NASA Astrophysics Data System (ADS)
Voigt, A.
2013-11-01
I study the Hadley circulation of a completely ice-covered Snowball Earth through simulations with a comprehensive atmosphere general circulation model. Because the Snowball Earth atmosphere is an example of a dry atmosphere, these simulations allow me to test to what extent dry theories and idealized models capture the dynamics of realistic dry Hadley circulations. Perpetual off-equatorial as well as seasonally varying insolation is used, extending a previous study for perpetual on-equatorial (equinox) insolation. Vertical diffusion of momentum, representing the momentum transport of dry convection, is fundamental to the momentum budgets of both the winter and summer cells. In the zonal budget, it is the primary process balancing the Coriolis force. In the meridional budget, it mixes meridional momentum between the upper and the lower branch and thereby decelerates the circulation. Because of the latter, the circulation intensifies by a factor of three when vertical diffusion of momentum is suppressed. For seasonally varying insolation, the circulation undergoes rapid transitions from the weak summer into the strong winter regime. Consistent with previous studies in idealized models, these transitions result from a mean-flow feedback, because of which they are insensitive to the treatment of vertical diffusion of momentum. Overall, the results corroborate previous findings for perpetual on-equatorial insolation. They demonstrate that descriptions of realistic dry Hadley circulations, in particular their strength, need to incorporate the vertical momentum transport by dry convection, a process that is neglected in most dry theories and idealized models. An improved estimate of the strength of the Snowball Earth Hadley circulation will also help to better constrain the climate of a possible Neoproterozoic Snowball Earth and its deglaciation threshold.
NASA Astrophysics Data System (ADS)
Voigt, A.
2013-08-01
I study the Hadley circulation of a completely ice-covered Snowball Earth through simulations with a comprehensive atmosphere general circulation model. Because the Snowball Earth atmosphere is an example of a dry atmosphere, these simulations allow me to test to what extent dry theories and idealized models capture the dynamics of dry Hadley circulations. Perpetual off-equatorial as well as seasonally-varying insolation is used, extending a previous study for perpetual on-equatorial (equinox) insolation. Vertical diffusion of momentum, representing the momentum transport of dry convection, is fundamental to the momentum budgets of both the winter and summer cells. In the zonal budget, it is the primary process balancing the Coriolis force. In the meridional budget, it mixes meridional momentum between the upper and the lower branch and thereby decelerates the circulation. Because of the latter, the circulation intensifies by a factor of three when vertical diffusion of momentum is suppressed. For seasonally-varying insolation, the circulation undergoes rapid transitions from the weak summer into the strong winter regime. Consistent with previous studies in idealized models, these transitions result from a mean-flow feedback, because of which they are insensitive to the treatment of vertical diffusion of momentum. Overall, the results corroborate previous findings for perpetual on-equatorial insolation. They demonstrate that an appropriate description of dry Hadley circulations, in particular their strength, needs to incorporate the vertical momentum transport by dry convection, a process that is neglected in most dry theories and idealized models. An improved estimate of the strength of the Snowball Earth Hadley circulation will also help to better constrain the climate of a possible Neoproterozoic Snowball Earth and its deglaciation threshold.
NASA Technical Reports Server (NTRS)
Mcintyre, Andrew
1992-01-01
Equatorial Atlantic surface waters respond directly to changes in zonal and meridional lower tropospheric winds forced by annual insolation. This mechanism has its maximum effect along the equatorial wave guide centered on 10 deg W. The result is to amplify even subtle tropical climate changes such that they are recorded by marked amplitude changes in the proxy signals. Model realizations, NCAR AGCM and OGCM for 0 Ka and 126 Ka (January and July), and paleoceanographic proxy data show that these winds are also forced by insolation changes at the orbital periods of precession and obliquity. Perhelion in boreal summer produces a strengthened monsoon, e.g., increase meridional and decrease zonal wind stress. This reduces oceanic Ekman divergence and thermocline/nutricline shallowing. The result, in the equatorial Atlantic, is reduced primary productivity and higher euphotic zone temperatures; vice versa for perihelion in boreal winter. Perihelion is controlled by precession. Thus, the dominant period in spectra from a stacked SST record (0-252 Ka BP) at the site of the equatorial Atlantic amplifier is 23 Ky (53 percent of the total variance). This precessional period is coherent (k = 0.920) and in phase with boreal summer insolation. Oscillations of shorter period are present in records from cores sited beneath the amplifier region. These occur between 12.5 and 74.5 Ka BP, when eccentricity modulation of precession is at a minimum. Within this time interval there are 21 cycles with mean periods of 3.0 plus or minus 0.5 Ky. Similar periods have been documented from high latitude regions, e.g., Greenland ice cores from Camp Century. The Camp Century signal in this same time interval contains 21 cycles. A subjective correlation was made between the Camp Century and the equatorial records; the signals were statistically similar, r = 0.722 and k = 0.960.
NASA Technical Reports Server (NTRS)
Mcintyre, Andrew
1990-01-01
Time series of sea-surface temperature in cores sited beneath the region of maximum divergence centered on 10 degrees W are characterized by two sets of periodic signals. The dominant signal is centered on a period of 23 Ky and is coherent with and lags, approx. 2.5 Ky, the precessional component of orbitally controlled insolation. The subdominant periods occur between 4.0 and 2.5 Ky. Both sets of signals record variation in the seasonal intensity of oceanic divergence modulated by variation in tropical easterly intensity. The longer periods are a response to precessional forcing. The forcing responsible for the shorter periods is unknown.
Synchronous interhemispheric Holocene climate trends in the tropical Andes
Polissar, Pratigya J.; Abbott, Mark B.; Wolfe, Alexander P.; Vuille, Mathias; Bezada, Maximiliano
2013-01-01
Holocene variations of tropical moisture balance have been ascribed to orbitally forced changes in solar insolation. If this model is correct, millennial-scale climate evolution should be antiphased between the northern and southern hemispheres, producing humid intervals in one hemisphere matched to aridity in the other. Here we show that Holocene climate trends were largely synchronous and in the same direction in the northern and southern hemisphere outer-tropical Andes, providing little support for the dominant role of insolation forcing in these regions. Today, sea-surface temperatures in the equatorial Pacific Ocean modulate rainfall variability in the outer tropical Andes of both hemispheres, and we suggest that this mechanism was pervasive throughout the Holocene. Our findings imply that oceanic forcing plays a larger role in regional South American climate than previously suspected, and that Pacific sea-surface temperatures have the capacity to induce abrupt and sustained shifts in Andean climate. PMID:23959896
Equatorial superrotation in a thermally driven zonally symmetric circulation
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Harris, I.
1981-01-01
Near the equator where the Coriolis force vanishes, the momentum balance for the axially symmetric circulation is established between horizontal and vertical diffusion, which, a priori, does not impose constraints on the direction or magnitude of the zonal winds. Solar radiation absorbed at low latitudes is a major force in driving large scale motions with air rising near the equator and falling at higher latitudes. In the upper leg of the meridional cell, angular momentum is redistributed so that the atmosphere tends to subrotate (or corotate) at low latitudes and superrotate at high latitudes. In the lower leg, however, the process is reversed and produces a tendency for the equatorial region to superrotate. The outcome depends on the energy budget which is closely coupled to the momentum budget through the thermal wind equation; a pressure (temperature) maximum is required to sustain equatorial superrotation. Such a condition arises in regions which are convectively unstable and the temperature lapse rate is superadiabatic. It should arise in the tropospheres of Jupiter and Saturn; planetary energy from the interior is carried to higher altitudes where radiation to space becomes important. Upward equatorial motions in the direct and indirect circulations (Ferrel-Thomson type) imposed by insolation can then trap dynamic energy for equatorial heating which can sustain the superrotation of the equatorial region.
Half-precessional climate forcing of Indian Ocean monsoon dynamics on the East African equator
NASA Astrophysics Data System (ADS)
Verschuren, D.; Sinninghe Damste, J. S.; Moernaut, J.; Kristen, I.; Fagot, M.; Blaauw, M.; Haug, G. H.; Project Members, C.
2008-12-01
The EuroCLIMATE project CHALLACEA produced a detailed multi-proxy reconstruction of the climate history of equatorial East Africa, based on the sediment record of Lake Challa, a 4.2 km2, 92-m deep crater lake on the lower East slope of Mt. Kilimanjaro (Kenya/Tanzania). Relatively stable sedimentation dynamics over the past 25,000 years resulted in a unique combination of high temporal resolution, excellent radiometric (210Pb, 14C) age control, and confidence that recording parameters of the climatic proxy signals extracted from the sediment have remained constant through time. The equatorial (3 deg. S) location of our study site in East Africa, where seasonal migration of convective activity spans the widest latitude range worldwide, produced unique information on how varying rainfall contributions from the northeasterly and southeasterly Indian Ocean monsoons shaped regional climate history. The Challa proxy records for temperature (TEX86) and moisture balance (reflection-seismic stratigraphy and the BIT index of soil bacterial input) uniquely weave together tropical climate variability at orbital and shorter time scales. The temporal pattern of reconstructed moisture balance bears the clear signature of half- precessional insolation forcing of Indian Ocean monsoon dynamics, modified by northern-latitude influence on moisture-balance variation at millennial and century time scales. During peak glacial time (but not immediately before) and the Younger Dryas, NH ice sheet influences overrode local insolation influence on monsoon intensity. After the NH ice sheets had melted and a relatively stable interglacial temperature regime developed, precession-driven summer insolation became the dominant determinant of regional moisture balance, with anti-phased patterns of Holocene hydrological change in the northern and southern (sub)tropics, and a uniquely hybrid pattern on the East African equator. In the last 2-3000 years a series of multi-century droughts with links to high latitude climate variability exerted widespread influence across the African continent. In northern and western tropical Africa these drought episodes accentuated the late- Holocene drying trend; in southern tropical Africa they mitigated or aborted the trend to increasing monsoon rainfall prescribed by SH insolation forcing.
NASA Astrophysics Data System (ADS)
Lopes, P. G.
2015-12-01
The evidences of climate changes during the Quaternary are abundant but the physical mechanisms behind the climate transitions are controversial. The theory of Milankovitch takes into account the periodic orbital variations and the solar radiation received by the Earth as the main explanation for the glacial-interglacial cycles. However, some gaps in the theory still remain. In this study, we propose elucidating some of these gaps by approaching the Equatorial Pacific Ocean as a large oscillator, capable of triggering climate changes in different temporal scales. A mathematical model representing El Ninõ-like phenomena, based on Duffing equation and modulated by the astronomical cycle of 100 ka, was used to simulate the variability of the equatorial Pacific climate system over the last 2 Ma. The physical configuration of the Pacific Ocean, expressed in the equation, explains the temporal limit of the glacial-interglacial cycles. According to the simulation results, consistent with paleoclimate records, the amplification of the effects of the gradual variation of the Earth's orbit eccentricity - another unclear question - is due to the feedback mechanism of the Pacific ocean-atmosphere system, which responds non-linearly to small variations in insolation forcing and determines the ENSO-like phase (warm or cold) at different time scales and different intensities. The approach proposed here takes into account that the abrupt transitions between the ENSO-like phases, and the consequent changes in the sea surface temperature (SST) along the Equatorial Pacific Ocean, produce reactions that act as secondary causes of the temperature fluctuations that result in a glaciation (or deglaciation) - as the drastic change on the rate of evaporation/precipitation around the globe, and the increase (or decrease) of the atmospheric CO2 absorption by the phytoplankton. The transitional behavior between the warm and the cold phases, according to the presented model, is enhanced as the rate of SST variation increases.
NASA Astrophysics Data System (ADS)
Pailler, Delphine; Bard, Edouard; Rostek, Frauke; Zheng, Yan; Mortlock, Richard; van Geen, Alexander
2002-03-01
Authigenic metals (uranium, cadmium, and molybdenum), organic carbon (OC) and total C37 alkenone (totC37) concentrations were measured for the last 350 kyr in core MD900963, located in the eastern equatorial Arabian Sea. Authigenic metal concentrations on a carbonate-free basis range between 1 and 17 ppm, 0.5 and 6 ppm, and 0.5 and 4 ppm for U, Cd, and Mo, respectively. The profiles are characterized by well-defined 23 kyr cycles between oxic and mildly suboxic conditions. The redox-sensitive metal profiles also follow variations in the concentrations of OC (0.2-0.9%) and alkenones (0.2-6.7 ppm). The coupled variations in inorganic and organic constituents are attributed to a 23-kyr cycle in primary production above site MD900963, as suggested by clear correlations with independent micropaleontologic proxies (primary productivity indices based on foraminifera and coccoliths and fragmentation of foraminiferal shells). The 23-kyr cycles do appear to be primarily driven by productivity rather than changes in bottom water oxygen. Comparison with other records indicates that if this interpretation is correct, productivity variations across much of the Indian Ocean have been dominated by precessional forcing, with high productivity in phase with low summer insolation in the Northern Hemisphere. This interpretation contrasts with the traditional attribution of enhanced productivity in the Indian Ocean with periods of high summer insolation.
NASA Astrophysics Data System (ADS)
Russell, J. M.; Vogel, H.; Bijaksana, S.; Melles, M.
2016-12-01
The Indo-Pacific region plays a critical role in the Earth's climate system. Changes in local insolation, greenhouse gas concentrations, ice volume, and local sea level are all hypothesized to exert a dominant control on Indo-Pacific hydroclimate, yet existing records from the region are generally short and exhibit fundamental differences in orbital-scale patterns that limit our understanding of the regional climate responses to orbital-scale forcings. In 2015 we conducted an ICDP drilling program on Lake Towuti, located near the equator in central Indonesia, one of the only terrestrial sedimentary archives in the region that continuously spans multiple glacial-interglacial cycles. We recovered over 1,000 meters of core including cores though the entire sediment sequence to bedrock. Previously published organic geochemical reconstructions of vegetation from relatively short, 60 kyr long piston from Lake Towuti exhibit strong drying during the Last Glacial Maximum, indicating that central Indonesian hydroclimate is sensitive to forcing from high-latitude ice-sheets. New, inorganic geochemical and mineralogical reconstructions of lake level also indicate a strong half-precessional climate signal during the last 60 kyr in which lake level highstands occur during austral and boreal summer insolation maxima, suggesting that equatorial rainfall varies in response to remote (likely subtropical) insolation forcing of the Asian monsoons. However, the short length of these records limits our understanding of the regional hydroclimatic response to the full range of global climate boundary conditions experienced during the late Quaternary. This presentation will discuss results from the last 60 kyr and present new geochemical reconstructions from the upper 100 m of core from Lake Towuti, dated using magnetic paleointensity, tephrachronology, and optically-stimulated luminescence to span the last 500 kyr BP.
NASA Astrophysics Data System (ADS)
Drury, Anna Joy; John, Cédric M.; Shevenell, Amelia E.
2016-01-01
Orbital-scale climate variability during the latest Miocene-early Pliocene is poorly understood due to a lack of high-resolution records spanning 8.0-3.5 Ma, which resolve all orbital cycles. Assessing this variability improves understanding of how Earth's system sensitivity to insolation evolves and provides insight into the factors driving the Messinian Salinity Crisis (MSC) and the Late Miocene Carbon Isotope Shift (LMCIS). New high-resolution benthic foraminiferal Cibicidoides mundulus δ18O and δ13C records from equatorial Pacific International Ocean Drilling Program Site U1338 are correlated to North Atlantic Ocean Drilling Program Site 982 to obtain a global perspective. Four long-term benthic δ18O variations are identified: the Tortonian-Messinian, Miocene-Pliocene, and Early-Pliocene Oxygen Isotope Lows (8-7, 5.9-4.9, and 4.8-3.5 Ma) and the Messinian Oxygen Isotope High (MOH; 7-5.9 Ma). Obliquity-paced variability dominates throughout, except during the MOH. Eleven new orbital-scale isotopic stages are identified between 7.4 and 7.1 Ma. Cryosphere and carbon cycle sensitivities, estimated from δ18O and δ13C variability, suggest a weak cryosphere-carbon cycle coupling. The MSC termination coincided with moderate cryosphere sensitivity and reduced global ice sheets. The LMCIS coincided with reduced carbon cycle sensitivity, suggesting a driving force independent of insolation changes. The response of the cryosphere and carbon cycle to obliquity forcing is established, defined as Earth System Response (ESR). Observations reveal that two late Miocene-early Pliocene climate states existed. The first is a prevailing dynamic state with moderate ESR and obliquity-driven Antarctic ice variations, associated with reduced global ice volumes. The second is a stable state, which occurred during the MOH, with reduced ESR and lower obliquity-driven variability, associated with expanded global ice volumes.
Nonlinear Insolation Forcing: A Physical Mechanism for Climate Change
NASA Technical Reports Server (NTRS)
Liu, H. S.
1998-01-01
This paper focuses on recent advances in the understanding of nonlinear insolation forcing for climate change. The amplitude-frequency resonances in the insolation variations induced by the Earth's changing obliquity are emergent and may provide a physical mechanism to drive the glaciation cycles. To establish the criterion that nonlinear insolation forcing is responsible for major climate changes, the cooperative phenomena between the frequency and amplitude of the insolation are defined as insolation pulsation. Coupling of the insolation frequency and amplitude variations has established an especially new and interesting series of insolation pulses. These pulses would modulate the insolation in such a way that the mode of insolation variations could be locked to generate the 100-kyr ice age cycle which is a long-time geophysical puzzle. The nonlinear behavior of insolation forcing is tested by energy balance and ice sheet climate models and the physical mechanism behind this forcing is explained in terms of pulse duration in the incoming solar radiation. Calculations of the solar energy flux at the top of the atmosphere show that the duration of the negative and positive insolation pulses is about 2 thousand years which is long enough to prolong glaciation into deep ice ages and cause rapid melting of large ice sheets in the high latitudes of the northern hemisphere. We have performed numerical simulations of climate response to nonlinear insolation forcing for the past 2 million years. Our calculated results of temperature fluctuations are in good agreement with the climate cycles as seen in the terrestrial biogenic silica (BDP-96-2) data as well as in the marine oxygen isotope (delta(sup 18)O) records.
NASA Astrophysics Data System (ADS)
Kelly, M. A.; Jackson, M. S.; Russel, J.; Doughty, A. M.; Howley, J. A.; Cavagnaro, D. B.; Zimmerman, S. R. H.
2016-12-01
The tropics exert a profound influence on global climate; however, the role of the tropics in past climate change is uncertain. In particular, it is unclear whether the tropics may initiate abrupt climate changes or instead respond to high-latitude change. Determining the timing and spatial variability of past change in the tropics is a first step to addressing the role of the low-latitudes in both past and future climate changes. To investigate these questions, we present a cosmogenic 10Be chronology from a suite of moraines in the Rwenzori Mountains, Uganda. These results indicate that ice was most extensive early during the Last Glacial Maximum (LGM; 26.0-19.5 kyr), prior to the global sea-level lowstand at 20.5 kyr. Low-magnitude, millennial-scale glacial oscillations occurred throughout the LGM. Retreat from the LGM position was underway by 21.5 kyr, though ice remained extensive in the Rwenzori until at least 18.5 ka. Similar chronologies from elsewhere in the tropics suggest that glaciers across the low-latitudes achieved their maxima in the earliest stages of the LGM, during a period of high (mean annual) equatorial insolation and decreasing Northern Hemisphere summer insolation. In addition, the larger-scale recession that occurred subsequent to 21.5 kyr predates the post-glacial rise in atmospheric CO2 at 18.1 kyr. Therefore, we suggest that something other than Northern Hemisphere or equatorial insolation or atmospheric CO2 may have influenced the millennial-scale glacial oscillations throughout the LGM as registered by Rwenzori moraines. The chronology of glacial fluctuations in the Rwenzori Mountains is similar to other glacial chronologies located outside the tropics in both the Northern and Southern Hemispheres, suggesting that glaciers across the globe may have responded to a common forcing throughout the LGM and Termination 1.
Abd El Megeid Abdallah, Amira Abdallah
2016-04-01
Increased impact loading is implicated in knee osteoarthritis development and progression. This study examined the impact ground reaction force (GRF) peak, its loading rate, its relative timing to stance phase timing, and walking speed during unilateral and bilateral use of laterally wedged insoles with arch supports. Within-subject design. Thirty-three female patients with medial knee osteoarthritis were examined with (unilateral 6° and 11°, and bilateral 0°, 6°, and 11°) and without insole use. Repeated measures MANOVA revealed that the impact force increased significantly in bilateral 11° versus unilateral 6° and without-insole conditions. The loading rate decreased significantly in unilateral 11° versus bilateral 6° insoles. The relative timing increased significantly in each of bilateral 6°, bilateral 11°, and unilateral 11° versus bilateral 0° insoles and in each of bilateral 11° and unilateral 11° versus without-insole condition. There were significant positive correlations between the walking speed and each of the force and loading rate. The Chi-square test revealed insignificant association between the insole condition and the presence of impact forces. Unilateral 11° insoles are capable of reducing impact loading possibly through increasing foot pronation. Walking slowly is another possible strategy to reduce loading. Unilaterally applied 11° laterally wedged insoles are capable of reducing and delaying the initial impact ground reaction forces and reducing their loading rates during walking in patients with medial knee osteoarthritis, thus reducing osteoarthritis progression. Walking slowly could also be used as a strategy to reduce impact loading. © The International Society for Prosthetics and Orthotics 2015.
Hybrid insolation forcing of Pliocene monsoon dynamics in West Africa
NASA Astrophysics Data System (ADS)
Kuechler, Rony R.; Dupont, Lydie M.; Schefuß, Enno
2018-01-01
The Pliocene is regarded as a potential analogue for future climate with conditions generally warmer-than-today and higher-than-preindustrial atmospheric CO2 levels. Here we present the first orbitally resolved records of continental hydrology and vegetation changes from West Africa for two Pliocene time intervals (5.0-4.6 Ma, 3.6-3.0 Ma), which we compare with records from the last glacial cycle (Kuechler et al., 2013). Our results indicate that changes in local insolation alone are insufficient to explain the full degree of hydrologic variations. Generally two modes of interacting insolation forcings are observed: during eccentricity maxima, when precession was strong, the West African monsoon was driven by summer insolation; during eccentricity minima, when precession-driven variations in local insolation were minimal, obliquity-driven changes in the summer latitudinal insolation gradient became dominant. This hybrid monsoonal forcing concept explains orbitally controlled tropical climate changes, incorporating the forcing mechanism of latitudinal gradients for the Pliocene, which probably increased in importance during subsequent Northern Hemisphere glaciations.
NASA Astrophysics Data System (ADS)
Loubere, Paul; Creamer, Winifred; Haas, Jonathan
2013-01-01
South American lake sediment records indicate that El Nino events in the eastern equatorial Pacific (EEP) became more frequent after 3000 calendar years BP. The reason for this evolution of ENSO behavior remains in question. An important trigger for ocean-atmosphere state switching in the tropical ocean is the annual cycle of sea surface temperature south of the equator along the margin of South America. This annual cycle can be reconstructed from the oxygen isotope records of the surf clam Mesodesma donacium. We provide evidence that these isotope records, as preserved in archeological deposits in coastal central Peru, reflect seasonal paleo-SST. We find that the annual SST cycle in the eastern equatorial Pacific became larger over the 4500-2500 calendar year BP interval. This is consistent with increased ENSO variability. The magnification of the annual SST cycle can be attributed to changing insolation, indicating that ENSO is sensitive to the intensity and seasonal timing of solar heating of the southern EEP.
NASA Astrophysics Data System (ADS)
Yang, Chengyun; Smith, Anne K.; Li, Tao; Dou, Xiankang
2018-05-01
The response of the mesospheric migrating diurnal (DW1) tide to the Madden-Julian oscillation (MJO) is investigated for the first time using a simulation from the Specified-Dynamic Whole Atmosphere Community Climate Model (SD-WACCM), which is driven by reanalysis data. Analysis shows that a significant connection exists between the MJO and the mesospheric DW1 tidal amplitude. During MJO phases 2 and 3, the convection anomalies are associated with enhancement in both the solar insolation absorption and latent heat release in the equatorial troposphere; these in turn lead to stronger DW1 forcing. Conversely, the forcing of DW1 by solar and latent heating in the troposphere is weaker during MJO phase 8. The difference of the tidal amplitude during the opposite MJO phases from the boreal winter mean state is 15-20%. The parameterized gravity wave variations are found to have a significant impact on the DW1 tidal response in some phases of the MJO.
An Enduring Rapidly Moving Storm as a Guide to Saturn's Equatorial Jet's Complex Structure
NASA Technical Reports Server (NTRS)
Sanchez-Lavega, A.; Garcia-Melendo, E.; Perez-Hoyos, S.; Hueso, R.; Wong, M. H.; Simon, A.; Sanz-Requena, J. F.; Antunano, A.; Barrado-Izagirre, N.; Garate-Lopez, I.;
2016-01-01
Saturn has an intense and broad eastward equatorial jet with a complex three-dimensional structure mixed with time variability. The equatorial region experiences strong seasonal insolation variations enhanced by ring shadowing, and three of the six known giant planetary-scale storms have developed in it. These factors make Saturn's equator a natural laboratory to test models of jets in giant planets. Here we report on a bright equatorial atmospheric feature imaged in 2015 that moved steadily at a high speed of 450/ms not measured since 1980-1981 with other equatorial clouds moving within an ample range of velocities. Radiative transfer models show that these motions occur at three altitude levels within the upper haze and clouds. We find that the peak of the jet (latitudes 10degN to 10degS) suffers intense vertical shears reaching + 2.5/ms/km, two orders of magnitude higher than meridional shears, and temporal variability above 1 bar altitude level.
Owings, Tammy M; Woerner, Julie L; Frampton, Jason D; Cavanagh, Peter R; Botek, Georgeanne
2008-05-01
The purpose of this study was to determine whether custom insoles tailored to contours of the barefoot pressure distribution and shape of a patient's foot can reduce plantar pressures in the metatarsal head (MTH) region to a greater extent than conventional custom insoles. Seventy regions of elevated barefoot pressures (mean peak 834 kPa under MTHs) were identified in 20 subjects with diabetes. Foam box impressions of their feet were sent to three different orthotic supply companies for fabrication of custom insoles. One company was also given plantar pressure data, which were incorporated into the insole design. Measurements of in-shoe plantar pressures were recorded during gait for the three custom insoles in a flexible and a rocker-bottom shoe. Peak pressure and force-time integral were extracted for analysis. In 64 of 70 regions, the shape-plus-pressure-based insole in the flexible shoe achieved superior unloading compared with the two shape-based insoles. On average, peak pressure was reduced by 32 and 21% (both P
The Cold and Icy Heart of Pluto
NASA Astrophysics Data System (ADS)
Hamilton, D. P.
2015-12-01
The locations of large deposits of frozen volatiles on planetary surfaces are largely coincident with areas receiving the minimum annual influx of solar energy. Thus we have the familiar polar caps of Earth and Mars, but cold equatorial regions for planets with obliquities between 54 and 126 degrees. Furthermore, for tilts between 45-66 degrees and 114-135 degrees the minimum incident energy occurs neither at the pole nor the equator. We find that the annual average insolation is always symmetric about Pluto's equator and is fully independent of the relative locations of the planet's pericenter and equinoxes. Remarkably, this symmetry holds for arbitrary orbital eccentricities and obliquities, and so we provide a short proof in the margin of this abstract. The current obliquity of Pluto is 119 degrees, giving it minima in average annual insolation at +/- 27 degrees latitude, with ~1.5% more flux to the equator and ~15% more to the poles. But the obliquity of Pluto also varies sinusoidally from 102-126 degrees and so, over the past million years, Pluto's annual equatorial and polar fluxes have changed by +15% and -13%, respectively. Interestingly, the energy flux received by latitudes between 25-35 degrees remains nearly constant over the presumably billions of years since Pluto acquired its current orbit and spin properties. Thus these latitudes are continuously cold and should be favored for the long-term deposition of volatile ices; the bright heart of Pluto, Sputnik Planum, extends not coincidentally across these latitudes. Reflected light and emitted thermal radiation from Charon increases annual insolation to one side of Pluto by of order 0.02%. Although small, the bulk of the energy is delivered at night to Pluto's cold equatorial regions. Furthermore, Charon's thermal IR is delivered very efficiently to icy deposits. Over billions of years, ices have preferentially formed and survived in the anti-Charon hemisphere.
Arastoo, Ali Asghar; Aghdam, Esmaeil Moharrami; Habibi, Abdoul Hamid; Zahednejad, Shahla
2014-06-01
According to literature, little is known regarding the effects of orthotic management of flatfoot on kinetics of vertical jump. To compare the kinetic and temporal events of two-legged vertical jumping take-off from a force plate for heading a ball in normal and flexible flatfoot subjects with and without insole. A functional based interventional controlled study. Random sampling method was employed to draw a control group of 15 normal foot subjects to a group of 15 flatfoot subjects. A force platform was used to record kinetics of two-legged vertical jump shots. Results indicate that insole did not lead to a significant effect on kinetics regarding anterior-posterior and mediolateral directions (p > 0.05). Results of kinetics related to vertical direction for maximum force due to take-off and stance duration revealed significant differences between the normal and flexible flatfoot subjects without insole (p < 0.05) and no significant differences between the normal foot and flexible flatfoot subjects with insole adoption (p > 0.05). These results suggest that the use of an insole in the flexible flatfoot subjects led to improved stance time and decrease of magnitude of kinetics regarding vertical direction at take-off as the main feature of two-legged vertical jumping function. Adoption of the insole improved the design of the shoe-foot interface support for the flexible flatfoot athletes, enabling them to develop more effective take-off kinetics for vertical jumping in terms of ground reaction force and stance duration similar to that of normal foot subjects without insole. © The International Society for Prosthetics and Orthotics 2013.
Equatorial Precession Drove Mid-Latitude Changes in ENSO-Scale Variation in the Earliest Miocene
NASA Astrophysics Data System (ADS)
Fox, B.; D'Andrea, W. J.; Lee, D. E.; Wilson, G. S.
2014-12-01
Foulden Maar is an annually laminated lacustrine diatomite deposit from the South Island of New Zealand. The deposit was laid down over ~100 kyr of the latest Oligocene and earliest Miocene, during the peak and deglaciation phase of the Mi-1 Antarctic glaciation event. At this time, New Zealand was located at approximately the same latitude as today (~45°S). Evidence from organic geochemical proxies (δD, δ13C) and physical properties (density, colour) indicates the presence of an 11-kyr cycle at the site. Although it is known that 11-kyr insolation (half-precession) cycles occur between the Tropics, this cycle is rarely seen in sedimentary archives deposited outside the immediate vicinity of the Equator. Records from Foulden Maar correlate well with the amplitude and phase of the modelled equatorial half-precession cycle for the earliest Miocene. High-resolution (50 µm) colour intensity measurements and lamina thickness measurements both indicate the presence of significant ENSO-like (2-8 year) variation in the Foulden Maar sediments. Early results from targeted lamina thickness measurements suggest that ENSO-band variation is modulated by the 11-kyr cycle, with power in the ENSO band increasing during periods of increased insolation at the Equator. This implies that equatorial half-precession had a significant effect on ENSO-like variation in the early Miocene, and that this effect was felt as far afield as the mid-latitudes of the Southern Hemisphere.
Effect of Foot Progression Angle and Lateral Wedge Insole on a Reduction in Knee Adduction Moment.
Tokunaga, Ken; Nakai, Yuki; Matsumoto, Ryo; Kiyama, Ryoji; Kawada, Masayuki; Ohwatashi, Akihiko; Fukudome, Kiyohiro; Ohshige, Tadasu; Maeda, Tetsuo
2016-10-01
This study evaluated the effect of foot progression angle on the reduction in knee adduction moment caused by a lateral wedged insole during walking. Twenty healthy, young volunteers walked 10 m at their comfortable velocity wearing a lateral wedged insole or control flat insole in 3 foot progression angle conditions: natural, toe-out, and toe-in. A 3-dimensional rigid link model was used to calculate the external knee adduction moment, the moment arm of ground reaction force to knee joint center, and the reduction ratio of knee adduction moment and moment arm. The result indicated that the toe-out condition and lateral wedged insole decreased the knee adduction moment in the whole stance phase. The reduction ratio of the knee adduction moment and the moment arm exhibited a close relationship. Lateral wedged insoles decreased the knee adduction moment in various foot progression angle conditions due to decrease of the moment arm of the ground reaction force. Moreover, the knee adduction moment during the toe-out gait with lateral wedged insole was the smallest due to the synergistic effect of the lateral wedged insole and foot progression angle. Lateral wedged insoles may be a valid intervention for patients with knee osteoarthritis regardless of the foot progression angle.
NASA Astrophysics Data System (ADS)
Ferretti, Patrizia; Crowhurst, Simon; Naafs, David; Barbante, Carlo
2015-04-01
Since the seminal work by Hays, Imbrie and Shackleton (1976), a plethora of studies mostly based on marine sediments collected during DSDP-ODP-IODP Expeditions has demonstrated a correlation between orbital variations and climatic change. However, information on how changes in orbital boundary conditions affected the frequency and amplitude of millennial-scale climate variability is still fragmentary. Here we examine the record of climatic conditions from MIS 23 to 17 (c. 920-670 ka) using high-resolution stable isotope records from benthic and planktonic foraminifera from a sedimentary sequence in the North Atlantic (Integrated Ocean Drilling Program Expedition 306, Site U1313) in order to evaluate the climate system's response in the millennial band to known orbitally induced insolation changes. Special emphasis is placed on Marine Isotope Stage (MIS) 19, an interglacial centred at around 785 ka during which the insolation appears comparable to the current orbital geometry: MIS 19 is characterised by a minimum of the 400-kyr eccentricity cycle, subdued amplitude of precessional changes, and small amplitude variations in insolation making this marine isotopic stage a potential astronomical analogue for the Holocene and its future evolution, if this remains governed by natural forcing (Loutre and Berger 2000). Benthic and planktonic foraminiferal oxygen isotope values indicate relatively stable conditions during the peak warmth of MIS 19, but sea-surface and deep-water reconstructions start diverging during the transition towards the glacial MIS 18, when large, cold excursions disrupt the surface waters whereas low amplitude millennial scale fluctuations persist in the deep waters as recorded by the oxygen isotope signal (Ferretti et al., 2015). The glacial inception occurred at ˜779 ka, in agreement with an increased abundance of tetra-unsaturated alkenones, reflecting the influence of icebergs and associated meltwater pulses and high-latitude waters at the study site. Using a variety of time series analysis techniques, we evaluate the evolution of millennial climate variability in response to changing orbital boundary conditions during the early-middle Pleistocene. Suborbital variability in both surface- and deep-water records is mainly concentrated at a period of ˜11 kyr and, additionally, at ˜5.8 and ˜3.9 kyr in the deep ocean; these periods are equal to harmonics of precession band oscillations. The fact that the response at the 11 kyr period increased over the same interval during which the amplitude of the response to the precessional cycle increased supports the notion that most of the variance in the 11 kyr band in the sedimentary record is nonlinearly transferred from precession band oscillations. Considering that these periodicities are important features in the equatorial and intertropical insolation, these observations are in line with the view that the low-latitude regions play an important role in the response of the climate system to the astronomical forcing. We conclude that the effect of the orbitally induced insolation is of fundamental importance in regulating the timing and amplitude of millennial scale climate variability. Ferretti P., Crowhurst S.J., Naafs B.D.A., Barbante C., 2015. Quaternary Science Reviews 108, 95-110. Hays J.D., Imbrie J., Shackleton N.J., 1976. Science 194, 1121-1132. Loutre M.F., Berger A., 2000. Climatic Change 46, 61-90.
Liu, Xuan; Zhang, Ming
2013-01-01
Laterally wedged insoles are widely applied in the conservative treatment for medial knee osteoarthritis. Experimental studies have been conducted to understand the effectiveness of such an orthotic intervention. However, the information was limited to the joint external loading such as knee adduction moment. The internal stress distribution is difficult to be obtained from in vivo experiment alone. Thus, a three-dimensional finite element model of the human knee-ankle-foot complex, together with orthosis, was developed in this study and used to investigate the redistribution of knee stress using laterally wedged insole intervention. Laterally wedged insoles with wedge angles of 0, 5, and 10° were fabricated for intervention. The subject-specific geometry of the lower extremity with details was characterized in the reconstruction of MR images. Motion analysis data and muscle forces were input to drive the model. The established finite element model was employed to investigate the loading responses of tibiofemoral articulation in three wedge angle conditions during simulated walking stance phase. With either of the 5° or 10° laterally wedged insole, significant decreases in von Mises stress and contact force at the medial femur cartilage region and the medial meniscus were predicted comparing with the 0° insole. The diminished stress and contact force at the medial compartment of the knee joint demonstrate the immediate effect of the laterally wedged insoles. The intervention may contribute to medial knee osteoarthritis rehabilitation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Deino, A.L.; Kingston, J.D.; Glen, J.M.; Edgar, R.K.; Hill, A.
2006-01-01
The fluviolacustrine sedimentary sequence of the Chemeron Formation exposed in the Barsemoi River drainage, Tugen Hills, Kenya, contains a package of five successive diatomite/fluvial cycles that record the periodic development of freshwater lakes within the axial portion of the Central Kenya Rift. The overwhelming abundance in the diatomite of planktonic species of the genera Aulacoseira and Stephanodiscus, and the virtual absence of benthic littoral diatoms and detrital material indicate areally extensive, deep lake systems. A paleomagnetic reversal stratigraphy has been determined and chronostratigraphic tie points established by 40Ar/39Ar dating of intercalated tuffs. The sequence spans the interval 3.1-2.35??Ma and bears a detailed record of the Gauss/Matuyama paleomagnetic transition. The 40Ar/39Ar age for this boundary of 2.589 ?? 0.003??Ma can be adjusted to concordance with the Astronomical Polarity Time Scale (APTS) on the basis of an independent calibration to 2.610??Ma, 29??kyr older than the previous APTS age. The diatomites recur at an orbital precessional interval of 23??kyr and are centered on a 400-kyr eccentricity maximum. It is concluded that these diatomite/fluvial cycles reflect a narrow interval of orbitally forced wet/dry climatic conditions that may be expressed regionally across East Africa. The timing of the lacustrine pulses relative to predicted insolation models favors origination of moisture from the northern Africa monsoon, rather than local circulation driven by direct equatorial insolation. This moisture event at 2.7-2.55??Ma, and later East African episodes at 1.9-1.7 and 1.1-0.9??Ma, are approximately coincident with major global climatic and oceanographic events. ?? 2006 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cionco, Rodolfo Gustavo; Valentini, José Ernesto; Quaranta, Nancy Esther; Soon, Willie W.-H.
2018-01-01
We present a new set of solar radiation forcing that now incorporated not only the gravitational perturbation of the Sun-Earth-Moon geometrical orbits but also the intrinsic solar magnetic modulation of the total solar irradiance (TSI). This new dataset, covering the past 2000 years as well as a forward projection for about 100 years based on recent result by Velasco-Herrera et al. (2015), should provide a realistic basis to examine and evaluate the role of external solar forcing on Earth climate on decadal, multidecadal to multicentennial timescales. A second goal of this paper is to propose both in situ insolation forcing variable and the latitudinal insolation gradients (LIG) as two key metrics that are subjected to a deterministic modulation by lunar nodal cycle which are often confused with tidal forcing impacts as assumed and interpreted in previous studies of instrumental and paleoclimatic records. Our new results and datasets are made publicly available for all at PANGAEA site.
NASA Astrophysics Data System (ADS)
Covert, J. M.; Hellstrom, R. A.
2015-12-01
El Niño Southern Oscillation (ENSO) is known to be the primary modulator of inter-annual weather patterns in the Andes, but its impact in the Cordillera Blanca (White Range) is not fully understood. In 2004 an autonomous sensor network (ASN) was installed in the Llanganuco Valley in the Cordillera Blanca, Peru consisting of two automatic weather stations (AWS) located at the base and upper ridge of the valley connected by four air temperature/humidity micro-loggers at equal elevation intervals. The ASN permits high resolution evaluations of the micro-scale meteorology within the valley. Twenty-four hour composites and monthly averages of wind, solar insolation, air temperature profiles, and precipitation obtained from the ASN were analyzed for the historical wet and dry seasons between the years of 2005 and 2015. The evidence suggests that teleconnections exist between eastern equatorial Pacific Ocean sea surface temperatures and meteorological forcing within the Valley. Comparisons between the two AWS units reveal similar ENSO impacts during the wet season that are not replicated in the dry season. We found that warm and cold ENSO create anomalies that appear unique to this region of the outer Tropics. Warm ENSO phases promote wetter than normal dry seasons and dryer than normal wet seasons and visa versa for cold phases of ENSO. Air temperature is strongly positively correlated to warm ENSO phases during the wet season and depends on elevation during the dry season. Insolation is negatively correlated to warm ENSO phases at higher elevations with weak positive correlation at lower elevations. We attribute observed seasonality, in part, to interactions between channeling of synoptic flow and thermally driven winds. Although the sporadic availability of data prevents definitive conclusions at this time, recent improvements in the ASN infrastructure will facilitate deeper understanding of ENSO impacts on meteorological forcing within pro-glacial valleys of the Cordillera Blanca.
Seiberl, Wolfgang; Jensen, Elisabeth; Merker, Josephine; Leitel, Marco; Schwirtz, Ansgar
2018-05-29
Force plates represent the "gold standard" in measuring running kinetics to predict performance or to identify the sources of running-related injuries. As these measurements are generally limited to laboratory analyses, wireless high-quality sensors for measuring in the field are needed. This work analysed the accuracy and precision of a new wireless insole forcesensor for quantifying running-related kinetic parameters. Vertical ground reaction force (GRF) was simultaneously measured with pit-mounted force plates (1 kHz) and loadsol ® sensors (100 Hz) under unshod forefoot and rearfoot running-step conditions. GRF data collections were repeated four times, each separated by 30 min treadmill running, to test influence of extended use. A repeated-measures ANOVA was used to identify differences between measurement devices. Additionally, mean bias and Bland-Altman limits of agreement (LoA) were calculated. We found a significant difference (p < .05) in ground contact time, peak force, and force rate, while there was no difference in parameters impulse, time to peak, and negative force rate. There was no influence of time point of measurement. The mean bias of ground contact time, impulse, peak force, and time to peak ranged between 0.6% and 3.4%, demonstrating high accuracy of loadsol ® devices for these parameters. For these same parameters, the LoA analysis showed that 95% of all measurement differences between insole and force plate measurements were less than 12%, demonstrating high precision of the sensors. However, highly dynamic behaviour of GRF, such as force rate, is not yet sufficiently resolved by the insole devices, which is likely explained by the low sampling rate.
NASA Astrophysics Data System (ADS)
Höll, Christine; Kemle-von Mücke, Sylvia
2000-07-01
Analysis of multiple proxies shows that eastern equatorial Atlantic upwelling was subdued during isotope stage 5.5, more intense during stages 4, 5.2, 5.4, and 6, and most intense early in stage 2. These findings are based on proxy measures from a core site about 600 km southwest of Liberia. The proxies include total organic carbon content, the ratio of peridinoid and oceanic organic-walled dinoflagellate cyst species, accumulation rates of calcareous dinoflagellates, estimates of sea surface paleotemperatures, the difference in stable oxygen isotope composition between two species of planktonic foraminifera that live at different water depths, and the abundance of the planktonic foraminifera Neogloboquadrina dutertrei. Most of these parameters consistently vary directly or inversely with one another. Slight discrepancies between the individual parameters show the usefulness of a multiple proxy approach to reconstruct paleoenvironments. Our data confirm that northern summer insolation strongly influences upwelling in the eastern equatorial Atlantic Ocean.
Lo, Wai Ting; Yick, Kit Lun; Ng, Sun Pui; Yip, Joanne
2014-01-01
Orthotic insoles are commonly used in the treatment of the diabetic foot to prevent ulcerations. Choosing suitable insole material is vital for effective foot orthotic treatment. We examined seven types of orthotic materials. In consideration of the key requirements and end uses of orthotic insoles for the diabetic foot, including accommodation, cushioning, and control, we developed test methods for examining important physical properties, such as force reduction and compression properties, insole-skin friction, and shear properties, as well as thermal comfort properties of fabrication materials. A novel performance index that combines various material test results together was also proposed to quantify the overall performance of the insole materials. The investigation confirms that the insole-sock interface has a lower coefficient of friction and shearing stress than those of the insole-skin interface. It is also revealed that material brand and the corresponding density and cell volume, as well as thickness, are closely associated with the performance of moisture absorption and thermal comfort. On the basis of the proposed performance index, practitioners can better understand the properties and performance of various insole materials, thus prescribing suitable orthotic insoles for patients with diabetic foot.
NASA Astrophysics Data System (ADS)
Schneider, Ralph R.; Müller, Peter J.; Ruhland, GöTz
1995-04-01
Angola Basin and Walvis Ridge records of past sea surface temperatures (SST) derived from the alkenone Uk37 index are used to reconstruct the surface circulation in the east equatorial South Atlantic for the last 200,000 years. Comparison of SST estimates from surface sediments between 5° and 20°S with modern SST data suggests that the alkenone temperatures represent annual mean values of the surface mixed layer. Alkenone-derived temperatures for the warm climatic maxima of the Holocene and the penultimate interglacial are 1 to 4°C higher than latest Holocene values. All records show glacial to interglacial differences of about 3.5°C in annual mean SST, which is about 1.5°C greater than the difference estimated by CLIMAP (1981) for the eastern Angola Basin. At the Walvis Ridge, significant SST variance is observed at all of the Earth's orbital periodicities. SST records from the Angola Basin vary predominantly at 23- and 100-kyr periodicities. For the precessional cycle, SST changes at the Walvis Ridge correspond to variations of boreal summer insolation over Africa and lead ice volume changes, suggesting that the east equatorial South Atlantic is sensitive to African monsoon intensity via trade-wind zonality. Angola Basin SST records lag those from the Walvis Ridge and the equatorial Atlantic by about 3 kyr. The comparison of Angola Basin and Walvis Ridge SST records implies that the Angola-Benguela Front (ABF) (currently at about 14-16°S) has remained fairly stationary between 12° and 20°S (the limits of our cores) during the last two glacial-interglacial cycles. The temperature contrast associated with the ABF exhibits a periodic 23-kyr variability which is coherent with changes in boreal summer insolation over Africa. These observations suggest that surface waters north of the present ABF have not directly responded to monsoon-modulated changes in the trade-wind vector, that the central field of zonally directed trades in the southern hemisphere was not shifted or extended northward by several degrees of latitude during glacials, and that a cyclonic gyre circulation has existed in the east equatorial South Atlantic over the last 200,000 years. This scenario contradicts former assumptions of glacial intensification of the Benguela Current into the eastern Angola Basin and increased coastal upwelling off Angola.
NASA Astrophysics Data System (ADS)
Chen, Sang; Hoffmann, Sharon S.; Lund, David C.; Cobb, Kim M.; Emile-Geay, Julien; Adkins, Jess F.
2016-05-01
The El Niño-Southern Oscillation (ENSO) is the primary driver of interannual climate variability in the tropics and subtropics. Despite substantial progress in understanding ocean-atmosphere feedbacks that drive ENSO today, relatively little is known about its behavior on centennial and longer timescales. Paleoclimate records from lakes, corals, molluscs and deep-sea sediments generally suggest that ENSO variability was weaker during the mid-Holocene (4-6 kyr BP) than the late Holocene (0-4 kyr BP). However, discrepancies amongst the records preclude a clear timeline of Holocene ENSO evolution and therefore the attribution of ENSO variability to specific climate forcing mechanisms. Here we present δ18 O results from a U-Th dated speleothem in Malaysian Borneo sampled at sub-annual resolution. The δ18 O of Borneo rainfall is a robust proxy of regional convective intensity and precipitation amount, both of which are directly influenced by ENSO activity. Our estimates of stalagmite δ18 O variance at ENSO periods (2-7 yr) show a significant reduction in interannual variability during the mid-Holocene (3240-3380 and 5160-5230 yr BP) relative to both the late Holocene (2390-2590 yr BP) and early Holocene (6590-6730 yr BP). The Borneo results are therefore inconsistent with lacustrine records of ENSO from the eastern equatorial Pacific that show little or no ENSO variance during the early Holocene. Instead, our results support coral, mollusc and foraminiferal records from the central and eastern equatorial Pacific that show a mid-Holocene minimum in ENSO variance. Reduced mid-Holocene interannual δ18 O variability in Borneo coincides with an overall minimum in mean δ18 O from 3.5 to 5.5 kyr BP. Persistent warm pool convection would tend to enhance the Walker circulation during the mid-Holocene, which likely contributed to reduced ENSO variance during this period. This finding implies that both convective intensity and interannual variability in Borneo are driven by coupled air-sea dynamics that are sensitive to precessional insolation forcing. Isolating the exact mechanisms that drive long-term ENSO evolution will require additional high-resolution paleoclimatic reconstructions and further investigation of Holocene tropical climate evolution using coupled climate models.
Footwear affects the behavior of low back muscles when jogging.
Ogon, M; Aleksiev, A R; Spratt, K F; Pope, M H; Saltzman, C L
2001-08-01
Use of modified shoes and insole materials has been widely advocated to treat low back symptoms from running impacts, although considerable uncertainty remains regarding the effects of these devices on the rate of shock transmission to the spine. This study investigated the effects of shoes and insole materials on a) the rate of shock transmission to the spine, b) the temporal response of spinal musculature to impact loading, and c) the time interval between peak lumbar acceleration and peak lumbar muscle response. It was hypothesised that shoes and inserts a) decrease the rate of shock transmission, b) decrease the low back muscle response time, and c) shorten the time interval between peak lumbar acceleration and peak lumbar muscle response. Twelve healthy subjects were tested while jogging barefoot (unshod) or wearing identical athletic shoes (shod). Either no material, semi-rigid (34 Shore A), or soft (9.5 Shore A) insole material covered the force plate in the barefoot conditions and was placed as insole when running shod. Ground reaction forces, acceleration at the third lumbar level, and erector spinae myoelectric activity were recorded simultaneously. The rate of shock transmission to the spine was greater (p < 0.0003) unshod (acceleration rate: Means +/- SD 127.35 +/- 87.23 g/s) than shod (49.84 +/- 33.98 g/s). The temporal response of spinal musculature following heel strike was significantly shorter (p < 0.023) unshod (0.038 +/- 0.021 s) than shod (0.047 +/- 0.036 s). The latency between acceleration peak (maximal external force) and muscle response peak (maximal internal force) was significantly (p < 0.021) longer unshod (0.0137 +/- 0.022s) than shod (0.004 +/- 0.040 s). These results suggest that one of the benefits of running shoes and insoles is improved temporal synchronization between potentially destabilizing external forces and stabilizing internal forces around the lumbar spine.
Northern Hemisphere forcing of Southern Hemisphere climate during the last deglaciation.
He, Feng; Shakun, Jeremy D; Clark, Peter U; Carlson, Anders E; Liu, Zhengyu; Otto-Bliesner, Bette L; Kutzbach, John E
2013-02-07
According to the Milankovitch theory, changes in summer insolation in the high-latitude Northern Hemisphere caused glacial cycles through their impact on ice-sheet mass balance. Statistical analyses of long climate records supported this theory, but they also posed a substantial challenge by showing that changes in Southern Hemisphere climate were in phase with or led those in the north. Although an orbitally forced Northern Hemisphere signal may have been transmitted to the Southern Hemisphere, insolation forcing can also directly influence local Southern Hemisphere climate, potentially intensified by sea-ice feedback, suggesting that the hemispheres may have responded independently to different aspects of orbital forcing. Signal processing of climate records cannot distinguish between these conditions, however, because the proposed insolation forcings share essentially identical variability. Here we use transient simulations with a coupled atmosphere-ocean general circulation model to identify the impacts of forcing from changes in orbits, atmospheric CO(2) concentration, ice sheets and the Atlantic meridional overturning circulation (AMOC) on hemispheric temperatures during the first half of the last deglaciation (22-14.3 kyr BP). Although based on a single model, our transient simulation with only orbital changes supports the Milankovitch theory in showing that the last deglaciation was initiated by rising insolation during spring and summer in the mid-latitude to high-latitude Northern Hemisphere and by terrestrial snow-albedo feedback. The simulation with all forcings best reproduces the timing and magnitude of surface temperature evolution in the Southern Hemisphere in deglacial proxy records. AMOC changes associated with an orbitally induced retreat of Northern Hemisphere ice sheets is the most plausible explanation for the early Southern Hemisphere deglacial warming and its lead over Northern Hemisphere temperature; the ensuing rise in atmospheric CO(2) concentration provided the critical feedback on global deglaciation.
Tang, Simon Fuk-Tan; Chen, Carl P C; Lin, Shih-Cherng; Wu, Chih-Kuan; Chen, Chih-Kuang; Cheng, Shun-Ping
2015-02-01
The purpose of this study was to observe whether our custom made shoes and total contact insoles can effectively increase the plantar contact areas and reduce peak pressures in patients with leprosy. In the rehabilitation laboratory of a tertiary medical center. Six male and two female leprosy patients were recruited in this study. In this study, parameters related to foot pressures were compared between these patients wearing commercial available soft-lining kung-fu shoes and our custom made shoes with total contact insoles. The custom made shoes were made with larger toe box and were able to accommodate both the foot and the insoles. Custom made total contact insoles were made with the subtalar joints under neutral and non-weight-bearing positions. The insole force measurement system of Novel Pedar-X (Novel, Munich, Germany) was used to measure the plantar forces. The parameters of contact area (cm(2)), peak plantar pressures (kPa), contact time (s), and pressure time integral (kPa s) were measured. There were significant contact area increases in the right and left foot heel areas, left medial arch, and second to fifth toes after wearing the custom made shoes and insoles. There were significant decreases in peak plantar pressures in bilateral heels, left lateral midfoot, bilateral second to fourth metatarsal areas, and left fifth metatarsal head after wearing the custom made shoes and insoles (p<0.05). Plantar ulceration is a common serious disability in leprosy patients. As a result, footwear and measures able to reduce plantar pressures may be beneficial in preventing plantar ulcers from occurring in these patients. Our custom made shoes and total contact insoles were proven to be effective in increasing contact areas and decreasing peak pressures in plantar surfaces, and may therefore be a feasible treatment option in preventing leprosy patients from developing plantar ulcers. © 2015 Elsevier B.V. All rights reserved.
Ocean-atmosphere forcing of South American tropical paleoclimate, LGM to present
NASA Astrophysics Data System (ADS)
Baker, P. A.; Fritz, S. C.; Dwyer, G. S.; Rigsby, C. A.; Silva, C. G.; Burns, S. J.
2012-12-01
Because of many recent terrestrial paleoclimatic and marine paleoceanographic records, late Quaternary South American tropical paleoclimate is as well understood as that anywhere in the world. While lessons learned from the recent instrumental record of climate are informative, this record is too short to capture much of the lower frequency variability encountered in the paleoclimate records and much of the observed paleoclimate is without modern analogue. This paleoclimate is known to be regionally variable with significant differences both north and south of the equator and between the western high Andes and eastern lowlands of the Amazon and Nordeste Brazil. Various extrinsic forcing mechanisms affected climate throughout the period, including global concentrations of GHGs, Northern Hemisphere ice sheet forcing, seasonal insolation forcing of the South American summer monsoon (SASM), millennial-scale Atlantic forcing, and Pacific forcing of the large-scale Walker circulation. The magnitude of the climate response to these forcings varied temporally, largely because of the varying amplitude of the forcing itself. For example, during the last glacial, large-amplitude north Atlantic forcing during Heinrich 1 and the LGM itself, led to wet (dry) conditions south (north) of the equator. During the Holocene, Atlantic forcing was lower amplitude, thus seasonal insolation forcing generally predominated with a weaker-than-normal SASM during the early Holocene resulting in dry conditions in the south-western tropics and wet conditions in the eastern lowlands and Nordeste; in the late Holocene seasonal insolation reached a maximum in the southern tropics and climate conditions reversed.
Tropical climate changes at millennial and orbital timescales on the Bolivian Altiplano.
Baker, P A; Rigsby, C A; Seltzer, G O; Fritz, S C; Lowenstein, T K; Bacher, N P; Veliz, C
2001-02-08
Tropical South America is one of the three main centres of the global, zonal overturning circulation of the equatorial atmosphere (generally termed the 'Walker' circulation). Although this area plays a key role in global climate cycles, little is known about South American climate history. Here we describe sediment cores and down-hole logging results of deep drilling in the Salar de Uyuni, on the Bolivian Altiplano, located in the tropical Andes. We demonstrate that during the past 50,000 years the Altiplano underwent important changes in effective moisture at both orbital (20,000-year) and millennial timescales. Long-duration wet periods, such as the Last Glacial Maximum--marked in the drill core by continuous deposition of lacustrine sediments--appear to have occurred in phase with summer insolation maxima produced by the Earth's precessional cycle. Short-duration, millennial events correlate well with North Atlantic cold events, including Heinrich events 1 and 2, as well as the Younger Dryas episode. At both millennial and orbital timescales, cold sea surface temperatures in the high-latitude North Atlantic were coeval with wet conditions in tropical South America, suggesting a common forcing.
Blome, Margaret Whiting; Cohen, Andrew S; Tryon, Christian A; Brooks, Alison S; Russell, Joellen
2012-05-01
We synthesize African paleoclimate from 150 to 30 ka (thousand years ago) using 85 diverse datasets at a regional scale, testing for coherence with North Atlantic glacial/interglacial phases and northern and southern hemisphere insolation cycles. Two major determinants of circum-African climate variability over this time period are supported by principal components analysis: North Atlantic sea surface temperature (SST) variations and local insolation maxima. North Atlantic SSTs correlated with the variability found in most circum-African SST records, whereas the variability of the majority of terrestrial temperature and precipitation records is explained by local insolation maxima, particularly at times when solar radiation was intense and highly variable (e.g., 150-75 ka). We demonstrate that climates varied with latitude, such that periods of relatively increased aridity or humidity were asynchronous across the northern, eastern, tropical and southern portions of Africa. Comparisons of the archaeological, fossil, or genetic records with generalized patterns of environmental change based solely on northern hemisphere glacial/interglacial cycles are therefore imprecise. We compare our refined climatic framework to a database of 64 radiometrically-dated paleoanthropological sites to test hypotheses of demographic response to climatic change among African hominin populations during the 150-30 ka interval. We argue that at a continental scale, population and climate changes were asynchronous and likely occurred under different regimes of climate forcing, creating alternating opportunities for migration into adjacent regions. Our results suggest little relation between large scale demographic and climate change in southern Africa during this time span, but strongly support the hypothesis of hominin occupation of the Sahara during discrete humid intervals ~135-115 ka and 105-75 ka. Hominin populations in equatorial and eastern Africa may have been buffered from the extremes of climate change by locally steep altitudinal and rainfall gradients and the complex and variable effects of increased aridity on human habitat suitability in the tropics. Our data are consistent with hominin migrations out of Africa through varying exit points from ~140-80 ka. Copyright © 2012 Elsevier Ltd. All rights reserved.
Response of the Asian summer monsoons to idealized precession and obliquity forcing in a set of GCMs
NASA Astrophysics Data System (ADS)
Bosmans, J. H. C.; Erb, M. P.; Dolan, A. M.; Drijfhout, S. S.; Tuenter, E.; Hilgen, F. J.; Edge, D.; Pope, J. O.; Lourens, L. J.
2018-05-01
We examine the response of the Indian and East Asian summer monsoons to separate precession and obliquity forcing, using a set of fully coupled high-resolution models for the first time: EC-Earth, GFDL CM2.1, CESM and HadCM3. We focus on the effect of insolation changes on monsoon precipitation and underlying circulation changes, and find strong model agreement despite a range of model physics, parameterization, and resolution. Our results show increased summer monsoon precipitation at times of increased summer insolation, i.e. minimum precession and maximum obliquity, accompanied by a redistribution of precipitation and convection from ocean to land. Southerly monsoon winds over East Asia are strengthened as a consequence of an intensified land-sea pressure gradient. The response of the Indian summer monsoon is less straightforward. Over south-east Asia low surface pressure is less pronounced and winds over the northern Indian Ocean are directed more westward. An Indian Ocean Dipole pattern emerges, with increased precipitation and convection over the western Indian Ocean. Increased temperatures occur during minimum precession over the Indian Ocean, but not during maximum obliquity when insolation is reduced over the tropics and southern hemisphere during northern hemisphere summer. Evaporation is reduced over the northern Indian Ocean, which together with increased precipitation over the western Indian Ocean dampens the increase of monsoonal precipitation over the continent. The southern tropical Indian Ocean as well as the western tropical Pacific (for precession) act as a moisture source for enhanced monsoonal precipitation. The models are in closest agreement for precession-induced changes, with more model spread for obliquity-induced changes, possibly related to a smaller insolation forcing. Our results indicate that a direct response of the Indian and East Asian summer monsoons to insolation forcing is possible, in line with speleothem records but in contrast to what most marine proxy climate records suggest.
A Strong High Altitude Narrow Jet At Saturn'S Equator From Cassini/ISS Images
NASA Astrophysics Data System (ADS)
Garcia-Melendo, Enrique; Sánchez-Lavega, A.; Legarreta, J.; Pérez-Hoyos, S.; Hueso, R.
2010-10-01
The intense equatorial eastward jets observed at cloud level in Jupiter and Saturn, represent a major challenge for geophysical fluid dynamics. Saturn's equatorial jet is of particular interest in view of its three dimensional structure, suspected large temporal variability, and related stratospheric semiannual oscillation. Here we report the discovery at the upper cloud level of an extremely narrow and strong jet centered in the middle of the broad equatorial jet. Previously published works on Saturn's equatorial winds at cloud level provided only a partial coverage. Automatic correlation of brightness scans and manually tracked cloud features, retrieved from images obtained by the Cassini Imaging Science Subsystem (ISS), show that the jet reaches 430 ms-1 with a peak speed difference of 180 ms-1 relative to nearby latitudes at 60 mbar and 390 ms-1 at depths > 500 mbar. Images were obtained in two filters: MT3, centred at the 889nm strong methane absorption band, and CB3 centred at the near infrared 939nm continuum, which are sensitive to different altitude levels at the upper clouds and hazes. Contrarily to what is observed in other latitudes, its velocity increases with altitude. Our findings helps to extend the view we have of the equatorial stratospheric dynamics of fast rotating planets beyond the best known terrestrial environment, and extract more general consequences of the interaction between waves and mean flow. It remains to be known if this equatorial jet structure, now determined in detail in three dimensions, is permanent or variable with the seasonal solar insolation cycle, including the variable shadow cast by the rings. EGM, ASL, JL, SPH, and RH have been funded by the Spanish MICIIN AYA2009-10701 with FEDER support and ASL, JL, SPH, and RH by Grupos Gobierno Vasco IT-464-07
Stöggl, Thomas; Martiner, Alex
2017-01-01
ABSTRACT The purpose of this study was the experimental validation of the OpenGo sensor insole system compared to PedarX sensor insole and AMTI force-plate systems. Sixteen healthy participants performed trials in walking, running, jumping (drop and counter movement jumps), imitation drills and balance, with simultaneous measures of all three systems. Detected ground contact and flight times with OpenGo during walking, running and jumping were similar to those of AMTI. Force–time curves revealed comparable shapes between all three systems. Force impulses were 13–34% lower with OpenGo when compared to AMTI. Despite differences in mean values in some exercise modes, correlations towards AMTI were between r = 0.8 and r = 1.0 in most situations. During fast motions, with high force and impact, OpenGo provided lower force and latency in force kinetics. During balance tasks, discrepancy in the centre of pressure was found medio-lateral, while anterio–posterior direction was closer to AMTI. With awareness of these limitations, OpenGo can be applied in both clinical and research settings to evaluate temporal, force and balance parameters during different types of motion. The fully mobile OpenGo system allows for the easy and quick system application, analysis and feedback under complex field conditions, as well. PMID:27010531
An Apparatus to Quantify Anteroposterior and Mediolateral Shear Reduction in Shoe Insoles
Belmont, Barry; Wang, Yancheng; Ammanath, Peethambaran; Wrobel, James S.; Shih, Albert
2013-01-01
Background Many of the physiological changes that lead to diabetic foot ulceration, such as muscle atrophy and skin hardening, are manifested at the foot–ground interface via pressure and shear points. Novel shear-reducing insoles have been developed, but their magnitude of shear stiffness has not yet been compared with regular insoles. The aim of this study was to develop an apparatus that would apply shear force and displacement to an insole’s forefoot region, reliably measure deformation, and calculate insole shear stiffness. Methods An apparatus consisting of suspended weights was designed to test the forefoot region of insoles. Three separate regions representing the hallux; the first and second metatarsals; and the third, fourth, and fifth metatarsals were sheared at 20 mm/min for displacements from 0.1 to 1.0 mm in both the anteroposterior and mediolateral directions for two types of insoles (regular and shear reducing). Results Shear reduction was found to be significant for the intervention insoles under all testing conditions. The ratio of a regular insole’s effective stiffness and the experimental insole’s effective stiffness across forefoot position versus shear direction, gait instance versus shear direction, and forefoot position versus gait instance was 270% ± 79%, 270% ± 96%, and 270% ± 86%, respectively. The apparatus was reliable with an average measured coefficient of variation of 0.034 and 0.069 for the regular and shear-reducing insole, respectively. Conclusions An apparatus consisting of suspended weights resting atop three locations of interest sheared across an insole was demonstrated to be capable of measuring the insole shear stiffness accurately, thus quantifying shear-reducing effects of a new type of insole. PMID:23567000
Replicating the Ice-Volume Signal of the Early Pleistocene with a Complex Earth System Model
NASA Astrophysics Data System (ADS)
Tabor, C. R.; Poulsen, C. J.; Pollard, D.
2013-12-01
Milankovitch theory proposes high-latitude summer insolation intensity paces the ice ages by controlling perennial snow cover amounts (Milankovitch, 1941). According to theory, the ~21 kyr cycle of precession should dominate the ice-volume records since it has the greatest influence on high-latitude summer insolation. Modeling experiments frequently support Milankovitch theory by attributing the majority of Northern Hemisphere high-latitude summer snowmelt to changes in the cycle of precession (e.g. Jackson and Broccoli, 2003). However, ice-volume proxy records, especially those of the Early Pleistocene (2.6-0.8 Ma), display variability with a period of ~41 kyr (Raymo and Lisiecki, 2005), indicative of insolation forcing from obliquity, which has a much smaller influence on summer insolation intensity than precession. Several hypotheses attempt to explain the discrepancies between Milkankovitch theory and the proxy records by invoking phenomena such as insolation gradients (Raymo and Nisancioglu, 2003), hemispheric offset (Raymo et al., 2006; Lee and Poulsen, 2009), and integrated summer energy (Huybers, 2006); however, all of these hypotheses contain caveats (Ruddiman, 2006) and have yet to be supported by modeling studies that use a complex GCM. To explore potential solutions to this '41 kyr problem,' we use an Earth system model composed of the GENESIS GCM and Land Surface model, the BIOME4 vegetation model, and the Pennsylvania State ice-sheet model. Using an asynchronous coupling technique, we run four idealized transient combinations of obliquity and precession, representing the orbital extremes of the Pleistocene (Berger and Loutre, 1991). Each experiment is run through several complete orbital cycles with a dynamic ice domain spanning North America and Greenland, and fixed preindustrial greenhouse-gas concentrations. For all orbital configurations, model results produce greater ice-volume spectral power at the frequency of obliquity despite significantly greater summer insolation variability from the cycle of precession. We find obliquity enhances the climate sensitivity to direct insolation forcing through positive high-latitude surface feedbacks between vegetation, sea-ice, and mean-annual insolation while the seasonal dichotomy of precessional forcing leads to climate counterbalancing that dampens the annual ice-volume response. Longer cycle duration further amplifies the ice-volume response to obliquity. Our results help remedy the discrepancies between Milankovitch theory and the ice-volume proxy records. However, summer insolation intensity remains the most important factor for determining ice-volume rate-of-change in our experiments. Consequently, we still find a significant ice-volume response to precession, which is inconsistent with the Early Pleistocene records. The disconnect is likely attributable to climate phenomena not accounted for in the model or our choice of initial conditions, which are poorly constrained for the Early Pleistocene and ice-sheet modeling in general. Future work will examine the importance of initial climate conditions on ice-volume response.
Effects of Textured Insoles on Balance in People with Parkinson’s Disease
Qiu, Feng; Cole, Michael H.; Davids, Keith W.; Hennig, Ewald M.; Silburn, Peter A.; Netscher, Heather; Kerr, Graham K.
2013-01-01
Background Degradation of the somatosensory system has been implicated in postural instability and increased falls risk for older people and Parkinson’s disease (PD) patients. Here we demonstrate that textured insoles provide a passive intervention that is an inexpensive and accessible means to enhance the somatosensory input from the plantar surface of the feet. Methods 20 healthy older adults (controls) and 20 participants with PD were recruited for the study. We evaluated effects of manipulating somatosensory information from the plantar surface of the feet using textured insoles. Participants performed standing tests, on two different surfaces (firm and foam), under three footwear conditions: 1) barefoot; 2) smooth insoles; and 3) textured insoles. Standing balance was evaluated using a force plate yielding data on the range of anterior-posterior and medial-lateral sway, as well as standard deviations for anterior-posterior and medial-lateral sway. Results On the firm surface with eyes open both the smooth and textured insoles reduced medial-lateral sway in the PD group to a similar level as the controls. Only the textured insole decreased medial-lateral sway and medial-lateral sway standard deviation in the PD group on both surfaces, with and without visual input. Greatest benefits were observed in the PD group while wearing the textured insoles, and when standing on the foam surface with eyes closed. Conclusions Data suggested that textured insoles may provide a low-cost means of improving postural stability in high falls-risk groups, such as people with PD. PMID:24349486
NASA Astrophysics Data System (ADS)
Chatterjee, Abhisek; Shankar, D.; McCreary, J. P.; Vinayachandran, P. N.; Mukherjee, A.
2017-04-01
Circulation in the Bay of Bengal (BoB) is driven not only by local winds, but are also strongly forced by the reflection of equatorial Kelvin waves (EKWs) from the eastern boundary of the Indian Ocean. The equatorial influence attains its peak during the monsoon-transition period when strong eastward currents force the strong EKWs along the equator. The Andaman Sea, lying between the Andaman and Nicobar island chains to its west and Indonesia, Thailand, and Myanmar to the south, east, and north, is connected to the equatorial ocean and the BoB by three primary passages, the southern (6°N), middle (10°N), and northern (15°N) channels. We use ocean circulation models, together with satellite altimeter data, to study the pathways by which equatorial signals pass through the Andaman Sea to the BoB and associated dynamical interactions in the process. The mean coastal circulation within the Andaman Sea and around the islands is primarily driven by equatorial forcing, with the local winds forcing a weak sea-level signal. On the other hand, the current forced by local winds is comparable to that forced remotely from the equator. Our results suggest that the Andaman and Nicobar Islands not only influence the circulation within the Andaman Sea, but also significantly alter the circulation in the interior bay and along the east coast of India, implying that they need to be represented accurately in numerical models of the Indian Ocean.
NASA Astrophysics Data System (ADS)
Lu, Fuzhi; Ma, Chunmei; Zhu, Cheng; Lu, Huayu; Zhang, Xiaojian; Huang, Kangyou; Guo, Tianhong; Li, Kaifeng; Li, Lan; Li, Bing; Zhang, Wenqing
2018-03-01
Projecting how the East Asian summer monsoon (EASM) rainfall will change with global warming is essential for human sustainability. Reconstructing Holocene climate can provide critical insight into its forcing and future variability. However, quantitative reconstructions of Holocene summer precipitation are lacking for tropical and subtropical China, which is the core region of the EASM influence. Here we present high-resolution annual and summer rainfall reconstructions covering the whole Holocene based on the pollen record at Xinjie site from the lower Yangtze region. Summer rainfall was less seasonal and 30% higher than modern values at 10-6 cal kyr BP and gradually declined thereafter, which broadly followed the Northern Hemisphere summer insolation. Over the last two millennia, however, the summer rainfall has deviated from the downward trend of summer insolation. We argue that greenhouse gas forcing might have offset summer insolation forcing and contributed to the late Holocene rainfall anomaly, which is supported by the TraCE-21 ka transient simulation. Besides, tropical sea-surface temperatures could modulate summer rainfall by affecting evaporation of seawater. The rainfall pattern concurs with stalagmite and other proxy records from southern China but differs from mid-Holocene rainfall maximum recorded in arid/semiarid northern China. Summer rainfall in northern China was strongly suppressed by high-northern-latitude ice volume forcing during the early Holocene in spite of high summer insolation. In addition, the El Niño/Southern Oscillation might be responsible for droughts of northern China and floods of southern China during the late Holocene. Furthermore, quantitative rainfall reconstructions indicate that the Paleoclimate Modeling Intercomparison Project (PMIP) simulations underestimate the magnitude of Holocene precipitation changes. Our results highlight the spatial and temporal variability of the Holocene EASM precipitation and potential forcing mechanisms, which are very helpful for calibration of paleoclimate models and prediction of future precipitation changes in East Asia in the scenario of global warming.
NASA Astrophysics Data System (ADS)
Weber, Michael E.; Lantzsch, Hendrik; Dekens, Petra; Das, Supriyo K.; Reilly, Brendan T.; Martos, Yasmina M.; Meyer-Jacob, Carsten; Agrahari, Sandip; Ekblad, Alf; Titschack, Jürgen; Holmes, Beth; Wolfgramm, Philipp
2018-07-01
We conducted a multidisciplinary study to provide the stratigraphic and palaeoclimatic context of monsoonal rainfall dynamics and their responses to orbital forcing for the Bay of Bengal. Using sediment lightness we established an age model at orbital resolution for International Ocean Discovery Programme (IODP) Core U1452C-1H that covers the last 200 ka in the lower Bengal Fan. The low-resolution δ18O of G. sacculifer is consistent with global δ18O records, at least for major glacial-to-interglacial transitions. The variability of total organic carbon, total nitrogen, and the δ13C composition of organic matter indicate the marine origin of organic matter. Marine primary productivity likely increased during insolation minima, indicative for an enhanced NE monsoon during glacials and stadials. Pristine insolation forcing is also documented for wet-bulk density, red-green color variability, and grain-size variations, indicating that darker and coarser-grained material deposited at higher sedimentation rates during insolation minima. Stronger NE monsoon likely amplified ocean-atmosphere interactions over the Indian Ocean, leading to stronger upwelling through shoaling the thermocline, and higher delivery of sediment to the Bay of Bengal due to higher soil erosion on land. In addition, lower glacial and stadial sea levels as well as stronger westward surface circulation favored delivery of coarser-grained fluvial material to the lower Bengal Fan. At the same time the stronger NE monsoon might have increased the aeolian supply. Total inorganic carbon, the Ca/Ti ratio, and biogenic silica vary dominantly on obliquity frequencies, suggesting mobilization and transport of lithogenic material primarily during lowered sea levels and/or higher influence of the Northern Hemisphere westerlies on the dust transport from the Tibetan Plateau. The close resemblance of sediment lightness and the climate record of Antarctic ice cores over multiple glacial cycles indicate close relationship between high southern latitude and tropical Asian climate through shifts in position of the Intertropical Convergence Zone. The Bengal Fan monsoonal record shows very clear and strict responses to insolation forcing in the lower part from 200 ka to the Younger Toba Tuff during Marine Isotope Stage (MIS) 7 - 5, and less distinct response patterns after deposition of the ash during MIS 4 - 2, consistent with low-amplitude changes in insolation.
NASA Astrophysics Data System (ADS)
Grant, Katharine; Grimm, Rosina; Mikolajewicz, Uwe; Marino, Gianluca; Rohling, Eelco
2016-04-01
The periodic deposition of organic rich layers or 'sapropels' in eastern Mediterranean sediments can be linked to orbital-driven changes in the strength and location of (east) African monsoon precipitation. Sapropels are therefore an extremely useful tool for establishing orbital chronologies, and for providing insights about African monsoon variability on long timescales. However, the link between sapropel formation, insolation variations, and African monsoon 'maxima' is not straightforward because other processes (notably, sea-level rise) may have contributed to their deposition, and because there are uncertainties about monsoon-sapropel phase relationships. For example, different phasings are observed between Holocene and early Pleistocene sapropels, and between proxy records and model simulations. To address these issues, we have established geochemical and ice-volume-corrected planktonic foraminiferal stable isotope records for sapropels S1, S3, S4, and S5 in core LC21 from the southern Aegean Sea. The records have a radiometrically constrained chronology that has already been synchronised with the Red Sea relative sea-level record, and this allows us to examine in detail the timing of sapropel deposition relative to insolation, sea-level, and African monsoon changes. Our records suggest that the onset of sapropel deposition and monsoon run-off was near synchronous, yet insolation-sapropel/monsoon phasings varied, whereby monsoon/sapropel onset was relatively delayed (with respect to insolation maxima) after glacial terminations. We suggest that large meltwater discharges into the North Atlantic modified the timing of sapropel deposition by delaying the timing of peak African monsoon run-off. Hence, the previous assumption of a systematic 3-kyr lag between insolation maxima and sapropel midpoints may lead to overestimated insolation-sapropel phasings. We also surmise that both monsoon run-off and sea-level rise were important buoyancy-forcing mechanisms for the studied sapropels, and their relative influences differed per sapropel case. For instance, sea-level rise was clearly important for sapropel S1, whereas monsoon forcing was likely more important for sapropel S5.
Wilkinson, Michael; Ewen, Alistair; Caplan, Nicholas; O'leary, David; Smith, Neil; Stoneham, Richard; Saxby, Lee
2018-05-01
The effect of textured insoles on kinetics and kinematics of overground running was assessed. 16 male injury-free-recreational runners attended a single visit (age 23 ± 5 yrs; stature 1.78 ± 0.06 m; mass 72.6 ± 9.2 kg). Overground 15-m runs were completed in flat, canvas plimsolls both with and without textured insoles at self-selected velocity on an indoor track in an order that was balanced among participants. Average vertical loading rate and peak vertical force (F peak ) were captured by force platforms. Video footage was digitised for sagittal plane hip, knee and ankle angles at foot strike and mid stance. Velocity, stride rate and length and contact and flight time were determined. Subjectively rated plantar sensation was recorded by visual scale. 95% confidence intervals estimated mean differences. Smallest worthwhile change in loading rate was defined as standardised reduction of 0.54 from a previous comparison of injured versus non-injured runners. Loading rate decreased (-25 to -9.3 BW s -1 ; 60% likely beneficial reduction) and plantar sensation was increased (46-58 mm) with the insole. F peak (-0.1 to 0.14 BW) and velocity (-0.02 to 0.06 m s -1 ) were similar. Stride length, flight and contact time were lower (-0.13 to -0.01 m; -0.02 to-0.01 s; -0.016 to -0.006 s) and stride rate was higher (0.01-0.07 steps s -1 ) with insoles. Textured insoles elicited an acute, meaningful decrease in vertical loading rate in short distance, overground running and were associated with subjectively increased plantar sensation. Reduced vertical loading rate could be explained by altered stride characteristics.
Yi, Taeim; Kim, Jung Hyun; Oh-Park, Mooyeon; Hwang, Ji Hye
2018-03-01
We investigated the effects of full-length carbon fiber (FCF) insoles on gait, muscle activity, kinetics, and pain in patients with midfoot osteoarthritis (OA). We enrolled 13 patients with unilateral midfoot OA (mild: Visual Analog Scale [VAS] range, 1-3; moderate, VAS range, 4-7) and healthy controls. All participants were asked to walk under two conditions: with and without FCF insole. The outcome measures were ground reaction force, quantitative gait parameters, electromyography activities and pain severity (VAS). In the patients with moderate midfoot OA, significantly longer gait cycle and higher muscle activity of lower limb during loading-response phase were observed while walking without FCF insoles. In the mild midfoot OA group, there was no significant difference in VAS score (without, 2.0 ± 1.0 vs. with, 2.0 ± 0.5) with FCF insole use. However, significantly reduced VAS score (without, 5.5 ± 1.4 vs. with, 2.0 ± 0.5) and muscle activity of the tibialis anterior and increased muscle activity of gastrocnemius were observed in the moderate midfoot OA group by using an FCF insole (P < 0.05). Full-length carbon fiber insoles can improve pain in individuals with moderate midfoot OA, which might be associated with changes in the kinetics and muscle activities of the lower limb. Taken together, the results of the present study suggest that FCF insoles may be used as a helpful option for midfoot OA.
Holocene constraints on simulated tropical Pacific climate
NASA Astrophysics Data System (ADS)
Emile-Geay, J.; Cobb, K. M.; Carre, M.; Braconnot, P.; Leloup, J.; Zhou, Y.; Harrison, S. P.; Correge, T.; Mcgregor, H. V.; Collins, M.; Driscoll, R.; Elliot, M.; Schneider, B.; Tudhope, A. W.
2015-12-01
The El Niño-Southern Oscillation (ENSO) influences climate and weather worldwide, so uncertainties in its response to external forcings contribute to the spread in global climate projections. Theoretical and modeling studies have argued that such forcings may affect ENSO either via the seasonal cycle, the mean state, or extratropical influences, but these mechanisms are poorly constrained by the short instrumental record. Here we synthesize a pan-Pacific network of high-resolution marine biocarbonates spanning discrete snapshots of the Holocene (past 10, 000 years of Earth's history), which we use to constrain a set of global climate model (GCM) simulations via a forward model and a consistent treatment of uncertainty. Observations suggest important reductions in ENSO variability throughout the interval, most consistently during 3-5 kyBP, when approximately 2/3 reductions are inferred. The magnitude and timing of these ENSO variance reductions bear little resemblance to those sim- ulated by GCMs, or to equatorial insolation. The central Pacific witnessed a mid-Holocene increase in seasonality, at odds with the reductions simulated by GCMs. Finally, while GCM aggregate behavior shows a clear inverse relationship between seasonal amplitude and ENSO-band variance in sea-surface temperature, in agreement with many previous studies, such a relationship is not borne out by these observations. Our synthesis suggests that tropical Pacific climate is highly variable, but exhibited millennia-long periods of reduced ENSO variability whose origins, whether forced or unforced, contradict existing explanations. It also points to deficiencies in the ability of current GCMs to simulate forced changes in the tropical Pacific seasonal cycle and its interaction with ENSO, highlighting a key area of growth for future modeling efforts.
Pacific decadal variability in the view of linear equatorial wave theory
NASA Astrophysics Data System (ADS)
Emile-Geay, J. B.; Cane, M. A.
2006-12-01
It has recently been proposed, within the framework of the linear shallow water equations, that tropical Pacific decadal variability can be accounted for by basin modes with eigenperiods of 10 to 20 years, amplifying a mid- latitude wind forcing with an essentially white spectrum (Cessi and Louazel 2001; Liu 2003). We question this idea here, using a different formalism of linear equatorial wave theory. We compute the Green's function for the wind forced response of a linear equatorial shallow water ocean, and use the results of Cane and Moore (1981) to obtain a compact, closed form expression for the motion of the equatorial thermocline, which applies to all frequencies lower than seasonal. At very low frequencies (decadal timescales), we recover the planetary geostrophic solution used by Cessi and Louazel (2001), as well as the equatorial wave solution of Liu (2003), and give a formal explanation for this convergence. Using this more general solution to explore more realistic wind forcings, we come to a different interpretation of the results. We find that the equatorial thermocline is inherently more sensitive to local than to remote wind forcing, and that planetary Rossby modes only weakly alter the spectral characteristics of the response. Tropical winds are able to generate a strong equatorial response with periods of 10 to 20 years, while midlatitude winds can only do so for periods longer than about 50 years. Since the decadal pattern of observed winds shows similar amplitude for tropical and midlatitude winds, we conclude that the latter are unlikely to be responsible for the observed decadal tropical Pacific SST variability. References : Cane, M. A., and Moore, D. W., 1981: A note on low-frequency equatorial basin modes. J. Phys. Oceanogr., 11(11), 1578 1584. Cessi, P., and Louazel, S., 2001: Decadal oceanic response to stochastic wind forcing. J. Phys. Oceanogr., 31, 3020 3029. Liu, Z., 2003: Tropical ocean decadal variability and resonance of planetary wave basin modes. J. Clim., 16(18), 1539 1550.
A 3D Visualization and Analysis Model of the Earth Orbit, Milankovitch Cycles and Insolation.
NASA Astrophysics Data System (ADS)
Kostadinov, Tihomir; Gilb, Roy
2013-04-01
Milankovitch theory postulates that periodic variability of Earth's orbital elements is a major climate forcing mechanism. Although controversies remain, ample geologic evidence supports the major role of the Milankovitch cycles in climate, e.g. glacial-interglacial cycles. There are three Milankovitch orbital parameters: orbital eccentricity (main periodicities of ~100,000 and ~400,000 years), precession (quantified as the longitude of perihelion, main periodicities 19,000-24,000 years) and obliquity of the ecliptic (Earth's axial tilt, main periodicity 41,000 years). The combination of these parameters controls the spatio-temporal patterns of incoming solar radiation (insolation) and the timing of the seasons with respect to perihelion, as well as season duration. The complex interplay of the Milankovitch orbital parameters on various time scales makes assessment and visualization of Earth's orbit and insolation variability challenging. It is difficult to appreciate the pivotal importance of Kepler's laws of planetary motion in controlling the effects of Milankovitch cycles on insolation patterns. These factors also make Earth-Sun geometry and Milankovitch theory difficult to teach effectively. Here, an astronomically precise and accurate Earth orbit visualization model is presented. The model offers 3D visualizations of Earth's orbital geometry, Milankovitch parameters and the ensuing insolation forcings. Both research and educational uses are envisioned for the model, which is developed in Matlab® as a user-friendly graphical user interface (GUI). We present the user with a choice between the Berger et al. (1978) and Laskar et al. (2004) astronomical solutions for eccentricity, obliquity and precession. A "demo" mode is also available, which allows the three Milankovitch parameters to be varied independently of each other (and over much larger ranges than the naturally occurring ones), so the user can isolate the effects of each parameter on orbital geometry, the seasons, and insolation. Users select a calendar date and the Earth is placed in its orbit using Kepler's laws; the calendar can be started on either vernal equinox (March 20) or perihelion (Jan. 3). Global insolation is computed as a function of latitude and day of year, using the chosen Milankovitch parameters. 3D surface plots of insolation and insolation anomalies (with respect to J2000) are then produced. Insolation computations use the model's own orbital geometry with no additional a-priori input other than the Milankovitch parameter solutions. Insolation computations are successfully validated against Laskar et al. (2004) values. The model outputs other relevant parameters as well, e.g. Earth's radius-vector length, solar declination and day length for the chosen date and latitude. Time-series plots of the Milankovitch parameters and EPICA ice core CO2 and temperature data can be produced. Envisioned future developments include computational efficiency improvements, more options for insolation plots on user-chosen spatio-temporal scales, and overlaying additional paleoclimatological proxy data.
Bookstein, Fred L; Domjanic, Jacqueline
2015-01-01
The plantar surface of the human foot transmits the weight and dynamic force of the owner's lower limbs to the ground and the reaction forces back to the musculoskeletal system. Its anatomical variation is intensely studied in such fields as sports medicine and orthopedic dysmorphology. Yet, strangely, the shape of the insole that accommodates this surface and elastically buffers these forces is neither an aspect of the conventional anthropometrics of feet nor an informative label on the packet that markets supplementary insoles. In this paper we pursue an earlier suggestion that insole form in vertical view be quantified in terms of the shape of the foot not at the plane of support (the "footprint") but some two millimeters above that level. Using such sections extracted from laser scans of 158 feet of adult women from the University of Zagreb, in conjunction with an appropriate modification of today's standard geometric morphometrics (GMM), we find that the sectioned form can be described by its size together with two meaningful relative warps of shape. The pattern of this shape variation is not novel. It is closely aligned with two of the standard footprint measurements, the Chippaux-Šmiřák arch index and the Clarke arch angle, whose geometrical foci (the former in the ball of the foot, the latter in the arch) it apparently combines. Thus a strong contemporary analysis complements but does not supplant the simpler anthropometric analyses of half a century ago, with implications for applied anthropology.
