flurbiprofen 8.75 mg lozenges were shown to be an effective, well-tolerated treatment for sore throat pain. Other pharmacologic actions (reduced difficulty swallowing and reduced throat swelling) and overall patient satisfaction from the flurbiprofen lozenges were also demonstrated in this multiple-dose implementation of the sore throat pain model. This trial was registered with ClinicalTrials.gov, registration number: NCT01048866, registration date: January 13, 2010.

  16. The Darfur Swell, Africa: Gravity constraints on its isostatic compensation

    NASA Astrophysics Data System (ADS)

    Crough, S. Thomas

    The free-air gravity anomaly observed over the Darfur Swell is explainable by local isostatic balance with a root approximately 50 km deep on average. This root depth is similar to that inferred beneath other African domes and beneath oceanic midplate swells, suggesting that the Darfur Swell is a hotspot uplift created by lithospheric reheating.

  17. Process for treating biomass

    DOEpatents

    Campbell, Timothy J; Teymouri, Farzaneh

    2015-11-04

    This invention is directed to a process for treating biomass. The biomass is treated with a biomass swelling agent within the vessel to swell or rupture at least a portion of the biomass. A portion of the swelling agent is removed from a first end of the vessel following the treatment. Then steam is introduced into a second end of the vessel different from the first end to further remove swelling agent from the vessel in such a manner that the swelling agent exits the vessel at a relatively low water content.

  18. Process for treating biomass

    DOEpatents

    Campbell, Timothy J.; Teymouri, Farzaneh

    2015-08-11

    This invention is directed to a process for treating biomass. The biomass is treated with a biomass swelling agent within the vessel to swell or rupture at least a portion of the biomass. A portion of the swelling agent is removed from a first end of the vessel following the treatment. Then steam is introduced into a second end of the vessel different from the first end to further remove swelling agent from the vessel in such a manner that the swelling agent exits the vessel at a relatively low water content.

  19. Process for treating biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campbell, Timothy J.; Teymouri, Farzaneh

    This invention is directed to a process for treating biomass. The biomass is treated with a biomass swelling agent within the vessel to swell or rupture at least a portion of the biomass. A portion of the swelling agent is removed from a first end of the vessel following the treatment. Then steam is introduced into a second end of the vessel different from the first end to further remove swelling agent from the vessel in such a manner that the swelling agent exits the vessel at a relatively low water content.

  20. Assessment of corneal properties based on statistical modeling of OCT speckle

    PubMed Central

    Jesus, Danilo A.; Iskander, D. Robert

    2016-01-01

    A new approach to assess the properties of the corneal micro-structure in vivo based on the statistical modeling of speckle obtained from Optical Coherence Tomography (OCT) is presented. A number of statistical models were proposed to fit the corneal speckle data obtained from OCT raw image. Short-term changes in corneal properties were studied by inducing corneal swelling whereas age-related changes were observed analyzing data of sixty-five subjects aged between twenty-four and seventy-three years. Generalized Gamma distribution has shown to be the best model, in terms of the Akaike’s Information Criterion, to fit the OCT corneal speckle. Its parameters have shown statistically significant differences (Kruskal-Wallis, p < 0.001) for short and age-related corneal changes. In addition, it was observed that age-related changes influence the corneal biomechanical behaviour when corneal swelling is induced. This study shows that Generalized Gamma distribution can be utilized to modeling corneal speckle in OCT in vivo providing complementary quantified information where micro-structure of corneal tissue is of essence. PMID:28101409

  1. In Silico Synthesis of Microgel Particles

    PubMed Central

    2017-01-01

    Microgels are colloidal-scale particles individually made of cross-linked polymer networks that can swell and deswell in response to external stimuli, such as changes to temperature or pH. Despite a large amount of experimental activities on microgels, a proper theoretical description based on individual particle properties is still missing due to the complexity of the particles. To go one step further, here we propose a novel methodology to assemble realistic microgel particles in silico. We exploit the self-assembly of a binary mixture composed of tetravalent (cross-linkers) and bivalent (monomer beads) patchy particles under spherical confinement in order to produce fully bonded networks. The resulting structure is then used to generate the initial microgel configuration, which is subsequently simulated with a bead–spring model complemented by a temperature-induced hydrophobic attraction. To validate our assembly protocol, we focus on a small microgel test case and show that we can reproduce the experimental swelling curve by appropriately tuning the confining sphere radius, something that would not be possible with less sophisticated assembly methodologies, e.g., in the case of networks generated from an underlying crystal structure. We further investigate the structure (in reciprocal and real space) and the swelling curves of microgels as a function of temperature, finding that our results are well described by the widely used fuzzy sphere model. This is a first step toward a realistic modeling of microgel particles, which will pave the way for a careful assessment of their elastic properties and effective interactions. PMID:29151620

  2. Release and diffusional modeling of metronidazole lipid matrices.

    PubMed

    Ozyazici, Mine; Gökçe, Evren H; Ertan, Gökhan

    2006-07-01

    In this study, the first aim was to investigate the swelling and relaxation properties of lipid matrix on diffusional exponent (n). The second aim was to determine the desired release profile of metronidazole lipid matrix tablets. We prepared metronidazole lipid matrix granules using Carnauba wax, Beeswax, Stearic acid, Cutina HR, Precirol ATO 5, and Compritol ATO 888 by hot fusion method and pressed the tablets of these granules. In vitro release test was performed using a standard USP dissolution apparatus I (basket method) with a stirring rate of 100 rpm at 37 degrees C in 900 ml of 0.1 N hydrochloric acid, adjusted to pH 1.2, as medium for the formulations' screening. Hardness, diameter-height ratio, friability, and swelling ratio were determined. Target release profile of metronidazole was also drawn. Stearic acid showed the highest and Carnauba wax showed the lowest release rates in all formulations used. Swelling ratios were calculated after the dissolution of tablets as 9.24%, 6.03%, 1.74%, and 1.07% for Cutina HR, Beeswax, Precirol ATO 5, and Compritol ATO 888, respectively. There was erosion in Stearic acid, but neither erosion nor swelling in Carnauba wax, was detected. According to the power law analysis, the diffusion mechanism was expressed as pure Fickian for Stearic acid and Carnauba wax and the coupling of Fickian and relaxation contributions for other Cutina HR, Beeswax, Compritol ATO 888, and Precirol ATO 5 tablets. It was found that Beeswax (kd=2.13) has a very close drug release rate with the target profile (kt=1.95). Our results suggested that swelling and relaxation properties of lipid matrices should be examined together for a correct evaluation on drug diffusion mechanism of insoluble matrices.

  3. Oxygen-deficient metabolism and corneal edema

    PubMed Central

    Leung, B.K.; Bonanno, J.A.; Radke, C.J.

    2014-01-01

    Wear of low-oxygen-transmissible soft contact lenses swells the cornea significantly, even during open eye. Although oxygen-deficient corneal edema is well-documented, a self-consistent quantitative prediction based on the underlying metabolic reactions is not available. We present a biochemical description of the human cornea that quantifies hypoxic swelling through the coupled transport of water, salt, and respiratory metabolites. Aerobic and anaerobic consumption of glucose, as well as acidosis and pH buffering, are incorporated in a seven-layer corneal model (anterior chamber, endothelium, stroma, epithelium, postlens tear film, contact lens, and prelens tear film). Corneal swelling is predicted from coupled transport of water, dissolved salts, and especially metabolites, along with membrane-transport resistances at the endothelium and epithelium. At the endothelium, the Na+/K+ - ATPase electrogenic channel actively transports bicarbonate ion from the stroma into the anterior chamber. As captured by the Kedem–Katchalsky membrane-transport formalism, the active bicarbonate-ion flux provides the driving force for corneal fluid pump-out needed to match the leak-in tendency of the stroma. Increased lactate-ion production during hypoxia osmotically lowers the pump-out rate requiring the stroma to swell to higher water content. Concentration profiles are predicted for glucose, water, oxygen, carbon dioxide, and hydronium, lactate, bicarbonate, sodium, and chloride ions, along with electrostatic potential and pressure profiles. Although the active bicarbonate-ion pump at the endothelium drives bicarbonate into the aqueous humor, we find a net flux of bicarbonate ion into the cornea that safeguards against acidosis. For the first time, we predict corneal swelling upon soft-contact-lens wear from fundamental biophysico-chemical principles. We also successfully predict that hypertonic tear alleviates contact-lens-induced edema. PMID:21820076

  4. Oxygen-deficient metabolism and corneal edema.

    PubMed

    Leung, B K; Bonanno, J A; Radke, C J

    2011-11-01

    Wear of low-oxygen-transmissible soft contact lenses swells the cornea significantly, even during open eye. Although oxygen-deficient corneal edema is well-documented, a self-consistent quantitative prediction based on the underlying metabolic reactions is not available. We present a biochemical description of the human cornea that quantifies hypoxic swelling through the coupled transport of water, salt, and respiratory metabolites. Aerobic and anaerobic consumption of glucose, as well as acidosis and pH buffering, are incorporated in a seven-layer corneal model (anterior chamber, endothelium, stroma, epithelium, postlens tear film, contact lens, and prelens tear film). Corneal swelling is predicted from coupled transport of water, dissolved salts, and especially metabolites, along with membrane-transport resistances at the endothelium and epithelium. At the endothelium, the Na+/K+ - ATPase electrogenic channel actively transports bicarbonate ion from the stroma into the anterior chamber. As captured by the Kedem-Katchalsky membrane-transport formalism, the active bicarbonate-ion flux provides the driving force for corneal fluid pump-out needed to match the leak-in tendency of the stroma. Increased lactate-ion production during hypoxia osmotically lowers the pump-out rate requiring the stroma to swell to higher water content. Concentration profiles are predicted for glucose, water, oxygen, carbon dioxide, and hydronium, lactate, bicarbonate, sodium, and chloride ions, along with electrostatic potential and pressure profiles. Although the active bicarbonate-ion pump at the endothelium drives bicarbonate into the aqueous humor, we find a net flux of bicarbonate ion into the cornea that safeguards against acidosis. For the first time, we predict corneal swelling upon soft-contact-lens wear from fundamental biophysico-chemical principles. We also successfully predict that hypertonic tear alleviates contact-lens-induced edema. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Modeling the arrangement of particles in natural swelling-clay porous media using three-dimensional packing of elliptic disks

    NASA Astrophysics Data System (ADS)

    Ferrage, Eric; Hubert, Fabien; Tertre, Emmanuel; Delville, Alfred; Michot, Laurent J.; Levitz, Pierre

    2015-06-01

    Swelling clay minerals play a key role in the control of water and pollutant migration in natural media such as soils. Moreover, swelling clay particles' orientational properties in porous media have significant implications for the directional dependence of fluid transfer. Herein we investigate the ability to mimic the organization of particles in natural swelling-clay porous media using a three-dimensional sequential particle deposition procedure [D. Coelho, J.-F. Thovert, and P. M. Adler, Phys. Rev. E 55, 1959 (1997), 10.1103/PhysRevE.55.1959]. The algorithm considered is first used to simulate disk packings. Porosities of disk packings fall onto a single master curve when plotted against the orientational scalar order parameter value. This relation is used to validate the algorithm used in comparison with existing ones. The ellipticity degree of the particles is shown to have a negligible effect on the packing porosity for ratios ℓa/ℓb less than 1.5, whereas a significant increase in porosity is obtained for higher values. The effect of the distribution of the geometrical parameters (size, aspect ratio, and ellipticity degree) of particles on the final packing properties is also investigated. Finally, the algorithm is used to simulate particle packings for three size fractions of natural swelling-clay mineral powders. Calculated data regarding the distribution of the geometrical parameters and orientation of particles in porous media are successfully compared with experimental data obtained for the same samples. The results indicate that the obtained virtual porous media can be considered representative of natural samples and can be used to extract properties difficult to obtain experimentally, such as the anisotropic features of pore and solid phases in a system.

  6. Effective diffusion coefficients of gas mixture in heavy oil under constant-pressure conditions

    NASA Astrophysics Data System (ADS)

    Li, Huazhou Andy; Sun, Huijuan; Yang, Daoyong

    2017-05-01

    We develop a method to determine the effective diffusion coefficient for each individual component of a gas mixture in a non-volatile liquid (e.g., heavy oil) at high pressures with compositional analysis. Theoretically, a multi-component one-way diffusion model is coupled with the volume-translated Peng-Robinson equation of state to quantify the mass transfer between gas and liquid (e.g., heavy oil). Experimentally, the diffusion tests have been conducted with a PVT setup for one pure CO2-heavy oil system and one C3H8-CO2-heavy oil system under constant temperature and pressure, respectively. Both the gas-phase volume and liquid-phase swelling effect are simultaneously recorded during the measurement. As for the C3H8-CO2-heavy oil system, the gas chromatography method is employed to measure compositions of the gas phase at the beginning and end of the diffusion measurement, respectively. The effective diffusion coefficients are then determined by minimizing the discrepancy between the measured and calculated gas-phase composition at the end of diffusion measurement. The newly developed technique can quantify the contributions of each component of mixture to the bulk mass transfer from gas into liquid. The effective diffusion coefficient of C3H8 in the C3H8-CO2 mixture at 3945 ± 20 kPa and 293.85 K, i.e., 18.19 × 10^{ - 10} {{m}}^{ 2} / {{s}}, is found to be much higher than CO2 at 3950 ± 18 kPa and 293.85 K, i.e., 8.68 × 10^{ - 10} {{m}}^{ 2} / {{s}}. In comparison with pure CO2, the presence of C3H8 in the C3H8-CO2 mixture contributes to a faster diffusion of CO2 from the gas phase into heavy oil and consequently a larger swelling factor of heavy oil.

  7. Flakeboard thickness swelling. Part II, Fundamental response of board properties to steam injection pressing

    Treesearch

    Robert L. Geimer; Jin Heon Kwon

    1999-01-01

    The results of this study showed that the same relative reductions in thickness swelling (TS) previously obtained with steam-injection-pressed (SIP) resinless mats are also obtained in boards bonded with 3% isocyanate resin. Reductions in thickness swelling were proportional to steam time and pressure. Thickness swelling of 40% measured in conventionally pressed boards...

  8. Swelling kinetics and electrical charge transport in PEDOT:PSS thin films exposed to water vapor.

    PubMed

    Sarkar, Biporjoy; Jaiswal, Manu; Satapathy, Dillip K

    2018-06-06

    We report the swelling kinetics and evolution of the electrical charge transport in poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT:PSS) thin films subjected to water vapor. Polymer films swell by the diffusion of water vapor and are found to undergo structural relaxations. Upon exposure to water vapor, primarily the hygroscopic PSS shell, which surrounds the conducting PEDOT-rich cores, takes up water vapor and subsequently swells. We found that the degree of swelling largely depends on the PEDOT to PSS ratio. Swelling driven microscopic rearrangement of the conducting PEDOT-rich cores in the PSS matrix strongly influences the electrical charge transport of the polymer film. Swelling induced increase as well as decrease of electrical resistance are observed in polymer films having different PEDOT to PSS ratio. This anomalous charge transport behavior in PEDOT:PSS films is reconciled by taking into account the contrasting swelling behavior of the PSS and the conducting PEDOT-rich cores leading to spatial segregation of PSS in films with PSS as a minority phase and by a net increase in mean separation between conducting PEDOT-rich cores for films having abundance of PSS.

  9. Swelling kinetics and electrical charge transport in PEDOT:PSS thin films exposed to water vapor

    NASA Astrophysics Data System (ADS)

    Sarkar, Biporjoy; Jaiswal, Manu; Satapathy, Dillip K.

    2018-06-01

    We report the swelling kinetics and evolution of the electrical charge transport in poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT:PSS) thin films subjected to water vapor. Polymer films swell by the diffusion of water vapor and are found to undergo structural relaxations. Upon exposure to water vapor, primarily the hygroscopic PSS shell, which surrounds the conducting PEDOT-rich cores, takes up water vapor and subsequently swells. We found that the degree of swelling largely depends on the PEDOT to PSS ratio. Swelling driven microscopic rearrangement of the conducting PEDOT-rich cores in the PSS matrix strongly influences the electrical charge transport of the polymer film. Swelling induced increase as well as decrease of electrical resistance are observed in polymer films having different PEDOT to PSS ratio. This anomalous charge transport behavior in PEDOT:PSS films is reconciled by taking into account the contrasting swelling behavior of the PSS and the conducting PEDOT-rich cores leading to spatial segregation of PSS in films with PSS as a minority phase and by a net increase in mean separation between conducting PEDOT-rich cores for films having abundance of PSS.

  10. How Much Do Ultrathin Polymers with Intrinsic Microporosity Swell in Liquids?

    PubMed

    Ogieglo, Wojciech; Ghanem, Bader; Ma, Xiaohua; Pinnau, Ingo; Wessling, Matthias

    2016-10-06

    As synthetic membrane materials, polymers with intrinsic microporosity (PIMs) have demonstrated unprecedented permeation and molecular-separation properties. Here, we report the swelling characteristics of submicron-thick supported films of spirobisindane-based PIMs, PIM-1 and PIM-6FDA-OH, for six organic solvents and water using in situ spectroscopic ellipsometry. Surprisingly, PIMs swell significantly in most organic solvents, with swelling factors (SF = h swollen /h dry ) as high as 2.5. This leads to the loss of the ultrarigid character of the polymer and produces equilibrated liquid-like swollen films. Filling of the excess frozen-in fractional free volume with liquid was discovered next to swelling-induced polymer matrix dilation. Water hardly swells the polymer matrix, but it penetrates into the intrinsic microporous structure. This study is the first to provide fundamental swelling data for PIMs, leading to better comprehension of their permeation properties. Such an understanding is indispensable for applications such as solvent filtration, natural-gas separation, and ion retention in flow batteries.

  11. The numerical simulation on swelling factor and extraction rate of a tight crude oil and SC-CO2 system

    NASA Astrophysics Data System (ADS)

    Zou, Hongjun; Gong, Houjian; Li, Yajun; Dong, Mingzhe

    2018-03-01

    A method was established to study swelling and extraction between CO2 and crude oil, and the influences of pressure, temperature and molecular weight were investigated. Firstly, laboratory analysis was conducted to determine the pseudo-component and other parameters of the crude oil. Then swelling and extraction of the crude oil and SC-CO2 system were calculated by computer simulation. The results show that the pressure and temperature have little influence on the swelling and extraction between CO2 and crude oil when the mole fraction of CO2 is lower. A higher pressure and temperature is more beneficial to the interaction of CO2 and crude oil, while the swelling and extraction will not be obvious when the system is miscible. And the smaller the molecular weight of the oil is, the larger the maximum value of the swelling factor of CO2 and crude oil changes. The study of swelling and extraction plays an important role in the oilfield stimulation.

  12. Concurrent changes in aggregation and swelling of coal particles in solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishioka, M.

    1995-12-31

    A new method of coal swelling has been developed tinder the condition of low coal concentrations with continuous mixing of coal and solvent. The change in particle size distributions by a laser scattering procedure was used for the evaluation of coal swelling. Particle size distributions in good and poor solvents were nearly equal, but reversibly changed in good solvents from time to time. The effects of solubles and coal concentrations on the distributions were small. It was concluded that aggregate d coal particles disaggregate in good solvents, and that an increase in the particle size distribution due to swelling inmore » good solvents are compensated by a decrease in the particle size due to disaggregation. Therefore, the behavior of coal particles in solvents is controlled by aggregation in addition to coal swelling. This implies that an increase in the particle size due to coal swelling in actual processes is not so large as expected by the results obtained from the conventional coal swelling methods.« less

  13. A three-scale model for ionic solute transport in swelling clays incorporating ion-ion correlation effects

    NASA Astrophysics Data System (ADS)

    Le, Tien Dung; Moyne, Christian; Murad, Marcio A.

    2015-01-01

    A new three-scale model is proposed to describe the movement of ionic species of different valences in swelling clays characterized by three separate length scales (nano, micro, and macro) and two levels of porosity (nano- and micropores). At the finest (nano) scale the medium is treated as charged clay particles saturated by aqueous electrolyte solution containing monovalent and divalent ions forming the electrical double layer. A new constitutive law is constructed for the disjoining pressure based on the numerical resolution of non-local problem at the nanoscale which, in contrast to the Poisson-Boltzmann theory for point charge ions, is capable of capturing the short-range interactions between the ions due to their finite size. At the intermediate scale (microscale), the two-phase homogenized particle/electrolyte solution system is represented by swollen clay clusters (or aggregates) with the nanoscale disjoining pressure incorporated in a modified form of Terzaghi's effective principle. At the macroscale, the electro-chemical-mechanical couplings within clay clusters is homogenized with the ion transport in the bulk fluid lying in the micro pores. The resultant macroscopic picture is governed by a three-scale model wherein ion transport takes place in the bulk solution strongly coupled with the mechanics of the clay clusters which play the role of sources/sinks of mass to the bulk fluid associated with ion adsorption/desorption in the electrical double layer at the nanoscale. Within the context of the quasi-steady version of the multiscale model, wherein the electrolyte solution in the nanopores is assumed at instantaneous thermodynamic equilibrium with the bulk fluid in the micropores, we build-up numerically the ion-adsorption isotherms along with the constitutive law of the retardation coefficients of monovalent and divalent ions. In addition, the constitutive law for the macroscopic swelling pressure is reconstructed numerically showing patterns of attractive forces between particles for bivalent ions for particular ranges of bulk concentrations. The three-scale model is applied to numerically simulate ion diffusion in a compacted clay liner underneath a sanitary landfill. Owing to the distinct constitutive behavior of the swelling pressure and partition coefficient for each ionic species, different compaction regimes and diffusion/adsorption patterns, with totally different characteristic time scales, are observed for sodium and calcium migration in the clay liner.

  14. Mixed messages: wild female bonobos show high variability in the timing of ovulation in relation to sexual swelling patterns.

    PubMed

    Douglas, Pamela Heidi; Hohmann, Gottfried; Murtagh, Róisín; Thiessen-Bock, Robyn; Deschner, Tobias

    2016-06-30

    The evolution of primate sexual swellings and their influence on mating strategies have captivated the interest of biologists for over a century. Across the primate order, variability in the timing of ovulation with respect to females' sexual swelling patterns differs greatly. Since sexual swellings typically function as signals of female fecundity, the temporal relation between ovulation and sexual swellings can impact the ability of males to pinpoint ovulation and thereby affect male mating strategies. Here, we used endocrine parameters to detect ovulation and examined the temporal relation between the maximum swelling phase (MSP) and ovulation in wild female bonobos (Pan paniscus). Data were collected at the Luikotale field site, Democratic Republic of Congo, spanning 36 months. Observational data from 13 females were used to characterise female swelling cycles (N = 70). Furthermore, we measured urinary oestrone and pregnanediol using liquid chromatography-tandem mass spectrometry, and used pregnanediol to determine the timing of ovulation in 34 cycles (N = 9 females). We found that the duration of females' MSP was highly variable, ranging from 1 to 31 days. Timing of ovulation varied considerably in relation to the onset of the MSP, resulting in a very low day-specific probability of ovulation and fecundity across female cycles. Ovulation occurred during the MSP in only 52.9 % of the analysed swelling cycles, and females showed regular sexual swelling patterns in N = 8 swelling cycles where ovulation did not occur. These findings reveal that sexual swellings of bonobos are less reliable indicators of ovulation compared to other species of primates. Female bonobos show unusual variability in the duration of the MSP and in the timing of ovulation relative to the sexual swelling signal. These data are important for understanding the evolution of sexual signals, how they influence male and female mating strategies, and how decoupling visual signals of fecundity from the periovulatory period may affect intersexual conflict. By prolonging the period during which males would need to mate guard females to ascertain paternity, the temporal variability of this signal may constrain mate-guarding efforts by male bonobos.

  15. Challenges of Modeling Swell Propagation and Sea Waves over a Complex Bathymetry: Implication for Coastal Flood Mapping in Sitka, AK

    NASA Astrophysics Data System (ADS)

    Marjani, A.; Allahdadi, M.

    2016-02-01

    Sitka, AK is included in Region X of FEMA Flood Hazard Mapping. The scoped shoreline is located east of the Sitka Sound connecting Sitka to the Pacific waters through a semi-narrow continental shelf. Wave hindcast is a fundamental component of Coastal Flood Risk Study Process. SWAN model on an unstructured mesh was used to determine the characteristics of waves along the Sitka shoreline. This area is substantially affected by a combination of both offshore waves (swells) and waves generated by severe local winds. The bathymetry inside the Sitka Sound and the nearshore areas along the Sitka coastline is very complex and includes many abrupt deepening as a result of geological characteristics or large tidal currents. The present study provides a brief review of the steps and challenges for a reliable wave modeling over this area. The requirement for running the model in non-stationary mode in combination with the mentioned complexities initiated instabilities regarding intense refractions that cause unrealistic large values for the peak period and the wave height. Refining the computational mesh over the areas with great depth gradients as well as increasing the spectral grid resolution and decreasing time steps did not satisfactorily resolve the above issue. Choosing an appropriate CFL Limiters on Spectral Propagation Velocities in SWAN setup (which is not considered in the default settings) could properly treat this instability (See attached Figure). The model offshore boundary was prescribed using wave data obtained from the WIS buoys, while wind forcing was resulted as a combination of Sitka airport and offshore Buoy wind data. Model performance in transformation of swells from the open boundary was evaluated using two more offshore WIS buoy data. A 1D model transferred the extracted wave data from SWAN to the surfzone along each selected transect for each storm event. The the final production was runup with different recurrence periods along the shoreline.

  16. Hypotonic swelling promotes nitric oxide release in cardiac ventricular myocytes: impact on swelling-induced negative inotropic effect

    PubMed Central

    Gonano, Luis Alberto; Morell, Malena; Burgos, Juan Ignacio; Dulce, Raul Ariel; De Giusti, Verónica Celeste; Aiello, Ernesto Alejandro; Hare, Joshua Michael; Vila Petroff, Martin

    2014-01-01

    Aims Cardiomyocyte swelling occurs in multiple pathological situations and has been associated with contractile dysfunction, cell death, and enhanced propensity to arrhythmias. We investigate whether hypotonic swelling promotes nitric oxide (NO) release in cardiomyocytes, and whether it impacts on swelling-induced contractile dysfunction. Methods and results Superfusing rat cardiomyocytes with a hypotonic solution (HS; 217 mOsm), increased cell volume, reduced myocyte contraction and Ca2+ transient, and increased NO-sensitive 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate (DAF-FM) fluorescence. When cells were exposed to HS + 2.5 mM of the NO synthase inhibitor l-NAME, cell swelling occurred in the absence of NO release. Swelling-induced NO release was also prevented by the nitric oxide synthase 1 (NOS1) inhibitor, nitroguanidine, and significantly reduced in NOS1 knockout mice. Additionally, colchicine (inhibitor of microtubule polymerization) prevented the increase in DAF-FM fluorescence induced by HS, indicating that microtubule integrity is necessary for swelling-induced NO release. The swelling-induced negative inotropic effect was exacerbated in the presence of either l-NAME, nitroguandine, the guanylate cyclase inhibitor, ODQ, or the PKG inhibitor, KT5823, suggesting that NOS1-derived NO provides contractile support via a cGMP/PKG-dependent mechanism. Indeed, ODQ reduced Ca2+ wave velocity and both ODQ and KT5823 reduced the HS-induced increment in ryanodine receptor (RyR2, Ser2808) phosphorylation, suggesting that in this context, cGMP/PKG may contribute to preserve contractile function by enhancing sarcoplasmic reticulum Ca2+ release. Conclusions Our findings suggest a novel mechanism for NO release in cardiomyocytes with putative pathophysiological relevance determined, at least in part, by its capability to reduce the extent of contractile dysfunction associated with hypotonic swelling. PMID:25344365

  17. Autonomous Rhythmic Drug Delivery Systems Based on Chemical and Biochemomechanical Oscillators

    NASA Astrophysics Data System (ADS)

    Siegel, Ronald A.

