Science.gov

Sample records for equatorial magnetic helicity

  1. Helicity and celestial magnetism

    NASA Astrophysics Data System (ADS)

    Moffatt, H. K.

    2016-06-01

    This informal article discusses the central role of magnetic and kinetic helicity in relation to the evolution of magnetic fields in geophysical and astrophysical contexts. It is argued that the very existence of magnetic fields of the intensity and scale observed is attributable in large part to the chirality of the background turbulence or random-wave field of flow, the simplest measure of this chirality being non-vanishing helicity. Such flows are responsible for the generation of large-scale magnetic fields which themselves exhibit magnetic helicity. In the geophysical context, the turbulence has a `magnetostrophic' character in which the force balance is primarily that between buoyancy forces, Coriolis forces and Lorentz forces associated with the dynamo-generated magnetic field; the dominant nonlinearity here arises from the convective transport of buoyant elements erupting from the `mushy zone' at the inner core boundary. At the opposite extreme, in a highly conducting low-density plasma, the near-invariance of magnetic field topology (and of associated helicity) presents the challenging problem of `magnetic relaxation under topological constraints', of central importance both in astrophysical contexts and in controlled-fusion plasma dynamics. These problems are reviewed and open issues, particularly concerning saturation mechanisms, are reconsidered.

  2. Magnetic Helicity and Planetary Dynamos

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2012-01-01

    A model planetary dynamo based on the Boussinesq approximation along with homogeneous boundary conditions is considered. A statistical theory describing a large-scale MHD dynamo is found, in which magnetic helicity is the critical parameter

  3. Magnetic Helicity, Tilt, and Twist

    NASA Astrophysics Data System (ADS)

    Pevtsov, Alexei A.; Berger, Mitchell A.; Nindos, Alexander; Norton, Aimee A.; van Driel-Gesztelyi, Lidia

    2014-12-01

    Since its introduction to astro- and solar physics, the concept of helicity has proven to be useful in providing critical insights into physics of various processes from astrophysical dynamos, to magnetic reconnection and eruptive phenomena. Signature of helicity was also detected in many solar features, including orientation of solar active regions, or Joy's law. Here we provide a summary of both solar phenomena and consider mutual relationship and its importance for the evolution of solar magnetic fields.

  4. Turbulent Dynamos and Magnetic Helicity

    SciTech Connect

    Ji, Hantao

    1999-04-01

    It is shown that the turbulent dynamo alpha-effect converts magnetic helicity from the turbulent field to the mean field when the turbulence is electromagnetic while the magnetic helicity of the mean-field is transported across space when the turbulence is elcetrostatic or due to the elcetron diamagnetic effect. In all cases, however, the dynamo effect strictly conserves the total helicity expect for a battery effect which vanishes in the limit of magnetohydrodynamics. Implications for astrophysical situations, especially for the solar dynamo, are discussed.

  5. Baryogenesis from decaying magnetic helicity

    NASA Astrophysics Data System (ADS)

    Kamada, Kohei; Long, Andrew J.

    2016-09-01

    As a result of the Standard Model chiral anomalies, baryon number is violated in the early Universe in the presence of a hypermagnetic field with varying helicity. We investigate whether the matter/antimatter asymmetry of the Universe can be created from the decaying helicity of a primordial (hyper)magnetic field before and after the electroweak phase transition. In this model, baryogenesis occurs without (B -L )-violation, since the (B +L ) asymmetry generated by the hypermagnetic field counteracts the washout by electroweak sphalerons. At the electroweak crossover, the hypermagnetic field becomes an electromagnetic field, which does not source (B +L ). Although the sphalerons remain in equilibrium for a time, washout is avoided since the decaying magnetic helicity sources chirality. The relic baryon asymmetry is fixed when the electroweak sphaleron freezes out. Under reasonable assumptions, a baryon asymmetry of nB/s ≃4 ×10-12 can be generated from a maximally helical, right-handed (hyper)magnetic field that has a field strength of B0≃10-14 Gauss and coherence length of λ0≃1 pc today. Relaxing an assumption that relates λ0 to B0, the model predicts nB/s ≳10-10, which could potentially explain the observed baryon asymmetry of the Universe.

  6. Magnetic helicity in emerging solar active regions

    SciTech Connect

    Liu, Y.; Hoeksema, J. T.; Bobra, M.; Hayashi, K.; Sun, X.; Schuck, P. W.

    2014-04-10

    Using vector magnetic field data from the Helioseismic and Magnetic Imager instrument aboard the Solar Dynamics Observatory, we study magnetic helicity injection into the corona in emerging active regions (ARs) and examine the hemispheric helicity rule. In every region studied, photospheric shearing motion contributes most of the helicity accumulated in the corona. In a sample of 28 emerging ARs, 17 follow the hemisphere rule (61% ± 18% at a 95% confidence interval). Magnetic helicity and twist in 25 ARs (89% ± 11%) have the same sign. The maximum magnetic twist, which depends on the size of an AR, is inferred in a sample of 23 emerging ARs with a bipolar magnetic field configuration.

  7. Magnetic Helicity in a Cyclic Convective Dynamo

    NASA Astrophysics Data System (ADS)

    Miesch, Mark S.; Zhang, Mei; Augustson, Kyle C.

    2016-05-01

    Magnetic helicity is a fundamental agent for magnetic self-organization in magnetohydrodynamic (MHD) dynamos. As a conserved quantity in ideal MHD, it establishes a strict topological coupling between large and small-scale magnetic fields. The generation of magnetic fields on scales larger than the velocity field is linked to an upscale transfer of magnetic helicity, either locally in spectral space as in the inverse cascade of magnetic helicity in MHD turbulence or non-locally, as in the turbulent alpha-effect of mean-field dynamo theory. Thus, understanding the generation, transport, and dissipation of magnetic helicity is an essential prerequisite to understanding manifestations of magnetic self-organization in the solar dynamo, including sunspots, the prominent dipole and quadrupole moments, and the 22-year magnetic activity cycle. We investigate the role of magnetic helicity in a convective dynamo model that exhibits regular magnetic cycles. The cycle is marked by coherent bands of toroidal field that persist within the convection zone and that are antisymmetric about the equator. When these toriodal bands interact across the equator, it initiates a global restructuring of the magnetic topology that contributes to the reversal of the dipole moment. Thus, the polar field reversals are preceeded by a brief reversal of the subsurface magnetic helicity. There is some evidence that the Sun may exhibit a similar magnetic helicity reversal prior to its polar field reversals.

  8. The AGS synchrotron with four helical magnets

    SciTech Connect

    Tsoupas N.; Huang, H.; Roser, T.; MacKay, W.W.; Trbojevic, D.

    2012-05-20

    The idea of using two partial helical magnets was applied successfully to the AGS synchrotron to preserve the proton beam polarization. In this paper we explore in details the idea of using four helical magnets placed symmetrically in the AGS ring. The placement of four helical magnets in the AGS ring provides many advantages over the present setup of the AGS which uses two partial helical magnets. First, the symmetric placement of the four helical magnets allows for a better control of the AGS optics with reduced values of the beta functions especially near beam injection, second, the vertical spin direction during beam injection and extraction is closer to vertical, and third, it provides for a larger 'spin tune gap', which allows the vertical and horizontal tunes to be placed, and prevent the horizontal and vertical intrinsic spin resonances of the AGS to occur during the acceleration cycle. Although the same spin gap can be obtained with a single or two partial helices, the required high field strength of a single helix makes its use impractical, and that of the double helix rather difficult. In this paper we will provide results on the spin tune and on the optics of the AGS with four partial helical magnets, and compare these results with the present setup of the AGS that uses two partial helical magnets.

  9. Primordial magnetic helicity from stochastic electric currents

    NASA Astrophysics Data System (ADS)

    Calzetta, Esteban; Kandus, Alejandra

    2014-04-01

    We study the possibility that primordial magnetic fields generated in the transition between inflation and reheating posses magnetic helicity, HM. The fields are induced by stochastic currents of scalar charged particles created during the mentioned transition. We estimate the rms value of the induced magnetic helicity by computing different four-point scalar quantum electrodynamics Feynman diagrams. For any considered volume, the magnetic flux across its boundaries is in principle not null, which means that the magnetic helicity in those regions is gauge dependent. We use the prescription given by Berger and Field and interpret our result as the difference between two magnetic configurations that coincide in the exterior volume. In this case, the magnetic helicity gives only the number of magnetic links inside the considered volume. We calculate a concrete value of HM for large scales and analyze the distribution of magnetic defects as a function of the scale. Those defects correspond to regular as well as random fields in the considered volume. We find that the fractal dimension of the distribution of topological defects is D=1/2. We also study if the regular fields induced on large scales are helical, finding that they are and that the associated number of magnetic defects is independent of the scale. In this case, the fractal dimension is D=0. We finally estimate the intensity of fields induced at the horizon scale of reheating and evolve them until the decoupling of matter and radiation under the hypothesis of the inverse cascade of magnetic helicity. The resulting intensity is high enough and the coherence length long enough to have an impact on the subsequent process of structure formation.

  10. A Helical Magnet Design for RHIC^*.

    NASA Astrophysics Data System (ADS)

    Willen, E.; Gupta, R.; Kelly, E.; Muratore, J.

    1997-05-01

    Helical dipole magnets are required in a project for the Relativistic Heavy Ion Collider (RHIC) to control and preserve the beam polarization in order to allow the collision of polarized proton beams. The project requires superconducting magnets with a 100 mm coil aperture and a 4 Tesla field in which the field rotates 360 degrees over a distance of 2.4 meters. A design restraint is that the magnets operate at relatively low current (less than 500 amperes) in order to minimize the heat load from the current leads. A magnet has been developed that uses a small diameter superconducting cable wound into helical grooves machined into a thick-walled aluminum cylinder. The design and test results of this prototype magnet will be described. ^*Work supported by the U.S. Department of Energy.

  11. Magnetic Helicity of Alfven Simple Waves

    NASA Technical Reports Server (NTRS)

    Webb, Gary M.; Hu, Q.; Dasgupta, B.; Zank, G. P.; Roberts, D.

    2010-01-01

    The magnetic helicity of fully nonlinear, multi-dimensional Alfven simple waves are investigated, by using relative helicity formulae and also by using an approach involving poloidal and toroidal decomposition of the magnetic field and magnetic vector potential. Different methods to calculate the magnetic vector potential are used, including the homotopy and Biot-Savart formulas. Two basic Alfven modes are identified: (a) the plane 1D Alfven simple wave given in standard texts, in which the Alfven wave propagates along the z-axis, with wave phase varphi=k_0(z-lambda t), where k_0 is the wave number and lambda is the group velocity of the wave, and (b)\\ the generalized Barnes (1976) simple Alfven wave in which the wave normal {bf n} moves in a circle in the xy-plane perpendicular to the mean field, which is directed along the z-axis. The plane Alfven wave (a) is analogous to the slab Alfven mode and the generalized Barnes solution (b) is analogous to the 2D mode in Alfvenic, incompressible turbulence. The helicity characteristics of these two basic Alfven modes are distinct. The helicity characteristics of more general multi-dimensional simple Alfven waves are also investigated. Applications to nonlinear Aifvenic fluctuations and structures observed in the solar wind are discussed.

  12. Magnetic Helicity of Alfven Simple Waves

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; Hu, Q.; Dasgupta, B.; Zank, G. P.; Roberts, D.

    2010-12-01

    The magnetic helicity of fully nonlinear, multi-dimensional Alfven simple waves are investigated, by using relative helicity formulae and also by using an approach involving poloidal and toroidal decomposition of the magnetic field and magnetic vector potential. Different methods to calculate the magnetic vector potential are used, including the homotopy and Biot-Savart formulas. Two basic Alfven modes are identified: (a) the plane 1D Alfven simple wave given in standard texts, in which the Alfven wave propagates along the z-axis, with wave phase \\varphi=k0(z-λ t), where k0 is the wave number and λ is the group velocity of the wave, and (b) the generalized Barnes (1976) simple Alfvén wave in which the wave normal n moves in a circle in the xy-plane perpendicular to the mean field, which is directed along the z-axis. The plane Alfven wave (a) is analogous to the slab Alfven mode and the generalized Barnes solution (b) is analogous to the 2D mode in Alfvenic, incompressible turbulence. The helicity characteristics of these two basic Alfven modes are distinct. The helicity characteristics of more general multi-dimensional simple Alfven waves are also investigated. Applications to nonlinear Alfvenic fluctuations and structures observed in the solar wind are discussed.

  13. Magnetic Helicity and Large Scale Magnetic Fields: A Primer

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.

    2015-05-01

    Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. Here I discuss how magnetic helicity has come to help us understand the saturation of and sustenance of large scale dynamos, the need for either local or global helicity fluxes to avoid dynamo quenching, and the associated observational consequences. I also discuss how magnetic helicity acts as a hindrance to turbulent diffusion of large scale fields, and thus a helper for fossil remnant large scale field origin models in some contexts. I briefly discuss the connection between large scale fields and accretion disk theory as well. The goal here is to provide a conceptual primer to help the reader efficiently penetrate the literature.

  14. Novel Design of Superconducting Helical Dipole Magnet

    NASA Astrophysics Data System (ADS)

    Meinke, R.; Senti, M.; Stelzer, G.

    1997-05-01

    Superconducting helical dipole magnets with a nominal field of 4 Tesla are needed for the spin physics program at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. The magnets are required to operate at a relatively low current of 400 A since many of these magnets have to be independently controlled. The Advanced Magnet Lab, Inc., in Palm Bay, FL has designed and built two prototype magnets using advanced computer controlled coil winding technology. The AML design is extremely cost effective since it avoids magnet specific tooling despite the required complex coil pattern and any precision machined inserts or spacers. It is the first time an accelerator magnet of this technology has reached a field above 4 Tesla. Results from the prototype testing at BNL are presented.

  15. Magnetic Helical Microswimmers in Poiseuille Flow

    NASA Astrophysics Data System (ADS)

    Acemoglu, Alperen; Yesilyurt, Serhat

    2014-11-01

    We analyze the motion of artificial magnetic microswimmers which mimic the swimming of natural organisms at low Reynolds numbers. Artificial magnetic microswimmers consist of a rigidly connected helical tail and a magnetic head. Magnetic swimmers are actuated with three orthogonal electromagnetic coil pairs. The swimmer motion is examined in the laminar flow which is introduced to channel with syringe pump. We recorded videos for forward (pusher-like swimming / in the head direction) and backward (puller-like swimming / in the tail direction) motion of swimmers. Swimmers have non-stable helical trajectories for forward motion and stable straight trajectories for backward motion. The flow effects on trajectories are observed for swimmers with different geometric parameters in the circular channels. Experiment results show that helical wavelengths of the trajectories are affected with the flow. Additionally, the flow has more pronounced effect on the trajectories of the swimmers in wide channels. Moreover, circular confinement in narrow channels leads to more stable trajectories; in wide channels swimmers follow complex trajectories. A CFD model is used to compare experiments with simulations and to analyze the effects of hydrodynamic interactions.

  16. Faraday signature of magnetic helicity from reduced depolarization

    SciTech Connect

    Brandenburg, Axel; Stepanov, Rodion

    2014-05-10

    Using one-dimensional models, we show that a helical magnetic field with an appropriate sign of helicity can compensate the Faraday depolarization resulting from the superposition of Faraday-rotated polarization planes from a spatially extended source. For radio emission from a helical magnetic field, the polarization as a function of the square of the wavelength becomes asymmetric with respect to zero. Mathematically speaking, the resulting emission occurs then either at observable or at unobservable (imaginary) wavelengths. We demonstrate that rotation measure (RM) synthesis allows for the reconstruction of the underlying Faraday dispersion function in the former case, but not in the latter. The presence of positive magnetic helicity can thus be detected by observing positive RM in highly polarized regions in the sky and negative RM in weakly polarized regions. Conversely, negative magnetic helicity can be detected by observing negative RM in highly polarized regions and positive RM in weakly polarized regions. The simultaneous presence of two magnetic constituents with opposite signs of helicity is shown to possess signatures that can be quantified through polarization peaks at specific wavelengths and the gradient of the phase of the Faraday dispersion function. Similar polarization peaks can tentatively also be identified for the bi-helical magnetic fields that are generated self-consistently by a dynamo from helically forced turbulence, even though the magnetic energy spectrum is then continuous. Finally, we discuss the possibility of detecting magnetic fields with helical and non-helical properties in external galaxies using the Square Kilometre Array.

  17. Helicity of the Solar Magnetic Field

    NASA Astrophysics Data System (ADS)

    Tiwari, Sanjiv Kumar

    2009-11-01

    Magnetic helicity is a physical quantity that measures the degree of linkages and twistedness in the field lines. It is given by a volume integral over the scalar product of magnetic field B and its vector potential A. Direct computation of magnetic helicity in the solar atmosphere is not possible due to two reasons. First, we do not have the observations at different heights in the solar atmosphere to compute the volume integral. Second, the vector potential A is non-unique owing to gauge variance. Many researchers incorrectly inferred twist, a component of magnetic helicity, from the force-free parameter α. We clarified the physical meaning of α and its relation with the magnetic helicity. Also, a direct method is proposed for the computation of global α values of sunspots. An analytical bipole was generated to study the effect of polarimetric noise on the estimation of various magnetic parameters. We find that the effect of polarimetric noise, present in the recent vector magnetograms e.g., from Hinode (Solar Optical Telescope/Spectro- Polarimeter (SOT/SP)), on the magnetic parameters like α and magnetic energy, is negligible. We examined the fine structures of local current and α in the sunspots. Local α patches of opposite signs are present in the umbra of each sunspot. The amplitude of the spatial variation of local α in the umbra is typically of the order of the global α of the sunspot. We find that the local α and current are distributed as alternately positive and negative filaments in the penumbra. The amplitude of azimuthal variation of the local α in the penumbra is approximately an order of magnitude larger than that in the umbra. The contributions of the local positive and negative currents and α in the penumbra cancel each other giving almost no contribution for their global values for whole sunspot. We have introduced the concept of signed shear angle (SSA) for sunspots and establish its importance for non force

  18. Magnetic design constraints of helical solenoids

    SciTech Connect

    Lopes, M. L.; Krave, S. T.; Tompkins, J. C.; Yonehara, K.; Flanagan, G.; Kahn, S. A.; Melconian, K.

    2015-01-30

    Helical solenoids have been proposed as an option for a Helical Cooling Channel for muons in a proposed Muon Collider. Helical solenoids can provide the required three main field components: solenoidal, helical dipole, and a helical gradient. In general terms, the last two are a function of many geometric parameters: coil aperture, coil radial and longitudinal dimensions, helix period and orbit radius. In this paper, we present design studies of a Helical Solenoid, addressing the geometric tunability limits and auxiliary correction system.

  19. Evolution of field line helicity during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Russell, A. J. B.; Yeates, A. R.; Hornig, G.; Wilmot-Smith, A. L.

    2015-03-01

    We investigate the evolution of field line helicity for magnetic fields that connect two boundaries without null points, with emphasis on localized finite-B magnetic reconnection. Total (relative) magnetic helicity is already recognized as an important topological constraint on magnetohydrodynamic processes. Field line helicity offers further advantages because it preserves all topological information and can distinguish between different magnetic fields with the same total helicity. Magnetic reconnection changes field connectivity and field line helicity reflects these changes; the goal of this paper is to characterize that evolution. We start by deriving the evolution equation for field line helicity and examining its terms, also obtaining a simplified form for cases where dynamics are localized within the domain. The main result, which we support using kinematic examples, is that during localized reconnection in a complex magnetic field, the evolution of field line helicity is dominated by a work-like term that is evaluated at the field line endpoints, namely, the scalar product of the generalized field line velocity and the vector potential. Furthermore, the flux integral of this term over certain areas is very small compared to the integral of the unsigned quantity, which indicates that changes of field line helicity happen in a well-organized pairwise manner. It follows that reconnection is very efficient at redistributing helicity in complex magnetic fields despite having little effect on the total helicity.

  20. Evolution of field line helicity during magnetic reconnection

    SciTech Connect

    Russell, A. J. B. Hornig, G.; Wilmot-Smith, A. L.; Yeates, A. R.

    2015-03-15

    We investigate the evolution of field line helicity for magnetic fields that connect two boundaries without null points, with emphasis on localized finite-B magnetic reconnection. Total (relative) magnetic helicity is already recognized as an important topological constraint on magnetohydrodynamic processes. Field line helicity offers further advantages because it preserves all topological information and can distinguish between different magnetic fields with the same total helicity. Magnetic reconnection changes field connectivity and field line helicity reflects these changes; the goal of this paper is to characterize that evolution. We start by deriving the evolution equation for field line helicity and examining its terms, also obtaining a simplified form for cases where dynamics are localized within the domain. The main result, which we support using kinematic examples, is that during localized reconnection in a complex magnetic field, the evolution of field line helicity is dominated by a work-like term that is evaluated at the field line endpoints, namely, the scalar product of the generalized field line velocity and the vector potential. Furthermore, the flux integral of this term over certain areas is very small compared to the integral of the unsigned quantity, which indicates that changes of field line helicity happen in a well-organized pairwise manner. It follows that reconnection is very efficient at redistributing helicity in complex magnetic fields despite having little effect on the total helicity.

  1. The global distribution of magnetic helicity in the solar corona

    NASA Astrophysics Data System (ADS)

    Yeates, A. R.; Hornig, G.

    2016-10-01

    By defining an appropriate field line helicity, we apply the powerful concept of magnetic helicity to the problem of global magnetic field evolution in the Sun's corona. As an ideal-magnetohydrodynamic invariant, the field line helicity is a meaningful measure of how magnetic helicity is distributed within the coronal volume. It may be interpreted, for each magnetic field line, as a magnetic flux linking with that field line. Using magneto-frictional simulations, we investigate how field line helicity evolves in the non-potential corona as a result of shearing by large-scale motions on the solar surface. On open magnetic field lines, the helicity injected by the Sun is largely output to the solar wind, provided that the coronal relaxation is sufficiently fast. But on closed magnetic field lines, helicity is able to build up. We find that the field line helicity is non-uniformly distributed, and is highly concentrated in twisted magnetic flux ropes. Eruption of these flux ropes is shown to lead to sudden bursts of helicity output, in contrast to the steady flux along the open magnetic field lines. Movies are available at http://www.aanda.org

  2. JOINT INVERSE CASCADE OF MAGNETIC ENERGY AND MAGNETIC HELICITY IN MHD TURBULENCE

    SciTech Connect

    Stepanov, R.; Frick, P.; Mizeva, I.

    2015-01-10

    We show that oppositely directed fluxes of energy and magnetic helicity coexist in the inertial range in fully developed magnetohydrodynamic (MHD) turbulence with small-scale sources of magnetic helicity. Using a helical shell model of MHD turbulence, we study the high Reynolds number MHD turbulence for helicity injection at a scale that is much smaller than the scale of energy injection. In a short range of scales larger than the forcing scale of magnetic helicity, a bottleneck-like effect appears, which results in a local reduction of the spectral slope. The slope changes in a domain with a high level of relative magnetic helicity, which determines that part of the magnetic energy is related to the helical modes at a given scale. If the relative helicity approaches unity, the spectral slope tends to –3/2. We show that this energy pileup is caused by an inverse cascade of magnetic energy associated with the magnetic helicity. This negative energy flux is the contribution of the pure magnetic-to-magnetic energy transfer, which vanishes in the non-helical limit. In the context of astrophysical dynamos, our results indicate that a large-scale dynamo can be affected by the magnetic helicity generated at small scales. The kinetic helicity, in particular, is not involved in the process at all. An interesting finding is that an inverse cascade of magnetic energy can be provided by a small-scale source of magnetic helicity fluctuations without a mean injection of magnetic helicity.

  3. CURRENT HELICITY OF ACTIVE REGIONS AS A TRACER OF LARGE-SCALE SOLAR MAGNETIC HELICITY

    SciTech Connect

    Zhang, H.; Gao, Y.; Xu, H.; Moss, D.; Kleeorin, N.; Rogachevskii, I.; Kuzanyan, K.; Sokoloff, D.

    2012-05-20

    We demonstrate that the current helicity observed in solar active regions traces the magnetic helicity of the large-scale dynamo generated field. We use an advanced two-dimensional mean-field dynamo model with dynamo saturation based on the evolution of the magnetic helicity and algebraic quenching. For comparison, we also studied a more basic two-dimensional mean-field dynamo model with simple algebraic alpha-quenching only. Using these numerical models we obtained butterfly diagrams both for the small-scale current helicity and also for the large-scale magnetic helicity, and compared them with the butterfly diagram for the current helicity in active regions obtained from observations. This comparison shows that the current helicity of active regions, as estimated by -A {center_dot} B evaluated at the depth from which the active region arises, resembles the observational data much better than the small-scale current helicity calculated directly from the helicity evolution equation. Here B and A are, respectively, the dynamo generated mean magnetic field and its vector potential. A theoretical interpretation of these results is given.

  4. The magnetic helicity spectrum from solar vector magnetograms

    NASA Astrophysics Data System (ADS)

    Brandenburg, Axel; Zhang, Hongqi; Sokoloff, Dmitry

    2016-05-01

    The gauge-invariant (or relative) magnetic helicity is often measured to characterize the degree of magnetic complexity of active regions. However, magnetic helicity is expected to have different signs on different length scales that can be identified with the large- and small-scale fields used in dynamo theory. To address this, it is important to determine magnetic helicity spectra as functions of wavenumber. These spectra are defined such that the integral over all wavenumbers gives the usual magnetic helicity density in a particular patch of interest. Using vector magnetograms from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory for active region NOAA 11515, which was on the southern hemisphere, we show that the magnetic helicity spectrum has positive sign on scales below 30 Mm, but negative sign on larger scales. This active region was rather complex and its magnetic helicity was within 26% of its theoretical maximum value. This is much more than that of NOAA 11158, which was also rather complex, but only within 5% of its theoretical maximum value. Since the contribution of larger length scales turned out to be important in the case of NOAA 11515, its total magnetic helicity is dominated by the negative values from large length scales, which explains the unusual sign for the southern hemisphere. Measuring magnetic helicity spectra with DKIST may become an important tool to learn about the workings of the underlying dynamo.

  5. Gyrotron beam generation with helical magnetic fields

    NASA Astrophysics Data System (ADS)

    Jackson, R. H.; Sedlak, C. A.

    1983-08-01

    This report presents the results of an investigation into the basic properties of a new type of electron gun for generating high transverse velocity beams, the bifilar helix - Pierce gun or H-gun. The H-gun differs significantly from presently used magnetron injection guns (MIGs) in that first a laminar, low transverse velocity beam is formed and then transverse velocity is imparted by propagating the beam through the magnetic field of a bifilar helix. In order to evaluate the H-gun, an analytic and computational study was conducted to examine the relationships between the magnetic fields (axial and helical), and the beam properties after existing the helical field. The effects of the helix field entrance profile, the helix-axial field gyroresonance, and helix field gradients have been taken into account in the investigation. Based on the results of this research, conditions have been specified which will produce a high transverse velocity beam with low axial velocity spread. In particular, it has been found that an adiabatic helix entrance profile can provide a flexible means of generating high quality beams for gyro-devices.

  6. Helical Magnetic Fields from Sphaleron Decay and Baryogenesis

    SciTech Connect

    Copi, Craig J.; Ferrer, Francesc; Vachaspati, Tanmay; Achucarro, Ana

    2008-10-24

    Many models of baryogenesis rely on anomalous particle physics processes to give baryon number violation. By numerically evolving the electroweak equations on a lattice, we show that baryogenesis in these models creates helical cosmic magnetic fields, though the helicity created is smaller than earlier analytical estimates. After a transitory period, electroweak dynamics is found to conserve the Chern-Simons number and the total electromagnetic helicity. We argue that baryogenesis could lead to magnetic fields of nano-Gauss strength today on astrophysical length scales. In addition to being astrophysically relevant, such helical magnetic fields can provide an independent probe of baryogenesis and CP violation in particle physics.

  7. Helical Magnetic Fields from Sphaleron Decay and Baryogenesis

    NASA Astrophysics Data System (ADS)

    Copi, Craig J.; Ferrer, Francesc; Vachaspati, Tanmay; Achúcarro, Ana

    2008-10-01

    Many models of baryogenesis rely on anomalous particle physics processes to give baryon number violation. By numerically evolving the electroweak equations on a lattice, we show that baryogenesis in these models creates helical cosmic magnetic fields, though the helicity created is smaller than earlier analytical estimates. After a transitory period, electroweak dynamics is found to conserve the Chern-Simons number and the total electromagnetic helicity. We argue that baryogenesis could lead to magnetic fields of nano-Gauss strength today on astrophysical length scales. In addition to being astrophysically relevant, such helical magnetic fields can provide an independent probe of baryogenesis and CP violation in particle physics.

  8. On the Origin of Magnetic Helicity in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Tian, Lirong; Alexander, David

    2008-01-01

    Twenty-three active regions associated with pronounced sigmoidal structure in Yohkoh soft X-ray observations are selected to investigate the origin of magnetic helicity in the solar corona. We calculate the radial magnetic flux of each polarity, the rate of magnetic helicity injection, and total flux of the helicity injection (Δ HLCT) over 4-5 days using MDI 96 minute line-of-sight magnetograms and a local correlation tracking technique. We also estimate the contribution from differential rotation to the overall helicity budget (Δ Hrot). It is found that of the seven active regions for which the flux emergence exceeds 1.0 × 1022 Mx, six exhibited a helicity flux injection exceeding 1.0 × 1043 Mx2 (i.e., Δ H = Δ HLCT - Δ Hrot). Moreover, the rate of helicity injection and the total helicity flux are larger (smaller) during periods of more (less) increase of magnetic flux. Of the remaining 16 active regions, with flux emergence less than 1022 Mx, only 4 had significant injection of helicity, exceeding 1043 Mx2. Typical contributions from differential rotation over the same period were 2-3 times smaller than that of the strong magnetic field emergence. These statistical results signify that the strong emergence of magnetic field is the most important origin of the coronal helicity, while horizontal motions and differential rotation are insufficient to explain the measured helicity injection flux. Furthermore, the study of the helicity injection in nineteen newly emerging active regions confirms the result on the important role played by strong magnetic flux emergence in controlling the injection of magnetic helicity into the solar corona.

  9. Determining How Magnetic Helicity Injection Really Works

    SciTech Connect

    Paul M. Bellan

    2001-10-09

    OAK-B135 The goal of the Caltech program is to determine how helicity injection works by investigating the actual dynamics and topological evolution associated with magnetic relaxation. A new coaxial helicity injection source has been constructed and brought into operation. The key feature of this source is that it has maximum geometric simplicity. Besides being important for fusion research, this work also has astrophysical implications. Photos obtained using high-speed cameras show a clear sequence of events in the formation process. In particular, they show initial merging/reconnection processes, jet-like expansion, kinking, and separation of the plasma from the source. Various diagnostics have been developed, including laser induced fluorescence and soft x-ray detection using high speed diodes. Gas valves have been improved and a patent disclosure relating to puffed gas valves has been filed. Presentations on this work have been given in the form of invited talks at several university physics departments that were previously unfamiliar with laboratory plasma experiments.

  10. SMART Observation of Magnetic Helicity in Solar Filaments

    NASA Astrophysics Data System (ADS)

    Hagino, M.; Kitai, R.; Shibata, K.

    2006-08-01

    We examined the magnetic helicity of solar filaments from their structure in the chromosphere and corona. The H-alpha telescope of the Solar Magnetic Activity Research Telescope (SMART) observed 239 intermediate filaments from 2005 July 1 to 2006 May 15. The intermediate filament usually locates between two active regions. Using these images, we identified the filament spine and its barbs, and determined the chromospheric filament helicity from the mean angle between each barbs and a spine. We found that 71% (78 of 110) of intermediate filaments in the northern hemisphere are negative helicity and 67% (87 of 129) of filaments in the southern hemisphere are positive, which agreed with the well-known hemispheric tendency of the magnetic helicity. Additionally, we studied the coronal helicity of intermediate filaments. The coronal filament helicity is defined as the crossing angle of threads formed a filament. The helicity pattern of coronal filaments obtained with EIT/SOHO 171A also shows the helicity hemispheric tendency. Namely, 65% (71 of 110) of coronal filaments in the northern hemisphere exhibit negative helicity and the 65% (84 of 129) of filaments in the southern hemisphere show negative helicity. These data were observed in the same day with the SMART H-alpha data. Moreover, we found 12 filament eruptions in our data. The 7 of 12 filaments show the clear opposite sign of the hemispheric tendency of the magnetic helicity. The helicity seems to be change during temporal evolution. This results suggest that filament instability may be driven by the opposite sign helicity injection from the foot point of the barb.

  11. Computing magnetic energy and helicity fluxes from series of magnetograms .

    NASA Astrophysics Data System (ADS)

    Démoulin, P.; Pariat, E.

    Magnetic energy and helicity fluxes can now be derived from measurements of the photospheric magnetic and velocity fields. We show that only photospheric flux-tube motions are needed to estimate the full fluxes. The derived maps of flux densities permit to localize where energy and helicity input occurs in active regions (ARs). The precision of the energy flux density is dominantly limited by the precision obtained on the transverse component of the magnetic field. On the contrary, the helicity flux density requires only the measurement of the vertical component of the magnetic field. Previously, the magnetic helicity maps were strongly affected by a false definition of the helicity flux density involving the magnetic vector potential. Applied to observations, this approach introduces important fake polarities. We define a better helicity flux density; it reduces the fake polarities by more than an order of magnitude. The spatial distribution of helicity injected into the studied ARs is much more coherent than previously thought, and presents a dominant sign in each AR. Finally, the correct helicity flux density could be derived from magnetograms if coronal connectivities are known.

  12. Scale Dependence of Magnetic Helicity in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Brandenburg, Axel; Subramanian, Kandaswamy; Balogh, Andre; Goldstein, Melvyn L.

    2011-01-01

    We determine the magnetic helicity, along with the magnetic energy, at high latitudes using data from the Ulysses mission. The data set spans the time period from 1993 to 1996. The basic assumption of the analysis is that the solar wind is homogeneous. Because the solar wind speed is high, we follow the approach first pioneered by Matthaeus et al. by which, under the assumption of spatial homogeneity, one can use Fourier transforms of the magnetic field time series to construct one-dimensional spectra of the magnetic energy and magnetic helicity under the assumption that the Taylor frozen-in-flow hypothesis is valid. That is a well-satisfied assumption for the data used in this study. The magnetic helicity derives from the skew-symmetric terms of the three-dimensional magnetic correlation tensor, while the symmetric terms of the tensor are used to determine the magnetic energy spectrum. Our results show a sign change of magnetic helicity at wavenumber k approximately equal to 2AU(sup -1) (or frequency nu approximately equal to 2 microHz) at distances below 2.8AU and at k approximately equal to 30AU(sup -1) (or nu approximately equal to 25 microHz) at larger distances. At small scales the magnetic helicity is positive at northern heliographic latitudes and negative at southern latitudes. The positive magnetic helicity at small scales is argued to be the result of turbulent diffusion reversing the sign relative to what is seen at small scales at the solar surface. Furthermore, the magnetic helicity declines toward solar minimum in 1996. The magnetic helicity flux integrated separately over one hemisphere amounts to about 10(sup 45) Mx(sup 2) cycle(sup -1) at large scales and to a three times lower value at smaller scales.

  13. SCALE DEPENDENCE OF MAGNETIC HELICITY IN THE SOLAR WIND

    SciTech Connect

    Brandenburg, Axel; Subramanian, Kandaswamy; Balogh, Andre; Goldstein, Melvyn L. E-mail: kandu@iucaa.ernet.in E-mail: melvyn.l.goldstein@nasa.gov

    2011-06-10

    We determine the magnetic helicity, along with the magnetic energy, at high latitudes using data from the Ulysses mission. The data set spans the time period from 1993 to 1996. The basic assumption of the analysis is that the solar wind is homogeneous. Because the solar wind speed is high, we follow the approach first pioneered by Matthaeus et al. by which, under the assumption of spatial homogeneity, one can use Fourier transforms of the magnetic field time series to construct one-dimensional spectra of the magnetic energy and magnetic helicity under the assumption that the Taylor frozen-in-flow hypothesis is valid. That is a well-satisfied assumption for the data used in this study. The magnetic helicity derives from the skew-symmetric terms of the three-dimensional magnetic correlation tensor, while the symmetric terms of the tensor are used to determine the magnetic energy spectrum. Our results show a sign change of magnetic helicity at wavenumber k {approx} 2 AU{sup -1} (or frequency {nu} {approx} 2 {mu}Hz) at distances below 2.8 AU and at k {approx} 30 AU{sup -1} (or {nu} {approx} 25 {mu}Hz) at larger distances. At small scales the magnetic helicity is positive at northern heliographic latitudes and negative at southern latitudes. The positive magnetic helicity at small scales is argued to be the result of turbulent diffusion reversing the sign relative to what is seen at small scales at the solar surface. Furthermore, the magnetic helicity declines toward solar minimum in 1996. The magnetic helicity flux integrated separately over one hemisphere amounts to about 10{sup 45} Mx{sup 2} cycle{sup -1} at large scales and to a three times lower value at smaller scales.

  14. Josephson junction through a disordered topological insulator with helical magnetization

    NASA Astrophysics Data System (ADS)

    Zyuzin, Alexander; Alidoust, Mohammad; Loss, Daniel

    2016-06-01

    We study supercurrent and proximity vortices in a Josephson junction made of disordered surface states of a three-dimensional topological insulator with a proximity induced in-plane helical magnetization. In a regime where the rotation period of helical magnetization is larger than the junction width, we find supercurrent 0 -π crossovers as a function of junction thickness, magnetization strength, and parameters inherent to the helical modulation and surface states. The supercurrent reversals are associated with proximity induced vortices, nucleated along the junction width, where the number of vortices and their locations can be manipulated by means of the superconducting phase difference and the parameters mentioned above.

  15. Near-equatorial magnetic field of the photosphere

    NASA Astrophysics Data System (ADS)

    Vernova, Elena; Tyasto, Marta; Baranov, Dmitrii

    2016-04-01

    The heliolatitude distribution of magnetic field groups of different strength was studied on the basis of the synoptic maps of NSO Kitt Peak (1976-2003). The analysis of the synoptic maps averaged over 3 solar cycles allowed to distinguish four typical groups of magnetic fields: B = 0 - 5 G; B = 5 - 15 G; B = 15 - 50 G and B > 50 G. It is shown that there exists a definite relation between the strength of the magnetic field and its latitudinal localization. The time-dependence is studied for different groups of magnetic fields. The fields of different polarity are considered separately for the North and the South solar hemispheres. A special attention is given to the weakest magnetic fields (B = 0 - 5 G) which are localized near the equator (latitudes ± 5°) and in the interval 40° - 60° in each of the hemispheres. For the near-equatorial region the weakest fields in the North and the South hemispheres change synchronously and are approximately in anti-phase with the Wolf numbers. On the contrary the stronger fields (B = 5 - 10 G and higher) change in the phase with the solar cycle. Thus the magnetic field strength of the 5 G value represents the threshold below which the time-course of the magnetic field is in anti-phase with the solar cycle, while above 5 G it changes in the phase with the solar cycle. It should be noted that in the near-equatorial region the fields of the same sign in the North and the South hemispheres change almost synchronously, while the relation between the fields of the opposite signs in one hemisphere is much less pronounced. This relation differs sharply from the case of strong magnetic fields in the sunspot zone where a strong correlation is observed for the magnetic fields of opposite sign within the same hemisphere. The obtained results allow to conclude that the weak magnetic fields of the near-equatorial region of the Sun are not just the "wings" of the magnetic field distribution of the sunspot zone, but represent a separate

  16. Nonlinear stability of magnetic islands in a rotating helical plasma

    SciTech Connect

    Nishimura, S.; Toda, S.; Narushima, Y.; Yagi, M.

    2012-12-15

    Coexistence of the forced magnetic reconnection by a resonant magnetic perturbation (RMP) and the curvature-driven tearing mode is investigated in a helical (stellarator) plasma rotated by helical trapped particle-induced neoclassical flows. A set of Rutherford-type equations of rotating magnetic islands and a poloidal flow evolution equation is revisited. Using the model, analytical expressions of criteria of spontaneous shrinkage (self-healing) of magnetic islands and sudden growth of locked magnetic islands (penetration of RMP) are obtained, where nonlinear saturation states of islands show bifurcation structures and hysteresis characteristics. Considering radial profile of poloidal flows across magnetic islands, it is found that the self-healing is driven by neoclassical viscosity even in the absence of micro-turbulence-induced anomalous viscosity. Effects of unfavorable curvature in stellarators are found to modify the critical values. The scalings of criteria are consistent with low-{beta} experiments in the large helical device.

  17. The Effects of Spatial Smoothing on Solar Magnetic Helicity and the Hemispheric Helicity Sign Rule

    NASA Astrophysics Data System (ADS)

    Koch Ocker, Stella; Petrie, Gordon

    2016-05-01

    The hemispheric sign rule for solar magnetic helicity, which states that negative/positive helicity occurs preferentially in the northern/southern hemisphere, provides clues to the causes of twisted, flaring magnetic fields. However, previous studies on the hemisphere rule may have been significantly affected by seeing from atmospheric turbulent motions. Using Hinode/SOT-SP data spanning from 2006 to 2012, we studied the effects of two important data processing steps that imitate the effects of atmospheric seeing: noise reduction by ignoring pixel values that are weaker than the estimated noise threshold, and Gaussian spatial smoothing. We applied these processing techniques to the helicity distribution maps for active regions NOAA 11158 and NOAA 11243, along with the average helicities of 36 active regions, in order to imitate and understand the effects of seeing from atmospheric turbulence. We found that rather than changing trends in the helicity distributions, Gaussian smoothing and noise reduction enhanced existing trends by pushing outliers towards the mean or removing them altogether. We also found that, when separated for weak and strong magnetic fields, the average helicities of the 36 active regions conformed to the hemisphere rule for weak field helicities and breached the rule for strong field helicities. In general, we found that data processing did not affect whether the hemisphere rule held for data taken from space-based instruments, and thus that seeing from atmospheric turbulence did not significantly affect previous studies' ground-based results on the hemisphere rule. This work was carried out through the National Solar Observatory Research Experiences for Undergraduates (REU) Program, which is funded by the National Science Foundation (NSF). The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the NSF.

  18. Helicity charging and eruption of magnetic flux from the Sun

    NASA Technical Reports Server (NTRS)

    Rust, David M.; Kumar, A.

    1994-01-01

    The ejection of helical toroidal fields from the solar atmosphere and their detection in interplanetary space are described. The discovery that solar magnetic fields are twisted and that they are segregated by hemisphere according to their chirality has important implications for the escape process. The roles played by erupting prominences, coronal mass ejections (CME's) and active region (AR) loops in expressing the escape of magnetic flux and helicity are discussed. Sporadic flux escape associated with filament eruptions accounts for less than one-tenth the flux loss. Azimuthal flux loss by CME's could account for more, but the major contributor to flux escape may be AR loop expansion. It is shown how the transfer of magnetic helicity from the sun's interior into emerged loops ('helicity charging') could be the effective driver of solar eruptions and of flux loss from the sun.

  19. Pool-cooled superconducting magnet design of large helical device

    NASA Astrophysics Data System (ADS)

    Suzuki, S.; Miyazawa, H.; Saito, R.; Iida, F.; Ogata, H.; Yamazaki, Y.; Motojima, Osamu; Yamamoto, Junya; Fujiwara, Masami; Takeo, M.

    1990-03-01

    The Large Helical Device is the next generation in helical equipment for nuclear fusion. The large scale superconducting magnets are going to be applied to these coils. The major and minor radius of the helical coil system are 4 and 0.96 m respectively and the magnetic field is 4 T at the plasma center and 8 T at the coil surface. The coil system stores about 2 GJ of total energy. The superconductor of the helical coil is pure aluminum stabilized Nb-Ti compacted strand cable with copper housing. The coils have a stainless-steel helium can that is filled with liquid helium. This pool-cooled superconducting helical coil system satisfies the fully stabilized condition. The superconducting poloidal coils are composed of six (three pairs) circular coils and use forced-cooled superconductors to reduce the eddy current losses by the field changing operation. The helical and poloidal coil system are built in the large bell-jar (vacuum vessel for thermal insulation) with outer diameter of 13 m. Conductor design and stability of superconducting magnets for helical and poloidal coil systems are described.

  20. MAGNETIC HELICITY AND ENERGY SPECTRA OF A SOLAR ACTIVE REGION

    SciTech Connect

    Zhang, Hongqi; Brandenburg, Axel; Sokoloff, D. D.

    2014-04-01

    We compute for the first time the magnetic helicity and energy spectra of the solar active region NOAA 11158 during 2011 February 11-15 at 20° southern heliographic latitude using observational photospheric vector magnetograms. We adopt the isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field. The sign of the magnetic helicity turns out to be predominantly positive at all wavenumbers. This sign is consistent with what is theoretically expected for the southern hemisphere. The magnetic helicity normalized to its theoretical maximum value, here referred to as relative helicity, is around 4% and strongest at intermediate wavenumbers of k ≈ 0.4 Mm{sup –1}, corresponding to a scale of 2π/k ≈ 16 Mm. The same sign and a similar value are also found for the relative current helicity evaluated in real space based on the vertical components of magnetic field and current density. The modulus of the magnetic helicity spectrum shows a k {sup –11/3} power law at large wavenumbers, which implies a k {sup –5/3} spectrum for the modulus of the current helicity. A k {sup –5/3} spectrum is also obtained for the magnetic energy. The energy spectra evaluated separately from the horizontal and vertical fields agree for wavenumbers below 3 Mm{sup –1}, corresponding to scales above 2 Mm. This gives some justification to our assumption of isotropy and places limits resulting from possible instrumental artifacts at small scales.

  1. Helical Dipole Magnets for Polarized Protons in RHIC

    NASA Astrophysics Data System (ADS)

    Syphers, M.; Courant, E.; Fischer, W.; Luccio, A.; Mariam, F.; Peggs, S.; Pilat, F.; Roser, T.; Tepikian, S.; Tsoupas, N.; Willen, E.; Katayama, T.; Hatanaka, K.; Kawaguchi, T.; Okamura, M.; Tominaka, T.; Wu, H.; Ptitsin, V.; Shatunov, Y.

    1997-05-01

    The Brookhaven Relativistic Heavy Ion Collider (RHIC) will be able to support experiments using polarized proton beams. Siberian Snakes are used to maintain polarization in this high energy superconducting collider. To make efficient use of available space while taking advantage of high field superconducting magnets, 4 Tesla helical dipole magnets will be used. These magnets generate a central dipole field in which the field direction rotates through 360^circ about the longitudinal axis over the length of the device. An arrangement of four such magnets can produce the desired change in the spin direction while keeping the proton orbit outside of the ``Snake'' unaltered. Similar magnet arrangements will be used to produce longitudinal polarization at the two major interaction points in RHIC. The basic requirements and layout of these magnets are described, as well as tolerances on field quality and integrated field strengths. First results of tests of prototype helical magnets will be discussed.

  2. Dissipation of Energy, Cross Helicity, and Magnetic Helicity in Ideal MHD

    NASA Astrophysics Data System (ADS)

    Aluie, Hussein; Eyink, Gregory L.; Vishniac, Ethan T.

    2007-11-01

    The ``invariants'' of ideal MHD--energy, cross helicity, and magnetic helicity--need not be conserved in the limit of zero viscosity and resistivity if the solution fields become singular. This is observed to occur in MHD turbulence, where the effective dissipation is due to nonlinear cascade of the invariants to small-scales. We study the large-scale balances of the three invariants via a ``coarse-graining'' approach related to Wilson-Kadanoff renormalization group. The ideal dissipation in this framework is due to ``turbulent stress'' and ``turbulent EMF'' generated by eliminated plasma motions below the coarse-graining length. We derive upper bounds on these turbulent contributions to the MHD equations and improve the necessary conditions of [1] for ideal dissipation. In particular, we show that the conditions for turbulent dissipation/forward cascade of magnetic helicity are so severe--infinite 3rd-order moments of the velocity & magnetic fields!--that they are unlikely to ever naturally occur. We also establish local balance equations in space-time of the three invariants, both for measurable ``coarsed-grained'' variables and also for ``bare'' fields. On this basis we give physical interpretations of the turbulent cascades, in terms of work concepts for energy and in terms of topological linkage [2] for the two helicities. [1] Caflisch et al. 1997 Comm. Math. Phys. 184, 443-455 [2] Moffatt, H. K. 1969 J. Fluid Mech. 35, 117-129.

  3. Magnetic helicity and free energy in solar active regions

    NASA Astrophysics Data System (ADS)

    Moraitis, K.; Georgoulis, M.; Tziotziou, K.; Archontis, V.

    2013-09-01

    We study the evolution of the non-potential free magnetic energy and relative magnetic helicity budgets in solar active regions (ARs). For this we use a time-series of a three-dimensional, synthetic AR produced by magnetohydrodynamical (MHD) simulations. As a first step, we calculate the potential magnetic field that has the same normal components with the MHD field along all boundaries of the AR, by solving Laplace's equation. The free magnetic energy of the AR is then easily derived. From the two fields, MHD and potential one, we calculate the corresponding vector potentials with a recently proposed integration method. The knowledge of both fields and their respective vector potentials throughout the AR, allows us to estimate the relative magnetic helicity budget of the AR. Following this procedure for each snapshot of the AR, we reconstruct the evolution of free energy and helicity in the AR. Our method reproduces, for a synthetic AR, the energy/helicity relations known to hold in real active regions.

  4. Helical cosmological magnetic fields from extra-dimensions

    NASA Astrophysics Data System (ADS)

    Atmjeet, Kumar; Seshadri, T. R.; Subramanian, Kandaswamy

    2015-05-01

    We study the inflationary generation of helical cosmological magnetic fields in a higher-dimensional generalization of the electromagnetic theory. For this purpose, we also include a parity breaking piece to the electromagnetic action. The evolution of an extra-dimensional scale factor allows the breaking of conformal invariance of the effective electromagnetic action in 1 +3 dimensions required for such generation. Analytical solutions for the vector potential can be obtained in terms of Coulomb wave-functions for some special cases. We also present numerical solutions for the vector potential evolution in more general cases. In the presence of a higher-dimensional cosmological constant there exist solutions for the scale factors in which both normal and extra dimensional space either inflate or deflate simultaneously with the same rate. In such a scenario, with the number of extra dimensions D =4 , a scale invariant spectrum of helical magnetic field is obtained. The net helicity arises, as one helical mode comes to dominate over the other at the superhorizon scales. A magnetic field strength of the order of 10-9 G can be obtained for the inflationary scale H ≃1 0-3 Mpl . Weaker fields will be generated for lower scales of inflation. Magnetic fields generated in this model respects the bounds on magnetic fields by Planck and γ -ray observations (i.e., 10-16 G

  5. Rashba Torque Driven Domain Wall Motion in Magnetic Helices.

    PubMed

    Pylypovskyi, Oleksandr V; Sheka, Denis D; Kravchuk, Volodymyr P; Yershov, Kostiantyn V; Makarov, Denys; Gaididei, Yuri

    2016-01-01

    Manipulation of the domain wall propagation in magnetic wires is a key practical task for a number of devices including racetrack memory and magnetic logic. Recently, curvilinear effects emerged as an efficient mean to impact substantially the statics and dynamics of magnetic textures. Here, we demonstrate that the curvilinear form of the exchange interaction of a magnetic helix results in an effective anisotropy term and Dzyaloshinskii-Moriya interaction with a complete set of Lifshitz invariants for a one-dimensional system. In contrast to their planar counterparts, the geometrically induced modifications of the static magnetic texture of the domain walls in magnetic helices offer unconventional means to control the wall dynamics relying on spin-orbit Rashba torque. The chiral symmetry breaking due to the Dzyaloshinskii-Moriya interaction leads to the opposite directions of the domain wall motion in left- or right-handed helices. Furthermore, for the magnetic helices, the emergent effective anisotropy term and Dzyaloshinskii-Moriya interaction can be attributed to the clear geometrical parameters like curvature and torsion offering intuitive understanding of the complex curvilinear effects in magnetism.

  6. Rashba Torque Driven Domain Wall Motion in Magnetic Helices

    NASA Astrophysics Data System (ADS)

    Pylypovskyi, Oleksandr V.; Sheka, Denis D.; Kravchuk, Volodymyr P.; Yershov, Kostiantyn V.; Makarov, Denys; Gaididei, Yuri

    2016-03-01

    Manipulation of the domain wall propagation in magnetic wires is a key practical task for a number of devices including racetrack memory and magnetic logic. Recently, curvilinear effects emerged as an efficient mean to impact substantially the statics and dynamics of magnetic textures. Here, we demonstrate that the curvilinear form of the exchange interaction of a magnetic helix results in an effective anisotropy term and Dzyaloshinskii–Moriya interaction with a complete set of Lifshitz invariants for a one-dimensional system. In contrast to their planar counterparts, the geometrically induced modifications of the static magnetic texture of the domain walls in magnetic helices offer unconventional means to control the wall dynamics relying on spin-orbit Rashba torque. The chiral symmetry breaking due to the Dzyaloshinskii–Moriya interaction leads to the opposite directions of the domain wall motion in left- or right-handed helices. Furthermore, for the magnetic helices, the emergent effective anisotropy term and Dzyaloshinskii–Moriya interaction can be attributed to the clear geometrical parameters like curvature and torsion offering intuitive understanding of the complex curvilinear effects in magnetism.

  7. Magnetic clouds, helicity conservation, and intrinsic scale flux ropes

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Rust, D. M.

    1995-01-01

    An intrinsic-scale flux-rope model for interplanetary magnetic clouds, incorporating conservation of magnetic helicity, flux and mass is found to adequately explain clouds' average thermodynamic and magnetic properties. In spite their continuous expansion as they balloon into interplanetary space, magnetic clouds maintain high temperatures. This is shown to be due to magnetic energy dissipation. The temperature of an expanding cloud is shown to pass through a maximum above its starting temperature if the initial plasma beta in the cloud is less than 2/3. Excess magnetic pressure inside the cloud is not an important driver of the expansion as it is almost balanced by the tension in the helical field lines. It is conservation of magnetic helicity and flux that requires that clouds expand radially as they move away from the Sun. Comparison with published data shows good agreement between measured cloud properties and theory. Parameters determined from theoretical fits to the data, when extended back to the Sun, are consistent with the origin of interplanetary magnetic clouds in solar filament eruptions. A possible extension of the heating mechanism discussed here to heating of the solar corona is discussed.

  8. Rashba Torque Driven Domain Wall Motion in Magnetic Helices

    PubMed Central

    Pylypovskyi, Oleksandr V.; Sheka, Denis D.; Kravchuk, Volodymyr P.; Yershov, Kostiantyn V.; Makarov, Denys; Gaididei, Yuri

    2016-01-01

    Manipulation of the domain wall propagation in magnetic wires is a key practical task for a number of devices including racetrack memory and magnetic logic. Recently, curvilinear effects emerged as an efficient mean to impact substantially the statics and dynamics of magnetic textures. Here, we demonstrate that the curvilinear form of the exchange interaction of a magnetic helix results in an effective anisotropy term and Dzyaloshinskii–Moriya interaction with a complete set of Lifshitz invariants for a one-dimensional system. In contrast to their planar counterparts, the geometrically induced modifications of the static magnetic texture of the domain walls in magnetic helices offer unconventional means to control the wall dynamics relying on spin-orbit Rashba torque. The chiral symmetry breaking due to the Dzyaloshinskii–Moriya interaction leads to the opposite directions of the domain wall motion in left- or right-handed helices. Furthermore, for the magnetic helices, the emergent effective anisotropy term and Dzyaloshinskii–Moriya interaction can be attributed to the clear geometrical parameters like curvature and torsion offering intuitive understanding of the complex curvilinear effects in magnetism. PMID:27008975

  9. Fabrication of a magnetic helical mesostructured silica rod

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Zhang Qiao, Shi; Cheng, Lina; Yan, Zifeng; Qing Lu, Gao Max

    2008-10-01

    We report a one-step synthesis of magnetic helical mesostructured silica (MHMS) by self-assembly of an achiral surfactant, magnetic nanocrystals with stearic acid ligands and silicate. This core-shell structured material consists of an Fe3O4 superparamagnetic nanocrystal core and a highly ordered periodic helical mesoporous silica shell. We propose that the formation of the helical structure is induced by the interaction between the surfactant and dissociated stearic acid ligands. The MHMS obtained possesses superparamagnetism, uniform mesostructure, narrow pore size distribution, high surface area, and large pore volume. Furthermore, the drug release process is demonstrated using aspirin as a drug model and MHMS as a drug carrier in a sodium phosphate buffer solution.

  10. Inverse cascade of magnetic helicity in magnetohydrodynamic turbulence.

    PubMed

    Müller, Wolf-Christian; Malapaka, Shiva Kumar; Busse, Angela

    2012-01-01

    The nonlinear dynamics of magnetic helicity HM, which is responsible for large-scale magnetic structure formation in electrically conducting turbulent media, is investigated in forced and decaying three-dimensional magnetohydrodynamic turbulence. This is done with the help of high-resolution direct numerical simulations and statistical closure theory. The numerically observed spectral scaling of HM is at variance with earlier work using a statistical closure model [Pouquet et al., J. Fluid Mech. 77, 321 (1976)]. By revisiting this theory, a universal dynamical balance relation is found that includes the effects of kinetic helicity as well as kinetic and magnetic energies on the inverse cascade of HM and explains the above-mentioned discrepancy. Consideration of the result in the context of mean-field dynamo theory suggests a nonlinear modification of the α-dynamo effect, which is important in the context of magnetic-field excitation in turbulent plasmas.

  11. Self-sustained annihilation of magnetic islands in helical plasmas

    SciTech Connect

    Itoh, Kimitaka; Itoh, Sanae-I.; Yagi, Masatoshi

    2005-07-15

    The evolution of the magnetic island which is induced by the resonant deformation by external currents in helical systems (such as the large helical device (LHD) [A. Iiyoshi, Phys. Plasmas 2, 2349 (1995)]) is analyzed. The defect of the bootstrap current, caused by the magnetic island, has a parity which reduces the size of the magnetic island, if the bootstrap current enhances the vacuum rotational transform. The width of magnetic island can be suppressed to the level of ion banana width if the pressure gradient exceeds a threshold value. This island annihilation is self-sustained. That is, the annihilation continues, for fixed beta value, until the external drive for island generation exceeds a threshold. The effects of the reversal of the direction of the bootstrap current and of the sign of radial electric field are also investigated. The possibility of the neoclassical tearing mode in the LHD-like plasma is discussed.

  12. Current-induced Orbital and Spin Magnetizations in Crystals with Helical Structure

    PubMed Central

    Yoda, Taiki; Yokoyama, Takehito; Murakami, Shuichi

    2015-01-01

    We theoretically show that in a crystal with a helical lattice structure, orbital and spin magnetizations along a helical axis are induced by an electric current along the helical axis. We propose a simple tight-binding model for calculations, and the results can be generalized to any helical crystals. The induced magnetizations are opposite for right-handed and left-handed helices. The current-induced spin magnetization along the helical axis comes from a radial spin texture on the Fermi surface. This is in sharp contrast to Rashba systems where the induced spin magnetization is perpendicular to the applied current. PMID:26156643

  13. Magnetic helicity injection in NOAA 11261 associated with flares

    NASA Astrophysics Data System (ADS)

    Xu, Haiqing; Zhang, Hongqi; Su, Jiangtao; Ruan, Guiping; liu, Jihong

    2013-07-01

    Magnetic helicity was found important in understanding solar activities such as flares and coronal mass ejections (CME). Berger and field (1984) derived an expression for helicity flux dHm/dt, that can be applied to an individual solar active region (AR) occupying an area S of the photosphere, (1) \\begin{linenomath}dHm/dt=-2\\ints[(\\mathbf{Ap}\\cdot \\mathbf{V})\\mathbf{B}-(\\mathbf{Ap} \\cdot \\mathbf{B})\\mathbf{V}] dS, \\eqno{(1)}\\end{linenomath} where Ap is the vector potential of potential field, and V is the plasma velocity at the surface S. The first term describes the effect of magnetic footpoint motions on the surface S. The second term describes the flux of helicity advected through the surface when already twisted and/or writhed flux ropes emerge. Chae (2001) proposed a method of self-consistently determining magnetic helicity injection rate, dH/dt, using a time series of longitudinal magnetograms only: (2) \\begin{linenomath}dH/dt=-\\int2(\\textbf{A}p\\cdot \\textbf{V}LCT)BndS, \\eqno{(2)}\\end{linenomath} where n is the normal component of magnetic field. Ap is the vector potential computed from Bn by Fourier transform method. V LCT is the horizontal component of velocity determined by the technique of local correlation tracking (LCT). This technique was applied by some scientists (e.g., Chae et al., 2001; Nindos and Zhang, 2002; Romano et al., 2003). Magnetic helicity injection was found to be strongly correlated with the occurrence of major flares (Moon et al. 2002a, 2002b; Park et al., 2008; Labonte et al., 2007; Maeshiro et al., 2009).

  14. Roles of effective helical ripple rates in nonlinear stability of externally induced magnetic islands

    SciTech Connect

    Nishimura, Seiya

    2015-02-15

    Magnetic islands are externally produced by resonant magnetic perturbations (RMPs) in toroidal plasmas. Spontaneous annihilation of RMP-induced magnetic islands called self-healing has been observed in helical systems. A possible mechanism of the self-healing is shielding of RMP penetration by helical ripple-induced neoclassical flows, which give rise to neoclassical viscous torques. In this study, effective helical ripple rates in multi-helicity helical systems are revisited, and a multi-helicity effect on the self-healing is investigated, based on a theoretical model of rotating magnetic islands. It is confirmed that effective helical ripple rates are sensitive to magnetic axis positions. It is newly found that self-healing thresholds also strongly depend on magnetic axis positions, which is due to dependence of neoclassical viscous torques on effective helical ripple rates.

  15. JET ROTATION DRIVEN BY MAGNETOHYDRODYNAMIC SHOCKS IN HELICAL MAGNETIC FIELDS

    SciTech Connect

    Fendt, Christian

    2011-08-10

    In this paper, we present a detailed numerical investigation of the hypothesis that a rotation of astrophysical jets can be caused by magnetohydrodynamic (MHD) shocks in a helical magnetic field. Shock compression of the helical magnetic field results in a toroidal Lorentz force component that will accelerate the jet material in the toroidal direction. This process transforms magnetic angular momentum (magnetic stress) carried along the jet into kinetic angular momentum (rotation). The mechanism proposed here only works in a helical magnetic field configuration. We demonstrate the feasibility of this mechanism by axisymmetric MHD simulations in 1.5 and 2.5 dimensions using the PLUTO code. In our setup, the jet is injected into the ambient gas with zero kinetic angular momentum (no rotation). We apply different dynamical parameters for jet propagation such as the jet internal Alfven Mach number and fast magnetosonic Mach number, the density contrast of the jet to the ambient medium, and the external sonic Mach number of the jet. The mechanism we suggest should work for a variety of jet applications, e.g., protostellar or extragalactic jets, and internal jet shocks (jet knots) or external shocks between the jet and the ambient gas (entrainment). For typical parameter values for protostellar jets, the numerically derived rotation feature looks consistent with the observations, i.e., rotational velocities of 0.1%-1% of the jet bulk velocity.

  16. Validation of the magnetic energy vs. helicity scaling in solar magnetic structures

    NASA Astrophysics Data System (ADS)

    Tziotziou, K.; Moraitis, K.; Georgoulis, M. K.; Archontis, V.

    2014-10-01

    Aims: We assess the validity of the free magnetic energy - relative magnetic helicity diagram for solar magnetic structures. Methods: We used two different methods of calculating the free magnetic energy and the relative magnetic helicity budgets: a classical, volume-calculation nonlinear force-free (NLFF) method applied to finite coronal magnetic structures and a surface-calculation NLFF derivation that relies on a single photospheric or chromospheric vector magnetogram. Both methods were applied to two different data sets, namely synthetic active-region cases obtained by three-dimensional magneto-hydrodynamic (MHD) simulations and observed active-region cases, which include both eruptive and noneruptive magnetic structures. Results: The derived energy-helicity diagram shows a consistent monotonic scaling between relative helicity and free energy with a scaling index 0.84 ± 0.05 for both data sets and calculation methods. It also confirms the segregation between noneruptive and eruptive active regions and the existence of thresholds in both free energy and relative helicity for active regions to enter eruptive territory. Conclusions: We consider the previously reported energy-helicity diagram of solar magnetic structures as adequately validated and envision a significant role of the uncovered scaling in future studies of solar magnetism.

  17. RF Integration into Helical Magnet for Muon 6-Dimensional Beam Cooling

    SciTech Connect

    Yonehara, K.; Kashikhin, V.; Lamm, M.; Lee, A.; Lopes, M.; Zlobin, A.; Johnson, R.P.; Kahn, S.; Neubauer, M.; /Muons Inc., Batavia

    2009-05-01

    The helical cooling channel is proposed to make a quick muon beam phase space cooling in a short channel length. The challenging part of the helical cooling channel magnet design is how to integrate the RF cavity into the compact helical cooling magnet. This report shows the possibility of the integration of the system.

  18. New mode of operating a magnetized coaxial plasma gun for injecting magnetic helicity into a spheromak.

    PubMed

    Woodruff, S; Hill, D N; Stallard, B W; Bulmer, R; Cohen, B; Holcomb, C T; Hooper, E B; McLean, H S; Moller, J; Wood, R D

    2003-03-01

    By operating a magnetized coaxial plasma gun continuously with just sufficient current to enable plasma ejection, large gun-voltage spikes (approximately 1 kV) are produced, giving the highest sustained voltage approximately 500 V and highest sustained helicity injection rate observed in the Sustained Spheromak Physics Experiment. The spheromak magnetic field increases monotonically with time, exhibiting the lowest fluctuation levels observed during formation of any spheromak (B/B>/=2%). The results suggest an important mechanism for field generation by helicity injection, namely, the merging of helicity-carrying filaments.

  19. Chiral charge erasure via thermal fluctuations of magnetic helicity

    NASA Astrophysics Data System (ADS)

    Long, Andrew J.; Sabancilar, Eray

    2016-05-01

    We consider a relativistic plasma of fermions coupled to an Abelian gauge field and carrying a chiral charge asymmetry, which might arise in the early Universe through baryogenesis. It is known that on large length scales, λ gtrsim 1/(αμ5), the chiral anomaly opens an instability toward the erasure of chiral charge and growth of magnetic helicity. Here the chemical potential μ5 parametrizes the chiral asymmetry and α is the fine-structure constant. We study the process of chiral charge erasure through the thermal fluctuations of magnetic helicity and contrast with the well-studied phenomenon of Chern-Simons number diffusion. Through the fluctuation-dissipation theorem we estimate the amplitude and time scale of helicity fluctuations on the length scale λ, finding δScript H ~ λT and τ ~ αλ3T2 for a relativistic plasma at temperature T. We argue that the presence of a chiral asymmetry allows the helicity to grow diffusively for a time t ~ T3/(α5μ54) until it reaches an equilibrium value Script H ~ μ5T2/α, and the chiral asymmetry is partially erased. If the chiral asymmetry is small, μ5 < T/α, this avenue for chiral charge erasure is found to be slower than the chiral magnetic effect for which t ~ T/(α3μ52). This mechanism for chiral charge erasure can be important for the hypercharge sector of the Standard Model as well as extensions including U(1) gauge interactions, such as asymmetric dark matter models.

  20. Chiral Magnetism in an Itinerant Helical Magnet, MnSi - An Extended 29Si NMR Study

    NASA Astrophysics Data System (ADS)

    Yasuoka, Hiroshi; Motoya, Kiyoichiro; Majumder, Mayukh; Witt, Sebastian; Krellner, Cornelius; Baenitz, Michael

    2016-07-01

    The microscopic magnetism in the helical, conical and ferromagnetically polarized phases in an itinerant helical magnet, MnSi, has been studied by an extended 29Si NMR at zero field and under external magnetic fields. The temperature dependence of the staggered moment, MQ(T), determined by the 29Si NMR frequency, ν(T), and the nuclear relaxation rate, 1/T1(T), at zero field is in general accord with the SCR theory for weak itinerant ferromagnetic metals and its extension to helical magnets. The external field dependence of resonance frequency, ν(H), follows a vector sum of the contributions from the atomic hyperfine and macroscopic fields with a field induced moment characteristic to itinerant magnets. A discontinuous jump of the resonance frequency at the critical field, Hc, between the conical and the polarized phases has also been found, which suggests a first order like change of the electronic states at Hc.

  1. Cylindrical Taylor states conserving total absolute magnetic helicity

    NASA Astrophysics Data System (ADS)

    Low, B. C.; Fang, F.