Bookstein, Fred L.; Domjanic, Jacqueline
2015-01-01
The plantar surface of the human foot transmits the weight and dynamic force of the owner’s lower limbs to the ground and the reaction forces back to the musculoskeletal system. Its anatomical variation is intensely studied in such fields as sports medicine and orthopedic dysmorphology. Yet, strangely, the shape of the insole that accommodates this surface and elastically buffers these forces is neither an aspect of the conventional anthropometrics of feet nor an informative label on the packet that markets supplementary insoles. In this paper we pursue an earlier suggestion that insole form in vertical view be quantified in terms of the shape of the foot not at the plane of support (the “footprint”) but some two millimeters above that level. Using such sections extracted from laser scans of 158 feet of adult women from the University of Zagreb, in conjunction with an appropriate modification of today’s standard geometric morphometrics (GMM), we find that the sectioned form can be described by its size together with two meaningful relative warps of shape. The pattern of this shape variation is not novel. It is closely aligned with two of the standard footprint measurements, the Chippaux-Šmiřák arch index and the Clarke arch angle, whose geometrical foci (the former in the ball of the foot, the latter in the arch) it apparently combines. Thus a strong contemporary analysis complements but does not supplant the simpler anthropometric analyses of half a century ago, with implications for applied anthropology. PMID:26308442
NASA Astrophysics Data System (ADS)
Mitsui, Takahito; Crucifix, Michel
2017-04-01
The last glacial period was punctuated by a series of abrupt climate shifts, the so-called Dansgaard-Oeschger (DO) events. The frequency of DO events varied in time, supposedly because of changes in background climate conditions. Here, the influence of external forcings on DO events is investigated with statistical modelling. We assume two types of simple stochastic dynamical systems models (double-well potential-type and oscillator-type), forced by the northern hemisphere summer insolation change and/or the global ice volume change. The model parameters are estimated by using the maximum likelihood method with the NGRIP Ca^{2+} record. The stochastic oscillator model with at least the ice volume forcing reproduces well the sample autocorrelation function of the record and the frequency changes of warming transitions in the last glacial period across MISs 2, 3, and 4. The model performance is improved with the additional insolation forcing. The BIC scores also suggest that the ice volume forcing is relatively more important than the insolation forcing, though the strength of evidence depends on the model assumption. Finally, we simulate the average number of warming transitions in the past four glacial periods, assuming the model can be extended beyond the last glacial, and compare the result with an Iberian margin sea-surface temperature (SST) record (Martrat et al. in Science 317(5837): 502-507, 2007). The simulation result supports the previous observation that abrupt millennial-scale climate changes in the penultimate glacial (MIS 6) are less frequent than in the last glacial (MISs 2-4). On the other hand, it suggests that the number of abrupt millennial-scale climate changes in older glacial periods (MISs 6, 8, and 10) might be larger than inferred from the SST record.
Climate variations on Earth-like circumbinary planets
Popp, Max; Eggl, Siegfried
2017-01-01
The discovery of planets orbiting double stars at close distances has sparked increasing scientific interest in determining whether Earth-analogues can remain habitable in such environments and how their atmospheric dynamics is influenced by the rapidly changing insolation. In this work we present results of the first three-dimensional numerical experiments of a water-rich planet orbiting a double star. We find that the periodic forcing of the atmosphere has a noticeable impact on the planet's climate. Signatures of the forcing frequencies related to the planet's as well as to the binary's orbital periods are present in a variety of climate indicators such as temperature and precipitation, making the interpretation of potential observables challenging. However, for Earth-like greenhouse gas concentrations, the variable forcing does not change the range of insolation values allowing for habitable climates substantially. PMID:28382929
NASA Astrophysics Data System (ADS)
Beck, W.; Zhou, W.; Cheng, L.; Wu, Z.; Xian, F.; Kong, X.; Cottam, T.; An, Z.; White, L.
2017-12-01
We show that atmospheric 10Be flux is a quantitative proxy for rainfall, and use it to derive a 530Ka-long record of East Asian summer monsoon rainfall from Chinese Loess. Our record strongly resembles the Red Sea paleosea level and LR04 benthic foram δ18O records, with 53% & 45% of its variance reflected in each of these two global ice volume proxies. This suggests EASM intensity is closely coupled to ice volume by some mechanism. At first glance, this seems to support the claim based on strongly correlated Chinese cave δ18O and 65°N summer solar insolation that Asian monsoon intensity is controlled by high northern latitude insolation. Nevertheless, our 10Be-proxy has only 17% common variance with cave δ18O. Furthermore, Chinese cave δ18O records are very poorly correlated with sea-level/global ice volume, conflicting with both our proxy and Milankovitch theory, if interpreted as a monsoon intensity proxy. We argue that cave δ18O is instead a mixing proxy for monsoon moisture derived from (δ18O depleted) Indian vs Pacific monsoon sectors. We suggest both this mixing ratio and EASM intensity are not governed by high northern latitude insolation, but rather by orbital forcing of the low latitude interhemispheric insolation gradient, which mimics the 65°N insolation pattern. We show this gradient regulates the ratio of Asian monsoon outflow to the Indian vs. North Pacific subtropical highs, providing a coupling to both Hadley and Walker circulations. When outflow strengthens in one of these sectors it weakens in the other, regulating the relative strength of the Trade and Westerly winds in each sector. Trade wind coupling to monsoon strength in each sector controls the ISM/Pacific monsoon moisture mixing ratio and EASM intensity, although intensity is also influenced by other factors. This model provides mechanisms by which the monsoons may influence ice volume. Westerlies strength adjacent to the North Pacific Subtropical High strongly regulates transient eddy energy transport to the north polar region. Likewise, the Trades and Westerlies in the Indian Ocean both influence AMOC strength by regulating Agulhas leakage into the Atlantic, or can influence air/sea CO2 fluxes. These mechanisms may all strongly influence northern hemisphere ice volume, begging the question: Where does global climate control originate?
High-resolution modeling of local air-sea interaction within the Marine Continent using COAMPS
NASA Astrophysics Data System (ADS)
Jensen, T. G.; Chen, S.; Flatau, M. K.; Smith, T.; Rydbeck, A.
2016-12-01
The Maritime Continent (MC) is a region of intense deep atmospheric convection that serves as an important source of forcing for the Hadley and Walker circulations. The convective activity in the MC region spans multiple scales from local mesoscales to regional scales, and impacts equatorial wave propagation, coupled air-sea interaction and intra seasonal oscillations. The complex distribution of islands, shallow seas with fairly small heat storage and deep seas with large heat capacity is challenging to model. Diurnal convection over land-sea is part of a land-sea breeze system on a small scale, and is highly influenced by large variations in orography over land and marginal seas. Daytime solar insolation, run-off from the Archipelago and nighttime rainfall tends to stabilize the water column, while mixing by tidal currents and locally forced winds promote vertical mixing. The runoff from land and rivers and high net precipitation result in fresh water lenses that enhance vertical stability in the water column and help maintain high SST. We use the fully coupled atmosphere-ocean-wave version of the Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) developed at NRL with resolution of a few kilometers to investigate the air-sea interaction associated with the land-sea breeze system in the MC under active and inactive phases of the Madden-Julian Oscillation. The high resolution enables simulation of strong SST gradients associated with local upwelling in deeper waters and strong salinity gradients near rivers and from heavy precipitation.
NASA Astrophysics Data System (ADS)
Chen, Ying-Ying; Jin, Fei-Fei
2018-03-01
The eastern equatorial Pacific has a pronounced westward propagating SST annual cycle resulting from ocean-atmosphere interactions with equatorial semiannual solar forcing and off-equatorial annual solar forcing conveyed to the equator. In this two-part paper, a simple linear coupled framework is proposed to quantify the internal dynamics and external forcing for a better understanding of the linear part of the dynamics annual cycle. It is shown that an essential internal dynamical factor is the SST damping rate which measures the coupled stability in a similar way as the Bjerknes instability index for the El Niño-Southern Oscillation. It comprises three major negative terms (dynamic damping due to the Ekman pumping feedback, mean circulation advection, and thermodynamic feedback) and two positive terms (thermocline feedback and zonal advection). Another dynamical factor is the westward-propagation speed that is mainly determined by the thermodynamic feedback, the Ekman pumping feedback, and the mean circulation. The external forcing is measured by the annual and semiannual forcing factors. These linear internal and external factors, which can be estimated from data, determine the amplitude of the annual cycle.
NASA Technical Reports Server (NTRS)
Hackert, E. C.; Busalacchi, A. J.; Carton, J.; Murtugudde, R.; Arkin, P.; Evans, M. N.
2017-01-01
Indian Ocean (IO) dynamics impact ENSO predictability by influencing wind and precipitation anomalies in the Pacific. To test if the upstream influence of the IO improves ENSO validation statistics, a combination of forced ocean, atmosphere, and coupled models are utilized. In one experiment, the full tropical Indo-Pacific region atmosphere is forced by observed interannual SST anomalies. In the other, the IO is forced by climatological SST. Differences between these two forced atmospheric model experiments spotlight a much richer wind response pattern in the Pacific than previous studies that used idealized forcing and simple linear atmospheric models. Weak westerlies are found near the equator similar to earlier literature. However, at initialization strong easterlies between 30 deg. S to 10 deg. S and 0 deg. N to 25 deg. N and equatorial convergence of the meridional winds across the entire Pacific are unique findings from this paper. The large-scale equatorial divergence west of the dateline and northeasterly-to-northwesterly cross-equatorial flow converging on the equator east of the dateline in the Pacific are generated from interannual IO SST coupling. In addition, off-equatorial downwelling curl impacts large-scale oceanic waves (i.e., Rossby waves reflect as western boundary Kelvin waves). After 3 months, these downwelling equatorial Kelvin waves propagate across the Pacific and strengthen the NINO3 SST. Eventually Bjerknes feedbacks take hold in the eastern Pacific which allows this warm anomaly to grow. Coupled forecasts for NINO3 SST anomalies for 1993-2014 demonstrate that including interannual IO forcing significantly improves predictions for 3-9 month lead times.
NASA Astrophysics Data System (ADS)
Hackert, E. C.; Busalacchi, A. J.; Carton, J.; Murtugudde, R.; Arkin, P.; Evans, M. N.
2017-04-01
Indian Ocean (IO) dynamics impact ENSO predictability by influencing wind and precipitation anomalies in the Pacific. To test if the upstream influence of the IO improves ENSO validation statistics, a combination of forced ocean, atmosphere, and coupled models are utilized. In one experiment, the full tropical Indo-Pacific region atmosphere is forced by observed interannual SST anomalies. In the other, the IO is forced by climatological SST. Differences between these two forced atmospheric model experiments spotlight a much richer wind response pattern in the Pacific than previous studies that used idealized forcing and simple linear atmospheric models. Weak westerlies are found near the equator similar to earlier literature. However, at initialization strong easterlies between 30°S-10°S and 0°N-25°N and equatorial convergence of the meridional winds across the entire Pacific are unique findings from this paper. The large-scale equatorial divergence west of the dateline and northeasterly-to-northwesterly cross-equatorial flow converging on the equator east of the dateline in the Pacific are generated from interannual IO SST coupling. In addition, off-equatorial downwelling curl impacts large-scale oceanic waves (i.e., Rossby waves reflect as western boundary Kelvin waves). After 3 months, these downwelling equatorial Kelvin waves propagate across the Pacific and strengthen the NINO3 SST. Eventually Bjerknes feedbacks take hold in the eastern Pacific which allows this warm anomaly to grow. Coupled forecasts for NINO3 SST anomalies for 1993-2014 demonstrate that including interannual IO forcing significantly improves predictions for 3-9 month lead times.
How and when to terminate the Pleistocene ice ages?
NASA Astrophysics Data System (ADS)
Abe-Ouchi, A.; Saito, F.; Kawamura, K.; Takahashi, K.; Raymo, M. E.; Okuno, J.; Blatter, H.
2015-12-01
Climate change with wax and wane of large Northern Hemisphere ice sheet occurred in the past 800 thousand years characterized by 100 thousand year cycle with a large amplitude of sawtooth pattern, following a transition from a period of 40 thousand years cycle with small amplitude of ice sheet change at about 1 million years ago. Although the importance of insolation as the ultimate driver is now appreciated, the mechanism what determines timing and strength of terminations are far from clearly understood. Here we show, using comprehensive climate and ice-sheet models, that insolation and internal feedbacks between the climate, the ice sheets and the lithosphere-asthenosphere system explain the 100,000-year periodicity. The responses of equilibrium states of ice sheets to summer insolation show hysteresis, with the shape and position of the hysteresis loop playing a key part in determining the periodicities of glacial cycles. The hysteresis loop of the North American ice sheet is such that after inception of the ice sheet, its mass balance remains mostly positive through several precession cycles, whose amplitudes decrease towards an eccentricity minimum. The larger the ice sheet grows and extends towards lower latitudes, the smaller is the insolation required to make the mass balance negative. Therefore, once a large ice sheet is established, a moderate increase in insolation is sufficient to trigger a negative mass balance, leading to an almost complete retreat of the ice sheet within several thousand years. We discuss further the mechanism which determine the timing of ice age terminations by examining the role of astronomical forcing and change of atmospheric carbon dioxide contents through sensitivity experiments and comparison of several ice age cycles with different settings of astronomical forcings.
A preliminary objective evaluation of leprosy footwear using in-shoe pressure measurement.
Linge, K
1996-01-01
The primary function of leprosy shoes, insoles and podiatric orthoses is to provide an underfoot environment capable of distributing the inevitable vertical forces, so reducing areas of peak pressure and ideally the period through which they are applied. Many patients with Hansen's disease have both skeletal deformity and anesthetised feet and the presence of high plantar pressures is the key reason for foot ulceration. This objective investigation using in-shoe dynamic pressure measurements showed that the addition of a shank to control insole rigidity reduced the overall peak pressures under the foot. When a deep canvas shoe was used to test single- and double-thickness insoles of two different types of material it was found in each case that the double-thickness mode was advantageous overall. Microcellular rubber insoles in two types of leprosy shoe were replaced by the polymer Poron. The Poron proved to be superior to both microcellular rubbers. The peak pressure and pressure-time integral should be considered as complimentary variables when determining the efficacy of footwear.
Nonlinear response of summer temperature to Holocene insolation forcing in Alaska.
Clegg, Benjamin F; Kelly, Ryan; Clarke, Gina H; Walker, Ian R; Hu, Feng Sheng
2011-11-29
Regional climate responses to large-scale forcings, such as precessional changes in solar irradiation and increases in anthropogenic greenhouse gases, may be nonlinear as a result of complex interactions among earth system components. Such nonlinear behaviors constitute a major source of climate "surprises" with important socioeconomic and ecological implications. Paleorecords are key for elucidating patterns and mechanisms of nonlinear responses to radiative forcing, but their utility has been greatly limited by the paucity of quantitative temperature reconstructions. Here we present Holocene July temperature reconstructions on the basis of midge analysis of sediment cores from three Alaskan lakes. Results show that summer temperatures during 10,000-5,500 calibrated years (cal) B.P. were generally lower than modern and that peak summer temperatures around 5,000 were followed by a decreasing trend toward the present. These patterns stand in stark contrast with the trend of precessional insolation, which decreased by ∼10% from 10,000 y ago to the present. Cool summers before 5,500 cal B.P. coincided with extensive summer ice cover in the western Arctic Ocean, persistence of a positive phase of the Arctic Oscillation, predominantly La Niña-like conditions, and variation in the position of the Alaskan treeline. These results illustrate nonlinear responses of summer temperatures to Holocene insolation radiative forcing in the Alaskan sub-Arctic, possibly because of state changes in the Arctic Oscillation and El Niño-Southern Oscillation and associated land-atmosphere-ocean feedbacks.
Nonlinear response of summer temperature to Holocene insolation forcing in Alaska
Clegg, Benjamin F.; Kelly, Ryan; Clarke, Gina H.; Walker, Ian R.; Hu, Feng Sheng
2011-01-01
Regional climate responses to large-scale forcings, such as precessional changes in solar irradiation and increases in anthropogenic greenhouse gases, may be nonlinear as a result of complex interactions among earth system components. Such nonlinear behaviors constitute a major source of climate “surprises” with important socioeconomic and ecological implications. Paleorecords are key for elucidating patterns and mechanisms of nonlinear responses to radiative forcing, but their utility has been greatly limited by the paucity of quantitative temperature reconstructions. Here we present Holocene July temperature reconstructions on the basis of midge analysis of sediment cores from three Alaskan lakes. Results show that summer temperatures during 10,000–5,500 calibrated years (cal) B.P. were generally lower than modern and that peak summer temperatures around 5,000 were followed by a decreasing trend toward the present. These patterns stand in stark contrast with the trend of precessional insolation, which decreased by ∼10% from 10,000 y ago to the present. Cool summers before 5,500 cal B.P. coincided with extensive summer ice cover in the western Arctic Ocean, persistence of a positive phase of the Arctic Oscillation, predominantly La Niña-like conditions, and variation in the position of the Alaskan treeline. These results illustrate nonlinear responses of summer temperatures to Holocene insolation radiative forcing in the Alaskan sub-Arctic, possibly because of state changes in the Arctic Oscillation and El Niño-Southern Oscillation and associated land–atmosphere–ocean feedbacks. PMID:22084085
Greening of the Sahara suppressed ENSO activity during the mid-Holocene
Pausata, Francesco S. R.; Zhang, Qiong; Muschitiello, Francesco; Lu, Zhengyao; Chafik, Léon; Niedermeyer, Eva M.; Stager, J. Curt; Cobb, Kim M.; Liu, Zhengyu
2017-01-01
The evolution of the El Niño-Southern Oscillation (ENSO) during the Holocene remains uncertain. In particular, a host of new paleoclimate records suggest that ENSO internal variability or other external forcings may have dwarfed the fairly modest ENSO response to precessional insolation changes simulated in climate models. Here, using fully coupled ocean-atmosphere model simulations, we show that accounting for a vegetated and less dusty Sahara during the mid-Holocene relative to preindustrial climate can reduce ENSO variability by 25%, more than twice the decrease obtained using orbital forcing alone. We identify changes in tropical Atlantic mean state and variability caused by the momentous strengthening of the West Africa Monsoon (WAM) as critical factors in amplifying ENSO’s response to insolation forcing through changes in the Walker circulation. Our results thus suggest that potential changes in the WAM due to anthropogenic warming may influence ENSO variability in the future as well. PMID:28685758
Greening of the Sahara suppressed ENSO activity during the mid-Holocene.
Pausata, Francesco S R; Zhang, Qiong; Muschitiello, Francesco; Lu, Zhengyao; Chafik, Léon; Niedermeyer, Eva M; Stager, J Curt; Cobb, Kim M; Liu, Zhengyu
2017-07-07
The evolution of the El Niño-Southern Oscillation (ENSO) during the Holocene remains uncertain. In particular, a host of new paleoclimate records suggest that ENSO internal variability or other external forcings may have dwarfed the fairly modest ENSO response to precessional insolation changes simulated in climate models. Here, using fully coupled ocean-atmosphere model simulations, we show that accounting for a vegetated and less dusty Sahara during the mid-Holocene relative to preindustrial climate can reduce ENSO variability by 25%, more than twice the decrease obtained using orbital forcing alone. We identify changes in tropical Atlantic mean state and variability caused by the momentous strengthening of the West Africa Monsoon (WAM) as critical factors in amplifying ENSO's response to insolation forcing through changes in the Walker circulation. Our results thus suggest that potential changes in the WAM due to anthropogenic warming may influence ENSO variability in the future as well.
Bamberg, Stacy M; Lastayo, Paul; Dibble, Lee; Musselman, Josh; Raghavendra, Swarna Kiran Dasa
2006-01-01
This work presents the first phase in the development of an in-shoe sensor system designed to evaluate balance. Sixteen force-sensitive resistors were strategically mounted to a removable insole, and the bilateral outputs were recorded. The initial results indicate that these sensors are capable of detecting subtle changes in weight distribution, corresponding to the subject's ability to balance. Preliminary analysis of this data found a clear correlation between the ability to balance and the state of health of the subject.
Obliquity (41kyr) Paced SE Asian Monsoon Variability Following the Miocene Climate Transition
NASA Astrophysics Data System (ADS)
Heitmann, E. O.; Breecker, D.; Ji, S.; Nie, J.
2016-12-01
We investigated Asian monsoon variability during the Miocene, which may provide a good analog for the future given the lack of northern hemisphere ice sheets. In the Miocene Yanwan Section (Tianshui Basin, China) 25cm thick CaCO3-cemented horizons overprint siltstones every 1m. We suggest this rhythmic layering records variations in water availability influenced by the Asian monsoon. We interpret the siltstones as stacked soils that formed in a seasonal climate with a fluctuating water table, evidenced by roots, clay films, mottling, presence of CaCO3 nodules, and stacked carbonate nodule δ13C and δ18O profiles that mimic modern soils. We interpret the CaCO3-cemented horizons as capillary-fringe carbonates that formed in an arid climate with a steady water table and high potential evapotranspiration (PET), evidenced by sharp upper and basal contacts, micrite, sparite, and root-pore cements. The magnetostratigraphy-based age model indicates obliquity-pacing of the CaCO3-cemented horizons suggesting an orbital control on water availability, for which we propose two mechanisms: 1) summer monsoon strength, moderated by the control of obliquity on the cross-equatorial pressure gradient, and 2) PET, moderated by the control of precession on 35oN summer insolation. We use orbital configurations to predict lithology. Coincidence of obliquity minima and insolation maxima drives strong summer monsoons, seasonal variations in water table depth and soil formation. Coincidence of obliquity maxima and insolation minima drives weak summer monsoons, high PET, and carbonate accumulation above a deepened, stable water table. Coincidence of obliquity and insolation minima drives strong monsoons, low PET, and a high water table, explaining the evidence for aquatic plants previously observed in this section. Southern hemisphere control of summer monsoon variability in the Miocene may thus have resulted in large water availability variations in central China.
Effects of orthopedic insoles on static balance of older adults wearing thick socks.
Ma, Christina Zong-Hao; Wong, Duo Wai-Chi; Wan, Anson Hong-Ping; Lee, Winson Chiu-Chun
2018-06-01
The wearing of socks and insoles may affect the ability of the foot to detect tactile input influencing postural balance. The aim of this study was to investigate whether (1) thick socks adversely affected the elderly postural balance and (2) orthopedic insoles could improve the elderly postural balance while wearing thick socks. Repeated-measures study design. In total, 14 healthy older adults were recruited. A monofilament test was conducted to evaluate foot plantar sensation with and without thick socks. Subjects then performed the Romberg tests under three conditions: (1) barefoot, (2) with socks only, and (3) with both socks and insoles. Postural balance was assessed by measuring the center of pressure movement during standing in each experimental condition. Thick socks significantly decreased the monofilament score ( p < 0.001), suggesting reduction in ability to detect external forces. All center of pressure parameters increased significantly while wearing thick socks ( p < 0.017), implying reduction of postural stability. They then decreased significantly with the additional use of insoles ( p < 0.017). Previous studies have documented the changes in plantar pressure distribution with the use of orthopedic insoles. This study further suggests that such changes in contact mechanics could produce some balance-improving effects, which appears not to have been reported earlier. Clinical relevance Wearing thick socks reduces plantar pressure sensitivity and increases postural sway which may increase risk of falls. Orthopedic insoles and footwear with similar design could potentially be a cost-effective method in maintaining postural balance when wearing thick socks.
NASA Technical Reports Server (NTRS)
Boulanger, J. P.; Delecluse, F.; Maes, C.; Levy, C.
1995-01-01
A high resolution oceanic general circulation model of the three topical oceans is used to investigate long equatorial wave activity in the Pacific Ocean during the 1985-1994 TOGA period. Zonal wind stress forcing and simulated dynamic height are interpreted using techniques previously applied to data. Kelvin and first Rossby waves are observed propagating during all the period. A seasonal cycle and interannual anomalies are computed for each long equatorial wave. The east Pacific basin is mainly dominated by seasonal cycle variations while strong interannual anomalies are observed west of the dateline. Long wave interannual anomalies are then compared to wave coefficients simulated by a simple wind-forced model. Our results outline the major role played by wind forcing on interannual time scales in generating long equatorial waves. However, near both eastern and western boundaries, some differences can be attributed to long wave reflections. A comparison to wave coefficients calculated from GEOSAT sea-level data gives some insight of the model behavior.
NASA Astrophysics Data System (ADS)
Shi, Z.
2017-12-01
The responses of Asian summer monsoon and associated precipitation to astronomical forcing have beenintensively explored during the past decades, but debate still exists regarding whether or not the Asianmonsoon is controlled by northern or southern summer insolation. Various modeling studies have been conducted that support the potential roles played by the insolation in bothhemispheres. Among these previous studies, however, the main emphasis has been on the Asianmonsoon intensity, with the response of monsoon duration having received little consideration. In thepresent study, the response of the rainy season duration over different monsoon areas to astronomical forcingand its contribution to total annual precipitation are evaluated using an atmospheric general circulationmodel. The results show that the durations of the rainy seasons, especially their withdrawal, in northernEast Asia and the India-Bay of Bengal region, are sensitive to precession change under interglacial-likeconditions. Compared to those during stronger boreal summer insolation, the Asian monsoon associatedrainy seasons at weaker insolation last longer, although the peak intensity is smaller. Thislonger duration of rainfall, which results from the change in land-ocean thermal contrast associated withatmospheric diabatic heating, can counterbalance the weakened intensity in certain places and induce anopposite response of total annual precipitation. However, the duration effect of Asian monsoon is limitedunder glacial-like conditions. Nevertheless, monsoon duration is a factor that can dominate the astronomical-scalevariability of Asian monsoon, alongside the intensity, and it should therefore receive greaterattention when attempting to explain astronomical-scale monsoon change.
Dynamics of Monsoon-Induced Biennial Variability in ENSO
NASA Technical Reports Server (NTRS)
Kim, Kyu-Myong; Lau, K.-M.; Einaudi, Franco (Technical Monitor)
2000-01-01
The mechanism of the quasi-biennial tendency in El Nino Southern Oscillation (ENSO)-monsoon coupled system is investigated using an intermediate coupled model. The monsoon wind forcing is prescribed as a function of Sea Surface Temperature (SST) anomalies based on the relationship between zonal wind anomalies over the western Pacific to sea level change in the equatorial eastern Pacific. The key mechanism of quasi-biennial tendency in El Nino evolution is found to be in the strong coupling of ENSO to monsoon wind forcing over the western Pacific. Strong boreal summer monsoon wind forcing, which lags the maximum SST anomaly in the equatorial eastern Pacific approximately 6 months, tends to generate Kelvin waves of the opposite sign to anomalies in the eastern Pacific and initiates the turnabout in the eastern Pacific. Boreal winter monsoon forcing, which has zero lag with maximum SST in the equatorial eastern Pacific, tends to damp the ENSO oscillations.
Sensitivity of the Greenland Ice Sheet to Interglacial Climate Forcing: MIS 5e Versus MIS 11
NASA Astrophysics Data System (ADS)
Rachmayani, Rima; Prange, Matthias; Lunt, Daniel J.; Stone, Emma J.; Schulz, Michael
2017-11-01
The Greenland Ice Sheet (GrIS) is thought to have contributed substantially to high global sea levels during the interglacials of Marine Isotope Stage (MIS) 5e and 11. Geological evidence suggests that the mass loss of the GrIS was greater during the peak interglacial of MIS 11 than MIS 5e, despite a weaker boreal summer insolation. We address this conundrum by using the three-dimensional thermomechanical ice sheet model Glimmer forced by Community Climate System Model version 3 output for MIS 5e and MIS 11 interglacial time slices. Our results suggest a stronger sensitivity of the GrIS to MIS 11 climate forcing than to MIS 5e forcing. Besides stronger greenhouse gas radiative forcing, the greater MIS 11 GrIS mass loss relative to MIS 5e is attributed to a larger oceanic heat transport toward high latitudes by a stronger Atlantic meridional overturning circulation. The vigorous MIS 11 ocean overturning, in turn, is related to a stronger wind-driven salt transport from low to high latitudes promoting North Atlantic Deep Water formation. The orbital insolation forcing, which causes the ocean current anomalies, is discussed.
NASA Astrophysics Data System (ADS)
Lo, Li; Belt, Simon T.; Lattaud, Julie; Friedrich, Tobias; Zeeden, Christian; Schouten, Stefan; Smik, Lukas; Timmermann, Axel; Cabedo-Sanz, Patricia; Huang, Jyh-Jaan; Zhou, Liping; Ou, Tsong-Hua; Chang, Yuan-Pin; Wang, Liang-Chi; Chou, Yu-Min; Shen, Chuan-Chou; Chen, Min-Te; Wei, Kuo-Yen; Song, Sheng-Rong; Fang, Tien-Hsi; Gorbarenko, Sergey A.; Wang, Wei-Lung; Lee, Teh-Quei; Elderfield, Henry; Hodell, David A.
2018-04-01
Recent reduction in high-latitude sea ice extent demonstrates that sea ice is highly sensitive to external and internal radiative forcings. In order to better understand sea ice system responses to external orbital forcing and internal oscillations on orbital timescales, here we reconstruct changes in sea ice extent and summer sea surface temperature (SSST) over the past 130,000 yrs in the central Okhotsk Sea. We applied novel organic geochemical proxies of sea ice (IP25), SSST (TEX86L) and open water marine productivity (a tri-unsaturated highly branched isoprenoid and biogenic opal) to marine sediment core MD01-2414 (53°11.77‧N, 149°34.80‧E, water depth 1123 m). To complement the proxy data, we also carried out transient Earth system model simulations and sensitivity tests to identify contributions of different climatic forcing factors. Our results show that the central Okhotsk Sea was ice-free during Marine Isotope Stage (MIS) 5e and the early-mid Holocene, but experienced variable sea ice cover during MIS 2-4, consistent with intervals of relatively high and low SSST, respectively. Our data also show that the sea ice extent was governed by precession-dominated insolation changes during intervals of atmospheric CO2 concentrations ranging from 190 to 260 ppm. However, the proxy record and the model simulation data show that the central Okhotsk Sea was near ice-free regardless of insolation forcing throughout the penultimate interglacial, and during the Holocene, when atmospheric CO2 was above ∼260 ppm. Past sea ice conditions in the central Okhotsk Sea were therefore strongly modulated by both orbital-driven insolation and CO2-induced radiative forcing during the past glacial/interglacial cycle.
Impact of Geoengineering Schemes on the Global Hydrological Cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bala, G; Duffy, P; Taylor, K
2007-12-07
The rapidly rising CO{sub 2} level in the atmosphere has led to proposals of climate stabilization via 'Geoengineering' schemes that would mitigate climate change by intentionally reducing the solar radiation incident on earth's surface. In this paper, we address the impact of these climate stabilization schemes on the global hydrological cycle, using equilibrium simulations from an atmospheric general circulation model coupled to a slab ocean model. We show that insolation reductions sufficient to offset global-scale temperature increases lead to a decrease in the intensity of the global hydrologic cycle. This occurs because solar forcing is more effective in driving changesmore » in global mean evaporation than is CO{sub 2} forcing of a similar magnitude. In the model used here, the hydrologic sensitivity, defined as the percentage change in global mean precipitation per degree warming, is 2.4% for solar forcing, but only 1.5% for CO{sub 2} forcing. Although other models and the climate system itself may differ quantitatively from this result, the conclusion can be understood based on simple considerations of the surface energy budget and thus is likely to be robust. Compared to changing temperature by altering greenhouse gas concentrations, changing temperature by varying insolation results in larger changes in net radiative fluxes at the surface; these are compensated by larger changes in latent and sensible heat fluxes. Hence the hydrological cycle is more sensitive to temperature adjustment via changes in insolation than changes in greenhouse gases. This implies that an alteration in solar forcing might offset temperature changes or hydrological changes from greenhouse warming, but could not cancel both at once.« less
Global monsoon precipitation responses to large volcanic eruptions
Liu, Fei; Chai, Jing; Wang, Bin; Liu, Jian; Zhang, Xiao; Wang, Zhiyuan
2016-01-01
Climate variation of global monsoon (GM) precipitation involves both internal feedback and external forcing. Here, we focus on strong volcanic forcing since large eruptions are known to be a dominant mechanism in natural climate change. It is not known whether large volcanoes erupted at different latitudes have distinctive effects on the monsoon in the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We address this issue using a 1500-year volcanic sensitivity simulation by the Community Earth System Model version 1.0 (CESM1). Volcanoes are classified into three types based on their meridional aerosol distributions: NH volcanoes, SH volcanoes and equatorial volcanoes. Using the model simulation, we discover that the GM precipitation in one hemisphere is enhanced significantly by the remote volcanic forcing occurring in the other hemisphere. This remote volcanic forcing-induced intensification is mainly through circulation change rather than moisture content change. In addition, the NH volcanic eruptions are more efficient in reducing the NH monsoon precipitation than the equatorial ones, and so do the SH eruptions in weakening the SH monsoon, because the equatorial eruptions, despite reducing moisture content, have weaker effects in weakening the off-equatorial monsoon circulation than the subtropical-extratropical volcanoes do. PMID:27063141
Global monsoon precipitation responses to large volcanic eruptions.
Liu, Fei; Chai, Jing; Wang, Bin; Liu, Jian; Zhang, Xiao; Wang, Zhiyuan
2016-04-11
Climate variation of global monsoon (GM) precipitation involves both internal feedback and external forcing. Here, we focus on strong volcanic forcing since large eruptions are known to be a dominant mechanism in natural climate change. It is not known whether large volcanoes erupted at different latitudes have distinctive effects on the monsoon in the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We address this issue using a 1500-year volcanic sensitivity simulation by the Community Earth System Model version 1.0 (CESM1). Volcanoes are classified into three types based on their meridional aerosol distributions: NH volcanoes, SH volcanoes and equatorial volcanoes. Using the model simulation, we discover that the GM precipitation in one hemisphere is enhanced significantly by the remote volcanic forcing occurring in the other hemisphere. This remote volcanic forcing-induced intensification is mainly through circulation change rather than moisture content change. In addition, the NH volcanic eruptions are more efficient in reducing the NH monsoon precipitation than the equatorial ones, and so do the SH eruptions in weakening the SH monsoon, because the equatorial eruptions, despite reducing moisture content, have weaker effects in weakening the off-equatorial monsoon circulation than the subtropical-extratropical volcanoes do.
The Angola Current and its seasonal variability as observed at 11°S
NASA Astrophysics Data System (ADS)
Kopte, Robert; Brandt, Peter; Dengler, Marcus; Claus, Martin; Greatbatch, Richard J.
2016-04-01
The eastern boundary circulation off the coast of Angola has been described only sparsely to date. The region off Angola, which connects the equatorial Atlantic and the Angola-Benguela upwelling regime, is of particular interest to understand the relative importance of transient equatorial versus local forcing of the observed variability in the coastal upwelling region. For the first time multi-year velocity observations of the Angola Current at 11°S are available. From July 2013 to November 2015 a bottom shield equipped with an ADCP had been deployed at 500m water depth, accompanied by a mooring sitting on the 1200m-isobath with an ADCP being installed at 500m depth. Both upward-looking instruments measured the current speed up to about 50m below the sea surface. During the deployment period the Angola Current was characterized by a weak southward mean flow of 5-8 cm/s at 50m depth (slightly stronger at the in-shore mooring position), with the southward current penetrating down to about 200m depth. The alongshore velocity component reveals a pronounced seasonal variability. It is dominated by 120-day, semi-annual, and annual oscillations with distinct baroclinic structures. Here we apply a reduced gravity model of the tropical Atlantic for the first five baroclinic modes forced with interannually varying wind stress to investigate the seasonal variability along the equatorial and coastal waveguides. In the equatorial Atlantic the 120-day, semi-annual, and annual oscillations are associated with resonant basin modes of the 1st, 2nd, and 4th baroclinic mode, respectively. These basin modes are composed of equatorial Kelvin and Rossby waves as well as coastally trapped waves. The reduced gravity model is further used to study the respective role of the remote equatorial forcing, more specifically the influence of equatorial basin modes via coastally trapped waves, and the local forcing for the observed seasonal variability and associated baroclinic structure of the Angola Current at 11°S.
A paleo-perspective on ocean heat content: Lessons from the Holocene and Common Era
NASA Astrophysics Data System (ADS)
Rosenthal, Yair; Kalansky, Julie; Morley, Audrey; Linsley, Braddock
2017-01-01
The ocean constitutes the largest heat reservoir in the Earth's energy budget and thus exerts a major influence on its climate. Instrumental observations show an increase in ocean heat content (OHC) associated with the increase in greenhouse emissions. Here we review proxy records of intermediate water temperatures from sediment cores and corals in the equatorial Pacific and northeastern Atlantic Oceans, spanning 10,000 years beyond the instrumental record. These records suggests that intermediate waters were 1.5-2 °C warmer during the Holocene Thermal Maximum than in the last century. Intermediate water masses cooled by 0.9 °C from the Medieval Climate Anomaly to the Little Ice Age. These changes are significantly larger than the temperature anomalies documented in the instrumental record. The implied large perturbations in OHC and Earth's energy budget are at odds with very small radiative forcing anomalies throughout the Holocene and Common Era. We suggest that even very small radiative perturbations can change the latitudinal temperature gradient and strongly affect prevailing atmospheric wind systems and hence air-sea heat exchange. These dynamic processes provide an efficient mechanism to amplify small changes in insolation into relatively large changes in OHC. Over long time periods the ocean's interior acts like a capacitor and builds up large (positive and negative) heat anomalies that can mitigate or amplify small radiative perturbations as seen in the Holocene trend and Common Era anomalies, respectively. Evidently the ocean's interior is more sensitive to small external forcings than the global surface ocean because of the high sensitivity of heat exchange in the high-latitudes to climate variations.
NASA Astrophysics Data System (ADS)
Chen, Ying-Ying; Jin, Fei-Fei
2017-12-01
In this study, a simple coupled framework established in Part I is utilized to investigate inter-model diversity in simulating the equatorial Pacific SST annual cycle (SSTAC). It demonstrates that the simulated amplitude and phase characteristics of SSTAC in models are controlled by two internal dynamical factors (the damping rate and phase speed) and two external forcing factors (the strength of the annual and semi-annual harmonic forcing). These four diagnostic factors are further condensed into a dynamical response factor and a forcing factor to derive theoretical solutions of amplitude and phase of SSTAC. The theoretical solutions are in remarkable agreement with observations and CMIP5 simulations. The great diversity in the simulated SSTACs is related to the spreads in these dynamic and forcing factors. Most models tend to simulate a weak SSTAC, due to their weak damping rate and annual harmonic forcing. The latter is due to bias in the meridional asymmetry of the annual mean state of the tropical Pacific, represented by the weak cross-equatorial winds in the cold tongue region.
Equatorial oceanography. [review of research
NASA Technical Reports Server (NTRS)
Cane, M. A.; Sarachik, E. S.
1983-01-01
United States progress in equatorial oceanography is reviewed, focusing on the low frequency response of upper equatorial oceans to forcing by the wind. Variations of thermocline depth, midocean currents, and boundary currents are discussed. The factors which determine sea surface temperature (SST) variability in equatorial oceans are reviewed, and the status of understanding of the most spectacular manifestation of SST variability, the El Nino-Southern Oscillation phenomenon, is discussed. The problem of observing surface winds, regarded as a fundamental factor limiting understanding of the equatorial oceans, is addressed. Finally, an attempt is made to identify those current trends which are expected to bear fruit in the near and distant future.
Kinetic Assessment of Golf Shoe Outer Sole Design Features
Smith, Neal A.; Dyson, Rosemary J.
2009-01-01
This study assessed human kinetics in relation to golf shoe outer sole design features during the golf swing using a driver club by measuring both within the shoe, and beneath the shoe at the natural grass interface. Three different shoes were assessed: metal 7- spike shoe, alternative 7-spike shoe, and a flat soled shoe. In-shoe plantar pressure data were recorded using Footscan RS International pressure insoles and sampling at 500 Hz. Simultaneously ground reaction force at the shoe outer sole was measured using 2 natural grass covered Kistler force platforms and 1000 Hz data acquisition. Video recording of the 18 right-handed golfers at 200 Hz was undertaken while the golfer performed 5 golf shots with his own driver in each type of shoe. Front foot (nearest to shot direction) maximum vertical force and torque were greater than at the back foot, and there was no significant difference related to the shoe type. Wearing the metal spike shoe when using a driver was associated with more torque generation at the back foot (p < 0. 05) than when the flat soled shoe was worn. Within shoe regional pressures differed significantly with golf shoe outer sole design features (p < 0.05). Comparison of the metal spike and alternative spike shoe results provided indications of the quality of regional traction on the outer sole. Potential golf shoe outer sole design features and traction were presented in relation to phases of the golf swing movement. Application of two kinetic measurement methods identified that moderated (adapted) muscular control of foot and body movement may be induced by golf shoe outer sole design features. Ground reaction force measures inform comparisons of overall shoe functional performance, and insole pressure measurements inform comparisons of the underfoot conditions induced by specific regions of the golf shoe outer sole. Key points Assessments of within golf shoe pressures and beneath shoe forces at the natural grass interface were conducted during golf shots with a driver. Application of two kinetic measurement methods simultaneously identified that moderated (adapted) muscular control of the foot and body movement may be induced by golf shoe outer sole localised design features. Ground force measures inform overall shoe kinetic functional performance. Insole pressure measurement informs of underfoot conditions induced by localised specific regions of the golf outer sole. Significant differences in ground-shoe torque generation and insole regional pressures were identified when different golf shoes were worn. PMID:24149603
The history of South American tropical precipitation for the past 25,000 years.
Baker, P A; Seltzer, G O; Fritz, S C; Dunbar, R B; Grove, M J; Tapia, P M; Cross, S L; Rowe, H D; Broda, J P
2001-01-26
Long sediment cores recovered from the deep portions of Lake Titicaca are used to reconstruct the precipitation history of tropical South America for the past 25,000 years. Lake Titicaca was a deep, fresh, and continuously overflowing lake during the last glacial stage, from before 25,000 to 15,000 calibrated years before the present (cal yr B.P.), signifying that during the last glacial maximum (LGM), the Altiplano of Bolivia and Peru and much of the Amazon basin were wetter than today. The LGM in this part of the Andes is dated at 21,000 cal yr B.P., approximately coincident with the global LGM. Maximum aridity and lowest lake level occurred in the early and middle Holocene (8000 to 5500 cal yr B.P.) during a time of low summer insolation. Today, rising levels of Lake Titicaca and wet conditions in Amazonia are correlated with anomalously cold sea-surface temperatures in the northern equatorial Atlantic. Likewise, during the deglacial and Holocene periods, there were several millennial-scale wet phases on the Altiplano and in Amazonia that coincided with anomalously cold periods in the equatorial and high-latitude North Atlantic, such as the Younger Dryas.
NASA Astrophysics Data System (ADS)
Oliveira, Dulce; Sánchez Goñi, Maria Fernanda; Naughton, Filipa; Polanco-Martínez, J. M.; Jimenez-Espejo, Francisco J.; Grimalt, Joan O.; Martrat, Belen; Voelker, Antje H. L.; Trigo, Ricardo; Hodell, David; Abrantes, Fátima; Desprat, Stéphanie
2017-04-01
Marine Isotope Stage 31 (MIS 31) is an important analogue for ongoing and projected global warming, yet key questions remain about the regional signature of its extreme orbital forcing and intra-interglacial variability. Based on a new direct land-sea comparison in SW Iberian margin IODP Site U1385 we examine the climatic variability between 1100 and 1050 ka including the ;super interglacial; MIS 31, a period dominated by the 41-ky obliquity periodicity. Pollen and biomarker analyses at centennial-scale-resolution provide new insights into the regional vegetation, precipitation regime and atmospheric and oceanic temperature variability on orbital and suborbital timescales. Our study reveals that atmospheric and SST warmth during MIS 31 was not exceptional in this region highly sensitive to precession. Unexpectedly, this warm stage stands out as a prolonged interval of a temperate and humid climate regime with reduced seasonality, despite the high insolation (precession minima values) forcing. We find that the dominant forcing on the long-term temperate forest development was obliquity, which may have induced a decrease in summer dryness and associated reduction in seasonal precipitation contrast. Moreover, this study provides the first evidence for persistent atmospheric millennial-scale variability during this interval with multiple forest decline events reflecting repeated cooling and drying episodes in SW Iberia. Our direct land-sea comparison shows that the expression of the suborbital cooling events on SW Iberian ecosystems is modulated by the predominance of high or low-latitude forcing depending on the glacial/interglacial baseline climate states. Severe dryness and air-sea cooling is detected under the larger ice volume during glacial MIS 32 and MIS 30. The extreme episodes, which in their climatic imprint are similar to the Heinrich events, are likely related to northern latitude ice-sheet instability and a disruption of the Atlantic Meridional Overturning Circulation (AMOC). In contrast, forest declines during MIS 31 are associated to neither SST cooling nor high-latitude freshwater forcing. Time-series analysis reveals a dominant cyclicity of about 6 ky in the temperate forest record, which points to a potential link with the fourth harmonic of precession and thus low-latitude insolation forcing.
Hu, Xinyao; Zhao, Jun; Peng, Dongsheng; Sun, Zhenglong; Qu, Xingda
2018-02-01
Postural control is a complex skill based on the interaction of dynamic sensorimotor processes, and can be challenging for people with deficits in sensory functions. The foot plantar center of pressure (COP) has often been used for quantitative assessment of postural control. Previously, the foot plantar COP was mainly measured by force plates or complicated and expensive insole-based measurement systems. Although some low-cost instrumented insoles have been developed, their ability to accurately estimate the foot plantar COP trajectory was not robust. In this study, a novel individual-specific nonlinear model was proposed to estimate the foot plantar COP trajectories with an instrumented insole based on low-cost force sensitive resistors (FSRs). The model coefficients were determined by a least square error approximation algorithm. Model validation was carried out by comparing the estimated COP data with the reference data in a variety of postural control assessment tasks. We also compared our data with the COP trajectories estimated by the previously well accepted weighted mean approach. Comparing with the reference measurements, the average root mean square errors of the COP trajectories of both feet were 2.23 mm (±0.64) (left foot) and 2.72 mm (±0.83) (right foot) along the medial-lateral direction, and 9.17 mm (±1.98) (left foot) and 11.19 mm (±2.98) (right foot) along the anterior-posterior direction. The results are superior to those reported in previous relevant studies, and demonstrate that our proposed approach can be used for accurate foot plantar COP trajectory estimation. This study could provide an inexpensive solution to fall risk assessment in home settings or community healthcare center for the elderly. It has the potential to help prevent future falls in the elderly.
Hu, Xinyao; Zhao, Jun; Peng, Dongsheng
2018-01-01
Postural control is a complex skill based on the interaction of dynamic sensorimotor processes, and can be challenging for people with deficits in sensory functions. The foot plantar center of pressure (COP) has often been used for quantitative assessment of postural control. Previously, the foot plantar COP was mainly measured by force plates or complicated and expensive insole-based measurement systems. Although some low-cost instrumented insoles have been developed, their ability to accurately estimate the foot plantar COP trajectory was not robust. In this study, a novel individual-specific nonlinear model was proposed to estimate the foot plantar COP trajectories with an instrumented insole based on low-cost force sensitive resistors (FSRs). The model coefficients were determined by a least square error approximation algorithm. Model validation was carried out by comparing the estimated COP data with the reference data in a variety of postural control assessment tasks. We also compared our data with the COP trajectories estimated by the previously well accepted weighted mean approach. Comparing with the reference measurements, the average root mean square errors of the COP trajectories of both feet were 2.23 mm (±0.64) (left foot) and 2.72 mm (±0.83) (right foot) along the medial–lateral direction, and 9.17 mm (±1.98) (left foot) and 11.19 mm (±2.98) (right foot) along the anterior–posterior direction. The results are superior to those reported in previous relevant studies, and demonstrate that our proposed approach can be used for accurate foot plantar COP trajectory estimation. This study could provide an inexpensive solution to fall risk assessment in home settings or community healthcare center for the elderly. It has the potential to help prevent future falls in the elderly. PMID:29389857
On the importance of Sri Lanka for sea-level variability along the west coast of India
NASA Astrophysics Data System (ADS)
Suresh, I.; Vialard, J.; Izumo, T.; Lengaigne, M.; Han, W.; McCreary, J. P., Jr.; Pillathu Moolayil, M.
2015-12-01
Earlier studies have illustrated the strong influence of remote forcing from the equator and the Bay of Bengal on the sea-level variability off the west coast of India, especially at the seasonal timescale. More recently, Suresh et al. [2013] demonstrated with a simple, linear, continuously-stratified (LCS) model that the equatorial zonal winds contribute to more than 60% of intraseasonal sea-level variability along the Indian west coast. In the present study, we quantify the contributions from various processes to the sea-level variability along the west coast of India at different timescales with the help of a LCS model through both idealized and realistic sensitivity experiments. We demonstrate that remote forcing dominates the sea-level variability along the west coast of India at intraseasonal to interannual timescales. Sri Lanka and the southern tip of India play an important role on Indian west coast sea-level variability at all timescales for two reasons: First, the geometry of the coast favors a strong alongshore wind-stress forcing of coastal Kelvin waves across timescales there. Second, Sri Lanka interacts with low-order meridional mode equatorial Rossby waves forced by equatorial winds or southern Bay of Bengal wind- stress curl. This interaction of coastal waveguide with equatorial waveguide creates a new pathway for the equatorial signals to arrive at the west coast of India, alternative to the "classical" coastal waveguide around the rim of the Bay of Bengal. Reference: Suresh, I., J. Vialard, M. Lengaigne, W. Han, J. McCreary, F. Durand, and P. M. Muraleedharan (2013), Origins of wind-driven intraseasonal sea level variations in the North Indian Ocean coastal waveguide, Geophys. Res. Lett., 40, 5740-5744, doi:10.1002/2013GL058312.
Lagrangian mixed layer modeling of the western equatorial Pacific
NASA Technical Reports Server (NTRS)
Shinoda, Toshiaki; Lukas, Roger
1995-01-01
Processes that control the upper ocean thermohaline structure in the western equatorial Pacific are examined using a Lagrangian mixed layer model. The one-dimensional bulk mixed layer model of Garwood (1977) is integrated along the trajectories derived from a nonlinear 1 1/2 layer reduced gravity model forced with actual wind fields. The Global Precipitation Climatology Project (GPCP) data are used to estimate surface freshwater fluxes for the mixed layer model. The wind stress data which forced the 1 1/2 layer model are used for the mixed layer model. The model was run for the period 1987-1988. This simple model is able to simulate the isothermal layer below the mixed layer in the western Pacific warm pool and its variation. The subduction mechanism hypothesized by Lukas and Lindstrom (1991) is evident in the model results. During periods of strong South Equatorial Current, the warm and salty mixed layer waters in the central Pacific are subducted below the fresh shallow mixed layer in the western Pacific. However, this subduction mechanism is not evident when upwelling Rossby waves reach the western equatorial Pacific or when a prominent deepening of the mixed layer occurs in the western equatorial Pacific or when a prominent deepening of the mixed layer occurs in the western equatorial Pacific due to episodes of strong wind and light precipitation associated with the El Nino-Southern Oscillation. Comparison of the results between the Lagrangian mixed layer model and a locally forced Eulerian mixed layer model indicated that horizontal advection of salty waters from the central Pacific strongly affects the upper ocean salinity variation in the western Pacific, and that this advection is necessary to maintain the upper ocean thermohaline structure in this region.
Billings, Stephen A.; Pavic, Aleksandar; Guo, Ling-Zhong
2017-01-01
Measurement of the ground reaction forces (GRF) during walking is typically limited to laboratory settings, and only short observations using wearable pressure insoles have been reported so far. In this study, a new proxy measurement method is proposed to estimate the vertical component of the GRF (vGRF) from wearable accelerometer signals. The accelerations are used as the proxy variable. An orthogonal forward regression algorithm (OFR) is employed to identify the dynamic relationships between the proxy variables and the measured vGRF using pressure-sensing insoles. The obtained model, which represents the connection between the proxy variable and the vGRF, is then used to predict the latter. The results have been validated using pressure insoles data collected from nine healthy individuals under two outdoor walking tasks in non-laboratory settings. The results show that the vGRFs can be reconstructed with high accuracy (with an average prediction error of less than 5.0%) using only one wearable sensor mounted at the waist (L5, fifth lumbar vertebra). Proxy measures with different sensor positions are also discussed. Results show that the waist acceleration-based proxy measurement is more stable with less inter-task and inter-subject variability than the proxy measures based on forehead level accelerations. The proposed proxy measure provides a promising low-cost method for monitoring ground reaction forces in real-life settings and introduces a novel generic approach for replacing the direct determination of difficult to measure variables in many applications. PMID:28937593
The Astronomical Forcing of Climate Change: Forcings and Feedbacks
NASA Astrophysics Data System (ADS)
Erb, M. P.; Broccoli, A. J.; Clement, A. C.
2010-12-01
Understanding the role that orbital forcing played in driving climate change over the Pleistocene has been a matter of ongoing research. While it is undeniable that variations in Earth’s orbit result in changes in the seasonal and latitudinal distribution of insolation, the specifics of how this forcing leads to the climate changes seen in the paleo record are not fully understood. To research this further, climate simulations have been conducted with the GFDL CM2.1, a coupled atmosphere-ocean GCM. Two simulations represent the extremes of obliquity during the past 600 kyr and four others show key times in the precessional cycle. All non-orbital variables are set to preindustrial levels to isolate the effects of astronomical forcing alone. It is expected that feedbacks should play a large role in dictating climate change, so to investigate this, the so-called “kernel method” is used to calculate the lapse rate, water vapor, albedo, and cloud feedbacks. Preliminary results of these experiments confirm that feedbacks are important in explaining the nature and, in places, even the sign of climate response to orbital forcing. In the case of low obliquity, for instance, a combination of climate feedbacks lead to global cooling in spite of zero global-average top of atmosphere insolation change. Feedbacks will be analyzed in the obliquity and precession experiments so that the role of feedbacks in contributing to climate change may be better understood.
On the Timing of Glacial Terminations in the Equatorial Pacific
NASA Astrophysics Data System (ADS)
Khider, D.; Ahn, S.; Lisiecki, L. E.; Lawrence, C.; Kienast, M.
2015-12-01
Understanding the mechanisms through which the climate system responds to orbital insolation changes requires establishing the timing of events imprinted on the geological record. In this study, we investigate the relative timing of the glacial terminations across the equatorial Pacific in order to identify a possible mechanism through which the tropics may have influenced a global climate response. The relative termination timing between the eastern and western equatorial Pacific was assessed from 15 published SST records based on Globigerinoides ruber Mg/Ca or alkenone thermometry. The novelty of our study lies in the accounting of the various sources of uncertainty inherent to paleoclimate reconstruction and timing analysis. Specifically, we use a Monte-Carlo process allowing sampling of possible realizations of the time series that are functions of the uncertainty of the benthic δ18O alignment to a global benthic curve, of the SST uncertainty, and of the uncertainty in the change point, which we use as a definition for the termination timing. We find that the uncertainty on the relative timing estimates is on the order of several thousand years, and stems from age model uncertainty (60%) and the uncertainty in the change point detection (40%). Random sources of uncertainty are the main contributor, and, therefore, averaging over a large datasets and/or higher resolution records should yield more precise and accurate estimates of the relative lead-lag. However, at this time, the number of records is not sufficient to identify any significant differences in the timing of the last three glacial terminations in SST records from the Eastern and Western Tropical Pacific.
Indian Ocean warming during 1958-2004 simulated by a climate system model and its mechanism
NASA Astrophysics Data System (ADS)
Dong, Lu; Zhou, Tianjun; Wu, Bo
2014-01-01
The mechanism responsible for Indian Ocean Sea surface temperature (SST) basin-wide warming trend during 1958-2004 is studied based on both observational data analysis and numerical experiments with a climate system model FGOALS-gl. To quantitatively estimate the relative contributions of external forcing (anthropogenic and natural forcing) and internal variability, three sets of numerical experiments are conducted, viz. an all forcing run forced by both anthropogenic forcing (greenhouse gases and sulfate aerosols) and natural forcing (solar constant and volcanic aerosols), a natural forcing run driven by only natural forcing, and a pre-industrial control run. The model results are compared to the observations. The results show that the observed warming trend during 1958-2004 (0.5 K (47-year)-1) is largely attributed to the external forcing (more than 90 % of the total trend), while the residual is attributed to the internal variability. Model results indicate that the anthropogenic forcing accounts for approximately 98.8 % contribution of the external forcing trend. Heat budget analysis shows that the surface latent heat flux due to atmosphere and surface longwave radiation, which are mainly associated with anthropogenic forcing, are in favor of the basin-wide warming trend. The basin-wide warming is not spatially uniform, but with an equatorial IOD-like pattern in climate model. The atmospheric processes, oceanic processes and climatological latent heat flux together form an equatorial IOD-like warming pattern, and the oceanic process is the most important in forming the zonal dipole pattern. Both the anthropogenic forcing and natural forcing result in easterly wind anomalies over the equator, which reduce the wind speed, thereby lead to less evaporation and warmer SST in the equatorial western basin. Based on Bjerknes feedback, the easterly wind anomalies uplift the thermocline, which is unfavorable to SST warming in the eastern basin, and contribute to SST warming via deeper thermocline in the western basin. The easterly anomalies also drive westward anomalous equatorial currents, against the eastward climatology currents, which is in favor of the SST warming in the western basin via anomalous warm advection. Therefore, both the atmospheric and oceanic processes are in favor of the IOD-like warming pattern formation over the equator.
NASA Astrophysics Data System (ADS)
Feng, Ran; Otto-Bliesner, Bette L.; Fletcher, Tamara L.; Tabor, Clay R.; Ballantyne, Ashley P.; Brady, Esther C.
2017-05-01
Proxy reconstructions of the mid-Piacenzian warm period (mPWP, between 3.264 and 3.025 Ma) suggest terrestrial temperatures were much warmer in the northern high latitudes (55°-90°N, referred to as NHL) than present-day. Climate models participating in the Pliocene Model Intercomparison Project Phase 1 (PlioMIP1) tend to underestimate this warmth. For instance, the underestimate is ∼10 °C on average across NHL and up to 17 °C in the Canadian Arctic region in the Community Climate System Model version 4 (CCSM4). Here, we explore potential mPWP climate forcings that might contribute to this mPWP mismatch. We carry out seven experiments to assess terrestrial temperature responses to Pliocene Arctic gateway closure, variations in CO2 level, and orbital forcing at millennial time scale. To better compare the full range of simulated terrestrial temperatures with sparse proxy data, we introduce a pattern recognition technique that simplifies the model surface temperatures to a few representative patterns that can be validate with the limited terrestrial proxy data. The pattern recognition technique reveals two prominent features of simulated Pliocene surface temperature responses. First, distinctive patterns of amplified warming occur in the NHL, which can be explained by lowered surface elevation of Greenland, pattern and amount of Arctic sea ice loss, and changing strength of Atlantic meridional overturning circulation. Second, patterns of surface temperature response are similar among experiments with different forcing mechanisms. This similarity is due to strong feedbacks from responses in surface albedo and troposphere water vapor content to sea ice changes, which overwhelm distinctions in forcings from changes in insolation, CO2 forcing, and Arctic gateway closure. By comparing CCSM4 simulations with proxy records, we demonstrate that both model and proxy records show similar patterns of mPWP NHL terrestrial warmth, but the model underestimates the magnitude. High insolation, greater CO2 forcing, and Arctic gateways closure each contributes to reduce the underestimate by enhancing the Arctic warmth of 1-2 °C. These results highlight the importance of considering proxy NHL warmth in the context of Pliocene Arctic gateway changes, and variations in insolation and CO2 forcing.
NASA Astrophysics Data System (ADS)
Caley, Thibaut; Malaizé, Bruno; Bassinot, Franck; Clemens, Steven C.; Caillon, Nicolas; Linda, Rossignol; Charlier, Karine; Rebaubier, Helene
2011-09-01
Previous studies have suggested that Marine Isotope Stage (MIS) 13, recognized as atypical in many paleoclimate records, is marked by the development of anomalously strong summer monsoons in the northern tropical areas. To test this hypothesis, we performed a multi-proxy study on three marine records from the tropical Indian Ocean in order to reconstruct and analyse changes in the summer Indian monsoon winds and precipitations during MIS 13. Our data confirm the existence of a low-salinity event during MIS 13 in the equatorial Indian Ocean but we argue that this event should not be considered as "atypical". Taking only into account a smaller precession does not make it possible to explain such precipitation episode. However, when considering also the larger obliquity in a more complete orbitally driven monsoon "model," one can successfully explain this event. In addition, our data suggest that intense summer monsoon winds, although not atypical in strength, prevailed during MIS 13 in the western Arabian Sea. These strong monsoon winds, transporting important moisture, together with the effect of insolation and Eurasian ice sheet, are likely one of the factors responsible for the intense monsoon precipitation signal recorded in China loess, as suggested by model simulations.
Pluto and Triton: Interactions Between Volatiles and Dynamics
NASA Astrophysics Data System (ADS)
Rubincam, D. P.
2001-01-01
Volatiles moving across the surfaces of Pluto and Triton can give rise to interesting dynamical consequences. Conversely, measurement of dynamical states can help constrain the movement of volatiles and interior structure of both bodies. Polar wander may theoretically occur on both Triton and Pluto. Triton's obliquity is low, so that the equatorial regions receive more insolation than the poles. Hence there is a tendency for nitrogen ice to sublime at the equator and condense at the poles, creating polar caps. If the nitrogen supply is large enough, then these caps could move in approximately 105 years the global equivalent of 200 m of ice to the poles. At this point the equatorial moment of inertia becomes larger than the moment of inertia measured about the rotation axis, so that Triton overbalances and becomes dynamically unstable. The satellite then undergoes polar wander, restoring stability when the new equator contains the excess matter. Hence the pole may be continually wandering. Neptune raises a permanent tidal bulge on Triton, so that the satellite's surface is elongated like a football, with the long axis pointing at Neptune. This is expected to be the axis about which the pole wanders. Volatile migration would resurface the satellite to some depth and wandering would disturb leading side/trailing side crater statistics. Additional information is contained in the original extended abstract.
Ostaszewski, Michal; Pauk, Jolanta
2018-05-16
Gait analysis is a useful tool medical staff use to support clinical decision making. There is still an urgent need to develop low-cost and unobtrusive mobile health monitoring systems. The goal of this study was twofold. Firstly, a wearable sensor system composed of plantar pressure insoles and wearable sensors for joint angle measurement was developed. Secondly, the accuracy of the system in the measurement of ground reaction forces and joint moments was examined. The measurements included joint angles and plantar pressure distribution. To validate the wearable sensor system and examine the effectiveness of the proposed method for gait analysis, an experimental study on ten volunteer subjects was conducted. The accuracy of measurement of ground reaction forces and joint moments was validated against the results obtained from a reference motion capture system. Ground reaction forces and joint moments measured by the wearable sensor system showed a root mean square error of 1% for min. GRF and 27.3% for knee extension moment. The correlation coefficient was over 0.9, in comparison with the stationary motion capture system. The study suggests that the wearable sensor system could be recommended both for research and clinical applications outside a typical gait laboratory.
Control conditions for footwear insole and orthotic research.
Lewinson, Ryan T; Worobets, Jay T; Stefanyshyn, Darren J
2016-07-01
Footwear insoles/orthotics alter variables associated with musculoskeletal injury; however, their clinical effectiveness is inconclusive. One explanation for this is the possibility that control conditions may actually produce biomechanical changes that induce clinical responses. The purpose of this study was to compare insole/orthotic control conditions to identify if variables at the ground, ankle and knee that are associated with injury are altered relative to what participants would normally experience in their own shoes. Gait analysis was performed on 15 participants during walking and running while wearing (1) their own shoes, (2) #1 with a 3mm flat insole, (3) a standardized shoe, and (4) #3 with a 3mm flat insole, where external knee adduction moments, external knee adduction angular impulses, internal ankle inversion moments, and vertical ground reaction force loading rates were determined. Conditions 2-4 were expressed as percent changes relative to condition 1, and tests of proportions assessed if there were a significant number of individuals experiencing a biomechanically relevant change for each variable. Repeated-measures ANOVAs were used to identify group differences between conditions. The majority of movement-footwear-variable combinations contained a proportion of individuals experiencing biomechanically relevant changes compared to condition 1 that was significantly greater than the expected proportion of 20%. No systematic differences were found between conditions. This suggests that conditions 2-4 may alter biomechanics relative to baseline for many participants, but not in a consistent way across participants. It is recommended that participant's own footwear be used as control conditions in future trials where biomechanics are primary variables of interest. Copyright © 2016 Elsevier B.V. All rights reserved.
Péter, Annamária; Hegyi, András; Stenroth, Lauri; Finni, Taija; Cronin, Neil J
2015-09-18
Large forces are generated under the big toe in the push-off phase of walking. The largest flexor muscle of the big toe is the flexor hallucis longus (FHL), which likely contributes substantially to these forces. This study examined FHL function at different levels of isometric plantarflexion torque and in the push-off phase at different speeds of walking. FHL and calf muscle activity were measured with surface EMG and plantar pressure was recorded with pressure insoles. FHL activity was compared to the activity of the calf muscles. Force and impulse values were calculated under the big toe, and were compared to the entire pressed area of the insole to determine the relative contribution of big toe flexion forces to the ground reaction force. FHL activity increased with increasing plantarflexion torque level (F=2.8, P=0.024) and with increasing walking speed (F=11.608, P<0.001). No differences were observed in the relative contribution of the force under the big toe to the entire sole between different plantarflexion torque levels (F=0.836, P=0.529). On the contrary, in the push-off phase of walking, peak force under the big toe increased at a higher rate than force under the other areas of the plantar surface (F=3.801, P=0.018), implying a greater relative contribution to total force at faster speeds. Moreover, substantial differences were found between isometric plantarflexion and walking concerning FHL activity relative to that of the calf muscles, highlighting the task-dependant behaviour of FHL. Copyright © 2015 Elsevier Ltd. All rights reserved.
Long time management of fossil fuel resources to limit global warming and avoid ice age onsets
NASA Astrophysics Data System (ADS)
Shaffer, Gary
2009-02-01
There are about 5000 billion tons of fossil fuel carbon in accessible reserves. Combustion of all this carbon within the next few centuries would force high atmospheric CO2 content and extreme global warming. On the other hand, low atmospheric CO2 content favors the onset of an ice age when changes in the Earth's orbit lead to low summer insolation at high northern latitudes. Here I present Earth System Model projections showing that typical reduction targets for fossil fuel use in the present century could limit ongoing global warming to less than one degree Celcius above present. Furthermore, the projections show that combustion pulses of remaining fossil fuel reserves could then be tailored to raise atmospheric CO2 content high and long enough to parry forcing of ice age onsets by summer insolation minima far into the future. Our present interglacial period could be extended by about 500,000 years in this way.
A 22,000-year record of monsoonal precipitation from northern Chile's Atacama Desert
Betancourt, J.L.; Latorre, C.; Rech, J.A.; Quade, Jay; Rylander, K.A.
2000-01-01
Fossil rodent middens and wetland deposits from the central Atacama Desert (22° to 24°S) indicate increasing summer precipitation, grass cover, and groundwater levels from 16.2 to 10.5 calendar kiloyears before present (ky B.P.). Higher elevation shrubs and summer-flowering grasses expanded downslope across what is now the edge of Absolute Desert, a broad expanse now largely devoid of rainfall and vegetation. Paradoxically, this pluvial period coincided with the summer insolation minimum and reduced adiabatic heating over the central Andes. Summer precipitation over the central Andes and central Atacama may depend on remote teleconnections between seasonal insolation forcing in both hemispheres, the Asian monsoon, and Pacific sea surface temperature gradients. A less pronounced episode of higher groundwater levels in the central Atacama from 8 to 3 ky B.P. conflicts with an extreme lowstand of Lake Titicaca, indicating either different climatic forcing or different response times and sensitivities to climatic change.
A 22,000-Year Record of Monsoonal Precipitation from Northern Chile's Atacama Desert.
Betancourt; Latorre; Rech; Quade; Rylander
2000-09-01
Fossil rodent middens and wetland deposits from the central Atacama Desert (22 degrees to 24 degrees S) indicate increasing summer precipitation, grass cover, and groundwater levels from 16.2 to 10.5 calendar kiloyears before present (ky B.P.). Higher elevation shrubs and summer-flowering grasses expanded downslope across what is now the edge of Absolute Desert, a broad expanse now largely devoid of rainfall and vegetation. Paradoxically, this pluvial period coincided with the summer insolation minimum and reduced adiabatic heating over the central Andes. Summer precipitation over the central Andes and central Atacama may depend on remote teleconnections between seasonal insolation forcing in both hemispheres, the Asian monsoon, and Pacific sea surface temperature gradients. A less pronounced episode of higher groundwater levels in the central Atacama from 8 to 3 ky B.P. conflicts with an extreme lowstand of Lake Titicaca, indicating either different climatic forcing or different response times and sensitivities to climatic change.
Cheung, Roy T. H.; An, Winko W.; Au, Ivan P. H.; Zhang, Janet H.; Chan, Zoe Y. S.; Man, Alfred; Lau, Fannie O. Y.; Lam, Melody K. Y.; Lau, K. K.; Leung, C. Y.; Tsang, N. W.; Sze, Louis K. Y.; Lam, Gilbert W. K.
2017-01-01
This study introduced a novel but simple method to continuously measure footstrike patterns in runners using inexpensive force sensors. Two force sensing resistors were firmly affixed at the heel and second toe of both insoles to collect the time signal of foot contact. A total of 109 healthy young adults (42 males and 67 females) were recruited in this study. They ran on an instrumented treadmill at 0°, +10°, and -10° inclinations and attempted rearfoot, midfoot, and forefoot landings using real time visual biofeedback. Intra-step strike index and onset time difference between two force sensors were measured and analyzed with univariate linear regression. We analyzed 25,655 footfalls and found that onset time difference between two sensors explained 80–84% of variation in the prediction model of strike index (R-squared = 0.799–0.836, p<0.001). However, the time windows to detect footstrike patterns on different surface inclinations were not consistent. These findings may allow laboratory-based gait retraining to be implemented in natural running environments to aid in both injury prevention and performance enhancement. PMID:28599003
Insole optical fiber Bragg grating sensors network for dynamic vertical force monitoring
NASA Astrophysics Data System (ADS)
Domingues, Maria Fátima; Tavares, Cátia; Leitão, Cátia; Frizera-Neto, Anselmo; Alberto, Nélia; Marques, Carlos; Radwan, Ayman; Rodriguez, Jonathan; Postolache, Octavian; Rocon, Eduardo; André, Paulo; Antunes, Paulo
2017-09-01
In an era of unprecedented progress in technology and increase in population age, continuous and close monitoring of elder citizens and patients is becoming more of a necessity than a luxury. Contributing toward this field and enhancing the life quality of elder citizens and patients with disabilities, this work presents the design and implementation of a noninvasive platform and insole fiber Bragg grating sensors network to monitor the vertical ground reaction forces distribution induced in the foot plantar surface during gait and body center of mass displacements. The acquired measurements are a reliable indication of the accuracy and consistency of the proposed solution in monitoring and mapping the vertical forces active on the foot plantar sole, with a sensitivity up to 11.06 pm/N. The acquired measurements can be used to infer the foot structure and health condition, in addition to anomalies related to spine function and other pathologies (e.g., related to diabetes); also its application in rehabilitation robotics field can dramatically reduce the computational burden of exoskeletons' control strategy. The proposed technology has the advantages of optical fiber sensing (robustness, noninvasiveness, accuracy, and electromagnetic insensitivity) to surpass all drawbacks verified in traditionally used sensing systems (fragility, instability, and inconsistent feedback).
Insole optical fiber Bragg grating sensors network for dynamic vertical force monitoring.
Domingues, Maria Fátima; Tavares, Cátia; Leitão, Cátia; Frizera-Neto, Anselmo; Alberto, Nélia; Marques, Carlos; Radwan, Ayman; Rodriguez, Jonathan; Postolache, Octavian; Rocon, Eduardo; André, Paulo; Antunes, Paulo
2017-09-01
In an era of unprecedented progress in technology and increase in population age, continuous and close monitoring of elder citizens and patients is becoming more of a necessity than a luxury. Contributing toward this field and enhancing the life quality of elder citizens and patients with disabilities, this work presents the design and implementation of a noninvasive platform and insole fiber Bragg grating sensors network to monitor the vertical ground reaction forces distribution induced in the foot plantar surface during gait and body center of mass displacements. The acquired measurements are a reliable indication of the accuracy and consistency of the proposed solution in monitoring and mapping the vertical forces active on the foot plantar sole, with a sensitivity up to 11.06 ?? pm / N . The acquired measurements can be used to infer the foot structure and health condition, in addition to anomalies related to spine function and other pathologies (e.g., related to diabetes); also its application in rehabilitation robotics field can dramatically reduce the computational burden of exoskeletons’ control strategy. The proposed technology has the advantages of optical fiber sensing (robustness, noninvasiveness, accuracy, and electromagnetic insensitivity) to surpass all drawbacks verified in traditionally used sensing systems (fragility, instability, and inconsistent feedback).
NASA Astrophysics Data System (ADS)
Grant, K. M.; Grimm, R.; Mikolajewicz, U.; Marino, G.; Ziegler, M.; Rohling, E. J.
2016-05-01
The Mediterranean basin is sensitive to global sea-level changes and African monsoon variability on orbital timescales. Both of these processes are thought to be important to the deposition of organic-rich sediment layers or 'sapropels' throughout the eastern Mediterranean, yet their relative influences remain ambiguous. A related issue is that an assumed 3-kyr lag between boreal insolation maxima and sapropel mid-points remains to be tested. Here we present new geochemical and ice-volume-corrected planktonic foraminiferal stable isotope records for sapropels S1 (Holocene), S3, S4, and S5 (Marine Isotope Stage 5) in core LC21 from the southern Aegean Sea. The records have a radiometrically constrained chronology that has already been synchronised with the Red Sea relative sea-level record, and this allows detailed examination of the timing of sapropel deposition relative to insolation, sea-level, and African monsoon changes. We find that sapropel onset was near-synchronous with monsoon run-off into the eastern Mediterranean, but that insolation-sapropel/monsoon phasings were not systematic through the last glacial cycle. These latter phasings instead appear to relate to sea-level changes. We propose that persistent meltwater discharges into the North Atlantic (e.g., at glacial terminations) modified the timing of sapropel deposition by delaying the timing of peak African monsoon run-off. These observations may reconcile apparent model-data offsets with respect to the orbital pacing of the African monsoon. Our observations also imply that the previous assumption of a systematic 3-kyr lag between insolation maxima and sapropel midpoints may lead to overestimated insolation-sapropel phasings. Finally, we surmise that both sea-level rise and monsoon run-off contributed to surface-water buoyancy changes at times of sapropel deposition, and their relative influences differed per sapropel case, depending on their magnitudes. Sea-level rise was clearly important for sapropel S1, whereas monsoon forcing was more important for sapropels S3, S4, and S5.
NASA Astrophysics Data System (ADS)
Kawamura, K.; Aoki, S.; Nakazawa, T.; Abe-Ouchi, A.; Saito, F.
2013-12-01
Investigation of the roles of different forcings (e.g. orbital variations and greenhouse gases) on climate and sea level requires a paleoclimate chronology with high accuracy. Such a chronology for the past 360 ky was constructed through orbital tuning of O2/N2 ratio of trapped air in the Dome Fuji and Vostok ice cores with local summer insolation (Kawamura et al., 2007). We extend the O2/N2 chronology back to ~500 kyr by analyzing the second Dome Fuji ice core, and find the duration of 11 ka, 5 ka, 9 ka, and 20 ka for MIS 5e, 7e, 9e and 11c interglacial periods in Antarctica, with similar variations in atmospheric CO2. The termination timings are consistent with the rising phase of Northern Hemisphere summer insolation. Marine sediment cores from northern North Atlantic contain millennial-scale signatures in various proxy records (e.g. SST, IRD), including abrupt climatic shifts and bipolar seesaw. Based on the bipolar correlation of millennial-scale events, it is possible to transfer our accurate chronology to marine cores from the North Atlantic. As a first attempt, we correlate the planktonic δ18O and IRD records from the marine core ODP 980 with the ice-core δ18O and CH4 around MIS 11. We find that the durations of interglacial plateaus of planktonic δ18O (proxy for sea surface environments) and benthic δ18O (proxy for ice volume and deep-sea temperature) for MIS 11c are 20 and 15 ka, respectively, which are significantly shorter than originally suggested. These durations are similar to that of Antarctic climate and atmospheric CO2. However, the onsets of interglacial levels in ODP980 for MIS 11 are significantly later than those in Antarctic δ18O and atmospheric CO2 (by as much as ~10 ka), suggesting very long duration (more than one precession cycle) for the complete deglaciation and northern high-latitude warming for Termination V. Atmospheric CO2 may have been the critical forcing for this termination. The long duration of Termination V is consistent with our new ice sheet simulations (extended from the work of Abe-Ouchi et al., 2013) in which an ice-sheet/climate model is forced by insolation and CO2 variations. In the presentation, comparisons for other interglacial periods will also be reported.
NASA Astrophysics Data System (ADS)
Adloff, F.; Mikolajewicz, U.; Kučera, M.; Grimm, R.; Maier-Reimer, E.; Schmiedl, G.; Emeis, K.-C.
2011-10-01
Nine thousand years ago (9 ka BP), the Northern Hemisphere experienced enhanced seasonality caused by an orbital configuration close to the minimum of the precession index. To assess the impact of this "Holocene Insolation Maximum" (HIM) on the Mediterranean Sea, we use a regional ocean general circulation model forced by atmospheric input derived from global simulations. A stronger seasonal cycle is simulated by the model, which shows a relatively homogeneous winter cooling and a summer warming with well-defined spatial patterns, in particular, a subsurface warming in the Cretan and western Levantine areas. The comparison between the SST simulated for the HIM and a reconstruction from planktonic foraminifera transfer functions shows a poor agreement, especially for summer, when the vertical temperature gradient is strong. As a novel approach, we propose a reinterpretation of the reconstruction, to consider the conditions throughout the upper water column rather than at a single depth. We claim that such a depth-integrated approach is more adequate for surface temperature comparison purposes in a situation where the upper ocean structure in the past was different from the present-day. In this case, the depth-integrated interpretation of the proxy data strongly improves the agreement between modelled and reconstructed temperature signal with the subsurface summer warming being recorded by both model and proxies, with a small shift to the south in the model results. The mechanisms responsible for the peculiar subsurface pattern are found to be a combination of enhanced downwelling and wind mixing due to strengthened Etesian winds, and enhanced thermal forcing due to the stronger summer insolation in the Northern Hemisphere. Together, these processes induce a stronger heat transfer from the surface to the subsurface during late summer in the western Levantine; this leads to an enhanced heat piracy in this region, a process never identified before, but potentially characteristic of time slices with enhanced insolation.
NASA Astrophysics Data System (ADS)
Adloff, F.; Mikolajewicz, U.; Kučera, M.; Grimm, R.; Maier-Reimer, E.; Schmiedl, G.; Emeis, K.-C.
2011-11-01
Nine thousand years ago (9 ka BP), the Northern Hemisphere experienced enhanced seasonality caused by an orbital configuration close to the minimum of the precession index. To assess the impact of this "Holocene Insolation Maximum" (HIM) on the Mediterranean Sea, we use a regional ocean general circulation model forced by atmospheric input derived from global simulations. A stronger seasonal cycle is simulated by the model, which shows a relatively homogeneous winter cooling and a summer warming with well-defined spatial patterns, in particular, a subsurface warming in the Cretan and western Levantine areas. The comparison between the SST simulated for the HIM and a reconstruction from planktonic foraminifera transfer functions shows a poor agreement, especially for summer, when the vertical temperature gradient is strong. As a novel approach, we propose a reinterpretation of the reconstruction, to consider the conditions throughout the upper water column rather than at a single depth. We claim that such a depth-integrated approach is more adequate for surface temperature comparison purposes in a situation where the upper ocean structure in the past was different from the present-day. In this case, the depth-integrated interpretation of the proxy data strongly improves the agreement between modelled and reconstructed temperature signal with the subsurface summer warming being recorded by both model and proxies, with a small shift to the south in the model results. The mechanisms responsible for the peculiar subsurface pattern are found to be a combination of enhanced downwelling and wind mixing due to strengthened Etesian winds, and enhanced thermal forcing due to the stronger summer insolation in the Northern Hemisphere. Together, these processes induce a stronger heat transfer from the surface to the subsurface during late summer in the western Levantine; this leads to an enhanced heat piracy in this region, a process never identified before, but potentially characteristic of time slices with enhanced insolation.
Evolutionary stasis in pollen morphogenesis due to natural selection.
Matamoro-Vidal, Alexis; Prieu, Charlotte; Furness, Carol A; Albert, Béatrice; Gouyon, Pierre-Henri
2016-01-01
The contribution of developmental constraints and selective forces to the determination of evolutionary patterns is an important and unsolved question. We test whether the long-term evolutionary stasis observed for pollen morphogenesis (microsporogenesis) in eudicots is due to developmental constraints or to selection on a morphological trait shaped by microsporogenesis: the equatorial aperture pattern. Most eudicots have three equatorial apertures but several taxa have independently lost the equatorial pattern and have microsporogenesis decoupled from aperture pattern determination. If selection on the equatorial pattern limits variation, we expect to see increased variation in microsporogenesis in the nonequatorial clades. Variation of microsporogenesis was studied using phylogenetic comparative analyses in 83 species dispersed throughout eudicots including species with and without equatorial apertures. The species that have lost the equatorial pattern have highly variable microsporogenesis at the intra-individual and inter-specific levels regardless of their pollen morphology, whereas microsporogenesis remains stable in species with the equatorial pattern. The observed burst of variation upon loss of equatorial apertures shows that there are no strong developmental constraints precluding variation in microsporogenesis, and that the stasis is likely to be due principally to selective pressure acting on pollen morphogenesis because of its implication in the determination of the equatorial aperture pattern. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Wu, Chi-Hua; Lee, Shih-Yu; Chiang, John C. H.
2018-07-01
On orbital timescales, higher summer insolation is thought to strengthen the continental monsoon while weakening the maritime monsoon in the Northern hemisphere. Through simulations using the Community Earth System Model, we evaluated the relative influence of perihelion precession and high obliquity in the early Holocene during the Asian summer monsoon. The major finding was that precession dominates the atmospheric heating change over the Tibetan Plateau-Himalayas and Maritime Continent, whereas obliquity is responsible for the heating change over the equatorial Indian Ocean. Thus, precession and obliquity can play contrasting roles in driving the monsoons on orbital timescales. In late spring-early summer, interior Asian continental heating drives the South and East Asian monsoons. The broad-scale monsoonal circulation further expands zonally in July-August, corresponding to the development of summer monsoons in West Africa and the subtropical Western North Pacific (WNP) as well as a sizable increase in convection over the equatorial Indian Ocean. Tropical and oceanic heating becomes crucial in late summer. Over South Asia-Indian Ocean (50°E-110°E), the precession maximum intensifies the monsoonal Hadley cell (heating with an inland/highland origin), which is opposite to the meridional circulation change induced by high obliquity (heating with a tropical origin). The existence of the Tibetan Plateau-Himalayas intensifies the precessional impact. During the late-summer phase of the monsoon season, the effect of obliquity on tropical heating can be substantial. In addition to competing with Asian continental heating, obliquity-enhanced heating over the equatorial Indian Ocean also has a Walker-type circulation impact, resulting in suppression of precession-enhanced heating over the Maritime Continent.
Long-term surface temperature modeling of Pluto
NASA Astrophysics Data System (ADS)
Earle, Alissa M.; Binzel, Richard P.; Young, Leslie A.; Stern, S. A.; Ennico, K.; Grundy, W.; Olkin, C. B.; Weaver, H. A.; New Horizons Geology and Geophysics Imaging Team
2017-05-01
NASA's New Horizons' reconnaissance of the Pluto system has revealed at high resolution the striking albedo contrasts from polar to equatorial latitudes on Pluto, as well as the sharpness of boundaries for longitudinal variations. These contrasts suggest that Pluto must undergo dynamic evolution that drives the redistribution of volatiles. Using the New Horizons results as a template, we explore the surface temperature variations driven seasonally on Pluto considering multiple timescales. These timescales include the current orbit (248 years) as well as the timescales for obliquity precession (peak-to-peak amplitude of 23° over 3 million years) and regression of the orbital longitude of perihelion (3.7 million years). These orbital variations create epochs of ;Extreme Seasons; where one pole receives a short, relatively warm summer and long winter, while the other receives a much longer, but less intense summer and short winter. We use thermal modeling to build upon the long-term insolation history model described by Earle and Binzel (2015) and investigate how these seasons couple with Pluto's albedo contrasts to create temperature effects. From this study we find that a bright region at the equator, once established, can become a site for net deposition. We see the region informally known as Sputnik Planitia as an example of this, and find it will be able to perpetuate itself as an ;always available; cold trap, thus having the potential to survive on million year or substantially longer timescales. Meanwhile darker, low-albedo, regions near the equator will remain relative warm and generally not attract volatile deposition. We argue that the equatorial region is a ;preservation zone; for whatever albedo is seeded there. This offers insight as to why the equatorial band of Pluto displays the planet's greatest albedo contrasts.
Middle Miocene climate cooling linked to intensification of eastern equatorial Pacific upwelling
NASA Astrophysics Data System (ADS)
Holbourn, A. E.; Kuhnt, W.; Lyle, M. W.; Schneider, L. J.; Romero, O. E.; Andersen, N.
2013-12-01
During the middle Miocene, Earth's climate transitioned from a relatively warm phase (Miocene climatic optimum, ~17-15 Ma) into a colder mode with re-establishment of permanent ice sheets on Antarctica. Carbon sequestration and atmospheric CO2 drawdown through increased terrigenous and/or marine productivity have been proposed as the main drivers of this fundamental transition. However, comparatively little is known about the processes initially sustaining global warmth and about the chain of climate events that reversed this trend and promoted ice growth on Antarctica after ~15 Ma. We integrate high-resolution (1-3 kyr) benthic stable isotope data with XRF-scanner derived biogenic silica and carbonate accumulation estimates in an exceptionally well-preserved sedimentary archive to reconstruct variations in eastern equatorial Pacific upwelling and to investigate temporal linkages between high- and low-latitude climate change over the interval 16-13 Ma. Our records show that the climatic optimum (16.8-14.7 Ma) was characterized by high amplitude climate variations, marked by intense perturbations of the carbon cycle. Episodes of peak warmth at (southern hemisphere) insolation maxima coincided with transient shoaling of the carbonate compensation depth and enhanced carbonate dissolution in the deep ocean. A switch to obliquity-paced climate variability after 14.7 Ma concurred with a general improvement in carbonate preservation and the onset of stepwise global cooling, culminating with extensive ice growth over Antarctica at ~13.8 Ma (Mi3 event). We find that two massive increases in opal accumulation at ~14.0 and ~13.8 Ma occurred just before and during the final and most prominent cooling step, supporting the hypothesis that increased primary productivity due to enhancement of the eastern equatorial Pacific cold tongue contributed to CO2 drawdown and promoted global cooling.