    While many drug delivery systems target constant, or zero-order drug release, certain drugs and hormones must be delivered in rhythmic pulses in order to achieve their optimal effect. Here we describe studies with two model autonomous rhythmic delivery systems. The first system is driven by a pH oscillator that modulates the ionization state of a model drug, benzoic acid, which can permeate through a lipophilic membrane when the drug is uncharged. The second system is based on a nonlinear negative feedback instability that arises from coupling of swelling of a hydrogel membrane to an enzymatic reaction, with the hydrogel controlling access of substrate to the enzyme, and the enzyme's product controlling the hydrogel's swelling state. The latter system, whose autonomous oscillations are driven by glucose at constant external activity, is shown to deliver gonadotropin releasing hormone (GnRH) in rhythmic pulses, with periodicity of the same order as observed in sexually mature adult humans. Relevant experimental results and some mathematical models are reviewed.

  18. On the onset of void swelling in pure tungsten under neutron irradiation: An object kinetic Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Castin, N.; Bakaev, A.; Bonny, G.; Sand, A. E.; Malerba, L.; Terentyev, D.

    2017-09-01

    We propose an object kinetic Monte Carlo (OKMC) model for describing the microstructural evolution in pure tungsten under neutron irradiation. We here focus on low doses (under 1 dpa), and we neglect transmutation in first approximation. The emphasis is mainly centred on an adequate description of neutron irradiation, the subsequent introduction of primary defects, and their thermal diffusion properties. Besides grain boundaries and the dislocation network, our model includes the contribution of carbon impurities, which are shown to have a strong influence on the onset of void swelling. Our parametric study analyses the quality of our model in detail, and confronts its predictions with experimental microstructural observations with satisfactory agreement. We highlight the importance for an accurate determination of the dissolved carbon content in the tungsten matrix, and we advocate for an accurate description of atomic collision cascades, in light of the sensitivity of our results with respect to correlated recombination.

  19. Synthesis, characterization and in vitro cytotoxicity analysis of a novel cellulose based drug carrier for the controlled delivery of 5-fluorouracil, an anticancer drug

    NASA Astrophysics Data System (ADS)

    Anirudhan, Thayyath S.; Nima, Jayachandran; Divya, Peethambaran L.

    2015-11-01

    The present investigation concerns the development and evaluation of a novel drug delivery system, aminated-glycidylmethacrylate grafted cellulose-grafted polymethacrylic acid-succinyl cyclodextrin (Cell-g-(GMA/en)-PMA-SCD) for the controlled release of 5-Fluorouracil, an anticancer drug. The prepared drug carrier was characterized by FT-IR, XRD and SEM techniques. Binding kinetics and isotherm studies of 5-FU onto Cell-g-(GMA/en)-PMA-SCD were found to follow pseudo-second-order and Langmuir model respectively. Maximum binding capacity of drug carrier was found to be 149.09 mg g-1 at 37 °C. Swelling studies, in vitro release kinetics, drug loading efficiency and encapsulation efficiency of Cell-g-(GMA/en)-PMA-SCD were studied. The release kinetics was analyzed using Ritger-Peppas equation at pH 7.4. Cytotoxicity analysis on MCF-7 (human breast carcinoma) cells indicated that the drug carrier shows sustained and controlled release of drug to the target site. Hence, it is evident from this investigation that Cell-g-(GMA/en)-PMA-SCD could be a promising carrier for 5-FU.

  20. An improved weakly compressible SPH method for simulating free surface flows of viscous and viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyang; Deng, Xiao-Long

    2016-04-01

    In this paper, an improved weakly compressible smoothed particle hydrodynamics (SPH) method is proposed to simulate transient free surface flows of viscous and viscoelastic fluids. The improved SPH algorithm includes the implementation of (i) the mixed symmetric correction of kernel gradient to improve the accuracy and stability of traditional SPH method and (ii) the Rusanov flux in the continuity equation for improving the computation of pressure distributions in the dynamics of liquids. To assess the effectiveness of the improved SPH algorithm, a number of numerical examples including the stretching of an initially circular water drop, dam breaking flow against a vertical wall, the impact of viscous and viscoelastic fluid drop with a rigid wall, and the extrudate swell of viscoelastic fluid have been presented and compared with available numerical and experimental data in literature. The convergent behavior of the improved SPH algorithm has also been studied by using different number of particles. All numerical results demonstrate that the improved SPH algorithm proposed here is capable of modeling free surface flows of viscous and viscoelastic fluids accurately and stably, and even more important, also computing an accurate and little oscillatory pressure field.

  1. Development of PRIME for irradiation performance analysis of U-Mo/Al dispersion fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Gwan Yoon; Kim, Yeon Soo; Jeong, Yong Jin

    A prediction code for the thermo-mechanical performance of research reactor fuel (PRIME) has been developed with the implementation of developed models to analyze the irradiation behavior of U-Mo dispersion fuel. The code is capable of predicting the two-dimensional thermal and mechanical performance of U-Mo dispersion fuel during irradiation. A finite element method was employed to solve the governing equations for thermal and mechanical equilibria. Temperature-and burnup-dependent material properties of the fuel meat constituents and cladding were used. The numerical solution schemes in PRIME were verified by benchmarking solutions obtained using a commercial finite element analysis program (ABAQUS).The code was validatedmore » using irradiation data from RERTR, HAMP-1, and E-FUTURE tests. The measured irradiation data used in the validation were IL thickness, volume fractions of fuel meat constituents for the thermal analysis, and profiles of the plate thickness changes and fuel meat swelling for the mechanical analysis. The prediction results were in good agreement with the measurement data for both thermal and mechanical analyses, confirming the validity of the code. (c) 2018 Elsevier B.V. All rights reserved.« less

  2. Osmotic swelling of polyacrylate hydrogels in physiological salt solutions.

    PubMed

    Horkay, F; Tasaki, I; Basser, P J

    2000-01-01

    The swelling behavior of fully neutralized sodium polyacrylate gels was investigated in aqueous solutions of alkali metal (LiCl, NaCl, KCl, CsCl) and alkaline earth metal salts (CaCl2, SrCl2, BaCl2). The total salt concentration and the ratio of monovalent to divalent cations were varied in the biologically significant range. It is found that the concentrations of both monovalent and divalent cations vary continuously and smoothly in the gel despite the abrupt change in the gel volume. The individual elastic, mixing, and ionic contributions to the free energy of the gel were separately determined as a function of the degree of network swelling to elucidate the thermodynamics of swelling. Shear modulus measurements performed at different Ca2+ concentrations suggest that Ca2+ does not form stable cross-links between the polymer chains. At low and moderate swelling ratios the concentration dependence of the shear modulus follows a power law behavior, G variation of phi n, with n = 0.34 +/- 0.03. At high swelling degrees, however, the shear modulus increases with increasing swelling. The value of the Flory-Huggins interaction parameter, chi, determined from osmotic swelling pressure and shear modulus measurements, strongly depends on the ionic composition of the equilibrium solution and increases with increasing Ca2+ concentration.

  3. Rheological behavior of rat mesangial cells during swelling in vitro.

    PubMed

    Craelius, W; Huang, C J; Guber, H; Palant, C E

    1997-01-01

    The response of cells to mechanical forces depends on the rheological properties of their membranes and cytoplasm. To characterize those properties, mechanical and electrical responses to swelling were measured in rat mesangial cells (MC) using electrophysiologic and video microscopic techniques. Ion transport rates during hyposmotic exposures were measured with whole-cell recording electrodes. Results showed that cell swelling varied nonlinearly with positive internal pressure, consistent with a viscoelastic cytoplasm. The extrapolated area expansivity modulus for small deformations was estimated to be 450 dyne/cm. Cell swelling, caused either by positive pipet pressure or hyposmotic exposure (40-60 mOsm Kg-1), rapidly induced an outwardly rectifying membrane conductance with an outward magnitude 4-5 times the baseline conductance of 0.9 +/- 0.5 nS (p < .01). Swelling-induced (SI) current was weakly selective for K+ over Na+, partially reversed upon return to isotonicity, and was antagonized by 0.5 mM GdCl3 (p < 0.02; n = 6). Isolated cells treated with GdCl3 rapidly lysed after hypotonic exposure, in contrast to untreated cells that exhibited regulatory volume decrease (RVD). Our results indicate that volume regulation by MC depends upon a large swelling-induced K+ efflux, and suggest that swelling in MC is a viscoelastic process, with a viscosity dependent on the degree of swelling.

  4. Observation-Based Dissipation and Input Terms for Spectral Wave Models, with End-User Testing

    DTIC Science & Technology

    2014-09-30

    scale influence of the Great barrier reef matrix on wave attenuation, Coral Reefs [published, refereed] Ghantous, M., and A.V. Babanin, 2014: One...Observation-Based Dissipation and Input Terms for Spectral Wave Models...functions, based on advanced understanding of physics of air-sea interactions, wave breaking and swell attenuation, in wave - forecast models. OBJECTIVES The

  5. A study on the swelling behavior of poly(acrylic acid) hydrogels obtained by electron beam crosslinking

    NASA Astrophysics Data System (ADS)

    Sheikh, N.; Jalili, L.; Anvari, F.

    2010-06-01

    Poly(acrylic acid) (PAA) hydrogels were prepared by using electron beam (EB) crosslinking of PAA homopolymer from its aqueous solutions. The swelling behavior of the hydrogels was studied as a function of the concentration of PAA solution, radiation dose, pH of the swelling medium and swelling time. Also the environmental pH effect on the water diffusion mode into hydrogels was investigated. These hydrogels clearly showed pH-sensitive swelling behavior with Fickian type of diffusion in the stomach-like pH medium (pH 1.3) and non-Fickian type in the intestine-like pH medium (pH 6.8).

  6. Swelling-induced chloride current in glioblastoma proliferation, migration, and invasion.

    PubMed

    Wong, Raymond; Chen, Wenliang; Zhong, Xiao; Rutka, James T; Feng, Zhong-Ping; Sun, Hong-Shuo

    2018-01-01

    Glioblastoma (GBM) remains as the most common and aggressive brain tumor. The survival of GBM has been linked to the aberrant activation of swelling-induced chloride current I Cl,swell . In this study, we investigated the effects of I Cl,swell on cell viability, proliferation, and migration in the human GBM cell lines, U251 and U87, using a combination of patch clamp electrophysiology, MTT, colony formation, wound healing assays and Western immunoblotting. First, we showed that the specific inhibitor of I Cl,swell , DCPIB, potently reduced the I Cl,swell in U87 cells. Next, in both U87 and U251 cells, we found that DCPIB reduced GBM viability, proliferation, colony formation, migration, and invasion. In addition, our Western immunoblot assay showed that DCPIB-treated U251 cells had a reduction in JAK2, STAT3, and Akt phosphorylation, thus, suggesting that DCPIB potentially suppresses GBM functions through inhibition of the JAK2/STAT3 and PI3K/Akt signaling pathways. Therefore, the I Cl,swell may be a potential drug target for GBM. © 2017 Wiley Periodicals, Inc.

  7. Swelling of Superabsorbent Poly(Sodium-Acrylate Acrylamide) Hydrogels and Influence of Chemical Structure on Internally Cured Mortar

    NASA Astrophysics Data System (ADS)

    Krafcik, Matthew J.; Erk, Kendra A.

    Superabsorbent hydrogel particles show promise as internal curing agents for high performance concrete (HPC). These gels can absorb and release large volumes of water and offer a solution to the problem of self-dessication in HPC. However, the gels are sensitive to ions naturally present in concrete. This research connects swelling behavior with gel-ion interactions to optimize hydrogel performance for internal curing, reducing the chance of early-age cracking and increasing the durability of HPC. Four different hydrogels of poly(sodium-acrylate acrylamide) are synthesized and characterized with swelling tests in different salt solutions. Depending on solution pH, ionic character, and gel composition, diffrerent swelling behaviors are observed. As weight percent of acrylic acid increases, gels demonstrate higher swelling ratios in reverse osmosis water, but showed substantially decreased swelling when aqueous cations are present. Additionally, in multivalent cation solutions, overshoot peaks are present, whereby the gels have a peak swelling ratio but then deswell. Multivalent cations interact with deprotonated carboxylic acid groups, constricting the gel and expelling water. Mortar containing hydrogels showed reduced autogenous shrinkage and increased relative humidity.

  8. Influence of polymer network parameters of tragacanth gum-based pH responsive hydrogels on drug delivery.

    PubMed

    Singh, Baljit; Sharma, Vikrant

    2014-01-30

    The present article deals with design of tragacanth gum-based pH responsive hydrogel drug delivery systems. The characterization of hydrogels has been carried out by SEMs, EDAX, FTIR, (13)C NMR, XRD, TGA/DTA/DTG and swelling studies. The correlation between reaction conditions and structural parameters of polymer networks such as polymer volume fraction in the swollen state (ϕ), Flory-Huggins interaction parameter (χ), molecular weight of the polymer chain between two neighboring cross links (M¯c), crosslink density (ρ) and mesh size (ξ) has been determined. The different kinetic models such as zero order, first order, Higuchi square root law, Korsmeyer-Peppas model and Hixson-Crowell cube root model were applied and it has been observed that release profile of amoxicillin best followed the first order model for the release of drug from the polymer matrix. The swelling of the hydrogels and release of drug from the drug loaded hydrogels occurred through non-Fickian diffusion mechanism in pH 7.4 solution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Thermodynamic Investigation of the Interaction between Polymer and Gases

    NASA Astrophysics Data System (ADS)

    Mahmood, Syed Hassan

    This thesis investigates the interaction between blowing agents and polymer matrix. Existing theoretical model was further developed to accommodate the polymer and blowing agent under study. The obtained results are not only useful for the optimization of the plastic foam fabrication process but also provides a different approach to usage of blowing agents. A magnetic suspension balance and an in-house visualizing dilatometer were used to obtain the sorption of blowing agents in polymer melts under elevated temperature and pressure. The proposed theoretical approach based on the thermodynamic model of SS-EOS is applied to understand the interaction of blowing agents with the polymer melt and one another (in the case of blend blowing agent). An in-depth study of the interaction of a blend of CO2 and DME with PS was conducted. Experimental volume swelling of the blend/PS mixture was measured and compared to the theoretical volume swelling obtained via ternary based SS-EOS, insuring the models validity. The effect of plasticization due to dissolution of DME on the solubility of CO2 in PS was then investigated by utilizing the aforementioned model. It was noted that the dissolution of DME increased the concentration of CO2 in PS and lowering the saturation pressure needed to dissolved a certain amount of CO2 in PS melt. The phenomenon of retrograde vitrification in PMMA induced due dissolution of CO2 was investigated in light of the thermodynamic properties resulting from the interaction of polymer and blowing agent. Solubility and volume swelling were measured in the pressure and temperature ranges promoting vitrification phenomenon, with relation being established between the thermodynamic properties and the vitrification process. Foaming of PMMA was conducted at various temperature values to investigate the application of this phenomenon.

  10. Simulation of controllable permeation in PNIPAAm coated membranes

    NASA Astrophysics Data System (ADS)

    Ehrenhofer, Adrian; Wallmersperger, Thomas; Richter, Andreas

    2016-04-01

    Membranes separate fluid compartments and can comprise transport structures for selective permeation. In biology, channel proteins are specialized in their atomic structure to allow transport of specific compounds (selectivity). Conformational changes in protein structure allow the control of the permeation abilities by outer stimuli (gating). In polymeric membranes, the selectivity is due to electrostatic or size-exclusion. It can thus be controlled by size variation or electric charges. Controllable permeation can be useful to determine particle-size distributions in continuous flow, e.g. in microfluidics and biomedicine to gain cell diameter profiles in blood. The present approach uses patterned polyethylene terephthalate (PET) membranes with hydrogel surface coating for permeation control by size-exclusion. The thermosensitive hydrogel poly(N-isopropylacrylamide) (PNIPAAm) is structured with a cross-shaped pore geometry. A change in the temperature of the water flow through the membrane leads to a pore shape variation. The temperature dependent behavior of PNIPAAm can be numerically modeled with a temperature expansion model, where the swelling and deswelling is depicted by temperature dependent expansion coefficients. In the present study, the free swelling behavior was implemented to the Finite Element tool ABAQUS for the complex composite structure of the permeation control membrane. Experimental values of the geometry characteristics were derived from microscopy images with the tool Image J and compared to simulation results. Numerical simulations using the derived thermo-mechanical model for different pore geometries (circular, rectangle, cross and triangle) were performed. With this study, we show that the temperature expansion model with values from the free swelling behavior can be used to adequately predict the deformation behavior of the complex membrane system. The predictions can be used to optimize the behavior of the membrane pores and the overall performance of the smart membrane.

  11. Characterization of the Rheological and Swelling Properties of Synthetic Alkali Silicate Gels in Order to Predict Their Behavior in ASR Damaged Concrete

    NASA Astrophysics Data System (ADS)

    Vayghan, Asghar Gholizadeh

    Alkali-silica reaction (ASR) is a major concrete durability concern that is responsible for the deterioration of concrete infrastructure in the world. The resultant of the reaction between the cement alkali hydroxides and the metastable silicates in the aggregates is a hygroscopic and expansive alkali-silicate gel (referred to as ASR gel in this document). The swelling behavior of ASR gels determines the extent of damage to concrete structures and, as such, mitigation of ASR relies on understanding these gels and finding ways to prevent them either from formation, or from swelling after formation. This dissertation focuses on the synthesis and characterization of ASR gels with wide ranges of compositions similar to what has been reported for the filed ASR gels in the literature. The experimental work consisted of three phases as follow. Phase I: Investigation of rheology, chemistry and physics of ASR gels produced through sol-method. Inspired from the existing literature, two sol-gel methods have been developed for the synthesis of ASR gels. The rheological (primarily gelation time, yield stress, and equilibrium stress), chemical (pore solution pH, pore solution composition, osmotic pressure, solid phase composition, stoichiometry of gelation reactions) and physical (evaporable water, solid content, etc.) properties of synthetic ASR gels have been extensively investigated in this phase. Ca/Si, Na/Si and K/Si, and water content were considered as the main chemical composition variables. In order to investigate the suppressing effects of lithium on the swelling properties of ASR gels, the gels were added with lithium in a part of the experimental program. The results strongly suggested that Ca/Si has a positive effect on the yield stress of the gels and their rate of gelation. Na/Si was found to have a decreasing effect on the yield stress and gelation rate (especially at low Ca/Si levels). K/Si and Li/Si had second-order (i.e., polynomial) effects on the yield stress of the gels, causing a significant drop in this parameter followed by some increase as they approached their upper values. Na/Si and K/Si were both found contribute to the osmotic potential of the ASR gels, while increase in Ca/Si generally led to a drop in this parameter. The presence of all components (Ca, Na, and K) were found to contribute to the pH of the gels' pore solution, and Ca/Si and Na/Si showed a synergistic effect on this parameter. Lithium, on the other hand, was found to be able to drop the OH- concentration of the pore solution by a factor of five in the case of high-sodium gels, which could partially explain its ASR mitigating effect. Phase II: Investigation of the free and restrained swelling behavior, hydrophilic potential and viscoelastic properties of ASR gels produced through the "paste method". 20 gel compositions were selected (using the central composite design method) with Ca/Si, Na/Si and K/Si molar ratios varying in the ranges (0.05-0.5), (0.1-1.0) and (0.0-0.3), respectively. The gels were produced by batching appropriate amounts of certain precursors containing different chemical components. After curing, the gels were tested for the abovementioned parameters using some innovative test methods as explained in the relevant chapters. The results suggest that increasing the alkali content (Na/Si and K/Si) in ASR gels resulted in an increase in the gels' free swelling and water absorption, and a reduction in the equilibrium relative humidity (ERH). However, no significant effect was found for Ca/Si with respect to the ERH. Ca/Si was found to have a multi-episode effect on the swelling and water absorption properties of the gels. An increase in Ca/Si up to 0.18 led to a considerable reduction in the swelling strain, followed by a slight increasing effect as it approached 0.4. Further increase in Ca/Si resulted in complete elimination of swelling strain. While Na/Si and K/Si could constantly increase the free swelling strain, their excessive presence was found to have a softening effect on the gels' structure, leading to a drop in their swelling pressure. Finally, all gels were found to show viscoelastic behavior that could be best explained via Burger's model. The elastic and viscous components have been measured for each gel and related to their composition using regression. Phase III: An Extended Chemical Index Model to Predict the Fly Ash Dosage Necessary for Mitigating Alkali-Silica Reaction in Concrete . In order to have an applied and ready-to-implement contribution to the realm of alkali-silica reaction, a predictive statistical model was developed that determines the optimum fly ash dosage for ASR mitigation depending on the acceptable risk of ASR and structure's importance. (Abstract shortened by ProQuest.).

  12. The structural, morphological and thermal properties of grafted pH-sensitive interpenetrating highly porous polymeric composites of sodium alginate/acrylic acid copolymers for controlled delivery of diclofenac potassium

    PubMed Central

    Jalil, Aamir; Khan, Samiullah; Naeem, Fahad; Haider, Malik Suleman; Sarwar, Shoaib; Riaz, Amna; Ranjha, Nazar Muhammad

    2017-01-01

    Abstract In present investigation new formulations of Sodium Alginate/Acrylic acid hydrogels with high porous structure were synthesized by free radical polymerization technique for the controlled drug delivery of analgesic agent to colon. Many structural parameters like molecular weight between crosslinks (M c), crosslink density (M r), volume interaction parameter (v 2,s), Flory Huggins water interaction parameter and diffusion coefficient (Q) were calculated. Water uptake studies was conducted in different USP phosphate buffer solutions. All samples showed higher swelling ratio with increasing pH values because of ionization of carboxylic groups at higher pH values. Porosity and gel fraction of all the samples were calculated. New selected samples were loaded with the model drug (diclofenac potassium).The amount of drug loaded and released was determined and it was found that all the samples showed higher release of drug at higher pH values. Release of diclofenac potassium was found to be dependent on the ratio of sodium alginate/acrylic acid, EGDMA and pH of the medium. Experimental data was fitted to various model equations and corresponding parameters were calculated to study the release mechanism. The Structural, Morphological and Thermal Properties of interpenetrating hydrogels were studied by FTIR, XRD, DSC, and SEM. PMID:29491802

  13. Sustained release of diltiazem HCl tableted after co-spray drying and physical mixing with PVAc and PVP.

    PubMed

    Al-Zoubi, Nizar; Al-Obaidi, Ghada; Tashtoush, Bassam; Malamataris, Stavros

    2016-01-01

    In this work, aqueous diltiazem HCl and polyvinyl-pyrrolidone (PVP) solutions were mixed with Kollicoat SR 30D and spray dried to microparticles of different drug:excipient ratio and PVP content. Co-spray dried products and physical mixtures of drug, Kollidon SR and PVP were tableted. Spray drying process, co-spray dried products and compressibility/compactability of co-spray dried and physical mixtures, as well as drug release and water uptake of matrix-tablets was evaluated. Simple power equation fitted drug release and water uptake (R(2) > 0.909 and 0.938, respectively) and correlations between them were examined. Co-spray dried products with PVP content lower than in physical mixtures result in slower release, while at equal PVP content (19 and 29% w/w of excipient) in similar release (f2 > 50). Increase of PVP content increases release rate and co-spray drying might be an alternative, when physical mixing is inadequate. Co-spray dried products show better compressibility/compatibility but higher stickiness to the die-wall compared to physical mixtures. SEM observations and comparison of release and swelling showed that distribution of tableted component affects only the swelling, while PVP content for both co-spray dried and physical mixes is major reason for release alterations and an aid for drug release control.

  14. Side Effects: Edema (Swelling)

    Cancer.gov

    Edema is a condition in which fluid builds up in your body’s tissues. The swelling may be caused by chemotherapy, cancer, and conditions not related to cancer. Learn about signs of edema, including swelling in your feet, ankles, and legs.

  15. A volatile tracer-assisted headspace analytical technique for determining the swelling capacity of superabsorbent polymers.

    PubMed

    Zhang, Shu-Xin; Jiang, Ran; Chai, Xin-Sheng

    2017-09-01

    This paper reports on a new method for the determination of swelling capacity of superabsorbent polymers by a volatile tracer-assisted headspace gas chromatography (HS-GC). Toluene was used as a tracer and added to the solution for polymers swelling test. Based on the differences of the tracer partitioned between the vapor and hydrogel phase before and after the polymer's swelling capacity, a transition point (corresponding to the material swelling capacity) can be observed when plotting the GC signal of toluene vs. the ratio of solution added to polymers. The present method has good precision (RSD<2.1%) and good accuracy, in which the relative deference between the data measured by the HS-GC method and the reference method were within 8.0%. The present method is very suitable to be used for testing the swelling capacity of polymers at the elevated temperatures. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Temperature- and pH-Sensitive Nanohydrogels of Poly(N-Isopropylacrylamide) for Food Packaging Applications: Modelling the Swelling-Collapse Behaviour

    PubMed Central

    Fuciños, Clara; Fuciños, Pablo; Míguez, Martín; Katime, Issa; Pastrana, Lorenzo M.; Rúa, María L.

    2014-01-01

    Temperature-sensitive poly(N-isopropylacrylamide) (PNIPA) nanohydrogels were synthesized by nanoemulsion polymerization in water-in-oil systems. Several cross-linking degrees and the incorporation of acrylic acid as comonomer at different concentrations were tested to produce nanohydrogels with a wide range of properties. The physicochemical properties of PNIPA nanohydrogels, and their relationship with the swelling-collapse behaviour, were studied to evaluate the suitability of PNIPA nanoparticles as smart delivery systems (for active packaging). The swelling-collapse transition was analyzed by the change in the optical properties of PNIPA nanohydrogels using ultraviolet-visible spectroscopy. The thermodynamic parameters associated with the nanohydrogels collapse were calculated using a mathematical approach based on the van't Hoff analysis, assuming a two-state equilibrium (swollen to collapsed). A mathematical model is proposed to predict both the thermally induced collapse, and the collapse induced by the simultaneous action of two factors (temperature and pH, or temperature and organic solvent concentration). Finally, van't Hoff analysis was compared with differential scanning calorimetry. The results obtained allow us to solve the problem of determining the molecular weight of the structural repeating unit in cross-linked NIPA polymers, which, as we show, can be estimated from the ratio of the molar heat capacity (obtained from the van't Hoff analysis) to the specific heat capacity (obtained from calorimetric measurements). PMID:24520326

  17. Temperature- and pH-sensitive nanohydrogels of poly(N-Isopropylacrylamide) for food packaging applications: modelling the swelling-collapse behaviour.