    2014-09-01

    The Taylor state of a three-dimensional (3D) magnetic field in an upright cylindrical domain V is derived from first principles as an extremum of the total magnetic energy subject to a conserved, total absolute helicity Habs. This new helicity [Low, Phys. Plasmas 18, 052901 (2011)] is distinct from the well known classical total helicity and relative total helicity in common use to describe wholly-contained and anchored fields, respectively. A given field B, tangential along the cylindrical side of V, may be represented as a unique linear superposition of two flux systems, an axially extended system along V and a strictly transverse system carrying information on field-circulation. This specialized Chandrasekhar-Kendall representation defines Habs and permits a neat formulation of the boundary-value problem (BVP) for the Taylor state as a constant-α force-free field, treating 3D wholly-contained and anchored fields on the same conceptual basis. In this formulation, the governing equation is a scalar integro-partial differential equation (PDE). A family of series solutions for an anchored field is presented as an illustration of this class of BVPs. Past treatments of the constant-α field in 3D cylindrical geometry are based on a scalar Helmholtz PDE as the governing equation, with issues of inconsistency in the published field solutions discussed over time in the journal literature. The constant-α force-free equation reduces to a scalar Helmholtz PDE only as special cases of the 3D integro-PDE derived here. In contrast, the constant-α force-free equation and the scalar Helmholtz PDE are absolutely equivalent in the spherical domain as discussed in Appendix. This theoretical study is motivated by the investigation of the Sun's corona but the results are also relevant to laboratory plasmas.

  2. North-south asymmetry of the interplanetary magnetic helicity

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Bieber, John W.

    1995-01-01

    Previous analyses of the north-south asymmetry of the interplanetary magnetic helicity have used the omnitape dataset and have shown that there exists a persistent and statistically significant asymmetry in the handedness of the magnetic fluctuations at 1 AU. This asymmetry is concentrated in fluctuations with spacecraft frame frequencies less than 10-5 Hz (periods greater than 30 hours) at 1 AU. Attempts to extend these analyses to include data collected in the outer heliosphere require that we consider spacecraft frame periods many times greater than 30 hours. This raises interesting questions regarding homogeneity and stationarity of the datasets at this scale and brings into question the possible breakdown of the computed correlation functions due to the sector structure of the solar wind. The likely geometry of magnetic fluctuations in the outer heliosphere provides yet another complication in the analysis. These issues will be discussed in detail and the latest results from our studies of the Voyager 1 & 2 and Pioneer 10 & 11 datasets will be presented. The analysis of Pioneer-Venus Orbiter observations will be shown as well. The potential asymmetry between the magnetic helicity of the two hemispheres has significant and measurable implications for cosmic ray propagation in the heliosphere and these implications will be reviewed in light of the new results.

  3. Particle energization through time-periodic helical magnetic fields.

    PubMed

    Mitra, Dhrubaditya; Brandenburg, Axel; Dasgupta, Brahmananda; Niklasson, Eyvind; Ram, Abhay

    2014-04-01

    We solve for the motion of charged particles in a helical time-periodic ABC (Arnold-Beltrami-Childress) magnetic field. The magnetic field lines of a stationary ABC field with coefficients A=B=C=1 are chaotic, and we show that the motion of a charged particle in such a field is also chaotic at late times with positive Lyapunov exponent. We further show that in time-periodic ABC fields, the kinetic energy of a charged particle can increase indefinitely with time. At late times the mean kinetic energy grows as a power law in time with an exponent that approaches unity. For an initial distribution of particles, whose kinetic energy is uniformly distributed within some interval, the probability density function of kinetic energy is, at late times, close to a Gaussian but with steeper tails.

  4. Magnetic helicity and the evolution of decaying magnetohydrodynamic turbulence.

    PubMed

    Berera, Arjun; Linkmann, Moritz

    2014-10-01

    Ensemble-averaged high resolution direct numerical simulations of reverse spectral transfer are presented, extending on the many single realization numerical studies done up to now. This identifies this type of spectral transfer as a statistical property of magnetohydrodynamic turbulence and thus permits reliable numerical exploration of its dynamics. The magnetic energy decay exponent from these ensemble runs has been determined to be nE=(0.47±0.03)+(13.9±0.8)/Rλ for initially helical magnetic fields. We show that even after removing the Lorentz force term in the momentum equation, thus decoupling it from the induction equation, reverse spectral transfer still persists. The induction equation is now linear with an externally imposed velocity field, thus amenable to numerous analysis techniques. A new door has opened for analyzing reverse spectral transfer, with various ideas discussed.

  5. The Magnetic Helicity Budget of Solar Active Regions and Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Nindos, A.; Zhang, J.; Zhang, H.

    2003-01-01

    We compute the magnetic helicity injected by transient photospheric horizontal flows in six solar active regions associated with halo coronal mass ejections (CMEs) that produced major geomagnetic storms and magnetic clouds (MCs) at 1 AU. The velocities are computed using the local correlation tracking (LCT) method. Our computations cover time intervals of 1 10-150 hr, and in four active regions the accumulated helicities due to transient flows are factors of 8-12 larger than the accumulated helicities due to differential rotation. As was first pointed out by DCmoulin and Berger, we suggest that the helicity computed with the LCT method yields not only the helicity injected from shearing motions but also the helicity coming from flux emergence. We compare the computed helicities injected into the corona with the helicities carried away by the CMEs using the MC helicity computations as proxies to the CME helicities. If we assume that the length of the MC flux tubes is I = 2 AU, then the total helicities injected into the corona are a factor of 2.94 lower than the total CME helicities. If we use the values of 1 determined by the condition for the initiation of the kink instability in the coronal flux rope or I = 0.5 AU then the total CME helicities and the total helicities injected into the corona are broadly consistent. Our study, at least partially, clears up some of the discrepancies in the helicity budget of active regions because the discrepancies appearing in our paper are much smaller than the ones reported in previous studies. However, they point out the uncertainties in the MC/CME helicity calculations and also the limitations of the LCT method, which underestimates the computed helicities.

  6. Dual-body magnetic helical robot for drilling and cargo delivery in human blood vessels

    NASA Astrophysics Data System (ADS)

    Lee, Wonseo; Jeon, Seungmun; Nam, Jaekwang; Jang, Gunhee

    2015-05-01

    We propose a novel dual-body magnetic helical robot (DMHR) manipulated by a magnetic navigation system. The proposed DMHR can generate helical motions to navigate in human blood vessels and to drill blood clots by an external rotating magnetic field. It can also generate release motions which are relative rotational motions between dual-bodies to release the carrying cargos to a target region by controlling the magnitude of an external magnetic field. Constraint equations were derived to selectively manipulate helical and release motions by controlling external magnetic fields. The DMHR was prototyped and various experiments were conducted to demonstrate its motions and verify its manipulation methods.

  7. MAGNETIC HELICITY OF SELF-SIMILAR AXISYMMETRIC FORCE-FREE FIELDS

    SciTech Connect

    Zhang Mei; Flyer, Natasha; Low, Boon Chye

    2012-08-10

    In this paper, we continue our theoretical studies addressing the possible consequences of magnetic helicity accumulation in the solar corona. Our previous studies suggest that coronal mass ejections (CMEs) are natural products of coronal evolution as a consequence of magnetic helicity accumulation and that the triggering of CMEs by surface processes such as flux emergence also have their origin in magnetic helicity accumulation. Here, we use the same mathematical approach to study the magnetic helicity of axisymmetric power-law force-free fields but focus on a family whose surface flux distributions are defined by self-similar force-free fields. The semi-analytical solutions of the axisymmetric self-similar force-free fields enable us to discuss the properties of force-free fields possessing a huge amount of accumulated magnetic helicity. Our study suggests that there may be an absolute upper bound on the total magnetic helicity of all bipolar axisymmetric force-free fields. With the increase of accumulated magnetic helicity, the force-free field approaches being fully opened up with Parker-spiral-like structures present around a current-sheet layer as evidence of magnetic helicity in the interplanetary space. It is also found that among the axisymmetric force-free fields having the same boundary flux distribution, the one that is self-similar is the one possessing the maximum amount of total magnetic helicity. This gives a possible physical reason why self-similar fields are often found in astrophysical bodies, where magnetic helicity accumulation is presumably also taking place.

  8. Three-dimensional prominence-hosting magnetic configurations: Creating a helical magnetic flux rope

    SciTech Connect

    Xia, C.; Keppens, R.; Guo, Y.

    2014-01-10

    The magnetic configuration hosting prominences and their surrounding coronal structure is a key research topic in solar physics. Recent theoretical and observational studies strongly suggest that a helical magnetic flux rope is an essential ingredient to fulfill most of the theoretical and observational requirements for hosting prominences. To understand flux rope formation details and obtain magnetic configurations suitable for future prominence formation studies, we here report on three-dimensional isothermal magnetohydrodynamic simulations including finite gas pressure and gravity. Starting from a magnetohydrostatic corona with a linear force-free bipolar magnetic field, we follow its evolution when introducing vortex flows around the main polarities and converging flows toward the polarity inversion line near the bottom of the corona. The converging flows bring the feet of different loops together at the polarity inversion line, where magnetic reconnection and flux cancellation happen. Inflow and outflow signatures of the magnetic reconnection process are identified, and thereby the newly formed helical loops wind around preexisting ones so that a complete flux rope grows and ascends. When a macroscopic flux rope is formed, we switch off the driving flows and find that the system relaxes to a stable state containing a helical magnetic flux rope embedded in an overlying arcade structure. A major part of the formed flux rope is threaded by dipped field lines that can stably support prominence matter, while the total mass of the flux rope is in the order of 4-5× 10{sup 14} g.

  9. Relating the equatorial electrojet strength inferred from multi-satellite magnetic observations to ExB drift and equatorial scintillation measurements

    NASA Astrophysics Data System (ADS)

    Kimbrel, A.; Maus, S.

    2006-12-01

    The dayside eastward electric field drives a strong electric current along the magnetic equator. This equatorial electrojet (EEJ) follows a narrow band in the ionospheric E-region, the Cowling channel. The strength of the EEJ is essentially the product of the eastward electric field with the Cowling conductivity. Observations of the electrojet strength could therefore provide valuable information on the eastward electric field, as well as on ionospheric conductivity. It is already known that the EEJ strength inferred from magnetic observatory measurements correlates well with the ExB drift observed by equatorial radars. Potentially, the EEJ strength could also be an indicator for the occurrence of equatorial plasma instabilities. To investigate these possibilities we use a dataset of 76,000 EEJ strengths, inferred from equator-crossings of the magnetic field measuring satellites CHAMP, Oersted and SAC-C. These EEJ strengths correlate well with the corresponding Julia ExB radar observations. Since the eastward electric field is ultimately responsible for building up the equatorial plasma anomaly, one can go one step further and correlate the EEJ strengths with the occurrence of night-time equatorial scintillations. An initial attempt to directly relate EEJ strength to SCINDA observations did not show any obvious correlation, though. In the next step, we plan to account for variations in the Cowling conductivity in order to obtain cleaner correlations with the ExB radar drifts. Possibly, this will also help to establish a relationship with the SCINDA observations.

  10. Increasing the magnetic helicity content of a plasma by pulsing a magnetized source.

    PubMed

    Woodruff, S; Stallard, B W; McLean, H S; Hooper, E B; Bulmer, R; Cohen, B I; Hill, D N; Holcomb, C T; Moller, J; Wood, R D

    2004-11-12

    By operating a magnetized coaxial gun in a pulsed mode it is possible to produce large voltage pulses of duration approximately 500 mus while reaching a few kV, giving a discrete input of helicity into a spheromak. In the sustained spheromak physics experiment (SSPX), it is observed that pulsing serves to nearly double the stored magnetic energy and double the temperature. We discuss these results by comparison with 3D MHD simulations of the same phenomenon.

  11. Magnetic reconnection process in transient coaxial helicity injection

    SciTech Connect

    Ebrahimi, F.; Hooper, E. B.; Sovinec, C. R.; Raman, R.

    2013-09-15

    The physics of magnetic reconnection and fast flux closure in transient coaxial helicity injection experiments in NSTX is examined using resistive MHD simulations. These simulations have been performed using the NIMROD code with fixed boundary flux (including NSTX poloidal coil currents) in the NSTX experimental geometry. Simulations show that an X point is formed in the injector region, followed by formation of closed flux surfaces within 0.5 ms after the driven injector voltage and injector current begin to rapidly decrease. As the injector voltage is turned off, the field lines tend to untwist in the toroidal direction and magnetic field compression exerts a radial J × B force and generates a bi-directional radial E{sub toroidal}×B{sub poloidal} pinch flow to bring oppositely directed field lines closer together to reconnect. At sufficiently low magnetic diffusivity (high Lundquist number), and with a sufficiently narrow injector flux footprint width, the oppositely directed field lines have sufficient time to reconnect (before dissipating), leading to the formation of closed flux surfaces. The reconnection process is shown to have transient Sweet-Parker characteristics.

  12. Helical magnetorotational instability in magnetized Taylor-Couette flow

    SciTech Connect

    Liu Wei; Ji Hantao; Goodman, Jeremy; Herron, Isom

    2006-11-15

    Hollerbach and Ruediger have reported a new type of magnetorotational instability (MRI) in magnetized Taylor-Couette flow in the presence of combined axial and azimuthal magnetic fields. The salient advantage of this 'helical' MRI (HMRI) is that marginal instability occurs at arbitrarily low magnetic Reynolds and Lundquist numbers, suggesting that HMRI might be easier to realize than standard MRI (axial field only), and that it might be relevant to cooler astrophysical disks, especially those around protostars, which may be quite resistive. We confirm previous results for marginal stability and calculate HMRI growth rates. We show that in the resistive limit, HMRI is a weakly destabilized inertial oscillation propagating in a unique direction along the axis. But we report other features of HMRI that make it less attractive for experiments and for resistive astrophysical disks. Large axial currents are required. More fundamentally, instability of highly resistive flow is peculiar to infinitely long or periodic cylinders: finite cylinders with insulating endcaps are shown to be stable in this limit, at least if viscosity is neglected. Also, Keplerian rotation profiles are stable in the resistive limit regardless of axial boundary conditions. Nevertheless, the addition of a toroidal field lowers thresholds for instability even in finite cylinders.

  13. Time Evolution of Coronal Magnetic Helicity in the Flaring Active Region NOAA 10930

    NASA Astrophysics Data System (ADS)

    Park, Sung-Hong; Chae, Jongchul; Jing, Ju; Tan, Changyi; Wang, Haimin

    2010-09-01

    To study the three-dimensional (3D) magnetic field topology and its long-term evolution associated with the X3.4 flare of 2006 December 13, we investigate the coronal relative magnetic helicity in the flaring active region (AR) NOAA 10930 during the time period of December 8-14. The coronal helicity is calculated based on the 3D nonlinear force-free magnetic fields reconstructed by the weighted optimization method of Wiegelmann, and is compared with the amount of helicity injected through the photospheric surface of the AR. The helicity injection is determined from the magnetic helicity flux density proposed by Pariat et al. using Solar and Heliospheric Observatory/Michelson Doppler Imager magnetograms. The major findings of this study are the following. (1) The time profile of the coronal helicity shows a good correlation with that of the helicity accumulation by injection through the surface. (2) The coronal helicity of the AR is estimated to be -4.3 × 1043 Mx2 just before the X3.4 flare. (3) This flare is preceded not only by a large increase of negative helicity, -3.2 × 1043 Mx2, in the corona over ~1.5 days but also by noticeable injections of positive helicity through the photospheric surface around the flaring magnetic polarity inversion line during the time period of the channel structure development. We conjecture that the occurrence of the X3.4 flare is involved with the positive helicity injection into an existing system of negative helicity.

  14. TIME EVOLUTION OF CORONAL MAGNETIC HELICITY IN THE FLARING ACTIVE REGION NOAA 10930

    SciTech Connect

    Park, Sung-Hong; Jing, Ju; Wang Haimin; Chae, Jongchul; Tan, Changyi

    2010-09-10

    To study the three-dimensional (3D) magnetic field topology and its long-term evolution associated with the X3.4 flare of 2006 December 13, we investigate the coronal relative magnetic helicity in the flaring active region (AR) NOAA 10930 during the time period of December 8-14. The coronal helicity is calculated based on the 3D nonlinear force-free magnetic fields reconstructed by the weighted optimization method of Wiegelmann, and is compared with the amount of helicity injected through the photospheric surface of the AR. The helicity injection is determined from the magnetic helicity flux density proposed by Pariat et al. using Solar and Heliospheric Observatory/Michelson Doppler Imager magnetograms. The major findings of this study are the following. (1) The time profile of the coronal helicity shows a good correlation with that of the helicity accumulation by injection through the surface. (2) The coronal helicity of the AR is estimated to be -4.3 x 10{sup 43} Mx{sup 2} just before the X3.4 flare. (3) This flare is preceded not only by a large increase of negative helicity, -3.2 x 10{sup 43} Mx{sup 2}, in the corona over {approx}1.5 days but also by noticeable injections of positive helicity through the photospheric surface around the flaring magnetic polarity inversion line during the time period of the channel structure development. We conjecture that the occurrence of the X3.4 flare is involved with the positive helicity injection into an existing system of negative helicity.

  15. PRODUCTIVITY OF SOLAR FLARES AND MAGNETIC HELICITY INJECTION IN ACTIVE REGIONS

    SciTech Connect

    Park, Sung-hong; Wang Haimin; Chae, Jongchul

    2010-07-20

    The main objective of this study is to better understand how magnetic helicity injection in an active region (AR) is related to the occurrence and intensity of solar flares. We therefore investigate the magnetic helicity injection rate and unsigned magnetic flux, as a reference. In total, 378 ARs are analyzed using SOHO/MDI magnetograms. The 24 hr averaged helicity injection rate and unsigned magnetic flux are compared with the flare index and the flare-productive probability in the next 24 hr following a measurement. In addition, we study the variation of helicity over a span of several days around the times of the 19 flares above M5.0 which occurred in selected strong flare-productive ARs. The major findings of this study are as follows: (1) for a sub-sample of 91 large ARs with unsigned magnetic fluxes in the range from (3-5) x 10{sup 22} Mx, there is a difference in the magnetic helicity injection rate between flaring ARs and non-flaring ARs by a factor of 2; (2) the GOES C-flare-productive probability as a function of helicity injection displays a sharp boundary between flare-productive ARs and flare-quiet ones; (3) the history of helicity injection before all the 19 major flares displayed a common characteristic: a significant helicity accumulation of (3-45) x 10{sup 42} Mx{sup 2} during a phase of monotonically increasing helicity over 0.5-2 days. Our results support the notion that helicity injection is important in flares, but it is not effective to use it alone for the purpose of flare forecast. It is necessary to find a way to better characterize the time history of helicity injection as well as its spatial distribution inside ARs.

  16. Measuring the magnetic field of a trans-equatorial loop system using coronal seismology

    NASA Astrophysics Data System (ADS)

    Long, David; Perez-Suarez, David; Valori, Gherardo

    2016-05-01

    First observed by SOHO/EIT, "EIT waves" are strongly associated with the initial evolution of coronal mass ejections (CMEs) and after almost 20 years of investigation a consensus is being reached which interprets them as freely-propagating waves produced by the rapid expansion of a CME in the low corona. An "EIT wave" was observed on 6 July 2012 to erupt from active region AR11514 into a particularly structured corona that included multiple adjacent active regions as well as an adjacent trans-equatorial loop system anchored at the boundary of a nearby coronal hole. The eruption was well observed by SDO/AIA and CoMP, allowing the effects of the "EIT wave" on the trans-equatorial loop system to be studied in detail. In particular, it was possible to characterise the oscillation of the loop system using Doppler velocity measurements from CoMP. These Doppler measurements were used to estimate the magnetic field strength of the trans-equatorial loop system via coronal seismology. It was then possible to compare these inferred magnetic field values with extrapolated magnetic field values derived using a Potential Field Source Surface extrapolation as well as the direct measurements of magnetic field provided by CoMP. These results show that the magnetic field strength of loop systems in the solar corona may be estimated using loop seismology.

  17. Hamiltonian for the toroidal helical magnetic field lines in the vacuum

    NASA Astrophysics Data System (ADS)

    Gnudi, G.; Hatori, T.

    1992-11-01

    The toroidal helical magnetic field possesses magnetic surfaces in the proximity of the magnetic axis, while in regions far from the magnetic axis such surfaces to not exist. The domain in which magnetic surfaces do not exist is called magnetic chaos domain, and between the magnetic axis and the magnetic chaos domain lies the outermost surface, whose position is an important information from the point of view of magnetic confinement. Since the divergence of the magnetic field is zero, the magnetic field lines system can be treated as a hamiltonian system. For hamiltonian systems the phase space structure is subdivided into chaotic and non-chaotic regions, and this subdivision has a correspondence with the magnetic chaos domain and the magnetic surfaces domain discussed above. In order to further advance this research it is necessary to approach the problem form the point of view of hamiltonian theory, in which the divergence-free property is rigorously respected. Besides, for hamiltonian systems it is possible to use symplectic integration techniques to solve the equation of motion, techniques which are free from secular, or dissipative errors. This fact make the application of symplectic techniques very attractive. The research approaching the toroidal helical magnetic field problem from the hamiltonian point of view ends with works done more than ten years ago, partly because of the strong push towards research on tokamaks. However, two good reasons to revive the hamiltonian approach to the toroidal helical magnetic field problem are: (1) the Japanese Ministry of Education is pushing the research concerning the helical systems approach to magnetic confinement; and (2) the last ten years have seen an impetuous development of chaos physics, and times are ripe for research about the chaotic properties of the toroidal helical magnetic field lines system. An explicit form for the Boozer's magnetic coordinates in the first order toroidal correction to the cylindrical

  18. SOLAR MAGNETIC HELICITY INJECTED INTO THE HELIOSPHERE: MAGNITUDE, BALANCE, AND PERIODICITIES OVER SOLAR CYCLE 23

    SciTech Connect

    Georgoulis, M. K.; Rust, D. M.; Bernasconi, P. N.; Pevtsov, A. A.; Kuzanyan, K. M.

    2009-11-01

    Relying purely on solar photospheric magnetic field measurements that cover most of solar cycle 23 (1996-2005), we calculate the total relative magnetic helicity injected into the solar atmosphere, and eventually shed into the heliosphere, over the latest cycle. Large active regions dominate the helicity injection process with approx5.7 x 10{sup 45} Mx{sup 2} of total injected helicity. The net helicity injected is approx<1% of the above output. Peculiar active-region plasma flows account for approx80% of this helicity; the remaining approx20% is due to solar differential rotation. The typical helicity per active-region CME ranges between (1.8-7) x 10{sup 42} Mx{sup 2} depending on the CME velocity. Accounting for various minor underestimation factors, we estimate a maximum helicity injection of approx6.6 x 10{sup 45} Mx{sup 2} for solar cycle 23. Although no significant net helicity exists over both solar hemispheres, we recover the well-known hemispheric helicity preference, which is significantly enhanced by the solar differential rotation. We also find that helicity injection in the solar atmosphere is an inherently disorganized, impulsive, and aperiodic process.

  19. Dynamics of Laboratory Astrophysical Jets with Magnetized Helical Flows

    NASA Astrophysics Data System (ADS)

    von der Linden, Jens; You, Setthivoine

    2014-10-01

    A triple electrode planar plasma gun (MOCHI LabJet) designed to study the dynamics of magnetized helical flows in plasma jets provides boundary conditions and dimensionless numbers relevant to astrophysical jets. The goal is to observe the effect of current and flow profiles on the collimation and stability of jets to address the questions: why are jets collimated and long? How are jet irregularities related to plasma instabilities? The current and azimuthal flow profiles of the jets are tailored by biasing the electrodes at different potentials. High-speed camera images, high-resolution Ḃ probe measurements, and 3D vector tomography of plasma flows will map a stability space for varying current and flow profiles. An analytical stability space is derived with Newcomb's variational analysis applied to collimated magnetic flux tubes with skin and core currents. Two numerical stability spaces are also computed by integrating the Euler-Lagrange equation and applying a shooting method to the ideal MHD eigenvalue problem. The eigenvalue problem is generalized to include azimuthal flows and computed with a monotonicity condition for minimizing the required scanning of the complex eigenvalue space. This work was sponsored in part by the US DOE Grant DE-SC0010340.

  20. Inhibition/Development of equatorial Spread F on magnetically disturbed days - A case study

    NASA Astrophysics Data System (ADS)

    Devasia, C. V.; Jyothi, N.; Pant, K. T.; Diwakar, T.; Sridharan, R.

    A case study of occurrence/ non-occurrence of Equatorial Spread F (ESF) events on several magnetically disturbed days over the magnetic equatorial location of Trivandrum (8.5°N; 77°E; dip 0.5°N) in India was conducted during March-April 1998. This study carried out under the ISTEP (Indian-STEP) program brought out some interesting aspects of the occurrence/non occurrence of ESF in relation to the nature of equatorial ionospheric response to the geomagnetic disturbance. The study indicated that the polarity and strength of the electric field disturbances which become active around noon hours on these days have an important role in modulating the development of Equatorial Ionization Anomaly (EIA). These electric field disturbances of larger timescales that are associated with ionospheric disturbance dynamo effects are shown to have a controlling effect on the F-region height rise, which in turn characterise the occurrence/ non- occurrence of ESF on different disturbed days. These aspects are discussed and presented.

  1. Time Evolution of Coronal Magnetic Helicity in the Flaring Active Region NOAA 10930

    NASA Astrophysics Data System (ADS)

    Park, Sung-Hong; Jing, J.; Wang, H.

    2010-05-01

    To study the three-dimensional (3D) magnetic field topology and its long-term (a few days) evolution associated with the X3.4 flare of 2006 December 13, we investigate the temporal evolution of the relative coronal magnetic helicity in NOAA active region (AR) 10930 during the time period of December 8, 21:20 UT through December 14, 5:00 UT. The coronal helicity is calculated based on the 3D nonlinear force-free (NLFF) magnetic fields reconstructed by the optimization method (Wheatland et al. 2000) as implemented by Wiegelmann (2004). As the boundary conditions for the force-free reconstruction, we use the preprocessed Hinode Spectropolarimeter (SP) vector magnetograms in which the net Lorentz force and the torque in the photosphere are minimized (see Wiegelmann et al. 2006 for the details). The major findings of this study are: (1) a negative (left-handed) helicity of -5×1043 Mx2 in the AR corona is estimated right before the X3.4 flare; (2) the major flare is preceded by a significantly and consistently large amount of negative helicity injection (-2×1043 Mx2) into the corona over 2 days; (3) the temporal variation of helicity is comparable to that of the rotational speed in the southern sunspot with positive polarity; (4) in general, the time profile of the coronal helicity is well-matched with that of the helicity accumulation by the time integration of the simplified helicity injection rate (Chae 2001) determined by using SOHO MDI magnetograms; (5) at the time period of the channel structure development (December 11, 4:00-8:00 UT) with newly emerging flux and just right before the C5.7 class flare, the time variation of the coronal helicity shows a rapid and huge increase of negative helicity, but that of the helicity accumulation by MDI magnetograms indicates a monotonous increase of negative helicity.

  2. A multichannel magnetic probe system for analysing magnetic fluctuations in helical axis plasmas

    SciTech Connect

    Haskey, S. R.; Blackwell, B. D.; Seiwald, B.; Hole, M. J.; Pretty, D. G.; Howard, J.; Wach, J.

    2013-09-15

    The need to understand the structure of magnetic fluctuations in H-1NF heliac [S. Hamberger et al., Fusion Technol. 17, 123 (1990)] plasmas has motivated the installation of a sixteen former, tri-axis helical magnetic probe Mirnov array (HMA). The new array complements two existing poloidal Mirnov arrays by providing polarisation information, higher frequency response, and improved toroidal resolution. The helical placement is ideal for helical axis plasmas because it positions the array as close as possible to the plasma in regions of varying degrees of favourable curvature in the magnetohydrodynamic sense, but almost constant magnetic angle. This makes phase variation with probe position near linear, greatly simplifying the analysis of the data. Several of the issues involved in the design, installation, data analysis, and calibration of this unique array are presented including probe coil design, frequency response measurements, mode number identification, orientation calculations, and mapping probe coil positions to magnetic coordinates. Details of specially designed digitally programmable pre-amplifiers, which allow gains and filters to be changed as part of the data acquisition initialisation sequence and stored with the probe signals, are also presented. The low shear heliac geometry [R. Jiménez-Gómez et al., Nucl. Fusion 51, 033001 (2011)], flexibility of the H-1NF heliac, and wealth of information provided by the HMA create a unique opportunity for detailed study of Alfvén eigenmodes, which could be a serious issue for future fusion reactors.

  3. A Combined Study of Photospheric Magnetic and Current Helicities and Subsurface Kinetic Helicities of Solar Active Regions during 2006-2013

    NASA Astrophysics Data System (ADS)

    Seligman, D.; Petrie, G. J. D.; Komm, R.

    2014-11-01

    We compare the average photospheric current helicity Hc , photospheric twist parameter α (a well-known proxy for the full relative magnetic helicity), and subsurface kinetic helicity Hk for 194 active regions observed between 2006-2013. We use 2440 Hinode photospheric vector magnetograms, and the corresponding subsurface fluid velocity data derived from GONG (2006-2012) and Helioseismic and Magnetic Imager (2010-2013) dopplergrams. We find a significant hemispheric bias in all three parameters. The subsurface kinetic helicity is preferentially positive in the southern hemisphere and negative in the northern hemisphere. The photospheric current helicity and the α parameter have the same bias for strong fields (|B| > 1000 G) and no significant bias for weak fields (100 G <|B| < 500 G). We find no significant region-by-region correlation between the subsurface kinetic helicity and either the strong-field current helicity or α. Subsurface fluid motions of a given handedness correspond to photospheric helicities of both signs in approximately equal numbers. However, common variations appear in annual averages of these quantities over all regions. Furthermore, in a subset of 77 regions, we find significant correlations between the temporal profiles of the subsurface and photospheric helicities. In these cases, the sign of the linear correlation coefficient matches the sign relationship between the helicities, indicating that the photospheric magnetic field twist is sensitive to the twisting motions below the surface.

  4. A combined study of photospheric magnetic and current helicities and subsurface kinetic helicities of solar active regions during 2006-2013

    SciTech Connect

    Seligman, D.; Petrie, G. J. D.; Komm, R.

    2014-11-10

    We compare the average photospheric current helicity H{sub c} , photospheric twist parameter α (a well-known proxy for the full relative magnetic helicity), and subsurface kinetic helicity H{sub k} for 194 active regions observed between 2006-2013. We use 2440 Hinode photospheric vector magnetograms, and the corresponding subsurface fluid velocity data derived from GONG (2006-2012) and Helioseismic and Magnetic Imager (2010-2013) dopplergrams. We find a significant hemispheric bias in all three parameters. The subsurface kinetic helicity is preferentially positive in the southern hemisphere and negative in the northern hemisphere. The photospheric current helicity and the α parameter have the same bias for strong fields (|B| > 1000 G) and no significant bias for weak fields (100 G <|B| < 500 G). We find no significant region-by-region correlation between the subsurface kinetic helicity and either the strong-field current helicity or α. Subsurface fluid motions of a given handedness correspond to photospheric helicities of both signs in approximately equal numbers. However, common variations appear in annual averages of these quantities over all regions. Furthermore, in a subset of 77 regions, we find significant correlations between the temporal profiles of the subsurface and photospheric helicities. In these cases, the sign of the linear correlation coefficient matches the sign relationship between the helicities, indicating that the photospheric magnetic field twist is sensitive to the twisting motions below the surface.

  5. EFFECTS OF THE NON-RADIAL MAGNETIC FIELD ON MEASURING MAGNETIC HELICITY TRANSPORT ACROSS THE SOLAR PHOTOSPHERE

    SciTech Connect

    Song, Y. L.; Zhang, M.

    2015-05-10

    It is generally believed that the evolution of magnetic helicity has a close relationship with solar activity. Before the launch of the Solar Dynamics Observatory (SDO), earlier studies had mostly used Michelson Doppler Imager/SOHO line of sight (LOS) magnetograms and assumed that magnetic fields are radial when calculating the magnetic helicity injection rate from photospheric magnetograms. However, this assumption is not necessarily true. Here we use the vector magnetograms and LOS magnetograms, both taken by the Helioseismic and Magnetic Imager on SDO, to estimate the effects of the non-radial magnetic field on measuring the magnetic helicity injection rate. We find that: (1) the effect of the non-radial magnetic field on estimating tangential velocity is relatively small; (2) when estimating the magnetic helicity injection rate, the effect of the non-radial magnetic field is strong when active regions are observed near the limb and is relatively weak when active regions are close to disk center; and (3) the effect of the non-radial magnetic field becomes minor if the amount of accumulated magnetic helicity is the only concern.

  6. On the resilience of helical magnetic fields to turbulent diffusion and the astrophysical implications

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.; Subramanian, Kandaswamy

    2013-02-01

    The extent to which large-scale magnetic fields are susceptible to turbulent diffusion is important for interpreting the need for in situ large-scale dynamos in astrophysics and for observationally inferring field strengths compared to kinetic energy. By solving coupled evolution equations for magnetic energy and magnetic helicity in a system initialized with isotropic turbulence and an arbitrarily helical large-scale field, we quantify the decay rate of the latter for a bounded or periodic system. The magnetic energy associated with the non-helical large-scale field decays at least as fast as the kinematically estimated turbulent diffusion rate, but the decay rate of the helical part depends on whether the ratio of its magnetic energy to the turbulent kinetic energy exceeds a critical value given by M1, c = (k1/k2)2, where k1 and k2 are the wavenumbers of the large and forcing scales. Turbulently diffusing helical fields to small scales while conserving magnetic helicity requires a rapid increase in total magnetic energy. As such, only when the helical field is subcritical can it so diffuse. When supercritical, it decays slowly, at a rate determined by microphysical dissipation even in the presence of macroscopic turbulence. In effect, turbulent diffusion of such a large-scale helical field produces small-scale helicity whose amplification abates further turbulent diffusion. Two curious implications are that (1) standard arguments supporting the need for in situ large-scale dynamos based on the otherwise rapid turbulent diffusion of large-scale fields require re-thinking since only the large-scale non-helical field is so diffused in a closed system. Boundary terms could however provide potential pathways for rapid change of the large-scale helical field. (2) Since M1, c ≪ 1 for k1 ≪ k2, the presence of long-lived ordered large-scale helical fields as in extragalactic jets do not guarantee that the magnetic field dominates the kinetic energy.

  7. Evolution of Magnetic Helicity During Eruptive Flares and Coronal Mass Ejections

    NASA Astrophysics Data System (ADS)

    Priest, E. R.; Longcope, D. W.; Janvier, M.

    2016-08-01

    During eruptive solar flares and coronal mass ejections, a non-potential magnetic arcade with much excess magnetic energy goes unstable and reconnects. It produces a twisted erupting flux rope and leaves behind a sheared arcade of hot coronal loops. We suggest that the twist of the erupting flux rope can be determined from conservation of magnetic flux and magnetic helicity and equipartition of magnetic helicity. It depends on the geometry of the initial pre-eruptive structure. Two cases are considered, in the first of which a flux rope is not present initially but is created during the eruption by the reconnection. In the second case, a flux rope is present under the arcade in the pre-eruptive state, and the effect of the eruption and reconnection is to add an amount of magnetic helicity that depends on the fluxes of the rope and arcade and the geometry.

  8. Riemannian geometry of twisted magnetic flux tubes in almost helical plasma flows

    SciTech Connect

    Garcia de Andrade, L.C.

    2006-02-15

    Riemannian geometry of curves applied recently by Ricca [Fluid Dyn. Res 36, 319 (2005)] in the case of inflectional disequilibrium of twisted magnetic flux tubes is used here to compute the magnetic helicity force-free field case. Here the application of Lorentz force-free to the magnetic flux tube in tokamaks allows one to obtain an equation that generalizes the cylindrical tokamak equation by a term that contains the curvature of the magnetic flux tube. Another example of the use of the magnetic flux tube is done by taking the electron magnetohydrodynamics (MHD) fluid model (EMHD) of plasma physics that allows one to compute the velocity of the fluid in helical and almost helical flows in terms of the Frenet torsion of thin magnetic flux tubes. The cases of straight and curved twisted tubes are examined. Second-order effects on the Frenet torsion arise on the poloidal component of the magnetic field, while curvature effects appear in the toroidal component. The magnetic fields are computed in terms of the penetration depth used in superconductors. The ratio between poloidal and toroidal components of the magnetic field depends on the torsion and curvature of the magnetic flux tube. It is shown that the rotation of the almost helical plasma flow contributes to the twist of the magnetic flux tube through the total Frenet torsion along the tube.

  9. Morphology of blazar-induced gamma ray halos due to a helical intergalactic magnetic field

    SciTech Connect

    Long, Andrew J.; Vachaspati, Tanmay E-mail: tvachasp@asu.edu

    2015-09-01

    We study the characteristic size and shape of idealized blazar-induced cascade halos in the 1–100,GeV energy range assuming various non-helical and helical configurations for the intergalactic magnetic field (IGMF). While the magnetic field creates an extended halo, the helicity provides the halo with a twist. Under simplifying assumptions, we assess the parameter regimes for which it is possible to measure the size and shape of the halo from a single source and then to deduce properties of the IGMF. We find that blazar halo measurements with an experiment similar to Fermi-LAT are best suited to probe a helical magnetic field with strength and coherence length today in the ranges 10{sup −17} ∼< B{sub 0} / Gauss ∼< 10{sup −13} and 10 Mpc ∼< λ ∼< 10 Gpc where H ∼ B{sub 0}{sup 2} / λ is the magnetic helicity density. Stronger magnetic fields or smaller coherence scales can still potentially be investigated, but the connection between the halo morphology and the magnetic field properties is more involved. Weaker magnetic fields or longer coherence scales require high photon statistics or superior angular resolution.

  10. CMB anisotropies generated by a stochastic background of primordial magnetic fields with non-zero helicity

    SciTech Connect

    Ballardini, Mario

    2015-10-01

    We consider the impact of a stochastic background of primordial magnetic fields with non-vanishing helicity on CMB anisotropies in temperature and polarization. We compute the exact expressions for the scalar, vector and tensor part of the energy-momentum tensor including the helical contribution, by assuming a power-law dependence for the spectra and a comoving cutoff which mimics the damping due to viscosity. We also compute the parity-odd correlator between the helical and non-helical contribution which generate the TB and EB cross-correlation in the CMB pattern. We finally show the impact of including the helical term on the power spectra of CMB anisotropies up to multipoles with ℓ ∼ O(10{sup 3})

  11. Using Magnetic Helicity Diagnostics to Determine the Nature of Solar Active-Region Formation

    NASA Astrophysics Data System (ADS)

    Georgoulis, Manolis K.

    Employing a novel nonlinear force-free (NLFF) method that self-consistently infers instantaneous free magnetic-energy and relative magnetic-helicity budgets from single photospheric vector magnetograms, we recently constructed the magnetic energy-helicity (EH) diagram of solar active regions. The EH diagram implies dominant relative helicities of left-handed or right-handed chiralities for the great majority of active regions. The amplitude (budget) of these helicities scales monotonically with the free magnetic energy. This constructive, strongly preferential accumulation of a certain sense of magnetic helicity seems to disqualify recently proposed mechanisms relying on a largely random near-surface convection for the formation of the great majority of active regions. The existing qualitative formation mechanism for these regions remains the conventional Omega-loop emergence following a buoyant ascension from the bottom of the convection zone. However, exceptions to this rule include even eruptive active regions: NOAA AR 11283 is an obvious outlier to the EH diagram, involving significant free magnetic energy with a small relative magnetic helicity. Relying on a timeseries of vector magnetograms of this region, our methodology shows nearly canceling amounts of both senses of helicity and an overall course from a weakly left-handed to a weakly right-handed structure, in the course of which a major eruption occurs. For this and similarly behaving active regions the latest near-surface formation scenario might conceivably be employed successfully. Research partially supported by the EU Seventh Framework Programme under grant agreement No. PIRG07-GA-2010-268245 and by the European Union Social Fund (ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.

  12. Note: On-chip multifunctional fluorescent-magnetic Janus helical microswimmers

    NASA Astrophysics Data System (ADS)

    Hwang, G.; Decanini, D.; Leroy, L.; Haghiri-Gosnet, A. M.

    2016-03-01

    Microswimmers integrated into microfluidic devices that are capable of self-illumination through fluorescence could revolutionize many aspects of technology, especially for biological applications. Few illumination and propulsion techniques of helical microswimmers inside microfluidic channels have been demonstrated. This paper presents the fabrication, detachment, and magnetic propulsions of multifunctional fluorescent-magnetic helical microswimmers integrated inside microfluidics. The fabrication process is based on two-photon laser lithography to pattern 3-D nanostructures from fluorescent photoresist coupled with conventional microfabrication techniques for magnetic thin film deposition by shadowing. After direct integration inside a microfluidic device, injected gas bubble allows gentle detachment of the integrated helical microswimmers whose magnetic propulsion can then be directly applied inside the microfluidic channel using external electromagnetic coil setup. With their small scale, fluorescence, excellent resistance to liquid/gas surface tension, and robust propulsion capability inside the microfluidic channel, the microswimmers can be used as high-resolution and large-range mobile micromanipulators inside microfluidic channels.

  13. Theory for nanoparticle retention time in the helical channel of quadrupole magnetic field-flow fractionation

    NASA Astrophysics Data System (ADS)

    Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej

    2009-05-01

    Quadrupole magnetic field-flow fractionation (QMgFFF) is a separation and characterization technique for magnetic nanoparticles such as those used for cell labeling and for targeted drug therapy. A helical separation channel is used to efficiently exploit the quadrupole magnetic field. The fluid and sample components therefore have angular and longitudinal components to their motion in the thin annular space occupied by the helical channel. The retention ratio is defined as the ratio of the times for non-retained and a retained material to pass through the channel. Equations are derived for the respective angular and longitudinal components to retention ratio.

  14. Bifurcation to 3D Helical Magnetic Equilibrium in an Axisymmetric Toroidal Device

    NASA Astrophysics Data System (ADS)

    Bergerson, W. F.; Auriemma, F.; Chapman, B. E.; Ding, W. X.; Zanca, P.; Brower, D. L.; Innocente, P.; Lin, L.; Lorenzini, R.; Martines, E.; Momo, B.; Sarff, J. S.; Terranova, D.

    2011-12-01

    We report the first direct measurement of the internal magnetic field structure associated with a 3D helical equilibrium generated spontaneously in the core of an axisymmetric toroidal plasma containment device. Magnetohydrodynamic equilibrium bifurcation occurs in a reversed-field pinch when the innermost resonant magnetic perturbation grows to a large amplitude, reaching up to 8% of the mean field strength. Magnetic topology evolution is determined by measuring the Faraday effect, revealing that, as the perturbation grows, toroidal symmetry is broken and a helical equilibrium is established.

  15. Bifurcation to 3D helical magnetic equilibrium in an axisymmetric toroidal device.

    PubMed

    Bergerson, W F; Auriemma, F; Chapman, B E; Ding, W X; Zanca, P; Brower, D L; Innocente, P; Lin, L; Lorenzini, R; Martines, E; Momo, B; Sarff, J S; Terranova, D

    2011-12-16

    We report the first direct measurement of the internal magnetic field structure associated with a 3D helical equilibrium generated spontaneously in the core of an axisymmetric toroidal plasma containment device. Magnetohydrodynamic equilibrium bifurcation occurs in a reversed-field pinch when the innermost resonant magnetic perturbation grows to a large amplitude, reaching up to 8% of the mean field strength. Magnetic topology evolution is determined by measuring the Faraday effect, revealing that, as the perturbation grows, toroidal symmetry is broken and a helical equilibrium is established.

  16. Validation and Benchmarking of a Practical Free Magnetic Energy and Relative Magnetic Helicity Budget Calculation in Solar Magnetic Structures

    NASA Astrophysics Data System (ADS)

    Moraitis, K.; Tziotziou, K.; Georgoulis, M. K.; Archontis, V.

    2014-12-01

    In earlier works we introduced and tested a nonlinear force-free (NLFF) method designed to self-consistently calculate the coronal free magnetic energy and the relative magnetic helicity budgets of observed solar magnetic structures. In principle, the method requires only a single, photospheric or low-chromospheric, vector magnetogram of a quiet-Sun patch or an active region and performs calculations without three-dimensional magnetic and velocity-field information. In this work we strictly validate this method using three-dimensional coronal magnetic fields. Benchmarking employs both synthetic, three-dimensional magnetohydrodynamic simulations and nonlinear force-free field extrapolations of the active-region solar corona. Our time-efficient NLFF method provides budgets that differ from those of more demanding semi-analytical methods by a factor of approximately three, at most. This difference is expected to come from the physical concept and the construction of the method. Temporal correlations show more discrepancies that are, however, soundly improved for more complex, massive active regions, reaching correlation coefficients on the order of, or exceeding, 0.9. In conclusion, we argue that our NLFF method can be reliably used for a routine and fast calculation of the free magnetic energy and relative magnetic helicity budgets in targeted parts of the solar magnetized corona. As explained in this article and in previous works, this is an asset that can lead to valuable insight into the physics and triggering of solar eruptions.

  17. Abnormal fb Es enhancements in equatorial Es layers during magnetic storms of solar cycle 23

    NASA Astrophysics Data System (ADS)

    Resende, L. C. A.; Denardini, C. M.; Batista, I. S.

    2013-09-01

    We have analyzed the behavior of blanketing frequency of the Es layer (fb Es) occurring at an equatorial station covering the days before, during and subsequent to 24 intense and very intense magnetic storms (Dst≤-100 nT) that occurred during the solar cycle 23. The fb Es was measured by digital ionosonde over São Luís, Brazil (2.33° S, 44.2° W, dip: -4.5°). Our analysis shows that there are significant changes in the fb Es, mainly during the recovery phase of magnetic storms, characterized by occurrence of peaks that exceed the ambient background values. Also, these peaks are associated to other types of sporadic E layer than the Esq (a non-blanketing layer detected due the plasma irregularities in the equatorial electrojet), which in turn means competing mechanisms. The results are discussed in terms of the statistics of the abnormal enhancement taking into account the phase of the magnetic storm.

  18. New method to determine proton trajectories in the equatorial plane of a dipole magnetic field.

    PubMed

    Ioanoviciu, Damaschin

    2015-01-01

    A parametric description of proton trajectories in the equatorial plane of Earth's dipole magnetic field has been derived. The exact expression of the angular coordinate contains an integral to be performed numerically. The radial coordinate results from the initial conditions by basic mathematical operations and by using trigonometric functions. With the approximate angular coordinate formula, applicable for a wide variety of cases of protons trapped in Earth's radiation belts, no numerical integration is needed. The results of exact and approximate expressions were compared for a specific case and small differences were found.

  19. Hybrid helical magnetic microrobots obtained by 3D template-assisted electrodeposition.

    PubMed

    Zeeshan, Muhammad A; Grisch, Roman; Pellicer, Eva; Sivaraman, Kartik M; Peyer, Kathrin E; Sort, Jordi; Özkale, Berna; Sakar, Mahmut S; Nelson, Bradley J; Pané, Salvador

    2014-04-01

    Hybrid helical magnetic microrobots are achieved by sequential electrodeposition of a CoNi alloy and PPy inside a photoresist template patterned by 3D laser lithography. A controlled actuation of the microrobots by a rotating magnetic field is demonstrated in a fluidic environment.

  20. Magnetization directions and geometries of helical microswimmers for linear velocity-frequency response.

    PubMed

    Fu, Henry C; Jabbarzadeh, Mehdi; Meshkati, Farshad

    2015-04-01

    Recently, there has been much progress in creating microswimmers or microrobots capable of controlled propulsion in fluidic environments. These microswimmers have numerous possible applications in biomedicine, microfabrication, and sensing. One type of effective microrobot consists of rigid magnetic helical microswimmers that are propelled when rotated at a range of frequencies by an external rotating magnetic field. Here we focus on investigating which magnetic dipoles and helical geometries optimally lead to linear velocity-frequency response, which may be desirable for the precise control and positioning of microswimmers. We identify a class of optimal magnetic field moments. We connect our results to the wobbling behavior previously observed and studied in helical microswimmers. In contrast to previous studies, we find that when the full helical geometry is taken into account, wobble-free motion is not possible for magnetic fields rotating in a plane. Our results compare well quantitatively to previously reported experiments, validating the theoretical analysis method. Finally, in the context of our optimal moments, we identify helical geometries for minimization of wobbling and maximization of swimming velocities.

  1. MAGNETIC HELICITY TRANSPORTED BY FLUX EMERGENCE AND SHUFFLING MOTIONS IN SOLAR ACTIVE REGION NOAA 10930

    SciTech Connect

    Zhang, Y.; Kitai, R.; Takizawa, K. E-mail: zhangyin@bao.ac.cn

    2012-06-01

    We present a new methodology which can determine magnetic helicity transport by the passage of helical magnetic field lines from the sub-photosphere and the shuffling motions of footpoints of preexisting coronal field lines separately. It is well known that only the velocity component, which is perpendicular to the magnetic field ({upsilon}{sub B}), has contributed to the helicity accumulation. Here, we demonstrate that {upsilon}{sub B} can be deduced from a horizontal motion and vector magnetograms under a simple relation of {upsilon}{sub t} = {mu}{sub t} + ({upsilon}{sub n}/B{sub n} ) B{sub t}, as suggested by Demoulin and Berger. Then after dividing {upsilon}{sub B} into two components, as one is tangential and the other is normal to the solar surface, we can determine both terms of helicity transport. Active region (AR) NOAA 10930 is analyzed as an example during its solar disk center passage by using data obtained by the Spectropolarimeter and the Narrowband Filter Imager of Solar Optical Telescope on board Hinode. We find that in our calculation the helicity injection by flux emergence and shuffling motions have the same sign. During the period we studied, the main contribution of helicity accumulation comes from the flux emergence effect, while the dynamic transient evolution comes from the shuffling motions effect. Our observational results further indicate that for this AR the apparent rotational motion in the following sunspot is the real shuffling motions on the solar surface.

  2. Faraday Rotation Measure Gradients from a Helical Magnetic Field in 3C273

    SciTech Connect

    Zavala, Robert T.; Taylor, G.B.; /NRAO, Socorro /KIPAC, Menlo Park

    2005-06-06

    Using high frequency (12-22 GHz) VLBA observations we confirm the existence of a Faraday rotation measure gradient of {approx}500 rad m{sup -2} mas{sup -1} transverse to the jet axis in the quasar 3C273. The gradient is seen in two epochs spaced roughly six months apart. This stable transverse rotation measure gradient is expected if a helical magnetic field wraps around the jet. The overall order to the magnetic field in the inner projected 40 parsecs is consistent with a helical field. However, we find an unexpected increase in fractional polarization along the edges of the source, contrary to expectations. This high fractional polarization rules out internal Faraday rotation, but is not readily explained by a helical field. After correcting for the rotation measure, the intrinsic magnetic field direction in the jet of 3C273 changes from parallel to nearly perpendicular to the projected jet motion at two locations. If a helical magnetic field causes the observed rotation measure gradient then the synchrotron emitting electrons must be separate from the helical field region. The presence or absence of transverse rotation measure gradients in other sources is also discussed.

  3. How Well Can a Footpoint Tracking Method Estimate the Magnetic Helicity Influx during Flux Emergence?

    NASA Astrophysics Data System (ADS)

    Choe, Gwangson; Kim, Sunjung; Kim, Kap-Sung; No, Jincheol

    2015-08-01

    As shown by Démoulin and Berger (2003), the magnetic helicity flux through the solar surface into the solar atmosphere can be exactly calculated if we can trace the motion of footpoints with infinite temporal and spatial resolutions. When there is a magnetic flux transport across the solar surface, the horizontal velocity of footpoints becomes infinite at the polarity inversion line, although the surface integral yielding the helicity flux does not diverge. In practical application, a finite temporal and spatial resolution causes an underestimate of the magnetic helicity flux when a magnetic flux emerges from below the surface, because there is an observational blackout area near a polarity inversion line whether it is pre-existing or newly formed. In this paper, we consider emergence of simple magnetic flux ropes and calculate the supremum of the magnitude of the helicity influx that can be estimated from footpoint tracking. The results depend on the ratio of the resolvable length scale and the flux rope diameter. For a Gold-Hoyle flux rope, in which all field lines are uniformly twisted, the observationally estimated helicity influx would be about 90% of the real influx when the flux rope diameter is one hundred times the spatial resolution (for a large flux rope), and about 45% when it is ten times (for a small flux rope). For Lundquist flux ropes, the errors incurred by observational estimation are smaller than the case of the Gold-Hoyle flux rope, but could be as large as 30% of the real influx. Our calculation suggests that the error in the helicity influx estimate is at least half of the real influx or even larger when small scale magnetic structures (less than 10,000 km) emerge into the solar atmosphere.

  4. Free Magnetic Energy and Helicity in Active and Quiet Solar Regions and their role in Solar

    NASA Astrophysics Data System (ADS)

    Tziotziou, K.; Georgoulis, M. K.; Tsiropoula, G.; Moraitis, K.; Kontogiannis, I.

    2013-09-01

    We present a novel nonlinear force-free method designed to calculate the instantaneous free magnetic energy and relative magnetic helicity budgets of a solar region from a single photospheric/chromospheric vector magnetogram of the region. Our objective is to study the role of these quantities in solar eruptions and quiet-Sun dynamics. We apply the method to (1) derive the energy/helicity diagram of solar active regions from a sample of 162 vector magnetograms corresponding to 42 different active regions (ARs), suggesting that there exist 4 1031 erg and 2 1042 Mx2 thresholds in free energy and relative helicity, respectively, for ARs to enter eruptive territory, (2) study the dynamics of eruptive NOAA AR 11158 using a high-cadence 5-day time series of vector magnetograms, suggesting the formation of increasingly helical pre-eruption structures and a causal relation between flares and Coronal Mass Ejections (CMEs) and, (3) derive helicity and energy budgets in quiet Sun regions and construct the respective energy/helicity diagram. Our results highlight the importance of these two parameters in AR evolution and quiet-Sun dynamics and instigate further research including detailed analysis with synthetic, magnetohydrodynamical models. This work is supported by EU's Seventh Framework Programme via a Marie Curie Fellowship and by the Hellenic National Space Weather Research Network (HNSWRN) via the THALIS Programme.

  5. Continuous day-time time series of E-region equatorial electric fields derived from ground magnetic observatory data

    NASA Astrophysics Data System (ADS)

    Alken, P.; Chulliat, A.; Maus, S.

    2012-12-01

    The day-time eastward equatorial electric field (EEF) in the ionospheric E-region plays an important role in equatorial ionospheric dynamics. It is responsible for driving the equatorial electrojet (EEJ) current system, equatorial vertical ion drifts, and the equatorial ionization anomaly (EIA). Due to its importance, there is much interest in accurately measuring and modeling the EEF. However, there are limited sources of direct EEF measurements with full temporal and spatial coverage of the equatorial ionosphere. In this work, we propose a method of estimating a continuous day-time time series of the EEF at any longitude, provided there is a pair of ground magnetic observatories in the region which can accurately track changes in the strength of the EEJ. First, we derive a climatological unit latitudinal current profile from direct overflights of the CHAMP satellite and use delta H measurements from the ground observatory pair to determine the magnitude of the current. The time series of current profiles is then inverted for the EEF by solving the governing electrodynamic equations. While this method has previously been applied and validated in the Peruvian sector, in this work we demonstrate the method using a pair of magnetometers in Africa (Samogossoni, SAM, 0.18 degrees magnetic latitude and Tamanrasset, TAM, 11.5 degrees magnetic latitude) and validate the resulting EEF values against the CINDI ion velocity meter (IVM) instrument on the C/NOFS satellite. We find a very good 80% correlation with C/NOFS IVM measurements and a root-mean-square difference of 9 m/s in vertical drift velocity. This technique can be extended to any pair of ground observatories which can capture the day-time strength of the EEJ. We plan to apply this work to more observatory pairs around the globe and distribute real-time equatorial electric field values to the community.

  6. Turbulent magnetic Prandtl number in helical kinematic magnetohydrodynamic turbulence: two-loop renormalization group result.

    PubMed

    Jurčišinová, E; Jurčišin, M; Remecký, R; Zalom, P

    2013-04-01

    Using the field theoretic renormalization group technique, the influence of helicity (spatial parity violation) on the turbulent magnetic Prandtl number in the kinematic magnetohydrodynamic turbulence is investigated in the two-loop approximation. It is shown that the presence of helicity decreases the value of the turbulent magnetic Prandtl number and, at the same time, the two-loop helical contribution to the turbulent magnetic Prandtl number is at most 4.2% (in the case with the maximal helicity) of its nonhelical value. These results demonstrate, on one hand, the potential importance of the presence of asymmetries in processes in turbulent environments and, on the other hand, the rather strong stability of the properties of diffusion processes of the magnetic field in the conductive turbulent environment with the spatial parity violation in comparison to the corresponding systems without the spatial parity violation. In addition, obtained results are compared to the corresponding results found for the two-loop turbulent Prandtl number in the model of passively advected scalar field. It is shown that the turbulent Prandtl number and the turbulent magnetic Prandtl number, which are the same in fully symmetric isotropic turbulent systems, are essentially different when one considers the spatial parity violation. It means that the properties of the diffusion processes in the turbulent systems with a given symmetry breaking can considerably depend on the internal tensor structure of advected quantities.

  7. Magnetic Energy and Helicity in Two Emerging Active Regions in the Sun

    NASA Technical Reports Server (NTRS)

    Liu, Y.; Schuck, P. W.

    2012-01-01

    The magnetic energy and relative magnetic helicity in two emerging solar active regions, AR 11072 and AR 11158,are studied. They are computed by integrating over time the energy and relative helicity fluxes across the photosphere. The fluxes consist of two components: one from photospheric tangential flows that shear and braid field lines (shear term), the other from normal flows that advect magnetic flux into the corona (emergence term). For these active regions: (1) relative magnetic helicity in the active-region corona is mainly contributed by the shear term,(2) helicity fluxes from the emergence and the shear terms have the same sign, (3) magnetic energy in the corona (including both potential energy and free energy) is mainly contributed by the emergence term, and(4) energy fluxes from the emergence term and the shear term evolved consistently in phase during the entire flux emergence course.We also examine the apparent tangential velocity derived by tracking field-line footpoints using a simple tracking method. It is found that this velocity is more consistent with tangential plasma velocity than with the flux transport velocity, which agrees with the conclusion by Schuck.

  8. Free magnetic energy and relative magnetic helicity diagnostics for the quality of NLFF field extrapolations

    NASA Astrophysics Data System (ADS)

    Moraitis, Kostas; Archontis, Vasilis; Tziotziou, Konstantinos; Georgoulis, Manolis K.

    We calculate the instantaneous free magnetic energy and relative magnetic helicity of solar active regions using two independent approaches: a) a non-linear force-free (NLFF) method that requires only a single photospheric vector magnetogram, and b) well known semi-analytical formulas that require the full three-dimensional (3D) magnetic field structure. The 3D field is obtained either from MHD simulations, or from observed magnetograms via respective NLFF field extrapolations. We find qualitative agreement between the two methods and, quantitatively, a discrepancy not exceeding a factor of 4. The comparison of the two methods reveals, as a byproduct, two independent tests for the quality of a given force-free field extrapolation. We find that not all extrapolations manage to achieve the force-free condition in a valid, divergence-free, magnetic configuration. This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.

  9. How Much Can We Estimate the Magnetic Helicity Influx During a Magnetic Flux Emergence with a Footpoint Tracking Method?

    NASA Astrophysics Data System (ADS)

    Choe, G. S.; Kim, S.

    2014-12-01

    As shown by Démoulin and Berger (2003), the magnetic helicity flux through the solar surface into the solar atmosphere can be exactly calculated if we can trace the motion of footpoints with infinite temporal and spatial resolutions. When there is a magnetic flux transport across the solar surface, the horizontal velocity of footpoints becomes infinite at the polarity inversion line, but the surface integral yielding the helicity flux does not diverge. In practical application, a finite temporal and spatial resolution causes an underestimate of the magnetic helicity flux when a magnetic flux emerges from below the surface. In this paper, we consider emergence of simple two- and half-dimensional magnetic flux ropes and calculate the supremum of the magnitude of the helicity influx that can be estimated from footpoint tracking, per unit length in the invariant direction. The results depend on the ratio of the resolvable length scale and the flux rope diameter. For a Gold-Hoyle flux rope, in which all field lines are uniformly twisted, the observationally estimated helicity influx would be about 90% of the real influx when the ratio is 0.01 and about 45% when the ratio is 0.1. For Lundquist flux ropes, the errors to be incurred by observational estimation would be smaller than the case of the Gold-Hoyle flux rope, but could be as large as 30%. Our calculation suggests that the error in the helicity influx estimate is at least half of the real value or even larger when small scale magnetic structures emerge into the solar atmosphere.

  10. How Well Can a Footpoint Tracking Method Estimate the Magnetic Helicity Influx during a Magnetic Flux Emergence?

    NASA Astrophysics Data System (ADS)

    Kim, Kap-Sung; Choe, Gwangson; Kim, Sunjung

    2014-05-01

    As shown by Demoulin and Berger (2003), the magnetic helicity flux through the solar surface into the solar atmosphere can be exactly calculated if we can trace the motion of footpoints with infinite temporal and spatial resolutions. When there is a magnetic flux transport across the solar surface, the horizontal velocity of footpoints becomes infinite at the polarity inversion line, but the surface integral yielding the helicity flux does not diverge. In practical application, a finite temporal and spatial resolution causes an underestimate of the magnetic helicity flux when a magnetic flux emerges from below the surface. In this paper, we consider emergence of simple two- and half-dimensional magnetic flux ropes and calculate the supremum of the magnitude of the helicity influx that can be estimated from footpoint tracking, per unit length in the invariant direction. The results depend on the ratio of the resolvable length scale and the flux rope diameter. For a Gold-Hoyle flux rope, in which all field lines are uniformly twisted, the observationally estimated helicity influx would be about 90% of the real influx when the ratio is 0.01 and about 45% when the ratio is 0.1. For Lundquist flux ropes, the errors to be incurred by observational estimation would be smaller than the case of the Gold-Hoyle flux rope, but could be as large as 30%. Our calculation suggests that the error in the helicity influx estimate is at least half of the real value or even larger when small scale magnetic structures emerge into the solar atmosphere.

  11. Free magnetic energy and relative magnetic helicity in active and quiet solar regions and their role in solar dynamics

    NASA Astrophysics Data System (ADS)

    Tziotziou, Konstantinos; Archontis, Vasilis; Tsiropoula, Georgia; Georgoulis, Manolis K.; Moraitis, Kostas; Kontogiannis, Ioannis

    We present a novel non-linear force-free method for the calculation of the instantaneous free magnetic energy and relative magnetic helicity budgets of a solar region from a single photospheric/chromospheric vector magnetogram. Our objective is to study the role of these quantities both in solar eruptions and in quiet-Sun dynamics. The validity of the method is tested using both observations and synthetic magnetohydrodynamical (MHD) models. The method is applied for the derivation of the energy-helicity (EH) diagram of solar active regions (ARs) from a sample of 162 vector magnetograms corresponding to 42 different ARs, suggesting the existence of 4×10(31) erg and 2×10(42) Mx(2) thresholds in free energy and relative helicity, respectively, for ARs to enter eruptive territory. Furthermore, the dynamical evolution of both quantities in eruptive NOAA AR 11158, using a high-cadence 5-day time series of vector magnetograms, suggests the formation of increasingly helical pre-eruption structures and a causal relation between flares and Coronal Mass Ejections (CMEs). The method is also used to derive helicity and energy budgets in quiet Sun regions and construct the respective EH diagram. Our results highlight the importance of both energy and helicity in AR evolution and quiet-Sun dynamics and instigate further research on the underlying physics with three-dimensional MHD models. This work is supported by EU's Seventh Framework Programme via a Marie Curie Fellowship.

  12. Electrical manipulation of dynamic magnetic impurity and spin texture of helical Dirac fermions

    NASA Astrophysics Data System (ADS)

    Wang, Rui-Qiang; Zhong, Min; Zheng, Shi-Han; Yang, Mou; Wang, Guang-Hui

    2016-05-01

    We have theoretically investigated the spin inelastic scattering of helical electrons off a high-spin nanomagnet absorbed on a topological surface. The nanomagnet is treated as a dynamic quantum spin and driven by the spin transfer torque effect. We proposed a mechanism to electrically manipulate the spin texture of helical Dirac fermions rather than by an external magnetic field. By tuning the bias voltage and the direction of impurity magnetization, we present rich patterns of spin texture, from which important fingerprints exclusively associated with the spin helical feature are obtained. Furthermore, it is found that the nonmagnetic potential can create the resonance state in the spin density with different physics as the previously reported resonance of charge density.

  13. Model for straight and helical solar jets. I. Parametric studies of the magnetic field geometry

    NASA Astrophysics Data System (ADS)

    Pariat, E.; Dalmasse, K.; DeVore, C. R.; Antiochos, S. K.; Karpen, J. T.

    2015-01-01

    Context. Jets are dynamic, impulsive, well-collimated plasma events developing at many different scales and in different layers of the solar atmosphere. Aims: Jets are believed to be induced by magnetic reconnection, a process central to many astrophysical phenomena. Studying their dynamics can help us to better understand the processes acting in larger eruptive events (e.g., flares and coronal mass ejections) as well as mass, magnetic helicity, and energy transfer at all scales in the solar atmosphere. The relative simplicity of their magnetic geometry and topology, compared with larger solar active events, makes jets ideal candidates for studying the fundamental role of reconnection in energetic events. Methods: In this study, using our recently developed numerical solver ARMS, we present several parametric studies of a 3D numerical magneto-hydrodynamic model of solar-jet-like events. We studied the impact of the magnetic field inclination and photospheric field distribution on the generation and properties of two morphologically different types of solar jets, straight and helical, which can account for the observed so-called standard and blowout jets. Results: Our parametric studies validate our model of jets for different geometric properties of the magnetic configuration. We find that a helical jet is always triggered for the range of parameters we tested. This demonstrates that the 3D magnetic null-point configuration is a very robust structure for the energy storage and impulsive release characteristic of helical jets. In certain regimes determined by magnetic geometry, a straight jet precedes the onset of a helical jet. We show that the reconnection occurring during the straight-jet phase influences the triggering of the helical jet. Conclusions: Our results allow us to better understand the energization, triggering, and driving processes of straight and helical jets. Our model predicts the impulsiveness and energetics of jets in terms of the surrounding

  14. Alfvén Simple Waves: Euler Potentials and Magnetic Helicity

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; Hu, Q.; Dasgupta, B.; Roberts, D. A.; Zank, G. P.

    2010-12-01

    The magnetic helicity characteristics of fully nonlinear, multi-dimensional Alfvén simple waves are investigated, by using relative helicity formulae and also by using an approach involving poloidal and toroidal decomposition of the magnetic field and magnetic vector potential. Different methods to calculate the magnetic vector potential are used, including the homotopy and Biot-Savart formulae. Two basic Alfvén modes are identified: (1) the plane one-dimensional Alfvén simple wave given in standard texts, in which the Alfvén wave propagates along the z-axis with wave phase phiv = k 0(z - λt), where k 0 is the wave number and λ is the group velocity of the wave and (2) the generalized Barnes simple Alfvén wave in which the wave normal n moves in a circle in the xy-plane perpendicular to the mean field, which is directed along the z-axis. The plane Alfvén wave (1) is analogous to the slab Alfvén mode and the generalized Barnes solution (2) is analogous to the two-dimensional mode in Alfvénic, incompressible turbulence. The helicity characteristics of these two basic Alfvén modes are distinct. The helicity characteristics of more general multi-dimensional simple Alfvén waves are also investigated. Applications to nonlinear Alfvénic fluctuations and structures observed in the solar wind are discussed.

  15. Characteristics of magnetic island formation due to resistive interchange instability in helical plasma

    SciTech Connect

    Ueda, R.; Matsumoto, Y.; Itagaki, M.; Oikawa, S.; Watanabe, K. Y.; Sato, M.

    2014-05-15

    Focusing attention on the magnetic island formation, we investigate the characteristics of the resistive interchange magnetohydrodynamics instabilities, which would limit a high beta operational regime in helical type fusion reactors. An introduction of a new index, i.e., the ratio of the magnetic fluctuation level to the radial displacement, enables us to make a systematic analysis on the magnetic island formation in the large helical device-like plasmas during the linear growth phase; (i) the interchange instability with the second largest growth rate makes the magnetic island larger than that with the largest growth rate when the amplitude of the radial displacement in both cases is almost the same as each other; (ii) applied to a typical tearing instability, the index is smaller than that for the interchange instability with the second largest growth rate.