The role of the Indonesian Throughflow in equatorial Pacific thermocline ventilation
NASA Astrophysics Data System (ADS)
Rodgers, Keith B.; Cane, Mark A.; Naik, Naomi H.; Schrag, Daniel P.
1999-09-01
The role of the Indonesian Throughflow (ITF) in the thermocline circulation of the low-latitude Pacific Ocean is explored using a high-resolution primitive equation ocean circulation model. Seasonally forced runs for a domain with an open Indonesian passage are compared with seasonally forced runs for a closed Pacific domain. Three cases are considered: one with no throughflow, one with 10 Sv of imposed ITF transport, and one with 20 Sv of ITF transport. Two idealized tracers, one that tags northern component subtropical water and another that tags southern component subtropical water, are used to diagnose the mixing ratio of northern and southern component waters in the equatorial thermocline. It is found that the mixing ratio of north/south component waters in the equatorial thermocline is highly sensitive to whether the model accounts for an ITF. Without an ITF, the source of equatorial undercurrent water is primarily of North Pacific origin, with the ratio of northern to southern component water being approximately 2.75 to 1. The ratio of northern to southern component water in the Equatorial Undercurrent with 10 Sv of ITF is approximately 1.4 to 1, and the ratio with 20 Sv of imposed ITF is 1 to 1.25. Estimates from data suggest a mean mixing ratio of northern to southern component water of less than 1 to 1. Assuming that the mixing ratio changes approximately linearly as the ITF transport varies between 10 and 20 Sv, an approximate balance between northern and southern component water is reached when the ITF transport is approximately 16 Sv. It is also shown that for the isopycnal surfaces within the core of the equatorial undercurrent, a 2°C temperature front exists across the equator in the western equatorial Pacific, beneath the warm pool. The implications of the model results and the temperature data for the heat budget of the equatorial Pacific are considered.
Isoyama, Soichiro; Barack, Leor; Dolan, Sam R; Le Tiec, Alexandre; Nakano, Hiroyuki; Shah, Abhay G; Tanaka, Takahiro; Warburton, Niels
2014-10-17
For a self-gravitating particle of mass μ in orbit around a Kerr black hole of mass M ≫ μ, we compute the O(μ/M) shift in the frequency of the innermost stable circular equatorial orbit due to the conservative piece of the gravitational self-force acting on the particle. Our treatment is based on a Hamiltonian formulation of the dynamics in terms of geodesic motion in a certain locally defined effective smooth spacetime. We recover the same result using the so-called first law of binary black-hole mechanics. We give numerical results for the innermost stable circular equatorial orbit frequency shift as a function of the black hole's spin amplitude, and compare with predictions based on the post-Newtonian approximation and the effective one-body model. Our results provide an accurate strong-field benchmark for spin effects in the general-relativistic two-body problem.
FreeWalker: a smart insole for longitudinal gait analysis.
Wang, Baitong; Rajput, Kuldeep Singh; Tam, Wing-Kin; Tung, Anthony K H; Yang, Zhi
2015-08-01
Gait analysis is an important diagnostic measure to investigate the pattern of walking. Traditional gait analysis is generally carried out in a gait lab, with equipped force and body tracking sensors, which needs a trained medical professional to interpret the results. This procedure is tedious, expensive, and unreliable and makes it difficult to track the progress across multiple visits. In this paper, we present a smart insole called FreeWalker, which provides quantitative gait analysis outside the confinement of traditional lab, at low- cost. The insole consists of eight pressure sensors and two motion tracking sensors, i.e. 3-axis accelerometer and 3-axis gyroscope. This enables measurement of under-foot pressure distribution and motion sequences in real-time. The insole is enabled with onboard SD card as well as wireless data transmission, which help in continuous gait-cycle analysis. The data is then sent to a gateway, for analysis and interpretation of data, using a user interface where gait features are graphically displayed. We also present validation result of a subject's left foot, who was asked to perform a specific task. Experiment results show that we could achieve a data-sampling rate of over 1 KHz, transmitting data up to a distance of 20 meter and maintain a battery life of around 24 hours. Taking advantage of these features, FreeWalker can be used in various applications, like medical diagnosis, rehabilitation, sports and entertainment.
Insolation-induced mid-Brunhes transition in Southern Ocean ventilation and deep-ocean temperature.
Yin, Qiuzhen
2013-02-14
Glacial-interglacial cycles characterized by long cold periods interrupted by short periods of warmth are the dominant feature of Pleistocene climate, with the relative intensity and duration of past and future interglacials being of particular interest for civilization. The interglacials after 430,000 years ago were characterized by warmer climates and higher atmospheric concentrations of carbon dioxide than the interglacials before, but the cause of this climatic transition (the so-called mid-Brunhes event (MBE)) is unknown. Here I show, on the basis of model simulations, that in response to insolation changes only, feedbacks between sea ice, temperature, evaporation and salinity caused vigorous pre-MBE Antarctic bottom water formation and Southern Ocean ventilation. My results also show that strong westerlies increased the pre-MBE overturning in the Southern Ocean via an increased latitudinal insolation gradient created by changes in eccentricity during austral winter and by changes in obliquity during austral summer. The stronger bottom water formation led to a cooler deep ocean during the older interglacials. These insolation-induced differences in the deep-sea temperature and in the Southern Ocean ventilation between the more recent interglacials and the older ones were not expected, because there is no straightforward systematic difference in the astronomical parameters between the interglacials before and after 430,000 years ago. Rather than being a real 'event', the apparent MBE seems to have resulted from a series of individual interglacial responses--including notable exceptions to the general pattern--to various combinations of insolation conditions. Consequently, assuming no anthropogenic interference, future interglacials may have pre- or post-MBE characteristics without there being a systematic change in forcings. These findings are a first step towards understanding the magnitude change of the interglacial carbon dioxide concentration around 430,000 years ago.
Insights into changes in precipitation patterns in Brazil from oxygen isotope ratios on speleothems
NASA Astrophysics Data System (ADS)
Cruz, F.; Mathias, V.; Stephen, B. J.; Wang, X.; Cheng, H.; Werner, M.; Edwards, R. L.; Karmann, I.; Auler, A. S.
2008-12-01
Variations in tropical precipitation on millennial and orbital time scales can reflect a Hadley-cell-related anti- phasing between the Northern and Southern hemispheres due to the influence of insolation on the global summer monsoons. A new δ18O speleothem record from northeastern Brazil shows that insolation- driven changes in monsoon intensity are capable of producing a similar, zonally oriented anti-phasing within the same hemisphere. Comparison of our speleothem record with other precipitation-sensitive proxies from the central Andes and southeastern Brazil shows that precipitation in Northeastern Brazil has been out of phase with insolation and rainfall in the rest of tropical South America south of the equator since the Last Glacial Maximum. Northeastern Brazil experienced humid conditions when summer insolation was reduced and arid conditions when insolation was high. While previous interpretations of past climate change in NE South America have commonly invoked meridional displacements in ITCZ location as the main mechanism for changes in precipitation on millennial time scales, our results suggest that remote monsoon forcing is responsible for much of the observed precipitation changes on orbital time scales during the Holocene. These results demonstrate that orbitally driven out-of-phase relationships in precipitation are not limited to interhemispheric anti-phasing as demonstrated previously, but may well occur within the same hemisphere. Speleothem records also indicate contrasting climatic conditions around the Last Glacial Maximum in Brazil, characterized by marked dry and wet climates in the Nordeste and in southeastern Brazil, respectively. It is likely, however, that these regional differences primarily reflect more distant extratropical teleconnections from the Atlantic Ocean and high northern latitude changes during glacial conditions.
The ice age cycle and the deglaciations: an application of nonlinear regression modelling
NASA Astrophysics Data System (ADS)
Dalgleish, A. N.; Boulton, G. S.; Renshaw, E.
2000-03-01
We have applied the nonlinear regression technique known as additivity and variance stabilisation (AVAS) to time series which reflect Earth's climate over the last 600 ka. AVAS estimates a smooth, nonlinear transform for each variable, under the assumption of an additive model. The Earth's orbital parameters and insolation variations have been used as regression variables. Analysis of the contribution of each variable shows that the deglaciations are characterised by periods of increasing obliquity and perihelion approaching the vernal equinox, but not by any systematic change in eccentricity. The magnitude of insolation changes also plays no role. By approximating the transforms we can obtain a future prediction, with a glacial maximum at 60 ka AP, and a subsequent obliquity and precession forced deglaciation.
The role of boundary layer momentum advection in the mean location of the ITCZ
NASA Astrophysics Data System (ADS)
Dixit, Vishal; Srinivasan, J.
2017-08-01
The inter-tropical convergence zones (ITCZ) form closer to the equator during equinoxes while they form well away from the equator during the boreal summer. A simple three-way balance between the pressure gradients, Coriolis force and effective Rayleigh friction has been classically used to diagnose the location of maximum boundary layer convergence in the near equatorial ITCZ. If such a balance can capture the dynamics of off-equatorial convergence was not known. We used idealized aqua planet simulations with fixed, zonally symmetric sea surface temperature boundary conditions to simulate the near equatorial and off-equatorial ITCZ. As opposed to the convergence of inter-hemispheric flows in the near equatorial convergence, the off-equatorial convergence forms due to the deceleration of cross-equatorial meridional flow. The detailed momentum budget of the off-equatorial convergence zone reveals that the simple balance is not sufficient to capture the relevant dynamics. The deceleration of the meridional flow is strongly modulated by the inertial effects due to the meridional advection of zonal momentum in addition to the terms in the simple balance. The simple balance predicts a spurious near equatorial convergence and a consistent off-equatorial convergence of the meridional flow. The spurious convergence disappears when inertial effects are included in the balance. As cross equatorial meridional flow decelerates to form convergence, the inertial effects cancel the pressure gradient effects near the equator while they add away from the equator. The contribution to the off-equatorial convergence induced by the pressure gradients is significantly larger than the contribution due to the inertial effects and hence pressure gradients appear to be the primary factor in anchoring the strength and location of the off-equatorial convergence.
Pluto and Triton: Interactions Between Volatiles and Dynamics
NASA Technical Reports Server (NTRS)
Rubincam, D. P.
2001-01-01
Volatiles moving across the surfaces of Pluto and Triton can give rise to interesting dynamical consequences. Conversely, measurement of dynamical states can help constrain the movement of volatiles and interior structure of both bodies. Polar wander may theoretically occur on both Triton and Pluto. Triton's obliquity is low, so that the equatorial regions receive more insolation than the poles. Hence there is a tendency for nitrogen ice to sublime at the equator and condense at the poles, creating polar caps. If the nitrogen supply is large enough, then these caps could move in approximately 10(exp 5) years the global equivalent of 200 m of ice to the poles. At this point the equatorial moment of inertia becomes larger than the moment of inertia measured about the rotation axis, so that Triton overbalances and becomes dynamically unstable. The satellite then undergoes polar wander, restoring stability when the new equator contains the excess matter. Hence the pole may be continually wandering. Neptune raises a permanent tidal bulge on Triton, so that the satellite's surface is elongated like a football, with the long axis pointing at Neptune. This is expected to be the axis about which the pole wanders. Volatile migration would resurface the satellite to some depth and wandering would disturb leading side/trailing side crater statistics. Additional information is contained in the original extended abstract.
The influence of the equatorial QBO on sudden stratospheric warmings
NASA Technical Reports Server (NTRS)
Holton, James R.; Austin, John
1991-01-01
A global primitive-equation model of the stratosphere and mesosphere is integrated for specified planetary-wave forcing at the 100-mb level with mean zonal flow conditions corresponding to the westerly and easterly phases of the equatorial QBO, respectively. The responses in the two QBO phases were compared for integrations with wavenumber-1 forcing-amplitude maxima at 100 mb and 60 deg N varying from 100 to 400 m. The phase of the QBO had little effect on the results in the weak-wave (100-m) cases, which did not produce warmings, and strong-wave (400-m) cases, which produced major sudden warmings.
The crucial role of the Green Sahara in damping ENSO variability during the Holocene
NASA Astrophysics Data System (ADS)
Pausata, Francesco S. R.; Zhang, Qiong; Muschitiello, Francesco; Stager, Curt
2016-04-01
Several paleoclimate records show that the ENSO variability may have been remarkably smaller during the mid Holocene (MH) relative to today; however, MH model simulations in which only the orbital forcing is taken into account are not able to fully capture the magnitude of this change. We use a fully coupled simulation for 6000 yr BP (MH) in which we prescribed not only the MH orbital forcing but also Saharan vegetation and reduced dust concentrations. By performing a set of idealized experiments in which each forcing is changed in turn, we show that when accounting for both vegetated Sahara and reduced dust concentrations, the amplitude of the ENSO cycle and its variability are remarkably reduced (~25%) compared to case when only the orbital forcing is prescribed (only 7%). The changes in ENSO behavior are accompanied by damping of the Atlantic El Niño variability (almost 50%). The simulated changes in equatorial variability are connected to the momentous strengthening of the WAM monsoon, which extents all the way to the northernmost part of the Sahara desert. Such changes in the WAM and in the atmospheric circulation over the equatorial Atlantic led to a reduction of the Atlantic El Niño variability and affect ENSO behavior through the atmospheric circulation bridge between the Atlantic and the Pacific. Hence, our results suggest orbital forcing is likely not the only forcing at play behind the changes in ENSO behavior and point to the changes over equatorial Atlantic connected to the Sahara greening as a crucial factor in altering the ENSO spatiotemporal characteristic during the MH.
New observations of Yanai waves and equatorial inertia-gravity waves in the Pacific Ocean
NASA Astrophysics Data System (ADS)
Farrar, J. T.; Durland, T.
2011-12-01
In the 1970's and 1980's, there was a great deal of research activity on near-equatorial variability at periods of days to weeks associated with oceanic equatorial inertia-gravity waves and Yanai waves. At that time, the measurements available for studying these waves were much more limited than today: most of the available observations were from island tide gauges and a handful of short mooring records. We use more than a decade of the extensive modern data record from the TAO/TRITON mooring array in the Pacific Ocean to re-examine the internal-wave climate in the equatorial Pacific, with a focus on interpretation of the zonal-wavenumber/frequency spectrum of surface dynamic height relative to 500-m depth. Many equatorial-wave meridional modes can be identified, for both the first and second baroclinic mode. We also estimated zonal-wavenumber/frequency spectra for the zonal and meridional wind stress components. The location and extent of spectral peaks in dynamic height is readily rationalized using basic, linear theory of forced equatorial waves and the observed wind stress spectrum.
Analysis of heel pad tissues mechanics at the heel strike in bare and shod conditions.
Fontanella, C G; Forestiero, A; Carniel, E L; Natali, A N
2013-04-01
A combined experimental and numerical approach is used to investigate the interaction phenomena occurring between foot and footwear during the heel strike phase of the gait. Two force platforms are utilised to evaluate the ground reaction forces of a subject in bare and shod walking. The reaction forces obtained from the experimental tests are assumed as loading conditions for the numerical analyses using three dimensional models of the heel region and of the running shoe. The heel pad region, as fat and skin tissues, is described by visco-hyperelastic and fibre-reinforced hyperelastic formulations respectively and bone region by a linear orthotropic formulation. Different elastomeric foams are considered with regard to the outsole, the midsole and the insole layers. The mechanical properties are described by a hyperfoam formulation. The evaluation of the mechanical behaviour of the heel pad tissues at the heel strike in bare and shod conditions is performed considering different combinations of materials for midsole and insole layers. Results allow for the definition of the influence of different material characteristics on the mechanical response of the heel pad region, in particular showing the compressive stress differentiation in the bare and shod conditions. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Long-Range Statistical Forecasting of Korean Summer Precipitation
2008-03-01
in the equatorial Pacific during ENLN periods leads to tropical and extratropical atmospheric 10 circulation anomalies (e.g., Ford 2000). Part of...characteristic extratropical anomalies that occur during EN and LN events. Sardeshmukh and Hoskins (1988) proposed a mechanism by which anomalous tropical...forcing could induce an extratropical Rossby wave train response. Nitta (1987) and others identified a Rossby wave train response to off-equatorial
Wave Forcing of Saturn's Equatorial Oscillation
NASA Technical Reports Server (NTRS)
Flasar, F. M.; Schlinder, P. J.; Guerlet, S.; Fouchet, T.
2011-01-01
Ground-based measurements and Cassini data from CIRS thermal-infrared spectra and radio-occultation soundings have characterized the spatial structure and temporal behavior of a 15-year equatorial oscillation in Saturn's stratosphere. The equatorial region displays a vertical pattern of alternating warm and cold anomalies and, concomitantly, easterly and westerly winds relative to the cloud-top winds, with a peak-to-peak amplitude of 200 m/s. Comparison of the Cassini data over a four-year period has established that the pattern of mean zonal winds and temperatures descends at a rate of roughly I scale height over 4 years. This behavior is reminiscent of the equatorial oscillations in Earth's middle atmosphere. Here the zonal-mean spatial structure and descending pattern are driven by the absorption of vertically propagating waves. The maximum excursions in the pattern of easterly and westerly winds is determined by the limits of the zonal phase velocities of the waves. Here we report on the characterization of the waves seen in the temperature profiles retrieved from the Cassini radio-occultation soundings. The equatorial profiles exhibit a complex pattern of wavelike structure with dimensions one pressure scale height and smaller. We combine a spectral decomposition with a WKBJ analysis, where the vertical wavelength is assumed to vary slowly with the ambient static stability and doppler-shifted phase velocity of the wave. Use of the temperature and zonal wind maps from CIRS makes this approach viable. On Earth, the wave forcing associated with the equatorial oscillations generates secondary meridional circulations that affect the mean flow and planetary wave ducting well away from the equator. This may relate to the triggering of the recently reported mid-latitude storms on Saturn.
Marine Isotope Stage 11 : The Role of Co2, Insolation and Antarctica Ice Sheet On This Interglacial
NASA Astrophysics Data System (ADS)
Raynaud, D.; Loutre, M. F.; Ritz, C.; Barnola, J.-M.; Berger, A.; Chappellaz, J.; Jouzel, J.; Lipenkov, V.; Petit, J.-R.; Vimeux, F.
The Marine Isotopic Stage 11 (MIS 11), around 400kyr BP ago, has been suggested as an analogue for a future climate under natural forcing because of the similar condi- tions of orbitally driven insolation during this interglacial period and the one covering the Holocene and the near future. There are many open questions about unusual MIS 11 climatic conditions (length of the interglacial, temperature, sea level, marine car- bonate system), as recorded in different marine and continental records. The Antarctic Vostok ice core provides the only atmospheric record extending back to MIS 11 and we use it to discuss the Antarctic temperature, the atmospheric CO2 concentration and the ice sheet stability in the central part of East Antarctica during this interglacial. The unique nature of the Vostok atmospheric record leads us to use the available Vos- tok data to drive climate and ice sheet models for MIS 11. A model of intermediate complexity (LLN-2D model) is used to investigate the sensitivity of the simulated MIS 11 deglaciation to the interplay between insolation and CO2. It is shown that the length of the simulated interglacial depends strongly on the phasing between these two climate forcings. We also investigate the response of the Antarctic Ice Sheet to changing climate through simulations performed with the LGGE 3-D ice sheet model. The results indicate that sea level stands during MIS 11 as high as 20 m. above present level, as suggested by different elevated marine terraces, cannot be explained, except by assuming that MIS 11 was very dry over Antarctica.
NASA Astrophysics Data System (ADS)
Adloff, F.; Mikolajewicz, U.; Kucera, M.; Grimm, R.; Maier-Reimer, E.; Schmiedl, G.; Emeis, K.
2011-05-01
Nine thousand years ago, the Northern Hemisphere experienced enhanced seasonality caused by an orbital configuration with a minimum of the precession index. To assess the impact of the "Holocene Insolation Maximum" (HIM) on the Mediterranean Sea, we use a regional ocean general circulation model forced by atmospheric input derived from global simulations. A stronger seasonal cycle is simulated in the model, which shows a relatively homogeneous winter cooling and a summer warming with well-defined spatial patterns, in particular a subsurface warming in the Cretan and Western Levantine areas. The comparison between the SST simulated for the HIM and the reconstructions from planktonic foraminifera transfer functions shows a poor agreement, especially for summer, when the vertical temperature gradient is strong. However, a reinterpretation of the reconstructions is proposed, to consider the conditions throughout the upper water column. Such a depth-integrated approach accounts for the vertical range of preferred habitat depths of the foraminifera used for the reconstructions and strongly improves the agreement between modelled and reconstructed temperature signal. The subsurface warming is recorded by both model and proxies, with a light shift to the south in the model results. The mechanisms responsible for the peculiar subsurface pattern are found to be a combination of enhanced downwelling and wind mixing due to strengthened Etesian winds, and enhanced thermal forcing due to the stronger summer insolation in the Northern Hemisphere. Together, these processes induce a stronger heat transfer from the surface to the subsurface during late summer in the Western Levantine; this leads to an enhanced heat piracy in this region.
Early-Holocene decoupled summer temperature and monsoon precipitation in southwest China
NASA Astrophysics Data System (ADS)
Wu, D.; Chen, F.; Chen, X.; Lv, F.; Zhou, A.; Chen, J.; Abbott, M. B.; Yu, J.
2017-12-01
Proxy based reconstructions of Holocene temperature have shown that both the timing and magnitude of the thermal maximum vary substantially between different regions; the simulations results from climate models also show that summers were substantially cooler over regions directly influenced by the presence of the Laurentide ice sheet during the early Holocene, whereas other regions of the Northern Hemisphere were dominated by orbital forcing. However, for lack of summer temperature reconstruction in the low latitude regions like southwestern China dominated by the Indian summer monsoon, the Holocene summer temperature variations and it underlying forcing mechanism are ambiguous. Here we present a well-dated record of pollen-based quantitative summer temperature (mean July; MJT) over the last 14000 years from Xingyun Lake, Yunnan Province, southwest China. It was found that MJT decreased during the YD event, then increased slowly until 7400 yr BP, and decreased thereafter. The MJT shows a pattern with middle Holocene maximum of MJT, indicating a different changing pattern with the carbonate oxygen isotope record (d18O) from the same core during the early Holocene (11500-7400 yr BP), which has the similar variation with speleothem d18O record from Dongge cave, both indicate the variation of monsoon precipitation with the highest precipitation occurred during the early Holocene. Therefore, we propose that the variation of summer temperature and precipitation in southwest China was decoupled during the early Holocene. However, both MJT and monsoon precipitation decreased after the middle Holocene following the boreal summer insolation. We suggest that the high precipitation with strong summer monsoon and hence higher cloud cover may depress the temperature increasing forced by increasing summer insolation during the early Holocene; while melting ice-sheet in the high latitude regions had strongly influenced the summer temperature increase during the deglacial period, which weakened northward heat transport by the ocean. In addition, the high concentration of atmospheric aerosol during the early Holocene may also have partly contribution to the cool summer temperature by weakening solar insolation.
NASA Astrophysics Data System (ADS)
De Vleeschouwer, David; Vahlenkamp, Maximilian; Crucifix, Michel; Pälike, Heiko
2017-04-01
Earth's climate has undergone different intervals of gradual change as well as abrupt shifts between climate states. Here we aim to characterize the corresponding changes in climate response to astronomical forcing in the icehouse portion of the Cenozoic, from the latest Eocene to the present. As a tool, we use a 35-m.y.-long δ18Obenthic record compiled from different high-resolution benthic isotope records spliced together (what we refer to as a megasplice). An important feature of the evolutive spectrum of the megasplice is the sustained power at the frequency of the 405-kyr long eccentricity cycle throughout the Oligocene and early to middle Miocene. That power disappears after the mid-Miocene Climatic Transition, along with a weakening of the power of the 100-kyr short eccentricity cycles. While this general feature has been previously recognized, this is the first long record where this significant transition is clearly observed. We analyze the climate response to astronomical forcing during four 800-k.y.-long time windows. During the mid-Miocene Climatic Optimum (ca. 15.5 Ma), global climate variability was mainly dependent on Southern Hemisphere summer insolation, amplified by a dynamic Antarctic ice sheet; 2.5 m.y. later, relatively warm global climate states occurred during maxima in both Southern Hemisphere and Northern Hemisphere summer insolation. At that point, the Antarctic ice sheet grew too big to pulse on the beat of precession, and the Southern Hemisphere lost its overwhelming influence on the global climate state. Likewise, we juxtapose response regimes of the Miocene (ca. 19 Ma) and Oligocene (ca. 25.5 Ma) warming periods. Despite the similarity in δ18Obenthic values and variability, we find different responses to precession forcing. While Miocene warmth occurs during summer insolation maxima in both hemispheres, Oligocene global warmth is consistently triggered when Earth reaches perihelion in the Northern Hemisphere summer. The presence of a dynamic cryosphere in the Southern or Northern Hemisphere thus seems to exert the principal control on the response of global climate to astronomical forcing in the icehouse of the past 35 m.y. We report an alternation of the driving hemisphere from the Northern Hemisphere during the late Oligocene, to the Southern Hemisphere during the MMCO, and back to the Northern Hemisphere during the Quaternary.
Spatial organization and time dependence of Jupiter's tropospheric temperatures, 1980-1993
NASA Technical Reports Server (NTRS)
Orton, Glenn S.; Friedson, A. James; Yanamandra-Fisher, Padmavati A.; Caldwell, John; Hammel, Heidi B.; Baines, Kevin H.; Bergstralh, Jay T.; Martin, Terry Z.; West, Robert A.; Veeder, Glenn J., Jr.
1994-01-01
The spatial organization and time dependence of Jupiter's temperature near 250-millibar pressure were measured through a jovian year by imaging thermal emission at 18 micrometers. The temperature field is influenced by seasonal radiative forcing, and its banded organization is closely correlated with the visible cloud field. Evidence was found for a quasi-periodic oscillation of temperatures in the Equatorial Zone, a correlation between tropospheric and stratospheric waves in the North Equatorial Belt, and slowly moving thermal features in the North and South Equatorial Belts. There appears to be no common relation between temporal changes of temperature and changes in the visual albedo of the various axisymmetric bands.
Asymmetric Response of the Equatorial Pacific SST to Climate Warming and Cooling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Fukai; Luo, Yiyong; Lu, Jian
The response of the equatorial Pacific Ocean to heat fluxes of equal amplitude but opposite sign is investigated using the Community Earth System Model (CESM). Results show a strong asymmetry in SST changes. In the eastern equatorial Pacific (EEP), the warming responding to the positive forcing exceeds the cooling to the negative forcing; while in the western equatorial Pacific (WEP), it is the other way around and the cooling surpasses the warming. This leads to a zonal dipole asymmetric structure, with positive values in the east and negative values in the west. A surface heat budget analysis suggests that themore » SST asymmetry is mainly resulted from the oceanic horizontal advection and vertical entrainment, with both of their linear and nonlinear components playing a role. For the linear component, its change appears to be more significant over the EEP (WEP) in the positive (negative) forcing scenario, favoring the seesaw pattern of the SST asymmetry. For the nonlinear component, its change acts to warm (cool) the EEP (WEP) in both scenarios, also favorable for the development of the SST asymmetry. Additional experiments with a slab ocean confirm the dominant role of ocean dynamical processes for this SST asymmetry. The net surface heat flux, in contrast, works to reduce the SST asymmetry through its shortwave radiation and latent heat flux components, with the former being related to the nonlinear relationship between SST and convection, and the latter being attributable to Newtonian damping and air-sea stability effects. The suppressing effect of shortwave radiation on SST asymmetry is further verified by partially coupled overriding experiments.« less
Asymmetric response of the equatorial Pacific SST to climate warming and cooling
NASA Astrophysics Data System (ADS)
Luo, Y.; Liu, F.; Lu, J.
2017-12-01
The response of the equatorial Pacific Ocean to heat fluxes of equal amplitude but opposite sign is investigated using the Community Earth System Model (CESM). Results show a strong asymmetry in SST changes. In the eastern equatorial Pacific (EEP), the warming responding to the positive forcing exceeds the cooling to the negative forcing; while in the western equatorial Pacific (WEP), it is the other way around and the cooling surpasses the warming. This leads to a zonal dipole asymmetric structure, with positive values in the east and negative values in the west. A surface heat budget analysis suggests that the SST asymmetry is mainly resulted from the oceanic horizontal advection and vertical entrainment, with both of their linear and nonlinear components playing a role. For the linear component, its change appears to be more significant over the EEP (WEP) in the positive (negative) forcing scenario, favoring the seesaw pattern of the SST asymmetry. For the nonlinear component, its change acts to warm (cool) the EEP (WEP) in both scenarios, also favorable for the development of the SST asymmetry. Additional experiments with a slab ocean confirm the dominant role of ocean dynamical processes for this SST asymmetry. The net surface heat flux, in contrast, works to reduce the SST asymmetry through its shortwave radiation and latent heat flux components, with the former being related to the nonlinear relationship between SST and convection, and the latter being attributable to Newtonian damping and air-sea stability effects. The suppressing effect of shortwave radiation on SST asymmetry is further verified by partially coupled overriding experiments.
Viscoelastic shoe insoles: their use in aerobic dancing.
Clark, J E; Scott, S G; Mingle, M
1989-01-01
To determine whether use of viscoelastic insoles would significantly decrease the frequency of musculoskeletal overuse injury in aerobic dancers, 139 high-level aerobic dancers were divided randomly into two groups. The control group received placebo foam insoles and test subjects were fitted with viscoelastic insoles. Subjects used these insoles during dance class for 15 weeks. Injury rates were low in both groups and no statistical difference was found. Pain syndromes were fewer in the group using viscoelastic insoles, but the difference was not statistically significant. About a third of dancers fitted with viscoelastic insoles and a tenth of placebo insert wearers found that the insoles made their shoes too tight to be comfortable. No conclusion can be drawn on whether shock-absorbing insoles decrease injuries from aerobic dancing, but use of viscoelastic insoles may improve comfort and provide pain relief for some high-level aerobic dancers if proper fit is achieved.
Climate and carbon-cycle response to astronomical forcing over the last 35 Ma.
NASA Astrophysics Data System (ADS)
De Vleeschouwer, D.; Palike, H.; Vahlenkamp, M.; Crucifix, M.
2017-12-01
On a million-year time scale, the characteristics of insolation forcing caused by cyclical variations in the astronomical parameters of the Earth remain stable. Nevertheless, Earth's climate responded very differently to this forcing during different parts of the Cenozoic. The recently-published ∂18Obenthic megasplice (De Vleeschouwer et al., 2017) allowed for a clear visualization of these changes in global climate response to astronomical forcing. However, many open questions remain regarding how carbon-cycle dynamics influence Earth's climate sensitivity to astronomical climate forcing. To provide insight into the interaction between the carbon cycle and astronomical insolation forcing, we built a benthic carbon isotope (∂13Cbenthic) megasplice for the last 35 Ma, employing the same technique used to build the ∂18Obenthic megasplice. The ∂13Cbenthic megasplice exhibits a strong imprint of the 405 and 100-kyr eccentricity cycles throughout the last 35 Ma. This is intriguing, as the oxygen isotope megasplice looses its eccentricity imprint after the mid-Miocene climatic transition (MMCT; see Fig. 1 in De Vleeschouwer et al., 2017). In other words, the carbon cycle responded completely differently to astronomical forcing, compared to global climate during the late Miocene. We visualize this difference in response by the application of a Gaussian process, which renders the dependence of one variable (here ∂18Obenthic or ∂13Cbenthic) in a multidimensional space (here precession, obliquity and eccentricity). Together, the ∂13Cbenthic and ∂18Obenthic megasplices thus provide a unique tool for paleoclimatology, allowing for the quantification and visualization of the changing paleoclimate and carbon-cycle response to astronomical forcing throughout geologic time. References De Vleeschouwer, D., Vahlenkamp, M., Crucifix, M., Pälike, H., 2017. Alternating Southern and Northern Hemisphere climate response to astronomical forcing during the past 35 m.y. Geology 45, 375-378.
West African monsoon dynamics inferred from abrupt fluctuations of Lake Mega-Chad
Armitage, Simon J.; Bristow, Charlie S.; Drake, Nick A.
2015-01-01
From the deglacial period to the mid-Holocene, North Africa was characterized by much wetter conditions than today. The broad timing of this period, termed the African Humid Period, is well known. However, the rapidity of the onset and termination of the African Humid Period are contested, with strong evidence for both abrupt and gradual change. We use optically stimulated luminescence dating of dunes, shorelines, and fluviolacustrine deposits to reconstruct the fluctuations of Lake Mega-Chad, which was the largest pluvial lake in Africa. Humid conditions first occur at ∼15 ka, and by 11.5 ka, Lake Mega-Chad had reached a highstand, which persisted until 5.0 ka. Lake levels fell rapidly at ∼5 ka, indicating abrupt aridification across the entire Lake Mega-Chad Basin. This record provides strong terrestrial evidence that the African Humid Period ended abruptly, supporting the hypothesis that the African monsoon responds to insolation forcing in a markedly nonlinear manner. In addition, Lake Mega-Chad exerts strong control on global biogeochemical cycles because the northern (Bodélé) basin is currently the world’s greatest single dust source and possibly an important source of limiting nutrients for both the Amazon Basin and equatorial Atlantic. However, we demonstrate that the final desiccation of the Bodélé Basin occurred around 1 ka. Consequently, the present-day mode and scale of dust production from the Bodélé Basin cannot have occurred before 1 ka, suggesting that its role in fertilizing marine and terrestrial ecosystems is either overstated or geologically recent. PMID:26124133
Toda, Y
2001-06-01
We assessed the clinical efficacy of a lateral wedged insole with elastic fixation of the subtalar joint for conservative treatment of osteoarthritis of the knee. Novel insoles with elastic subtalar fixation (fixed insole) and a traditional shoe insert wedged insoles (inserted insole) were prepared. Seventy-one new female outpatients with osteoarthritis of the knee (knee OA) were treated with wedged insoles for 3 months. Randomization was performed according to birth date. The Severity Index of Lequesne, et al at the final assessment was compared with that at baseline in both the inserted and fixed insole groups. There were 37 participants in the inserted group and 34 participants in the fixed insole group. Regarding discomfort during nocturnal bed rest, 21 out of 34 (61%) participants were positive at the baseline assessment, however, only 8 out of 34 (27%) were positive at the final assessment in the fixed insole group (P = 0.033). In the fixed insole group, the number of participants complained immediate pain after walking was decreased from 28 (82%) at the baseline assessment to 17 (50%) at the final assessments (P = 0.0104). These significant differences were not found in the group with the inserted insole. Thus, clinical efficacy of lateral wedged insole may be emphasized with elastic fixation of the subtalar joint.
Air Force Logistics Command (AFLC) solar thermal plant
NASA Technical Reports Server (NTRS)
1983-01-01
The plant proved its capability to deliver the desired energy product in a USAF industrial environment. The collector proved capable of energy conversion at insolation levels up to 25% below design minimum. The plant and the project were negatively affected by severe winter weather, with total insolation during the test period 60 percent less than the expected value. Environmental effects reduced plant availability to 55 percent. Only five, minimally good operating days were experienced during the test period. The subsequent lack of performance data prohibits the drawing of general conclusions regarding system performance. System operability was rated generally high. The only inhibiting factor was the difficulty in procuring replacement parts for rapid repair under USAF stockage and procurement policies. No inherently serious system failures were recorded, although a thermostatic valve malfunction in the freeze protection system ultimately took 30 days to repair.
An Ambulatory System for Gait Monitoring Based on Wireless Sensorized Insoles.
González, Iván; Fontecha, Jesús; Hervás, Ramón; Bravo, José
2015-07-09
A new gait phase detection system for continuous monitoring based on wireless sensorized insoles is presented. The system can be used in gait analysis mobile applications, and it is designed for real-time demarcation of gait phases. The system employs pressure sensors to assess the force exerted by each foot during walking. A fuzzy rule-based inference algorithm is implemented on a smartphone and used to detect each of the gait phases based on the sensor signals. Additionally, to provide a solution that is insensitive to perturbations caused by non-walking activities, a probabilistic classifier is employed to discriminate walking forward from other low-level activities, such as turning, walking backwards, lateral walking, etc. The combination of these two algorithms constitutes the first approach towards a continuous gait assessment system, by means of the avoidance of non-walking influences.
Pasin Neto, Hugo; Grecco, Luanda André Collange; Ferreira, Luis Alfredo Braun; Duarte, Natália Almeida Carvalho; Galli, Manuela; Oliveira, Claudia Santos
2017-10-01
The aim of the present study was to assess the effect of postural insoles on gait performance in children with Cerebral Palsy (CP). Twenty four children between four and 12 years of age were randomly allocated either the control group (n = 12) or experimental group (n = 12). The control group used placebo insoles and the experimental group used postural insoles. Three-dimensional gait analysis was performed under three conditions: barefoot, in shoes and in shoes with insoles. Three evaluations were carried out: 1)immediately following placement of the insoles; 2)after three months of insole use; and 3)one month after suspending insole use. Regarding the immediate effects and after three months use of insole, significant improvements in gait velocity and cadence were found in the experimental group, along with an increase in foot dorsiflexion, a reduction in knee flexion and a reduction in internal rotation. Conversely, these changes were not maintained in the third assessment, one month after withdrawal of the insoles. The use of postural insoles led to improvements in gait performance in children with CP. Copyright © 2017 Elsevier Ltd. All rights reserved.
How Arch Support Insoles Help Persons with Flatfoot on Uphill and Downhill Walking.
Huang, Yu-Ping; Kim, Kwantae; Song, Chen-Yi; Chen, Yat-Hon; Peng, Hsien-Te
2017-01-01
The main purpose of this study was to investigate the effect of arch support insoles on uphill and downhill walking of persons with flatfoot. Sixteen healthy college students with flatfoot were recruited in this study. Their heart rate, peak oxygen uptake (VO 2 ), and median frequency (MDF) of surface electromyogram were recorded and analyzed. Nonparametric Wilcoxon signed-rank test was used for statistical analysis. The main results were as follows: (a) peak VO 2 significantly decreased with arch support insoles compared with flat insoles during uphill and downhill walking (arch support insole versus flat insole: uphill walking, 20.7 ± 3.6 versus 31.6 ± 5.5; downhill walking, 10.9 ± 2.3 versus 16.9 ± 4.2); (b) arch support insoles could reduce the fatigue of the rectus femoris muscle during downhill walking (MDF slope of arch support insole: 0.03 ± 1.17, flat insole: -6.56 ± 23.07); (c) insole hardness would increase not only the physical sensory input but also the fatigue of lower-limb muscles particularly for the rectus femoris muscle (MDF slope of arch support insole: -1.90 ± 1.60, flat insole: -0.83 ± 1.10) in persons with flatfoot during uphill walking. The research results show that arch support insoles could effectively be applied to persons with flatfoot to aid them during uphill and downhill walking.
NASA Astrophysics Data System (ADS)
Rodgers, Keith B.; Latif, Mojib; Legutke, Stephanie
2000-09-01
The sensitivity of the thermal structure of the equatorial Pacific and Indian Ocean pycnoclines to a model's representation of the Indonesian Straits connecting the two basins is investigated. Two integrations are performed using the global HOPE ocean model. The initial conditions and surface forcing for both cases are identical; the only difference between the runs is that one has an opening for the Indonesian Straits which spans the equator on the Pacific side, and the other has an opening which lies fully north of the equator. The resulting sensitivity throughout much of the upper ocean is greater than 0.5°C for both the equatorial Indian and Pacific. A realistic simulation of net Indonesian Throughflow (ITF) transport (measured in Sverdrups) is not sufficient for an adequate simulation of equatorial watermasses. The ITF must also contain a realistic admixture of northern and southern Pacific source water.
What Controls ENSO-Amplitude Diversity in Climate Models?
NASA Astrophysics Data System (ADS)
Wengel, C.; Dommenget, D.; Latif, M.; Bayr, T.; Vijayeta, A.
2018-02-01
Climate models depict large diversity in the strength of the El Niño/Southern Oscillation (ENSO) (ENSO amplitude). Here we investigate ENSO-amplitude diversity in the Coupled Model Intercomparison Project Phase 5 (CMIP5) by means of the linear recharge oscillator model, which reduces ENSO dynamics to a two-dimensional problem in terms of eastern equatorial Pacific sea surface temperature anomalies (T) and equatorial Pacific upper ocean heat content anomalies (h). We find that a large contribution to ENSO-amplitude diversity originates from stochastic forcing. Further, significant interactions exist between the stochastic forcing and the growth rates of T and h with competing effects on ENSO amplitude. The joint consideration of stochastic forcing and growth rates explains more than 80% of the ENSO-amplitude variance within CMIP5. Our results can readily explain the lack of correlation between the Bjerknes Stability index, a measure of the growth rate of T, and ENSO amplitude in a multimodel ensemble.
NASA Astrophysics Data System (ADS)
Eldrett, James S.; Ma, Chao; Bergman, Steven C.; Ozkan, Aysen; Minisini, Daniel; Lutz, Brendan; Jackett, Sarah-Jane; Macaulay, Calum; Kelly, Amy E.
2015-08-01
We present an integrated multidisciplinary study of limestone-marlstone couplets from a continuously cored section including parts of the upper Buda Limestone, the entire Eagle Ford Group (Boquillas Formation) and lower Austin Chalk from the Shell Iona-1 research borehole (Texas, USA), which provides a >8 million year (myr) distal, clastic sediment-starved, intrashelf basin record of the early Cenomanian to the earliest Coniacian Stages. Results show that despite variable yet minimal diagenetic overprints, several unambiguous primary environmental signals are preserved and support greater water-mass ventilation and current activity promoting increased silica/carbonate productivity during the deposition of limestone beds compared to deposition of marlstone beds which reflect greater organic matter productivity and preservation. Furthermore, our astronomical analyses demonstrate that the limestone-marlstone couplets in the Iona-1 core reflect climatic forcing driven by solar insolation resulting from integrated Milankovitch periodicities. In particular, we propose that obliquity and precession forcing on the latitudinal distribution of solar insolation may have been responsible for the observed lithological and environmental variations through the Cenomanian, Turonian and Coniacian in this mid-latitude epicontinental sea setting. Our data also suggests that rhythmic lithological alternations deposited in Greenhouse periods, in general, may simply reflect climate-driven cycles related to Earth-Sun dynamics without the need to invoke significant sea-level variations.
NASA Astrophysics Data System (ADS)
Li, Junde; Liang, Chujin; Tang, Youmin; Liu, Xiaohui; Lian, Tao; Shen, Zheqi; Li, Xiaojing
2017-11-01
The study of Equatorial Undercurrent (EUC) has attracted a broad attention in recent years due to its strong response and feedback to the Indian Ocean Dipole. In this paper, we first produce a high-quality simulation of three-dimensional temperature, salinity and zonal current simulation from 1982 to 2014, using a high-resolution ocean general circulation model. On this basis, with two sensitivity experiments, we investigate the role of temperature and salinity anomalies in driving and enhancing the EUC during the positive IOD events by examining the variation of the EUC seasonal cycle and diagnosing the zonal momentum budget along the equatorial Indian Ocean. Our results show that during January-March, the EUC can appear along the entire equatorial Indian Ocean in all years, but during August-November, the EUC can appear and reach the eastern Indian Ocean only during the positive IOD events. The zonal momentum budget analysis indicates that the pressure gradient force contributes most to the variation of the eastward acceleration of zonal currents in the subsurface. During the positive IOD events, strong negative subsurface temperature anomalies exist in the eastern Indian Ocean, with negative surface salinity anomalies in the central and eastern Indian Ocean, resulting in a large pressure gradient force to drive EUC during the August-November. Further, the results of two sensitivity experiments indicate that the temperature anomalies significantly impact the pressure gradient force, playing a leading role in driving the EUC, while the surface salinity anomalies can secondarily help to intensify the eastward EUC through increasing the zonal density gradient in the eastern Indian Ocean and impacting the vertical momentum advection in the subsurface.
Wearable Devices for Classification of Inadequate Posture at Work Using Neural Networks
Barkallah, Eya; Freulard, Johan; Otis, Martin J. -D.; Ngomo, Suzy; Ayena, Johannes C.; Desrosiers, Christian
2017-01-01
Inadequate postures adopted by an operator at work are among the most important risk factors in Work-related Musculoskeletal Disorders (WMSDs). Although several studies have focused on inadequate posture, there is limited information on its identification in a work context. The aim of this study is to automatically differentiate between adequate and inadequate postures using two wearable devices (helmet and instrumented insole) with an inertial measurement unit (IMU) and force sensors. From the force sensors located inside the insole, the center of pressure (COP) is computed since it is considered an important parameter in the analysis of posture. In a first step, a set of 60 features is computed with a direct approach, and later reduced to eight via a hybrid feature selection. A neural network is then employed to classify the current posture of a worker, yielding a recognition rate of 90%. In a second step, an innovative graphic approach is proposed to extract three additional features for the classification. This approach represents the main contribution of this study. Combining both approaches improves the recognition rate to 95%. Our results suggest that neural network could be applied successfully for the classification of adequate and inadequate posture. PMID:28862665
Tropical Convection and Climate Processes in a Cumulus Ensemble Model
NASA Technical Reports Server (NTRS)
Sui, Chung-Hsiung
1999-01-01
Local convective-radiative equilibrium states of the tropical atmosphere are determined by the following external forcing: 1) Insolation, 2) Surface heat and moisture exchanges (primarily radiation and evaporation), 3) Heating and moistening induced by large-scale circulation. Understanding the equilibrium states of the tropical atmosphere in different external forcing conditions is of vital importance for studying cumulus parameterization, climate feedbacks, and climate changes. We extend our previous study using the Goddard Cumulus Ensemble (GCE) Model which resolves convective-radiative processes more explicitly than global climate models do. Several experiments are carried out under fixed insolation and sea surface temperature. The prescribed SST consists of a uniform warm pool (29C) surrounded by uniform cold SST (26C). The model produces "Walker"-type circulation with the ascending branch of the model atmosphere more humid than the descending part, but the vertically integrated temperature does not show a horizontal gradient. The results are compared with satellite measured moisture by SSM/I (Special Sensor Microwave/Imager) and temperature by MSU in the ascending and descending tropical atmosphere. The vertically integrated temperature and humidity in the two model regimes are comparable to the observed values in the tropics.
NASA Astrophysics Data System (ADS)
Shariatmadari, M. R.; English, R.; Rothwell, G.
2010-06-01
The determination of plantar stresses using computational footwear models which include temperature effects are crucial to predict foam performance in service and to aid material development and product design. Finite Element Method (FEM) provides an efficient computational framework to investigate the foot-footwear interaction. The aim of this research is to use FEM to investigate the effect of varying footwear temperature on plantar stresses. The results obtained will provide data which can be used to help optimise shoe design in terms of minimising damaging stresses in the foot particularly for individuals with diabetes who are susceptible to lower extremity complications. The FE simulation results showed significant reductions in foot stresses with the modifications from FE model (1) without footwear to model (2) with midsole only and to model (3) with midsole and insole. In summary, insole and midsole layers made from various foam materials aim to reduce the Ground Reaction Forces (GRF's) and foot stresses considerably and temperature variation can affect their cushioning and consequently the shock attenuation properties. The loss of footwear cushioning effect can have important clinical implications for those individuals with a history of lower limb overuse injuries or diabetes.
Mesodermal and axial determinants contribute to mesoderm regionalization in Bufo arenarum embryos.
Manes, Mario E; Campos Casal, Fernando H
2002-09-01
The existence of mesodermal determinants in the equator of Bufo arenarum embryos has been previously demonstrated. In this work, their role in dorso-ventral regionalization of mesoderm was studied by transferring the determinants to animal blastomeres. The transfer was performed by cleavage reorientation and cytoplasmic microinjection. Forced inclination during early cleavage caused deviation of the third cleavage plane and annexation of equatorial cytoplasm into animal quartets. Animal blastomeres from embryos oriented with the dorsal side up, incorporated ventro-equatorial cytoplasm and formed blood cells, mesenchyme, and coelomic epithelium. In contrast, animal blastomeres from embryos oriented with the ventral side up, acquired dorso-equatorial cytoplasm and developed notochord, somites, mesenchyme, coelomic epithelium and nervous tissue. In order to investigate if this dorso-ventral differentiation pattern responds to an interaction of mesodermal and axial factors, isolated 8-cell-stage animal quartets were microinjected with subcortical cytoplasm from: (a) the ventro-equatorial region of synchronous embryos; (b) the vegetal pole of uncleaved eggs; (c) a combination of both cytoplasms. As expected, the implanted ventro-equatorial cytoplasm promoted ventral mesoderm differentiation. Conversely, the joint transfer of ventro-equatorial cytoplasm and vegetal pole cytoplasm behaved as the dorso-equatorial cytoplasm, promoting dorso-lateral mesoderm and neural formation. Thus, mesoderm regionalization in B. arenarum embryos seems to be caused by a concurrent action of both mesodermal and axial determinants.
NASA Technical Reports Server (NTRS)
Levrard, B.; Laskar, J.; Montmessin, F.; Forget, F.
2005-01-01
Polar layered deposits are exposed in the walls of the troughs cutting the north polar cap of Mars. They consist of alternating ice and dust layers or layers of an ice-dust mixture with varying proportions and are found throughout the cap. Layers thickness ranges from meters to several tens of meters with an approximately 30 meter dominant wavelength. Although their formation processes is not known, they are presumed to reflect changes in ice and dust stability over orbital and axial variations. Intensive 3-D LMD GCM simulations of the martian water cycle have been thus performed to determine the annual rates of exchange of surface ice between the northern cap and tropical areas for a wide range of obliquity and orbital parameters values.These rates have been employed to reconstruct an history of the northern cap and test simple models of dust-ice layers formation over the last 10 Ma orbital variations. We use the 3-D water cycle model simulated by the 3-D LMD GCM with an intermediate grid resolution (7.5 longitude x 5.625 latitude) and 25 vertical levels. The dust opacity is constant and set to 0,15. No exchange of ice with regolith is allowed. The evolution of the northern cap over obliquity and orbital changes (eccentricity, Longitude of perihelion) has been recently described with this model. High summer insolation favors transfer of ice from the northern pole to the Tharsis and Olympus Montes, while at low obliquity, unstable equatorial ice is redeposited in high-latitude and polar areas of both hemisphere. The disappearance of the equatorial ice reservoir leads to a poleward recession of icy high latitude reservoirs, providing an additional source for the cap accumulation during each obliquity or orbital cycle. Furthering the efforts, a quantitative evolution of ice reservoirs is here investigated for various astronomical conditions.
NASA Technical Reports Server (NTRS)
Bacmeister, Julio T.; Suarez, Max J.; Einaudi, Franco (Technical Monitor)
2001-01-01
This is the first of a two part study examining the connection of the equatorial momentum budget in an AGCM (Atmospheric General Circulation Model), with simulated equatorial surface wind stresses over the Pacific. The AGCM used in this study forms part of a newly developed coupled forecasting system used at NASA's Seasonal- to-Interannual Prediction Project. Here we describe the model and present results from a 20-year (1979-1999) AMIP-type experiment forced with observed SSTs (Sea Surface Temperatures). Model results are compared them with available observational data sets. The climatological pattern of extra-tropical planetary waves as well as their ENSO-related variability is found to agree quite well with re-analysis estimates. The model's surface wind stress is examined in detail, and reveals a reasonable overall simulation of seasonal interannual variability, as well as seasonal mean distributions. However, an excessive annual oscillation in wind stress over the equatorial central Pacific is found. We examine the model's divergent circulation over the tropical Pacific and compare it with estimates based on re-analysis data. These comparisons are generally good, but reveal excessive upper-level convergence in the central Pacific. In Part II of this study a direct examination of individual terms in the AGCM's momentum budget is presented. We relate the results of this analysis to the model's simulation of surface wind stress.
Kido, Masamitsu; Ikoma, Kazuya; Hara, Yusuke; Imai, Kan; Maki, Masahiro; Ikeda, Takumi; Fujiwara, Hiroyoshi; Tokunaga, Daisaku; Inoue, Nozomu; Kubo, Toshikazu
2014-12-01
Insoles are frequently used in orthotic therapy as the standard conservative treatment for symptomatic flatfoot deformity to rebuild the arch and stabilize the foot. However, the effectiveness of therapeutic insoles remains unclear. In this study, we assessed the effectiveness of therapeutic insoles for flatfoot deformity using subject-based three-dimensional (3D) computed tomography (CT) models by evaluating the load responses of the bones in the medial longitudinal arch in vivo in 3D. We studied eight individuals (16 feet) with mild flatfoot deformity. CT scans were performed on both feet under non-loaded and full-body-loaded conditions, first with accessory insoles and then with therapeutic insoles under the same conditions. Three-dimensional CT models were constructed for the tibia and the tarsal and metatarsal bones of the medial longitudinal arch (i.e., first metatarsal bone, cuneiforms, navicular, talus, and calcaneus). The rotational angles between the tarsal bones were calculated under loading with accessory insoles or therapeutic insoles and compared. Compared with the accessory insoles, the therapeutic insoles significantly suppressed the eversion of the talocalcaneal joint. This is the first study to precisely verify the usefulness of therapeutic insoles (arch support and inner wedges) in vivo. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sarikhani, Ali; Motalebizadeh, Abbas; Kamali Doost Azad, Babak
2016-01-01
The insole shape and the resulting plantar stress distribution have a pivotal impact on overall health. In this paper, by Finite Element Method, maximum stress value and stress distribution of plantar were studied for different insoles designs, which are the flat surface and the custom-molded (conformal) surface. Moreover, insole thickness, heel's height, and different materials were used to minimize the maximum stress and achieve the most uniform stress distribution. The foot shape and its details used in this paper were imported from online CT-Scan images. Results show that the custom-molded insole reduced maximum stress 40% more than the flat surface insole. Upon increase of thickness in both insole types, stress distribution becomes more uniform and maximum stress value decreases up to 10%; however, increase of thickness becomes ineffective above a threshold of 1 cm. By increasing heel height (degree of insole), maximum stress moves from heel to toes and becomes more uniform. Therefore, this scenario is very helpful for control of stress in 0.2° to 0.4° degrees for custom-molded insole and over 1° for flat insole. By changing the material of the insole, the value of maximum stress remains nearly constant. The custom-molded (conformal) insole which has 0.5 to 1 cm thickness and 0.2° to 0.4° degrees is found to be the most compatible form for foot. PMID:27843284
Lucas-Cuevas, Angel Gabriel; Pérez-Soriano, Pedro; Llana-Belloch, Salvador; Macián-Romero, Cecili; Sánchez-Zuriaga, Daniel
2014-01-01
Controversy exists whether custom-made insoles are more effective in reducing plantar loading compared to prefabricated insoles. Forty recreational athletes ran using custom-made, prefabricated, and the original insoles of their running shoes, at rest and after a fatigue run. Contact time, stride rate, and plantar loading parameters were measured. Neither the insole conditions nor the fatigue state modified contact time and stride rate. Addressing prevention of running injuries, post-fatigue loading values are of great interest. Custom-made insoles reduced the post-fatigue loading under the hallux (92 vs. 130 kPa, P < 0.05), medial midfoot (70 vs. 105 kPa, P < 0.01), and lateral midfoot (62 vs 96 kPa, P < 0.01). Prefabricated insoles provoked reductions in post-fatigue loading under the toes (120 vs. 175 kPa, P < 0.05), medial midfoot (71 vs. 105 kPa, P < 0.01), and lateral midfoot (68 vs. 96 kPa, P < 0.01). Regarding both study insoles, custom-made insoles reduced by 31% and 54% plantar loading under the medial and lateral heel compared to the prefabricated insoles. Finally, fatigue state did not influence plantar loading regardless the insole condition. In long-distance races, even a slight reduction in plantar loading at each foot strike may suppose a significant decrease in the overall stress experienced by the foot, and therefore the use of insoles may be an important protective mechanism for plantar overloading.
Unexpected climatic impacts of orbital forcing out of the Quaternary
NASA Astrophysics Data System (ADS)
Ramstein, G.; Zhang, Z.; Le Hir, G.; Contoux, C.; Donnadieu, Y.; Dumas, C.; Schuster, M.; Li, C.
2016-12-01
For Quaternary, the impact of orbital variations on climate is huge and well documented. Especially, during the last million years, drastic climate changes occurred, consisting in transitions from glacial to interglacial periods driven by changes in 65°N summer insolation with 100 kyrs periodicity. Nevertheless, the imprint of so-called Milankovic forcings has also been found for Tertiary and Secondary. For both periods, the climatic imprints of orbital forcings are recorded in a warm world without ice sheet. Here, we show through simulation studies the large impact of orbital forcing in very different geological contexts. The first and most striking result depicts the role of insolation changes during the melting of the Marinoan snowball [635 Ma] (Benn et al, Nature Geoscience 2015). This is one of the oldest imprints of orbital forcing on climate. Our result solved a long lasting controversy concerning the melting of the last snowball episode between a huge deglaciation at very high CO2 level and data showing glacial/interglacial cycles occurring during that melting. Our modelling studies focusing on Svalbard high resolution records demonstrate that the glacial/fluvial oscillation was related to orbital forcing in a context of very high CO2 level. Much more recently, during the Tortonian period [11-7 Ma], the orbital cycles shaped the environment and drove the hominin dispersal in Africa. During Tortonian, the ultimate shrinkage of a huge epicontinental sea, that extended from Eastern Europe to Western Asia, has been shown to produce major changes on Asian monsoon (Ramstein et al, Nature, 1997) and triggered the onset of Sahara desert (Zhang et al, Nature 2014). Moreover, this shrinkage drastically enhanced the climate response to orbital changes at the emergence of early hominins in North Africa. Through these two illustrations,we pointed out very different climatic impacts of orbital forcing out of Quaternary.
NASA Astrophysics Data System (ADS)
Yamamoto, Masaru; Takahashi, Masaaki
2018-03-01
We derive simple dynamical relationships between wind speed magnitude and meridional temperature contrast. The relationship explains scatter plot distributions of time series of three variables (maximum zonal wind speed UMAX, meridional wind speed VMAX, and equator-pole temperature contrast dTMAX), which are obtained from a Venus general circulation model with equatorial Kelvin-wave forcing. Along with VMAX and dTMAX, UMAX likely increases with the phase velocity and amplitude of a forced wave. In the scatter diagram of UMAX versus dTMAX, points are plotted along a linear equation obtained from a thermal-wind relationship in the cloud layer. In the scatter diagram of VMAX versus UMAX, the apparent slope is somewhat steep in the high UMAX regime, compared with the low UMAX regime. The scatter plot distributions are qualitatively consistent with a quadratic equation obtained from a diagnostic equation of the stream function above the cloud top. The plotted points in the scatter diagrams form a linear cluster for weak wave forcing, whereas they form a small cluster for strong wave forcing. An interannual oscillation of the general circulation forming the linear cluster in the scatter diagram is apparent in the experiment of weak 5.5-day wave forcing. Although a pair of equatorial Kelvin and high-latitude Rossby waves with a same period (Kelvin-Rossby wave) produces equatorward heat and momentum fluxes in the region below 60 km, the equatorial wave does not contribute to the long-period oscillation. The interannual fluctuation of the high-latitude jet core leading to the time variation of UMAX is produced by growth and decay of a polar mixed Rossby-gravity wave with a 14-day period.
Plantar pressure with and without custom insoles in patients with common foot complaints.
Stolwijk, Niki M; Louwerens, Jan Willem K; Nienhuis, Bart; Duysens, Jacques; Keijsers, Noël L W
2011-01-01
Although many patients with foot complaints receive customized insoles, the choice for an insole design can vary largely among foot experts. To investigate the variety of insole designs used in daily practice, the insole design and its effect on plantar pressure distribution were investigated in a large group of patients. Mean, peak, and pressure-time-integral per sensor for 204 subjects with common foot complaints for walking with and without insoles was measured with the footscan® insole system (RSscan International). Each insole was scanned twice (precision3D), after which the insole height along the longitudinal and transversal cross section was calculated. Subjects were assigned to subgroups based on complaint and medial arch height. Data were analyzed for the total group and for the separate subgroups (forefoot or heel pain group and flat, normal or high medial arch group). The mean pressure significantly decreased under the metatarsal heads II-V and the calcaneus and significantly increased under the metatarsal bones and the lateral foot (p<0.0045) due to the insoles. However, similar redistribution patterns were found for the different foot complaints and arch heights. There was a slight difference in insole design between the subgroups; the heel cup was significantly higher and the midfoot support lower for the heel pain group compared to the forefoot pain group. The midfoot support was lowest in the flat arch group compared to the high and normal arch group (p<0.05). Although the insole shape was specific for the kind of foot complaint and arch height, the differences in shape were very small and the plantar pressure redistribution was similar for all groups. This study indicates that it might be sufficient to create basic insoles for particular patient groups.
NASA Astrophysics Data System (ADS)
Lourens, L. J.; Konijnendijk, T.; Ziegler, M.
2015-12-01
We present the first long (~1.2 Ma) benthic oxygen isotope record from the eastern Mediterranean, based on ODP Sites 967 and 968, which clearly reflects the behavior of global climate on a glacial-interglacial scale. The age model for our record is based on tuning the elemental ratio of titanium versus aluminum (Ti/Al) against insolation. The Ti/Al record is dominated by the precession-related changes in northern African climate, i.e. monsoonal forcing, and hence largely independent of glacial-interglacial variability. We found the largest offset between our chronology and that of the widely applied, open ocean stacked record LR04 (Lisiecki and Raymo, 2005) for TVII (~624 ka), which occurred ~9 kyr earlier according to our estimates, though in agreement with the AICC2012 δDice chronology of EPICA Dome C (Bazin et al., 2013). Spectral cross-correlation analysis between our benthic δ18O record and 65°N summer insolation reveals significant amounts of power in the obliquity and precession range, with an average lag of 5.5±0.8 kyr for obliquity, and 6.0±1.0 kyr for precession. In addition, our results show that the obliquity-related time lag was smaller (3.0±3.3 kyr) prior to ~900 ka than after (5.7±1.1 kyr), suggesting that on average the glacial response time to obliquity forcing increased during the mid-Pleistocene transition, much later than assumed by Lisiecki and Raymo (2005). Finally, we found that almost all glacial terminations have a consistent phase relationship of ~45±45 degrees with respect to the precession and obliquity-driven increases in 65°N summer insolation, consistent with the general consensus that both obliquity and precession are important for deglaciation during the Late Pleistocene. Exceptions are glacial terminations TIIIb, T36 and potentially T32 (and TVII T24 and T34), which show this consistent phase relationship only with precession (only with obliquity). Our findings point towards an early (>1200 ka) onset of the Mid Pleistocene Transition. Vice versa, the timing of TVII, which can only be explained as a response to obliquity forcing, indicates that the transition lasted until at least after MIS 15.
NASA Astrophysics Data System (ADS)
Naish, T.; Grant, G.; Dunbar, G. B.; Patterson, M. O.; Kominz, M. A.; Stocchi, P.
2017-12-01
Challenges remain concerning the potentially intractable problem of constraining the absolute magnitude of Pliocene eustatic sea-level change, and the role of orbital forcing on the frequency of ice volume/sea-level change is widely debated. Here, we present three new high-resolution geological archives for the MPWP: (i) ice-berg rafted debris (IBRD) mass accumulation rates from deep ocean sediment core (IODP U1361) off the Wilkes Margin of Antarctica recording fluctuations in the East Antarctic ice sheet; (ii) a continuous shallow-marine record of sea-level change from the Wanganui Basin, New Zealand; and (iii) a record sea-level-controlled terrigenous sedimentation (IODP 1124) to the deep ocean on Hikurangi margin of New Zealand. All three records are dominated by precession-paced cyclicity ( 20ka) in-phase with high-latitude southern hemisphere insolation between 3.3M-2.9Ma, and provide insights into orbital-forcing of ice volume and sea-level independent of the benthic oxygen isotope records. Moreover, we have back-stripped the Wanganui record to reveal glacial-interglacial sea-level changes of 20±10m amplitude. We conclude that during this interval, precession-paced Antarctic ice volume changes largely drove global glacial-interglacial sea-level fluctuations, in the absence of a significant northern hemisphere ice volume contribution. Prior to 3.3Ma, proxy data from IODP U1361 and ANDRILL 1-A records extending back to 5Ma, show that the Antarctic margin experienced warmer ocean temperatures, a lack of perennial sea-ice, and fluctuations in ice extent paced by obliquity. The emergence of precession at 3.3Ma coincident with the M2 glaciation in the benthic d18O record, also coincides with continent-wide cooling, ice expansion and the development of extensive seasonal sea-ice around Antarctica. We argue that a melt threshold response to orbital forcing was crossed, whereby Antarctic ice sheet melt was restricted to peak austral summer insolation (precession), rather than a longer summer melt-season controlled by mean annual insolation (obliquity). An obliquity-paced signal re-emerges in the New Zealand sea-level records after 2.9Ma, while the EAIS IBRD record continues to be paced by precession, implying an increasingly dominant influence of northern hemisphere ice sheets.
An Ambulatory System for Gait Monitoring Based on Wireless Sensorized Insoles
González, Iván; Fontecha, Jesús; Hervás, Ramón; Bravo, José
2015-01-01
A new gait phase detection system for continuous monitoring based on wireless sensorized insoles is presented. The system can be used in gait analysis mobile applications, and it is designed for real-time demarcation of gait phases. The system employs pressure sensors to assess the force exerted by each foot during walking. A fuzzy rule-based inference algorithm is implemented on a smartphone and used to detect each of the gait phases based on the sensor signals. Additionally, to provide a solution that is insensitive to perturbations caused by non-walking activities, a probabilistic classifier is employed to discriminate walking forward from other low-level activities, such as turning, walking backwards, lateral walking, etc. The combination of these two algorithms constitutes the first approach towards a continuous gait assessment system, by means of the avoidance of non-walking influences. PMID:26184199
The effect of insoles on foot pain and daily activities.
Amer, Ahmed O; Jarl, Gustav M; Hermansson, Liselotte N
2014-12-01
Foot pain decreases individuals' ability to perform daily activities. Insoles are often prescribed to reduce the pain which, in turn, may promote return to normal activities. To evaluate the effects of insoles on foot pain and daily activities, and to investigate the relationship between individuals' satisfaction with insoles and actual use of them. A 4-week pre-post intervention follow-up. Brief Pain Inventory, International Physical Activity Questionnaire and Lower Extremities Functional Status were used as outcome measures. Client Satisfaction with Device was used in the follow-up. A total of 67 participants answered the questionnaires (81% women). Overall, a reduction in Pain Severity (p = 0.002) and Pain Interference (p = 0.008) was shown. Secondary analyses revealed a significant effect only in women. No changes in daily activities (Walking, p = 0.867; Total Physical Activity, p = 0.842; Lower Extremities Functional Status, p = 0.939) could be seen. There was no relation between Client Satisfaction with Device measures and duration of insole use. A difference in sex was shown; women scored higher than men on Pain Severity. Insoles reduce pain and pain interference with daily activities for women with foot pain. Satisfaction with the insoles is not a predictor of actual insole use. The effect of insoles on activity performance needs further study. This study provides evidence for prescribing insoles to people with foot pain. Nonetheless, insoles are not enough to increase their physical activity level in the short term. Satisfaction with insoles and duration of use are not correlated and cannot be inferred from each other. © The International Society for Prosthetics and Orthotics 2013.
Modeling North American Ice Sheet Response to Changes in Precession and Obliquity
NASA Astrophysics Data System (ADS)
Tabor, C.; Poulsen, C. J.; Pollard, D.
2012-12-01
Milankovitch theory proposes that changes in insolation due to orbital perturbations dictate the waxing and waning of the ice sheets (Hays et al., 1976). However, variations in solar forcing alone are insufficient to produce the glacial oscillations observed in the climate record. Non-linear feedbacks in the Earth system likely work in concert with the orbital cycles to produce a modified signal (e.g. Berger and Loutre, 1996), but the nature of these feedbacks remain poorly understood. To gain a better understand of the ice dynamics and climate feedbacks associated with changes in orbital configuration, we use a complex Earth system model consisting of the GENESIS GCM and land surface model (Pollard and Thompson, 1997), the Pennsylvania State University ice sheet model (Pollard and DeConto, 2009), and the BIOME vegetation model (Kaplan et al., 2001). We began this study by investigating ice sheet sensitivity to a range of commonly used ice sheet model parameters, including mass balance and albedo, to optimize simulations for Pleistocene orbital cycles. Our tests indicate that choice of mass balance and albedo parameterizations can lead to significant differences in ice sheet behavior and volume. For instance, use of an insolation-temperature mass balance scheme (van den Berg, 2008) allows for a larger ice sheet response to orbital changes than the commonly employed positive degree-day method. Inclusion of a large temperature dependent ice albedo, representing phenomena such as melt ponds and dirty ice, also enhances ice sheet sensitivity. Careful tuning of mass balance and albedo parameterizations can help alleviate the problem of insufficient ice sheet retreat during periods of high summer insolation (Horton and Poulsen, 2007) while still accurately replicating the modern climate. Using our optimized configuration, we conducted a series of experiments with idealized transient orbits in an asynchronous coupling scheme to investigate the influence of obliquity and precession on the Laurentide and Cordillera ice sheets of North America. Preliminary model results show that the ice sheet response to changes in obliquity are larger than for precession despite providing a smaller direct insolation variation in the Northern Hemisphere high latitudes. A combination of enhanced Northern Hemisphere mid-latitude temperature gradient and longer cycle duration allow for a larger ice sheet response to obliquity than would be expected from insolation forcing alone. Conversely, a shorter duration dampens the ice sheet response to precession. Nevertheless, the precession cycle does cause significant changes in ice volume, a feature not observed in the Early Pleistocene δ18O records (Raymo and Nisancioglu, 2003). Future work will examine the climate response to an idealized transient orbit that includes concurrent variations in obliquity, precession, and eccentricity.
Braun, Benedikt J; Veith, Nils T; Rollmann, Mika; Orth, Marcel; Fritz, Tobias; Herath, Steven C; Holstein, Jörg H; Pohlemann, Tim
2017-08-01
Rehabilitation after lower-extremity fractures is based on the physicians' recommendation for non-, partial-, or full weight-bearing. Clinical studies rely on this assumption, but continuous compliance or objective loading rates are unknown. The purpose of this study was to determine the compliance to weight-bearing recommendations by introducing a novel, pedobarography system continuously registering postoperative ground forces into ankle, tibial shaft and proximal femur fracture aftercare and test its feasibility for this purpose. In this prospective, observational study, a continuously measuring pedobarography insole was placed in the patients shoe during the immediate post-operative aftercare after ankle, tibial shaft and intertrochanteric femur fractures. Weight-bearing was ordered as per the institutional standard and controlled by physical therapy. The insole was retrieved after a maximum of six weeks (28 days [range 5-42 days]). Non-compliance was defined as a failure to maintain, or reach the ordered weight-bearing within 30%. Overall 30 patients were included in the study. Fourteen (47%) of the patients were compliant to the weight-bearing recommendations. Within two weeks after surgery patients deviated from the recommendation by over 50%. Sex, age and weight did not influence the performance (p > 0.05). Ankle fracture patients (partial weight-bearing) showed a significantly increased deviation from the recommendation (p = 0.01). Our study results show that, despite physical therapy training, weight-bearing compliance to recommended limits was low. Adherence to the partial weight-bearing task was further decreased over time. Uncontrolled weight-bearing recommendations should thus be viewed with caution and carefully considered as fiction. The presented insole is feasible to determine weight bearing continuously, could immediately help define real-time patient behaviour and establish realistic, individual weight-bearing recommendations.
Toda, Y; Segal, N; Kato, A; Yamamoto, S; Irie, M
2001-12-01
To assess the efficacy of a lateral wedge insole with elastic strapping of the subtalar joint for conservative treatment of osteoarthritis (OA) of the knee. The efficacy of a novel insole with elastic subtalar strapping and a traditional shoe insert wedge insole was compared. Ninety female outpatients with OA of the knee were treated with wedge insoles for 8 weeks. Randomization was performed according to birth date. Standing radiographs with unilateral insole use were used to analyze the femorotibial and talar tilt angles for each patient with and without their respective insole. Visual analog scale (VAS) score for subjective knee pain at the final assessment was compared with that at baseline in both groups. Participants wearing the elastically strapped insole (n = 46) had significantly decreased femorotibial angle (p < 0.0001) and talar tilt angle (p = 0.005) and significantly improved VAS pain score (p = 0.045) in comparison with baseline assessments. These significant differences were not found in the group with the inserted insole (n = 44). The novel strapped insole leads to valgus angulation of the talus, resulting in correction of the femorotibial angle in patients with knee OA with varus deformity, and may have a therapeutic effect similar to that of high tibial osteotomy.
Hsu, Yu-Chun; Gung, Yih-Wen; Shih, Shih-Liang; Feng, Chi-Kuang; Wei, Shun-Hwa; Yu, Chung-Huang; Chen, Chen-Sheng
2008-08-01
Plantar heel pain is a commonly encountered orthopedic problem and is most often caused by plantar fasciitis. In recent years, different shapes of insole have been used to treat plantar fasciitis. However, little research has been focused on the junction stress between the plantar fascia and the calcaneus when wearing different shapes of insole. Therefore, this study aimed to employ a finite element (FE) method to investigate the relationship between different shapes of insole and the junction stress, and accordingly design an optimal insole to lower fascia stress.A detailed 3D foot FE model was created using ANSYS 9.0 software. The FE model calculation was compared to the Pedar device measurements to validate the FE model. After the FE model validation, this study conducted parametric analysis of six different insoles and used optimization analysis to determine the optimal insole which minimized the junction stress between plantar fascia and calcaneus. This FE analysis found that the plantar fascia stress and peak pressure when using the optimal insole were lower by 14% and 38.9%, respectively, than those when using the flat insole. In addition, the stress variation in plantar fascia was associated with the different shapes of insole.
Insolation Effects on Lunar Hydrogen: Observation from the LRO LEND and LOLA Instruments
NASA Technical Reports Server (NTRS)
McClanahan, T. P.; Mitrofanov, I. G.; Boynton, W. V.; Chin, G.; Droege, G.; Evans, L. G.; Garvin, J.; Harshman, K.; Livak, M. M.; Malakhov, A.;
2011-01-01
The Moon's polar permanent shadow regions (PSR) have long been considered the unique repository for volatile Hydrogen (H) Largely, this was due to the extreme and persistently cold environment that has been maintained over eons of lunar history. However, recent discoveries indicate that the H picture may be more complex than thc PSR hypothesis suggests. Observations by the Lunar Exploration Neutron Detect (LEND) onboard the Lunar Reconnaissance Orbiter (LRO) indicate some H concentrations lie outside PSR. Similarly, observations from Chandraayan-l's M3 and Deep Impact's EPOXI near infra-red observations indicate diurnal cycling of volatile H in lower latitudes. These results suggest other geophysical phenomena may also play a role in the Lunar Hydrogen budget. In this presentation we review the techniques and results from the recent high latitude analysis and apply similar techniques to equatorial regions. Results from our low latitude analysis will be reported. We discuss interpretations and implications for Lunar Hydrogen studies
Paton, Joanne S; Stenhouse, Elizabeth; Bruce, Graham; Jones, Ray
2014-01-01
Insoles are commonly used to assist in the prevention of diabetic neuropathic foot ulceration. Insole replacement is often triggered only when foot lesions deteriorate, an indicator that functional performance is comprised and patients are exposed to unnecessary ulcer risk. We investigated the durability of insoles used for ulcer prevention in neuropathic diabetic feet over 12 months. Sixty neuropathic individuals with diabetes were provided with insoles and footwear. Insole durability over 12 months was evaluated using an in-shoe pressure measurement device and through repeated measurement of material depth at the first metatarsal head and the heel seat. Analysis of variance was performed to assess change across time (at issue, 6 months, and 12 months). Analyses were conducted using all available data (n = 43) and compliant data (n = 18). No significant difference was found in the reduction of mean peak pressure tested across time (P < .05). For both sites, significant differences in insole depth were identified between issue and 6 months and between issue and 12 months but not between 6 and 12 months (P < .05). Most insole compression occurred during the initial 6 months. Visual material compression does not seem to be a reliable indicator of insole usefulness. Frequency of insole replacement is best informed by a functional review of effect determined using an in-shoe pressure measurement system. These results suggest that insoles for diabetic neuropathic patients can be effective in maintaining peak pressure reduction for 12 months regardless of wear frequency.
A quasi-biennial oscillation signal in general circulation model simulations.
Cariolle, D; Amodei, M; Déqué, M; Mahfouf, J F; Simon, P; Teyssédre, H
1993-09-03
The quasi-biennial oscillation (QBO) is a free atmospheric mode that affects the equatorial lower stratosphere. With a quasi-regular frequency, the mean equatorial zonal wind alternates from easterly to westerly regimes. This oscillation is zonally symmetric about the equator, has its largest amplitude in the latitudinal band from 20 degrees S to 20 degrees N, and has a mean period of about 27 months. The QBO appears to originate in the momentum deposition produced by the damping in the stratosphere of equatorial waves excited by diabatic thermal processes in the troposphere. The results of three 10-year simulations obtained with three general circulation models are reported, all of which show the development in the stratosphere of a QBO signal with a period and a spatial propagating structure that are in good agreement with observations without any ad hoc parameterization of equatorial wave forcing. Although the amplitude of the oscillation in the simulations is still less than the observed value, the result is promising for the development of global climate models.
Indo-Pacific sea level variability during recent decades
NASA Astrophysics Data System (ADS)
Yamanaka, G.; Tsujino, H.; Nakano, H.; Urakawa, S. L.; Sakamoto, K.
2016-12-01
Decadal variability of sea level in the Indo-Pacific region is investigated using a historical OGCM simulation. The OGCM driven by the atmospheric forcing removing long-term trends clearly exhibits decadal sea level variability in the Pacific Ocean, which is associated with eastern tropical Pacific thermal anomalies. During the period of 1977-1987, the sea level anomalies are positive in the eastern equatorial Pacific and show deviations from a north-south symmetric distribution, with strongly negative anomalies in the western tropical South Pacific. During the period of 1996-2006, in contrast, the sea level anomalies are negative in the eastern equatorial Pacific and show a nearly north-south symmetric pattern, with positive anomalies in both hemispheres. Concurrently, sea level anomalies in the south-eastern Indian Ocean vary with those in the western tropical Pacific. These sea level variations are closely related to large-scale wind fields. Indo-Pacific sea level distributions are basically determined by wind anomalies over the equatorial region as well as wind stress curl anomalies over the off-equatorial region.
Shear-reducing insoles to prevent foot ulceration in high-risk diabetic patients.
Lavery, Lawrence A; LaFontaine, Javier; Higgins, Kevin R; Lanctot, Dan R; Constantinides, George
2012-11-01
To enhance the learner's competence with knowledge of the effectiveness of shear-reducing insoles for prevention of foot ulceration in patients with high-risk diabetes. This continuing education activity is intended for physicians and nurses with an interest in skin and wound care. After participating in this educational activity, the participant should be better able to:1. Demonstrate knowledge of foot ulceration risk, risk factors, incidence, and prevention.2. Apply knowledge gained from reviewing this study and a literature review about the use of shear-reducing insoles to patient scenarios. The objective of this study was to evaluate the effectiveness of a shear-reducing insole compared with a standard insole design to prevent foot ulceration in high-risk patients with diabetes. A total of 299 patients with diabetic neuropathy and loss of protective sensation, foot deformity, or history of foot ulceration were randomized into a standard therapy group (n = 150) or a shear-reducing insole group (n = 149). Patients were evaluated for 18 months. Standard therapy group consisted of therapeutic footwear, diabetic foot education, and regular foot evaluation by a podiatrist. The shear-reducing insole group included a novel insole designed to reduce both pressure and shear on the sole of the foot. Insoles were replaced every 4 months in both groups. The primary clinical outcome was foot ulceration. The authors used Cox proportional hazards regression to evaluate time to ulceration. There were 2 significant factors from the Cox regression model: insole treatment and history of a foot complication. The standard therapy group was about 3.5 times more likely to develop an ulcer compared with shear-reducing insole group (hazard ratio, 3.47; 95% confidence interval, 0.96-12.67). These results suggest that a shear-reducing insole is more effective than traditional insoles to prevent foot ulcers in high-risk persons with diabetes.
Toda, Y; Tsukimura, N
2006-03-01
This study was conducted in order to assess the effect of wearing a lateral wedged insole with a subtalar strap for 2 years in patients with osteoarthritis varus deformity of the knee (knee OA). The setting was an outpatient clinic. The efficacies of the strapped insole and a traditional shoe insert wedged insole (the inserted insole), as a positive control, were compared at the baseline and after 2 years of treatment. Randomization was performed according to birth date. The 61 female outpatients with knee OA who completed a prior 6-month study were asked to wear their respective insoles continuously as treatment during the course of the 2-year study. The femorotibial angle (FTA) was assessed by standing radiographs obtained while the subjects were barefoot and the Lequesne index of the knee OA at 2 years was compared with those at baseline in each insole group. There were 61 patients in the original study, but 13 patients (21.3%) did not want to wear the insole continuously and five (8.2%) withdrew for other reasons. The 42 patients who completed the 2-year study were evaluated. At the 2-year assessment, participants wearing the subtalar strapped insole (n=21) demonstrated significantly decreased FTA (P=0.015), and significantly improved Lequesne index (P=0.031) in comparison with their baseline assessments. These significant differences were not found in the group with the traditional shoe inserted wedged insole (n=21). Only those participants using the subtalar strapped insole demonstrated significant change in the FTA in comparison with the baseline assessments. If the insole with a subtalar strap maintains FTA for more than 2 years, it may restrict the progression of degenerative articular cartilage lesions of knee OA.
Impact of soft and hard insole density on postural stability in older adults.
Losa Iglesias, Marta Elena; Becerro de Bengoa Vallejo, Ricardo; Palacios Peña, Domingo
2012-01-01
A significant predictor of falls in the elderly population is attributed to postural instability. Thus, it is important to identify and implement practical clinical interventions to enhance postural stability in older adults. Shoe insoles have been identified as a mechanism to enhance postural control, and our study aimed to evaluate the impact of 2 shoe insoles on static standing balance in healthy, older adults compared with standing posture while barefoot. We hypothesized that both hard and soft shoe insoles would decrease postural sway compared with the barefoot condition. Indeed, excursion distances and sway areas were reduced, and sway velocity was decreased when wearing insoles. The hard insole was also effective when visual feedback was removed, suggesting that the more rigid an insole, the greater potential reduction in fall risk. Thus, shoe insoles may be a cost-effective, clinical intervention that is easy to implement to reduce the risk of falling in the elderly population. Copyright © 2012 Mosby, Inc. All rights reserved.
Su, Shonglun; Mo, Zhongjun; Guo, Junchao; Fan, Yubo
2017-01-01
Flat foot is one of the common deformities in the youth population, seriously affecting the weight supporting and daily exercising. However, there is lacking of quantitative data relative to material selection and shape design of the personalized orthopedic insole. This study was to evaluate the biomechanical effects of material hardness and support height of personalized orthopedic insole on foot tissues, by in vivo experiment and finite element modeling. The correction of arch height increased with material hardness and support height. The peak plantar pressure increased with the material hardness, and these values by wearing insoles of 40° were apparently higher than the bare feet condition. Harder insole material results in higher stress in the joint and ligament stress than softer material. In the calcaneocuboid joint, the stress increased with the arch height of insoles. The material hardness did not apparently affect the stress in the ankle joints, but the support heights of insole did. In general, insole material and support design are positively affecting the correction of orthopedic insole, but negatively resulting in unreasonable stress on the stress in the joint and ligaments. There should be an integration of improving correction and reducing stress in foot tissues.
Hydrological Cycle in the Western Equatorial Warm Pool over the Past 220 k years
NASA Astrophysics Data System (ADS)
Tachikawa, K.; Cartapanis, O.; Vidal, L.; Beaufort, L.; Bard, E.
2008-12-01
The Western Pacific Warm Pool is a major source of heat and moisture to extra-tropical regions, and its condition could have great impact on global climate response to various forcing factors. We reconstructed the rainfall pattern over Papua New Guinea (PNG) for the past 220 kyr using terrigenous elemental contents (Ti, Fe, K and Si) and calcareous productivity (Ca) recorded in a marine sediment core MD05-2920 (2°51.48S, 144°32.04E) from 100 km off the Sepik River mouth in Northern PNG. The core chronostratigraphy is established by 14C dating and benthic foraminiferal oxygen isotopes. The Sepik and Ramu river system forms one of the highest sediment discharge zones in the world because of high rainfall rates, warm and humid climate, steep topography and erodible volcanic rocks in the draining basin. At present, the rainfall over this area is under the influence of both Asia-Australian monsoon and El Niño Southern Oscillation (ENSO). The results obtained by an XRF core scanner indicate that for the whole record major sediment components are of terrigenous river-born nature and biogenic CaCO3. Spectral analysis reveals that dominant peaks for Ti are precession and obliquity periods whereas Ca variability is rather dominated by obliquity. The wet periods appear during maximum local insolation, which is in phase with minimum East Asian summer monsoon strength recorded by Chinese speleothems. Modeled past ENSO activity cannot explain the reconstructed rainfall and productivity patterns. Taken together, the fresh water cycle over New Guinea is better explained by latitudinal shifts of the Intertropical Convergence Zone rather than ENSO-type variability on orbital time scales. The variability of calcareous productivity is likely related to general changes in nutricline depth of the tropical Pacific band.
[Use of insoles made of antimicrobial materials as prophylactic means in foot mycoses].
Sedov, A V; Vazhbin, L B; Odtarzhevskaia, N D; Astaf'eva, I P; Poliakova, L A; Karpov, V V; Ashurova, E I; Lazareva, N M; Mikhaĭlov, O R
1994-01-01
Stationary dermatologic examination covered 32 sufferers from epidermophytosis of soles, who used 3 types of antimicrobial insoles chosen through laboratory investigations. Clinical trials proved that antimicrobial insoles, if applied during 2 weeks, result in considerably decreased occurrence of causal fungus in the patients' surface skin scarring. The results proved fungicidal and bactericidal activity of insoles including furagin, nitrofurilacroleine, polyhexamethylene guanidine, so such insoles could be recommended as prophylactic measure for mycoses of soles.
NASA Astrophysics Data System (ADS)
Hamilton, Douglas P.
2015-11-01
The locations of large deposits of frozen volatiles on planetary surfaces are largely coincident with areas receiving the minimum annual influx of solar energy; familiar examples include the polar caps of Earth and Mars. For planets tilted by more than 45 degrees, however, the poles actually receive more energy than some other latitudes. Pluto, with its current obliquity of 119 degrees, has minima in its average annual insolation at +/- 27 degrees latitude, with ~1.5% more energy flux going to the equator and ~15% more to the poles. Remarkably, the fraction of annual solar energy incident on different latitudes depends only on the obliquity of the planet and not on any of its orbital parameters.Over millions of years, Pluto's obliquity varies sinusoidally from 102-126 degrees, significantly affecting the latitudinal profile of solar energy deposition. Roughly 1Myr ago, the poles received 15% more energy that today while the equator received 13% less. The energy flux to latitudes between 25-35 degrees is far more stable, remaining low over the presumably billions of years since Pluto acquired its current spin properties. Like the poles at Earth, these mid latitudes on Pluto should be favored for the long-term deposition of volatile ices. This is, indeed, the location of the bright icy heart of Pluto, Sputnik Planum.Reflected light and emitted thermal radiation from Charon increases annual insolation to one side of Pluto by of order 0.02%. Although small, the bulk of the energy is delivered at night to Pluto's cold equatorial regions. Furthermore, Charon's thermal infrared radiation is easily absorbed by icy deposits on Pluto, slowing deposition and facilitating sublimation of volatiles. We argue that the slight but persistent preference for ices to form and survive in the anti-Charon Pluto's heart.