    PubMed

    Fuciños, Clara; Fuciños, Pablo; Míguez, Martín; Katime, Issa; Pastrana, Lorenzo M; Rúa, María L

    2014-01-01

    Temperature-sensitive poly(N-isopropylacrylamide) (PNIPA) nanohydrogels were synthesized by nanoemulsion polymerization in water-in-oil systems. Several cross-linking degrees and the incorporation of acrylic acid as comonomer at different concentrations were tested to produce nanohydrogels with a wide range of properties. The physicochemical properties of PNIPA nanohydrogels, and their relationship with the swelling-collapse behaviour, were studied to evaluate the suitability of PNIPA nanoparticles as smart delivery systems (for active packaging). The swelling-collapse transition was analyzed by the change in the optical properties of PNIPA nanohydrogels using ultraviolet-visible spectroscopy. The thermodynamic parameters associated with the nanohydrogels collapse were calculated using a mathematical approach based on the van't Hoff analysis, assuming a two-state equilibrium (swollen to collapsed). A mathematical model is proposed to predict both the thermally induced collapse, and the collapse induced by the simultaneous action of two factors (temperature and pH, or temperature and organic solvent concentration). Finally, van't Hoff analysis was compared with differential scanning calorimetry. The results obtained allow us to solve the problem of determining the molecular weight of the structural repeating unit in cross-linked NIPA polymers, which, as we show, can be estimated from the ratio of the molar heat capacity (obtained from the van't Hoff analysis) to the specific heat capacity (obtained from calorimetric measurements).

  18. Magnetic- and pH-responsive κ-carrageenan/chitosan complexes for controlled release of methotrexate anticancer drug.

    PubMed

    Mahdavinia, Gholam Reza; Mosallanezhad, Amirabbas; Soleymani, Moslem; Sabzi, Mohammad

    2017-04-01

    The aim of the present work was to develop green carriers for methotrexate using κ-carrageenan/chitosan complexes. Magnetic Fe 3 O 4 nanoparticles were first synthesized in the presence of κ-carrageenan through in situ method. Then, the obtained magnetic κ-carrageenan was crosslinked using the polycation chitosan biopolymer. The physical and structural properties of hydrogels were investigated by FTIR, XRD, SEM, TEM, TGA, and VSM techniques. The pH-dependent swelling behavior of hydrogels was examined in various buffer solutions. All of the prepared hydrogels showed a high swelling capacity in basic solutions. The introduction of magnetite nanoparticles into κ-carrageenan/chitosan complexes had a significant effect on the swelling capacity of magnetic hydrogels, as the water absorbency of hydrogels decreased with increasing magnetite content. Methotrexate as an anticancer and model drug was loaded on hydrogels and the release profiles were investigated at pH=7.4 and 5.3. The methotrexate encapsulation efficiency was increased by increasing magnetite and chitosan contents. The results demonstrated that the release of methotrexate from magnetic hydrogels is pH-dependent with a high release content at pH=7.4. The release profiles were analyzed by Peppas's empirical model and the release of drug from hydrogels followed Fickian type of diffusion mechanism at both pHs. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Bioresponsive Materials for Drug Delivery Based on Carboxymethyl Chitosan/Poly(γ-Glutamic Acid) Composite Microparticles

    PubMed Central

    Yan, Xiaoting; Tong, Zongrui; Chen, Yu; Mo, Yanghe; Feng, Huaiyu; Li, Peng; Qu, Xiaosai; Jin, Shaohua

    2017-01-01

    Carboxymethyl chitosan (CMCS) microparticles are a potential candidate for hemostatic wound dressing. However, its low swelling property limits its hemostatic performance. Poly(γ-glutamic acid) (PGA) is a natural polymer with excellent hydrophilicity. In the current study, a novel CMCS/PGA composite microparticles with a dual-network structure was prepared by the emulsification/internal gelation method. The structure and thermal stability of the composite were determined by Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The effects of preparation conditions on the swelling behavior of the composite were investigated. The results indicate that the swelling property of CMCS/PGA composite microparticles is pH sensitive. Levofloxacin (LFX) was immobilized in the composite microparticles as a model drug to evaluate the drug delivery performance of the composite. The release kinetics of LFX from the composite microparticles with different structures was determined. The results suggest that the CMCS/PGA composite microparticles are an excellent candidate carrier for drug delivery. PMID:28452963

  20. Energy-Efficient Bioalcohol Recovery by Gel Stripping

    NASA Astrophysics Data System (ADS)

    Godbole, Rutvik; Ma, Lan; Hedden, Ronald

    2014-03-01

    Design of energy-efficient processes for recovering butanol and ethanol from dilute fermentations is a key challenge facing the biofuels industry due to the high energy consumption of traditional multi-stage distillation processes. Gel stripping is an alternative purification process by which a dilute alcohol is stripped from the fermentation product by passing it through a packed bed containing particles of a selectively absorbent polymeric gel material. The gel must be selective for the alcohol, while swelling to a reasonable degree in dilute alcohol-water mixtures. To accelerate materials optimization, a combinatorial approach is taken to screen a matrix of copolymer gels having orthogonal gradients in crosslinker concentration and hydrophilicity. Using a combination of swelling in pure solvents, the selectivity and distribution coefficients of alcohols in the gels can be predicted based upon multi-component extensions of Flory-Rehner theory. Predictions can be validated by measuring swelling in water/alcohol mixtures and conducting h HPLC analysis of the external liquid. 95% + removal of butanol from dilute aqueous solutions has been demonstrated, and a mathematical model of the unsteady-state gel stripping process has been developed. NSF CMMI Award 1335082.

  1. Chitosan cross-linked with poly(ethylene glycol)dialdehyde via reductive amination as effective controlled release carriers for oral protein drug delivery.

    PubMed

    Jing, Zi-Wei; Ma, Zhi-Wei; Li, Chen; Jia, Yi-Yang; Luo, Min; Ma, Xi-Xi; Zhou, Si-Yuan; Zhang, Bang-Le

    2017-02-15

    The covalently cross-linked chitosan-poly(ethylene glycol) 1540 derivatives have been developed as a controlled release system with potential for the delivery of protein drug. The swelling characteristics of the hydrogels based on these derivatives as the function of different PEG content and the release profiles of a model protein (bovine serum albumin, BSA) from the hydrogels were evaluated in simulated gastric fluid with or without enzyme in order to simulate the gastrointestinal tract conditions. The derivatives cross-linked with difunctional PEG 1540 -dialdehyde via reductive amination can swell in alkaline pH and remain insoluble in acidic medium. The cumulative release amount of BSA was relatively low in the initial 2h and increased significantly at pH 7.4 with intestinal lysozyme for additional 12h. The results proved that the release-and-hold behavior of the cross-linked CS-PEG 1540 H-CS hydrogel provided a swell and intestinal enzyme controlled release carrier system, which is suitable for oral protein drug delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Oxidative stress detection by MEMS cantilever sensor array based electronic nose

    NASA Astrophysics Data System (ADS)

    Gupta, Anurag; Singh, T. Sonamani; Singh, Priyanka; Yadava, R. D. S.

    2018-05-01

    This paper is concerned with analyzing the role of polymer swelling induced surface stress in MEMS chemical sensors. The objective is to determine the impact of surface stress on the chemical discrimination ability of MEMS resonator sensors. We considered a case study of hypoxia detection by MEMS sensor array and performed several types of simulation experiments for detection of oxidative stress volatile organic markers in human breath. Both types of sensor response models that account for the surface stress effect and that did not were considered for the analyses in comparison. It is found that the surface stress (hence the polymer swelling) provides better chemical discrimination ability to polymer coated MEMS sensors.

  3. Predictability of Burn Depth: Data Analysis and Mathematical Modeling Based on USAARL’s Experimental Porcine Burn Data

    DTIC Science & Technology

    1979-06-01

    7C70 -9. PERFORMING ORGANIZATION NAME AND ADDRESS I ,.qgq-’ " Louisiana State University Medical Center, School AE OKUI UBR of Medlicine in Shreveport...induced shrinkage while more superficial burns showed some edema and swelling. The edema and swell- ing was slight, approximately 3-5%, and not as...biopsy specimen. 14 4)- E-4 tn %0 LA -0 (mVC 0 N %n ~ N- .0L0 oMu 0 I 1 4’ C, 0, A A L 0 0) 0, o 0 z P ~ - 4 N -0 m 0 0 0 0n 0 E-4 v 04 to ~0 E-4z Gi 0

  4. Understanding the Alteration of Bentonite Backfill Using Coupled THMC Modeling for a Long Term Heater Test at the Grimsel Underground Research Lab

    NASA Astrophysics Data System (ADS)

    Birkholzer, J. T.; Zheng, L.; Xu, H.; Rutqvist, J.

    2017-12-01

    Compacted bentonite is commonly used as backfill material in emplacement tunnels of nuclear waste repositories because of its low permeability, high swelling pressure, and retardation capacity of radionuclide. To assess whether this backfill material can maintain these favorable features when undergoing heating from the waste package and hydration from the host rock, we need a thorough understanding of the thermal, hydrological, mechanical, and chemical evolution of bentonite under disposal conditions. Dedicated field tests integrated with THMC modeling provide an effective way to deepen such understanding. Here, we present coupled THMC models for an in situ heater test which was conducted at the Grimsel Test Site in Switzerland for 18 years. The comprehensive monitoring data obtained in the test provide a unique opportunity to evaluate bentonite integrity and test coupled THMC models. We developed a modeling strategy where conceptual model complexity is increased gradually by adding/testing processes such as Non-Darcian flow, enhanced vapor diffusion, thermal osmosis and different constitutive relationships for permeability/porosity changes due to swelling. The final THMC model explains well all the THM data and the concentration profiles of conservative chemical species. Over the course of modeling the in situ test, we learned that (1) including Non-Darcian flow into the model leads to a significant underestimation of hydration rate of bentonite, (2) chemical data provide an important additional piece of information for calibrating a THM model; (3) key processes needed to reproduce the data include vapor diffusion, as well as porosity and permeability changes due to swelling and thermal osmosis; (4) the concentration profiles of cations (calcium, potassium, magnesium and sodium) were largely shaped by transport processes despite their concentration levels being affected by mineral dissolution/precipitation and cation exchange. The concentration profiles of pH, bicarbonate and sulphate were largely determined by chemical reactions. These findings enable more reliable calculation of the time frame and condition of the early unsaturated phase in bentonite, the porosity and permeability after the bentonite becomes fully saturated, and how transport processes interact with reactions.

  5. A mechanistic model (BCC-PSSICO) to predict changes in the hydraulic properties for bio-amended variably saturated soils

    NASA Astrophysics Data System (ADS)

    Carles Brangarí, Albert; Sanchez-Vila, Xavier; Freixa, Anna; M. Romaní, Anna; Rubol, Simonetta; Fernà ndez-Garcia, Daniel

    2017-01-01

    The accumulation of biofilms in porous media is likely to influence the overall hydraulic properties and, consequently, a sound understanding of the process is required for the proper design and management of many technological applications. In order to bring some light into this phenomenon we present a mechanistic model to study the variably saturated hydraulic properties of bio-amended soils. Special emphasis is laid on the distribution of phases at pore-scale and the mechanisms to retain and let water flow through, providing valuable insights into phenomena behind bioclogging. Our approach consists in modeling the porous media as an ensemble of capillary tubes, obtained from the biofilm-free water retention curve. This methodology is extended by the incorporation of a biofilm composed of bacterial cells and extracellular polymeric substances (EPS). Moreover, such a microbial consortium displays a channeled geometry that shrinks/swells with suction. Analytical equations for the volumetric water content and the relative permeability can then be derived by assuming that biomass reshapes the pore space following specific geometrical patterns. The model is discussed by using data from laboratory studies and other approaches already existing in the literature. It can reproduce (i) displacements of the retention curve toward higher saturations and (ii) permeability reductions of distinct orders of magnitude. Our findings also illustrate how even very small amounts of biofilm may lead to significant changes in the hydraulic properties. We, therefore, state the importance of accounting for the hydraulic characteristics of biofilms and for a complex/more realistic geometry of colonies at the pore-scale.

  6. [Effect of electroacupuncture on cellular structure of hippocampus in splenic asthenia pedo-rats].

    PubMed

    Yang, Zhuo-xin; Zhuo, Yuan-yuan; Yu, Hai-bo; Wang, Ning

    2010-02-01

    To observe the effect of electroacupuncture (EA) on hippocampal structure in splenic asthenia pedo-rats. A total of 15 SD male rats were randomly assigned to normal control group (n=5), model group (n=5) and EA group (n=5). Splenic asthenic syndrome model was established by intragastric administration of rhubarb and intraperitoneal injection of Reserpine for 14 d. EA (1 mA, 3 Hz/iS Hz) was applied to bilateral "Zusanli" (ST 36) and "Sanyinjiao" (SP 6) for 20 mm, once a day for 14 days. The cellular structure of hippocampus was observed by light microscope and transmission electron microscope. Optical microscopic observation showed that in normal control group, the cellular nucleus was distinct, and the granular cell layer well-arranged and tight. In model group, the intracellular space was widened, and the granular cell layer was out of order in the arrangement. In EA group, the celluldr nucleus and the granular cell layer were nearly normal. Results of the electronic microscope showed that cells in model group had a karyopyknosis with irregular appearance and clear incisure, and some of them presented dissolving and necrotic phenomena; and those in EA group were milder in injury, had nearly-normal nucleus with visible nucleoli and relatively-intact nuclear membrane. Regarding the cellular plasma, in comparison with rich normal organelles of control group, the mitochondria in model group were swelling, with vague, dissolved and broken cristae, while in EA group, majority of the organelles were well-kept, and slightly dissolved mitochondrial cristae found. In regard to the synaptic structure, in comparison with control group, synaptic apomorphosis and swelling mitochondria were found in model group While in EA group, milder swelling and hydropic degeneration were seen. Different from the distinct pre- and post-synaptic membrane and synaptic vesicles of control group, while those in EA group were nearly-normal. electroacupunture can effectively relieve splenasthenic syndrome induced pathohistological changes of neurons of the hippocampus in the rat.

  7. Ischemia-induced endothelial cell swelling and mitochondrial dysfunction are attenuated by cinnamtannin D1, green tea extract, and resveratrol in vitro.

    PubMed

    Panickar, Kiran S; Qin, Bolin; Anderson, Richard A

    2015-10-01

    Polyphenols possess antioxidant and anti-inflammatory properties. Oxidative stress (OS) and inflammation have been implicated in the pathogenesis of cytotoxic brain edema in cerebral ischemia. In addition, OS and pro-inflammatory cytokines also damage the endothelial cells and the neurovascular unit. Endothelial cell swelling may contribute to a leaky blood-brain barrier which may result in vasogenic edema in the continued presence of the existing cytotoxic edema. We investigated the protective effects of polyphenols on cytotoxic cell swelling in bEND3 endothelial cultures subjected to 5 hours oxygen-glucose deprivation (OGD). A polyphenol trimer from cinnamon (cinnamtannin D1), a polyphenol-rich extract from green tea, and resveratrol prevented the OGD-induced rise in mitochondrial free radicals, cell swelling, and the dissipation of the inner mitochondrial membrane potential. Monocyte chemoattractant protein (also called CCL2), a chemokine, but not tumor necrosis factor-α or interleukin-6, augmented the cell swelling. This effect of monochemoattractant protein 1-1 was attenuated by the polyphenols. Cyclosporin A, a blocker of the mitochondrial permeability transition pore, did not attenuate cell swelling but BAPTA-AM, an intracellular calcium chelator did, indicating a role of [Ca(2+)]i but not the mPT in cell swelling. These results indicate that the polyphenols reduce mitochondrial reactive oxygen species and subsequent cell swelling in endothelial cells following ischemic injury and thus may reduce brain edema and associated neural damage in ischemia. One possible mechanism by which the polyphenols may attenuate endothelial cell swelling is through the reduction in [Ca(2+)]i.

  8. Differential resource allocation in deer mice exposed to sin nombre virus.

    PubMed

    Lehmer, Erin M; Clay, Christine A; Wilson, Eric; St Jeor, Stephen; Dearing, M Denise

    2007-01-01

    The resource allocation hypothesis predicts that reproductive activity suppresses immunocompetence; however, this has never been tested in an endemic disease system with free-ranging mammals. We tested the resource allocation hypothesis in wild deer mice (Peromyscus maniculatus) with natural exposure to Sin Nombre Virus (SNV). Immunocompetence was estimated from the extent of swelling elicited after deer mice were injected with phytohemagglutinin (PHA); swelling is positively correlated with immunocompetence. After livetrapping deer mice, we determined their reproductive state and SNV infection status. Males were more likely to be seropositive for SNV than females (37% vs. 25%) and exhibited 10% less swelling after PHA injection. The swelling response of females differed with both infection status and reproductive condition. There was also a significant infection status by reproductive condition interaction: non-reproductive, seropositive females experienced the least amount of swelling, whereas females in all other categories experienced significantly greater swelling. The swelling response of males differed with both SNV infection status and reproductive condition, but there was no significant infection status by reproductive condition interaction. Seronegative males elicited greater swelling than seropositive males regardless of reproductive status. In contrast to the resource allocation hypothesis, these results do not indicate that reproductive activity suppresses immunocompetence of deer mice but rather suggest that chronic SNV infection reduces immunocompetence. Sex-based differences in swelling indicate that SNV modulates the immune system of female deer mice differently than it does that of males, particularly during reproduction. We propose that differences in resource allocation between males and females could result from inherent sex-based differences in parental investment.

  9. Interpreting the corneal response to oxygen: Is there a basis for re-evaluating data from gas-goggle studies?

    PubMed

    Papas, Eric B; Sweeney, Deborah F

    2016-10-01

    When anoxia (0% oxygen) is created within a gas-tight goggle, ocular physiological responses, including corneal swelling, limbal hyperaemia and pH change, are known to vary, depending on the presence or absence of a low, oxygen transmissibility contact lens. A new theory is proposed to account for this discrepancy based on the concept of lid derived oxygen, whereby oxygen originating from the vascular plexus of the palpebral conjunctiva supplements that available to the ocular surface in an open, normally blinking eye, even when the surrounding gaseous atmosphere is anoxic. The effect of a lid derived contribution to corneal oxygenation was assessed by using existing experimental data to model open-eye, corneal swelling behavior as a function of atmospheric oxygen content, both with and without the presence of a contact lens. These models predict that under atmospheric anoxia, contact lens wear results in 13.2% corneal swelling compared with only 5.4% when the lens was absent. Lid derived oxygen acts to provide the ocular surface in the non-contact lens wearing, normally blinking, open-eye with up to 4.7% equivalent oxygen concentration, even within the anoxic environment of a nitrogen filled goggle. Correcting for lid derived oxygen eliminates previously observed discrepancies in corneal swelling behavior and harmonizes the models for the contact lens wearing and gas-goggle cases. On this basis it is proposed that true anoxia at the ocular surface cannot be achieved by atmospheric manipulation (i.e. a gas-goggle) alone but requires an additional presence, e.g. a low, oxygen transmissibility contact lens, to prevent access to oxygen from the eyelids. Data from previously conducted experiments in which the gas-goggle paradigm was used, may have been founded on underestimates of the real oxygen concentration acting on the ocular surface at the time and if so, will require re-interpretation. Future work in this area should consider if a correction for lid derived oxygen is necessary. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Swelling pavements : KY 499 Estill County.

    DOT National Transportation Integrated Search

    2006-03-01

    A field laboratory investigation was performed to determine why excessive swelling was occurring on a pavement section of KY Route 499 that was about four years old. Swelling occurred on a section of roadway that had been constructed with a hydrated ...

  11. Study of swelling behavior in ArF resist during development by the QCM method (3): observations of swelling layer elastic modulus

    NASA Astrophysics Data System (ADS)

    Sekiguchi, Atsushi

    2013-03-01

    The QCM method allows measurements of impedance, an index of swelling layer viscosity in a photoresist during development. While impedance is sometimes used as a qualitative index of change in the viscosity of the swelling layer, it has to date not been used quantitatively, for data analysis. We explored a method for converting impedance values to elastic modulus (Pa), a coefficient expressing viscosity. Applying this method, we compared changes in the viscosity of the swelling layer in an ArF resist generated during development in a TMAH developing solution and in a TBAH developing solution. This paper reports the results of this comparative study.

  12. Micro-structure and Swelling Behaviour of Compacted Clayey Soils: A Quantitative Approach

    NASA Astrophysics Data System (ADS)

    Ferber, Valéry; Auriol, Jean-Claude; David, Jean-Pierre

    In this paper, the clay aggregate volume and inter-aggregate volume in compacted clayey soils are quantified, on the basis of simple hypothesis, using only their water content and dry density. Swelling tests on a highly plastic clay are then interpreted by describing the influence of the inter-aggregate volume before swelling on the total volume of samples after swelling. This approach leads to a linear relation between these latter parameters. Based on these results, a description of the evolution of the microstructure due to imbibition can be proposed. Moreover, this approach enables a general quantification of the influence of initial water content and dry density on the swelling behaviour of compacted clayey soils.

  13. A hemangioma on the floor of the mouth presenting as a ranula.

    PubMed

    Skoulakis, Charalampos E; Khaldi, Lubna; Serletis, Demetre; Semertzidis, Themistoklis

    2008-11-01

    A painless, bluish, submucosal swelling on one side of the floor of the mouth usually indicates the presence of a ranula. Rarely, such a swelling may be caused by an inflammatory disease process in a salivary gland, a neoplasm in the sublingual salivary gland, a lymphatic nodular swelling, or embryologic cysts. We report a patient with swelling in the floor of her mouth that was clinically diagnosed as a ranula. Suspicion arose during surgery that it was a vascular tumor and, on histologic testing, the swelling was confirmed to be a hemangioma. To our knowledge, this is the first report in the literature of a hemangioma presenting as a ranula.

  14. Neck swelling due to skull base (pseudo)meningocele protruding through a congenital skull base bone defect: a case report.

    PubMed

    Sharma, Rajeev; Singh, Bhoopendra; Kedia, Shweta; Laythalling, Rajinder Kumar

    2017-02-01

    Meningocele is defined as a protrusion of the meninges through an opening in the skull or spinal column, forming a bulge or sac filled with cerebrospinal fluid. A pseudomeningocele is defined as a cerebrospinal fluid (CSF) collection formed due to escape of CSF through a dural defect with trapping of CSF into the surrounding soft tissues. We herby report rare occurrence of a large (pseudo)meningocele in a young patient with congenital skull base defect presenting as upper lateral neck swelling. We present the case of a 17-year-old boy who had painless progressive swelling right side of the upper neck without any history of meningitis or CSF leak. He had a history of undergoing cranioplasty using steel plates for nontraumatic boggy swelling right parieto-occipital region at the age of 5 years at another hospital. Clinical examination showed painless swelling right side of the upper neck, with positive cough impulse and transillumination. CT head with cisternography showed a large right skull base defect through which a large pseudomeningocele was herniating, thus producing upper neck swelling and compressing oral cavity. The neck swelling and intraoral bulge reduced in size after the coperitoneal shunt. Differential diagnosis of (pseudo)meningocele should be considered while evaluating a painless progressive upper neck swelling having cough impulse and transillumination in a young patient.

  15. NEAMS-ATF M3 Milestone Report: Literature Review of Modeling of Radiation-Induced Swelling in Fe-Cr-Al Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Xianming; Biner, Suleyman Bulent; Jiang, Chao

    2015-12-01

    Fe-Cr-Al steels are proposed as accident-tolerant-fuel (ATF) cladding materials in light water reactors due to their excellent oxidation resistance at high temperatures. Currently, the understanding of their performance in reactor environment is still limited. In this review, firstly we reviewed the experimental studies of Fe-Cr-Al based alloys with particular focus on the radiation effects in these alloys. Although limited data are available in literature, several previous and recent experimental studies have shown that Fe-Cr-Al based alloys have very good void swelling resistance at low and moderate irradiation doses but the growth of dislocation loops is very active. Overall, the behaviormore » of radiation damage evolution is similar to that in Fe-Cr ferritic/martensitic alloys. Secondly, we reviewed the rate theory-based modeling methods for modeling the coevolution of voids and dislocation loops in materials under irradiation such as Frenkel pair three-dimensional diffusion model (FP3DM) and cluster dynamics. Finally, we summarized and discussed our review and proposed our future plans for modeling radiation damage in Fe-Cr-Al based alloys.« less

  16. To what extent clay mineralogy affects soil aggregation? Consequences for soil organic matter stabilization

    NASA Astrophysics Data System (ADS)

    Fernandez-Ugalde, O.; Barré, P.; Hubert, F.; Virto, I.; Chenu, C.; Ferrage, E.; Caner, L.

    2012-12-01

    Aggregation is a key process for soil functioning as it influences C storage, vulnerability to erosion and water holding capacity. While the influence of soil organic C on aggregation has been documented, much less is known about the role of soil mineralogy. Soils usually contain a mixture of clay minerals with contrasted surface properties, which should result on different abilities of clay minerals to aggregation. We took advantage of the intrinsic mineral heterogeneity of a temperate Luvisol to compare the role of clay minerals (illite, smectite, kaolinite, and mixed-layer illite-smectite) in aggregation. In a first step, grassland and tilled soil samples were fractionated in water in aggregate-size classes according to the hierarchical model of aggregation (Tisdall and Oades, 1982). Clay mineralogy and organic C in the aggregate-size classes were analyzed. The results showed that interstratified minerals containing swelling phases accumulated in aggregated fractions (>2 μm) compared to free clay fractions (<2 μm) in the two land-uses. The accumulation increased from large macro-aggregates (>500 μm) to micro-aggregates (50-250 μm). C concentration and C/N ratio followed the opposite trend. These results constitute a clay mineral-based evidence for the hierarchical model of aggregation, which postulates an increasing importance of the reactivity of clay minerals in the formation of micro-aggregates compared to larger aggregates. In the latter aggregates, formation relies on the physical enmeshment of particles by fungal hyphae, and root and microbial exudates. In a second step, micro-aggregates from the tilled soil samples were submitted to increasingly disaggregating treatments by sonication to evaluate the link between their water stability and clay mineralogy. Micro-aggregates with increasing stability showed an increase of interstratified minerals containing swelling phases and C concentration for low intensities of disaggregation (from 0 to 5 J mL-1). This suggests that swelling phases promote their stability. Swelling phases and organic C decreased for greater intensities of disaggregation. These results and the SEM images taken at different disaggregation intensities indicate that when increasing disaggregation intensity above 5 J mL-1, the recovered material consists on sand particles covered by physical coatings of illite and kaolinite. Our results show that different clay minerals have different contribution to soil aggregation. Swelling phases are especially important for water-stable aggregates formation, whereas illite and kaolinite can either contribute to aggregation or been coated to sand grains in "mineral aggregates", without porosity and organic C protection capability. In conclusion, soils with large proportion of swelling clay minerals have greater potential for carbon storage by occlusion in aggregates and greater resistance to erosion. Tisdall JM, Oades JM (1982) Organic matter and water-stable aggregates in soils. J Soil Sci 62: 141-163.