  16. Magnetic Helicity Estimations in Models and Observations of the Solar Magnetic Field. Part I: Finite Volume Methods

    NASA Astrophysics Data System (ADS)

    Valori, Gherardo; Pariat, Etienne; Anfinogentov, Sergey; Chen, Feng; Georgoulis, Manolis K.; Guo, Yang; Liu, Yang; Moraitis, Kostas; Thalmann, Julia K.; Yang, Shangbin

    2016-10-01

    Magnetic helicity is a conserved quantity of ideal magneto-hydrodynamics characterized by an inverse turbulent cascade. Accordingly, it is often invoked as one of the basic physical quantities driving the generation and structuring of magnetic fields in a variety of astrophysical and laboratory plasmas. We provide here the first systematic comparison of six existing methods for the estimation of the helicity of magnetic fields known in a finite volume. All such methods are reviewed, benchmarked, and compared with each other, and specifically tested for accuracy and sensitivity to errors. To that purpose, we consider four groups of numerical tests, ranging from solutions of the three-dimensional, force-free equilibrium, to magneto-hydrodynamical numerical simulations. Almost all methods are found to produce the same value of magnetic helicity within few percent in all tests. In the more solar-relevant and realistic of the tests employed here, the simulation of an eruptive flux rope, the spread in the computed values obtained by all but one method is only 3 %, indicating the reliability and mutual consistency of such methods in appropriate parameter ranges. However, methods show differences in the sensitivity to numerical resolution and to errors in the solenoidal property of the input fields. In addition to finite volume methods, we also briefly discuss a method that estimates helicity from the field lines' twist, and one that exploits the field's value at one boundary and a coronal minimal connectivity instead of a pre-defined three-dimensional magnetic-field solution.

  17. Kinetic, Magnetic and Cross-helicity Contributions to the Turbulent Cascade in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Forman, M. A.; Stawarz, J. E.; Smith, C. W.

    2009-12-01

    In classic Kolmogorov theory of inertial-range turbulence, the third moment of velocity fluctuations at spatial lag L, is proportional to L times the rate of energy input at large scales (= epsilon = dissipation rate). Furthermore, the turbulent power is proportional to the 2/3 power of epsilon. In the MHD solar wind, energy and energy cascade involve both velocity and magnetic fluctuations, and the third moment related to energy dissipation has three terms: (1) the same hydrodynamic term, of correlations between velocity fluctuations and kinetic energy, (2) correlations between velocity fluctuations and magnetic energy, and (3) correlations between magnetic fluctuations and cross-helicity. We used ACE MAG/SWEPAM merged data set for the last decade, to separately determine these three third moments at lags from 64 seconds to 2 hours to see how each term varies with L, and contributes to the energy cascade, and how they add up. Moments were calculated for 12-hour intervals. Mean values and error bars were calculated for intervals in 12 types of solar wind sorted by their turbulent energy level and their bulk cross-helicity, or “imbalance”. With calculated accuracy, we report that when the cross-helicity is small, 1. Energy dissipation rate is proportional to turbulent power^3/2, as Kolmogorov theory predicts 2. The magnetic energy term is approximately equal to the kinetic energy (hydrodynamic) term; however 3. The cross-helicity term nearly cancels the magnetic energy term, so that the energy third moment is only slightly larger than the hydrodynamic term alone. When the cross-helicity is large, 1. All three Energy third moments are dramatically suppressed. 2. Energy dissipation rate deduced from third moment scaling is small or possibly negative, and does NOT agree with Kolmogorov, implying that 3. Most of the energy in fluctuating fields is NOT part of a direct inertial cascade.

  18. Global-scale consequences of magnetic-helicity injection and condensation on the sun

    SciTech Connect

    Mackay, Duncan H.; DeVore, C. Richard; Antiochos, Spiro K.

    2014-04-01

    In the recent paper of Antiochos, a new concept for the injection of magnetic helicity into the solar corona by small-scale convective motions and its condensation onto polarity inversion lines (PILs) was developed. We investigate this concept through global simulations of the Sun's photospheric and coronal magnetic fields, and compare the results with the hemispheric pattern of solar filaments. Assuming that the vorticity of the cells is predominantly counterclockwise/clockwise in the northern/southern hemisphere, the convective motions inject negative/positive helicity into each hemisphere. The simulations show that: (1) on a north-south oriented PIL, both differential rotation and convective motions inject the same sign of helicity, which matches that required to reproduce the hemispheric pattern of filaments. (2) On a high-latitude east-west oriented polar crown or subpolar crown PIL, the vorticity of the cells has to be approximately 2-3 times greater than the local differential-rotation gradient in order to overcome the incorrect sign of helicity injection from differential rotation. (3) In the declining phase of the cycle, as a bipole interacts with the polar field, in some cases, helicity condensation can reverse the effect of differential rotation along the east-west lead arm but not in all cases. The results show that this newly developed concept of magnetic helicity injection and condensation, in conjunction with the mechanisms used in Yeates et al., is a viable explanation for the hemispheric pattern of filaments. Future observational studies should focus on examining the vorticity component within convective motions to determine both its magnitude and latitudinal variation relative to the differential-rotation gradient on the Sun.

  19. Global-Scale Consequences of Magnetic-Helicity Injection and Condensation on the Sun

    NASA Technical Reports Server (NTRS)

    Mackay, Duncan H.; DeVore, C. Richard; Antiochos, Spiro K.

    2013-01-01

    In the recent paper of Antiochos, a new concept for the injection of magnetic helicity into the solar corona by small-scale convective motions and its condensation onto polarity inversion lines (PILs) has been developed. We investigate this concept through global simulations of the Sun's photospheric and coronal magnetic fields and compare the results with the hemispheric pattern of solar filaments. Assuming that the vorticity of the cells is predominately counter-clockwise/clockwise in the northern/southern hemisphere, the convective motions inject negative/positive helicity into each hemisphere. The simulations show that: (i) On a north-south orientated PIL, both differential rotation and convective motions inject the same sign of helicity which matches that required to reproduce the hemispheric pattern of filaments. (ii) On a high latitude east-west orientated polar crown or sub-polar crown PIL, the vorticity of the cells has to be approximately 2-3 times greater than the local differential rotation gradient in order to overcome the incorrect sign of helicity injection from differential rotation. (iii) In the declining phase of the cycle, as a bipole interacts with the polar field, in some cases helicity condensation can reverse the effect of differential rotation along the East-West lead arm, but not in all cases. The results show that this newly developed concept of magnetic helicity injection and condensation is a viable method to explain the hemispheric pattern of filaments in conjunction with the mechanisms used in Yeates et al. (2008). Future observational studies should focus on determining the vorticity component within convective motions to determine, both its magnitude and latitudinal variation relative to the differential rotation gradient on the Sun.

  20. Formation of sheet plumes, current coils, and helical magnetic fields in a spherical magnetohydrodynamic dynamo

    NASA Astrophysics Data System (ADS)

    Miyagoshi, Takehiro; Kageyama, Akira; Sato, Tetsuya

    2011-07-01

    Aiming at understanding of magnetic field generation process in rapidly rotating stars and planets represented by the Earth, computer simulations of magnetohydrodynamic (MHD) dynamo were performed in a rotating spherical shell geometry. Thermal convection and dynamo process with Ekman number of the order of 10-7 were studied. New structures of convection motion, dynamo-generated electrical current, and magnetic field are found. The flow is organized as a set of thin, sheet-like plumes. The current is made of small-scale coil structure with magnetic flux tubes within each of the coil. These flux tubes are connected each other to form a large scale helical magnetic field structure.

  1. HF wave propagation and induced ionospheric turbulence in the magnetic equatorial region

    NASA Astrophysics Data System (ADS)

    Eliasson, B.; Papadopoulos, K.

    2016-03-01

    The propagation and excitation of artificial ionospheric turbulence in the magnetic equatorial region by high-frequency electromagnetic (EM) waves injected into the overhead ionospheric layer is examined. EM waves with ordinary (O) mode polarization reach the critical layer only if their incidence angle is within the Spitze cone. Near the critical layer the wave electric field is linearly polarized and directed parallel to the magnetic field lines. For large enough amplitudes, the O mode becomes unstable to the four-wave oscillating two-stream instability and the three-wave parametric decay instability driving large-amplitude Langmuir and ion acoustic waves. The interaction between the induced Langmuir turbulence and electrons located within the 50-100 km wide transmitter heating cone at an altitude of 230 km can potentially accelerate the electrons along the magnetic field to several tens to a few hundreds of eV, far beyond the thresholds for optical emissions and ionization of the neutral gas. It could furthermore result in generation of shear Alfvén waves such as those recently observed in laboratory experiments at the University of California, Los Angeles Large Plasma Device.

  2. Survey of the ULF wave Poynting vector near the Earth's magnetic equatorial plane

    NASA Astrophysics Data System (ADS)

    Hartinger, M.; Moldwin, M.; Takahashi, K.; Bonnell, J. W.; Angelopoulos, V.

    2013-12-01

    Ultra Low Frequency (ULF) waves transfer energy in the Earth's magnetosphere through a variety of mechanisms that impact the Earth's ionosphere, radiation belts, and other plasma populations. Measurements of the electromagnetic portion of the energy transfer rate are an important source of information for assessing the importance of ULF waves relative to other energy transfer mechanisms and as a diagnostic for studying the behavior of ULF waves. Using THEMIS satellite data, we examine the time averaged electromagnetic energy transfer rate, or Poynting vector, as a function of frequency (3-50 mHz) and region of the magnetosphere. This study extends earlier work focused on narrower frequency ranges or specific regions of the magnetosphere; here, we consider the Pc5 to Pc3 frequency range, all local time sectors, radial distances from 3 to 13 Re, and magnetic latitudes close to the equatorial plane. We measure time averaged Poynting vectors that range from ~10^-11 to 10^-5 W/m^2, with larger Poynting vector magnitudes occurring at larger radial distances and smaller frequencies. In every spatial region and frequency we examined, we found a large degree of scatter in both the Poynting vector magnitude and direction. The Poynting vector tends to be anisotropic at all frequencies, with more energy transferred along rather than across the background magnetic field. This preference for parallel energy transfer near the magnetic equator suggests that the ionosphere is the largest sink of wave energy in the magnetosphere.

  3. BNL alternating gradient synchrotron with four helical magnets to minimize the losses of the polarized proton beam

    NASA Astrophysics Data System (ADS)

    Tsoupas, N.; Huang, H.; MacKay, W. W.; Meot, F.; Roser, T.; Trbojevic, D.

    2013-04-01

    The principle of using multiple partial helical magnets to preserve the polarization of the proton beam during its acceleration was applied successfully to the alternating gradient synchrotron (AGS) which currently operates with two partial helical magnets. In this paper we further explore this idea by using four partial helical magnets placed symmetrically in the AGS ring. This provides many advantages over the present setup of the AGS, which uses two partial helical magnets. First, the symmetric placement of the four helical magnets and their relatively lower field of operation allows for better control of the AGS optics with reduced values of the beta functions especially near beam injection and allows both the vertical and horizontal tunes to be placed within the “spin tune gap,” therefore eliminating the horizontal and vertical intrinsic spin resonances of the AGS during the acceleration cycle. Second, it provides a wider spin tune gap. Third, the vertical spin direction during beam injection and extraction is closer to vertical. Although the spin tune gap, which is created with four partial helices, can also be created with a single or two partial helices, the high field strength of a single helical magnet which is required to generate such a spin tune gap makes the use of the single helical magnet impractical, and that of the two helical magnets rather difficult. In this paper we will provide results on the spin tune and on the optics of the AGS with four partial helical magnets, and compare them with those from the present setup of the AGS that uses two partial helical magnets. Although in this paper we specifically discuss the effect of the four partial helices on the AGS, this method which can eliminate simultaneously the vertical and horizontal intrinsic spin resonances is a general method and can be applied to any medium energy synchrotron which operates in similar energy range like the AGS and provides the required space to accommodate the four

  4. Optimization of Saturn paraboloid magnetospheric field model parameters using Cassini equatorial magnetic field data

    NASA Astrophysics Data System (ADS)

    Belenkaya, Elena S.; Kalegaev, Vladimir V.; Cowley, Stanley W. H.; Provan, Gabrielle; Blokhina, Marina S.; Barinov, Oleg G.; Kirillov, Alexander A.; Grigoryan, Maria S.

    2016-07-01

    The paraboloid model of Saturn's magnetosphere describes the magnetic field as being due to the sum of contributions from the internal field of the planet, the ring current, and the tail current, all contained by surface currents inside a magnetopause boundary which is taken to be a paraboloid of revolution about the planet-Sun line. The parameters of the model have previously been determined by comparison with data from a few passes through Saturn's magnetosphere in compressed and expanded states, depending on the prevailing dynamic pressure of the solar wind. Here we significantly expand such comparisons through examination of Cassini magnetic field data from 18 near-equatorial passes that span wide ranges of local time, focusing on modelling the co-latitudinal field component that defines the magnetic flux passing through the equatorial plane. For 12 of these passes, spanning pre-dawn, via noon, to post-midnight, the spacecraft crossed the magnetopause during the pass, thus allowing an estimate of the concurrent subsolar radial distance of the magnetopause R1 to be made, considered to be the primary parameter defining the scale size of the system. The best-fit model parameters from these passes are then employed to determine how the parameters vary with R1, using least-squares linear fits, thus providing predictive model parameters for any value of R1 within the range. We show that the fits obtained using the linear approximation parameters are of the same order as those for the individually selected parameters. We also show that the magnetic flux mapping to the tail lobes in these models is generally in good accord with observations of the location of the open-closed field line boundary in Saturn's ionosphere, and the related position of the auroral oval. We then investigate the field data on six passes through the nightside magnetosphere, for which the spacecraft did not cross the magnetopause, such that in this case we compare the observations with three

  5. Helical and tubular lipid microstructures that are electroless-coated with CoNiReP for wireless magnetic manipulation.

    PubMed

    Schuerle, Simone; Pané, Salvador; Pellicer, Eva; Sort, Jordi; Baró, Maria D; Nelson, Bradley J

    2012-05-21

    Hybrid magnetic phospholipidic-based tubular and helical microagents are wirelessly manipulated by means of a 5-DOF electromagnetic system. Two different strategies are used to manipulate these nanostructures in simulated biologic capillaries. Tubules are pulled by applying magnetic field gradients and oriented by magnetic fields. Helices exhibit a cork-screw motion similar to the swimming strategy used by motile bacteria such as E. coli.

  6. One-way helical electromagnetic wave propagation supported by magnetized plasma

    NASA Astrophysics Data System (ADS)

    Yang, Biao; Lawrence, Mark; Gao, Wenlong; Guo, Qinghua; Zhang, Shuang

    2016-02-01

    In this paper we reveal the presence of photonic one-way helical surface states in a simple natural system- magnetized plasma. The application of an external magnetic field to a bulk plasma body not only breaks time-reversal-symmetry but also leads to separation of Equi-Frequency Contour surfaces (EFCs) to form topologically nontrivial gaps in k space. Interestingly, these EFCs support topologically protected surface states. We numerically investigate an interface between magnetized plasma, using a realistic model for parameter dispersion, and vacuum, to confirm the existence of one-way scatter-immune helical surface states. Unlike previous proposals for achieving photonic one-way propagation, our scheme does not require the use of artificial structures and should therefore be simple to implement experimentally.

  7. One-way helical electromagnetic wave propagation supported by magnetized plasma

    PubMed Central

    Yang, Biao; Lawrence, Mark; Gao, Wenlong; Guo, Qinghua; Zhang, Shuang

    2016-01-01

    In this paper we reveal the presence of photonic one-way helical surface states in a simple natural system- magnetized plasma. The application of an external magnetic field to a bulk plasma body not only breaks time-reversal-symmetry but also leads to separation of Equi-Frequency Contour surfaces (EFCs) to form topologically nontrivial gaps in k space. Interestingly, these EFCs support topologically protected surface states. We numerically investigate an interface between magnetized plasma, using a realistic model for parameter dispersion, and vacuum, to confirm the existence of one-way scatter-immune helical surface states. Unlike previous proposals for achieving photonic one-way propagation, our scheme does not require the use of artificial structures and should therefore be simple to implement experimentally. PMID:26883883

  8. Magnetic Quenching of α and Diffusivity Tensors in Helical Turbulence

    NASA Astrophysics Data System (ADS)

    Brandenburg, Axel; Rädler, Karl-Heinz; Rheinhardt, Matthias; Subramanian, Kandaswamy

    2008-11-01

    The effect of a dynamo-generated mean magnetic field of Beltrami type on the mean electromotive force is studied. In the absence of the mean magnetic field the turbulence is assumed to be homogeneous and isotropic, but it becomes inhomogeneous and anisotropic with this field. Using the test-field method the dependence of the α and turbulent diffusivity tensors on the magnetic Reynolds number ReM is determined for magnetic fields that have reached approximate equipartition with the velocity field. The tensor components are characterized by a pseudoscalar α and a scalar turbulent magnetic diffusivity ηt. Increasing ReM from 2 to 600 reduces ηt by a factor ≈5, suggesting that the quenching of ηt is, in contrast to the two-dimensional case, only weakly dependent on ReM. Over the same range of ReM, however, α is reduced by a factor ≈14, which can be explained by a corresponding increase of a magnetic contribution to the α-effect with opposite sign. Within this framework, the corresponding kinetic contribution to the α-effect turns out to be independent of ReM for 2 <= ReM <= 600. The level of fluctuations of α and ηt is only 10% and 20% of the respective kinematic reference values.

  9. Realizing topological stability of magnetic helices in exchange-coupled multilayers for all-spin-based system

    NASA Astrophysics Data System (ADS)

    Fust, Sergej; Mukherjee, Saumya; Paul, Neelima; Stahn, Jochen; Kreuzpaintner, Wolfgang; Böni, Peter; Paul, Amitesh

    2016-09-01

    Topologically stabilized spin configurations like helices in the form of planar domain walls (DWs) or vortex-like structures with magnetic functionalities are more often a theoretical prediction rather than experimental realization. In this paper we report on the exchange coupling and helical phase characteristics within Dy-Fe multilayers. The magnetic hysteresis loops with temperature show an exchange bias field of around 1.0 kOe at 10 K. Polarized neutron reflectivity reveal (i) ferrimagnetic alignment of the layers at low fields forming twisted magnetic helices and a more complicated but stable continuous helical arrangement at higher fields (ii) direct evidence of helices in the form of planar 2π-DWs within both layers of Fe and Dy. The helices within the Fe layers are topologically stabilized by the reasonably strong induced in-plane magnetocrystalline anisotropy of Dy and the exchange coupling at the Fe-Dy interfaces. The helices in Dy are plausibly reminiscent of the helical ordering at higher temperatures induced by the field history and interfacial strain. Stability of the helical order even at large fields have resulted in an effective modulation of the periodicity of the spin-density like waves and subsequent increase in storage energy. This opens broad perspectives for future scientific and technological applications in increasing the energy density for systems in the field of all-spin-based engineering which has the potential for energy-storing elements on nanometer length scales.

  10. Realizing topological stability of magnetic helices in exchange-coupled multilayers for all-spin-based system

    PubMed Central

    Fust, Sergej; Mukherjee, Saumya; Paul, Neelima; Stahn, Jochen; Kreuzpaintner, Wolfgang; Böni, Peter; Paul, Amitesh

    2016-01-01

    Topologically stabilized spin configurations like helices in the form of planar domain walls (DWs) or vortex-like structures with magnetic functionalities are more often a theoretical prediction rather than experimental realization. In this paper we report on the exchange coupling and helical phase characteristics within Dy-Fe multilayers. The magnetic hysteresis loops with temperature show an exchange bias field of around 1.0 kOe at 10 K. Polarized neutron reflectivity reveal (i) ferrimagnetic alignment of the layers at low fields forming twisted magnetic helices and a more complicated but stable continuous helical arrangement at higher fields (ii) direct evidence of helices in the form of planar 2π-DWs within both layers of Fe and Dy. The helices within the Fe layers are topologically stabilized by the reasonably strong induced in-plane magnetocrystalline anisotropy of Dy and the exchange coupling at the Fe-Dy interfaces. The helices in Dy are plausibly reminiscent of the helical ordering at higher temperatures induced by the field history and interfacial strain. Stability of the helical order even at large fields have resulted in an effective modulation of the periodicity of the spin-density like waves and subsequent increase in storage energy. This opens broad perspectives for future scientific and technological applications in increasing the energy density for systems in the field of all-spin-based engineering which has the potential for energy-storing elements on nanometer length scales. PMID:27677227

  11. Helical Magnetic Fields in the NGC 1333 IRAS 4A Protostellar Outflows

    NASA Astrophysics Data System (ADS)

    Ching, Tao-Chung; Lai, Shih-Ping; Zhang, Qizhou; Yang, Louis; Girart, Josep M.; Rao, Ramprasad

    2016-03-01

    We present Submillimeter Array polarization observations of the CO J = 3-2 line toward NGC 1333 IRAS 4A. The CO Stokes I maps at an angular resolution of ˜1″ reveal two bipolar outflows from the binary sources of NGC 1333 IRAS 4A. The kinematic features of the CO emission can be modeled by wind-driven outflows at ˜20° inclined from the plane of the sky. Close to the protostars the CO polarization, at an angular resolution of ˜2.″3, has a position angle approximately parallel to the magnetic field direction inferred from the dust polarizations. The CO polarization direction appears to vary smoothly from an hourglass field around the core to an arc-like morphology wrapping around the outflow, suggesting a helical structure of magnetic fields that inherits the poloidal fields at the launching point and consists of toroidal fields at a farther distance of outflow. The helical magnetic field is consistent with the theoretical expectations for launching and collimating outflows from a magnetized rotating disk. Considering that the CO polarized emission is mainly contributed from the low-velocity and low-resolution data, the helical magnetic field is likely a product of the wind-envelope interaction in the wind-driven outflows. The CO data reveal a PA of ˜30° deflection in the outflows. The variation in the CO polarization angle seems to correlate with the deflections. We speculate that the helical magnetic field contributes to ˜10° deflection of the outflows by means of Lorentz force.

  12. Formation of Opposite-Sign Magnetic Helicity by an Erupting Filament in a Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Kurokawa, Hiroki

    2004-06-01

    It is unclear whether it is possible for magnetic helical fields of opposite signs to co-exist in a coronal mass ejection (CME). During filament eruption with high-cadence observations for the initial stage, evidence is found for the formation of right-handed helical fields in a rising dextral filament that is embedded in a CME with helical fields in a left-handed sense. The data include Mees multi-off-band Hα observations with 16s cadence and TRACE 1600Å observations of 2s cadence. The filament material is ejected outward and is associated with the expanding CME, suggesting that both of the opposite-sign helical fields are injected into interplanetary space. In this paper, we consider the key observational features, including the formation of a coil-like structure (due to barb reconnections) and the alignment of reconnected field lines with the primary axis of the filament. It is found that they are consistent with the predicted changes during filament eruption by the filament model of Martin and McAllister. However, our results do not reject the filament model of Rust and Kumar. Moreover, a model that reconciles both of them seems to be more convenient for understanding the complicated observations. Therefore, the formation of opposite-sign helicity in an eruptive flux rope should be common for such types of filament eruptions.

  13. Flow Driven by an Archimedean Helical Permanent Magnetic Field. Part I: Flow Patterns and Their Transitions

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Wang, Xiaodong; Etay, Jacqueline; Na, Xianzhao; Zhang, Xinde; Fautrelle, Yves

    2016-04-01

    In this study, an Archimedean helical permanent magnetic field was constructed and its driving effects on liquid metal were examined. A magnetic stirrer was constructed using a series of arc-like magnets. The helical distribution of its magnetic field, which was confirmed via Gauss probe measurements and numerical simulations, can be considered a combination of rotating and traveling magnetic fields. The characteristics of the flow patterns, particularly the transitions between the meridian secondary flow (two vortices) and the global axial flow (one vortex), driven by this magnetic field were quantitatively measured using ultrasonic Doppler velocimetry. The transient and modulated flow behaviors will be presented in a companion article. The D/ H dimension ratio was used to characterize the transitions of these two flow patterns. The results demonstrated that the flow patterns depend on not only the intrinsic structure of the magnetic field, e.g., the helix lead angle, but also the performance parameters, e.g., the dimensional ratio of the liquid bulk. The notable opposing roles of these two flow patterns in the improvement of macrosegregations when imposing such magnetic fields near the solidifying front were qualitatively addressed.

  14. Short-term magnetic field alignment variations of equatorial ionospheric irregularities

    SciTech Connect

    Johnson, A.L.

    1988-06-01

    The ionospheric irregularities that cause equatorial scintillation are elongated along the north-south magnetic field lines. During a 1981 field campaign at Ascension Island, 250-MHz receivers were spaced from 300 m to 1.6 km along the field lines, and the signals received from the Marisat satellite were cross correlated. Data collected during eight nights of fading showed a linear relationship between fading rate and cross correlation. The alignment of the antennas was adjusted to give a zero time lag between the widely spaced receivers with a measurement accuracy of 0.03 s. Since the average irregularity velocity was 125 m/s, this time accuracy translated to an angular measurement accuracy of 0.1 deg. During a 4-hour period of nightly fading, occasional differences in time of arrival were noted that corresponded to a tilt in the north-south alignment of + or - 1 deg. Data from several nights of fading were analyzed, and each night exhibited the same variance in the north-south irregularity alignment. It is postulated that the shift in the measured peak correlation may have been caused by patches of irregularities at different altitudes where the magnetic field lines have a slightly different direction. 13 references.

  15. Assembly of alginate microfibers to form a helical structure using micromanipulation with a magnetic field

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Huang, Qiang; Shi, Qing; Wang, Huaping; Hu, Chengzhi; Li, Pengyun; Nakajima, Masahiro; Fukuda, Toshio

    2016-10-01

    Helical structures assembled using alginate microfibers have a promising spatial architecture mimicking in vivo vessels for culturing vascular cells. However, the helical structure can only be assembled at the macroscale, since a microassembly-based approach has not yet been developed. In this paper, we propose a magnetic-field-based micromanipulation method to fabricate a helical microstructure. By microfluidic spinning, alginate microfibers encapsulating magnetic nanoparticles are synthesized to enable the control of an electromagnetic needle (EMN). We developed a microrobotic system to actuate a micropipette to fix a free end of the microfiber, and then move the EMN to reel the microfiber around a micropillar. The motion of the EMN is guided using an upright microscope and a side-view camera. Because of the limitation of operation space, a spacer sleeve was designed to keep the tip of the EMN attracted to the microfiber, and simultaneously to keep the other part of the EMN isolated from the microfiber. To ensure the availability of the microfiber for continuously coiling, we enable the EMN tip to slide on the surface of the microfiber without changing the tensioning of the microfiber for positioning control. Furthermore, stable and repeatable micromanipulation was achieved to form multi-turn microfiber coils based on the motion planning of the EMN. Finally, we successfully fabricated a helical microstructure that can be applied in vascular tissue engineering in the future.

  16. Numerical simulation of a helical shape electric arc in the external axial magnetic field

    NASA Astrophysics Data System (ADS)

    Urusov, R. M.; Urusova, I. R.

    2016-10-01

    Within the frameworks of non-stationary three-dimensional mathematical model, in approximation of a partial local thermodynamic equilibrium, a numerical calculation was made of characteristics of DC electric arc burning in a cylindrical channel in the uniform external axial magnetic field. The method of numerical simulation of the arc of helical shape in a uniform external axial magnetic field was proposed. This method consists in that that in the computational algorithm, a "scheme" analog of fluctuations for electrons temperature is supplemented. The "scheme" analogue of fluctuations increases a weak numerical asymmetry of electrons temperature distribution, which occurs randomly in the course of computing. This asymmetry can be "picked up" by the external magnetic field that continues to increase up to a certain value, which is sufficient for the formation of helical structure of the arc column. In the absence of fluctuations in the computational algorithm, the arc column in the external axial magnetic field maintains cylindrical axial symmetry, and a helical form of the arc is not observed.

  17. Spectro-Polarimetric Imaging Reveals Helical Magnetic Fields in Solar Prominence Feet

    NASA Astrophysics Data System (ADS)

    Martínez González, M. J.; Manso Sainz, R.; Asensio Ramos, A.; Beck, C.; de la Cruz Rodríguez, J.; Díaz, A. J.

    2015-03-01

    Solar prominences are clouds of cool plasma levitating above the solar surface and insulated from the million-degree corona by magnetic fields. They form in regions of complex magnetic topology, characterized by non-potential fields, which can evolve abruptly, disintegrating the prominence and ejecting magnetized material into the heliosphere. However, their physics is not yet fully understood because mapping such complex magnetic configurations and their evolution is extremely challenging, and must often be guessed by proxy from photometric observations. Using state-of-the-art spectro-polarimetric data, we reconstruct the structure of the magnetic field in a prominence. We find that prominence feet harbor helical magnetic fields connecting the prominence to the solar surface below.

  18. Including new equatorial African data in global Holocene magnetic field models

    NASA Astrophysics Data System (ADS)

    Korte, M.; Brown, M.; Frank, U.

    2012-04-01

    Global paleomagnetic field reconstructions of the Holocene are a useful tool to study the past evolution of the geomagnetic field at the Earth's surface and the core-mantle boundary, or to estimate shielding against galactic cosmic rays. This protection is currently weak over the South Atlantic anomaly, a feature stretching between South America and Africa. Knowledge of the long-term evolution of this anomaly and whether there are preferred longitudinal ranges of weak fields is required for a better understanding of the geodynamo process and to estimate past magnetic shielding, e.g., for any studies involving the production of cosmogenic isotopes. The distribution of archeo- and paleomagnetic data available for global field reconstructions is highly inhomogeneous. It is strongly biased towards Europe and particularly sparse for Africa and South America. New data from these regions are necessary to confirm or improve field descriptions in Holocene spherical harmonic magnetic field models particularly for the evolution of this presently anomalous region. We present new inclination and relative intensity records from two neighbouring lakes in southern Ethiopia: Chew Bahir and Lake Chamo. Measurements were taken on three sediment cores from Chew Bahir, in which the complete Holocene is preserved in the topmost 4 m, and one 17 m long composite profile from Lake Chamo, which spans approximately the last 7 ka. Our age models are constrained by 10 AMS radiocarbon ages through the Holocene. We investigate the influence of these new records on magnetic field models CALS3k.4 and CALS10k.1b by augmenting previously modeled data with our new data and performing the modeling with otherwise unchanged parameters. Model predictions particularly for the equatorial African region and surroundings are compared and differences discussed.

  19. Characteristics of 3-component Magnetic Fields of Equatorial Pi 2s - MAGDAS/CPMN Observations in Daytime and Nighttime -

    NASA Astrophysics Data System (ADS)

    Hirayama, Y.; Yumoto, K.; Uozumi, T.; Yoshikawa, A.; Group, M.

    2008-12-01

    At the onset of magnetospheric substorms, impulsive hydromagnetic oscillations with periods of 40-150 sec, so called Pi 2 magnetic pulsations, occur globally in the magnetosphere. Pi 2 pulsations have been researched for a long time. However, equatorial Pi 2 pulsations have not been analyzed sufficiently and in the most of past studies only H-component of equatorial Pi 2 pulsations were examined. In our previous study, we analyzed H-component magnetic data obtained from MAGDAS/CPMN stations, AAB(G.long.=38.77), LKW(99.78), CEB(123.91), DAV(125.40), YAP(138.08), ANC(-77.15) and EUS(-38.43) which are located near the dip equator. We found that enhancement of H-component wave amplitude of Pi 2 pulsations are occurred near the daytime dip equator. Furthermore, by comparing the data obtained from CEB, DAV and YAP, we also found that as the observation site is nearer to the dip equator, the Pi 2 amplitudes tended to become larger. This amplitude enhancement of Pi 2 pulsations was seen not only in daytime but also in nighttime. We could explain the enhancement in daytime as effect of equatorial electrojet, but we had no idea to explain the enhancement in nighttime. In the present study, we analyze H, D and Z-component wave amplitudes of equatorial Pi 2 pulsations obtained from CEB, DAV and ANC stations for the period of January 1-31, March 1~31 and Jun 1~30 2005. The following new results are obtained; (1) Amplitude ratio of H-component of equatorial Pi 2s at DAV (Dip Lat =-0.65) to CEB (2.73) is found to be almost 1.5 in nighttime, while that in daytime to show the equatorial enhancement and a monthly dependence. (2) Amplitude ratio of D-component to H-component of equatorial Pi 2 are found to be almost 0.3, in particularly to enhance to 0.5 at near local sunrise and sunset time, while H-component equatorial Pi 2 amplitude decrease at sunrise and sunset time. (3) Amplitude ratio of Z-component to H-component of equatorial Pi 2 are found to be 0.3 at CEB and ANC, and 0

  20. Inductionless magnetorotational instability in a Taylor-Couette flow with a helical magnetic field.

    PubMed

    Priede, Jānis; Grants, Ilmārs; Gerbeth, Gunter

    2007-04-01

    We consider the magnetorotational instability (MRI) of a hydrodynamically stable Taylor-Couette flow with a helical external magnetic field in the inductionless approximation defined by a zero magnetic Prandtl number (Pm=0) . This leads to a considerable simplification of the problem eventually containing only hydrodynamic variables. First, we point out that magnetic field adds more dissipation while it does not change the base flow which is the only source of energy for growing perturbations. Thus, it seems unclear from the energetic point of view how such a hydrodynamically stable flow can turn unstable in the presence of a helical magnetic field as it has been found recently by Hollerbach and Rüdiger [Phys. Rev. Lett. 95, 124501 (2005)]. We revisit this problem by using a Chebyshev collocation method to calculate the eigenvalue spectrum of the linearized problem. In this way, we confirm that a helical magnetic field can indeed destabilize the flow in the inductionless approximation. Second, we integrate the linearized equations in time to study the transient behavior of small amplitude perturbations, thus showing that the energy arguments are correct as well. However, there is no real contradiction between both facts. The linear stability theory predicts the asymptotic development of an arbitrary small-amplitude perturbation, while the energy stability theory yields the instant growth rate of any particular perturbation, but it does not account for the evolution of this perturbation. Thus, although switching on the magnetic field instantly increases the energy decay rate of the dominating hydrodynamic perturbation, in the same time this perturbation ceases to be an eigenmode in the presence of the magnetic field. Consequently, this perturbation is transformed with time and so becomes able to extract energy from the base flow necessary for the growth. PMID:17501021

  1. Inductionless magnetorotational instability in a Taylor-Couette flow with a helical magnetic field

    NASA Astrophysics Data System (ADS)

    Priede, Jānis; Grants, Ilmārs; Gerbeth, Gunter

    2007-04-01

    We consider the magnetorotational instability (MRI) of a hydrodynamically stable Taylor-Couette flow with a helical external magnetic field in the inductionless approximation defined by a zero magnetic Prandtl number (Pm=0) . This leads to a considerable simplification of the problem eventually containing only hydrodynamic variables. First, we point out that magnetic field adds more dissipation while it does not change the base flow which is the only source of energy for growing perturbations. Thus, it seems unclear from the energetic point of view how such a hydrodynamically stable flow can turn unstable in the presence of a helical magnetic field as it has been found recently by Hollerbach and Rüdiger [Phys. Rev. Lett. 95, 124501 (2005)]. We revisit this problem by using a Chebyshev collocation method to calculate the eigenvalue spectrum of the linearized problem. In this way, we confirm that a helical magnetic field can indeed destabilize the flow in the inductionless approximation. Second, we integrate the linearized equations in time to study the transient behavior of small amplitude perturbations, thus showing that the energy arguments are correct as well. However, there is no real contradiction between both facts. The linear stability theory predicts the asymptotic development of an arbitrary small-amplitude perturbation, while the energy stability theory yields the instant growth rate of any particular perturbation, but it does not account for the evolution of this perturbation. Thus, although switching on the magnetic field instantly increases the energy decay rate of the dominating hydrodynamic perturbation, in the same time this perturbation ceases to be an eigenmode in the presence of the magnetic field. Consequently, this perturbation is transformed with time and so becomes able to extract energy from the base flow necessary for the growth.

  2. Collective instabilities of the electron beam in magnetic fields of a helical undulator and solenoid

    NASA Astrophysics Data System (ADS)

    Artamonov, A. S.; Inozemtsev, N. I.

    1989-03-01

    The collective instabilities of a continuous electron beam propagating in the magnetic fields of a helical undulator and solenoid are analyzed theoretically in the framework of a one-dimensional model. Modulation of charge density is investigated along with modulation of the transverse velocity of the electrons by an electromagnetic wave. A dispersion equation describing the collective-excitation spectrum is obtained, and analyzed in the hydrodynamic approximation for two-, three-, and four-wave interaction.

  3. Nanoscale and proximity effects on low-dimensional helical magnetic structures

    NASA Astrophysics Data System (ADS)

    Sandratskii, Leonid; Fisher, J.; Park, S.; Ouazi, S.; Sander, D.; Kirschner, J.

    We combine symmetry arguments, first-principles calculations and spin-resolved STS measurements to study a 2D helical magnet of some nm extension in proximity to ferromagnetic Co and vacuum regions. Considering the prototypical helical 2D system, an Fe bilayer with intrinsic helical spin structure (1), we report a non-uniform distortion of the spin helix which depends on the lateral extension of the bilayer and on the proximity to either Co or vacuum. The proximity effect manifests itself in different modifications of the magnetic and electronic structures of Fe in vicinity of the interfaces with Co and vacuum. These nanosize and proximity effects have not been discussed before. We demonstrate that, in contrast to an ideal helix of infinite length, the lack of symmetry of the nm-long distorted Fe spin helix, induces an energy dependence of the direction of the electronic magnetization which is revealed in the measured energy dependence of the spin-asymmetry of the differential tunneling conductance. (1) Phark, S. H.; Fischer, J. A.; Corbetta, M.; Sander, D.; Nakamura, K. & Kirschner, J. Reduced-dimensionality-induced helimagnetism in iron nanoislands Nat Commun 5 (2014) 5183.

  4. Final Techical Report - "Determining How Magnetic Helicity Injection Really Works"

    SciTech Connect

    Paul M. Bellan

    2005-02-15

    This research program involved direct observation of the complicated plasma dynamics underlying spheromak formation. Spheromaks are self-organizing magnetically dominated plasma configurations which potentially offer a simple, low-cost means for confining the plasma in a controlled thermonuclear fusion reactor. The spheromak source used in these studies was a coaxial co-planar magnetized plasma gun which was specifically designed to have the simplest relevant geometry. The simplicity of the geometry facilitated understanding of the basic physics and minimized confusion that would otherwise have resulted from complexities due to the experimental geometry. The coaxial plasma gun was mounted on one end of a large vacuum tank that had excellent optical access so the spheromak formation process could be tracked in detail using ultra-high speed cameras. The main accomplishments of this research program were (1) obtaining experimental data characterizing the detailed physics underlying spheromak formation and the development of new theoretical models motivated by these observations, (2) determining the relationship between spheromak physics and astrophysical jets, (3) developing a new high-speed camera diagnostic for the SSPX spheromak at the Lawrence Livermore National Lab, and (4) training graduate students and postdoctoral fellows.

  5. Numerical Study of Flow Motion and Patterns Driven by a Rotating Permanent Helical Magnetic Field

    NASA Astrophysics Data System (ADS)

    Yang, Wenzhi; Wang, Xiaodong; Wang, Bo; Baltaretu, Florin; Etay, Jacqueline; Fautrelle, Yves

    2016-10-01

    Liquid metal magnetohydrodynamic flow driven by a rotating permanent helical magnetic field in a cylindrical container is numerically studied. A three-dimensional numerical simulation provides insight into the visualization of the physical fields, including the magnetic field, the Lorentz force density, and the flow structures, especially the flow patterns in the meridional plane. Because the screen parameter is sufficiently small, the model is decoupled into electromagnetic and hydrodynamic components. Two flow patterns in the meridional plane, i.e., the global flow and the secondary flow, are discovered and the impact of several system parameters on their transition is investigated. Finally, a verifying model is used for comparison with the previous experiment.

  6. Numerical Study of Flow Motion and Patterns Driven by a Rotating Permanent Helical Magnetic Field

    NASA Astrophysics Data System (ADS)

    Yang, Wenzhi; Wang, Xiaodong; Wang, Bo; Baltaretu, Florin; Etay, Jacqueline; Fautrelle, Yves

    2016-08-01

    Liquid metal magnetohydrodynamic flow driven by a rotating permanent helical magnetic field in a cylindrical container is numerically studied. A three-dimensional numerical simulation provides insight into the visualization of the physical fields, including the magnetic field, the Lorentz force density, and the flow structures, especially the flow patterns in the meridional plane. Because the screen parameter is sufficiently small, the model is decoupled into electromagnetic and hydrodynamic components. Two flow patterns in the meridional plane, i.e., the global flow and the secondary flow, are discovered and the impact of several system parameters on their transition is investigated. Finally, a verifying model is used for comparison with the previous experiment.

  7. A Combined Study of Photospheric Magnetic and Current Helicities and Subsurface Kinetic Helicities of Solar Active Regions during 2006-2012

    NASA Astrophysics Data System (ADS)

    Seligman, Darryl; Petrie, G.; Komm, R.

    2014-01-01

    We compare the average photospheric current helicity H_c, photospheric twist parameter α (a well-known proxy for the full relative magnetic helicity), and subsurface kinetic helicity K_h for 128 active regions observed between 2006-2012. We use 1436 Hinode photospheric vector magnetograms and subsurface fluid velocity data from GONG Dopplergrams. We find a significant hemispheric bias in all three parameters. The K_h parameter is preferentially positive/negative in the southern/northern hemisphere. The H_c and α parameters have the same bias for strong fields |{B}|>1000 G). We examine the temporal variability of each parameter for each active region and identify a significant subset of regions whose three helicity parameters all exhibit clear increasing or decreasing trends. The temporal profiles of these regions have the same bias: positive/negative helicity in the northern/southern hemisphere. The results are consistent with Longcope et al.'s Σ-effect. This work is carried out through the National Solar Observatory Research Experiences for Undergraduate (REU) site program, which is co-funded by the Department of Defense in partnership with the NSF REU Program. The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.

  8. Relationships between Fluid Vorticity, Kinetic Helicity, and Magnetic Field on Small-scales (Quiet-Network) on the Sun

    NASA Astrophysics Data System (ADS)

    Sangeetha, C. R.; Rajaguru, S. P.

    2016-06-01

    We derive horizontal fluid motions on the solar surface over large areas covering the quiet-Sun magnetic network from local correlation tracking of convective granules imaged in continuum intensity and Doppler velocity by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory. From these we calculate the horizontal divergence, the vertical component of vorticity, and the kinetic helicity of fluid motions. We study the correlations between fluid divergence and vorticity, and between vorticity (kinetic helicity) and the magnetic field. We find that the vorticity (kinetic helicity) around small-scale fields exhibits a hemispherical pattern (in sign) similar to that followed by the magnetic helicity of large-scale active regions (containing sunspots). We identify this pattern to be a result of the Coriolis force acting on supergranular-scale flows (both the outflows and inflows), consistent with earlier studies using local helioseismology. Furthermore, we show that the magnetic fields cause transfer of vorticity from supergranular inflow regions to outflow regions, and that they tend to suppress the vortical motions around them when magnetic flux densities exceed about 300 G (from HMI). We also show that such an action of the magnetic fields leads to marked changes in the correlations between fluid divergence and vorticity. These results are speculated to be of importance to local dynamo action (if present) and to the dynamical evolution of magnetic helicity at the small-scale.

  9. A statistical study of Pc 1-2 magnetic pulsations in the equatorial magnetosphere. I - Equatorial occurrence distributions. II - Wave properties

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Erlandson, R. E.; Zanetti, L. J.

    1992-01-01

    AMPTE CCE magnetic field data from a period spanning a complete local time revolution of the satellite orbit major axis are used to examine the occurrence distribution of transverse narrowband Pc 1-2 emissions in the equatorial magnetosphere from L = 3.5 to L = 9 at all local times. Three examples are presented to illustrate the properties of events occurring at dawn, noon, and dusk. The early afternoon outer magnetosphere is found to be the dominant site for electromagnetic ion cyclotron wave occurrence. Pc 1-2 exhibited a radial structure with a gap between high- and low-L events. The example intervals indicate that a significant local time variation of wave properties may exist. Distributions are presented of narrowband Pc 1-2 frequency, ellipticity, normalized frequency and spectral power vs local time, L, and magnetic latitude, using the data base of more than 9000 events obtained from AMPTE CCE magnetometer data. Events occurring in the region 0300-0900 MLT, L greater than 7 are distinctly different from the remainder of Pc 1-2. The unique features of this population are linear polarization at all latitudes and high normalized frequency, 0.4 to 0.5 on average.

  10. Evolution of the magnetic helicity flux during the formation and eruption of flux ropes

    SciTech Connect

    Romano, P.; Zuccarello, F. P.; Guglielmino, S. L.; Zuccarello, F.

    2014-10-20

    We describe the evolution and the magnetic helicity flux for two active regions (ARs) since their appearance on the solar disk: NOAA 11318 and NOAA 11675. Both ARs hosted the formation and destabilization of magnetic flux ropes. In the former AR, the formation of the flux rope culminated in a flare of C2.3 GOES class and a coronal mass ejection (CME) observed by Large Angle and Spectrometric Coronagraph Experiment. In the latter AR, the region hosting the flux rope was involved in several flares, but only a partial eruption with signatures of a minor plasma outflow was observed. We found a different behavior in the accumulation of the magnetic helicity flux in the corona, depending on the magnetic configuration and on the location of the flux ropes in the ARs. Our results suggest that the complexity and strength of the photospheric magnetic field is only a partial indicator of the real likelihood of an AR producing the eruption of a flux rope and a subsequent CME.

  11. Topological currents in neutron stars: kicks, precession, toroidal fields, and magnetic helicity

    SciTech Connect

    Charbonneau, James; Zhitnitsky, Ariel E-mail: arz@phas.ubc.ca

    2010-08-01

    The effects of anomalies in high density QCD are striking. We consider a direct application of one of these effects, namely topological currents, on the physics of neutron stars. All the elements required for topological currents are present in neutron stars: degenerate matter, large magnetic fields, and parity violating processes. These conditions lead to the creation of vector currents capable of carrying momentum and inducing magnetic fields. We estimate the size of these currents for many representative states of dense matter in the neutron star and argue that they could be responsible for the large proper motion of neutron stars (kicks), the toroidal magnetic field and finite magnetic helicity needed for stability of the poloidal field, and the resolution of the conflict between type-II superconductivity and precession. Though these observational effects appear unrelated, they likely originate from the same physics — they are all P-odd phenomena that stem from a topological current generated by parity violation.

  12. Sign-Singularity of the Reduced Magnetic Helicity in the Solar Wind Plasma

    SciTech Connect

    Carbone, V.; Perri, S.; Yordanova, E.; Khotyaintsev, Y.; Andre, M.; Veltri, P.; Bruno, R.

    2010-05-07

    We investigate the scaling laws of a signed measure derived from the reduced magnetic helicity which has been determined from Cluster data in the solar wind. This quantifies the handedness of the magnetic field; namely, it can be related to the polarization of the magnetic field fluctuations (right or left hand). The measure results to be sign-singular; that is, we do not observe any scale-dependent effect at the ion- and at electron-cyclotron frequencies. Cancellations between right- and left-hand polarizations go on in the dispersive or dissipative range, beyond the electron-cyclotron frequency. This means that the mechanism responsible for the generation of the dispersive or dissipative range is rather insensitive to the polarization of the magnetic field fluctuations.

  13. Magnetic helicity conservation and inverse energy cascade in electron magnetohydrodynamic wave packets.

    PubMed

    Cho, Jungyeon

    2011-05-13

    Electron magnetohydrodynamics (EMHD) provides a fluidlike description of small-scale magnetized plasmas. An EMHD wave propagates along magnetic field lines. The direction of propagation can be either parallel or antiparallel to the magnetic field lines. We numerically study propagation of three-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results. (1) Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite-traveling wave packets via self-interaction and cascade energy to smaller scales. (2) EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and two-dimensional (2D) hydrodynamic turbulence.

  14. Ion heating during magnetic relaxation in the helicity injected torus-II experiment

    SciTech Connect

    O'Neill, R.G.; Redd, A.J.; Hamp, W.T.; Smith, R.J.; Jarboe, T.R.

    2005-12-15

    Ion doppler spectroscopy (IDS) is applied to the helicity injected torus (HIT-II) spherical torus to measure impurity ion temperature and flows. [A. J. Redd et al., Phys. Plasmas 9, 2006 (2002)] The IDS instrument employs a 16-channel photomultiplier and can track temperature and velocity continuously through a discharge. Data for the coaxial helicity injection (CHI), transformer, and combined current drive configurations are presented. Ion temperatures for transformer-driven discharges are typically equal to or somewhat lower than electron temperatures measured by Thomson scattering. Internal reconnection events in transformer-driven discharges cause rapid ion heating. The CHI discharges exhibit anomalously high ion temperatures >250 eV, which are an order of magnitude higher than Thomson measurements, indicating ion heating through magnetic relaxation. The CHI discharges that exhibit current and poloidal flux buildup after bubble burst show sustained ion heating during current drive.

  15. Vollhardt invariant and phase transition in the helical itinerant magnet MnSi

    NASA Astrophysics Data System (ADS)

    Stishov, S. M.; Petrova, A. E.

    2016-10-01

    In this Rapid Communication we argue that rounded "hills" or "valleys" demonstrated by the heat capacity, thermal expansion coefficient, and elastic moduli are indications of a smeared second-order phase transition, which is flattened and spread out by the application of a magnetic field. As a result, some of the curves which display a temperature dependence of the corresponding quantities cross almost at a single point. Thus, the Vollhardt crossing point should not be identified with any specific energy scale. The smeared phase transition in MnSi preceding the helical first-order transition most probably corresponds to planar ferromagnetic ordering, with a small or negligible correlation between planes. At lower temperatures, the system of ferromagnetic planes becomes correlated, acquiring a helical twist.

  16. Lanthanide-Directed Fabrication of Four Tetranuclear Quadruple Stranded Helicates Showing Magnetic Refrigeration and Slow Magnetic Relaxation.

    PubMed

    Mondal, Amit Kumar; Jena, Himanshu Sekhar; Malviya, Amita; Konar, Sanjit

    2016-06-01

    A rare class of four tetranuclear lanthanide based quadruple stranded helicates namely, [Ln4L4(OH)2](OAc)2·xH2O (Ln = Gd(III)(1), Dy(III)(2) and x = 4, 5 respectively), [Er4L4(OH)2](NO3)2·9H2O (3), and [Dy4L4(NO3)](NO3)2·2CH3OH·H2O (4) were synthesized by employing succinohydrazone derived bis-tridentate ligand (H2L) and characterized. Structures of 1-3 are similar to each other except the nature of counterions and number of lattice water molecules. In 4, a distorted nitrate ion was arranged in a hexagonal manner holding four dysprosium centers in a slightly twisted manner. Because of the symmetrical nature of each complex, the C4 axis crosses the center of helicate resulting a pseudo-D4 coordination environment. Each ligand coordinates to lanthanide centers in helical manner forming mixture of left (Λ) and right (Δ) handed discrete units. Complex 1 exhibits antiferromagnetic exchange interaction between nearby Gd(III) centers and shows magnetic refrigeration (-ΔSm = 24.4 J kg(-1) K(-1) for ΔH = 7 T at 3 K). AC magnetic susceptibility measurements of 2 and 4 demonstrate slow relaxation behavior, with Ueff (effective energy barrier) of 20.5 and 4.6 K, respectively. As per our knowledge, complexes 1, 2, and 4 represent the first examples of aesthetically pleasing quadruple stranded helicates showing potential magnetocaloric effect and single-molecule-magnet-like behavior. PMID:27196362

  17. Helical states with ordered magnetic topology in the Reversed Field Pinch

    NASA Astrophysics Data System (ADS)

    Bonfiglio, D.; Cappello, S.; Gobbin, M.; Spizzo, G.

    2008-11-01

    The reversed field pinch (RFP) configuration for magnetic confinement has shown to develop helical configurations characterized by good magnetic surfaces both in experiments and visco-resistive 3D MHD numerical computations [1]. In the RFX-mod experiment, quasi-single helicity (QSH) states with ordered magnetic topology have been found to develop both spontaneously during high current discharges [2] and in a stimulated way through the periodic oscillation of the toroidal flux (so-called OPCD technique) [3]. In both cases, the expulsion of the separatrix of the dominant mode has proved to be the key for significant chaos healing [4], as expected by theory [5]. In this work, we present results of visco-resistive 3D MHD numerical modeling aiming at clarifying the mechanism and the conditions for separatrix expulsion and chaos healing in spontaneous and stimulated cases. The effect is investigated by reconstruction of the magnetic topology through field line tracing algorithms and by study of test particle dynamics. [1] S. Cappello, Plasma Phys. Control. Fusion 46, B313 (2004) & references therein. [2] M. Valisa et al., invited oral, EPS Conf. on Plasma Physics (2008). [3] D. Terranova et al., Phys. Rev. Lett. 99, 095001 (2007). [4] R. Lorenzini et al., Phys. Rev. Lett. 101, 025005 (2008). [5] D. F. Escande, R. Paccagnella et al., Phys. Rev. Lett. 85, 3169 (2000).

  18. Generation of the magnetic helicity in a neutron star driven by the electroweak electron-nucleon interaction

    SciTech Connect

    Dvornikov, Maxim; Semikoz, Victor B. E-mail: semikoz@yandex.ru

    2015-05-01

    We study the instability of magnetic fields in a neutron star core driven by the parity violating part of the electron-nucleon interaction in the Standard Model. Assuming a seed field of the order 10{sup 12} G, that is a common value for pulsars, one obtains its amplification due to such a novel mechanism by about five orders of magnitude, up to 10{sup 17} G, at time scales ∼ (10{sup 3}–10{sup 5}) yr. This effect is suggested to be a possible explanation of the origin of the strongest magnetic fields observed in magnetars. The growth of a seed magnetic field energy density is stipulated by the corresponding growth of the magnetic helicity density due to the presence of the anomalous electric current in the Maxwell equation. Such an anomaly is the sum of the two competitive effects: (i) the chiral magnetic effect driven by the difference of chemical potentials for the right and left handed massless electrons and (ii) constant chiral electroweak electron-nucleon interaction term, which has the polarization origin and depends on the constant neutron density in a neutron star core. The remarkable issue for the decisive role of the magnetic helicity evolution in the suggested mechanism is the arbitrariness of an initial magnetic helicity including the case of non-helical fields from the beginning. The tendency of the magnetic helicity density to the maximal helicity case at large evolution times provides the growth of a seed magnetic field to the strongest magnetic fields in astrophysics.

  19. INTERPRETING ERUPTIVE BEHAVIOR IN NOAA AR 11158 VIA THE REGION'S MAGNETIC ENERGY AND RELATIVE-HELICITY BUDGETS

    SciTech Connect

    Tziotziou, Kostas; Georgoulis, Manolis K.; Liu Yang

    2013-08-01

    In previous works, we introduced a nonlinear force-free method that self-consistently calculates the instantaneous budgets of free magnetic energy and relative magnetic helicity in solar active regions (ARs). Calculation is expedient and practical, using only a single vector magnetogram per computation. We apply this method to a time series of 600 high-cadence vector magnetograms of the eruptive NOAA AR 11158 acquired by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory over a five-day observing interval. Besides testing our method extensively, we use it to interpret the dynamical evolution in the AR, including eruptions. We find that the AR builds large budgets of both free magnetic energy and relative magnetic helicity, sufficient to power many more eruptions than the ones it gave within the interval of interest. For each of these major eruptions, we find eruption-related decreases and subsequent free-energy and helicity budgets that are consistent with the observed eruption (flare and coronal mass ejection (CME)) sizes. In addition, we find that (1) evolution in the AR is consistent with the recently proposed (free) energy-(relative) helicity diagram of solar ARs, (2) eruption-related decreases occur before the flare and the projected CME-launch times, suggesting that CME progenitors precede flares, and (3) self terms of free energy and relative helicity most likely originate from respective mutual terms, following a progressive mutual-to-self conversion pattern that most likely stems from magnetic reconnection. This results in the non-ideal formation of increasingly helical pre-eruption structures and instigates further research on the triggering of solar eruptions with magnetic helicity firmly placed in the eruption cadre.

  20. Engineered materials for all-optical helicity-dependent magnetic switching.

    PubMed

    Mangin, S; Gottwald, M; Lambert, C-H; Steil, D; Uhlíř, V; Pang, L; Hehn, M; Alebrand, S; Cinchetti, M; Malinowski, G; Fainman, Y; Aeschlimann, M; Fullerton, E E

    2014-03-01

    The possibility of manipulating magnetic systems without applied magnetic fields have attracted growing attention over the past fifteen years. The low-power manipulation of the magnetization, preferably at ultrashort timescales, has become a fundamental challenge with implications for future magnetic information memory and storage technologies. Here we explore the optical manipulation of the magnetization in engineered magnetic materials. We demonstrate that all-optical helicity-dependent switching (AO-HDS) can be observed not only in selected rare earth-transition metal (RE-TM) alloy films but also in a much broader variety of materials, including RE-TM alloys, multilayers and heterostructures. We further show that RE-free Co-Ir-based synthetic ferrimagnetic heterostructures designed to mimic the magnetic properties of RE-TM alloys also exhibit AO-HDS. These results challenge present theories of AO-HDS and provide a pathway to engineering materials for future applications based on all-optical control of magnetic order.

  1. Structural and magnetic properties of a variety of transition metal incorporated DNA double helices.

    PubMed

    Samanta, Pralok K; Pati, Swapan K

    2014-02-01

    By using density functional theory calculations, the structural, energetic, magnetic, and optical properties for a variety of transition metal (M = Mn, Fe, Co, Ni and Cu) ions incorporated modified-DNA (M-DNA) double helices has been investigated. The DNA is modified with either hydroxypyridone (H) or bis(salicylaldehyde)ethylenediamine (S-en) metalated bases. We find the formation of extended M-O network leading to the ferromagnetic interactions for the case of H-DNA for all the metal ions. More ordered stacking arrangement was found for S-en-DNA. We calculate the exchange coupling constant (J) considering Heisenberg Hamiltonian for quantitative description of magnetic interactions. The ferromagnetic and antiferromagnetic interactions are obtained by varying different transition metal ions. The extent of the magnetic interaction depends on the number of transition metal ions. Optical profiles show peaks below 2 eV, a clear signature of spin-spin coupling.

  2. Evidence for a large-scale helical magnetic field in the quasar 3C 454.3

    NASA Astrophysics Data System (ADS)

    Zamaninasab, M.; Savolainen, T.; Clausen-Brown, E.; Hovatta, T.; Lister, M. L.; Krichbaum, T. P.; Kovalev, Y. Y.; Pushkarev, A. B.

    2013-12-01

    Most current theoretical models link the launching of relativistic jets from active galactic nuclei to the presence of twisted magnetic fields close to the supermassive black hole. While these models predict a large-scale, ordered, helical magnetic field near the central engine, it is not clear if, and to what extent, this order is preserved further downstream in the jet. Here, we present compelling evidence that suggests that the radio emission from the jet of the quasar 3C 454.3 exhibits multiple signatures of a large-scale, ordered helical magnetic field component at a distance of hundreds of parsecs from the launching point. Our results provide observational support for magnetic jet launching models and indicate that the ordered helical field component may remain stable over a large distance down the jet.

  3. Magnetic navigation system for the precise helical and translational motions of a microrobot in human blood vessels

    NASA Astrophysics Data System (ADS)

    Jeon, S. M.; Jang, G. H.; Choi, H. C.; Park, S. H.; Park, J. O.

    2012-04-01

    Different magnetic navigation systems (MNSs) have been investigated for the wireless manipulation of microrobots in human blood vessels. Here we propose a MNS and methodology for generation of both the precise helical and translational motions of a microrobot to improve its maneuverability in complex human blood vessel. We then present experiments demonstrating the helical and translational motions of a spiral-type microrobot to verify the proposed MNS.

  4. Electrically controlled spin-transistor operation in a helical magnetic field

    NASA Astrophysics Data System (ADS)

    Wójcik, P.; Adamowski, J.

    2016-03-01

    A proposal of an electrically controlled spin transistor in a helical magnetic field is presented. In the proposed device, the transistor action is driven by the Landau-Zener transitions that lead to a backscattering of spin polarized electrons and switching the transistor into the high-resistance state (off state). The on/off state of the transistor can be controlled by the all-electric means using Rashba spin-orbit coupling that can be tuned by the voltages applied to the side electrodes.

  5. Single to multiparticle excitations in the itinerant helical magnet CeRhIn5

    NASA Astrophysics Data System (ADS)

    Stock, Chris; Rodriguez-Rivera, J. A.; Schmalzl, K.; Rodriguez, E. E.; Stunault, A.; Petrovic, C.

    CeRhIn5is an itinerant magnet where the Ce3+ spins order in a simple helical phase. We investigate the spin excitations in this material using triple-axis neutron spectroscopy and observe sharp spin waves at low energies consistent with previous reports and a nearest neighbour exchange of ~1 meV. At higher energies, the fluctuations are heavily damped where the single-quasiparticle excitations are replaced by a momentum and energy-broadened continuum constrained by kinematics of energy and momentum conservation. The delicate energy balance between localized and itinerant characters results in the breakdown of the single-quasiparticle picture in CeRhIn5.

  6. Single to Multiquasiparticle Excitations in the Itinerant Helical Magnet CeRhIn5

    NASA Astrophysics Data System (ADS)

    Stock, C.; Rodriguez-Rivera, J. A.; Schmalzl, K.; Rodriguez, E. E.; Stunault, A.; Petrovic, C.

    2015-06-01

    CeRhIn5 is an itinerant magnet where the Ce3 + spins order in a simple helical phase. We investigate the spin excitations and observe sharp spin waves parameterized by a nearest-neighbor exchange, JRKKY=0.88 ±0.05 meV . At higher energies, the spin fluctuations are heavily damped, where single-quasiparticle excitations are replaced by a momentum- and energy-broadened continuum constrained by kinematics of energy and momentum conservation. The delicate energy balance between localized and itinerant characters results in the breakdown of the single-quasiparticle picture in CeRhIn5 .

  7. Tomographic study of helical modes in bifurcating Taylor-Couette-Poiseuille flow using magnetic resonance imaging.

    PubMed

    Moser, K W; Raguin, L G; Georgiadis, J G

    2001-07-01

    The quantitative visualization of flow in a wide-gap annulus (radius ratio 0.5) between concentric cylinders with the inner cylinder rotating and a superimposed axial flow reveals a novel mixed-mode state at relatively high flow rates. A fast magnetic resonance imaging sequence allows the cinematographic dissection and three-dimensional reconstruction of supercritical nonaxisymmetric modes in a regime where stationary helical and propagating toroidal vortices coexist. The findings shed light on symmetry-breaking instabilities, flow pattern selection, and their consequences for hydrodynamic mixing in a complex laminar flow that constitutes a celebrated prototype of many mixing or fractionation processes.

  8. Tomographic study of helical modes in bifurcating Taylor-Couette-Poiseuille flow using magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Moser, Kevin W.; Raguin, L. Guy; Georgiadis, John G.

    2001-07-01

    The quantitative visualization of flow in a wide-gap annulus (radius ratio 0.5) between concentric cylinders with the inner cylinder rotating and a superimposed axial flow reveals a novel mixed-mode state at relatively high flow rates. A fast magnetic resonance imaging sequence allows the cinematographic dissection and three-dimensional reconstruction of supercritical nonaxisymmetric modes in a regime where stationary helical and propagating toroidal vortices coexist. The findings shed light on symmetry-breaking instabilities, flow pattern selection, and their consequences for hydrodynamic mixing in a complex laminar flow that constitutes a celebrated prototype of many mixing or fractionation processes.

  9. Self-similar inverse cascade of magnetic helicity driven by the chiral anomaly

    DOE PAGESBeta

    Hirono, Yuji; Kharzeev, Dmitri E.; Yin, Yi

    2015-12-28

    For systems with charged chiral fermions, the imbalance of chirality in the presence of magnetic field generates an electric current—this is the chiral magnetic effect (CME). We study the dynamical real-time evolution of electromagnetic fields coupled by the anomaly to the chiral charge density and the CME current by solving the Maxwell-Chern-Simons equations. We find that the CME induces the inverse cascade of magnetic helicity toward the large distances, and that at late times this cascade becomes self-similar, with universal exponents. We also find that in terms of gauge field topology the inverse cascade represents the transition from linked electricmore » and magnetic fields (Hopfions) to the knotted configuration of magnetic field (Chandrasekhar-Kendall states). The magnetic reconnections are accompanied by the pulses of the CME current directed along the magnetic field lines. In conclusion, we devise an experimental signature of these phenomena in heavy ion collisions, and speculate about implications for condensed matter systems.« less

  10. Self-similar inverse cascade of magnetic helicity driven by the chiral anomaly

    SciTech Connect

    Hirono, Yuji; Kharzeev, Dmitri E.; Yin, Yi

    2015-12-28

    For systems with charged chiral fermions, the imbalance of chirality in the presence of magnetic field generates an electric current—this is the chiral magnetic effect (CME). We study the dynamical real-time evolution of electromagnetic fields coupled by the anomaly to the chiral charge density and the CME current by solving the Maxwell-Chern-Simons equations. We find that the CME induces the inverse cascade of magnetic helicity toward the large distances, and that at late times this cascade becomes self-similar, with universal exponents. We also find that in terms of gauge field topology the inverse cascade represents the transition from linked electric and magnetic fields (Hopfions) to the knotted configuration of magnetic field (Chandrasekhar-Kendall states). The magnetic reconnections are accompanied by the pulses of the CME current directed along the magnetic field lines. In conclusion, we devise an experimental signature of these phenomena in heavy ion collisions, and speculate about implications for condensed matter systems.

  11. Magnetic field-induced helical mode and topological transitions in a topological insulator nanoribbon

    NASA Astrophysics Data System (ADS)

    Jauregui, Luis A.; Pettes, Michael T.; Rokhinson, Leonid P.; Shi, Li; Chen, Yong P.

    2016-04-01

    The spin-helical Dirac fermion topological surface states in a topological insulator nanowire or nanoribbon promise novel topological devices and exotic physics such as Majorana fermions. Here, we report local and non-local transport measurements in Bi2Te3 topological insulator nanoribbons that exhibit quasi-ballistic transport over ˜2 μm. The conductance versus axial magnetic flux Φ exhibits Aharonov-Bohm oscillations with maxima occurring alternately at half-integer or integer flux quanta (Φ0 = h/e, where h is Planck's constant and e is the electron charge) depending periodically on the gate-tuned Fermi wavevector (kF) with period 2π/C (where C is the nanoribbon circumference). The conductance versus gate voltage also exhibits kF-periodic oscillations, anti-correlated between Φ = 0 and Φ0/2. These oscillations enable us to probe the Bi2Te3 band structure, and are consistent with the circumferentially quantized topological surface states forming a series of one-dimensional subbands, which undergo periodic magnetic field-induced topological transitions with the disappearance/appearance of the gapless Dirac point with a one-dimensional spin helical mode.

  12. Magnetic field-induced helical mode and topological transitions in a topological insulator nanoribbon.

    PubMed

    Jauregui, Luis A; Pettes, Michael T; Rokhinson, Leonid P; Shi, Li; Chen, Yong P

    2016-04-01

    The spin-helical Dirac fermion topological surface states in a topological insulator nanowire or nanoribbon promise novel topological devices and exotic physics such as Majorana fermions. Here, we report local and non-local transport measurements in Bi2Te3 topological insulator nanoribbons that exhibit quasi-ballistic transport over ∼2 μm. The conductance versus axial magnetic flux Φ exhibits Aharonov-Bohm oscillations with maxima occurring alternately at half-integer or integer flux quanta (Φ0 = h/e, where h is Planck's constant and e is the electron charge) depending periodically on the gate-tuned Fermi wavevector (kF) with period 2π/C (where C is the nanoribbon circumference). The conductance versus gate voltage also exhibits kF-periodic oscillations, anti-correlated between Φ = 0 and Φ0/2. These oscillations enable us to probe the Bi2Te3 band structure, and are consistent with the circumferentially quantized topological surface states forming a series of one-dimensional subbands, which undergo periodic magnetic field-induced topological transitions with the disappearance/appearance of the gapless Dirac point with a one-dimensional spin helical mode.

  13. Flow Driven by an Archimedean Helical Permanent Magnetic Field. Part II: Transient and Modulated Flow Behaviors

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Wang, Xiaodong; Fautrelle, Yves; Etay, Jacqueline; Na, Xianzhao; Baltaretu, Florin

    2016-08-01

    The present study considers the transient and modulated flow behaviors of liquid metal driven by a helical permanent magnetic field. The transient process, in which the fluid at rest experiences an increase in the angular velocity, is observed both in secondary and global axial flow with duration time less than 1 second. The flow fields are measured quantitatively to reveal the evolution of the transient flow, and the transient process is due to the variation of the electromagnetic force. Besides, the modulated flow behaviors of global axial flow, which is significantly different from that of secondary flow, is expected to avoid flow-induced macrosegregation in solidification process if the modulated time is suitable because its direction reversed periodically with the modulated helical stirrer. In addition, an optimal modulation frequency, under which the magnetic field could efficiently stir the solute at the solidification front, exists both in secondary and global axial flow (0.1 Hz and 0.625 Hz, respectively). Future investigations will focus on additional metallic alloy solidification experiments.