NASA Astrophysics Data System (ADS)
Rivier, Leonard Gilles
Using an efficient parallel code solving the primitive equations of atmospheric dynamics, the jet structure of a Jupiter like atmosphere is modeled. In the first part of this thesis, a parallel spectral code solving both the shallow water equations and the multi-level primitive equations of atmospheric dynamics is built. The implementation of this code called BOB is done so that it runs effectively on an inexpensive cluster of workstations. A one dimensional decomposition and transposition method insuring load balancing among processes is used. The Legendre transform is cache-blocked. A "compute on the fly" of the Legendre polynomials used in the spectral method produces a lower memory footprint and enables high resolution runs on relatively small memory machines. Performance studies are done using a cluster of workstations located at the National Center for Atmospheric Research (NCAR). BOB performances are compared to the parallel benchmark code PSTSWM and the dynamical core of NCAR's CCM3.6.6. In both cases, the comparison favors BOB. In the second part of this thesis, the primitive equation version of the code described in part I is used to study the formation of organized zonal jets and equatorial superrotation in a planetary atmosphere where the parameters are chosen to best model the upper atmosphere of Jupiter. Two levels are used in the vertical and only large scale forcing is present. The model is forced towards a baroclinically unstable flow, so that eddies are generated by baroclinic instability. We consider several types of forcing, acting on either the temperature or the momentum field. We show that only under very specific parametric conditions, zonally elongated structures form and persist resembling the jet structure observed near the cloud level top (1 bar) on Jupiter. We also study the effect of an equatorial heat source, meant to be a crude representation of the effect of the deep convective planetary interior onto the outer atmospheric layer. We show that such heat forcing is able to produce strong equatorial superrotating winds, one of the most striking feature of the Jovian circulation.
The bomb 14C transient in the Pacific Ocean
NASA Astrophysics Data System (ADS)
Rodgers, Keith B.; Schrag, Daniel P.; Cane, Mark A.; Naik, Naomi H.
2000-04-01
A modeling study of the bomb 14C transient is presented for the Pacific Ocean. A primitive equation ocean circulation model has been configured for a high-resolution domain that accounts for the Indonesian Throughflow (ITF). Four separate runs were performed: (1) seasonal forcing with 20 Sv of ITF transport, (2) seasonal forcing with 10 Sv of ITF transport, (3) seasonal forcing with no ITF transport, and (4) interannual forcing with 15 Sv of ITF transport. This study has two main objectives. First, it is intended to describe the time evolution of the bomb 14C transient. This serves as a tool with which one can identify the physical processes controlling the evolving bomb 14C distribution in the Pacific thermocline and thus provides an interpretive framework for the database of Δ14C measurements in the Pacific. Second, transient tracers are applied to the physical oceanographic problem of intergyre exchange. This is of importance in furthering our understanding of the potential role of the upper Pacific Ocean in climate variability. We use bomb 14C as a dye tracer of intergyre exchange between the subtropical gyres and the equatorial upwelling regions of the equatorial Pacific. Observations show that while the atmospheric Δ14C signal peaked in the early to mid-1960s, the Δ14C levels in the surface water waters of the subtropical gyres peaked near 1970, and the Δ14C of surface waters in the equatorial Pacific continued to rise through the 1980s. It is shown that the model exhibits skill in representing the large-scale observed features observed for the bomb 14C transient in the Pacific Ocean. The model successfully captures the basin-scale inventories of bomb 14C in the tropics as well as in the extratropics of the North Pacific. For the equatorial Pacific this is attributed to the model's high meridional resolution. The discrepancies in the three-dimensional distribution of bomb 14C between the model and data are discussed within the context of the dynamical controls on the Δ14C distribution of bomb 14C in the Pacific.
21 CFR 880.6280 - Medical insole.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical insole. 880.6280 Section 880.6280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES....6280 Medical insole. (a) Identification. A medical insole is a device intended for medical purposes...
21 CFR 880.6280 - Medical insole.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical insole. 880.6280 Section 880.6280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES....6280 Medical insole. (a) Identification. A medical insole is a device intended for medical purposes...
21 CFR 880.6280 - Medical insole.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical insole. 880.6280 Section 880.6280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES....6280 Medical insole. (a) Identification. A medical insole is a device intended for medical purposes...
21 CFR 880.6280 - Medical insole.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical insole. 880.6280 Section 880.6280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES....6280 Medical insole. (a) Identification. A medical insole is a device intended for medical purposes...
21 CFR 880.6280 - Medical insole.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical insole. 880.6280 Section 880.6280 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES....6280 Medical insole. (a) Identification. A medical insole is a device intended for medical purposes...
NASA Astrophysics Data System (ADS)
Kirby, Matthew E.; Knell, Edward J.; Anderson, William T.; Lachniet, Matthew S.; Palermo, Jennifer; Eeg, Holly; Lucero, Ricardo; Murrieta, Rosa; Arevalo, Andrea; Silveira, Emily; Hiner, Christine A.
2015-09-01
Silver Lake is the modern terminal playa of the Mojave River in southern California (USA). As a result, it is well located to record both influences from the winter precipitation dominated San Bernardino Mountains - the source of the Mojave River - and from the late summer to early fall North American monsoon at Silver Lake. Here, we present various physical, chemical and biological data from a new radiocarbon-dated, 8.2 m sediment core taken from Silver Lake that spans modern through 14.8 cal ka BP. Texturally, the core varies between sandy clay, clayey sand, and sand-silt-clay, often with abrupt sedimentological transitions. These grain-size changes are used to divide the core into six lake status intervals over the past 14.8 cal ka BP. Notable intervals include a dry Younger Dryas chronozone, a wet early Holocene terminating 7.8 - 7.4 cal ka BP, a distinct mid-Holocene arid interval, and a late Holocene return to ephemeral lake conditions. A comparison to potential climatic forcings implicates a combination of changing summer - winter insolation and tropical and N Pacific sea-surface temperature dynamics as the primary drivers of Holocene climate in the central Mojave Desert.
Insolation at Carterville, Illinois
Peter Y. S. Chen
1981-01-01
Insolation measured with a precision spectral pyranometer, was recorded near Carterville, Illinois, for 1 year. the pyranometer was tilted at an angle of 25 degrees in summer, 50 degrees in winter, and 37.5 degrees in spring and fall. the insolation measured in winter was found to be significantly larger than the insolation estimated on a horizontal surface.
Multi-year predictability in a coupled general circulation model
NASA Astrophysics Data System (ADS)
Power, Scott; Colman, Rob
2006-02-01
Multi-year to decadal variability in a 100-year integration of a BMRC coupled atmosphere-ocean general circulation model (CGCM) is examined. The fractional contribution made by the decadal component generally increases with depth and latitude away from surface waters in the equatorial Indo-Pacific Ocean. The relative importance of decadal variability is enhanced in off-equatorial “ wings” in the subtropical eastern Pacific. The model and observations exhibit “ENSO-like” decadal patterns. Analytic results are derived, which show that the patterns can, in theory, occur in the absence of any predictability beyond ENSO time-scales. In practice, however, modification to this stochastic view is needed to account for robust differences between ENSO-like decadal patterns and their interannual counterparts. An analysis of variability in the CGCM, a wind-forced shallow water model, and a simple mixed layer model together with existing and new theoretical results are used to improve upon this stochastic paradigm and to provide a new theory for the origin of decadal ENSO-like patterns like the Interdecadal Pacific Oscillation and Pacific Decadal Oscillation. In this theory, ENSO-driven wind-stress variability forces internal equatorially-trapped Kelvin waves that propagate towards the eastern boundary. Kelvin waves can excite reflected internal westward propagating equatorially-trapped Rossby waves (RWs) and coastally-trapped waves (CTWs). CTWs have no impact on the off-equatorial sub-surface ocean outside the coastal wave guide, whereas the RWs do. If the frequency of the incident wave is too high, then only CTWs are excited. At lower frequencies, both CTWs and RWs can be excited. The lower the frequency, the greater the fraction of energy transmitted to RWs. This lowers the characteristic frequency (reddens the spectrum) of variability off the equator relative to its equatorial counterpart. At low frequencies, dissipation acts as an additional low pass filter that becomes more effective, as latitude increases. At the same time, ENSO-driven off-equatorial surface heating anomalies drive mixed layer temperature responses in both hemispheres. Both the eastern boundary interactions and the accumulation of surface heat fluxes by the surface mixed layer act to low pass filter the ENSO-forcing. The resulting off-equatorial variability is therefore more coherent with low pass filtered (decadal) ENSO indices [e.g. NINO3 sea-surface temperature (SST)] than with unfiltered ENSO indices. Consequently large correlations between variability and NINO3 extend further poleward on decadal time-scales than they do on interannual time-scales. This explains why decadal ENSO-like patterns have a broader meridional structure than their interannual counterparts. This difference in appearance can occur even if ENSO indices do not have any predictability beyond interannual time-scales. The wings around 15-20°S, and sub-surface variability at many other locations are predictable on interannual and multi-year time-scales. This includes westward propagating internal RWs within about 25° of the equator. The slowest of these take up to 4 years to reach the western boundary. This sub-surface predictability has significant oceanographic interest. However, it is linked to only low levels of SST variability. Consequently, extrapolation of delayed action oscillator theory to decadal time-scales might not be justified.
Su, Shonglun; Mo, Zhongjun; Guo, Junchao
2017-01-01
Flat foot is one of the common deformities in the youth population, seriously affecting the weight supporting and daily exercising. However, there is lacking of quantitative data relative to material selection and shape design of the personalized orthopedic insole. This study was to evaluate the biomechanical effects of material hardness and support height of personalized orthopedic insole on foot tissues, by in vivo experiment and finite element modeling. The correction of arch height increased with material hardness and support height. The peak plantar pressure increased with the material hardness, and these values by wearing insoles of 40° were apparently higher than the bare feet condition. Harder insole material results in higher stress in the joint and ligament stress than softer material. In the calcaneocuboid joint, the stress increased with the arch height of insoles. The material hardness did not apparently affect the stress in the ankle joints, but the support heights of insole did. In general, insole material and support design are positively affecting the correction of orthopedic insole, but negatively resulting in unreasonable stress on the stress in the joint and ligaments. There should be an integration of improving correction and reducing stress in foot tissues. PMID:29065655
Estimation of the Kelvin wave contribution to the semiannual oscillation
NASA Technical Reports Server (NTRS)
Hitchman, Matthew H.; Leovy, Conway B.
1988-01-01
Daily temperature data acquired during the Limb Infrared Monitor of the Stratosphere experiment are used to study the behavior of Kelvin waves in the equatorial middle atmosphere. It is suggested that Kelvin wave packets of different zonal wave numbers propagate separately and may be forced separately. Two Kelvin wave regimes were identified during the October 1978 to May 1979 data period. Most of the properties of the observed waves are shown to be consistent with slowly-varying theory. Results suggest that gravity waves may contribute significantly to the equatorial stratopause semiannual oscillation.
1987-01-01
the tropical Pacific Ocean . Contribution in Atmospheric Science No. 20, University of California, Davis. Wyrtki, K., 1981: An estimate of... distribution of net E-P and heating in the tropical Pacific determines the vertical T-S relationship of the upper ocean in the western equatorial Pacific... contributing factor. The effect of such impulsive forcing on the western equatorial Pacific upper ocean can be seen in Fig. 11 from the
Shaw, Kathryn E; Charlton, Jesse M; Perry, Christina K L; de Vries, Courtney M; Redekopp, Matthew J; White, Jordan A; Hunt, Michael A
2018-02-01
The effect of shoe-worn insoles on biomechanical variables in people with medial knee osteoarthritis has been studied extensively. The majority of research has focused specifically on the effect of lateral wedge insoles at the knee. The aim of this systematic review and meta-analysis was to summarise the known effects of different shoe-worn insoles on all biomechanical variables during level walking in this patient population to date. Four electronic databases were searched to identify studies containing biomechanical data using shoe-worn insole devices in the knee osteoarthritis population. Methodological quality was assessed and a random effects meta-analysis was performed on biomechanical variables reported in three or more studies for each insole. Twenty-seven studies of moderate-to-high methodological quality were included in this review. The primary findings were consistent reductions in the knee adduction moment with lateral wedge insoles, although increases in ankle eversion with these insoles were also found. Lateral wedge insoles produce small reductions in knee adduction angles and external moments, and moderate increases in ankle eversion. The addition of an arch support to a lateral wedge minimises ankle eversion change, and also minimises adduction moment reductions. The paucity of available data on other insole types and other biomechanical outcomes presents an opportunity for future research. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Onset of deglacial warming in West Antarctica driven by local orbital forcing.
2013-08-22
The cause of warming in the Southern Hemisphere during the most recent deglaciation remains a matter of debate. Hypotheses for a Northern Hemisphere trigger, through oceanic redistributions of heat, are based in part on the abrupt onset of warming seen in East Antarctic ice cores and dated to 18,000 years ago, which is several thousand years after high-latitude Northern Hemisphere summer insolation intensity began increasing from its minimum, approximately 24,000 years ago. An alternative explanation is that local solar insolation changes cause the Southern Hemisphere to warm independently. Here we present results from a new, annually resolved ice-core record from West Antarctica that reconciles these two views. The records show that 18,000 years ago snow accumulation in West Antarctica began increasing, coincident with increasing carbon dioxide concentrations, warming in East Antarctica and cooling in the Northern Hemisphere associated with an abrupt decrease in Atlantic meridional overturning circulation. However, significant warming in West Antarctica began at least 2,000 years earlier. Circum-Antarctic sea-ice decline, driven by increasing local insolation, is the likely cause of this warming. The marine-influenced West Antarctic records suggest a more active role for the Southern Ocean in the onset of deglaciation than is inferred from ice cores in the East Antarctic interior, which are largely isolated from sea-ice changes.
Onset of deglacial warming in West Antarctica driven by local orbital forcing
WAIS Divide Project Members,; Fudge, T. J.; Steig, Eric J.; Markle, Bradley R.; Schoenemann, Spruce W.; Ding, Qinghua; Taylor, Kendrick C.; McConnell, Joseph R.; Brook, Edward J.; Sowers, Todd; White, James W. C.; Alley, Richard B.; Cheng, Hai; Clow, Gary D.; Cole-Dai, Jihong; Conway, Howard; Cuffey, Kurt M.; Edwards, Jon S.; Edwards, R. Lawrence; Edwards, Ross; Fegyveresi, John M.; Ferris, David; Fitzpatrick, Joan J.; Johnson, Jay; Hargreaves, Geoffrey; Lee, James E.; Maselli, Olivia J.; Mason, William; McGwire, Kenneth C.; Mitchell, Logan E.; Mortensen, Nicolai B.; Neff, Peter; Orsi, Anais J.; Popp, Trevor J.; Schauer, Andrew J.; Severinghaus, Jeffrey P.; Sigl, Michael; Spencer, Matthew K.; Vaughn, Bruce H.; Voigt, Donald E.; Waddington, Edwin D.; Wang, Xianfeng; Wong, Gifford J.
2013-01-01
The cause of warming in the Southern Hemisphere during the most recent deglaciation remains a matter of debate. Hypotheses for a Northern Hemisphere trigger, through oceanic redistributions of heat, are based in part on the abrupt onset of warming seen in East Antarctic ice cores and dated to 18,000 years ago, which is several thousand years after high-latitude Northern Hemisphere summer insolation intensity began increasing from its minimum, approximately 24,000 years ago. An alternative explanation is that local solar insolation changes cause the Southern Hemisphere to warm independently. Here we present results from a new, annually resolved ice-core record from West Antarctica that reconciles these two views. The records show that 18,000 years ago snow accumulation in West Antarctica began increasing, coincident with increasing carbon dioxide concentrations, warming in East Antarctica and cooling in the Northern Hemisphere associated with an abrupt decrease in Atlantic meridional overturning circulation. However, significant warming in West Antarctica began at least 2,000 years earlier. Circum-Antarctic sea-ice decline, driven by increasing local insolation, is the likely cause of this warming. The marine-influenced West Antarctic records suggest a more active role for the Southern Ocean in the onset of deglaciation than is inferred from ice cores in the East Antarctic interior, which are largely isolated from sea-ice changes.
Assessing Walking Strategies Using Insole Pressure Sensors for Stroke Survivors.
Munoz-Organero, Mario; Parker, Jack; Powell, Lauren; Mawson, Susan
2016-10-01
Insole pressure sensors capture the different forces exercised over the different parts of the sole when performing tasks standing up such as walking. Using data analysis and machine learning techniques, common patterns and strategies from different users to achieve different tasks can be automatically extracted. In this paper, we present the results obtained for the automatic detection of different strategies used by stroke survivors when walking as integrated into an Information Communication Technology (ICT) enhanced Personalised Self-Management Rehabilitation System (PSMrS) for stroke rehabilitation. Fourteen stroke survivors and 10 healthy controls have participated in the experiment by walking six times a distance from chair to chair of approximately 10 m long. The Rivermead Mobility Index was used to assess the functional ability of each individual in the stroke survivor group. Several walking strategies are studied based on data gathered from insole pressure sensors and patterns found in stroke survivor patients are compared with average patterns found in healthy control users. A mechanism to automatically estimate a mobility index based on the similarity of the pressure patterns to a stereotyped stride is also used. Both data gathered from stroke survivors and healthy controls are used to evaluate the proposed mechanisms. The output of trained algorithms is applied to the PSMrS system to provide feedback on gait quality enabling stroke survivors to self-manage their rehabilitation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rose, Brian E. J.; Cronin, Timothy W.; Bitz, Cecilia M., E-mail: brose@albany.edu
Planetary obliquity determines the meridional distribution of the annual mean insolation. For obliquity exceeding 55°, the weakest insolation occurs at the equator. Stable partial snow and ice cover on such a planet would be in the form of a belt about the equator rather than polar caps. An analytical model of planetary climate is used to investigate the stability of ice caps and ice belts over the widest possible range of parameters. The model is a non-dimensional diffusive Energy Balance Model, representing insolation, heat transport, and ice−albedo feedback on a spherical planet. A complete analytical solution for any obliquity ismore » given and validated against numerical solutions of a seasonal model in the “deep-water” regime of weak seasonal ice line migration. Multiple equilibria and unstable transitions between climate states (ice-free, Snowball, or ice cap/belt) are found over wide swaths of parameter space, including a “Large Ice-Belt Instability” and “Small Ice-Belt Instability” at high obliquity. The Snowball catastrophe is avoided at weak radiative forcing in two different scenarios: weak albedo feedback and inefficient heat transport (favoring stable partial ice cover), or efficient transport at high obliquity (favoring ice-free conditions). From speculative assumptions about distributions of planetary parameters, three-fourths to four-fifths of all planets with stable partial ice cover should be in the form of Earth-like polar caps.« less
Weaver, Brian Thomas; Fitzsimons, Kathleen; Braman, Jerrod; Haut, Roger
2016-09-01
The goal of the current study was to expand on previous work to validate the use of pressure insole technology in conjunction with linear regression models to predict the free torque at the shoe-surface interface that is generated while wearing different athletic shoes. Three distinctly different shoe designs were utilised. The stiffness of each shoe was determined with a material's testing machine. Six participants wore each shoe that was fitted with an insole pressure measurement device and performed rotation trials on an embedded force plate. A pressure sensor mask was constructed from those sensors having a high linear correlation with free torque values. Linear regression models were developed to predict free torques from these pressure sensor data. The models were able to accurately predict their own free torque well (RMS error 3.72 ± 0.74 Nm), but not that of the other shoes (RMS error 10.43 ± 3.79 Nm). Models performing self-prediction were also able to measure differences in shoe stiffness. The results of the current study showed the need for participant-shoe specific linear regression models to insure high prediction accuracy of free torques from pressure sensor data during isolated internal and external rotations of the body with respect to a planted foot.
2012-01-01
Background Neuropathic diabetic foot ulceration may be prevented if the mechanical stress transmitted to the plantar tissues is reduced. Insole therapy is one practical method commonly used to reduce plantar loads and ulceration risk. The type of insole best suited to achieve this is unknown. This trial compared custom-made functional insoles with prefabricated insoles to reduce risk factors for ulceration of neuropathic diabetic feet. Method A participant-blinded randomised controlled trial recruited 119 neuropathic participants with diabetes who were randomly allocated to custom-made functional or prefabricated insoles. Data were collected at issue and six month follow-up using the F-scan in-shoe pressure measurement system. Primary outcomes were: peak pressure, forefoot pressure time integral, total contact area, forefoot rate of load, duration of load as a percentage of stance. Secondary outcomes were patient perceived foot health (Bristol Foot Score), quality of life (Audit of Diabetes Dependent Quality of Life). We also assessed cost of supply and fitting. Analysis was by intention-to-treat. Results There were no differences between insoles in peak pressure, or three of the other four kinetic measures. The custom-made functional insole was slightly more effective than the prefabricated insole in reducing forefoot pressure time integral at issue (27% vs. 22%), remained more effective at six month follow-up (30% vs. 24%, p=0.001), but was more expensive (UK £656 vs. £554, p<0.001). Full compliance (minimum wear 7 hours a day 7 days per week) was reported by 40% of participants and 76% of participants reported a minimum wear of 5 hours a day 5 days per week. There was no difference in patient perception between insoles. Conclusion The custom-made insoles are more expensive than prefabricated insoles evaluated in this trial and no better in reducing peak pressure. We recommend that where clinically appropriate, the more cost effective prefabricated insole should be considered for use by patients with diabetes and neuropathy. Trial registration Clinical trials.gov (NCT00999635). Note: this trial was registered on completion. PMID:23216959
Seasonal variation of the South Indian tropical gyre
NASA Astrophysics Data System (ADS)
Aguiar-González, Borja; Ponsoni, Leandro; Ridderinkhof, Herman; van Aken, Hendrik M.; de Ruijter, Will P. M.; Maas, Leo R. M.
2016-04-01
Based on satellite altimeter data and global atlases of temperature, salinity, wind stress and wind-driven circulation we investigate the seasonal variation of the South Indian tropical gyre and its associated open-ocean upwelling system, known as the Seychelles-Chagos Thermocline Ridge (SCTR). Results show a year-round, altimeter-derived cyclonic gyre where the upwelling regime appears closely related to seasonality of the ocean gyre, a relationship that has not been previously explored in this region. An analysis of major forcing mechanisms suggests that the thermocline ridge results from the constructive interaction of basin-scale wind stress curl, local-scale wind stress forcing and remote forcing driven by Rossby waves of different periodicity: semiannual in the west, under the strong influence of monsoonal winds; and, annual in the east, where the southeasterlies prevail. One exception occurs during winter, when the well-known westward intensification of the upwelling core, the Seychelles Dome, is shown to be largely a response of the wind-driven circulation. At basin-scale, the most outstanding feature is the seasonal shrinkage of the ocean gyre and the SCTR. From late autumn to spring, the eastward South Equatorial Countercurrent (SECC) recirculates early in the east on feeding the westward South Equatorial Current, therefore closing the gyre before arrival to Sumatra. We find this recirculation longitude migrates over 20° and collocates with the westward advance of a zonal thermohaline front emerging from the encounter between (upwelled) Indian Equatorial Water and relatively warmer and fresher Indonesian Throughflow Water. We suggest this front, which we call the Indonesian Throughflow Front, plays an important role as remote forcing to the tropical gyre, generating southward geostrophic flows that contribute to the early recirculation of the SECC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Kane, Terence J.; Matear, Richard J.; Chamberlain, Matthew A.
South Pacific subtropical density compensated temperature and salinity (spiciness) anomalies are known to be associated with decadal equatorial variability, however, the mechanisms by which such disturbances are generated, advect and the degree to which they modulate the equatorial thermocline remains controversial. During the late 1970's a climate regime transition preceded a period of strong and sustained El Nino events. Using an ocean general circulation model forced by the constituent mechanical and thermodynamic components of the reanalysed atmosphere we show that the late 1970's transition coincided with the arrival of a large-scale, subsurface cold and fresh water anomaly in the centralmore » tropical Pacific. An ocean reanalysis for the period 1990–2007 that assimilates subsurface Argo, XBT and CTD data, reveals that disturbances occur due to the subduction of negative surface salinity anomalies from near 30° S, 100° W which are advected along the σ=25–26 kgm{sup −3} isopycnal surfaces. These anomalies take, on average, seven years to reach the central equatorial Pacific where they may substantially perturb the thermocline before the remnants ultimately ventilate in the region of the western Pacific warm pool. Positive (warm–salty) disturbances, known to occur due to late winter diapycnal mixing and isopycnal outcropping, arise due to both subduction of subtropical mode waters and subsurface injection. On reaching the equatorial band (10° S–0° S) these disturbances tend to deepen the thermocline reducing the model's ENSO. In contrast the emergence of negative (cold–fresh) disturbances at the equator are associated with a shoaling of the thermocline and El Nino events. Process studies are used to show that the generation and advection of anomalous density compensated thermocline disturbances critically depend on stochastic forcing of the intrinsic ocean by weather. We further show that in the absence of the inter-annual component of the atmosphere forcing Central Pacific El Nino events are manifest.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boville, B.A.; Randel, W.J.
1992-05-01
Equatorially trapped wave modes, such as Kelvin and mixed Rossby-gravity waves, are believed to play a crucial role in forcing the quasi-biennial oscillation (QBO) of the lower tropical stratosphere. This study examines the ability of a general circulation model (GCM) to simulate these waves and investigates the changes in the wave properties as a function of the vertical resolution of the model. The simulations produce a stratopause-level semiannual oscillation but not a QBO. An unfortunate property of the equatorially trapped waves is that they tend to have small vertical wavelengths ([le] 15 km). Some of the waves, believed to bemore » important in forcing the QBO, have wavelengths as short as 4 km. The short vertical wavelengths pose a stringent computational requirement for numerical models whose vertical grid spacing is typically chosen based on the requirements for simulating extratropical Rossby waves (which have much longer vertical wavelengths). This study examines the dependence of the equatorial wave simulation of vertical resolution using three experiments with vertical grid spacings of approximately 2.8, 1.4, and 0.7 km. Several Kelvin, mixed Rossby-gravity, and 0.7 km. Several Kelvin, mixed Rossby-gravity, and inertio-gravity waves are identified in the simulations. At high vertical resolution, the simulated waves are shown to correspond fairly well to the available observations. The properties of the relatively slow (and vertically short) waves believed to play a role in the QBO vary significantly with vertical resolution. Vertical grid spacings of about 1 km or less appear to be required to represent these waves adequately. The simulated wave amplitudes are at least as large as observed, and the waves are absorbed in the lower stratosphere, as required in order to force the QBO. However, the EP flux divergence associated with the waves is not sufficient to explain the zonal flow accelerations found in the QBO. 39 refs., 17 figs., 1 tab.« less
A Model Study of Zonal Forcing in the Equatorial Stratosphere by Convectively Induced Gravity Waves
NASA Technical Reports Server (NTRS)
Alexander, M. J.; Holton, James R.
1997-01-01
A two-dimensional cloud-resolving model is used to examine the possible role of gravity waves generated by a simulated tropical squall line in forcing the quasi-biennial oscillation (QBO) of the zonal winds in the equatorial stratosphere. A simulation with constant background stratospheric winds is compared to simulations with background winds characteristic of the westerly and easterly QBO phases, respectively. In all three cases a broad spectrum of both eastward and westward propagating gravity waves is excited. In the constant background wind case the vertical momentum flux is nearly constant with height in the stratosphere, after correction for waves leaving the model domain. In the easterly and westerly shear cases, however, westward and eastward propagating waves, respectively, are strongly damped as they approach their critical levels, owing to the strongly scale-dependent vertical diffusion in the model. The profiles of zonal forcing induced by this wave damping are similar to profiles given by critical level absorption, but displaced slightly downward. The magnitude of the zonal forcing is of order 5 m/s/day. It is estimated that if 2% of the area of the Tropics were occupied by storms of similar magnitude, mesoscale gravity waves could provide nearly 1/4 of the zonal forcing required for the QBO.
NASA Astrophysics Data System (ADS)
Yarwindran, M.; Ibrahim, M.; Raveverma, P.
2017-04-01
There are many important roles of the orthotic insoles, such as for the convenience purpose of diabetic patient's foot problem, and also to enhance athlete's performance in sports. Therefore, highly customised insoles were in demand, where it has to be fabricated by moulding plaster of Paris on the person's leg to customise the insole. The main purpose of the paper is to study the ability to implement additive manufacturing technology in the fabrication process of customised orthotics insole. The recent invention of flexible material (Filaflex) in Fused Deposition Modelling is the most significant reason that makes this fabrication process possible. By implementing a new approach to the 3D scanning of the foot, we produced the computer-aided drafting (CAD) drawing which was able to modify to desired shape and dimension. After the editing has been completed, the file was converted to Stereolithography format file (STL) as to enable it to be printed using Makerware or any other related software by sending command (G-code) to Flashforge 3D printer. The printed insole was tested its fit, form and function (also known as 3F). In the end, printed insole performs the function test which measures the plantar pressure of the foot compared with bare foot. The results show that the insole distributes pressure well throughout the foot surface, in which it reduced the peak pressure to half from 218KPa to 109KPa. Hence, it is concluded that the method proposed in this paper can produce a functional insole so that it can be the alternative way to make customised orthotic insoles.
NASA Technical Reports Server (NTRS)
Aveiro, H. C.; Hysell, D. L.; Caton, R. G.; Groves, K. M.; Klenzing, J.; Pfaff, R. F.; Stoneback, R.; Heelis, R. A.
2012-01-01
A three-dimensional numerical simulation of plasma density irregularities in the postsunset equatorial F region ionosphere leading to equatorial spread F (ESF) is described. The simulation evolves under realistic background conditions including bottomside plasma shear flow and vertical current. It also incorporates C/NOFS satellite data which partially specify the forcing. A combination of generalized Rayleigh-Taylor instability (GRT) and collisional shear instability (CSI) produces growing waveforms with key features that agree with C/NOFS satellite and ALTAIR radar observations in the Pacific sector, including features such as gross morphology and rates of development. The transient response of CSI is consistent with the observation of bottomside waves with wavelengths close to 30 km, whereas the steady state behavior of the combined instability can account for the 100+ km wavelength waves that predominate in the F region.
The effect of textured ballet shoe insoles on ankle proprioception in dancers.
Steinberg, Nili; Waddington, Gordon; Adams, Roger; Karin, Janet; Tirosh, Oren
2016-01-01
Impaired ankle inversion movement discrimination (AIMD) can lead to ankle sprain injuries. The aim of this study was to explore whether wearing textured insoles improved AIMD compared with barefoot, ballet shoes and smooth insoles, among dancers. Forty-four adolescent male and female dancers, aged 13-19, from The Australian Ballet School were tested for AIMD while barefoot, wearing ballet shoes, smooth insoles, and textured insoles. No interaction was found between the four different footwear conditions, the two genders, or the two levels of dancers in AIMD (p > .05). An interaction was found between the four different footwear conditions and the three tertiles when tested in ballet shoes (p = .006). Although significant differences were found between the upper tertiles and the lower tertiles when tested with ballet shoes, barefoot and with smooth insoles (p < .001; p < .001; p = .047, respectively), when testing with textured insoles dancers in the lower tertile obtained similar scores to those obtained by dancers in the upper tertile (p = .911). Textured insoles improved the discrimination scores of dancers with low AIMD, suggesting that textured insoles may trigger the cutaneous receptors in the plantar surface, increasing the awareness of ankle positioning, which in turn might decrease the chance of ankle injury. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Chen, Dake; Busalacchi, Antonio J.; Rothstein, Lewis M.
1994-01-01
The climatological seasonal cycle of sea surface temperature (SST) in the tropical Pacific is simulated using a newly developed upper ocean model. The roles of vertical mixing, solar radiation, and wind stress are investigated in a hierarchy of numerical experiments with various combinations of vertical mixing algorithms and surface-forcing products. It is found that the large SST annual cycle in the eastern equatorial Pacific is, to a large extent, controlled by the annually varying mixed layer depth which, in turn, is mainly determined by the competing effects of solar radiation and wind forcing. With the application of our hybrid vertical mixing scheme the model-simulated SST annual cycle is much improved in both amplitude and phase as compared to the case of a constant mixed layer depth. Beside the strong effects on vertical mixing, solar radiation is the primary heating term in the surface layer heat budget, and wind forcing influences SST by driving oceanic advective processes that redistribute heat in the upper ocean. For example, the SST seasonal cycle in the western Pacific basically follows the semiannual variation of solar heating, and the cycle in the central equatorial region is significantly affected by the zonal advective heat flux associated with the seasonally reversing South Equatorial Current. It has been shown in our experiments that the amount of heat flux modification needed to eliminate the annual mean SST errors in the model is, on average, no larger than the annual mean uncertainties among the various surface flux products used in this study. Whereas a bias correction is needed to account for remaining uncertainties in the annual mean heat flux, this study demonstrates that with proper treatment of mixed layer physics and realistic forcing functions the seasonal variability of SST is capable of being simulated successfully in response to external forcing without relying on a relaxation or damping formulation for the dominant surface heat flux contributions.
Physical and Biological Effects on Tide Flat Sediment Stability and Strength - Phase 2
2011-09-30
forcings, such as insolation, rainfall, benthic microalgae and seagrass (Zostera japonica) abundance, these variations did not always result in...m2 in the winter to a high of >3000 shoots/m2 in late summer. (B) Is chlorophyll a content in mg/g dry sediment (a proxy for benthic microalgae ...Another area of insight regarding physical/biological interactions involves the impact of microphytobenthos (MPB) or benthic microalgae on the
NASA Astrophysics Data System (ADS)
Song, Z.; Lee, S. K.; Wang, C.; Kirtman, B. P.; Qiao, F.
2016-02-01
In order to identify and quantify intrinsic errors in the atmosphere-land and ocean-sea ice model components of the Community Earth System Model version 1 (CESM1) and their contributions to the tropical Atlantic sea surface temperature (SST) bias in CESM1, we propose a new method of diagnosis and apply it to a set of CESM1 simulations. Our analyses of the model simulations indicate that both the atmosphere-land and ocean-sea ice model components of CESM1 contain large errors in the tropical Atlantic. When the two model components are fully coupled, the intrinsic errors in the two components emerge quickly within a year with strong seasonality in their growth rates. In particular, the ocean-sea ice model contributes significantly in forcing the eastern equatorial Atlantic warm SST bias in early boreal summer. Further analysis shows that the upper thermocline water underneath the eastern equatorial Atlantic surface mixed layer is too warm in a stand-alone ocean-sea ice simulation of CESM1 forced with observed surface flux fields, suggesting that the mixed layer cooling associated with the entrainment of upper thermocline water is too weak in early boreal summer. Therefore, although we acknowledge the potential importance of the westerly wind bias in the western equatorial Atlantic and the low-level stratus cloud bias in the southeastern tropical Atlantic, both of which originate from the atmosphere-land model, we emphasize here that solving those problems in the atmosphere-land model alone does not resolve the equatorial Atlantic warm bias in CESM1.
NASA Astrophysics Data System (ADS)
Konijnendijk, T. Y. M.; Ziegler, M.; Lourens, L. J.
2015-12-01
Benthic oxygen isotope records of deep marine sedimentary archives have yielded a wealth of information regarding ice sheet dynamics and climate change during the Pleistocene. However, since they often lack independent age control, these records are generally bound by a fixed phase relationship between orbital forcing and the climate response, e.g. ice volume changes. We present the first long (∼1.2 Ma) benthic oxygen isotope record from the eastern Mediterranean, based on ODP Sites 967 and 968, which clearly reflects the behavior of global climate on a glacial-interglacial scale throughout the late Pleistocene time period. The age model for our record is based on tuning the elemental ratio of titanium versus aluminum (Ti/Al) against insolation. The Ti/Al record is dominated by the precession-related changes in northern African climate, i.e. monsoonal forcing, and hence largely independent of glacial-interglacial variability. We found the largest offset between our chronology and that of the widely applied, open ocean stacked record LR04 (Lisiecki and Raymo, 2005) for TVII (∼624 ka), which occurred ∼9 kyr earlier according to our estimates, though in agreement with the AICC2012 δDice chronology of EPICA Dome C (Bazin et al., 2013). Spectral cross-correlation analysis between our benthic δ18O record and 65°N summer insolation reveals significant amounts of power in the obliquity and precession range, with an average lag of 5.5 ± 0.8 kyr for obliquity, and 6.0 ± 1.0 kyr for precession. In addition, our results show that the obliquity-related time lag was smaller (3.0 ± 3.3 kyr) prior to ∼900 ka than after (5.7 ± 1.1 kyr), suggesting that on average the glacial response time to obliquity forcing increased during the mid-Pleistocene transition, much later than assumed by Lisiecki and Raymo (2005). Finally, we found that almost all glacial terminations have a consistent phase relationship of ∼45 ± 45° with respect to the precession and obliquity-driven increases in 65°N summer insolation, consistent with the general consensus that both obliquity and precession are important for deglaciation during the Late Pleistocene. Exceptions are glacial terminations TIIIb, T36 and potentially T32 (and TVII T24 and T34), which show this consistent phase relationship only with precession (only with obliquity). Our findings point towards an early (>1200 ka) onset of the Mid Pleistocene Transition. Vice versa, the timing of TVII, which can only be explained as a response to obliquity forcing, indicates that the transition lasted until at least after MIS 15.
Understanding the El Niño-like Oceanic Response in the Tropical Pacific to Global Warming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Yiyong; Lu, Jian; Liu, Fukai
The enhanced central and eastern Pacific SST warming and the associated ocean processes under global warming are investigated using the ocean component of the Community Earth System Model (CESM), Parallel Ocean Program version 2 (POP2). The tropical SST warming pattern in the coupled CESM can be faithfully reproduced by the POP2 forced with surface fluxes computed using the aerodynamic bulk formula. By prescribing the wind stress and/or wind speed through the bulk formula, the effects of wind stress change and/or the wind-evaporation-SST (WES) feedback are isolated and their linearity is evaluated in this ocean-alone setting. Result shows that, although themore » weakening of the equatorial easterlies contributes positively to the El Niño-like SST warming, 80% of which can be simulated by the POP2 without considering the effects of wind change in both mechanical and thermodynamic fluxes. This result points to the importance of the air-sea thermal interaction and the relative feebleness of the ocean dynamical process in the El Niño-like equatorial Pacific SST response to global warming. On the other hand, the wind stress change is found to play a dominant role in the oceanic response in the tropical Pacific, accounting for most of the changes in the equatorial ocean current system and thermal structures, including the weakening of the surface westward currents, the enhancement of the near-surface stratification and the shoaling of the equatorial thermocline. Interestingly, greenhouse gas warming in the absence of wind stress change and WES feedback also contributes substantially to the changes at the subsurface equatorial Pacific. Further, this warming impact can be largely replicated by an idealized ocean experiment forced by a uniform surface heat flux, whereby, arguably, a purest form of oceanic dynamical thermostat is revealed.« less
Varying Influence of Different Forcings on the Indo-Pacific Warm Pool Climate
NASA Astrophysics Data System (ADS)
Mohtadi, M.; Huang, E.; Hollstein, M.; Chen, Y.; Schefuß, E.; Rosenthal, Y.; Prange, M.; Oppo, D.; Liu, J.; Steinke, S.; Martinez-Mendez, G.; Tian, J.; Moffa-Sanchez, P.; Lückge, A.
2017-12-01
Proxy records of rainfall in marine archives from the eastern and western parts of the Indo-Pacific Warm Pool (IPWP) vary at precessional band and suggest a dominant role of orbital forcing by modulating monsoon rainfall and the position of the Inter Tropical Convergence Zone. Rainfall changes recorded in marine archives from the northern South China Sea reveal a more complex history. They are largely consistent with those recorded in the Chinese cave speleothems during glacial periods, but show opposite changes during interglacial peaks that coincide with strong Northern Hemisphere summer insolation maxima. During glacial periods, the establishment of massive Northern Hemisphere ice sheets and the exposure of broad continental shelves in East and Southeast Asia alter the large-scale routes and amounts of water vapor transport onto land relative to interglacials. Precipitation over China during glacials varies at precessional band and is dominated by water vapor transport from the nearby tropical and northwest Pacific, resulting in consistent changes in precipitation over large areas. In the absence of ice forcing during peak interglacials with a strong summer insolation, the low-level southerly monsoonal winds mainly of the Indian Ocean origin penetrate further landward and rainout along their path over China. Subsurface temperatures from the IPWP lack changes on glacial-interglacial timescales but follow the obliquity cycle, and suggest that obliquity-paced climate variations at mid-latitudes remotely control subsurface temperatures in the IPWP. Temperature and rainfall in the IPWP respond primarily to abrupt climate changes in the North Atlantic on millennial timescales, and to ENSO and solar forcing on interannual to decadal timescales. In summary, results from marine records reveal that the IPWP climate is sensitive to changes in spatial and temporal distribution of heat by many types of forcing, the influence of which seems to vary in time and space.
Influence of custom-made and prefabricated insoles before and after an intense run
2017-01-01
Each time the foot contacts the ground during running there is a rapid deceleration that results in a shock wave that is transmitted from the foot to the head. The fatigue of the musculoskeletal system during running may decrease the ability of the body to absorb those shock waves and increase the risk of injury. Insoles are commonly prescribed to prevent injuries, and both custom-made and prefabricated insoles have been observed to reduce shock accelerations during running. However, no study to date has included a direct comparison of their behaviour measured over the same group of athletes, and therefore great controversy still exists regarding their effectiveness in reducing impact loading during running. The aim of the study was to analyse the acute differences in stride and shock parameters while running on a treadmill with custom-made and prefabricated insoles. Stride parameters (stride length, stride rate) and shock acceleration parameters (head and tibial peak acceleration, shock magnitude, acceleration rate, and shock attenuation) were measured using two triaxial accelerometers in 38 runners at 3.33 m/s before and after a 15-min intense run while using the sock liner of the shoe (control condition), prefabricated insoles and custom-made insoles. No differences in shock accelerations were found between the custom-made and the control insoles. The prefabricated insoles increased the head acceleration rate (post-fatigue, p = 0.029) compared to the control condition. The custom-made reduced tibial (pre-fatigue, p = 0.041) and head acceleration rates (pre-fatigue and post-fatigue, p = 0.01 and p = 0.046) compared to the prefabricated insoles. Neither the stride nor the acceleration parameters were modified as a result of the intense run. In the present study, the acute use of insoles (custom-made, prefabricated) did not reduce shock accelerations compared to the control insoles. Therefore, their effectiveness at protecting against injuries associated with elevated accelerations is not supported and remains unclear. PMID:28245273
NASA Astrophysics Data System (ADS)
Heitmann, Emma O.; Ji, Shunchuan; Nie, Junsheng; Breecker, Daniel O.
2017-09-01
Middle Miocene Earth had several boundary conditions similar to those predicted for future Earth including similar atmospheric pCO2 and substantial Antarctic ice cover but no northern hemisphere ice sheets. We describe a 12 m outcrop of the terrestrial Yanwan Section in the Tianshui Basin, Gansu, China, following the Miocene Climate Transition (13.9-13.7 Ma). It consists of ∼25 cm thick CaCO3-cemented horizons that overprint siltstones every ∼1 m. We suggest that stacked soils developed in siltstones under a seasonal climate with a fluctuating water table, evidenced by roots, clay films, mottling, presence of CaCO3 nodules, and stacked carbonate nodule δ13 C and δ18 O profiles that mimic modern soils. We suggest that the CaCO3-cemented horizons are capillary-fringe carbonates that formed in an arid climate with a steady water table and high potential evapotranspiration rates (PET), evidenced by sharp upper and basal contacts, micrite, sparite, and root-pore cements. The CaCO3 of the cemented horizons and the carbonate nodules have similar mean δ18 O and δ13 C values but the cements have significantly smaller variance in δ13 C and δ18 O values and a different δ18 O versus δ13 C slope, supporting the conclusion that these carbonates are from different populations. The magneto-stratigraphic age model indicates obliquity pacing of the arid conditions required to form the CaCO3-cemented horizons suggesting an orbital control on water availability. We suggest two possible drivers for the obliquity pacing of arid conditions: 1) variability in the cross-equatorial pressure gradient that controls summer monsoon (ASM) strength and is influenced by obliquity-paced variations of Antarctic ice volume and 2) variability in Western Pacific Ocean-East Asian continent pressure gradient controlled by the 25-45°N meridional insolation gradient. We also suggest that variations in aridity were influenced by variations in PET and sensible heating of the regional land surface which are both influenced by precession-controlled 35°N summer insolation. We then use orbital configurations to predict lithology. Coincidence of obliquity minima (strong ASM) and 35°N summer insolation maxima (strong ASM) drives strong ASM and high PET, resulting in soil formation in an environment with relatively large seasonal changes in water availability. Coincidence of obliquity maxima (weak ASM) and 35°N summer insolation maxima (strong ASM) moderates the ASM, results in high PET, and thus drives overprinting of soils by capillary fringe carbonates above a deepened and relatively stable water table. Coincidence of obliquity and insolation minima also moderates the ASM but results in low PET and thus a high water table, which explains the previously documented occurrence of aquatic plants in this section. This context allows us to assign an orbital configuration to atmospheric pCO2 determined from the paleosols. Our best estimate of pCO2 during the times of intermediate ice volume is 475 + 650 / - 230 ppmV (median value with error reported as 84th-16th percentile values). Southern hemisphere control of ASM variability during the Middle Miocene may have resulted in larger orbital scale water availability variations compared with the Pleistocene.
Toda, Yoshitaka; Tsukimura, Noriko
2004-10-01
To assess the effect of a lateral-wedge insole with elastic strapping of the subtalar joint on the femorotibial angle in patients with varus deformity of the knee. The efficacy of a wedged insole with subtalar straps and that of a traditional wedged insole shoe insert were compared. Sixty-six female outpatients with knee osteoarthritis (OA) were randomized (according to birth date) to be treated with either the strapped or the traditional inserted insole. Standing radiographs with unilateral insole use were used to analyze the femorotibial angles for each patient. In both groups, the baseline and 6-month visual analog scale (VAS) scores for subjective knee pain and the Lequesne index scores for knee OA were compared. The 61 patients who completed the 6-month study were evaluated. At baseline, there was no significant difference in the femorotibial angle (P = 0.66) and the VAS score (P = 0.75) between the 2 groups. At the 6-month assessment, the 29 subjects wearing the subtalar-strapped insole demonstrated a significantly decreased femorotibial angle (P < 0.0001) and significantly improved VAS scores (P = 0.001) and Lequesne index scores (P = 0.033) compared with their baseline assessments. These significant differences were not observed in the 32 subjects assigned to the traditional shoe-inserted wedged insole. These results suggest that an insole with a subtalar strap maintained the valgus correction of the femorotibial angle in patients with varus knee OA for 6 months, indicating longer-term clinical improvement with the strapped insert compared with the traditional insert. Copyright 2004 American College of Rheumatology
Virtually optimized insoles for offloading the diabetic foot: A randomized crossover study.
Telfer, S; Woodburn, J; Collier, A; Cavanagh, P R
2017-07-26
Integration of objective biomechanical measures of foot function into the design process for insoles has been shown to provide enhanced plantar tissue protection for individuals at-risk of plantar ulceration. The use of virtual simulations utilizing numerical modeling techniques offers a potential approach to further optimize these devices. In a patient population at-risk of foot ulceration, we aimed to compare the pressure offloading performance of insoles that were optimized via numerical simulation techniques against shape-based devices. Twenty participants with diabetes and at-risk feet were enrolled in this study. Three pairs of personalized insoles: one based on shape data and subsequently manufactured via direct milling; and two were based on a design derived from shape, pressure, and ultrasound data which underwent a finite element analysis-based virtual optimization procedure. For the latter set of insole designs, one pair was manufactured via direct milling, and a second pair was manufactured through 3D printing. The offloading performance of the insoles was analyzed for forefoot regions identified as having elevated plantar pressures. In 88% of the regions of interest, the use of virtually optimized insoles resulted in lower peak plantar pressures compared to the shape-based devices. Overall, the virtually optimized insoles significantly reduced peak pressures by a mean of 41.3kPa (p<0.001, 95% CI [31.1, 51.5]) for milled and 40.5kPa (p<0.001, 95% CI [26.4, 54.5]) for printed devices compared to shape-based insoles. The integration of virtual optimization into the insole design process resulted in improved offloading performance compared to standard, shape-based devices. ISRCTN19805071, www.ISRCTN.org. Copyright © 2017 Elsevier Ltd. All rights reserved.
A Reversal of Decadal Trends in the Equatorial and North Indian Ocean
NASA Astrophysics Data System (ADS)
Thompson, P. R.; Merrifield, M. A.; McCreary, J. P., Jr.; Firing, E.; Piecuch, C. G.
2016-02-01
Sea level and upper ocean temperature trends in the Equatorial and North Indian Ocean (ENIO) reversed sign shortly after the turn of the century. The trend reversal is spatially coherent and characterized by subsurface cooling during 1993-2002 followed by subsurface warming during 2003-2012. Here we explore the dynamics and forcing of the decadal trend reversal, with a particular emphasis on the role of the Indian Ocean cross-equatorial cell (CEC) and anomalies transmitted from the Pacific basin to the ENIO via the Indonesian Throughflow (ITF). An examination of reanalysis wind-stress fields suggest that forcing of the CEC is enhanced during the cooling phase of the decadal fluctuation, which may account for the cooling trend below 100m in the ENIO during the first decade. In contrast, the subsurface warming during the second decade occurs at thermocline levels, which suggests a deepening of the thermocline during this period. Enhanced Pacific tradewinds since the early 1990s result in a deepening thermocline in the western tropical Pacific (WTP), which may be transmitted to the Indian Ocean basin via the ITF. We present results from simple model experiments that assess the potential for thermocline anomalies originating in the WTP to account for the deepening thermocline in the ENIO during the warming phase of the decadal fluctuation.
Bagherzadeh Cham, Masumeh; Mohseni-Bandpei, Mohammad Ali; Bahramizadeh, Mahmood; Kalbasi, Saeed; Biglarian, Akbar
2018-06-01
Peripheral sensory neuropathy seems to be the main risk factor for diabetic foot ulceration. Previous studies demonstrated that stochastic resonance can improve the vibrotactile sensation of diabetic patients. The aim of this study was to evaluate the effects of Vibro-medical insole on pressure and vibration sensation in diabetic patients with mild-to-moderate peripheral neuropathy. A total of 20 patients with mild-to-moderate diabetic neuropathy were included in the pre-test and post-test clinical trial study. Vibro-medical insole consists of medical insole and vibratory system. Medical insole was made independently for each participant and vibratory system was inserted in it. Pressure and vibration sensation were evaluated before and after 30-min walking with Vibro-medical insole. Semmes-Weinstein monofilaments and tuning fork were used to evaluate pressure and vibration sensation, respectively. Pressure sensation showed significantly improvement using Vibro-medical insole at the heel, first and fifth metatarsophalangeal heads, and hallux of both feet in all participants (p < 0.001). Vibration sensation also improved at the big toe of both feet with 256 Hz tuning fork (p < 0.05) but no statistically significant effect was found with 128 Hz tuning fork (p > 0.05). Vibro-medical insole significantly improved pressure and vibration sensation of the foot in diabetic patients with mild-to-moderate peripheral neuropathy. The results suggest that Vibro-medical insole can be used for daily living activities to overcome sensory loss in diabetic neuropathy patients.
On the presence of equatorial waves in the lower stratosphere of a general circulation model
NASA Astrophysics Data System (ADS)
Maury, P.; Lott, F.
2014-02-01
To challenge the hypothesis that equatorial waves in the lower stratosphere are essentially forced by convection, we use the LMDz atmospheric model extended to the stratosphere and compare two versions having very different convection schemes but no quasi-biennial oscillation (QBO). The two versions have realistic time mean precipitation climatologies but very different precipitation variabilities. Despite these differences, the equatorial stratospheric Kelvin waves at 50 hPa are almost identical in the two versions and quite realistic. The Rossby gravity waves are also very similar but significantly weaker than in observations. We demonstrate that this bias on the Rossby gravity waves is essentially due to a dynamical filtering occurring because the model zonal wind is systematically westward. During a westward phase of the QBO, the ERA-Interim Rossby gravity waves compare well with those in the model. These results suggest that (i) in the model the effect of the convection scheme on the waves is in part hidden by the dynamical filtering, and (ii) the waves are produced by other sources than equatorial convection. For the Kelvin waves, this last point is illustrated by an Eliassen and Palm flux analysis, showing that in the model they come more from the subtropics and mid-latitude regions, whereas in the ERA-Interim reanalysis the sources are more equatorial. We show that non-equatorial sources are also significant in reanalysis data sets as they explain the presence of the Rossby gravity waves in the stratosphere. To illustrate this point, we identify situations with large Rossby gravity waves in the reanalysis middle stratosphere for dates selected when the stratosphere is dynamically separated from the equatorial troposphere. We refer to this process as a stratospheric reloading.
On the presence of equatorial waves in the lower stratosphere of a general circulation model
NASA Astrophysics Data System (ADS)
Maury, P.; Lott, F.
2013-08-01
To challenge the hypothesis that equatorial waves in the lower stratosphere are essentially forced by convection, we use the LMDz atmospheric model extended to the stratosphere and compare two versions having very different convection schemes but no quasi biennial oscillation (QBO). The two versions have realistic time mean precipitation climatologies but very different precipitation variabilities. Despite these differences, the equatorial stratospheric Kelvin waves at 50 hPa are almost identical in the two versions and quite realistic. The Rossby-gravity waves are also very close but significantly weaker than in observations. We demonstrate that this bias on the Rossby-gravity waves is essentially due to a dynamical filtering occurring because the model zonal wind is systematically westward: during a westward phase of the QBO, the Rossby-gravity waves in ERA-Interim compare well with those in the model. These results suggest that in the model the effect of the convection scheme on the waves is in part hidden by the dynamical filtering and the waves are produced by other sources than equatorial convection. For the Kelvin waves, this last point is illustrated by an Eliassen and Palm flux analysis, showing that in the model they come more from the subtropics and mid-latitude regions whereas in the ERA-Interim reanalysis the sources are more equatorial. We also show that non-equatorial sources are significant in reanalysis data, and we consider the case of the Rossby-gravity waves. We identify situations in the reanalysis where here are large Rossby-gravity waves in the middle stratosphere, and for dates when the stratosphere is dynamically separated from the equatorial troposphere. We refer to this process as a "stratospheric reloading".
Revisiting the Ceara Rise, equatorial Atlantic Ocean: isotope stratigraphy of ODP Leg 154
NASA Astrophysics Data System (ADS)
Wilkens, Roy; Drury, Anna Joy; Westerhold, Thomas; Lyle, Mitchell; Gorgas, Thomas; Tian, Jun
2017-04-01
Isotope stratigraphy has become the method of choice for investigating both past ocean temperatures and global ice volume. Lisiecki and Raymo (2005) published a stacked record of 57 globally distributed benthic δ18O records versus age (LR04 stack). In this study LR04 is compared to high resolution records collected at all of the sites drilled during Ocean Drilling Program (ODP) Leg 154 on the Ceara Rise, in the western equatorial Atlantic Ocean. Newly developed software - the Code for Ocean Drilling Data (CODD) - is used to check data splices of the Ceara sites and better align out-of-splice data with in-splice data. CODD allows to depth and age scaled core images recovered from core table photos enormously facilitating data analysis. The entire splices of ODP Sites 925, 926, 927, 928 and 929 were reviewed. Most changes were minor although several large enough to affect age models based on orbital tuning. We revised the astronomically tuned age model for the Ceara Rise by tuning darker, more clay rich layers to Northern Hemisphere insolation minima. Then we assembled a regional composite benthic stable isotope record from published data. This new Ceara Rise stack provides a new regional reference section for the equatorial Atlantic covering the last 5 million years with an independent age model compared to the non-linear ice volume models of the LR04 stack. Comparison shows that the benthic δ18O composite is consistent with the LR04 stack from 0 - 4 Ma despite a short interval between 1.80 and 1.90 Ma, where LR04 exhibits 2 maxima but where Ceara Rise contains only 1. The interval between 4.0 and 4.5 Ma in the Ceara Rise compilation is decidedly different from LR04, reflecting both the low amplitude of the signal over this interval and the limited amount of data available for the LR04 stack. Our results also point out that precession cycles have been misinterpreted as obliquity in the LR04 stack as suggested by the Ceara Rise composite at 4.2 Ma.
Influence of foot orthosis customisation on perceived comfort during running.
Lucas-Cuevas, A G; Pérez-Soriano, P; Priego-Quesada, J I; Llana-Belloch, S
2014-01-01
Although running is associated with many health benefits, it also exposes the body to greater risk of injury. Foot orthoses are an effective strategy to prevent such injuries. Comfort is an essential element in orthosis design since any discomfort alters the runner's biomechanics, compromising performance and increasing the risk of injury. The present study analyses the perceived comfort of three types of orthoses: custom-made, prefabricated and original running shoe insoles. Nine comfort variables for each insole were assessed in a sample of 40 runners. Custom-made and prefabricated insoles were both perceived as significantly more comfortable than the original insoles. The differences were clinically relevant and were potentially causes of modifications in running gait. Although the prefabricated insoles were rated slightly higher than the custom-made insoles, the differences were not statistically significant. This study shows that prefabricated insoles constitute a reasonable alternative to custom-made insoles in terms of comfort. The perceived level of comfort of footwear is considered to be a protective measure of the potential risk of running injuries. We here compared runners' perception of comfort of custom-made and prefabricated orthoses while running. We found that even though custom-made orthoses are closely matched to each individual's foot, such customisation does not necessarily imply greater comfort.
Orbital Applications of Electrodynamic Propulsion
1993-12-01
Constraint function 4 Greenwich equatorial frame Nt Amp2 .m2/kg 2 Minimize function W Amp2 r-m2 /kg 2 Constrained minimize function h Equinoctial element ...studies will be how a force, besides the two body force, changes the orbital elements . For this, we turn to the force form of Lagrange’s planetary...singularity in e of Equa- tion (10). To do this we introduce two of the equinoctial elements (18:22): h = esinw k = ecosw 11 Note we easily recover e
Thermal shallow water models of geostrophic turbulence in Jovian atmospheres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warneford, Emma S., E-mail: emma.warneford@maths.ox.ac.uk; Dellar, Paul J., E-mail: dellar@maths.ox.ac.uk
2014-01-15
Conventional shallow water theory successfully reproduces many key features of the Jovian atmosphere: a mixture of coherent vortices and stable, large-scale, zonal jets whose amplitude decreases with distance from the equator. However, both freely decaying and forced-dissipative simulations of the shallow water equations in Jovian parameter regimes invariably yield retrograde equatorial jets, while Jupiter itself has a strong prograde equatorial jet. Simulations by Scott and Polvani [“Equatorial superrotation in shallow atmospheres,” Geophys. Res. Lett. 35, L24202 (2008)] have produced prograde equatorial jets through the addition of a model for radiative relaxation in the shallow water height equation. However, their modelmore » does not conserve mass or momentum in the active layer, and produces mid-latitude jets much weaker than the equatorial jet. We present the thermal shallow water equations as an alternative model for Jovian atmospheres. These equations permit horizontal variations in the thermodynamic properties of the fluid within the active layer. We incorporate a radiative relaxation term in the separate temperature equation, leaving the mass and momentum conservation equations untouched. Simulations of this model in the Jovian regime yield a strong prograde equatorial jet, and larger amplitude mid-latitude jets than the Scott and Polvani model. For both models, the slope of the non-zonal energy spectra is consistent with the classic Kolmogorov scaling, and the slope of the zonal energy spectra is consistent with the much steeper spectrum observed for Jupiter. We also perform simulations of the thermal shallow water equations for Neptunian parameter values, with a radiative relaxation time scale calculated for the same 25 mbar pressure level we used for Jupiter. These Neptunian simulations reproduce the broad, retrograde equatorial jet and prograde mid-latitude jets seen in observations. The much longer radiative time scale for the colder planet Neptune explains the transition from a prograde to a retrograde equatorial jet, while the broader jets are due to the deformation radius being a larger fraction of the planetary radius.« less
Ryan, John P; Green, Jonathan R; Espinoza, Eduardo; Hearn, Alex R
2017-01-01
Satellite tracking of 27 whale sharks in the eastern tropical Pacific, examined in relation to environmental data, indicates preferential occupancy of thermo-biological frontal systems. In these systems, thermal gradients are caused by wind-forced circulation and mixing, and biological gradients are caused by associated nutrient enrichment and enhanced primary productivity. Two of the frontal systems result from upwelling, driven by divergence in the current systems along the equator and the west coast of South America; the third results from wind jet dynamics off Central America. All whale sharks were tagged near Darwin Island, Galápagos, within the equatorial Pacific upwelling system. Occupancy of frontal habitat is pronounced in synoptic patterns of shark locations in relation to serpentine, temporally varying thermal fronts across a zonal expanse > 4000 km. 80% of shark positions in northern equatorial upwelling habitat and 100% of positions in eastern boundary upwelling habitat were located within the upwelling front. Analysis of equatorial shark locations relative to thermal gradients reveals occupancy of a transition point in environmental stability. Equatorial subsurface tag data show residence in shallow, warm (>22°C) water 94% of the time. Surface zonal current speeds for all equatorial tracking explain only 16% of the variance in shark zonal movement speeds, indicating that passive drifting is not a primary determinant of movement patterns. Movement from equatorial to eastern boundary frontal zones occurred during boreal winter, when equatorial upwelling weakens seasonally. Off Peru sharks tracked upwelling frontal positions within ~100-350 km from the coast. Off Central America, the largest tagged shark (12.8 m TL) occupied an oceanic front along the periphery of the Panama wind jet. Seasonal movement from waning equatorial upwelling to productive eastern boundary habitat is consistent with underlying trophic dynamics. Persistent shallow residence in thermo-biological frontal zones suggests the role of physical-biological interactions that concentrate food resources.
Green, Jonathan R.; Espinoza, Eduardo; Hearn, Alex R.
2017-01-01
Satellite tracking of 27 whale sharks in the eastern tropical Pacific, examined in relation to environmental data, indicates preferential occupancy of thermo-biological frontal systems. In these systems, thermal gradients are caused by wind-forced circulation and mixing, and biological gradients are caused by associated nutrient enrichment and enhanced primary productivity. Two of the frontal systems result from upwelling, driven by divergence in the current systems along the equator and the west coast of South America; the third results from wind jet dynamics off Central America. All whale sharks were tagged near Darwin Island, Galápagos, within the equatorial Pacific upwelling system. Occupancy of frontal habitat is pronounced in synoptic patterns of shark locations in relation to serpentine, temporally varying thermal fronts across a zonal expanse > 4000 km. 80% of shark positions in northern equatorial upwelling habitat and 100% of positions in eastern boundary upwelling habitat were located within the upwelling front. Analysis of equatorial shark locations relative to thermal gradients reveals occupancy of a transition point in environmental stability. Equatorial subsurface tag data show residence in shallow, warm (>22°C) water 94% of the time. Surface zonal current speeds for all equatorial tracking explain only 16% of the variance in shark zonal movement speeds, indicating that passive drifting is not a primary determinant of movement patterns. Movement from equatorial to eastern boundary frontal zones occurred during boreal winter, when equatorial upwelling weakens seasonally. Off Peru sharks tracked upwelling frontal positions within ~100–350 km from the coast. Off Central America, the largest tagged shark (12.8 m TL) occupied an oceanic front along the periphery of the Panama wind jet. Seasonal movement from waning equatorial upwelling to productive eastern boundary habitat is consistent with underlying trophic dynamics. Persistent shallow residence in thermo-biological frontal zones suggests the role of physical-biological interactions that concentrate food resources. PMID:28854201
NASA Astrophysics Data System (ADS)
Kamae, Youichi; Kawana, Toshi; Oshiro, Megumi; Ueda, Hiroaki
2017-12-01
Instrumental and proxy records indicate remarkable global climate variability over the last millennium, influenced by solar irradiance, Earth's orbital parameters, volcanic eruptions and human activities. Numerical model simulations and proxy data suggest an enhanced Asian summer monsoon during the Medieval Warm Period (MWP) compared to the Little Ice Age (LIA). Using multiple climate model simulations, we show that anomalous seasonal insolation over the Northern Hemisphere due to a long cycle of orbital parameters results in a modulation of the Asian summer monsoon transition between the MWP and LIA. Ten climate model simulations prescribing historical radiative forcing that includes orbital parameters consistently reproduce an enhanced MWP Asian monsoon in late summer and a weakened monsoon in early summer. Weakened, then enhanced Northern Hemisphere insolation before and after June leads to a seasonally asymmetric temperature response over the Eurasian continent, resulting in a seasonal reversal of the signs of MWP-LIA anomalies in land-sea thermal contrast, atmospheric circulation, and rainfall from early to late summer. This seasonal asymmetry in monsoon response is consistently found among the different climate models and is reproduced by an idealized model simulation forced solely by orbital parameters. The results of this study indicate that slow variation in the Earth's orbital parameters contributes to centennial variability in the Asian monsoon transition.[Figure not available: see fulltext.
Steinberg, Nili; Waddington, Gordon; Adams, Roger; Karin, Janet; Tirosh, Oren
2015-12-01
Ballet dancers require a high level of postural balance (PB) and proprioception ability during performance. As textured insoles inserted into ballet shoes were found to improve proprioception ability, and better proprioceptive acuity was associated with better PB, the aim of the present study was to investigate whether the association between ankle inversion movement discrimination (AIMD) and PB changed following wearing textured insoles in young male and female dancers. Forty-four dancers from the Australian Ballet School, ages 14-19 yrs, were tested for static and dynamic PB and AIMD under two conditions: in ballet shoes, and in ballet shoes with textured insoles inserted. Female dancers demonstrated a significant inverse relationship between AIMD and static PB in the medio-lateral direction when wearing ballet shoes, but not when wearing textured insoles. Male dancers showed a non-monotonic relationship when tested with ballet shoes only, but a significant inverse relationship between AIMD and dynamic PB in the vertical direction and with the waist/head cross-correlation acceleration in the three movement directions when they were tested with textured insoles. Male dancers demonstrated an improved association between dynamic PB and proprioception ability when using textured insoles, suggesting that the increased afferent information from the plantar surface had a beneficial effect on proprioception feedback about their PB. Conversely, for female dancers, that association was present when wearing ballet shoes, but not when using textured insoles, suggesting that the increased afferent information for female dancers who already had high proprioception ability was "overloaded" by wearing the textured insoles.
A model for the hydrologic and climatic behavior of water on Mars
NASA Technical Reports Server (NTRS)
Clifford, Stephen M.
1993-01-01
An analysis is carried out of the hydrologic response of a water-rich Mars to climate change and to the physical and thermal evolution of its crust, with particular attention given to the potential role of the subsurface transport, assuming that the current models of insolation-driven change describe reasonably the atmospheric leg of the planet's long-term hydrologic cycle. Among the items considered are the thermal and hydrologic properties of the crust, the potential distribution of ground ice and ground water, the stability and replenishment of equatorial ground ice, basal melting and the polar mass balance, the thermal evolution of the early cryosphere, the recharge of the valley networks and outflow, and several processes that are likely to drive the large-scale vertical and horizontal transport of H2O within the crust. The results lead to the conclusion that subsurface transport has likely played an important role in the geomorphic evolution of the Martian surface and the long-term cycling of H2O between the atmosphere, polar caps, and near-surface crust.
The Pluto system after the New Horizons flyby
NASA Astrophysics Data System (ADS)
Olkin, Catherine B.; Ennico, Kimberly; Spencer, John
2017-10-01
In July 2015, NASA's New Horizons mission performed a flyby of Pluto, revealing details about the geology, surface composition and atmospheres of this world and its moons that are unobtainable from Earth. With a resolution as small as 80 metres per pixel, New Horizons' images identified a large number of surface features, including a large basin filled with glacial ices that appear to be undergoing convection. Maps of surface composition show latitudinal banding, with non-volatile material dominating the equatorial region and volatile ices at mid- and polar latitudes. This pattern is driven by the seasonal cycle of solar insolation. New Horizons' atmospheric investigation found the temperature of Pluto's upper atmosphere to be much cooler than previously modelled. Images of forward-scattered sunlight revealed numerous haze layers extending up to 200 km from the surface. These discoveries have transformed our understanding of icy worlds in the outer Solar System, demonstrating that even at great distances from the Sun, worlds can have active geologic processes. This Review addresses our current understanding of the Pluto system and places it in context with previous investigations.
Changes in Pluto's Atmosphere Revealed by Occultations
NASA Astrophysics Data System (ADS)
Sicardy, Bruno; Widemann, Thomas; Lellouch, Emmanuel; Veillet, Christian; Colas, Francois; Roques, Francoise; Beisker, Wolfgang; Kretlow, Mike; Cuillandre, Jean-Charles; Hainaut, Olivier
After the discovery and study of Pluto's tenuous atmosphere in 1985 and 1988 with stellar occultations 14 years were necessary before two other occultations by the planet could be observed on 20 July 2002 and 21 August 2002 from Northern Chile with a portable telescope and from CFHT in Hawaii respectively. These occultations reveal drastric changes in Pluto's nitrogen atmosphere whose pressure increased by a factor two or more since 1988. In spite of an increasing distance to the Sun (and a correlated decrease of solar energy input at Pluto) this increase can be explained by the fact that Pluto's south pole went from permanent darkness to permanent illumination between 1988 and 2002. This might cause the sublimation of the south polar cap and the increase of pressure which could go on till 2015 according to current nitrogen cycle models. Furthermore we detect temperature contrasts between the polar and the equatorial regions probed on Pluto possibly caused by different diurnally averaged insolations at those locations. Finally spikes observed in the light curves reveal a dynamical activity in Pluto's atmosphere.
NASA Astrophysics Data System (ADS)
Liang, Dan; Liu, Chuanlian
2016-06-01
Using a coccolith weight analytic software (Particle Analyser), we analyze most abundant coccolith species in a sediment core from the central Western Pacific Warm Pool (WPWP) and calculate coccolith size and weight variations over the last 200 ka. These variations are compared with the trends of sea surface temperature (SST), primary productivity (PP), sea surface salinity (SSS), and insolation. Our results demonstrate that the size and weight of the coccoliths varied in response to variations of these factors, and their average total weight is primarily related to the relative abundance of the dominant species GEO ( Gephyrocapsa oceanica). The variation in weight of EMI ( Emiliania huxleyi) and GEE ( Gephyrocapsa ericsonii) are mainly influenced by nutrients, and the variation of GEM ( G. muellerae conformis) and GEO ( G. oceanica) weight are mainly influenced by SST. For all of the taxa weight, PP and SST present apparent precession or semi-precession cycles, we consider that the mono-coccolith weight of the Equatorial Western Pacific is primarily affected by precession drived thermocline and nutricline variation.
Chatzistergos, Panagiotis E; Naemi, Roozbeh; Chockalingam, Nachiappan
2015-06-01
This study aims to develop a numerical method that can be used to investigate the cushioning properties of different insole materials on a subject-specific basis. Diabetic footwear and orthotic insoles play an important role for the reduction of plantar pressure in people with diabetes (type-2). Despite that, little information exists about their optimum cushioning properties. A new in-vivo measurement based computational procedure was developed which entails the generation of 2D subject-specific finite element models of the heel pad based on ultrasound indentation. These models are used to inverse engineer the material properties of the heel pad and simulate the contact between plantar soft tissue and a flat insole. After its validation this modelling procedure was utilised to investigate the importance of plantar soft tissue stiffness, thickness and loading for the correct selection of insole material. The results indicated that heel pad stiffness and thickness influence plantar pressure but not the optimum insole properties. On the other hand loading appears to significantly influence the optimum insole material properties. These results indicate that parameters that affect the loading of the plantar soft tissues such as body mass or a person's level of physical activity should be carefully considered during insole material selection. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yuan, Dongliang; Hu, Xiaoyue; Xu, Peng; Zhao, Xia; Masumoto, Yukio; Han, Weiqing
2018-01-01
The dynamics of the teleconnection between the Indian Ocean Dipole (IOD) in the tropical Indian Ocean and El Niño-Southern Oscillation (ENSO) in the tropical Pacific Ocean at the time lag of one year are investigated using lag correlations between the oceanic anomalies in the southeastern tropical Indian Ocean in fall and those in the tropical Indo-Pacific Ocean in the following winter-fall seasons in the observations and in high-resolution global ocean model simulations. The lag correlations suggest that the IOD-forced interannual transport anomalies of the Indonesian Throughflow generate thermocline anomalies in the western equatorial Pacific Ocean, which propagate to the east to induce ocean-atmosphere coupled evolution leading to ENSO. In comparison, lag correlations between the surface zonal wind anomalies over the western equatorial Pacific in fall and the Indo-Pacific oceanic anomalies at time lags longer than a season are all insignificant, suggesting the short memory of the atmospheric bridge. A linear continuously stratified model is used to investigate the dynamics of the oceanic connection between the tropical Indian and Pacific Oceans. The experiments suggest that interannual equatorial Kelvin waves from the Indian Ocean propagate into the equatorial Pacific Ocean through the Makassar Strait and the eastern Indonesian seas with a penetration rate of about 10%-15% depending on the baroclinic modes. The IOD-ENSO teleconnection is found to get stronger in the past century or so. Diagnoses of the CMIP5 model simulations suggest that the increased teleconnection is associated with decreased Indonesian Throughflow transports in the recent century, which is found sensitive to the global warming forcing.
On the day-to-day variation of the equatorial electrojet during quiet periods
NASA Astrophysics Data System (ADS)
Yamazaki, Y.; Richmond, A. D.; Maute, A.; Liu, H.-L.; Pedatella, N.; Sassi, F.
2014-08-01
It has been known for a long time that the equatorial electrojet varies from day to day even when solar and geomagnetic activities are very low. The quiet time day-to-day variation is considered to be due to irregular variability of the neutral wind, but little is known about how variable winds drive the electrojet variability. We employ a numerical model introduced by Liu et al. (2013), which takes into account weather changes in the lower atmosphere and thus can reproduce ionospheric variability due to forcing from below. The simulation is run for May and June 2009. Constant solar and magnetospheric energy inputs are used so that day-to-day changes will arise only from lower atmospheric forcing. The simulated electrojet current shows day-to-day variability of ±25%, which produces day-to-day variations in ground level geomagnetic perturbations near the magnetic equator. The current system associated with the day-to-day variation of the equatorial electrojet is traced based on a covariance analysis. The current pattern reveals return flow at both sides of the electrojet, in agreement with those inferred from ground-based magnetometer data in previous studies. The day-to-day variation in the electrojet current is compared with those in the neutral wind at various altitudes, latitudes, and longitudes. It is found that the electrojet variability is dominated by the zonal wind at 100-120 km altitudes near the magnetic equator. These results suggest that the response of the zonal polarization electric field to variable zonal winds is the main source of the day-to-day variation of the equatorial electrojet during quiet periods.
NASA Astrophysics Data System (ADS)
Zalucha, Angela M.; Michaels, Timothy I.; Madhusudhan, Nikku
2013-11-01
We use the Massachusetts Institute of Technology general circulation model (GCM) dynamical core, in conjunction with a Newtonian relaxation scheme that relaxes to a gray, analytical solution of the radiative transfer equation, to simulate a tidally locked, synchronously orbiting super-Earth exoplanet. This hypothetical exoplanet is simulated under the following main assumptions: (1) the size, mass, and orbital characteristics of GJ 1214b (Charbonneau, D. [2009]. Nature 462, 891-894), (2) a greenhouse-gas dominated atmosphere, (3), the gas properties of water vapor, and (4) a surface. We have performed a parameter sweep over global mean surface pressure (0.1, 1, 10, and 100 bar) and global mean surface albedo (0.1, 0.4, and 0.7). Given assumption (1) above, the period of rotation of this exoplanet is 1.58 Earth-days, which we classify as the rapidly rotating regime. Our parameter sweep differs from Heng and Vogt (Heng, K., Vogt, S.S. [2011]. Mon. Not. R. Astron. Soc. 415, 2145-2157), who performed their study in the slowly rotating regime and using Held and Suarez (Held, I.M., Suarez, M.J. [1994]. Bull. Am. Meteorol. Soc. 75 (10), 1825-1830) thermal forcing. This type of thermal forcing is a prescribed function, not related to any radiative transfer, used to benchmark Earth’s atmosphere. An equatorial, westerly, superrotating jet is a robust feature in our GCM results. This equatorial jet is westerly at all longitudes. At high latitudes, the flow is easterly. The zonal winds do show a change with global mean surface pressure. As global mean surface pressure increases, the speed of the equatorial jet decreases between 9 and 15 h local time (substellar point is located at 12 h local time). The latitudinal extent of the equatorial jet increases on the nightside. For the two greatest initial surface pressure cases, an increasingly westerly component of flow develops at middle to high latitudes between 11 and 18 h local time. On the nightside, the easterly flow in the midlatitudes also increases in speed as global mean surface pressure increases. Furthermore, the zonal wind speed in the equatorial and midlatitude jets decreases with increasing surface albedo. Also, the latitudinal width of the equatorial jet decreases as surface albedo increases.
Influence of Transient Atmospheric Circulation on the Surface Heating of the Pacific Warm Pool
NASA Technical Reports Server (NTRS)
Chou, Ming-Dah; Chou, Shu-Hsien; Chan, Pui-King
2003-01-01
Analyses of data on clouds, winds, and surface heat fluxes show that the transient behavior of basin-wide large-scale circulation has a significant influence on the warm pool sea surface temperature (SST). Trade winds converge to regions of the highest SST in the equatorial western Pacific. These regions have the largest cloud cover and smallest wind speed. Both surface solar heating and evaporative cooling are weak. The reduced evaporative cooling due to weakened winds exceeds the reduced solar heating due to enhanced cloudiness. The result is a maximum surface heating in the strong convective and high SST regions. Data also show that the maximum surface heating in strong convective regions is interrupted by transient atmospheric and oceanic circulation. Due to the seasonal variation of the insolation at the top of the atmosphere, trade winds and clouds also experience seasonal variations. Regions of high SST and low-level convergence follow the Sun, where the surface heating is a maximum. As the Sun moves away from a convective region, the strong trade winds set in, and the evaporative cooling enhances, resulting in a net cooling of the surface. During an El Nino, the maximum SST and convective region shifts eastward from the maritime continent to the equatorial central Pacific. Following the eastward shift of the maximum SST, the region of maximum cloudiness and surface heating also shift eastward. As the atmospheric and oceanic circulation returns to normal situations, the trade winds increase and the surface heating decreases. We conclude that the evaporative cooling associated with the seasonal and interannual variations of trade winds is one of the major factors that modulate the SST distribution of the Pacific warm pool.
NASA Astrophysics Data System (ADS)
Yu, S.; Pritchard, M. S.
2017-12-01
The role of different location of top-of-atmosphere (TOA) solar forcing to the annual-mean, zonal-mean ITCZ location is examined in a dynamic ocean coupled Community Earth System Model. We observe a damped ITCZ shift response that is now a familiar response of coupled GCMs, but a new finding is that the damping efficiency is increases monotonically as the latitudinal location of forcing is moved poleward. More Poleward forcing cases exhibit weaker shifts of the annual-mean ITCZ position consistent with a more ocean-centric cross-equatorial energy partitioning response to the forcing, which is in turn linked to changes in ocean circulation, not thermodynamic structure. The ocean's dynamic response is partly due to Ekman-driven shallow overturning circulation responses, as expected from a recent theory, but also contains a significant Atlantic meridional overturning circulation (AMOC) component--which is in some sense surprising given that it is activated even in near-tropical forcing experiments. Further analysis of the interhemispheric energy budget reveals the surface heating feedback response provides a useful framework for interpreting the cross-equatorial energy transport partitioning between atmosphere and ocean. Overall, the results of this study may help explain the mixed results of the degree of ITCZ shift response to interhemispheric asymmetric forcing documented in coupled GCMs in recent years. Furthermore, the sensitive AMOC response motivates expanding current coupled theoretical frameworks on meridional energy transport partitioning to include effects beyond Ekman transport.
NASA Astrophysics Data System (ADS)
Lian, Yi; Zhao, Bin; Shen, Baizhu; Li, Shangfeng; Liu, Gang
2014-11-01
A set of numerical experiments designed to analyze the oceanic forcing in spring show that the combined forcing of cold (warm) El Niño (La Niña) phases in the Niño4 region and sea surface temperature anomalies (SSTA) in the westerly drifts region would result in abnormally enhanced NorthEast Cold Vortex (NECV) activities in early summer. In spring, the central equatorial Pacific El Niño phase and westerly drift SSTA forcing would lead to the retreat of non-adiabatic waves, inducing elliptic low-frequency anomalies of tropical air flows. This would enhance the anomalous cyclone-anticyclone-cyclone-anticyclone low-frequency wave train that propagates from the tropics to the extratropics and further to the mid-high latitudes, constituting a major physical mechanism that contributes to the early summer circulation anomalies in the subtropics and in the North Pacific mid-high latitudes. The central equatorial Pacific La Niña forcing in the spring would, on the one hand, induce teleconnection anomalies of high pressure from the Sea of Okhotsk to the Sea of Japan in early summer, and on the other hand indirectly trigger a positive low-frequency East Asia-Pacific teleconnection (EAP) wave train in the lower troposphere.
Biomechanics of pressure ulcer in body tissues interacting with external forces during locomotion.
Mak, Arthur F T; Zhang, Ming; Tam, Eric W C
2010-08-15
Forces acting on the body via various external surfaces during locomotion are needed to support the body under gravity, control posture, and overcome inertia. Examples include the forces acting on the body via the seating surfaces during wheelchair propulsion, the forces acting on the plantar foot tissues via the insole during gait, and the forces acting on the residual-limb tissues via the prosthetic socket during various movement activities. Excessive exposure to unwarranted stresses at the body-support interfaces could lead to tissue breakdowns commonly known as pressure ulcers, often presented as deep-tissue injuries around bony prominences or as surface damage on the skin. In this article, we review the literature that describes how the involved tissues respond to epidermal loading, taking into account both experimental and computational findings from in vivo and in vitro studies. In particular, we discuss related literature about internal tissue deformation and stresses, microcirculatory responses, and histological, cellular, and molecular observations.
Yamaguchi, Satoshi; Kitamura, Masako; Ushikubo, Tomohiro; Murata, Atsushi; Akagi, Ryuichiro; Sasho, Takahisa
2015-01-01
Biomechanical effects of laterally wedged insoles are assessed by reduction in the knee adduction moment. However, the degree of reduction may vary depending on the reference frame with which it is calculated. The purpose of this study was to clarify the effect of reference frame on the reduction in the knee adduction moment by laterally wedged insoles. Twenty-nine healthy participants performed gait trials with a laterally wedged insole and with a flat insole as a control. The knee adduction moment, including the first and second peaks and the angular impulse, were calculated using four different reference frames: the femoral frame, tibial frame, laboratory frame and the Joint Coordinate System. There were significant effects of reference frame on the knee adduction moment first and second peaks (P < 0.001 for both variables), while the effect was not significant for the angular impulse (P = 0.84). No significant interaction between the gait condition and reference frame was found in either of the knee adduction moment variables (P = 0.99 for all variables), indicating that the effects of laterally wedged insole on the knee adduction moments were similar across the four reference frames. On the other hand, the average percent changes ranged from 9% to 16% for the first peak, from 16% to 18% for the second peak and from 17% to 21% for the angular impulse when using the different reference frames. The effects of laterally wedged insole on the reduction in the knee adduction moment were similar across the reference frames. On the other hand, Researchers need to recognize that when the percent change was used as the parameter of the efficacy of laterally wedged insole, the choice of reference frame may influence the interpretation of how laterally wedged insoles affect the knee adduction moment.
Feuilhade de Chauvin, M
2012-07-01
Shoes worn with bare feet function as a fungal reservoir and lead to persistent dermatophytosis. This study was designed to evaluate two formulations of terbinafine (1% spray powder or solution) to treat the insoles of shoes colonized by skin scales infected with Trichophyton rubrum and to determine the contact time necessary to achieve decontamination. Infected skin scales weighing 0.5 g, taken from the feet of patients with confirmed T. rubrum infection, was dispersed onto insoles pre-moistened with sterile saline solution (to mimic perspiration). Three types of insole were tested (felt, latex, leather). After inoculation, insoles were placed separately in new cardboard boxes at ambient temperature, and re-humidified with sterile normal saline solution for 48 h before being treated; untreated insoles served as controls. Scales were scraped off at 48 h or 96 h, and dropped into tubes of Sabouraud agar, incubated at 27°C and examined at 3 and 6 weeks. Cultures from all control insoles showed numerous T. rubrum colonies. In contrast, cultures from all insoles treated with a single application of terbinafine 1% spray solution or powder, and taken after 48 h or 96 h contact with the product, remained sterile at 3 weeks and 6 weeks. This study demonstrated the successful treatment of insoles colonized by T. rubrum-infected skin scales. Terbinafine 1% spray solution and powder showed good efficacy; the dermatophyte could no longer be cultured 48 h after a single application of terbinafine. © 2011 The Author. Journal of the European Academy of Dermatology and Venereology © 2011 European Academy of Dermatology and Venereology.
Determination of Martian Northern Polar Insolation Levels Using a Geodetic Elevation Model
NASA Technical Reports Server (NTRS)
Arrell, J. R.; Zuber, M. T.
2000-01-01
Solar insolation levels at the Martian polar caps bear significantly on the seasonal and climatic cycling of volatiles on that planet. In the northern hemisphere, the Martian surface slopes downhill from the equator to the pole such that the north polar cap is situated in a 5-km-deep hemispheric-scale depression. This large-scale topographic setting plays an important role in the insolation of the northern polar cap. Elevations measured by the Mars Orbiter Laser Altimeter (MOLA) provide comprehensive, high-accuracy topographical information required to precisely determine polar insolation. In this study, we employ a geodetic elevation model to quantify the north polar insolation and consider implications for seasonal and climatic changes. Additional information is contained in original extended abstract.
Mid-Pliocene equatorial Pacific sea surface temperature reconstruction: a multi-proxy perspective
Dowsett, Harry J.; Robinson, Marci M.
2009-01-01
The Mid-Pliocene is the most recent interval of sustained global warmth, which can be used to examine conditions predicted for the near future. An accurate spatial representation of the low-latitude Mid-Pliocene Pacific surface ocean is necessary to understand past climate change in the light of forecasts of future change. Mid-Pliocene sea surface temperature (SST) anomalies show a strong contrast between the western equatorial Pacific (WEP) and eastern equatorial Pacific (EEP) regardless of proxy (faunal, alkenone and Mg/Ca). All WEP sites show small differences from modern mean annual temperature, but all EEP sites show significant positive deviation from present-day temperatures by as much as 4.4°C. Our reconstruction reflects SSTs similar to modern in the WEP, warmer than modern in the EEP and eastward extension of the WEP warm pool. The east-west equatorial Pacific SST gradient is decreased, but the pole to equator gradient does not change appreciably. We find it improbable that increased greenhouse gases (GHG) alone would cause such a heterogeneous warming and more likely that the cause of Mid-Pliocene warmth is a combination of several forcings including both increased meridional heat transport and increased GHG.
Mid-Pliocene equatorial Pacific sea surface temperature reconstruction: A multi-proxy perspective
Dowsett, H.J.; Robinson, M.M.
2009-01-01
The Mid-Pliocene is the most recent interval of sustained global warmth, which can be used to examine conditions predicted for the near future. An accurate spatial representation of the low-latitude Mid-Pliocene Pacific surface ocean is necessary to understand past climate change in the light of forecasts of future change. Mid-Pliocene sea surface temperature (SST) anomalies show a strong contrast between the western equatorial Pacific (WEP) and eastern equatorial Pacific (EEP) regardless of proxy (faunal, alkenone and Mg/Ca). All WEP sites show small differences from modern mean annual temperature, but all EEP sites show significant positive deviation from present-day temperatures by as much as 4.4??C. Our reconstruction reflects SSTs similar to modern in the WEP, warmer than modern in the EEP and eastward extension of the WEP warm pool. The east-west equatorial Pacific SST gradient is decreased, but the pole to equator gradient does not change appreciably. We find it improbable that increased greenhouse gases (GHG) alone would cause such a heterogeneous warming and more likely that the cause of Mid-Pliocene warmth is a combination of several forcings including both increased meridional heat transport and increased GHG. ?? 2008 The Royal Society.