  17. The Disintegration Process in Microcrystalline Cellulose Based Tablets, Part 1: Influence of Temperature, Porosity and Superdisintegrants

    PubMed Central

    Yassin, Samy; Goodwin, Daniel J; Anderson, Andrew; Sibik, Juraj; Wilson, D Ian; Gladden, Lynn F; Zeitler, J Axel

    2015-01-01

    Disintegration performance was measured by analysing both water ingress and tablet swelling of pure microcrystalline cellulose (MCC) and in mixture with croscarmellose sodium using terahertz pulsed imaging (TPI). Tablets made from pure MCC with porosities of 10% and 15% showed similar swelling and transport kinetics: within the first 15 s, tablets had swollen by up to 33% of their original thickness and water had fully penetrated the tablet following Darcy flow kinetics. In contrast, MCC tablets with a porosity of 5% exhibited much slower transport kinetics, with swelling to only 17% of their original thickness and full water penetration reached after 100 s, dominated by case II transport kinetics. The effect of adding superdisintegrant to the formulation and varying the temperature of the dissolution medium between 20°C and 37°C on the swelling and transport process was quantified. We have demonstrated that TPI can be used to non-invasively analyse the complex disintegration kinetics of formulations that take place on timescales of seconds and is a promising tool to better understand the effect of dosage form microstructure on its performance. By relating immediate-release formulations to mathematical models used to describe controlled release formulations, it becomes possible to use this data for formulation design. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3440–3450, 2015 PMID:26073446

  18. The Role of Cell Volume in the Dynamics of Seizure, Spreading Depression, and Anoxic Depolarization

    PubMed Central

    Ullah, Ghanim; Wei, Yina; Dahlem, Markus A; Wechselberger, Martin; Schiff, Steven J

    2015-01-01

    Cell volume changes are ubiquitous in normal and pathological activity of the brain. Nevertheless, we know little of how cell volume affects neuronal dynamics. We here performed the first detailed study of the effects of cell volume on neuronal dynamics. By incorporating cell swelling together with dynamic ion concentrations and oxygen supply into Hodgkin-Huxley type spiking dynamics, we demonstrate the spontaneous transition between epileptic seizure and spreading depression states as the cell swells and contracts in response to changes in osmotic pressure. Our use of volume as an order parameter further revealed a dynamical definition for the experimentally described physiological ceiling that separates seizure from spreading depression, as well as predicted a second ceiling that demarcates spreading depression from anoxic depolarization. Our model highlights the neuroprotective role of glial K buffering against seizures and spreading depression, and provides novel insights into anoxic depolarization and the relevant cell swelling during ischemia. We argue that the dynamics of seizures, spreading depression, and anoxic depolarization lie along a continuum of the repertoire of the neuron membrane that can be understood only when the dynamic ion concentrations, oxygen homeostasis,and cell swelling in response to osmotic pressure are taken into consideration. Our results demonstrate the feasibility of a unified framework for a wide range of neuronal behaviors that may be of substantial importance in the understanding of and potentially developing universal intervention strategies for these pathological states. PMID:26273829

  19. Swelling and Softening of the Cowpea Chlorotic Mottle Virus in Response to pH Shifts

    PubMed Central

    Wilts, Bodo D.; Schaap, Iwan A.T.; Schmidt, Christoph F.

    2015-01-01

    Cowpea chlorotic mottle virus (CCMV) forms highly elastic icosahedral protein capsids that undergo a characteristic swelling transition when the pH is raised from 5 to 7. Here, we performed nano-indentation experiments using an atomic force microscope to track capsid swelling and measure the shells’ Young’s modulus at the same time. When we chelated Ca2+ ions and raised the pH, we observed a gradual swelling of the RNA-filled capsids accompanied by a softening of the shell. Control experiments with empty wild-type virus and a salt-stable mutant revealed that the softening was not strictly coupled to the swelling of the protein shells. Our data suggest that a pH increase and Ca2+ chelation lead primarily to a loosening of contacts within the protein shell, resulting in a softening of the capsid. This appears to render the shell metastable and make swelling possible when repulsive forces among the capsid proteins become large enough, which is known to be followed by capsid disassembly at even higher pH. Thus, softening and swelling are likely to play a role during inoculation. PMID:25992732

  20. Irradiation creep and swelling of AISI 316 to exposures of 130 dpa at 385?400$deg;C

    NASA Astrophysics Data System (ADS)

    Garner, F. A.; Porter, D. L.

    1988-07-01

    The creep and swelling of AISI 316 stainless steel have been studied at 385 to 400°C in EBR-II to doses of 130 dpa. Most creep capsules were operated at constant stress and temperature but mid-life changes in these variables were also made. This paper concentrates on the behavior of the 20% cold-worked condition but five other conditions were also studied. Swelling at ⩽ 400° C was found to lose the sensitivity to stress exhibited at higher temperatures while the creep rate was found to retain linear dependencies on both stress and swelling rate. The creep coefficients extracted at 400°C agree with those found in other experiments conducted at higher temperatures. In the temperature range of ⩽ 400° C, swelling is in the recombinationdominated regime and the swelling rate falls strongly away from the ~1%/dpa rate observed at higher temperatures. These lower rates of creep and swelling, coupled with the attainment of high damage levels without failure, encourage the use of AISI 316 in the construction of water-cooled fusion first walls operating at temperatures below 400°C.

  1. Activation of the ACE2/Ang-(1-7)/Mas pathway reduces oxygen-glucose deprivation-induced tissue swelling, ROS production, and cell death in mouse brain with angiotensin II overproduction.

    PubMed

    Zheng, J; Li, G; Chen, S; Bihl, J; Buck, J; Zhu, Y; Xia, H; Lazartigues, E; Chen, Y; Olson, J E

    2014-07-25

    We previously demonstrated that mice which overexpress human renin and angiotensinogen (R+A+) show enhanced cerebral damage in both in vivo and in vitro experimental ischemia models. Angiotensin-converting enzyme 2 (ACE2) counteracts the effects of angiotensin (Ang-II) by transforming it into Ang-(1-7), thus reducing the ligand for the AT1 receptor and increasing stimulation of the Mas receptor. Triple transgenic mice, SARA, which specifically overexpress ACE2 in neurons of R+A+ mice were used to study the role of ACE2 in ischemic stroke using oxygen and glucose deprivation (OGD) of brain slices as an in vitro model. We examined tissue swelling, the production of reactive oxygen species (ROS), and cell death in the cerebral cortex (CX) and the hippocampal CA1 region during OGD. Expression levels of NADPH oxidase (Nox) isoforms, Nox2 and Nox4 were measured using western blots. Results show that SARA mice and R+A+ mice treated with the Mas receptor agonist Ang-(1-7) had less swelling, cell death, and ROS production in CX and CA1 areas compared to those in R+A+ animals. Treatment of slices from SARA mice with the Mas antagonist A779 eliminated this protection. Finally, western blots revealed less Nox2 and Nox4 expression in SARA mice compared with R+A+ mice both before and after OGD. We suggest that reduced brain swelling and cell death observed in SARA animals exposed to OGD result from diminished ROS production coupled with lower expression of Nox isoforms. Thus, the ACE2/Ang-(1-7)/Mas receptor pathway plays a protective role in brain ischemic damage by counteracting the detrimental effects of Ang-II-induced ROS production. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Swelling Kinetics of Waxy Maize Starch

    NASA Astrophysics Data System (ADS)

    Desam, Gnana Prasuna Reddy

    Starch pasting behavior greatly influences the texture of a variety of food products such as canned soup, sauces, baby foods, batter mixes etc. The annual consumption of starch in the U.S. is 3 million metric tons. It is important to characterize the relationship between the structure, composition and architecture of the starch granules with its pasting behavior in order to arrive at a rational methodology to design modified starch of desirable digestion rate and texture. In this research, polymer solution theory was applied to predict the evolution of average granule size of starch at different heating temperatures in terms of its molecular weight, second virial coefficient and extent of cross-link. Evolution of granule size distribution of waxy native maize starch when subjected to heating at constant temperatures of 65, 70, 75, 80, 85 and 90 C was characterized using static laser light scattering. As expected, granule swelling was more pronounced at higher temperatures and resulted in a shift of granule size distribution to larger sizes with a corresponding increase in the average size by 100 to 120% from 13 mum to 25-28 mum. Most of the swelling occurred within the first 10 min of heating. Pasting behavior of waxy maize at different temperatures was also characterized from the measurements of G' and G" for different heating times. G' was found to increase with temperature at holding time of 2 min followed by its decrease at larger holding times. This behavior is believed to be due to the predominant effect of swelling at small times. However, G" was insensitive to temperature and holding times. The structure of waxy maize starch was characterized by cryoscanning electron microscopy. Experimental data of average granule size vs time at different temperatures were compared with model predictions. Also the Experimental data of particle size distribution vs particle size at different times and temperatures were compared with model predictions.

  3. Muzzle size, paranasal swelling size and body mass in Mandrillus leucophaeus.

    PubMed

    Elton, Sarah; Morgan, Bethan J

    2006-04-01

    The drill (Mandrillus leucophaeus), a forest-living Old World monkey, is highly sexually dimorphic, with males exhibiting extreme secondary sexual characteristics, including growth of paranasal swellings on the muzzle. In this study, the size of the secondary bone that forms the paranasal swellings on the muzzles of drills was assessed in relation to body mass proxies. The relationship between the overall size of the muzzle and surrogate measures of body mass was also examined. In female drills, muzzle breadth was positively correlated with two proxies of overall body mass, greatest skull length and upper M1 area. However, there was no such correlation in males. Paranasal swellings in males also appeared to have no significant relationship to body mass proxies. This suggests that secondary bone growth on the muzzles of male drills is independent of overall body size. Furthermore, this secondary bone appears to be vermiculate, probably developing rapidly and in an irregular manner, with no correlation in the sizes of paranasal swelling height and breadth. However, various paranasal swelling dimensions were related to the size of the muzzle. It is suggested that the growth of the paranasal swellings and possibly the muzzle could be influenced by androgen production and reflect testes size and sperm motility. The size and appearance of the paranasal swellings may thus be an indicator of reproductive quality both to potential mates and male competitors. Further work is required to investigate the importance of the paranasal swellings as secondary sexual characteristics in Mandrillus and the relationship between body size and secondary sexual characteristics. Attention should also be paid to the mechanisms and trajectories of facial growth in Mandrillus.

  4. A new serotyping method for Klebsiella species: evaluation of the technique.

    PubMed Central

    Riser, E; Noone, P; Bonnet, M L

    1976-01-01

    A new indirect fluorescent typing method for Klebsiella species is compared with an established method, capsular swelling. The fluorescent antibody (FA) technique was tested with standards and unknowns, and the results were checked by capsular swelling. Several unknowns were sent away for confirmation of typing, by capsular swelling. The FA method was also tried by a technician in the routine department for blind identification of standards. Fluorescence typing gives close correlation with the established capsular swelling technique but has greater sensitivity; allows more econimical use of expensive antisera; possesses greater objectivity as it requires less operator skill in the reading of results; resolves most of the cross reactions observed with capsular swelling; and has a higher per cent success rate in identification. PMID:777043

  5. Impact of salt form and molecular weight of chitosan on swelling and drug release from chitosan matrix tablets.

    PubMed

    Huanbutta, Kampanart; Cheewatanakornkool, Kamonrak; Terada, Katsuhide; Nunthanid, Jurairat; Sriamornsak, Pornsak

    2013-08-14

    Magnetic resonance imaging (MRI) and gravimetric techniques were used to assess swelling and erosion behaviors of hydrophilic matrix tablets made of chitosan. The impact of salt form, molecular weight (MW) and dissolution medium on swelling behavior and drug (theophylline) release was studied. The matrix tablets made of chitosan glycolate (CGY) showed the greatest swelling in both acid and neutral media, compared to chitosan aspartate, chitosan glutamate and chitosan lactate. MRI illustrated that swelling region of CGY in both media was not different in the first 100 min but glassy region (dry core) in 0.1N HCl was less than in pH 6.8 buffer. The tablets prepared from chitosan with high MW swelled greater than those of low MW. Moreover, CGY can delay drug release in the acid condition due to thick swollen gel and low erosion rate. Therefore, CGY may be suitably applied as sustained drug release polymer or enteric coating material. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Utility of ultrasonography for diagnosis of superficial swellings in buffalo (Bubalus bubalis)

    PubMed Central

    ABOUELNASR, Khaled; EL-SHAFAEY, El-Sayed; MOSBAH, Esam; EL-KHODERY, Sabry

    2016-01-01

    We studied 72 buffalo with superficial swellings in the head (n=4), neck (n=5), chest wall (n=4), abdominal wall (n=28), limbs (n=16), gluteal region (n=8), perineal region (n=6) and udder (n=1). Ultrasonographically, the swellings varied according to type, duration, content and location. The clinical use of ultrasound to assess these superficial swellings allowed diagnosis of abscesses (n=21), hematomas (n=11), hernias (n=17), bursitis (n=13), urethral diverticula (n=6) and tumors (n=4). Ultrasonography could precisely discriminate each lesion type (sensitivity, 71–100%; specificity, 75–100%; odds ratio, 1.0–8.4; Confidence Interval, 74.2–20; and P value 0.001). The specificity for ultrasonographic evaluation of superficial swellings was 100% for hernias, urethral diverticula and tumors, whilst the lowest specificity was recorded for hematomas (75%) and abscesses (92%). In conclusion, ultrasonography provides a precise, non-invasive and fast technique for the evaluation, classification and subsequent treatment of a variety of superficial swellings in buffalo. PMID:27181085

  7. Thyroid swellings in the art of the Italian Renaissance.

    PubMed

    Sterpetti, Antonio V; De Toma, Giorgio; De Cesare, Alessandro

    2015-09-01

    Thyroid swellings in the art of the Italian Renaissance are sporadically reported in the medical literature. Six hundred paintings and sculptures from the Italian Renaissance, randomly selected, were analyzed to determine the prevalence of personages with thyroid swellings and its meaning. The prevalence of personages with thyroid swellings in the art of Italian Renaissance is much higher than previously thought. This phenomenon was probably secondary to iodine deficiency. The presence of personages with thyroid swelling was related to specific meanings the artists wanted to show in their works. Even if the function and the role of the thyroid were discovered only after thyroidectomy was started to be performed, at the beginning of the 19th century, artists of the Italian Renaissance had the intuition that thyroid swellings were related to specific psychological conditions. Artistic intuition and sensibility often comes before scientific demonstration, and it should be a guide for science development. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Development of a simulation tool to analyze the orientation of LCPs during extrusion process

    NASA Astrophysics Data System (ADS)

    Ahmadzadegan, Arash

    In this thesis, different aspects of the rheology and directionality of the liquid crystalline polymers (LCPs) are investigated. The rheology of LCPs are modeled with different rheological models in different die geometries. The final goal in modeling the rheology and directionality of LCPs is to have a better understanding of their rheology during extrusion processing methods inside extrusion dies and eventually produce more isotropic films of LCPs. An attempt to design a die geometry that produces more isotropic films was made and it was shown that it is possible to use the inertia of the polymer to generate a more isotropic velocity profile at the lip of the die. This isotropic velocity profile can lead to alignment of directors along the streamlines and produce an isotropic film of LCP. It is shown that the rheological properties of the LCP should be altered to have a very low viscosity for this type of die to work. To be able to investigate the effect of processing on directionality of LCPs, it is essential to develop a method to simulate the directionality based on processing conditions. As a result, a user defined function (UDF) code was added to ANSYSRTM ~FLUENTRTM~ to simulate the directionality of LCPs. The rheology of the LCP is modeled using power-law fluid model and the consistency index (K) and power-law index (n) were estimated based on the experimental measurements done with capillary rheometry. Three main phenomena that affect the directionality namely effects of Franks elastic energy, the effect of shear and the effect of movement of crystals with the bulk of polymer are investigated. The results of this simulation are close to physical phenomena seen in real LCPs. To quantify the directionality of the LCPs, the order parameter of the domain were calculated and compared for different flow and fluid conditions. All polymers including LCPs are viscoelastic fluids in molten state. To understand the rheology of LCPs, a die-swell experiment was carried out using LCP material and Polypropylene (PP). For this experiment a capillary die with two different land-lengths was designed and built. The die-swell of the materials were measured optically according to ISO standards and the dependence of the die swell for materials on rheological properties is investigated. To simulate the viscoelasticity of LCPs numerically, ANSYSRTM ~POLYFLOWRTM~ was used. ANSYSRTM ~POLYFLOWRTM~ has several viscoelastic models and is designed to simulate extrusion processes. The geometry of the capillary die designed for the experiments was modeled in ANSYSRTM ~POLYFLOWRTM~ and the results were compared with the experimental results obtained for LCP and PP. It is shown that the morphology of the polymer should be considered into account to have a correct simulation of die swell.

  9. Local CO2-induced swelling of shales

    NASA Astrophysics Data System (ADS)

    Pluymakers, Anne; Dysthe, Dag Kristian

    2017-04-01

    In heterogeneous shale rocks, CO2 adsorbs more strongly to organic matter than to the other components. CO2-induced swelling of organic matter has been shown in coal, which is pure carbon. The heterogeneity of the shale matrix makes an interesting case study. Can local swelling through adsorption of CO2 to organic matter induce strain in the surrounding shale matrix? Can fractures close due to CO2-induced swelling of clays and organic matter? We have developed a new generation of microfluidic high pressure cells (up to 100 bar), which can be used to study flow and adsorption phenomena at the microscale in natural geo-materials. The devices contain one transparent side and a shale sample on the other side. The shale used is the Pomeranian shale, extracted from 4 km depth in Poland. This formation is a potential target of a combined CO2-storage and gas extraction project. To answer the first question, we place the pressure cell under a Veeco NT1100 Interferometer, operated in Vertical Scanning Interferometry mode and equipped with a Through Transmissive Media objective. This allows for observation of local swelling or organic matter with nanometer vertical resolution and micrometer lateral resolution. We expose the sample to CO2 atmospheres at different pressures. Comparison of the interferometry data and using SEM-EDS maps plus optical microscopy delivers local swelling maps where we can distinguish swelling of different mineralogies. Preliminary results indicate minor local swelling of organic matter, where the total amount is both time- and pressure-dependent.

  10. Evaluation about wettability, water absorption or swelling of excipients through various methods and the correlation between these parameters and tablet disintegration.

    PubMed

    Yang, Baixue; Wei, Chen; Yang, Yang; Wang, Qifang; Li, Sanming

    2018-04-06

    To evaluate parameters about wettability, water absorption or swelling of excipients in forms of powders or dosage through various methods systematically and explore its correlation with tablet disintegration. The water penetration and swelling of powders with different proportions of excipients including microcrystalline cellulose (MCC), mannitol, low-substituted hydroxypropyl cellulose (L-HPC), crospolyvinylpyrrolidone (PVPP), carboxymethyl starch sodium (CMS-Na), croscarmellose sodium (CCMC-Na) and magnesium stearate (MgSt) were determined by Washburn capillary rise. Both contact angle of water on the excipient compacts and surface swelling volume were measured by sessile drop technique. Moreover, the test about water absorption and swelling of compacts was fulfilled by a modified method. Eventually, the disintegration of tablets with or without loratadine was performed according to the method described in USP. These parameters were successfully identified by the methods above, which proved that excipient wettability or swelling properties varied with the structure of excipients. For example, MgSt could improve the water uptake, while impeded tablet swelling. Furthermore, in the present study it is verified that tablet disintegration was closely related to these parameters, especially wetting rate and initial water absorption rate. The higher wetting rate of water on tablet or initial water absorption rate, the faster swelling it be, resulting in the shorter tablet disintegration time. The methods utilized in the present study were feasible and effective. The disintegration of tablets did relate to these parameters, especially wetting rate and initial water absorption rate.

  11. Final report on accident tolerant fuel performance analysis of APMT-Steel Clad/UO₂ fuel and APMT-Steel Clad/UN-U₃Si₅ fuel concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unal, Cetin; Galloway, Jack D.

    2014-09-12

    In FY2014 our group completed and documented analysis of new Accident Tolerant Fuel (ATF) concepts using BISON. We have modeled the viability of moving from Zircaloy to stainless steel cladding in traditional light water reactors (LWRs). We have explored the reactivity penalty of this change using the MCNP-based burnup code Monteburns, while attempting to minimize this penalty by increasing the fuel pellet radius and decreasing the cladding thickness. Fuel performance simulations using BISON have also been performed to quantify changes to structural integrity resulting from thinner stainless steel claddings. We account for thermal and irradiation creep, fission gas swelling, thermalmore » swelling and fuel relocation in the models for both Zircaloy and stainless steel claddings. Additional models that account for the lower oxidation stainless steel APMT are also invoked where available. Irradiation data for HT9 is used as a fallback in the absence of appropriate models. In this study the isotopic vectors within each natural element are varied to assess potential reactivity gains if advanced enrichment capabilities were levied towards cladding technologies. Recommendations on cladding thicknesses for a robust cladding as well as the constitutive components of a less penalizing composition are provided. In the first section (section 1-3), we present results accepted for publication in the 2014 TOPFUEL conference regarding the APMT/UO₂ ATF concept (J. Galloway & C. Unal, Accident Tolerant and Neutronically Favorable LWR Cladding, Proceedings of WRFPM 2014, Sendai, Japan, Paper No.1000050). Next we discuss our preliminary findings from the thermo-mechanical analysis of UN-U₃Si₅ fuel with APMT clad. In this analysis we used models developed from limited data that need to be updated when the irradiation data from ATF-1 test is available. Initial results indicate a swelling rate less than 1.5% is needed to prevent excessive clad stress.« less

  12. Utility of the sore throat pain model in a multiple-dose assessment of the acute analgesic flurbiprofen: a randomized controlled study

    PubMed Central

    2014-01-01

    Background The sore throat pain model has been conducted by different clinical investigators to demonstrate the efficacy of acute analgesic drugs in single-dose randomized clinical trials. The model used here was designed to study the multiple-dose safety and efficacy of lozenges containing flurbiprofen at 8.75 mg. Methods Adults (n = 198) with moderate or severe acute sore throat and findings of pharyngitis on a Tonsillo-Pharyngitis Assessment (TPA) were randomly assigned to use either flurbiprofen 8.75 mg lozenges (n = 101) or matching placebo lozenges (n = 97) under double-blind conditions. Patients sucked one lozenge every three to six hours as needed, up to five lozenges per day, and rated symptoms on 100-mm scales: the Sore Throat Pain Intensity Scale (STPIS), the Difficulty Swallowing Scale (DSS), and the Swollen Throat Scale (SwoTS). Results Reductions in pain (lasting for three hours) and in difficulty swallowing and throat swelling (for four hours) were observed after a single dose of the flurbiprofen 8.75 mg lozenge (P <0.05 compared with placebo). After using multiple doses over 24 hours, flurbiprofen-treated patients experienced a 59% greater reduction in throat pain, 45% less difficulty swallowing, and 44% less throat swelling than placebo-treated patients (all P <0.01). There were no serious adverse events. Conclusions Utilizing the sore throat pain model with multiple doses over 24 hours, flurbiprofen 8.75 mg lozenges were shown to be an effective, well-tolerated treatment for sore throat pain. Other pharmacologic actions (reduced difficulty swallowing and reduced throat swelling) and overall patient satisfaction from the flurbiprofen lozenges were also demonstrated in this multiple-dose implementation of the sore throat pain model. Trial registration This trial was registered with ClinicalTrials.gov, registration number: NCT01048866, registration date: January 13, 2010. PMID:24988909

  13. An application of optical coherence tomography and a smart polymer gel to construct an enzyme-free sugar sensor

    NASA Astrophysics Data System (ADS)

    Ouiganon, Sirirat; Thammakhet, Chongdee; Thavarungkul, Panote; Kanatharana, Proespichaya; Buranachai, Chittanon

    2016-06-01

    This work reports a novel enzyme-free sugar sensor development based on optical coherence tomography (OCT) and a 3-acrylamidophenylboronic acid-acrylamide copolymer gel that swells when it binds sugar molecules. Utilizing OCT to measure the gel swelling in the presence of glucose and fructose, selected as model targets, the sensor provided a linear range of 2.5-20.0 mM for glucose and 0.01-0.20 mM for fructose detections with a good sensitivity for both sugars under optimal conditions. With some further improvements, the sensor could be used in harsh conditions that are not suitable for enzyme-based sugar sensors and for highly visible light-absorbing solutions.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi-chune, Y.; Liu, L.

    The evaporation, heating, and burning of single coal-water slurry droplets are studied. The coal selected in this study is Pittsburgh Seam number 8 coal which is a medium volatile caking bituminous coal. The droplet is suspended on a microthermocouple and exposed to a hot gas stream. Temperature measurement and microscopic observation are performed in the parametric studies. The duration of water evaporation in CWS droplets decreases with the reduction of the droplet size, increasing of coal weight fraction, and increasing of gas temperature and velocity. The duration of heat-up is always significant due to the agglomeration. The CWS droplets aremore » generally observed to swell like popcorn during heating. A model for the formation of the popped swelling is proposed and discussed.« less

  15. Developing Battery Computer Aided Engineering Tools for Military Vehicles

    DTIC Science & Technology

    2013-12-01

    Task 1.b Modeling Bullet penetration. The purpose of Task 1.a was to extend the chemical kinetics models of CoO2 cathodes developed under CAEBAT to...lithium- ion batteries. The new finite element model captures swelling/shrinking in cathodes /anodes due to thermal expansion and lithium intercalation...Solid Electrolyte Interphase (SEI) layer decomposition 80 2 Anode — electrolyte 100 3 Cathode — electrolyte 130 4 Electrolyte decomposition 180

  16. THE SWELLING PROPERTIES OF SOIL ORGANIC MATTER AND THEIR RELATION TO SORPTION OF NON-IONIC ORGANIC COMPOUNDS

    EPA Science Inventory

    A method has been developed to measure the swelling properties of Concentrated natural organic materials in various organic liquids, and has been applied to various eat, pollen, chitin and cellulose samples. The swelling of these macromolecular aterials is rhe volumetric manifest...