  14. Magnetic field-induced helical mode and topological transitions in a topological insulator nanoribbon

    NASA Astrophysics Data System (ADS)

    Jauregui, Luis A.; Pettes, Michael T.; Rokhinson, Leonid P.; Shi, Li; Chen, Yong P.

    2016-04-01

    The spin-helical Dirac fermion topological surface states in a topological insulator nanowire or nanoribbon promise novel topological devices and exotic physics such as Majorana fermions. Here, we report local and non-local transport measurements in Bi2Te3 topological insulator nanoribbons that exhibit quasi-ballistic transport over ∼2 μm. The conductance versus axial magnetic flux Φ exhibits Aharonov–Bohm oscillations with maxima occurring alternately at half-integer or integer flux quanta (Φ0 = h/e, where h is Planck's constant and e is the electron charge) depending periodically on the gate-tuned Fermi wavevector (kF) with period 2π/C (where C is the nanoribbon circumference). The conductance versus gate voltage also exhibits kF-periodic oscillations, anti-correlated between Φ = 0 and Φ0/2. These oscillations enable us to probe the Bi2Te3 band structure, and are consistent with the circumferentially quantized topological surface states forming a series of one-dimensional subbands, which undergo periodic magnetic field-induced topological transitions with the disappearance/appearance of the gapless Dirac point with a one-dimensional spin helical mode.

  15. Magnetic crystals and helical liquids in alkaline-earth fermionic gases

    PubMed Central

    Barbarino, Simone; Taddia, Luca; Rossini, Davide; Mazza, Leonardo; Fazio, Rosario

    2015-01-01

    The joint action of a magnetic field and of interactions is crucial for the appearance of exotic quantum phenomena, such as the quantum Hall effect. Owing to their rich nuclear structure, equivalent to an additional synthetic dimension, one-dimensional alkaline-earth(-like) fermionic gases with synthetic gauge potential and atomic contact repulsion may display similar related properties. Here we show the existence and the features of a hierarchy of fractional insulating and conducting states by means of analytical and numerical methods. We demonstrate that the gapped states are characterized by density and magnetic order emerging solely for gases with effective nuclear spin larger than 1/2, whereas the gapless phases can support helical modes. We finally argue that these states are related to an unconventional fractional quantum Hall effect in the thin-torus limit and that their properties can be studied in state-of-the-art laboratories. PMID:26350624

  16. Helical plasma striations in liners in the presence of an external axial magnetic field

    NASA Astrophysics Data System (ADS)

    Atoyan, L.; Hammer, D. A.; Kusse, B. R.; Byvank, T.; Cahill, A. D.; Greenly, J. B.; Pikuz, S. A.; Shelkovenko, T. A.

    2016-02-01

    Awe et al. found on the 20 MA Z machine [Acta Phys. Pol. A 115, 956 (2009)] that applying an externally generated axial magnetic field to an imploding liner leads to a helical pattern in the liner when viewed with soft x-ray radiography ([Phys. Rev. Lett. 111, 235005 (2013)] and [Phys. Plasmas 21, 056303 (2014)]). Here, we show that this phenomenon is also observed in extreme ultraviolet self-emission images of 10 mm long cylindrical metal liners having varying diameters and varying wall thicknesses on a 1 MA, 100-200 ns pulsed power generator. The magnetic field in these experiments is created using either twisted return current wires positioned close to the liner, generating a time-varying Bz, or a Helmholtz coil, generating a steady-state Bz.

  17. Effects of magnetic storm phases on f-layer irregularities from auroral to equatorial latitudes. Quarterly report, 1 April-30 June 1995

    SciTech Connect

    Aarons, J.; Mendillo, M.

    1995-06-30

    The equatorial and high latitudes data set included magnetically quiet periods and magnetically disturbed periods. It was found that extremely high altitude plumes developed on the magnetic equator in early phases of 7 magnetic storms. Comparisons were made between 6300 A depletions and phase fluctuations in a cooperative study. The spatial correlation between optical depletions and phase scintillation worked well but in some case the phase fluctuations were only of moderate level.

  18. Circular polarimetry reveals helical magnetic fields in the young stellar object HH 135-136.

    PubMed

    Chrysostomou, Antonio; Lucas, Philip W; Hough, James H

    2007-11-01

    Magnetic fields are believed to have a vital role in regulating and shaping the flow of material onto and away from protostars during their initial mass accretion phase. It is becoming increasingly accepted that bipolar outflows are generated and collimated as material is driven along magnetic field lines and centrifugally accelerated off a rotating accretion disk. However, the precise role of the magnetic field is poorly understood and evidence for its shape and structure has not been forthcoming. Here we report imaging circular polarimetry in the near-infrared and Monte Carlo modelling showing that the magnetic field along the bipolar outflow of the HH 135-136 young stellar object is helical. The field retains this shape for large distances along the outflow, so the field structure can also provide the necessary magnetic pressure for collimation of the outflow. This result lends further weight to the hypothesis--central to any theory of star formation--that the outflow is an important instrument for the removal of high-angular-momentum material from the accretion disk, thereby allowing the central protostar to increase its mass.

  19. Equatorial ionospheric plasma drifts and O+ concentration enhancements associated with disturbance dynamo during the 2015 St. Patrick's Day magnetic storm

    NASA Astrophysics Data System (ADS)

    Huang, Chao-Song; Wilson, Gordon R.; Hairston, Marc R.; Zhang, Yongliang; Wang, Wenbin; Liu, Jing

    2016-08-01

    Disturbance dynamo is an important dynamic process during magnetic storms. However, very few direct observations of dynamo-induced plasma drifts and ion composition changes in the equatorial ionosphere are available. In this study, we use measurements of the Defense Meteorological Satellite Program (DMSP) satellites to identify the characteristics of the disturbance dynamo process in the topside equatorial ionosphere near dawn during the magnetic storm with a minimum Dst of -223 nT on 17 March 2015. Data from four DMSP satellites with equatorial crossings at 0245, 0430, 0630, and 0730 LT are available for this case. The dynamo process was first observed in the postmidnight sector 3-4.7 h after the beginning of the storm main phase and lasted for 31 h, covering the second storm intensification and the initial 20 h of the recovery phase. The dynamo vertical ion drift was upward (up to 150-200 m s-1) in the postmidnight sector and downward (up to ~80 m s-1) in the early morning sector. The dynamo zonal ion drift was westward at these locations and reached ~100 m s-1. The dynamo process caused large enhancements of the O+ concentration (the ratio of the oxygen ion density to the total ion density) at the altitude of 840 km near dawn. The O+ concentration increased from below 60% during the prestorm period to 80-90% during the storm time. More specifically, the O+ density was increased, and the H+ density was decreased. The variations of the O+ concentration were well correlated with the vertical ion drift.

  20. Magnetic material in mean-field dynamos driven by small scale helical flows

    NASA Astrophysics Data System (ADS)

    Giesecke, A.; Stefani, F.; Gerbeth, G.

    2014-07-01

    We perform kinematic simulations of dynamo action driven by a helical small scale flow of a conducting fluid in order to deduce mean-field properties of the combined induction action of small scale eddies. We examine two different flow patterns in the style of the G O Roberts flow but with a mean vertical component and with internal fixtures that are modelled by regions with vanishing flow. These fixtures represent either rods that lie in the center of individual eddies, or internal dividing walls that provide a separation of the eddies from each other. The fixtures can be made of magnetic material with a relative permeability larger than one which can alter the dynamo behavior. The investigations are motivated by the widely unknown induction effects of the forced helical flow that is used in the core of liquid sodium cooled fast reactors, and from the key role of soft iron impellers in the von-Kármán-sodium dynamo. For both examined flow configurations the consideration of magnetic material within the fluid flow causes a reduction of the critical magnetic Reynolds number of up to 25%. The development of the growth-rate in the limit of the largest achievable permeabilities suggests no further significant reduction for even larger values of the permeability. In order to study the dynamo behavior of systems that consist of tens of thousands of helical cells we resort to the mean-field dynamo theory (Krause and Rädler 1980 Mean-field Magnetohydrodynamics and Dynamo Theory (Oxford: Pergamon)) in which the action of the small scale flow is parameterized in terms of an α- and β-effect. We compute the relevant elements of the α- and the β-tensor using the so called testfield method. We find a reasonable agreement between the fully resolved models and the corresponding mean-field models for wall or rod materials in the considered range 1\\leqslant {{\\mu }_{r}}\\leqslant 20. Our results may be used for the development of global large scale models with recirculation

  1. IR phonons induced by the helical magnetic order in multiferroic TbMn2O5

    NASA Astrophysics Data System (ADS)

    Valdes Aguilar, Rolando; Sushkov, A.; Drew, H. D.; Cheong, S. W.

    2006-03-01

    The interplay between magnetic order and the lattice in multiferroic crystals has produced such interesting phenomena as polarization reversal and change of dielectric properties with magnetic fields . Ferroelectricity in the multiferroic materials REMn2O5 (RE = rare earth) is thought to originate from a helical antiferromagnetic order. In order to study this possiblity we have made an infrared study of TbMn2O5. We find that several IR phonons show correlations with the distinct magnetic and dielectric phase transitions. Of special interest is the phonon spectrum for light polarization along the b axis where a mode at ˜ 706 cm-1 exists only in the commensurate magnetic phase with k = (1/2,0,1/4) in the temperature range of 24-33 K. Possible scenarios for this phonon are: (1) the appearance of zone-folded modes; (2) the activation of previously silent modes due to the reduction of crystal symmetry. These scenarios are discussed in terms of the spin-lattice coupling in this class of materials. Hur, N et al. Nature 429 (2004) 392.

  2. Surface impedance tensor in amorphous wires with helical anisotropy: Magnetic hysteresis and asymmetry

    SciTech Connect

    Makhnovskiy, D. P.; Panina, L. V.; Mapps, D. J.

    2001-06-01

    This article concerns the investigation of the magnetic behavior of the surface impedance tensor {cflx {var_sigma}} in CoSiB amorphous wires having a residual torsion stress and a helical anisotropy. The full tensor {cflx {var_sigma}} involving three different components is found by measuring the S{sub 21} parameter at a required excitation with a Hewlett-Packard network/spectrum analyzer at MHz frequencies. In general, the impedance plots versus axial magnetic field H{sub ex} exhibit a hysteresis related to that for the case of static magnetization. The diagonal components of {cflx {var_sigma}} (longitudinal {var_sigma}{sub zz} and circular {var_sigma}{sub {var_phi}{var_phi}}) show a sharp peak in a narrow field interval where the domain walls form and contribute to the ac magnetization dynamics. This peak is not seen for the off-diagonal component {var_sigma}{sub z{var_phi}} ({var_sigma}{sub {var_phi}z}) since the existence of the domain structure suppresses it. Applying a dc bias current results in a gradual transition to a nonhysteretic asymmetrical behavior with an enhanced sensitivity. The portions of the experimental plots associated with the rotational dynamic process are in qualitative agreement with the theory based on a single-domain model. {copyright} 2001 American Institute of Physics.

  3. Surface impedance tensor in amorphous wires with helical anisotropy: Magnetic hysteresis and asymmetry

    NASA Astrophysics Data System (ADS)

    Makhnovskiy, D. P.; Panina, L. V.; Mapps, D. J.

    2001-06-01

    This article concerns the investigation of the magnetic behavior of the surface impedance tensor final_sigmâ in CoSiB amorphous wires having a residual torsion stress and a helical anisotropy. The full tensor final_sigmâ involving three different components is found by measuring the S21 parameter at a required excitation with a Hewlett-Packard network/spectrum analyzer at MHz frequencies. In general, the impedance plots versus axial magnetic field Hex exhibit a hysteresis related to that for the case of static magnetization. The diagonal components of final_sigmâ (longitudinal final_sigmazz and circular final_sigmaφφ) show a sharp peak in a narrow field interval where the domain walls form and contribute to the ac magnetization dynamics. This peak is not seen for the off-diagonal component final_sigmazφ (final_sigmaφz) since the existence of the domain structure suppresses it. Applying a dc bias current results in a gradual transition to a nonhysteretic asymmetrical behavior with an enhanced sensitivity. The portions of the experimental plots associated with the rotational dynamic process are in qualitative agreement with the theory based on a single-domain model.

  4. Status of UCLA Helical Permanent-Magnet Inverse Free Electron Laser

    SciTech Connect

    Knyazik, A.; Tikhoplav, R.; Frederico, J. T.; Affolter, M.; Rosenzweig, J. B.

    2009-01-22

    A helical undulator, utilizing permanent-magnet of cylindrically symmetric (Halbach) geometry is being developed at UCLA's Neptune Facility. The initial prototype is a short 10 cm, 7 periods long helical undulator, designed to test the electron-photon coupling by observing the micro-bunching is currently being constructed. The Neptune IFEL facility utilizes a 15 MeV Photoinjector-generated electron beam of 0.5 nC interacting with CO{sub 2} of peak energy up to 100 J, estimated to have acceleration of 100 MeV/m. An Open Iris-Loaded Waveguide Structure (OILS) scheme which conserves laser mode size and wave fronts throughout the undulator, is utilized to avoid Gouy phase shift caused by focusing of the drive laser. Undulator design was tested by computer simulations Radia and Genesis 1.3. Coherent Transition Radiation and Coherent Cherenkov Radiation will be used for micro-bunching diagnostic. Currently permanent dipoles and their aluminum holders have been built, and the project is in its final state of assembly and undulator testing.

  5. Evolution of Magnetic Helicity in NOAA 10923 Over Three Consecutive Solar Rotations

    NASA Astrophysics Data System (ADS)

    Tiwari, Sanjiv Kumar; Joshi, Jayant; Gosain, Sanjay; Venkatakrishnan, P.

    We have studied the evolution of magnetic helicity and chirality in an active region over three consecutive solar rotations. The region where it first appeared was named NOAA10923 and in subsequent rotations it was numbered NOAA 10930, 10935 and 10941. We compare the chirality of these regions at photospheric, chromospheric and coronal heights. The observations used for photospheric and chromospheric heights are taken from Solar Vector Magnetograph (SVM) and H-α imaging telescope of Udaipur Solar Observatory (USO), respectively. We discuss the chirality of the sunspots and associated H-α filaments in these regions. We find that the twistedness of superpenumbral filaments is maintained in the photospheric transverse field vectors also. We also compare the chirality at photospheric and chromospheric heights with the chirality of the associated coronal loops, as observed from the HINODE X-Ray Telescope.

  6. Physics of forced magnetic reconnection in coaxial helicity injection experiments in National Spherical Torus Experimenta)

    NASA Astrophysics Data System (ADS)

    Ebrahimi, F.; Raman, R.; Hooper, E. B.; Sovinec, C. R.; Bhattacharjee, A.

    2014-05-01

    We numerically examine the physics of fast flux closure in transient coaxial helicity injection (CHI) experiments in National Spherical Torus Experiment (NSTX). By performing resistive Magnetohydrodynamics (MHD) simulations with poloidal injector coil currents held constant in time, we find that closed flux surfaces are formed through forced magnetic reconnection. Through a local Sweet-Parker type reconnection with an elongated current sheet in the injector region, closed flux surfaces expand in the NSTX global domain. Simulations demonstrate outflows approaching poloidally Alfvénic flows and reconnection times consistent with the Sweet-Parker model. Critical requirements for magnetic reconnection and flux closure are studied in detail. These primary effects, which are magnetic diffusivity, injector flux, injector flux footprint width, and rate of injector voltage reduction, are simulated for transient CHI experiments. The relevant time scales for effective reconnection are τV<τrec≈τA√S (1+Pm)1/4<τR, where τV is the time for the injector voltage reduction, τA is the poloidal Alfvén transit time, τR is the global resistive diffusion time, and Pm and S are Prandtl and Lundquist numbers.

  7. Physics of forced magnetic reconnection in coaxial helicity injection experiments in National Spherical Torus Experiment

    SciTech Connect

    Ebrahimi, F.; Bhattacharjee, A.; Raman, R.; Hooper, E. B.; Sovinec, C. R.

    2014-05-15

    We numerically examine the physics of fast flux closure in transient coaxial helicity injection (CHI) experiments in National Spherical Torus Experiment (NSTX). By performing resistive Magnetohydrodynamics (MHD) simulations with poloidal injector coil currents held constant in time, we find that closed flux surfaces are formed through forced magnetic reconnection. Through a local Sweet-Parker type reconnection with an elongated current sheet in the injector region, closed flux surfaces expand in the NSTX global domain. Simulations demonstrate outflows approaching poloidally Alfvénic flows and reconnection times consistent with the Sweet-Parker model. Critical requirements for magnetic reconnection and flux closure are studied in detail. These primary effects, which are magnetic diffusivity, injector flux, injector flux footprint width, and rate of injector voltage reduction, are simulated for transient CHI experiments. The relevant time scales for effective reconnection are τ{sub V}<τ{sub rec}≈τ{sub A}√(S)(1+Pm){sup 1/4}<τ{sub R}, where τ{sub V} is the time for the injector voltage reduction, τ{sub A} is the poloidal Alfvén transit time, τ{sub R} is the global resistive diffusion time, and Pm and S are Prandtl and Lundquist numbers.

  8. Simulation of RF Cavity Dark Current In Presence of Helical Magnetic Field

    SciTech Connect

    Romanov, Gennady; Kashikhin, Vladimir; /Fermilab

    2012-05-01

    In order to produce muon beam of high enough quality to be used for a Muon Collider, its large phase space must be cooled several orders of magnitude. This task can be accomplished by ionization cooling. Ionization cooling consists of passing a high-emittance muon beam alternately through regions of low Z material, such as liquid hydrogen, and very high accelerating RF cavities within a multi-Tesla solenoidal focusing channel. But first high power tests of RF cavity with beryllium windows in solenoidal magnetic field showed a dramatic drop in accelerating gradient due to RF breakdowns. It has been concluded that external magnetic fields parallel to RF electric field significantly modifies the performance of RF cavities. However, magnetic field in Helical Cooling Channel has a strong dipole component in addition to solenoidal one. The dipole component essentially changes electron motion in a cavity compare to pure solenoidal case, making dark current less focused at field emission sites. The simulation of dark current dynamic in HCC performed with CST Studio Suit is presented in this paper.

  9. Simulation of RF Cavity Dark Current in Presence of Helical Magnetic Field

    SciTech Connect

    Romanov, Gennady; Kashikhin, Vladimir; /Unlisted

    2010-09-01

    In order to produce muon beam of high enough quality to be used for a Muon Collider, its large phase space must be cooled several orders of magnitude. This task can be accomplished by ionization cooling. Ionization cooling consists of passing a high-emittance muon beam alternately through regions of low Z material, such as liquid hydrogen, and very high accelerating RF cavities within a multi-Tesla solenoidal focusing channel. But first high power tests of RF cavity with beryllium windows in solenoidal magnetic field showed a dramatic drop in accelerating gradient due to RF breakdowns. It has been concluded that external magnetic fields parallel to RF electric field significantly modifies the performance of RF cavities. However, magnetic field in Helical Cooling Channel has a strong dipole component in addition to solenoidal one. The dipole component essentially changes electron motion in a cavity compare to pure solenoidal case, making dark current less focused at field emission sites. The simulation of dark current dynamic in HCC performed with CST Studio Suit is presented in this paper.

  10. The dynamics of Wolf numbers based on nonlinear dynamos with magnetic helicity: comparisons with observations

    NASA Astrophysics Data System (ADS)

    Kleeorin, Y.; Safiullin, N.; Kleeorin, N.; Porshnev, S.; Rogachevskii, I.; Sokoloff, D.

    2016-08-01

    We investigate the dynamics of solar activity using a nonlinear one-dimensional dynamo model and a phenomenological equation for the evolution of Wolf numbers. This system of equations is solved numerically. We take into account the algebraic and dynamic nonlinearities of the alpha effect. The dynamic nonlinearity is related to the evolution of a small-scale magnetic helicity, and it leads to a complicated behaviour of solar activity. The evolution equation for the Wolf number is based on a mechanism of formation of magnetic spots as a result of the negative effective magnetic pressure instability (NEMPI). This phenomenon was predicted 25 yr ago and has been investigated intensively in recent years through direct numerical simulations and mean-field simulations. The evolution equation for the Wolf number includes the production and decay of sunspots. Comparison between the results of numerical simulations and observational data of Wolf numbers shows a 70 per cent correlation over all intervals of observation (about 270 yr). We determine the dependence of the maximum value of the Wolf number versus the period of the cycle and the asymmetry of the solar cycles versus the amplitude of the cycle. These dependences are in good agreement with observations.

  11. POSSIBLE EVIDENCE OF ALFVEN-CYCLOTRON WAVES IN THE ANGLE DISTRIBUTION OF MAGNETIC HELICITY OF SOLAR WIND TURBULENCE

    SciTech Connect

    He Jiansen; Tu Chuanyi; Yao Shuo; Tian Hui; Marsch, Eckart

    2011-04-20

    The fluctuating magnetic helicity is considered an important parameter in diagnosing the characteristic modes of solar wind turbulence. Among them is the Alfven-cyclotron wave, which is probably responsible for the solar wind plasma heating, but has not yet been identified from the magnetic helicity of solar wind turbulence. Here, we present the possible signatures of Alfven-cyclotron waves in the distribution of magnetic helicity as a function of {theta}{sub VB}, which is the angle between the solar wind velocity and local mean magnetic field. We use magnetic field data from the STEREO spacecraft to calculate the {theta}{sub VB} distribution of the normalized reduced fluctuating magnetic helicity {sigma}{sub m}. We find a dominant negative {sigma}{sub m} for 1 s < p < 4 s (p is time period) and for {theta}{sub VB} < 30 deg. in the solar wind outward magnetic sector, and a dominant positive {sigma}{sub m} for 0.4 s < p < 4 s and for {theta}{sub VB}>150 deg. in the solar wind inward magnetic sector. These features of {sigma}{sub m} appearing around the Doppler-shifted ion-cyclotron frequencies may be consistent with the existence of Alfven-cyclotron waves among the outward propagating fluctuations. Moreover, right-handed polarized waves at larger propagation angles, which might be kinetic Alfven waves or whistler waves, have also been identified on the basis of the {sigma}{sub m} features in the angular range 40 deg. < {theta}{sub VB} < 140 deg. Our findings suggest that Alfven-cyclotron waves (together with other wave modes) play a prominent role in turbulence cascading and plasma heating of the solar wind.

  12. Equatorially asymmetric convection inducing a hemispherical magnetic field in rotating spheres and implications for the past martian dynamo

    NASA Astrophysics Data System (ADS)

    Landeau, Maylis; Aubert, Julien

    2011-04-01

    The convective instability in a rapidly rotating, self-graviting sphere sets up in the form of equatorially symmetric, non-axisymmetric columnar vortices aligned with the rotation axis, carrying heat away in the cylindrical radial direction. In this study, we present numerical simulations of thermal convection and dynamo action driven by internal heating (intended to model a planetary core subject to uniform secular cooling) in a rotating sphere where, from the classical columnar convection regime, we find a spontaneous transition towards an unexpected and previously unobserved flow regime in which an equatorially antisymmetric, axisymmetric (EAA) mode strongly influences the flow. This EAA mode carries heat away along the rotation axis and is the nonlinear manifestation of the first linearly unstable axisymmetric mode. When the amplitude of the EAA mode reaches high enough values, we obtain hemispherical dynamos with one single hemisphere bearing more than 75% of the total magnetic energy at the surface of the rotating sphere. We perform the linear analysis of the involved convective modes and the nonlinear study of this hydrodynamic transition, with and without dynamo action, to obtain scaling laws for the regime boundaries. As secular cooling in a full sphere (i.e. without inner core) is a configuration which has probably been widespread in the early solar system in planetary cores, including the core of Mars, we discuss the possible implications of our results for the past martian dynamo.

  13. Engineered materials for all-optical helicity-dependent magnetic switching

    NASA Astrophysics Data System (ADS)

    Fullerton, Eric

    2014-03-01

    The possibilities of manipulating magnetization without applied magnetic fields have attracted growing attention over the last fifteen years. The low-power manipulation of magnetization, preferably at ultra-short time scales, has become a fundamental challenge with implications for future magnetic information memory and storage technologies. Here we explore the optical manipulation of the magnetization of engineered materials and devices using 100 fs optical pulses. We demonstrate that all optical - helicity dependent switching (AO-HDS) can be observed not only in selected rare-earth transition-metal (RE-TM) alloy films but also in a much broader variety of materials, including alloys, multilayers, heterostructures and RE-free Co-Ir-based synthetic ferrimagnets. The discovery of AO-HDS in RE-free TM-based synthetic ferrimagnets can enable breakthroughs for numerous applications since it exploits materials that are currently used in magnetic data storage, memories and logic technologies. In addition, this materials study of AO-HDS offers valuable insight into the underlying mechanisms involved. Indeed the common denominator of the diverse structures showing AO-HDS in this study is that two ferromagnetic sub-lattices exhibit magnetization compensation (and therefore angular momentum compensation) at temperatures near or above room temperature. We are highlighting that compensation plays a major role and that this compensation can be established at the atomic level as in alloys but also over a larger nanometers scale as in the multilayers or in heterostructures. We will also discuss the potential to extend AO-HDS to new classes of magnetic materials. This work was done in collaboration with S. Mangin, M. Gottwald, C-H. Lambert, D. Steil, V. Uhlíř, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, and M. Aeschlimann. Supported by the ANR-10-BLANC-1005 ``Friends,'' a grant from the Advanced Storage Technology Consortium, Partner University Fund

  14. Synthesis, structure, and electrochemistry and magnetic properties of a novel 1D homochiral MnIII(5-Brsalen) coordination polymer with left-handed helical character

    NASA Astrophysics Data System (ADS)

    Dong, Dapeng; Yu, Naisen; Zhao, Haiyan; Liu, Dedi; Liu, Jia; Li, Zhenghua; Liu, Dongping

    2016-01-01

    A novel homochiral manganese (III) Mn(5-Brsalen) coordination polymer with left-handed helical character by spontaneous resolution on crystallization by using Mn(5-Brsalen) and 4,4-bipyridine, [MnIII(5-Brsalen)(4,4-bipy)]·ClO4·CH3OH (1) (4,4-bipy = 4,4-bipyridine) has been synthesized and structurally characterized by X-ray single-crystal diffraction, elemental analysis and infrared spectroscopy. In compound 1, each manganese(III) anion is six-coordinate octahedral being bonded to four atoms of 5-Brsalen ligand in an equatorial plane and two nitrogen atoms from a 4,4-bipyridine ligand in axial positions. The structure of compound 1 can be described a supramolecular 2D-like structure which was formed by the intermolecular π-stacking interactions between the neighboring chains of the aromatic rings of 4,4-bipyridine and 5-Brsalen molecules. UV-vis absorption spectrum, electrochemistry and magnetic properties of the compound 1 have also been studied.

  15. Study of magnetic helicity injection in the active region NOAA 9236 producing multiple flare-associated coronal mass ejection events

    SciTech Connect

    Park, Sung-Hong; Cho, Kyung-Suk; Bong, Su-Chan; Kumar, Pankaj; Kim, Yeon-Han; Park, Young-Deuk; Kusano, Kanya; Chae, Jongchul; Park, So-Young

    2013-11-20

    To better understand a preferred magnetic field configuration and its evolution during coronal mass ejection (CME) events, we investigated the spatial and temporal evolution of photospheric magnetic fields in the active region NOAA 9236 that produced eight flare-associated CMEs during the time period of 2000 November 23-26. The time variations of the total magnetic helicity injection rate and the total unsigned magnetic flux are determined and examined not only in the entire active region but also in some local regions such as the main sunspots and the CME-associated flaring regions using SOHO/MDI magnetogram data. As a result, we found that (1) in the sunspots, a large amount of positive (right-handed) magnetic helicity was injected during most of the examined time period, (2) in the flare region, there was a continuous injection of negative (left-handed) magnetic helicity during the entire period, accompanied by a large increase of the unsigned magnetic flux, and (3) the flaring regions were mainly composed of emerging bipoles of magnetic fragments in which magnetic field lines have substantially favorable conditions for making reconnection with large-scale, overlying, and oppositely directed magnetic field lines connecting the main sunspots. These observational findings can also be well explained by some MHD numerical simulations for CME initiation (e.g., reconnection-favored emerging flux models). We therefore conclude that reconnection-favored magnetic fields in the flaring emerging flux regions play a crucial role in producing the multiple flare-associated CMEs in NOAA 9236.

  16. Magnetic moments in a helical edge can make weak correlations seem strong

    NASA Astrophysics Data System (ADS)

    Väyrynen, Jukka I.; Geissler, Florian; Glazman, Leonid I.

    2016-06-01

    We study the effect of localized magnetic moments on the conductance of a helical edge. Interaction with a local moment is an effective backscattering mechanism for the edge electrons. We evaluate the resulting differential conductance as a function of temperature T and applied bias V for any value of V /T . Backscattering off magnetic moments, combined with the weak repulsion between the edge electrons, results in a power-law temperature and voltage dependence of the conductance; the corresponding small positive exponent is indicative of insulating behavior. Local moments may naturally appear due to charge disorder in a narrow-gap semiconductor. Our results provide an alternative interpretation of the recent experiment by Li et al. [Phys. Rev. Lett. 115, 136804 (2015)], 10.1103/PhysRevLett.115.136804 where a power-law suppression of the conductance was attributed to strong electron repulsion within the edge, with the value of Luttinger-liquid parameter K fine tuned close to 1 /4 .

  17. Phase diagram of the itinerant helical magnet MnSi at high pressures and strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Stishov, Sergei

    We performed a series of resistivity, heat capacity and ultrasound speed measurements of a MnSi single crystal at high pressures and strong magnetic fields [1-3]. Two notable features of the phase transition in MnSi that disappear on pressure increasin are a sharp peak marking the first order phase transition and a shallow maximum, situated slightly above the critical temperature and pointing to the domain of prominent helical fluctuations. The longitudinal and transverse ultrasound speeds and attenuation were measured in a MnSi single crystal in the temperature range of 2-40 K and magnetic fields to 7 Tesla. The magnetic phase transition in MnSi in zero magnetic field is signified by a quasi-discontinuity in the c11 elastic constant, which almost vanishes at the skyrmion - paramagnetic transition at high magnetic fields. The powerful fluctuations at the minima of c11 make the mentioned crossing point of the minima and the phase transition lines similar to a critical end point, where a second order phase transition meets a first order one.

  18. The influence of differential rotation on the equatorial component of the sun's magnetic dipole field

    NASA Technical Reports Server (NTRS)

    Sheeley, N. R., Jr.

    1981-01-01

    This paper examines the effect that solar differential rotation would have on a hypothetical large-scale equatorial dipole field. The evolving large-scale field pattern is expressed as a series of non-axisymmetric moments. As time increases, power is transferred to progressively higher order moments. In the 27d rotating coordinate system, each moment undergoes a small retrograde drift which remains nearly uniform until that mode begins to fade. The synodic rotation periods of the first few moments are comparable to the observed 28.5d period of the sun's large-scale field near sunspot maximum. Differential rotation may be the source of this 28.5d period, but the eruption of new flux is necessary to keep the pattern going.

  19. Helicity, Reconnection, and Dynamo Effects

    SciTech Connect

    Ji, Hantao

    1998-11-01

    The inter-relationships between magnetic helicity, magnetic reconnection, and dynamo effects are discussed. In laboratory experiments, where two plasmas are driven to merge, the helicity content of each plasma strongly affects the reconnection rate, as well as the shape of the diffusion region. Conversely, magnetic reconnection events also strongly affect the global helicity, resulting in efficient helicity cancellation (but not dissipation) during counter-helicity reconnection and a finite helicity increase or decrease (but less efficiently than dissipation of magnetic energy) during co-helicity reconnection. Close relationships also exist between magnetic helicity and dynamo effects. The turbulent electromotive force along the mean magnetic field (alpha-effect), due to either electrostatic turbulence or the electron diamagnetic effect, transports mean-field helicity across space without dissipation. This has been supported by direct measurements of helicity flux in a laboratory plasma. When the dynamo effect is driven by electromagnetic turbulence, helicity in the turbulent field is converted to mean-field helicity. In all cases, however, dynamo processes conserve total helicity except for a small battery effect, consistent with the observation that the helicity is approximately conserved during magnetic relaxation.

  20. Domain size criterion for the observation of all-optical helicity-dependent switching in magnetic thin films

    NASA Astrophysics Data System (ADS)

    El Hadri, Mohammed Salah; Hehn, Michel; Pirro, Philipp; Lambert, Charles-Henri; Malinowski, Grégory; Fullerton, Eric E.; Mangin, Stéphane

    2016-08-01

    To understand the necessary condition for the observation of all-optical helicity-dependent switching (AO-HDS) of magnetization in thin films, we investigated ferromagnetic Co/Pt and Co/Ni multilayers as well as ferrimagnetic TbCo alloys as a function of magnetic layer compositions and thicknesses. We show that both ferro- and ferrimagnets with high saturation magnetization show AO-HDS if their magnetic thickness is strongly reduced below a material-dependent threshold thickness. By taking into account the demagnetizing energy and the domain wall energy, we are able to define a criterion to predict whether AO-HDS or thermal demagnetization (TD) will be observed. This criterion for the observation of AO-HDS is that the equilibrium size of magnetic domains forming during the cooling process should be larger than the laser spot size. From these results we anticipate that more magnetic materials are expected to show AO-HDS. However, the effect of the optical pulses' helicity is hidden by the formation of small magnetic domains during the cooling process.

  1. THEOS-2 Orbit Design: Formation Flying in Equatorial Orbit and Damage Prevention Technique for the South Atlantic Magnetic Anomaly (SAMA)

    NASA Astrophysics Data System (ADS)

    Pimnoo, Ammarin

    2016-07-01

    Geo-Informatics and Space Technology Development Agency (GISTDA) has initiative THEOS-2 project after the THEOS-1 has been operated for more than 7 years which is over the lifetime already. THEOS-2 project requires not only the development of earth observation satellite(s), but also the development of the area-based decision making solution platform comprising of data, application systems, data processing and production system, IT infrastructure improvement and capacity building through development of satellites, engineering model, and infrastructures capable of supporting research in related fields. The developing satellites in THEOS-2 project are THAICHOTE-2 and THAICHOTE-3. This paper focuses the orbit design of THAICHOTE-2 & 3. It discusses the satellite orbit design for the second and third EOS of Thailand. In this paper, both THAICHOTE will be simulated in an equatorial orbit as a formation flying which will be compared the productive to THAICHOTE-1 (THEOS-1). We also consider a serious issue in equatorial orbit design, namely the issue of the geomagnetic field in the area of the eastern coast of South America, called the South Atlantic Magnetic Anomaly (SAMA). The high-energy particles of SAMA comprise a radiation environment which can travel through THAICHOTE-2 & 3 material and deposit kinetic energy. This process causes atomic displacement or leaves a stream of charged atoms in the incident particles' wake. It can cause damage to the satellite including reduction of power generated by solar arrays, failure of sensitive electronics, increased background noise in sensors, and exposure of the satellite devices to radiation. This paper demonstrates the loss of ionizing radiation damage and presents a technique to prevent damage from high-energy particles in the SAMA.

  2. Control of the Helicity Content of a Gun-Generated Spheromak by Incorporating a Conducting Shell into a Magnetized Coaxial Plasma Gun

    NASA Astrophysics Data System (ADS)

    Matsumoto, Tadafumi; Sekiguchi, Jun'ichi; Asai, Tomohiko

    In the formation of magnetized plasmoid by a magnetized coaxial plasma gun (MCPG), the magnetic helicity content of the generated plasmoid is one of the critical parameters. Typically, the bias coil to generate a poloidal flux is mounted either on the outer electrode or inside the inner electrode. However, most of the flux generated in the conventional method spreads even radially outside of the formation region. Thus, only a fraction of the total magnetic flux is actually exploited for helicity generation in the plasmoid. In the proposed system, the plasma gun incorporates a copper shell mounted on the outer electrode. By changing the rise time of the discharge bias coil current and the geometrical structure of the shell, the magnetic field structure and its time evolution can be controlled. The effect of the copper shell has been numerically simulated for the actual gun structure, and experimentally confirmed. This may increase the magnetic helicity content results, through increased poloidal magnetic field.

  3. Magnetic field analysis and achievable on-axis field for helical undulators.

    SciTech Connect

    Kim, S. H.; Accelerator Systems Division

    2008-01-01

    The on- and off-axis magnetic fields for infinitely long, helical undulators were analyzed for linear and nonlinear poles. An analytical expression of the on-axis field for linear poles was derived in terms of coil current density, undulator period length, and coil dimensions. The derived expression showed that, when the undulator dimensions were scaled according to the period ratios, the on-axis fields were proportional to the periods, which is in agreement with calculations of model undulators. For undulators with nonlinear steel poles, when the undulator dimensions were scaled, the field distributions remained unchanged for a constant value of (current density x period). It was also shown that, for two scaled undulators, one with linear and one with nonlinear poles, the off-axis field components, normalized to the respective on-axis fields, had the same field distributions near the axis within the calculation errors. This implies that the derived normalized off-axis field for linear poles may be used for beam dynamic analysis in the fields of undulators with nonlinear poles within the beam chamber. Achievable on-axis fields were calculated for short-period undulators with parameters close to those for the proposed International Linear Collider (ILC) positron production undulators. The required undulator parameters for the ILC appear to be achievable depending on the Nb{sub 3}Sn superconductor packing factor in the coil and on how close the chosen operating current is to the critical current.

  4. Evidence for Helical Magnetic fields in Kiloparsec-Scale AGN Jets and the Action of a Cosmic Battery

    NASA Technical Reports Server (NTRS)

    Gabuzda, D. C.; Christodoulou, D. M.; Contopulos, I.; Kazanas, D.

    2012-01-01

    A search for transverse kiloparsec-scale gradients in Faraday rotation-measure (RM) maps of extragalactic radio sources in the literature has yielded 6 AGNs displaying continuous, monotonic RM gradients across their jets, oriented roughly orthogonal to the local jet direction. The most natural interpretation of such transverse RM gradients is that they are caused by the systematic change in the line-of-sight components of helical magnetic fields associated with these jets. All the identified transverse RM gradients increase in the counterclockwise (CCW) direction on the sky relative to the centers of these AGNs. Taken together with the results of Contopoulos et al. who found evidence for a predominance of clockwise (CW) transverse RM gradients across parsec-scale (VLBI) jets, this provides new evidence for preferred orientations of RM gradients due to helical jet magnetic fields, with a reversal from CW in the inner jets to CCW farther from the centers of activity. This can be explained by the "Poynting-Robertson cosmic-battery" mechanism, which can generate helical magnetic fields with a. characteristic "twist," which are expelled with the jet outflows. If the Poynting-Robertson battery mechanism is not operating, an alternative mechanism must be identified, which is able to explain the 'predominance of CW /CCW RM gradients on parsec/kiloparsec scales.

  5. Magnetic chaos healing in hte helical reversed-field pinch: indications from the volume-preserving field line tracing code NEMATO

    SciTech Connect

    Bonfiglio, Daniele; Veranda, M.; Cappello, Susanna; Chacon, Luis; Spizzo, G.

    2010-01-01

    The emergence of a self-organized reversed-field pinch (RFP) helical regime, first shown by 3D MHD numerical simulations, has been highlighted in the RFX-mod experiment at high current operation (IP above 1 MA). In fact, a quasi-stationary helical configuration spontaneously appears, characterized by strong internal electron transport barriers. In such regime electron temperature and density become, to a very good approximation, functions of the helical flux coordinate related to the dominant helical magnetic component. In addition, this regime is diagnosed to be associated with the topological transition to a single-helical-axis (SHAx) state, achieved after the expulsion of the separatrix of the dominant mode's magnetic island. The SHAx state is theoretically predicted to be resilient to the magnetic chaos induced by secondary modes. In this paper, we present initial results of the volume-preserving field line tracing code nemato [Finn J M and Chacon L 2005 Phys. Plasmas 12 054503] applied to study the magnetic topology resulting from 3D MHD simulations of the RFP. First, a successful 2D verification test of the code is shown, then, initial application to a systematic study of chaos healing in the helical RFP is discussed. The separatrix disappearance is confirmed to play an essential role for chaos healing. The triggering effect of a reversed magnetic shear for the formation of ordered surfaces within magnetic chaos is also diagnosed.

  6. EFFECTS OF NON-ISOTROPIC SCATTERING, MAGNETIC HELICITY, AND ADIABATIC FOCUSING ON DIFFUSIVE TRANSPORT OF SOLAR ENERGETIC PARTICLES

    SciTech Connect

    Litvinenko, Yuri E.

    2012-06-10

    Transport of solar energetic particles in interplanetary space is analyzed. A new systematic derivation of the diffusion approximation is given, which incorporates the effects of non-isotropic scattering, magnetic helicity, and adiabatic focusing in a non-uniform large-scale magnetic field. The derivation is based on a system of stochastic differential equations, equivalent to the Fokker-Planck equation, and the new method is a generalization of the Smoluchowski approximation in the theory of the Brownian motion. Simple, physically transparent expressions for the transport coefficients are derived. Different results of earlier treatments of the problem are related to the assumptions regarding the evolving particle distribution.

  7. Towards developing an analytical procedure of defining the equatorial electrojet for correcting satellite magnetic anomaly data

    NASA Technical Reports Server (NTRS)

    Ravat, Dhananjay; Hinze, William J.

    1991-01-01

    Analysis of the total magnetic intensity MAGSAT data has identified and characterized the variability of ionospheric current effects as reflected in the geomagnetic field as a function of longitude, elevation, and time (daily as well as monthly variations). This analysis verifies previous observations in POGO data and provides important boundary conditions for theoretical studies of ionospheric currents. Furthermore, the observations have led to a procedure to remove these temporal perturbations from lithospheric MAGSAT magnetic anomaly data based on 'along-the-dip-latitude' averages from dawn and dusk data sets grouped according to longitudes, time (months), and elevation. Using this method, high-resolution lithospheric magnetic anomaly maps have been prepared of the earth over a plus or minus 50 deg latitude band. These maps have proven useful in the study of the structures, nature, and processes of the lithosphere.

  8. Helicity content and tokamak applications of helicity

    SciTech Connect

    Boozer, A.H.

    1986-05-01

    Magnetic helicity is approximately conserved by the turbulence associated with resistive instabilities of plasmas. To generalize the application of the concept of helicity, the helicity content of an arbitrary bounded region of space will be defined. The definition has the virtues that both the helicity content and its time derivative have simple expressions in terms of the poloidal and toroidal magnetic fluxes, the average toroidal loop voltage and the electric potential on the bounding surface, and the volume integral of E-B. The application of the helicity concept to tokamak plasmas is illustrated by a discussion of so-called MHD current drive, an example of a stable tokamak q profile with q less than one in the center, and a discussion of the possibility of a natural steady-state tokamak due to the bootstrap current coupling to tearing instabilities.

  9. Analysis of the Variation of Energetic Electron Flux with Respect to Longitude and Distance Normal to the Magnetic Equatorial Plane for Galileo Energetic Particle Detector Data

    NASA Technical Reports Server (NTRS)

    Swimm, Randall; Garrett, Henry B.; Jun, Insoo; Evans, Robin W.

    2004-01-01

    In this study we examine ten-minute omni-directional averages of energetic electron data measured by the Galileo spacecraft Energetic Particle Detector (EPD). Count rates from electron channels B1, DC2, and DC3 are evaluated using a power law model to yield estimates of the differential electron fluxes from 1 MeV to 11 MeV at distances between 8 and 51 Jupiter radii. Whereas the orbit of the Galileo spacecraft remained close to the rotational equatorial plane of Jupiter, the approximately 11 degree tilt of the magnetic axis of Jupiter relative to its rotational axis allowed the EPD instrument to sample high energy electrons at limited distances normal to the magnetic equatorial plane. We present a Fourier analysis of the semi-diurnal variation of electron fluxes with longitude.

  10. New-generation empirical magnetic field models: Increasing resolution of equatorial and Birkeland currents and transition from modeling to nowcasting

    NASA Astrophysics Data System (ADS)

    Stephens, G. K.; Sitnov, M. I.; Redmon, R. J.

    2015-12-01

    Classical empirical geomagnetic field models were built using rigid electric current modules whose amplitude and size were determined by predefined functions of solar wind and global parameters, which limited their ability to reconstruct the global morphology of the magnetosphere and its dynamic evolution during geomagnetic storms. The TS07D model mitigated these limitations by replacing the equatorial current modules with basis-function expansions and by introducing a dynamical binning approach based on nearest neighbors. Here we further progress this avenue. Firstly, the number of basis functions is increased and new data from Van Allen Probes and THEMIS missions is added, allowing the model to resolve the spatial structure and evolution of the innermost eastward and banana currents. Then, an enhanced Birkeland current module that more accurately reconstructs the realistic morphology, including the Harang discontinuity and IMF By dependence, is discussed. Lastly, the performance of various nowcasting versions of the model with different sets of the binning parameters is examined for the first time using their direct validation by in-situ geomagnetic field observations, leading to an optimum nowcasting version of the model. Furthermore, the plasma pressure is reconstructed assuming force balance with the empirical magnetic field, and the role of pressure-driven currents is examined.

  11. Equatorial Guinea.

    PubMed

    1989-03-01

    Equatorial Guinea is situated on the Gulf of Guinea along the west African coast between Cameroon and Gabon. The people are predominantly of Bantu origin. The country's ties with Spain are significant; in 1959, it became the Spanish Equatorial region ruled by Spain's commissioner general. Recent political developments in Equatorial Guinea include the formation of the Democratic Party for Equatorial Guinea in July of 1987 and the formation of a 60-member unicameral Chamber of Representatives of the People in 1983. Concerning the population, 83% of the people are Catholic and the official language is Spanish. Poverty and serious health, education and sanitary problems exist. There is no adequate hospital and few trained physicians, no dentists, and no opticians. Malaria is endemic and immunization for yellow fever is required for entrance into the country. The water is not potable and many visitors to the country bring bottled water. The tropical climate of Equatorial Guinea provides the climate for the country's largest exports and source of economy; cacao, wood and coffee. Although the country, as a whole, has progressed towards developing a participatory political system, there are still problems of governmental corruption in the face of grave health and welfare conditions. In recent years, the country has received assistance from the World Bank and the United States to aid in its development.

  12. Wavelet Analysis as a Tool to Localize Magnetic and Cross-helicity Events in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Telloni, D.; Bruno, R.; D'Amicis, R.; Pietropaolo, E.; Carbone, V.

    2012-05-01

    In this paper, we adopt the use of the wavelet transform as a new tool to investigate the time behavior at different scales of reduced magnetic helicity, cross-helicity, and residual energy in space plasmas. The main goal is a better characterization of the fluctuations in which interplanetary flux ropes are embedded. This kind of information is still missing in the present literature, and our tool can represent the basis for a new treatment of in situ measurements of this kind of event. There is a debate about the origins of small-scale flux ropes. It has been suggested that they are formed through magnetic reconnection in the solar wind, such as across the heliospheric current sheet. On the other hand, it has also been suggested that they are formed in the corona, similar to magnetic clouds. Thus, it looks like that there are two populations, one originating in the solar wind via magnetic reconnection across the current sheet in the inner heliosphere and the other originating in the corona. Small-scale flux ropes might be the remnants of the streamer belt blobs formed from disconnection; however, a one-to-one observation of a blob and a small-scale flux rope in the solar wind has yet to be found. Within this panorama of possibilities, this new technique appears to be very promising in investigating the origins of these objects advected by the solar wind.

  13. Magnetic Helicity Spectrum of Solar Wind Fluctuations as a Function of the Angle with Respect to the Local Mean Magnetic Field

    NASA Astrophysics Data System (ADS)

    Podesta, J. J.; Gary, S. P.

    2011-06-01

    Magnetic field data acquired by the Ulysses spacecraft in high-speed streams over the poles of the Sun are used to investigate the normalized magnetic helicity spectrum σ m as a function of the angle θ between the local mean magnetic field and the flow direction of the solar wind. This spectrum provides important information about the constituent modes at the transition to kinetic scales that occurs near the spectral break separating the inertial range from the dissipation range. The energetically dominant signal at scales near the thermal proton gyroradius k bottomρ i ~ 1 often covers a wide band of propagation angles centered about the perpendicular direction, θ ~= 90° ± 30°. This signal is consistent with a spectrum of obliquely propagating kinetic Alfvén waves with k bottom Gt k par in which there is more energy in waves propagating away from the Sun and along the direction of the local mean magnetic field than toward the Sun. Moreover, this signal is principally responsible for the reduced magnetic helicity spectrum measured using Fourier transform techniques. The observations also reveal a subdominant population of nearly parallel propagating electromagnetic waves near the proton inertial scale k par c/ωpi ~ 1 that often exhibit high magnetic helicity |σ m | ~= 1. These waves are believed to be caused by proton pressure anisotropy instabilities that regulate distribution functions in the collisionless solar wind. Because of the existence of a drift of alpha particles with respect to the protons, the proton temperature anisotropy instability that operates when T pbottom/T ppar > 1 preferentially generates outward propagating ion-cyclotron waves and the fire-hose instability that operates when T pbottom/T ppar < 1 preferentially generates inward propagating whistler waves. These kinetic processes provide a natural explanation for the magnetic field observations.

  14. MAGNETIC HELICITY SPECTRUM OF SOLAR WIND FLUCTUATIONS AS A FUNCTION OF THE ANGLE WITH RESPECT TO THE LOCAL MEAN MAGNETIC FIELD

    SciTech Connect

    Podesta, J. J.; Gary, S. P.

    2011-06-10

    Magnetic field data acquired by the Ulysses spacecraft in high-speed streams over the poles of the Sun are used to investigate the normalized magnetic helicity spectrum {sigma}{sub m} as a function of the angle {theta} between the local mean magnetic field and the flow direction of the solar wind. This spectrum provides important information about the constituent modes at the transition to kinetic scales that occurs near the spectral break separating the inertial range from the dissipation range. The energetically dominant signal at scales near the thermal proton gyroradius k{sub perpendicular{rho}i} {approx} 1 often covers a wide band of propagation angles centered about the perpendicular direction, {theta} {approx_equal} 90{sup 0} {+-} 30{sup 0}. This signal is consistent with a spectrum of obliquely propagating kinetic Alfven waves with k{sub perpendicular} >> k{sub ||} in which there is more energy in waves propagating away from the Sun and along the direction of the local mean magnetic field than toward the Sun. Moreover, this signal is principally responsible for the reduced magnetic helicity spectrum measured using Fourier transform techniques. The observations also reveal a subdominant population of nearly parallel propagating electromagnetic waves near the proton inertial scale k{sub ||} c/{omega}{sub pi} {approx} 1 that often exhibit high magnetic helicity |{sigma}{sub m}| {approx_equal} 1. These waves are believed to be caused by proton pressure anisotropy instabilities that regulate distribution functions in the collisionless solar wind. Because of the existence of a drift of alpha particles with respect to the protons, the proton temperature anisotropy instability that operates when T{sub pperpendicular}/T{sub p||} > 1 preferentially generates outward propagating ion-cyclotron waves and the fire-hose instability that operates when T{sub pperpendicular}/T{sub p||} < 1 preferentially generates inward propagating whistler waves. These kinetic processes

  15. Equatorially connected diruthenium(II,III) units toward paramagnetic supramolecular structures with singular magnetic properties.

    PubMed

    Barral, M Carmen; Gallo, Teresa; Herrero, Santiago; Jiménez-Aparicio, Reyes; Torres, M Rosario; Urbanos, Francisco A

    2006-05-01

    The reaction of Ru2Cl(O2CMe)(DPhF)3 (DPhF = N,N'-diphenylformamidinate) with mono- and polycarboxylic acids gives a clean substitution of the acetate ligand, leading to the formation of complexes Ru2Cl(O2CC6H5)(DPhF)3 (1), Ru2Cl(O2CC6H4-p-CN)(DPhF)3 (2), [Ru2Cl(DPhF)3(H2O)]2(O2C)2 (3), [Ru2Cl(DPhF)3]2[C6H4-p-(CO2)2] (4), and [Ru2Cl(DPhF)3]3[C6H3-1,3,5-(CO2)3] (5). The preparation of [Ru2(NCS)(DPhF)3]3[C6H3-1,3,5-(CO2)3] (6) and {[Ru2(DPhF)3(H2O)]3[C6H3-1,3,5-(CO2)3]}(SO3CF3)3 (7) from 5 is also described. All complexes are characterized by elemental analysis, IR and electronic spectroscopy, mass spectrometry, cyclic voltammetry, and variable-temperature magnetic measurements. The crystal structure determinations of complexes 2.0.5THF and 3.THF.4H2O (THF = tetrahydrofuran) are reported. The reactions carried out demonstrate the high chemical stability of the fragment [Ru2(DPhF)3]2+, which is preserved in all tested experimental conditions. The stability of this fragment is also corroborated by the mass spectra. Electrochemical measurements reveal in all complexes one redox process due to the equilibrium Ru2(5+) <--> Ru2(6+). In the polynuclear complex 7, some additional oxidation processes are also observed that have been ascribed to the presence of two types of dimetallic units rather than two consecutive reversible oxidations. The magnetic behavior toward temperature for complexes 1-7 from 300 to 2 K is analyzed. Complexes 1-7 show low values of antiferromagnetic coupling in accordance with the molecular nature in 1 and 2 and the absence of important antiferromagnetic interaction through the carboxylate bridging ligands in 3-7, respectively. In addition, the magnetic properties of complex 7 do not correspond to any magnetic behavior described for diruthenium(II,III) complexes. The experimental data of compound 7 are simulated considering a physical mixture of S = 1/2 and 3/2 spin states. This magnetic study demonstrates the high sensitivity of the electronic

  16. FIRST SYNOPTIC MAPS OF PHOTOSPHERIC VECTOR MAGNETIC FIELD FROM SOLIS/VSM: NON-RADIAL MAGNETIC FIELDS AND HEMISPHERIC PATTERN OF HELICITY

    SciTech Connect

    Gosain, S.; Pevtsov, A. A.; Rudenko, G. V.; Anfinogentov, S. A.

    2013-07-20

    We use daily full-disk vector magnetograms from Vector Spectromagnetograph on Synoptic Optical Long-term Investigations of the Sun system to synthesize the first Carrington maps of the photospheric vector magnetic field. We describe these maps and make a comparison of the observed radial field with the radial field estimate from line-of-sight magnetograms. Furthermore, we employ these maps to study the hemispheric pattern of current helicity density, H{sub c} , during the rising phase of solar cycle 24. The longitudinal average over the 23 consecutive solar rotations shows a clear signature of the hemispheric helicity rule, i.e., H{sub c} is predominantly negative in the north and positive in the south. Although our data include the early phase of cycle 24, there appears to be no evidence for a possible (systematic) reversal of the hemispheric helicity rule at the beginning of the cycle as predicted by some dynamo models. Furthermore, we compute the hemispheric pattern in active region latitudes (-30 Degree-Sign {<=} {theta} {<=} 30 Degree-Sign ) separately for weak (100 G < |B{sub r} | < 500 G) and strong (|B{sub r} | > 1000 G) radial magnetic fields. We find that while the current helicity of strong fields follows the well-known hemispheric rule (i.e., {theta} {center_dot} H{sub c} < 0), H{sub c} of weak fields exhibits an inverse hemispheric behavior (i.e., {theta} {center_dot} H{sub c} > 0), albeit with large statistical scatter. We discuss two plausible scenarios to explain the opposite hemispheric trend of helicity in weak and strong field regions.

  17. Effects of magnetic storm phases on f-layer irregularities from auroral to equatorial latitudes. Quarterly report, 1 April-30 June 1996

    SciTech Connect

    Aarons, J.; Mendillo, M.

    1996-06-30

    Analysis of equatorial observations of GPS from stations on the magnetic equator and in the anomaly region allow the authors to begin to study the morphology of height of plumes and the occurrence pattern of thin layers of irregularities during years of low solar flux. Very high altitude plumes have been observed during magnetic storms in the data sets analyzed for 1993-1996. At high latitudes, a storm expands the irregularity oval moving the irregularity regions-producing scintillation and phase fluctuations to lower latitudes and to polar latitudes.

  18. Controllable synthesis of helical, straight, hollow and nitrogen-doped carbon nanofibers and their magnetic properties

    SciTech Connect

    Li, Xun; Xu, Zheng

    2012-12-15

    Graphical abstract: The helical, straight and hollow carbon nanofibers can be selectively synthesized by adjusting either the reaction temperature or feed gas composition. Display Omitted Highlights: ► CNFs were synthesized via pyrolysis of acetylene on copper NPs. ► The helical, straight, hollow and N-doped CNFs can be selectively synthesized. ► The growth mechanism of different types of CNFs was proposed. -- Abstract: Carbon nanofibers (CNFs) with various morphologies were synthesized by catalytic pyrolysis of acetylene on copper nanoparticles which were generated from the in situ decomposition of copper acetylacetonate. The morphology of the pristine and acid-washed CNFs was investigated by field emission scanning electron microscope and high-resolution transmission electron microscope. Helical, straight and hollow CNFs can be selectively synthesized by adjusting either the reaction temperature or feed gas composition. The growth mechanism for these three types of CNFs was proposed.

  19. HOMOLOGOUS HELICAL JETS: OBSERVATIONS BY IRIS, SDO, AND HINODE AND MAGNETIC MODELING WITH DATA-DRIVEN SIMULATIONS

    SciTech Connect

    Cheung, Mark C. M.; Pontieu, B. De; Tarbell, T. D.; Fu, Y.; Martínez-Sykora, J.; Boerner, P.; Wülser, J. P.; Lemen, J.; Title, A. M.; Hurlburt, N.; Tian, H.; Testa, P.; Reeves, K. K.; Golub, L.; McKillop, S.; Saar, S.; Kleint, L.; Kankelborg, C.; Jaeggli, S.; Carlsson, M.; and others

    2015-03-10

    We report on observations of recurrent jets by instruments on board the Interface Region Imaging Spectrograph, Solar Dynamics Observatory (SDO), and Hinode spacecraft. Over a 4 hr period on 2013 July 21, recurrent coronal jets were observed to emanate from NOAA Active Region 11793. Far-ultraviolet spectra probing plasma at transition region temperatures show evidence of oppositely directed flows with components reaching Doppler velocities of ±100 km s{sup −1}. Raster Doppler maps using a Si iv transition region line show all four jets to have helical motion of the same sense. Simultaneous observations of the region by SDO and Hinode show that the jets emanate from a source region comprising a pore embedded in the interior of a supergranule. The parasitic pore has opposite polarity flux compared to the surrounding network field. This leads to a spine-fan magnetic topology in the coronal field that is amenable to jet formation. Time-dependent data-driven simulations are used to investigate the underlying drivers for the jets. These numerical experiments show that the emergence of current-carrying magnetic field in the vicinity of the pore supplies the magnetic twist needed for recurrent helical jet formation.

  20. A drift-magnetohydrodynamical fluid model of helical magnetic island equilibria in the pedestals of H-mode tokamak plasmas

    SciTech Connect

    Fitzpatrick, R.; Waelbroeck, F. L.

    2010-06-15

    A drift-magnetohydrodynamical (MHD) fluid model is developed for an isolated, steady-state, helical magnetic island chain, embedded in the pedestal of a large aspect ratio, low-beta, circular cross section, H-mode tokamak plasma, to which an externally generated, multiharmonic, static magnetic perturbation whose amplitude is sufficiently large to fully relax the pedestal toroidal ion flow is applied. The model is based on a set of single helicity, reduced, drift-MHD fluid equations which take into account neoclassical poloidal and toroidal flow damping, the perturbed bootstrap current, diamagnetic flows, anomalous cross-field diffusion, average magnetic-field line curvature, and coupling to drift-acoustic waves. These equations are solved analytically in a number of different ordering regimes by means of a systematic expansion in small quantities. For the case of a freely rotating island chain, the main aims of the calculation are to determine the chain's phase velocity, and the sign and magnitude of the ion polarization term appearing in its Rutherford radial width evolution equation. For the case of a locked island chain, the main aims of the calculation are to determine the sign and magnitude of the polarization term.

  1. Effects of magnetic-storm phases on F-layer irregularities from auroral to equatorial latitudes. Quarterly report, 1 April-30 June 1990

    SciTech Connect

    Aarons, J.; Mendillo, M.

    1990-06-30

    In progress is a major study of the effect of the ring current on the sub-auroral and equatorial generation of patches of irregularities. In addition studies are on-going for determining the dynamics of electric field penetration in latitude with the start of a major geomagnetic storm. For the first time simultaneous observations of irregularities at high and equatorial latitudes will be utilized. The studies use scintillation and spread F data as well as optical observations for data from 1971-1989. Two basic concepts are being studied. With the statistics of morphology of F-layer irregularities now in hand, it is possible to forecast in broad terms what to expect at equatorial, auroral and polar latitudes during various levels of solar flux. With the beginning of an understanding of the effect of the various phases of magnetic storms on generating irregularities as noted from the solar wind, ring current, convection, auroral index, and magnetic index parameters, it is possible to roughly forecast levels of F-layer irregularity intensity. With these in hand, the utility of space, time, and frequency diversity can be evaluated. Diversity could be used if forecasting in real time was possible.

  2. Modification of tokamak edge plasma turbulence and transport by biasing and resonant helical magnetic field.

    PubMed

    Lafouti, Mansoureh; Ghoranneviss, Mahmood; Meshkani, Sakineh; Salar Elahi, Ahmad

    2013-05-01

    In this paper, both Resonant Helical magnetic Field (RHF) and limiter biasing have been applied to the tokamak. We have investigated their effects on the turbulence and transport of the particles at the edge of the plasma. The biased limiter voltage has been fixed at 200 V and RHF has L = 2 and L = 3. Also, the effects of the time order of the application of RHF and biasing to the tokamak have been explored. The experiment has been performed under three conditions. At first, the biasing and RHF were applied at t = 15 ms and at t = 20 ms. In the next step, RHF and biasing were applied at t = 15 ms and t = 20 ms, respectively. Finally, both of them were turned on at t = 15 ms until the end of the shot. For this purpose, the ion saturation current (I(sat)) and the floating potential (V(f)) have been measured by the Langmuir probe at r/a = 0.9. Moreover, the power spectra of I(sat) and floating potential gradient (∇V(f)), the coherency, the phase between them, and the particle diffusion coefficient have been calculated. The density fluctuations of the particles have been measured by the Rake probe and they have been analyzed with the Probability Distribution Function (PDF) technique. Also the particle diffusion coefficient has been determined by the Fick's law. The results show that, when RHF and biasing were applied at the same time to the plasma (during flatness region of plasma current), the radial particle density gradient, the radial particle flux, and the particle diffusion coefficient decrease about 50%, 60%, and 55%, respectively, compared to the other conditions. For more precision, the average values of the particle flux and the particle density gradient were calculated in the work. When the time is less than 15 ms, the average values of the particle flux and the particle density gradient are identical under all conditions, but in the other time interval they change. They reduce with the simultaneous application of biasing and RHF. The same results obtain

  3. Two novel CPs with double helical chains based rigid tripodal ligands: Syntheses, crystal structures, magnetic susceptibility and fluorescence properties

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Hou, Xiang-Yang; Zhai, Quan-Guo; Hu, Man-Cheng

    2016-11-01

    Two three-dimensional coordination polymers (CPs), namely [Cd(bpydb)- (H2bpydb)]n·0.5nH2O (1), and [Cu2(bpydb)2]n (2) (2,6-di-p-carboxyphenyl-4,4'- bipyridine1 = H2bpydb), containing a novel double-helical chains, which have been solvothermal synthesized, characterized, and structure determination. CPs 1-2 reveal the new (3,5)-net and (3,6)-net alb topology, respectively. The fluorescence properties of CPs 1-2 were investigated, and magnetic susceptibility measurements indicate that compound 1 has dominating antiferromagnetic couplings between metal ions.

  4. Goddard Space Flight Center specification for Helical-Scan 8-millimeter (mm) magnetic digital data tape cartridge

    NASA Technical Reports Server (NTRS)

    Perry, Jimmy L.

    1992-01-01

    The same kind of standard and controls are established that are currently in use for the procurement of new analog, digital, and IBM/IBM compatible 3480 tape cartridges, and 1 in wide channel video magnetic tapes. The Magnetic Tape Certification Facility (MTCF) maintains a Qualified Products List (QPL) for the procurement of new magnetic media and uses the following specifications for the QPL and Acceptance Tests: (1) NASA TM-79724 is used for the QPL and Acceptance Testing of new analog magnetic tapes; (2) NASA TM-80599 is used for the QPL and Acceptance Testing of new digital magnetic tapes; (3) NASA TM-100702 is used for the QPL and Acceptance Testing of new IBM/IBM compatible 3840 magnetic tape cartridges; and (4) NASA TM-100712 is used for the QPL and Acceptance Testing of new 1 in wide channel video magnetic tapes. This document will be used for the QPL and Acceptance Testing of new Helical Scan 8 mm digital data tape cartridges.

  5. Effects of magnetic storm phases on F-layer irregularities from auroral to equatorial latitudes. Quarterly report, 1 July-30 September 1993

    SciTech Connect

    Aarons, J.; Mendillo, M.

    1993-09-30

    Although the general pattern of equatorial F-layer irregularities as a function of latitude, longitude, and geophysical conditions is in hand, the day to day variations are still difficult to evaluate. The forcing functions for day to day variations appear to be neutral winds and electric field conditions. The data indicate that at times in the irregularity season', irregularities are produced day after day. However nights of irregularities are at other times followed by one or more nights with an absence of irregularities. For the equatorial region, using scintillation data at 136 MHz, the authors have correlated the occurrence of irregularities at several stations along a relatively narrow range of longitudes at various latitudes in the Pacific sector. The sites used are in the Philippines, Taiwan, and Korea. The correlation of daily occurrence was poor. For example at magnetically quiet times there are irregularities noted at a station such as Osan, Korea (dip latitude 30 deg) with little irregularity activity at Manila (dip latitude 5 deg ), relatively close in longitude. For latitudes somewhat higher that the anomaly region, the problem arises of separating polewards effects of the equatorial plumes and the equatorwards motion of irregularity development originating in the auroral region during severe magnetic storms. A possibility exists for the generation of another class of F-layer irregularities at mid-latitudes with a body of data from Japan, Port Moresby, Osan, and Palehua, Hawaii. This is suggestive that at least in the Pacific region there is a low latitude generation of irregularities distinct from equatorial or auroral mechanisms.

  6. Comment on 'Helical magnetorotational instability in magnetized Taylor-Couette flow'

    SciTech Connect

    Ruediger, G.; Hollerbach, R.

    2007-12-15

    Liu et al. [Phys. Rev. E 74, 056302 (2006)] have presented a WKB analysis of the helical magnetorotational instability (HMRI), and claim that it does not exist for Keplerian rotation profiles. We show that, if radial boundary conditions are included, the HMRI can exist even for rotation profiles as flat as Keplerian, provided only that at least one of the boundaries is sufficiently conducting.

  7. Helical plasma thruster

    SciTech Connect

    Beklemishev, A. D.

    2015-10-15

    A new scheme of plasma thruster is proposed. It is based on axial acceleration of rotating magnetized plasmas in magnetic field with helical corrugation. The idea is that the propellant ionization zone can be placed into the local magnetic well, so that initially the ions are trapped. The E × B rotation is provided by an applied radial electric field that makes the setup similar to a magnetron discharge. Then, from the rotating plasma viewpoint, the magnetic wells of the helically corrugated field look like axially moving mirror traps. Specific shaping of the corrugation can allow continuous acceleration of trapped plasma ions along the magnetic field by diamagnetic forces. The accelerated propellant is expelled through the expanding field of magnetic nozzle. By features of the acceleration principle, the helical plasma thruster may operate at high energy densities but requires a rather high axial magnetic field, which places it in the same class as the VASIMR{sup ®} rocket engine.

  8. Helical plasma thruster

    NASA Astrophysics Data System (ADS)

    Beklemishev, A. D.

    2015-10-01

    A new scheme of plasma thruster is proposed. It is based on axial acceleration of rotating magnetized plasmas in magnetic field with helical corrugation. The idea is that the propellant ionization zone can be placed into the local magnetic well, so that initially the ions are trapped. The E × B rotation is provided by an applied radial electric field that makes the setup similar to a magnetron discharge. Then, from the rotating plasma viewpoint, the magnetic wells of the helically corrugated field look like axially moving mirror traps. Specific shaping of the corrugation can allow continuous acceleration of trapped plasma ions along the magnetic field by diamagnetic forces. The accelerated propellant is expelled through the expanding field of magnetic nozzle. By features of the acceleration principle, the helical plasma thruster may operate at high energy densities but requires a rather high axial magnetic field, which places it in the same class as the VASIMR® rocket engine.