NASA Astrophysics Data System (ADS)
Liao, Xiaomei; Du, Yan; Zhan, Haigang; Wang, Tianyu; Feng, Ming
2017-12-01
This study investigated boreal wintertime phytoplankton blooms in the western equatorial Indian Ocean (WEIO) and the underlying physical mechanisms. The Sea viewing Wide field of View sensor (SeaWiFS) chlorophyll-a (Chla) concentrations show that phytoplankton blooms occur in the WEIO during December-March. The development of these blooms is not only a seasonal process but also consists of 2-3 intraseasonal events induced by the Madden-Julian Oscillation (MJO). During a typical intraseasonal event, enhanced cross-equatorial wind induces strong upwelling and ocean mixing, thus increasing the supply of nutrients to the surface in equatorial regions. Argo profiles clearly show various responses to the intraseasonal wind bursts, including shoaling of the thermocline and deepening of the mixed layer. Further analysis reveals that the former is the dominant mechanism for the blooms along the equator, while the latter controls the high Chla concentrations off the coast of Somalia. Surface ocean circulations not only account for the blooms south of the equator but also modulate the thermocline depth in the WEIO. The shallower thermocline during the early period of the northeast monsoon season provides favorable conditions for a stronger Chla response to intraseasonal forcing.
Mid-Pliocene equatorial Pacific sea surface temperature reconstruction: a multi-proxy perspective.
Dowsett, Harry J; Robinson, Marci M
2009-01-13
The Mid-Pliocene is the most recent interval of sustained global warmth, which can be used to examine conditions predicted for the near future. An accurate spatial representation of the low-latitude Mid-Pliocene Pacific surface ocean is necessary to understand past climate change in the light of forecasts of future change. Mid-Pliocene sea surface temperature (SST) anomalies show a strong contrast between the western equatorial Pacific (WEP) and eastern equatorial Pacific (EEP) regardless of proxy (faunal, alkenone and Mg/Ca). All WEP sites show small differences from modern mean annual temperature, but all EEP sites show significant positive deviation from present-day temperatures by as much as 4.4 degrees C. Our reconstruction reflects SSTs similar to modern in the WEP, warmer than modern in the EEP and eastward extension of the WEP warm pool. The east-west equatorial Pacific SST gradient is decreased, but the pole to equator gradient does not change appreciably. We find it improbable that increased greenhouse gases (GHG) alone would cause such a heterogeneous warming and more likely that the cause of Mid-Pliocene warmth is a combination of several forcings including both increased meridional heat transport and increased GHG.
Associations of blood pressure, sunlight, and vitamin D in community-dwelling adults.
Rostand, Stephen G; McClure, Leslie A; Kent, Shia T; Judd, Suzanne E; Gutiérrez, Orlando M
2016-09-01
Vitamin D deficiency/insufficiency is associated with hypertension. Blood pressure (BP) and circulating vitamin D concentrations vary with the seasons and distance from the equator suggesting BP varies inversely with the sunshine available (insolation) for cutaneous vitamin D photosynthesis. To determine if the association between insolation and BP is partly explained by vitamin D, we evaluated 1104 participants in the Reasons for Racial and Geographic Differences in Stroke study whose BP and plasma 25-hydroxyvitamin D [25(OH)D] concentrations were measured. We found a significant inverse association between SBP and 25(OH)D concentration and an inverse association between insolation and BP in unadjusted analyses. After adjusting for other confounding variables, the association of solar insolation and BP was augmented, -0.3.5 ± SEM 0.01 mmHg/1 SD higher solar insolation, P = 0.01. The greatest of effects of insolation on SBP were observed in whites (-5.2 ± SEM 0.92 mmHg/1 SD higher solar insolation, P = 0.005) and in women (-3.8 ± SEM 1.7 mmHg, P = 0.024). We found that adjusting for 25(OH)D had no effect on the association of solar insolation with SBP. We conclude that although 25(OH)D concentration is inversely associated with SBP, it did not explain the association of greater sunlight exposure with lower BP.
Lin, Tung-Liang; Sheen, Huey-Min; Chung, Chin-Teng; Yang, Sai-Wei; Lin, Shih-Yi; Luo, Hong-Ji; Chen, Chung-Yu; Chan, I-Cheng; Shih, Hsu-Sheng; Sheu, Wayne Huey-Herng
2013-07-29
Removable plug insoles appear to be beneficial for patients with diabetic neuropathic feet to offload local plantar pressure. However, quantitative evidence of pressure reduction by means of plug removal is limited. The value of additional insole accessories, such as arch additions, has not been tested. The purpose of this study was to evaluate the effect of removing plugs from foam based insoles, and subsequently adding extra arch support, on plantar pressures. In-shoe plantar pressure measurements were performed on 26 patients with diabetic neuropathic feet at a baseline condition, in order to identify the forefoot region with the highest mean peak pressure (MPP). This was defined as the region of interest (ROI) for plug removal.The primary outcome was measurement of MPP using the pedar® system in the baseline and another three insole conditions (pre-plug removal, post-plug removal, and post-plug removal plus arch support). Among the 26 ROIs, a significant reduction in MPP (32.3%, P<0.001) was found after removing the insole plugs. With an arch support added, the pressure was further reduced (9.5%, P<0.001). There were no significant differences in MPP at non-ROIs between pre- and post-plug removal conditions. These findings suggest that forefoot plantar pressure can be reduced by removing plugs and adding arch support to foam-based insoles. This style of insole may therefore be clinically useful in managing patients with diabetic peripheral neuropathy.
Response of the surface tropical Atlantic Ocean to wind forcing
NASA Astrophysics Data System (ADS)
Castellanos, Paola; Pelegrí, Josep L.; Campos, Edmo J. D.; Rosell-Fieschi, Miquel; Gasser, Marc
2015-05-01
We use 10 years of satellite data (sea level pressure, surface winds and absolute dynamic topography [ADT]) together with Argo-inferred monthly-mean values of near-surface velocity and water transport, to examine how the tropical system of near-surface zonal currents responds to wind forcing. The data is analyzed using complex Hilbert empirical orthogonal functions, confirming that most of the variance has annual periodicity, with maximum amplitudes in the region spanned by the seasonal displacement of the Inter-Tropical Convergence Zone (ITCZ). The ADT mirrors the shape of the upper isopycnals, hence becoming a good indicator of the amount of water stored in the upper ocean. Within about 3° from the Equator, where the Coriolis force is small, there is year-long meridional Ekman-transport divergence that would lead to the eastward transport of the Equatorial Undercurrent and its northern and southern branches. Beyond 3° of latitude, and at least as far as 20°, the convergence of the Ekman transport generally causes a poleward positive ADT gradient, which sustains the westward South Equatorial Current (SEC). The sole exception occurs in summer, between 8°N and 12°N, when an Ekman-transport divergence develops and depletes de amount of surface water, resulting in an ADT ridge-valley system which reverses the ADT gradient and drives the eastward North Equatorial Countercurrent (NECC) at latitudes 4-9°N; in late fall, divergence ceases and the NECC drains the ADT ridge, so the ADT gradient again becomes positive and the SEC reappears. The seasonal evolution of a tilted ITCZ controls the surface water fluxes: the wind-induced transports set the surface divergence-convergence, which then drive the ADT and, through the ADT gradients, create the geostrophic jets that close the water balance.
Modeling Salinity Exchanges Between the Equatorial Indian Ocean and the Bay of Bengal
2016-06-01
Technology, has produced a model salinity climatology using daily atmosphere and surface flux climatology as forcing. Here, we present the results...surface, the model was forced by the daily climatology of atmo- spheric variables obtained from vari- ous sources. We used daily QuikSCAT and...2012). Precipitation data were obtained from the Global Precipitation Climatology Project (GPCP). Using the bulk flux algorithm by Fairall et al
Precise time-window for the onset of glacial termination found
NASA Astrophysics Data System (ADS)
Lai, C.-C.; Tseng, Y.-H.; Dietrich, D. E.
2009-04-01
Following a set of three simple rules, we have found a precise time-window (TW) for each onset of a glacial termination (GT) appeared during the last million years. The onset of GT (OGT) is defined as the year when the following two conditions are met: (1) the benthic delta 18-O is a maximum and greater than 4.5‰ and (2) its value continually drops 1‰ within 5 Ky. We developed the rules based on three hypotheses. We hypothesize that: (H1) The Earth's three orbital parameters (eccentricity, obliquity and precession of equinox) determine the insolation which is the key force to the climate system. (H2) However, only a small fraction of insolation is converted into sensible heat (SH) and chemical energy through photosynthesis (CETP) as influxes to the climate system's main heat capacitors (HCs), namely the world oceans. When insolation increases, both the SH flux and CETP increase. The downward SH flux will only increase the stability of the seawater. Nonetheless, the CETP gets accumulated faster than average. The CETP cascades through the marine food web and bacterial degradation. Finally, it is stored in the simple gas molecules (such as CH4) that form methane hydrate (MH) and other hydrates such as hydrogen sulfide hydrate (HSH) in deep sea sediments after a long time. While hydrates deposit accumulates with time, it also breaks off from the sediments from time to time. Since the density of MH is slightly smaller than average seawater, the MH ascends slowly from deep sea into upper part of ocean. But, HSH is slightly denser than the warm seawater in the upper part of ocean. Over the portion of glacial cycle when insolation is strong, the existence of a residual SH prevents the ascension of hydrates. (H3) Internal forcing - An internal energy converter or a heat generator exists in the oceans. Lai (2007) has found the link between the observed seawater warming at intermediate depth (400 - 750 m) (Barnett et al. 2001) and the dissociation of floating microscopic MH and subsequent methane oxidation via bacteria. We postulate that the cooling of deep seawater when the insolation is weak leads to more hydrates ascending through seawater to the level for dissociation (which is a process depending on seawater temperature and pressure). The oxidation of CH4 and H2S after hydrate-dissociation is a multi-step process/phenomenon that we refer to as ocean slow-burn (OSB). It generates the maximum heat per mole of atom-C among all carbon-containing compounds, including sugars. Through oxidation, the CETP is now released as heat that is transferred via biomass, eventually being deposited into the seawater. Since the heat generated in the OSB is greater than that required to dissociate hydrates, they become self-sustained and run-away as long as all players (MH, bacteria, and methane ice worms (Fisher et al. 2000)) are present. So, the glacial termination is a process to release the stored CETP instead of trapping more insolation energy. (H4) Having accumulated enough energy sources, the OGT will happen when the joint effect of the three parameters triggers the discharge of the HCs. The trigger is an abrupt reduction in insolation over the Southern Oceans, especially South Atlantic under which lies the active Mid-Atlantic Ridge. The three rules were found through following steps: (1) finding a wide time-window (WTW) within which the energy (stored in hydrates) required to sustain a GT can be accumulated. (2) Then, we find a narrow time-window (NTW) (within that WTW) when the HC is abruptly cooled down due to a quick reduction in insolation. That NTW shall be the ideal time for the OGT. The variation of eccentricity is the factor controlling the annual global integral of insolation (AGII). The bigger the eccentricity the greater the AGII is. The greater the AGII the more the global CETP capture is. Presume that eccentricity varies like a sinusoidal function of time with a single period of 95 Ky. Then, the CETP being stored into the HCs varies in the same cycle, too. On the other hand, the hydrates are being consumed by OSB process at a rate, (namely r(OSB)), that is not directly controlled by the eccentricity. Assume that during the glacial period r(OSB) is significant but smaller than the accumulation rate of CETP (namely, r(CETP)). This leads us to think that during the phase -90o to 90o (valley to peak) half cycle is a better WTW to accumulate hydrates than the 90o to 270o (peak to valley) half cycle. This is Rule 1. The NTW is regulated by Rules 2 and 3. Rule 2 is that the obliquity must be increasing. Rule 3 is that precession must be near 180o phase angle. The reasons for these two rules will be explained. The NTW will be shown to match every OGT appeared in last one million years.
Braun, Benedikt J; Bushuven, Eva; Hell, Rebecca; Veith, Nils T; Buschbaum, Jan; Holstein, Joerg H; Pohlemann, Tim
2016-02-01
Weight bearing after lower extremity fractures still remains a highly controversial issue. Even in ankle fractures, the most common lower extremity injury no standard aftercare protocol has been established. Average non weight bearing times range from 0 to 7 weeks, with standardised, radiological healing controls at fixed time intervals. Recent literature calls for patient-adapted aftercare protocols based on individual fracture and load scenarios. We show the clinical feasibility and first results of a new, insole embedded gait analysis tool for continuous monitoring of gait, load and activity. Ten patients were monitored with a new, independent gait analysis insole for up to 3 months postoperatively. Strict 20 kg partial weight bearing was ordered for 6 weeks. Overall activity, load spectrum, ground reaction forces, clinical scoring and general health data were recorded and correlated. Statistical analysis with power analysis, t-test and Spearman correlation was performed. Only one patient completely adhered to the set weight bearing limit. Average time in minutes over the limit was 374 min. Based on the parameters load, activity, gait time over 20 kg weight bearing and maximum ground reaction force high and low performers were defined after 3 weeks. Significant difference in time to painless full weight bearing between high and low performers was shown. Correlation analysis revealed a significant correlation between weight bearing and clinical scoring as well as pain (American Orthopaedic Foot and Ankle Society (AOFAS) Score rs=0.74; Olerud-Molander Score rs=0.93; VAS pain rs=-0.95). Early, continuous gait analysis is able to define aftercare performers with significant differences in time to full painless weight bearing where clinical or radiographic controls could not. Patient compliance to standardised weight bearing limits and protocols is low. Highly individual rehabilitation patterns were seen in all patients. Aftercare protocols should be adjusted to real-time patient conditions, rather than fixed intervals and limits. With a real-time measuring device high performers could be identified and influenced towards optimal healing conditions early, while low performers are recognised and missing healing influences could be corrected according to patient condition. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Climate Response to the Astronomical Forcing
NASA Astrophysics Data System (ADS)
Crucifix, M.; Loutre, M. F.; Berger, A.
2006-08-01
Links between climate and Earth’s orbit have been proposed for about 160 years. Two decisive advances towards an astronomical theory of palæoclimates were Milankovitch’s theory of insolation (1941) and independent findings, in 1976, of a double precession frequency peak in marine sediment data and from celestial mechanics calculations. The present chapter reviews three essential elements of any astronomical theory of climate: (1) to calculate the orbital elements, (2) to infer insolation changes from climatic precession, obliquity and eccentricity, and (3) to estimate the impact of these variations on climate. The Louvain-la-Neuve climate-ice sheet model has been an important instrument for confirming the relevance of Milankovitch’s theory, but it also evidences the critical role played by greenhouse gases during periods of low eccentricity. It is recognised today that climatic interactions at the global scale were involved in the processes of glacial inception and deglaciation. Three examples are given, related to the responses of the carbon cycle, hydrological cycle, and the terrestrial biosphere, respectively. The chapter concludes on an outlook on future research directions on this topic.
Geoengineering as a design problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravitz, Ben; MacMartin, Douglas G.; Wang, Hailong
2016-01-01
Understanding the climate impacts of solar geoengineering is essential for evaluating its benefits and risks. Most previous simulations have prescribed a particular strategy and evaluated its modeled effects. Here we turn this approach around by first choosing example climate objectives and then designing a strategy to meet those objectives in climate models. There are four essential criteria for designing a strategy: (i) an explicit specification of the objectives, (ii) defining what climate forcing agents to modify so the objectives are met, (iii) a method for managing uncertainties, and (iv) independent verification of the strategy in an evaluation model. We demonstrate this design perspective throughmore » two multi-objective examples. First, changes in Arctic temperature and the position of tropical precipitation due to CO 2 increases are offset by adjusting high-latitude insolation in each hemisphere independently. Second, three different latitude-dependent patterns of insolation are modified to offset CO 2-induced changes in global mean temperature, interhemispheric temperature asymmetry, and the Equator-to-pole temperature gradient. In both examples, the "design" and "evaluation" models are state-of-the-art fully coupled atmosphere–ocean general circulation models.« less
NASA Technical Reports Server (NTRS)
Takahashi, Masaaki; Holton, James R.
1991-01-01
Observations show that the westerly acceleration of the equatorial quasi-biennial oscillation (QBO) can be accounted for by Kelvin waves, but that there is a deficiency in the easterly acceleration due to Rossby-gravity waves. Rossby waves and westward propagating gravity waves have been suggested as alternative sources for the easterly acceleration. The possible role of these two wave modes has been tested in a two-dimensional model of the QBO. When the easterly acceleration is due to Rossby waves, the zonal-mean response is steady; when it is due to gravity waves, an oscillation with some features similar to the QBO occurs, but it is of short period and weak amplitude. A similar result occurs when a standing-wave forcing pattern is imposed. These results suggest that Rossby waves play only a minor role in the QBO, and that while the Rossby-gravity mode is essential, other gravity modes may also be important for the easterly phase.
Chen, Wen-Ming; Lee, Sung-Jae; Lee, Peter Vee Sin
2015-02-26
Therapeutic footwear with specially-made insoles is often used in people with diabetes and rheumatoid arthritis to relieve ulcer risks and pain due to high pressures from areas beneath bony prominences of the foot, in particular to the metatarsal heads (MTHs). In a three-dimensional finite element study of the foot and footwear with sensitivity analysis, effects of geometrical variations of a therapeutic insole, in terms of insole thicknesses and metatarsal pad (MP) placements, on local peak plantar pressure under MTHs and stress/strain states within various forefoot tissues, were determined. A validated musculoskeletal finite element model of the human foot was employed. Analyses were performed in a simulated muscle-demanding instant in gait. For many design combinations, increasing insole thicknesses consistently reduce peak pressures and internal tissue strain under MTHs, but the effects reach a plateau when insole becomes very thick (e.g., a value of 12.7mm or greater). Altering MP placements, however, showed a proximally- and a distally-placed MP could result in reverse effects on MTH pressure-relief. The unsuccessful outcome due to a distally-placed MP may attribute to the way it interacts with plantar tissue (e.g., plantar fascia) adjacent to the MTH. A uniform pattern of tissue compression under metatarsal shaft is necessary for a most favorable pressure-relief under MTHs. The designated functions of an insole design can best be achieved when the insole is very thick, and when the MP can achieve a uniform tissue compression pattern adjacent to the MTH. Copyright © 2015 Elsevier Ltd. All rights reserved.
Football boot insoles and sensitivity to extent of ankle inversion movement.
Waddington, G; Adams, R
2003-04-01
The capacity of the plantar sole of the foot to convey information about foot position is reduced by conventional smooth boot insoles, compared with barefoot surface contact. To test the hypothesis that movement discrimination may be restored by inserting textured replacement insoles, achieved by changing footwear conditions and measuring the accuracy of judgments of the extent of ankle inversion movement. An automated testing device, the ankle movement extent discrimination apparatus (AMEDA), developed to assess active ankle function in weight bearing without a balance demand, was used to test the effects of sole inserts in soccer boots. Seventeen elite soccer players, the members of the 2000 Australian Women's soccer squad (34 ankles), took part in the study. Subjects were randomly allocated to start testing in: bare feet, their own football boots, own football boot and replacement insole, and on the left or right side. Subjects underwent six 50 trial blocks, in which they completed all footwear conditions. The sole inserts were cut to size for each foot from textured rubber "finger profile" sheeting. Movement discrimination scores were significantly worse when subjects wore their football boots and socks, compared with barefoot data collected at the same time. The substitution of textured insoles for conventional smooth insoles in the football boots was found to restore movement discrimination to barefoot levels. The lower active movement discrimination scores of athletes when wearing football boots with smooth insoles suggest that the insole is one aspect of football boot and sport shoe design that could be modified to provide the sensory feedback needed for accurate foot positioning.
Global Climate Change and Sedimentation Patterns in the Neogene Baringo Basin, Central Kenya Rift
NASA Astrophysics Data System (ADS)
Deino, A. L.; Kingston, J. D.; Wilson, K. E.; Hill, A.
2010-12-01
The Tugen Hills are part of a ~100 km N-S tilted fault block, just west of Lake Baringo within the Central Kenyan Rift Valley. Sediments exposed in this block span the last 16 Ma and have yielded abundant and diverse fossil assemblages including a number of hominoid and hominid specimens. Much research has also focused on documenting the paleoecology of the succession through analyses of fossil floral, faunal, and biogeochemical proxies. Data from the Tugen Hills have revealed a complex evolutionary history of ecosystems characterized by spatial and temporal heterogeneity with no clear evidence of any long-term trends. While these studies suggest that the patterns of heterogeneity may be shifting at short time-scales (104-105 ka), limited temporal resolution has until now generally precluded assessments of environmental change at these scales. Recently published investigations in the Baringo Basin have provided evidence of orbitally mediated environmental change over periods which include hominid fossil localities (Deino et al., 2006; Kingston et al., 2007). The Baringo data represent the only empirical evidence for significant local environmental shifts that can directly be correlated with insolation patterns in equatorial Africa. Sedimentation patterns in the Baringo Basin between ca. 2.70 and 2.55 Ma, controlled by climatic factors, provide a detailed paleoenvironmental record including a sequence of diatomites that record rhythmic cycling of major freshwater lake systems consistent with ~23 kyr Milankovitch precessional periodicity modulated by eccentricity. The timing of the paleolakes most closely approximates insolation maximum for the June/July 30○N insolation curve, suggesting that precipitation patterns in the region are controlled by the African monsoon system. More recent fieldwork has identified older sequences that similarly demonstrate rhythmic cycling of freshwater lake systems. Preliminary 40Ar/39Ar dating of intercalated tephra reveals that these deposits occur at ~3.7-3.8 Ma, ~4.8-4.9 Ma, and ~5.7-5.8 Ma, though each occurrence is unique in terms of the number of cycles recorded, the thickness of diatomites, and the nature of the non-lacustrine sediments. The oldest of these packages is characterized by very thick (>50 m), continuous diatomite accumulation interrupted only by deposition of pyroclastic deposits. This unit is laterally quite extensive, with exposures extending over 150 km2, indicating the establishment of a large, deep, and persistent paleolake. The development of this major water body, possibly the largest recorded in the Baringo Basin, may be in part a consequence of hemisphere-wide climate disruptions accompanying dessication events in the Mediterranean during the Messinian.
Millennial-scale Asian summer monsoon variations in South China since the last deglaciation
NASA Astrophysics Data System (ADS)
Wang, Xisheng; Chu, Guoqiang; Sheng, Mei; Zhang, Shuqin; Li, Jinhua; Chen, Yun; Tang, Ling; Su, Youliang; Pei, Junling; Yang, Zhenyu
2016-10-01
Characterizing spatiotemporal variability of the Asian summer monsoon (ASM) is critical for full understanding of its behavior, dynamics, and future impacts. The present knowledge about ASM variations since the last glaciation in South China largely relies on several precisely-dated speleothem stable oxygen isotope (δ18 O) records. Although these speleothem δ18 O signals provide useful evidence for regional past environmental changes, their validity for denoting ASM intensity remains a great controversy. The Huguangyan Maar Lake (HML) provides one of the most complete archives of environmental and climatic changes in the tropical-subtropical South and East Asia since the last glaciation. Here we document a continuous centennial- to millennial-scale ASM record over the past 16 ky BP from the high-sedimentation-rate HML sediments. In contrast with the low-amplitude variations of Chinese speleothem-derived δ18 O signals and the Chinese loess-based monsoon precipitation proxy indexes, our multi-proxy records reveal a pattern of high-amplitude regional climatic fluctuations, including fine-scale oscillations during the Bølling-Allerød warming, the 8.2 ka cooling event, and an abrupt climate shift from 6.5-5.9 ka. The existence of Bond-like cold/dry events indicates a distinct influence of the North Atlantic circulation on low-latitude monsoon changes. The broad comparability between the HML paleo-proxies, Chinese speleothem δ18 O records, and the northern hemisphere summer insolation throughout the Holocene, suggests that solar insolation exerts a profound influence on ASM changes. These findings reinforce a model of combined insolation and glacial forcing of the ASM.
Pausata, Francesco S R; Emanuel, Kerry A; Chiacchio, Marc; Diro, Gulilat T; Zhang, Qiong; Sushama, Laxmi; Stager, J Curt; Donnelly, Jeffrey P
2017-06-13
Tropical cyclones (TCs) can have devastating socioeconomic impacts. Understanding the nature and causes of their variability is of paramount importance for society. However, historical records of TCs are too short to fully characterize such changes and paleo-sediment archives of Holocene TC activity are temporally and geographically sparse. Thus, it is of interest to apply physical modeling to understanding TC variability under different climate conditions. Here we investigate global TC activity during a warm climate state (mid-Holocene, 6,000 yBP) characterized by increased boreal summer insolation, a vegetated Sahara, and reduced dust emissions. We analyze a set of sensitivity experiments in which not only solar insolation changes are varied but also vegetation and dust concentrations. Our results show that the greening of the Sahara and reduced dust loadings lead to more favorable conditions for tropical cyclone development compared with the orbital forcing alone. In particular, the strengthening of the West African Monsoon induced by the Sahara greening triggers a change in atmospheric circulation that affects the entire tropics. Furthermore, whereas previous studies suggest lower TC activity despite stronger summer insolation and warmer sea surface temperature in the Northern Hemisphere, accounting for the Sahara greening and reduced dust concentrations leads instead to an increase of TC activity in both hemispheres, particularly over the Caribbean basin and East Coast of North America. Our study highlights the importance of regional changes in land cover and dust concentrations in affecting the potential intensity and genesis of past TCs and suggests that both factors may have appreciable influence on TC activity in a future warmer climate.
NASA Astrophysics Data System (ADS)
Pausata, Francesco S. R.; Emanuel, Kerry A.; Chiacchio, Marc; Diro, Gulilat T.; Zhang, Qiong; Sushama, Laxmi; Stager, J. Curt; Donnelly, Jeffrey P.
2017-06-01
Tropical cyclones (TCs) can have devastating socioeconomic impacts. Understanding the nature and causes of their variability is of paramount importance for society. However, historical records of TCs are too short to fully characterize such changes and paleo-sediment archives of Holocene TC activity are temporally and geographically sparse. Thus, it is of interest to apply physical modeling to understanding TC variability under different climate conditions. Here we investigate global TC activity during a warm climate state (mid-Holocene, 6,000 yBP) characterized by increased boreal summer insolation, a vegetated Sahara, and reduced dust emissions. We analyze a set of sensitivity experiments in which not only solar insolation changes are varied but also vegetation and dust concentrations. Our results show that the greening of the Sahara and reduced dust loadings lead to more favorable conditions for tropical cyclone development compared with the orbital forcing alone. In particular, the strengthening of the West African Monsoon induced by the Sahara greening triggers a change in atmospheric circulation that affects the entire tropics. Furthermore, whereas previous studies suggest lower TC activity despite stronger summer insolation and warmer sea surface temperature in the Northern Hemisphere, accounting for the Sahara greening and reduced dust concentrations leads instead to an increase of TC activity in both hemispheres, particularly over the Caribbean basin and East Coast of North America. Our study highlights the importance of regional changes in land cover and dust concentrations in affecting the potential intensity and genesis of past TCs and suggests that both factors may have appreciable influence on TC activity in a future warmer climate.
NASA Astrophysics Data System (ADS)
Shanahan, T. M.; Hughen, K. A.; Fornace, K.; Baker, P. A.; Fritz, S. C.
2010-12-01
As one of the main centers of tropical convection, the South American Altiplano plays a crucial role in the long-term climate variability of South America. However, both the timing and the drivers of climate variability on orbital to millennial timescales remain poorly understood for this region. New data from molecular fossil (e.g., TEX86) and compound specific hydrogen isotope (D/H) analyses provide new insights into the climate evolution of this region over the last ~50 kyr. TEX86 temperature reconstructions suggest that the Altiplano warmed as early as 19- 21 kyr ago and proceeded rapidly, consistent with published evidence for an early retreat of LGM glaciers at this time at some locations. The early warming signal observed at Lake Titicaca also appears to be synchronous with continental temperature reconstructions at some sites in tropical Africa, but leads tropical SST changes by several thousands of years. Although the initiation of warming coincided with the peak in southern hemisphere summer insolation, subsequent temperature increases were accompanied by decreases in southern hemisphere insolation, suggesting a northern hemisphere driver for temperature changes in tropical South America. Preliminary D/H ratios from leaf waxes appear to support existing data suggesting that wet conditions prevailed until the late glacial/early Holocene and are broadly consistent with local southern hemisphere summer insolation forcing of the summer monsoon. These data suggest that temperature and precipitation changes during the last deglaciation were decoupled and that both local and extratropical drivers are important for controlling climate change in this region on orbital timescales.
Correlation of LEND and Diviner Data
NASA Technical Reports Server (NTRS)
McClanahan, Tim; Boynton, William; Mitrofanov, Igor; Sagdeev, Raold; Bennet, Kristen; Starr, Richard; Evans, Larry; Paige, Dave; Sanin, Anton; Litvak, Max;
2011-01-01
Correlated results from the Lunar Reconnaissance Orbiter's (LRO) Lunar Exploration Neutron Detector (LEND) and Lunar Orbiting Laser Altimeter (LOLA) suggest insolation effects influence the spatial distribution of Lunar H poleward of 60deg latitude. Diviner results indicate an insolation induced thermal contrast between pole-facing and equator-facing slopes of crater walls. Our research shows that the contrasting thermal conditions observed in pole-facing vs equator-facing slopes and epithermal neutron rates from LEND are positively correlated. Numerical transformations of LOLA topography facilitated a systematic decomposition of LEND epithermal maps as a function of insolation effects. The results suggest a significantly positive local epithermal contrast in these regions. Comparing pole-facing and equator-facing slopes, we find that the pole-facing slopes show epithermal neutron suppression ranging from -0.005 to 0.02 cps relative to the equator-facing slopes .. We further investigate insolation effects on epithermal neutrons by comparing the predicted insolation contrast derived from the 3-D LOLA topography model with the LEND results. We also investigate and discuss the possibility of slope mass wasting effects being correlated with our insolation-effect hypothesis
On the competition of forces in the Kerr field
NASA Astrophysics Data System (ADS)
Semerak, O.
1994-11-01
'Rotosphere', where the component of 4-acceleration, radial relative to the symmetry axis, of the stationary observer depends on his angular velocity in a way going against our intuition, is demarcated in the Kerr spacetime. Stationary observers with extremal value of this acceleration ('extremelly accelerated observers') are introduced and their privileged relation to circular geodesics in the equatorial plane is found. Possible translation of the results into 'force' language is based on the definition of the 'centrifugal force' with respect to the zero-angular-momentum observers. It yields, in particular, a simple interpretation of the behavior of acceleration of the stationary observer in terms of gravitational, Coriolis and centrifugal forces.
A Relationship Between the Solar Rotation and Activity Analysed by Tracing Sunspot Groups
NASA Astrophysics Data System (ADS)
Ruždjak, Domagoj; Brajša, Roman; Sudar, Davor; Skokić, Ivica; Poljančić Beljan, Ivana
2017-12-01
The sunspot position published in the data bases of the Greenwich Photoheliographic Results (GPR), the US Air Force Solar Optical Observing Network and National Oceanic and Atmospheric Administration (USAF/NOAA), and of the Debrecen Photoheliographic Data (DPD) in the period 1874 to 2016 were used to calculate yearly values of the solar differential-rotation parameters A and B. These differential-rotation parameters were compared with the solar-activity level. We found that the Sun rotates more differentially at the minimum than at the maximum of activity during the epoch 1977 - 2016. An inverse correlation between equatorial rotation and solar activity was found using the recently revised sunspot number. The secular decrease of the equatorial rotation rate that accompanies the increase in activity stopped in the last part of the twentieth century. It was noted that when a significant peak in equatorial rotation velocity is observed during activity minimum, the next maximum is weaker than the previous one.
NASA Astrophysics Data System (ADS)
Longo, W. M.; Crowther, J.; Daniels, W.; Russell, J. M.; Giblin, A. E.; Morrill, C.; Zhang, X.; Wang, X.; Huang, Y.
2015-12-01
Paleoclimate reconstructions have provided little consensus on how continental temperatures in Eastern Beringia changed from the Last Glacial Maximum (LGM) to the present. Reconstructions show regional differences in LGM severity, the timing of deglacial warming, and Holocene temperature variability. Currently, arctic temperatures are increasing at the fastest rates on the planet, highlighting the need to identify the sensitivities of arctic systems to various climate forcings. This cannot be done without resolving the complex climate history of Eastern Beringia. Here, we present two new organic geochemical temperature reconstructions from Lake E5, north central Alaska that span the LGM, last glacial termination and Holocene. The proxies (alkenones and brGDGTs) record seasonally distinct temperatures, allowing for the attribution of different forcings to each proxy. The alkenone-based UK37 reconstruction records spring/early summer lake temperatures and indicates a 4 oC abrupt warming at 13.1 ka and a relatively warm late Holocene, which peaks at 2.4 ka and exhibits a cooling trend from 2.4 to 0.1 ka. The brGDGT reconstruction is calibrated to mean annual air temperature and interpreted here as exhibiting a strong warm season bias. BrGDGTs show an abrupt 4.5 oC warming at 14 ka, and show evidence for an early Holocene Thermal Maximum (HTM), which cools by 3 oC after 8.4 ka. Because UK37 temperatures do not exhibit an early HTM, we hypothesize that summer insolation had a minimal effect on spring/early summer lake temperatures. Instead, the UK37 reconstruction agrees with sea ice and sea surface temperature reconstructions from the Beaufort and Chukchi Seas and northeast Pacific Ocean. We hypothesize that forcings associated with sea ice concentration and changes in atmospheric circulation had stronger affects on spring/early summer lake temperatures and we present modern observational data in support of this hypothesis. By contrast, the summer-biased brGDGT reconstruction suggests a strong and relatively direct temperature response to summer insolation forcing. Together, these records suggest that both internal and external forcings significantly affected LGM to present temperature variability in Eastern Beringia, with different seasonal biases.
Parametric study of orthopedic insole of valgus foot on partial foot amputation.
Guo, Jun-Chao; Wang, Li-Zhen; Chen, Wei; Du, Cheng-Fei; Mo, Zhong-Jun; Fan, Yu-Bo
2016-01-01
Orthopedic insole was important for partial foot amputation (PFA) to achieve foot balance and avoid foot deformity. The inapposite insole orthosis was thought to be one of the risk factors of reamputation for foot valgus patient, but biomechanical effects of internal tissues on valgus foot had not been clearly addressed. In this study, plantar pressure on heel and metatarsal regions of PFA was measured using F-Scan. The three-dimensional finite element (FE) model of partial foot evaluated different medial wedge angles (MWAs) (0.0°-10.0°) of orthopedic insole on valgus foot. The effect of orthopedic insole on the internal bone stress, the medial ligament tension of ankle, plantar fascia tension, and plantar pressure was investigated. Plantar pressure on medial heel region was about 2.5 times higher than that of lateral region based on the F-Scan measurements. FE-predicted results showed that the tension of medial ankle ligaments was the lowest, and the plantar pressure was redistributed around the heel, the first metatarsal, and the lateral longitudinal arch regions when MWA of orthopedic insole ranged from 7.5° to 8.0°. The plantar fascias maintained about 3.5% of the total load bearing on foot. However, the internal stresses from foot bones increased. The simulation in this study would provide the suggestion of guiding optimal design of orthopedic insole and therapeutic planning to pedorthist.
Motion of charged particles in planetary magnetospheres with nonelectromagnetic forces
NASA Technical Reports Server (NTRS)
Huang, T. S.; Hill, T. W.; Wolf, R. A.
1988-01-01
Expressions are derived for the mirror point, the bounce period, the second adiabatic invariant, and the bounce-averaged azimuthal drift velocity as functions of equatorial pitch angle for a charged particle in a dipole magnetic field in the presence of centrifugal, gravitational, and Coriolis forces. These expressions are evaluated numerically, and the results are displayed graphically. The average azimuthal drift speed for a flux tube containing a thermal equilibrium plasma distribution is also evaluated.
A ‘self-adjustment’ mechanism for mixed-layer heat budget in the equatorial Atlantic cold tongue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Yanyan; Wang, Bin; Huang, Wenyu
Wind forcing is one of the most important sources for the oceanic energy cycle and is especially critical to the heat budget of surface mixed layer. The sensitivity of heat budget in the equatorial Atlantic cold tongue (EACT) region (5°S–5°N, 25°W–5°E) to wind forcing and the related mechanism are explored in this study. Based on the experiments forced by different wind forcing from both reanalysis and idealized datasets, it is revealed that the contribution ratio for each of the dominant physical processes in the heat budget is insensitive (the variations within 1% of the mean) to the variations in themore » local winds (the largest variation is about 20% of the mean) over the EACT region. Therefore, a ‘self-adjustment’ mechanism exists in the mixed-layer heat budget: as local zonal winds over the EACT region strengthen (weaken), both the cooling effects of turbulent mixing and the combined warming effects of surface net heat flux and zonal advection simultaneously increase (decrease) by nearly the same percentage and thus their contribution ratios are kept constant. Finally, owing to the impact of meridional winds on each term of heat budget can be neglected, the above mechanism is also tenable under the situation when the local meridional winds change.« less
A ‘self-adjustment’ mechanism for mixed-layer heat budget in the equatorial Atlantic cold tongue
Shi, Yanyan; Wang, Bin; Huang, Wenyu
2017-01-20
Wind forcing is one of the most important sources for the oceanic energy cycle and is especially critical to the heat budget of surface mixed layer. The sensitivity of heat budget in the equatorial Atlantic cold tongue (EACT) region (5°S–5°N, 25°W–5°E) to wind forcing and the related mechanism are explored in this study. Based on the experiments forced by different wind forcing from both reanalysis and idealized datasets, it is revealed that the contribution ratio for each of the dominant physical processes in the heat budget is insensitive (the variations within 1% of the mean) to the variations in themore » local winds (the largest variation is about 20% of the mean) over the EACT region. Therefore, a ‘self-adjustment’ mechanism exists in the mixed-layer heat budget: as local zonal winds over the EACT region strengthen (weaken), both the cooling effects of turbulent mixing and the combined warming effects of surface net heat flux and zonal advection simultaneously increase (decrease) by nearly the same percentage and thus their contribution ratios are kept constant. Finally, owing to the impact of meridional winds on each term of heat budget can be neglected, the above mechanism is also tenable under the situation when the local meridional winds change.« less
A Simple Modeling Tool and Exercises for Incoming Solar Radiation Demonstrations
ERIC Educational Resources Information Center
Werts, Scott; Hinnov, Linda
2011-01-01
We present a MATLAB script INSOLATE.m that calculates insolation at the top of the atmosphere and the total amount of daylight during the year (and other quantities) with respect to geographic latitude and Earth's obliquity (axial tilt). The script output displays insolation values for an entire year on a three-dimensional graph. This tool…
The role of earth radiation budget studies in climate and general circulation research
NASA Technical Reports Server (NTRS)
Ramanathan, V.
1987-01-01
The use of earth radiation budget (ERB) data for climate and general circulation research is studied. ERB measurements obtained in the 1960's and 1970's have provided data on planetary brightness, planetary global energy balances, the greenhouse effect, solar insolation, meridional heat transport by oceans and atmospheres, regional forcing, climate feedback processes, and the computation of albedo values in low latitudes. The role of clouds in governing climate, in influencing the general circulation, and in determining the sensitivity of climate to external perturbations needs to be researched; a procedure for analyzing the ERB data, which will address these problems, is described. The approach involves estimating the clear-sky fluxes from the high spatial resolution scanner measurement and defining a cloud radiative forcing; the global average of the sum of the solar and long-wave cloud forcing yields the net radiative effect of clouds on the climate.
Comet nongravitational forces and meteoritic impacts
NASA Technical Reports Server (NTRS)
Matese, John J.; Whitman, Patrick G.; Whitmire, Daniel P.
1992-01-01
We have considered those comets whose original orbits have been determined to be hyperbolic when only planetary perturbations are accounted for. It is found that formally unbound incident trajectories correlate most confidently with orbits that have small perihelion distances and move in a retrograde sense relative to planetary motion. Arguments are presented that these results are not due to measurement error or to selection effects. We conclude that the phenomenon is attributable to enhanced volatility leading to abnormally large nongravitational forces. Since the effect is absent in the prograde small-perihelia population, increased insolation is not the sole explanation. It is suggested that the significance of the retrograde correlation is connected with a larger energy of relative motion between retrograde comets and a population of prograde ecliptic meteoroids which impact the comet mantle exposing the underlying volatiles. The subsequent enhanced outgassing is the cause of the larger nongravitational forces.
Effects of long-term stimulation of textured insoles on postural control in health elderly.
Annino, Giuseppe; Palazzo, Francesco; Alwardat, Mohammad S; Manzi, Vincenzo; Lebone, Pietro; Tancredi, Virginia; Sinibaldi Salimei, Paola; Caronti, Alfio; Panzarino, Michele; Padua, Elvira
2018-04-01
The aim of this study was to confirm the effects of long term (chronic) stimulating surface (textured insole) on body balance of elderly people. Twenty-four healthy elderly individuals were randomly distributed in two groups: control and experimental (67.75±6.04 years, 74.55±12.14 kg, 163.7±8.55 cm, 27.75±3.04 kg/m2). Over one month, control group (CG) used smooth insoles and the experimental group (ExG) used textured insoles every day. Velocity net (Vnet), anteroposterior (VA/P), mediolateral (VM/L) and sway path of CoP were assessed in different eye conditions before and after the experimental procedure. A mixed between-within subject ANOVA was conducted to assess the impact of soft and textured insoles and two visual conditions (vision vs. no vision) across two time periods (α≤0.05). The results showed any statistical difference between groups in each parameter assessed in this study. CoP, Vnet and VM/L in the experimental group showed a statistically significant effect of textured insoles only without vision (CoP: P=0.002; η2=0.35), Vnet P=0.02; η2=0.24, VM/L P=0.04; η2=0.177) whereas VA/P showed no statistically significant effect in the same group and condition. There was no significant effect in Vnet, VA/P, VM/L and COP in control group that used smooth insole for both eye conditions. The results confirm that postural stability improved in healthy elderly individuals, increasing somatosensory information's from feet plantar mechanoreceptors. Long term stimulation with textured insoles decreased CoP, Vnet and VM/L with eyes closed.
NASA Astrophysics Data System (ADS)
Binzel, Richard P.; DeMeo, Francesca E.; Burt, Brian J.; Cloutis, Edward A.; Rozitis, Ben; Burbine, Thomas H.; Campins, Humberto; Clark, Beth Ellen; Emery, Joshua P.; Hergenrother, Carl W.; Howell, Ellen S.; Lauretta, Dante S.; Nolan, Michael C.; Mansfield, Megan; Pietrasz, Valerie; Polishook, David; Scheeres, Daniel J.
2015-08-01
Ongoing spectroscopic reconnaissance of the OSIRIS-REx target Asteroid (101955) Bennu was performed in July 2011 and May 2012. Near-infrared spectra taken during these apparitions display slightly more positive ("redder") spectral slopes than most previously reported measurements. While observational systematic effects can produce such slope changes, and these effects cannot be ruled out, we entertain the hypothesis that the measurements are correct. Under this assumption, we present laboratory measurements investigating a plausible explanation that positive spectral slopes indicate a finer grain size for the most directly observed sub-Earth region on the asteroid. In all cases, the positive spectral slopes correspond to sub-Earth latitudes nearest to the equatorial ridge of Bennu. If confirmed by OSIRIS-REx in situ observations, one possible physical implication is that if the equatorial ridge is created by regolith migration during episodes of rapid rotation, that migration is most strongly dominated by finer grain material. Alternatively, after formation of the ridge (by regolith of any size distribution), larger-sized equatorial material may be more subject to loss due to centrifugal acceleration relative to finer grain material, where cohesive forces can preferentially retain the finest fraction (Rozitis, B., Maclennan, E., Emery, J.P. [2014]. Nature 512, 174-176).
Special Pyrheliometer Shroud Development
NASA Technical Reports Server (NTRS)
Dennison, E. W.
1984-01-01
To insure that the insolation values accurately represent the input power to a power conversion unit the field of view (FOV) of the concentrator aperture and the insolation radiometer must be the same. The calculations, implementation, and results of this approach are covered. Three instruments were used to measure the insolation: an Eppley Normal Incidence Radiometer (NIP) and two versions of the kendall cavity radiometer. The shrouds used to limit the FOV of the radiometers were designed to simulate the FOV of the PDC-1 concentrater with the cold water cavity calorimeter. This technique of matching the FOV of an insolation radiometer to the FOV of a specific concentrater and receiver aperture appears to be both practical and effective. The efficiency of a power conversion unit will be too low if the insolation is measured with a radiometer which has a FOV which is larger than the FOV of the concentrator.
Analysis of walking improvement with dynamic shoe insoles, using two accelerometers
NASA Astrophysics Data System (ADS)
Tsuruoka, Yuriko; Tamura, Yoshiyasu; Shibasaki, Ryosuke; Tsuruoka, Masako
2005-07-01
The orthopedics at the rehabilitation hospital found that disorders caused by sports injuries to the feet or caused by lower-back are improved by wearing dynamic shoe insoles, these improve walking balance and stability. However, the relationship of the lower-back and knees and the rate of increase in stability were not quantitatively analyzed. In this study, using two accelerometers, we quantitatively analyzed the reciprocal spatiotemporal contributions between the lower-back and knee of patients with left lower-back pain by means of Relative Power Contribution Analysis. When the insoles were worn, the contribution of the left and right knee relative to the left lower-back pain was up to 26% ( p<0.05) greater than without the insoles. Comparing patients with and without insoles, we found that the variance in the step response analysis of the left and right knee decreased by up to 67% ( p<0.05). This shows an increase in stability.
Measurements of Background and Polluted Air in Rural Regions of Rwanda
NASA Astrophysics Data System (ADS)
DeWitt, L.; Gasore, J.; Prinn, R. G.; Potter, K. E.
2015-12-01
Rwanda, a mountainous nation in Equatorial East Africa, is one of the least-urbanized nations in Africa. The majority of the population are subsistence farmers, and major sources of air pollution (e.g., particulates, greenhouse gases) in Rwanda include agricultural burning and cookstoves in rural areas, and older diesel vehicles and mototaxis in cities. Currently, initiatives to supply efficient cookstoves, development of cleaner-burning fuel from recycled agricultural waste, and new regulations on vehicle emissions and importation are underway. These initiatives seek to help Rwanda grow in the greenest way possible, to mitigate negative health and climate effects of development; however, little ambient data on air quality is available in different regions of Rwanda for a baseline study before and benefits study after these initiatives. The Rwanda Climate Observatory, located on the summit of Mt. Mugogo (-1.5833°, 29.5667°), a 2.5 km peak, has recently begun measurements of black carbon (BC) aerosol concentration and O3 and CO gas concentrations. BC measurements were performed with a 7-wavelength Magee Scientific aethalometer and the aethalometer model was used to calculate the influence of fossil fuel and biomass burning sources on BC concentrations. CO and O3 measurements were used in conjunction with BC aerosol data, and HYSPLIT back trajectories were also used to help discriminate between periods of heavy burning and periods of regional influence from traffic and general cookfire emissions. Since Mt. Mugogo is in a rural area, this station captures a snapshot of regional background pollution away from high anthropogenic influence. The nearby households and fields also allow case studies of household and crop burning during localized events and help quanitfy potential daily exposure to particulates and climate-forcing emissions in remote areas of this developing country. We will present time series of the BC, O3, CO and insolation measurements at Mt. Mugogo, and interpret them in terms of sources, circulation, air chemistry and physics, and sinks.
Weak hydrological sensitivity to temperature change over land, independent of climate forcing
NASA Astrophysics Data System (ADS)
Samset, Bjorn H.
2017-04-01
As the global surface temperature changes, so will patterns and rates of precipitation. Theoretically, these changes can be understood in terms of changes to the energy balance of the atmosphere, caused by introducing drivers of climate change such as greenhouse gases, aerosols and altered insolation. Climate models, however, disagree strongly in their prediction of precipitation changes, both for historical and future emission pathways, and per degree of surface warming in idealized experiments. The latter value, often termed the apparent hydrological sensitivity, has also been found to differ substantially between climate drivers. Here, we present the global and regional hydrological sensitivity (HS) to surface temperature changes, for perturbations to CO2, CH4, sulfate and black carbon concentrations, and solar irradiance. Based on results from 10 climate models participating in the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), we show how modeled global mean precipitation increases by 2-3 % per kelvin of global mean surface warming, independent of driver, when the effects of rapid adjustments are removed. Previously reported differences in response between drivers are therefore mainly ascribable to rapid atmospheric adjustment processes. All models show a sharp contrast in behavior over land and over ocean, with a strong surface temperature driven (slow) ocean HS of 3-5 %/K, while the slow land HS is only 0-2 %/K. Separating the response into convective and large-scale cloud processes, we find larger inter-model differences, in particular over land regions. Large-scale precipitation changes are most relevant at high latitudes, while the equatorial HS is dominated by convective precipitation changes. Black carbon stands out as the driver with the largest inter-model slow HS variability, and also the strongest contrast between a weak land and strong sea response. Convective precipitation in the Arctic and large scale precipitation around the Equator are found to be topics where further model investigations and observational constraints may provide rapid improvements to modelling of the precipitation response to future, CO2 dominated climate change.
Use of multivariable asymptotic expansions in a satellite theory
NASA Technical Reports Server (NTRS)
Dallas, S. S.
1973-01-01
Initial conditions and perturbative force of satellite are restricted to yield motion of equatorial satellite about oblate body. In this manner, exact analytic solution exists and can be used as standard of comparison in numerical accuracy comparisons. Detailed numerical accuracy studies of uniformly valid asymptotic expansions were made.
Local effects of partly-cloudy skies on solar and emitted radiations
NASA Technical Reports Server (NTRS)
Whitney, D. A.; Griffin, T. J.
1983-01-01
Atmospheric aerosol and turbidity measurements were analyzed and the results are presented. The correlation of global insolation with cloud cover fractions for the first complete year's data set was completed. A theoretical model was developed to parameterize the effects of local aerosols upon insolation received at the ground using satellite radiometric data and insolation measurements under clear sky conditions. A February data set, composed of one minute integrated global insolation and direct solar irradiances, cloud cover fractions, meteorological data from nearby weather stations, and GOES East satellite radiometric data was collected to test the model and used to calculate the effects of local aerosols.
The specification of personalised insoles using additive manufacturing.
Salles, André S; Gyi, Diane E
2012-01-01
Research has been conducted to explore a process that delivers insoles for personalised footwear for the high street using additive manufacturing (AM) and to evaluate the use of such insoles in terms of discomfort. Therefore, the footwear personalisation process was first identified: (1) foot capture; (2) anthropometric measurements; (3) insole design; and (4) additive manufacturing. In order to explore and evaluate this process, recreational runners were recruited. They had both feet scanned and 15 anthropometric measurements taken. Personalised insoles were designed from the scans and manufactured using AM. Participants were fitted with footwear under two experimental conditions: personalised and control, which were compared in terms of discomfort. The mean ratings for discomfort variables were generally low for both conditions and no significant differences were detected between conditions. In general, the personalisation process showed promise in terms of the scan data, although the foot capture position may not be considered 'gold standard'. Polyamide, the material used for the insoles, demonstrated positive attributes: visual inspection revealed no signs of breaking. The footwear personalisation process described and explored in this study shows potential and can be considered a good starting point for designer and researchers.
Testing competing forms of the Milankovitch hypothesis: A multivariate approach
NASA Astrophysics Data System (ADS)
Kaufmann, Robert K.; Juselius, Katarina
2016-02-01
We test competing forms of the Milankovitch hypothesis by estimating the coefficients and diagnostic statistics for a cointegrated vector autoregressive model that includes 10 climate variables and four exogenous variables for solar insolation. The estimates are consistent with the physical mechanisms postulated to drive glacial cycles. They show that the climate variables are driven partly by solar insolation, determining the timing and magnitude of glaciations and terminations, and partly by internal feedback dynamics, pushing the climate variables away from equilibrium. We argue that the latter is consistent with a weak form of the Milankovitch hypothesis and that it should be restated as follows: internal climate dynamics impose perturbations on glacial cycles that are driven by solar insolation. Our results show that these perturbations are likely caused by slow adjustment between land ice volume and solar insolation. The estimated adjustment dynamics show that solar insolation affects an array of climate variables other than ice volume, each at a unique rate. This implies that previous efforts to test the strong form of the Milankovitch hypothesis by examining the relationship between solar insolation and a single climate variable are likely to suffer from omitted variable bias.
Hasan, Hosni; Davids, Keith; Chow, Jia Yi; Kerr, Graham
2017-04-01
This study investigated effects of wearing compression garments and textured insoles on modes of movement organisation emerging during performance of lower limb interceptive actions in association football. Participants were six skilled (age = 15.67 ± 0.74 years) and six less-skilled (age = 15.17 ± 1.1 years) football players. All participants performed 20 instep kicks with maximum velocity in four randomly organised insoles and socks conditions, (a) Smooth Socks with Smooth Insoles (SSSI); (b) Smooth Socks with Textured Insoles (SSTI); (c) Compression Socks with Smooth Insoles (CSSI); and (d), Compression Socks with Textured Insoles (CSTI). Results showed that, when wearing textured and compression materials (CSSI condition), less-skilled participants displayed significantly greater hip extension and flexion towards the ball contact phase, indicating larger ranges of motion in the kicking limb than in other conditions. Less-skilled participants also demonstrated greater variability in knee-ankle intralimb (angle-angle plots) coordination modes in the CSTI condition. Findings suggested that use of textured and compression materials increased attunement to somatosensory information from lower limb movement, to regulate performance of dynamic interceptive actions like kicking, especially in less-skilled individuals.
NASA Astrophysics Data System (ADS)
Yoshida, K.; Naoe, H.
2016-12-01
Whether climate models drive Quasi-Biennial Oscillation (QBO) appropriately is important to assess QBO impact on climate change such as global warming and solar related variation. However, there were few models generating QBO in the Coupled Model Intercomparison Project Phase 5 (CMIP5). This study focuses on dynamical structure of the QBO and its sensitivity to background wind pattern and model configuration. We present preliminary results of experiments designed by "Towards Improving the QBO in Global Climate Models (QBOi)", which is derived from the Stratosphere-troposphere processes and their role in climate (SPARC), in the Meteorological Research Institute earth system model, MRI-ESM2. The simulations were performed in present-day climate condition, repeated annual cycle condition with various CO2 level and sea surface temperatures, and QBO hindcast. In the present climate simulation, zonal wind in the equatorial stratosphere generally exhibits realistic behavior of the QBO. Equatorial zonal wind variability associated with QBO is overestimated in upper stratosphere and underestimated in lower stratosphere. In the MRI-ESM2, the QBO behavior is mainly driven by gravity wave drag parametrization (GWDP) introduced in Hines (1997). Comparing to reanalyses, shortage of resolved wave forcing is found especially in equatorial lower stratosphere. These discrepancies can be attributed to difference in wave forcing, background wind pattern and model configuration. We intend to show results of additional sensitivity experiments to examine how model configuration and background wind pattern affect resolved wave source, wave propagation characteristics, and QBO behavior.
The momentum constraints on the shallow meridional circulation associated with the marine ITCZ
NASA Astrophysics Data System (ADS)
Dixit, Vishal; Srinivasan, J.
2017-12-01
Recent studies have shown that the shallow meridional circulation (SMC) coexists with the deep circulation in the marine ITCZ. The SMC has been assumed to be forced by strong meridional gradients of Sea Surface Temperature (SST) which affect the atmosphere under hydrostatic balance. In this paper, we present a new viewpoint that the shallow meridional circulation is a part of circulation that forms when the marine ITCZ is located away from the equator. To support this view, we have used reanalysis data over east Pacific ocean to show that the shallow meridional circulation is absent when the ITCZ is located near the equator while it is strong to the south of the ITCZ when the ITCZ is located away from the equator. To further support this view, we have conducted idealized aquaplanet experiments by shifting SST maximum polewards to simulate the observed contrast in the meridional circulation associated with near equatorial and off-equatorial ITCZ. The detailed momentum budget of the flow above the boundary layer shows that, to the south of an off-equatorial ITCZ, the dominant balance between the Coriolis force and the advection of relative vorticity by the mean flow leads to cancellation of the planetary rotational effects. As a result, the net rotational effects experienced by the diverging flow above the boundary layer are negligible and a shallow meridional flow along the pressure gradients is generated. This dominant balance does not occur in the aquaplanet GCM when the ITCZ forms near the equator.
A New Standard Pulsar Magnetosphere
NASA Technical Reports Server (NTRS)
Contopoulos, Ioannis; Kalapotharakos, Constantinos; Kazanas, Demosthenes
2014-01-01
In view of recent efforts to probe the physical conditions in the pulsar current sheet, we revisit the standard solution that describes the main elements of the ideal force-free pulsar magnetosphere. The simple physical requirement that the electric current contained in the current layer consists of the local electric charge moving outward at close to the speed of light yields a new solution for the pulsar magnetosphere everywhere that is ideal force-free except in the current layer. The main elements of the new solution are as follows: (1) the pulsar spindown rate of the aligned rotator is 23% larger than that of the orthogonal vacuum rotator; (2) only 60% of the magnetic flux that crosses the light cylinder opens up to infinity; (3) the electric current closes along the other 40%, which gradually converges to the equator; (4) this transfers 40% of the total pulsar spindown energy flux in the equatorial current sheet, which is then dissipated in the acceleration of particles and in high-energy electromagnetic radiation; and (5) there is no separatrix current layer. Our solution is a minimum free-parameter solution in that the equatorial current layer is electrostatically supported against collapse and thus does not require a thermal particle population. In this respect, it is one more step toward the development of a new standard solution. We discuss the implications for intermittent pulsars and long-duration gamma-ray bursts. We conclude that the physical conditions in the equatorial current layer determine the global structure of the pulsar magnetosphere.
Global QBO in circulation and ozone. Part 2: A simple mechanistic model
NASA Technical Reports Server (NTRS)
Tung, K. K.; Yang, H.
1994-01-01
Although the phenomenon of equatorial quasi-biennial oscillation is relatively well understood, the problem of how the equatorially confined quasi-biennial oscillation (QBO) wave forcing can induce a signal in the extratropics of comparable or larger magnitude remains unsolved. A simple mechanistic model is constructed to provide a quantitative test of the hypothesis that the phenomenon of extratropical QBO is mainly caused by an anomalous seasonal circulation induced by an anomalous Eliassen-Palm (E-P) flux divergence. The anomaly in E-P flux divergence may be caused in turn by the relative poleward and downward shift of the region of irreversible mixing (breaking) of the extratropical planetary waves during the easterly phase of the equatorial QBO as compared to its westerly phase. The hemispheric nature of the anomaly wave forcing in solstice seasons (viz., no wave breaking in the summer hemisphere) induces a global circulation anomaly that projects predominantly into the first few zonal Hough modes of Plumb. Such a global QBO circulation pattern, although difficult to measure directly, is reflected in the distribution of stratospheric tracers transported by it. Our model produces a global pattern of QBO anomaly in column ozone that appears to account for much of the unfiltered interannual variability in the column ozone observed by the total ozone mapping spectrometer (TOMS) instrument aboard the Nimbus satellite. Furthermore, the model produces the characteristic spectrum of the observation with peaks at periods of 20 and 30 months.
Global QBO in circulation and ozone. Part 2: A simple mechanistic model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tung, K.K.; Yang, H.
1994-10-01
Although the phenomenon of equatorial quasi-biennial oscillation is relatively well understood, the problem of how the equatorially confined quasi-biennial oscillation (QBO) wave forcing can induce a signal in the extratropics of comparable or larger magnitude remains unsolved. A simple mechanistic model is constructed to provide a quantitative test of the hypothesis that the phenomenon of extratropical QBO is mainly caused by an anomalous seasonal circulation induced by an anomalous Eliassen-Palm (E-P) flux divergence. The anomaly in E-P flux divergence may be caused in turn by the relative poleward and downward shift of the region of irreversible mixing (breaking) of themore » extratropical planetary waves during the easterly phase of the equatorial QBO as compared to its westerly phase. The hemispheric nature of the anomaly wave forcing in solstice seasons (viz., no wave breaking in the summer hemisphere) induces a global circulation anomaly that projects predominantly into the first few zonal Hough modes of Plumb. Such a global QBO circulation pattern, although difficult to measure directly, is reflected in the distribution of stratospheric tracers transported by it. Our model produces a global pattern of QBO anomaly in column ozone that appears to account for much of the unfiltered interannual variability in the column ozone observed by the total ozone mapping spectrometer (TOMS) instrument aboard the Nimbus satellite. Furthermore, the model produces the characteristic spectrum of the observation with peaks at periods of 20 and 30 months.« less
Monsoonal Responses to External Forcings over the Past Millennium: A Model Study (Invited)
NASA Astrophysics Data System (ADS)
Liu, J.; Wang, B.
2009-12-01
The climate variations related to Global Monsoon (GM) and East Asian summer monsoon (EASM) rainfall over the past 1000 years were investigated by analysis of a pair of millennium simulations with the coupled climate model named ECHO-G. The free run was generated using fixed external (annual cycle) forcing, while the forced run was obtained using time-varying solar irradiance variability, greenhouse gases (CO2 and CH4) concentration and estimated radiative effect of volcanic aerosols. The model results indicate that the centennial-millennial variation of the GM and EASM is essentially a forced response to the external radiative forcings (insolation, volcanic aerosols, and greenhouse gases). The GM strength responds more directly to the effective solar forcing (insolation plus radiative effect of the volcanoes) when compared to responses of the global mean surface temperature on centennial timescale. The simulated GM precipitation in the forced run exhibits a significant quasi-bi-centennial oscillation. Weak GM precipitation was simulated during the Little Ice Age (1450-1850) with three weakest periods concurring with the Spörer, Maunder, and Dalton Minimum of solar activity. Conversely, strong GM was simulated during the model Medieval Warm Period (ca. 1030-1240). Before the industrial period, the natural variation in effective solar forcing reinforces the thermal contrasts both between the ocean and continent and between the northern and southern hemispheres, resulting in millennium-scale variation and the quasi-bi-centennial oscillation of the GM. The prominent upward trend in the GM precipitation occurring in the last century and the remarkably strengthening of the global monsoon in the period of 1961-1990 appear unprecedented and owed possibly in part to the increase of atmospheric carbon dioxide concentration. The EASM has the largest meridional extent (5oN-55oN) among all the regional monsoons on globe. Thus, the EASM provides an unique opportunity for understanding the latitudinal differences of the monsoonal responses to external forcings and internal feedback processes. The strength of the forced response depends on latitude. On centennial-millennial time scales, the variation of the extratropical and subtropical rainfall tends to follow the effective solar radiation forcing closely; the tropical rainfall is less sensitive to the effective solar radiation forcing but responds significantly to the modern anthropogenic CO2 forcing. The spatial patterns and structures of the forced response differ from the internal mode (i.e., interannual variability that arises primarily from the internal feedback processes within the climate system). Further, the behavior of the internal mode is effectively modulated by changes in the mean state on the centennial to millennial time scales. These findings have important ramification in understanding the differences and linkages between the forced and internal modes of variability as well as in promoting communication between scientists studying modern- and paleo-monsoon variations.
NASA Astrophysics Data System (ADS)
Fu, Rong; Dickinson, Robert E.; Chen, Mingxuan; Wang, Hui
2001-10-01
Although the correlation between precipitation over tropical South America and sea surface temperatures (SSTs) over the Pacific and Atlantic has been documented since the early twentieth century, the impact of each ocean on the timing and intensity of the wet season over tropical South America and the underlying mechanisms have remained unclear. Numerical experiments have been conducted using the National Center for Atmospheric Research Community Climate Model Version 3 to explore these impacts. The results suggest the following.1)Seasonality of SSTs in the tropical Pacific and Atlantic has an important influence on precipitation in the eastern Amazon during the equinox seasons. The eastern side of the Amazon is influenced both by the direct thermal circulation of the Atlantic intertropical convergence zone (ITCZ) and by Rossby waves. These processes are enhanced by the seasonal cycles of SSTs in the tropical Atlantic and Pacific. SSTs affect Amazon precipitation much less during the solstice seasons and in the western Amazon.2)The seasonality of SSTs in the Atlantic more strongly affects Amazon rainfall than does that of the Pacific. Without the former, austral spring in the eastern equatorial Amazon would be a wet season, rather than the observed dry season. As a consequence of the lag at that time of the southward seasonal migration of the Atlantic SSTs behind that of the insolation, the Atlantic ITCZ centers itself near 10°N, instead of at the equator, imposing subsidence and low-level anticyclonic flow over the eastern equatorial Amazon, thus drying the air above the planetary boundary layer and reducing the low-level moisture convergence. Consequently, convection in the eastern Amazon is suppressed despite strong surface heating.3)Seasonality of the SSTs in the tropical Pacific also tends to reduce precipitation in the eastern Amazon during both spring and fall. In spring, subsidence is enhanced not only through a zonal direct circulation, but also through Rossby waves propagating from the extratropical South Pacific to subtropical South America. This teleconnection strengthens the South Atlantic convergence zone (SACZ) and the Nordeste low, in both cases reducing precipitation in the eastern Amazon. A direct thermal response to the Pacific SSTs enhances lower-level divergence and reduces precipitation from the northern tropical Atlantic to the northeastern Amazon.
Collins, Natalie J; Hinman, Rana S; Menz, Hylton B; Crossley, Kay M
2017-01-01
The purpose of the study was to determine whether prefabricated foot orthoses immediately reduce pain during functional tasks in people with patellofemoral osteoarthritis, compared to flat insoles and shoes alone. Eighteen people with predominant lateral patellofemoral osteoarthritis (nine women; mean [SD] age 59 [10]years; body mass index 27.9 [3.2]kg/m 2 ) performed functional tasks wearing running sandals, and then wearing foot orthoses and flat insoles (random order). Participants rated knee pain during each task (11-point numerical rating scales), ease of performance and knee stability (five-point Likert scales), and comfort (100mm visual analogue scales). Compared to shoes alone, foot orthoses (p=0.002; median difference 1.5 [IQR 3]) and flat insoles (p<0.001; 2 [3]) significantly reduced pain during step-downs; foot orthoses reduced pain during walking (p=0.008; 1 [1.25]); and flat insoles reduced pain during stair ambulation (p=0.001; 1 [1.75]). No significant differences between foot orthoses and flat insoles were observed for pain severity, ease of performance or knee stability. Foot orthoses were less comfortable than flat insoles and shoes alone (p<0.05). In people with patellofemoral osteoarthritis, immediate pain-relieving effects of prefabricated, contoured foot orthoses are equivalent to flat insoles. Further studies should investigate whether similar outcomes occur with longer-term wear or different orthosis designs. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yeom, Jong-Min; Han, Kyung-Soo; Kim, Jae-Jin
2012-05-01
Solar surface insolation (SSI) represents how much solar radiance reaches the Earth's surface in a specified area and is an important parameter in various fields such as surface energy research, meteorology, and climate change. This study calculates insolation using Multi-functional Transport Satellite (MTSAT-1R) data with a simplified cloud factor over Northeast Asia. For SSI retrieval from the geostationary satellite data, the physical model of Kawamura is modified to improve insolation estimation by considering various atmospheric constituents, such as Rayleigh scattering, water vapor, ozone, aerosols, and clouds. For more accurate atmospheric parameterization, satellite-based atmospheric constituents are used instead of constant values when estimating insolation. Cloud effects are a key problem in insolation estimation because of their complicated optical characteristics and high temporal and spatial variation. The accuracy of insolation data from satellites depends on how well cloud attenuation as a function of geostationary channels and angle can be inferred. This study uses a simplified cloud factor that depends on the reflectance and solar zenith angle. Empirical criteria to select reference data for fitting to the ground station data are applied to suggest simplified cloud factor methods. Insolation estimated using the cloud factor is compared with results of the unmodified physical model and with observations by ground-based pyranometers located in the Korean peninsula. The modified model results show far better agreement with ground truth data compared to estimates using the conventional method under overcast conditions.
2002-11-22
November 2002. [1] A zonally averaged photochemical–dynamical model of the middle atmosphere is used to simulate the quasi-biennial oscillation ( QBO ) and... QBO period. Comparable changes in prescribed tropical heating have a smaller effect on the QBO period. The response of tropical upwelling, and QBO ...wave forcing is smaller than in the Northern Hemisphere, increased forcing produces stronger equatorial upwelling and a longer QBO period. In the
Volatile Transport Implications from the New Horizons Flyby of Pluto
NASA Astrophysics Data System (ADS)
Young, Leslie; Grundy, William M.; Binzel, RIchard P.; Earle, Alissa M.; Linscott, Ivan R.; Hinson, David P.; Zangari, Amanda M.; McKinnon, William B.; Stern, S. Alan; Weaver, Harold A.; Olkin, Catherine B.; Ennico, Kimberly; Gladstone, G. Randall; Summers, Michael E.; Moore, Jeffrey M.; Spencer, John R.
2015-11-01
The New Horizons flyby of Pluto has revealed a striking range of terrains, from the very bright region informally named Sputnik Planum, to very dark regions such as the informally named Cthulhu Regio. Such a variety was beyond the scope of recent models of Pluto's seasonal volatile cycle (Young 2013, ApJL 766, L22; Hansen, Paige and Young 2015, Icarus 246, 183), which assumed globally uniform substrate albedos. The "Exchange with Pressure Plateau (EPP)" class of models in Young (2013) and the favored runs from Hansen et al (2015) had long periods of exchange of volatiles between northern and southern hemispheres. In these models, the equators were largely devoid of volatiles; even though the equatorial latitudes received less insolation than the poles over a Pluto year, they were never the coldest place on the icy world. New models that include a variety of substrate albedos can investigate questions such as whether Sputnik Planum has an albedo that is high enough to act as a local cold trap for much of Pluto's year. We will present the implications of this and other assumption-busting revelations from the New Horizons flyby. This work was supported by NASA’s New Horizons project.
White, Warren B.; Tourre, Y.M.; Barlow, M.; Dettinger, M.
2003-01-01
Biennial, interannual, and decadal signals in the Pacific basin are observed to share patterns and evolution in covarying sea surface temperature (SST), 18??C isotherm depth (Z18), zonal surface wind (ZSW), and wind stress curl (WSC) anomalies from 1955 to 1999. Each signal has warm SST anomalies propagating slowly eastward along the equator, generating westerly ZSW anomalies in their wake. These westerly ZSW anomalies produce cyclonic WSC anomalies off the equator which pump baroclinic Rossby waves in the western/central tropical North Pacific Ocean. These Rossby waves propagate westward, taking ???6, ???12, and ???36 months to reach the western boundary near ???7??N, ???12??N, and ???18??N on biennial, interannual, and decadal period scales, respectively. There, they reflect as equatorial coupled waves, propagating slowly eastward in covarying SST, Z18, and ZSW anomalies, taking ???6, ???12, and ???24 months to reach the central/eastern equatorial ocean. These equatorial coupled waves produce a delayed-negative feedback to the warm SST anomalies there. The decrease in Rossby wave phase speed with latitude, the increase in meridional scale of equatorial SST anomalies with period scale, and the associated increase in latitude of Rossby wave forcing are consistent with the delayed action oscillator (DAO) model used to explain El Nin??o. However, this is not true of the western-boundary reflection of Rossby waves into slow equatorial coupled waves. This requires modification of the extant DAO model. We construct a modified DAO model, demonstrating how the various mechanisms and the size and sources of their delays yield the resulting frequency of each signal.
NASA Astrophysics Data System (ADS)
Yuan, Dongliang; Xu, Peng; Xu, Tengfei
2017-01-01
An experiment using the Community Climate System Model (CCSM4), a participant of the Coupled Model Intercomparison Project phase-5 (CMIP5), is analyzed to assess the skills of this model in simulating and predicting the climate variabilities associated with the oceanic channel dynamics across the Indo-Pacific Oceans. The results of these analyses suggest that the model is able to reproduce the observed lag correlation between the oceanic anomalies in the southeastern tropical Indian Ocean and those in the cold tongue in the eastern equatorial Pacific Ocean at a time lag of 1 year. This success may be largely attributed to the successful simulation of the interannual variations of the Indonesian Throughflow, which carries the anomalies of the Indian Ocean Dipole (IOD) into the western equatorial Pacific Ocean to produce subsurface temperature anomalies, which in turn propagate to the eastern equatorial Pacific to generate ENSO. This connection is termed the "oceanic channel dynamics" and is shown to be consistent with the observational analyses. However, the model simulates a weaker connection between the IOD and the interannual variability of the Indonesian Throughflow transport than found in the observations. In addition, the model overestimates the westerly wind anomalies in the western-central equatorial Pacific in the year following the IOD, which forces unrealistic upwelling Rossby waves in the western equatorial Pacific and downwelling Kelvin waves in the east. This assessment suggests that the CCSM4 coupled climate system has underestimated the oceanic channel dynamics and overestimated the atmospheric bridge processes.
Ring current Atmosphere interactions Model with Self-Consistent Magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordanova, Vania; Jeffery, Christopher; Welling, Daniel
The Ring current Atmosphere interactions Model with Self-Consistent magnetic field (B) is a unique code that combines a kinetic model of ring current plasma with a three dimensional force-balanced model of the terrestrial magnetic field. The kinetic portion, RAM, solves the kinetic equation to yield the bounce-averaged distribution function as a function of azimuth, radial distance, energy and pitch angle for three ion species (H+, He+, and O+) and, optionally, electrons. The domain is a circle in the Solar-Magnetic (SM) equatorial plane with a radial span of 2 to 6.5 RE. It has an energy range of approximately 100 eVmore » to 500 KeV. The 3-D force balanced magnetic field model, SCB, balances the JxB force with the divergence of the general pressure tensor to calculate the magnetic field configuration within its domain. The domain ranges from near the Earth’s surface, where the field is assumed dipolar, to the shell created by field lines passing through the SM equatorial plane at a radial distance of 6.5 RE. The two codes work in tandem, with RAM providing anisotropic pressure to SCB and SCB returning the self-consistent magnetic field through which RAM plasma is advected.« less
Estimation of clear-sky insolation using satellite and ground meteorological data
NASA Technical Reports Server (NTRS)
Staylor, W. F.; Darnell, W. L.; Gupta, S. K.
1983-01-01
Ground based pyranometer measurements were combined with meteorological data from the Tiros N satellite in order to estimate clear-sky insolations at five U.S. sites for five weeks during the spring of 1979. The estimates were used to develop a semi-empirical model of clear-sky insolation for the interpretation of input data from the Tiros Operational Vertical Sounder (TOVS). Using only satellite data, the estimated standard errors in the model were about 2 percent. The introduction of ground based data reduced errors to around 1 percent. It is shown that although the errors in the model were reduced by only 1 percent, TOVS data products are still adequate for estimating clear-sky insolation.
Insolation and the Precession Index
NASA Technical Reports Server (NTRS)
Rubincam, David Parry
2000-01-01
Simple nonlinear climate models yield a precession index-like term in the temperature. Despite its importance in the geologic record, the precession index e sin omega, where e is the Earth's orbital eccentricity and omega is the Sun's perigee in the geocentric frame, is not present in the insolation at the top of the atmosphere. Hence there is no one-for-one mapping of 23,000 and 19,000 year periodicities from the insolation to the paleoclimate record; a nonlinear climate model is needed to produce these periods. Two such models, a grey body and an energy balance climate model with an added quadratic term, produce e sin omega terms in temperature. These terms, which without feedback mechanisms achieve extreme values of about plus or minus 0.48 K for the grey body and plus or minus 0.64 K for the energy balance model, simultaneously cool one hemisphere while they warm the other. Moreover, they produce long-term cooling in the northern hemisphere when the Sun's perigee is near northern solstice and long-term warming in the northern hemisphere when the perigee is near southern solstice. Thus this seemingly paradoxical mechanism works against the standard model which requires cool northern summers (Sun far from Earth in northern summer) to build up northern ice sheets, so that if the standard model is correct it may be more efficient than previously thought. Alternatively, the new mechanism could possibly be dominant and indicate southern hemisphere control of the northern ice sheets, wherein the southern oceans undergo a long-term cooling when the Sun is close to the Earth during southern summer. The cold water eventually flows north, cooling the northern hemisphere. This might explain why the northern oceans lag the southern ones when it comes to orbital forcing.
Pausata, Francesco S. R.; Emanuel, Kerry A.; Chiacchio, Marc; Diro, Gulilat T.; Zhang, Qiong; Sushama, Laxmi; Stager, J. Curt; Donnelly, Jeffrey P.
2017-01-01
Tropical cyclones (TCs) can have devastating socioeconomic impacts. Understanding the nature and causes of their variability is of paramount importance for society. However, historical records of TCs are too short to fully characterize such changes and paleo-sediment archives of Holocene TC activity are temporally and geographically sparse. Thus, it is of interest to apply physical modeling to understanding TC variability under different climate conditions. Here we investigate global TC activity during a warm climate state (mid-Holocene, 6,000 yBP) characterized by increased boreal summer insolation, a vegetated Sahara, and reduced dust emissions. We analyze a set of sensitivity experiments in which not only solar insolation changes are varied but also vegetation and dust concentrations. Our results show that the greening of the Sahara and reduced dust loadings lead to more favorable conditions for tropical cyclone development compared with the orbital forcing alone. In particular, the strengthening of the West African Monsoon induced by the Sahara greening triggers a change in atmospheric circulation that affects the entire tropics. Furthermore, whereas previous studies suggest lower TC activity despite stronger summer insolation and warmer sea surface temperature in the Northern Hemisphere, accounting for the Sahara greening and reduced dust concentrations leads instead to an increase of TC activity in both hemispheres, particularly over the Caribbean basin and East Coast of North America. Our study highlights the importance of regional changes in land cover and dust concentrations in affecting the potential intensity and genesis of past TCs and suggests that both factors may have appreciable influence on TC activity in a future warmer climate. PMID:28559352
Modeling the imprint of Milankovitch cycles on early Pleistocene ice volume
NASA Astrophysics Data System (ADS)
Roychowdhury, R.; DeConto, R.; Pollard, D.
2017-12-01
Global climate during Quaternary and Late Pliocene (present-3.1 Ma) is characterized by alternating glacial and interglacial conditions. Several proposed theories associate these cycles with variations in the Earth's orbital configuration. In this study, we attempt to address the anomalously strong obliquity forcing in the Late Pliocene/Early Pleistocene ice volume records (41 kyr world), which stands in sharp contrast to the primary cyclicity of insolation, which is at precessional periods (23 kyr). Model results from GCM simulations show that at low eccentricities (e<0.015), the effect of precession is minimal, and the integrated insolation metrics (such as summer metric, PDD, etc.) vary in-phase between the two hemispheres. At higher eccentricities (e>0.015), precessional response is important, and the insolation metrics vary out-of-phase between the two hemispheres. Using simulations from a GCM-driven ice sheet model, we simulate time continuous ice volume changes from Northern and Southern Hemispheres. Under eccentricities lower than 0.015, ice sheets in both hemispheres respond only to obliquity cycle, and grow and melt together (in-phase). If the ice sheet is simulated with eccentricity higher than 0.015, both hemispheres become more sensitive to precessional variation, and vary out-of-phase with each other, which is consistent with proxy observations from the late Pleistocene glaciations. We use the simulated ice volumes from 2.0 to 1.0 ma to empirically calculate global benthic δ18O variations based on the assumption that relationships between collapse and growth of ice-sheets and sea level is linear and symmetric and that the isotopic signature of the individual ice-sheets has not changed with time. Our modeled global benthic δ18O values are broadly consistent with the paleoclimate proxy records such as the LR04 stack.
Reconciling anthropogenic climate change with observed temperature 1998-2008.
Kaufmann, Robert K; Kauppi, Heikki; Mann, Michael L; Stock, James H
2011-07-19
Given the widely noted increase in the warming effects of rising greenhouse gas concentrations, it has been unclear why global surface temperatures did not rise between 1998 and 2008. We find that this hiatus in warming coincides with a period of little increase in the sum of anthropogenic and natural forcings. Declining solar insolation as part of a normal eleven-year cycle, and a cyclical change from an El Nino to a La Nina dominate our measure of anthropogenic effects because rapid growth in short-lived sulfur emissions partially offsets rising greenhouse gas concentrations. As such, we find that recent global temperature records are consistent with the existing understanding of the relationship among global surface temperature, internal variability, and radiative forcing, which includes anthropogenic factors with well known warming and cooling effects.
NASA Technical Reports Server (NTRS)
Mckenney, D. B.; Beauchamp, W. T.
1975-01-01
It has become apparent in recent years that solar energy can be used for electric power production by several methods. Because of the diffuse nature of the solar insolation, the area involved in any central power plant design can encompass several square miles. A detailed design of these large area collection systems will require precise knowledge of the local solar insolation. Detailed information will also be needed concerning the temporal nature of the insolation and the local spatial distribution. Therefore, insolation data was collected and analyzed for a network of sensors distributed over an area of several square kilometers in Arizona. The analyses of this data yielded probability distributions of cloud size, velocity, and direction of motion which were compared with data obtained from the National Weather Service. Microclimatological analyses were also performed for suitable modeling parameters pertinent to large scale electric power plant design. Instrumentation used to collect the data is described.
Development of inexpensive prosthetic feet for high-heeled shoes using simple shoe insole model.
Meier, Margrit R; Tucker, Kerice A; Hansen, Andrew H
2014-01-01
The large majority of prosthetic feet are aimed at low-heeled shoes, with a few models allowing a heel height of up to 5 cm. However, a survey by the American Podiatric Medical Association indicates that most women wear heels over 5 cm; thus, current prosthetic feet limit most female prosthesis users in their choice. Some prosthetic foot components are heel-height adjustable; however, their plantar surface shapes do not change to match the insole shapes of the shoes with different heel heights. The aims of the study were therefore (1) to develop a model that allows prediction of insole shape for various heel height shoes in combination with different shoe sizes and (2) to develop and field-test low-cost prototypes of prosthetic feet whose insole shapes were based on the new model. An equation was developed to calculate insole shapes independent of shoe size. Field testing of prototype prosthetic feet fabricated based on the equation was successful and demonstrated the utility of the equation.
Bulk Insolation Models as Predictors for Locations for High Lunar Hydrogen Concentrations
NASA Technical Reports Server (NTRS)
Mcclanahan, T. P.; Mitrofanov, I.G.; Boynton, W. V.; Chin, G.; Starr, R. D.; Evans, L. G.; Sanin, A.; Livengood, T.; Sagdeev, R.; Milikh, G.
2013-01-01
In this study we consider the bulk effects of surface illumination on topography (insolation) and the possible thermodynamic effects on the Moon's hydrogen budget. Insolation is important as one of the dominant loss processes governing distributions of hydrogen volatiles on the Earth, Mars and most recently Mercury. We evaluated three types of high latitude > 65 deg., illumination models that were derived from the Lunar Observing Laser Altimetry (LOLA) digital elevation models (DEM)'s. These models reflect varying accounts of solar flux interactions with the Moon's near-surface. We correlate these models with orbital collimated epithermal neutron measurements made by the Lunar Exploration Neutron Detector (LEND). LEND's measurements derive the Moon's spatial distributions of hydrogen concentration. To perform this analysis we transformed the topographic model into an insolation model described by two variables as each pixels 1) slope and 2) slope angular orientation with respect to the pole. We then decomposed the illumination models and epithermal maps as a function of the insolation model and correlate the datasets.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peter H. Titus and Ali Zolfaghari
A critical design feature of any tokamak is the space taken up by the inner leg of the toroidal field (TF) coil. The radial build needed for the TF inner leg, along with shield thickness , size of the central solenoid and plasma minor radius set the major radius of the machine. The cost of the tokamak core roughly scales with the cube of the major radius. Small reductions in the TF build can have a big impact on the overall cost of the reactor. The cross section of the TF inner leg must structurally support the centering force andmore » that portion of the vertical separating force that is not supported by the outer structures. In this paper, the TF inner leg equatorial plane cross sections are considered. Out-of- Plane (OOP) forces must also be supported, but these are largest away from the equatorial plane, in the inner upper and lower corners and outboard sections of the TF coil. OOP forces are taken by structures that are not closely coupled with the radial build of the central column at the equatorial plane. The "Vertical Access AT Pilot Plant" currently under consideration at PPPL is used as a starting point for the structural, field and current requirements. Other TF structural concepts are considered. Most are drawn from existing designs such as ITER's circular conduits in radial plates bearing on a heavy nose section, and TPX's square conduits in a case, Each of these concepts can rely on full wedging, or partial wedging. Vaulted TF coils are considered as are those with some component of bucking against a central solenoid or bucking post. With the expectation that the pilot plant will be a steady state machine, a static stress criteria is used for all the concepts. The coils are assumed to be superconducting, with the superconductor not contributing to the structural strength. Limit analysis is employed to assess the degree of conservatism in the static criteria as it is applied to a linear elastic stress analysis. TF concepts, and in particular the PPPL AT PILOT plate concept are evaluated based on amount of space needed for structure and the amount of space left for superconductor.« less
Modulation of ENSO evolution by strong tropical volcanic eruptions
NASA Astrophysics Data System (ADS)
Wang, Tao; Guo, Dong; Gao, Yongqi; Wang, Huijun; Zheng, Fei; Zhu, Yali; Miao, Jiapeng; Hu, Yongyun
2017-11-01
The simulated responses of the El Niño-Southern Oscillation (ENSO) to volcanic forcings are controversial, and some mechanisms of these responses are not clear. We investigate the impacts of volcanic forcing on the ENSO using a long-term simulation covering 1400-1999 as simulated by the Bergen Climate Model (BCM) and a group of simulations performed with the Community Atmosphere Model version 4.0 (CAM4) and the BCM's ocean component Miami Isopycanic Coordinated Ocean Model (MICOM). The analysis of the long-term BCM simulation indicates that ENSO has a negative-positive-negative response to strong tropical volcanic eruptions (SVEs), which corresponds to the different stages of volcanic forcing. In the initial forcing stage, a brief and weak La Niña-like response is caused by the cooling along the west coast of the South American continent and associated enhancement of the trade winds. In the peak forcing stage, westerly wind anomalies are excited by both reduced east-west sea level pressure gradients and weakened and equatorward shifted tropical convergence zones. These westerly wind anomalies extend to the equatorial eastern Pacific, leading to an El Niño-like response. At the same time, easterly wind anomalies west of 120°E and strong cooling effects can promote a discharged thermocline state and excite an upwelling Kelvin wave in the western Pacific. In the declining forcing stage, forced by the recovered trade winds, the upwelling Kelvin wave propagates eastward and reaches the equatorial eastern Pacific. Through the Bjerknes feedback, a strong and temporally extended La Niña-like response forms. Additional CAM4 simulations suggest a more important role of the surface cooling over the Maritime Continent and surrounding ocean in shaping the westerly wind anomalies over the equatorial central-eastern Pacific and the easterly wind anomalies west of 120° E, which are key to causing the El Niño-like responses and subsequent La Niña-like responses, respectively. The MICOM sensitivity simulations confirm that SVE-induced tropical atmospheric circulation anomalies play a dominant role in regulating post-eruption ENSO evolution in the observation, while the influences of anomalous buoyance forcing (heat and freshwater fluxes) are secondary. Therefore, SVEs play an important role in modulating the ENSO evolution. Compared with proxy data, the simulated El Niño-like responses and subsequent La Niña-like responses are consistent with the reconstructed ENSO responses to SVEs. However, the simulated initial brief La Niña-like response, which is reproduced by most models, is seen in only one proxy dataset and is absent in most of the reconstructed ENSOs and those observed. The reason for this model-data mismatch will require further investigation.