  17. SWELLING PROPERTIES OF SOIL ORGANIC MATTER AND THEIR RELATION TO SORPTION OF NON-IONIC ORGANIC COMPOUNDS

    EPA Science Inventory

    A method has been developed to measure the swelling properties of Concentrated natural organic materials in various organic liquids, and has been applied to various eat, pollen, chitin and cellulose samples. he swelling of these macromolecular aterials is rhe volumetric manifesta...

  18. Numerical studies of temperature effect on the extrusion fracture and swell of plastic micro-pipe

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Huang, Xingyuan; Xiong, Zhihua

    2018-03-01

    Temperature is a key factor that impacts extrusion forming quality of plastic micro-pipe. In this study, the effect of temperature on extrusion fracture and swell of plastic micro-pipe was investigated by numerical method. Under a certain of the melt’s flow volume, the extrusion pattern, extrusion swelling ratio of melt are obtained under different temperatures. Results show that the extrusion swelling ratio of plastic micro-pipe decreases with increasing of temperature. In order to study the reason of temperature effect, the physical distributions of plastic micro-pipe are gotten. Numerical results show that the viscosity, pressure, stress value of melt are all decreased with the increasing of temperature, which leads to decrease the extrusion swell and fracture phenomenon for the plastic micro-pipe.

  19. Comparison of pain and swelling after removal of oral leukoplakia with CO2 laser and cold knife: A randomized clinical trial

    PubMed Central

    López-Jornet, Pía

    2013-01-01

    Objective: The aim of this study was to compare conventional surgery with carbon dioxide (CO2) laser in patients with oral leukoplakia, and to evaluate the postoperative pain and swelling. Study design: A total of 48 patients (27 males and 21 females) with a mean age of 53.7 ± 11.7 years and diagnosed with oral leukoplakia were randomly assigned to receive treatment either with conventional surgery using a cold knife or with a CO2 laser technique. A visual analog scale (VAS) was used to score pain and swelling at different postoperative time points. Results: Pain and swelling reported by the patients was greater with the conventional cold knife than with the CO2 laser, statistically significant differences for pain and swelling were observed between the two techniques during the first three days after surgery. Followed by a gradual decrease over one week. In neither group was granuloma formation observed, and none of the patients showed malignant transformation during the period of follow-up. Conclusions: The CO2 laser causes only minimal pain and swelling, thus suggesting that it may be an alternative method to conventional surgery in treating patients with oral leukoplakia. Key words:Oral leukoplakia, treatment, laser surgery, cold knife, pain, swelling. PMID:23229239

  20. Urinary steroid hormone analysis of ovarian cycles and pregnancy in mandrills (Mandrillus sphinx) indicate that menses, copulatory behavior, sexual swellings and reproductive condition are associated with changing estrone conjugates (E(1)C) and pregnanediol-3-glucuronide (PdG).

    PubMed

    Phillips, Rebecca Sellin; Wheaton, Catharine J

    2008-07-01

    The objective of this study was to determine if sexual swellings in mandrills (Mandrillus sphinx) are a reflection of reproductive endocrine state. Urine samples were assayed using an enzyme immunoassay measuring pregnanediol-3-glucuronide (PdG) and estrone conjugates (E(1)C). Hormone patterns of ovarian cycles, pregnancy and lactation were characterized and compared with sexual swellings and copulations relative to menses and peak E(1)C. Cycle lengths averaging 28.7 days and pregnancy length of 181 days determined by hormonal and sexual swelling measures were similar to those reported in other Old World primate species. First day of copulation was observed during rising E(1)C concentrations and preceded observations of peak swelling by 1-2 days. Observations of peak sexual swellings occurred at or on the day after peak E(1)C and decreased following the ovulatory increase in PdG. Observations of menses and sexual swellings are a useful method to track mandrill ovarian cycles and can assist zoos in determining the reproductive state of females in their collections. Zoo Biol 27:320-330, 2008. (c) 2008 Wiley-Liss, Inc.

  1. Oesophageal bioadhesion of sodium alginate suspensions: particle swelling and mucosal retention.

    PubMed

    Richardson, J Craig; Dettmar, Peter W; Hampson, Frank C; Melia, Colin D

    2004-09-01

    This paper describes a prospective bioadhesive liquid dosage form designed to specifically adhere to the oesophageal mucosa. It contains a swelling polymer, sodium alginate, suspended in a water-miscible vehicle and is activated by dilution with saliva to form an adherent layer of polymer on the mucosal surface. The swelling of alginate particles and the bioadhesion of 40% (w/w) sodium alginate suspensions were investigated in a range of vehicles: glycerol, propylene glycol, PEG 200 and PEG 400. Swelling of particles as a function of vehicle dilution with artificial saliva was quantified microscopically using 1,9-dimethyl methylene blue (DMMB) as a visualising agent. The minimum vehicle dilution to initiate swelling varied between vehicles: glycerol required 30% (w/w) dilution whereas PEG 400 required nearly 60% (w/w). Swelling commenced when the Hildebrand solubility parameter of the diluted vehicle was raised to 37 MPa(1/2). The bioadhesive properties of suspensions were examined by quantifying the amount of sodium alginate retained on oesophageal mucosa after washing in artificial saliva. Suspensions exhibited considerable mucoretention and strong correlations were obtained between mucosal retention, the minimum dilution to initiate swelling, and the vehicle Hildebrand solubility parameter. These relationships may allow predictive design of suspensions with specific mucoretentive properties, through judicious choice of vehicle characteristics.

  2. Simulation and evaluation of rupturable coated capsules by finite element method.

    PubMed

    Yang, Yan; Fang, Jie; Shen, Lian; Shan, Weiguang

    2017-03-15

    The objective of this study was to simulate and evaluate the burst behavior of rupturable coated capsules by finite element method (FEM). Film and coated capsules were prepared by dip-coating method and their dimensions were determined by stereomicroscope. Mechanical properties of the film were measured by tensile test and used as material properties of FEM models. Swelling pressure was determined by restrained expansion method and applied to the internal surface of FEM models. Water uptake of coated capsules was determined to study the formation of internal pressure. Burst test and in vitro dissolution was used to verify the FEM models, which were used to study and predict the coating burst behavior. Simulated results of coating burst behavior were well agreed with the experiment results. Swelling pressure, material properties and dimensions of coating had influence on the maximum stress. Burst pressure and critical L-HPC content were calculated for burst prediction and formulation optimization. FEM simulation was a feasible way to simulate and evaluate the burst behavior of coated capsules. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. On the Connection Between One-and Two-Equation Models of Turbulence

    NASA Technical Reports Server (NTRS)

    Menter, F. R.; Rai, Man Mohan (Technical Monitor)

    1994-01-01

    A formalism will be presented that allows the transformation of two-equation eddy viscosity turbulence models into one-equation models. The transformation is based on an assumption that is widely accepted over a large range of boundary layer flows and that has been shown to actually improve predictions when incorporated into two-equation models of turbulence. Based on that assumption, a new one-equation turbulence model will be derived. The new model will be tested in great detail against a previously introduced one-equation model and against its parent two-equation model.

  4. Anomalous toluene transport in model segmented polyurethane-urea/clay nanocomposites.

    PubMed

    Rath, Sangram K; Bahadur, Jitendra; Panda, Himanshu S; Sen, Debasis; Patro, T Umasankar; S, Praveen; Patri, Manornajan; Khakhar, Devang V

    2018-05-16

    The kinetics of liquid solvent sorption in polymeric systems and their nanocomposites often deviate from normal Fickian behaviour. This needs to be understood and interpreted, in terms of their underlying mechanistic origins. In the present study, the results of time dependent toluene sorption measurements in model segmented polyurethane-urea/clay nanocomposites have been analysed at room temperature. The studies revealed pronounced S-shaped sorption curves and unusually higher swelling of the nanocomposites compared to the neat polyurethane-urea matrix. Dynamic mechanical analysis (DMA) and small angle X-ray scattering (SAXS) measurements on the nanocomposites in the dry and liquid toluene saturated state have been carried out. The DMA studies revealed a significant decrease in the α relaxation temperature and storage modulus of the nanocomposites in the swollen state compared to the dry samples. The SAXS results showed that the nanoclay dispersion morphology transformed from intercalation in the dry state to exfoliation in the swollen state and the interdomain distance between hard segments increased upon swelling. Thermodynamic analysis of the Flory-Huggins interaction parameter (χ) of nanocomposite/toluene systems revealed increasingly negative χ values with increased clay loading. These results imply a significant plasticization effect of toluene on the nanocomposites. An interpretation of these data, which relates the abovementioned results, is presented in the framework of differential swelling stress (DSS) induced deviation from Fickian transport characteristics. We expect that these findings and methods may provide new insight into the analysis of the solvent diffusion process in heterogeneous polymers and their nanocomposites.

  5. Time-oriented experimental design method to optimize hydrophilic matrix formulations with gelation kinetics and drug release profiles.

    PubMed

    Shin, Sangmun; Choi, Du Hyung; Truong, Nguyen Khoa Viet; Kim, Nam Ah; Chu, Kyung Rok; Jeong, Seong Hoon

    2011-04-04

    A new experimental design methodology was developed by integrating the response surface methodology and the time series modeling. The major purposes were to identify significant factors in determining swelling and release rate from matrix tablets and their relative factor levels for optimizing the experimental responses. Properties of tablet swelling and drug release were assessed with ten factors and two default factors, a hydrophilic model drug (terazosin) and magnesium stearate, and compared with target values. The selected input control factors were arranged in a mixture simplex lattice design with 21 experimental runs. The obtained optimal settings for gelation were PEO, LH-11, Syloid, and Pharmacoat with weight ratios of 215.33 (88.50%), 5.68 (2.33%), 19.27 (7.92%), and 3.04 (1.25%), respectively. The optimal settings for drug release were PEO and citric acid with weight ratios of 191.99 (78.91%) and 51.32 (21.09%), respectively. Based on the results of matrix swelling and drug release, the optimal solutions, target values, and validation experiment results over time were similar and showed consistent patterns with very small biases. The experimental design methodology could be a very promising experimental design method to obtain maximum information with limited time and resources. It could also be very useful in formulation studies by providing a systematic and reliable screening method to characterize significant factors in the sustained release matrix tablet. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Adhesive groups and how they relate to the durability of bonded wood

    Treesearch

    Charles R. Frihart

    2009-01-01

    There is a need to develop models that evaluate the interaction of wood adhesives at the macroscopic level to explain observations on the durability of bonded wood laminate products with changing moisture conditions. This paper emphasizes a model that relates durability to strain on the bondline caused by wood swelling. The effect of this strain is discussed in...

  7. A constitutive theory of reacting electrolyte mixtures

    NASA Astrophysics Data System (ADS)

    Costa Reis, Martina; Wang, Yongqi; Bono Maurizio Sacchi Bassi, Adalberto

    2013-11-01

    A constitutive theory of reacting electrolyte mixtures is formulated. The intermolecular interactions among the constituents of the mixture are accounted for through additional freedom degrees to each constituent of the mixture. Balance equations for polar reacting continuum mixtures are accordingly formulated and a proper set of constitutive equations is derived with basis in the Müller-Liu formulation of the second law of thermodynamics. Moreover, the non-equilibrium and equilibrium responses of the reacting mixture are investigated in detail by emphasizing the inner and reactive structures of the medium. From the balance laws and constitutive relations, the effects of molecular structure of constituents upon the fluid flow are studied. It is also demonstrated that the local thermodynamic equilibrium state can be reached without imposing that the set of independent constitutive variables is time independent, neither spatially homogeneous nor null. The resulting constitutive relations presented throughout this work are of relevance to many practical applications, such as swelling of clays, developing of bio and polymeric membranes, and use of electrorheological fluids in industrial processes. The first author acknowledges financial support from National Counsel of Technological and Scientific Development (CNPq) and German Academic Exchange Service (DAAD).

  8. A medicinal extract of Scutellaria baicalensis and Acacia catechu acts as a dual inhibitor of cyclooxygenase and 5-lipoxygenase to reduce inflammation.

    PubMed

    Burnett, B P; Jia, Q; Zhao, Y; Levy, R M

    2007-09-01

    A mixed extract containing two naturally occurring flavonoids, baicalin from Scutellaria baicalensis and catechin from Acacia catechu, was tested for cyclooxygenase (COX) and 5-lipoxygenase (5-LOX) inhibition via enzyme, cellular, and in vivo models. The 50% inhibitory concentration for inhibition of both ovine COX-1 and COX-2 peroxidase enzyme activities was 15 microg/mL, while the mixed extract showed a value for potato 5-LOX enzyme activity of 25 microg/mL. Prostaglandin E2 generation was inhibited by the mixed extract in human osteosarcoma cells expressing COX-2, while leukotriene production was inhibited in both human cell lines, immortalized THP-1 monocyte and HT-29 colorectal adenocarcinoma. In an arachidonic acid-induced mouse ear swelling model, the extract decreased edema in a dose-dependent manner. When arachidonic acid was injected directly into the intra-articular space of mouse ankle joints, the mixed extract abated the swelling and restored function in a rotary drum walking model. These results suggest that this natural, flavonoid mixture acts via "dual inhibition" of COX and LOX enzymes to reduce production of pro-inflammatory eicosanoids and attenuate edema in an in vivo model of inflammation.

  9. Regional Wave Climates along Eastern Boundary Currents

    NASA Astrophysics Data System (ADS)

    Semedo, Alvaro; Soares, Pedro

    2016-04-01

    Two types of wind-generated gravity waves coexist at the ocean surface: wind sea and swell. Wind sea waves are waves under growing process. These young growing waves receive energy from the overlaying wind and are strongly coupled to the local wind field. Waves that propagate away from their generation area and no longer receive energy input from the local wind are called swell. Swell waves can travel long distances across entire ocean basins. A qualitative study of the ocean waves from a locally vs. remotely generation perspective is important, since the air sea interaction processes is strongly modulated by waves and vary accordingly to the prevalence of wind sea or swell waves in the area. A detailed climatology of wind sea and swell waves along eastern boundary currents (EBC; California Current, Canary Current, in the Northern Hemisphere, and Humboldt Current, Benguela Current, and Western Australia Current, in the Southern Hemisphere), based on the ECMWF (European Centre for Medium-Range Weather Forecasts) ERA-Interim reanalysis will be presented. The wind regime along EBC varies significantly from winter to summer. The high summer wind speeds along EBC generate higher locally generated wind sea waves, whereas lower winter wind speeds in these areas, along with stronger winter extratropical storms far away, lead to a predominance of swell waves there. In summer, the coast parallel winds also interact with coastal headlands, increasing the wind speed through a process called "expansion fan", which leads to an increase in the height of locally generated waves downwind of capes and points. Hence the spatial patterns of the wind sea or swell regional wave fields are shown to be different from the open ocean along EBC, due to coastal geometry and fetch dimensions. Swell waves will be shown to be considerably more prevalent and to carry more energy in winter along EBC, while in summer locally generated wind sea waves are either more comparable to swell waves or, particularly in the lee of headlands, or even more prevalent and more energized than swell. This study is part of the WRCP-JCOMM COWCLIP (Coordinated Ocean Wave Climate Project) effort.

  10. Mechanical and electrochemical response of a LiCoO 2 cathode using reconstructed microstructures

    DOE PAGES

    Mendoza, Hector; Roberts, Scott Alan; Brunini, Victor; ...

    2016-01-01

    As LiCoO 2 cathodes are charged, delithiation of the LiCoO 2 active material leads to an increase in the lattice spacing, causing swelling of the particles. When these particles are packed into a bicontinuous, percolated network, as is the case in a battery electrode, this swelling leads to the generation of significant mechanical stress. In this study we performed coupled electrochemical-mechanical simulations of the charging of a LiCoO 2 cathode in order to elucidate the mechanisms of stress generation and the effect of charge rate and microstructure on these stresses. Energy dispersive spectroscopy combined with scanning electron microscopy imaging wasmore » used to create 3D reconstructions of a LiCoO 2 cathode, and the Conformal Decomposition Finite Element Method is used to automatically generate computational meshes on this reconstructed microstructure. Replacement of the ideal solution Fickian diffusion model, typically used in battery simulations, with a more general non-ideal solution model shows substantially smaller gradients of lithium within particles than is typically observed in the literature. Using this more general model, lithium gradients only appear at states of charge where the open-circuit voltage is relatively constant. While lithium gradients do affect the mechanical stress state in the particles, the maximum stresses are always found in the fully-charged state and are strongly affected by the local details of the microstructure and particle-to-particle contacts. These coupled electrochemical-mechanical simulations begin to yield insight into the partitioning of volume change between reducing pore space and macroscopically swelling the electrode. Lastly, preliminary studies that include the presence of the polymeric binder suggest that it can greatly impact stress generation and that it is an important area for future research.« less

  11. Exaggerated sexual swellings and male mate choice in primates: testing the reliable indicator hypothesis in the Amboseli baboons.

    PubMed

    Fitzpatrick, Courtney L; Altmann, Jeanne; Alberts, Susan C

    2015-06-01

    The paradigm of competitive males vying to influence female mate choice has been repeatedly upheld, but, increasingly, studies also report competitive females and choosy males. One female trait that is commonly proposed to influence male mate choice is the exaggerated sexual swelling displayed by females of many Old World primate species. The reliable indicator hypothesis posits that females use the exaggerated swellings to compete for access to mates, and that the swellings advertise variation in female fitness. We tested the two main predictions of this hypothesis in a wild population of baboons ( Papio cynocephalus) . First, we examined the effect of swelling size on the probability of mate-guarding ('consortship') by the highest-ranking male and the behavior of those males that trailed consorshipts ('follower males'). Second, we asked whether a female's swelling size predicted several fitness measures. We found that high-ranking males do not prefer females with larger swellings (when controlling for cycle number and conception) and that females with larger swellings did not have higher reproductive success. Our study-the only complete test of the reliable indicator hypothesis in a primate population-rejects the idea that female baboons compete for mates by advertising heritable fitness differences. Furthermore, we found unambiguous evidence that males biased their mating decisions in favor of females who had experienced more sexual cycles since their most recent pregnancy. Thus, rather than tracking the potential differences in fitness between females, male baboons appear to track and target the potential for a given reproductive opportunity to result in fertilization.

  12. Exaggerated sexual swellings and male mate choice in primates: testing the reliable indicator hypothesis in the Amboseli baboons

    PubMed Central

    Fitzpatrick, Courtney L.; Altmann, Jeanne; Alberts, Susan C.

    2015-01-01

    The paradigm of competitive males vying to influence female mate choice has been repeatedly upheld, but, increasingly, studies also report competitive females and choosy males. One female trait that is commonly proposed to influence male mate choice is the exaggerated sexual swelling displayed by females of many Old World primate species. The reliable indicator hypothesis posits that females use the exaggerated swellings to compete for access to mates, and that the swellings advertise variation in female fitness. We tested the two main predictions of this hypothesis in a wild population of baboons (Papio cynocephalus). First, we examined the effect of swelling size on the probability of mate-guarding (‘consortship’) by the highest-ranking male and the behavior of those males that trailed consorshipts (‘follower males’). Second, we asked whether a female’s swelling size predicted several fitness measures. We found that high-ranking males do not prefer females with larger swellings (when controlling for cycle number and conception) and that females with larger swellings did not have higher reproductive success. Our study—the only complete test of the reliable indicator hypothesis in a primate population—rejects the idea that female baboons compete for mates by advertising heritable fitness differences. Furthermore, we found unambiguous evidence that males biased their mating decisions in favor of females who had experienced more sexual cycles since their most recent pregnancy. Thus, rather than tracking the potential differences in fitness between females, male baboons appear to track and target the potential for a given reproductive opportunity to result in fertilization. PMID:26752790

  13. A Bayesian Nonparametric Approach to Test Equating

    ERIC Educational Resources Information Center

    Karabatsos, George; Walker, Stephen G.

    2009-01-01

    A Bayesian nonparametric model is introduced for score equating. It is applicable to all major equating designs, and has advantages over previous equating models. Unlike the previous models, the Bayesian model accounts for positive dependence between distributions of scores from two tests. The Bayesian model and the previous equating models are…

  14. Study of wave runup using numerical models and low-altitude aerial photogrammetry: A tool for coastal management

    NASA Astrophysics Data System (ADS)

    Casella, Elisa; Rovere, Alessio; Pedroncini, Andrea; Mucerino, Luigi; Casella, Marco; Cusati, Luis Alberto; Vacchi, Matteo; Ferrari, Marco; Firpo, Marco

    2014-08-01

    Monitoring the impact of sea storms on coastal areas is fundamental to study beach evolution and the vulnerability of low-lying coasts to erosion and flooding. Modelling wave runup on a beach is possible, but it requires accurate topographic data and model tuning, that can be done comparing observed and modeled runup. In this study we collected aerial photos using an Unmanned Aerial Vehicle after two different swells on the same study area. We merged the point cloud obtained with photogrammetry with multibeam data, in order to obtain a complete beach topography. Then, on each set of rectified and georeferenced UAV orthophotos, we identified the maximum wave runup for both events recognizing the wet area left by the waves. We then used our topography and numerical models to simulate the wave runup and compare the model results to observed values during the two events. Our results highlight the potential of the methodology presented, which integrates UAV platforms, photogrammetry and Geographic Information Systems to provide faster and cheaper information on beach topography and geomorphology compared with traditional techniques without losing in accuracy. We use the results obtained from this technique as a topographic base for a model that calculates runup for the two swells. The observed and modeled runups are consistent, and open new directions for future research.

  15. Effects of swelling forces on the durability of wood adhesive bonds

    Treesearch

    Blake M. Hofferber; Edward Kolodka; Rishawn Brandon; Robert J. Moon; Charles R. Frihart

    2006-01-01

    The purpose of this study was to investigate the role of wood swelling on performance of wood-adhesive bonds (resorcinol formaldehyde, epoxy, emulsion polymerisocyanate), for untreated and acetylated wood. Effects of these treatments on measured strain anisotropy and swelling stress were measured and then related to compressive shear strength and percentage wood...

  16. The wettability and swelling of selected mucoadhesive polymers in simulated saliva and vaginal fluids.

    PubMed

    Rojewska, M; Olejniczak-Rabinek, M; Bartkowiak, A; Snela, A; Prochaska, K; Lulek, J

    2017-08-01

    The surface properties play a particularly important role in the mucoadhesive drug delivery systems. In these formulations, the adsorption of polymer matrix to mucous membrane is limited by the wetting and swelling process of the polymer structure. Hence, the performance of mucoadhesive drug delivery systems made of polymeric materials depends on multiple factors, such as contact angle, surface free energy and water absorption rate. The aim of our study was to analyze the effect of model saliva and vaginal fluids on the wetting properties of selected mucoadhesive (Carbopol 974P NF, Noveon AA-1, HEC) and film-forming (Kollidon VA 64) polymers as well as their blends at the weight ratio 1:1 and 1:1:1, prepared in the form of discs. Surface properties of the discs were determined by measurements of advancing contact angle on the surface of polymers and their blends using the sessile drop method. The surface energy was determined by the OWRK method. Additionally, the mass swelling factor and hydration percentage of examined polymers and their blends in simulated biological fluids were evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The significance of ultra-refracted surface gravity waves on sheltered coasts, with application to San Francisco Bay

    USGS Publications Warehouse

    Hanes, D.M.; Erikson, L.H.

    2013-01-01

    Ocean surface gravity waves propagating over shallow bathymetry undergo spatial modification of propagation direction and energy density, commonly due to refraction and shoaling. If the bathymetric variations are significant the waves can undergo changes in their direction of propagation (relative to deepwater) greater than 90° over relatively short spatial scales. We refer to this phenomenon as ultra-refraction. Ultra-refracted swell waves can have a powerful influence on coastal areas that otherwise appear to be sheltered from ocean waves. Through a numerical modeling investigation it is shown that San Francisco Bay, one of the earth's largest and most protected natural harbors, is vulnerable to ultra-refracted ocean waves, particularly southwest incident swell. The flux of wave energy into San Francisco Bay results from wave transformation due to the bathymetry and orientation of the large ebb tidal delta, and deep, narrow channel through the Golden Gate. For example, ultra-refracted swell waves play a critical role in the intermittent closure of the entrance to Crissy Field Marsh, a small restored tidal wetland located on the sheltered north-facing coast approximately 1.5 km east of the Golden Gate Bridge.

  18. pH-sensitive Itaconic acid based polymeric hydrogels for dye removal applications.

    PubMed

    Sakthivel, M; Franklin, D S; Guhanathan, S

    2016-12-01

    A series of Itaconic Acid (IA) based pH-sensitive polymeric hydrogels were synthesized by condensation polymerization of Itaconic Acid (IA) with Ethylene Glycol (EG) in the presence of an acid medium resulted into pre-polymer. Further, pre-polymer were co-polymerized with Acrylic Acid (AA) through free radical polymerization using Potassium persulphate (KPS). The structural and surface morphological characterizations of the synthesized hydrogels were studied using FT-IR spectroscopy and Scanning Electron Microscope (SEM) respectively. The swelling and swelling equilibrium were performed at varies pH (4.0-10.0). Further, the effects of IA, EG and AA on swelling properties have also been investigated. Thermal stability of synthesized hydrogels have been investigated by TGA, DTA and DSC. The synthesized hydrogels have shown good ability to uptake a Cationic dye. The Methylene blue has been chosen as a model cationic dye. The results of dye removal using IA hydrogels found to have excellent dye removal capacity. Such kind of IA based hydrogels may be recommended for eco-friendly environmental application. viz., removal of dyes and metal ions and sewage water treatment, purification of water etc. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Swelling of biological and semiflexible polyelectrolytes.

    PubMed

    Dobrynin, Andrey V; Carrillo, Jan-Michael Y

    2009-10-21

    We have developed a theoretical model of swelling of semiflexible (biological) polyelectrolytes in salt solutions. Our approach is based on separation of length scales which allowed us to split a chain's electrostatic energy into two parts that describe local and remote electrostatic interactions along the polymer backbone. The local part takes into account interactions between charged monomers that are separated by distances along the polymer backbone shorter than the chain's persistence length. These electrostatic interactions renormalize chain persistence length. The second part includes electrostatic interactions between remote charged pairs along the polymer backbone located at distances larger than the chain persistence length. These interactions are responsible for chain swelling. In the framework of this approach we calculated effective chain persistence length and chain size as a function of the Debye screening length, chain degree of ionization, bare persistence length and chain degree of polymerization. Our crossover expression for the effective chain's persistence length is in good quantitative agreement with the experimental data on DNA. We have been able to fit experimental datasets by using two adjustable parameters: DNA ionization degree (α = 0.15-0.17) and a bare persistence length (l(p) = 40-44 nm).