  9. Impact of magnetic topology on radial electric field profile in the scrape-off layer of the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; Ida, K.; Kamiya, K.; Yoshinuma, M.; Tsuchiya, H.; Kobayashi, M.; Kawamura, G.; Ohdachi, S.; Sakakibara, S.; Watanabe, K. Y.; Hudson, S.; Feng, Y.; Yamada, I.; Yasuhara, R.; Tanaka, K.; Akiyama, T.; Morisaki, T.; The LHD Experiment Group

    2016-09-01

    The radial electric field in the plasma edge is studied in the Large Helical Device (LHD) experiments. When magnetic field lines become stochastic or open at the plasma edge and connected to the vessel, electrons are lost faster than ions along these field lines. Then, a positive electric field appears in the plasma edge. The radial electric field profile can be used to detect the effective plasma boundary. Magnetic topology is an important issue in stellarator and tokamak research because the 3D boundary has the important role of controlling MHD edge stability with respect to ELMs, and plasma detachment. Since the stochastic magnetic field layer can be controlled in the LHD by changing the preset vacuum magnetic axis, this device is a good platform to study the properties of the radial electric field that appear with the different stochastic layer width. Two magnetic configurations with different widths of the stochastic layer as simulated in vacuum are studied for low-β discharges. It has been found that a positive electric field appeared outside of the last closed flux surface. In fact the positions of the positive electric field are found in the boundary between of the stochastic layer and the scrape-off layer. To understand where is the boundary of the stochastic layer and the scrape-off layer, the magnetic field lines are analyzed statistically. The variance of the magnetic field lines in the stochastic layer is increased outwards for both configurations. However, the skewness, which means the asymmetry of the distribution of the magnetic field line, increases for only one configuration. If the skewness is large, the connection length becomes effectively short. Since that is consistent with the experimental observation, the radial electric field can be considered as an index of the magnetic topology.

  10. Equatorial Guinea.

    PubMed

    1984-06-01

    Attention in this discussion of Equatorial Guinea is directed to the following: the people, history, geography, government, political conditions, the economy, foreign relations, and relations between the US and Equatorial Guinea. The population was estimated at 304,000 in 1983 and the annual growth rate was estimated in the range of 1.7-2.5. The infant mortality rate is 142.9/1000 with a life expectancy of 44.4 years for males and 47.6 years for females. The majority of the Equatoguinean people are of Bantu origin. The largest tribe, the Fang, is indigenous to the mainland, although many now also live on Bioko Island. Portuguese explorers found the island of Bioko in 1471, and the Portuguese retained control until 1778, when the island, adjacent islets, and the commercial rights to the mainland between the Niger and Ogooue Rivers were ceded to Spain. Spain lacked the wealth and the interest to develop an extensive economic infrastructure in Equatorial Guinea during the 1st half of this century, but the Spanish did help Equatorial Guinea achieve 1 of the highest literacy rates in Africa. They also founded a good network of health care facilities. In March 1968, under pressure from Guinean nationalists, Spain announced that it would grant independence to Equatorial Guinea as rapidly as possible. A referendum was held on August 11, 1968, and 63% of the electorate voted in favor of the constitution, which provided for a government with a general assembly and presidentially appointed judges in the Supreme Court. After the coup in August 1979, power was placed in the hands of a Supreme Military Council. A new constitution came into effect after a popular vote in August 1982, abolishing the Supreme Military Council. Under the terms of the constitution, the president was given extensive powers. By the end of 1983, a 60-member Chamber of Representatives of the people had been formed. The government, which is credited with restoring greater personal freedom, is regarded

  11. Equatorial sporadic E-layer abnormal density enhancement during the recovery phase of the December 2006 magnetic storm: A case study

    NASA Astrophysics Data System (ADS)

    Resende, L. C. A.; Denardini, C. M.

    2012-04-01

    Sporadic layers appear in the equatorial region ( E sq) between 90 and 130 km mainly due to irregularities in the electrojet equatorial (EEJ) current. In the present work, we have analyzed the behavior of the frequency parameters associated with these sporadic layers, covering the days before, during, and subsequent to, the intense magnetic storm that occurred on December 14, 2006. The parameters used in our analyses are the top frequency ( f t E s) and blanketing frequency ( f b E s) of the E s layer as measured over São Luís, Brazil (2.33°S, 44.2°W, dip: -4.5°) by digital ionosonde. A tentative association between these parameters and X-ray data measured by sensors on board the GOES satellite was carried out. Also, we investigated the effects on the dynamics of the equatorial electrojet using magnetometer data related to the presence of these E s layers. Our analyses show that there are notable changes in the f b E s, which are characterized by the occurrence of peaks that exceed the ambient background values.

  12. Effects of magnetic storm phases on f-layer irregularities from auroral to equatorial latitudes. Quarterly report, 1 October-31 December 1993

    SciTech Connect

    Aarons, J.; Mendillo, M.

    1993-12-31

    During this quarter there was the start of an extensive review of the literature on middle latitude irregularities. In earlier reports the authors have noted the levels of irregularities at latitudes above the equatorial anomaly region (within 15 degrees of the magnetic equator) thru their analysis of a few examples of raw data from Osan, Korea. They then began to reduce and analyze data from Puerto Rico and Hawaii using 136 MHz scintillation data taken during both high and low solar flux years. At the levels that can be noted (peak to peak excursions of 15-20 dB) there is considerable activity.

  13. Nonlinear theory of a free electron laser with a helical wiggler and an axial guide magnetic field

    NASA Astrophysics Data System (ADS)

    Ginzburg, N. S.; Peskov, N. Yu.

    2013-09-01

    A 1D nonlinear theory of a free electron laser (FEL) with a helical wiggler and an axial guide magnetic field is developed based on averaged equations of the electron motion. By averaging we separated two different cases of the e-beam/rf-wave interaction. The first one corresponds to the traditional wiggler synchronism (resonance) of rf wave with the electrons moving along stationary helical trajectories. The second one corresponds to combination resonances distinguishing by excitation of oscillation of the electrons near the stationary helical trajectory. Comparative analysis of the FEL operation in different regimes has been studied under the traditional wiggler synchronism condition. It was shown that FELs operated far from cyclotron resonance (including a reversed guide field orientation) possess low sensitivity to the initial velocity spread in the driving beam resulting in high electron efficiency. In contrast, under the weak guide field (the gyrofrequency is less than the bounce frequency) of a conventional orientation, the FEL efficiency is restricted by a significant increase in the transverse velocity of the electrons during the interaction with the rf wave that results in violation of the synchronism conditions and is accompanied by electron current losses. An additional mechanism of FEL efficiency enhancement under the conventional guide field orientation in the conditions when the gyrofrequency is higher than the bounce frequency, based on the dependence of the effective mass of the oscillating electrons on their energy, was demonstrated. Results of the theoretical analysis are compared with the results of experimental studies of FEL oscillators. The specific features of energy extraction from the electron beam under condition of an abnormal Doppler effect in the case of the combination resonance are described. This regime is beneficial to increase radiation frequency keeping wiggler period and electron energies.

  14. A novel approach to calculate inductance and analyze magnetic flux density of helical toroidal coil applicable to Superconducting Magnetic Energy Storage systems (SMES)

    NASA Astrophysics Data System (ADS)

    Alizadeh Pahlavani, M. R.; Shoulaie, A.

    2010-04-01

    In this paper, formulas are proposed for the self and mutual inductance calculations of the helical toroidal coil (HTC) by the direct and indirect methods at superconductivity conditions. The direct method is based on the Neumann’s equation and the indirect approach is based on the toroidal and the poloidal components of the magnetic flux density. Numerical calculations show that the direct method is more accurate than the indirect approach at the expense of its longer computational time. Implementation of some engineering assumptions in the indirect method is shown to reduce the computational time without loss of accuracy. Comparison between the experimental measurements and simulated results for inductance, using the direct and the indirect methods indicates that the proposed formulas have high reliability. It is also shown that the self inductance and the mutual inductance could be calculated in the same way, provided that the radius of curvature is >0.4 of the minor radius, and that the definition of the geometric mean radius in the superconductivity conditions is used. Plotting contours for the magnetic flux density and the inductance show that the inductance formulas of helical toroidal coil could be used as the basis for coil optimal design. Optimization target functions such as maximization of the ratio of stored magnetic energy with respect to the volume of the toroid or the conductor’s mass, the elimination or the balance of stress in some coordinate directions, and the attenuation of leakage flux could be considered. The finite element (FE) approach is employed to present an algorithm to study the three-dimensional leakage flux distribution pattern of the coil and to draw the magnetic flux density lines of the HTC. The presented algorithm, due to its simplicity in analysis and ease of implementation of the non-symmetrical and three-dimensional objects, is advantageous to the commercial software such as ANSYS, MAXWELL, and FLUX. Finally, using the

  15. Helical axis stellarator with noninterlocking planar coils

    DOEpatents

    Reiman, Allan; Boozer, Allen H.

    1987-01-01

    A helical axis stellarator using only noninterlocking planar, non-circular coils, generates magnetic fields having a magnetic well and large rotational transform with resultant large equilibrium beta.

  16. Nighttime VHF scintillations at 23 deg N magnetic latitude and their association with equatorial F region irregularities

    SciTech Connect

    Dabas, R.S.; Reddy, B.M.

    1986-06-01

    Based on ETS-II geostationary satellite (130 deg E) 136-MHz radio beacon amplitudes, a study of postsunset VHF scintillations observed during the January-February 1980 solar maximum period confirms that they are essentially controlled by the generation of equatorial F region irregularities. This latitude is substantially beyond the 84.4 deg E geographic meridian equatorial anomaly daytime crest. Good agreement between the observed scintillation occurrence pattern and characteristics, and previous results reported up to 21 deg N (Somayajulu et al., 1984), is found, and the occurrence of 23 deg N scintillations is found to be conditional to their prior occurrence at lower latitudes. It is also shown that, at least during high solar activity, the equator irregularities extend to altitudes in excess of 1300 km in the Indian sector, and consequently, cause scintillations in a much wider latitudinal belt. 36 references.

  17. Overview of transport and MHD stability study: focusing on the impact of magnetic field topology in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Ida, K.; Nagaoka, K.; Inagaki, S.; Kasahara, H.; Evans, T.; Yoshinuma, M.; Kamiya, K.; Ohdach, S.; Osakabe, M.; Kobayashi, M.; Sudo, S.; Itoh, K.; Akiyama, T.; Emoto, M.; Dinklage, A.; Du, X.; Fujii, K.; Goto, M.; Goto, T.; Hasuo, M.; Hidalgo, C.; Ichiguchi, K.; Ishizawa, A.; Jakubowski, M.; Kawamura, G.; Kato, D.; Morita, S.; Mukai, K.; Murakami, I.; Murakami, S.; Narushima, Y.; Nunami, M.; Ohno, N.; Pablant, N.; Sakakibara, S.; Seki, T.; Shimozuma, T.; Shoji, M.; Tanaka, K.; Tokuzawa, T.; Todo, Y.; Wang, H.; Yokoyama, M.; Yamada, H.; Takeiri, Y.; Mutoh, T.; Imagawa, S.; Mito, T.; Nagayama, Y.; Watanabe, K. Y.; Ashikawa, N.; Chikaraishi, H.; Ejiri, A.; Furukawa, M.; Fujita, T.; Hamaguchi, S.; Igami, H.; Isobe, M.; Masuzaki, S.; Morisaki, T.; Motojima, G.; Nagasaki, K.; Nakano, H.; Oya, Y.; Suzuki, C.; Suzuki, Y.; Sakamoto, R.; Sakamoto, M.; Sanpei, A.; Takahashi, H.; Tsuchiya, H.; Tokitani, M.; Ueda, Y.; Yoshimura, Y.; Yamamoto, S.; Nishimura, K.; Sugama, H.; Yamamoto, T.; Idei, H.; Isayama, A.; Kitajima, S.; Masamune, S.; Shinohara, K.; Bawankar, P. S.; Bernard, E.; von Berkel, M.; Funaba, H.; Huang, X. L.; T., Ii; Ido, T.; Ikeda, K.; Kamio, S.; Kumazawa, R.; Kobayashi, T.; Moon, C.; Muto, S.; Miyazawa, J.; Ming, T.; Nakamura, Y.; Nishimura, S.; Ogawa, K.; Ozaki, T.; Oishi, T.; Ohno, M.; Pandya, S.; Shimizu, A.; Seki, R.; Sano, R.; Saito, K.; Sakaue, H.; Takemura, Y.; Tsumori, K.; Tamura, N.; Tanaka, H.; Toi, K.; Wieland, B.; Yamada, I.; Yasuhara, R.; Zhang, H.; Kaneko, O.; Komori, A.; Collaborators

    2015-10-01

    The progress in the understanding of the physics and the concurrent parameter extension in the large helical device since the last IAEA-FEC, in 2012 (Kaneko O et al 2013 Nucl. Fusion 53 095024), is reviewed. Plasma with high ion and electron temperatures (Ti(0) ˜ Te(0) ˜ 6 keV) with simultaneous ion and electron internal transport barriers is obtained by controlling recycling and heating deposition. A sign flip of the nondiffusive term of impurity/momentum transport (residual stress and convection flow) is observed, which is associated with the formation of a transport barrier. The impact of the topology of three-dimensional magnetic fields (stochastic magnetic fields and magnetic islands) on heat momentum, particle/impurity transport and magnetohydrodynamic stability is also discussed. In the steady state operation, a 48 min discharge with a line-averaged electron density of 1 × 1019 m-3 and with high electron and ion temperatures (Ti(0) ˜ Te(0) ˜ 2 keV), resulting in 3.36 GJ of input energy, is achieved.

  18. Specific features of the motion of neutrons in a medium with a helical magnetic structure

    SciTech Connect

    Fraerman, A. A. Udalov, O. G.

    2007-02-15

    The specific features of the motion of neutrons in a noncoplanar magnetic field are considered by an example of the magnetization distribution in the form of a conical helix. The reflection coefficients of neutrons from holmium crystals are calculated. It is shown that, for a noncoplanar distribution of a magnetic field in a crystal, the reflection coefficient of neutrons with spin flip exhibits an additional feature.

  19. Generation of Helical and Axial Magnetic Fields by the Relativistic Laser Pulses in Under-dense Plasma: Three-Dimensional Particle-in-Cell Simulation

    NASA Astrophysics Data System (ADS)

    Zheng, Chun-Yang; Zhu, Shao-Ping; He, Xian-Tu

    2002-07-01

    The quasi-static magnetic fields created in the interaction of relativistic laser pulses with under-dense plasmas have been investigated by three-dimensional particle-in-cell simulation. The relativistic ponderomotive force can drive an intense electron current in the laser propagation direction, which is responsible for the generation of a helical magnetic field. The axial magnetic field results from a difference beat of wave-wave, which drives a solenoidal current. In particular, the physical significance of the kinetic model for the generation of the axial magnetic field is discussed.

  20. The dynamic ergodic divertor in the TEXTOR tokamak: plasma response to dynamic helical magnetic field perturbations

    NASA Astrophysics Data System (ADS)

    Finken, K. H.; Abdullaev, S. S.; Biel, W.; de Bock, M. F. M.; Busch, C.; Farshi, E.; von Hellermann, M.; Hogeweij, G. M. D.; Jakubowski, M.; Jaspers, R.; Koslowski, H. R.; Kraemer-Flecken, A.; Lazaros, A.; Lehnen, M.; Liang, Y.; Nicolai, A.; Schmitz, O.; Unterberg, B.; Westerhof, E.; Wolf, R.; Zimmermann, O.; de Baar, M.; Bertschinger, G.; Brezinsek, S.; Classen, I. G. J.; Donné, A. J. H.; Esser, H. G.; Gerhauser, H.; Giesen, B.; Harting, D.; Hoekzema, J. A.; Huettemann, P. W.; Jachmich, S.; Jakubowska, K.; Kalupin, D.; Kelly, F.; Kikuchi, Y.; Kirschner, A.; Koch, R.; Korten, M.; Kreter, A.; Krom, J.; Kruezi, U.; Litnovsky, A.; Loozen, X.; Lopes Cardozo, N. J.; Lyssoivan, A.; Marchuk, O.; Mertens, Ph; Messiaen, A.; Neubauer, O.; Philipps, V.; Pospieszczyk, A.; Reiser, D.; Reiter, D.; Rogister, A. L.; Van Rompuy, T.; Savtchkov, A.; Samm, U.; Schorn, R. P.; Schueller, F. C.; Schweer, B.; Sergienko, G.; Telesca, K. H. G.; Tokar, M.; Van Oost, G.; Uhlemann, R.; Van Wassenhove, G.; Weynants, R.; Wiesen, S.; Xu, Y.

    2004-12-01

    Recently, the dynamic ergodic divertor (DED) of TEXTOR has been studied in an m/n = 3/1 set-up which is characterized by a relatively deep penetration of the perturbation field. The perturbation field creates (a) a helical divertor, (b) an ergodic pattern and/or (c) excitation of tearing modes, depending on whether the DED current is static, rotating in the co-current direction or in the counter-current direction. Characteristic divertor properties such as the high recycling regime or enhanced shielding have been studied. A strong effect of the ergodization is spin up of the plasma rotation, possibly due to the electric field at the plasma edge. Tearing modes are excited in a rather reproducible way and their excitation threshold value, their motion and their reduction due to the ECRH/ECCD have been studied. The different scenarios are characterized by strong modifications of the toroidal velocity profile and by a reduced or enhanced radial transport.

  1. A COMPARATIVE STUDY OF RIBO-, DEOXYRIBO-, AND HYBRID OLIGONUCLEOTIDE HELICES BY NUCLEAR MAGNETIC RESONANCE

    SciTech Connect

    Pardi, Arthur; Martin, Francis H.; Tinoco, Jr., Ignacio

    1980-11-01

    The nonexchangeable base protons and the hydrogen- bonding NH-N imino protons were used to study the conformations and the helix-coil transitions in the following oligonucleotides: (I) dCT{sub 5}G + dCA{sub 5}G, (II) rCU{sub 5}G + rCA{sub 5}G, (III) dCT{sub 5}G + rCA{sub 5}G, (IV) rCU{sub 5}G + dCA{sub 5}G. The first three mixtures all form stable double-helical structures at 5{degrees}C, whereas IV forms a triple strand with a ratio of 2:1 rCU{sub 5}G:dCA{sub 5}G. The chemical shifts of the imino protons in the double strands indicate that I, II, and III have different conformations in solution. For example, the hydrogen-bonded proton of one of the C-G base pairs is more shielded (a 0.4-ppm upfield shift) in helix I than in helix II or III. This implies a significant change in helical parameters, such as the winding angle, the distance between base pairs, or overlap of the bases. The coupling constants of the H1’ sugar protons show that helix I has 90% 2’-endo sugar conformation, whereas helix III has greater than 85% 3’-endo conformation for the observed sugar rings. The sugar pucker data are consistent with helix I having B-family geometry; III has A-family geometry. The chemical shifts of the nonexchangeable base protons in system I were followed with increasing temperature. The midpoints for the transitions, T{sub m}’s, for all the base protons were 28-30 {degrees}C; this indicates an all-or-none transition.

  2. Helical-D pinch

    SciTech Connect

    Schaffer, M.J.

    1997-08-01

    A stabilized pinch configuration is described, consisting of a D-shaped plasma cross section wrapped tightly around a guiding axis. The {open_quotes}helical-D{close_quotes} geometry produces a very large axial (toroidal) transform of magnetic line direction that reverses the pitch of the magnetic lines without the need of azimuthal (poloidal) plasma current. Thus, there is no need of a {open_quotes}dynamo{close_quotes} process and its associated fluctuations. The resulting configuration has the high magnetic shear and pitch reversal of the reversed field pinch (RFP). (Pitch = P = qR, where R = major radius). A helical-D pinch might demonstrate good confinement at q << 1.

  3. Radio wave scintillations at equatorial regions

    NASA Technical Reports Server (NTRS)

    Poularikas, A. D.

    1972-01-01

    Radio waves, passing through the atmosphere, experience amplitude and phase fluctuations know as scintillations. A characterization of equatorial scintillation, which has resulted from studies of data recorded primarily in South America and equatorial Africa, is presented. Equatorial scintillation phenomena are complex because they appear to vary with time of day (pre-and postmidnight), season (equinoxes), and magnetic activity. A wider and more systematic geographical coverage is needed for both scientific and engineering purposes; therefore, it is recommended that more observations should be made at earth stations (at low-geomagnetic latitudes) to record equatorial scintillation phenomena.

  4. Combined effects of a magnetic field and a helical force on the onset of a rotating Rayleigh-Bénard convection with free-free boundaries

    NASA Astrophysics Data System (ADS)

    Chabi Orou, Jean Bio; Pomalégni, Gisèle

    2015-11-01

    We investigate the combined effects of rotation , magnetic field and helical force on the onset of stationary and oscillatory convection in a horizontal electrically conducting fluid layer heated from below with free-free boundary conditions. For this investigation the linear stability analysis studied by Chandrasekhar (1961) is used. We obtain the condition for the formation of a single large scale structure. In (Pomalégni et al., 2014) it was shown the existence of a critical value Scr of the intensity of the helical force for which the apparition of two cells at marginal stability for the oscillatory convection is obtained. Then, we have shown here how the increasing of parameter Ta influences this critical value of the helical force intensity.

  5. Physical interpretation of the angle-dependent magnetic helicity spectrum in the solar wind: The nature of turbulent fluctuations near the proton gyroradius scale

    SciTech Connect

    Klein, Kristopher G.; Howes, Gregory G.; TenBarge, Jason M.; Podesta, John J.

    2014-04-20

    Motivated by recent observations of distinct parallel and perpendicular signatures in magnetic helicity measurements segregated by wave period and angle between the local magnetic field and the solar wind velocity, this paper undertakes a comparison of three intervals of Ulysses data with synthetic time series generated from a physically motivated turbulence model. From these comparisons, it is hypothesized that the observed signatures result from a perpendicular cascade of Alfvénic fluctuations and a local, non-turbulent population of ion-cyclotron or whistler waves generated by temperature anisotropy instabilities. By constraining the model's free parameters through comparison to in situ data, it is found that, on average, ∼95% of the power near dissipative scales is contained in a perpendicular Alfvénic cascade and that the parallel fluctuations are propagating nearly unidirectionally. The effects of aliasing on magnetic helicity measurements are considered and shown to be significant near the Nyquist frequency.

  6. Chinks in Solar Dynamo Theory: Turbulent Diffusion, Dynamo Waves and Magnetic Helicity

    NASA Technical Reports Server (NTRS)

    DeLuca, E. E.; Wagner, William J. (Technical Monitor)

    2001-01-01

    We have investigated the generation of magnetic fields in the Sun using two-dimensional and three-dimensional numerical simulations. The results of our investigations have been presented at scientific meetings and published.

  7. Electron bunch acceleration in an inverse free-electron laser with a helical magnetic wiggler and axial guide field

    SciTech Connect

    Mirzanejhad, Saeed; Sohbatzadeh, Farshad; Asri, Mehdi; Toosi, Ershad Sadeghi

    2006-12-15

    Electron bunch acceleration by a laser pulse having Gaussian radial and temporal profiles of intensity has been studied numerically in a static helical magnetic wiggler in vacuum. The main electron bunch parameters for simulations are 10 MeV initial energy with 0.1% longitudinal energy spread, 1 mm mrad rms transverse emittance, and 3x10{sup 12} cm{sup -3} density. It is shown that the radial Gaussian profile can decrease the acceleration gradient compared with that of the plane-wave approximation due to the reduction of electron-pulse interaction area. In order to collimate electron bunch and overcome the decreasing of the acceleration gradient, an external axial magnetic field is used. The importance of the electron initial phase with respect to laser pulse is considered, and some appropriate values are found. Finally, acceleration of a femtosecond (fs) microbunch with an optimum appropriate initial phase is considered, which leads to a nearly monoenergetic microbunch and an acceleration gradient of about {approx_equal}0.2 GeV/m.

  8. Test of a NbTi Superconducting Quadrupole Magnet Based on Alternating Helical Windings

    SciTech Connect

    Caspi, S.; Trillaud, F.; Godeke, A.; Dietderich, D.; Ferracin, P.; Sabbi, G.; Giloux, C.; Perez, J. G.; Karppinen, M.

    2009-08-16

    It has been shown that by superposing two solenoid-like thin windings, that are oppositely skewed (tilted) with respect to the bore axis, the combined current density on the surface is cos({theta})-like and the resulting magnetic field in the bore is a pure dipole field. Following a previous test of such a superconducting dipole magnet, a quadrupole magnet was designed and built using similar principles. This paper describes the design, construction and test of a 75 mm bore 600 mm long superconducting quadrupole made with NbTi wire. The simplicity of the design, void of typical wedges, end-spacers and coil assembly, is especially suitable for future high field insert coils using Nb{sub 3}Sn as well as HTS wires. The 3 mm thick coil reached 46 T/m but did not achieve its current plateau.

  9. Chiral single-chain magnet: helically stacked [Mn(III)2Cu(II)] triangles.

    PubMed

    Shiga, Takuya; Maruyama, Kazuya; Newton, Graham N; Inglis, Ross; Brechin, Euan K; Oshio, Hiroki

    2014-05-01

    The one-dimensional complex [Mn(III)2Cu(II)(μ3-O)(Cl-sao)3(EtOH)2]·EtOH (Mn2Cu) was obtained by the metal replacement reaction of the trinuclear manganese complex (Et3NH)[Mn(III)3(μ3-O)Cl2(Cl-sao)3(MeOH)2(H2O)2] with [Cu(acac)2]. The Mn2Cu chain exhibits single-chain-magnet behavior with finite-size effects due to its large magnetic anisotropy.

  10. Field evolution of the magnetic phase transition in the helical magnet MnSi inferred from ultrasound studies

    NASA Astrophysics Data System (ADS)

    Petrova, A. E.; Stishov, S. M.

    2015-06-01

    The longitudinal and transverse ultrasound speeds and attenuation were measured in a MnSi single crystal in the temperature range of 2-40 K and magnetic fields up to 7 Tesla. The magnetic phase diagram of MnSi in applied magnetic field appears to depend on the experimental setups, which is related to a difference in demagnetization factors arising due to the disk shape of the sample. The magnetic phase transition in MnSi in zero magnetic field is signified by a quasidiscontinuity in the c11 elastic constant, which varies significantly with magnetic field. It is notable that the region where the c11 discontinuity almost vanishes closely corresponds to the extent of skyrmion phase along the magnetic to paramagnetic transition. This implies that the c11 elastic constant is almost continuous through the transition from the skyrmion to paramagnetic phases. A recovery of the discontinuity of c11 and enhanced sound absorption occur at the crossing of the phase transition line and the line of minima in c11. The powerful fluctuations at the minima of c11 make the mentioned crossing point similar to a critical end point, where a second order phase transition meets a first order one.

  11. The storm-time equatorial electrojet

    NASA Technical Reports Server (NTRS)

    Burrows, K.; Sastry, T. S. G.; Sampath, S.; Stolarik, J. D.; Usher, M. J.

    1976-01-01

    A Petrel rocket carrying a double cell rubidium magnetometer was launched from the Thumba Equatorial Rocket Launching Station during the early main phase of a magnetic storm. No ionospheric currents associated with the storm were observed and the large field depression, at the flight time, must therefore be attributed to currents at higher altitudes. The equatorial enhancement of ionospheric magnetic storm currents, predicted on the basis of theory and earlier ground data, was not observed.

  12. The storm-time equatorial electrojet

    NASA Technical Reports Server (NTRS)

    Burrows, K.; Sastry, T. S. G.; Sampath, S.; Stolarik, J. D.; Usher, M. J.

    1977-01-01

    A Petrel rocket carrying a double cell rubidium magnetometer was launched from the Thumba Equatorial Rocket Launching Station during the early main phase of a magnetic storm. No ionospheric currents associated with the storm were observed, and the large field depression at the flight time must therefore be attributed to currents at higher altitudes. The equatorial enhancement of ionospheric magnetic storm currents, predicted on the basis of theory and earlier ground data, was not observed.

  13. Helical modulation of the electrostatic plasma potential due to edge magnetic islands induced by resonant magnetic perturbation fields at TEXTOR

    SciTech Connect

    Ciaccio, G. Spizzo, G.; Schmitz, O. Frerichs, H.; Abdullaev, S. S.; Evans, T. E.; White, R. B.

    2015-10-15

    The electrostatic response of the edge plasma to a magnetic island induced by resonant magnetic perturbations to the plasma edge of the circular limiter tokamak TEXTOR is analyzed. Measurements of plasma potential are interpreted by simulations with the Hamiltonian guiding center code ORBIT. We find a strong correlation between the magnetic field topology and the poloidal modulation of the measured plasma potential. The ion and electron drifts yield a predominantly electron driven radial diffusion when approaching the island X-point while ion diffusivities are generally an order of magnitude smaller. This causes a strong radial electric field structure pointing outward from the island O-point. The good agreement found between measured and modeled plasma potential connected to the enhanced radial particle diffusivities supports that a magnetic island in the edge of a tokamak plasma can act as convective cell. We show in detail that the particular, non-ambipolar drifts of electrons and ions in a 3D magnetic topology account for these effects. An analytical model for the plasma potential is implemented in the code ORBIT, and analyses of ion and electron radial diffusion show that both ion- and electron-dominated transport regimes can exist, which are known as ion and electron root solutions in stellarators. This finding and comparison with reversed field pinch studies and stellarator literature suggest that the role of magnetic islands as convective cells and hence as major radial particle transport drivers could be a generic mechanism in 3D plasma boundary layers.

  14. TEST OF THE HEMISPHERIC RULE OF MAGNETIC HELICITY IN THE SUN USING THE HELIOSEISMIC AND MAGNETIC IMAGER (HMI) DATA

    SciTech Connect

    Liu, Y.; Hoeksema, J. T.; Sun, X.

    2014-03-01

    Magnetic twist in solar active regions (ARs) has been found to have a hemispheric preference in sign (hemisphere rule): negative in the northern hemisphere and positive in the southern. The preference reported in previous studies ranges greatly, from ∼ 58% to 82%. In this study, we examine this hemispheric preference using vector magnetic field data taken by Helioseismic and Magnetic Imager and find that 75% ± 7% of 151 ARs studied obey the hemisphere rule, well within the preference range in previous studies. If the sample is divided into two groups—ARs having magnetic twist and writhe of the same sign and having opposite signs—the strength of the hemispheric preference differs substantially: 64% ± 11% for the former group and 87% ± 8% for the latter. This difference becomes even more significant in a sub-sample of 82 ARs having a simple bipole magnetic configuration: 56% ± 16% for the ARs having the same signs of twist and writhe, and 93% with lower and upper confidence bounds of 80% and 98% for the ARs having the opposite signs. The error reported here is a 95% confidence interval. This may suggest that, prior to emergence of magnetic tubes, either the sign of twist does not have a hemispheric preference or the twist is relatively weak.

  15. The ionospheric response at magnetically conjugate points in equatorial region during the 23rd solar cycle minimum

    NASA Astrophysics Data System (ADS)

    Awad Momani, M.; Yatim, B.; Abdullah, M.; Didong, R. D.

    2009-04-01

    The paper investigates the ionospheric response at two couple of GPS stations located at approximate geomagnetic conjugate points in the equatorial regions. These stations are Karratha station (Karr) in Australia (Geo: -20.98° S, 117.10°E; CGM: 31.59°S, 189.10°E) and Suwan-Shi station (Suwn) in Korea (Geo: 37.28°N, 127.05°E ; CGM: 31.00°N, 199.72°E ), Cachoeira Paulista station (Chpi) in Brazil (-Geo: 22.687°S, 315.015°E; CGM: 18.03°S, 22.00°E) and Christiansted station (Cro1) in Virgin Islands, USA (Geo: 17.7569°N, 295.4157°E; CGM: 21.75°N, 14.11°E). In the analysis, statistics of GPS absolute Total Electron Content (TEC) measurements for 7 months period from January to July 2007 at both Suwn and Karratha conjugate stations were analyzed and compared. Furthermore, the conjugacy effect of the TEC and scintillation variations to storm response was determined by analyzing 9 minor to major geomagnetic storms in the period 2005-2007. The results show that the ionospheric response at conjugate points in the equatorial region follows each other particularly during quiet solar activities. During geomagnetic storm periods, it is found that the TEC and scintillation activities are asymmetrical in both hemispheres with a maximum activity was seen during maximum 3-hours Kp and Disturbance Storm Time (Dst) indices. The GPS TEC measurements at four conjugate stations were validated by comparing the measurements with DMSP and CHAMP satellites measurements. Further investigation is being done to determine the impact of storms on the geomagnetic field variations at both hemispheres based on magnetometer measurements.

  16. Chinks in Solar Dynamo Theory: Turbulent Diffusion, Dynamo Waves and Magnetic Helicity

    NASA Technical Reports Server (NTRS)

    DeLuca, E. E.; Hurlburt, N.

    1998-01-01

    In this first year of our investigation we explored the role of compressibility and stratification in the dissipation of magnetic fields. The predictions of Mean Field Electrodynamics have been questioned because of the strong feedback of small scale magnetic structure on the velocity fields. In 2-D, this nonlinear feedback results in a lengthening of the turbulent decay time. In 3-D alpha-quenching is predicted. Previous studies assumed a homogeneous fluid. This first year we present recent results from 2-D compressible MHD decay simulations in a highly stratified atmosphere that more closely resembles to solar convection zone. We have applied for NCCS T3E time to assist in the performance of our 3-D calculations.

  17. An improved neoclassical drift-magnetohydrodynamical fluid model of helical magnetic island equilibria in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Richard

    2016-05-01

    The effect of the perturbed ion polarization current on the stability of neoclassical tearing modes in tokamak plasmas is calculated using an improved, neoclassical, four-field, drift-magnetohydrodynamical model. The calculation involves the self-consistent determination of the pressure and scalar electric potential profiles in the vicinity of the associated magnetic island chain, which allows the chain's propagation velocity to be fixed. Two regimes are considered. First, a regime in which neoclassical ion poloidal flow damping is not strong enough to enhance the magnitude of the polarization current (relative to that found in slab geometry). Second, a regime in which neoclassical ion poloidal flow damping is strong enough to significantly enhance the magnitude of the polarization current. In both regimes, two types of solution are considered. First, a freely rotating solution (i.e., an island chain that is not interacting with a static, resonant, magnetic perturbation). Second, a locked solution (i.e., an island chain that has been brought to rest in the laboratory frame via interaction with a static, resonant, magnetic perturbation). In all cases, the polarization current is found to be either always stabilizing or stabilizing provided that ηi≡d ln Ti/d ln ne does not exceed some threshold value. In certain ranges of ηi, the polarization current is found to have a stabilizing effect on a freely rotating island, but a destabilizing effect on a corresponding locked island.

  18. Thermodynamics of finite-momentum states: From degenerate atomic gases to helical magnets

    NASA Astrophysics Data System (ADS)

    Choi, Sungsoo

    We present a theoretical study of finite momentum states in the context of degenerate gases and iron-based magnet. The unifying theme of these seemingly disparate states of condensed matter is the finite momentum of their respective grounds states and the associated enhanced fluctuations. For the degenerate atomic gases, we study in the first part of the thesis a system of two species of bosonic atoms interacting through a p-wave Feshbach resonance as realized in Rubidium-85/Rubidium-87 mixture. In mapping out the phase diagram, we show that the system exhibits atomic (ASF), molecular (MSF) and atomic-molecular (AMSF) superfluid phases, where atoms, molecules, and atoms and molecules Bose condense, respectively. The ASF and MSF states are respectively characterized by a nonzero s-wave atomic and p-wave (orbital) spinor molecular condensates. The AMSF is distinguished by the presence of both of these condensates, with the s-wave atomic condensate component necessarily periodically modulated at a wavevector that is tunable with a magnetic field; that is, generically AMSF is a robust supersolid, that simultaneously breaks spatial translational and gauge symmetries. We explore the rich phenomenology of these phases and phase transitions between them, that we find to be strongly influenced by the quantum and thermal fluctuations. In the second part of the thesis, we study magnetism in Fe1+yTe, a parent compound of the iron-based high-temperature superconductors. Motivated by earlier studies that have provided evidences of finite momentum spiral states in these materials, we show that a spin-1 exchange model, supplemented by a single-ion anisotropy accounts well for the experimentally observed magnetic phase diagram, that prominently exhibits commensurate bi-collinear and incommensurate spin-spiral orders with the associated low-energy spin-wave spectra. We derive the low energy hydrodynamic models for these magnetic states and use it to describe the magneto

  19. Helicity patterns on the Sun

    NASA Astrophysics Data System (ADS)

    Pevtsov, A.

    Solar magnetic fields exhibit hemispheric preference for negative (pos- itive) helicity in northern (southern) hemisphere. The hemispheric he- licity rule, however, is not very strong, - the patterns of opposite sign helicity were observed on different spatial scales in each hemisphere. For instance, many individual sunspots exhibit patches of opposite he- licity inside the single polarity field. There are also helicity patterns on scales larger than the size of typical active region. Such patterns were observed in distribution of active regions with abnormal (for a give hemisphere) helicity, in large-scale photospheric magnetic fields and coronal flux systems. We will review the observations of large-scale pat- terns of helicity in solar atmosphere and their possible relationship with (sub-)photospheric processes. The emphasis will be on large-scale pho- tospheric magnetic field and solar corona.

  20. The transport of relative canonical helicity

    SciTech Connect

    You, S.

    2012-09-15

    The evolution of relative canonical helicity is examined in the two-fluid magnetohydrodynamic formalism. Canonical helicity is defined here as the helicity of the plasma species' canonical momentum. The species' canonical helicity are coupled together and can be converted from one into the other while the total gauge-invariant relative canonical helicity remains globally invariant. The conversion is driven by enthalpy differences at a surface common to ion and electron canonical flux tubes. The model provides an explanation for why the threshold for bifurcation in counter-helicity merging depends on the size parameter. The size parameter determines whether magnetic helicity annihilation channels enthalpy into the magnetic flux tube or into the vorticity flow tube components of the canonical flux tube. The transport of relative canonical helicity constrains the interaction between plasma flows and magnetic fields, and provides a more general framework for driving flows and currents from enthalpy or inductive boundary conditions.

  1. Forced Magnetic Reconnection and Field Penetration of an Externally Applied Rotating Helical Magnetic Field in the TEXTOR Tokamak

    NASA Astrophysics Data System (ADS)

    Kikuchi, Y.; de Bock, M. F. M.; Finken, K. H.; Jakubowski, M.; Jaspers, R.; Koslowski, H. R.; Kraemer-Flecken, A.; Lehnen, M.; Liang, Y.; Matsunaga, G.; Reiser, D.; Wolf, R. C.; Zimmermann, O.

    2006-08-01

    The magnetic field penetration process into a magnetized plasma is of basic interest both for plasma physics and astrophysics. In this context special measurements on the field penetration and field amplification are performed by a Hall probe on the dynamic ergodic divertor (DED) on the TEXTOR tokamak and the data are interpreted by a two-fluid plasma model. It is observed that the growth of the forced magnetic reconnection by the rotating DED field is accompanied by a change of the plasma fluid rotation. The differential rotation frequency between the DED field and the plasma plays an important role in the process of the excitation of tearing modes. The momentum input from the rotating DED field to the plasma is interpreted by both a ponderomotive force at the rational surface and a radial electric field modified by an edge ergodization.

  2. Conductance of a helical edge liquid coupled to a magnetic impurity.

    PubMed

    Tanaka, Yoichi; Furusaki, A; Matveev, K A

    2011-06-10

    Transport in an ideal two-dimensional quantum spin Hall device is dominated by the counterpropagating edge states of electrons with opposite spins, giving the universal value of the conductance, 2e(2)/h. We study the effect on the conductance of a magnetic impurity, which can backscatter an electron from one edge state to the other. In the case of isotropic Kondo exchange we find that the correction to the electrical conductance caused by such an impurity vanishes in the dc limit, while the thermal conductance does acquire a finite correction due to the spin-flip backscattering.

  3. Concurrent observations at the magnetic equator of small-scale irregularities and large-scale depletions associated with equatorial spread F

    NASA Astrophysics Data System (ADS)

    Hickey, Dustin A.; Martinis, Carlos R.; Rodrigues, Fabiano S.; Varney, Roger H.; Milla, Marco A.; Nicolls, Michael J.; Strømme, Anja; Arratia, Juan F.

    2015-12-01

    In 2014 an all-sky imager (ASI) and an Advanced Modular Incoherent Scatter Radar consisting of 14 panels (AMISR-14) system were installed at the Jicamarca Radio Observatory. The ASI measures airglow depletions associated with large-scale equatorial spread F irregularities (10-500 km), while AMISR-14 detects small-scale irregularities (0.34 m). This study presents simultaneous observations of equatorial spread F (ESF) irregularities at 50-200 km scale sizes using the all-sky imager, at 3 m scale sizes using the JULIA (Jicamarca Unattended Long-term Investigations of the Ionosphere and Atmosphere) radar, and at 0.34 m scales using the AMISR-14 radar. We compare data from the three instruments on the night of 20-21 August 2014 by locating the radar scattering volume in the optical images. During this night no topside plumes were observed, and we only compare with bottomside ESF. AMISR-14 had five beams perpendicular to the magnetic field covering ~200 km in the east-west direction at 250 km altitude. Comparing the radar data with zenith ASI measurements, we found that most of the echoes occur on the western wall of the depletions with fewer echoes observed the eastern wall and center, contrary to previous comparisons of topside plumes that showed most of the echoes in the center of depleted regions. We attribute these differences to the occurrence of irregularities produced at submeter scales by the lower hybrid drift instability. Comparisons of the ASI observations with JULIA images show similar results to those found in the AMISR-14 and ASI comparison.

  4. Electric and thermoelectric transport in graphene and helical metal in finite magnetic fields

    NASA Astrophysics Data System (ADS)

    Chao, Sung-Po; Aji, Vivek

    2011-10-01

    We study the electrical and thermoelectric transport properties of the surface state of a topological insulator and graphene in the presence of randomly distributed impurities. For finite impurity strength, the dependence of the transport coefficients as a function of the gate voltage, magnetic field, and impurity potential are obtained numerically. In the limit of zero impurities (clean limit), analytic results for the peak values of the magneto-oscillations in thermopower are derived. Analogous with the conventional two-dimensional electron gas, the peak values are universal in the clean limit. Unlike graphene, in topological insulators the coupling of the electron spin to its momentum leads to a dependence of the transport coefficients on the gyromagnetic ratio (g). We compare our results with data on graphene and identify unique signatures expected in topological insulators due to the magnetoelectric coupling.

  5. foF2 long-term trend linked to Earth's magnetic field secular variation at a station under the northern crest of the equatorial ionization anomaly

    NASA Astrophysics Data System (ADS)

    Pham Thi Thu, Hong; Amory-Mazaudier, Christine; Le Huy, Minh; Elias, Ana G.

    2016-01-01

    Long-term trend of the critical frequency of the F2 ionospheric region, foF2, at Phu Thuy station (21.03°N, 105.96°E), Vietnam, located under the northern crest of the equatorial ionization anomaly, EIA, is studied. Annual mean data are analyzed at 04 LT and 12 LT for the period 1962-2002 using monthly median values and monthly mean values during magnetically quiet days (am < 20). In both cases we obtain similar trends at 4 LT and 12 LT, which we interpret as an absence of geomagnetic activity effect over trends. The positive trends obtained are not consistent with the negative values expected from greenhouse gases effect at this layer of the upper atmosphere. The increasing trend observed at 12 LT is qualitatively in agreement with the expected effect of the secular displacement of the dip equator over the EIA latitudinal profile. At 04 LT, when the EIA is absent, the positive trend is in qualitative agreement with the secular variation of the Earth's magnetic field inclination, I, and the consequent increase of the sin(I)cos(I) factor at the corresponding location.

  6. Energetic heavy ions with nuclear charge Z greater than or equal to 4 in the equatorial radiation belts of the earth - Magnetic storms

    NASA Technical Reports Server (NTRS)

    Spjeldvik, W. N.; Fritz, T. A.

    1981-01-01

    Direct in situ observations of trapped energetic heavy ions with nuclear charge Z greater than or equal to 4 at energies in the lower MeV range made with Explorer 45 during the period June-December 1972 are presented. It is noted that all measurements were carried out in the vicinity of the geomagnetic equatorial plane and that the data show the varying effects of four major magnetic storm periods. Orders of magnitude increases in the trapped heavy ion population are seen deep within the radiation belts following the August 1972 solar flare and magnetic storm events. Fluxes of the Z greater than or equal to 4 ions are found to decay faster than those of helium ions of comparable energies; typical decay times for these ions are found to be 24-40 days at L less than or equal to 4 and shorter at higher L shells. The observations are compared with the expected post-injection long-term behavior of atomic oxygen ions deduced from charge exhange, radial diffusive transport, and Coulomb collisions. Good agreement is found between theory and observations.

  7. Electron acceleration in the inverse free electron laser with a helical wiggler by axial magnetic field and ion-channel guiding

    NASA Astrophysics Data System (ADS)

    Reza, Khazaeinezhad; Mahdi, Esmaeilzadeh

    2012-09-01

    Electron acceleration in the inverse free electron laser (IFEL) with a helical wiggler in the presence of ion-channel guiding and axial magnetic field is investigated in this article. The effects of tapering wiggler amplitude and axial magnetic field are calculated for the electron acceleration. In free electron lasers, electron beams lose energy through radiation while in IFEL electron beams gain energy from the laser. The equation of electron motion and the equation of energy exchange between a single electron and electromagnetic waves are derived and then solved numerically using the fourth order Runge-Kutta method. The tapering effects of a wiggler magnetic field on electron acceleration are investigated and the results show that the electron acceleration increases in the case of a tapered wiggler magnetic field with a proper taper constant.

  8. Single-molecule magnet behavior in an octanuclear dysprosium(iii) aggregate inherited from helical triangular Dy3 SMM-building blocks.

    PubMed

    Zhang, Li; Zhang, Peng; Zhao, Lang; Wu, Jianfeng; Guo, Mei; Tang, Jinkui

    2016-06-28

    An unprecedented octanuclear dysprosium(iii) cluster with the formula [Dy8L6(μ3-OH)4(μ2-CH3O)2(CH3OH)6(H2O)2]·6H2O·10CH3OH·2CH3CN () based on a nonlinearly tritopic aroylhydrazone ligand H3L has been isolated, realizing the successful linking of pairwise interesting triangular Dy3 SMMs. It is noteworthy that two enantiomers (Λ and Δ configurations) individually behaving as a coordination-induced chirality presented in the Dy3 helicate are connected in the meso Dy8 cluster. Remarkably, alternating-current magnetic susceptibility measurements revealed that the Dy8 cluster shows typical SMM behavior inherited from its Dy3 helical precursor. It is one of the rare polynuclear Lnn SMMs (n > 7) under zero dc field. PMID:27231152

  9. Single-molecule magnet behavior in an octanuclear dysprosium(iii) aggregate inherited from helical triangular Dy3 SMM-building blocks.

    PubMed

    Zhang, Li; Zhang, Peng; Zhao, Lang; Wu, Jianfeng; Guo, Mei; Tang, Jinkui

    2016-06-28

    An unprecedented octanuclear dysprosium(iii) cluster with the formula [Dy8L6(μ3-OH)4(μ2-CH3O)2(CH3OH)6(H2O)2]·6H2O·10CH3OH·2CH3CN () based on a nonlinearly tritopic aroylhydrazone ligand H3L has been isolated, realizing the successful linking of pairwise interesting triangular Dy3 SMMs. It is noteworthy that two enantiomers (Λ and Δ configurations) individually behaving as a coordination-induced chirality presented in the Dy3 helicate are connected in the meso Dy8 cluster. Remarkably, alternating-current magnetic susceptibility measurements revealed that the Dy8 cluster shows typical SMM behavior inherited from its Dy3 helical precursor. It is one of the rare polynuclear Lnn SMMs (n > 7) under zero dc field.

  10. Longitudinal variations of the equatorial electojet

    NASA Astrophysics Data System (ADS)

    Shume, Esayas

    We have utilized a three dimensional electrostatic potential model to explain the longitudinal variations of the equatorial electrojet. The model runs were constrained by net H component magnetic field measurements from three equatorial stations, namely, Huancayo (Peru) 12.05 S, 284.67 E; Addis Ababa (Ethiopia) 9.8 N, 38.8 E; Tirunelveli (India) 8.42 N, 77.48 E. The model runs were done in an iterative fashion until the computed and measured H component magnetic field values come into a close agreement. The physical mechanisms for the longitudinal variations of the equatorial electrojet were inferred by comparing and contrasting the resulting computed vertical polarization electric field (which drives the equatorial electrojet), and zonal current density profiles for the three stations mentioned above.

  11. Effects of magnetic-storm phases on F-layer irregularities from auroral to equatorial latitudes. Quarterly report, 1 Jan-31 Mar 92

    SciTech Connect

    Aarons, J.; Mendillo, M.

    1992-03-31

    Determining the morphology of F layer irregularities as a function of longitude in the equatorial region is vital for understanding the physics of the development of these irregularities. We aim to lay the observational basis which then can be used to test theoretical models. Theoretical models have been developed, notably the papers by R.T. Tsunoda (Rev. Geophys. 26, 719, 1988) and by T. Maruyama and N. Matuura (J. Geophys. Res. 89, 10903, 1984). The question is whether the models are consistent with the morphology as we see it. According to our criteria, the data used should be confined to observations taken near the magnetic equator during quiet magnetic periods and at times within a few hours after sunset. Anomaly region data should be omitted for studying the generation mechanism. The questions to be answered by proposed mechanisms are: (1) why do the equinox months have high levels of occurrence over all longitudes; (2) why are there relatively high levels of occurrence in the Central Pacific Sector in the July-August period and in the 0-75 deg West Sector in the November-December period; and (3) why are there very low levels of occurrence in November and December in the Central Pacific Sector and in July and August in the 0-75 deg West Sector. Satellite in-situ data, scintillation and spread F observations will be reviewed. The limitation of each data set will be outlined particularly as relevant to the bias produced by the existence of thin versus extended layers of irregularities. A cartoon as to the occurrence pattern, as we see it, as a function of longitude will be shown.

  12. Experimental and theoretical analyses of penetration processes of externally applied rotating helical magnetic perturbation fields in TEXTOR and HYBTOK-II

    NASA Astrophysics Data System (ADS)

    Kikuchi, Y.; de Bock, M. F. M.; Finken, K. H.; Jakubowski, M.; Jaspers, R.; Koslowski, H. R.; Kraemer-Flecken, A.; Lehnen, M.; Liang, Y.; Loewenbrueck, K.; Matsunaga, G.; Reiser, D.; Samm, U.; Sewell, G.; Takamura, S.; Unterberg, B.; Wolf, R. C.; Zimmermann, O.; TEXTOR-team

    2007-05-01

    Penetration processes of rotating helical magnetic perturbation field into tokamak plasmas have been investigated by the dynamic ergodic divertor (DED) in TEXTOR. Experimental observations of the field penetration and field amplification are performed and the data are interpreted by theoretical analyses based on a linearized two-fluid plasma model. It is observed that the growth of the forced magnetic reconnection by the rotating DED-field is accompanied by a change in the plasma fluid rotation. The theoretical model is also applied to the DED experiment in the small tokamak device HYBTOK-II. It is confirmed that the theoretical analyses can explain the observed radial profiles of the DED-field in the plasma by inserting small magnetic pick-up coils in HYBTOK-II.

  13. A mechanism for the dynamo terms to sustain closed-flux current, including helicity balance, by driving current which crosses the magnetic field

    SciTech Connect

    Jarboe, T. R.; Nelson, B. A.; Sutherland, D. A.

    2015-07-15

    An analysis of imposed dynamo current drive (IDCD) [T.R. Jarboe et al., Nucl. Fusion 52 083017 (2012)] reveals: (a) current drive on closed flux surfaces seems possible without relaxation, reconnection, or other flux-surface-breaking large events; (b) the scale size of the key physics may be smaller than is often computationally resolved; (c) helicity can be sustained across closed flux; and (d) IDCD current drive is parallel to the current which crosses the magnetic field to produce the current driving force. In addition to agreeing with spheromak data, IDCD agrees with selected tokamak data.

  14. Electron acceleration based on a laser pulse propagating through a plasma in the simultaneous presence of a helical wiggler and an obliquely applied external magnetic field

    NASA Astrophysics Data System (ADS)

    Gashti, M. A.; Jafari, S.

    2016-06-01

    Electron acceleration based on a laser pulse propagating through plasma channel has been studied in the simultaneous presence of a helical magnetic wiggler and an obliquely applied external magnetic field. A numerical study of electron energy and electron trajectory has been made using the fourth-order Runge-kutta method. Numerical results indicate that electron energy increases with decreasing θ -angle of the obliquely external magnetic field. Besides, it increases with increasing the amplitude of the obliquely magnetic field. It is also found that the electron attains a higher energy at shorter distances for higher amplitude of the wiggler field Ωw . Therefore, employing a magnetic wiggler field is very beneficial for electron acceleration in short distances. Further new results reveal that in the absence of the wiggler field (Ωw=0) , the electron energy increases with increasing the laser intensity, whereas in the presence of the wiggler field (Ωwneq0) , the electron energy increases with decreasing the laser intensity. As a result, employing a wiggler magnetic field in the laser-based electron accelerators can be worthwhile in the design of table top accelerators and it can enhance the electron energy at lower laser intensities.

  15. Effects of magnetic storm phases on f-layer irregularities from auroral to equatorial latitudes. Quarterly report, 1 January-31 March 1993

    SciTech Connect

    Aarons, J.; Mendillo, M.

    1993-03-31

    Equatorial ionospheric irregularities in the F layer have been the subject of intensive experimental and theoretical investigations during recent years. The class of irregularities which continues to receive much attention is characterized by large scale plasma depletions, generally referred to as ionospheric plumes and bubbles. The F-region nightglow emissions arising from recombination processes can be used to observe the dynamics of transequatorial ionospheric plasma bubbles and smaller scale plasma irregularities. In a collaborative project between the Center for Space Physics of Boston University and the Brazilian Institute for Space Research (INPE), an all-sky imaging system was operated at Cachoeira Paulista (22.7 deg S, 45.0 deg W, dip latitude 15.8 deg S), between March 1987 and October 1991. In addition to the imager, photometer and VHF polarimeter observations were conducted at Cachoeira Paulista with ionospheric soundings carried out at C. Paulista and Fortaleza, the latter at 3.9 deg S. 38.4 deg W, dip latitude 3.7 deg S. A VHF electronic polarimeter is in operation at C. Paulista. This long series of 01 630.0 nm imaging observations has permitted determination that when there are extended plumes, the altitudes affected over the magnetic equator often exceed 1500 km and probably exceed 2500 km at times, the maximum projection that can be seen from Cachoeira Paulista. This holds true even during years of low solar flux. For this longitude, the observed seasonal variation of the airglow depletions shows a maximum from October through March and a very low occurrence of airglow depletions from April through September.

  16. Instability of wave modes in a two-stream free-electron laser with a helical wiggler and an axial magnetic field

    SciTech Connect

    Mohsenpour, Taghi; Mehrabi, Narges

    2013-08-15

    The dispersion relation of a two-stream free-electron laser (TSFEL) with a one-dimensional helical wiggler and an axial magnetic field is studied. Also, all relativistic effects on the space-charge wave and radiation are considered. This dispersion relation is solved numerically to find the unstable interaction among the all wave modes. Numerical calculations show that the growth rate is considerably enhanced in comparison with single-stream FEL. The effect of the velocity difference of the two electron beams on the two-stream instability and the FEL resonance is investigated. The maximum growth rate of FEL resonance is investigated numerically as a function of the axial magnetic field.

  17. Helically linked mirror arrangement

    SciTech Connect

    Ranjan, P.

    1986-08-01

    A scheme is described for helical linking of mirror sections, which endeavors to combine the better features of toroidal and mirror devices by eliminating the longitudinal loss of mirror machines, having moderately high average ..beta.. and steady state operation. This scheme is aimed at a device, with closed magnetic surfaces having rotational transform for equilibrium, one or more axisymmetric straight sections for reduced radial loss, a simple geometrical axis for the links and an overall positive magnetic well depth for stability. We start by describing several other attempts at linking of mirror sections, made both in the past and the present. Then a description of our helically linked mirror scheme is given. This example has three identical straight sections connected by three sections having helical geometric axes. A theoretical analysis of the magnetic field and single-particle orbits in them leads to the conclusion that most of the passing particles would be confined in the device and they would have orbits independent of pitch angle under certain conditions. Numerical results are presented, which agree well with the theoretical results as far as passing particle orbits are concerned.

  18. Flexible helical-axis stellarator

    DOEpatents

    Harris, Jeffrey H.; Hender, Timothy C.; Carreras, Benjamin A.; Cantrell, Jack L.; Morris, Robert N.

    1988-01-01

    An 1=1 helical winding which spirals about a conventional planar, circular central conductor of a helical-axis stellarator adds a significant degree of flexibility by making it possible to control the rotational transform profile and shear of the magnetic fields confining the plasma in a helical-axis stellarator. The toroidal central conductor links a plurality of toroidal field coils which are separately disposed to follow a helical path around the central conductor in phase with the helical path of the 1=1 winding. This coil configuration produces bean-shaped magnetic flux surfaces which rotate around the central circular conductor in the same manner as the toroidal field generating coils. The additional 1=1 winding provides flexible control of the magnetic field generated by the central conductor to prevent the formation of low-order resonances in the rotational transform profile which can produce break-up of the equilibrium magnetic surfaces. Further, this additional winding can deepen the magnetic well which together with the flexible control provides increased stability.

  19. Magnetic structure and Dzyaloshinskii-Moriya interaction in the S =1/2 helical-honeycomb antiferromagnet α -Cu2V2O7

    NASA Astrophysics Data System (ADS)

    Gitgeatpong, G.; Zhao, Y.; Avdeev, M.; Piltz, R. O.; Sato, T. J.; Matan, K.

    2015-07-01

    Magnetic properties of the S =1/2 antiferromagnet α -Cu2V2O7 have been studied using magnetization, quantum Monte Carlo (QMC) simulations, and neutron diffraction. Magnetic susceptibility shows a broad peak at ˜50 K followed by an abrupt increase indicative of a phase transition to a magnetically ordered state at TN=33.4 (1 ) K. Above TN, a fit to the Curie-Weiss law gives a Curie-Weiss temperature of Θ =-73 (1 ) K suggesting the dominant antiferromagnetic coupling. The result of the QMC calculations on the helical-honeycomb spin network with two antiferromagnetic exchange interactions J1 and J2 provides a better fit to the susceptibility than the previously proposed spin-chain model. Two sets of the coupling parameters J1:J2=1 :0.45 with J1=5.79 (1 ) meV and 0.65 :1 with J2=6.31 (1 ) meV yield equally good fits down to ˜TN . Below TN, weak ferromagnetism due to spin canting is observed. The canting is caused by the Dzyaloshinskii-Moriya interaction with an estimated b c -plane component |Dp|≃0.14 J1 . Neutron diffraction reveals that the S =1/2 Cu2 + spins antiferromagnetically align in the F d'd'2 magnetic space group. The ordered moment of 0.93(9) μB is predominantly along the crystallographic a axis.

  20. Swarm Equatorial Electric Field Inversion Chain

    NASA Astrophysics Data System (ADS)

    Alken, Patrick; Maus, Stefan; Vigneron, Pierre; Sirol, Olivier; Hulot, Gauthier

    2014-05-01

    The day-time eastward equatorial electric field (EEF) in the ionospheric E-region plays a crucial role in equatorial ionospheric dynamics. It is responsible for driving the equatorial electrojet (EEJ) current system, equatorial vertical ion drifts, and the equatorial ionization anomaly (EIA). Due to its importance, there is much interest in accurately measuring and modeling the EEF for both climatological and near real-time studies. The Swarm satellite mission offers a unique opportunity to estimate the equatorial electric field from measurements of the geomagnetic field. Due to the near-polar orbits of each satellite, the on-board magnetometers record a full profile in latitude of the ionospheric current signatures at satellite altitude. These latitudinal magnetic profiles are then modeled using a first principles approach with empirical climatological inputs specifying the state of the ionosphere, in order to recover the EEF. We will present preliminary estimates of the EEF using the first Swarm geomagnetic field measurements, and compare them with independently measured electric fields from the JULIA ground-based radar in Peru.

  1. Helicity Inferences Stemming from a Mean-Field Solar Dynamo

    NASA Astrophysics Data System (ADS)

    Pipin, Valery

    The global magnetic field of the Sun is generated by dynamo instability that stems from interactions of magnetic field with the large and small-scale flows. Theoretically, it is expected that such interactions produce a helical magnetic field which evolves following to magnetic helicity conservation law. We discuss some consequences of magnetic helicity conservation for the mean-field solar dynamo. We also discuss the observational aspect of the problem including the recent results about observations of the current helicity of solar active regions, the magnetic helicity of the global magnetic field as revealed by SOHO/MDI observations, and the problem of magnetic helicity transport from the solar convection zone to the outer atmosphere.

  2. A model for magnetic energy storage and Taylor's relaxation in the solar corona. I: Helicity-constrained minimum energy state in a half-cylinder

    SciTech Connect

    Aly, J.J. )

    1993-01-01

    The problem of the existence of a minimum energy state is studied in the set H of all the magnetic fields [bold B]: (i) occupying the half-cylinder [ital D]=[l brace][ital r][lt][ital R],[ital z][gt]0[r brace]; (ii) having a normal component vanishing on the vertical part [l brace][ital r]=[ital R][r brace] of the boundary of [ital D] and taking given values [ital Q]([ital r]) on its horizontal part [l brace][ital z]=0[r brace]; (iii) having a relative helicity equal to a prescribed value [ital H]. It is first shown that the only field that may possibly be an energy minimizer in H is the unique (and therefore axisymmetric) constant-[alpha] force-free field [bold B][sub [alpha

  3. A SOLAR TORNADO OBSERVED BY AIA/SDO: ROTATIONAL FLOW AND EVOLUTION OF MAGNETIC HELICITY IN A PROMINENCE AND CAVITY

    SciTech Connect

    Li, Xing; Morgan, Huw; Leonard, Drew; Jeska, Lauren

    2012-06-20

    During 2011 September 24, as observed by the Atmospheric Imaging Assembly instrument of the Solar Dynamic Observatory and ground-based H{alpha} telescopes, a prominence and associated cavity appeared above the southwest limb. On 2011 September 25 8:00 UT, material flows upward from the prominence core along a narrow loop-like structure, accompanied by a rise ({>=}50,000 km) of the prominence core and the loop. As the loop fades by 10:00, small blobs and streaks of varying brightness rotate around the top part of the prominence and cavity, mimicking a cyclone. The most intense and coherent rotation lasts for over three hours, with emission in both hot ({approx}1 MK) and cold (hydrogen and helium) lines. We suggest that the cyclonic appearance and overall evolution of the structure can be interpreted in terms of the expansion of helical structures into the cavity, and the movement of plasma along helical structures which appears as a rotation when viewed along the helix axis. The coordinated movement of material between prominence and cavity suggests that they are structurally linked. Complexity is great due to the combined effect of these actions and the line-of-sight integration through the structure which contains tangled fields.

  4. Helical flux ropes in solar prominences

    NASA Technical Reports Server (NTRS)

    Martens, P. C. H.; Van Ballegooijen, A. A.

    1990-01-01

    The present numerical method for the computation of force-free, cancelling magnetic structures shows that flux cancellation at the neutral line in a sheared magnetic arcade generates helical field lines that can support a prominence's plasma. With increasing flux cancellation, the axis of the helical fields moves to greater heights; this is suggestive of a prominence eruption. Two alternative scenarios are proposed for the formation of polar crown prominences which yield the correct axial magnetic field sign. Both models are noted to retain the formation of helical flux tubes through flux cancellation as their key feature.

  5. Selective control for helical microswimmers

    NASA Astrophysics Data System (ADS)

    Katsamba, Panayiota; Lauga, Eric

    2015-11-01

    One of the greatest aspirations for artificial microswimmers is their application in non-invasive medicine. For any practical use, adequate mechanisms enabling control of multiple artificial swimmers is of paramount importance. Here we propose a multi-helical, freely-jointed motor as a novel selective control mechanism. We show that the nonlinear step-out behavior of a magnetized helix driven by a rotating magnetic field can be exploited, when used in conjunction with other helices, to obtain a velocity profile that is non-negligible only within a chosen interval of operating frequencies. Specifically, the force balance between the competing opposite-handed helices is tuned to give no net motion at low frequencies while in the middle frequency range, the swimming velocity increases monotonically with the driving frequency if two opposite helices are used, thereby allowing speed adjustment by varying the driving frequency. We illustrate this idea in detail on a two-helix system, and demonstrate how to generalize to N helices, both numerically and theoretically. We finish by explaining how to solve the inverse problem and design an artificial swimmer with an arbitrarily-complex velocity vs. frequency relationship.

  6. Magnetic turbulence and pressure gradient feedback effect of the 1/2 mode soft-hard magnetohydrodynamic limit in large helical device

    SciTech Connect

    Varela, J.; Watanabe, K. Y.; Ohdachi, S.; Narushima, Y.

    2014-09-15

    The aim of this study was to analyze the feedback process between the magnetic turbulence and the pressure gradients in Large Helical Device (LHD) inward-shifted configurations as well as its role in the transition between the soft-hard magnetohydrodynamic (MHD) regimes for instabilities driven by the mode 1/2 in the middle plasma. In the present paper, we summarize the results of two simulations with different Lundquist numbers, S=2.5×10{sup 5} and 10{sup 6}, assuming a plasma in the slow reconnection regime. The results for the high Lundquist number simulation show that the magnetic turbulence and the pressure gradient in the middle plasma region of LHD are below the critical value to drive the transition to the hard MHD regime, therefore only relaxations in the soft MHD limit are triggered (1/2 sawtooth-like events) [Phys. Plasmas 19, 082512 (2012)]. In the case of the simulation with low Lundquist number, the system reaches the hard MHD limit and a plasma collapse is observed.

  7. Studies of Solar Helicity Using Vector Magnetograms

    NASA Technical Reports Server (NTRS)

    Hagyard, Mona J.; Pevstov, Alexei A.

    1999-01-01

    observations of photospheric magnetic fields made with vector magnetographs have been used recently to study solar helicity. In this paper we indicate what can and cannot be derived from vector magnetograms, and point out some potential problems in these data that could affect the calculations of 'helicity'. Among these problems are magnetic saturation, Faraday rotation, low spectral resolution, and the method of resolving the ambiguity in the azimuth.

  8. Equatorial Spread F Variability Investigations in Brazil: Preliminary Results from Conjugate Point Equatorial Experiments Campaign - COPEX

    NASA Astrophysics Data System (ADS)

    Abdu, M. A.; Batista, I. S.; Reinisch, B. W.; Souza, J. R.; Paula, E. R.; Sobral, J. H.; Bullett, T. W.

    2004-05-01

    Equatorial spread F variability can result from diverse conditions of the coupling processes that control the dynamic state of the ambient ionosphere-atmosphere system of the evening hours. While the sunset associated prereversal electric field enhancement (PRE) is known to be the most basic prerequisite for initiating ESF development, the intensity of an event seems to be controlled also by other factors, such as the symmetry/asymmetry of the ionization anomaly, flux tube integrated conductivities, and a possible (but largely unknown) perturbation source. An evaluation of the possible contributions from some of these factors to the observed ESF variability can be possible from measurements carried out over equatorial and conjugate points locations. A conjugate point equatorial observational campaign (COPEX) was conducted in Brazil during October to December 2002. The COPEX used digital ionosondes, all-sky imagers, GPS receivers, and other complementary instruments at the magnetic equatorial and conjugate point stations in the western longitude sector of Brazil. The campaign objective was to investigate the equatorial spread F/plasma bubble irregularity (ESF) generation conditions in terms of the ambient ionosphere-thermosphere properties along the magnetic flux tubes in which they occur. The COPEX digisonde observations permitted field line mapping of the conjugate E layers to dip equatorial F layer peak/bottomside. Other digisondes at eastern longitudes in Brazil complemented these measurements . Our results are based on the analysis of selected data sets, and we address the questions concerning: Trans-equatorial thermospheric winds and their effect on the ESF development; ESF variability under magnetospheric forcing through disturbance electric fields and winds; and the possible role of sporadic E layers on the ESF variability

  9. Hydrodynamic and kinetic models for spin-1/2 electron-positron quantum plasmas: Annihilation interaction, helicity conservation, and wave dispersion in magnetized plasmas

    SciTech Connect

    Andreev, Pavel A.

    2015-06-15

    We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular to an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction.

  10. Hydrodynamic and kinetic models for spin-1/2 electron-positron quantum plasmas: Annihilation interaction, helicity conservation, and wave dispersion in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Andreev, Pavel A.

    2015-06-01

    We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular to an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction.