Paech, S.J.; Mecikalski, J.R.; Sumner, D.M.; Pathak, C.S.; Wu, Q.; Islam, S.; Sangoyomi, T.
2009-01-01
Estimates of incoming solar radiation (insolation) from Geostationary Operational Environmental Satellite observations have been produced for the state of Florida over a 10-year period (1995-2004). These insolation estimates were developed into well-calibrated half-hourly and daily integrated solar insolation fields over the state at 2 km resolution, in addition to a 2-week running minimum surface albedo product. Model results of the daily integrated insolation were compared with ground-based pyranometers, and as a result, the entire dataset was calibrated. This calibration was accomplished through a three-step process: (1) comparison with ground-based pyranometer measurements on clear (noncloudy) reference days, (2) correcting for a bias related to cloudiness, and (3) deriving a monthly bias correction factor. Precalibration results indicated good model performance, with a station-averaged model error of 2.2 MJ m-2/day (13%). Calibration reduced errors to 1.7 MJ m -2/day (10%), and also removed temporal-related, seasonal-related, and satellite sensor-related biases. The calibrated insolation dataset will subsequently be used by state of Florida Water Management Districts to produce statewide, 2-km resolution maps of estimated daily reference and potential evapotranspiration for water management-related activities. ?? 2009 American Water Resources Association.
Marini, Ida; Alessandri Bonetti, Giulio; Bortolotti, Francesco; Bartolucci, Maria Lavinia; Gatto, Maria Rosaria; Michelotti, Ambra
2015-06-01
It has been hypothesized that different plantar sensory inputs could influence the whole body posture and dental occlusion but there is a lack of evidence on this possible association. To investigate the effects of experimental insoles redistributing plantar pressure on body posture, mandibular kinematics and electromyographic (EMG) activity of masticatory muscles on healthy subjects. A pilot study was conducted on 19 healthy volunteers that wore custom-made insoles normalizing the plantar pressure distribution for 2 weeks. Body posture parameters were measured by means of an optoelectronic stereophotogrammetric analysis; mandibular kinematics was analyzed by means of gothic arch tracings; superficial EMG activity of head and neck muscles was performed. Measurements were carried out 10 days before the insertion of the insoles, immediately before the insertion, the day after, 7 and 14 days after, in four different exteroceptive conditions. The outcomes of the present study show that insoles do not modify significantly over time the parameters of body posture, SEMG activity of head and neck muscles and mandibular kinematics. In this pilot study the experimental insoles did not significantly influence the body posture, the mandibular kinematics and the activity of masticatory muscles during a 14-day follow up period. Copyright © 2015 Elsevier Ltd. All rights reserved.
The tropical tropopause inversion layer: variability and modulation by equatorial waves
NASA Astrophysics Data System (ADS)
Pilch Kedzierski, Robin; Matthes, Katja; Bumke, Karl
2016-09-01
The tropical tropopause layer (TTL) acts as a transition layer between the troposphere and the stratosphere over several kilometers, where air has both tropospheric and stratospheric properties. Within this region, a fine-scale feature is located: the tropopause inversion layer (TIL), which consists of a sharp temperature inversion at the tropopause and the corresponding high static stability values right above, which theoretically affect the dispersion relations of atmospheric waves like Rossby or inertia-gravity waves and hamper stratosphere-troposphere exchange (STE). Therefore, the TIL receives increasing attention from the scientific community, mainly in the extratropics so far. Our goal is to give a detailed picture of the properties, variability and forcings of the tropical TIL, with special emphasis on small-scale equatorial waves and the quasi-biennial oscillation (QBO).We use high-resolution temperature profiles from the COSMIC satellite mission, i.e., ˜ 2000 measurements per day globally, between 2007 and 2013, to derive TIL properties and to study the fine-scale structures of static stability in the tropics. The situation at near tropopause level is described by the 100 hPa horizontal wind divergence fields, and the vertical structure of the QBO is provided by the equatorial winds at all levels, both from the ERA-Interim reanalysis.We describe a new feature of the equatorial static stability profile: a secondary stability maximum below the zero wind line within the easterly QBO wind regime at about 20-25 km altitude, which is forced by the descending westerly QBO phase and gives a double-TIL-like structure. In the lowermost stratosphere, the TIL is stronger with westerly winds. We provide the first evidence of a relationship between the tropical TIL strength and near-tropopause divergence, with stronger (weaker) TIL with near-tropopause divergent (convergent) flow, a relationship analogous to that of TIL strength with relative vorticity in the extratropics.To elucidate possible enhancing mechanisms of the tropical TIL, we quantify the signature of the different equatorial waves on the vertical structure of static stability in the tropics. All waves show, on average, maximum cold anomalies at the thermal tropopause, warm anomalies above and a net TIL enhancement close to the tropopause. The main drivers are Kelvin, inertia-gravity and Rossby waves. We suggest that a similar wave modulation will exist at mid- and polar latitudes from the extratropical wave modes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, M.; Holton, J.R.
1991-09-15
Observations show that the westerly acceleration of the equatorial quasi-biennial oscillation (QBO) can be accounted for by Kelvin waves, but that there is a deficiency in the easterly acceleration due to Rossby-gravity waves. Rossby waves and westward propagating gravity waves have been suggested as alternative sources for the easterly acceleration. We have tested the possible role of these two wave modes in a two-dimensional model of the QBO. When the easterly acceleration is due to Rossby waves, the zonal-mean response is steady; when it is due to gravity waves, an oscillation with some features similar to the QBO occurs, butmore » it is of short period and weak amplitude. A similar result occurs when a standing-wave forcing pattern is imposed. These results suggest that Rossby waves play only a minor role in the QBO, and that while the Rossby-gravity mode is essential, other gravity modes may also be important for the easterly phase. 12 refs., 22 figs.« less
A three-dimensional simulation of the equatorial quasi-biennial oscillation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, M.; Boville, B.A.
1992-06-15
A simulation of the equatorial quasi-biennial oscillation (QBO) has been obtained using a three-dimensional mechanistic model of the stratosphere. The model is a simplified form of the NCAR CCM (Community Climate Model) in which the troposphere has been replaced with a specified geopotential distribution near the tropical tropopause and most of the physical parameterizations have been removed. A Kelvin wave and a Rossby-gravity wave are forced at the bottom boundary as in previous one- and two-dimensional models. The model reproduces most of the principal features of the observed QBO, as do previous models with lower dimensionality. The principal difference betweenmore » the present model and previous QBO models is that the wave propagation is explicitly represented, allowing wave-wave interactions to take place. It is found that these interactions significantly affect the simulated oscillation. The interaction of the Rossby-gravity waves with the Kelvin waves results in about twice as much easterly compared to westerly forcing being required in order to obtain a QBO. 26 refs., 12 figs.« less
Red Sea circulation during marine isotope stage 5e
NASA Astrophysics Data System (ADS)
Siccha, Michael; Biton, Eli; Gildor, Hezi
2015-04-01
We have employed a regional Massachusetts Institute of Technology oceanic general circulation model of the Red Sea to investigate its circulation during marine isotope stage (MIS) 5e, the peak of the last interglacial, approximately 125 ka before present. Compared to present-day conditions, MIS 5e was characterized by higher Northern Hemisphere summer insolation, accompanied by increases in air temperature of more than 2°C and global sea level approximately 8 m higher than today. As a consequence of the increased seasonality, intensified monsoonal conditions with increased winds, rainfall, and humidity in the Red Sea region are evident in speleothem records and supported by model simulations. To assess the dominant factors responsible for the observed changes, we conducted several sensitivity experiments in which the MIS 5 boundary conditions or forcing parameters were used individually. Overall, our model simulation for the last interglacial maximum reconstructs a Red Sea that is colder, less ventilated and probably more oligotrophic than at present day. The largest alteration in Red Sea circulation and properties was found for the simulation of the northward displacement and intensification of the African tropical rain belt during MIS 5e, leading to a notable increase in the fresh water flux into the Red Sea. Such an increase significantly reduced the Red Sea salinity and exchange volume of the Red Sea with the Gulf of Aden. The Red Sea reacted to the MIS 5e insolation forcing by the expected increase in seasonal sea surface temperature amplitude and overall cooling caused by lower temperatures during deep water formation in winter.
Lachniet, Matthew S; Asmerom, Yemane; Bernal, Juan Pablo; Polyak, Victor J; Vazquez-Selem, Lorenzo
2013-06-04
The dominant controls on global paleomonsoon strength include summer insolation driven by precession cycles, ocean circulation through its influence on atmospheric circulation, and sea-surface temperatures. However, few records from the summer North American Monsoon system are available to test for a synchronous response with other global monsoons to shared forcings. In particular, the monsoon response to widespread atmospheric reorganizations associated with disruptions of the Atlantic Meridional Overturning Circulation (AMOC) during the deglacial period remains unconstrained. Here, we present a high-resolution and radiometrically dated monsoon rainfall reconstruction over the past 22,000 y from speleothems of tropical southwestern Mexico. The data document an active Last Glacial Maximum (18-24 cal ka B.P.) monsoon with similar δ(18)O values to the modern, and that the monsoon collapsed during periods of weakened AMOC during Heinrich stadial 1 (ca. 17 ka) and the Younger Dryas (12.9-11.5 ka). The Holocene was marked by a trend to a weaker monsoon that was paced by orbital insolation. We conclude that the Mesoamerican monsoon responded in concert with other global monsoon regions, and that monsoon strength was driven by variations in the strength and latitudinal position of the Intertropical Convergence Zone, which was forced by AMOC variations in the North Atlantic Ocean. The surprising observation of an active Last Glacial Maximum monsoon is attributed to an active but shallow AMOC and proximity to the Intertropical Convergence Zone. The emergence of agriculture in southwestern Mexico was likely only possible after monsoon strengthening in the Early Holocene at ca. 11 ka.
What is the Time Scale for Orbital Forcing of the Martian Water Cycle?
NASA Technical Reports Server (NTRS)
Hecht, M. H.
2003-01-01
Calculation of the periodic variations in the martian orbital parameters by Ward and subsequent refinements to the theory have inspired numerous models of variation of the martian water cycle. Most of these models have focused on variations in planetary obliquity on a both a short-term (110 kyr) time scale as well as larger oscillations occuring over millions of years. To a lesser extent, variations in planetary eccentricity have also been considered. The third and fastest mode of variation, the precession of the longitude of perihelion, has generally been deemphasized because, among the three parameters, it is the only one that does not change the integrated annual insolation. But as a result of this precession, the asymmetry in peak summer insolation between the poles exceeds 50%, with the maximum cycling between poles every 25.5 kyrs. The relative contribution of these different elements to orbital forcing of climate takes on particular importance in the context of apparently recent waterrelated features such as gullies or polar layered deposits (PLD). Christensen, for example, recently indentified mantling of heavily gullied crater walls as residual dust-covered snow deposits that were responsible for the formation of the gullies in a previous epoch. Christensen assumed that the snow was originally deposited at a period of high obliquity which was stabilized against sublimation by a lag deposit of dust. It is suggested here that not obliquity, but the shortterm oscillations associated with precession of the perihelion may play the dominant role in the formation of gullies, major strata in the polar layered deposits (PLD), and other water-related features.
Lachniet, Matthew S.; Asmerom, Yemane; Bernal, Juan Pablo; Polyak, Victor J.; Vazquez-Selem, Lorenzo
2013-01-01
The dominant controls on global paleomonsoon strength include summer insolation driven by precession cycles, ocean circulation through its influence on atmospheric circulation, and sea-surface temperatures. However, few records from the summer North American Monsoon system are available to test for a synchronous response with other global monsoons to shared forcings. In particular, the monsoon response to widespread atmospheric reorganizations associated with disruptions of the Atlantic Meridional Overturning Circulation (AMOC) during the deglacial period remains unconstrained. Here, we present a high-resolution and radiometrically dated monsoon rainfall reconstruction over the past 22,000 y from speleothems of tropical southwestern Mexico. The data document an active Last Glacial Maximum (18–24 cal ka B.P.) monsoon with similar δ18O values to the modern, and that the monsoon collapsed during periods of weakened AMOC during Heinrich stadial 1 (ca. 17 ka) and the Younger Dryas (12.9–11.5 ka). The Holocene was marked by a trend to a weaker monsoon that was paced by orbital insolation. We conclude that the Mesoamerican monsoon responded in concert with other global monsoon regions, and that monsoon strength was driven by variations in the strength and latitudinal position of the Intertropical Convergence Zone, which was forced by AMOC variations in the North Atlantic Ocean. The surprising observation of an active Last Glacial Maximum monsoon is attributed to an active but shallow AMOC and proximity to the Intertropical Convergence Zone. The emergence of agriculture in southwestern Mexico was likely only possible after monsoon strengthening in the Early Holocene at ca. 11 ka. PMID:23690596
Arnold, John B; Wong, Daniel X; Jones, Richard K; Hill, Catherine L; Thewlis, Dominic
2016-07-01
Lateral wedge insoles are intended to reduce biomechanical risk factors of medial knee osteoarthritis (OA) progression, such as increased knee joint load; however, there has been no definitive consensus on this topic. The aim of this systematic review and meta-analysis was to establish the within-subject effects of lateral wedge insoles on knee joint load in people with medial knee OA during walking. Six databases were searched from inception until February 13, 2015. Included studies reported on the immediate biomechanical effects of lateral wedge insoles during walking in people with medial knee OA. Primary outcomes of interest relating to the biomechanical risk of disease progression were the first and second peak external knee adduction moment (EKAM) and knee adduction angular impulse (KAAI). Eligible studies were pooled using random-effects meta-analysis. Eighteen studies were included with a total of 534 participants. Lateral wedge insoles resulted in a small but statistically significant reduction in the first peak EKAM (standardized mean difference [SMD] -0.19; 95% confidence interval [95% CI] -0.23, -0.15) and second peak EKAM (SMD -0.25; 95% CI -0.32, -0.19) with a low level of heterogeneity (I(2) = 5% and 30%, respectively). There was a favorable but small reduction in the KAAI with lateral wedge insoles (SMD -0.14; 95% CI -0.21, -0.07, I(2) = 31%). Risk of methodologic bias scores (quality index) ranged from 8 to 13 out of 16. Lateral wedge insoles cause small reductions in the EKAM and KAAI during walking in people with medial knee OA. Current evidence demonstrates that lateral wedge insoles appear ineffective at attenuating structural changes in people with medial knee OA as a whole and may be better suited to targeted use in biomechanical phenotypes associated with larger reductions in knee load. © 2016, American College of Rheumatology.
Orbital Drivers of Climate Change on Earth and Mars
NASA Astrophysics Data System (ADS)
Zent, A. P.
Oscillations of orbital elements and spin axis orientation affect the climate of both Earth and Mars by redistributing solar power both latitudinally and seasonally, often resulting in secondary changes in reflected and emitted radiation (radiative forcing). Multiple feedback loops between different climatic elements operate on both planets, with the result that climate response is generally nonlinear with simple changes in solar energy. Both insolation history and geochemical climate proxies can be treated as time series data, and analyzed in terms of component frequencies. The correspondence between frequencies measured in climate proxies and orbital oscillations is the key to relating orbital cause and climatic effect. Discussions of both Earth and Mars focus on the last 5-10 m.y., because this is the period in which the orbital history and geologic record are best understood. The terrestrial climate is an extraordinarily complex system, and a vast amount of data is available for analysis. While the geologic record strongly supports the role of Milankovitch cycles as the underlying cause of glacial cycles, orbitally driven insolation changes alone cannot explain the observations in detail. Early Pleistocene glacial cycles responded linearly to the 41-k.y. oscillations in obliquity. However, over the last 1 m.y., glacial/interglacial oscillations have become more extreme as the climate has cooled. Long cooling intervals marked by an oscillating buildup of ice sheets are now followed by brief, intense periods of warming. At the same time, glacial/interglacial cycles have shifted from 41 k.y. to ~100 k.y. No such changes occurred in the solar forcing due to orbital oscillations. While orbital oscillations still appear to pace glacial cycles, their subtle interplay with ice-sheet dynamics and shifts in ocean circulation have come to dominate the late Pleistocene climate system. In contrast to Earth, the martian climate is ostensibly a much simpler system about which we have almost no quantitative data. Lacking climate proxies and chronological data, we are forced to rely on climate modeling and whatever constraints can be extracted from the predominantly remote sensing data available. Obliquity oscillations account for most of the power in historical insolation. Unfortunately, the last 5 m.y. are an anomalous period in Mars' climate history due to a secular decrease in Mars' obliquity. Subsequent to that, however, models and observations are consistent with the hypothesis that during periods of higher obliquity, enhanced polar summer insolation increases atmospheric water vapor and dust content, and ice stability shifted toward the equator. Polar caps become thermodynamically unstable, and much of the surface H2O inventory migrates from high latitudes to the tropics. As obliquity decreases, ice returns to the poles, leaving unstable ice-rich deposits in the mid latitudes that are mantled by dust. Low-obliquity periods entail — at least on occasion — collapse of the atmosphere onto the poles and high-latitude CO2 glaciers. During protracted nodes in obliquity, mid-latitude ice undergoes slow but sustained sublimation and redistribution to the poles. Because of the tremendous breadth of the subject matter, this chapter necessarily presents a high-level overview, and the reader will be compelled to investigate the copious references for a more rigorous explanation of most topics.
Lithospheric Flexural Modeling of Iapetus' Equatorial Ridge
NASA Astrophysics Data System (ADS)
Zheng, W.; Ip, W.-H.; Teng, L. S.
2012-04-01
Iapetus, which is one of Saturn's ball-shaped satellites, has some unique features in the Solar System. This satellite has a mean radius of 735 km, and there is an approximately 20-kilometer-high mountain lying precisely on its equator. The mountain is known as an "equatorial ridge" since it makes Iapetus appear walnut shaped. The origin of the equatorial ridge is attributed to several hypotheses, including different endogenesis and exogenesis processes. In this work, we attempted to construct a flexural model of the equatorial ridge using elastic lithosphere theory. The equatorial ridge is treated as a linear load which exerts uniform force on Iapetus' hard shell (i.e. elastic lithosphere of Iapetus). To calculate the deflection of surface, we use the Digital Terrain Model (DTM) data of Iapetus' leading side published by Giese et al. (2008). Giese et al. also pointed out that the elastic lithospheric thickness of Iapetus must exceed 100 km to support the ridge without deflecting. However, we found possible evidence in the DTM data that implied deflection. There are two sites of surface depression on the northern side of the equatorial ridge. The few-kilometer deflection implies a thinner lithosphere than previous suggested. Assume that the thickness of elastic lithosphere is only 5% below of the radius of Iapetus, so the flat-Earth and one-plate condition could adapt to the flexure model of Iapetus. Based on analysis of the distance between a bulge and the ridge, the calculated lithospheric thickness is 6-10 km. The new result seems controversial, but the modeled surface profile is highly consistent with numerical ridge DTM profile extracted from Giese et al. (2008). Thinner lithosphere also supports the contraction model proposed by Sandwell and Schubert (2010) since the bucking harmonic degree increases. In the other hand, the transformation layer between hard shell and plastic inner core may need constraint on thermal history or crystal form of ice. In conclusion, The flexural model of Iapetus' equatorial ridge reveals the possibility of thinner hard shell, fits the surface profile, and supplies more clues to the origin of Iapetus, the interesting satellite in the Solar System.
Longitudinal Differences of Ionospheric Vertical Density Distribution and Equatorial Electrodynamics
NASA Technical Reports Server (NTRS)
Yizengaw, E.; Zesta, E.; Moldwin, M. B.; Damtie, B.; Mebrahtu, A.; Valledares, C.E.; Pfaff, R. F.
2012-01-01
Accurate estimation of global vertical distribution of ionospheric and plasmaspheric density as a function of local time, season, and magnetic activity is required to improve the operation of space-based navigation and communication systems. The vertical density distribution, especially at low and equatorial latitudes, is governed by the equatorial electrodynamics that produces a vertical driving force. The vertical structure of the equatorial density distribution can be observed by using tomographic reconstruction techniques on ground-based global positioning system (GPS) total electron content (TEC). Similarly, the vertical drift, which is one of the driving mechanisms that govern equatorial electrodynamics and strongly affect the structure and dynamics of the ionosphere in the low/midlatitude region, can be estimated using ground magnetometer observations. We present tomographically reconstructed density distribution and the corresponding vertical drifts at two different longitudes: the East African and west South American sectors. Chains of GPS stations in the east African and west South American longitudinal sectors, covering the equatorial anomaly region of meridian approx. 37 deg and 290 deg E, respectively, are used to reconstruct the vertical density distribution. Similarly, magnetometer sites of African Meridian B-field Education and Research (AMBER) and INTERMAGNET for the east African sector and South American Meridional B-field Array (SAMBA) and Low Latitude Ionospheric Sensor Network (LISN) are used to estimate the vertical drift velocity at two distinct longitudes. The comparison between the reconstructed and Jicamarca Incoherent Scatter Radar (ISR) measured density profiles shows excellent agreement, demonstrating the usefulness of tomographic reconstruction technique in providing the vertical density distribution at different longitudes. Similarly, the comparison between magnetometer estimated vertical drift and other independent drift observation, such as from VEFI onboard Communication/Navigation Outage Forecasting System (C/NOFS) satellite and JULIA radar, is equally promising. The observations at different longitudes suggest that the vertical drift velocities and the vertical density distribution have significant longitudinal differences; especially the equatorial anomaly peaks expand to higher latitudes more in American sector than the African sector, indicating that the vertical drift in the American sector is stronger than the African sector.
Timing of the onset of MIS 11 revealed by speleothem in southern Europe
NASA Astrophysics Data System (ADS)
Hu, Hsun-Ming; Shen, Chuan-Chou; Michel, Véronique; Kano, Akihiro
2017-04-01
The interglacial period, known as Marine Isotope Stage 11 (MIS 11, 428-397 thousand years ago), is often considered as a potential analogue for future climate projection because of the similar patterns of insolation variability. However, studies on mechanisms of the onset of MIS 11 (called Termination V, T-V) in response to insolation increase is still hampered by a lack of good dating materials in paleoclimate archives, despite a stack of East Asian monsoon records with precise U-Th dates has been proposed. Previous studies suggested the δ18O value registered in speleothems in Mediterranean realm can be a good bridge connecting the U-Th-based age model of speleothem to marine cores from Mediterranean sea, which opens a new possibility to detect ocean-atmosphere/internal-external forcing interaction beyond 14C dating limitation. Here we present a new speleothem δ18O record from northern Italy covering 500-300 thousand years ago. The results show a similar pattern with δ18O records of marine cores around Mediterranean. The age model of the speleothem hence provides an opportunity for tuning the marine cores, which could improve our understanding of relationship between global atmosphere and ocean circulations.
Remote forcing at the Last Glacial Maximum in the Tropical Pacific Ocean
NASA Astrophysics Data System (ADS)
Andreasen, Dyke H.; Ravelo, A. Christina; Broccoli, Anthony J.
2001-01-01
We present results of a Last Glacial Maximum (LGM) wind stress sensitivity experiment using a high-resolution ocean general circulation model of the tropical Pacific Ocean. LGM wind stress, used to drive the ocean model, was generated using an atmospheric general circulation model simulation forced by LGM boundary conditions as part of the Paleoclimate Modeling Intercomparison Project (PMIP) [Broccoli, 2000]. LGM wind stress anomalies were large in the western half of the basin, yet there was a significant hydrographic response in the eastern half. This ocean model experiment hind casts changes that are in close agreement with paleoceanographic data from the entire region, even without the explicit modeling of the air-sea interactions. Data and model both predict that the annual average thermocline tilt across the basin was enhanced. Data and model are consistent with a stronger equatorial undercurrent which shoaled to the west of where it does today, and stronger advection of water from the Peru Current into the east equatorial Pacific and across the equator. Paleoproductivity and sea surface temperature (SST) data are interpreted in light of the modeling results, indicating that paleoproductivity changes were related to wind-forced dynamical changes resulting from LGM boundary conditions, while SST changes were related to independent, possibly radiative, forcing. Overall, our results imply that much of the dynamic response of the tropical Pacific during the LGM can be explained by wind field changes resulting from global LGM boundary conditions.
Ocean-state dependency of the equatorial Pacific response to Westerly Wind Events
NASA Astrophysics Data System (ADS)
Puy, martin; Lengaigne, matthieu; Madec, gurvan; Vialard, jerome; Guilyardi, eric
2015-04-01
Short-lived wind events in the equatorial Pacific strongly influence the El Niño/Southern Oscillation (ENSO) evolution. In the first part of this study, we found in observations that both westerly wind events (WWEs) and their easterly wind events (EWEs) counterpart are unambiguously associated with increased Madden Julian oscillation and atmospheric equatorial Rossby waves activity, i.e. that the atmospheric state influences the occurrence probability of WWEs. In the second part, we investigate how the oceanic state modulates the response to these WWEs by applying the same WWE forcing over a interannually-varying ocean state in an OGCM simulation. We find that the amplitude of the SST response, both at the warm pool eastern edge and in the eastern Pacific, can vary by a factor of up to two depending on the ocean state. The sea level and current response are also clearly modulated, with varying contributions of the second and third baroclinic modes depending on the oceanic stratification. We will discuss the mechanisms by which the oceanic state modulates the response to the WWE, and how this could contribute to their impact on ENSO
NASA Astrophysics Data System (ADS)
Park, In-Hong; Min, Seung-Ki; Yeh, Sang-Wook; Weller, Evan; Kim, Seon Tae
2017-04-01
This study assessed the anthropogenic contribution to the 2015 record-breaking high sea surface temperatures (SSTs) observed in the central equatorial Pacific and tropical Indian Ocean. Considering a close link between extreme warm events in these regions, we conducted a joint attribution analysis using a fraction of attributable risk approach. Probability of occurrence of such extreme anomalies and long-term trends for the two oceanic regions were compared between CMIP5 multi-model simulations with and without anthropogenic forcing. Results show that the excessive warming in both regions is well beyond the range of natural variability and robustly attributable to human activities due to greenhouse gas increase. We further explored associated mechanisms including the Bjerknes feedback and background anthropogenic warming. It is concluded that background warming was the main contribution to the 2015 extreme SST event over the central equatorial Pacific Ocean on a developing El Niño condition, which in turn induced the extreme SST event over the tropical Indian Ocean through the atmospheric bridge effect.
NASA Astrophysics Data System (ADS)
Groves, K. M.; Basu, S.; Erickson, T.; Sunanda, B.; David, B.
2005-12-01
Under the Scintillation Network Decision Aid (SCINDA) project, scientists at the Air Force Research Laboratory (AFRL) have developed a sensor network for the purpose of monitoring low-latitude ionospheric total electron content (TEC) and scintillations associated with equatorial Spread F. In addition to monitoring GPS scintillations, TEC and VHF scintillations, the sensor package measures ionospheric drifts when irregularities are present providing important data on vertical electric fields in the F-region .The network currently consists of twelve stations distributed around the globe and the data have been used to conduct numerous studies on the characteristics and climatology of equatorial scintillation, including the impacts of magnetic storms on the equatorial ionosphere. Notably absent from the existing network are observing sites in Africa where both satellite observations and limited historical data sets suggest significant scintillation activity, though the detailed behavior and longitudinal variations across the continent are largely unknown. The latter aspect, in particular, is of great interest because of substantial changes in the orientation of the geomagnetic field in extreme West Africa that transition to a more uniform field geometry spanning the rest of the continent. Understanding the effects of these changes on scintillation climatology will provide new insights into the processes that trigger equatorial Spread F and assist researchers in developing improved forecasts of such activity. AFRL aims to establish 5-8 monitoring sites across equatorial Africa in collaboration with host nations participating in the United Nations Basic Space Science Initiative during the IHY period. In addition to expanding scientific opportunities, it is hoped that these sites will lead to greater awareness of the significant space weather issues impacting Africa and result in enhanced international collaboration between both African and non-African scientists interested in constructing an improved description of the equatorial ionosphere.
Potential Impact of North Atlantic Climate Variability on Ocean Biogeochemical Processes
NASA Astrophysics Data System (ADS)
Liu, Y.; Muhling, B.; Lee, S. K.; Muller-Karger, F. E.; Enfield, D. B.; Lamkin, J. T.; Roffer, M. A.
2016-02-01
Previous studies have shown that upper ocean circulations largely determine primary production in the euphotic layers, here the global ocean model with biogeochemistry (GFDL's Modular Ocean Model with TOPAZ biogeochemistry) forced with the ERA-Interim is used to simulate the natural variability of biogeochemical processes in global ocean during 1979-present. Preliminary results show that the surface chlorophyll is overall underestimated in MOM-TOPAZ, but its spatial pattern is fairly realistic. Relatively high chlorophyll variability is shown in the subpolar North Atlantic, northeastern tropical Atlantic, and equatorial Atlantic. Further analysis suggests that the chlorophyll variability in the North Atlantic Ocean is affected by long-term climate variability. For the subpolar North Atlantic region, the chlorophyll variability is light-limited and is significantly correlated with North Atlantic Oscillation. A dipole pattern of chlorophyll variability is found between the northeastern tropical Atlantic and equatorial Atlantic. For the northeastern North Atlantic, the chlorophyll variability is significantly correlated with Atlantic Meridional Mode (AMM) and Atlantic Multidecadal Oscillation (AMO). During the negative phase of AMM and AMO, the increased trade wind in the northeast North Atlantic can lead to increased upwelling of nutrients. In the equatorial Atlantic region, the chlorophyll variability is largely link to Atlantic-Niño and associated equatorial upwelling of nutrients. The potential impact of climate variability on the distribution of pelagic fishes (i.e. yellowfin tuna) are discussed.
NASA Astrophysics Data System (ADS)
Duncan, B.; Han, W.
2010-12-01
An ocean general circulation model (the Hybrid Coordinate Ocean Model, HYCOM) is used to examine the rectification of atmospheric intraseasonal oscillations (ISOs) on lower-frequency seasonal to interannual sea surface temperatures (SSTs) in the Indian Ocean (IO). Existing studies have shown that ISOs rectify on low-frequency equatorial surface currents, suggesting that they may also have important impacts on low-frequency SST variability. To evaluate these impacts, a hierarchy of experiments is run with HYCOM that isolates the ocean response to atmospheric forcing by 10-30 day (submonthly), 30-90 day (dominated by the Madden-Julian Oscillation), and 10-90 day (all ISO) events. Other experiments isolate the ocean response to a range of forcing processes including shortwave radiation, precipitation, and winds. Results indicate that ISOs have a non-negligible effect on the seasonal and annual cycles of SST in the Arabian Sea. The maximum seasonal SST variability in the Arabian Sea is 1.6°C, while the ISO-forced seasonal SST variability has a maximum of 0.4°C. Because SSTs in the Arabian Sea are already warm (>28°C), a change of 0.4°C can affect convection there. ISOs also have non-negligible effects on the seasonal variability of SST in the south- and west- equatorial IO. The ISO contribution to the seasonal cycle of mixed layer thickness (hmix) in the eastern equatorial IO has a maximum of 9m, while the total hmix seasonal cycle has a maximum of 14m. ISOs affect the hmix seasonal cycle by up to 10m in the Arabian Sea, where the total seasonal cycle has a maximum of 75m. Further work will seek to explain the causes of this observed rectification of ISOs on seasonal SST and mixed layer variability, and to extend our results to include interannual timescales.
ASHMET: A computer code for estimating insolation incident on tilted surfaces
NASA Technical Reports Server (NTRS)
Elkin, R. F.; Toelle, R. G.
1980-01-01
A computer code, ASHMET, was developed by MSFC to estimate the amount of solar insolation incident on the surfaces of solar collectors. Both tracking and fixed-position collectors were included. Climatological data for 248 U. S. locations are built into the code. The basic methodology used by ASHMET is the ASHRAE clear-day insolation relationships modified by a clearness index derived from SOLMET-measured solar radiation data to a horizontal surface.
Novel methodology to obtain salient biomechanical characteristics of insole materials.
Lavery, L A; Vela, S A; Ashry, H R; Lanctot, D R; Athanasiou, K A
1997-06-01
Viscoelastic inserts are commonly used as artificial shock absorbers to prevent neuropathic foot ulcerations by decreasing pressure on the sole of the foot. Unfortunately, there is little scientific information available to guide physicians in the selection of appropriate insole materials. Therefore, a novel methodology was developed to form a rational platform for biomechanical characterizations of insole material durability, which consisted of in vivo gait analysis and in vitro bioengineering measurements. Results show significant differences in the compressive stiffness of the tested insoles and the rate of change over time in both compressive stiffness and peak pressures measured. Good correlations were found between pressure-time integral and Young's modulus (r2 = 0.93), and total energy applied and Young's modulus (r2 = 0.87).
DOPPLER SIGNATURES OF THE ATMOSPHERIC CIRCULATION ON HOT JUPITERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Showman, Adam P.; Lewis, Nikole K.; Fortney, Jonathan J.
2013-01-01
The meteorology of hot Jupiters has been characterized primarily with thermal measurements, but recent observations suggest the possibility of directly detecting the winds by observing the Doppler shift of spectral lines seen during transit. Motivated by these observations, we show how Doppler measurements can place powerful constraints on the meteorology. We show that the atmospheric circulation-and Doppler signature-of hot Jupiters splits into two regimes. Under weak stellar insolation, the day-night thermal forcing generates fast zonal jet streams from the interaction of atmospheric waves with the mean flow. In this regime, air along the terminator (as seen during transit) flows towardmore » Earth in some regions and away from Earth in others, leading to a Doppler signature exhibiting superposed blueshifted and redshifted components. Under intense stellar insolation, however, the strong thermal forcing damps these planetary-scale waves, inhibiting their ability to generate jets. Strong frictional drag likewise damps these waves and inhibits jet formation. As a result, this second regime exhibits a circulation dominated by high-altitude, day-to-night airflow, leading to a predominantly blueshifted Doppler signature during transit. We present state-of-the-art circulation models including non-gray radiative transfer to quantify this regime shift and the resulting Doppler signatures; these models suggest that cool planets like GJ 436b lie in the first regime, HD 189733b is transitional, while planets hotter than HD 209458b lie in the second regime. Moreover, we show how the amplitude of the Doppler shifts constrains the strength of frictional drag in the upper atmospheres of hot Jupiters. If due to winds, the {approx}2 km s{sup -1} blueshift inferred on HD 209458b may require drag time constants as short as 10{sup 4}-10{sup 6} s, possibly the result of Lorentz-force braking on this planet's hot dayside.« less
A new standard pulsar magnetosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Contopoulos, Ioannis; Kalapotharakos, Constantinos; Kazanas, Demosthenes, E-mail: icontop@academyofathens.gr
2014-01-20
In view of recent efforts to probe the physical conditions in the pulsar current sheet, we revisit the standard solution that describes the main elements of the ideal force-free pulsar magnetosphere. The simple physical requirement that the electric current contained in the current layer consists of the local electric charge moving outward at close to the speed of light yields a new solution for the pulsar magnetosphere everywhere that is ideal force-free except in the current layer. The main elements of the new solution are as follows: (1) the pulsar spindown rate of the aligned rotator is 23% larger thanmore » that of the orthogonal vacuum rotator; (2) only 60% of the magnetic flux that crosses the light cylinder opens up to infinity; (3) the electric current closes along the other 40%, which gradually converges to the equator; (4) this transfers 40% of the total pulsar spindown energy flux in the equatorial current sheet, which is then dissipated in the acceleration of particles and in high-energy electromagnetic radiation; and (5) there is no separatrix current layer. Our solution is a minimum free-parameter solution in that the equatorial current layer is electrostatically supported against collapse and thus does not require a thermal particle population. In this respect, it is one more step toward the development of a new standard solution. We discuss the implications for intermittent pulsars and long-duration gamma-ray bursts. We conclude that the physical conditions in the equatorial current layer determine the global structure of the pulsar magnetosphere.« less
NASA Technical Reports Server (NTRS)
Smith, J. H.
1994-01-01
This computer program, SOLINS, was developed to aid engineers and solar system designers in the accurate modeling of the average hourly solar insolation on a surface of arbitrary orientation. The program can be used to study insolation problems specific to residential and commercial applications where the amount of space available for solar collectors is limited by shadowing problems, energy output requirements, and costs. For tandem rack arrays, SOLINS will accommodate the use of augmentation reflectors built into the support structure to increase insolation values at the collector surface. As the use of flat plate solar collectors becomes more prevalent in the building industry, the engineer and designer must have the capability to conduct extensive sensitivity analyses on the orientation and location of solar collectors. SOLINS should prove to be a valuable aid in this area of engineering. SOLINS uses a modified version of the National Bureau of Standards model to calculate the direct, diffuse, and reflected components of total insolation on a tilted surface with a given azimuthal orientation. The model is based on the work of Liu and Jordan with corrections by Kusuda and Ishii to account for early morning and late afternoon errors. The model uses a parametric description of the average day solar climate to generate monthly average day profiles by hour of the insolation level on the collector surface. The model includes accommodation of user specified ground and landscape reflectivities at the collector site. For roof or ground mounted, tilted arrays, SOLINS will calculate insolation including the effects of shadowing and augmentation reflectors. The user provides SOLINS with data describing the array design, array orientation, the month, the solar climate parameter, the ground reflectance, and printout control specifications. For the specified array and environmental conditions, SOLINS outputs the hourly insolation the array will receive during an average day during the month specified, along with the total insolation the collector surface will receive over an average 24-hour period. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 computer with a central memory requirement of approximately 46K of 8 bit bytes. The SOLINS routines were developed in 1979.
Effects of subsurface ocean dynamics on instability waves in the tropical Pacific
NASA Astrophysics Data System (ADS)
Lawrence, Sean P.; Allen, Myles R.; Anderson, David L. T.; Llewellyn-Jones, David T.
1998-08-01
Tropical instability waves in a primitive equation model of the tropical Pacific Ocean, forced with analyzed wind stresses updated daily, show unexpectedly close phase correspondence with observation through the latter half of 1992. This suggests that these waves are not pure instabilities developing from infinitesimal disturbances, but that their phases and phase speeds are at least partially determined by the wind stress forcing. To quantify and explain this observation, we perfomed several numerical experiments, which indicate that remotely forced Rossby waves can influence both the phase and phase speed of tropical instability waves. We suggest that a remote wind forcing determines the high model/observation phase correspondence of tropical instability waves through a relatively realistic simulation of equatorial Kelvin and Rossby wave activity.
Bennell, Kim; Bowles, Kelly-Ann; Payne, Craig; Cicuttini, Flavia; Osborne, Richard; Harris, Anthony; Hinman, Rana
2007-01-01
Background Whilst laterally wedged insoles, worn inside the shoes, are advocated as a simple, inexpensive, non-toxic self-administered intervention for knee osteoarthritis (OA), there is currently limited evidence to support their use. The aim of this randomised, double-blind controlled trial is to determine whether laterally wedges insoles lead to greater improvements in knee pain, physical function and health-related quality of life, and slower structural disease progression as well as being more cost-effective, than control flat insoles in people with medial knee OA. Methods/Design Two hundred participants with painful radiographic medial knee OA and varus malalignment will be recruited from the community and randomly allocated to lateral wedge or control insole groups using concealed allocation. Participants will be blinded as to which insole is considered therapeutic. Blinded follow up assessment will be conducted at 12 months after randomisation. The outcome measures are valid and reliable measures recommended for OA clinical trials. Questionnaires will assess changes in pain, physical function and health-related quality-of-life. Magnetic resonance imaging will measure changes in tibial cartilage volume. To evaluate cost-effectiveness, participants will record the use of all health-related treatments in a log-book returned to the assessor on a monthly basis. To test the effect of the intervention using an intention-to-treat analysis, linear regression modelling will be applied adjusting for baseline outcome values and other demographic characteristics. Discussion Results from this trial will contribute to the evidence regarding the effectiveness of laterally wedged insoles for the management of medial knee OA. Trial registration ACTR12605000503628; NCT00415259. PMID:17892539
NASA Technical Reports Server (NTRS)
Li, Zhanqing; Whitlock, Charles H.; Charlock, Thomas P.
1995-01-01
Global sets of surface radiation budget (SRB) have been obtained from satellite programs. These satellite-based estimates need validation with ground-truth observations. This study validates the estimates of monthly mean surface insolation contained in two satellite-based SRB datasets with the surface measurements made at worldwide radiation stations from the Global Energy Balance Archive (GEBA). One dataset was developed from the Earth Radiation Budget Experiment (ERBE) using the algorithm of Li et al. (ERBE/SRB), and the other from the International Satellite Cloud Climatology Project (ISCCP) using the algorithm of Pinker and Laszlo and that of Staylor (GEWEX/SRB). Since the ERBE/SRB data contain the surface net solar radiation only, the values of surface insolation were derived by making use of the surface albedo data contained GEWEX/SRB product. The resulting surface insolation has a bias error near zero and a root-mean-square error (RMSE) between 8 and 28 W/sq m. The RMSE is mainly associated with poor representation of surface observations within a grid cell. When the number of surface observations are sufficient, the random error is estimated to be about 5 W/sq m with present satellite-based estimates. In addition to demonstrating the strength of the retrieving method, the small random error demonstrates how well the ERBE derives from the monthly mean fluxes at the top of the atmosphere (TOA). A larger scatter is found for the comparison of transmissivity than for that of insolation. Month to month comparison of insolation reveals a weak seasonal trend in bias error with an amplitude of about 3 W/sq m. As for the insolation data from the GEWEX/SRB, larger bias errors of 5-10 W/sq m are evident with stronger seasonal trends and almost identical RMSEs.
Yucel, Ufuk; Kucuksen, Sami; Cingoz, Havva T; Anliacik, Emel; Ozbek, Orhan; Salli, Ali; Ugurlu, Hatice
2013-12-01
Plantar fasciitis often leads to disability. Optimal treatment for this clinical condition is still unknown. To compare the effectiveness of wearing a full-length silicone insole with ultrasound-guided corticosteroid injection in the management of plantar fasciitis. Randomized clinical trial. Forty-two patients with chronic unilateral plantar fasciitis were allocated randomly to have an ultrasound-guided corticosteroid injection or wear a full-length silicone insole. Data were collected before the procedure and 1 month after. The primary outcome measures included first-step heel pain via Visual Analogue Scale and Heel Tenderness Index. Other outcome measures were the Foot and Ankle Outcome Score and ultrasonographic thickness of the plantar fascia. After 1 month, a significant improvement was shown in Visual Analogue Scale, Heel Tenderness Index, Foot and Ankle Outcome Score, and ultrasonographic thickness of plantar fascia in both groups. Visual Analogue Scale scores, Foot and Ankle Outcome Score pain, Foot and Ankle Outcome Score for activities of daily living, Foot and Ankle Outcome Score for sport and recreation function, and plantar fascia thickness were better in injection group than in insole group (p < 0.05). Although both ultrasound-guided corticosteroid injection and wearing a full-length silicone insole were effective in the conservative treatment of plantar fasciitis, we recommend the use of silicone insoles as a first line of treatment for persons with plantar fasciitis.
Does Wearing Textured Insoles during Non-class Time Improve Proprioception in Professional Dancers?
Steinberg, N; Tirosh, O; Adams, R; Karin, J; Waddington, G
2015-11-01
This study sought to determine whether textured insoles inserted in the sports shoes of young dancers improved their inversion and eversion ankle movement discrimination. 26 ballet dancers (14 female, 12 male) from the Australian Ballet School, ages 14-19 years, were divided into 2 groups according to sex and class levels. During the first 4 weeks, the first intervention group (GRP1) was asked to wear textured insoles in their sports shoes during non-class periods, and the second intervention group (GRP2) followed standard practice. In the next 4 weeks, GRP2 was asked to wear the textured insoles and GRP1 did not wear the textured insoles. Participants were tested pre-intervention, after 4 weeks, and at 8 weeks for both inversion and eversion ankle discrimination. In both inversion and eversion testing positions, interaction was found between the 2 groups and the 3 testing times (p<0.001), with significant differences between the first testing and the second testing (p=0.038 and p=0.019, respectively), and between the third testing and the second testing (p=0.003 and p=0.029, respectively). In conclusion, the stimulation to the proprioceptive system arising from textured insoles worn for 4 weeks was sufficient to improve the ankle proprioception of ballet dancers, in both inversion and eversion movements. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Hafiz Burhan, Mohd; Nor, Nik Hisyamudin Muhd; Yarwindran, Mogan; Ibrahim, Mustaffa; Fahrul Hassan, Mohd; Azwir Azlan, Mohd; Turan, Faiz Mohd; Johan, Kartina
2017-08-01
Healthcare and medical is one of the most expensive field in the modern world. In order to fulfil medical requirement, this study aimed to design an orthotic insole by using Kinect Xbox Gaming Sensor Scanner and CAE softwares. The accuracy of the Kinect® XBOX 360 gaming sensor is capable of producing 3D reconstructed geometry with the maximum and minimum error of 3.78% (2.78mm) and 1.74% (0.46mm) respectively. The orthotic insole design process had been done by using Autodesk Meshmixer 2.6 and Solidworks 2014 software. Functionality of the orthotic insole designed was capable of reducing foot pressure especially in the metatarsal area. Overall, the proposed method was proved to be highly potential in the design of the insole where it promises low cost, less time consuming, and efficiency in regards that the Kinect® XBOX 360 device promised low price compared to other digital 3D scanner since the software needed to run the device can be downloaded for free.
GCM Simulations of Titan's Paleoclimate
NASA Astrophysics Data System (ADS)
Lora, Juan M.; Lunine, Jonathan; Russell, Joellen; Hayes, Alexander
2014-11-01
The hemispheric asymmetry observed in the distribution of Titan's lakes and seas has been suggested to be the result of asymmetric seasonal forcing, where a relative moistening of the north occurs in the current epoch due to its longer and less intense summers. General circulation models (GCMs) of present-day Titan have also shown that the atmosphere transports methane away from the equator. In this work, we use a Titan GCM to investigate the effects that changes in Titan's effective orbital parameters have had on its climate in recent geologic history. The simulations show that the climate is relatively insensitive to changes in orbital parameters, with persistently dry low latitudes and wet polar regions. The amount of surface methane that builds up over either pole depends on the insolation distribution, confirming the influence of orbital forcing on the distribution of surface liquids. The evolution of the orbital forcing implies that the surface reservoir must be transported on timescales of ~30 kyr, in which case the asymmetry reverses with a period of ~125 kyr. Otherwise, the orbital forcing is insufficient for generating the observed dichotomy.
Oceanic Tidal Mixing As a Contributor to Milankovitch-scale Climate Change
NASA Technical Reports Server (NTRS)
Munk, Walter; Bills, Bruce
2004-01-01
We propose that changes in the magnitude of oceanic tidal mixing on long time scales is an important, but previously unrecognized, contributor to global climate change. it is well known that Earth's orbital and rotational state changes significantly on 10(exp 4)-10(exp 5) year time scales, and that this influences the spatial and temporal pattern of incident radiation. It is widely supposed that climatic variations on these same time scales are, in large part, a response of the ocean-atmosphere-cryosphere system to this radiative forcing. Our proposal is that variations in the luni-solar tidal potential, induced by these same orbital and rotational variations, influences oceanic mixing and thus modulates meridional heat transport, by amounts which are competitive with the radiative forcing. There are some obvious differences between tidal potential and insolation. First is that the Sun and Moon both contribute to tides, whereas the radiation is entirely of solar origin. Second is that the Earth is transparent to gravity but opaque to radiation. Clipping associated with this opacity makes the radiation pattern temporal spectrum rather more complex than the tidal spectrum. A third point is that solar radiation directly delivers energy to Earth's surface whereas tidal mixing will only expedite lateral transport of heat in association with oceanic thermohaline circulation. The diurnal average insolation pattern is best parameterized via a Fourier series in time of year and Legendre polynomials in sine of latitude. Our present focus will be on the annual average terms. The Legendre degree n=0 term describes the global average insolation, and is nearly constant. The degree n=l term describes differences between northern and southern hemispheres, and the annual mean is zero. The degree n=2 term is the main contributor to the equator to pole variations, and varies with obliquity and orbital eccentricity, with the obliquity variation dominating. The lowest order decomposition of the tidal potential recognizes 3 constituents: semi-diurnal, diurnal, and long period, with solar and lunar contributions to each. Our present focus will be on long term variations in the mean square amplitude of the semi-diurnal constituent, with averaging over all the short period variations. For the solar tide that includes the day and year. For the lunar tide it includes the day, month, year, and the apsidal (8.85 year) and nodal (18.6 year) periods. We present calculations of the variations in radiative and tidal forcing for the past 3 million years. The two signals are quite similar. Both vary by approximately 1% of their respective mean values, are dominated by obliquity variations, and exhibit only secondary influence from orbital eccentricity.
Oceanic Tidal Mixing as a Contributor to Milankovitch-scale Climate Change
NASA Astrophysics Data System (ADS)
Munk, W.; Bills, B. G.
2004-12-01
We propose that changes in the magnitude of oceanic tidal mixing on long time scales is an important, but previously unrecognized, contributor to global climate change. It is well known that Earth's orbital and rotational state changes significantly on 104-105 year time scales, and that this influences the spatial and temporal pattern of incident radiation. It is widely supposed that climatic variations on these same time scales are, in large part, a response of the ocean-atmosphere-cryosphere system to this radiative forcing. Our proposal is that variations in the luni-solar tidal potential, induced by these same orbital and rotational variations, influences oceanic mixing and thus modulates meridional heat transport, by amounts which are competitive with the radiative forcing. There are some obvious differences between tidal potential and insolation. First is that the Sun and Moon both contribute to tides, whereas the radiation is entirely of solar origin. Second is that the Earth is transparent to gravity but opaque to radiation. Clipping associated with this opacity makes the radiation pattern temporal spectrum rather more complex than the tidal spectrum. A third point is that solar radiation directly delivers energy to Earth's surface whereas tidal mixing will only expedite lateral transport of heat in association with oceanic thermo-haline circulation. The diurnal average insolation pattern is best parameterized via a Fourier series in time of year and Legendre polynomials in sine of latitude. Our present focus will be on the annual average terms. The Legendre degree n=0 term describes the global average insolation, and is nearly constant. The degree n=1 term describes differences between northern and southern hemispheres, and the annual mean is zero. The degree n=2 term is the main contributor to the equator to pole variations, and varies with obliquity and orbital eccentricity, with the obliquity variation dominating. The lowest order decomposition of the tidal potential recognizes 3 constituents: semi-diurnal, diurnal, and long period, with solar and lunar contributions to each. Our present focus will be on long term variations in the mean square amplitude of the semi-diurnal constituent, with averaging over all the short period variations. For the solar tide that includes the day and year. For the lunar tide it includes the day, month, year, and the apsidal (8.85 year) and nodal (18.6 year) periods. We present calculations of the variations in radiative and tidal forcing for the past 3 million years. The two signals are quite similar. Both vary by ~1% of their respective mean values, are dominated by obliquity variations, and exhibit only secondary influence from orbital eccentricity.
NASA Astrophysics Data System (ADS)
Konijnendijk, Tiuri; Lourens, Lucas; Ziegler, Martin
2013-04-01
ODP Sites 967 and 968 (eastern Mediterranean) revisited and implications for the global oxygen stable isotope chronology of the late Pleistocene ODP Sites 967 and 968, located in the Eastern Mediterranean at the Eratosthenes Seamount, are ideally situated to study both regional and global climate signals. Evidently, changes in the titanium to aluminum ratio of the bulk sediment reflect variations in North African aridity, and hence North African monsoon strength: increased levels of titanium are associated with enhanced windblown dust input from the Sahara and increased levels of aluminum with enhanced runoff from the river Nile. In addition, changes in the benthic foraminiferal stable isotope composition reflect primarily changes in global ice volume and deep sea temperature (Lourens et al., 2010; Ziegler et al., 2010). Here we completed and spliced the Ti/Al and benthic d18O data sets of ODP Site 968 and 967 for the past one million years at approximately 200-400 year resolution. The Ti/Al ratio reflect dominantly precession-controlled African monsoon intensity changes and was used to build an astronomically tuned age model for the composite record. This approach enabled us in first instance to establish an alternative and highly accurate chronology for sapropels in the Eastern Mediterranean, and lead to revisions of existing age models, especially around MIS 11 and 19, when the 405-kyr eccentricity cycle is at a minimum. Color reflectance, typically indicative of sapropels, appears incongruent with insolation forcing during these episodes. Secondly our Ti/Al-based chronology provides an independent age model for the benthic d18O record, which may shed new light upon the relationship between insolation and global climate (e.g. ice volume) changes. Our research indicates negligible differences between our record and the global benthic stack of Lisiecki and Raymo (LR04) between the present and MIS 11. However, there are significant discrepancies in the timing of terminations and onset of glaciation for several isotope stages prior to MIS 11 of up to 10,000 years. The direct comparison of our stable isotope record to insolation appears to suggest a dominant role of obliquity forcing in ice volume behavior for much further into the Pleistocene than generally assumed. References Lourens, L.J., J. Becker, R. Bintanja et al. (2010), Linear and non-linear response of late Neogene glacial cycles to obliquity forcing and implications for the Milankovitch theory. Quaternary Science Reviews 29(1-2), pp.352-365. Ziegler, M., E. Tuenter & L.J. Lourens. (2010), The precession phase of the boreal summer monsoon as viewed from the eastern Mediterranean (ODP Site 968). Quaternary Science Reviews 29(11-12), pp.1481-1490.
NASA Astrophysics Data System (ADS)
Biasutti, M.; Voigt, A.; Scheff, J.
2016-12-01
TRACMIP consists of a set of five experiments performed by an ensemble of GCMs and conceived as a link in the hierarchy between the CFMIP/CMIP5 Aqua experiments and the CMIP5 comprehensive simulations. The basic configuration is an aquaplanet AGCM coupled to a slab ocean. By using interactive sea-surface temperatures and seasonally-varying insolation TRACMIP fills the gap between Aquaplanets with prescribed SSTs and fully-coupled realistic CMIP5 simulations. Adding to the basic Aquaplanet configuration a highly-idealized tropical continent allows the investigation of the role of zonal asymmetries in the dynamics of the ITCZ and of the source of the observed differences between land convection and monsoon circulations on one hand, and oceanic convection in the ITCZ and the Warm Pool on the other. Finally, by including both key forcings of the future (greenhouse gases) and of the Holocene (orbital changes in insolation), TRACMIP contributes to the "past to future (P2F)" efforts to connect the climate response to different forcings via a basic understanding of the mechanisms at play. TRACMIP includes the participation of both CMIP5 comprehensive climate models and a simplified model that neglects cloud and water-vapor radiative feedbacks, thus allowing a more direct connection between GCMs results and theoretical studies of tropical rain belt dynamics. We will present preliminary results from the ensemble, aiming to examine the mechanisms controlling tropical precipitation in the context of forced variability. First and foremost, we are interested in the largest forced variation: the annual cycle. We will draw out the similarities and the distinctions between the climatologies of the oceanic and continental rain bands, study the ways in which the two interact with each other, and investigate the extent to which established zonal-mean ITCZ frameworks contain information about regional rainfall characteristics. Second, we will investigate the response to quadrupling the CO2 concentration and to orbital changes, comparing the multi-model mean response and the inter-model scatter to responses in the CMIP5 ensemble, paying special attention to the way in which land responds differently than ocean and even, with its presence, modifies the response of the oceanic ITCZ to external forcings.
Observational Evidence of Changes in Water Vapor, Clouds, and Radiation at the ARM SGP Site
NASA Technical Reports Server (NTRS)
Dong, Xiquan; Xi, Baike; Minnus, Patrick
2006-01-01
Characterizing water vapor and cloud effects on the surface radiation budget is critical for understanding the current climate because water vapor is the most important greenhouse gas in the atmosphere and clouds are one of the largest sources of uncertainty in predicting potential future climate change. Several studies have shown that insolation over land declined until 1990 then increased until the present. Using 8 years of surface data, we observed the increasing trend of insolation from 1997 to 2000, but detected a significant decrease from 2001 to 2004. The variation of cloud fraction mirrors that of insolation with an overall increase of 1 percent per year. Under clear-sky conditions, water vapor changes have a greater impact on longwave flux than on insolation.
Reconciling anthropogenic climate change with observed temperature 1998–2008
Kaufmann, Robert K.; Kauppi, Heikki; Mann, Michael L.; Stock, James H.
2011-01-01
Given the widely noted increase in the warming effects of rising greenhouse gas concentrations, it has been unclear why global surface temperatures did not rise between 1998 and 2008. We find that this hiatus in warming coincides with a period of little increase in the sum of anthropogenic and natural forcings. Declining solar insolation as part of a normal eleven-year cycle, and a cyclical change from an El Nino to a La Nina dominate our measure of anthropogenic effects because rapid growth in short-lived sulfur emissions partially offsets rising greenhouse gas concentrations. As such, we find that recent global temperature records are consistent with the existing understanding of the relationship among global surface temperature, internal variability, and radiative forcing, which includes anthropogenic factors with well known warming and cooling effects. PMID:21730180
Regional and global forcing of glacier retreat during the last deglaciation.
Shakun, Jeremy D; Clark, Peter U; He, Feng; Lifton, Nathaniel A; Liu, Zhengyu; Otto-Bliesner, Bette L
2015-08-21
The ongoing retreat of glaciers globally is one of the clearest manifestations of recent global warming associated with rising greenhouse gas concentrations. By comparison, the importance of greenhouse gases in driving glacier retreat during the most recent deglaciation, the last major interval of global warming, is unclear due to uncertainties in the timing of retreat around the world. Here we use recently improved cosmogenic-nuclide production-rate calibrations to recalculate the ages of 1,116 glacial boulders from 195 moraines that provide broad coverage of retreat in mid-to-low-latitude regions. This revised history, in conjunction with transient climate model simulations, suggests that while several regional-scale forcings, including insolation, ice sheets and ocean circulation, modulated glacier responses regionally, they are unable to account for global-scale retreat, which is most likely related to increasing greenhouse gas concentrations.
The Low-Frequency Variability of the Tropical Atlantic Ocean
NASA Technical Reports Server (NTRS)
Haekkinen, Sirpa; Mo, Kingtse C.; Koblinsky, Chester J. (Technical Monitor)
2001-01-01
Upper ocean temperature variability in the tropical Atlantic is examined from the Comprehensive Ocean Atmosphere Data Set (COADS) as well as from an ocean model simulation forced by COADS anomalies appended to a monthly climatology. Our findings are as follows: Only the sea surface temperatures (SST) in the northern tropics are driven by heat fluxes, while the southern tropical variability arises from wind driven ocean circulation changes. The subsurface temperatures in the northern and southern tropics are found to have a strong linkage to buoyancy forcing changes in the northern North Atlantic. Evidence for Kelvin-like boundary wave propagation from the high latitudes is presented from the model simulation. This extratropical influence is associated with wintertime North Atlantic Oscillation (NAO) forcing and manifests itself in the northern and southern tropical temperature anomalies of the same sign at depth of 100-200 meters as result of a Rossby wave propagation away from the eastern boundary in the wake of the boundary wave passage. The most apparent association of the southern tropical sea surface temperature anomalies (STA) arises with the anomalous cross-equatorial winds which can be related to both NAO and the remote influence from the Pacific equatorial region. These teleconnections are seasonal so that the NAO impact on the tropical SST is the largest it mid-winter but in spring and early summer the Pacific remote influence competes with NAO. However, NAO appears to have a more substantial role than the Pacific influence at low frequencies during the last 50 years. The dynamic origin of STA is indirectly confirmed from the SST-heat flux relationship using ocean model experiments which remove either anomalous wind stress forcing or atmospheric forcing anomalies contributing to heat exchange.
2010-07-13
band members by providing them shoes with some favorable properties such as outsoles with built in compression pads in the heel and forefoot as well...compared to a no insole condition49 and that peak pressure generated at the forefoot and heel have been reduced by 24 percent and 37 percent...Attenuation of spinal transients at heel strike using viscoelastic heel insoles: an in vivo study. Preventive Medicine. 2004;39:351-354. 30
Effects of low-energy laser insolation upon the development of postradiation syndrome
NASA Astrophysics Data System (ADS)
Pavlova, Rimma N.; Gomberg, Vladimir G.; Boiko, Vladimir A.; Pupkova, Ludmila S.; Reznikov, Leonid L.; Dadali, V. A.
1996-04-01
Basic pathogenic research as well as the studies of clinical therapeutic aspects dealing with the long-term gamma radiation effects are of utmost significance nowadays. The main goal of the present study was to establish the capability of low-energy laser insolation to oppose the free radical oxidative chain reactions inherent to the effects of radiation. Adequate doses of low- energy laser insolation were shown to produce positive effects upon the metabolism similar to those of pharmacologic radioprotectors.
Solar energy microclimate as determined from satellite observations
NASA Technical Reports Server (NTRS)
Vonder Haar, T. H.; Ellis, J. S.
1975-01-01
A method is presented for determining solar insolation at the earth's surface using satellite broadband visible radiance and cloud imagery data, along with conventional in situ measurements. Conventional measurements are used to both tune satellite measurements and to develop empirical relationships between satellite observations and surface solar insolation. Cloudiness is the primary modulator of sunshine. The satellite measurements as applied in this method consider cloudiness both explicitly and implicitly in determining surface solar insolation at space scales smaller than the conventional pyranometer network.
Insolation-driven 100 kyr glacial cycles and millennial climate change
NASA Astrophysics Data System (ADS)
Abe-Ouchi, A.; Saito, F.; Kawamura, K.; Raymo, M. E.; Okuno, J.; Takahashi, K.; Blatter, H.
2013-12-01
The waxing and waning of Northern Hemisphere ice sheets over the past one million years is dominated by an approximately 100-kyr periodicity and a sawtooth pattern (gradual growth and fast termination). Milankovitch theory proposes that summer insolation at high northern latitudes drives the glacial cycles, and statistical tests demonstrated that the glacial cycles are indeed linked to eccentricity, obliquity and precession cycles. However, insolation alone cannot explain the strong 100 kyr cycle which presumably arises through internal climatic feedbacks. Prior work with conceptual models, for example, showed that glacial terminations are associated with the build-up of Northern Hemisphere 'excess ice', but the physical mechanisms of 100-kyr cycle at work remain unclear. Here, using comprehensive climate and ice sheet models, we show that the ~100-kyr periodicity is explained by insolation and internal feedback amongst the climate, ice sheet and lithosphere/asthenosphere system (reference). We found that equilibrium states of ice sheets exhibit hysteresis responses to summer insolation, and that the shape and position of the hysteresis loop play a key role in determining the periodicities of glacial cycles. The hysteresis loop of the North American ice sheet is such that, after its inception, the ice sheet mass balance remains mostly positive or neutral through several precession cycles whose amplitude decreases towards an eccentricity minimum. The larger the ice sheet grows and extends towards lower latitudes, the smaller is the insolation required to turn the mass balance to negative. Therefore, once the large ice sheet is established, only a moderate increase in insolation can trigger a negative mass balance, leading to a complete retreat within several thousand years, due to the delayed isostatic rebound. The effect of ocean circulation and millennial scale climate change are not playing the dominant role for determing the 100kyr cycle, but are effective for modifying the speed and geographical pattern of the waxing and waning of the Northern Hemisphere ice sheets and their melt water. (reference of the basic results: Abe-Ouchi et al, 2013, Insolation-driven 100,000 year glacial cycles and hysteresis of ice-sheet volume, Nature, 500, 190-193.)
NASA Astrophysics Data System (ADS)
Wang, W.; Zender, C. S.; van As, D.; Smeets, P.; van den Broeke, M.
2015-12-01
Surface melt and mass loss of Greenland Ice Sheet may play crucial roles in global climate change due to their positive feedbacks and large fresh water storage. With few other regular meteorological observations available in this extreme environment, measurements from Automatic Weather Stations (AWS) are the primary data source for the surface energy budget studies, and for validating satellite observations and model simulations. However, station tilt, due to surface melt and compaction, results in considerable biases in the radiation and thus albedo measurements by AWS. In this study, we identify the tilt-induced biases in the climatology of surface radiative flux and albedo, and then correct them based on geometrical principles. Over all the AWS from the Greenland Climate Network (GC-Net), the Kangerlussuaq transect (K-transect) and the Programme for Monitoring of the Greenland Ice Sheet (PROMICE), only ~15% of clear days have the correct solar noon time, with the largest bias to be 3 hours. Absolute hourly biases in the magnitude of surface insolation can reach up to 200 W/m2, with daily average exceeding 100 W/m2. The biases are larger in the accumulation zone due to the systematic tilt at each station, although variabilities of tilt angles are larger in the ablation zone. Averaged over the whole Greenland Ice Sheet in the melting season, the absolute bias in insolation is ~23 W/m2, enough to melt 0.51 m snow water equivalent. We estimate the tilt angles and their directions by comparing the simulated insolation at a horizontal surface with the observed insolation by these tilted AWS under clear-sky conditions. Our correction reduces the RMSE against satellite measurements and reanalysis by ~30 W/m2 relative to the uncorrected data, with correlation coefficients over 0.95 for both references. The corrected diurnal changes of albedo are more smooth, with consistent semi-smiling patterns (see Fig. 1). The seasonal cycles and annual variabilities of albedo are in a better agreement with previous studies (see Fig. 2 and 3). The consistent tilt-corrected shortwave radiation dataset derived here will provide better observations and validations for surface energy budget studies on Greenland Ice Sheet, including albedo variation, surface melt simulations and cloud radiative forcing estimates.
Solar Radiation on Mars: Tracking Photovoltaic Array
NASA Technical Reports Server (NTRS)
Appelbaum, Joseph; Flood, Dennis J.; Crutchik, Marcos
1994-01-01
A photovoltaic power source for surface-based operation on Mars can offer many advantages. Detailed information on solar radiation characteristics on Mars and the insolation on various types of collector surfaces are necessary for effective design of future planned photovoltaic systems. In this article we have presented analytical expressions for solar radiation calculation and solar radiation data for single axis (of various types) and two axis tracking surfaces and compared the insulation to horizontal and inclined surfaces. For clear skies (low atmospheric dust load) tracking surfaces resulted in higher insolation than stationary surfaces, whereas for highly dusty atmospheres, the difference is small. The insolation on the different types of stationary and tracking surfaces depend on latitude, season and optical depth of the atmosphere, and the duration of system operation. These insolations have to be compared for each mission.
Biomechanics of stair walking and jumping.
Loy, D J; Voloshin, A S
1991-01-01
Physical activities such as stair walking and jumping result in increased dynamic loading on the human musculoskeletal system. Use of light weight, externally attached accelerometers allows for in-vivo monitoring of the shock waves invading the human musculoskeletal system during those activities. Shock waves were measured in four subjects performing stair walking up and down, jumping in place and jumping off a fixed elevation. The results obtained show that walking down a staircase induced shock waves with amplitude of 130% of that observed in walking up stairs and 250% of the shock waves experienced in level gait. The jumping test revealed levels of the shock waves nearly eight times higher than that in level walking. It was also shown that the shock waves invading the human musculoskeletal system may be generated not only by the heel strike, but also by the metatarsal strike. To moderate the risk of degenerative joint disorders four types of viscoelastic insoles were utilized to reduce the impact generated shock waves. The insoles investigated were able to reduce the amplitude of the shock wave by between 9% and 41% depending on the insole type and particular physical activity. The insoles were more effective in the reduction of the heel strike impacts than in the reduction of the metatarsal strike impacts. In all instances, the shock attenuation capacities of the insoles tested were greater in the jumping trials than in the stair walking studies. The insoles were ranked in three groups on the basis of their shock absorbing capacity.
Self-force correction to geodetic spin precession in Kerr spacetime
NASA Astrophysics Data System (ADS)
Akcay, Sarp
2017-08-01
We present an expression for the gravitational self-force correction to the geodetic spin precession of a spinning compact object with small, but non-negligible mass in a bound, equatorial orbit around a Kerr black hole. We consider only conservative backreaction effects due to the mass of the compact object (m1), thus neglecting the effects of its spin s1 on its motion; i.e., we impose s1≪G m12/c and m1≪m2, where m2 is the mass parameter of the background Kerr spacetime. We encapsulate the correction to the spin precession in ψ , the ratio of the accumulated spin-precession angle to the total azimuthal angle over one radial orbit in the equatorial plane. Our formulation considers the gauge-invariant O (m1) part of the correction to ψ , denoted by Δ ψ , and is a generalization of the results of Akcay et al. [Classical Quantum Gravity 34, 084001 (2017), 10.1088/1361-6382/aa61d6] to Kerr spacetime. Additionally, we compute the zero-eccentricity limit of Δ ψ and show that this quantity differs from the circular orbit Δ ψcirc by a gauge-invariant quantity containing the gravitational self-force correction to general relativistic periapsis advance in Kerr spacetime. Our result for Δ ψ is expressed in a manner that readily accommodates numerical/analytical self-force computations, e.g., in the radiation gauge, and paves the way for the computation of a new eccentric-orbit Kerr gauge invariant beyond the generalized redshift.
Interaction of ice sheets and climate during the past 800 000 years
NASA Astrophysics Data System (ADS)
Stap, L. B.; van de Wal, R. S. W.; de Boer, B.; Bintanja, R.; Lourens, L. J.
2014-12-01
During the Cenozoic, land ice and climate interacted on many different timescales. On long timescales, the effect of land ice on global climate and sea level is mainly set by large ice sheets in North America, Eurasia, Greenland and Antarctica. The climatic forcing of these ice sheets is largely determined by the meridional temperature profile resulting from radiation and greenhouse gas (GHG) forcing. As a response, the ice sheets cause an increase in albedo and surface elevation, which operates as a feedback in the climate system. To quantify the importance of these climate-land ice processes, a zonally averaged energy balance climate model is coupled to five one-dimensional ice sheet models, representing the major ice sheets. In this study, we focus on the transient simulation of the past 800 000 years, where a high-confidence CO2 record from ice core samples is used as input in combination with Milankovitch radiation changes. We obtain simulations of atmospheric temperature, ice volume and sea level that are in good agreement with recent proxy-data reconstructions. We examine long-term climate-ice-sheet interactions by a comparison of simulations with uncoupled and coupled ice sheets. We show that these interactions amplify global temperature anomalies by up to a factor of 2.6, and that they increase polar amplification by 94%. We demonstrate that, on these long timescales, the ice-albedo feedback has a larger and more global influence on the meridional atmospheric temperature profile than the surface-height-temperature feedback. Furthermore, we assess the influence of CO2 and insolation by performing runs with one or both of these variables held constant. We find that atmospheric temperature is controlled by a complex interaction of CO2 and insolation, and both variables serve as thresholds for northern hemispheric glaciation.
NASA Astrophysics Data System (ADS)
Thibault, N.; Jarvis, I.; Voigt, S.; Gale, A. S.; Attree, K.; Jenkyns, H. C.
2016-06-01
High-resolution records of bulk carbonate carbon isotopes have been generated for the Upper Coniacian to Lower Campanian interval of the sections at Seaford Head (southern England) and Bottaccione (central Italy). An unambiguous stratigraphic correlation is presented for the base and top of the Santonian between the Boreal and Tethyan realms. Orbital forcing of carbon and oxygen isotopes at Seaford Head points to the Boreal Santonian spanning five 405 kyr cycles (Sa1 to Sa5). Correlation of the Seaford Head time scale to that of the Niobrara Formation (Western Interior Basin) permits anchoring these records to the La2011 astronomical solution at the Santonian-Campanian (Sa/Ca) boundary, which has been recently dated to 84.19 ± 0.38 Ma. Among the five tuning options examined, option 2 places the Sa/Ca at the 84.2 Ma 405 kyr insolation minimum and appears as the most likely. This solution indicates that minima of the 405 kyr filtered output of the resistivity in the Niobrara Formation correlate to 405 kyr insolation minima in the astronomical solution and to maxima in the filtered δ13C of Seaford Head. We suggest that variance in δ13C is driven by climate forcing of the proportions of CaCO3 versus organic carbon burial on land and in oceanic basins. The astronomical calibration generates a 200 kyr mismatch of the Coniacian-Santonian boundary age between the Boreal Realm in Europe and the Western Interior, due either to diachronism of the lowest occurrence of the inoceramid Cladoceramus undulatoplicatus between the two regions or to remaining uncertainties of radiometric dating and cyclostratigraphic records.
Alkenone-based reconstructions show four-phase Holocene temperature history for Arctic Svalbard
NASA Astrophysics Data System (ADS)
van der Bilt, W. G. M.; D'Andrea, W. J.; Bakke, J.; Balascio, N.; Werner, J.; Bradley, R. S.
2016-12-01
Situated at the crossroads of global oceanic and atmospheric circulation patterns, the Arctic is a key component of Earth`s climate system. Amplified by sea-ice feedbacks, even modest shifts in regional heat budget drive large climate responses. This is highlighted by the dramatic response of the Arctic to global warming. Assessing the signature of underlying forcings require paleoclimate records, allowing us to expand our knowledge beyond the short instrumental period and contextualize ongoing warming. However, such data are scarce and sparse in the Arctic, limiting our ability to address these issues. We present two quantitative Holocene-length summer temperature reconstructions from the Arctic Svalbard archipelago. Temperature estimates are based on alkenone unsaturation ratios measured on sediment cores from two lakes. Our data reveal a dynamic Holocene temperature history, with reconstructed lake water temperatures spanning a range of 6-8 °C, and characterized by four phases. The Early Holocene was marked by an early ( 10.5 ka cal. BP) onset of insolation-driven Hypsithermal conditions, likely compounded by strengthening oceanic heat transport. This warm interval was interrupted by cooling between 10.5-8.3 ka cal. BP that we attribute to cooling effects from the melting Northern Hemisphere ice sheets. Temperatures declined throughout the Middle Holocene, following a gradual trend that was accentuated by two cooling steps between 7.8-7 ka cal. BP and 4.4-3.5 ka cal. BP. These transitions coincide with a strengthening influence of Arctic water and sea-ice in the adjacent eastern Fram Strait. During the Late Holocene (past 4 ka), temperature change decoupled from the still-declining insolation, and fluctuated around cold mean conditions. This study improves our understanding of Arctic climate dynamics by demonstrating that Holocene Svalbard temperatures were governed by an alternation of forcing mechanism.
NASA Astrophysics Data System (ADS)
Fraser, Nicholas; Kuhnt, Wolfgang; Holbourn, Ann; Bolliet, Timothé; Andersen, Nils; Blanz, Thomas; Beaufort, Luc
2014-11-01
Proxy records of hydrologic variability in the West Pacific Warm Pool (WPWP) have revealed wide-scale changes in past convective activity in response to orbital and suborbital climate forcings. However, attributing proxy responses to regional changes in WPWP hydrology versus local variations in precipitation requires independent records linking the terrestrial and marine realms. We present high-resolution stable isotope, UK'37 sea surface temperature, X-ray fluorescence (XRF) core scanning, and coccolithophore-derived paleoproductivity records covering the past 120 ka from International Marine Global Change (IMAGES) Program Core MD06-3075 (6°29'N, 125°50'E, water depth 1878 m), situated in the Davao Gulf on the southern side of Mindanao. XRF-derived log(Fe/Ca) records provide a robust proxy for runoff-driven sedimentary discharge from Mindanao, while past changes in local productivity are associated with variable freshwater runoff and stratification of the surface layer. Significant precessional-scale variability in sedimentary discharge occurred during marine isotope stage (MIS) 5, with peaks in discharge contemporaneous with Northern Hemisphere summer insolation minima. We attribute these changes to the latitudinal migration of the Intertropical Convergence Zone (ITCZ) over the WPWP together with variability in the strength of the Walker circulation acting on precessional timescales. Between 60 and 15 ka sedimentary discharge at Mindanao was muted, displaying little orbital- or millennial-scale variability, likely in response to weakened precessional insolation forcing and lower sea level driving increased subsidence of air masses over the exposed Sunda Shelf. These results highlight the high degree of local variability in the precipitation response to past climate changes in the WPWP.
Equatorial potassium currents in lenses.
Wind, B E; Walsh, S; Patterson, J W
1988-02-01
Earlier work with the vibrating probe demonstrated the existence of outward potassium currents at the equator and inward sodium currents at the optical poles of the lens. By adding microelectrodes to the system, it is possible to relate steady currents (J) to the potential difference (PD) measured with a microelectrode. By injecting an outward current (I), it is possible to determine resistances and also the PD at which the steady outward potassium current becomes zero (PDJ = 0). At this PD the concentration gradient for potassium efflux and the electrical gradient for potassium influx are balanced so that there is no net flow of potassium across the membranes associated with the production of J. The PDJ = 0 for 18 rat lenses was 86 mV and that for 12 frogs lenses was -95 mV. This agrees with the potassium equilibrium potential and provides strong evidence to support the view that the outward equatorial current, J, is a potassium current. With the injection of outward current, I, the PD becomes more negative, the outward equatorial current, J, decreases, and the inward current at the optical poles increases. This suggests that there are separate electrical loops for K+ and Na+ that are partially linked by the Na, K-pump. Using Ohm's law, it is possible to calculate the input resistance (R = delta PD/I), the resistance related to the production of J (RJ = delta PD/delta J), and the effect of the combined resistances (delta J/I). The driving force for J can be estimated (PDJ = 0-PD). The relationships among currents, voltages and resistance can be used to determine the characteristics of the membranes that are associated with the outward potassium current observed at the equator. The effects of graded deformation of the lens were determined. The effects were reversible. The sites of inward and outward currents were not altered. Following deformation, the equatorial current, J, increased, and the PD became less negative. The PDJ = 0 remains the same so the ratio of K+ concentrations across the membrane responsible for J is unchanged. Therefore, the decrease in PD is ascribed to an increase in Na+ permeance with a resultant increase in driving force accounting for the increase in J.
Interannual Variability of Boreal Summer Rainfall in the Equatorial Atlantic
NASA Technical Reports Server (NTRS)
Gu, Guojun; Adler, Robert F.
2007-01-01
Tropical Atlantic rainfall patterns and variation during boreal summer [June-July-August (JJA)] are quantified by means of a 28-year (1979-2006) monthly precipitation dataset from the Global Precipitation Climatology Project (GPCP). Rainfall variability during boreal spring [March-April-May (MAM)] is also examined for comparison in that the most intense interannual variability is usually observed during this season. Comparable variabilities in the Intertropical Convergence Zone (ITCZ) strength and the basin-mean rainfall are found during both seasons. Interannual variations in the ITCZ's latitudinal location during JJA however are generally negligible, in contrasting to intense year-to-year fluctuations during MAM. Sea surface temperature (SST) oscillations along the equatorial region (usually called the Atlantic Nino events) and in the tropical north Atlantic (TNA) are shown to be the two major local factors modulating the tropical Atlantic climate during both seasons. During MAM, both SST modes tend to contribute to the formation of an evident interhemispheric SST gradient, thus inducing anomalous shifting of the ITCZ and then forcing a dipolar structure of rainfall anomalies across the equator primarily in the western basin. During JJA the impacts however are primarily on the ITCZ strength likely due to negligible changes in the ITCZ latitudinal location. The Atlantic Nino reaches its peak in JJA, while much weaker SST anomalies appear north of the equator in JJA than in MAM, showing decaying of the interhemispheric SST mode. SST anomalies in the tropical central-eastern Pacific (the El Nino events) have a strong impact on tropical Atlantic including both the tropical north Atlantic and the equatorial-southern Atlantic. However, anomalous warming in the tropical north Atlantic following positive SST anomalies in the tropical Pacific disappears during JJA because of seasonal changes in the large-scale circulation cutting off the ENSO influence passing through the mid-latitudes. Hence the anomalies associated with the tropical Pacific during JJA are forced through an anomalous Walker circulation primarily working on the western basin, and likely a lagged oceanic response in the equatorial region.
Response of the Surface Circulation of the Arabian Sea to Monsoonal Forcing
NASA Astrophysics Data System (ADS)
Beal, L. M.; Hormann, V.; Lumpkin, R.; Foltz, G. R.
2014-12-01
We use two decades of drifter and satellite data to examine the monthly evolution of the surface circulation of the Arabian Sea, which reverses annually in response to the Indian monsoon winds. Most significantly, we find that in the transition from winter to summer circulations, northward flow appears along the length of the western boundary as early as March or April, one or two months before the onset of the southwest monsoon winds. This reversal is initiated by annual Rossby waves, which in turn are initiated by wind curl forcing during the previous southwest monsoon. These results lead us to speculate that there is an oceanic mechanism through which one monsoon may precondition the next. Previous studies of monsoon circulations with lower temporal resolution have highlighted basin-wide currents and connections that are not found to exist in the monthly fields. In particular, we find that the Northeast Monsoon Current does not reach the western boundary and there is no counter-rotating gyre system during boreal winter. South of the equator, the eastward-flowing South Equatorial Counter Current (SECC) is present year-round, even though equatorial winds are strongly influenced by the monsoons. Semi-annual variability of the SECC is governed by Ekman pumping over the south equatorial gyre (or Seychelles dome) and, surprisingly, it is weakest during the northeast monsoon. This region has important influence on the atmosphere and its link to the monsoons deserves further investigation. The East African Coastal Current feeds into the SECC from the boundary. During the southwest monsoon it overshoots the equator and splits, feeding both northward into the Somali Current and eastward into the SECC after looping back across the equator. This apparent retroflection of the EACC is what was previously known as the southern gyre and is obscured at the surface by strong, locally wind-driven, cross-equatorial Ekman transport. Finally, there is broad, strong eastward flow at the mouth of the Gulf of Aden throughout the southwest monsoon, which is influenced by the curvature and bifurcation of the atmospheric monsoon jet.
Quiet Time Depression of the Equatorial Electrojet and Dynamics of the F-layer Ionosphere
NASA Astrophysics Data System (ADS)
Khadka, S.; Valladares, C. E.; Doherty, P.
2017-12-01
The depression of the equatorial electrojet (EEJ) is marked by a westward current due to streaming movement of laterally limited (±3°) charged particles in the ionospheric E region during the day along the magnetic equator. It is a complex low-latitude phenomenon and driven by various sources of electric fields associated with global neutral wind, solar tidal force, Interplanetary magnetic Field (IMF), etc. This unique physical property of the equatorial ionosphere holds a great promise for sorting out the governing mechanism of the dayside ionospheric electrodynamics and the onset of the enigmatic plasma structures in the ionospheric layers. Present study provides an overview of the special sequence of the longitudinal, seasonal, and occurrence rate variability of the depression of the EEJ, including its temporal variation, using data from an excellent chain of magnetic and ionospheric observatories along the low-latitude regions. A case and statistical study of the geomagnetically quiet time depression of EEJ strengths is presented using a pair of magnetometers, one located at the dip equator and another off the dip equator (±6° to ±9° away) in the American low-latitude regions. The significance of the variability of the depression of the EEJ current observed in the scenario of vertical drifts, sporadic E-layer, the equatorial F region plasma fountain, and height of the peak ionization in the F-layer, as well as GPS-TEC distributions, will be investigated.
Adding Stiffness to the Foot Modulates Soleus Force-Velocity Behaviour during Human Walking
Takahashi, Kota Z.; Gross, Michael T.; van Werkhoven, Herman; Piazza, Stephen J.; Sawicki, Gregory S.
2016-01-01
Previous studies of human locomotion indicate that foot and ankle structures can interact in complex ways. The structure of the foot defines the input and output lever arms that influences the force-generating capacity of the ankle plantar flexors during push-off. At the same time, deformation of the foot may dissipate some of the mechanical energy generated by the plantar flexors during push-off. We investigated this foot-ankle interplay during walking by adding stiffness to the foot through shoes and insoles, and characterized the resulting changes in in vivo soleus muscle-tendon mechanics using ultrasonography. Added stiffness decreased energy dissipation at the foot (p < 0.001) and increased the gear ratio (i.e., ratio of ground reaction force and plantar flexor muscle lever arms) (p < 0.001). Added foot stiffness also altered soleus muscle behaviour, leading to greater peak force (p < 0.001) and reduced fascicle shortening speed (p < 0.001). Despite this shift in force-velocity behaviour, the whole-body metabolic cost during walking increased with added foot stiffness (p < 0.001). This increased metabolic cost is likely due to the added force demand on the plantar flexors, as walking on a more rigid foot/shoe surface compromises the plantar flexors’ mechanical advantage. PMID:27417976
Adding Stiffness to the Foot Modulates Soleus Force-Velocity Behaviour during Human Walking
NASA Astrophysics Data System (ADS)
Takahashi, Kota Z.; Gross, Michael T.; van Werkhoven, Herman; Piazza, Stephen J.; Sawicki, Gregory S.
2016-07-01
Previous studies of human locomotion indicate that foot and ankle structures can interact in complex ways. The structure of the foot defines the input and output lever arms that influences the force-generating capacity of the ankle plantar flexors during push-off. At the same time, deformation of the foot may dissipate some of the mechanical energy generated by the plantar flexors during push-off. We investigated this foot-ankle interplay during walking by adding stiffness to the foot through shoes and insoles, and characterized the resulting changes in in vivo soleus muscle-tendon mechanics using ultrasonography. Added stiffness decreased energy dissipation at the foot (p < 0.001) and increased the gear ratio (i.e., ratio of ground reaction force and plantar flexor muscle lever arms) (p < 0.001). Added foot stiffness also altered soleus muscle behaviour, leading to greater peak force (p < 0.001) and reduced fascicle shortening speed (p < 0.001). Despite this shift in force-velocity behaviour, the whole-body metabolic cost during walking increased with added foot stiffness (p < 0.001). This increased metabolic cost is likely due to the added force demand on the plantar flexors, as walking on a more rigid foot/shoe surface compromises the plantar flexors’ mechanical advantage.
Adding Stiffness to the Foot Modulates Soleus Force-Velocity Behaviour during Human Walking.
Takahashi, Kota Z; Gross, Michael T; van Werkhoven, Herman; Piazza, Stephen J; Sawicki, Gregory S
2016-07-15
Previous studies of human locomotion indicate that foot and ankle structures can interact in complex ways. The structure of the foot defines the input and output lever arms that influences the force-generating capacity of the ankle plantar flexors during push-off. At the same time, deformation of the foot may dissipate some of the mechanical energy generated by the plantar flexors during push-off. We investigated this foot-ankle interplay during walking by adding stiffness to the foot through shoes and insoles, and characterized the resulting changes in in vivo soleus muscle-tendon mechanics using ultrasonography. Added stiffness decreased energy dissipation at the foot (p < 0.001) and increased the gear ratio (i.e., ratio of ground reaction force and plantar flexor muscle lever arms) (p < 0.001). Added foot stiffness also altered soleus muscle behaviour, leading to greater peak force (p < 0.001) and reduced fascicle shortening speed (p < 0.001). Despite this shift in force-velocity behaviour, the whole-body metabolic cost during walking increased with added foot stiffness (p < 0.001). This increased metabolic cost is likely due to the added force demand on the plantar flexors, as walking on a more rigid foot/shoe surface compromises the plantar flexors' mechanical advantage.
NASA Astrophysics Data System (ADS)
Kobayashi, Kenji; Takano, Ichiro; Sawada, Yoshio
A photovoltaic array shows relatively low output power density, and has a greatly drooping Current-Voltage (I-V) characteristic. Therefore, Maximum Power Point Tracking (MPPT) control is used to maximize the output power of the array. Many papers have been reported in relation to MPPT. However, the Current-Power (I-P) curve sometimes shows multi-local maximum points mode under non-uniform insolation conditions. The operating point of the PV system tends to converge to a local maximum output point which is not the real maximal output point on the I-P curve. Some papers have been also reported, trying to avoid this difficulty. However most of those control systems become rather complicated. Then, the two stage MPPT control method is proposed in this paper to realize a relatively simple control system which can track the real maximum power point even under non-uniform insolation conditions. The feasibility of this control concept is confirmed for steady insolation as well as for rapidly changing insolation by simulation study using software PSIM and LabVIEW. In addition, simulated experiment confirms fundament al operation of the two stage MPPT control.