  20. Cooperative deformations of periodically patterned hydrogels.

    PubMed

    Wang, Zhi Jian; Zhu, Chao Nan; Hong, Wei; Wu, Zi Liang; Zheng, Qiang

    2017-09-01

    Nature has shown elegant paradigms of smart deformation, which inspired biomimetic systems with controllable bending, folding, and twisting that are significant for the development of soft electronics and actuators. Complex deformations are usually realized by additively incorporating typical structures in selective domains with little interaction. We demonstrate the cooperative deformations of periodically patterned hydrogel sheets, in which neighboring domains mutually interact and cooperatively deform. Nonswelling disc gels are periodically positioned in a high-swelling gel. During the swelling process, the compartmentalized high-swelling gel alternately bends upward or downward to relieve the in-plane compression, but the overall integrated structure remains flat. The synergy between the elastic mismatch and the geometric periodicity selects the outcome pattern. Both experiment and modeling show that various types of cooperative deformation can be achieved by tuning the pattern geometry and gel properties. Different responsive polymers can also be patterned in one composite gel. Under stimulation, reversible transformations between different cooperative deformations are realized. The principle of cooperative deformation should be applicable to other materials, and the patterns can be miniaturized to the micrometer- or nanometer-scale level, providing the morphing materials with advanced functionalities for applications in various fields.

  1. Delivery of fullerene-containing complexes via microgel swelling and shear-induced release.

    PubMed

    Tarabukina, Elena; Zoolshoev, Zoolsho; Melenevskaya, Elena; Budtova, Tatiana

    2010-01-15

    The absorption and release of poly(vinylpyrrolidone)-fullerene C60 complexes (PVP/C60) from a model microgel is studied. A dry microgel based on a chemically cross-linked sodium polyacrylate was swollen in the aqueous solutions of complexes which were afterwards released under shear stress. First, gel swelling degree in static conditions in the excess of PVP/C60 solutions was studied: the degree of swelling decreases with the increase in PVP/C60 concentration. While pure PVP is homogeneously distributed between the gel and the surrounding solution, a slight concentration of complexes outside the gel was recorded. It was attributed to PVP/C60 hydrophobicity leading to the decrease in the thermodynamic quality of fullerene-containing solution being gel solvent. The release of PVP/C60 solutions induced by shear was studied with counter-rotating rheo-optical technique and compared with PVP solution release under the same conditions. The amount of solution released depends on polymer concentration and shear strain. Contrary to pure PVP solutions in which rate of release decreases with the increase in polymer concentration, PVP/C60 complexes are released faster when fullerene concentration inside the gel is higher.

  2. Facile fabrication and characterization of a novel oral pH-sensitive drug delivery system based on CMC hydrogel and HNT-AT nanohybrid.

    PubMed

    Hossieni-Aghdam, Seyed Jamal; Foroughi-Nia, Behrouz; Zare-Akbari, Zhila; Mojarad-Jabali, Solmaz; Motasadizadeh, Hamidreza; Farhadnejad, Hassan

    2018-02-01

    The main aim of the present study was to design pH-sensitive bionanocomposite hydrogel beads based on CMC and HNT-AT nanohybrid and evaluate whether prepared bionanocomposite beads have the potential to be used in drug delivery applications. Atenolol (AT), as a model drug, was incorporated into the lumen of HA nanotubes via the co-precipitation technique. HNT/AT nanohybrid and CMC/HNT-AT beads were characterized via XRD, SEM, TGA, and FT-IR techniques. Drug loading and encapsulation efficiency was found to be high for CMC/HNT3 beads. Moreover, the swelling and drug release properties of the prepared CMC/HA-AT beads were investigated, and showed a pH sensitive swelling behavior with maximum its content at pH 6.8. Also, it was found that the swelling ratio of CMC/HNT beads was lower than that of pristine CMC beads. Drug release behavior of CMC/HNT-AT bionanocomposite hydrogel beads were investigated. A more sustained and controlled drug releases were observed for CMC/HNT-AT beads. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Gibbs Ensemble Simulations of the Solvent Swelling of Polymer Films

    NASA Astrophysics Data System (ADS)

    Gartner, Thomas; Epps, Thomas, III; Jayaraman, Arthi

    Solvent vapor annealing (SVA) is a useful technique to tune the morphology of block polymer, polymer blend, and polymer nanocomposite films. Despite SVA's utility, standardized SVA protocols have not been established, partly due to a lack of fundamental knowledge regarding the interplay between the polymer(s), solvent, substrate, and free-surface during solvent annealing and evaporation. An understanding of how to tune polymer film properties in a controllable manner through SVA processes is needed. Herein, the thermodynamic implications of the presence of solvent in the swollen polymer film is explored through two alternative Gibbs ensemble simulation methods that we have developed and extended: Gibbs ensemble molecular dynamics (GEMD) and hybrid Monte Carlo (MC)/molecular dynamics (MD). In this poster, we will describe these simulation methods and demonstrate their application to polystyrene films swollen by toluene and n-hexane. Polymer film swelling experiments, Gibbs ensemble molecular simulations, and polymer reference interaction site model (PRISM) theory are combined to calculate an effective Flory-Huggins χ (χeff) for polymer-solvent mixtures. The effects of solvent chemistry, solvent content, polymer molecular weight, and polymer architecture on χeff are examined, providing a platform to control and understand the thermodynamics of polymer film swelling.

  4. Swelling and Eicosanoid Metabolites Differentially Gate TRPV4 Channels in Retinal Neurons and Glia

    PubMed Central

    Ryskamp, Daniel A.; Jo, Andrew O.; Frye, Amber M.; Vazquez-Chona, Felix; MacAulay, Nanna; Thoreson, Wallace B.

    2014-01-01

    Activity-dependent shifts in ionic concentrations and water that accompany neuronal and glial activity can generate osmotic forces with biological consequences for brain physiology. Active regulation of osmotic gradients and cellular volume requires volume-sensitive ion channels. In the vertebrate retina, critical support to volume regulation is provided by Müller astroglia, but the identity of their osmosensor is unknown. Here, we identify TRPV4 channels as transducers of mouse Müller cell volume increases into physiological responses. Hypotonic stimuli induced sustained [Ca2+]i elevations that were inhibited by TRPV4 antagonists and absent in TRPV4−/− Müller cells. Glial TRPV4 signals were phospholipase A2- and cytochrome P450-dependent, characterized by slow-onset and Ca2+ waves, and, in excess, were sufficient to induce reactive gliosis. In contrast, neurons responded to TRPV4 agonists and swelling with fast, inactivating Ca2+ signals that were independent of phospholipase A2. Our results support a model whereby swelling and proinflammatory signals associated with arachidonic acid metabolites differentially gate TRPV4 in retinal neurons and glia, with potentially significant consequences for normal and pathological retinal function. PMID:25411497

  5. Chitin's Functionality as a Novel Disintegrant: Benchmarking Against Commonly Used Disintegrants in Different Physicochemical Environments.

    PubMed

    Chaheen, Mohammad; Soulairol, Ian; Bataille, Bernard; Yassine, Ahmad; Belamie, Emmanuel; Sharkawi, Tahmer

    2017-07-01

    Disintegrants are used as excipients to ensure rapid disintegration of pharmaceutical tablets and further ensure proper dissolution of the active pharmaceutical ingredient. This study investigates disintegration mechanisms of chitin and common disintegrants. Swelling assessment (swelling force and swelling ratio) in different media, and compaction behavior (pure or mixed with other excipients) tabletability, deformation (Heckel modeling), and compact disintegration times were investigated on the tested disintegrants (alginic acid calcium salt, crospovidone, sodium starch glycolate, croscarmellose sodium, and chitin). Results show that the physicochemical properties of the disintegration medium such as pH and ionic strength, as well as other formulation ingredients, affect the disintegrant functionalities. Heckel analysis using the mean yield pressure "Py" shows that alginic acid calcium salt is the most brittle among the studied disintegrants, while crospovidone has the most plastic deformation mechanism, followed by chitin. Chitin showed good tabletability and disintegration properties that were not influenced by the physicochemical formulation environment. Chitin is largely available and easily modifiable and thus a promising material that could be used as a multifunctional excipient in tablet formulation. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  6. Hardness and swelling behaviour of epoxidized natural rubber/recycled acrylonitrile-butadiene rubber (ENR 50/NBRr) blends

    NASA Astrophysics Data System (ADS)

    Ahmad, Hazwani Syaza; Ismail, Hanafi; Rashid, Azura A.

    2017-07-01

    This recent work is to investigate the hardness and swelling behaviour of epoxidized natural rubber/recycled acrylonitrile-butadiene rubber (ENR 50/NBRr) blends. ENR 50/NBRr blends were prepared by two-roll mills with five different loading of NBRr from 5 to 35 phr. Results indicated that the hardness of ENR 50/NBRr blends increased as recycled NBR increased due to the improvement in crosslink density of the blends. Increasing NBRr content gives ENR 50/NBRr blends better resistance towards swelling. Higher degree of crosslinking will increase the swelling resistance and reduce the penetration of toluene into the blends. The presence of polar group in ENR 50 and NBRr give better hardness properties and swelling behaviour of the ENR 50/NBRr blends compared to the NR/NBRr blends.

  7. NMR imaging of high-amylose starch tablets. 2. Effect of tablet size.

    PubMed

    Malveau, Cédric; Baille, Wilms E; Zhu, Xiao Xia; Marchessault, Robert H

    2002-01-01

    Carbohydrate polymers are widely used for pharmaceutical applications such as the controlled release of drugs. The swelling and water mobility in high-amylose starch tablets are important parameters to be determined for these applications. They have been studied at different time intervals by nuclear magnetic resonance imaging (NMRI) after the immersion of the samples in water. These tablets have a hydrophilic matrix, which swells anisotropically and forms a hydrogel in water. NMRI shows clearly the anisotropy of the water penetration and the swelling along the radial and axial dimensions of the tablets. Empirical relationships are established to describe the kinetics of water penetration and swelling of the tablets. Results show that water uptake and tablet swelling strongly depend on the size of the tablets. Gravimetric measurements of water uptake were also performed in comparison with the NMRI results.

  8. Swelling mechanism of urea cross-linked starch-lignin films in water.

    PubMed

    Sarwono, Ariyanti; Man, Zakaria; Bustam, M Azmi; Subbarao, Duvvuri; Idris, Alamin; Muhammad, Nawshad; Khan, Amir Sada; Ullah, Zahoor

    2018-06-01

    Coating fertilizer particles with thin films is a possibility to control fertilizer release rates. It is observed that novel urea cross-linked starch-lignin composite thin films, prepared by solution casting, swell on coming into contact with water due to the increase in volume by water uptake by diffusion. The effect of lignin content, varied from 0% to 20% in steps of 5% at three different temperatures (25°C, 35°C and 45°C), on swelling of the film was investigated. By gravimetric analysis, the equilibrium water uptake and diffusion coefficient decrease with lignin content, indicating that the addition of lignin increases the hydrophobicity of the films. When temperature increases, the diffusion coefficient and the amount of water absorbed tend to increase. Assuming that swelling of the thin film is by water uptake by diffusion, the diffusion coefficient is estimated. The estimated diffusion coefficient decreases from 4.3 to 2.1 × 10 -7  cm 2 /s at 25°C, from 5.3 to 2.9 × 10 -7  cm 2 /s at 35°C and from 6.2 to 3.8 × 10 -7  cm 2 /s at 45°C depending on the lignin content. Activation energy for the increase in diffusion coefficient with temperature is observed to be 16.55 kJ/mol. An empirical model of water uptake as a function of percentage of lignin and temperature was also developed based on Fick's law.

  9. 1,3,5-Triazine-2,4,6-tribenzaldehyde derivative as a new crosslinking agent for synthesis of pH-thermo dual responsive chitosan hydrogels and their nanocomposites: Swelling properties and drug release behavior.

    PubMed

    Karimi, Ali Reza; Tarighatjoo, Mahsa; Nikravesh, Golara

    2017-12-01

    In this work, 1,3,5-triazine-2,4,6-tribenzaldehyde was synthesized and chosen as the cross-linking agent for preparation of novel thermo- and pH-responsive hydrogels based on chitosan. The cross-linking proceeds through formation of imine bond by reaction of amino groups of chitosan with aldehyde groups of the cross-linker. The various amounts (6, 10, 14% w/w) of the cross-linker were used with respect to chitosan to produce three 1,3,5-triazine-2,4,6-tribenzaldehyde cross-linked chitosans. Then, their hydrogel nanocomposites were prepared by crosslinking of chitosan with 1,3,5-triazine-2,4,6-tribenzaldehyde in the presence of 0.1% and 0.3% (w/w) multi-walled carbon nanotubes (MWCNTs). The structure and properties of the hydrogels and their nanocomposites were characterized by FT-IR, 1 H NMR and scanning electron microscopy (SEM). The swelling behavior of prepared hydrogels and their nanocomposites at different pHs and temperatures was investigated. The results showed that they exhibit a pH and temperature-responsive swelling ratio. The swelling behavior of the prepared chitosan hydrogels was strongly dependent on the amounts of cross-linker and MWCNTs. In vitro controlled release behavior of metronidazole model drug was studied with prepared hydrogels and nanocomposite hydrogels. The pH, temperature and wt% of MWCNTs were found to strongly influence the drug release behavior of the hydrogels. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Aquaporin-4 deletion in mice reduces encephalopathy and brain edema in experimental acute liver failure.

    PubMed

    Rama Rao, Kakulavarapu V; Verkman, A S; Curtis, Kevin M; Norenberg, Michael D

    2014-03-01

    Brain edema and associated astrocyte swelling leading to increased intracranial pressure are hallmarks of acute liver failure (ALF). Elevated blood and brain levels of ammonia have been implicated in the development of brain edema in ALF. Cultured astrocytes treated with ammonia have been shown to undergo cell swelling and such swelling was associated with an increase in the plasma membrane expression of aquaporin-4 (AQP4) protein. Further, silencing the AQP4 gene in cultured astrocytes was shown to prevent the ammonia-induced cell swelling. Here, we examined the evolution of brain edema in AQP4-null mice and their wild type counterparts (WT-mice) in different models of ALF induced by thioacetamide (TAA) or acetaminophen (APAP). Induction of ALF with TAA or APAP significantly increased brain water content in WT mice (by 1.6% ± 0.3 and 2.3 ± 0.4%, respectively). AQP4 protein was significantly increased in brain plasma membranes of WT mice with ALF induced by either TAA or APAP. In contrast to WT-mice, brain water content did not increase in AQP4-null mice. Additionally, AQP4-null mice treated with either TAA or APAP showed a remarkably lesser degree of neurological deficits as compared to WT mice; the latter displayed an inability to maintain proper gait, and demonstrated a markedly reduced exploratory behavior, with the mice remaining in one corner of the cage with its head tilted downwards. These results support a central role of AQP4 in the brain edema associated with ALF. Published by Elsevier Inc.

  11. In vivo optophysiology reveals that G-protein activation triggers osmotic swelling and increased light scattering of rod photoreceptors.

    PubMed

    Zhang, Pengfei; Zawadzki, Robert J; Goswami, Mayank; Nguyen, Phuong T; Yarov-Yarovoy, Vladimir; Burns, Marie E; Pugh, Edward N

    2017-04-04

    The light responses of rod and cone photoreceptors have been studied electrophysiologically for decades, largely with ex vivo approaches that disrupt the photoreceptors' subretinal microenvironment. Here we report the use of optical coherence tomography (OCT) to measure light-driven signals of rod photoreceptors in vivo. Visible light stimulation over a 200-fold intensity range caused correlated rod outer segment (OS) elongation and increased light scattering in wild-type mice, but not in mice lacking the rod G-protein alpha subunit, transducin (Gα t ), revealing these responses to be triggered by phototransduction. For stimuli that photoactivated one rhodopsin per Gα t the rod OS swelling response reached a saturated elongation of 10.0 ± 2.1%, at a maximum rate of 0.11% s -1 Analyzing swelling as osmotically driven water influx, we find the H 2 O membrane permeability of the rod OS to be (2.6 ± 0.4) × 10 -5 cm⋅s -1 , comparable to that of other cells lacking aquaporin expression. Application of Van't Hoff's law reveals that complete activation of phototransduction generates a potentially harmful 20% increase in OS osmotic pressure. The increased backscattering from the base of the OS is explained by a model combining cytoplasmic swelling, translocation of dissociated G-protein subunits from the disc membranes into the cytoplasm, and a relatively higher H 2 O permeability of nascent discs in the basal rod OS. Translocation of phototransduction components out of the OS may protect rods from osmotic stress, which could be especially harmful in disease conditions that affect rod OS structural integrity.

  12. Smart swelling biopolymer microparticles by a microfluidic approach: synthesis, in situ encapsulation and controlled release.

    PubMed

    Fang, Aiping; Cathala, Bernard

    2011-01-01

    This paper reports a microfluidic synthesis of biopolymer microparticles aiming at smart swelling. Monodisperse aqueous emulsion droplets comprising biopolymer and its cross-linking agent were formed in mineral oil and solidified in the winding microfluidic channels by in situ chaotic mixing, which resulted in internal chemical gelation for hydrogels. The achievement of pectin microparticles from in situ mixing pectin with its cross-linking agent, calcium ions, successfully demonstrates the reliability of this microfluidic synthesis approach. In order to achieve hydrogels with smart swelling, the following parameters and their impacts on the swelling behaviour, stability and morphology of microparticles were investigated: (1) the type of biopolymers (alginate or mixture of alginate and carboxymethylcellulose, A-CMC); (2) rapid mixing; (3) concentration and type of cross-linking agent. Superabsorbent microparticles were obtained from A-CMC mixture by using ferric chloride as an additional external cross-linking agent. The in situ encapsulation of a model protein, bovine serum albumin (BSA), was also carried out. As a potential protein drug-delivery system, the BSA release behaviours of the biopolymer particles were studied in simulated gastric and intestinal fluids. Compared with alginate and A-CMC microparticles cross-linked with calcium ions, A-CMC microparticles cross-linked with both calcium and ferric ions demonstrate a significantly delayed release. The controllable release profile, the facile encapsulation as well as their biocompatibility, biodegradability, mucoadhesiveness render this microfluidic approach promising in achieving biopolymer microparticles as protein drug carrier for site-specific release. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Aquaporin-4 Deletion in Mice Reduces Encephalopathy and Brain Edema in Experimental Acute Liver Failure

    PubMed Central

    Rama Rao, Kakulavarapu V.; Verkman, A. S.; Curtis, Kevin M.; Norenberg, Michael D.

    2014-01-01

    Brain edema and associated astrocyte swelling leading to increased intracranial pressure are hallmarks of acute liver failure (ALF). Elevated blood and brain levels of ammonia have been implicated in the development of brain edema in ALF. Cultured astrocytes treated with ammonia have been shown to undergo cell swelling and such swelling was associated with an increase in the plasma membrane expression of aquaporin-4 (AQP4) protein. Further, silencing the AQP4 gene in cultured astrocytes was shown to prevent the ammonia-induced cell swelling. Here, we examined the evolution of brain edema in AQP4-null mice and their wild type counterparts (WT-mice) in different models of ALF induced by thioacetamide (TAA) or acetaminophen (APAP). Induction of ALF with TAA or APAP significantly increased brain water content in WT mice (by 1.6 ± 0.3 and 2.3 ± 0.4 %, respectively). AQP4 protein was significantly increased in brain plasma membranes of WT mice with ALF induced by either TAA or APAP. In contrast to WT-mice, brain water content did not increase in AQP4-null mice. Additionally, AQP4-null mice treated with either TAA or APAP showed a remarkably lesser degree of neurological deficits as compared to WT mice; the latter displayed an inability to maintain proper gait, and demonstrated a markedly reduced exploratory behavior, with the mice remaining in one corner of the cage with its head tilted downwards. These results support a central role of AQP4 in the brain edema associated with ALF. PMID:24321433

  14. pH responsive cross-linked polymeric matrices based on natural polymers: effect of process variables on swelling characterization and drug delivery properties.

    PubMed

    Naeem, Fahad; Khan, Samiullah; Jalil, Aamir; Ranjha, Nazar Muhammad; Riaz, Amina; Haider, Malik Salman; Sarwar, Shoaib; Saher, Fareha; Afzal, Samrin

    2017-01-01

    Introduction: The current work was aimed to design and synthesize novel crosslinked pH-sensitive gelatin/pectin (Ge/Pec) hydrogels using different polymeric ratios and to explore the effect of polymers and degree of crosslinking on dynamic, equilibrium swelling and in vitro release behavior of the model drug (Mannitol). Methods: The Ge/Pec based hydrogels were prepared using glutaraldehyde as the crosslinker. Various structural parameters that affect their release behavior were determined, including swelling study, porosity, sol-gel analysis, average molecular weight between crosslinks (Mc), volume fraction of polymer (V2,s), solvent interaction parameter (χ) and diffusion coefficient. The synthesized hydrogels were subjected to various characterization tools like Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and DSC differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Results: The hydrogels show highest water uptake and release at lower pH values. The FTIR spectra showed an interaction between Ge and Pec, and the drug-loaded samples also showed the drug-related peaks, indicating proper loading of the drug. DSC and TGA studies confirmed the thermal stability of hydrogel samples, while SEM showed the porous nature of hydrogels. The drug release followed non-Fickian diffusion or anomalous mechanism. Conclusion: Aforementioned characterizations reveal the successful formation of copolymer hydrogels. The pH-sensitive swelling ability and drug release behavior suggest that the rate of polymer chain relaxation and drug diffusion from these hydrogels are comparable which also predicts their possible use for site-specific drug delivery.

  15. pH responsive cross-linked polymeric matrices based on natural polymers: effect of process variables on swelling characterization and drug delivery properties

    PubMed Central

    Naeem, Fahad; Khan, Samiullah; Jalil, Aamir; Ranjha, Nazar Muhammad; Riaz, Amina; Haider, Malik Salman; Sarwar, Shoaib; Saher, Fareha; Afzal, Samrin

    2017-01-01

    Introduction: The current work was aimed to design and synthesize novel crosslinked pH-sensitive gelatin/pectin (Ge/Pec) hydrogels using different polymeric ratios and to explore the effect of polymers and degree of crosslinking on dynamic, equilibrium swelling and in vitro release behavior of the model drug (Mannitol). Methods: The Ge/Pec based hydrogels were prepared using glutaraldehyde as the crosslinker. Various structural parameters that affect their release behavior were determined, including swelling study, porosity, sol-gel analysis, average molecular weight between crosslinks (Mc), volume fraction of polymer (V2,s), solvent interaction parameter (χ) and diffusion coefficient. The synthesized hydrogels were subjected to various characterization tools like Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and DSC differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Results:The hydrogels show highest water uptake and release at lower pH values. The FTIR spectra showed an interaction between Ge and Pec, and the drug-loaded samples also showed the drug-related peaks, indicating proper loading of the drug. DSC and TGA studies confirmed the thermal stability of hydrogel samples, while SEM showed the porous nature of hydrogels. The drug release followed non-Fickian diffusion or anomalous mechanism. Conclusion: Aforementioned characterizations reveal the successful formation of copolymer hydrogels. The pH-sensitive swelling ability and drug release behavior suggest that the rate of polymer chain relaxation and drug diffusion from these hydrogels are comparable which also predicts their possible use for site-specific drug delivery. PMID:29159145

  16. Morphological Adaptations for Digging and Climate-Impacted Soil Properties Define Pocket Gopher (Thomomys spp.) Distributions

    PubMed Central

    Marcy, Ariel E.; Fendorf, Scott; Patton, James L.; Hadly, Elizabeth A.

    2013-01-01

    Species ranges are mediated by physiology, environmental factors, and competition with other organisms. The allopatric distribution of five species of northern Californian pocket gophers (Thomomys spp.) is hypothesized to result from competitive exclusion. The five species in this environmentally heterogeneous region separate into two subgenera, Thomomys or Megascapheus, which have divergent digging styles. While all pocket gophers dig with their claws, the tooth-digging adaptations of subgenus Megascapheus allow access to harder soils and climate-protected depths. In a Northern Californian locality, replacement of subgenus Thomomys with subgenus Megascapheus occurred gradually during the Pleistocene-Holocene transition. Concurrent climate change over this transition suggests that environmental factors – in addition to soil – define pocket gopher distributional limits. Here we show 1) that all pocket gophers occupy the subset of less energetically costly soils and 2) that subgenera sort by percent soil clay, bulk density, and shrink-swell capacity (a mineralogical attribute). While clay and bulk density (without major perturbations) stay constant over decades to millennia, low precipitation and high temperatures can cause shrink-swell clays to crack and harden within days. The strong yet underappreciated interaction between soil and moisture on the distribution of vertebrates is rarely considered when projecting species responses to climatic change. Furthermore, increased precipitation alters the weathering processes that create shrink-swell minerals. Two projected outcomes of ongoing climate change—higher temperatures and precipitation—will dramatically impact hardness of soil with shrink-swell minerals. Current climate models do not include factors controlling soil hardness, despite its impact on all organisms that depend on a stable soil structure. PMID:23717675

  17. The Disintegration Process in Microcrystalline Cellulose Based Tablets, Part 1: Influence of Temperature, Porosity and Superdisintegrants.

    PubMed

    Yassin, Samy; Goodwin, Daniel J; Anderson, Andrew; Sibik, Juraj; Wilson, D Ian; Gladden, Lynn F; Zeitler, J Axel

    2015-10-01

    Disintegration performance was measured by analysing both water ingress and tablet swelling of pure microcrystalline cellulose (MCC) and in mixture with croscarmellose sodium using terahertz pulsed imaging (TPI). Tablets made from pure MCC with porosities of 10% and 15% showed similar swelling and transport kinetics: within the first 15 s, tablets had swollen by up to 33% of their original thickness and water had fully penetrated the tablet following Darcy flow kinetics. In contrast, MCC tablets with a porosity of 5% exhibited much slower transport kinetics, with swelling to only 17% of their original thickness and full water penetration reached after 100 s, dominated by case II transport kinetics. The effect of adding superdisintegrant to the formulation and varying the temperature of the dissolution medium between 20°C and 37°C on the swelling and transport process was quantified. We have demonstrated that TPI can be used to non-invasively analyse the complex disintegration kinetics of formulations that take place on timescales of seconds and is a promising tool to better understand the effect of dosage form microstructure on its performance. By relating immediate-release formulations to mathematical models used to describe controlled release formulations, it becomes possible to use this data for formulation design. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3440-3450, 2015. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. Swelling behaviour of Early Jurassic shales when exposed to water vapour

    NASA Astrophysics Data System (ADS)

    Houben, Maartje; Barnhoorn, Auke; Peach, Colin; Drury, Martyn

    2017-04-01

    The presence of water in mudrocks has a largely negative impact on production of gas, due to the fact that water causes swelling of the rock. Removing the water from the mudrock on the other hand could potentially shrink the rock and increase the matrix permeability. Investigation of the swelling/shrinkage behaviour of the rock during exposure to water vapour is of key importance in designing and optimizing unconventional production strategies. We have used outcrop samples of the Whitby Mudstone and the Posidonia shale [1], potential unconventional sources for gas in North-western Europe, to measure the swelling and shrinkage behaviour. Subsamples, 1 mm cubes, were prepared by the Glass Workshop at Utrecht University using a high precision digitally controlled diamond wafering saw cooled by air. The mm cubes were then exposed to atmospheres with different relative humidities either in an Environmental Scanning Electron Microscope (ESEM) or in a 3D dilatometer. So that the sample responses to exposure of water vapour could be measured. Parallel to the bedding we found a swelling strain between 0.5 and 1.5 %, perpendicular to the bedding though swelling strain varied between 1 and 3.5%. Volumetric swelling strain varied between 1 and 2% at a maximum relative humidity of 95%. Volumetric swelling strains measured in the Early Toarcian Shales are similar to the ones found in coal [2], where the results suggest that it might be possible to increase permeability in the reservoir by decreasing the in-situ water activity due to shrinkage of the matrix. [1] M.E. Houben, A. Barnhoorn, L. Wasch, J. Trabucho-Alexandre, C. J. Peach, M.R. Drury (2016). Microstructures of Early Jurassic (Toarcian) shales of Northern Europe, International Journal of Coal Geology, 165, 76-89. [2] Jinfeng Liu, Colin J. Peach, Christopher J. Spiers (2016). Anisotropic swelling behaviour of coal matrix cubes exposed to water vapour: Effects of relative humidity and sample size, International Journal of Coal Geology, 167, 119-135.