  11. Equatorial MST radars: Further consideration

    NASA Technical Reports Server (NTRS)

    Lagos, P.

    1983-01-01

    The results presented give additional support to the need of equatorial MST radars in order to obtain more information on the nature of equatorial waves in the MST region. Radar deduced winds such as obtained at Jicamarca for periods of months indicate that with these data the full range of equatorial waves, with time scales of seconds to years, can be studied.

  12. Effects of magnetic storm phases on f-layer irregularities from auroral to equatorial latitudes. Quarterly report, 1 September-31 December 1992

    SciTech Connect

    Aarons, J.; Mendillo, M.

    1992-01-01

    The review of equatorial data relative to F-layer irregularities continued during this period with an emphasis in this quarter on determining the effects of localized effects on the generation of F-region irregularities. The study compares initially for one month TEC and scintillation data for Manila, the Philippines, Palehau, Hawaii, Tepei, Taiwan, and Osan, Korea all in the Pacific Sector. We are working on airglow depletion data taken in Brazil over a span of years which include years of both high and low solar flux.

  13. Effects of magnetic storm phases on f-layer irregularities from auroral to equatorial latitudes. Quarterly report, 1 July-30 September 1992

    SciTech Connect

    Aarons, J.; Mendillo, M.

    1992-09-30

    The review of equatorial data relative to F-layer irregularities continued during this period with an emphasis in this quarter on determining the effects of localized effects on the generation of F-region irregularities. The study compares initially for one month TEC and scintillation data for Manila, the Philippines, Palehua, Hawaii Tepei, Taiwan, and Osan, Korea all in the Pacific Sector. For some periods in 1980 and 1981, all the data are available. The initial study will be the data set for July 1980.

  14. Polarization signatures of relativistic magnetohydrodynamic shocks in the blazar emission region. I. Force-free helical magnetic fields

    DOE PAGESBeta

    Zhang, Haocheng; Deng, Wei; Li, Hui; Bottcher, Markus

    2016-01-20

    The optical radiation and polarization signatures in blazars are known to be highly variable during flaring activities. It is frequently argued that shocks are the main driver of the flaring events. However, the spectral variability modelings generally lack detailed considerations of the self-consistent magnetic field evolution modeling; thus, so far the associated optical polarization signatures are poorly understood. We present the first simultaneous modeling of the optical radiation and polarization signatures based on 3D magnetohydrodynamic simulations of relativistic shocks in the blazar emission environment, with the simplest physical assumptions. By comparing the results with observations, we find that shocks inmore » a weakly magnetized environment will largely lead to significant changes in the optical polarization signatures, which are seldom seen in observations. Hence an emission region with relatively strong magnetization is preferred. In such an environment, slow shocks may produce minor flares with either erratic polarization fluctuations or considerable polarization variations, depending on the parameters; fast shocks can produce major flares with smooth polarization angle rotations. In addition, the magnetic fields in both cases are observed to actively revert to the original topology after the shocks. In addition, all these features are consistent with observations. Future observations of the radiation and polarization signatures will further constrain the flaring mechanism and the blazar emission environment.« less

  15. Generalized helicity and Beltrami fields

    SciTech Connect

    Buniy, Roman V.; Kephart, Thomas W.

    2014-05-15

    We propose covariant and non-abelian generalizations of the magnetic helicity and Beltrami equation. The gauge invariance, variational principle, conserved current, energy–momentum tensor and choice of boundary conditions elucidate the subject. In particular, we prove that any extremal of the Yang–Mills action functional 1/4 ∫{sub Ω}trF{sub μν}F{sup μν}d{sup 4}x subject to the local constraint ε{sup μναβ}trF{sub μν}F{sub αβ}=0 satisfies the covariant non-abelian Beltrami equation. -- Highlights: •We introduce the covariant non-abelian helicity and Beltrami equation. •The Yang–Mills action and instanton term constraint lead to the Beltrami equation. •Solutions of the Beltrami equation conserve helicity.

  16. Helicity in dynamical processes in the atmosphere

    NASA Astrophysics Data System (ADS)

    Kurgansky, Michael; Maksimenkov, Leonid; Khapaev, Alexey; Chkhetiani, Otto

    2016-04-01

    In modern geophysical fluid dynamics and dynamic meteorology, a notable interest is observed to the notion of helicity ("kinetic helicity" to be distinguished from "magnetic helicity" widely used in magnetohydrodynamics, astrophysics and Solar physics), which is defined by the scalar product of 3D vectors of velocity and vorticity. In this contribution, we bring together different, both known in the literature and novel formulations of the helicity balance equation, by also taking into account the effects of air compressibility and Earth rotation. Equations and relationships are presented that are valid under different approximations customarily made in the dynamic meteorology, e.g. Boussinesq approximation, quasi-static approximation, quasi-geostrophic approximation. An emphasis is placed on the helicity budget analysis in large-scale atmospheric motions. An explicit expression is presented for the rate of helicity injection from the free atmosphere into a non-linear Ekman boundary layer. This injection is shown to be exactly balanced by the helicity viscous destruction within the boundary layer. It is conjectured that this helicity injection may characterize the intensity of atmospheric circulation in extratropical latitudes of both terrestrial hemispheres. Examples are provided based on re-analyses data. Vertical distribution of helicity and superhelicity in different Ekman boundary layers is also discussed.

  17. The influence of helical background fields on current helicity and electromotive force of magnetoconvection

    NASA Astrophysics Data System (ADS)

    Rüdiger, G.; Küker, M.

    2016-07-01

    Motivated by the empirical finding that the known hemispheric rules for the current helicity at the solar surface are not strict, we demonstrate the excitation of small-scale current helicity by the influence of large-scale helical magnetic background fields on nonrotating magnetoconvection. This is shown within a quasilinear analytic theory of driven turbulence and by nonlinear simulations of magnetoconvection that the resulting small-scale current helicity has the same sign as the large-scale current helicity, while the ratio of both pseudoscalars is of the order of the magnetic Reynolds number of the convection. The same models do not provide finite values of the small-scale kinetic helicity. On the other hand, a turbulence-induced electromotive force is produced including the diamagnetic pumping term, as well as the eddy diffusivity but, however, no α effect. It has thus been argued that the relations for the simultaneous existence of small-scale current helicity and α effect do not hold for the model of nonrotating magnetoconvection under consideration. Calculations for various values of the magnetic Prandtl number demonstrate that, for the considered diffusivities, the current helicity increases for growing magnetic Reynolds number, which is not true for the velocity of the diamagnetic pumping, which is in agreement with the results of the quasilinear analytical approximation.

  18. Ionospheric disturbances during the magnetic storm of 15 July 2000: Role of the fountain effect and plasma bubbles for the formation of large equatorial plasma density depletions

    NASA Astrophysics Data System (ADS)

    Kil, Hyosub; Paxton, Larry J.

    2006-12-01

    We investigate the role of the fountain effect and plasma bubbles for the formation of the large equatorial plasma depletions during the geomagnetic storm of 15 July 2000. The large equatorial plasma depletions are detected in the Atlantic sector on the night of the 15th by the Defense Meteorological Satellite Program (DMSP) F15 and the first Republic of China Satellite (ROCSAT-1). The observations show discontinuous drop of the plasma density at the walls of the depletions, flat plasma density inside the depletions, and persistence or growth of the depletions over night. These properties are not consistent with the trough morphology induced by the fountain effect. The coincident ionospheric observations of DMSP F15 and ROCSAT-1 demonstrate that the large depletions are created in the longitude regions where plasma bubbles are present. The occurrence of the large depletions after sunset, elongation in the north-south direction, formation of steep walls, and colocation with plasma bubbles at lower altitudes or earlier times suggest that the large depletions are closely associated with plasma bubbles.

  19. Effects of self-fields on gain in two-stream free electron laser with helical wiggler and an axial guiding magnetic field

    NASA Astrophysics Data System (ADS)

    Saviz, S.; Lashani, E.; Ashkarran, A.

    2014-02-01

    The theory for the two-stream free electron laser (FEL) consisting of a relativistic electron beam transporting along the axis of a helical wiggler in the presence of an axial guiding magnetic field is proposed and investigated. In the analysis, the effects of self-fields are taken into account. The electron trajectories and the small signal gain are derived. The characteristics of the linear-gain and the normalized maximum gain are studied numerically. The results show that there are seven stable groups of orbits in the presence of self-fields instead of two groups reported in the absence of the self-fields. It is also shown that the normalized gains of three groups decrease while the rest increase with the increasing of normalized cyclotron frequency Ω0. Furthermore, it is found that the two-stream instability and the self-field lead to a decrease in the maximum gain except for group 3. The results show that the normalized maximum gain is enhanced in comparison with that of the single stream.

  20. Equatorial Electrojet Observations in the African Continent

    NASA Astrophysics Data System (ADS)

    Yizengaw, E.; Moldwin, M. B.; Mebrahtu, A.; Damtie, B.; Pfaff, R.; Zesta, E.

    2008-12-01

    Although Satellite observations in the African sector show unique equatorial ionospheric structures that can severely impact navigation and communication systems, the study of ionospheric disturbances in this region is difficult due to the lack of ground-based instruments. This has created a gap in global understanding of the physics behind the evolution and formation of plasma irregularities in the equatorial region, which imposes limitations on ionospheric density modeling efforts. Therefore, in order to have a more complete global understanding of equatorial ionosphere motion, the international space science community has begun to develop an observational infrastructure in the African sector. This includes the deployment of a number of arrays of small instruments, including the AMBER magnetometer array, through the International Heliophysical Year (IHY) cooperative program with the United Nations Basic Space Science (UNBSS) program. Two AMBER magnetometers have been deployed successfully at Adigrat (~6°N magnetic) in Ethiopia and at Medea in Algeria (28°N magnetic), and became fully operational on 03 August 2008. The remaining two AMBER magnetometers will be deployed soon in Cameroon and Namibia. One of the prime scientific objectives of AMBER is to understand the processes governing electrodynamics of the equatorial ionosphere as a function of latitude, local time, magnetic activity, and season in the African region. The most credible driving mechanism of ionospheric plasma (E × B drift) can be estimated using two magnetometers, one right at the equator and the other about 6 off the equator. Therefore, using the AMBER magnetometer at Adigrat and the INTERMAGNET magnetometer located at Addis Ababa (0.9°N magnetic) in Ethiopia, the equatorial electrojet (E × B drift) activities in that longitudinal sector of the African continent is estimated. The paper also presents the comparison between the estimated vertical drift and the drift values obtained from the

  1. Study of equatorial scintillations

    NASA Technical Reports Server (NTRS)

    Pomalaza, J.; Woodman, R.; Tisnado, G.; Nakasone, E.

    1972-01-01

    Observations of the amplitude scintillations produced by the F-region in equatorial areas are presented. The equipment used for conducting the observations is described. The use of transmissions from the ATS-1, ATS-3, and ATS-5 for obtaining data is described. The two principal subjects discussed are: (1) correlation between satellite and incoherent radar observations of scintillations and (2) simultaneous observations of scintillations at 136 MHz and 1550 MHz.

  2. Effects of magnetic storm phases on f-layer irregularities from auroral to equatorial latitudes. Quarterly report, 1 October-31 December 1994

    SciTech Connect

    Aarons, J.; Mendillo, M.

    1994-12-31

    During the past twenty years the understanding of Equatorial Scintillation Storms (ES S) has reached a considerable maturity. The average occurrence pattern and underlying physics are quite well understood. Many of the processes which create the day to day variability and which are crucial to the development of forecasting techniques are well understood. Yet there remains a persistent, illusive quality in predicting degradation of signals propagating through the ionosphere because no one has created a synthesis of this understanding. The purpose of this joint study is to outline a three year program which brings together the capabilities of the three major ONR groups in the Northeast for a cooperative venture to predict ESS on time scales of 3-6 hours.

  3. Helical channel design and technology for cooling of muon beams

    SciTech Connect

    Yonehara, K; Derbenev, Y.S.; Johnson, R.P.; /MUONS Inc., Batavia

    2010-08-01

    Novel magnetic helical channel designs for capture and cooling of bright muon beams are being developed using numerical simulations based on new inventions such as helical solenoid (HS) magnets and hydrogen-pressurized RF (HPRF) cavities. We are close to the factor of a million six-dimensional phase space (6D) reduction needed for muon colliders. Recent experimental and simulation results are presented.

  4. An experimental superconducting helical undulator

    SciTech Connect

    Caspi, S.; Taylor, C.

    1995-12-31

    Improvements in the technology of superconducting magnets for high energy physics and recent advancements in SC materials with the artificial pinning centers (APC){sup 2}, have made a bifilar helical SC device an attractive candidate for a single-pass free electron laser (FEL){sup 3}. Initial studies have suggested that a 6.5 mm inner diameter helical device, with a 27 mm period, can generate a central field of 2-2.5 Tesla. Additional studies have also suggested that with a stored energy of 300 J/m, such a device can be made self-protecting in the event of a quench. However, since the most critical area associated with high current density SC magnets is connected with quenching and training, a short experimental device will have to be built and tested. In this paper we discuss technical issues relevant to the construction of such a device, including a conceptual design, fields, and forces.

  5. HELICITY CONSERVATION IN NONLINEAR MEAN-FIELD SOLAR DYNAMO

    SciTech Connect

    Pipin, V. V.; Sokoloff, D. D.; Zhang, H.; Kuzanyan, K. M.

    2013-05-01

    It is believed that magnetic helicity conservation is an important constraint on large-scale astrophysical dynamos. In this paper, we study a mean-field solar dynamo model that employs two different formulations of the magnetic helicity conservation. In the first approach, the evolution of the averaged small-scale magnetic helicity is largely determined by the local induction effects due to the large-scale magnetic field, turbulent motions, and the turbulent diffusive loss of helicity. In this case, the dynamo model shows that the typical strength of the large-scale magnetic field generated by the dynamo is much smaller than the equipartition value for the magnetic Reynolds number 10{sup 6}. This is the so-called catastrophic quenching (CQ) phenomenon. In the literature, this is considered to be typical for various kinds of solar dynamo models, including the distributed-type and the Babcock-Leighton-type dynamos. The problem can be resolved by the second formulation, which is derived from the integral conservation of the total magnetic helicity. In this case, the dynamo model shows that magnetic helicity propagates with the dynamo wave from the bottom of the convection zone to the surface. This prevents CQ because of the local balance between the large-scale and small-scale magnetic helicities. Thus, the solar dynamo can operate in a wide range of magnetic Reynolds numbers up to 10{sup 6}.

  6. New Exact Relations for Helicities in Hall Magnetohydrodynamic Turbulence

    NASA Astrophysics Data System (ADS)

    Banerjee, Supratik; Galtier, Sebastien

    2016-04-01

    Hall magnetohydrodynamics is a mono-fluid plasma model appropriate for probing Final{some of the} physical processes (other than pure kinetic effects) at length scales smaller than the scales of standard MHD. In sub-ionic space plasma turbulence (e.g. the solar wind) this fluid model has been proved to be useful. Three-dimensional incompressible Hall magnetohydrodynamics (MHD) possesses three inviscid invariants which are the total energy, the magnetic helicity and the generalized helicity. In this presentation, we would like to discuss new exact relations for helicities (magnetic helicities and generalized helicities) which are derived for homogeneous stationary (not necessarily isotropic) Hall MHD turbulence (and also for its inertialess electron MHD limit) in the asymptotic limit of large Reynolds numbers. The universal laws are written only in terms of mixed second-order structure functions, i.e. the scalar product of two different increments and are written simply as ηM = di < δ ( {b} × {j}) \\cdot δ {b} >, with ηM the average magnetic helicity flux rate, {b} the magnetic field, {j} the current and ± ηG = < δ ( {v} × {Ω} ) \\cdot δ {Ω} > , with ηM the average generalized helicity flux rate, {v} the fluid velocity and {Ω} = {b} + dI {ω} being the generalized helicity where ω is simply the fluid vorticity ( = nabla × {v}). It provides, therefore, a direct measurement of the dissipation rates for the corresponding helicities even in case of an anisotropic plasma turbulence. This study shows that the generalized helicity cascade is strongly linked to the left polarized fluctuations while the magnetic helicity cascade is linked to the right polarized fluctuations. The newly derived relations also show that like energy, a non-zero helicity flux can only be associated to a departure of Beltrami flow state. {Reference} S. Banerjee & S. Galtier, {Chiral Exact Relations for Helicities in Hall Magnetohydrodynamic Turbulence} (submitted).

  7. Enhanced helical swimming in Boger fluids

    NASA Astrophysics Data System (ADS)

    Godinez, Francisco; Mendez-Rojano, Rodrigo; Zenit, Roberto; Lauga, Eric

    2014-11-01

    We conduct experiments with force-free magnetically-driven helical swimmers in Newtonian and viscoelastic (Boger) fluids. In order assess the effect of viscoelasticity on the swimming performance, we conduct experiments for swimmers with different helical tail geometries. We use helices with the same wave length and total length but vary the angle of the helix. As previously reported by the computational study of Spagniole and collaborators, we found that the swimming performance can either increase, decrease or remain unchanged, depending on the geometry of the tail. With the right geometry, the enhancement can be up to a factor of two.

  8. Equatorial Wave Line, Pacific Ocean

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This Equatorial Wave Line (2.0 N, 102.5W) seen in the Pacific Ocean is of great interest to oceanographers because of the twice annual upwelling of the oceans nutrients. As a result of nearly constant easterly winds, cool nutrient rich water wells up at the equator. The long narrow line is an equatorial front or boundry between warm surface equatorial water and cool recently upwelled water as the intermix of nutrients takes place.

  9. REPRODUCTION OF THE OBSERVED TWO-COMPONENT MAGNETIC HELICITY IN SOLAR WIND TURBULENCE BY A SUPERPOSITION OF PARALLEL AND OBLIQUE ALFVEN WAVES

    SciTech Connect

    He Jiansen; Tu Chuanyi; Marsch, Eckart; Yao Shuo

    2012-04-10

    The angular distribution of the normalized reduced magnetic helicity density ({sigma} r{sub m}) in solar wind turbulence reveals two components of distinct polarity in different angle ranges. This kind of two-component {sigma}{sup r}{sub m} may indicate the possible wave modes and power spectral densities (PSDs) of the turbulent fluctuations. Here we model the measured angular distribution of {sigma}{sup r}{sub m} by assuming a PSD distribution for Alfven fluctuations in wavevector space, and then fit the model results to the observations by adjusting the pattern of the PSD distribution. It is found that the two-component form of the PSD, which has a major and minor component close to k and k{sub ||}, respectively, seems to be responsible for the observed two-component {sigma}{sup r}{sub m}. On the other hand, both an isotropic PSD and a PSD with only a single component bending toward k fail to reproduce the observations. Moreover, it is shown that the effect of gradual balance between outward and inward wave-energy fluxes with decreasing spatial scale needs to be considered in order to reproduce the observed diminishing of |{sigma}{sup r}{sub m}| at shorter scales. Therefore, we suggest that the observed two-component {sigma}{sup r}{sub m} in the solar wind turbulence may be due to a superposition of Alfven waves with quasi-perpendicular (major part) and quasi-parallel (minor part) propagation. The waves seem to become gradually balanced toward shorter scales.

  10. Topside sounder observations of equatorial bubbles

    NASA Technical Reports Server (NTRS)

    Dyson, P. L.; Benson, R. F.

    1978-01-01

    Large scale regions of depleted equatorial ionospheric plasma, called equatorial bubbles, are investigated using topside sounder data. The sounder's unique remote measuring capability enables the magnetic field-aligned nature of the bubbles to be investigated. A search of all available Alouette 2 and ISIS 1 ionograms during nighttime perigee passes near the magnetic equator has revealed a variety of echo signatures associated with bubbles. In addition to a sudden drop in electron density, these signatures usually include in situ spread F and ducted traces. The ducted traces have been used to determine the electron density distribution and to infer changes in ion composition along the magnetic field line within the duct associated with the bubble. In some cases it can be determined that the bubble is asymmetric with respect to the magnetic equator. Even though such features require 3 dimensional models for their explanation, the great field-aligned extent of the bubbles (relative to their cross section) suggests that current theories, which ignore variations along the magnetic field, are still applicable.

  11. Helical axis stellarator with noninterlocking planar coils

    DOEpatents

    Reiman, A.; Boozer, A.H.

    1984-03-06

    The present invention generates stellarator fields having favorable properties (magnetic well and large rotational transform) by a simple coil system consisting only of unlinked planar non-circular coils. At large rotational transform toroidal effects on magnetic well and rotational transform are small and can be ignored. We do so herein, specializing in straight helical systems.

  12. AMISR-14: Observations of equatorial spread F

    NASA Astrophysics Data System (ADS)

    Rodrigues, F. S.; Nicolls, M. J.; Milla, M. A.; Smith, J. M.; Varney, R. H.; Strømme, A.; Martinis, C.; Arratia, J. F.

    2015-07-01

    A new, 14-panel Advanced Modular Incoherent Scatter Radar (AMISR-14) system was recently deployed at the Jicamarca Radio Observatory. We present results of the first coherent backscatter radar observations of equatorial spread F(ESF) irregularities made with the system. Colocation with the 50 MHz Jicamarca Unattended Long-term studies of the Ionosphere and Atmosphere (JULIA) radar allowed unique simultaneous observations of meter and submeter irregularities. Observations from both systems produced similar Range-Time-Intensity maps during bottom-type and bottomside ESF events. We were also able to use the electronic beam steering capability of AMISR-14 to "image" scattering structures in the magnetic equatorial plane and track their appearance, evolution, and decay with a much larger field of view than previously possible at Jicamarca. The results suggest zonal variations in the instability conditions leading to irregularities and demonstrate the dynamic behavior of F region scattering structures as they evolve and drift across the radar beams.

  13. Eruption of a Multiple-Turn Helical Magnetic Flux Tube in a Large Flare: Evidence for External and Internal Reconnection that Fits the Breakout Model of Solar Magnetic Eruptions

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Moore, R. L.

    2004-01-01

    We present observations and an interpretation of a unique multiple-turn spiral flux tube eruption from active region 10030 on 2002 July 15. The TRACE C IV observations clearly show a flux tube that is helical and erupting from within a sheared magnetic field. These observations are interpreted in the context of the breakout model for magnetic field explosions. The initiation of the helix eruption. as determined by a linear backward extrapolation, starts 25 s after the peak of the flare's strongest impulsive spike of microwave gyrosynchrotron radiation early in the flare s explosive phase, implying that the sheared core field is not the site of the initial reconnection. Within the quadrupolar configuration of the active region, the external and internal reconnection sites are identified in each of two consecutive eruptive flares that produce a double coronal mass ejection (CME). The first external breakout reconnection apparently releases an underlying sheared core field and allows it to erupt, leading to internal reconnection in the wake of the erupting helix. This internal reconnection releases the helix and heats the two-ribbon flare. These events lead to the first CME and are followed by a second breakout that initiates a second and larger halo CME. The strong magnetic shear in the region is compatible with the observed rapid proper motion and evolution of the active region. The multiple-turn helix originates from above a sheared-field magnetic inversion line within a filament channel. and starts to erupt only after fast breakout reconnection has started. These observations are counter to the standard flare model and support the breakout model for eruptive flare initiation.

  14. Numerical Simulations of Helicity Condensation in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Zhao, L.; DeVore, C. R.; Antiochos, S. K.; Zurbuchen, T. H.

    2015-01-01

    The helicity condensation model has been proposed by Antiochos (2013) to explain the observed smoothness of coronal loops and the observed buildup of magnetic shear at filament channels. The basic hypothesis of the model is that magnetic reconnection in the corona causes the magnetic stress injected by photospheric motions to collect only at those special locations where prominences form. In this work we present the first detailed quantitative MHD simulations of the reconnection evolution proposed by the helicity condensation model. We use the well-known ansatz of modeling the closed corona as an initially uniform field between two horizontal photospheric plates. The system is driven by applying photospheric rotational flows that inject magnetic helicity into the system. The flows are confined to a finite region on the photosphere so as to mimic the finite flux system of, for example, a bipolar active region. The calculations demonstrate that, contrary to common belief, coronal loops having opposite helicity do not reconnect, whereas loops having the same sense of helicity do reconnect. Furthermore, we find that for a given amount of helicity injected into the corona, the evolution of the magnetic shear is insensitive to whether the pattern of driving photospheric motions is fixed or quasi-random. In all cases, the shear propagates via reconnection to the boundary of the flow region while the total magnetic helicity is conserved, as predicted by the model. We discuss the implications of our results for solar observations and for future, more realistic simulations of the helicity condensation process.

  15. Helicity transport from solar convection zone to interplanetary space

    NASA Astrophysics Data System (ADS)

    Zhang, Mei

    2013-07-01

    Magnetic helicity is a physical quantity that describes field topology. It is also a conserved quantity as Berger in 1984 demonstrated that the total magnetic helicity is still conserved in the corona even when there is a fast magnetic reconnection. It is generally believed that solar magnetic fields, together with their helicity, are created in the convection zone by various dynamo processes. These fields and helicity are transported into the corona through solar photosphere and finally released into the interplanetary space via various processes such as coronal mass ejections (CMEs) and solar winds. Here I will give a brief review on our recent works, first on helicity observations on the photosphere and how to understand these observations via dynamo models. Mostly, I will talk about what are the possible consequences of magnetic helicity accumulation in the corona, namely, the formation of magnetic flux ropes, CMEs taking place as an unavoidable product of coronal evolution, and flux emergences as a trigger of CMEs. Finally, I will address on in what a form magnetic field in the interplanetary space would accommodate a large amount of magnetic helicity that solar dynamo processes have been continuously producing.

  16. Two-fluid and finite Larmor radius effects on helicity evolution in a plasma pinch

    NASA Astrophysics Data System (ADS)

    Sauppe, J. P.; Sovinec, C. R.

    2016-03-01

    The evolution of magnetic energy, helicity, and hybrid helicity during nonlinear relaxation of a driven-damped plasma pinch is compared in visco-resistive magnetohydrodynamics and two-fluid models with and without the ion gyroviscous stress tensor. Magnetic energy and helicity are supplied via a boundary electric field which initially balances the resistive dissipation, and the plasma undergoes multiple relaxation events during the nonlinear evolution. The magnetic helicity is well conserved relative to the magnetic energy over each event, which is short compared with the global resistive diffusion time. The magnetic energy decreases by roughly 1.5% of its initial value over a relaxation event, while the magnetic helicity changes by at most 0.2% of the initial value. The hybrid helicity is dominated by magnetic helicity in low-β pinch conditions and is also well conserved. Differences of less than 1% between magnetic helicity and hybrid helicity are observed with two-fluid modeling and result from cross helicity evolution. The cross helicity is found to change appreciably due to the first-order finite Larmor radius effects which have not been included in contemporary relaxation theories. The plasma current evolves towards the flat parallel current state predicted by Taylor relaxation theory but does not achieve it. Plasma flow develops significant structure for two-fluid models, and the flow perpendicular to the magnetic field is much more substantial than the flow along it.

  17. Electromagnetic induction by the equatorial electrojet

    NASA Astrophysics Data System (ADS)

    Rastogi, R. G.

    2004-07-01

    This paper discusses the effects of currents induced inside the Earth at equatorial latitudes due to the currents in the ionosphere and the magnetosphere. The horizontal (H), vertical (Z) and eastward (Y) components of the geomagnetic field at equatorial and low-latitude stations around the world are examined for effects due to solar daily (Sq) variations during normal as well as counter electrojet days, during solar flares, during storm sudden commencements (SSCs) and during the main phase of the magnetic storms. The Sq(Z) variations show an abnormally large positive peak at Indian electrojet stations and to a lesser extent at Koror in the forenoon hours when the temporal gradient of Sq(H) is largest. At Indian longitudes this abnormality is largest during equinoxes and December solstices. The nighttime bay disturbance, solar flares and SSC produce large impulses in the Z field at Indian stations and at Koror. The latitudinal extent of this abnormality is larger for events with shorter periods. The disturbance equatorial ring current produces a large decrease of Z field around the period in the middle of main phase of the storm when the Dst index is rapidly decreasing and not when Dst is most negative. A strong decrease in the Z field is observed at Yauca in the American sector during the main phase of the storm. The induction effects on the equatorial electrojet seem to be absent in central and eastern parts of South America, and in the African region. The significant induction effects observed in the recording of the Z field at Peredinia in Sri Lanka suggest a wide latitude of abnormal conductivity anomaly distribution in the Indo-Sri Lanka longitude sector. Our present understanding of the conductor being in Palk Strait between India and Sri Lanka needs to be revised on the basis of results described in this paper.

  18. An equatorial coronal hole at solar minimum

    NASA Technical Reports Server (NTRS)

    Bromage, B. J. I.; DelZanna, G.; DeForest, C.; Thompson, B.; Clegg, J. R.

    1997-01-01

    The large transequatorial coronal hole that was observed in the solar corona at the end of August 1996 is presented. It consists of a north polar coronal hole called the 'elephant's trunk or tusk'. The observations of this coronal hole were carried out with the coronal diagnostic spectrometer onboard the Solar and Heliospheric Observatory (SOHO). The magnetic field associated with the equatorial coronal hole is strongly connected to that of the active region at its base, resulting in the two features rotating at almost the same rate.

  19. The equatorial electrojet satellite and surface comparison

    NASA Technical Reports Server (NTRS)

    Cain, J. C. (Editor); Sweeney, R. E. (Editor)

    1972-01-01

    The OGO 4 and 6 (POGO) magnetic field results for the equatorial electrojet indicate that while the present models are approximately correct, the possibility of a westward component must be incorporated. The scatter diagrams of POGO amplitudes and surface data show a correlation. The ratios between the amplitudes estimated from surface data and those at 400 km altitude are as follows: India 5 to 8, East Africa (Addis Ababa) 4, Central Africa 3, West Africa (Nigeria) 3, South America (Huancayo) 5, and Philippines 5. The variation in the ratio is due to the conductivity structure of the earth in various zones.

  20. Helicity in superfluids

    NASA Astrophysics Data System (ADS)

    Kedia, Hridesh; Kleckner, Dustin; Proment, Davide; Irvine, William T. M.

    Ideal fluid flow conserves a special quantity known as helicity, in addition to energy, momentum and angular momentum. Helicity can be understood as a measure of the knottedness of vortex lines of the flow, providing an important geometric tool to study diverse physical systems such as turbulent fluids and plasmas. Since superfluids flow without resistance just like ideal (Euler) fluids, a natural question arises: Is there an extra conserved quantity akin to helicity in superfluids? We address the question of a ''superfluid helicity'' theoretically and examine its consequences in numerical simulations.

  1. The Coudé Equatorials

    NASA Astrophysics Data System (ADS)

    Lequeux, James

    2011-11-01

    Between 1884 and 1892, no fewer than seven coudé equatorials were installed in France, Algeria and Austria. Invented by Maurice Loewy, these equatorials allowed the observer to sit comfortably in a closed room, with all the controls and readings at hand. However they were expensive, they required two flat mirrors, which were a source of concern because of their thermal distortion, and their mechanics was complex and delicate, so that they did not succeed in replacing the conventional equatorials in spite of their advantages. Only two are preserved, in Lyons and in Algiers. We describe in detail these instruments, their history and their use.

  2. Helicity as a Component of Filament Formation

    NASA Astrophysics Data System (ADS)

    Mackay, D. H.; Gaizauskas, V.

    2003-09-01

    In this paper we seek the origin of the axial component of the magnetic field in filaments by adapting theory to observations. A previous paper (Mackay, Gaizauskas, and van Ballegooijen, 2000) showed that surface flows acting on potential magnetic fields for 27 days the maximum time between the emergence of magnetic flux and the formation of large filaments between the resulting activity complexes cannot explain the chirality or inverse polarity nature of the observed filaments. We show that the inclusion of initial helicity, for which there is observational evidence, in the flux transport model results in sufficiently strong dextral fields of inverse polarity to account for the existence and length of an observed filament within the allotted time. The simulations even produce a large length of dextral chirality when just small amounts of helicity are included in the initial configuration. The modeling suggests that the axial field component in filaments can result from a combination of surface (flux transport) and sub-surface (helicity) effects acting together. Here surface effects convert the large-scale helicity emerging in active regions into a smaller-scale magnetic-field component parallel to the polarity inversion line so as to form a magnetic configuration suitable for a filament.

  3. Helicity and singular structures in fluid dynamics

    PubMed Central

    Moffatt, H. Keith

    2014-01-01

    Helicity is, like energy, a quadratic invariant of the Euler equations of ideal fluid flow, although, unlike energy, it is not sign definite. In physical terms, it represents the degree of linkage of the vortex lines of a flow, conserved when conditions are such that these vortex lines are frozen in the fluid. Some basic properties of helicity are reviewed, with particular reference to (i) its crucial role in the dynamo excitation of magnetic fields in cosmic systems; (ii) its bearing on the existence of Euler flows of arbitrarily complex streamline topology; (iii) the constraining role of the analogous magnetic helicity in the determination of stable knotted minimum-energy magnetostatic structures; and (iv) its role in depleting nonlinearity in the Navier-Stokes equations, with implications for the coherent structures and energy cascade of turbulence. In a final section, some singular phenomena in low Reynolds number flows are briefly described. PMID:24520175

  4. Double Helical Fluid Containment

    NASA Astrophysics Data System (ADS)

    Lowry, Brian

    2003-11-01

    In the absence of gravity or at micro-scales, helical wires can support cylindrical volumes of fluid of infinite length, making them convenient as conduits. However, fixed contact line double helical fluid volumes have the additional property that they can be drained to zero volume without loss of stability to constant pressure disturbances. Thus the two-wire support is a convenient microgravity or micro-scale container as well as conduit. For evenly spaced wires, continuous draining of a cylindrical volume to zero is possible for double helices ranging from moderate pitch to the parallel wire case. Double helices of steeper pitch are stable as cylinders and at zero volume, but are unstable for some range of intermediate volumes. This unstable zone is very strongly dependent on the offset between the helical wires, varying rapidly for offsets other than 180 degrees. Preliminary experimental results validate the theoretical predictions.

  5. Tethys’ Mysterious Equatorial Band

    NASA Astrophysics Data System (ADS)

    Elder, Catherine; Helfenstein, P.; Thomas, P.; Veverka, J.; Burns, J. A.; Denk, T.; Porco, C.

    2007-10-01

    We investigate a conspicuous equatorial albedo band on Tethys by analyzing Cassini Imaging Science Subsystem (ISS) Narrow Angle Camera (NAC) images obtained in several wavelengths. The band, first seen in Voyager data by Stooke (1989;2002) is symmetric 15° on either side of the equator and extends from 0° to 160°W that is, almost centered on the leading part of Tethys. There is no evidence that the band is topographically-based; margins are gradational and there is no visible difference in underlying geology. Because of the otherwise broadly-uniform albedo of Tethys, subtle albedo and color variations are easily detected and we sampled them after correcting each image for wavelength-dependent limb darkening effects using Hapke's (2002) photometric model. In the ISS CL1-CL2 filter (611nm), the average albedo contrast of the band with adjacent cratered plains is only about 3%. Compared to its surroundings, the band is about 2-3% brighter in the NAC CL1-UV3 filter (338nm), 2-3% darker in the NAC CL1-GRN (568nm) and 8% darker in the NAC CL1-IR3 filter (930nm). This may indicate that the band exposes regolith composed of cleaner ice with a different grain-size distribution than surrounding materials. The average global photometric properties of Tethys are affected by the E-Ring (Verbiscer et al. 2007). However, dynamical explanations for the narrow albedo band that involve E-ring particles so far are unlikely given the broad nature of the E-ring and the inclination of Tethys. References: Hapke, B. 2002. Icarus 157, 523-534; Stooke, P.J. 1989. Lunar and Planet. Sci. Conf. 20th, 1071-1072; Stooke, P.J. 2002, Lunar and Planet. Sci. Conf, 33rd, #1553; Verbiscer et al. 2007. Science 315, pp.815.

  6. What is the Most Important Origin of the Coronal Helicity?

    NASA Astrophysics Data System (ADS)

    Tian, L.

    23 active regions (ARs) with well-defined SXR sigmoids are selected to study which is the more important origin of the coronal helicity -- the emergence of magnetic fields or photospheric horizontal motions. The radial magnetic flux of each polarity, the helicity injection rate, and total helicity flux (Δ Hlct) are calculated using local correlation tracking technique and {MDI 96m} line-of-sight magnetograms, and the helicity budget of the differential rotation (Δ Hrot) is also estimated. It is found that six ARs inject helicity flux greater than 1.0× 1043 {Mx}^2 (Δ H=Δ Hlct-Δ Hrot), in a sample of seven ARs with emerging magnetic flux greater than 1.0× 1022 Mx. On the other hand, in sixteen ARs with emerging magnetic flux less than 1.0× 1022 Mx, only four ARs inject helicity flux greater than 1.0× 1043 Mx^2, which denotes the main contribution of the horizontal motions. The statistical results suggest that the horizontal motions are not important to the coronal helicity injection when there is little magnetic field emergence.

  7. Nanomotor-based biocatalytic patterning of helical metal microstructures.

    PubMed

    Manesh, Kalayil Manian; Campuzano, Susana; Gao, Wei; Lobo-Castañón, María Jesús; Shitanda, Isao; Kiantaj, Kiarash; Wang, Joseph

    2013-02-21

    A new nanomotor-based surface-patterning technique based on the movement of a magnetically powered enzyme-functionalized flexible nanowire swimmer offers the ability to create complex helical metal microstructures.

  8. The equatorial electrojet current modelling from SWARM satellite data

    NASA Astrophysics Data System (ADS)

    Benaissa, Mahfoud

    2016-07-01

    Equatorial ElectroJet (EEJ) is an intense eastward electric current circulating in the ionospheric magnetic equator band between 100 and 130 km of altitude in E region. These currents vary by day, by season, by solar activity, and also with the main magnetic field of internal origin. The irregularity of the ionosphere has a major impact on the performance of communication systems and navigation (GPS), industry.... Then it becomes necessary study the characteristics of EEJ. In this paper, we present a study of the equatorial electrojet (EEJ) phenomenon along one year (2014) period. In addition, the satellite data used in this study are obtained with SWARM satellite scalar magnetometer data respecting magnetically quiet days with KP < 2. In this paper, we process to separate and extract the electrojet intensity signal from other recorded signal-sources interfering with the main signal and reduce considerably the signal to noise ratio during the SWARM measurements. This pre-processing step allows removing all external contributions in regard to EEJ intensity value. Key words: Ionosphere (Equatorial ionosphere; Electric fields and currents; Equatorial electrojet (EEJ)); SWARM.

  9. Coordination chemistry strategies for dynamic helicates: time-programmable chirality switching with labile and inert metal helicates.

    PubMed

    Miyake, Hiroyuki; Tsukube, Hiroshi

    2012-11-01

    'Chirality switching' is one of the most important chemical processes controlling many biological systems. DNAs and proteins often work as time-programmed functional helices, in which specific external stimuli alter the helical direction and tune the time scale of subsequent events. Although a variety of organic foldamers and their hybrids with natural helices have been developed, we highlight coordination chemistry strategies for development of structurally and functionally defined metal helicates. These metal helicates have characteristic coordination geometries, redox reactivities and spectroscopic/magnetic properties as well as complex chiralities. Several kinds of inert metal helicates maintain rigid helical structures and their stereoisomers are separable by optical resolution techniques, while labile metal helicates offer dynamic inversion of their helical structures via non-covalent interactions with external chemical signals. The latter particularly have dynamically ordered helical structures, which are controlled by the combinations of metal centres and chiral ligands. They further function as time-programmable switches of chirality-derived dynamic rotations, translations, stretching and shape flipping, which are useful applications in nanoscience and related technology.

  10. Chiral exact relations for helicities in Hall magnetohydrodynamic turbulence.

    PubMed

    Banerjee, Supratik; Galtier, Sébastien

    2016-03-01

    Besides total energy, three-dimensional incompressible Hall magnetohydrodynamics (MHD) possesses two inviscid invariants, which are the magnetic helicity and the generalized helicity. Exact relations are derived for homogeneous (nonisotropic) stationary Hall MHD turbulence (and also for its inertialess electron MHD limit) with nonzero helicities and in the asymptotic limit of large Reynolds numbers. The universal laws are written only in terms of mixed second-order structure functions, i.e., the scalar product of two different increments. It provides, therefore, a direct measurement of the dissipation rates for the corresponding invariant flux. This study shows that the generalized helicity cascade is strongly linked to the left polarized fluctuations, while the magnetic helicity cascade is linked to the right polarized fluctuations. PMID:27078460

  11. Chiral exact relations for helicities in Hall magnetohydrodynamic turbulence.

    PubMed

    Banerjee, Supratik; Galtier, Sébastien

    2016-03-01

    Besides total energy, three-dimensional incompressible Hall magnetohydrodynamics (MHD) possesses two inviscid invariants, which are the magnetic helicity and the generalized helicity. Exact relations are derived for homogeneous (nonisotropic) stationary Hall MHD turbulence (and also for its inertialess electron MHD limit) with nonzero helicities and in the asymptotic limit of large Reynolds numbers. The universal laws are written only in terms of mixed second-order structure functions, i.e., the scalar product of two different increments. It provides, therefore, a direct measurement of the dissipation rates for the corresponding invariant flux. This study shows that the generalized helicity cascade is strongly linked to the left polarized fluctuations, while the magnetic helicity cascade is linked to the right polarized fluctuations.

  12. IMF polarity effects on the equatorial ionospheric F-region

    SciTech Connect

    Sastri, J.H.

    1985-01-01

    An exploratory study is made of the influence, during the equinoxes, of the interplanetary magnetic field (IMF) sector structure on the ionospheric F-region using ionosonde data from several equatorial stations for a 3-yr period around the 19th sunspot cycle maximum. It is found that, compared with days having positive IMF polarity, the post-sunset increase of h'F near the dip equator and the depth of the equatorial ionization anomaly (EIA) are reduced during the vernal equinox and enhanced during the autumnal equinox on days with negative IMF polarity. Similar trends are also noted in the data for the 20th sunspot cycle maximum, but with reduced amplitude. The systematic changes in the F-region characteristics suggest a modification of the equatorial zonal electric fields in association with the IMF polarity-related changes in the semi-annual variation of geomagnetic activity. 24 references.

  13. Callisto's Equatorial Region

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This mosaic covers part of the equatorial region of Jupiter's moon, Callisto. The mosaic combines six separate image frames obtained by the solid state imaging (CCD) system on NASA's Galileo spacecraft during its ninth orbit around Jupiter. North is to the top of the picture. The mosaic shows several new features and characteristics of the surface revealed by Galileo. These include deposits that may represent landslides in the southern and southwestern floors of many craters. Two such deposits are seen in a 12 kilometer (7.3 mile) crater in the west-central part of the image, and in a 23 kilometer (14 mile) crater just north of the center of the image. Also notable are several sinuous valleys emanating from the southern rims of 10 to 15 kilometer (6.2 to 9.3 mile) irregular craters in the west-central part of the image. The pervasive local smoothing of Callisto's surface is well represented in the plains between the craters in the southeastern part of the image. Possible oblique impacts are suggested by the elongated craters in the northeastern and southeastern parts of the image.

    The mosaic, centered at 7.4 degrees south latitude and 6.6 degrees west longitude, covers an area of approximately 315 by 215 kilometers (192 by 131 miles). The sun illuminates the scene from the west (left). The smallest features that can be seen are about 300 meters (993 feet) across. The images were obtained on June 25, 1997, when the spacecraft was at a range of 15,200 kilometers (8,207 miles) from Callisto.

    The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  14. Limits to solar cycle predictability: Cross-equatorial flux plumes

    NASA Astrophysics Data System (ADS)

    Cameron, R. H.; Dasi-Espuig, M.; Jiang, J.; Işık, E.; Schmitt, D.; Schüssler, M.

    2013-09-01

    Context. Within the Babcock-Leighton framework for the solar dynamo, the strength of a cycle is expected to depend on the strength of the dipole moment or net hemispheric flux during the preceding minimum, which depends on how much flux was present in each hemisphere at the start of the previous cycle and how much net magnetic flux was transported across the equator during the cycle. Some of this transport is associated with the random walk of magnetic flux tubes subject to granular and supergranular buffeting, some of it is due to the advection caused by systematic cross-equatorial flows such as those associated with the inflows into active regions, and some crosses the equator during the emergence process. Aims: We aim to determine how much of the cross-equatorial transport is due to small-scale disorganized motions (treated as diffusion) compared with other processes such as emergence flux across the equator. Methods: We measure the cross-equatorial flux transport using Kitt Peak synoptic magnetograms, estimating both the total and diffusive fluxes. Results: Occasionally a large sunspot group, with a large tilt angle emerges crossing the equator, with flux from the two polarities in opposite hemispheres. The largest of these events carry a substantial amount of flux across the equator (compared to the magnetic flux near the poles). We call such events cross-equatorial flux plumes. There are very few such large events during a cycle, which introduces an uncertainty into the determination of the amount of magnetic flux transported across the equator in any particular cycle. As the amount of flux which crosses the equator determines the amount of net flux in each hemisphere, it follows that the cross-equatorial plumes introduce an uncertainty in the prediction of the net flux in each hemisphere. This leads to an uncertainty in predictions of the strength of the following cycle.

  15. Muon Beam Helical Cooling Channel Design

    SciTech Connect

    Johnson, Rolland; Ankenbrandt, Charles; Flanagan, G; Kazakevich, G M; Marhauser, Frank; Neubauer, Michael; Roberts, T; Yoshikawa, C; Derbenev, Yaroslav; Morozov, Vasiliy; Kashikhin, V S; Lopes, Mattlock; Tollestrup, A; Yonehara, Katsuya; Zloblin, A

    2013-06-01

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet.

  16. PMP-2: Equatorial wave dynamics

    NASA Technical Reports Server (NTRS)

    Hirota, I.

    1982-01-01

    After the discovery of the quasi-biennial oscillation (QBO) in the stratospheric zonal wind, there were, in the last two decades, a large number of observational and theoretical studies on the structure and behavior of the mean zonal wind and waves in the tropical stratosphere. Planetary-scale, vertically propagating equatorial waves play an important role in producing the QBO through the mechanism of wave-mean flow interaction. Concerning the dynamics of the equatorial upper stratosphere and mesosphere, however, little was known about the possible wave motions, except for tides, mainly because of the lack of adequate observations in this region. The main purpose is to provide the nature of various types of equatorial wave modes, with the aid of improved sounding techniques and sophisticated numerical modelings.

  17. Higher-order harmonic effect of a three-dimensional helical wiggler on the Larmor rotation of the equilibrium electrons in a free-electron laser with a positive or a reversed guide magnetic field

    SciTech Connect

    Zhang, Shi-Chang

    2013-10-15

    Analytical formulas of the Larmor rotation are derived in detail for the equilibrium electrons motion in a free-electron laser with combination of a three-dimensional (3-D) helical wiggler and a positive or a reversed guide magnetic field. Generally, the Larmor radius in the configuration of a reversed guide field is much smaller than that in a positive guide field. At non-resonance, a helical orbit governed by the zero-order component of a 3-D wiggler field could hold; meanwhile, the higher-harmonic effect definitely influences those electrons with off-axis guiding centers and induces the electron-beam spreads. At resonance, the Larmor radius in the configuration of a positive guide field has a singularity with a limit tending to infinite, which causes all the electrons to hit the waveguide wall before the exit of the wiggler. Although Larmor-radius singularity does not exist in the configuration of a reversed guide field, at anti-resonance, the first-order harmonic of a 3-D wiggler field induces a transverse displacement which rapidly grows in proportion to a square of time, and leads part of the electron beam to hit the waveguide wall before reaching the wiggler exit, which depends on the specific parameters of the individual electrons. The analytical conclusions derived in the present paper are examined by the nonlinear simulations and the experimental observation. Disagreement with the previous literatures is discussed in detail.

  18. Helical superconducting black holes.

    PubMed

    Donos, Aristomenis; Gauntlett, Jerome P

    2012-05-25

    We construct novel static, asymptotically five-dimensional anti-de Sitter black hole solutions with Bianchi type-VII(0) symmetry that are holographically dual to superconducting phases in four spacetime dimensions with a helical p-wave order. We calculate the precise temperature dependence of the pitch of the helical order. At zero temperature the black holes have a vanishing entropy and approach domain wall solutions that reveal homogenous, nonisotropic dual ground states with an emergent scaling symmetry.

  19. Evolution of Ion Clouds in the Equatorial Ionosphere

    NASA Astrophysics Data System (ADS)

    Petrochuk, Yevgeny; Blaunstein, Nathan; Mishin, Evgeny; Pedersen, Todd; Caton, Ron; Viggiano, Al; Schuman, Nick

    2015-11-01

    We report on the results of 2- and 3-dimentional numerical investigations of the evolution of samarium ion clouds injected in the equatorial ionosphere, alike the recent MOSC experiments. The ambient conditions are described by a standard model of the quiet-time equatorial ionosphere from 90 to 350 km. The altitudinal distribution of the transport processes and ambient electric and magnetic fields is taken into account. The fast process of stratification of ion clouds and breaking into small plasmoids occur only during the late stage of the cloud evolution. The role of the background plasma and its depletion zones formed due to the short-circuiting currents is not as evident as in mid latitudes. It is also revealed that the altitudinal dependence of the diffusion and drift plays a minor role in the cloud evolution at the equator. Likewise, the cloud remains stable with respect to the Raleigh-Taylor and gradient-drift instabilities. These two features are defined by the equatorial near-horizontal magnetic field which leads to a strongly-elongated ellipsoid-like plasma cloud. The critical dip angle separating the stable (equatorial) and unstable (mid-latitude) cloud regimes will be defined in future simulation studies, as well as the dependence on the ambient electric field and neutral wind. 2Space Vehicles Directorate, Air Force Research Laboratory

  20. Field of a helical Siberian Snake

    SciTech Connect

    Luccio, A.

    1995-02-01

    To preserve the spin polarization of a beam of high energy protons in a circular accelerator, magnets with periodic magnetic field, called Siberian Snakes are being used. Recently, it was proposed to build Siberian Snakes with superconducting helical dipoles. In a helical, or twisted dipole, the magnetic field is perpendicular to the axis of the helix and rotates around it as one proceeds along the magnet. In an engineering study of a 4 Tesla helical snake, the coil geometry is derived, by twisting, from the geometry of a cosine superconducting dipole. While waiting for magnetic measurement data on such a prototype, an analytical expression for the field of the helice is important, to calculate the particle trajectories and the spin precession in the helix. This model will also allow to determine the optical characteristics of the snake, as an insertion in the lattice of the accelerator. In particular, one can calculate the integrated multipoles through the magnet and the equivalent transfer matrix. An expression for the field in the helix body, i.e., excluding the fringe field was given in a classical paper. An alternate expression can be found by elaborating on the treatment of the field of a transverse wiggler obtained under the rather general conditions that the variables are separable. This expression exactly satisfies Maxwell`s div and curl equations for a stationary field, {del} {center_dot} B = 0, {del} x B = 0. This approach is useful in that it will allow one to use much of the work already done on the problem of inserting wigglers and undulators in the lattice of a circular accelerator.

  1. Equatorial zonal circulations: Historical perspectives

    NASA Astrophysics Data System (ADS)

    Hastenrath, Stefan

    2007-04-01

    The changing perceptions on zonal circulations in the equatorial belt are traced for (a) stratospheric wind regimes, and (b) vertical-zonal circulation cells in the troposphere. (a) Observations from the Krakatoa eruption 1883 and Berson's 1908 expedition to East Africa, along with later soundings over Batavia (Jakarta) led to the notion of "Krakatoa easterlies" around 30 km (10 mb) and "Berson westerlies" around 20 km (50 mb). Prompted by contrary observations since the late 1950s, this dogma was replaced by the notion of easterlies alternating with westerlies in the equatorial stratosphere at a rhythm of about 26 months. (b) Stimulated by Bjerknes' postulate of a "Walker circulation" along the Pacific Equator, a multitude of such cells have been hypothesized at other longitudes, in part from zonal contrasts of temperature and cloudiness. Essential for the diagnosis of equatorial zonal circulation cells is the continuity following the flow between the centers of ascending and subsiding motion. Evaluation of the recent NCEP-NCAR and ECMWF Reanalysis upper-air datasets reveals equatorial zonal circulation cells over the Pacific all year round, over the Atlantic only in boreal winter, and over the Indian Ocean only in autumn, all being seasons and oceanic longitudes with strong zonal flow in the lower troposphere.

  2. Numerical Simulations of Helicity Condensation in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Zhao, L.; DeVore, C. R.; Antiochos, S. K.; Zurbuchen, T. H.

    2015-05-01

    The helicity condensation model has been proposed by Antiochos to explain the observed smoothness of coronal loops and the observed buildup of magnetic shear at filament channels. The basic hypothesis of the model is that magnetic reconnection in the corona causes the magnetic stress injected by photospheric motions to collect only at those special locations where prominences are observed to form. In this work we present the first detailed quantitative MHD simulations of the reconnection evolution proposed by the helicity condensation model. We use the well-known ansatz of modeling the closed corona as an initially uniform field between two horizontal photospheric plates. The system is driven by applying photospheric rotational flows that inject magnetic helicity into the corona. The flows are confined to a finite region on the photosphere so as to mimic the finite flux system of a bipolar active region, for example. The calculations demonstrate that, contrary to common belief, opposite helicity twists do not lead to significant reconnection in such a coronal system, whereas twists with the same sense of helicity do produce substantial reconnection. Furthermore, we find that for a given amount of helicity injected into the corona, the evolution of the magnetic shear is insensitive to whether the pattern of driving photospheric motions is fixed or quasi-random. In all cases, the shear propagates via reconnection to the boundary of the flow region while the total magnetic helicity is conserved, as predicted by the model. We discuss the implications of our results for solar observations and for future, more realistic simulations of the helicity condensation process.

  3. Adding helicity to inflationary magnetogenesis

    SciTech Connect

    Caprini, Chiara; Sorbo, Lorenzo E-mail: sorbo@physics.umass.edu

    2014-10-01

    The most studied mechanism of inflationary magnetogenesis relies on the time-dependence of the coefficient of the gauge kinetic term F{sub μν} F{sup μν}. Unfortunately, only extremely finely tuned versions of the model can consistently generate the cosmological magnetic fields required by observations. We propose a generalization of this model, where also the pseudoscalar invariant F{sub μν}  F-tilde {sup μν} is multiplied by a time dependent function. The new parity violating term allows more freedom in tuning the amplitude of the field at the end of inflation. Moreover, it leads to a helical magnetic field that is amplified at large scales by magnetohydrodynamical processes during the radiation dominated epoch. As a consequence, our model can satisfy the observational lower bounds on fields in the intergalactic medium, while providing a seed for the galactic dynamo, if inflation occurs at an energy scale ranging from 10{sup 5} to 10{sup 10} GeV. Such energy scale is well below that suggested by the recent BICEP2 result, if the latter is due to primordial tensor modes. However, the gauge field is a source of tensors during inflation and generates a spectrum of gravitational waves that can give a sizable tensor to scalar ratio r=O(0.2) even if inflation occurs at low energies. This system therefore evades the Lyth bound. For smaller values of r, lower values of the inflationary energy scale are required. The model predicts fully helical cosmological magnetic fields and a chiral spectrum of primordial gravitational waves.

  4. Inverse moments equilibria for helical anisotropic systems

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Hirshman, S. P.; Depassier, M. C.

    1987-11-01

    An energy functional is devised for magnetic confinement schemes that have anisotropic plasma pressure. The minimization of this energy functional is demonstrated to reproduce components of the magnetohydrodynamic (MHD) force balance relation in systems with helical symmetry. An iterative steepest descent procedure is applied to the Fourier moments of the inverse magnetic flux coordinates to minimize the total energy and thus generate anisotropic pressure MHD equilibria. Applications to straight ELMO Snaky Torus (NTIS Document No. DE-84002406) configurations that have a magnetic well on the outermost flux surfaces have been obtained.

  5. Spheromak Power and Helicity Balance

    SciTech Connect

    Thomassen, K.I.

    2000-05-18

    This note addresses the division of gun power and helicity between the open line volume and the closed flux surface volume in a steady state flux core spheromak. Our assumptions are that fine scale turbulence maintains each region close to a Taylor state, {mu}{sub o}J = {lambda}B. The gun region that feeds these two volumes surrounded by a flux conserver is shown topologically below. (The actual geometry is toroidal). Flux and current from the magnetized gun flow on open lines around the entire closed surface containing the spheromak. The gun current flows down the potential gradient, the potential difference between the two ends of each line being the gun voltage. Here, the gun voltage excludes the sheath drops at each end. When these volumes have different values of {lambda} (ratio of {mu}{sub o}B{sup -2}j {center_dot} B in each region) in the open line volume V{sub 1} and the closed spheromak volume V{sub 2} the efficiency of transferring the gun power to the spheromak to sustain the ohmic loss is the {lambda}-ratio of these regions, in the limit V{sub 1} << V{sub 2}. This result follows immediately from helicity balance in that limit. Here we give an accounting of all the gun power, and do not assume a small edge (open line) region.

  6. Helical Cerenkov effect, a novel radiation source

    SciTech Connect

    Soln, J. )

    1994-10-01

    The observability of the helical Cerenkov effect as a novel radiation source is discussed. Depending on the value of the index of refraction of the medium, the strength of the uniform magnetic field, and the electron beam energy, helical Cerenkov radiation can occur in the same spectral regions as the ordinary Cerenkov effect, that is, from microwave to visible wavelengths. From the kinematics point of view, the author argues that for a microwave wavelength of 10[sup [minus]1] cm this effect should be observable in a medium with an index of refraction of 1.4, with a beam energy of 3 MeV, and a uniform magnetic field of 4 T. On the specific level, however, for the sake of simplicity, he discusses the observability of this effect for visible light with the central wavelength of 5 [times] 10[sup [minus]5] cm which can be achieved with 2 MeV in beam energy, silica aerogel as a medium (with an index of refraction of 1.075), and uniform magnetic fields from 5 to 10 T. For a 10-T magnetic field, he calculates that in the visible region of 250 to 750 nm an electron will produce a photon per 10 cm of traveled length. As to the stimulated helical Cerenkov emission, the author estimates that respectable gains are possible even if the beam passes close to the dielectric rather than through it. In addition to being potentially a new radiation source, the helical Cerenkov effect could possibly be used as a detector of radiation by energetic electrons that are trapped in a medium by strong magnetic fields.

  7. Helical screw viscometer

    DOEpatents

    Aubert, J.H.; Chapman, R.N.; Kraynik, A.M.

    1983-06-30

    A helical screw viscometer for the measurement of the viscosity of Newtonian and non-Newtonian fluids comprising an elongated cylindrical container closed by end caps defining a circular cylindrical cavity within the container, a cylindrical rotor member having a helical screw or ribbon flight carried by the outer periphery thereof rotatably carried within the cavity whereby the fluid to be measured is confined in the cavity filling the space between the rotor and the container wall. The rotor member is supported by axle members journaled in the end caps, one axle extending through one end cap and connectable to a drive source. A pair of longitudinally spaced ports are provided through the wall of the container in communication with the cavity and a differential pressure meter is connected between the ports for measuring the pressure drop caused by the rotation of the helical screw rotor acting on the confined fluid for computing viscosity.

  8. Trend of photospheric helicity flux in active regions generating halo CMEs

    NASA Astrophysics Data System (ADS)

    Smyrli, Aimilia; Zuccarello, Francesco; Zuccarello, Francesca; Romano, Paolo; Guglielmino, Salvatore Luigi; Spadaro, Daniele; Hood, Alan; Mackay, Duncan

    Coronal Mass Ejections (CMEs) are very energetic events initiated in the solar atmosphere, re-sulting in the expulsion of magnetized plasma clouds that propagate into interplanetary space. It has been proposed that CMEs can play an important role in shedding magnetic helicity, avoiding its endless accumulation in the corona. We therefore investigated the behavior of magnetic helicity accumulation in sites where the initiation of CMEs occurred, in order to de-termine whether and how changes in magnetic helicity accumulation are temporally correlated with CME occurrence. After identifying the active regions (AR) where the CMEs were ini-tiated by means of a double cross-check based on the flaring-eruptive activity and the use of SOHO/EIT difference images, we used MDI magnetograms to calculate magnetic flux evolu-tion, magnetic helicity injection rate and magnetic helicity injection in 10 active regions that gave rise to 12 halo CMEs observed during the period February 2000 -June 2003. No unique behavior in magnetic helicity injection accompanying halo CME occurrence is found. In fact, in some cases there is an abrupt change in helicity injection timely correlated with the CME event, while in some others no significant variation is recorded. However, our analysis show that the most significant changes in magnetic flux and magnetic helicity injection are associated with impulsive CMEs rather than gradual CMEs. Moreover, the most significant changes in mag-netic helicity are observed when X-class flares or eruptive filaments occur, while the occurrence of flares of class C or M seems not to affect significantly the magnetic helicity accumulation.

  9. PROMINENCE FORMATION ASSOCIATED WITH AN EMERGING HELICAL FLUX ROPE

    SciTech Connect

    Okamoto, Takenori J.; Tsuneta, Saku; Katsukawa, Yukio; Suematsu, Yoshinori; Lites, Bruce W.; Kubo, Masahito; Yokoyama, Takaaki; Berger, Thomas E.; Shine, Richard A.; Tarbell, Theodore D.; Title, Alan M.; Shimizu, Toshifumi

    2009-05-20

    The formation and evolution process and magnetic configuration of solar prominences remain unclear. In order to study the formation process of prominences, we examine continuous observations of a prominence in NOAA AR 10953 with the Solar Optical Telescope on the Hinode satellite. As reported in our previous Letter, we find a signature suggesting that a helical flux rope emerges from below the photosphere under a pre-existing prominence. Here we investigate more detailed properties and photospheric indications of the emerging helical flux rope, and discuss their relationship to the formation of the prominence. Our main conclusions are: (1) a dark region with absence of strong vertical magnetic fields broadens and then narrows in Ca II H-line filtergrams. This phenomenon is consistent with the emergence of the helical flux rope as photospheric counterparts. The size of the flux rope is roughly 30,000 km long and 10,000 km wide. The width is larger than that of the prominence. (2) No shear motion or converging flows are detected, but we find diverging flows such as mesogranules along the polarity inversion line. The presence of mesogranules may be related to the emergence of the helical flux rope. (3) The emerging helical flux rope reconnects with magnetic fields of the pre-existing prominence to stabilize the prominence for the next several days. We thus conjecture that prominence coronal magnetic fields emerge in the form of helical flux ropes that contribute to the formation and maintenance of the prominence.

  10. CONVECTIVE BURSTS AND THE COUPLING OF SATURN'S EQUATORIAL STORMS AND INTERIOR ROTATION

    SciTech Connect

    Heimpel, Moritz; Aurnou, Jonathan M. E-mail: aurnou@ucla.edu

    2012-02-10

    Temporal variations of Saturn's equatorial jet and magnetic field hint at rich dynamics coupling the atmosphere and the deep interior. However, it has been assumed that rotation of the interior dynamo must be steady over tens of years of modern observations. Here we use a numerical convection model and scaling estimates to show how equatorial convective bursts can transfer angular momentum to the deeper interior. The numerical model allows angular momentum transfer between a fluid outer spherical shell and a rigid inner sphere. Convection drives a prograde equatorial jet exhibiting quasiperiodic bursts that fill the equatorial volume outside the tangent cylinder. For each burst strong changes in the equatorial surface velocity are associated with retrograde torque on the inner sphere. Our results suggest that Saturn's Great White Spot, a giant storm that was observed to fill the equatorial region in 1990, could mobilize a volume of fluid carrying roughly 15% of Saturn's moment of inertia. Conservation of angular momentum then implies that a 20% change in the equatorial jet angular velocity could change the average interior rotation rate by about 0.1%-roughly an order of magnitude less than the apparent rotation rate changes associated with Saturn's kilometric radio (SKR) signal. However, if the SKR signal originates outside the liquid metal core in a 'planetary tachocline' that separates the layer of fast zonal flow from the magnetically controlled and slowly convecting deep interior, then convective bursts can provide a possible mechanism for the observed {approx}1% SKR changes.

  11. Equatorial anomaly effects on GPS scintillations in brazil

    NASA Astrophysics Data System (ADS)

    de Paula, E. R.; Rodrigues, F. S.; Iyer, K. N.; Kantor, I. J.; Abdu, M. A.; Kintner, P. M.; Ledvina, B. M.; Kil, H.

    In a collaborative study, INPE and Cornell University have installed several Global Positioning System (GPS) based scintillation monitors over the Brazilian territory in order to study L Band scintillation. These scintillation monitors were developed by Cornell University to measure the amplitude scintillation observed at L1 (1.575 GHz) GPS signal and are sensitive to ionospheric irregularities of about 400 meters scale size. This paper describes some characteristics of the intensity of scintillations observed at three observation sites in Brazil: (1) São Luís (2.33 ° S, 44 ° W, dip latitude 1.3 ° S), located at magnetic equator, (2) São José dos Campos (23.21 ° S, 45.86 ° W, dip latitude 17.8 ° S), located under the equatorial anomaly peak and (3) Cuiabá (15.33 ° S, 56.46 ° W, dip latitude 6.1 ° S), an intermediate observation site located in between the magnetic equator and the equatorial anomaly peak. Analysis of data from January to March of 2000 showed that the occurrence percentage as well as the magnitude of the L Band scintillation increase with latitude from the magnetic equator to the equatorial anomaly crest as previously reported by Basu et al. (1988). Strong scintillation with S 4 index exceeding 0.5 only has been observed under equatorial anomaly peak while at magnetic equator scintillation intensity (S 4 index) did not exceed 0.3. Such studies from the network of stations set up by INPE and Cornell University in Brazil, where the effect of large declination controls the ESF statistics, will be very useful for developing a regional scintillation model for use in IRI.

  12. CURRENT AND KINETIC HELICITY OF LONG-LIVED ACTIVITY COMPLEXES

    SciTech Connect

    Komm, Rudolf; Gosain, Sanjay

    2015-01-01

    We study long-lived activity complexes and their current helicity at the solar surface and their kinetic helicity below the surface. The current helicity has been determined from synoptic vector magnetograms from the NSO/SOLIS facility, and the kinetic helicity of subsurface flows has been determined with ring-diagram analysis applied to full-disk Dopplergrams from NSO/GONG and SDO/HMI. Current and kinetic helicity of activity complexes follow the hemispheric helicity rule with mainly positive values (78%; 78%, respectively, with a 95% confidence level of 31%) in the southern hemisphere and negative ones (80%; 93%, respectively, with a 95% confidence level of 22% and 14%, respectively) in the northern hemisphere. The locations with the dominant sign of kinetic helicity derived from Global Oscillation Network Group (GONG) and SDO/HMI data are more organized than those of the secondary sign even if they are not part of an activity complex, while locations with the secondary sign are more fragmented. This is the case for both hemispheres even for the northern one where it is not as obvious visually due to the large amount of magnetic activity present as compared to the southern hemisphere. The current helicity shows a similar behavior. The dominant sign of current helicity is the same as that of kinetic helicity for the majority of the activity complexes (83% with a 95% confidence level of 15%). During the 24 Carrington rotations analyzed here, there is at least one longitude in each hemisphere where activity complexes occur repeatedly throughout the epoch. These ''active'' longitudes are identifiable as locations of strong current and kinetic helicity of the same sign.

  13. The quantum Hall effect helicity

    SciTech Connect

    Shrivastava, Keshav N.

    2015-04-16

    The quantum Hall effect in semiconductor heterostructures is explained by two signs in the angular momentum j=l±s and g=(2j+1)/(2l+1) along with the Landau factor (n+1/2). These modifications in the existing theories explain all of the fractional charges. The helicity which is the sign of the product of the linear momentum with the spin p.s plays an important role for the understanding of the data at high magnetic fields. In particular it is found that particles with positive sign in the spin move in one direction and those with negative sign move in another direction which explains the up and down stream motion of the particles.

  14. Helical Muon Beam Cooling Channel Engineering Design

    SciTech Connect

    Kashikhin, V.S.; Lopes, M.L.; Romanov, G.V.; Tartaglia, M.A.; Yonehara, K.; Yu, M.; Zlobin, A.V.; Flanagan, G.; Johnson, R.P.; Kazakevich, G.M.; Marhauser, F.; /MUONS Inc., Batavia

    2012-05-01

    The Helical Cooling Channel (HCC), a novel technique for six-dimensional (6D) ionization cooling of muon beams, has shown considerable promise based on analytic and simulation studies. However, the implementation of this revolutionary method of muon cooling requires new techniques for the integration of hydrogen-pressurized, high-power RF cavities into the low-temperature superconducting magnets of the HCC. We present the progress toward a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb{sub 3}Sn based HCC test section. We include discussions on the pressure and thermal barriers needed within the cryostat to maintain operation of the magnet at 4.2 K while operating the RF and energy absorber at a higher temperature. Additionally, we include progress on the Nb{sub 3}Sn helical solenoid design.