NASA Astrophysics Data System (ADS)
Huang, Yu
Solar energy becomes one of the major alternative renewable energy options for its huge abundance and accessibility. Due to the intermittent nature, the high demand of Maximum Power Point Tracking (MPPT) techniques exists when a Photovoltaic (PV) system is used to extract energy from the sunlight. This thesis proposed an advanced Perturbation and Observation (P&O) algorithm aiming for relatively practical circumstances. Firstly, a practical PV system model is studied with determining the series and shunt resistances which are neglected in some research. Moreover, in this proposed algorithm, the duty ratio of a boost DC-DC converter is the object of the perturbation deploying input impedance conversion to achieve working voltage adjustment. Based on the control strategy, the adaptive duty ratio step size P&O algorithm is proposed with major modifications made for sharp insolation change as well as low insolation scenarios. Matlab/Simulink simulation for PV model, boost converter control strategy and various MPPT process is conducted step by step. The proposed adaptive P&O algorithm is validated by the simulation results and detail analysis of sharp insolation changes, low insolation condition and continuous insolation variation.
Seasonal Change on Saturn from Cassini/CIRS Observations, 2004-2009
NASA Technical Reports Server (NTRS)
Fletcher, Leigh N.; Achterberg, Richard K.; Greathouse, Thomas K.; Orton, Glenn S.; Conrath, Barney J.; Simon-Miller, Amy A.; Teanby, Nicholas; Guerlet, Sandrine; Irwin, Patrick G. J.; Flasar, F. M.
2010-01-01
Five years of thermal infrared spectra from the Cassini Composite Infrared Spectrometer (CIRS) are analyzed to determine the response of Saturn's atmosphere to seasonal changes in insolation. Hemispheric mapping sequences at 15.0 cm-1 spectral resolution are used to retrieve the variation in the zonal mean temperatures in the stratosphere (0.5-5.0 mbar) and upper troposphere (75-800 mbar) between October 2004 (shortly after the summer solstice in the southern hemisphere) and July 2009 (shortly before the autumnal equinox). Saturn's northern mid-latitudes show signs of dramatic warming in the stratosphere (by 6-10 K) as they emerge from ring-shadow into springtime conditions, whereas southern mid-latitudes show evidence for cooling (4-6 K). The 40-K asymmetry in stratospheric temperatures between northern and southern hemispheres (at 1 mbar) slowly decreased during the timespan of the observations. Tropospheric temperatures also show temporal variations but with a smaller range, consistent with the increasing radiative time constant of the atmospheric response with increasing pressure. The tropospheric response to the insolation changes shows the largest magnitude at the locations of the broad retrograde jets. Saturn's warm south-polar stratospheric hood has cooled over the course of the mission, but remains present. Stratospheric temperatures are compared to a radiative climate model which accounts for the spatial distribution of the stratospheric coolants. The model successfully predicts the magnitude and morphology of the observed changes at most latitudes. However, the model fails at locations where strong dynamical perturbations dominate the temporal changes in the thermal field, such as the hot polar vortices and the equatorial semi-annual oscillation (Orton, G., and 27 colleagues [2008]. Nature 453, 196-198). Furthermore, observed temperatures in Saturn's ring-shadowed regions are larger than predicted by all radiative-climate models to date due to the incomplete characterization of the dynamical response to the shadow. Finally, far-infrared CIRS spectra are used to demonstrate variability of the para-hydrogen distribution over the 5-year span of the dataset, which may be related to observed changes in Saturn's tropospheric haze in the spring hemisphere.
Obliquity variation in a Mars climate evolution model
NASA Technical Reports Server (NTRS)
Tyler, D.; Haberle, Robert M.
1993-01-01
The existence of layered terrain in both polar regions of Mars is strong evidence supporting a cyclic variation in climate. It has been suggested that periods of net deposition have alternated with periods of net erosion in creating the layered structure that is seen today. The cause for this cyclic climatic behavior is variation in the annually averaged latitudinal distribution of solar insolation in response to obliquity cycles. For Mars, obliquity variation leads to major climatological excursion due to the condensation and sublimation of the major atmospheric constituent, CO2. The atmosphere will collapse into the polar caps, or existing caps will rapidly sublimate into the atmosphere, dependent upon the polar surface heat balance and the direction of the change in obliquity. It has been argued that variations in the obliquity of Mars cause substantial departures from the current climatological values of the surface pressure and the amount of CO2 stored in both the planetary regolith and polar caps. In this new work we have modified the Haberle et al. model to incorporate variable obliquity by allowing the polar and equatorial insolation to become functions of obliquity, which we assume to vary sinusoidally in time. As obliquity varies in the model, there can be discontinuities in the time evolution of the model equilibrium values for surface pressure, regolith, and polar cap storage. The time constant, tau r, for the regolith to find equilibrium with the climate is estimated--depending on the depth, thermal conductivity, and porosity of the regolith--between 10(exp 4) and 10(exp 6) yr. Thus, using 2000-yr timesteps to move smoothly through the 0.1250 m.y. obliquity cycles, we have an atmosphere/regolith system that cannot be assumed in equilibrium. We have dealt with this problem by limiting the rate at which CO2, can move between the atmosphere and regolith, mimicking the diffusive nature and effects of the temperature and pressure waves, by setting the time rate of change of regolith storage proportional to the difference between equilibrium storage and current storage.
NASA Technical Reports Server (NTRS)
Fu, Lee-Lueng
2007-01-01
The forcing of the equatorial Indian Ocean by the highly periodic monsoon wind cycle creates many interesting intraseasonal variabilities. The frequency spectrum of the wind stress observations from the European Remote Sensing Satellite scatterometers reveals peaks at the seasonal cycle and its higher harmonics at 180, 120, 90, and 75 days. The observations of sea surface height (SSH) from the Jason and Ocean Topography Experiment (TOPEX)/Poseidon radar altimeters are analyzed to study the ocean's response. The focus of the study is on the intraseasonal periods shorter than the annual period. The semiannual SSH variability is characterized by a basin mode involving Rossby waves and Kelvin waves traveling back and forth in the equatorial Indian Ocean between 10(deg)S and 10(deg)N. However, the interference of these waves with each other masks the appearance of individual Kelvin and Rossby waves, leading to a nodal point (amphidrome) of phase propagation on the equator at the center of the basin. The characteristics of the mode correspond to a resonance of the basin according to theoretical models. The theory also calls for similar modes at 90 and 60 days.
Bio-Optical Measurements at Ocean Boundaries in Support of SIMBIOS. Chapter 7
NASA Technical Reports Server (NTRS)
Chavez, Francisco P.; Strutton, Peter G.; Schlining, Brian M.
2001-01-01
The equatorial Pacific is a major component of global biogeochemical cycles, due to upwelling that occurs from the coast of South America to beyond 180 deg. This upwelling has significant implications for global CO2 fluxes, as well as primary and secondary production. In addition, this region of the world's oceans represents a large oceanic province over which validation data for Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) are necessary. This project consists of a mooring program and supporting cruise-based measurements aimed at quantifying the spectrum of biological and chemical variability in the equatorial Pacific and obtaining validation data for SeaWiFS. The project has the following general objectives: (1) to understand the relationships between physical forcing, primary production, nutrient supply and the exchange of carbon dioxide between ocean and atmosphere in the equatorial Pacific; (2) to describe the biological and chemical responses to climate and ocean variability; (3) to describe the spatial, seasonal and inter-annual variability in near surface plant pigments, primary production, carbon dioxide and nutrient distributions; and (4) to obtain near real-time bio-optical measurements for validation of SeaWiFS and subsequent ocean color sensors.
An ocean dynamical thermostat—dominant in observations, absent in climate models
NASA Astrophysics Data System (ADS)
Coats, S.; Karnauskas, K. B.
2016-12-01
The pattern of sea surface temperature (SST) in the tropical Pacific Ocean is coupled to the Walker circulation, necessitating an understanding of how this pattern will change in response to anthropogenic radiative forcing. State-of-the-art climate models from the Coupled Model Intercomparison Project phase 5 (CMIP5) overwhelmingly project a decrease in the tropical Pacific zonal SST gradient over the coming century. This decrease in the zonal SST gradient is a response of the ocean to a weakening Walker circulation in the CMIP5 models, a consequence of the mass and energy balances of the hydrologic cycle identified by Held and Soden (2006). CMIP5 models, however, are not able to reproduce the observed increase in the zonal SST gradient between 1900-2013 C.E., which we argue to be robust using advanced statistical techniques and new observational datasets. While the observed increase in the zonal SST gradient is suggestive of the ocean dynamical thermostat mechanism of Clement et al. (1996), a strengthening Equatorial Undercurrent (EUC) also contributes to eastern equatorial Pacific cooling. Importantly, the strengthening EUC is a response of the ocean to a seasonal weakening of the Walker circulation and thus can reconcile disparate observations of changes to the atmosphere and ocean in the equatorial Pacific. CMIP5 models do not capture the magnitude of this response of the EUC to anthropogenic radiative forcing potentially because of biases in the sensitivity of the EUC to changes in zonal wind stress, like the weakening Walker circulation. Consequently, they project a continuation of the opposite to what has been observed in the real world, with potentially serious consequences for projected climate impacts that are influenced by the tropical Pacific.
Milankovitch cycles in an equatorial delta from the Miocene of Borneo
NASA Astrophysics Data System (ADS)
Marshall, Nathan; Zeeden, Christian; Hilgen, Frederik; Krijgsman, Wout
2017-08-01
The factors controlling sedimentary cyclicity in deltaic systems are a subject of intense debate, and more research, in different deltaic environments and time periods, is needed to better understand the possible mechanisms. Offshore and Pleistocene case studies are more common than proximal and more ancient, greenhouse-climate examples. Furthermore, many studies lack a (statistical) cyclostratigraphic element. The paleo-Mahakam delta of Eastern Kalimantan, Borneo developed during the globally warm middle Miocene, in an equatorial setting, making it of interest to comprehend cyclic sedimentation in a period of warmer yet rapidly changing climate. In this study, statistical analysis of lithological changes shows that regular sandstone/shale alternations occur in a distinct pattern of cycles with thicknesses of ∼90, ∼30, and ∼17 m. Using independent dating, these thicknesses translate into periods of about 100, 40, and 20 kyr, matching the known periods of Earth's orbital eccentricity, obliquity and precession. The obliquity dominance in the middle interval is markedly similar to that observed in the global marine isotope (benthic δ18O) and other cyclic proxy records for this time interval. Despite a mismatch in the number of 40 kyr cycles compared to the global record that can be plausibly linked to the major sea-level drop at ∼13.8 Ma and facies shifts, it appears that the proximal setting of the paleo-Mahakam's sedimentation was dominantly controlled by allogenic orbital forcing, probably as a consequence of glacioeustasy. In particular, the observed obliquity dominance at paleo-equatorial latitudes, as seen in other records, highlights the dominance of orbital forcing, and potentially glacioeustatic sea level change, during this crucial period of warmer climate.
NASA Astrophysics Data System (ADS)
Coats, Sloan; Karnauskas, Kristopher
2017-04-01
The pattern of sea surface temperature (SST) in the tropical Pacific Ocean provides an important control on global climate, necessitating an understanding of how this pattern will change in response to anthropogenic radiative forcing. State-of-the-art climate models from the Coupled Model Intercomparison Project phase 5 (CMIP5) overwhelmingly project a decrease in the tropical Pacific zonal SST gradient over the coming century. This decrease is, in part, a response of the ocean to a weakening Walker circulation in the CMIP5 models, a consequence of the mass and energy balances of the hydrologic cycle identified by Held and Soden (2006). CMIP5 models, however, are not able to reproduce the observed increase in the zonal SST gradient between 1900-2013 C.E., which we argue to be robust using advanced statistical techniques and new observational datasets. While this increase is suggestive of the ocean dynamical thermostat mechanism of Clement et al. (1996), we provide evidence that a strengthening Equatorial Undercurrent (EUC) also contributes to eastern equatorial Pacific cooling. Importantly, the strengthening EUC is a response of the ocean to a weakening Walker circulation and thus can help to reconcile the range of opposing theories and observations of anthropogenic climate change in the tropical Pacific Ocean. Because of a newly identified bias in their simulation of equatorial coupled atmosphere-ocean dynamics, however, CMIP5 models do not capture the magnitude of the response of the EUC to anthropogenic radiative forcing. Consequently, they project a continuation of the opposite to what has been observed in the real world, with potentially serious consequences for projected climate impacts that are influenced by the tropical Pacific Ocean.
NASA Astrophysics Data System (ADS)
Lipenkov, V.; Raynaud, D.; Loutre, M.-F.; Duval, P.; Lemieux-Dudon, B.
2009-04-01
An accurate chronology of ice cores is needed for interpreting the paleoclimatic record and understanding the relation between insolation and climate. A new domain of research in this area has been initially stimulated by the work of M. Bender (2002) linking the record of O2/N2 ratio in the air trapped in the Vostok ice with the local insolation. More recently, it has been proposed that the long-term changes in air content, V, recorded in ice from the high Antarctic plateau is also dominantly imprinted by the local summer insolation (Raynaud et al., 2007). The present paper presents a new V record from Vostok, which is compared with the published Vostok O2/N2 record for the same period of time (150-400 ka BP) by using the same spectral analysis methods. The spectral differences between the two properties and the possible mechanisms linking them with insolation through the surface snow structure and the close-off processes are discussed. The main result of our study is that the two experimentally independent local insolation proxies lead to absolute (orbital) time scales, which agree together within a standard deviation of 0.6 ka. This result strongly adds credibility to the air content of ice and the O2 to N2 ratio of the air trapped in ice as equally reliable and complementary tools for accurate dating of existing and future deep ice cores. References: M. Bender, Orbital tuning chronology for the Vostok climate record supported by trapped gas composition, Earth and Planetary Science Letters 204(2002) 275-289. D. Raynaud, V. Lipenkov, B. Lemieux-Dudon, P. Duval, M.F. Loutre, N. Lhomme, The local insolation signature of air content in Antarctic ice: a new step toward an absolute dating of ice records, Earth and Planetary Science Letters 261(2007) 337-349.
Lewinson, Ryan T; Collins, Kelsey H; Vallerand, Isabelle A; Wiley, J Preston; Woodhouse, Linda J; Reimer, Raylene A; Worobets, Jay T; Herzog, Walter; Stefanyshyn, Darren J
2014-12-03
Knee osteoarthritis (OA) progression has been linked to increased peak external knee adduction moments (KAMs). Although some trials have attempted to reduce pain and improve function in OA by reducing KAMs with a wedged footwear insole intervention, KAM reduction has not been specifically controlled for in trial designs, potentially explaining the mixed results seen in the literature. Therefore, the primary purpose of this trial is to identify the effects of reduced KAMs on knee OA pain and function. Forty-six patients with radiographically confirmed diagnosis medial knee OA will be recruited for this 3 month randomized controlled trial. Recruitment will be from Alberta and surrounding areas. Eligibility criteria include being between the ages of 40 and 85 years, have knee OA primarily localized to the medial tibiofemoral compartment, based on the American College of Rheumatology diagnostic criteria and be classified as having a Kellgren-Lawrence grade of 1 to 3. Patients will visit the laboratory at baseline for testing that includes dual x-ray absorptiometry, biomechanical testing, and surveys (KOOS, PASE activity scale, UCLA activity scale, comfort visual analog scale). At baseline, patients will be randomized to either a wedged insole group to reduce KAMs, or a waitlist control group where no intervention is provided. The survey tests will be repeated at 3 months, and response to wedged insoles over 3 months will be evaluated. This study represents the first step in systematically evaluating the effects of reduced KAMs on knee OA management by using a patient-specific wedged insole prescription procedure rather than providing the same insole to all patients. The results of this trial will provide indications as to whether reduced KAMs are an effective strategy for knee OA management, and whether a personalized approach to footwear insole prescription is warranted. NCT02067208.
Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume.
Abe-Ouchi, Ayako; Saito, Fuyuki; Kawamura, Kenji; Raymo, Maureen E; Okuno, Jun'ichi; Takahashi, Kunio; Blatter, Heinz
2013-08-08
The growth and reduction of Northern Hemisphere ice sheets over the past million years is dominated by an approximately 100,000-year periodicity and a sawtooth pattern (gradual growth and fast termination). Milankovitch theory proposes that summer insolation at high northern latitudes drives the glacial cycles, and statistical tests have demonstrated that the glacial cycles are indeed linked to eccentricity, obliquity and precession cycles. Yet insolation alone cannot explain the strong 100,000-year cycle, suggesting that internal climatic feedbacks may also be at work. Earlier conceptual models, for example, showed that glacial terminations are associated with the build-up of Northern Hemisphere 'excess ice', but the physical mechanisms underpinning the 100,000-year cycle remain unclear. Here we show, using comprehensive climate and ice-sheet models, that insolation and internal feedbacks between the climate, the ice sheets and the lithosphere-asthenosphere system explain the 100,000-year periodicity. The responses of equilibrium states of ice sheets to summer insolation show hysteresis, with the shape and position of the hysteresis loop playing a key part in determining the periodicities of glacial cycles. The hysteresis loop of the North American ice sheet is such that after inception of the ice sheet, its mass balance remains mostly positive through several precession cycles, whose amplitudes decrease towards an eccentricity minimum. The larger the ice sheet grows and extends towards lower latitudes, the smaller is the insolation required to make the mass balance negative. Therefore, once a large ice sheet is established, a moderate increase in insolation is sufficient to trigger a negative mass balance, leading to an almost complete retreat of the ice sheet within several thousand years. This fast retreat is governed mainly by rapid ablation due to the lowered surface elevation resulting from delayed isostatic rebound, which is the lithosphere-asthenosphere response. Carbon dioxide is involved, but is not determinative, in the evolution of the 100,000-year glacial cycles.
Muñoz-Organero, Mario; Davies, Richard; Mawson, Sue
2017-01-01
Insole pressure sensors capture the force distribution patterns during the stance phase while walking. By comparing patterns obtained from healthy individuals to patients suffering different medical conditions based on a given similarity measure, automatic impairment indexes can be computed in order to help in applications such as rehabilitation. This paper uses the data sensed from insole pressure sensors for a group of healthy controls to train an auto-encoder using patterns of stochastic distances in series of consecutive steps while walking at normal speeds. Two experiment groups are compared to the healthy control group: a group of patients suffering knee pain and a group of post-stroke survivors. The Mahalanobis distance is computed for every single step by each participant compared to the entire dataset sensed from healthy controls. The computed distances for consecutive steps are fed into the previously trained autoencoder and the average error is used to assess how close the walking segment is to the autogenerated model from healthy controls. The results show that automatic distortion indexes can be used to assess each participant as compared to normal patterns computed from healthy controls. The stochastic distances observed for the group of stroke survivors are bigger than those for the people with knee pain.
Measurement of pressure walking in footwear used in leprosy.
Birke, J A; Foto, J G; Deepak, S; Watson, J
1994-09-01
Pressure measurements were made on 10 leprosy patients while walking barefoot and while using 6 sample shoes. The sample shoes, which represented footwear currently used worldwide in leprosy programmes, included: 1, a USA extradepth shoe without insole; 2, a USA extradepth shoe with insole; 3, a Chinese tennis shoe; 4, a Mozambique sandal; 5, a Bombay sandal; 6, a Bombay sandal with rigid sole; and 7, the patients' prescribed footwear. Peak pressure was significantly lower while walking in all footwear, except with the extradepth shoe without an insole, when compared to barefoot walking. Peak pressure was significantly lower walking in the Bombay sandals, the Chinese tennis shoe, the extradepth shoe with an insert and the patients' prescribed shoe when compared to the extradepth shoe without an insert. Regression analysis showed a significant inverse relationship between pressure and insole thickness (P < 0.001, R2 = 0.17).
Urban air pollution and solar energy
NASA Technical Reports Server (NTRS)
Gammon, R. B.; Huning, J. R.; Reid, M. S.; Smith, J. H.
1981-01-01
The design and performance of solar energy systems for many potential applications (industrial/residential heat, electricity generation by solar concentration and photovoltaics) will be critically affected by local insolation conditions. The effects of urban air pollution are considered and reviewed. A study of insolation data for Alhambra, California (9 km south of Pasadena) shows that, during a recent second-stage photochemical smog alert (greater than or equal to 0.35 ppm ozone), the direct-beam insolation at solar noon was reduced by 40%, and the total global by 15%, from clean air values. Similar effects have been observed in Pasadena, and are attributable primarily to air pollution. Effects due to advecting smog have been detected 200 km away, in the Mojave Desert. Preliminary performance and economic simulations of solar thermal and photovoltaic power systems indicate increasing nonlinear sensitivity of life cycle plant cost to reductions in insolation levels due to pollution.
NASA Astrophysics Data System (ADS)
Mukherjee, A.; Shankar, D.; Chatterjee, Abhisek; Vinayachandran, P. N.
2018-06-01
We simulate the East India Coastal Current (EICC) using two numerical models (resolution 0.1° × 0.1°), an oceanic general circulation model (OGCM) called Modular Ocean Model and a simpler, linear, continuously stratified (LCS) model, and compare the simulated current with observations from moorings equipped with acoustic Doppler current profilers deployed on the continental slope in the western Bay of Bengal (BoB). We also carry out numerical experiments to analyse the processes. Both models simulate well the annual cycle of the EICC, but the performance degrades for the intra-annual and intraseasonal components. In a model-resolution experiment, both models (run at a coarser resolution of 0.25° × 0.25°) simulate well the currents in the equatorial Indian Ocean (EIO), but the performance of the high-resolution LCS model as well as the coarse-resolution OGCM, which is good in the EICC regime, degrades in the eastern and northern BoB. An experiment on forcing mechanisms shows that the annual EICC is largely forced by the local alongshore winds in the western BoB and remote forcing due to Ekman pumping over the BoB, but forcing from the EIO has a strong impact on the intra-annual EICC. At intraseasonal periods, local (equatorial) forcing dominates in the south (north) because the Kelvin wave propagates equatorward in the western BoB. A stratification experiment with the LCS model shows that changing the background stratification from EIO to BoB leads to a stronger surface EICC owing to strong coupling of higher order vertical modes with wind forcing for the BoB profiles. These high-order modes, which lead to energy propagating down into the ocean in the form of beams, are important only for the current and do not contribute significantly to the sea level.
AGCM hindcasts with SST and other forcings: Responses from global to agricultural scales
NASA Astrophysics Data System (ADS)
Shah, Kathryn Pierce; Rind, David; Druyan, Leonard; Lonergan, Patrick; Chandler, Mark
2000-08-01
Multiple realizations of the 1969-1998 time period have been simulated by the GISS AGCM to explore its responsiveness to accumulated forcings, particularly over sensitive agricultural regions. A microwave radiative transfer postprocessor has produced the AGCM lower tropospheric, tropospheric, and lower stratospheric brightness temperature (Tb) time series for correlations with microwave sounding unit (MSU) time series. AGCM regional surface air temperature and precipitation were also correlated with GISTEMP temperature data and with rain gage data. Seven realizations by the AGCM were forced solely by observed sea surface temperatures. Subsequent runs hindcast January 1969 through April 1998 with an accumulation of forcings: observed sea surface temperatures (SSTs), greenhouse gases, stratospheric volcanic aerosols, stratospheric and tropospheric ozone, and tropospheric sulfate and black carbon aerosols. Lower stratospheric Tb correlations between the AGCM and the MSU for 1979-1998 reached as high as 0.93 globally given SST, greenhouse gases, volcanic aerosol, and stratospheric ozone forcings. Midtropospheric Tb correlations reached as high as 0.66 globally and 0.84 across the equatorial, 20°S-20°N band. Oceanic lower tropospheric Tb correlations were less high at 0.59 globally and 0.79 across the equatorial band. Of the sensitive agricultural areas considered, Nordeste in northeastern Brazil was simulated best with midtropospheric Tb correlations up to 0.80. The two other agricultural regions, in Africa and in the northern midlatitudes, suffered from higher levels of non-SST-induced variability. Zimbabwe had a maximum midtropospheric correlation of 0.54, while the U.S. Corn Belt reached only 0.25. Hindcast surface temperatures and precipitation were also correlated with observations, up to 0.46 and 0.63, respectively, for Nordeste. Correlations between AGCM and observed time series improved with addition of certain atmospheric forcings in zonal bands but not in agricultural regions encompassing only six AGCM grid cells.
Nanoscale characterization of the biomechanical properties of collagen fibrils in the sclera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papi, M.; Paoletti, P.; Geraghty, B.
We apply the PeakForce Quantitative Nanomechanical Property Mapping (PFQNM) atomic force microscopy mode for the investigation of regional variations in the nanomechanical properties of porcine sclera. We examine variations in the collagen fibril diameter, adhesion, elastic modulus and dissipation in the posterior, equatorial and anterior regions of the sclera. The mean fibril diameter, elastic modulus and dissipation increased from the posterior to the anterior region. Collagen fibril diameter correlated linearly with elastic modulus. Our data matches the known macroscopic mechanical behavior of the sclera. We propose that PFQNM has significant potential in ocular biomechanics and biophysics research.
NASA Astrophysics Data System (ADS)
Chang, Hai-Ru; Webster, Peter J.
1990-11-01
A fully nonlinear model is used to reexamine the impact of a zonally varying basic state on the propagation characteristics of latitudinally equatorially trapped modes. Linear studies have shown that such modes are longitudinally trapped in regions of negative stretching deformation of the equatorial time-mean zonal flow (i.e., where Ux < 0) forming `accumulation' regions of wave action flux. Furthermore, the accumulation regions tend to act as local emanation regions to the extratropics. These physical communications between the tropics and extratropics are referred to as fast teleconnections due to their rapidity (periods of days to weeks) compared to the much slower climatological differences in the mean states such as occur between El Niño and La Niña. The latter form of communication between low and high latitudes, which is induced by very low frequency SST changes, is referred to as a slow teleconnection.It is generally found that accumulation and emanation regions are present in the nonlinear regime with much the same character as with the linear model. The similarity exists even when realistic forcing functions are used with amplitudes and temporal and spatial characteristics that correspond to impulsive convection in the western Pacific Ocean. A description of the convection is given. A diagnosis of the linear and nonlinear results shows that, in the tropics, the linear advection by the mean flow plays a dominant role and probably is the reason for the great similarity of the linear and nonlinear tropical atmosphere. However, there are some differences between the linear and nonlinear results. Nonlinear waves appear to propagate more rapidly through the maximum westerlies along the equator and with less difficulty than linear waves. The differences that do occur arise from the nonlinear changes in the tropical mass field, especially in the accumulation zone. Differences between linear and nonlinear responses in the midlatitude response to equatorial forcing appear to reflect changes in the tropics. Nonlinear maxima occur poleward of the region of tropical westerlies but only after accumulation has occurred along the equator.The results of the study are used to discuss the problem of why there is considerable similarity between simple linear models and more sophisticated nonlinear models. Such similarity would probably explain why the NMC and the NEPRF global models exhibit phase locked responses in the middle latitudes to imposed and impulsive tropical forcing. The role of fast teleconnenions in the longer term general circulation of the atmosphere is discussed, especially during El Niño and La Niña. Whereas an aggregate role for the fast teleconnections in producing very slowly evolving climate features remains obscure, it does appear that the accumulation-emanation theory may infer different routings for transient communications between the tropics and higher latitudes and vice vera depending upon the state of the basic flow.
Impact of sunlight on the age of onset of bipolar disorder
Bauer, Michael; Glenn, Tasha; Alda, Martin; Andreassen, Ole A; Ardau, Raffaella; Bellivier, Frank; Berk, Michael; Bjella, Thomas D; Bossini, Letizia; Zompo, Maria Del; Dodd, Seetal; Fagiolini, Andrea; Frye, Mark A; Gonzalez-Pinto, Ana; Henry, Chantal; Kapczinski, Flávio; Kliwicki, Sebastian; König, Barbara; Kunz, Mauricio; Lafer, Beny; Lopez-Jaramillo, Carlos; Manchia, Mirko; Marsh, Wendy; Martinez-Cengotitabengoa, Mónica; Melle, Ingrid; Morken, Gunnar; Munoz, Rodrigo; Nery, Fabiano G; O’Donovan, Claire; Pfennig, Andrea; Quiroz, Danilo; Rasgon, Natalie; Reif, Andreas; Rybakowski, Janusz; Sagduyu, Kemal; Simhandl, Christian; Torrent, Carla; Vieta, Eduard; Zetin, Mark; Whybrow, Peter C
2012-01-01
Objective Although bipolar disorder has high heritability, the onset occurs during several decades of life, suggesting that social and environmental factors may have considerable influence on disease onset. This study examined the association between the age of onset and sunlight at the location of onset. Method Data were obtained from 2414 patients with a diagnosis of bipolar I disorder, according to DSM-IV criteria. Data were collected at 24 sites in 13 countries spanning latitudes 6.3 to 63.4 degrees from the equator, including data from both hemispheres. The age of onset and location of onset were obtained retrospectively, from patient records and/or direct interviews. Solar insolation data, or the amount of electromagnetic energy striking the surface of the earth, were obtained from the NASA Surface Meteorology and Solar Energy (SSE) database for each location of onset. Results The larger the maximum monthly increase in solar insolation at the location of onset, the younger the age of onset (coefficient= −4.724, 95% CI: −8.124 to −1.323, p = 0.006), controlling for each country’s median age. The maximum monthly increase in solar insolation occurred in springtime. No relationships were found between the age of onset and latitude, yearly total solar insolation, and the maximum monthly decrease in solar insolation. The largest maximum monthly increases in solar insolation occurred in diverse environments, including Norway, arid areas in California, and Chile. Conclusion The large maximum monthly increase in sunlight in springtime may have an important influence on the onset of bipolar disorder. PMID:22612720
Southern Hemisphere and deep-sea warming led deglacial atmospheric CO2 rise and tropical warming.
Stott, Lowell; Timmermann, Axel; Thunell, Robert
2007-10-19
Establishing what caused Earth's largest climatic changes in the past requires a precise knowledge of both the forcing and the regional responses. We determined the chronology of high- and low-latitude climate change at the last glacial termination by radiocarbon dating benthic and planktonic foraminiferal stable isotope and magnesium/calcium records from a marine core collected in the western tropical Pacific. Deep-sea temperatures warmed by approximately 2 degrees C between 19 and 17 thousand years before the present (ky B.P.), leading the rise in atmospheric CO2 and tropical-surface-ocean warming by approximately 1000 years. The cause of this deglacial deep-water warming does not lie within the tropics, nor can its early onset between 19 and 17 ky B.P. be attributed to CO2 forcing. Increasing austral-spring insolation combined with sea-ice albedo feedbacks appear to be the key factors responsible for this warming.
Regional and global forcing of glacier retreat during the last deglaciation
Shakun, Jeremy D.; Clark, Peter U.; He, Feng; Lifton, Nathaniel A.; Liu, Zhengyu; Otto-Bliesner, Bette L.
2015-01-01
The ongoing retreat of glaciers globally is one of the clearest manifestations of recent global warming associated with rising greenhouse gas concentrations. By comparison, the importance of greenhouse gases in driving glacier retreat during the most recent deglaciation, the last major interval of global warming, is unclear due to uncertainties in the timing of retreat around the world. Here we use recently improved cosmogenic-nuclide production-rate calibrations to recalculate the ages of 1,116 glacial boulders from 195 moraines that provide broad coverage of retreat in mid-to-low-latitude regions. This revised history, in conjunction with transient climate model simulations, suggests that while several regional-scale forcings, including insolation, ice sheets and ocean circulation, modulated glacier responses regionally, they are unable to account for global-scale retreat, which is most likely related to increasing greenhouse gas concentrations. PMID:26293133
Hatton, Anna L; Dixon, John; Rome, Keith; Brauer, Sandra G; Williams, Katrina; Kerr, Graham
2016-04-21
Many people with multiple sclerosis experience problems with walking, which can make daily activities difficult and often leads to falls. Foot sensation plays an important role in keeping the body balanced whilst walking; however, people with multiple sclerosis often have poor sensation on the soles of their feet. Wearing a specially designed shoe insole, which enhances plantar sensory information, could help people with multiple sclerosis to walk better. This study will explore whether long-term wear of a textured insole can improve walking in people with multiple sclerosis. A prospective randomised controlled trial with two parallel groups will be conducted aiming to recruit 176 people with multiple sclerosis living in the community (Brisbane, Australia). Adults with a clinical diagnosis of multiple sclerosis, Disease Steps score 1-4, who are ambulant over 100 m and who meet specific inclusion criteria will be recruited. Participants will be randomised to a smooth control insole (n = 88) or textured insole (n = 88) group. The allocated insole will be worn for 12-weeks within participants' own footwear, with self-report wear diaries and falls calendars being completed over this period. Blinded assessors will conduct two baseline assessments and one post-intervention assessment. Gait tasks will be completed barefoot, wearing standardised footwear only, and wearing standardised footwear with smooth and textured insoles. The primary outcome measure will be mediolateral base of support when walking over even and uneven surfaces. Secondary measures include spatiotemporal gait parameters (stride length, stride time variability, double-limb support time, velocity), gait kinematics (hip, knee, and ankle joint angles, toe clearance, trunk inclination, arm swing, mediolateral pelvis/head displacement), foot sensation (light touch-pressure, vibration, two-point discrimination) and proprioception (ankle joint position sense). Group allocation will be concealed and all analyses will be based on an intention-to-treat principle. This study will explore the effects of wearing textured insoles over 12-weeks on gait, foot sensation and proprioception in people with multiple sclerosis. The study has the potential to identify a new, evidence-based footwear intervention which has the capacity to enhance mobility and independent living in people with multiple sclerosis. Australian New Zealand Clinical Trials Registry ACTRN12615000421538 . Registered 4 May 2015.
Sea ice and oceanic processes on the Ross Sea continental shelf
NASA Technical Reports Server (NTRS)
Jacobs, S. S.; Comiso, J. C.
1989-01-01
The spatial and temporal variability of Antarctic sea ice concentrations on the Ross Sea continental shelf have been investigated in relation to oceanic and atmospheric forcing. Sea ice data were derived from Nimbus 7 scanning multichannel microwave radiometer (SMMR) brightness temperatures from 1979-1986. Ice cover over the shelf was persistently lower than above the adjacent deep ocean, averaging 86 percent during winter with little month-to-month of interannual variability. The large spring Ross Sea polynya on the western shelf results in a longer period of summer insolation, greater surface layer heat storage, and later ice formation in that region the following autumn.
NASA Astrophysics Data System (ADS)
Ivory, S.; Russell, J. L.; Cohen, A. S.
2010-12-01
Threats to tropical biodiversity with serious and costly implications for both ecosystems and human well-being in Africa have led the IPCC to classify this region as vulnerable to negative impacts from climate change. Yet little is known about how vegetation communities respond to altered patterns of rainfall and evaporation. Paleoclimate records within the tropics can help answer questions about how vegetation response to climate forcing changes over time. However, sparse spatial extent of records and uncertainty surrounding the climate-vegetation relationship complicate these insights. Understanding the climatic mechanisms involved in landscape change at all temporal scales creates the need for quantitative constraints of the modern relationship between climatic controls, hydrology, and vegetation. Though modern observational data can help elucidate this relationship, low resolution and complicated rainfall/vegetation associations make them less than ideal. Satellite data of vegetation productivity (NDVI) with continuous high-resolution spatial coverage provides a robust and elegant tool for identifying the link between global and regional controls and vegetation. We use regression analyses of variables either previously proposed or potentially important in regulating Afro-tropical vegetation (insolation, out-going long-wave radiation, geopotential height, Southern Oscillation Index, Indian Ocean Dipole, Indian Monsoon precipitation, sea-level pressure, surface wind, sea-surface temperature) on continuous, time-varying spatial fields of 8km NDVI for sub-Saharan Africa. These analyses show the importance of global atmospheric controls in producing regional intra-annual and inter-annual vegetation variability. Dipole patterns emerge primarily correlated with both the seasonal and inter-annual extent of the Intertropical Convergence Zone (ITCZ). Inter-annual ITCZ variability drives patterns in African vegetation resulting from the effect of insolation anomalies and ENSO events on atmospheric circulation rather than sea surface temperatures or teleconnections to mid/high latitudes. Global controls on tropical atmospheric circulation regulate vegetation throughout sub-Saharan Africa on many time scales through alteration of dry season length and moisture convergence, rather than precipitation amount.
Solar insolation in springtime influences age of onset of bipolar I disorder.
Bauer, M; Glenn, T; Alda, M; Aleksandrovich, M A; Andreassen, O A; Angelopoulos, E; Ardau, R; Ayhan, Y; Baethge, C; Bharathram, S R; Bauer, R; Baune, B T; Becerra-Palars, C; Bellivier, F; Belmaker, R H; Berk, M; Bersudsky, Y; Bicakci, Ş; Birabwa-Oketcho, H; Bjella, T D; Bossini, L; Cabrera, J; Cheung, E Y W; Del Zompo, M; Dodd, S; Donix, M; Etain, B; Fagiolini, A; Fountoulakis, K N; Frye, M A; Gonzalez-Pinto, A; Gottlieb, J F; Grof, P; Harima, H; Henry, C; Isometsä, E T; Janno, S; Kapczinski, F; Kardell, M; Khaldi, S; Kliwicki, S; König, B; Kot, T L; Krogh, R; Kunz, M; Lafer, B; Landén, M; Larsen, E R; Lewitzka, U; Licht, R W; Lopez-Jaramillo, C; MacQueen, G; Manchia, M; Marsh, W; Martinez-Cengotitabengoa, M; Melle, I; Meza-Urzúa, F; Yee Ming, M; Monteith, S; Morken, G; Mosca, E; Munoz, R; Mythri, S V; Nacef, F; Nadella, R K; Nery, F G; Nielsen, R E; O'Donovan, C; Omrani, A; Osher, Y; Østermark Sørensen, H; Ouali, U; Pica Ruiz, Y; Pilhatsch, M; Pinna, M; da Ponte, F D R; Quiroz, D; Ramesar, R; Rasgon, N; Reddy, M S; Reif, A; Ritter, P; Rybakowski, J K; Sagduyu, K; Scippa, Â M; Severus, E; Simhandl, C; Stein, D J; Strejilevich, S; Subramaniam, M; Sulaiman, A H; Suominen, K; Tagata, H; Tatebayashi, Y; Tondo, L; Torrent, C; Vaaler, A E; Veeh, J; Vieta, E; Viswanath, B; Yoldi-Negrete, M; Zetin, M; Zgueb, Y; Whybrow, P C
2017-12-01
To confirm prior findings that the larger the maximum monthly increase in solar insolation in springtime, the younger the age of onset of bipolar disorder. Data were collected from 5536 patients at 50 sites in 32 countries on six continents. Onset occurred at 456 locations in 57 countries. Variables included solar insolation, birth-cohort, family history, polarity of first episode and country physician density. There was a significant, inverse association between the maximum monthly increase in solar insolation at the onset location, and the age of onset. This effect was reduced in those without a family history of mood disorders and with a first episode of mania rather than depression. The maximum monthly increase occurred in springtime. The youngest birth-cohort had the youngest age of onset. All prior relationships were confirmed using both the entire sample, and only the youngest birth-cohort (all estimated coefficients P < 0.001). A large increase in springtime solar insolation may impact the onset of bipolar disorder, especially with a family history of mood disorders. Recent societal changes that affect light exposure (LED lighting, mobile devices backlit with LEDs) may influence adaptability to a springtime circadian challenge. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Noll, Christine; Steitz, Vanessa; Daentzer, Dorothea
2017-01-01
Proprioceptive insoles are known to influence the functions of posture and gait by modulations of the sensory structures at the sole of the foot. Literature has shown that they could improve the position of the upper-body in patients with postural complaints of the musculoskeletal system. The aim of this study was to evaluate the influence of proprioceptive insoles on the spinal curvature in patients with slight idiopathic scoliosis. Eighteen patients were included in this prospective, single-centre, randomized study. All patients needed to have a relevant growth potential and suffered from a slight idiopathic scoliosis. Two groups were used, where group 1 performed physiotherapy twice a week, whereas group 2 was additionally supplied with proprioceptive insoles. Patients underwent three-dimensional rasterstereography for back-shape analysis. Furthermore, a conventional x-ray imaging of the spine was performed at the beginning and 1 year later to document the curvatures. There was no statistical difference in the Cobb angles, and in almost all parameters of the rasterstereography, there was no statistically significant change between and within both groups. According to the results of this study, there was no evidence of any statistical significant effect of proprioceptive insoles on spinal curvature in patients with slight idiopathic scoliosis.
Shoe-Insole Technology for Injury Prevention in Walking
Nagano, Hanatsu
2018-01-01
Impaired walking increases injury risk during locomotion, including falls-related acute injuries and overuse damage to lower limb joints. Gait impairments seriously restrict voluntary, habitual engagement in injury prevention activities, such as recreational walking and exercise. There is, therefore, an urgent need for technology-based interventions for gait disorders that are cost effective, willingly taken-up, and provide immediate positive effects on walking. Gait control using shoe-insoles has potential as an effective population-based intervention, and new sensor technologies will enhance the effectiveness of these devices. Shoe-insole modifications include: (i) ankle joint support for falls prevention; (ii) shock absorption by utilising lower-resilience materials at the heel; (iii) improving reaction speed by stimulating cutaneous receptors; and (iv) preserving dynamic balance via foot centre of pressure control. Using sensor technology, such as in-shoe pressure measurement and motion capture systems, gait can be precisely monitored, allowing us to visualise how shoe-insoles change walking patterns. In addition, in-shoe systems, such as pressure monitoring and inertial sensors, can be incorporated into the insole to monitor gait in real-time. Inertial sensors coupled with in-shoe foot pressure sensors and global positioning systems (GPS) could be used to monitor spatiotemporal parameters in real-time. Real-time, online data management will enable ‘big-data’ applications to everyday gait control characteristics. PMID:29738486
House, Carol; Reece, Allyson; Roiz de Sa, Dan
2013-06-01
This study was undertaken to determine whether the incidence of lower limb overuse injuries (LLOIs) sustained during Royal Marine training could be reduced by issuing the recruits with shock-absorbing insoles (SAIs) to wear in their military boots. This was a retrospective longitudinal trial conducted in two phases. Injury data from 1,416 recruits issued with standard Saran insoles and 1,338 recruits issued with SAI were compared. The recruits in the two groups were of similar height, body mass, and aerobic fitness and followed the same training course. The incidence of LLOI sustained by the recruits was lower (p < 0.05) in the SAI Group (19.0%) compared to the Saran Insole Group (31.7%). The incidences of lower limb stress fractures, tibial periostitis, tenosynovitis of foot, achilles tendonopathy, other tendonopathy and anterior knee pain were lower (p < 0.05) in the SAI Group. Tibial stress fracture incidence was lower (p < 0.05) in the SAI Group but metatarsal and femoral stress fracture incidences were the same for the two insole groups. Thus, issuing SAIs to military recruits undertaking a sustained, arduous physical training program with a high incidence of LLOI would provide a beneficial reduction in the incidence of LLOI. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.
How to Make Eccentricity Cycles in Stratigraphy: the Role of Compaction
NASA Astrophysics Data System (ADS)
Liu, W.; Hinnov, L.; Wu, H.; Pas, D.
2017-12-01
Milankovitch cycles from astronomically driven climate variations have been demonstrated as preserved in cyclostratigraphy throughout geologic time. These stratigraphic cycles have been identified in many types of proxies, e.g., gamma ray, magnetic susceptibility, oxygen isotopes, carbonate content, grayscale, etc. However, the commonly prominent spectral power of orbital eccentricity cycles in stratigraphy is paradoxical to insolation, which is dominated by precession index power. How is the spectral power transferred from precession to eccentricity in stratigraphy? Nonlinear sedimentation and bioturbation have long been identified as players in this transference. Here, we propose that in the absence of bioturbation differential compaction can generate the transference. Using insolation time series, we trace the steps by which insolation is transformed into stratigraphy, and how differential compaction of lithology acts to transfer spectral power from precession to eccentricity. Differential compaction is applied to unique values of insolation, which is assumed to control the type of deposited sediment. High compaction is applied to muds, and progressively lower compaction is applied to silts and sands, or carbonate. Linear differential compaction promotes eccentricity spectral power, but nonlinear differential compaction elevates eccentricity spectral power to dominance and precession spectral power to near collapse as is often observed in real stratigraphy. Keywords: differential compaction, cyclostratigraphy, insolation, eccentricity
MJO: Asymptotically-Nondivergent Nonlinear Wave?: A Review
NASA Astrophysics Data System (ADS)
Yano, J. I.
2014-12-01
MJO is often considered a convectively-coupled wave. The present talk is going to argue that it is best understood primarily as a nonlinear solitary wave dominated by vorticity. Role of convection is secondary,though likely catalytic. According to Charney's (1963) scale analysis, the large-scale tropical circulations are nondivergent to the leading order, i.e., dominated by rotational flows. Yano et al (2009) demonstrate indeed that is the case for a period dominated by three MJO events. The scale analysis of Yano and Bonazzola (2009, JAS) demonstrates such an asymptotically nondivergent regime is a viable alternative to the traditionally-believed equatorial-wave regime. Wedi and Smolarkiewicz (2010, JAS) in turn, show by numerical computations of a dry system that a MJO-like oscillation for a similar period can indeed be generated by free solitary nonlinear equatorial Rossby-wave dynamicswithout any convective forcing to a system. Unfortunately, this perspective is slow to be accepted with people's mind so much fixed on the role of convection. This situation may be compared to a slow historical process of acceptance of Eady and Charney's baroclinicinstability simply because it does not invoke any convection Ironically, once the nonlinear free-wave view for MJO is accepted, interpretations can more easily be developed for a recent series of numerical model experiments under a global channel configuration overthe tropics with a high-resolution of 5-50 km with or without convection parameterization. All those experiments tend to reproduce observed large-scale circulations associated with MJO rather well, though most of time, they fail to reproduce convective coherency associated with MJO.These large-scale circulations appear to be generated by lateral forcing imposed at the latitudinal walls. These lateral boundaries are reasonably far enough (30NS) to induce any direct influence to the tropics. There is no linear dry equatorial wave that supports this period either. In Wedi and Smolarkiewicz's analysis, such a lateral forcing is essential in order to obtain their nonlinear solitary wave solution. Thus is the leading-order solution for MJO in the same sense as the linear baroclinic instability is a leading-order solution to the midlatitude synoptic-scale storm.
Moist convective storms in the atmosphere of Saturn
NASA Astrophysics Data System (ADS)
Hueso, R.; Sánchez-Lavega, A.
2003-05-01
Moist convective storms might be a key aspect in the global energy budget of the atmospheres of the Giant Planets. In spite of its dull appearance, Saturn is known to develop the largest scale convective storms in the Solar System, the Great White Spots, the last of them arising in 1990 triggered a planetary scale disturbance that encircled the whole Equatorial region. However, Saturn seems to be very much less convective than Jupiter, being convective storms rare and small for the most part of the cases. Here we present simulations of moist convective storms in the atmosphere of Saturn at different latitudes, the Equator and 42 deg S, the regions where most of the convective activity of the planet has been observed. We use a 3D anelastic model of the atmosphere with parameterized microphysics (Hueso and Sánchez-Lavega, 2001) and we study the onset and evolution of moist convective storms. Ammonia storms are able to develop only if the static stability of the upper atmosphere is slightly decreased. Water storms are difficult to develop requiring very specific atmospheric conditions. However, when they develop they can be very energetic arriving at least to the 150 mbar level. The Coriolis forces play a mayor role in the characteristics of water based storms in the atmosphere of Saturn. The 3-D Coriolis forces at the Equator transfer upward momentum to westward motions acting to diminish the strength of the equatorial jet. The GWS of 1990 could have been a mayor force in reducing the intensity of the equatorial jet stream as revealed recently (Sánchez-Lavega et al. Nature, 2003). The Cassini spacecraft will arrive to Saturn in a year. Its observations of the atmosphere will allow to measure the amount of convective activity on the planet, its characteristics and it will clarify the role of moist convection in the atmospheric dynamics of the Giant Planets. Acknowledgements: This work was supported by the Spanish MCYT PNAYA 2000-0932. RH acknowledges a Post-doctoral fellowship from Gobierno Vasco.
NASA Astrophysics Data System (ADS)
Duan, Wansuo; Zhao, Peng
2017-04-01
Within the Zebiak-Cane model, the nonlinear forcing singular vector (NFSV) approach is used to investigate the role of model errors in the "Spring Predictability Barrier" (SPB) phenomenon within ENSO predictions. NFSV-related errors have the largest negative effect on the uncertainties of El Niño predictions. NFSV errors can be classified into two types: the first is characterized by a zonal dipolar pattern of SST anomalies (SSTA), with the western poles centered in the equatorial central-western Pacific exhibiting positive anomalies and the eastern poles in the equatorial eastern Pacific exhibiting negative anomalies; and the second is characterized by a pattern almost opposite the first type. The first type of error tends to have the worst effects on El Niño growth-phase predictions, whereas the latter often yields the largest negative effects on decaying-phase predictions. The evolution of prediction errors caused by NFSV-related errors exhibits prominent seasonality, with the fastest error growth in the spring and/or summer seasons; hence, these errors result in a significant SPB related to El Niño events. The linear counterpart of NFSVs, the (linear) forcing singular vector (FSV), induces a less significant SPB because it contains smaller prediction errors. Random errors cannot generate a SPB for El Niño events. These results show that the occurrence of an SPB is related to the spatial patterns of tendency errors. The NFSV tendency errors cause the most significant SPB for El Niño events. In addition, NFSVs often concentrate these large value errors in a few areas within the equatorial eastern and central-western Pacific, which likely represent those areas sensitive to El Niño predictions associated with model errors. Meanwhile, these areas are also exactly consistent with the sensitive areas related to initial errors determined by previous studies. This implies that additional observations in the sensitive areas would not only improve the accuracy of the initial field but also promote the reduction of model errors to greatly improve ENSO forecasts.
NASA Technical Reports Server (NTRS)
Lau, K.- M.; Kim, K.-M.; Yang, S.
1998-01-01
In this paper, we present a description of the internal dynamics and boundary forcing characteristics of two major components of the Asian summer monsoon (ASM), i.e., the South Asian (SAM) and the Southeast-East Asian monsoon (SEAM). The description is based on a new monsoon-climate paradigm in which the variability of ASM is considered as the outcome of the interplay of a "fast" and an "intermediate" monsoon subsystem, under the influenced of the "slow" varying external forcings. Two sets of regional monsoon indices derived from dynamically consistent rainfall and wind data are used in this study. For SAM, the internal dynamics is represented by that of a "classical" monsoon system where the anomalous circulation is governed by Rossby-wave dynamics, i.e., generation of anomalous vorticity induced by an off-equatorial heat source is balanced by planetary vorticity advection. On the other hand, the internal dynamics of SEAM is characterized by a "hybrid" monsoon system featuring multi-cellular meridional circulation over the East Asian section, extending from the deep tropics to midlatitudes. These meridional-cells link tropical heating to extratropical circulation system via the East Asian jetstream, and are responsible for the characteristic occurrences of zonally oriented anomalous rainfall patterns over East Asian and the subtropical western Pacific. In the extratropical regions, the major upper level vorticity balance is by anomalous vorticity advection and generation by the anomalous divergent circulation. A consequence of this is that compared to SAM, the SEAM is associated with stronger teleconnection patterns to regions outside the ASM. A strong SAM is linked to basin-scale sea surface temperature (SST) fluctuation with significant signal in the equatorial eastern Pacific. During the boreal spring SST warming in the Arabian Sea and the subtropical western Pacific may lead to a strong SAM. For SEAM, interannual variability is tied to SSTA over the Sea of Japan and the South China Sea regions, while the linkage to equatorial basin-scale SSTA is weak at best. A large scale SSTA dipole with warming (cooling) in the subtropical central (eastern) Pacific foreshadows a strong SEAM.
Seasonal effects on the nucleus of comet 67P revealed by Rosetta/VIRTIS
NASA Astrophysics Data System (ADS)
Tosi, Federico; Capaccioni, Fabrizio; Filacchione, Gianrico; Erard, Stéphane; Rouseeau, Batiste; Combe, Jean-Philippe; Capria, Maria Teresa; Leyrat, Cédric; Longobardo, Andrea; Bockelée-Morvan, Dominique; Kappel, David; Arnold, Gabriele; Fonti, Sergio; Mancarella, Francesca; Kuehrt, Ekkehard; Mottola, Stefano
2016-04-01
We describe thermal effects on the nucleus of comet 67P. Due to the overall low thermal inertia of the nucleus surface, the surface temperature is essentially dominated by the instantaneous value of the solar incidence angle and the heliocentric distance. However, for each location, the smallest achievable value of insolation angle depends on the season and topography. Given the substantial obliquity of comet 67P, seasons are such that the northern hemisphere is mainly illuminated at aphelion while the southern hemisphere receives most insolation soon after perihelion. In addition, the heliocentric distance strongly affects the surface temperature, all other parameters being equal. This is a larger effect in comets than in asteroids, due to the wide range of heliocentric distance values spanned by comets. When Rosetta started its global mapping observation campaign, in early August 2014, hyperspectral images acquired by the VIRTIS imaging spectrometer onboard the Rosetta Orbiter covered only the northern regions of the cometary surface, and the equatorial belt became gradually unveiled, while the southern region has been revealed from 2015 onwards. In parallel, the comet's heliocentric distance has been decreasing from ˜3.6 AU down to 1.24 AU, the distance at which the perihelion passage occurred on 13 August 2015. By relating surface temperatures as measured by VIRTIS to three variables: solar incidence angle, true local solar time and heliocentric distance, we aim to separate the relative contributions due to season and to the heliocentric distance. To do this, we use both VIRTIS-M data (namely data from the mapping spectrometer covering the 1-5 μm range, available up to April 2015, i.e. before the failure of the IR cryocooler) and VIRTIS-H data (namely data from the high-resolution point spectrometer covering the 2-5 μm range), and we focus in particular on three regions: one in the northern hemisphere, one in the equatorial region and one in the southern hemisphere. These three regions are chosen so as to be relatively smooth at the spatial resolution that is achieved from a distance of about 100 km (25 m/px for VIRTIS-M, 50×150 m/px for VIRTIS-H), in order to limit the effects of large-scale surface roughness. Acknowledgements: The authors would like to thank the following institutions and agencies, which supported this work: Italian Space Agency (ASI - Italy), Centre National d'Etudes Spatiales (CNES- France), Deutsches Zentrum für Luft- und Raumfahrt (DLR-Germany), National Aeronautic and Space Administration (NASA-USA) Rosetta Program, Science and Technology Facilities Council (UK). VIRTIS has been built by a consortium, which includes Italy, France and Germany, under the scientific responsibility of the Istituto di Astrofisica e Planetologia Spaziali of INAF, Italy, which guides also the scientific operations. The VIRTIS instrument development has been funded and managed by ASI, with contributions from Observatoire de Meudon financed by CNES, and from DLR. The computational resources used in this research have been supplied by INAF-IAPS through the DataWell project.
North Tropical Atlantic Climate Variability and Model Biases
NASA Astrophysics Data System (ADS)
Yang, Y.
2017-12-01
Remote forcing from El Niño-Southern Oscillation (ENSO) and local ocean-atmosphere feedback are important for climate variability over the North Tropical Atlantic. These two factors are extracted by the ensemble mean and inter-member difference of a 10-member Pacific Ocean-Global Atmosphere (POGA) experiment, in which sea surface temperatures (SSTs) are restored to the observed anomalies over the tropical Pacific but fully coupled to the atmosphere elsewhere. POGA reasonably captures main features of observed North Tropical Atlantic variability. ENSO forced and local North Tropical Atlantic modes (NTAMs) develop with wind-evaporation-SST feedback, explaining one third and two thirds of total variance respectively. Notable biases, however, exist. The seasonality of the simulated NTAM is delayed by one month, due to the late development of the North Atlantic Oscillation (NAO) in the model. A spurious band of enhanced sea surface temperature (SST) variance (SBEV) is identified over the northern equatorial Atlantic in POGA and 14 out of 23 CMIP5 models. The SBEV is especially pronounced in boreal spring and due to the combined effect of both anomalous atmospheric thermal forcing and oceanic vertical upwelling. While the tropical North Atlantic variability is only weakly correlated with the Atlantic Zonal Mode (AZM) in observations, the SBEV in CMIP5 produces conditions that drive and intensify the AZM variability via triggering the Bjerknes feedback. This partially explains why AZM is strong in some CMIP5 models even though the equatorial cold tongue and easterly trades are biased low.
NASA Astrophysics Data System (ADS)
Cheng, X.; McCreary, J. P., Jr.; Qiu, B.; Yu, Z.; DU, Y.
2016-12-01
Intraseasonal-to-semiannual variability of sea-surface height (SSH) in the eastern, equatorial Indian Ocean (EEIO) and southern Bay of Bengal (BoB) is investigated using altimetric data, and solutions to 1½-layer (first-baroclinic-mode) and linear, continuously stratified (LCS; multi-baroclinic-mode) models. The amplitude and dominant period of SSH variability differ regionally. Large-amplitude variability is found along the west coast of Sumatra, in a zonal band across the BoB centered along 5°N, east of Sri Lanka, and in the northwestern BoB. Along the Sumatran west coast, SSH variability peaks at 30-60 days, 90 days, and 180 days. Along 5°N and east of Sri Lanka, 30-60-day variability is dominant. Sensitivity experiments using a nonlinear version of the 1½-layer model forced by realistic winds reproduce the observed patterns of intraseasonal variability in the southern BoB. At 30-60 days, the solutions show that eddies (nonlinear Rossby waves) propagating from the east, rather than local wind forcing, account for most of the variance east of Sri Lanka; furthermore, they demonstrate that the variance is significantly enhance by the nonlinear transfer of 90-120-day energy into the intraseasonal band. The LCS solutions show that the first two baroclinic modes explain most of the SSH variance at 90-180 days. The second-baroclinic-mode dominates the SSH variance at 180 days, a consequence of basin resonance and strong wind forcing.
NASA Technical Reports Server (NTRS)
Barnier, Bernard; Capella, Jorge; O'Brien, James J.
1994-01-01
The aim of this study is to evaluate the impact of the bandlike sampling of spaceborne scatterometers on the ability of scatterometer winds to successfully force the mean flow and seasonal cycle of an ocean model in the context of equatorial and tropical dynamics. The equatorial ocean is simulated with a four-layer, primitive equation, reduced gravity model of the Indian Ocean. The variable wind stress used in this study is derived from one year (1988) of 6-hour analyses of the 10-m wind vector over the Indian Ocean performed at the European Centre for Medium-Range Weather Forecasts (ECMWF). It is applied as a forcing at every grid point of the model to drive a reference circulation. Scatterometer winds are simulated from ECMWF winds, using the nominal configurations and orbital parameters of the European Remote Sensing 1 (ERS-1) and NASA Scatterometer (NSCAT) missions. The model is forced in real time under swaths with the raw scatterometer winds of ERS-1 and NSCAT, with a persistence condition (i.e., the wind is kept constsnt until the next passage of the satellite provides a new value). The circulation obtained for each of the scatterometer experiments is compared with the reference circulation. The seasonal circulation of the Indian Ocean with NSCAT winds is very similar to the reference. The perturbations introduced by the bandlike sampling and the persistance condition have an impact similar to that of a small uncorrelated noise added to the reference forcing. The persistence condition for ERS-1 does not give results which are as good as those obtained for NSCAT.
May common model biases reduce CMIP5's ability to simulate the recent Pacific La Niña-like cooling?
NASA Astrophysics Data System (ADS)
Luo, Jing-Jia; Wang, Gang; Dommenget, Dietmar
2018-02-01
Over the recent three decades sea surface temperate (SST) in the eastern equatorial Pacific has decreased, which helps reduce the rate of global warming. However, most CMIP5 model simulations with historical radiative forcing do not reproduce this Pacific La Niña-like cooling. Based on the assumption of "perfect" models, previous studies have suggested that errors in simulated internal climate variations and/or external radiative forcing may cause the discrepancy between the multi-model simulations and the observation. But the exact causes remain unclear. Recent studies have suggested that observed SST warming in the other two ocean basins in past decades and the thermostat mechanism in the Pacific in response to increased radiative forcing may also play an important role in driving this La Niña-like cooling. Here, we investigate an alternative hypothesis that common biases of current state-of-the-art climate models may deteriorate the models' ability and can also contribute to this multi-model simulations-observation discrepancy. Our results suggest that underestimated inter-basin warming contrast across the three tropical oceans, overestimated surface net heat flux and underestimated local SST-cloud negative feedback in the equatorial Pacific may favor an El Niño-like warming bias in the models. Effects of the three common model biases do not cancel one another and jointly explain 50% of the total variance of the discrepancies between the observation and individual models' ensemble mean simulations of the Pacific SST trend. Further efforts on reducing common model biases could help improve simulations of the externally forced climate trends and the multi-decadal climate fluctuations.
Turcato, Anna Maria; Godi, Marco; Giordano, Andrea; Schieppati, Marco; Nardone, Antonio
2015-01-09
Turning involves complex reorientation of the body and is accompanied by asymmetric motion of the lower limbs. We investigated the distribution of the forces under the two feet, and its relation to the trajectory features and body medio-lateral displacement during curved walking. Twenty-six healthy young participants walked under three different randomized conditions: in a straight line (LIN), in a circular clockwise path and in a circular counter-clockwise path. Both feet were instrumented with Pedar-X insoles. An accelerometer was fixed to the trunk to measure the medio-lateral inclination of the body. We analyzed walking speed, stance duration as a percent of gait cycle (%GC), the vertical component of the ground reaction force (vGRF) of both feet during the entire stance, and trunk inclination. Gait speed was faster during LIN than curved walking, but not affected by the direction of the curved trajectory. Trunk inclination was negligible during LIN, while the trunk was inclined toward the center of the path during curved trajectories. Stance duration of LIN foot and foot inside the curved trajectory (Foot-In) was longer than for foot outside the trajectory (Foot-Out). vGRF at heel strike was larger in LIN than in curved walking. At mid-stance, vGRF for both Foot-In and Foot-Out was higher than for LIN foot. At toe off, vGRF for both Foot-In and Foot-Out was lower than for LIN foot; in addition, Foot-In had lower vGRF than Foot-Out. During curved walking, a greater loading of the lateral heel occurred for Foot-Out than Foot-In and LIN foot. On the contrary, a smaller lateral loading of the heel was found for Foot-In than LIN foot. At the metatarsal heads, an opposite behaviour was seen, since lateral loading decreased for Foot-Out and increased for Foot-In. The lower gait speed during curved walking is shaped by the control of trunk inclination and the production of asymmetric loading of heel and metatarsal heads, hence by the different contribution of the feet in producing the body inclination towards the centre of the trajectory.
NASA Astrophysics Data System (ADS)
Campbell, Lucy J.; Shepherd, Theodore G.
2005-12-01
Parameterization schemes for the drag due to atmospheric gravity waves are discussed and compared in the context of a simple one-dimensional model of the quasi-biennial oscillation (QBO). A number of fundamental issues are examined in detail, with the goal of providing a better understanding of the mechanism by which gravity wave drag can produce an equatorial zonal wind oscillation. The gravity wave driven QBOs are compared with those obtained from a parameterization of equatorial planetary waves. In all gravity wave cases, it is seen that the inclusion of vertical diffusion is crucial for the descent of the shear zones and the development of the QBO. An important difference between the schemes for the two types of waves is that in the case of equatorial planetary waves, vertical diffusion is needed only at the lowest levels, while for the gravity wave drag schemes it must be included at all levels. The question of whether there is downward propagation of influence in the simulated QBOs is addressed. In the gravity wave drag schemes, the evolution of the wind at a given level depends on the wind above, as well as on the wind below. This is in contrast to the parameterization for the equatorial planetary waves in which there is downward propagation of phase only. The stability of a zero-wind initial state is examined, and it is determined that a small perturbation to such a state will amplify with time to the extent that a zonal wind oscillation is permitted.
Ω-slow Solutions and Be Star Disks
NASA Astrophysics Data System (ADS)
Araya, I.; Jones, C. E.; Curé, M.; Silaj, J.; Cidale, L.; Granada, A.; Jiménez, A.
2017-09-01
As the disk formation mechanism(s) in Be stars is(are) as yet unknown, we investigate the role of rapidly rotating radiation-driven winds in this process. We implemented the effects of high stellar rotation on m-CAK models accounting for the shape of the star, the oblate finite disk correction factor, and gravity darkening. For a fast rotating star, we obtain a two-component wind model, I.e., a fast, thin wind in the polar latitudes and an Ω-slow, dense wind in the equatorial regions. We use the equatorial mass densities to explore Hα emission profiles for the following scenarios: (1) a spherically symmetric star, (2) an oblate star with constant temperature, and (3) an oblate star with gravity darkening. One result of this work is that we have developed a novel method for solving the gravity-darkened, oblate m-CAK equation of motion. Furthermore, from our modeling we find that (a) the oblate finite disk correction factor, for the scenario considering the gravity darkening, can vary by at least a factor of two between the equatorial and polar directions, influencing the velocity profile and mass-loss rate accordingly, (b) the Hα profiles predicted by our model are in agreement with those predicted by a standard power-law model for following values of the line-force parameters: 1.5≲ k≲ 3,α ˜ 0.6, and δ ≳ 0.1, and (c) the contribution of the fast wind component to the Hα emission line profile is negligible; therefore, the line profiles arise mainly from the equatorial disks of Be stars.
Sensitivity of Pacific Cold Tongue and Double-ITCZ Bias to Convective Parameterization
NASA Astrophysics Data System (ADS)
Woelfle, M.; Bretherton, C. S.; Pritchard, M. S.; Yu, S.
2016-12-01
Many global climate models struggle to accurately simulate annual mean precipitation and sea surface temperature (SST) fields in the tropical Pacific basin. Precipitation biases are dominated by the double intertropical convergence zone (ITCZ) bias where models exhibit precipitation maxima straddling the equator while only a single Northern Hemispheric maximum exists in observations. The major SST bias is the enhancement of the equatorial cold tongue. A series of coupled model simulations are used to investigate the sensitivity of the bias development to convective parameterization. Model components are initialized independently prior to coupling to allow analysis of the transient response of the system directly following coupling. These experiments show precipitation and SST patterns to be highly sensitive to convective parameterization. Simulations in which the deep convective parameterization is disabled forcing all convection to be resolved by the shallow convection parameterization showed a degradation in both the cold tongue and double-ITCZ biases as precipitation becomes focused into off-equatorial regions of local SST maxima. Simulations using superparameterization in place of traditional cloud parameterizations showed a reduced cold tongue bias at the expense of additional precipitation biases. The equatorial SST responses to changes in convective parameterization are driven by changes in near equatorial zonal wind stress. The sensitivity of convection to SST is important in determining the precipitation and wind stress fields. However, differences in convective momentum transport also play a role. While no significant improvement is seen in these simulations of the double-ITCZ, the system's sensitivity to these changes reaffirm that improved convective parameterizations may provide an avenue for improving simulations of tropical Pacific precipitation and SST.
Prevention of lower extremity stress fractures: a controlled trial of a shock absorbent insole.
Gardner, L I; Dziados, J E; Jones, B H; Brundage, J F; Harris, J M; Sullivan, R; Gill, P
1988-01-01
A prospective controlled trial was carried out to determine the usefulness of a viscoelastic polymer insole in prevention of stress fractures and stress reactions of the lower extremities. The subjects were 3,025 US Marine recruits who were followed for 12 weeks of training at Parris Island, South Carolina. Polymer and standard mesh insoles were systematically distributed in boots that were issued to members of odd and even numbered platoons. The most important finding was that an elastic polymer insole with good shock absorbency properties did not prevent stress reactions of bone during a 12-week period of vigorous physical training. To control for the confounding effects of running in running shoes, which occurred for about one and one-half hours per week for the first five weeks, we also examined the association of age of shoes and cost of shoes with injury incidence. A slight trend of increasing stress injuries by increasing age of shoes was observed. However, this trend did not account for the similarity of rates in the two insole groups. In addition, we observed a strong trend of decreasing stress injury rate by history of increasing physical activity, as well as a higher stress injury rate in White compared to Black recruits. The results of the trial were not altered after controlling for these factors. This prospective study confirms previous clinical reports of the association of stress fractures with physical activity history. The clinical application of a shock absorbing insole as a preventive for lower extremity stress reactions is not supported in these uniformly trained recruits. The findings are relevant to civilian populations. PMID:3056045
Quantifying stair gait stability in young and older adults, with modifications to insole hardness.
Antonio, Patrick J; Perry, Stephen D
2014-07-01
Stair gait falls are prevalent in older adults aged 65 years and older. Extrinsic variables such as changes to insole hardness are important factors that can compromise the balance control system and increase the incidence of falls, especially since age-related decline in the cutaneous sensation is common. Balance measurements such as the minimum center of mass/base of support (COM-BOS, termed 'stability margin') and COM-BOS medial/lateral range provide information about stability during stair gait. This study was conducted to investigate stair gait stability of young and older adults, with modifications to insole hardness. Twenty healthy adults (10 young adults, 10 older adults) were recruited (mean age = 23.1, SD 2.1; mean age = 73.2, SD 5.5) and instructed to descend a 4 step staircase, for a total of 40 trials. All participants wore similar canvas shoes of varying sizes, and corresponding insole hardnesses (barefoot, soft, medium, hard). Kinematic equipment utilized 12 infrared markers anteriorly placed on the individual to record COM motion and BOS location. The findings from the study demonstrated that older adults were less stable during stair descent. Consequently, insole conditions revealed that the barefoot condition may increase the likelihood of falls, as opposed to the other insole hardnesses (soft, medium and hard). These results suggest that older adults while barefoot are putting themselves at a great risk of falling during stair descent. Since age-related changes are inevitable and the preferred footwear of choice inside the home is bare feet, this is a crucial issue that should be addressed. Copyright © 2014 Elsevier B.V. All rights reserved.
Lewinson, Ryan T; Vallerand, Isabelle A; Collins, Kelsey H; Wiley, J Preston; Lun, Victor M Y; Patel, Chirag; Woodhouse, Linda J; Reimer, Raylene A; Worobets, Jay T; Herzog, Walter; Stefanyshyn, Darren J
2016-10-01
Wedged insoles are believed to be of clinical benefit to individuals with knee osteoarthritis by reducing the knee adduction moment (KAM) during gait. However, previous clinical trials have not specifically controlled for KAM reduction at baseline, thus it is unknown if reduced KAMs actually confer a clinical benefit. Forty-eight participants with medial knee osteoarthritis were randomly assigned to either a control group where no footwear intervention was given, or a wedged insole group where KAM reduction was confirmed at baseline. KAMs, Knee Injury and Osteoarthritis Outcome Score (KOOS) and Physical Activity Scale for the Elderly (PASE) scores were measured at baseline. KOOS and PASE surveys were re-administered at three months follow-up. The wedged insole group did not experience a statistically significant or clinically meaningful change in KOOS pain over three months (p=0.173). Furthermore, there was no association between change in KAM magnitude and change in KOOS pain over three months within the wedged insole group (R 2 =0.02, p=0.595). Improvement in KOOS pain for the wedged insole group was associated with worse baseline pain, and a change in PASE score over the three month study (R 2 =0.57, p=0.007). As an exploratory comparison, there was no significant difference in change in KOOS pain (p=0.49) between the insole and control group over three months. These results suggest that reduced KAMs do not appear to provide any clinical benefit compared to no intervention over a follow-up period of three months. ClinicalTrials.gov ID Number: NCT02067208. Copyright © 2016 Elsevier B.V. All rights reserved.
Increased insolation threshold for runaway greenhouse processes on Earth-like planets
NASA Astrophysics Data System (ADS)
Leconte, Jérémy; Forget, Francois; Charnay, Benjamin; Wordsworth, Robin; Pottier, Alizée
2013-12-01
The increase in solar luminosity over geological timescales should warm the Earth's climate, increasing water evaporation, which will in turn enhance the atmospheric greenhouse effect. Above a certain critical insolation, this destabilizing greenhouse feedback can `run away' until the oceans have completely evaporated. Through increases in stratospheric humidity, warming may also cause evaporative loss of the oceans to space before the runaway greenhouse state occurs. The critical insolation thresholds for these processes, however, remain uncertain because they have so far been evaluated using one-dimensional models that cannot account for the dynamical and cloud feedback effects that are key stabilizing features of the Earth's climate. Here we use a three-dimensional global climate model to show that the insolation threshold for the runaway greenhouse state to occur is about 375 W m-2, which is significantly higher than previously thought. Our model is specifically developed to quantify the climate response of Earth-like planets to increased insolation in hot and extremely moist atmospheres. In contrast with previous studies, we find that clouds have a destabilizing feedback effect on the long-term warming. However, subsident, unsaturated regions created by the Hadley circulation have a stabilizing effect that is strong enough to shift the runaway greenhouse limit to higher values of insolation than are inferred from one-dimensional models. Furthermore, because of wavelength-dependent radiative effects, the stratosphere remains sufficiently cold and dry to hamper the escape of atmospheric water, even at large fluxes. This has strong implications for the possibility of liquid water existing on Venus early in its history, and extends the size of the habitable zone around other stars.
Increased insolation threshold for runaway greenhouse processes on Earth-like planets.
Leconte, Jérémy; Forget, Francois; Charnay, Benjamin; Wordsworth, Robin; Pottier, Alizée
2013-12-12
The increase in solar luminosity over geological timescales should warm the Earth's climate, increasing water evaporation, which will in turn enhance the atmospheric greenhouse effect. Above a certain critical insolation, this destabilizing greenhouse feedback can 'run away' until the oceans have completely evaporated. Through increases in stratospheric humidity, warming may also cause evaporative loss of the oceans to space before the runaway greenhouse state occurs. The critical insolation thresholds for these processes, however, remain uncertain because they have so far been evaluated using one-dimensional models that cannot account for the dynamical and cloud feedback effects that are key stabilizing features of the Earth's climate. Here we use a three-dimensional global climate model to show that the insolation threshold for the runaway greenhouse state to occur is about 375 W m(-2), which is significantly higher than previously thought. Our model is specifically developed to quantify the climate response of Earth-like planets to increased insolation in hot and extremely moist atmospheres. In contrast with previous studies, we find that clouds have a destabilizing feedback effect on the long-term warming. However, subsident, unsaturated regions created by the Hadley circulation have a stabilizing effect that is strong enough to shift the runaway greenhouse limit to higher values of insolation than are inferred from one-dimensional models. Furthermore, because of wavelength-dependent radiative effects, the stratosphere remains sufficiently cold and dry to hamper the escape of atmospheric water, even at large fluxes. This has strong implications for the possibility of liquid water existing on Venus early in its history, and extends the size of the habitable zone around other stars.
10 CFR 71.71 - Normal conditions of transport.
Code of Federal Regulations, 2014 CFR
2014-01-01
... NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package... each package design under normal conditions of transport must include a determination of the effect on... following table: Insolation Data Form and location of surface Total insolation for a 12-hour period(g cal...
10 CFR 71.71 - Normal conditions of transport.
Code of Federal Regulations, 2012 CFR
2012-01-01
... NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package... each package design under normal conditions of transport must include a determination of the effect on... following table: Insolation Data Form and location of surface Total insolation for a 12-hour period(g cal...
10 CFR 71.71 - Normal conditions of transport.
Code of Federal Regulations, 2011 CFR
2011-01-01
... NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package... each package design under normal conditions of transport must include a determination of the effect on... following table: Insolation Data Form and location of surface Total insolation for a 12-hour period(g cal...
10 CFR 71.71 - Normal conditions of transport.
Code of Federal Regulations, 2010 CFR
2010-01-01
... NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package... each package design under normal conditions of transport must include a determination of the effect on... following table: Insolation Data Form and location of surface Total insolation for a 12-hour period(g cal...
10 CFR 71.71 - Normal conditions of transport.
Code of Federal Regulations, 2013 CFR
2013-01-01
... NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package... each package design under normal conditions of transport must include a determination of the effect on... following table: Insolation Data Form and location of surface Total insolation for a 12-hour period(g cal...
Observational Evidence of Changes in Water Vapor, Clouds, and Radiation at the ARM SGP Site
NASA Technical Reports Server (NTRS)
Dong, Xiquan; Xi, Baike; Minnis, Patrick
2006-01-01
Characterizing water vapor and cloud effects on the surface radiation budget is critical for understanding the current climate because water vapor is the most important greenhouse gas in the atmosphere and clouds are one of the largest sources of uncertainty in predicting potential future climate change. Several studies have shown that insolation over land declined until 1990 then increased until the present. Using 8 years of data collected at the ARM Southern Great Plains (SGP) surface site, we found that the insolation increased from 1997 to 2000, but significantly decreased from 2001 to 2004, changes that exactly mirror the variation in the second-order fit of cloud fraction. Under clear-sky conditions, the rates of water vapor, insolation and downwelling longwave (LW) flux are -0.166 cm/yr, 0.48 Wm(exp -2)/yr, and -1.16 Wm(exp -2)/yr, respectively, indicating that water vapor changes are more important for LW flux than for insolation.
Effect of magnetic therapy on selected physical performances.
Schall, David M; Ishee, Jimmy H; Titlow, Larry W
2003-05-01
The purpose of this study was to investigate the effects of magnetic therapy in the form of shoe insoles on vertical jump, bench squat, 40-yd dash, and a soccer-specific fitness test performance. Subjects were 14 collegiate male soccer players who were pretested, retested 3 weeks later, and then placed into a double-blind control or treatment group using a matching procedure. The control group received magnetic shoe insoles with a rating of 125 gauss, and the treatment group received insoles with a rating of 600 gauss. Subjects wore the insoles during practice and games for 7 weeks and were then retested. Results indicated significant differences among test scores during the 3 time periods but not between the treatment and control groups. There was a decline in 40-yd dash performance from the initial evaluation (5.10 seconds) to the final evaluation (5.08 seconds). There were no other significant differences. Within the limitations of the study, magnetic therapy did not improve physical performance.
Model Errors in Simulating Precipitation and Radiation fields in the NARCCAP Hindcast Experiment
NASA Astrophysics Data System (ADS)
Kim, J.; Waliser, D. E.; Mearns, L. O.; Mattmann, C. A.; McGinnis, S. A.; Goodale, C. E.; Hart, A. F.; Crichton, D. J.
2012-12-01
The relationship between the model errors in simulating precipitation and radiation fields including the surface insolation and OLR, is examined from the multi-RCM NARCCAP hindcast experiment for the conterminous U.S. region. Findings in this study suggest that the RCM biases in simulating precipitation are related with those in simulating radiation fields. For a majority of RCMs participated in the NARCCAP hindcast experiment as well as their ensemble, the spatial pattern of the insolation bias is negatively correlated with that of the precipitation bias, suggesting that the biases in precipitation and surface insolation are systematically related, most likely via the cloud fields. The relationship varies according to seasons as well with stronger relationship between the simulated precipitation and surface insolation during winter. This suggests that the RCM biases in precipitation and radiation are related via cloud fields. Additional analysis on the RCM errors in OLR is underway to examine more details of this relationship.
View-limiting shrouds for insolation radiometers
NASA Technical Reports Server (NTRS)
Dennison, E. W.; Trentelman, G. F.
1985-01-01
Insolation radiometers (normal incidence pyrheliometers) are used to measure the solar radiation incident on solar concentrators for calibrating thermal power generation measurements. The measured insolation value is dependent on the atmospheric transparency, solar elevation angle, circumsolar radiation, and radiometer field of view. The radiant energy entering the thermal receiver is dependent on the same factors. The insolation value and the receiver input will be proportional if the concentrator and the radiometer have similar fields of view. This report describes one practical method for matching the field of view of a radiometer to that of a solar concentrator. The concentrator field of view can be calculated by optical ray tracing methods and the field of view of a radiometer with a simple shroud can be calculated by using geometric equations. The parameters for the shroud can be adjusted to provide an acceptable match between the respective fields of view. Concentrator fields of view have been calculated for a family of paraboloidal concentrators and receiver apertures. The corresponding shroud parameters have also been determined.
Global and Arctic climate engineering: numerical model studies.
Caldeira, Ken; Wood, Lowell
2008-11-13
We perform numerical simulations of the atmosphere, sea ice and upper ocean to examine possible effects of diminishing incoming solar radiation, insolation, on the climate system. We simulate both global and Arctic climate engineering in idealized scenarios in which insolation is diminished above the top of the atmosphere. We consider the Arctic scenarios because climate change is manifesting most strongly there. Our results indicate that, while such simple insolation modulation is unlikely to perfectly reverse the effects of greenhouse gas warming, over a broad range of measures considering both temperature and water, an engineered high CO2 climate can be made much more similar to the low CO2 climate than would be a high CO2 climate in the absence of such engineering. At high latitudes, there is less sunlight deflected per unit albedo change but climate system feedbacks operate more powerfully there. These two effects largely cancel each other, making the global mean temperature response per unit top-of-atmosphere albedo change relatively insensitive to latitude. Implementing insolation modulation appears to be feasible.
Solar Insolation Effect on the Local Distribution of Lunar Hydroxyl
NASA Astrophysics Data System (ADS)
Kim, Suyeon; Yi, Yu; Hong, Ik-Seon; Sohn, Jongdae
2018-03-01
Moon mineralogy mapper (M3)'s work proved that the moon is not completely dry but has some hydroxyl/water. M3's data confirmed that the amount of hydroxyl on the lunar surface is inversely related to the measured signal brightness, suggesting the lunar surface is sensitive to temperature by solar insolation. We tested the effect of solar insolation on the local distribution of hydroxyl by using M3 data, and we found that most craters had more hydroxyl in shade areas than in sunlit areas. This means that the local distribution of hydroxyl is absolutely influenced by the amount of sunshine. We investigated the factors affecting differences in hydroxyl; we found that the higher the latitude, the larger the difference during daytime. We also measured the pyroxene content and found that pyroxene affects the amount of hydroxyl, but it does not affect the difference in hydroxyl between sunlit and shaded areas. Therefore, we confirmed that solar insolation plays a significant role in the local distribution of hydroxyl, regardless of surface composition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chaston, C. C.; Bonnell, J. W.; Reeves, Geoffrey D.
We show how dispersive Alfvén waves observed in the inner magnetosphere during geomagnetic storms can extract O + ions from the topside ionosphere and accelerate these ions to energies exceeding 50 keV in the equatorial plane. This occurs through wave trapping, a variant of “shock” surfing, and stochastic ion acceleration. These processes in combination with the mirror force drive field-aligned beams of outflowing ionospheric ions into the equatorial plane that evolve to provide energetic O + distributions trapped near the equator. These waves also accelerate preexisting/injected ion populations on the same field lines. We show that the action of dispersivemore » Alfvén waves over several minutes may drive order of magnitude increases in O + ion pressure to make substantial contributions to magnetospheric ion energy density. These wave accelerated ions will enhance the ring current and play a role in the storm time evolution of the magnetosphere.« less
Solar cycle signatures in the NCEP equatorial annual oscillation
NASA Astrophysics Data System (ADS)
Mayr, H. G.; Mengel, J. G.; Huang, F. T.; Nash, E. R.
2009-08-01
Our analysis of temperature and zonal wind data (1958 to 2006) from the National Center for Atmospheric Research (NCAR) reanalysis (Re-1), supplied by the National Centers for Environmental Prediction (NCEP), shows that the hemispherically symmetric 12-month equatorial annual oscillation (EAO) contains spectral signatures with periods around 11 years. Moving windows of 44 years show that, below 20 km, the 11-year modulation of the EAO is phase locked to the solar cycle (SC). The spectral features from the 48-year data record reveal modulation signatures of 9.6 and 12 years, which produce EAO variations that mimic in limited altitude regimes the varying maxima and minima of the 10.7 cm flux solar index. Above 20 km, the spectra also contain modulation signatures with periods around 11 years, but the filtered variations are too irregular to suggest that systematic SC forcing is the principal agent.
Kinetics of badminton lunges in four directions.
Hong, Youlian; Wang, Shao Jun; Lam, Wing Kai; Cheung, Jason Tak Man
2014-02-01
The lunge is the most fundamental skill in badminton competitions. Fifteen university-level male badminton players performed lunge maneuvers in four directions, namely, right-forward, left-forward, right-backward, and left-backward, while wearing two different brands of badminton shoes. The test compared the kinetics of badminton shoes in performing typical lunge maneuvers. A force plate and an insole measurement system measured the ground reaction forces and plantar pressures. These measurements were compared across all lunge maneuvers. The left-forward lunge generated significantly higher first vertical impact force (2.34 ± 0.52 BW) than that of the right-backward (2.06 ± 0.60 BW) and left-backward lunges (1.78 ± 0.44 BW); higher second vertical impact force (2.44 ± 0.51 BW) than that of the left-backward lunge (2.07 ± 0.38 BW); and higher maximum anterior-posterior shear force (1.48 ± 0.36 BW) than that of the left-backward lunge (1.18 ± 0.38 BW). Compared with other lunge directions, the left-forward lunge showed higher mean maximum vertical impact anterior-posterior shear forces and their respective maximum loading rates, and the plantar pressure at the total foot and heel regions. Therefore, the left-forward lunge is a critical maneuver for badminton biomechanics and related footwear research because of the high loading magnitude generated during heel impact.
The importance of the diurnal and annual cycle of air traffic for contrail radiative forcing.
Stuber, Nicola; Forster, Piers; Rädel, Gaby; Shine, Keith
2006-06-15
Air traffic condensation trails, or contrails, are believed to have a net atmospheric warming effect, although one that is currently small compared to that induced by other sources of human emissions. However, the comparably large growth rate of air traffic requires an improved understanding of the resulting impact of aircraft radiative forcing on climate. Contrails have an effect on the Earth's energy balance similar to that of high thin ice clouds. Their trapping of outgoing longwave radiation emitted by the Earth and atmosphere (positive radiative forcing) is partly compensated by their reflection of incoming solar radiation (negative radiative forcing). On average, the longwave effect dominates and the net contrail radiative forcing is believed to be positive. Over daily and annual timescales, varying levels of air traffic, meteorological conditions, and solar insolation influence the net forcing effect of contrails. Here we determine the factors most important for contrail climate forcing using a sophisticated radiative transfer model for a site in southeast England, located in the entrance to the North Atlantic flight corridor. We find that night-time flights during winter (December to February) are responsible for most of the contrail radiative forcing. Night flights account for only 25 per cent of daily air traffic, but contribute 60 to 80 per cent of the contrail forcing. Further, winter flights account for only 22 per cent of annual air traffic, but contribute half of the annual mean forcing. These results suggest that flight rescheduling could help to minimize the climate impact of aviation.
Foot forces induced through Tai Chi push-hand exercises.
Wong, Shiu Hong; Ji, Tianjian; Hong, Youlian; Fok, Siu Lun; Wang, Lin
2013-08-01
The low impact forces of Tai Chi push-hand exercises may be particularly suited for older people and for those with arthritis; however, the biomechanics of push-hand exercises have not previously been reported. This paper examines the ground reaction forces (GRFs) and plantar force distributions during Tai Chi push-hand exercises in a stationary stance with and without an opponent. Ten male Tai Chi practitioners participated in the study. The GRFs of each foot were measured in three perpendicular directions using two force plates (Kistler). The plantar force distribution of each foot was measured concurrently using an insole sensor system (Novel). The results showed that the average maximum vertical GRF of each foot was not more than 88% ± 6.1% of the body weight and the sum of the vertical forces (103% ± 1.4%) generated by the two feet approximately equals the body weight at any one time. The horizontal GRFs generated by the two feet were in the opposite directions and the measured mean peak values were not more than 12% ± 2.8% and 17% ± 4.3% of the body weight in the medio-lateral and antero-posterior directions respectively. Among the nine plantar areas, the toes sustained the greatest plantar force. This study indicates that push-hand exercises generate lower vertical forces than those induced by walking, bouncing, jumping and Tai Chi gait, and that the greatest plantar force is located in the toe area, which may have an important application in balance training particularly for older adults.