  19. Na-K-Cl Cotransporter-1 in the Mechanism of Ammonia-induced Astrocyte Swelling*

    PubMed Central

    Jayakumar, Arumugam R.; Liu, Mingli; Moriyama, Mitsuaki; Ramakrishnan, Ramugounder; Forbush, Bliss; Reddy, Pichili V. B.; Norenberg, Michael D.

    2008-01-01

    Brain edema and the consequent increase in intracranial pressure and brain herniation are major complications of acute liver failure (fulminant hepatic failure) and a major cause of death in this condition. Ammonia has been strongly implicated as an important factor, and astrocyte swelling appears to be primarily responsible for the edema. Ammonia is known to cause cell swelling in cultured astrocytes, although the means by which this occurs has not been fully elucidated. A disturbance in one or more of these systems may result in loss of ion homeostasis and cell swelling. In particular, activation of the Na-K-Cl cotransporter (NKCC1) has been shown to be involved in cell swelling in several neurological disorders. We therefore examined the effect of ammonia on NKCC activity and its potential role in the swelling of astrocytes. Cultured astrocytes were exposed to ammonia (NH4Cl; 5 mm), and NKCC activity was measured. Ammonia increased NKCC activity at 24 h. Inhibition of this activity by bumetanide diminished ammonia-induced astrocyte swelling. Ammonia also increased total as well as phosphorylated NKCC1. Treatment with cyclohexamide, a potent inhibitor of protein synthesis, diminished NKCC1 protein expression and NKCC activity. Since ammonia is known to induce oxidative/nitrosative stress, and antioxidants and nitric-oxide synthase inhibition diminish astrocyte swelling, we also examined whether ammonia caused oxidation and/or nitration of NKCC1. Cultures exposed to ammonia increased the state of oxidation and nitration of NKCC1, whereas the antioxidants N-nitro-l-arginine methyl ester and uric acid all significantly diminished NKCC activity. These agents also reduced phosphorylated NKCC1 expression. These results suggest that activation of NKCC1 is an important factor in the mediation of astrocyte swelling by ammonia and that such activation appears to be mediated by NKCC1 abundance as well as by its oxidation/nitration and phosphorylation. PMID:18849345

  20. XRD measurement of mean crystallite thickness of illite and illite/smectite: Reappraisal of the Kubler index and the Scherrer equation

    USGS Publications Warehouse

    Drits, Victor A.; Środoń, Jan; Eberl, D.D.

    1997-01-01

    The standard form of the Scherrer equation, which has been used to calculate the mean thickness of the coherent scattering domain (CSD) of illite crystals from X-ray diffraction (XRD) full width data at half maximum (FWHM) intensity, employs a constant, Ksh, of 0.89. Use of this constant is unjustified, even if swelling has no effect on peak broadening, because this constant is valid only if all CSDs have a single thickness. For different thickness distributions, the Scherrer “constant” has very different values.Analysis of fundamental particle thickness data (transmission electron microscopy, TEM) for samples of authigenic illite and illite/smectite from diagenetically altered pyroclastics and filamentous illites from sandstones reveals a unique family of lognormal thickness distributions for these clays. Experimental relations between the distributions' lognormal parameters and mean thicknesses are established. These relations then are used to calculate the mean thickness of CSDs for illitic samples from XRD FWHM, or from integral XRD peak widths (integrated intensity/maximum intensity).For mixed-layer illite/smectite, the measured thickness of the CSD corresponds to the mean thickness of the mixed-layer crystal. Using this measurement, the mean thickness of the fundamental particles that compose the mixed-layer crystals can be calculated after XRD determination of percent smectitic interlayers. The effect of mixed layering (swelling) on XRD peak width for these samples is eliminated by using the 003 reflection for glycolated samples, and the 001, 002 or 003 reflection for dehydrated, K-saturated samples. If this technique is applied to the 001 reflection of air-dried samples (Kubler index measurement), mean CSD thicknesses are underestimated due to the mixed-layering effect.The technique was calibrated using NEW MOD©-simulated XRD profiles of illite, and then tested on well-characterized illite and illite/smectite samples. The XRD measurements are in good agreement with estimates of the mean thickness of fundamental particles obtained both from TEM measurements and from fixed cations content, up to a mean value of 20 layers. Correction for instrumental broadening under the conditions employed here is unnecessary for this range of thicknesses.

  1. Induction of lyme arthritis in LSH hamsters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmitz, J.L.; Schell, R.F.; Hejka, A.

    1988-09-01

    In studies of experimental Lyme disease, a major obstacle has been the unavailability of a suitable animal model. We found that irradiated LSH/Ss Lak hamsters developed arthritis after injection of Borrelia burgdorferi in the hind paws. When nonirradiated hamsters were injected in the hind paws with B. burgdorferi, acute transient synovitis was present. A diffuse neutrophilic infiltrate involved the synovia and periarticular structures. The inflammation was associated with edema, hyperemia, and granulation tissue. Numerous spirochetes were seen in the synovial and subsynovial tissues. The histopathologic changes were enhanced in irradiated hamsters. The onset and duration of the induced swelling weremore » dependent on the dose of radiation and the inoculum of spirochetes. Inoculation of irradiated hamsters with Formalin-killed spirochetes or medium in which B. burgdorferi had grown for 7 days failed to induce swelling. This animal model should prove useful for studies of the immune response to B. burgdorferi and the pathogenesis of Lyme arthritis.« less

  2. Pyrido[2,3-d]pyrimidin-5-ones: A Novel Class of Antiinflammatory Macrophage Colony-Stimulating Factor-1 Receptor Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Hui; Hutta, Daniel A.; Rinker, James M.

    A series of pyrido[2,3-d]pyrimidin-5-ones has been synthesized and evaluated as inhibitors of the kinase domain of macrophage colony-stimulating factor-1 receptor (FMS). FMS inhibitors may be useful in treating rheumatoid arthritis and other chronic inflammatory diseases. Structure-based optimization of the lead amide analogue 10 led to hydroxamate analogue 37, which possessed excellent potency and an improved pharmacokinetic profile. During the chronic phase of streptococcal cell wall-induced arthritis in rats, compound 37 (10, 3, and 1 mg/kg) was highly effective at reversing established joint swelling. In an adjuvant-induced arthritis model in rats, 37 prevented joint swelling partially at 10 mg/kg. In thismore » model, osteoclastogenesis and bone erosion were prevented by low doses (1 or 0.33 mg/kg) that had minimal impact on inflammation. These data underscore the potential of FMS inhibitors to prevent erosions and reduce symptoms in rheumatoid arthritis.« less

  3. Strain in shore fast ice due to incoming ocean waves and swell

    NASA Astrophysics Data System (ADS)

    Fox, Colin; Squire, Vernon A.

    1991-03-01

    Using a development from the theoretical model presented by Fox and Squire (1990), this paper investigates the strain field generated in shore fast ice by normally incident ocean waves and swell. After a brief description of the model and its convergence, normalized absolute strain (relative to a 1-m incident wave) is found as a function of distance from the ice edge for various wave periods, ice thicknesses, and water depths. The squared transfer function, giving the relative ability of incident waves of different periods to generate strain in the ice, is calculated, and its consequences are discussed. The ice is then forced with a Pierson-Moskowitz spectrum, and the consequent strain spectra are plotted as a function of penetration into the ice sheet. Finally, rms strain, computed as the incoherent sum of the strains resulting from energy in the open water spectrum, is found. The results have implications to the breakup of shore fast ice and hence to the floe size distribution of the marginal ice zone.

  4. Influence of graphene-oxide nanosheets impregnation on properties of sterculia gum-polyacrylamide hydrogel formed by radiation induced polymerization.

    PubMed

    Singh, Baljit; Singh, Baldev

    2017-06-01

    Present work is an attempt, to explore the potential of graphene oxide nanoplates impregnation, on the mechanical and drug delivery properties of sterculia gum-polyacrylamide composite hydrogel formed by radiation induced polymerization. These polymers were characterized by SEM, cryo-SEM, AFM, FTIR's, 13 C NMR and swelling studies. Release profile of an anticancer drug 'gemcitabine' was studied to determine the drug release mechanism and best fit kinetic model. Furthermore, some important biomedical properties of the polymers such as blood compatibility, mucoadhesion, antioxidant properties and gel strength were also studied. Impregnation of GO into sterculia gum-poly(AAm) hydrogels decreased the swelling of hydrogels but improved the mechanical, drug loading and drug release properties of the hydrogels. Release of gemcitabine from drug loaded hydrogels occurred through non-Fickian diffusion mechanism and release profile was best fitted in first order kinetic model. These hydrogels have been found as haemocompatible, mucoadhesive, and antioxidant in nature. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys

    DOE PAGES

    Jin, K.; Lu, C.; Wang, L. M.; ...

    2016-04-14

    The impact of compositional complexity on the ion-irradiation induced swelling and hardening is studied in Ni and six Ni-containing equiatomic alloys with face-centered cubic structure. The irradiation resistance at the temperature of 500 °C is improved by controlling the number and, especially, the type of alloying elements. Alloying with Fe and Mn has a stronger influence on swelling reduction than does alloying with Co and Cr. Lastly, the quinary alloy NiCoFeCrMn, with known excellent mechanical properties, has shown 40 times higher swelling tolerance than nickel.

  6. Irradiation creep due to SIPA under cascade damage conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, C.H.; Garner, F.A.; Holt, R.A.

    1992-12-31

    This paper derives the relationships between void swelling and irradiation creep due to Stress-Induced Preferred Absorption (SIPA) and SIPA-Induced Growth (SIG) under cascade damage conditions in an irradiated pressurized tube. It is found that at low swelling rates irradiation creep is a major contribution to the total diametral strain rate of the tube, whereas at high swelling rates the creep becomes a minor contribution. The anisotropy of the corresponding dislocation structure is also predicted to decline as the swelling rate increases. The theoretical predictions are found to agree very well with experimental results.

  7. Marked potentiation of cell swelling by cytokines in ammonia-sensitized cultured astrocytes

    PubMed Central

    2010-01-01

    Background Brain edema leading to high intracranial pressure is a lethal complication of acute liver failure (ALF), which is believed to be cytotoxic due to swelling of astrocytes. In addition to the traditional view that elevated levels of blood and brain ammonia are involved in the mechanism of brain edema in ALF, emerging evidence suggests that inflammatory cytokines also contribute to this process. We earlier reported that treatment of astrocyte cultures with a pathophysiological concentration of ammonia (5 mM NH4Cl) resulted in the activation of nuclear factor-kappaB (NF-κB) and that inhibition of such activation diminished astrocyte swelling, suggesting a key role of NF-κB in the mechanism of ammonia-induced astrocyte swelling. Since cytokines are also well-known to activate NF-κB, this study examined for additive/synergistic effects of ammonia and cytokines in the activation of NF-κB and their role in astrocyte swelling. Methods Primary cultures of astrocytes were treated with ammonia and cytokines (TNF-α, IL-1, IL-6, IFN-γ, each at 10 ng/ml), individually or in combination, and cell volume was determined by the [3H]-O-methylglucose equilibration method. The effect of ammonia and cytokines on the activation of NF-κB was determined by immunoblots. Results Cell swelling was increased by ammonia (43%) and by cytokines (37%) at 24 h. Simultaneous co-treatment with cytokines and ammonia showed no additional swelling. By contrast, cultures pretreated with ammonia for 24 h and then exposed to cytokines for an additional 24 h, showed a marked increase in astrocyte swelling (129%). Treatment of cultures with ammonia or cytokines alone also activated NF-κB (80-130%), while co-treatment had no additive effect. However, in cultures pre-treated with ammonia for 24 h, cytokines induced a marked activation of NF-κB (428%). BAY 11-7082, an inhibitor of NF-κB, completely blocked the astrocyte swelling in cultures pre-treated with ammonia and followed by the addition of a mixture of cytokines. Conclusion Our results indicate that ammonia and a mixture of cytokines each cause astrocyte swelling but when these agents are added simultaneously, no additive effects were found. On the other hand, when cells were initially treated with ammonia and 24 h later given a mixture of cytokines, a marked potentiation in cell swelling and NF-κB activation occurred. These data suggest that the potentiation in cell swelling is a consequence of the initial activation of NF-κB by ammonia. These findings provide a likely mechanism for the exacerbation of brain edema in patients with ALF in the setting of sepsis/inflammation. PMID:20942959

  8. Variational objective analysis for cyclone studies

    NASA Technical Reports Server (NTRS)

    Achtemeier, Gary L.

    1989-01-01

    Significant accomplishments during 1987 to 1988 are summarized with regard to each of the major project components. Model 1 requires satisfaction of two nonlinear horizontal momentum equations, the integrated continuity equation, and the hydrostatic equation. Model 2 requires satisfaction of model 1 plus the thermodynamic equation for a dry atmosphere. Model 3 requires satisfaction of model 2 plus the radiative transfer equation. Model 4 requires satisfaction of model 3 plus a moisture conservation equation and a parameterization for moist processes.

  9. Disease prevalence and snail predation associated with swell-generated damage on the threatened coral, Acropora palmata (Lamarck)

    USGS Publications Warehouse

    Bright, Allan J.; Rogers, Caroline S.; Brandt, Marilyn E.; Muller, Erinn; Smith, Tyler B.

    2016-01-01

    Disturbances such as tropical storms cause coral mortality and reduce coral cover as a direct result of physical damage. Storms can be one of the most important disturbances in coral reef ecosystems, and it is crucial to understand their long-term impacts on coral populations. The primary objective of this study was to determine trends in disease prevalence and snail predation on damaged and undamaged colonies of the threatened coral species, Acropora palmata, following an episode of heavy ocean swells in the US Virgin Islands (USVI). At three sites on St. Thomas and St. John, colonies of A. palmata were surveyed monthly over 1 year following a series of large swells in March 2008 that fragmented 30–93% of colonies on monitored reefs. Post-disturbance surveys conducted from April 2008 through March 2009 showed that swell-generated damage to A. palmata caused negative indirect effects that compounded the initial direct effects of physical disturbance. During the 12 months after the swell event, white pox disease prevalence was 41% higher for colonies that sustained damage from the swells than for undamaged colonies (df = 207, p = 0.01) with greatest differences in disease prevalence occurring during warm water months. In addition, the corallivorous snail, Coralliophila abbreviata, was 46% more abundant on damaged corals than undamaged corals during the 12 months after the swell event (df = 207, p = 0.006).

  10. Release of mitochondrial glutathione and calcium by a cyclosporin A-sensitive mechanism occurs without large amplitude swelling.

    PubMed

    Savage, M K; Reed, D J

    1994-11-15

    Treatment of isolated mitochondria with calcium and inorganic phosphate induces inner membrane permeability that is thought to be mediated through a non-selective, calcium-dependent pore. The inner membrane permeability results in the rapid efflux of small matrix solutes such as glutathione and calcium, loss of coupled functions, and large amplitude swelling. We have identified conditions of permeability transition without large amplitude swelling, a parameter often used to assess inner membrane permeability. The addition of either oligomycin, antimycin, or sulfide to incubation buffer containing calcium and inorganic phosphate abolished large-amplitude swelling of mitochondria but did not prevent inner membrane permeability as demonstrated by the release of mitochondrial glutathione and calcium. The release of both glutathione and calcium was inhibited by the addition of cyclosporin A, a potent inhibitor of permeability transition. Transmission electron microscopy analysis, combined with the glutathione and calcium release data, indicate that permeability transition can be observed in the absence of large-amplitude swelling. Permeability transition occurring both with and without large-amplitude swelling was accompanied by a collapse of the membrane potential. We conclude that cyclosporin A-sensitive permeability transition can occur without obvious morphological changes such as large-amplitude swelling. Monitoring the cyclosporin A-sensitive release of concentrated endogenous matrix solutes, such as GSH, may be a sensitive and useful indicator of permeability transition.

  11. Review of thickness swell in hardboard siding : effect of processing variables

    Treesearch

    Charles G. Carll

    1997-01-01

    Medium-density hardboard is used extensively as siding on residential structures. One hardboard behavior that can be measured in the laboratory is thickness swell after exposure to water. This report reviews the literature on processing variables that are known to or likely to influence thickness swell. Where the literature on hardboard is sparse, research on other...

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rofouie, P.; Rey, A. D., E-mail: alejandro.rey@mail.mcgill.ca; Pasini, D.

    Periodic surface nano-wrinkling is found throughout biological liquid crystalline materials, such as collagen films, spider silk gland ducts, exoskeleton of beetles, and flower petals. These surface ultrastructures are responsible for structural colors observed in some beetles and plants that can dynamically respond to external conditions, such as humidity and temperature. In this paper, the formation of the surface undulations is investigated through the interaction of anisotropic interfacial tension, swelling through hydration, and capillarity at free surfaces. Focusing on the cellulosic cholesteric liquid crystal (CCLC) material model, the generalized shape equation for anisotropic interfaces using the Cahn-Hoffman capillarity vector and themore » Rapini-Papoular anchoring energy are applied to analyze periodic nano-wrinkling in plant-based plywood free surfaces with water-induced cholesteric pitch gradients. Scaling is used to derive the explicit relations between the undulations’ amplitude expressed as a function of the anchoring strength and the spatially varying pitch. The optical responses of the periodic nano-structured surfaces are studied through finite difference time domain simulations indicating that CCLC surfaces with spatially varying pitch reflect light in a wavelength higher than that of a CCLC’s surface with constant pitch. This structural color change is controlled by the pitch gradient through hydration. All these findings provide a foundation to understand structural color phenomena in nature and for the design of optical sensor devices.« less

  13. Vertical coherence and forward scattering from the sea surface and the relation to the directional wave spectrum.

    PubMed

    Dahl, Peter H; Plant, William J; Dall'Osto, David R

    2013-09-01

    Results of an experiment to measure vertical spatial coherence from acoustic paths interacting once with the sea surface but at perpendicular azimuth angles are presented. The measurements were part of the Shallow Water 2006 program that took place off the coast of New Jersey in August 2006. An acoustic source, frequency range 6-20 kHz, was deployed at depth 40 m, and signals were recorded on a 1.4 m long vertical line array centered at depth 25 m and positioned at range 200 m. The vertical array consisted of four omni-directional hydrophones and vertical coherences were computed between pairs of these hydrophones. Measurements were made over four source-receiver bearing angles separated by 90°, during which sea surface conditions remained stable and characterized by a root-mean-square wave height of 0.17 m and a mixture of swell and wind waves. Vertical coherences show a statistically significant difference depending on source-receiver bearing when the acoustic frequency is less than about 12 kHz, with results tending to fade at higher frequencies. This paper presents field observations and comparisons of these observations with two modeling approaches, one based on bistatic forward scattering and the other on a rough surface parabolic wave equation utilizing synthetic sea surfaces.

  14. File-Based One-Way BISON Coupling Through VERA: User's Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stimpson, Shane G.

    Activities to incorporate fuel performance capabilities into the Virtual Environment for Reactor Applications (VERA) are receiving increasing attention [1–6]. The multiphysics emphasis is expanding as the neutronics (MPACT) and thermal-hydraulics (CTF) packages are becoming more mature. Capturing the finer details of fuel phenomena (swelling, densification, relocation, gap closure, etc.) is the natural next step in the VERA development process since these phenomena are currently not directly taken into account. While several codes could be used to accomplish this, the BISON fuel performance code [8,9] being developed by the Idaho National Laboratory (INL) is the focus of ongoing work in themore » Consortium for Advanced Simulation of Light Water Reactors (CASL). Built on INL’s MOOSE framework [10], BISON uses the finite element method for geometric representation and a Jacobian-free Newton-Krylov (JFNK) scheme to solve systems of partial differential equations for various fuel characteristic relationships. There are several modes of operation in BISON, but, this work uses a 2D azimuthally symmetric (R-Z) smeared-pellet model. This manual is intended to cover (1) the procedure pertaining to the standalone BISON one-way coupling from VERA and (2) the procedure to generate BISON fuel temperature tables that VERA can use.« less

  15. Kinetic model for the mechanical response of suspensions of sponge-like particles.

    PubMed

    Hütter, Markus; Faber, Timo J; Wyss, Hans M

    2012-01-01

    A dynamic two-scale model is developed that describes the stationary and transient mechanical behavior of concentrated suspensions made of highly porous particles. Particularly, we are interested in particles that not only deform elastically, but also can swell or shrink by taking up or expelling the viscous solvent from their interior, leading to rate-dependent deformability of the particles. The fine level of the model describes the evolution of particle centers and their current sizes, while the shapes are at present not taken into account. The versatility of the model permits inclusion of density- and temperature-dependent particle interactions, and hydrodynamic interactions, as well as to implement insight into the mechanism of swelling and shrinking. The coarse level of the model is given in terms of macroscopic hydrodynamics. The two levels are mutually coupled, since the flow changes the particle configuration, while in turn the configuration gives rise to stress contributions, that eventually determine the macroscopic mechanical properties of the suspension. Using a thermodynamic procedure for the model development, it is demonstrated that the driving forces for position change and for size change are derived from the same potential energy. The model is translated into a form that is suitable for particle-based Brownian dynamics simulations for performing rheological tests. Various possibilities for connection with experiments, e.g. rheological and structural, are discussed.

  16. NF-κB in The Mechanism of Brain Edema in Acute Liver Failure: Studies in Transgenic Mice

    PubMed Central

    Jayakumar, A.R.; Bethea, J.R.; Tong, X.Y.; Gomez, J.; Norenberg, M.D.

    2014-01-01

    Astrocyte swelling and brain edema are major complications of the acute form of hepatic encephalopathy (acute liver failure, ALF). While elevated brain ammonia level is a well-known etiological factor in ALF, the mechanism by which ammonia brings about astrocyte swelling is not well understood. We recently found that astrocyte cultures exposed to ammonia activated nuclear factor-kappaB (NF-κB), and that pharmacological inhibition of such activation led to a reduction in astrocyte swelling. Although these findings suggest the involvement of NF-κB in astrocyte swelling in vitro, it is not known whether NF-κB contributes to the development of brain edema in ALF in vivo. Furthermore, pharmacological agents used to inhibit NF-κB may have non-specific effects. Accordingly, we used transgenic (Tg) mice that have a functional inactivation of astrocytic NF-κB and examined whether these mice are resistant to ALF-associated brain edema. ALF was induced in mice by treatment with the hepatotoxin thioacetamide (TAA). Wild type (WT) mice treated with TAA showed a significant increase in brain water content (1.65%) along with prominent astrocyte swelling and spongiosis of the neuropil, consistent with the presence of cytotoxic edema. These changes were not observed in Tg mice treated with TAA. Additionally, WT mice with ALF showed an increase in inducible nitric oxide synthase (iNOS) immunoreactivity in astrocytes from WT mice treated with TAA (iNOS is known to be activated by NF-κB and to contribute to cell swelling). By contrast, Tg mice treated with TAA did not exhibit brain edema, histological changes nor an increase in iNOS immunoreactivity. We also examined astrocytes cultures derived from Tg mice to determine whether these cells exhibit a lesser degree of swelling and cytopathological changes following exposure to ammonia. Astrocyte cultures derived from Tg mice showed no cell swelling nor morphological abnormalities when exposed to ammonia for 24 h. By contrast, ammonia significantly increased cell swelling (31.7%) in cultured astrocytes from WT mice and displayed cytological abnormalities. Moreover, we observed a lesser increment in inducible nitric oxide synthase and NADPH oxidase activity (both are also known to be activated by NF-κB and to contribute to astrocyte swelling) in astrocyte cultures from Tg mice treated with ammonia, as compared to ammonia-treated WT mice astrocytes. These findings strongly suggest that activation of NF-κB is a critical factor in the development of astrocyte swelling/brain edema in ALF. PMID:21087666

  17. Extreme embrittlement of austenitic stainless steel irradiated to 75-81 dpa at 335-360{degrees}C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porollo, S.I.; Vorobjev, A.N.; Konobeev, Yu.V.

    1997-04-01

    It is generally accepted that void swelling of austenitic steels ceases below some temperature in the range 340-360{degrees}C, and exhibits relatively low swelling rates up to {approximately}400{degrees}C. This perception may not be correct at all irradiation conditions, however, since it was largely developed from data obtained at relatively high displacement rates in fast reactors whose inlet temperatures were in the range 360-370{degrees}C. There is an expectation, however, that the swelling regime can shift to lower temperatures at low displacement rates via the well-known {open_quotes}temperature shift{close_quotes} phenomenon. It is also known that the swelling rates at the lower end of themore » swelling regime increase continuously at a sluggish rate, never approaching the terminal 1%/dpa level within the duration of previous experiments. This paper presents the results of an experiment conducted in the BN-350 fast reactor in Kazakhstan that involved the irradiation of argon-pressurized thin-walled tubes (0-200 MPa hoop stress) constructed from Fe-16Cr-15Ni-3Mo-Nb stabilized steel in contact with the sodium coolant, which enters the reactor at {approx}270{degrees}C. Tubes in the annealed condition reached 75 dpa at 335{degrees}C, and another set in the 20% cold-worked condition reached 81 dpa at 360{degrees}C. Upon disassembly all tubes, except those in the stress-free condition, were found to have failed in an extremely brittle fashion. The stress-free tubes exhibited diameter changes that imply swelling levels ranging from 9 to 16%. It is expected that stress-enhancement of swelling induced even larger swelling levels in the stressed tubes.« less

  18. Female sexual behavior and sexual swelling size as potential cues for males to discern the female fertile phase in free-ranging Barbary macaques (Macaca sylvanus) of Gibraltar.