  15. Observations of ULF wave related equatorial electrojet and density fluctuations

    NASA Astrophysics Data System (ADS)

    Yizengaw, E.; Zesta, E.; Biouele, C. M.; Moldwin, M. B.; Boudouridis, A.; Damtie, B.; Mebrahtu, A.; Anad, F.; Pfaff, R. F.; Hartinger, M.

    2013-10-01

    We report on Pc5 wave related electric field and vertical drift velocity oscillations at the equator as observed by ground magnetometers for an extended period on 9 August 2008. We show that the magnetometer-estimated equatorial E×B drift oscillates with the same frequency as ULF Pc5 waves, creating significant ionospheric density fluctuations. We also show ionospheric density fluctuations during the period when we observed ULF wave activity. At the same time, we detect the ULF activity on the ground using ground-based magnetometer data from the African Meridian B-field Education and Research (AMBER) and the South American Meridional B-field Array (SAMBA). From space, we use magnetic field observations from the GOES 12 and the Communication/Navigation Outage and Forecast System (C/NOFS) satellites. Upstream solar wind conditions are provided by the ACE spacecraft. We find that the wave power observed on the ground also occurs in the upstream solar wind and in the magnetosphere. All these observations demonstrate that Pc5 waves with a likely driver in the solar wind can penetrate to the equatorial ionosphere and modulate the equatorial electrodynamics. While no direct drift measurements from equatorial radars exist for the 9 August 2008 event, we used JULIA 150 km radar drift velocities observed on 2 May 2010 and found similar fluctuations with the period of 5-8 min, as a means of an independent confirmation of our magnetometer derived drift dynamics.

  16. Features of the F3 layer occurrence over the equatorial location of Trivandrum

    NASA Astrophysics Data System (ADS)

    Sreeja, V.; Ravindran, S.; Pant, T. K.

    2010-09-01

    The general features of the F3 layer occurrence over the magnetic equatorial location of Trivandrum (8.5° N; 77° E; dip lat ~0.5° N) in India during the period from 1996-2005 are presented using the ionosonde observations. The study brings out that the F3 layer occurrence over Trivandrum is weak and rare compared to the other equatorial locations. The F3 layer occurrence is relatively more pronounced during the magnetically active conditions, thus indicating the dependence of the layer formation over Trivandrum on magnetic activity. It is also observed that the percentage occurrence of the F3 layer decreases with increasing solar activity.

  17. ICPP: Results from Helical Axis Stellarators

    NASA Astrophysics Data System (ADS)

    Blackwell, B. D.

    2000-10-01

    Helical axis stellarators produce magnetic surfaces of high rotational transform and moderate shear solely by means of external currents, with the promise of high β. Several machines with quite different toroidal, helical, and ``bumpy'' Fourier components of magnetic field are now operating. The H-1 Heliac (1m, 1Tesla: Canberra, Australia), an M=3, low aspect ratio flexible heliac has been operated up to 0.5 Tesla with RF heating up to Ti ~ 100eV. Confinement transitions observed in this plasma exhibit many features of improved confinement regimes in tokamaks obtained at much larger power. ECH at 28GHz is being commissioned, and results from a suite of scattering, scalar and vector tomographic and multipoint probe and optical measurements will be presented. The M=4 Flexible Heliac ``TJ-II'' (1.5m, 1.2T: CIEMAT, Madrid) has accumulated a database of ECH plasma (1T) for a variety of configurations, (iota ~ 1.3--2.24) and a comprehensive set of diagnostics. Temperatures up to 2keV were measured by Thomson scattering/ECE. Observations include stored energy dependence, evidence of internal transport barriers, ELM-like bursts of magnetic activity and E×B sheared flows near rational surfaces in the plasma boundary. A new advanced configuration, the helical-axis heliotron, ``Heliotron J'' (1.2m, 1.5T: IAE, Kyoto University), the successor to Heliotron E, uses a ``bumpy'' magnetic component to improve high-energy particle confinement and reduce neoclassical transport. A combination of toroidal and helical coils produces a range of configurations. First plasma was successfully produced on December 1999, by ECH at 53GHz(2ω_ce). Following field mapping and final installation of diagnostics, the full experiment will start July 2000. The Helically Symmetric Experiment, ``HSX'' (Univ. Wisconsin, Madison) employs computer optimized non-planar coils to exploit a quasi-symmetry that minimizes toroidal magnetic field harmonics, confirmed by recent mapping of the drift orbits

  18. Solar Cycle Effects on Equatorial Electrojet Strength and Low Latitude Ionospheric Variability (P10)

    NASA Astrophysics Data System (ADS)

    Veenadhari, B.; Alex, S.

    2006-11-01

    veena_iig@yahoo.co.in The most obvious indicators of the activity of a solar cycle are sunspots, flares, plages, and soon. These are intimately linked to the solar magnetic fields, heliospheric processes which exhibit complex but systematic variations. The changes in geomagnetic activity, as observed in the ground magnetic records follow systematic correspondence with the solar activity conditions. Thus the transient variations in the magnetic field get modified by differing solar conditions. Also the solar cycle influences the Earth causing changes in geomagnetic activity, the magnetosphere and the ionosphere. Daily variations in the ground magnetic field are produced by different current systems in the earth’s space environment flowing in the ionosphere and magnetosphere which has a strong dependence on latitude and longitude of the location. The north-south (Horizontal) configuration of the earth’s magnetic field over the equator is responsible for the narrow band of current system over the equatorial latitudes and is called the Equatorial electrojet (EEJ) and is a primary driver for Equatorial Ionization anomaly (EIA). Equatorial electric fields and plasma drifts play the fundamental roles on the morphology of the low latitude ionosphere and strongly vary during geomagnetically quiet and disturbed periods. Quantitative study is done to illustrate the development process of EEJ and its influence on ionospheric parameters. An attempt is also made to examine and discuss the response of the equatorial electrojet parameters to the fast varying conditions of solar wind and interplanetary parameters.

  19. Helicon wave excitation with helical antennas

    SciTech Connect

    Light, M.; Chen, F.F.

    1995-04-01

    Components of the wave magnetic field in a helicon discharge have been measured with a single-turn, coaxial magnetic probe. Left- and right-handed helical antennas, as well as plane-polarized antennas, were used; and the results were compared with the field patterns computed for a nonuniform plasma. The results show that the right-hand circularly polarized mode is preferentially excited with all antennas, even those designed to excite the left-hand mode. For right-hand excitation, the radial amplitude profiles are in excellent agreement with computations. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  20. The Writhe of Helical Structures in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Toeroek, T.; Berger, M. A.; Kliem, B.

    2010-01-01

    Context. Helicity is a fundamental property of magnetic fields, conserved in ideal MHD. In flux rope topology, it consists of twist and writhe helicity. Despite the common occurrence of helical structures in the solar atmosphere, little is known about how their shape relates to the writhe, which fraction of helicity is contained in writhe, and how much helicity is exchanged between twist and writhe when they erupt. Aims. Here we perform a quantitative investigation of these questions relevant for coronal flux ropes. Methods. The decomposition of the writhe of a curve into local and nonlocal components greatly facilitates its computation. We use it to study the relation between writhe and projected S shape of helical curves and to measure writhe and twist in numerical simulations of flux rope instabilities. The results are discussed with regard to filament eruptions and coronal mass ejections (CMEs). Results. (1) We demonstrate that the relation between writhe and projected S shape is not unique in principle, but that the ambiguity does not affect low-lying structures, thus supporting the established empirical rule which associates stable forward (reverse) S shaped structures low in the corona with positive (negative) helicity. (2) Kink-unstable erupting flux ropes are found to transform a far smaller fraction of their twist helicity into writhe helicity than often assumed. (3) Confined flux rope eruptions tend to show stronger writhe at low heights than ejective eruptions (CMEs). This argues against suggestions that the writhing facilitates the rise of the rope through the overlying field. (4) Erupting filaments which are S shaped already before the eruption and keep the sign of their axis writhe (which is expected if field of one chirality dominates the source volume of the eruption), must reverse their S shape in the course of the rise. Implications for the occurrence of the helical kink instability in such events are discussed.

  1. Interplay Between the Equatorial Geophysical Processes

    NASA Astrophysics Data System (ADS)

    Sridharan, R.

    2006-11-01

    r_sridharanspl@yahoo.com With the sun as the main driving force, the Equatorial Ionosphere- thermosphere system supports a variety of Geophysical phenomena, essentially controlled by the neutral dynamical and electro dynamical processes that are peculiar to this region. All the neutral atmospheric parameters and the ionospheric parameters show a large variability like the diurnal, seasonal semi annual, annual, solar activity and those that are geomagnetic activity dependent. In addition, there is interplay between the ionized and the neutral atmospheric constituents. They manifest themselves as the Equatorial Electrojet (EEJ), Equatorial Ionization Anomaly (EIA), Equatorial Spread F (ESF), Equatorial Temperature and Wind Anomaly (ETWA). Recent studies have revealed that these phenomena, though apparently might show up as independent ones, are in reality interlinked. The interplay between these equatorial processes forms the theme for the present talk.

  2. Aerosol Transport Over Equatorial Africa

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Tyson, P. D.; Annegarn, H. J.; Kinyua, A. M.; Piketh, S.; King, M.; Helas, G.

    1999-01-01

    Long-range and inter-hemispheric transport of atmospheric aerosols over equatorial Africa has received little attention so far. Most aerosol studies in the region have focussed on emissions from rain forest and savanna (both natural and biomass burning) and were carried out in the framework of programs such as DECAFE (Dynamique et Chimie Atmospherique en Foret Equatoriale) and FOS (Fires of Savanna). Considering the importance of this topic, aerosols samples were measured in different seasons at 4420 meters on Mt Kenya and on the equator. The study is based on continuous aerosol sampling on a two stage (fine and coarse) streaker sampler and elemental analysis by Particle Induced X-ray Emission. Continuous samples were collected for two seasons coinciding with late austral winter and early austral spring of 1997 and austral summer of 1998. Source area identification is by trajectory analysis and sources types by statistical techniques. Major meridional transports of material are observed with fine-fraction silicon (31 to 68 %) in aeolian dust and anthropogenic sulfur (9 to 18 %) being the major constituents of the total aerosol loading for the two seasons. Marine aerosol chlorine (4 to 6 %), potassium (3 to 5 %) and iron (1 to 2 %) make up the important components of the total material transport over Kenya. Minimum sulfur fluxes are associated with recirculation of sulfur-free air over equatorial Africa, while maximum sulfur concentrations are observed following passage over the industrial heartland of South Africa or transport over the Zambian/Congo Copperbelt. Chlorine is advected from the ocean and is accompanied by aeolian dust recirculating back to land from mid-oceanic regions. Biomass burning products are transported from the horn of Africa. Mineral dust from the Sahara is transported towards the Far East and then transported back within equatorial easterlies to Mt Kenya. This was observed during austral summer and coincided with the dying phase of 1997/98 El

  3. Equatorial refuge amid tropical warming

    NASA Astrophysics Data System (ADS)

    Karnauskas, Kristopher B.; Cohen, Anne L.

    2012-07-01

    Upwelling across the tropical Pacific Ocean is projected to weaken in accordance with a reduction of the atmospheric overturning circulation, enhancing the increase in sea surface temperature relative to other regions in response to greenhouse-gas forcing. In the central Pacific, home to one of the largest marine protected areas and fishery regions in the global tropics, sea surface temperatures are projected to increase by 2.8°C by the end of this century. Of critical concern is that marine protected areas may not provide refuge from the anticipated rate of large-scale warming, which could exceed the evolutionary capacity of coral and their symbionts to adapt. Combining high-resolution satellite measurements, an ensemble of global climate models and an eddy-resolving regional ocean circulation model, we show that warming and productivity decline around select Pacific islands will be mitigated by enhanced upwelling associated with a strengthening of the equatorial undercurrent. Enhanced topographic upwelling will act as a negative feedback, locally mitigating the surface warming. At the Gilbert Islands, the rate of warming will be reduced by 0.7+/-0.3°C or 25+/-9% per century, or an overall cooling effect comparable to the local anomaly for a typical El Niño, by the end of this century. As the equatorial undercurrent is dynamically constrained to the Equator, only a handful of coral reefs stand to benefit from this equatorial island effect. Nevertheless, those that do face a lower rate of warming, conferring a significant advantage over neighbouring reef systems. If realized, these predictions help to identify potential refuges for coral reef communities from anticipated climate changes of the twenty-first century.

  4. Influence of the E region dynamo on equatorial spread F

    NASA Technical Reports Server (NTRS)

    Hanson, W. B.; Sanatani, S.; Patterson, T. N. L.

    1983-01-01

    The integrated E region Pedersen conductivity can be an important parameter in determining whether the bottomside of the equatorial F layer will be stable against the Rayleigh-Taylor gravitational instability. The F layer is observed to become unstable when it rises to great heights after sunset. One effect of this height rise is to decrease the stabilizing influence of ion-neutral collisions at F region heights. It is shown here that the same eastward electric field that raises the F layer also decreases the Pedersen conductivity of the E region, which further destabilizes convective overturning. Because the conductivity of magnetic tubes that penetrate the main F layer is large compared to the E layer contribution, these effects are important only for the bottomside of the equatorial F layer.

  5. Effects of the equatorial ionosphere on L-band Earth-space transmissions

    NASA Technical Reports Server (NTRS)

    Smith, Ernest K.; Flock, Warren L.

    1993-01-01

    Ionosphere scintillation can effect satellite telecommunication up to Ku-band. Nighttime scintillation can be attributed to large-scale inhomogeneity in the F-region of the ionosphere predominantly between heights of 200 and 600 km. Daytime scintillation has been attributed to sporadic E. It can be thought of as occurring in three belts: equatorial, high-latitude, and mid-latitude, in order of severity. Equatorial scintillation occurs between magnetic latitudes +/- 25 degrees, peaking near +/- 10 degrees. It commonly starts abruptly near 2000 local time and dies out shortly after midnight. There is a strong solar cycle dependence and a seasonal preference for the equinoxes, particularly the vernal one. Equatorial scintillation occurs more frequently on magnetically quiet than on magnetically disturbed days in most longitudes. At the peak of the sunspot cycle scintillation depths as great as 20 dB were observed at L-band.

  6. Central Equatorial Pacific Experiment (CEPEX)

    SciTech Connect

    Not Available

    1993-01-01

    The Earth's climate has varied significantly in the past, yet climate records reveal that in the tropics, sea surface temperatures seem to have been remarkably stable, varying by less than a few degrees Celsius over geologic time. Today, the large warm pool of the western Pacific shows similar characteristics. Its surface temperature always exceeds 27[degree]C, but never 31[degree]C. Heightened interest in this observation has been stimulated by questions of global climate change and the exploration of stabilizing climate feedback processes. Efforts to understand the observed weak sensitivity of tropical sea surface temperatures to climate forcing has led to a number of competing ideas about the nature of this apparent thermostat. Although there remains disagreement on the processes that regulate tropical sea surface temperature, most agree that further progress in resolving these differences requires comprehensive field observations of three-dimensional water vapor concentrations, solar and infrared radiative fluxes, surface fluxes of heat and water vapor, and cloud microphysical properties. This document describes the Central Equatorial Pacific Experiment (CEPEX) plan to collect such observations over the central equatorial Pacific Ocean during March of 1993.

  7. Coherent electron transport in a helical nanotube

    NASA Astrophysics Data System (ADS)

    Liang, Guo-Hua; Wang, Yong-Long; Du, Long; Jiang, Hua; Kang, Guang-Zhen; Zong, Hong-Shi

    2016-09-01

    The quantum dynamics of carriers bound to helical tube surfaces is investigated in a thin-layer quantization scheme. By numerically solving the open-boundary Schrödinger equation in curvilinear coordinates, geometric effect on the coherent transmission spectra is analysed in the case of single propagating mode as well as multimode. It is shown that, the coiling endows the helical nanotube with different transport properties from a bent cylindrical surface. Fano resonance appears as a purely geometric effect in the conductance, the corresponding energy of quasibound state is obviously influenced by the torsion and length of the nanotube. We also find new plateaus in the conductance. The transport of double-degenerate mode in this geometry is reminiscent of the Zeeman coupling between the magnetic field and spin angular momentum in quasi-one-dimensional structure.

  8. Conservation of writhe helicity under anti-parallel reconnection

    PubMed Central

    Laing, Christian E.; Ricca, Renzo L.; Sumners, De Witt L.

    2015-01-01

    Reconnection is a fundamental event in many areas of science, from the interaction of vortices in classical and quantum fluids, and magnetic flux tubes in magnetohydrodynamics and plasma physics, to the recombination in polymer physics and DNA biology. By using fundamental results in topological fluid mechanics, the helicity of a flux tube can be calculated in terms of writhe and twist contributions. Here we show that the writhe is conserved under anti-parallel reconnection. Hence, for a pair of interacting flux tubes of equal flux, if the twist of the reconnected tube is the sum of the original twists of the interacting tubes, then helicity is conserved during reconnection. Thus, any deviation from helicity conservation is entirely due to the intrinsic twist inserted or deleted locally at the reconnection site. This result has important implications for helicity and energy considerations in various physical contexts. PMID:25820408

  9. Macroscopic ordering of helical pores for arraying guest molecules noncentrosymmetrically

    PubMed Central

    Li, Chunji; Cho, Joonil; Yamada, Kuniyo; Hashizume, Daisuke; Araoka, Fumito; Takezoe, Hideo; Aida, Takuzo; Ishida, Yasuhiro

    2015-01-01

    Helical nanostructures have attracted continuous attention, not only as media for chiral recognition and synthesis, but also as motifs for studying intriguing physical phenomena that never occur in centrosymmetric systems. To improve the quality of signals from these phenomena, which is a key issue for their further exploration, the most straightforward is the macroscopic orientation of helices. Here as a versatile scaffold to rationally construct this hardly accessible structure, we report a polymer framework with helical pores that unidirectionally orient over a large area (∼10 cm2). The framework, prepared by crosslinking a supramolecular liquid crystal preorganized in a magnetic field, is chemically robust, functionalized with carboxyl groups and capable of incorporating various basic or cationic guest molecules. When a nonlinear optical chromophore is incorporated in the framework, the resultant complex displays a markedly efficient nonlinear optical output, owing to the coherence of signals ensured by the macroscopically oriented helical structure. PMID:26416086

  10. Macroscopic ordering of helical pores for arraying guest molecules noncentrosymmetrically

    NASA Astrophysics Data System (ADS)

    Li, Chunji; Cho, Joonil; Yamada, Kuniyo; Hashizume, Daisuke; Araoka, Fumito; Takezoe, Hideo; Aida, Takuzo; Ishida, Yasuhiro

    2015-09-01

    Helical nanostructures have attracted continuous attention, not only as media for chiral recognition and synthesis, but also as motifs for studying intriguing physical phenomena that never occur in centrosymmetric systems. To improve the quality of signals from these phenomena, which is a key issue for their further exploration, the most straightforward is the macroscopic orientation of helices. Here as a versatile scaffold to rationally construct this hardly accessible structure, we report a polymer framework with helical pores that unidirectionally orient over a large area (~10 cm2). The framework, prepared by crosslinking a supramolecular liquid crystal preorganized in a magnetic field, is chemically robust, functionalized with carboxyl groups and capable of incorporating various basic or cationic guest molecules. When a nonlinear optical chromophore is incorporated in the framework, the resultant complex displays a markedly efficient nonlinear optical output, owing to the coherence of signals ensured by the macroscopically oriented helical structure.

  11. Understanding the Longitudinal Variability of Equatorial Electrodynamics using integrated Ground- and Space-based Observations

    NASA Astrophysics Data System (ADS)

    Yizengaw, E.; Moldwin, M.; Zesta, E.

    2015-12-01

    The currently funded African Meridian B-Field Education and Research (AMBER) magnetometer array comprises more than thirteen magnetometers stationed globally in the vicinity of geomagnetic equator. One of the main objectives of AMBER network is to understand the longitudinal variability of equatorial electrodynamics as function of local time, magnetic activity, and season. While providing complete meridian observation in the region and filling the largest land-based gap in global magnetometer coverage, the AMBER array addresses two fundamental areas of space physics: first, the processes governing electrodynamics of the equatorial ionosphere as a function of latitude (or L-shell), local time, longitude, magnetic activity, and season, and second, ULF pulsation strength at low/mid-latitude regions and its connection with equatorial electrojet and density fluctuation. The global AMBER network can also be used to augment observations from space-based instruments, such us the triplet SWARM mission and the upcoming ICON missions. Thus, in coordination with space-based and other ground-based observations, the AMBER magnetometer network provides a great opportunity to understand the electrodynamics that governs equatorial ionosphere motions. In this paper we present the longitudinal variability of the equatorial electrodynamics using the combination of instruments onboard SWARM and C/NOFS satellites and ground-based AMBER network. Both ground- and pace-based observations show stronger dayside and evening sector equatorial electrodynamics in the American and Asian sectors compared to the African sector. On the other hand, the African sector is home to stronger and year-round ionospheric bubbles/irregularities compared to the American and Asian sectors. This raises the question if the evening sector equatorial electrodynamics (vertical drift), which is believed to be the main cause for the enhancement of Rayleigh-Taylor (RT) instability growth rate, is stronger in the

  12. Studies on equatorial shock formation during plasmaspheric refilling

    NASA Technical Reports Server (NTRS)

    Singh, N.

    1994-01-01

    Investigations based on small-scale simulations of microprocesses occurring when a magnetic flux tube refills with a cold plasma are summarized. Results of these investigations are reported in the following attached papers: (1) 'Numerical Simulation of Filling a Magnetic Flux Tube with a Cold Plasma: The Role of Ion Beam-Driven Instabilities'; and (2) 'Numerical Simulation of Filling a Magnetic Flux Tube with a Cold Plasma: Effects of Magnetically Trapped Hot Plasma'. Other papers included are: 'Interaction of Field-Aligned Cold Plasma Flows with an Equatorially-Trapped Hot Plasma: Electrostatic Shock Formation'; and 'Comparison of Hydrodynamic and Semikinetic Treatments for a Plasma Flow along Closed Field Lines'. A proposal for further research is included.

  13. Reversed field pinch current drive with oscillating helical fields

    SciTech Connect

    Farengo, Ricardo; Clemente, Roberto Antonio

    2006-04-15

    The use of oscillating helical magnetic fields to produce and sustain the toroidal and poloidal currents in a reversed field pinch (RFP) is investigated. A simple physical model that assumes fixed ions, massless electrons, and uniform density and resistivity is employed. Thermal effects are neglected in Ohm's law and helical coordinates are introduced to reduce the number of coupled nonlinear equations that must be advanced in time. The results show that it is possible to produce RFP-like magnetic field profiles with pinch parameters close to the experimental values. The efficiencies obtained for moderate resistivity, and the observed scaling, indicate that this could be a very attractive method for high temperature plasmas.

  14. Helicity transport through the photosphere

    NASA Astrophysics Data System (ADS)

    Schuck, P. W.; Antiochos, S. K.; Linton, M.

    2013-12-01

    Solar eruptions are driven by energy and helicity transported through the photosphere and into the Corona. However, the mechanism by which helicity is transferred from the solar dynamo to coronal structures is pooly understood. We recast the Berger and Field (1984) helicity transport equation in manifestly gauge invariant form and examine the individual terms leading to the transport of helicity through the emergence of closed field, and twisting and tangling of potential fields. These theoretical results are applied to erupting active regions observed by SDO/HMI. The plasma velocity fields in the photosphere, necessary for computing energy and helicity fluxes are determined using an upgraded version of DAVE4VM that incorporates the spherical geometry of the solar images. We find that the bulk of the helicity into the corona is injected by twisting motions, and we discuss the implications of our results for understanding coronal activity. This work was supported, in part, by NASA.

  15. Helicity transport through the photosphere

    NASA Astrophysics Data System (ADS)

    Schuck, P. W.; Antiochos, S. K.; Linton, M.

    2013-05-01

    Solar eruptions are driven by energy and helicity transported through the photosphere and into the Corona. However, the mechanism by which helicity is transferred from the solar dynamo to coronal structures is pooly understood. We recast the Berger and Field (1984) helicity transport equation in manifestly gauge invariant form and examine the individual terms leading to the transport of helicity through the emergence of closed field, and twisting and tangling of potential fields. These theoretical results are applied to erupting active regions observed by SDO/HMI. The plasma velocity fields in the photosphere, necessary for computing energy and helicity fluxes are determined using an upgraded version of DAVE4VM that incorporates the spherical geometry of the solar images. We find that the bulk of the helicity into the corona is injected by twisting motions, and we discuss the implications of our results for understanding coronal activity.

  16. Conservation of helicity in superfluids

    NASA Astrophysics Data System (ADS)

    Kedia, Hridesh; Kleckner, Dustin; Proment, Davide; Irvine, William T. M.

    2015-03-01

    Helicity arises as a special conserved quantity in ideal fluids, in addition to energy, momentum and angular momentum. As a measure of the knottedness of vortex lines, Helicity provides an important tool for studying a wide variety of physical systems such as plasmas and turbulent fluids. Superfluids flow without resistance just like ideal (Euler) fluids, making it natural to ask whether their knottedness is similarly preserved. We address the conservation of helicity in superfluids theoretically and examine its consequences in numerical simulations.

  17. Equatorial noise emissions with quasiperiodic modulation of wave intensity

    NASA Astrophysics Data System (ADS)

    Němec, F.; Santolík, O.; Hrbáčková, Z.; Pickett, J. S.; Cornilleau-Wehrlin, N.

    2015-04-01

    Equatorial noise (EN) emissions are electromagnetic wave events at frequencies between the proton cyclotron frequency and the lower hybrid frequency observed in the equatorial region of the inner magnetosphere. They propagate nearly perpendicular to the ambient magnetic field, and they exhibit a harmonic line structure characteristic of the proton cyclotron frequency in the source region. However, they were generally believed to be continuous in time. We investigate more than 2000 EN events observed by the Spatio-Temporal Analysis of Field Fluctuations and Wide-Band Data Plasma Wave investigation instruments on board the Cluster spacecraft, and we show that this is not always the case. A clear quasiperiodic (QP) time modulation of the wave intensity is present in more than 5% of events. We perform a systematic analysis of these EN events with QP modulation of the wave intensity. Such events occur usually in the noon-to-dawn magnetic local time sector. Their occurrence seems to be related to the increased geomagnetic activity, and it is associated with the time intervals of enhanced solar wind flow speeds. The modulation period of these events is on the order of minutes. Compressional ULF magnetic field pulsations with periods about double the modulation periods of EN wave intensity and magnitudes on the order of a few tenths of nanotesla were identified in about 46% of events. We suggest that these compressional magnetic field pulsations might be responsible for the observed QP modulation of EN wave intensity, in analogy to formerly reported VLF whistler mode QP events.

  18. Impact of helical boundary conditions on nonlinear 3D magnetohydrodynamic simulations of reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Veranda, M.; Bonfiglio, D.; Cappello, S.; Chacón, L.; Escande, D. F.

    2013-07-01

    Helical self-organized reversed-field pinch (RFP) regimes emerge both numerically—in 3D visco-resistive magnetohydrodynamic (MHD) simulations—and experimentally, as in the RFX-mod device at high current (IP above 1 MA). These states, called quasi-single helicity (QSH) states, are characterized by the action of a MHD mode that impresses a quasi-helical symmetry to the system, thus allowing a high degree of magnetic chaos healing. This is in contrast with the multiple helicity (MH) states, where magnetic fluctuations create a chaotic magnetic field degrading the confinement properties of the RFP. This paper reports an extensive numerical study performed in the frame of 3D visco-resistive MHD which considers the effect of helical magnetic boundary conditions, i.e. of a finite value of the radial magnetic field at the edge (magnetic perturbation, MP). We show that the system can be driven to a selected QSH state starting from both spontaneous QSH and MH regimes. In particular, a high enough MP can force a QSH helical self-organization with a helicity different from the spontaneous one. Moreover, MH states can be turned into QSH states with a selected helicity. A threshold in the amplitude of MP is observed above which is able to influence the system. Analysis of the magnetic topology of these simulations indicates that the dominant helical mode is able to temporarily sustain conserved magnetic structures in the core of the plasma. The region occupied by conserved magnetic surfaces increases reducing secondary modes' amplitude to experimental-like values.

  19. Helical muon beam cooling channel engineering design

    SciTech Connect

    Johnson, Rolland

    2015-08-07

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet. The first phase of this project saw the development of a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb3Sn-based HS test section. Two very novel ideas are required to realize the design. The first idea is the use of dielectric inserts in the RF cavities to make them smaller for a given frequency so that the cavities and associated plumbing easily fit inside the magnet cryostat. Calculations indicate that heat loads will be tolerable, while RF breakdown of the dielectric inserts will be suppressed by the pressurized hydrogen gas. The second new idea is the use of a multi-layer Nb3Sn helical solenoid. The technology demonstrations for the two aforementioned key components of a 10T, 805 MHz HCC were begun in this project. The work load in the Fermilab Technical Division made it difficult to test a multi-layer Nb3Sn solenoid as originally planned. Instead, a complementary

  20. Controlling skyrmion helicity via engineered Dzyaloshinskii-Moriya interactions.

    PubMed

    Díaz, Sebastián A; Troncoso, Roberto E

    2016-10-26

    Single magnetic skyrmion dynamics in chiral magnets with a spatially inhomogeneous Dzyaloshinskii-Moriya interaction (DMI) is considered. Based on the relation between DMI coupling and skyrmion helicity, it is argued that the latter must be included as an extra degree of freedom in the dynamics of skyrmions. An effective description of the skyrmion dynamics for an arbitrary inhomogeneous DMI coupling is obtained through the collective coordinates method. The resulting generalized Thiele equation is a dynamical system for the center of mass position and helicity of the skyrmion. It is found that the dissipative tensor and hence the Hall angle become helicity dependent. The skyrmion position and helicity dynamics are fully characterized by our model in two particular examples of engineered DMI coupling: half-planes with opposite-sign DMI and linearly varying DMI. In light of the experiment of Shibata et al (2013 Nat. Nanotechnol. 8 723) on the magnitude and sign of the DMI, our results constitute the first step toward a more complete understanding of the skyrmion helicity as a new degree of freedom that could be harnessed in future high-density magnetic storage and logic devices. PMID:27588612

  1. Controlling skyrmion helicity via engineered Dzyaloshinskii-Moriya interactions

    NASA Astrophysics Data System (ADS)

    Díaz, Sebastián A.; Troncoso, Roberto E.

    2016-10-01

    Single magnetic skyrmion dynamics in chiral magnets with a spatially inhomogeneous Dzyaloshinskii-Moriya interaction (DMI) is considered. Based on the relation between DMI coupling and skyrmion helicity, it is argued that the latter must be included as an extra degree of freedom in the dynamics of skyrmions. An effective description of the skyrmion dynamics for an arbitrary inhomogeneous DMI coupling is obtained through the collective coordinates method. The resulting generalized Thiele equation is a dynamical system for the center of mass position and helicity of the skyrmion. It is found that the dissipative tensor and hence the Hall angle become helicity dependent. The skyrmion position and helicity dynamics are fully characterized by our model in two particular examples of engineered DMI coupling: half-planes with opposite-sign DMI and linearly varying DMI. In light of the experiment of Shibata et al (2013 Nat. Nanotechnol. 8 723) on the magnitude and sign of the DMI, our results constitute the first step toward a more complete understanding of the skyrmion helicity as a new degree of freedom that could be harnessed in future high-density magnetic storage and logic devices.

  2. Detection of in-depth helical spin structures by planar Hall effect

    SciTech Connect

    Basaran, Ali C. Guénon, S.; Schuller, Ivan K.; Morales, R.

    2015-06-22

    We developed a method to determine the magnetic helicity and to study reversal mechanisms in exchange biased nanostructures using Planar Hall Effect (PHE). As a test case, we use an in-depth helical spin configuration that occurs during magnetization reversal in exchange coupled Ni/FeF{sub 2} heterostructures. We show the way to induce and determine the sign of the helicity from PHE measurements on a lithographically patterned cross. The helicity sign can be controlled by the angle between the externally applied magnetic field and a well-defined unidirectional anisotropy axis. Furthermore, the PHE signal reveals complex reversal features due to small deviations of the local unidirectional anisotropy axes from the crystallographic easy axis. The simulations using an incomplete domain wall model are in excellent agreement with the experimental data. These studies show that helical spin formations in nanomagnetic systems can be studied using laboratory-based magnetotransport.

  3. Equatorial Staphyloma Associated with Neurofibromatosis Type 1

    PubMed Central

    Shimada, Yoshiaki; Horiguchi, Masayuki

    2016-01-01

    We report a case of a 38-year-old man who presented with a recently self-detected lump under his left eyebrow. Previous ophthalmological history was unremarkable except for unilateral high myopia (left eye) since childhood. The appearance of the left eye was seemingly normal; however, with the top lid pulled up on downward gaze, a dark brown bulge emerged. The bulge was 10 × 7 mm and approximately 4 mm in height, and was covered by the extended superior rectus muscle. The diagnosis of equatorial staphyloma was made after coronal T1-weighted magnetic resonance imaging of the orbit revealed the dilatation of the vitreous cavity. Ocular movements were fully maintained and visual acuity was largely spared: 20/15 in the right eye without correction and 20/25 in the left eye with −10.00 spheres and −4.00 × 80 degrees cylinders. His past and family histories were unremarkable; however, small neurofibromas and café au lait spots all over his body led to the diagnosis of neurofibromatosis type 1 (NF1). From this case, similar to previous reports, we suggest that manifestations of NF1 are extremely variable and unpredictable. PMID:27721788

  4. Note on the helicity decomposition of spin and orbital optical currents

    NASA Astrophysics Data System (ADS)

    Aiello, Andrea; Berry, M. V.

    2015-06-01

    In the helicity representation, the Poynting vector (current) for a monochromatic optical field, when calculated using either the electric or the magnetic field, separates into right-handed and left-handed contributions, with no cross-helicity contributions. Cross-helicity terms do appear in the orbital and spin contributions to the current. But when the electric and magnetic formulas are averaged (‘electric-magnetic democracy’), these terms cancel, restoring the separation into right-handed and left-handed currents for orbital and spin separately.

  5. Helicity-Density And Normalized-Helicity Maps Of Flows

    NASA Technical Reports Server (NTRS)

    Degani, David; Levy, Yuval; Seginer, Arnan

    1991-01-01

    Maps of helicity density and normalized helicity useful as graphical representations of important features of three-dimensional flow fields containg vortexes. Emphasize complicated and important parts of flow field, identify vortexes, differentiate between primary and secondary vortexes, indicate sense of swirling motion, locate free singular points, and trace vortex-core streamlines emanating from these points.

  6. Longitudinal Differences of Ionospheric Vertical Density Distribution and Equatorial Electrodynamics

    NASA Technical Reports Server (NTRS)

    Yizengaw, E.; Zesta, E.; Moldwin, M. B.; Damtie, B.; Mebrahtu, A.; Valledares, C.E.; Pfaff, R. F.

    2012-01-01

    Accurate estimation of global vertical distribution of ionospheric and plasmaspheric density as a function of local time, season, and magnetic activity is required to improve the operation of space-based navigation and communication systems. The vertical density distribution, especially at low and equatorial latitudes, is governed by the equatorial electrodynamics that produces a vertical driving force. The vertical structure of the equatorial density distribution can be observed by using tomographic reconstruction techniques on ground-based global positioning system (GPS) total electron content (TEC). Similarly, the vertical drift, which is one of the driving mechanisms that govern equatorial electrodynamics and strongly affect the structure and dynamics of the ionosphere in the low/midlatitude region, can be estimated using ground magnetometer observations. We present tomographically reconstructed density distribution and the corresponding vertical drifts at two different longitudes: the East African and west South American sectors. Chains of GPS stations in the east African and west South American longitudinal sectors, covering the equatorial anomaly region of meridian approx. 37 deg and 290 deg E, respectively, are used to reconstruct the vertical density distribution. Similarly, magnetometer sites of African Meridian B-field Education and Research (AMBER) and INTERMAGNET for the east African sector and South American Meridional B-field Array (SAMBA) and Low Latitude Ionospheric Sensor Network (LISN) are used to estimate the vertical drift velocity at two distinct longitudes. The comparison between the reconstructed and Jicamarca Incoherent Scatter Radar (ISR) measured density profiles shows excellent agreement, demonstrating the usefulness of tomographic reconstruction technique in providing the vertical density distribution at different longitudes. Similarly, the comparison between magnetometer estimated vertical drift and other independent drift observation

  7. Chaotic coordinates for the Large Helical Device

    SciTech Connect

    Hudson, S. R.; Suzuki, Y.

    2014-10-15

    The theory of quadratic-flux-minimizing (QFM) surfaces is reviewed, and numerical techniques that allow high-order QFM surfaces to be efficiently constructed for experimentally relevant, non-integrable magnetic fields are described. As a practical example, the chaotic edge of the magnetic field in the Large Helical Device (LHD) is examined. A precise technique for finding the boundary surface is implemented, the hierarchy of partial barriers associated with the near-critical cantori is constructed, and a coordinate system, which we call chaotic coordinates, that is based on a selection of QFM surfaces is constructed that simplifies the description of the magnetic field, so that flux surfaces become “straight” and islands become “square.”.

  8. Cool and hot flux ropes, their helicity

    NASA Astrophysics Data System (ADS)

    Nindos, Alexander

    2016-07-01

    We will review recent indirect and direct evidence for the existence of magnetic flux ropes in the solar atmosphere. Magnetic flux ropes may appear as S-shaped or reverse S-shaped (sigmoidal) structures in regions that are likely to erupt, and may also show in nonlinear force-free field extrapolations that use data from photospheric vector magnetograms as boundary condition. The availability of high sensitivity data recorded with unprecedented spatial and temporal resolution in hot EUV wavelengths by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) has revealed the existence of coherent structures identified as hot flux ropes. In this presentation, we will review the properties of both cool and hot flux ropes with an emphasis on the frequency of their occurrence in large flares and on their magnetic helicity content.

  9. Spheromak Power and Helicity Balance

    SciTech Connect

    Thomassen, K.I.

    2000-05-18

    This note addresses the division of gun power and helicity between the open line volume and the closed flux surface volume in a steady state flux core spheromak. Our assumptions are that fine scale turbulence maintains each region close to an axisymmetric Taylor state, {mu}{sub o}j = {lambda}B. The gun region that feeds these two volumes surrounded by a flux conserver is shown topologically below. (The actual geometry is toroidal). Flux and current from the magnetized gun flow on open lines around the entire closed surface containing the spheromak. The gun current flows down the potential gradient, the potential difference between the two ends of each line being the gun voltage. Here, the gun voltage excludes the sheath drops at each end. These volumes have different values of {lambda} in each region (open line volume V{sub 1} and closed spheromak volume V{sub 2}) and we want to calculate the efficiency of transferring the gun power to the spheromak to sustain the ohmic loss in steady state.

  10. Automatically identification of Equatorial Spread-F occurrence on ionograms

    NASA Astrophysics Data System (ADS)

    Pillat, Valdir Gil; Fagundes, Paulo Roberto; Guimarães, Lamartine Nogueira Frutuoso

    2015-12-01

    F-region large-scale irregularities, also called plasma bubbles, are one of the most interesting equatorial ionospheric phenomena. These irregularities are generated in the equatorial region and afterwards extend to lower latitudes. They are one of the important topics of investigation in equatorial ionosphere electrodynamics and, therefore, are subject to intense theoretical and experimental research. The ionosonde is the most used scientific equipment to study the ionosphere and the F-region. With advancement of digital ionosonde, it is now possible to carry out an ionospheric sounding with a cadence of 5 min or even with 1-minute cadence. To analyse a large amount of ionograms, more sophisticated tools are needed. Thus, development of algorithms to identify and analyse different aspects of ionograms has become very important to space science researchers. Multiple echoes recorded on ionograms are the signature of these irregularities in the ionograms, usually called Spread-F. Spread-F is classified into three types: range, frequency, and mixed. Thus, automatic identification of Spread-F is important in ionospheric studies, because studies usually involve the analysis and interpretation of large numbers of ionograms. The main objective of this paper is to present a new computational tool, based on fuzzy relation, designed to automatically identify the occurrence of Spread-F in ionograms. The test was conducted in ionograms recorded in the Brazilian sector (São José dos Campos (23.2°S, 45.9°W, dip latitude 17.6°S-low latitude) and Palmas (10.2°S, 48.2°W, dip latitude 5.5°S-near the magnetic equatorial)). The automatic identification of Spread-F occurrence was compared with those obtained manually and good agreement was found.

  11. Automatically identification of Equatorial Spread-F occurrence on ionograms

    NASA Astrophysics Data System (ADS)

    Fagundes, P. R.; Pillat, V. G.; Guimarães, L. N. F.

    2015-12-01

    F-region large-scale irregularities, also called plasma bubbles, are one of the most interesting equatorial ionospheric phenomena. These irregularities are generated in the equatorial region and afterwards extend to lower latitudes. They are one of the important topics of investigation in equatorial ionosphere electrodynamics and, therefore, are subject to intense theoretical and experimental research. The ionosonde is the most used scientific equipment to study the ionosphere and the F-region. With advancement of digital ionosonde, it is now possible to carry out an ionospheric sounding with a cadence of 5 minutes or even with 1-minute cadence. To analyse a large amount of ionograms, more sophisticated tools are needed. Thus, development of algorithms to identify and analyse different aspects of ionograms has become very important to space science researchers. Multiple echoes recorded on ionograms are the signature of these irregularities in the ionograms, usually called Spread-F. Spread-F is classified into three types: range, frequency, and mixed. Thus, automatic identification of Spread-F is important in ionospheric studies, because studies usually involve the analysis and interpretation of large numbers of ionograms. The main objective of this paper is to present a new computational tool, based on fuzzy relation, designed to automatically identify the occurrence of Spread-F in ionograms. The test was conducted in ionograms recorded in the Brazilian sector (São José dos Campos (23.2° S, 45.9° W, dip latitude 17.6° S - low latitude) and Palmas (10.2° S, 48.2° W, dip latitude 5.5° S - near the magnetic equatorial)). The automatic identification of Spread-F occurrence was compared with those obtained manually and good agreement was found.

  12. Bifurcated helical core equilibrium states in tokamaks

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Chapman, I. T.; Schmitz, O.; Turnbull, A. D.; Tobias, B. J.; Lazarus, E. A.; Turco, F.; Lanctot, M. J.; Evans, T. E.; Graves, J. P.; Brunetti, D.; Pfefferlé, D.; Reimerdes, H.; Sauter, O.; Halpern, F. D.; Tran, T. M.; Coda, S.; Duval, B. P.; Labit, B.; Pochelon, A.; Turnyanskiy, M. R.; Lao, L.; Luce, T. C.; Buttery, R.; Ferron, J. R.; Hollmann, E. M.; Petty, C. C.; van Zeeland, M.; Fenstermacher, M. E.; Hanson, J. M.; Lütjens, H.

    2013-07-01

    Tokamaks with weak to moderate reversed central shear in which the minimum inverse rotational transform (safety factor) qmin is in the neighbourhood of unity can trigger bifurcated magnetohydrodynamic equilibrium states, one of which is similar to a saturated ideal internal kink mode. Peaked prescribed pressure profiles reproduce the ‘snake’ structures observed in many tokamaks which has led to a novel explanation of the snake as a bifurcated equilibrium state. Snake equilibrium structures are computed in simulations of the tokamak à configuration variable (TCV), DIII-D and mega amp spherical torus (MAST) tokamaks. The internal helical deformations only weakly modulate the plasma-vacuum interface which is more sensitive to ripple and resonant magnetic perturbations. On the other hand, the external perturbations do not alter the helical core deformation in a significant manner. The confinement of fast particles in MAST simulations deteriorate with the amplitude of the helical core distortion. These three-dimensional bifurcated solutions constitute a paradigm shift that motivates the applications of tools developed for stellarator research in tokamak physics investigations.

  13. EQUATORIAL SUPERROTATION ON TIDALLY LOCKED EXOPLANETS

    SciTech Connect

    Showman, Adam P.; Polvani, Lorenzo M.

    2011-09-01

    The increasing richness of exoplanet observations has motivated a variety of three-dimensional (3D) atmospheric circulation models of these planets. Under strongly irradiated conditions, models of tidally locked, short-period planets (both hot Jupiters and terrestrial planets) tend to exhibit a circulation dominated by a fast eastward, or 'superrotating', jet stream at the equator. When the radiative and advection timescales are comparable, this phenomenon can cause the hottest regions to be displaced eastward from the substellar point by tens of degrees longitude. Such an offset has been subsequently observed on HD 189733b, supporting the possibility of equatorial jets on short-period exoplanets. Despite its relevance, however, the dynamical mechanisms responsible for generating the equatorial superrotation in such models have not been identified. Here, we show that the equatorial jet results from the interaction of the mean flow with standing Rossby waves induced by the day-night thermal forcing. The strong longitudinal variations in radiative heating-namely intense dayside heating and nightside cooling-trigger the formation of standing, planetary-scale equatorial Rossby and Kelvin waves. The Rossby waves develop phase tilts that pump eastward momentum from high latitudes to the equator, thereby inducing equatorial superrotation. We present an analytic theory demonstrating this mechanism and explore its properties in a hierarchy of one-layer (shallow-water) calculations and fully 3D models. The wave-mean-flow interaction produces an equatorial jet whose latitudinal width is comparable to that of the Rossby waves, namely the equatorial Rossby deformation radius modified by radiative and frictional effects. For conditions typical of synchronously rotating hot Jupiters, this length is comparable to a planetary radius, explaining the broad scale of the equatorial jet obtained in most hot-Jupiter models. Our theory illuminates the dependence of the equatorial jet

  14. The night when the auroral and equatorial ionospheres converged

    NASA Astrophysics Data System (ADS)

    Martinis, C.; Baumgardner, J.; Mendillo, M.; Wroten, J.; Coster, A.; Paxton, L.

    2015-09-01

    An all-sky imaging system at the McDonald Observatory (30.67°N, 104.02°W, 40° magnetic latitude) showed dramatic ionospheric effects during a moderate geomagnetic storm on 1 June 2013. The auroral zone expanded, leading to the observation of a stable auroral red (SAR) arc. Airglow depletions associated with equatorial spread F (ESF) were also seen for the first time at such high magnetic latitude. Total electron content measurements from a Global Positioning System (GPS) receiver exhibited ionospheric irregularities typically associated with ESF. We explore why this moderate geomagnetic disturbance leads to such dramatic ionospheric perturbations at midlatitudes. A corotating interaction region-like driver and a highly contracted plasmasphere caused the SAR arc to occur at L shell ~ 2.3. For ESF at L ~ 2.1, timing of the storm intensification, alignment of the sunset terminator with the central magnetic meridian, and sudden variations in the westward auroral electrojet all combined to trigger equatorial irregularities that reached altitudes of ~ 7000 km. The SAR arc and ESF signatures at the ionospheric foot points of inner magnetosphere L shells (L ~ 2) represent a dramatic convergence of pole to equator/equator to pole coupling at midlatitudes.

  15. Design principles for Bernal spirals and helices with tunable pitch

    NASA Astrophysics Data System (ADS)

    Fejer, Szilard N.; Chakrabarti, Dwaipayan; Kusumaatmaja, Halim; Wales, David J.

    2014-07-01

    Using the framework of potential energy landscape theory, we describe two in silico designs for self-assembling helical colloidal superstructures based upon dipolar dumbbells and Janus-type building blocks, respectively. Helical superstructures with controllable pitch length are obtained using external magnetic field driven assembly of asymmetric dumbbells involving screened electrostatic as well as magnetic dipolar interactions. The pitch of the helix is tuned by modulating the Debye screening length over an experimentally accessible range. The second design is based on building blocks composed of rigidly linked spheres with short-range anisotropic interactions, which are predicted to self-assemble into Bernal spirals. These spirals are quite flexible, and longer helices undergo rearrangements via cooperative, hinge-like moves, in agreement with experiment.Using the framework of potential energy landscape theory, we describe two in silico designs for self-assembling helical colloidal superstructures based upon dipolar dumbbells and Janus-type building blocks, respectively. Helical superstructures with controllable pitch length are obtained using external magnetic field driven assembly of asymmetric dumbbells involving screened electrostatic as well as magnetic dipolar interactions. The pitch of the helix is tuned by modulating the Debye screening length over an experimentally accessible range. The second design is based on building blocks composed of rigidly linked spheres with short-range anisotropic interactions, which are predicted to self-assemble into Bernal spirals. These spirals are quite flexible, and longer helices undergo rearrangements via cooperative, hinge-like moves, in agreement with experiment. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00324a

  16. Helical Luttinger liquid in topological insulator nanowires.

    PubMed

    Egger, R; Zazunov, A; Yeyati, A Levy

    2010-09-24

    We derive and analyze the effective low-energy theory for interacting electrons in a cylindrical nanowire made of a strong topological insulator. Three different approaches provide a consistent picture for the band structure, where surface states forming inside the bulk gap correspond to one-dimensional bands indexed by total angular momentum. When a half-integer magnetic flux pierces the nanowire, we find a strongly correlated helical Luttinger liquid topologically protected against weak disorder. We describe how transport experiments can detect this state.

  17. The Advanced Helical Generator

    SciTech Connect

    Reisman, D B; Javedani, J B; Ellsworth, G F; Kuklo, R M; Goerz, D A; White, A D; Tallerico, L J; Gidding, D A; Murphy, M J; Chase, J B

    2009-10-26

    A high explosive pulsed power (HEPP) generator called the Advanced Helical Generator (AHG) has been designed, built, and successfully tested. The AHG incorporates design principles of voltage and current management to obtain a high current and energy gain. Its design was facilitated by the use of modern modeling tools as well as high precision manufacture. The result was a first-shot success. The AHG delivered 16 Mega-Amperes of current and 11 Mega-Joules of energy to a quasi-static 80 nH inductive load. A current gain of 154 times was obtained with a peak exponential rise time of 20 {micro}s. We will describe in detail the design and testing of the AHG.

  18. Primary Cardiac Lymphoma: Helical CT Findings and Radiopathologic Correlation

    SciTech Connect

    Marco de Lucas, Enrique Pagola, Miguel Angel; Fernandez, Fidel; Lastra, Pedro; Delgado, M. Luisa Ruiz; Sadaba, Pablo; Pinto, Jesus; Ballesteros, Ma Angeles; Ortiz, Antonio

    2004-03-15

    Primary tumors of the heart are extremely rare.Clinical manifestations are nondiagnostic and the patients are often misdiagnosed. Magnetic resonance imaging and echocardiography are standard in this diagnostic workup. We report a case of a man with acromegaly, dysphagia, chest pain and weight loss. An invasive cardiac mass was diagnosed by helical-CT. Autopsy demonstrated a B-cell aggressive lymphoma.

  19. A fully relaxed helicity balance model for an inductively driven spheromak

    SciTech Connect

    O'Neill, R. G.; Marklin, G. J.; Jarboe, T. R.; Akcay, C.; Hamp, W. T.; Nelson, B. A.; Redd, A. J.; Smith, R. J.; Stewart, B. T.; Wrobel, J. S.; Sieck, P. E.

    2007-11-15

    Magnetic helicity balance and a fully relaxed Taylor-state model are shown to predict the magnitude of sustained equilibrium current in an inductively driven spheromak. The Helicity Injected Torus with Steady Inductive drive (HIT-SI) [T. R. Jarboe et al., Phys. Rev. Lett. 97, 115003 (2006)] forms and sustains spheromaks using two inductively driven helicity injectors. By assuming helicity is injected at a rate 2V{psi}, and only decays through Spitzer resistivity using T{sub e} measured with a Langmuir probe, the magnitude of the sustained equilibrium current is predicted with no fitting parameters. The model correctly predicts a threshold helicity injection rate for spheromak formation. Although the experimental results suggest a higher effective helicity dissipation rate by a factor of {approx}1.37 compared to the Spitzer value, the prediction is still within the uncertainties of the measured parameters.

  20. Stability of equatorial satellite orbits

    NASA Astrophysics Data System (ADS)

    Mioc, V.; Stavinschi, M.

    2004-09-01

    We study satellite orbits lying in the equatorial plane of a planet via the geometric methods of the theory of dynamical systems. To model the planetary gravitational potential, we expand it to the sixth zonal harmonic. The motion equations are regularized by means of McGehee-type transformations of the second kind. Naturally considering the motion to be collisionless and escapeless, we take into account the whole interplay among field parameters, total-energy level and angular momentum. This gives rise to various phase-portraits. In the most general case as regards the changes of sign of parameters, we meet: saddles generating simple or double homoclinic loops, double loops inside one loop of a larger double loop, centers surrounded by periodic and quasiperiodic trajectories, heteroclinic orbits, etc. Of course, less general cases lead to simpler phase portraits. Every type of phase orbit is translated in terms of physical motion. Such qualitative results are useful to the analysis of circumplanetary motion of major or infinitesimal satellites, rings, etc

  1. EQUATORIAL ZONAL JETS AND JUPITER's GRAVITY

    SciTech Connect

    Kong, D.; Liao, X.; Zhang, K.; Schubert, G.

    2014-08-20

    The depth of penetration of Jupiter's zonal winds into the planet's interior is unknown. A possible way to determine the depth is to measure the effects of the winds on the planet's high-order zonal gravitational coefficients, a task to be undertaken by the Juno spacecraft. It is shown here that the equatorial winds alone largely determine these coefficients which are nearly independent of the depth of the non-equatorial winds.

  2. Peri-equatorial paleolatitudes for Jurassic radiolarian cherts of Greece

    USGS Publications Warehouse

    Aiello, I.W.; Hagstrum, J.T.; Principi, G.

    2008-01-01

    Radiolarian-rich sediments dominated pelagic deposition over large portions of the Tethys Ocean during middle to late Jurassic time as shown by extensive bedded chert sequences found in both continental margin and ophiolite units of the Mediterranean region. Which paleoceanographic mechanisms and paleotectonic setting favored radiolarian deposition during the Jurassic, and the nature of a Tethys-wide change from biosiliceous to biocalcareous (mainly nannofossil) deposition at the beginning of Cretaceous time, have remained open questions. Previous paleomagnetic analyses of Jurassic red radiolarian cherts in the Italian Apennines indicate that radiolarian deposition occurred at low peri-equatorial latitudes, similar to modern day deposition of radiolarian-rich sediments within equatorial zones of high biologic productivity. To test this result for other sectors of the Mediterranean region, we undertook paleomagnetic study of Mesozoic (mostly middle to upper Jurassic) red radiolarian cherts within the Aegean region on the Peloponnesus and in continental Greece. Sampled units are from the Sub-Pelagonian Zone on the Argolis Peninsula, the Pindos-Olonos Zone on the Koroni Peninsula, near Karpenissi in central Greece, and the Ionian Zone in the Varathi area of northwestern Greece. Thermal demagnetization of samples from all sections removed low-temperature viscous and moderate-temperature overprint magnetizations that fail the available fold tests. At Argolis and Koroni, however, the cherts carry a third high-temperature magnetization that generally exhibits a polarity stratigraphy and passes the available fold tests. We interpret the high-temperature component to be the primary magnetization acquired during chert deposition and early diagenesis. At Kandhia and Koliaky (Argolis), the primary declinations and previous results indicate clockwise vertical-axis rotations of ??? 40?? relative to "stable" Europe. Due to ambiguities in hemispheric origin (N or S) and thus

  3. Ion temperature gradient turbulence in helical and axisymmetric RFP plasmas

    SciTech Connect

    Predebon, I.; Xanthopoulos, P.

    2015-05-15

    Turbulence induced by the ion temperature gradient (ITG) is investigated in the helical and axisymmetric plasma states of a reversed field pinch device by means of gyrokinetic calculations. The two magnetic configurations are systematically compared, both linearly and nonlinearly, in order to evaluate the impact of the geometry on the instability and its ensuing transport, as well as on the production of zonal flows. Despite its enhanced confinement, the high-current helical state demonstrates a lower ITG stability threshold compared to the axisymmetric state, and ITG turbulence is expected to become an important contributor to the total heat transport.

  4. Dynamics of equatorial irregularity patch formation, motion, and decay

    SciTech Connect

    Aarons, J.; Mullen, J.P.; Whitney, H.E.; MacKenzie, E.M.

    1980-01-01

    Using scintillation observations from a series of equatorial propagation paths as well as backscatter and airglow data, the development, motion, and decay of equatorial irregularity patches have been studied. Assembling the results of earlier studies in the field with our observations, we find the following: the patch has limited east-west dimensions with a minimum of 100 km. Several patches may be melded together to reach an extent of 1500 km. Its magnetic north-south dimensions are often greater than 2000 km; the most intense irregularities (as evidenced by the Jicamarca radar at the dip equator) are from 225 to 450 km in altitude, although irregularities are found as high as 1000 km. The patch initially has a westward expansion following the solar terminator, then, maintaining its integrity, moves eastward. Evidence over a limited series of experiments suggests that premidnight patches are formed within 1 1/2 hours after ionospheric sunset in the absence of special magnetic conditions. From Ascension Island (approx.16 /sup 0/S dip latitude) the individual patches can be clearly distinguished. The decay of patches in the midnight time period was studied, pointing to a rapid decrease in scintillation intensity in this time period.

  5. Deep, cross-equatorial eddies

    NASA Astrophysics Data System (ADS)

    Borisov, Sergey; Nof, Doron

    The question of how deep ocean eddies can cross the equator is addressed with the aid of analytical and numerical models. We focus on the possibility that deep ocean (lens-like) eddies can cross the equator via deep cross equatorial channels on the ocean floor. We first examine the behavior of solid balls (i.e., free particles) in a meridional parabolic channel on a plane. Such balls are subject to similar topographical forcing and inertial forces that a lens is subject to, except that pressure forces and friction are absent. We examine both single isolated balls and a "cloud" of (noninteractive) balls. In general, the balls' trajectories have a chaotic character; a fraction of the cloud crosses the equator and ends up in the northern hemisphere, and a fraction is left behind. More realistic numerical experiments (with a fully nonlinear reduced-gravity isopycnic model of the Bleck and Boudra type) show similar behavior. In all cases the equator acts as an "eddy smasher" in the sense that it breaks the lens into at least two parts, one crosses the equator and ends up in the northern hemisphere, and the other is left behind. Here, however, the system is not chaotic. Despite the obvious differences between clouds of balls and eddies, there is a remarkable similarity between the percentage of balls that penetrate into the opposite hemisphere and the percentage of eddies' mass that ends up in the other hemisphere. This suggests that the geometry of the channel and the presence of the equator determine how the fluid will be partitioned among the two hemispheres.

  6. On the equatorial Ekman layer

    NASA Astrophysics Data System (ADS)

    Marcotte, Florence; Dormy, Emmanuel; Soward, Andrew

    2016-09-01

    The steady incompressible viscous flow in the wide gap between spheres rotating about a common axis at slightly different rates (small Ekman number E) has a long and celebrated history. The problem is relevant to the dynamics of geophysical and planetary core flows, for which, in the case of electrically conducting fluids, the possible operation of a dynamo is of considerable interest. A comprehensive asymptotic study, in the limit E<<1, was undertaken by Stewartson (J. Fluid Mech. 1966, vol. 26, pp. 131-144). The mainstream flow, exterior to the E^{1/2} Ekman layers on the inner/outer boundaries and the shear layer on the inner sphere tangent cylinder C, is geostrophic. Stewartson identified a complicated nested layer structure on C, which comprises relatively thick quasi-geostrophic E^{2/7} (inside C) and E^{1/4} (outside C) layers. They embed a thinner E^{1/3} ageostrophic shear layer (on C), which merges with the inner sphere Ekman layer to form the E^{2/5} Equatorial Ekman layer of axial length E^{1/5}. Under appropriate scaling, this $E^{2/5}$--layer problem may be formulated, correct to leading order, independent of E. Accordingly, the Ekman boundary layer and ageostrophic shear layer become features of the far-field (as identified by the large value of the scaled axial co-ordinate z) solution. We present a numerical solution, which uses a non-local integral boundary condition at finite $z$ to account for the far-field behaviour. Adopting z^{-1} as a small parameter we extend Stewartson's similarity solution for the ageostrophic shear layer to higher orders. This far-field solution agrees well with that obtained from our numerical model.

  7. INVESTIGATION OF HELICITY AND ENERGY FLUX TRANSPORT IN THREE EMERGING SOLAR ACTIVE REGIONS

    SciTech Connect

    Vemareddy, P.

    2015-06-20

    We report the results of an investigation of helicity and energy flux transport from three emerging solar active regions (ARs). Using time sequence vector magnetic field observations obtained from the Helioseismic Magnetic Imager, the velocity field of plasma flows is derived by the differential affine velocity estimator for vector magnetograms. In three cases, the magnetic fluxes evolve to pump net positive, negative, and mixed-sign helicity flux into the corona. The coronal helicity flux is dominantly coming from the shear term that is related to horizontal flux motions, whereas energy flux is dominantly contributed by the emergence term. The shear helicity flux has a phase delay of 5–14 hr with respect to absolute magnetic flux. The nonlinear curve of coronal energy versus relative helicity identifies the configuration of coronal magnetic fields, which is approximated by a fit of linear force-free fields. The nature of coronal helicity related to the particular pattern of evolving magnetic fluxes at the photosphere has implications for the generation mechanism of two kinds of observed activity in the ARs.

  8. Latitudinal comparisons of equatorial Pacific zooplankton

    NASA Astrophysics Data System (ADS)

    Roman, M. R.; Dam, H. G.; Le Borgne, R.; Zhang, X.

    Zooplankton biomass and rates of ingestion, egestion and production in the equatorial Pacific Ocean along 140°W and 180° exhibit maximum values in the High-Nutrient Low-Chlorophyll (HNLC) zone associated with equatorial upwelling (5°S-5°N) as compared to the more oligotrophic regions to the north and south. Zooplankton biomass and rates are not usually highest on the equator, but increase "downstream" of the upwelling center as the zooplankton populations exhibit a delayed response to enhanced phytoplankton production. The vertical distribution of zooplankton biomass in the equatorial HNLC area tends to be concentrated in surface waters and is more uniform with depth in oligotrophic regions to the north and south of the equatorial upwelling zone. In general, the amount of mesozooplankton (>200 μm) carbon biomass is approximately 25% of estimated phytoplankton biomass and 30% of bacterial biomass in the HNLC area of the equatorial Pacific Ocean. Zooplankton grazing on phytoplankton is low in the equatorial Pacific Ocean, generally <5% of the total chlorophyll-a standing stock grazed per day. Based on estimates of metabolic demand, it is apparent that zooplankton in the equatorial Pacific Ocean are omnivores, consuming primarily microzooplankton and detritus. Estimated zooplankton growth rates in the warm waters of the HNLC equatorial Pacific Ocean are high, ranging from 0.58 d -1 for 64-200 μm zooplankton to 0.08 d -1 for 1000-2000 μm zooplankton. Thus, the numerical and functional response of equatorial zooplankton to increases in phytoplankton production are more rapid than normally occurs in sub-tropical and temperate waters. Potential zooplankton fecal pellet production, estimated from metabolic demand, is approximately 1.6 times the estimated gravitational carbon flux at 150 m in the zone of equatorial upwelling (5°S-5°N) and 1.1 times the export flux in the more oligotrophic regions to the north and south. The active flux of carbon by diel migrant

  9. Helicity multiplexed broadband metasurface holograms

    PubMed Central

    Wen, Dandan; Yue, Fuyong; Li, Guixin; Zheng, Guoxing; Chan, Kinlong; Chen, Shumei; Chen, Ming; Li, King Fai; Wong, Polis Wing Han; Cheah, Kok Wai; Yue Bun Pun, Edwin; Zhang, Shuang; Chen, Xianzhong

    2015-01-01

    Metasurfaces are engineered interfaces that contain a thin layer of plasmonic or dielectric nanostructures capable of manipulating light in a desirable manner. Advances in metasurfaces have led to various practical applications ranging from lensing to holography. Metasurface holograms that can be switched by the polarization state of incident light have been demonstrated for achieving polarization multiplexed functionalities. However, practical application of these devices has been limited by their capability for achieving high efficiency and high image quality. Here we experimentally demonstrate a helicity multiplexed metasurface hologram with high efficiency and good image fidelity over a broad range of frequencies. The metasurface hologram features the combination of two sets of hologram patterns operating with opposite incident helicities. Two symmetrically distributed off-axis images are interchangeable by controlling the helicity of the input light. The demonstrated helicity multiplexed metasurface hologram with its high performance opens avenues for future applications with functionality switchable optical devices. PMID:26354497

  10. Tunable Helical Origami

    NASA Astrophysics Data System (ADS)

    Chen, Zi; Dai, Eric; Zheng, Huang

    2014-03-01

    Origami, the Japanese art of paper folding, is traditionally viewed as an amusing pastime and medium of artistic expression. However, in recent years, origami has begun to inspire innovations in science and engineering. For example, K. Miura led the study of a paper folding pattern in regards to deployment of solar panels to outer space, resulting in more efficient packing and unpacking of the solar panels into tightly constrained spaces. In this work, we study the geometric and mechanical properties of a twisting origami pattern. The pattern created by the fold exhibits several interesting properties, including rigid foldibility, and finely tunable helical coiling, with control over pitch, radius, and handedness of the helix. In addition, the pattern closely mimics the twist buckling patterns shown by thin materials, for example, a mobius strip. In our work, we relate the six parameters of the twisting origami pattern to generate a fully tunable graphical model of the fold. In addition, we demonstrate that the morphogenesis of such folding pattern can be modeled through finite element analysis. We hope our research into the diagonal fold brings insight into the potential scientific and engineering applications of origami and spark further research into how the traditional paper art can be applied as a simple, inexpensive model for complex problems.

  11. Spatio-temporal variability of equatorial noise emissions

    NASA Astrophysics Data System (ADS)

    Nemec, Frantisek; Santolik, Ondrej; Hrbackova, Zuzana; Pickett, Jolene; Cornilleau-Wehrlin, Nicole

    Equatorial noise (EN) emissions (also called "fast magnetosonic waves") are electromagnetic waves at frequencies between the proton cyclotron frequency and the lower hybrid frequency routinely observed near the geomagnetic equator at radial distances between about 2 and 7 Earth radii. They propagate at wave normal angles close to 90 degrees, with magnetic field fluctuations being nearly linearly polarized along the ambient magnetic field. This property, along with a detailed wave analysis, can be conveniently used for their identification. We use multipoint measurements performed by the Cluster spacecraft to determine the spatio-temporal variability of EN emissions. The characteristic time constant, as well as typical scales of intensity changes both in the radial and the azimuthal directions, are determined. The data are further separated according to their position inside/outside the plasmasphere and the respective differences are discussed.

  12. Employing helicity amplitudes for resummation

    NASA Astrophysics Data System (ADS)

    Moult, Ian; Stewart, Iain W.; Tackmann, Frank J.; Waalewijn, Wouter J.

    2016-05-01

    Many state-of-the-art QCD calculations for multileg processes use helicity amplitudes as their fundamental ingredients. We construct a simple and easy-to-use helicity operator basis in soft-collinear effective theory (SCET), for which the hard Wilson coefficients from matching QCD onto SCET are directly given in terms of color-ordered helicity amplitudes. Using this basis allows one to seamlessly combine fixed-order helicity amplitudes at any order they are known with a resummation of higher-order logarithmic corrections. In particular, the virtual loop amplitudes can be employed in factorization theorems to make predictions for exclusive jet cross sections without the use of numerical subtraction schemes to handle real-virtual infrared cancellations. We also discuss matching onto SCET in renormalization schemes with helicities in 4- and d -dimensions. To demonstrate that our helicity operator basis is easy to use, we provide an explicit construction of the operator basis, as well as results for the hard matching coefficients, for p p →H +0 , 1, 2 jets, p p →W /Z /γ +0 , 1, 2 jets, and p p →2 , 3 jets. These operator bases are completely crossing symmetric, so the results can easily be applied to processes with e+e- and e-p collisions.

  13. omega-Helices in proteins.

    PubMed

    Enkhbayar, Purevjav; Boldgiv, Bazartseren; Matsushima, Norio

    2010-05-01

    A modification of the alpha-helix, termed the omega-helix, has four residues in one turn of a helix. We searched the omega-helix in proteins by the HELFIT program which determines the helical parameters-pitch, residues per turn, radius, and handedness-and p = rmsd/(N - 1)(1/2) estimating helical regularity, where "rmsd" is the root mean square deviation from the best fit helix and "N" is helix length. A total of 1,496 regular alpha-helices 6-9 residues long with p < or = 0.10 A were identified from 866 protein chains. The statistical analysis provides a strong evidence that the frequency distribution of helices versus n indicates the bimodality of typical alpha-helix and omega-helix. Sixty-two right handed omega-helices identified (7.2% of proteins) show non-planarity of the peptide groups. There is amino acid preference of Asp and Cys. These observations and analyses insist that the omega-helices occur really in proteins.

  14. omega-Helices in proteins.