NASA Astrophysics Data System (ADS)
Abdu, Mangalathayil A.; Nogueira, Paulo A. B.; Santos, Angela M.; de Souza, Jonas R.; Batista, Inez S.; Sobral, Jose H. A.
2018-04-01
Equatorial plasma bubble/spread F irregularity occurrence can present large variability depending upon the intensity of the evening prereversal enhancement in the zonal electric field (PRE), that is, the F region vertical plasma drift, which basically drives the post-sunset irregularity development. Forcing from magnetospheric disturbances is an important source of modification and variability in the PRE vertical drift and of the associated bubble development. Although the roles of magnetospheric disturbance time penetration electric fields in the bubble irregularity development have been studied in the literature, many details regarding the nature of the interaction between the penetration electric fields and the PRE vertical drift still lack our understanding. In this paper we have analyzed data on F layer heights and vertical drifts obtained from digisondes operated in Brazil to investigate the connection between magnetic disturbances occurring during and preceding sunset and the consequent variabilities in the PRE vertical drift and associated equatorial spread F (ESF) development. The impact of the prompt penetration under-shielding eastward electric field and that of the over-shielding, and disturbance dynamo, westward electric field on the evolution of the evening PRE vertical drift and thereby on the ESF development are briefly examined.
Equatorial Pacific forcing of western Amazonian precipitation during Heinrich Stadial 1.
Zhang, Yancheng; Zhang, Xu; Chiessi, Cristiano M; Mulitza, Stefan; Zhang, Xiao; Lohmann, Gerrit; Prange, Matthias; Behling, Hermann; Zabel, Matthias; Govin, Aline; Sawakuchi, André O; Cruz, Francisco W; Wefer, Gerold
2016-10-25
Abundant hydroclimatic evidence from western Amazonia and the adjacent Andes documents wet conditions during Heinrich Stadial 1 (HS1, 18-15 ka), a cold period in the high latitudes of the North Atlantic. This precipitation anomaly was attributed to a strengthening of the South American summer monsoon due to a change in the Atlantic interhemispheric sea surface temperature (SST) gradient. However, the physical viability of this mechanism has never been rigorously tested. We address this issue by combining a thorough compilation of tropical South American paleorecords and a set of atmosphere model sensitivity experiments. Our results show that the Atlantic SST variations alone, although leading to dry conditions in northern South America and wet conditions in northeastern Brazil, cannot produce increased precipitation over western Amazonia and the adjacent Andes during HS1. Instead, an eastern equatorial Pacific SST increase (i.e., 0.5-1.5 °C), in response to the slowdown of the Atlantic Meridional Overturning Circulation during HS1, is crucial to generate the wet conditions in these regions. The mechanism works via anomalous low sea level pressure over the eastern equatorial Pacific, which promotes a regional easterly low-level wind anomaly and moisture recycling from central Amazonia towards the Andes.
Clarke, Julia A; Ksepka, Daniel T; Stucchi, Marcelo; Urbina, Mario; Giannini, Norberto; Bertelli, Sara; Narváez, Yanina; Boyd, Clint A
2007-07-10
New penguin fossils from the Eocene of Peru force a reevaluation of previous hypotheses regarding the causal role of climate change in penguin evolution. Repeatedly it has been proposed that penguins originated in high southern latitudes and arrived at equatorial regions relatively recently (e.g., 4-8 million years ago), well after the onset of latest Eocene/Oligocene global cooling and increases in polar ice volume. By contrast, new discoveries from the middle and late Eocene of Peru reveal that penguins invaded low latitudes >30 million years earlier than prior data suggested, during one of the warmest intervals of the Cenozoic. A diverse fauna includes two new species, here reported from two of the best exemplars of Paleogene penguins yet recovered. The most comprehensive phylogenetic analysis of Sphenisciformes to date, combining morphological and molecular data, places the new species outside the extant penguin radiation (crown clade: Spheniscidae) and supports two separate dispersals to equatorial (paleolatitude approximately 14 degrees S) regions during greenhouse earth conditions. One new species, Perudyptes devriesi, is among the deepest divergences within Sphenisciformes. The second, Icadyptes salasi, is the most complete giant (>1.5 m standing height) penguin yet described. Both species provide critical information on early penguin cranial osteology, trends in penguin body size, and the evolution of the penguin flipper.
Impact of effective ocean optical properties on the Pacific subtropical cell: a CGCM study
NASA Astrophysics Data System (ADS)
Yamanaka, G.; Tsujino, H.; Ishizaki, H.; Nakano, H.; Hirabara, M.
2012-12-01
The choice of ocean radiant scheme is important for modeling the upper ocean. According to the ocean-only simulation (Yamanaka et al., 2012), introduction of the chlorophyll-a dependent ocean radiant scheme results in the decreased mixed layer depth (MLD), the enhanced subtropical cell (STC), and the cooling of the eastern tropical Pacific sea surface temperature (SST). They also found that the enhanced STC results from the velocity profile change associated with the decreased Ekman boundary layer. However, the impact is not well understood when the air-sea feedback process is at work. This study examines the impact of the effective ocean optical properties on the Pacific mean fields, especially focusing on the STC, using a coupled general circulation model (CGCM). The CGCM we employed is the Meteorological Research Institute Earth System Model (MRI-ESM1). The atmospheric model is TL159L48, and the ocean model has a horizontal resolution of 1 x 0.5 deg. with 51 levels in vertical. Experimental design basically follows the CMIP5 protocol. Two experiments (CTL and SLR runs) are performed to investigate the impact of the effective ocean optical properties. In the CTL run, a conventional ocean radiant heating scheme (Paul and Simpson, 1977) is used, whereas a new ocean radiant heating scheme is used in the SLR run, where the satellite-derived chlorophyll-a distribution is taken into consideration based on Morel and Antoine (1994) as well as the effect of the varying solar angle (Ishizaki and Yamanaka, 2010). Each experiment is integrated during the period from 1985 to 2005. It is found that introduction of the new ocean radiant scheme (SLR run) changes the long-term mean wind pattern in the Pacific: easterly winds are strengthened in the equatorial Pacific, but weakened in the off-equatorial region. In the tropical Pacific, the enhanced equatorial upwelling cools the equatorial SST and the MLD becomes shallower. This is similar to the ocean-only simulation, but is more reinforced due to the Bjerknes feedback. On the other hand, unlike the ocean-only simulation, the STC is enhanced only in the equatorial band from 5 S to 5 N. Analysis of meridional volume transport in the upper 300 m indicates that poleward Ekman transport forced by the enhanced trade winds is balanced by the interior flow in the equatorial region. Apart from the equatorial region, the decreased Ekman transport due to the decreased easterly wind weakens the increased poleward transport associated with the velocity profile change in the Ekman boundary layer.
NASA Astrophysics Data System (ADS)
Purdue, James R.
1989-11-01
White-tailed deer ( Odocoileus virginianus) from central Illinois varied in size during the Holocene. The record, which extends back to 8450 yr B.P., indicates small deer through the mid-Holocene until 3650 yr B.P., after which size increases. Although influences of winter climate, seasonality, anthropogenic effects, and other ecological factors should not be discounted, an intriguing possible cause of the deer size shifts is insolation-driven summer climate and its influence on food resources. In the Holocene, small deer size is correlated with high summer insolation and with low winter insolation. Climatic models indicate that in spite of changes in insolation, Holocene winters did not vary greatly through time, especially in contrast to summers, which were dynamic. Physiological constraints peculiar to O. virginianus make critical the quality of summer forage for determining final adult size. Summer temperature averaged 2°C warmer than present during the middle Holocene, which increased evaporation and probably reduced the period of availability of high-quality forage low in fiber and high in protein. Consequently, less fuel for growth was consumed by mid-Holocene deer and only small body size was achieved. Other possible causes (e.g., Bergmann's rule, seasonality) of clinal variation are considered with reference to central Illinois deer, but at present the most parsimonious explanation appears to be the summer insolation hypothesis.
Understanding the Unique Equatorial Density Irregularities
2015-04-01
3 Bahir Dar, 79 ETHIOPIA EOARD GRANT #FA8655-13-1-3052 Report Date: April 2015 Final Report from 15 June 2013 to 30 March 2015 Air Force...ADDRESS(ES) Bahir Dar University Peda Straight, Region 3 Bahir Dar, 79 ETHIOPIA 8. PERFORMING ORGANIZATION REPORT NUMBER N/A 9. SPONSORING/MONITORING...satellite signal receivers and others in collaboration with institutions outside Ethiopia . This effort provided some support for the installation of the
Complex Dynamics of Equatorial Scintillation
NASA Astrophysics Data System (ADS)
Piersanti, Mirko; Materassi, Massimo; Forte, Biagio; Cicone, Antonio
2017-04-01
Radio power scintillation, namely highly irregular fluctuations of the power of trans-ionospheric GNSS signals, is the effect of ionospheric plasma turbulence. The scintillation patterns on radio signals crossing the medium inherit the ionospheric turbulence characteristics of inter-scale coupling, local randomness and large time variability. On this basis, the remote sensing of local features of the turbulent plasma is feasible by studying radio scintillation induced by the ionosphere. The distinctive character of intermittent turbulent media depends on the fluctuations on the space- and time-scale statistical properties of the medium. Hence, assessing how the signal fluctuation properties vary under different Helio-Geophysical conditions will help to understand the corresponding dynamics of the turbulent medium crossed by the signal. Data analysis tools, provided by complex system science, appear to be best fitting to study the response of a turbulent medium, as the Earth's equatorial ionosphere, to the non-linear forcing exerted by the Solar Wind (SW). In particular we used the Adaptive Local Iterative Filtering, the Wavelet analysis and the Information theory data analysis tool. We have analysed the radio scintillation and ionospheric fluctuation data at low latitude focusing on the time and space multi-scale variability and on the causal relationship between forcing factors from the SW environment and the ionospheric response.
Internally driven inertial waves in geodynamo simulations
NASA Astrophysics Data System (ADS)
Ranjan, A.; Davidson, P. A.; Christensen, U. R.; Wicht, J.
2018-05-01
Inertial waves are oscillations in a rotating fluid, such as the Earth's outer core, which result from the restoring action of the Coriolis force. In an earlier work, it was argued by Davidson that inertial waves launched near the equatorial regions could be important for the α2 dynamo mechanism, as they can maintain a helicity distribution which is negative (positive) in the north (south). Here, we identify such internally driven inertial waves, triggered by buoyant anomalies in the equatorial regions in a strongly forced geodynamo simulation. Using the time derivative of vertical velocity, ∂uz/∂t, as a diagnostic for traveling wave fronts, we find that the horizontal movement in the buoyancy field near the equator is well correlated with a corresponding movement of the fluid far from the equator. Moreover, the azimuthally averaged spectrum of ∂uz/∂t lies in the inertial wave frequency range. We also test the dispersion properties of the waves by computing the spectral energy as a function of frequency, ϖ, and the dispersion angle, θ. Our results suggest that the columnar flow in the rotation-dominated core, which is an important ingredient for the maintenance of a dipolar magnetic field, is maintained despite the chaotic evolution of the buoyancy field on a fast timescale by internally driven inertial waves.
Angular momentum budget of the radiational S1 ocean tide
NASA Astrophysics Data System (ADS)
Schindelegger, Michael; Dobslaw, Henryk; Poropat, Lea; Salstein, David; Böhm, Johannes
2016-04-01
The balance of diurnal S1 oceanic angular momentum (OAM) variations through torques at the sea surface and the bottom topography is validated using both a barotropic and a baroclinic numerical tide model. This analysis discloses the extent to which atmosphere-driven S1 forward simulations are reliable for use in studies of high-frequency polar motion and changes in length-of-day. Viscous and dissipative torques associated with wind stress, bottom friction, as well as internal tidal energy conversion are shown to be small, and they are overshadowed by gravitational and pressure-related interaction forces. In particular, the zonal OAM variability of S1 is almost completely balanced by the water pressure torque on the local bathymetry, whereas in the prograde equatorial case also the air pressure torque on the seafloor as well as ellipsoidal contributions from the non-spherical atmosphere and solid Earth must be taken into account. Overall, the OAM budget is well closed in both the axial and the equatorial directions, thus allowing for an identification of the main diurnal angular momentum sinks in the ocean. The physical interaction forces are found to be largest at shelf breaks and continental slopes in low latitudes, with the most dominant contribution coming from the Indonesian archipelago.
Supramolecular organization of the sperm plasma membrane during maturation and capacitation.
Jones, Roy; James, Peter S; Howes, Liz; Bruckbauer, Andreas; Klenerman, David
2007-07-01
In the present study, a variety of high resolution microscopy techniques were used to visualize the organization and motion of lipids and proteins in the sperm's plasma membrane. We have addressed questions such as the presence of diffusion barriers, confinement of molecules to specific surface domains, polarized diffusion and the role of cholesterol in regulating lipid rafts and signal transduction during capacitation. Atomic force microscopy identified a novel region (EqSS) within the equatorial segment of bovine, porcine and ovine spermatozoa that was enriched in constitutively phosphorylated proteins. The EqSS was assembled during epididymal maturation. Fluorescence imaging techniques were then used to follow molecular diffusion on the sperm head. Single lipid molecules were freely exchangeable throughout the plasma membrane and showed no evidence for confinement within domains. Large lipid aggregates, however, did not cross over the boundary between the post-acrosome and equatorial segment suggesting the presence of a molecular filter between these two domains. A small reduction in membrane cholesterol enlarges or increases lipid rafts concomitant with phosphorylation of intracellular proteins. Excessive removal of cholesterol, however, disorganizes rafts with a cessation of phosphorylation. These techniques are forcing a revision of long-held views on how lipids and proteins in sperm membranes are assembled into larger complexes that mediate recognition and fusion with the egg.
NASA Astrophysics Data System (ADS)
McFarlane, Ashly Ann; Frierson, Dargan M. W.
2017-08-01
We use Coupled Model Intercomparison Project global climate models forced with the Representative Concentration Pathway (RCP) 8.5 scenario to attribute tropical precipitation shifts under global warming scenarios and changes in cross-equatorial atmosphere heat transport (c-eq AHT) to changes in ocean and radiative fluxes. We find that the models tend to agree on the sign of c-eq AHT and change in precipitation asymmetry induced by each forcing, but not the magnitude. The ice-albedo feedback and aerosol emission reduction lead to the Northern Hemisphere warming, but this is countered by a reduction to the Atlantic Meridional Overturning Circulation northward heat transport and increased longwave leading to the multimodel mean change in precipitation asymmetry being approximately zero. None of the forcings considered, including aerosol cleanup, can account for more than 20% of the multimodel mean change in c-eq AHT alone.
A progressively wetter climate in southern East Africa over the past 1.3 million years.
Johnson, T C; Werne, J P; Brown, E T; Abbott, A; Berke, M; Steinman, B A; Halbur, J; Contreras, S; Grosshuesch, S; Deino, A; Scholz, C A; Lyons, R P; Schouten, S; Damsté, J S Sinninghe
2016-09-08
African climate is generally considered to have evolved towards progressively drier conditions over the past few million years, with increased variability as glacial-interglacial change intensified worldwide. Palaeoclimate records derived mainly from northern Africa exhibit a 100,000-year (eccentricity) cycle overprinted on a pronounced 20,000-year (precession) beat, driven by orbital forcing of summer insolation, global ice volume and long-lived atmospheric greenhouse gases. Here we present a 1.3-million-year-long climate history from the Lake Malawi basin (10°-14° S in eastern Africa), which displays strong 100,000-year (eccentricity) cycles of temperature and rainfall following the Mid-Pleistocene Transition around 900,000 years ago. Interglacial periods were relatively warm and moist, while ice ages were cool and dry. The Malawi record shows limited evidence for precessional variability, which we attribute to the opposing effects of austral summer insolation and the temporal/spatial pattern of sea surface temperature in the Indian Ocean. The temperature history of the Malawi basin, at least for the past 500,000 years, strongly resembles past changes in atmospheric carbon dioxide and terrigenous dust flux in the tropical Pacific Ocean, but not in global ice volume. Climate in this sector of eastern Africa (unlike northern Africa) evolved from a predominantly arid environment with high-frequency variability to generally wetter conditions with more prolonged wet and dry intervals.
Laurentide ice-sheet instability during the last deglaciation
NASA Astrophysics Data System (ADS)
Ullman, David J.; Carlson, Anders E.; Anslow, Faron S.; Legrande, Allegra N.; Licciardi, Joseph M.
2015-07-01
Changes in the amount of summer incoming solar radiation (insolation) reaching the Northern Hemisphere are the underlying pacemaker of glacial cycles. However, not all rises in boreal summer insolation over the past 800,000 years resulted in deglaciation to present-day ice volumes, suggesting that there may be a climatic threshold for the disappearance of land-based ice. Here we assess the surface mass balance stability of the Laurentide ice sheet--the largest glacial ice mass in the Northern Hemisphere--during the last deglaciation (24,000 to 9,000 years ago). We run a surface energy balance model with climate data from simulations with a fully coupled atmosphere-ocean general circulation model for key time slices during the last deglaciation. We find that the surface mass balance of the Laurentide ice sheet was positive throughout much of the deglaciation, and suggest that dynamic discharge was mainly responsible for mass loss during this time. Total surface mass balance became negative only in the early Holocene, indicating the transition to a new state where ice loss occurred primarily by surface ablation. We conclude that the Laurentide ice sheet remained a viable ice sheet before the Holocene and began to fully deglaciate only once summer temperatures and radiative forcing over the ice sheet increased by 6-7 °C and 16-20 W m-2, respectively, relative to full glacial conditions.
NASA Technical Reports Server (NTRS)
Latta, A. F.; Bowyer, J. M.; Fujita, T.
1979-01-01
This paper presents the performance and cost of four 10-MWe advanced solar thermal electric power plants sited in various regions of the continental United States. Each region has different insolation characteristics which result in varying collector field areas, plant performance, capital costs, and energy costs. The paraboloidal dish, central receiver, cylindrical parabolic trough, and compound parabolic concentrator (CPC) comprise the advanced concepts studied. This paper contains a discussion of the regional insolation data base, a description of the solar systems' performances and costs, and a presentation of a range for the forecast cost of conventional electricity by region and nationally over the next several decades.
Origins of Eddy Kinetic Energy in the Bay of Bengal
NASA Astrophysics Data System (ADS)
Chen, Gengxin; Li, Yuanlong; Xie, Qiang; Wang, Dongxiao
2018-03-01
By analyzing satellite observational data and ocean general circulation model experiments, this study investigates the key processes that determine the spatial distribution and seasonality of intraseasonal eddy kinetic energy (EKE) within the Bay of Bengal (BOB). It is revealed that a complicated mechanism involving both local and remote wind forcing and ocean internal instability is responsible for the generation and modulation of EKE in this region. High-level EKE mainly resides in four regions: east of Sri Lanka (Region 1), the western BOB (Region 2), northwest of Sumatra (Region 3), and the coastal rim of the BOB (Region 4). The high EKE levels in Regions 1 and 2 are predominantly produced by ocean internal instability, which contributes 90% and 79%, respectively. Prominent seasonality is also observed in these two regions, with higher EKE levels in boreal spring and fall due to enhanced instability of the East Indian Coast Current and the Southwest Monsoon Current, respectively. In contrast, ocean internal instability contributes 49% and 52% of the total EKE in Regions 3 and 4, respectively, whereas the atmospheric forcing of intraseasonal oscillations (ISOs) also plays an important role. ISOs produce EKE mainly through wind stress, involving both the remote effect of equatorial winds and the local effect of monsoonal winds. Equatorial-origin wave signals significantly enhance the EKE levels in Regions 3 and 4, in the form of reflected Rossby waves and coastal Kelvin waves, respectively. The local wind forcing effect through Ekman pumping also has a significant contribution in Regions 3 and 4 (24% and 22%, respectively).
NASA Astrophysics Data System (ADS)
Cheng, Xuhua; McCreary, Julian P.; Qiu, Bo; Qi, Yiquan; Du, Yan
2017-05-01
Intraseasonal-to-semiannual variability of sea-surface height (SSH) in the eastern, equatorial Indian Ocean (EEIO) and southern Bay of Bengal (BoB) is investigated using altimetric data, and solutions to 1½ layer (first baroclinic mode) and linear, continuously stratified (LCS; multibaroclinic-mode) models. The amplitude and dominant periods of SSH variability differ regionally. Large-amplitude variability is found along the west coast of Sumatra, in a zonal band across the BoB centered along 5°N, east of Sri Lanka, and in the northwestern BoB, respectively. Along the Sumatran west coast, SSH variability peaks at 30-60, 90, and 180 days. Along 5°N and east of Sri Lanka, the 30-60 day variability is dominant. Sensitivity experiments using a nonlinear version of the 1½ layer model forced by realistic winds reproduce the observed patterns of intraseasonal variability in the southern BoB. At 30-60 days, the solutions show that eddies (nonlinear Rossby waves) propagating from the east, rather than local wind forcing, account for most of the variance east of Sri Lanka; furthermore, they demonstrate that the variance is significantly enhanced by the nonlinear transfer of 90-120 day energy into the intraseasonal band of 30-60 days. The LCS solutions show that the first two baroclinic modes explain most of the SSH variance at 90-180 days. The second baroclinic mode dominates the SSH variance at 180 days, a consequence of basin resonance and strong wind forcing.
Changing transport processes in the stratosphere by radiative heating of sulfate aerosols
NASA Astrophysics Data System (ADS)
Niemeier, Ulrike; Schmidt, Hauke
2017-12-01
The injection of sulfur dioxide (SO2) into the stratosphere to form an artificial stratospheric aerosol layer is discussed as an option for solar radiation management. Sulfate aerosol scatters solar radiation and absorbs infrared radiation, which warms the stratospheric sulfur layer. Simulations with the general circulation model ECHAM5-HAM, including aerosol microphysics, show consequences of this warming, including changes of the quasi-biennial oscillation (QBO) in the tropics. The QBO slows down after an injection of 4 Tg(S) yr-1 and completely shuts down after an injection of 8 Tg(S) yr-1. Transport of species in the tropics and sub-tropics depends on the phase of the QBO. Consequently, the heated aerosol layer not only impacts the oscillation of the QBO but also the meridional transport of the sulfate aerosols. The stronger the injection, the stronger the heating and the simulated impact on the QBO and equatorial wind systems. With increasing injection rate the velocity of the equatorial jet streams increases, and the less sulfate is transported out of the tropics. This reduces the global distribution of sulfate and decreases the radiative forcing efficiency of the aerosol layer by 10 to 14 % compared to simulations with low vertical resolution and without generated QBO. Increasing the height of the injection increases the radiative forcing only for injection rates below 10 Tg(S) yr-1 (8-18 %), a much smaller value than the 50 % calculated previously. Stronger injection rates at higher levels even result in smaller forcing than the injections at lower levels.
Longitudinal Variation of the Lunar Tide in the Equatorial Electrojet
NASA Astrophysics Data System (ADS)
Yamazaki, Yosuke; Stolle, Claudia; Matzka, Jürgen; Siddiqui, Tarique A.; Lühr, Hermann; Alken, Patrick
2017-12-01
The atmospheric lunar tide is one known source of ionospheric variability. The subject received renewed attention as recent studies found a link between stratospheric sudden warmings and amplified lunar tidal perturbations in the equatorial ionosphere. There is increasing evidence from ground observations that the lunar tidal influence on the ionosphere depends on longitude. We use magnetic field measurements from the CHAMP satellite during July 2000 to September 2010 and from the two Swarm satellites during November 2013 to February 2017 to determine, for the first time, the complete seasonal-longitudinal climatology of the semidiurnal lunar tidal variation in the equatorial electrojet intensity. Significant longitudinal variability is found in the amplitude of the lunar tidal variation, while the longitudinal variability in the phase is small. The amplitude peaks in the Peruvian sector (˜285°E) during the Northern Hemisphere winter and equinoxes, and in the Brazilian sector (˜325°E) during the Northern Hemisphere summer. There are also local amplitude maxima at ˜55°E and ˜120°E. The longitudinal variation is partly due to the modulation of ionospheric conductivities by the inhomogeneous geomagnetic field. Another possible cause of the longitudinal variability is neutral wind forcing by nonmigrating lunar tides. A tidal spectrum analysis of the semidiurnal lunar tidal variation in the equatorial electrojet reveals the dominance of the westward propagating mode with zonal wave number 2 (SW2), with secondary contributions by westward propagating modes with zonal wave numbers 3 (SW3) and 4 (SW4). Eastward propagating waves are largely absent from the tidal spectrum. Further study will be required for the relative importance of ionospheric conductivities and nonmigrating lunar tides.
Dynamics of Tidally Locked, Ultrafast Rotating Atmospheres
NASA Astrophysics Data System (ADS)
Tan, Xianyu; Showman, Adam P.
2017-10-01
Tidally locked gas giants, which exhibit a novel regime of day-night thermal forcing and extreme stellar irradiation, are typically in several-day orbits, implying slow rotation and a modest role for rotation in the atmospheric circulation. Nevertheless, there exist a class of gas-giant, highly irradiated objects - brown dwarfs orbiting white dwarfs in extremely tight orbits - whose orbital and hence rotation periods are as short as 1-2 hours. Spitzer phase curves and other observations have already been obtained for this fascinating class of objects, which raise fundamental questions about the role of rotation in controlling the circulation. So far, most modeling studies have investigated rotation periods exceeding a day, as appropriate for typical hot Jupiters. In this work we investigate the dynamics of tidally locked atmospheres in shorter rotation periods down to about two hours. With increasing rotation rate (decreasing rotation period), we show that the width of the equatorial eastward jet decreases, consistent with the narrowing of wave-mean-flow interacting region due to decrease of the equatorial deformation radius. The eastward-shifted equatorial hot spot offset decreases accordingly, and the westward-shifted hot regions poleward of the equatorial jet associated with Rossby gyres become increasingly distinctive. At high latitudes, winds becomes weaker and more geostrophic. The day-night temperature contrast becomes larger due to the stronger influence of rotation. Our simulated atmospheres exhibit small-scale variability, presumably caused by shear instability. Unlike typical hot Jupiters, phase curves of fast-rotating models show an alignment of peak flux to secondary eclipse. Our results have important implications for phase curve observations of brown dwarfs orbiting white dwarfs in ultra tight orbits.
Jung, Yihwan; Jung, Moonki; Ryu, Jiseon; Yoon, Sukhoon; Park, Sang-Kyoon; Koo, Seungbum
2016-03-01
Human dynamic models have been used to estimate joint kinetics during various activities. Kinetics estimation is in demand in sports and clinical applications where data on external forces, such as the ground reaction force (GRF), are not available. The purpose of this study was to estimate the GRF during gait by utilizing distance- and velocity-dependent force models between the foot and ground in an inverse-dynamics-based optimization. Ten males were tested as they walked at four different speeds on a force plate-embedded treadmill system. The full-GRF model whose foot-ground reaction elements were dynamically adjusted according to vertical displacement and anterior-posterior speed between the foot and ground was implemented in a full-body skeletal model. The model estimated the vertical and shear forces of the GRF from body kinematics. The shear-GRF model with dynamically adjustable shear reaction elements according to the input vertical force was also implemented in the foot of a full-body skeletal model. Shear forces of the GRF were estimated from body kinematics, vertical GRF, and center of pressure. The estimated full GRF had the lowest root mean square (RMS) errors at the slow walking speed (1.0m/s) with 4.2, 1.3, and 5.7% BW for anterior-posterior, medial-lateral, and vertical forces, respectively. The estimated shear forces were not significantly different between the full-GRF and shear-GRF models, but the RMS errors of the estimated knee joint kinetics were significantly lower for the shear-GRF model. Providing COP and vertical GRF with sensors, such as an insole-type pressure mat, can help estimate shear forces of the GRF and increase accuracy for estimation of joint kinetics. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Davis, P. A.; Penn, L. M. (Principal Investigator)
1981-01-01
A technique is developed for the estimation of total daily insolation on the basis of data derivable from operational polar-orbiting satellites. Although surface insolation and meteorological observations are used in the development, the algorithm is constrained in application by the infrequent daytime polar-orbiter coverage.
NASA Technical Reports Server (NTRS)
Smith, J. H.
1980-01-01
A quick reference for obtaining estimates of available solar insolation for numerous locations and array angles is presented. A model and a computer program are provided which considered the effects of array shadowing reflector augmentation as design variables.
Data challenges in estimating the capacity value of solar photovoltaics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gami, Dhruv; Sioshansi, Ramteen; Denholm, Paul
We examine the robustness of solar capacity-value estimates to three important data issues. The first is the sensitivity to using hourly averaged as opposed to subhourly solar-insolation data. The second is the sensitivity to errors in recording and interpreting load data. The third is the sensitivity to using modeled as opposed to measured solar-insolation data. We demonstrate that capacity-value estimates of solar are sensitive to all three of these factors, with potentially large errors in the capacity-value estimate in a particular year. If multiple years of data are available, the biases introduced by using hourly averaged solar-insolation can be smoothedmore » out. Multiple years of data will not necessarily address the other data-related issues that we examine. Our analysis calls into question the accuracy of a number of solar capacity-value estimates relying exclusively on modeled solar-insolation data that are reported in the literature (including our own previous works). Lastly, our analysis also suggests that multiple years’ historical data should be used for remunerating solar generators for their capacity value in organized wholesale electricity markets.« less
Data Challenges in Estimating the Capacity Value of Solar Photovoltaics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gami, Dhruv; Sioshansi, Ramteen; Denholm, Paul
We examine the robustness of solar capacity-value estimates to three important data issues. The first is the sensitivity to using hourly averaged as opposed to subhourly solar-insolation data. The second is the sensitivity to errors in recording and interpreting load data. The third is the sensitivity to using modeled as opposed to measured solar-insolation data. We demonstrate that capacity-value estimates of solar are sensitive to all three of these factors, with potentially large errors in the capacity-value estimate in a particular year. If multiple years of data are available, the biases introduced by using hourly averaged solar-insolation can be smoothedmore » out. Multiple years of data will not necessarily address the other data-related issues that we examine. Our analysis calls into question the accuracy of a number of solar capacity-value estimates relying exclusively on modeled solar-insolation data that are reported in the literature (including our own previous works). Our analysis also suggests that multiple years' historical data should be used for remunerating solar generators for their capacity value in organized wholesale electricity markets.« less
Data challenges in estimating the capacity value of solar photovoltaics
Gami, Dhruv; Sioshansi, Ramteen; Denholm, Paul
2017-04-30
We examine the robustness of solar capacity-value estimates to three important data issues. The first is the sensitivity to using hourly averaged as opposed to subhourly solar-insolation data. The second is the sensitivity to errors in recording and interpreting load data. The third is the sensitivity to using modeled as opposed to measured solar-insolation data. We demonstrate that capacity-value estimates of solar are sensitive to all three of these factors, with potentially large errors in the capacity-value estimate in a particular year. If multiple years of data are available, the biases introduced by using hourly averaged solar-insolation can be smoothedmore » out. Multiple years of data will not necessarily address the other data-related issues that we examine. Our analysis calls into question the accuracy of a number of solar capacity-value estimates relying exclusively on modeled solar-insolation data that are reported in the literature (including our own previous works). Lastly, our analysis also suggests that multiple years’ historical data should be used for remunerating solar generators for their capacity value in organized wholesale electricity markets.« less
Atmosphere-Warm Ocean Interaction and Its Impacts on Asian-Australian Monsoon Variation(.
NASA Astrophysics Data System (ADS)
Wang, Bin; Wu, Renguang; Li, Tim
2003-04-01
Asian-Australian monsoon (A-AM) anomalies depend strongly on phases of El Niño (La Niña). Based on this distinctive feature, a method of extended singular value decomposition analysis was developed to analyze the changing characteristics of A-AM anomalies during El Niño (La Niña) from its development to decay. Two off-equatorial surface anticyclones dominate the A-AM anomalies during an El Niño-one over the south Indian Ocean (SIO) and the other over the western North Pacific (WNP). The SIO anticyclone, which affects climate conditions over the Indian Ocean, eastern Africa, and India, originates during the summer of a growing El Niño, rapidly reaches its peak intensity in fall, and decays when El Niño matures. The WNP anticyclone, on the other hand, forms in fall, attains maximum intensity after El Niño matures, and persists through the subsequent spring and summer, providing a prolonged impact on the WNP and east Asian climate. The monsoon anomalies associated with a La Niña resemble those during an El Niño but with cyclonic anomalies. From the development summer to the decay summer of an El Niño (La Niña), the anomalous sea level pressure, low-level winds, and vertical motion tend to reverse their signs in the equatorial Indian and western Pacific Oceans (10°S-20°N, 40°-160°E). This suggests that the tropospheric biennial oscillation is intimately linked to the turnabouts of El Niño and La Niña.The remote El Niño forcing alone can explain neither the unusual amplification of the SIO anticyclone during a developing El Niño nor the maintenance of the WNP anticyclone during a decaying El Niño. The atmosphere-ocean conditions in the two anticyclone regions are similar, namely, a zonal sea surface temperature (SST) dipole with cold water to the east and warm water to the west of the anticyclone center. These conditions result from positive feedback between the anomalous anticyclone and the SST dipole, which intensifies the coupled mode in the SIO during El Niño growth and maintains the coupled mode in the WNP during El Niño decay. The interactions in the two anticyclone regions share common wind evaporation/entrainment and cloud-radiation feedback processes but they differ with regard to the oceanic dynamics (vertical and horizontal advection and thermocline adjustment by oceanic waves). The outcome of the interactions in both regions, however, depends crucially on the climatological surface winds. The SIO-coupled mode is triggered by El Niño-induced subsidence and alongshore winds off the coast of Sumatra. However, other independent El Niño local and remote forcing can also trigger this coupled mode.The traditional view has regarded SST anomalies in the Indian and western Pacific Oceans as causing the A-AM variability. The present analysis suggests that the SST anomalies in these warm ocean regions are, to a large extent, a result of anomalous monsoons. Thus, the atmosphere-warm ocean interaction may significantly modify the impacts of remote El Niño forcing and should be regarded as one of the physical factors that determine the variability of the A-AM.During the summer of El Niño development, the remote El Niño forcing plays a major role in the A-AM anomalies that exhibit obvious equatorial asymmetry. A tilted anticyclonic ridge originates in the Maritime Continent and extends to southern India, weakening the Indian monsoon while strengthening the WNP monsoon. Numerical modeling experiments suggest that the mean monsoon circulation enhances the equatorial Rossby wave response in the easterly vertical shear region of the Northern Hemisphere and creates the equatorial asymmetry.
Three Dimensional Dynamics of Freshwater Lenses in the Oceans Near Surface Layer
2016-09-14
a third new front appeared…” However, this striking effect was observed only when the following con- ditions for the Froude number (Fr) and the... Coriolis forces and, strictly speaking, is valid only for the equatorial region. CONCLUSIONS Convective rains within the ITCZ pro- duce localized...freshwater plumes under the influence of both ambient stratification and wind stress and how they interact to affect plume dynam- ics. The Coriolis
NASA Astrophysics Data System (ADS)
Hart, E. K.; Jacobson, M. Z.; Dvorak, M. J.
2008-12-01
Time series power flow analyses of the California electricity grid are performed with extensive addition of intermittent renewable power. The study focuses on the effects of replacing non-renewable and imported (out-of-state) electricity with wind and solar power on the reliability of the transmission grid. Simulations are performed for specific days chosen throughout the year to capture seasonal fluctuations in load, wind, and insolation. Wind farm expansions and new wind farms are proposed based on regional wind resources and time-dependent wind power output is calculated using a meteorological model and the power curves of specific wind turbines. Solar power is incorporated both as centralized and distributed generation. Concentrating solar thermal plants are modeled using local insolation data and the efficiencies of pre-existing plants. Distributed generation from rooftop PV systems is included using regional insolation data, efficiencies of common PV systems, and census data. The additional power output of these technologies offsets power from large natural gas plants and is balanced for the purposes of load matching largely with hydroelectric power and by curtailment when necessary. A quantitative analysis of the effects of this significant shift in the electricity portfolio of the state of California on power availability and transmission line congestion, using a transmission load-flow model, is presented. A sensitivity analysis is also performed to determine the effects of forecasting errors in wind and insolation on load-matching and transmission line congestion.
On the Departure from Isothermality of Pluto's Volatile Ice due to Local Insolation and Topography
NASA Astrophysics Data System (ADS)
Trafton, Laurence M.; Stansberry, John A.
2015-11-01
Pluto’s atmosphere is known to be supported by the vapor pressure of ices that are volatile at low temperature, primarily N2 and secondarily CH4 and CO. The atmospheric bulk is regulated by the globally average temperature of the ice, which is determined by a radiative balance between the diurnally average insolation absorbed globally by the volatile ice and the global volatile ice thermal radiation. This bulk is sufficient that Pluto’s atmosphere is close to hydrostatic equilibrium, though this may not remain so as Pluto continues to move towards aphelion. With the weight of the atmosphere currently distributed evenly around the body, the ice temperature is expected to be globally isothermal in absence of topographic variations, due to the transport of latent heat from regions of high insolation to low insolation through sublimation and condensation. Images returned from the New Horizons spacecraft show topographical features, including mountain ranges that extend above 3.5 km, with albedo variations that suggest a topographical dimension or dependence of the volatile ice deposits. In general, the conditions often applied to a volatile atmosphere of hydrostatic equilibrium and vapor-solid phase equilibrium are approximations that may not always both be appropriate. This is particularly the case in the presence of topography when the atmospheric lapse rate differs from the wet adiabat. We present our results of an investigation of the effect of variable insolation and topography on Pluto’s local ice temperature assuming an atmosphere close to hydrostatic equilibrium.
Almeida, Josiane S; Vanderlei, Franciele M; Pastre, Eliane C; Martins, Rodrigo A D M; Padovani, Carlos R; Filho, Guaracy C
2016-06-01
The aim of the present study was to assess plantar pressure distribution and musculoskeletal symptoms following the use of customized insoles among female assembly line workers. The study included 29 female assembly line workers (age, 29.76 ± 5.79 years; weight, 63.79 ± 12.11 kg) with musculoskeletal symptoms who work predominantly while standing. The Nordic Musculoskeletal Questionnaire was administered to the study population. Plantar pressure was determined using a computerized plantar pressure feedback system. A control group (n=13) used ethylvinylacetate insoles (Podaly®) that were individually heat molded and heat glued. The intervention group (n=14) also used the insoles and a strip of the same material was added to the site of greatest plantar pressure as determined by the electronic feedback device. After five weeks, the plantar pressure data were collected again and the questionnaire was administered a second time. There was no significant difference between groups with regard to pain in any anatomic site. However, within each group the lumbar region exhibited a reduction in symptoms in the intervention group (P<0.05), and the feet exhibited a reduction in symptoms in both groups (P<0.05). Mean plantar pressure increased and plantar surface decreased in the intervention group (P<0.05). Insoles increased foot comfort in both groups. However, the added strip did not significantly modify either plantar pressure or other symptoms in female workers. © 2016 Marshfield Clinic.
Yard, M.D.; Bennett, G.E.; Mietz, S.N.; Coggins, L.G.; Stevens, L.E.; Hueftle, S.; Blinn, D.W.
2005-01-01
Rugged topography along the Colorado River in Glen and Grand Canyons, exemplifies features common to canyon-bound streams and rivers of the arid southwest. Physical relief influences regulated river systems, especially those that are altered, and have become partially reliant on aquatic primary production. We measured and modeled instantaneous solar flux in a topographically complex environment to determine where differences in daily, seasonal and annual solar insolation occurred in this river system. At a system-wide scale, topographic complexity generates a spatial and temporal mosaic of varying solar insolation. This solar variation is a predictable consequence of channel orientation, geomorphology, elevation angles and viewshed. Modeled estimates for clear conditions corresponded closely with observed measurements for both instantaneous photosynthetic photon flux density (PPFD: ??mol m-2 s-1) and daily insolation levels (relative error 2.3%, CI ??0.45, S.D. 0.3, n = 29,813). Mean annual daily insolation levels system-wide were estimated to be 36 mol m-2 d -1 (17.5 S.D.), and seasonally varied on average from 13.4-57.4 mol m-2 d-1, for winter and summer, respectively. In comparison to identical areas lacking topographic effect (idealized plane), mean daily insolation levels were reduced by 22% during summer, and as much as 53% during winter. Depending on outlying topography, canyon bound regions having east-west (EW) orientations had higher seasonal variation, averaging from 8.1 to 61.4 mol m-2 d-1, for winter and summer, respectively. For EW orientations, 70% of mid-channel sites were obscured from direct incidence during part of the year; and of these sites, average diffuse light conditions persisted for 19.3% of the year (70.5 days), and extended upwards to 194 days. This predictive model has provided an initial quantitative step to estimate and determine the importance of autotrophic production for this ecosystem, as well as a broader application for other canyon systems. ?? 2004 Published by Elsevier B.V.
Hsieh, Ru-Lan; Peng, Hui-Ling; Lee, Wen-Chung
2018-05-01
Limited evidence is available regarding the effects of insoles on pediatric flexible flatfoot because of the heterogeneity and low methodological quality of previous studies. The purpose of this prospective trial is to examine the short-term effects of customized arch support insoles on symptomatic flexible flatfoot in children by using the International Classification of Functioning, randomized controlled Disability, and Health (ICF) framework. This study was conducted in a rehabilitation outpatient clinic of a teaching hospital. Fifty-two children with symptomatic flexible flatfoot were included. The children in the treatment group wore customized arch support insoles for 12 weeks, whereas those in the control group did not wear the insoles. Both clinical and radiographic measurements, including the navicular drop, foot posture index, Beighton hypermobility score, talonavicular coverage angle, calcaneal inclination angle, and calcaneal-first metatarsal angle, were used for diagnosing flexible flatfoot. Physical activity (10-m normal and fast walking, stair ascent, stair descent, and chair rising), physical function, and psychometric properties (Pediatric Outcome Data Collection Instrument and Pediatric Quality of Life Inventory) were evaluated at the baseline and 12 weeks after the intervention. Compared with the control group, the treatment group exhibited significant improvement in pain/comfort (P = .048), physical health (P = .035), stair ascent time (P = .015), upper extremity and physical function (P = .016), and transfer and basic mobility (P = .042) during the intervention period. Children with flexible flatfoot who wore customized arch support insoles for 12 weeks exhibited significantly improved pain/comfort, physical health, stair ascent time, upper extremity and physical function, and transfer and basic mobility. These variables belong to the domains of body functions and structures and activity and participation in the ICF framework. However, because the groups were not comparable, additional studies with larger sample sizes should be conducted.
NASA Astrophysics Data System (ADS)
Bergner, Andreas; Deino, Alan; Leng, Melanie; Gasse, Francoise
2016-04-01
A 4.5m-thick diatomite bed deposited during the cold interval of the penultimate interglacial at ~119 - 109 ka documents a period in which a deep freshwater lake filled the Nakuru basin in the Central Kenya Rift (CKR), East Africa. Palaeohydrological conditions of the basin are reconstructed for the paleolake highstand using δ18Odiatom and characterization of diatom assemblages. The age of the diatomite deposit is established by precise 40Ar/39Ar-dating of intercalated pumice tuffs. The paleolake experienced multiple hydrological fluctuations on sub-orbital (~1,500 to 2,000 years) time scales. The magnitude of the δ18Odiatom change (+/- 3‰) and significant changes in the plankton-littoral ratio of the diatom assemblage (+/- 25%) suggest that the paleolake record can be interpreted in the context of long-term climatic change in East Africa. Using 40Ar/39Ar age control and nominal diatomite-sedimentation rates we establish a simplified age model of paleohydrological vs. climatic change, from which we conclude that more humid conditions prevailed in equatorial East Africa during the late Pleistocene over a relatively long time interval of several thousands years. Then, extreme insolation at eccentricity maximum and weakened zonal air-pressure gradients in the tropics favored intensified ITCZ-like convection over East Africa and deep-freshwater lake conditions.
Properties of QBO and SAO Generated by Gravity Waves
NASA Technical Reports Server (NTRS)
Mayr, H. G.; Mengel, J. G.; Reddy, C. A.; Chan, K. L.; Porter, H. S.
1999-01-01
We present an extension for the 2D (zonal mean) version of our Numerical Spectral Mode (NSM) that incorporates Hines' Doppler spread parameterization (DSP) for small scale gravity waves (GW). This model is applied to describe the seasonal variations and the semi-annual and quasi-biennial oscillations (SAO and QBO). Our earlier model reproduced the salient features of the mean zonal circulation in the middle atmosphere, including the QBO extension into the upper mesosphere inferred from UARS measurements. In the present model we incorporate also tropospheric heating to reproduce the upwelling at equatorial latitudes associated with the Brewer-Dobson circulation that affects significantly the dynamics of the stratosphere as Dunkerton had pointed out. Upward vertical winds increase the period of the QBO observed from the ground. To compensate for that, one needs to increase the eddy diffusivity and the GW momentum flux, bringing the latter closer to values recommended in the DSP. The QBO period in the model is 30 months (mo), which is conducive to synchronize this oscillation with the seasonal cycle of solar forcing. Multi-year interannual oscillations are generated through wave filtering by the solar driven annual oscillation in the zonal circulation. Quadratic non-linearities generate interseasonal variations to produce a complicated pattern of variability associated with the QBO. The computed temperature amplitudes for the SAO and QBO are in substantial agreement with observations at equatorial and extratropical latitudes. At high latitudes, however, the observed QBO amplitudes are significantly larger, which may be a signature of propagating planetary waves not included in the present model. The assumption of hydrostatic equilibrium not being imposed, we find that the effects from the vertical Coriolis force associated with the equatorial oscillations are large for the vertical winds and significant for the temperature variations even outside the tropics but are relatively small for the zonal winds.
NASA Astrophysics Data System (ADS)
van der Bilt, Willem G. M.; D'Andrea, William J.; Bakke, Jostein; Balascio, Nicholas L.; Werner, Johannes P.; Gjerde, Marthe; Bradley, Raymond S.
2018-03-01
Situated at the crossroads of major oceanic and atmospheric circulation patterns, the Arctic is a key component of Earth's climate system. Compounded by sea-ice feedbacks, even modest shifts in the region's heat budget drive large climate responses. This is highlighted by the observed amplified response of the Arctic to global warming. Assessing the imprint and signature of underlying forcing mechanisms require paleoclimate records, allowing us to expand our knowledge beyond the short instrumental period and contextualize ongoing warming. However, such datasets are scarce and sparse in the Arctic, limiting our ability to address these issues. Here, we present two quantitative Holocene-length paleotemperature records from the High Arctic Svalbard archipelago, situated in the climatically sensitive Arctic North Atlantic. Temperature estimates are based on U37K unsaturation ratios from sediment cores of two lakes. Our data reveal a dynamic Holocene temperature evolution, with reconstructed summer lake water temperatures spanning a range of ∼6-8 °C, and characterized by four phases. The Early Holocene was marked by an early onset (∼10.5 ka cal. BP) of insolation-driven Hypsithermal conditions, likely compounded by strengthening oceanic heat transport. This warm interval was interrupted by cooling between ∼10.5-8.3 ka cal. BP that we attribute to cooling effects from the melting Northern Hemisphere ice sheets. Temperatures declined throughout the Middle Holocene, following a gradual trend that was accentuated by two cooling steps between ∼7.8-7 ka cal. BP and around ∼4.4-4.3 ka cal. BP. These transitions coincide with a strengthening influence of Arctic water and sea-ice in the adjacent Fram Strait. During the Late Holocene (past 4 ka), temperature change decoupled from the still-declining insolation, and fluctuated around comparatively cold mean conditions. By showing that Holocene Svalbard temperatures were governed by an alternation of forcings, this study improves our understanding of Arctic climate dynamics.
NASA Technical Reports Server (NTRS)
Gibson, G. G.; Denn, F. M.; Young, D. F.; Harrison, E. F.; Minnis, P.; Barkstrom, B. R.
1990-01-01
One year of ERBE data is analyzed for variations in outgoing LW and absorbed solar flux. Differences in land and ocean radiation budgets as well as differences between clear-sky and total scenes, including clouds, are studied. The variation of monthly average radiative parameters is examined for February 1985 through January 1986 for selected study regions and on zonal and global scales. ERBE results show significant seasonal variations in both outgoing LW and absorbed SW flux, and a pronounced difference between oceanic and continental surfaces. The main factors determining cloud radiative forcing in a given region are solar insolation, cloud amount, cloud type, and surface properties. The strongest effects of clouds are found in the midlatitude storm tracks over the oceans. Over much of the globe, LW warming is balanced by SW cooling. The annual-global average net cloud forcing shows that clouds have a net cooling effect on the earth for the year.
Ice-volume-forced erosion of the Chinese Loess Plateau global Quaternary stratotype site.
Stevens, T; Buylaert, J-P; Thiel, C; Újvári, G; Yi, S; Murray, A S; Frechen, M; Lu, H
2018-03-07
The International Commission on Stratigraphy (ICS) utilises benchmark chronostratigraphies to divide geologic time. The reliability of these records is fundamental to understand past global change. Here we use the most detailed luminescence dating age model yet published to show that the ICS chronology for the Quaternary terrestrial type section at Jingbian, desert marginal Chinese Loess Plateau, is inaccurate. There are large hiatuses and depositional changes expressed across a dynamic gully landform at the site, which demonstrates rapid environmental shifts at the East Asian desert margin. We propose a new independent age model and reconstruct monsoon climate and desert expansion/contraction for the last ~250 ka. Our record demonstrates the dominant influence of ice volume on desert expansion, dust dynamics and sediment preservation, and further shows that East Asian Summer Monsoon (EASM) variation closely matches that of ice volume, but lags insolation by ~5 ka. These observations show that the EASM at the monsoon margin does not respond directly to precessional forcing.
Atlas of the Earth's radiation budget as measured by Nimbus-7: May 1979 to May 1980
NASA Technical Reports Server (NTRS)
Kyle, H. Lee; Hucek, Richard R.; Vallette, Brenda J.
1991-01-01
This atlas describes the seasonal changes in the Earth's radiation budget for the 13-month period, May 1979 to May 1980. It helps to illustrate the strong feedback mechanisms by which the Earth's climate interacts with the top-of-the-atmosphere insolation to modify the energy that various regions absorb from the Sun. Cloud type and cloud amount, which are linked to the surface temperature and the regional climate, are key elements in this interaction. Annual, seasonal, and monthly maps of the albedo, outgoing longwave and net radiation, noontime cloud cover, and mean diurnal surface temperatures are presented. Annual and seasonal net cloud forcing maps are also given. All of the quantities were derived from Nimbus-7 satellite measurements except for the temperatures, which were used in the cloud detection algorithm and came originally from the Air Force 3-dimensional nephanalysis dataset. The seasonal changes are described. The interaction of clouds and the radiation budget is briefly discussed.
NASA Technical Reports Server (NTRS)
Smith, J. H.
1980-01-01
Average hourly and daily total insolation estimates for 235 United States locations are presented. Values are presented for a selected number of array tilt angles on a monthly basis. All units are in kilowatt hours per square meter.
García-Hernández, César; Sánchez-Álvarez, Eduardo J; Huertas-Talón, José-Luis
2016-01-01
This research is based on the development of a human foot model to study the temperature conditions of a foot bottom surface under extreme external conditions. This foot model is made by combining different manufacturing techniques to enable the simulation of bones and tissues, allowing the placement of sensors on its surface to track the temperature values of different points inside a shoe. These sensors let researchers capture valuable data during a defined period of time, making it possible to compare the features of different safety boots, socks or soles, among others. In this case, it has been applied to compare different plantar insole materials, placed into safety boots on a high-temperature surface.
Multiple Equilibria Associated with Response of the ITCZ to Seasonal SST Forcing
NASA Technical Reports Server (NTRS)
Chao, Winston C.
1998-01-01
Supported by numerical experiment results, the abrupt change of the location of the intertropical convergence zone (ITCZ), from the equatorial trough flow regime to the monsoon trough flow regime is interpreted as a subcritical instability. The existence of these multiple quasi-equilibria is due to the balance of two "forces" on the ITCZ: one toward the equator, due to the earth's rotation, has a nonlinear latitudinal dependence; and the other toward the latitude of the sea surface (or ground) temperature peak has a relatively linear latitudinal dependence. This work pivots on the finding that the ITCZ and Hadley circulation can still exist without the pole-to-equator gradient of radiative-convective equilibrium temperature.
Diagnostic budgets of analyzed and modelled tropical plumes
NASA Technical Reports Server (NTRS)
Mcguirk, James P.; Vest, Gerry W.
1993-01-01
Blackwell et al. successfully simulated tropical plumes in a global barotropic model valid at 200 mb. The plume evolved in response to strong equatorial convergence which simulated a surge in the Walker Circulation. The defining characteristics of simulated plumes are: a subtropical jet with southerlies emanating from the deep tropics; a tropical/mid-latitude trough to the west; a convergence/divergence dipole straddling the trough; and strong cross contour flow at the tropical base of the jet. Diagnostic budgets of vorticity, divergence, and kinetic energy are calculated to explain the evolution of the modelled plumes. Budgets describe the unforced (basic) state, forced plumes, forced cases with no plumes, and ECMWF analyzed plumes.
Seasonal influence of ENSO on the Atlantic ITCZ and equatorial South America
NASA Astrophysics Data System (ADS)
Münnich, M.; Neelin, J. D.
2005-11-01
In late boreal spring, especially May, a strong relationship exists in observations among precipitation anomalies over equatorial South America and the Atlantic intertropical convergence zone (ITCZ), and eastern equatorial Pacific and central equatorial Atlantic sea surface temperature anomalies (SSTA). A chain of correlations of equatorial Pacific SSTA, western equatorial Atlantic wind stress (WEA), equatorial Atlantic SSTA, sea surface height, and precipitation supports a causal chain in which El Niño/Southern Oscillation (ENSO) induces WEA stress anomalies, which in turn affect Atlantic equatorial ocean dynamics. These correlations show strong seasonality, apparently arising within the atmospheric links of the chain. This pathway and the influence of equatorial Atlantic SSTA on South American rainfall in May appear independent of that of the northern tropical Atlantic. Brazil's Nordeste is affected by the northern tropical Atlantic. The equatorial influence lies further to the north over the eastern Amazon and the Guiana Highlands.
Self-Organization and Forces in the Mitotic Spindle.
Pavin, Nenad; Tolić, Iva M
2016-07-05
At the onset of division, the cell forms a spindle, a precise self-constructed micromachine composed of microtubules and the associated proteins, which divides the chromosomes between the two nascent daughter cells. The spindle arises from self-organization of microtubules and chromosomes, whose different types of motion help them explore the space and eventually approach and interact with each other. Once the interactions between the chromosomes and the microtubules have been established, the chromosomes are moved to the equatorial plane of the spindle and ultimately toward the opposite spindle poles. These transport processes rely on directed forces that are precisely regulated in space and time. In this review, we discuss how microtubule dynamics and their rotational movement drive spindle self-organization, as well as how the forces acting in the spindle are generated, balanced, and regulated.
Spectral simulations of an axisymmetric force-free pulsar magnetosphere
NASA Astrophysics Data System (ADS)
Cao, Gang; Zhang, Li; Sun, Sineng
2016-02-01
A pseudo-spectral method with an absorbing outer boundary is used to solve a set of time-dependent force-free equations. In this method, both electric and magnetic fields are expanded in terms of the vector spherical harmonic (VSH) functions in spherical geometry and the divergence-free state of the magnetic field is enforced analytically by a projection method. Our simulations show that the Deutsch vacuum solution and the Michel monopole solution can be reproduced well by our pseudo-spectral code. Further, the method is used to present a time-dependent simulation of the force-free pulsar magnetosphere for an aligned rotator. The simulations show that the current sheet in the equatorial plane can be resolved well and the spin-down luminosity obtained in the steady state is in good agreement with the value given by Spitkovsky.
Three-dimensional Force and Kinematic Interactions in V1 Skating at High Speeds.
Stöggl, Thomas; Holmberg, Hans-Christer
2015-06-01
To describe the detailed kinetics and kinematics associated with use of the V1 skating technique at high skiing speeds and to identify factors that predict performance. Fifteen elite male cross-country skiers performed an incremental roller-skiing speed test (Vpeak) on a treadmill using the V1 skating technique. Pole and plantar forces and whole-body kinematics were monitored at four submaximal speeds. The propulsive force of the "strong side" pole was greater than that of the "weak side" (P < 0.01), but no difference was observed for the legs. The poles generated approximately 44% of the total propulsion, being more effective than the legs in this respect (∼59% vs 11%, P < 0.001). Faster skiers exhibited more well-synchronized poling, exhibited more symmetric edging by and forces from the legs, and were more effective in transformation of resultant forces into propulsion. Cycle length was not correlated with either Vpeak or the impulse of total propulsive forces. The present findings provide novel insights into the coordination, kinetics, and kinematics of the arm and leg motion by elite athletes while V1 skating at high speeds. The faster skiers exhibit more symmetric leg motion on the "strong" and "weak" sides, as well as more synchronized poling. With respect to methods, the pressure insoles and three-dimensional kinematics in combination with the leg push-off model described here can easily be applied to all skating techniques, aiding in the evaluation of skiing techniques and comparison of effectiveness.
Climate: Is the past the key to the future?
NASA Astrophysics Data System (ADS)
Hay, W. W.; DeConto, R. M.; Wold, C. N.
The climate of the Holocene is not well suited to be the baseline for the climate of the planet. It is an interglacial, a state typical of only 10% of the past few million years. It is a time of relative sea-level stability after a rapid 130-m rise from the lowstand during the last glacial maximum. Physical geologic processes are operating at unusual rates and much of the geochemical system is not in a steady state. During most of the Phanerozoic there have been no continental ice sheets on the earth, and the planet's meridional temperature gradient has been much less than it is presently. Major factors influencing climate are insolation, greenhouse gases, paleogeography, and vegetation; the first two are discussed in this paper. Changes in the earth's orbital parameters affect the amount of radiation received from the sun at different latitudes over the course of the year. During the last climate cycle, the waxing and waning of the northern hemisphere continental ice sheets closely followed the changes in summer insolation at the latitude of the northern hemisphere polar circle. The overall intensity of insolation in the northern hemisphere is governed by the precession of the earth's axis of rotation, and the precession and ellipticity of the earth's orbit. At the polar circle a meridional minimum of summer insolation becomes alternately more and less pronounced as the obliquity of the earth's axis of rotation changes. Feedback processes amplify the insolation signal. Greenhouse gases (H2O, CO2, CH4, CFCs) modulate the insolation-driven climate. The atmospheric content of CO2 during the last glacial maximum was approximately 30% less than during the present interglacial. A variety of possible causes for this change have been postulated. The present burning of fossil fuels, deforestation, and cement manufacture since the beginning of the industrial revolution have added CO2 to the atmosphere when its content due to glacial-interglacial variation was already at a maximum. Anthropogenic activity has increased the CO2 content of the atmosphere to 130% of its previous Holocene level, probably higher than at any time during the past few million years. During the Late Cretaceous the atmospheric CO2 content was probably about four times that of the present, the level to which it may rise at the end of the next century. The results of a Campanian (80 Ma) climate simulation suggest that the positive feedback between CO2 and another important greenhouse gas, H2O, raised the earth's temperature to a level where latent heat transport became much more significant than it is presently, and operated efficiently at all latitudes. Atmospheric high- and low-pressure systems were as much the result of variations in the vapor content of the air as of temperature differences. In our present state of knowledge, future climate change is unpredictable because by adding CO2 to the atmosphere we are forcing the climate toward a ``greenhouse'' mode when it is accustomed to moving between the glacial-interglacial ``icehouse'' states that reflect the waxing and waning of ice sheets. At the same time we are replacing freely transpiring C3 plants with water-conserving C4 plants, producing a global vegetation complex that has no past analog. The past climates of the earth cannot be used as a direct guide to what may occur in the future. To understand what may happen in the future we must learn about the first principles of physics and chemistry related to the earth's system. The fundamental mechanisms of the climate system are best explored in simulations of the earth's ancient extreme climates.
Clarke, Julia A.; Ksepka, Daniel T.; Stucchi, Marcelo; Urbina, Mario; Giannini, Norberto; Bertelli, Sara; Narváez, Yanina; Boyd, Clint A.
2007-01-01
New penguin fossils from the Eocene of Peru force a reevaluation of previous hypotheses regarding the causal role of climate change in penguin evolution. Repeatedly it has been proposed that penguins originated in high southern latitudes and arrived at equatorial regions relatively recently (e.g., 4–8 million years ago), well after the onset of latest Eocene/Oligocene global cooling and increases in polar ice volume. By contrast, new discoveries from the middle and late Eocene of Peru reveal that penguins invaded low latitudes >30 million years earlier than prior data suggested, during one of the warmest intervals of the Cenozoic. A diverse fauna includes two new species, here reported from two of the best exemplars of Paleogene penguins yet recovered. The most comprehensive phylogenetic analysis of Sphenisciformes to date, combining morphological and molecular data, places the new species outside the extant penguin radiation (crown clade: Spheniscidae) and supports two separate dispersals to equatorial (paleolatitude ≈14°S) regions during greenhouse earth conditions. One new species, Perudyptes devriesi, is among the deepest divergences within Sphenisciformes. The second, Icadyptes salasi, is the most complete giant (>1.5 m standing height) penguin yet described. Both species provide critical information on early penguin cranial osteology, trends in penguin body size, and the evolution of the penguin flipper. PMID:17601778
The role of Shabansky orbits in the generation of compression-related EMIC waves
NASA Astrophysics Data System (ADS)
McCollough, J. P.; Elkington, S. R.; Baker, D.
2009-12-01
Electromagnetic ion-cyclotron (EMIC) waves arise from temperature anisotropies in trapped warm plasma populations. In particular, EMIC waves at high L values near local noon are often found to be related to magnetospheric compression events. There are several possible mechanisms that can generate these temperature anisotropies: energizing processes, including adiabatic compression and shock-induced and radial transport; and non-energizing processes, such as drift shell splitting and the effects of off-equatorial minima on particle populations. In this work we investigate the role of off-equatorial minima in the generation of temperature anisotropies both at the magnetic equator and at higher latitudes. There are two kinds of behavior particles undergo in response: particles with high equatorial pitch angles (EPAs) are forced to execute so-called Shabanksy orbits and mirror at high latitudes without passing through the equator, and those with lower EPAs will pass through the equator with higher EPAs than before; as a result, perpendicular energies increase at the cost of parallel energies. By using a 3D particle tracing code in a tunable analytic compressed-dipole field, we parameterize the effects of Shabansky orbits on the anisotropy of the warm plasma. These results as well as evidence from simulations of a real event in which EMIC waves were observed (the compression event of 29 June 2007) are presented.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Li, Tim
2017-02-01
Most of CMIP5 models projected a weakened Walker circulation in tropical Pacific, but what causes such change is still an open question. By conducting idealized numerical simulations separating the effects of the spatially uniform sea surface temperature (SST) warming, extra land surface warming and differential SST warming, we demonstrate that the weakening of the Walker circulation is attributed to the western North Pacific (WNP) monsoon and South America land effects. The effect of the uniform SST warming is through so-called "richest-get-richer" mechanism. In response to a uniform surface warming, the WNP monsoon is enhanced by competing moisture with other large-scale convective branches. The strengthened WNP monsoon further induces surface westerlies in the equatorial western-central Pacific, weakening the Walker circulation. The increase of the greenhouse gases leads to a larger land surface warming than ocean surface. As a result, a greater thermal contrast occurs between American Continent and equatorial Pacific. The so-induced zonal pressure gradient anomaly forces low-level westerly anomalies over the equatorial eastern Pacific and weakens the Walker circulation. The differential SST warming also plays a role in driving low-level westerly anomalies over tropical Pacific. But such an effect involves a positive air-sea feedback that amplifies the weakening of both east-west SST gradient and Pacific trade winds.
NASA Astrophysics Data System (ADS)
Dippe, Tina; Greatbatch, Richard; Ding, Hui
2016-04-01
The dominant mode of interannual variability in tropical Atlantic sea surface temperatures (SSTs) is the Atlantic Niño or Zonal Mode. Akin to the El Niño-Southern Oscillation in the Pacific sector, it is able to impact the climate both of the adjacent equatorial African continent and remote regions. Due to heavy biases in the mean state climate of the equatorial-to-subtropical Atlantic, however, most state-of-the-art coupled global climate models (CGCMs) are unable to realistically simulate equatorial Atlantic variability. In this study, the Kiel Climate Model (KCM) is used to investigate the impact of a simple bias alleviation technique on the predictability of equatorial Atlantic SSTs. Two sets of seasonal forecasting experiments are performed: An experiment using the standard KCM (STD), and an experiment with additional surface heat flux correction (FLX) that efficiently removes the SST bias from simulations. Initial conditions for both experiments are generated by the KCM run in partially coupled mode, a simple assimilation technique that forces the KCM with observed wind stress anomalies and preserves SST as a fully prognostic variable. Seasonal predictions for both sets of experiments are run four times yearly for 1981-2012. Results: Heat flux correction substantially improves the simulated variability in the initialization runs for boreal summer and fall (June-October). In boreal spring (March-May), however, neither the initialization runs of the STD or FLX-experiments are able to capture the observed variability. FLX-predictions show no consistent enhancement of skill relative to the predictions of the STD experiment over the course of the year. The skill of persistence forecasts is hardly beat by either of the two experiments in any season, limiting the usefulness of the few forecasts that show significant skill. However, FLX-forecasts initialized in May recover skill in July and August, the peak season of the Atlantic Niño (anomaly correlation coefficients of about 0.3). Further study is necessary to determine the mechanism that drives this potentially useful recovery.
NASA Astrophysics Data System (ADS)
Frouin, Robert; Ueyoshi, Kyozo; Kampel, Milton
2007-09-01
Numerical experiments conducted with an ocean general ocean circulation model reveal the potential influence of solar radiation absorbed by phytoplankton on the thermal structure and currents of the Tropical Atlantic Ocean. In the model, solar radiation penetration is parameterized explicitly as a function of chlorophyll-a concentration, the major variable affecting water turbidity in the open ocean. Two types of runs are performed, a clear water (control) run with a constant minimum chlorophyll-a concentration of 0.02 mgm -3, and a turbid water (chlorophyll) run with space- and time-varying chlorophyll-a concentration from satellite data. The difference between results from the two runs yields the biological effects. In the chlorophyll run, nutrients and biology production are implicitly taken into account, even though biogeochemical processes are not explicitly included, since phytoplankton distribution, prescribed from observations, is the result of those processes. Due to phytoplankton-radiation forcing, the surface temperature is higher by 1-2 K on average annually in the region of the North Equatorial current, the Northern part of the South Equatorial current, and the Caribbean system, and by 3-4 K in the region of the Guinea current. In this region, upwelling is reduced, and heat trapped in the surface layers by phytoplankton is not easily removed. The surface temperature is lower by 1 K in the Northern region of the Benguela current, due to increased upwelling. At depth, the equatorial Atlantic is generally cooler, as well as the eastern part of the tropical basin (excluding the region of the sub-tropical gyres). The North and South equatorial currents, as well as the Equatorial undercurrent, are enhanced by as much as 3-4 cms -1, and the circulation of the subtropical gyres is increased. Pole-ward heat transport is slightly reduced North of 35°N, suggesting that phytoplankton, by increasing the horizontal return flow in the subtropical region, may exert a cooling influence on higher latitude regions. The findings indicate that biology-induced buoyancy plays a significant role, in an indirect if not direct way, in the variability of the Tropical Atlantic Ocean, with consequences on atmospheric circulation and climate.
Westerly Wind Bursts: a Synoptic-Dynamic Study
NASA Astrophysics Data System (ADS)
Hartten, Leslie Marie
This research examines the synoptic and climatological settings of westerly wind bursts (WWBs) during the 1980s and the dynamical processes active during them. Probabilities of strong westerly and easterly 1000 mb winds over the western equatorial Pacific are presented. Westerlies exhibit a clear annual cycle, appearing in the north in July, moving southeastward as the year progresses, and disappearing by June. Conditional probabilities, dependent on the value of the SOI, show that strong westerlies are more likely and more geographically extensive when the SOI is low, especially from July through January. A newly developed two-dimensional classification scheme qualitatively describes the near-surface synoptic flow of almost 90% of the 131 WWBs identified during the decade. Only 8% of the WWBs are described by the pattern involving twin cyclonic circulations straddling the equator. The trades, tropical cyclones, and the southeast Asian monsoon are all at times linked to WWBs, and the synoptic patterns often contain a significant barotropic component. Breaks in WWB activity are well correlated with a cooler than normal western Pacific warm pool. However, near-equatorial WWBs do not show a good correlation with the Madden-Julian Oscillation. Four near-equatorial WWBs are examined in detail. All are associated with broad cross-equatorial flow; two also have a cyclonic circulation poleward of the westerlies. Anticyclonic relative vorticity equatorward of the burst displaces the zero line of absolute vorticity, eta, into the burst hemisphere. In the three Southern Hemisphere cases, horizontal advection in a region extending from north of New Guinea east-southeast toward the dateline is crucial to the generation and maintenance of the eta pattern. Vorticity stretching associated with convection helps maintain a tight gradient of eta near and poleward of the burst, but also drives the eta = 0 line back towards the equator as the burst ends. In the Northern Hemisphere case, advection is less efficient because the trades slow and turn further away from the equator. This research indicates that Gill's (1980) solution to the linear shallow -water equations forced by near-equatorial heating is not a good model for WWBs.
2012-03-01
observation re = the radius of the Earth at the equator Pn = the Legendre polynomial 26 L = the geocentric latitude, sin The acceleration can then...atmospheric density at an altitude above an %% oblate earth given the position vector in the Geocentric Equatorial %% frame. The position vector is in...Diff between Delta and Geocentric lat rad %% GeoDtLat - Geodetic Latitude -Pi/2 to Pi/2 rad %% GeoCnLat
2011-02-03
focused upon the tropospheric forcing, for example the role of blocking systems (large-scale, quasi-stationary, high-pressure systems that may steer...disruptions of the stratosphere may in turn perturb the troposphere and even affect surface weather. In early February 2009, London received heavy snowfall...global measurements from twelve SSW periods, found cooling in the equatorial lower stratosphere and upper troposphere that is associated with increased
A two-dimensional model study of the QBO signal in SAGE II NO{sub 2} and O{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chipperfield, M.P.; Gray, L.J.; Kinnersley, J.S.
1994-04-01
The authors present a model study of the quasi biennial oscillation signal in observed nitrogen dioxide and ozone data collected between 1984 and 1991 by SAGE II. This 2D model is applied on a grid from pole to pole, from the ground to 80 km altitude. The QBO signal is forced into the model by making the equatorial winds in the model relax toward observations from Singapore.
NASA Astrophysics Data System (ADS)
Koutavas, Athanasios
2018-03-01
Tropical sea surface temperatures (SSTs) warmed and cooled in step with the Pleistocene ice age cycles, but the mechanisms are not known. It is assumed that the answer must involve radiative forcing by CO2 but SST reconstructions have been too sparse for a conclusive test. Here I present a 230,000-yr tropical SST stack from the eastern equatorial Pacific (EEP) using two new Mg/Ca reconstructions combined with three earlier ones. The EEP stack shows persistent covariation with Antarctic temperature on orbital and millennial timescales indicating tight coupling between the two regions. This coupling however cannot be explained solely by CO2 forcing because in at least one important case, the Marine Isotope Stage (MIS) 5e-5d glacial inception, both regions cooled ∼5-6.5 thousand years before CO2 decreased. More likely, their covariation was due to advection of Antarctic climate signals to the EEP by the ocean. To explain the MIS 5e-5d event and glacial inception in general the hypothesis is advanced that the cooling signal spreads globally from the Northern Hemisphere with an active ocean circulation - first from the North Atlantic to the Southern Ocean with a colder North Atlantic Deep Water, and then to the Indian and Pacific Oceans with cooler Antarctic deep and intermediate waters.
Understanding the Central Equatorial African long-term drought using AMIP-type simulations
NASA Astrophysics Data System (ADS)
Hua, Wenjian; Zhou, Liming; Chen, Haishan; Nicholson, Sharon E.; Jiang, Yan; Raghavendra, Ajay
2018-02-01
Previous studies show that Indo-Pacific sea surface temperature (SST) variations may help to explain the observed long-term drought during April-May-June (AMJ) since the 1990s over Central equatorial Africa (CEA). However, the underlying physical mechanisms for this drought are still not clear due to observation limitations. Here we use the AMIP-type simulations with 24 ensemble members forced by observed SSTs from the ECHAM4.5 model to explore the likely physical processes that determine the rainfall variations over CEA. We not only examine the ensemble mean (EM), but also compare the "good" and "poor" ensemble members to understand the intra-ensemble variability. In general, EM and the "good" ensemble member can simulate the drought and associated reduced vertical velocity and anomalous anti-cyclonic circulation in the lower troposphere. However, the "poor" ensemble members cannot simulate the drought and associated circulation patterns. These contrasts indicate that the drought is tightly associated with the tropical Walker circulation and atmospheric teleconnection patterns. If the observational circulation patterns cannot be reproduced, the CEA drought will not be captured. Despite the large intra-ensemble spread, the model simulations indicate an essential role of SST forcing in causing the drought. These results suggest that the long-term drought may result from tropical Indo-Pacific SST variations associated with the enhanced and westward extended tropical Walker circulation.
Oceanic Channel of the IOD-ENSO teleconnection over the Indo-Pacific Ocean
NASA Astrophysics Data System (ADS)
Yuan, Dongliang; Wang, Jing; Zhao, Xia; Zhou, Hui; Xu, Tengfei; Xu, Peng
2017-04-01
The lag correlations of observations and model simulated data that participate the Coupled Model Intercomparison Project phase-5 (CMIP5) are used to study the precursory teleconnection between the Indian Ocean Dipole (IOD) and the Pacific ENSO one year later through the Indonesian seas. The results suggest that Indonesian Throughflow (ITF) play an important role in the IOD-ENSO teleconnection. Numerical simulations using a hierarchy of ocean models and climate coupled models have shown that the interannual sea level depressions in the southeastern Indian Ocean during IOD force enhanced ITF to transport warm water of the Pacific warm pool to the Indian Ocean, producing cold subsurface temperature anomalies, which propagate to the eastern equatorial Pacific and induce significant coupled ocean-atmosphere evolution. The teleconnection is found to have decadal variability. Similar decadal variability has also been identified in the historical simulations of the CMIP5 models. The dynamics of the inter-basin teleconnection during the positive phases of the decadal variability are diagnosed to be the interannual variations of the ITF associated with the Indian Ocean Dipole (IOD). During the negative phases, the thermocline in the eastern equatorial Pacific is anomalously deeper so that the sea surface temperature anomalies in the cold tongue are not sensitive to the thermocline depth changes. The IOD-ENSO teleconnection is found not affected significantly by the anthropogenic forcing.
Takahashi, Nobushige; Takahashi, Hidetoshi; Takahashi, Osamu; Ushijima, Ryosuke; Umebayashi, Rie; Nishikawa, Junji; Okajima, Yasutomo
2018-02-01
Spasticity is a common sequela of upper motor neuron pathology, such as cerebrovascular diseases and cerebral palsy. Intervention for spasticity of the ankle plantarflexors in physical therapy may include tone-inhibiting casting and/or orthoses for the ankle and foot. However, the physiological mechanism of tone reduction by such orthoses remains unclarified. To investigate the electrophysiologic effects of tone-inhibiting insoles in stroke subjects with hemiparesis by measuring changes in reciprocal Ia inhibition (RI) in the ankle plantarflexor. An interventional before-after study. Acute stroke unit or ambulatory rehabilitation clinic of a university hospital in Japan. Ten subjects (47-84 years) with hemiparesis and 10 healthy male control subjects (31-59 years) were recruited. RI of the spastic soleus in response to the electrical stimulation of the deep peroneal nerve was evaluated by stimulus-locked averaging of rectified electromyography (EMG) of the soleus while subjects were standing. The magnitude of RI, defined as the ratio of the lowest to the baseline amplitude of the rectified EMG at approximately 40 milliseconds after stimulation, was measured while subjects were standing with and without the tone-inhibiting insole on the hemiparesis side. Enhancement of EMG reduction with the tone-inhibiting insole was significant (P < .05) in the subjects with hemiparesis, whereas no significant changes were found in controls. Tone-inhibiting insoles enhanced RI of the soleus in subjects after stroke, which might enhance standing stability by reducing unfavorable ankle plantarflexion tone. III. Copyright © 2018 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Goga, Haruhisa
2012-09-01
It is crucial to identify the owner of unattended footwear left at a crime scene. However, retrieving enough DNA for DNA profiling from the owner's foot skin (plantar skin) cells from inside the footwear is often unsuccessful. This is sometimes because footwear that is used on a daily basis contains an abundance of bacteria that degrade DNA. Further, numerous other factors related to the inside of the shoe, such as high humidity and temperature, can encourage bacterial growth inside the footwear and enhance DNA degradation. This project sought to determine if bacteria from inside footwear could be used for footwear trace evidence. The plantar skins and insoles of shoes of volunteers were swabbed for bacteria, and their bacterial community profiles were compared using bacterial 16S rRNA terminal restriction fragment length polymorphism analysis. Sufficient bacteria were recovered from both footwear insoles and the plantar skins of the volunteers. The profiling identified that each volunteer's plantar skins harbored unique bacterial communities, as did the individuals' footwear insoles. In most cases, a significant similarity in the bacterial community was identified for the matched foot/insole swabs from each volunteer, as compared with those profiles from different volunteers. These observations indicate the probability to discriminate the owner of footwear by comparing the microbial DNA fingerprint from inside footwear with that of the skin from the soles of the feet of the suspected owner. This novel strategy will offer auxiliary forensic footwear evidence for human DNA identification, although further investigations into this technique are required.
Observations of Convectively Coupled Kelvin Waves forced by Extratropical Wave Activity
NASA Astrophysics Data System (ADS)
Kiladis, G. N.; Biello, J. A.; Straub, K. H.
2012-12-01
It is well established by observations that deep tropical convection can in certain situations be forced by extratropical Rossby wave activity. Such interactions are a well-known feature of regions of upper level westerly flow, and in particular where westerlies and equatorward wave guiding by the basic state occur at low enough latitudes to interact with tropical and subtropical moisture sources. In these regions convection is commonly initiated ahead of upper level troughs, characteristic of forcing by quasi-geostrophic dynamics. However, recent observational evidence indicates that extratropical wave activity is also associated with equatorial convection even in regions where there is a "critical line" to Rossby wave propagation at upper levels, that is, where the zonal phase speed of the wave is equal to the zonal flow speed. A common manifestation of this type of interaction involves the initiation of convectively coupled Kelvin waves, as well as mixed Rossby-gravity (MRG) waves. These waves are responsible for a large portion of the convective variability within the ITCZ over the Indian, Pacific, and Atlantic sectors, as well as within the Amazon Basin of South America. For example, Kelvin waves originating within the western Pacific ITCZ are often triggered by Rossby wave activity propagating into the Australasian region from the South Indian Ocean extratropics. At other times, Kelvin waves are seen to originate along the eastern slope of the Andes. In the latter case the initial forcing is sometimes linked to a low-level "pressure surge," initiated by wave activity propagating equatorward from the South Pacific storm track. In yet other cases, such as over Africa, the forcing appears to be related to wave activity in the extratropics which is not necessarily propagating into low latitudes, but appears to "project" onto the Kelvin structure, in line with past theoretical and modeling studies. Observational evidence for extratropical forcing of Kelvin and MRG waves will be presented, and the seasonality of these statistical associations will be discussed. Extratropical forcing of equatorial waves appears to be most efficient during the solstice seasons by waves originating within the winter hemisphere and interacting with convection in the summer hemisphere. A companion presentation by J. Biello will examine the theoretical basis for these interactions.
CAN RUNNERS PERCEIVE CHANGES IN HEEL CUSHIONING AS THE SHOE AGES WITH INCREASED MILEAGE?
Cornwall, Mark W; McPoil, Thomas G
2017-08-01
For those runners who utilize footwear and have a rearfoot strike pattern, the durability of the midsole heel region has been shown to deteriorate as shoe mileage increases. The purpose of this study was threefold: 1) to determine if the runner can self-report changes in heel cushioning properties of the midsole after an extended period of distance running, 2) to determine if force and plantar pressures measured in the heel region of the midsole using a capacitance sensor insole change after running 640 km, and 3) to determine if a durometer could be used clinically to objectively measure changes in the hardness of the material in the heel region of the midsole. Cross-sectional Study. Fifteen recreational runners voluntarily consented to participate and were provided with a new pair of running shoes. Each participant's running style was observed and classified as having a rearfoot strike pattern. Inclusion criteria included running at least 24 km per week, experience running on a treadmill, no history of lower extremity congenital or traumatic deformity, or acute injury six months prior to the start of the study. The ability of each participant to self-perceive changes in shoe cushioning, comfort and fit was assessed using the Footwear Comfort Assessment Tool (FCAT). In-shoe plantar pressures and vertical forces were assessed using a capacitance sensor insole while runners ran over a 42-meter indoor runway. A Shore A durometer was used to measure the hardness of the midsole in the heel region. All measures were completed at baseline (zero km) and after running 160, 320, 480, and 640 km. In addition to descriptive statistics, a repeated measures analysis of variance was used to determine if the FCAT, pressures, forces, or midsole hardness changed because of increased running mileage. While plantar pressures and vertical forces were significantly reduced in the midsole heel region, none of the runners self-reported a significant reduction in heel cushioning based on FCAT scores after running 640 km. The use of a durometer provided an objective measure of the changes in the heel region of the midsole that closely matched the reductions observed in pressure and force values. The results indicated that runners who have a rearfoot strike pattern will have a 16% to 33% reduction in the amount of cushioning in the heel region of the midsole after running 480 km. Although there were significant reductions in heel cushioning, the experienced recreational runners in this study were not able to self-perceive these changes after running 640 km. In addition, the use of a durometer provides a quick and accurate way to assess changes in the hardness of the heel region of the midsole as running mileage increases. 3, Controlled laboratory study.
NASA Technical Reports Server (NTRS)
Latta, A. F.; Bowyer, J. M.; Fujita, T.; Richter, P. H.
1979-01-01
The performance and cost of the 10 MWe advanced solar thermal electric power plants sited in various regions of the continental United States were determined. The regional insolation data base is discussed. A range for the forecast cost of conventional electricity by region and nationally over the next several cades are presented.
Topographic and Other Influences on Pluto's Volatile Ices
NASA Astrophysics Data System (ADS)
Lewis, Briley Lynn; Stansberry, John; Grundy, William M.; Schmitt, Bernard; Protopapa, Silvia; Trafton, Laurence M.; Holler, Bryan J.; McKinnon, William B.; Schenk, Paul M.; Stern, S. Alan; Young, Leslie; Weaver, Harold A.; Olkin, Catherine; Ennico, Kimberly; New Horizons Science Team, The New Horizons Composition Team
2018-01-01
Pluto’s surface is known to consist of various volatile ices, mostly N2, CH4, and CO, which sublimate and condense on varying timescales, generally moving from points of high insolation to those of low insolation. The New Horizons Pluto encounter data provide multiple lenses through which to view Pluto’s detailed surface topography and composition and to investigate the distribution of volatiles on its surface, including albedo and elevation maps from the imaging instruments and composition maps from the LEISA spectral imager. The volatile surface ice is expected to be generally isothermal, due to the fact that their vapor pressures are in equilibrium with the atmosphere. Although secular topographic transport mechanisms suggest that points at low elevation should slowly fill with volatile ices (Trafton 2015 DPS abstract, Bertrand and Forget 2017), there are counter-examples of this across the surface, implying that energy discrepancies caused by insolation differences, albedo variations, local slopes, and other effects may take precedence at shorter timescales. Using data from the 2015 New Horizons flyby, we present our results of this investigation into the effects of variations in insolation, albedo, and topography on the presence of the different volatile ices across the surface of Pluto.
The response of East Asian monsoon to the precessional cycle
NASA Astrophysics Data System (ADS)
Lee, J. E.
2017-12-01
The oxygen isotopic composition of cave speleothems exhibits a large amplitude change following the insolation, particularly the precessional cycle. Whether speleothem d18O reflects local precipitation amount, however, has been questioned by alternative hypotheses: (1) d18O reflects upstream Indian monsoon precipitation, which influences the isotopic composition of the input vapor to East Asia, and (2) the isotopic composition of pre-monsoon and monsoon exhibits a large difference, and the seasonality of precipitation may have shifted in response to insolation. Motivated the fact that the magnitude of Asian monsoon d18O was not reproduced by most climate models, here I show new results, using the fully coupled GFDL model, that precipitation increases when the northern hemisphere receives more summer insolation, similar to the original claim. I argue that previous models do not produce enough rainfall during the monsoon season, possibly because the westerly jet is located too north in relation to the Tibetan Plateau during the monsoon season. I conclude that Asian monsoon intensity probably increases with increasing insolation there, given a large change in speleothem d18O. My next step will be testing this hypothesis after incorporating isotopes into the GFDL model.
Topographic and Other Influences on Pluto's Volatile Ices
NASA Astrophysics Data System (ADS)
Lewis, Briley Lynn; Stansberry, John; Grundy, William M.; Schmitt, Bernard; Protopapa, Silvia; Trafton, Laurence M.; Holler, Bryan J.; McKinnon, William B.; Schenk, Paul M.; Stern, S. Alan; Young, Leslie; Weaver, Harold A.; Olkin, Catherine; Ennico, Kimberly; New Horizons Science Team
2017-10-01
Pluto’s surface is known to consist of various volatile ices, mostly N2, CH4, and CO, which sublimate and condense on varying timescales, generally moving from points of high insolation to those of low insolation. The New Horizons Pluto encounter data provide multiple lenses through which to view Pluto’s detailed surface topography and composition and to investigate the distribution of volatiles on its surface, including albedo and elevation maps from the imaging instruments and composition maps from the LEISA spectral imager. The volatile surface ice is expected to be generally isothermal, due to the fact that their vapor pressures are in equilibrium with the atmosphere. Although secular topographic transport mechanisms suggest that points at low elevation should slowly fill with volatile ices (Trafton 2015 DPS abstract, Bertrand and Forget 2017), there are counter-examples of this across the surface, implying that energy discrepancies caused by insolation differences, albedo variations, local slopes, and other effects may take precedence at shorter timescales. Using data from the 2015 New Horizons flyby, we present our results of this investigation into the effects of variations in insolation, albedo, and topography on the presence of the different volatile ices across the surface of Pluto.
On a generating mechanism for Yanai waves and the 25-day oscillation
NASA Technical Reports Server (NTRS)
Kelly, Brian G.; Meyers, Steven D.; O'Brien, James J.
1995-01-01
A spectral Chebyshev-collocation method applied to the linear, 1.5 layer reduced-gravity ocean model equations is used to study the dynamics of Yanai (or mixed Rossby-gravity) wave packets. These are of interest because of the observations of equatorial instability waves (which have the characteristics of Yanai waves) and their role in the momentum and heat budgets in the tropics. A series of experiments is performed to investigate the generation of the waves by simple cross-equatorial wind stress forcings in various configurations and the influence of a western boundary on the waves. They may be generated in the interior ocean as well as from a western boundary. The observations from all the oceans indicate that the waves have a preferential period and wavelength of around 25 days and 1000 km respectively. These properties are also seen in the model results and a plausible explanation is provided as being due to the dispersive properties of Yanai waves.