    PubMed

    Brauch, Katrin; Pfefferle, Dana; Hodges, Keith; Möhle, Ulrike; Fischer, Julia; Heistermann, Michael

    2007-09-01

    Although female catarrhine primates show cyclic changes in sexual behavior and sexual swellings, the value of these sexual signals in providing information to males about timing of the fertile phase is largely unclear. Recently, we have shown that in Barbary macaques, males receive information from females which enables them to discern the fertile phase and to focus their reproductive effort accordingly. Here, we investigate the nature of the cues being used by examining female sexual behavior and the size of sexual swelling as potential indicators of the fertile phase. We collected behavioral data and quantified swelling size using digital images of 11 females of the Gibraltar Barbary macaque population and related the data to the time of ovulation and the fertile phase as determined from fecal hormone analysis. We found that rates of female sexual behaviors were not correlated with female estrogen levels and did not significantly differ between the fertile and non-fertile phases of the cycle. In contrast, swelling size was significantly correlated with female estrogen levels and increased predictably towards ovulation with size being maximal during the fertile phase. Moreover, frequencies of male ejaculatory copulations showed a strong positive correlation with swelling size and highest rates were found during maximum swelling. Our data provide strong evidence that female Barbary macaques honestly signal the probability of fertility through sexual swelling and that males apparently use this information to time their mating activities. Honest advertising of the fertile phase might be part of a female strategy to manipulate male mating behavior for their own advantage, such as ensure fertilization with high quality sperm or influence paternity outcome.

  19. Higher Dose of Dexamethasone Does Not Further Reduce Facial Swelling After Orthognathic Surgery: A Randomized Controlled Trial Using 3-Dimensional Photogrammetry.

    PubMed

    Lin, Hsiu Hsia; Kim, Sun-Goo; Kim, Hye-Young; Niu, Lien-Shin; Lo, Lun-Jou

    2017-03-01

    The objective of this prospective, double-blind, randomized clinical trial was to compare the effect of 2 dexamethasone dosages on reducing facial swelling after orthognathic surgery through 3-dimensional (3D) photogrammetry. Patients were classified into group 1 (control group) and group 2 (study group), depending on the administered dexamethasone dosage (5 and 15 mg, respectively). Three-dimensional images were recorded at 5 time points: preoperative (T0) and postoperative at 48 ± 6 hours (T1), 1 week (T2), 1 month (T3), and 6 months (T4). A preliminary study was performed on 5 patients, in whom 3D images were captured at 24, 36, 48, and 60 hours postoperatively to record serial changes in facial swelling. Facial swelling at T1, T2, and T3 and the reduction in swelling at T2 and T3 compared with that at the baseline (T4) were calculated. Possible complications, namely, adrenal suppression, wound dehiscence, wound infection, and postoperative nausea and vomiting were evaluated. In total, 68 patients were enrolled, of whom 25 patients in group 1 and 31 patients in group 2 were eligible for final evaluation. No significant differences were found between the 2 groups at any period. On average, the swelling subsided by 86% at 1 month after the orthognathic surgery. Facial swelling peaked approximately 48 hours after the surgery. The incidence of nausea and vomiting did not differ significantly between the groups. The effect of 5 and 15 mg of dexamethasone on facial swelling reduction as well as on nausea and vomiting after orthognathic surgery was not significantly different.

  20. Overnight corneal swelling with high and low powered silicone hydrogel lenses.

    PubMed

    Moezzi, Amir M; Fonn, Desmond; Varikooty, Jalaiah; Simpson, Trefford L

    2015-01-01

    To compare central corneal swelling after eight hours of sleep in eyes wearing four different silicone hydrogel lenses with three different powers. Twenty-nine neophyte subjects wore lotrafilcon A (Dk, 140), balafilcon A (Dk, 91), galyfilcon A (Dk, 60) and senofilcon A (Dk, 103) lenses in powers -3.00, -10.00 and +6.00 D on separate nights, in random order, and on one eye only. The contra-lateral eye (no lens) served as the control. Central corneal thickness was measured using a digital optical pachometer before lens insertion and immediately after lens removal on waking. For the +6.00 D and -10.00 D, lotrafilcon A induced the least swelling and galyfilcon A the most. The +6.00 D power, averaged across lens materials, induced significantly greater central swelling than the -10.00 and -3.00 D (Re-ANOVA, p<0.001), (7.7±2.9% vs. 6.8±2.8% and 6.5±2.5% respectively) but there was no difference between -10.00 and -3.00 D. Averaged for power, lotrafilcon A induced the least (6.2±2.8%) and galyfilcon A the most (7.6±3.0%) swelling at the center (Re-ANOVA, p<0.001). Central corneal swelling with +6.00 D was significantly greater than -10.00 D lens power despite similar levels of average lens transmissibility of these two lens powers. The differences in corneal swelling of the lens wearing eyes are consistent with the differences in oxygen transmission of the silicone hydrogel lenses. In silicone hydrogel lenses central corneal swelling is mainly driven by central lens oxygen transmissibility. Copyright © 2013 Spanish General Council of Optometry. Published by Elsevier Espana. All rights reserved.

  1. Cinnamon polyphenols attenuate cell swelling and mitochondrial dysfunction following oxygen-glucose deprivation in glial cells.

    PubMed

    Panickar, Kiran S; Polansky, Marilyn M; Anderson, Richard A

    2009-04-01

    Astrocyte swelling is an integral component of cytotoxic brain edema in ischemic injury. While mechanisms underlying astrocyte swelling are likely multifactorial, oxidative stress and mitochondrial dysfunction are hypothesized to contribute to such swelling. We investigated the protective effects of cinnamon polyphenol extract (CPE) that has anti-oxidant and insulin-potentiating effects on cell swelling and depolarization of the inner mitochondrial membrane potential (DeltaPsi(m)) in ischemic injury. C6 glial cells were subjected to oxygen-glucose deprivation (OGD) and cell volume determined using the 3-O-methyl-[3H]-glucose method at 90 min after the end of OGD. When compared with controls, OGD increased cell volume by 34%. This increase was blocked by CPE or insulin but not by blockers of oxidative/nitrosative stress including vitamin E, resveratrol, N-nitro-L-arginine methyl ester (L-NAME) or uric acid. Mitochondrial dysfunction, a key component of ischemic injury, contributes to cell swelling. Changes in DeltaPsi(m) were assessed at the end of OGD with tetramethylrhodamine ethyl ester (TMRE), a potentiometric dye. OGD induced a 39% decline in DeltaPsi(m) and this decline was blocked by CPE as well as insulin. To test the involvement of the mitochondrial permeability transition (mPT), we used Cyclosporin A (CsA), an immunosuppressant and a blocker of the mPT pore. CsA blocked cell swelling and the decline in DeltaPsi(m) but FK506, an immunosuppressant that does not block the mPT, did not. Our results show that CPE reduces OGD-induced cell swelling as well as the decline in DeltaPsi(m) in cultures and some of its protective effects may be through inhibiting the mPT.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konyashov, Vadim V.; Krasnov, Alexander M.

    Results are provided of the experimental investigation of radioactive fission product (RFP) release, i.e., krypton, xenon, and iodine radionuclides from fuel elements with initial defects during long-term (3 to 5 yr) irradiation under low linear power (5 to 12 kW/m) and during special experiments in the VK-50 vessel-type boiling water reactor.The calculation model for the RFP release from the fuel-to-cladding gap of the defective fuel element into coolant was developed. It takes into account the convective transport in the fuel-to-cladding gap and RFP sorption on the internal cladding surface and is in good agreement with the available experimental data. Anmore » approximate analytical solution of the transport equation is given. The calculation dependencies of the RFP release coefficients on the main parameters such as defect size, fuel-to-cladding gap, temperature of the internal cladding surface, and radioactive decay constant were analyzed.It is shown that the change of the RFP release from the fuel elements with the initial defects during long-term irradiation is, mainly, caused by fuel swelling followed by reduction of the fuel-to-cladding gap and the fuel temperature. The calculation model for the RFP release from defective fuel elements applicable to light water reactors (LWRs) was developed. It takes into account the change of the defective fuel element parameters during long-term irradiation. The calculation error according to the program does not exceed 30% over all the linear power change range of the LWR fuel elements (from 5 to 26 kW/m)« less

  3. Genistein inhibited ammonia induced astrocyte swelling by inhibiting NF-κB activation-mediated nitric oxide formation.

    PubMed

    Dai, Hongliang; Jia, Guizhi; Wang, Wei; Liang, Chunguang; Han, Siyu; Chu, Minghui; Mei, Xifan

    2017-06-01

    Our previous study has indicated the involvement of epidermal growth factor receptor (EGFR) transactivation in ammonia-induced astrocyte swelling, which represents a major pathogenesis of brain edema in hepatic encephalopathy. In this study, we examined the effect of genistein, a naturally occurred broad-spectrum protein tyrosine kinase (PTK) inhibitor, on ammonia-induced cell swelling. We found that genistein pretreatment significantly prevented ammonia-induced astrocyte swelling. Mechanistically, ammonia triggered EGFR/extracellular signal-regulated kinase (ERK) association and subsequent ERK phosphorylation were alleviated by genistein pretreatment. Moreover, ammonia-induced NF-κB nuclear location, iNOS expression, and consequent NO production were all prevented by AG1478 and genistein pretreatment. This study suggested that genistein could alleviate ammonia-induced astrocyte swelling, which may be, at least partly, related to its PTK-inhibiting activity and repression of NF-κB mediated iNOS-derived NO accumulation.

  4. The effects of monobromobimane on calcium and phenylarsineoxide-induced mitochondrial swelling and cytochrome C release in isolated brain mitochondria.

    PubMed

    Abe, Tsutomu; Takagi, Norio; Nakano, Midori; Tanonaka, Kouichi; Takeo, Satoshi

    2004-04-01

    A possible involvement of inhibitory effects of monobromobimane (MBM), a thiol reagent, on the swelling and the release of cytochrome c in the isolated brain mitochondria was examined. MBM dose-dependently inhibited the calcium and phenylarsineoxide-induced mitochondrial swelling and cytochrome c release. Significant relationships between mitochondrial swelling and cytochrome c release were detected. Furthermore, effects of in vivo treatment with MBM on neuronal cell damage after transient (15 min) global ischemia in rats were examined. Infusion of MBM (1 or 3 microg/animal) to cerebral ventricles attenuated an increased number of TUNEL-positive cells and neuronal cell death in the hippocampal CA1 region at 72 h of reperfusion. These results suggest that MBM may have an ability to inhibit mitochondria-associated apoptotic pathways through attenuation of the mitochondrial swelling and the release of cytochrome c.

  5. Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A

    NASA Astrophysics Data System (ADS)

    Ardhuin, Fabrice; Collard, Fabrice; Chapron, Bertrand; Girard-Ardhuin, Fanny; Guitton, Gilles; Mouche, Alexis; Stopa, Justin E.

    2015-04-01

    Swell evolution from the open ocean into sea ice is poorly understood, in particular the amplitude attenuation expected from scattering and dissipation. New synthetic aperture radar (SAR) data from Sentinel-1A wave mode reveal intriguing patterns of bright oscillating lines shaped like instant noodles. We investigate cases in which the oscillations are in the azimuth direction, around a straight line in the range direction. This observation is interpreted as the distortion by the SAR processing of crests from a first swell, due to the presence of a second swell. Since deviations from a straight line should be proportional to the orbital velocity toward the satellite, swell height can be estimated, from 1.5 to 5 m in the present case. The evolution of this 13 s period swell across the ice pack is consistent with an exponential attenuation on a length scale of 200 km.

  6. Estimates of ocean wave heights and attenuation in sea ice using the SAR wave mode on Sentinel-1A

    NASA Astrophysics Data System (ADS)

    Ardhuin, Fabrice; Collard, Fabrice; Chapron, Bertrand; Girard-Ardhuin, Fanny; Guitton, Gilles; Mouche, Alexis; Stopa, Justin

    2015-04-01

    Swell evolution from the open ocean into sea ice is poorly understood, in particular the amplitude attenuation expected from scattering and dissipation. New synthetic aperture radar (SAR) data from Sentinel-1 wave mode reveal intriguing patterns of bright oscillating lines shaped like instant noodles. We investigate cases in which the oscillations are in the azimuth direction, around a straight line in the range direction. This observation is interpreted as the distortion by the SAR processing of crests from a first swell, due to the presence of a second swell. As deviations from a straight line should be proportional to the orbital velocity towards the satellite, swell height can be estimated, from 1.5 to 5 m in the present case. This evolution of this 13 s period swell across the ice pack is consistent with an exponential attenuation on a length scale of 200 km.

  7. A rare cause of lateral facial swelling.

    PubMed

    Mohanty, Sujata; Gulati, Ujjwal; Vandana; Singh, Sapna

    2014-01-01

    A case of chronic, recurrent and asymptomatic facial swelling in a young male is presented. Swelling extended from lower midface to upper lateral neck and right commissure to anterior massetric border. History, clinical signs and symptoms and examination pointed towards the benign nature of the swelling. Fine-needle aspiration cytology tapered the diagnostic possibilities to a salivary cyst or pseudocyst. Ultrasonography identified the lesion to contain echogenic fluid with irregular borders. "Tail sign" was absent on contrast magnetic resonance imaging, excluding the involvement of the sublingual gland. Surgical excision of the lesion was done along with submandibular gland as both were in continuity via a bottle-neck tract. Final histopathological diagnosis was that of the submandibular gland extravasation phenomenon. As per the best of our knowledge, it is the first case report of a submandibular gland extravasation causing swelling in a retrograde direction onto the face.

  8. A rare cause of lateral facial swelling

    PubMed Central

    Mohanty, Sujata; Gulati, Ujjwal; Vandana; Singh, Sapna

    2014-01-01

    A case of chronic, recurrent and asymptomatic facial swelling in a young male is presented. Swelling extended from lower midface to upper lateral neck and right commissure to anterior massetric border. History, clinical signs and symptoms and examination pointed towards the benign nature of the swelling. Fine-needle aspiration cytology tapered the diagnostic possibilities to a salivary cyst or pseudocyst. Ultrasonography identified the lesion to contain echogenic fluid with irregular borders. “Tail sign” was absent on contrast magnetic resonance imaging, excluding the involvement of the sublingual gland. Surgical excision of the lesion was done along with submandibular gland as both were in continuity via a bottle-neck tract. Final histopathological diagnosis was that of the submandibular gland extravasation phenomenon. As per the best of our knowledge, it is the first case report of a submandibular gland extravasation causing swelling in a retrograde direction onto the face. PMID:25593883

  9. Effects of granule swelling on starch saccharification by granular starch hydrolyzing enzyme.

    PubMed

    Li, Zhaofeng; Cai, Liming; Gu, Zhengbiao; Shi, Yong-Cheng

    2014-08-13

    The effects of granule swelling on enzymatic saccharification of normal corn starch by granular starch hydrolyzing enzyme were investigated. After swelling, Km values for the saccharification of granular starch decreased compared with native granular starch, indicating that granule swelling caused granular starch hydrolyzing enzyme to have higher affinity for starch granules. The partial swelling of starch granules enhanced starch saccharification. Furthermore, the enhancement at an earlier stage of enzymatic reaction was much more significant than that at later stages. For granular starch pretreated at 67.5 °C for 30 min, conversions to glucose after incubation with the enzyme at 32 °C for 4 and 24 h were approximately 3-fold and 26% higher than for native granular starch, respectively. As a result, proper heat pretreatment of granular starch before simultaneous saccharification and fermentation has great potential to facilitate industrial production of ethanol by use of granular starch hydrolyzing enzyme.

  10. 77 FR 60883 - Special Conditions: Eurocopter France (ECF) Model EC225LP Helicopter, Installation of a Search...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ...; Sec. 29.923(a)(2), Rotor drive system and control mechanism tests. In addition to the applicable... State: Wave height of 2.5 meters (8.2 feet), considering both short and long swells. (ii) Wind: 25 knots...

  11. A spreading drop model for plumes on Venus

    NASA Astrophysics Data System (ADS)

    Koch, D. M.

    1994-01-01

    Many of the large-scale, plume-related features on Venus can be modeled by a buoyant viscous drop, or plume head, as it rises and spreads laterally below a free fluid surface. The drop has arbitrary density and viscosity contrast and begins as a sphere below the surface of a fluid half space. The boundary integral method is used to solve for the motion of the plume head and for the topography, geoid, and stress at the fluid surface. As the plume approaches the surface, stresses in the fluid above it cause it to spread and become thin below the surface. During the spreading, the surface swell above evolves through various stages whose morphologies resemble several different plume-related features observed on Venus. When the plume head first approaches the surface, a high broad topographic dome develops, with a large geoid, and radial extensional deformation patterns. At later stages, the topography subsides and becomes plateau-like, the geoid to topography ratio (GTR) decreases, and the dominant stress pattern consists of a band of concentric extension surrounded by a band of concentric compression. We find that a low-viscosity model plume head (viscosity that is 0.1 times the mantle viscosity) produces maximum topography that is 20% lower, and swell features which evolve faster, than for an isoviscous plume. We compare model results with both the large-scale highland swells, and smaller-scale features such as coronae and novae. The dome-shaped highlands with large GTRs such as Beta, Atla, and Western Eistla Regiones may be the result of early stage plume motion, while the flatter highlands such as Ovda and Thetis Regiones which have lower GTRs may be later stage features. Comparison of model results with GTR data indicates that the highlands result from plume heads with initial diameters of about 1000 km. On a smaller scale, an evolutionary sequence may begin with novae (domes having radial extensional deformation), followed by features with radial and concentric deformation (such as arachnoids), and end with coronae (with mostly concentric deformation). The model predicts that the highlands evolve on a timescale of order 10 Ma, and the smaller-scale features evolve in a 100 Ma timescale.

  12. Unveiling aerosol-cloud interactions - Part 2: Minimising the effects of aerosol swelling and wet scavenging in ECHAM6-HAM2 for comparison to satellite data

    NASA Astrophysics Data System (ADS)

    Neubauer, David; Christensen, Matthew W.; Poulsen, Caroline A.; Lohmann, Ulrike

    2017-11-01

    Aerosol-cloud interactions (ACIs) are uncertain and the estimates of the ACI effective radiative forcing (ERFaci) magnitude show a large variability. Within the Aerosol_cci project the susceptibility of cloud properties to changes in aerosol properties is derived from the high-resolution AATSR (Advanced Along-Track Scanning Radiometer) data set using the Cloud-Aerosol Pairing Algorithm (CAPA) (as described in our companion paper) and compared to susceptibilities from the global aerosol climate model ECHAM6-HAM2 and MODIS-CERES (Moderate Resolution Imaging Spectroradiometer - Clouds and the Earth's Radiant Energy System) data. For ECHAM6-HAM2 the dry aerosol is analysed to mimic the effect of CAPA. Furthermore the analysis is done for different environmental regimes. The aerosol-liquid water path relationship in ECHAM6-HAM2 is systematically stronger than in AATSR-CAPA data and cannot be explained by an overestimation of autoconversion when using diagnostic precipitation but rather by aerosol swelling in regions where humidity is high and clouds are present. When aerosol water is removed from the analysis in ECHAM6-HAM2 the strength of the susceptibilities of liquid water path, cloud droplet number concentration and cloud albedo as well as ERFaci agree much better with those of AATSR-CAPA or MODIS-CERES. When comparing satellite-derived to model-derived susceptibilities, this study finds it more appropriate to use dry aerosol in the computation of model susceptibilities. We further find that the statistical relationships inferred from different satellite sensors (AATSR-CAPA vs. MODIS-CERES) as well as from ECHAM6-HAM2 are not always of the same sign for the tested environmental conditions. In particular the susceptibility of the liquid water path is negative in non-raining scenes for MODIS-CERES but positive for AATSR-CAPA and ECHAM6-HAM2. Feedback processes like cloud-top entrainment that are missing or not well represented in the model are therefore not well constrained by satellite observations. In addition to aerosol swelling, wet scavenging and aerosol processing have an impact on liquid water path, cloud albedo and cloud droplet number susceptibilities. Aerosol processing leads to negative liquid water path susceptibilities to changes in aerosol index (AI) in ECHAM6-HAM2, likely due to aerosol-size changes by aerosol processing. Our results indicate that for statistical analysis of aerosol-cloud interactions the unwanted effects of aerosol swelling, wet scavenging and aerosol processing need to be minimised when computing susceptibilities of cloud variables to changes in aerosol.

  13. Oral insulin delivery using P(MAA-g-EG) hydrogels: effects of network morphology on insulin delivery characteristics.

    PubMed

    Nakamura, Koji; Murray, Robert J; Joseph, Jeffrey I; Peppas, Nicholas A; Morishita, Mariko; Lowman, Anthony M

    2004-03-24

    Hydrogels of poly(methacrylic acid-g-ethylene glycol) were prepared using different reaction water contents in order to vary the network mesh size, swelling behavior and insulin loading/release kinetics. Gels prepared with greater reaction solvent contents swelled to a greater degree and had a larger network mesh size. All of the hydrogels were able to incorporate insulin and protected it from release in acidic media. At higher pH (7.4), the release rates increased with reaction solvent content. Using a closed loop animal model, all of the insulin loaded formulations produced significant insulin absorption in the upper small intestine combined with hypoglycemic effects. In these studies, bioavailabilities ranged from 4.6% to 7.2% and were dependent on reaction solvent content.

  14. Synergies Between ' and Cavity Formation in HT-9 Following High Dose Neutron Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G.; Parish, Chad M.; Saleh, Tarik A.

    Candidate cladding materials for advanced nuclear power reactors including fast reactor designs require materials capable of withstanding high dose neutron irradiation at elevated temperatures. One candidate material, HT-9, through various research programs have demonstrated the ability to withstand significant swelling and other radiation-induced degradation mechanisms in the high dose regime (>50 displacements per atom, dpa) at elevated temperatures (>300 C). Here, high efficiency multi-dimensional scanning transmission electron microscopy (STEM) acquisition with the aid of a three-dimensional (3D) reconstruction and modeling technique is used to probe the microstructural features that contribute to the exceptional swelling resistance of HT-9. In particular, themore » synergies between ' and fine-scale and moderate-scale cavity formation is investigated.« less

  15. Gravity study of the Pitcairn-Easter hotline

    NASA Astrophysics Data System (ADS)

    Maia, M.; Dehghani, G. A.; Diament, M.; Francheteau, J.; Stoffers, P.

    1994-11-01

    Shipboard free air gravity and bathymetric anomalies with an extension of 400 km were identified across the Pitcairn-Easter hotline in the South Pacific. The anomalies are associated with one of the positive geoid undulations observed in the area from satellite data. Several smaller topographic features, volcano-tectonic ridges oriented N 65 deg E, are superimposed on the topographic hig. Admittance computations and direct modeling show that the swell topography is compensated by a low density zone within the lithosphere, 4 to 8 km below the crust. The volcano tectonic ridges are locally compensated in a classical Airy sense. The swell and the associated ridges were probably created by the action of a thermal anomaly resulting from the interaction of the Easter Island hotspot and of the Easter Microplate accretion centers.

  16. Tubercular thyroid abscess

    PubMed Central

    Kumar, Awanish; Pahwa, Harvinder Singh; Srivastava, Rohit; Khan, Khursheed Alam

    2013-01-01

    We encountered a patient who presented with neck swelling, difficulty in swallowing, voice change along with systemic features such as evening rise of temperature, chronic cough and weight loss. Ultrasonography of the thyroid gland revealed two cystic swellings. An ultrasound guided fine needle aspiration cytology was suggestive of tubercular abscess. The patient responded well to antigravity aspiration of the swellings and antitubercular treatment. PMID:23814203

  17. Influence of network topology on the swelling of polyelectrolyte nanogels.

    PubMed

    Rizzi, L G; Levin, Y

    2016-03-21

    It is well-known that the swelling behavior of ionic nanogels depends on their cross-link density; however, it is unclear how different topologies should affect the response of the polyelectrolyte network. Here we perform Monte Carlo simulations to obtain the equilibrium properties of ionic nanogels as a function of salt concentration Cs and the fraction f of ionizable groups in a polyelectrolyte network formed by cross-links of functionality z. Our results indicate that the network with cross-links of low connectivity result in nanogel particles with higher swelling ratios. We also confirm a de-swelling effect of salt on nanogel particles.

  18. Molecular accessibility in solvent swelled coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kispert, L.D.

    1991-08-01

    Research continued on the determination of pore size and number distribution changes after swelling the coal samples with various solvents. A paper has just been submitted to the journal Fuel on the Low temperature Swelling of Argonne Premium Coal samples using solvents of varying polarity. The variation in the shape of the pore was followed as a function of temperature and swelling solvent polarity. This change in pore structure was attributed to break-up of the hydrogen bonding network in coal by polar solvents. The modification in pore shape from spherical to cylindrical was attributed to anisotropy in hydrogen bond densities.more » A copy of this paper has been attached to this report. Wojciech Sady has determine the structural changes in the pores that occur when APCS coal is dehydrated prior to swelling with polar solvents. These changes are different from those that occur in the absence of prior dehydration. He has also completed a study on the variation in the hydrogen bonding character of the pore wall as the coals are swelled with various polar solvents. A statistical analysis of the data is currently underway to determine important trends in his data. 9 refs.« less

  19. Model Comparison of Bayesian Semiparametric and Parametric Structural Equation Models

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Xia, Ye-Mao; Pan, Jun-Hao; Lee, Sik-Yum

    2011-01-01

    Structural equation models have wide applications. One of the most important issues in analyzing structural equation models is model comparison. This article proposes a Bayesian model comparison statistic, namely the "L[subscript nu]"-measure for both semiparametric and parametric structural equation models. For illustration purposes, we consider…

  20. The comparison of manual lymph drainage and ultrasound therapy on the leg swelling caused by wearing high heels.

    PubMed

    Lee, Dong-Yeop; Han, Ji-Su; Jang, Eun-Ji; Seo, Dong-Kwon; Hong, Ji-Heon; Lee, Sang-Sook; Lee, Dong-Geol; Yu Lee, Jae-Ho

    2014-01-01

    One of the major symptoms when women are wearing high heels for a long time is leg swelling. The purpose of this study was to compare the effect of manual lymph drainage with ultrasound therapy. The forty-five healthy women of twenties were participated in this study and divided randomly into three groups; manual lymph drainage group (n=15), ultrasound therapy group (n=15) and control group (n=15). Swelling was measured before wearing the high heels (10 cm-height), after one-hour of wearing the high heels, wearing the high heels of one-hour after the intervention of 15 minutes. Also swelling was calculated by using a tape measure, volumeter and body composition analyzer. Statistical analysis of the comparison between the three groups was performed by one-way ANOVA. Also comparison to the mean value in swelling according to the time was performed by repeated measure ANOVA. As the result of this study, a significant changes have emerged within each of manual lymph drainage, ultrasound therapy and control group (p< 0.05). However, there were no significant differences between each group (p> 0.05). But the mean value of manual lymph drainage group showed the tendency of fast recovering before causing swelling. Therefore, we consider that the clinical treatment of manual lymph drainage and ongoing studies will be made since manual lymph drainage is very effective in releasing the leg swelling caused by wearing high heels and standing for a long time at work.

Top