    PubMed

    Enkhbayar, Purevjav; Boldgiv, Bazartseren; Matsushima, Norio

    2010-05-01

    A modification of the alpha-helix, termed the omega-helix, has four residues in one turn of a helix. We searched the omega-helix in proteins by the HELFIT program which determines the helical parameters-pitch, residues per turn, radius, and handedness-and p = rmsd/(N - 1)(1/2) estimating helical regularity, where "rmsd" is the root mean square deviation from the best fit helix and "N" is helix length. A total of 1,496 regular alpha-helices 6-9 residues long with p < or = 0.10 A were identified from 866 protein chains. The statistical analysis provides a strong evidence that the frequency distribution of helices versus n indicates the bimodality of typical alpha-helix and omega-helix. Sixty-two right handed omega-helices identified (7.2% of proteins) show non-planarity of the peptide groups. There is amino acid preference of Asp and Cys. These observations and analyses insist that the omega-helices occur really in proteins. PMID:20496104

  15. Parallel plate capacitor analogy of equatorial plasma bubble and associated fringe fields with implications to equatorial valley region irregularities

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Patra, A. K.

    2014-08-01

    VHF radar echoes from the valley region plasma irregularities, displaying ascending pattern, are often observed during the active phase of equatorial plasma bubble in the close vicinity of the geomagnetic equator and have been attributed to bubble-related fringe field effect. These irregularities however are not observed at a few degrees away from the equator. In this paper, we attempt to understand this contrasting observational result by comparing fringe field at the geomagnetic equator and low latitudes. We use parallel plate capacitor analogy of equatorial plasma bubble and choose a few capacitor configurations, consistent with commonly observed dimension and magnetic field-aligned property of plasma bubble, for computing fringe field. Results show that fringe field decreases significantly with decreasing altitude as expected. Further, fringe field decreases remarkably with latitude, which clearly indicates the role of magnetic field-aligned property of plasma bubble in reducing the magnitude of fringe field at low latitudes compared to that at the geomagnetic equator. The results are presented and discussed in the light of current understanding of plasma bubble-associated fringe field-induced plasma irregularities in the valley region.

  16. Optically Active Hybrid Materials Constructed from Helically Substituted Polyacetylenes.

    PubMed

    Zhang, Huanyu; Zhao, Biao; Deng, Jianping

    2016-04-01

    Functional materials derived from synthetic helical polymers are attracting increasing interest. Helically substituted polyacetylenes (HSPAs) are especially interesting as typical artificial helical polymers. In recent years, we designed and prepared a series of functional materials based on HSPAs and inorganic materials. The target is to establish some novel hybrid materials that combine the superior properties of both. The examined inorganic materials include silica, graphene, and magnetic Fe3 O4 nanoparticles. Such new functional materials hold great promise and are expected to find practical applications, for instance, as chiral absorbents, chiral sensors, chiral selectors for inducing enantioselective crystallization, chiral catalysts towards asymmetric catalysis, and chiral carriers for enantioselective release. The Personal Account summarizes our major achievements in preparing optically active hybrid materials. We hope it will speed up progress in chiral-related research areas.

  17. [Helical (spiral or swirling) blood flow in cardiovascular system].

    PubMed

    Kirsanov, R I; Kulikov, V P

    2013-01-01

    In article covers theoretical preconditions for the hypothesis about helical (spiral or swirling) blood flow in cardiovascular system followed by its experimental corroboration. The role of the modern blood flow visualization methods--such as Color Doppler ultrasound and magnetic-resonance angiography--in registration and investigation of the regularities of the given phenomenon is described. The data describing the known parameters of helical blood flow--such as direction of the rotation and its quantitative parameters in large arteries--are given. The main hypotheses for flow screw mechanisms are considered from the point of view of cardiovascular system structural organization. Biological role of helical blood flow is discussed, in respect of which there are diametrically opposed points of view, which consider it as a physiological phenomenon on one side, and as a patogenetic factor of atherosclerosis development on the other.

  18. Subsurface helicity of active regions 12192 and 10486

    NASA Astrophysics Data System (ADS)

    Komm, Rudolf; Tripathy, Sushant; Howe, Rachel; Hill, Frank

    2015-04-01

    The active region 10486 that produced the Halloween flares in 2003 initiated our interest in the kinetic helicity of subsurface flows associated with active regions. This lead to the realization that the helicity of subsurface flows is related to the flare activity of active regions. Eleven years later, a similarly enormous active region (12192) appeared on the solar surface. We plan to study the kinetic helicity of the subsurface flows associated with region 12192 and compare it to that of region 10486. For 10486, we have analyzed Dopplergrams obtained with the Michelson Doppler Imager (MDI) onboard the Solar and Heliospheric Observatory (SOHO) and the Global Oscillation Network Group (GONG) with a dense-pack ring-diagram analysis. For 12192, we have analyzed Dopplergrams from GONG and the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We will present the latest results.

  19. Self-assembly of magnetite nanocubes into helical superstructures.

    PubMed

    Singh, Gurvinder; Chan, Henry; Baskin, Artem; Gelman, Elijah; Repnin, Nikita; Král, Petr; Klajn, Rafal

    2014-09-01

    Organizing inorganic nanocrystals into complex architectures is challenging and typically relies on preexisting templates, such as properly folded DNA or polypeptide chains. We found that under carefully controlled conditions, cubic nanocrystals of magnetite self-assemble into arrays of helical superstructures in a template-free manner with >99% yield. Computer simulations revealed that the formation of helices is determined by the interplay of van der Waals and magnetic dipole-dipole interactions, Zeeman coupling, and entropic forces and can be attributed to spontaneous formation of chiral nanocube clusters. Neighboring helices within their densely packed ensembles tended to adopt the same handedness in order to maximize packing, thus revealing a novel mechanism of symmetry breaking and chirality amplification. PMID:25061133

  20. Using ionospheric scintillation observations for studying the morphology of equatorial ionospheric bubbles

    NASA Astrophysics Data System (ADS)

    Dandekar, B. S.; Groves, K. M.

    2004-06-01

    For a study of the equatorial ionosphere, ionospheric scintillation data at VHF and L-band frequencies have been routinely collected by ground-based receivers at Ancon, Peru, Antofagasta, Chile, and Ascension Island, UK, since May 1994. The receivers routinely monitor VHF transmissions from two geosynchronous satellites located at 100°W longitude and 23°W longitude, and L-band signals from satellites located at 75°W longitude and 15°W longitude. This combination provides a network of seven usable, reasonably separated links for monitoring ionospheric equatorial bubble activity in the South American longitude sector. A data set of seven years covering the period from 1995 to 2001 was studied to determine the temporal, diurnal, and seasonal behavior of equatorial bubbles. The results of our statistical study are presented here. In general the equatorial ionospheric bubble activity shows a strong systematic and primary dependence in temporal, diurnal, and seasonal variation, and a secondary weak dependence on geomagnetic and solar flux activity. At present, the dependence on solar and magnetic activity is not usable for near-time and short-term prediction of the equatorial bubble activity. Equatorial bubbles usually start 1 hour after sunset, the activity peaks before local midnight, and vanishes by early morning. The activity peaks in the months of November and January-February and is practically absent (weak) from May to August. On a daily basis on the average one sees 1 to 3 bubbles. The duration of bubbles is about 70 min, and the time spacing between the bubbles is 1 to 2 hours. The bubble activity in general follows the phase of solar cycle activity. The observed systematic behavior of the equatorial bubbles allows for a now cast and short-term forecast of the bubble activity in the South American sector.

  1. Theoretical study of the ionospheric plasma cave in the equatorial ionization anomaly region

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Tsung; Lin, C. H.; Chen, C. H.; Liu, J. Y.; Huba, J. D.; Chang, L. C.; Liu, H.-L.; Lin, J. T.; Rajesh, P. K.

    2014-12-01

    This paper investigates the physical mechanism of an unusual equatorial electron density structure, plasma cave, located underneath the equatorial ionization anomaly by using theoretical simulations. The simulation results provide important new understanding of the dynamics of the equatorial ionosphere. It has been suggested previously that unusual E>⇀×B>⇀ drifts might be responsible for the observed plasma cave structure, but model simulations in this paper suggest that the more likely cause is latitudinal meridional neutral wind variations. The neutral winds are featured by two divergent wind regions at off-equator latitudes and a convergent wind region around the magnetic equator, resulting in plasma divergences and convergence, respectively, to form the plasma caves structure. The tidal-decomposition analysis further suggests that the cave related meridional neutral winds and the intensity of plasma cave are highly associated with the migrating terdiurnal tidal component of the neutral winds.

  2. Plasmaspheric electron content variation in the magnetic equatorial region during space weather events: Results from the CRABEX (Coherent Radio Beacon Experiment) using the beacon onboard the Indian geostationary satellite (GSAT - 2)

    NASA Astrophysics Data System (ADS)

    Ravindran, Sudha; Manju, G.; Devasia, C. V.; Sridharan, R.; Thampi, S. V.; Sreelatha, P.; Sreeja, V.; Pant, T. K.; Raghava Reddi, C.

    CRABEX is a national scientific program for the investigation of the unique features associated with the equatorial and low latitude ionosphere in the Indian zone using the technique of ionospheric tomography It consists of a beacon transmitter onboard the Indian geostationary satellite GSAT-2 which transmits four coherently generated frequencies - 150 012MHz 400 032MHz along with 1 MHz modulation of these frequencies i e 149 01192 MHz and 399 03192 MHz and a unique ground receiver system designed and set up at Trivandrum dip 0 3 r N to receive these beacon transmissions The data obtained from the measurement of the differential phase between 400 MHz and 150 MHz gives the relative Total Electron Content TEC along the line of sight between the satellite and the ground receiver and the measurement of modulation phase delay of 1 MHz on the above frequencies provides a coarse estimate of TEC These two measurements together give an accurate estimate of TEC along the line of sight from the satellite to the ground receiver and the Faraday rotation measurements give a reliable estimate of electron content upto sim 2000 km i e the ionospheric content IEC The simultaneous measurements of IEC and TEC upto the geo-stationary altitude of 36000 km is used to determine the plasmaspheric electron content PEC The CRABEX program with its another segment consisting of a network of 6 receiver stations over the Indian subcontinent established along 77-78 r E meridian also makes use of the data obtained by receiving the 150 and 400 MHz

  3. Response of the equatorial ionosphere to the geomagnetic DP 2 current system

    NASA Astrophysics Data System (ADS)

    Yizengaw, E.; Moldwin, M. B.; Zesta, E.; Magoun, M.; Pradipta, R.; Biouele, C. M.; Rabiu, A. B.; Obrou, O. K.; Bamba, Z.; Paula, E. R.

    2016-07-01

    The response of equatorial ionosphere to the magnetospheric origin DP 2 current system fluctuations is examined using ground-based multiinstrument observations. The interaction between the solar wind and magnetosphere generates a convection electric field that can penetrate to the ionosphere and cause the DP 2 current system. The quasiperiodic DP 2 current system, which fluctuates coherently with fluctuations of the interplanetary magnetic field (IMF) Bz, penetrates nearly instantaneously to the dayside equatorial region at all longitudes and modulates the electrodynamics that governs the equatorial density distributions. In this paper, using magnetometers at high and equatorial latitudes, we demonstrate that the quasiperiodic DP 2 current system penetrates to the equator and causes the dayside equatorial electrojet (EEJ) and the independently measured ionospheric drift velocity to fluctuate coherently with the high-latitude DP 2 current as well as with the IMF Bz component. At the same time, radar observations show that the ionospheric density layers move up and down, causing the density to fluctuate up and down coherently with the EEJ and IMF Bz.

  4. Investigating the effect of geomagnetic storm and equatorial electrojet on equatorial ionospheric irregularity over East African sector

    NASA Astrophysics Data System (ADS)

    Seba, Ephrem Beshir; Nigussie, Melessew

    2016-11-01

    The variability of the equatorial ionosphere is still a big challenge for ionospheric dependent radio wave technology users. To mitigate the effect of equatorial ionospheric irregularity on trans-ionospheric radio waves considerable efforts are being done to understand and model the equatorial electrodynamics and its connection to the creation of ionospheric irregularity. However, the effect of the East-African ionospheric electrodynamics on ionospheric irregularity is not yet well studied due to lack of multiple ground based instruments. But, as a result of International Heliophysical Year (IHY) initiative, which was launched in 2007, some facilities are being deployed in Africa since then. Therefore, recently deployed instruments, in the Ethiopian sector, such as SCINDA-GPS receiver (2.64°N dip angle) for TEC and amplitude scintillation index (S4) data and two magnetometers, which are deployed on and off the magnetic equator, data collected in the March equinoctial months of the years 2011, 2012, and 2015 have been used for this study in conjunction with geomagnetic storm data obtained from high resolution OMNI WEB data center. We have investigated the triggering and inhibition mechanisms for ionospheric irregularities using, scintillation index (S4), equatorial electrojet (EEJ), interplanetary electric field (IEFy), symH index, AE index and interplanetary magnetic field (IMF) Bz on five selected storm and two storm free days. We have found that when the eastward EEJ fluctuates in magnitude due to storm time induced electric fields at around noontime, the post-sunset scintillation is inhibited. All observed post-sunset scintillations in equinox season are resulted when the daytime EEJ is non fluctuating. The strength of noontime EEJ magnitude has shown direct relation with the strength of the post-sunset scintillations. This indicates that non-fluctuating EEJ stronger than 20 nT, can be precursor for the occurrence of the evening time ionospheric irregularities

  5. Preface: C/NOFS Results and Equatorial Ionospheric Dynamics

    NASA Technical Reports Server (NTRS)

    Klenzing, J.; de La Beaujardiere, O.; Gentile, L. C.; Retterer, J.; Rodrigues, F. S.; Stoneback, R. A.

    2014-01-01

    The Communication/Navigation Outage Forecasting System (C/NOFS) satellite was launched into orbit in April 2008 as part of an ongoing effort to understand and identify plasma irregularities that adversely impact the propagation of radio waves in the upper atmosphere. Combined with recent improvements in radar, airglow, and ground-based studies, as well as state-of-the-art modeling techniques, the C/NOFS mission has led to new insights into equatorial ionospheric electrodynamics. In order to document these advances, the C/NOFS Results and Equatorial Dynamics Technical Interchange Meeting was held in Albuquerque, New Mexico from 12 to 14 March 2013. The meeting was a great success with 55 talks and 22 posters, and covered topics including the numerical simulations of plasma irregularities, the effects of atmospheric tides, stratospheric phenomena, and magnetic storms on the upper atmosphere, causes and predictions of scintillation-causing ionospheric irregularities, current and future instrumentation efforts in the equatorial region. The talks were broken into the following three topical sessions: A. Ambient Ionosphere and Thermosphere B. Transient Phenomena in the Low-Latitude Ionosphere C. New Missions, New Sensors, New Science and Engineering Issues. The following special issue was planned as a follow-up to the meeting. We would like to thank Mike Pinnock, the editors and staff of Copernicus, and our reviewers for their work in bringing this special issue to the scientific community. Our thanks also go to Patricia Doherty and the meeting organizing committee for arranging the C/NOFS Technical Interchange Meeting.

  6. Equatorial anisotropy of the Earth's inner-inner core

    NASA Astrophysics Data System (ADS)

    Song, X.; Wang, T.; Xia, H.

    2015-12-01

    Anisotropy of Earth's inner core is a key to understand its evolution and the generation of the Earth's magnetic field. All the previous inner core anisotropy models have assumed a cylindrical anisotropy with the symmetry axis parallel (or nearly parallel) to the Earth's spin axis. However, we have recently found that the fast axis in the inner part of the inner core is close to the equator from inner-core waves extracted from earthquake coda. We obtained inner core phases, PKIIKP2 and PKIKP2 (round-trip phases between the station and its antipode that passes straight through the center of the Earth and that is reflected from the inner core boundary, respectively), from stackings of autocorrelations of the coda of large earthquakes (10,000~40,000 s after Mw>=7.0 earthquakes) at seismic station clusters around the world. We observed large variation of up to 10 s along equatorial paths in the differential travel times PKIIKP2 - PKIKP2, which are sensitive to inner-core structure. The observations can be explained by a cylindrical anisotropy in the inner inner core (IIC) (with a radius of slightly less than half the inner core radius) that has a fast axis aligned near the equator and a cylindrical anisotropy in the outer inner core (OIC) that has a fast axis along the north-south direction. We have obtained more observations using the combination of autocorrelations and cross-correlations at low-latitude station arrays. The results further confirm that the IIC has an equatorial anisotropy and a pattern different from the OIC. The equatorial fast axis of the IIC is near the Central America and the Southeast Asia. The drastic change in the fast axis and the form of anisotropy from the IIC to the OIC may suggest a phase change of the iron or a major shift in the crystallization and deformation during the formation and growth of the inner core.

  7. Interaction of field-aligned cold plasma flows with an equatorially-trapped hot plasma - Electrostatic shock formation

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra

    1993-01-01

    Effects of equatorially trapped hot plasma on the highly supersonic cold-plasma flow occurring during early stage plasmaspheric refilling are studied by means of numerical simulations. It is shown that the equatorially trapped hot ions set up a potential barrier for the cold ion beams and facilitate formation of electrostatic shocks by reflecting them from the equatorial region. Simulations with and without the hot plasma show different flow properties; the formation of electrostatic shocks occur only in the former case. The simulation with the hot plasma also reveals that the magnetic trapping in conjunction with the evolution of the electrostatic potential barrier produces ion velocity distribution functions consisting of a cold core and a hot ring in the perpendicular velocity. Such a distribution function provides a source of free energy for equatorial waves. The corresponding electron population is warm and field-aligned.

  8. Thermospheric meridional wind control of equatorial spread F and evening prereversal electric field

    NASA Astrophysics Data System (ADS)

    Abdu, M. A.; Iyer, K. N.; de Medeiros, R. T.; Batista, I. S.; Sobral, J. H. A.

    2006-04-01

    The role of the evening prereversal zonal electric field enhancement (PRE) as conducive to equatorial spread F (ESF)/plasma bubble development versus that of the magnetic meridional wind as a suppressing factor is examined using digital ionosonde data from an equatorial site, Sao Luis (SL), and a low latitude site, Cachoeira Paulista (CP) in Brazil. The evening vertical plasma drift (Vz) over SL is used, together with the F layer peak height (hmF2) over CP, to compute the magnetic meridional wind. The analysis performed for two epochs, that is, March-April of 1999 and 2001, provide consistent evidence that the magnetic meridional wind can negatively influence the ESF development in two ways: (a) by reduced development of the PRE and. (b) by direct suppression of the bubble growth

  9. Equatorial waves in the stratosphere of Uranus

    NASA Technical Reports Server (NTRS)

    Hinson, David P.; Magalhaes, Julio A.

    1991-01-01

    Analyses of radio occultation data from Voyager 2 have led to the discovery and characterization of an equatorial wave in the Uranus stratosphere. The observed quasi-periodic vertical atmospheric density variations are in close agreement with theoretical predictions for a wave that propagates vertically through the observed background structure of the stratosphere. Quantitative comparisons between measurements obtained at immersion and at emersion yielded constraints on the meridional and zonal structure of the wave; the fact that the two sets of measurements are correlated suggests a wave of planetary scale. Two equatorial wave models are proposed for the wave.

  10. Position and Trajectrories of helical microswimmers inside circular channels

    NASA Astrophysics Data System (ADS)

    Caldag, Hakan; Yesilyurt, Serhat

    2015-11-01

    This work reports the position and orientation of helical mm-sized microswimmers in circular channels obtained by image processing of recorded images. Microswimmers are biologically inspired structures with huge potential for medical practices such as delivery of potent drugs into tissues. In order to understand the hydrodynamic effects of confinement on the velocity and stability of trajectories of swimmers, we developed helical microswimmers with a magnetic head and a rigid helical tail, similar to those of E. coli bacteria. The experiments are recorded using a digital camera, which is placed above the experimental setup that consists of three Helmholtz pairs, generating a rotating magnetic field. A channel containing the microswimmer is placed along the axis of the innermost coil. Image processing tools based on contrast-enhancement are used to obtain the centroid of the head of the swimmer and orientation of the whole swimmer in the channel. Swimmers that move in the direction of the head, i.e. pushed kinematically by the tail, has helical trajectories, which are more unstable in the presence of Poiesuille flow inside the channel; and the swimmers that are pulled by the tail, have trajectories that stabilize at the centerline of the channel.

  11. Studies on equatorial shock formation during plasmaspheric refilling

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra

    1993-01-01

    During the grant period starting August 1, 1992, our major effort has been on examining the presence of equatorially trapped hot plasma on plasmaspheric refilling. We performed one-dimensional PIC simulations of cold plasmas expanding into a hot plasma, consisting of hot anisotropic ions and warm isotropic electrons, trapped in a region of minimum magnetic field. Simulations showed that the electric potential barrier built up by the anisotropy of the hot ion population facilitates in the formation of electrostatic shocks when the cold ion beams begin to come into contact with the hot plasma. The shock formation occurs even when the cold ion beams are highly supersonic with respect to the ion-acoustic speed. This finding is interesting because equatorial shock formation during the early stage of plasmaspheric refilling has been debated over about two decades. In the past ion-ion instability has been invoked as the main mechanism for the coupling between the cold ion beams approaching the equator from the conjugate ionspheres. This coupling occurs when the beams are sufficiently slow; the beam velocity being less than three times the ion-acoustic speed. In the presence of hot plasma, the beams slow down by the potential barrier. The slowing down and the reflection process lead to the formation of the electrostatic shock even for highly supersonic ion beams. The mixing of hot and cold plasma was also studied.

  12. Planetary Wave-Tidal Interactions and the Equatorial Electrojet

    NASA Astrophysics Data System (ADS)

    Chandrasekharan Nair, Vineeth; Pant, Tarun; Neelakantan, Mridula

    2012-07-01

    Equatorial Electrojet (EEJ) induced magnetic field at the surface over a dip equatorial station Trivandrum (8.5oN; 77oE; 0.5o N dip lat.), has been analyzed over a period of 6 years and it has been found that planetary wave-tidal interactions play a major role in controlling the day-to-day variability of the EEJ. The Planetary Waves (PWs) of periodicity quasi 16-day, 10-day and 5-day are found to be more prominent during the winter months (December, January, February) with a secondary maxima during the summer months (June, July August). It has also been observed that, the quasi 16-day wave plays an important role in modulating the EEJ during the winter months of the NH stratospheric sudden warming events. The wave is found to be modulating the strength, duration and time of the EEJ (SEEJ, DEEJ and TEEJ) significantly. During the positive excursions of the PW, SEEJ shows intensification, TEEJ shows a shift towards evening and the DEEJ exhibits a broadening. Similarly, all the parameters exhibit an opposite trend during the negative excursions. The PW-tidal interactions and subsequent modification of the tidal components have been found to be responsible for the observed variations. The paper discusses these aspects in detail.

  13. Equatorial Noise Emissions and Their Quasi-Periodic Modulation

    NASA Astrophysics Data System (ADS)

    Nemec, F.; Santolik, O.; Hrbackova, Z.; Pickett, J. S.; Cornilleau-Wehrlin, N.; Parrot, M.; Hayosh, M.

    2015-12-01

    Equatorial noise (EN) emissions are electromagnetic waves at frequencies between the proton cyclotron frequency and the lower hybrid frequency routinely observed in the equatorial region of the inner magnetosphere. They propagate in the extraordinary mode nearly perpendicular to the ambient magnetic field, and they exhibit a harmonic structure related to the ion cyclotron frequency in the source region. We analyze more than 2000 EN events observed by the wave instruments on board the Cluster spacecraft, and we find that about 5% of EN events are not continuous in time, but exhibit a quasi-periodic (QP) modulation of the wave intensity. Typical modulation periods are on the order of minutes. The events predominantly occur in the noon-to-dawn local time sector, and their occurrence is related to the periods of increased geomagnetic activity and higher solar wind speeds. We suggest that the QP modulation of EN events may be due to compressional ULF pulsations, which periodically modulate the wave growth in the source region. These compressional ULF pulsations were identified in about half of the events. Finally, we demonstrate that EN emissions with QP modulation of the wave intensity can propagate down to altitudes as low as 700 km.

  14. Plasma blobs and irregularities concurrently observed by ROCSAT-1 and Equatorial Atmosphere Radar

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tatsuhiro; Su, Shin-Yi; Fukao, Shoichiro

    2007-05-01

    Plasma density enhancements, or plasma blobs, and radar backscatter plumes in the nighttime equatorial F region, both of which are intriguing phenomena associated with equatorial spread F (ESF), were concurrently observed for the first time on 8 March 2004 along a common magnetic flux tube. The observational results are strong evidence of a close relationship between plasma bubbles and blobs in the equatorial ionosphere. Plasma blobs were detected by Republic of China Scientific Satellite (ROCSAT)-1 at a dip latitude of ˜9°N, while the 47-MHz Equatorial Atmosphere Radar (EAR) in Sumatra, Indonesia, observed the backscatter plume associated with plasma density depletions, or plasma bubbles, at dip latitudes of as high as 13°S. The plumes grew upward with large Doppler velocity away from the radar late in the premidnight sector, in association with the appearance of the plasma blobs. The zonal structure and upward drift velocity of the blobs correspond to those of the plumes on the common magnetic flux tube. Localized eastward polarization electric fields probably play an important role in the generation of plasma blobs as well as the resurgence of the plumes.

  15. Directions of equatorial noise propagation determined using Cluster and DEMETER spacecraft

    NASA Astrophysics Data System (ADS)

    Nemec, Frantisek; Hrbackova, Zuzana; Santolik, Ondrej; Pickett, Jolene S.; Parrot, Michel; Cornilleau-Wehrlin, Nicole

    2013-04-01

    Equatorial noise emissions are electromagnetic waves at frequencies between the proton cyclotron frequency and the lower hybrid frequency routinely observed within a few degrees of the geomagnetic equator at radial distances from about 2 to 6 Re. High resolution data reveal that the emissions are formed by a system of spectral lines, being generated by instabilities of proton distribution functions at harmonics of the proton cyclotron frequency in the source region. The waves propagate in the fast magnetosonic mode nearly perpendicularly to the ambient magnetic field, i.e. the corresponding magnetic field fluctuations are almost linearly polarized along the ambient magnetic field and the corresponding electric field fluctuations are elliptically polarized in the equatorial plane, with the major polarization axis having the same direction as wave and Poynting vectors. We conduct a systematic analysis of azimuthal propagation of equatorial noise. Combined WBD and STAFF-SA measurements performed on the Cluster spacecraft are used to determine not only the azimuthal angle of the wave vector direction, but also to estimate the corresponding beaming angle. It is found that the beaming angle is generally rather large, i.e. the detected waves come from a significant range of directions, and a traditionally used approximation of a single plane wave fails. The obtained results are complemented by a raytracing analysis in order to get a comprehensive picture of equatorial noise propagation in the inner magnetosphere. Finally, high resolution multi-component measurements performed by the low-altitude DEMETER spacecraft are used to demonstrate that equatorial noise emissions can reach altitudes as low as 660 km, and that the observed propagation properties are in agreement with the overall propagation picture.

  16. Resilience of helical fields to turbulent diffusion - II. Direct numerical simulations

    NASA Astrophysics Data System (ADS)

    Bhat, Pallavi; Blackman, Eric G.; Subramanian, Kandaswamy

    2014-03-01

    Blackman and Subramanian (Paper I) found that sufficiently strong large-scale helical magnetic fields are resilient to turbulent diffusion, decaying on resistively slow rather than turbulently fast time-scales. This bolsters fossil field origins for magnetic fields in some astrophysical objects. Here, we study direct numerical simulations (DNS) of decaying large-scale helical magnetic fields in the presence of non-helical turbulence for two cases: (1) the initial helical field is large enough to decay resistively but transitions to fast decay; (2) the case of Paper I, wherein the transition energy for the initial helical field to decay fast directly is sought. Simulations and two-scale modelling (based on Paper 1) reveal the transition energy, Ec1 to be independent of the turbulent forcing scale, within a small range of RM. For case (2), the two-scale theory predicts a large-scale helical transition energy of Ec2 = (k1/kf)2Meq, where k1 and kf are the large-scale and small turbulent forcing scale, respectively, and Meq is the equipartition magnetic energy. The DNS agree qualitatively with this prediction but the RM, currently achievable, is too small to satisfy a condition 3/RM ≪ (k1/kf)2, necessary to robustly reveal the transition, Ec2. That two-scale theory and DNS agree wherever they can be compared suggests that Ec2 of Paper I should be identifiable at higher RM in DNS.

  17. Brownian motion of helical flagella.

    PubMed

    Hoshikawa, H; Saito, N

    1979-07-01

    We develops a theory of the Brownian motion of a rigid helical object such as bacterial flagella. The statistical properties of the random forces acting on the helical object are discussed and the coefficients of the correlations of the random forces are determined. The averages , and are also calculated where z and theta are the position along and angle around the helix axis respectively. Although the theory is limited to short time interval, direct comparison with experiment is possible by using the recently developed cinematography technique. PMID:16997210

  18. PMP-2 Report: Equatorial Wave Dynamics

    NASA Technical Reports Server (NTRS)

    Hirota, I.

    1982-01-01

    The activities of the pre-MAP project 2 (PMP-2) from 1978 through 1981 are described. The following topics relating to the equatorial middle atmosphere are discussed briefly: (1) the semi-annual oscillation and Kelvin waves; (2) planetary Rossby waves; (3) upper mesospheric waves; and (4) gravity waves.

  19. Airborne studies of equatorial F layer ionospheric irregularities

    SciTech Connect

    Weber, E.J.; Buchau, J.; Moore, J.G.

    1980-09-01

    Radio wave and optical experiments were conducted onboard a U.S. Air Force research aircraft in March 1977 and March 1978 at low magnetic latitudes to investigate the effects of F region electron density amplitude. Scintillation measurements were used to monitor the development and motion of F region 6300-A O I airglow depletions, spread F, and scintillation producing irregularities that are all associated with low-density bubbles in the postsunset equatorial ionosphere. The 6300-A airglow depletions are the bottomside signature of low plasma density within the bubbles. Examples of multiple airglow depletions and their relation to variations in the F layer virtual height (h'F) and to the occurrence of amplitude scintillations on 250-MHz satellite signals are described. Estimates of the average bottomside electron density, from simultaneous ionosonde measurements and 6300-A airglow intensities, show electron density decreases of approx.66% within the bubbles. These decreases are approximately the same for bubbles observed at the magnetic equator and near Ascension Island (18 /sup 0/S magnetic latitude). The measurements at Ascension Island show that airglow depletions extend away from the magnetic equator into the southern 6300-A intertropical arc. Variations in the maximum poleward extent of airglow depletions and of associated ionospheric irregularities that give rise to amplitude scintillations were observed. These latitudinal variations are interpreted, using field line mapping considerations, as variations in the maximum altitude of plasma bubbles over the magnetic equator. A north-south flight confirms that the overall pattern of airglow depletions and associated ionospheric irregularities extends continuously across the magnetic equator to +-15/sup 0/ magnetic latitude.

  20. Model NbTi Helical Solenoid Fabrication and Test Results

    SciTech Connect

    Andreev, N.; Barzi, E.; Chlachidze, G.; Evbota, D.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Makarov, A.; Novitski, I.; Orris, D.F.; Tartaglia, M.A.; /Fermilab

    2011-09-01

    A program to develop model magnets for a helical cooling channel is under way at Fermilab. In the first steps of a planned sequence of magnets, two four-coil helical solenoid models with 300 mm aperture have been fabricated and tested. These two models, HSM01 and HSM02, used insulated NbTi Rutherford cable wound onto stainless steel rings with spliceless transitions between coils. Strip heaters were included for quench protection of each coil, and the coils were epoxy-impregnated after winding inside the support structures. Based on the results of the first model the second model was made using a cable with optimized cross-section, improved winding and epoxy-impregnation procedures, enhanced ground insulation, and included heat exchange tubing for a test of conduction cooling. We report on the results and lessons learned from fabrication and tests of these two models.

  1. Three-Dimensional Reconstruction of Helical Polymers

    PubMed Central

    Egelman, Edward H.

    2015-01-01

    The field of three-dimensional electron microscopy began more than 45 years ago with a reconstruction of a helical phage tail, and helical polymers continue to be important objects for three-dimensional reconstruction due to the centrality of helical protein and nucleoprotein polymers in all aspects of biology. We are now witnessing a fundamental revolution in this area, made possible by direct electron detectors, which has led to near-atomic resolution for a number of important helical structures. Most importantly, the possibility of achieving such resolution routinely for a vast number of helical samples is within our reach. One of the main problems in helical reconstruction, ambiguities in assigning the helical symmetry, is overcome when one reaches a resolution where secondary structure is clearly visible. However, obstacles still exist due to the intrinsic variability within many helical filaments. PMID:25912526

  2. Three-dimensional reconstruction of helical polymers.

    PubMed

    Egelman, Edward H

    2015-09-01

    The field of three-dimensional electron microscopy began more than 45years ago with a reconstruction of a helical phage tail, and helical polymers continue to be important objects for three-dimensional reconstruction due to the centrality of helical protein and nucleoprotein polymers in all aspects of biology. We are now witnessing a fundamental revolution in this area, made possible by direct electron detectors, which has led to near-atomic resolution for a number of important helical structures. Most importantly, the possibility of achieving such resolution routinely for a vast number of helical samples is within our reach. One of the main problems in helical reconstruction, ambiguities in assigning the helical symmetry, is overcome when one reaches a resolution where secondary structure is clearly visible. However, obstacles still exist due to the intrinsic variability within many helical filaments.

  3. Wave Forcing of Saturn's Equatorial Oscillation

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Schlinder, P. J.; Guerlet, S.; Fouchet, T.

    2011-01-01

    Ground-based measurements and Cassini data from CIRS thermal-infrared spectra and radio-occultation soundings have characterized the spatial structure and temporal behavior of a 15-year equatorial oscillation in Saturn's stratosphere. The equatorial region displays a vertical pattern of alternating warm and cold anomalies and, concomitantly, easterly and westerly winds relative to the cloud-top winds, with a peak-to-peak amplitude of 200 m/s. Comparison of the Cassini data over a four-year period has established that the pattern of mean zonal winds and temperatures descends at a rate of roughly I scale height over 4 years. This behavior is reminiscent of the equatorial oscillations in Earth's middle atmosphere. Here the zonal-mean spatial structure and descending pattern are driven by the absorption of vertically propagating waves. The maximum excursions in the pattern of easterly and westerly winds is determined by the limits of the zonal phase velocities of the waves. Here we report on the characterization of the waves seen in the temperature profiles retrieved from the Cassini radio-occultation soundings. The equatorial profiles exhibit a complex pattern of wavelike structure with dimensions one pressure scale height and smaller. We combine a spectral decomposition with a WKBJ analysis, where the vertical wavelength is assumed to vary slowly with the ambient static stability and doppler-shifted phase velocity of the wave. Use of the temperature and zonal wind maps from CIRS makes this approach viable. On Earth, the wave forcing associated with the equatorial oscillations generates secondary meridional circulations that affect the mean flow and planetary wave ducting well away from the equator. This may relate to the triggering of the recently reported mid-latitude storms on Saturn.

  4. Internal gravity waves in the equatorial Pacific

    SciTech Connect

    Skyllingstad, E.D.; Denbo, D.W. )

    1992-09-01

    Mixing in the ocean surface layer is an important process in the transport of heat, momentum, and CO[sub 2] into the deep ocean, For example, the flux of heat into the cold, upwelling water in equatorial regions provides one of the major heat sources driving the ocean circulation. Direct measurements of the ocean mixed layer have provided good estimates of the bulk layer properties. However, estimates of the small-scale effects of intenial waves and related turbulence have remained ambiguous because of the difficulty in observing these processes. Until more detailed measurements become available, numerical models can provide a convenient and cost-effective way to analyze the details of the surface mixed layer. Modeling the surface layer of the equatorial Pacific Ocean is challenging because of the strong vertical current shear and density stratification common to the region. The primary zonal current is the eastward flowing Equatorial Undercurrent (EUC) centered at roughly 120 m depth, with a speed of about 1.5 ms[sup [minus]1] as shown in Figure 1. The EUC is forced by a zonal pressure gradient resulting from the westward directed surface wind stress. Above the EUC, the wind stress directly forces thee South Equatorial Current (SEC), which flows westward with a speed of about 0.5 ms[sup [minus]1]. The shear zone generated by these currents is marginally stable and exhibits a diurnal cycle of turbulence dependent on convection forced by surface cooling. In addition, surface convection forces internal gravity waves, which can transport momentum away from the surface current to deeper waters. In this report, we discuss recent modeling results for the equatorial Pacific showing the generation of convection, turbulence, and internal waves.

  5. Internal gravity waves in the equatorial Pacific

    SciTech Connect

    Skyllingstad, E.D.; Denbo, D.W.

    1992-09-01

    Mixing in the ocean surface layer is an important process in the transport of heat, momentum, and CO{sub 2} into the deep ocean, For example, the flux of heat into the cold, upwelling water in equatorial regions provides one of the major heat sources driving the ocean circulation. Direct measurements of the ocean mixed layer have provided good estimates of the bulk layer properties. However, estimates of the small-scale effects of intenial waves and related turbulence have remained ambiguous because of the difficulty in observing these processes. Until more detailed measurements become available, numerical models can provide a convenient and cost-effective way to analyze the details of the surface mixed layer. Modeling the surface layer of the equatorial Pacific Ocean is challenging because of the strong vertical current shear and density stratification common to the region. The primary zonal current is the eastward flowing Equatorial Undercurrent (EUC) centered at roughly 120 m depth, with a speed of about 1.5 ms{sup {minus}1} as shown in Figure 1. The EUC is forced by a zonal pressure gradient resulting from the westward directed surface wind stress. Above the EUC, the wind stress directly forces thee South Equatorial Current (SEC), which flows westward with a speed of about 0.5 ms{sup {minus}1}. The shear zone generated by these currents is marginally stable and exhibits a diurnal cycle of turbulence dependent on convection forced by surface cooling. In addition, surface convection forces internal gravity waves, which can transport momentum away from the surface current to deeper waters. In this report, we discuss recent modeling results for the equatorial Pacific showing the generation of convection, turbulence, and internal waves.

  6. Scale analysis of equatorial plasma irregularities derived from Swarm constellation

    NASA Astrophysics Data System (ADS)

    Xiong, Chao; Stolle, Claudia; Lühr, Hermann; Park, Jaeheung; Fejer, Bela G.; Kervalishvili, Guram N.

    2016-07-01

    In this study, we investigated the scale sizes of equatorial plasma irregularities (EPIs) using measurements from the Swarm satellites during its early mission and final constellation phases. We found that with longitudinal separation between Swarm satellites larger than 0.4°, no significant correlation was found any more. This result suggests that EPI structures include plasma density scale sizes less than 44 km in the zonal direction. During the Swarm earlier mission phase, clearly better EPI correlations are obtained in the northern hemisphere, implying more fragmented irregularities in the southern hemisphere where the ambient magnetic field is low. The previously reported inverted-C shell structure of EPIs is generally confirmed by the Swarm observations in the northern hemisphere, but with various tilt angles. From the Swarm spacecrafts with zonal separations of about 150 km, we conclude that larger zonal scale sizes of irregularities exist during the early evening hours (around 1900 LT).

  7. Full-wave simulations on ultrashort-pulse reflectometry for helical plasmas

    SciTech Connect

    Hojo, H.; Fukuchi, A.; Itakura, A.; Mase, A.

    2004-10-01

    The full-wave simulations on ultrashort-pulse reflectometry for helical plasmas are studied based on the FDTD method in two dimensions. The propagation of an ultrashort-pulse electromagnetic wave is computed in helical plasmas modeled for the Large Helical Device magnetic field configuration. The density-profile reconstruction is performed by the Abel inversion method with the time delay data for the reflected waves from plasma, and it is shown that the reconstructed density profile coincides well with the original profile.

  8. Note: Helical nanobelt force sensors

    SciTech Connect

    Hwang, G.; Hashimoto, H.

    2012-12-15

    We present the fabrication and characterization of helical nanobelt force sensors. These self-sensing force sensors are based on the giant piezoresistivity of helical nanobelts. The three-dimensional helical nanobelts are self-formed from 27 nm-thick n-type InGaAs/GaAs bilayers using rolled-up techniques, and assembled onto electrodes on a micropipette using nanorobotic manipulations. The helical nanobelt force sensors can be calibrated using a calibrated atomic force microscope cantilever system under scanning electron microscope. Thanks to their giant piezoresistance coefficient (515 Multiplication-Sign 10{sup -10} Pa{sup -1}), low stiffness (0.03125 N/m), large-displacement capability ({approx}10 {mu}m), and good fatigue resistance, they are well suited to function as stand-alone, compact ({approx}20 {mu}m without the plug-in support), light ({approx}5 g including the plug-in support), versatile and large range ({approx}{mu}N) and high resolution ({approx}nN) force sensors.

  9. Mechanical analysis and test results of 4-coil superconducting helical solenoid model

    SciTech Connect

    Yu, M.; Andreev, N.; Chlachidze, G.; Johnson, R.P.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Lopes, M.L.; Makarov, A.; Tartaglia, M.; Yonehara, K.; /Fermilab

    2010-01-01

    Novel configurations of helical superconducting magnets for muon beam 6D phase space cooling channels and demonstration experiments are being designed at Fermilab. Operating as needed for the beam cooling in a cryogenic environment, the helical solenoid generates longitudinal and transverse magnetic fields; meanwhile, large Lorentz forces are produced, so rigid coil support structures need to be designed. A short model of a helical solenoid (HS), consisting of four coils and supporting structures, was designed, built and tested at Fermilab. The magnetic and mechanical designs were analyzed using TOSCA and ANSYS. The supporting structures were fabricated and assembled using SSC NbTi cable. Strain gauges were utilized to monitor the deformation of the structures due to both thermal contraction and Lorentz forces. The superconducting coils were trained during the test. The model should prove the design concept, fabrication technology, and the magnet system performance.

  10. Overview of the Large Helical Device project

    NASA Astrophysics Data System (ADS)

    Iiyoshi, A.; Komori, A.; Ejiri, A.; Emoto, M.; Funaba, H.; Goto, M.; Ida, K.; Idei, H.; Inagaki, S.; Kado, S.; Kaneko, O.; Kawahata, K.; Kobuchi, T.; Kubo, S.; Kumazawa, R.; Masuzaki, S.; Minami, T.; Miyazawa, J.; Morisaki, T.; Morita, S.; Murakami, S.; Muto, S.; Mutoh, T.; Nagayama, Y.; Nakamura, Y.; Nakanishi, H.; Narihara, K.; Nishimura, K.; Noda, N.; Ohdachi, S.; Ohyabu, N.; Oka, Y.; Osakabe, M.; Ozaki, T.; Peterson, B. J.; Sagara, A.; Sakakibara, S.; Sakamoto, R.; Sasao, H.; Sasao, M.; Sato, K.; Sato, M.; Seki, T.; Shimozuma, T.; Shoji, M.; Suzuki, H.; Takeiri, Y.; Tanaka, K.; Toi, K.; Tokuzawa, T.; Tsumori, K.; Tsuzuki, K.; Watanabe, K. Y.; Watari, T.; Yamada, H.; Yamada, I.; Yamaguchi, S.; Yokoyama, M.; Akiyama, R.; Chikaraishi, H.; Haba, K.; Hamaguchi, S.; Iima, M.; Imagawa, S.; Inoue, N.; Iwamoto, K.; Kitagawa, S.; Kodaira, J.; Kubota, Y.; Maekawa, R.; Mito, T.; Nagasaka, T.; Nishimura, A.; Takahashi, C.; Takahata, K.; Takita, Y.; Tamura, H.; Tsuzuki, T.; Yamada, S.; Yamauchi, K.; Yanagi, N.; Yonezu, H.; Hamada, Y.; Matsuoka, K.; Murai, K.; Ohkubo, K.; Ohtake, I.; Okamoto, M.; Satoh, S.; Satow, T.; Sudo, S.; Tanahashi, S.; Yamazaki, K.; Fujiwara, M.; Motojima, O.

    1999-09-01

    The Large Helical Device (LHD) has successfully started running plasma confinement experiments after a long construction period of eight years. During the construction and machine commissioning phases, a variety of milestones were attained in fusion engineering which successfully led to the first operation, and the first plasma was ignited on 31 March 1998. Two experimental campaigns were carried out in 1998. In the first campaign, the magnetic flux mapping clearly demonstrated a nested structure of magnetic surfaces. The first plasma experiments were conducted with second harmonic 84 and 82.6 GHz ECH at a heating power input of 0.35 MW. The magnetic field was set at 1.5 T in these campaigns so as to accumulate operational experience with the superconducting coils. In the second campaign, auxiliary heating with NBI at 3 MW has been carried out. Averaged electron densities of up to 6 × 1019m-3, central temperatures ranging from 1.4 to 1.5 keV and stored energies of up to 0.22 MJ have been attained despite the fact that the impurity level has not yet been minimized. The obtained scaling of energy confinement time has been found to be consistent with the ISS95 scaling law with some enhancement.

  11. EVOLUTION OF SPINNING AND BRAIDING HELICITY FLUXES IN SOLAR ACTIVE REGION NOAA 10930

    SciTech Connect

    Ravindra, B.; Yoshimura, Keiji; Dasso, Sergio E-mail: yosimura@solar.physics.montana.edu

    2011-12-10

    Multiplication-Sign 10{sup 43} Mx{sup 2}. The observed reversal in the sign of spinning and braiding helicity fluxes could be the signature of the emergence of a twisted flux tube, which acquires the writhe of an opposite sign. The magnetic cloud associated with the ejected mass has carried about -7 Multiplication-Sign 10{sup 41} Mx{sup 2} of helicity. A time integration of helicity flux of about 1.2 hr integrated backward in time of the observation of the coronal mass ejection is sufficient for this event.

  12. Large-scale convective instability in an electroconducting medium with small-scale helicity

    SciTech Connect

    Kopp, M. I.; Tur, A. V.; Yanovsky, V. V.

    2015-04-15

    A large-scale instability occurring in a stratified conducting medium with small-scale helicity of the velocity field and magnetic fields is detected using an asymptotic many-scale method. Such a helicity is sustained by small external sources for small Reynolds numbers. Two regimes of instability with zero and nonzero frequencies are detected. The criteria for the occurrence of large-scale instability in such a medium are formulated.

  13. The wobbling-to-swimming transition of rotated helices

    NASA Astrophysics Data System (ADS)

    Man, Yi; Lauga, Eric

    2013-07-01

    A growing body of work aims at designing and testing micron-scale synthetic swimmers. One method, inspired by the locomotion of flagellated bacteria, consists of applying a rotating magnetic field to a rigid, helically shaped, propeller attached to a magnetic head. When the resulting device, termed an artificial bacteria flagellum, is aligned perpendicularly to the applied field, the helix rotates and the swimmer moves forward. Experimental investigation of artificial bacteria flagella shows that at low frequency of the applied field, the axis of the helix does not align perpendicularly to the field but wobbles around the helix, with an angle decreasing as the inverse of the field frequency. Using numerical computations and asymptotic analysis, we provide a theoretical explanation for this wobbling behavior. We numerically demonstrate the wobbling-to-swimming transition as a function of the helix geometry and the dimensionless Mason number which quantifies the ratio of viscous to magnetic torques. We then employ an asymptotic expansion for near-straight helices to derive an analytical estimate for the wobbling angle allowing to rationalize our computations and past experimental results. These results can help guide future design of artificial helical swimmers.

  14. Investigation of electron beam transport in a helical undulator

    SciTech Connect

    Jeong, Y.U.; Lee, B.C.; Kim, S.K.

    1995-12-31

    Lossless transport of electrons through the undulator is essential for CW operation of the FELs driven by recirculating electrostatic accelerators. We calculate the transport ratio of an electron beam in a helical undulator by using a 3-D simulation code and compare the results with the experimental results. The energy and the current of the electron beam are 400 keV and 2 A, respectively. The 3-D distribution of the magnetic field of a practical permanent-magnet helical undulator is measured and is used in the calculations. The major parameters of the undutlator are : period = 32 mm, number of periods = 20, number of periods in adiabatic region = 3.5, magnetic field strength = 1.3 kG. The transport ratio is very sensitive to the injection condition of the electron beam such as the emittance, the diameter, the divergence, etc.. The injection motion is varied in the experiments by changing the e-gun voltage or the field strength of the focusing magnet located at the entrance of the undulator. It is confirmed experimentally and with simulations that most of the beam loss occurs at the adiabatic region of the undulator regardless of the length of the adiabatic region The effect of axial guiding magnetic field on the beam finish is investigated. According to the simulations, the increase of the strength of axial magnetic field from 0 to 1 kG results in the increase of the transport ratio from 15 % to 95%.

  15. The persistence of equatorial spread F - an analysis on seasonal, solar activity and geomagnetic activity aspects

    NASA Astrophysics Data System (ADS)

    Sreeja, V.; Devasia, C. V.; Ravindran, Sudha; Sridharan, R.

    2009-02-01

    The persistence (duration) of Equatorial Spread F (ESF), which has significant impact on communication systems, is addressed. Its behavior during different seasons and geomagnetic activity levels under the solar maximum (2001) and minimum (2006) conditions, is reported using the data from the magnetic equatorial location of Trivandrum (8.5° N; 77° E; dip 0.5° N) in India. The study reveals that the persistence of the irregularities can be estimated to a reasonable extent by knowing the post sunset F region vertical drift velocity (Vz) and the magnetic activity index Kp. Any sort of advance information on the possible persistence of the ionospheric irregularities responsible for ESF is important for understanding the scintillation morphology, and the results which form the first step in this direction are presented and discussed.

  16. Current drive by coaxial helicity injection in a spherical torus

    NASA Astrophysics Data System (ADS)

    Tang, X. Z.; Boozer, A. H.

    2004-05-01

    Noninductive current drive by coaxial helicity injection can be understood through the poloidal flux evolution of the toroidally averaged magnetic field B¯0. In the open flux region of B¯0, electrostatic biasing provides an effective loop voltage that overcomes the resistive decay and supports the dynamo loop voltage in the closed flux region via the primary nonaxisymmetric open field line kinks. The current gradient in the closed flux region of B¯0 drives secondary nonaxisymmetric closed flux magnetohydrodynamical modes that facilitate further current relaxation toward the magnetic axis. The decreasing parallel current gradient and high-q magnetic surfaces as one approaches the magnetic axis implies that the eventual current relaxation consistent with magnetic confinement must benefit from a cascade of weaker and comparatively short wavelength modes localized to the high-q resonant home flux surfaces.

  17. Gyroscope precession along bound equatorial plane orbits around a Kerr black hole

    NASA Astrophysics Data System (ADS)

    Bini, Donato; Geralico, Andrea; Jantzen, Robert T.

    2016-09-01

    The precession of a test gyroscope along stable bound equatorial plane orbits around a Kerr black hole is analyzed, and the precession angular velocity of the gyro's parallel transported spin vector and the increment in the precession angle after one orbital period is evaluated. The parallel transported Marck frame which enters this discussion is shown to have an elegant geometrical explanation in terms of the electric and magnetic parts of the Killing-Yano 2-form and a Wigner rotation effect.

  18. End-to-End Thiocyanato-Bridged Helical Chain Polymer and Dichlorido-Bridged Copper(II) Complexes with a Hydrazone Ligand: Synthesis, Characterisation by Electron Paramagnetic Resonance and Variable-Temperature Magnetic Studies, and Inhibitory Effects on Human Colorectal Carcinoma Cells.

    PubMed

    Das, Kuheli; Datta, Amitabha; Sinha, Chittaranjan; Huang, Jui-Hsien; Garribba, Eugenio; Hsiao, Ching-Sheng; Hsu, Chin-Lin

    2012-04-01

    The reactions of the tridentate hydrazone ligand, N'-[1-(pyridin-2-yl)ethylidene]acetohydrazide (HL), obtained by condensation of 2-acetylpyridine with acetic hyadrazide, with copper nitrate trihydrate in the presence of thiocyanate, or with CuCl2 produce two distinct coordination compounds, namely a one-dimensional helical coordination chain of [CuL(NCS)] n (1) units, and a doubly chlorido-bridged dinuclear complex [Cu2L2Cl2] (2) (where L=CH3C(O)=N-N=CCH3C5H4N). Single-crystal X-ray structural determination studies reveal that in complex 1, a deprotonated hydrazone ligand L(-) coordinates a copper(II) ion that is bridged to two neighbouring metal centres by SCN(-) anions, generating a one-dimensional helical coordination chain. In complex 2, two symmetry-related, adjacent copper(II) coordination entities are doubly chlorido-bridged, producing a dicopper entity with a Cu⋅⋅⋅Cu distance of 3.402 (1) Å. The two coordination compounds have been fully characterised by elemental analysis, spectroscopic techniques including IR, UV-vis and electron paramagnetic resonance, and variable-temperature magnetic studies. The biological effects of 1 and 2 on the viability of human colorectal carcinoma cells (COLO-205 and HT-29) were evaluated using an MTT assay, and the results indicate that these complexes induce a decrease in cell-population growth of human colorectal carcinoma cells with apoptosis.

  19. Predictive supracolloidal helices from patchy particles

    PubMed Central

    Guo, Ruohai; Mao, Jian; Xie, Xu-Ming; Yan, Li-Tang

    2014-01-01

    A priori prediction of supracolloidal architectures from nanoparticle and colloidal assembly is a challenging goal in materials chemistry and physics. Despite intense research in this area, much less has been known about the predictive science of supracolloidal helices from designed building blocks. Therefore, developing conceptually new rules to construct supracolloidal architectures with predictive helicity is becoming an important and urgent task of great scientific interest. Here, inspired by biological helices, we show that the rational design of patchy arrangement and interaction can drive patchy particles to self-assemble into biomolecular mimetic supracolloidal helices. We further derive a facile design rule for encoding the target supracolloidal helices, thus opening the doors to the predictive science of these supracolloidal architectures. It is also found that kinetics and reaction pathway during the formation of supracolloidal helices offer a unique way to study supramolecular polymerization, and that well-controlled supracolloidal helices can exhibit tailorable circular dichroism effects at visible wavelengths. PMID:25387544

  20. Predictive supracolloidal helices from patchy particles

    NASA Astrophysics Data System (ADS)

    Guo, Ruohai; Mao, Jian; Xie, Xu-Ming; Yan, Li-Tang

    2014-11-01

    A priori prediction of supracolloidal architectures from nanoparticle and colloidal assembly is a challenging goal in materials chemistry and physics. Despite intense research in this area, much less has been known about the predictive science of supracolloidal helices from designed building blocks. Therefore, developing conceptually new rules to construct supracolloidal architectures with predictive helicity is becoming an important and urgent task of great scientific interest. Here, inspired by biological helices, we show that the rational design of patchy arrangement and interaction can drive patchy particles to self-assemble into biomolecular mimetic supracolloidal helices. We further derive a facile design rule for encoding the target supracolloidal helices, thus opening the doors to the predictive science of these supracolloidal architectures. It is also found that kinetics and reaction pathway during the formation of supracolloidal helices offer a unique way to study supramolecular polymerization, and that well-controlled supracolloidal helices can exhibit tailorable circular dichroism effects at visible wavelengths.

  1. Equatorial Kelvin waves do not vanish

    NASA Technical Reports Server (NTRS)

    O'Brien, James J.; Parham, Fred

    1992-01-01

    In the last several years many scientists have been using poorly resolved coupled models to study the ENSO. It has been very common to state that an ENSO cycle found in a model cannot have oceanic Kelvin waves as a mechanism because such waves do not exist in an ocean model with coarse grid spaing. In this note it is demonstrated that equatorial Kelvin waves can exist in models with coarse grids.

  2. Westward equatorial electrojet during daytime hours. [relation to geomagnetic horizontal field depression

    NASA Technical Reports Server (NTRS)

    Rastogi, R. G.

    1974-01-01

    The phenomenon of the depression of the geomagnetic horizontal field during the daytime hours of magnetically quiet days at equatorial stations is described. These events are generally seen around 0700 and 1600 LT, being more frequent during the evening than the morning hours. The evening events are more frequent during periods of low solar activity and in the longitude region of weak equatorial electrojet currents. The latitudinal extent of the phenomenon is limited to the normal equatorial electrojet region, and on some occasions the phenomenon is not seen at both stations, separated by only a few hours in longitude. During such an event, the latitudinal profile of the geomagnetic vertical field across the equator is reversed, the ionospheric drift near the equator is reversed toward the east, the q type of sporadic E layer is completely absent, and the height of the peak ionization in the F2 region is decreased. It is suggested that these effects are caused by a narrow band of current flowing westward in the E region of the ionosphere and within the latitude region of the normal equatorial electrojet, due to the reversal of the east-west electrostatic field at low latitudes.

  3. Spatial and Temporal Variations of Solar Quiet Daily Sq Variation and Equatorial Electrojet Over Africa: Results From International Heliophysical Year

    NASA Astrophysics Data System (ADS)

    Rabiu, A.; Yumoto, K.; Bello, O.

    2010-12-01

    Space Environment Research Centre of Kyushu University, Japan, installed 13 units of Magnetic Data Acquisition Systems MAGDAS over Africa during the International Heliophysical Year IHY. Magnetic records from 10 stations along the African 96o Magnetic Meridian (Geographical 30o - 40o East) were examined for Solar quiet daily Sq variation in the three geomagnetic field components H, D and Z. Spatial variations of Sq in the geomagnetic components were examined. Signatures of equatorial electrojet and worldwide Sq were identified and studied in detail. H field experienced more variation within the equatorial electrojet zone. Diurnal and seasonal variations of the geomagnetic variations in the three components were discussed. Levels of inter-relationships between the Sq and its variability in the three components were statistically derived and interpreted in line with the mechanisms responsible for the variations of the geomagnetic field. Data from 2 magnetic observatories within equatorial electrojet EEJ strip and 2 stations outside the EEJ strip were employed to evaluate and study the signatures of the Equatorial electrojet over the African sector. The transient variations of the EEJ at two almost parallel axes using Lagos-Ilorin and Nairobi-Addis pairs were examined. The EEJ appear stronger in East than West Africa. The magnitudes and patterns of variation of EEJ strength along the two axes were examined for any simultaneity or otherwise of responses to ionospheric processes. The flow gradient of EEJ along the African sector was estimated and its diurnal variation studied.

  4. Jupiter's Equatorial Zone in Exaggerated Color

    NASA Technical Reports Server (NTRS)

    1979-01-01

    This special color composite made from Voyager 2 narrow-angle frames taken on June 28, 1979, has been processed to exaggerate color differences within the naturally colorful Jovian atmosphere. Such processing makes detailed structure in the clouds more apparent. The dark belt across the upper portion of the photograph is the North Equatorial Belt. One of the largest of the long-lived dark features found along the northern edge of this belt is seen in the upper middle of the photograph. Jupiter's Equatorial Zone, which lies across the middle of the photograph, is characterized by a series of wisp-like plume features. The northern bluish edges of these plumes are thought to lie within deeper, warmer levels of the atmosphere. South of the Equatorial Zone lies the chaotic region of whiter clouds found west of the Great Red Spot. kilometers (6.4 million miles) from Jupiter. The smallest features visible in this photograph are about 190 kilometers (119 miles) across.

  5. Equatorial scintillations: advances since ISEA-6

    SciTech Connect

    Not Available

    1985-01-01

    Our understanding of the morphology of equatorial scintillations has advanced due to more intensive observations at the equatorial anomaly locations in the different longitude zones. The unmistakable effect of the sunspot cycle in controlling irregularity belt width and electron concentration responsible for strong scintillation in the controlling the magnitude of scintillations has been recognized by interpreting scintillation observations inthe light of realistic models of total electron content at various longitudes. A hypothesis based on the alignment of the solar terminator with the geomagnetic flux tubes as an indicator of enhanced scintillation occurrence and another based on the influence of a transequatorial thermospheric neutral wind have been postulated to describe the observed longitudinal variation. A distinct class of equatorial irregularities known as the bottomside sinusoidal (BSS) type was identified. These irregularities occur in very large patches, sometimes in excess of several thousand kilometers in the E-W direction and are associated with frequency spread on ionograms. Scintillations caused by such irregularities exist only in the VHF band, exhibit Fresnel oscillations in intensity spectra and are found to give rise to extremely long durations (approx. several hours) of uninterrrupted scintillations.

  6. Helical screw expander evaluation project

    NASA Technical Reports Server (NTRS)

    Mckay, R.

    1982-01-01

    A one MW helical rotary screw expander power system for electric power generation from geothermal brine was evaluated. The technology explored in the testing is simple, potentially very efficient, and ideally suited to wellhead installations in moderate to high enthalpy, liquid dominated field. A functional one MW geothermal electric power plant that featured a helical screw expander was produced and then tested with a demonstrated average performance of approximately 45% machine efficiency over a wide range of test conditions in noncondensing, operation on two-phase geothermal fluids. The Project also produced a computer equipped data system, an instrumentation and control van, and a 1000 kW variable load bank, all integrated into a test array designed for operation at a variety of remote test sites. Data are presented for the Utah testing and for the noncondensing phases of the testing in Mexico. Test time logged was 437 hours during the Utah tests and 1101 hours during the Mexico tests.

  7. Elementary study on superconducting electromagnetic ships with helical insulation wall

    NASA Astrophysics Data System (ADS)

    Nishigaki, Kazu; Sha, Ciwen; Takeda, Minoru; Peng, Yan; Zhou, Kuo; Yang, Aihua; Suyama, Daiki; Qing, Qin Jun; Yan, Luguang; Kiyoshi, Tsukasa; Wada, Hitoshi

    2000-01-01

    We, Kobe University of Mercantile Marine (KUMM) and Institute of Electrical Engineering (IEE) research teams, have carried out in Japan, the joint experimental test of the high magnetic field (˜14 T) superconducting electromagnetic ship performance in co-operation with the researchers of NRIM. In this experimental study, the major system components are thruster, seawater circulating system and various measuring instruments. The NRIMs 15 T class superconducting magnet that forms the outmost member of the 40 T class hybrid magnet was used. The flow guide and flow rectifier are of same lengths of 0.2 m, and the length of the electrodes are 0.6 m. The anode's outer diameter is 0.1 m, and the cathode's inner diameter is 0.346 m. The helical insulation wall is 10 mm thick and the pitch number is 3.8. During the experiment, magnetic fields were changed to six stages 3, 5, 8, 10, 12 and 14 T, whereby seawater pressures, temperatures and flow rates were measured. Electric currents were changed from 10 to 700 A. In one of results, the thruster efficiency increases in association with the increase of the magnetic field. It has been demonstrated that the helical-type superconducting electromagnetic thruster is superior, in terms of thruster efficiency, than that of earlier works by Iwata et al. and YAMATO-1's group. So, it is considered that this thruster is better suited to commerical application than earlier works.

  8. Helical Antimicrobial Sulfono- {gamma} -AApeptides

    SciTech Connect

    Li, Yaqiong; Wu, Haifan; Teng, Peng; Bai, Ge; Lin, Xiaoyang; Zuo, Xiaobing; Cao, Chuanhai; Cai, Jianfeng

    2015-06-11

    Host-defense peptides (HDPs) such as magainin 2 have emerged as potential therapeutic agents combating antibiotic resistance. Inspired by their structures and mechanism of action, herein we report the fi rst example of antimicrobial helical sulfono- γ - AApeptide foldamers. The lead molecule displays broad-spectrum and potent antimicrobial activity against multi-drug-resistant Gram- positive and Gram-negative bacterial pathogens. Time-kill studies and fl uorescence microscopy suggest that sulfono- γ -AApeptides eradicate bacteria by taking a mode of action analogous to that of HDPs. Clear structure - function relationships exist in the studied sequences. Longer sequences, presumably adopting more-de fi ned helical structures, are more potent than shorter ones. Interestingly, the sequence with less helical propensity in solution could be more selective than the stronger helix-forming sequences. Moreover, this class of antimicrobial agents are resistant to proteolytic degradation. These results may lead to the development of a new class of antimicrobial foldamers combating emerging antibiotic-resistant pathogens.

  9. Effect of the helicity injection rate and the Lundquist number on spheromak sustainment

    NASA Astrophysics Data System (ADS)

    García-Martínez, Pablo Luis; Lampugnani, Leandro Gabriel; Farengo, Ricardo

    2014-12-01

    The dynamics of the magnetic relaxation process during the sustainment of spheromak configurations at different helicity injection rates is studied. The three-dimensional activity is recovered using time-dependent resistive magnetohydrodynamic simulations. A cylindrical flux conserver with concentric electrodes is used to model configurations driven by a magnetized coaxial gun. Magnetic helicity is injected by tangential boundary flows. Different regimes of sustainment are identified and characterized in terms of the safety factor profile. The spatial and temporal behavior of fluctuations is described. The dynamo action is shown to be in close agreement with existing experimental data. These results are relevant to the design and operation of helicity injected devices, as well as to basic understanding of the plasma relaxation mechanism in quasi-steady state.

  10. Effect of the helicity injection rate and the Lundquist number on spheromak sustainment

    SciTech Connect

    García-Martínez, Pablo Luis; Lampugnani, Leandro Gabriel; Farengo, Ricardo

    2014-12-15

    The dynamics of the magnetic relaxation process during the sustainment of spheromak configurations at different helicity injection rates is studied. The three-dimensional activity is recovered using time-dependent resistive magnetohydrodynamic simulations. A cylindrical flux conserver with concentric electrodes is used to model configurations driven by a magnetized coaxial gun. Magnetic helicity is injected by tangential boundary flows. Different regimes of sustainment are identified and characterized in terms of the safety factor profile. The spatial and temporal behavior of fluctuations is described. The dynamo action is shown to be in close agreement with existing experimental data. These results are relevant to the design and operation of helicity injected devices, as well as to basic understanding of the plasma relaxation mechanism in quasi-steady state.

  11. ON THE INJECTION OF HELICITY BY THE SHEARING MOTION OF FLUXES IN RELATION TO FLARES AND CORONAL MASS EJECTIONS

    SciTech Connect

    Vemareddy, P.; Ambastha, A.; Maurya, R. A.; Chae, J. E-mail: ambastha@prl.res.in E-mail: jcchae@snu.ac.kr

    2012-12-20

    An investigation of helicity injection by photospheric shear motions is carried out for two active regions (ARs), NOAA 11158 and 11166, using line-of-sight magnetic field observations obtained from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. We derived the horizontal velocities in the ARs from the differential affine velocity estimator (DAVE) technique. Persistent strong shear motions at maximum velocities in the range of 0.6-0.9 km s{sup -1} along the magnetic polarity inversion line and outward flows from the peripheral regions of the sunspots were observed in the two ARs. The helicities injected in NOAA 11158 and 11166 during their six-day evolution period were estimated as 14.16 Multiplication-Sign 10{sup 42} Mx{sup 2} and 9.5 Multiplication-Sign 10{sup 42} Mx{sup 2}, respectively. The estimated injection rates decreased up to 13% by increasing the time interval between the magnetograms from 12 minutes to 36 minutes, and increased up to 9% by decreasing the DAVE window size from 21 Multiplication-Sign 18 to 9 Multiplication-Sign 6 pixel{sup 2}, resulting in 10% variation in the accumulated helicity. In both ARs, the flare-prone regions (R2) had inhomogeneous helicity flux distribution with mixed helicities of both signs and coronal mass ejection (CME) prone regions had almost homogeneous distribution of helicity flux dominated by a single sign. The temporal profiles of helicity injection showed impulsive variations during some flares/CMEs due to negative helicity injection into the dominant region of positive helicity flux. A quantitative analysis reveals a marginally significant association of helicity flux with CMEs but not flares in AR 11158, while for the AR 11166, we find a marginally significant association of helicity flux with flares but not CMEs, providing evidence of the role of helicity injection at localized sites of the events. These short-term variations of helicity flux are further discussed in view of possible

  12. Non-solenoidal Startup through Local Helicity Injection in the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Bongard, M. W.; Barr, J. L.; Burke, M. G.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Redd, A. J.; Schlossberg, D. J.; Schoenbeck, N. L.; Shriwise, P. C.; Thome, K. E.

    2012-10-01

    Non-solenoidal plasma startup via local helicity injection is governed by helicity balance and Taylor relaxation constraints. Local helicity injection capabilities at Pegasus have been increased, supporting an expansion of the existing operational space towards Ip˜ 0.3 MA and characterization of helicity dissipation mechanisms during plasma startup, growth, and sustainment. After discharge initiation with an active current source, helicity injection may be provided by passive electrodes to continue its evolution and extend pulse length. Local magnetic measurements confirm that a local field null is transiently created by injected current streams prior to relaxation into a tokamak-like state and sustained helicity injection. Bursts of MHD activity during the growth phase are correlated with rapid equilibrium changes, redistribution of the toroidal current density, and observations of strong ion heating (Ti ˜ 1 keV). The impedance of active injectors and thereby their helicity input rate appears constrained by a double-layer space charge limit at low currents and the Alfv'en-Lawson limit for intense electron beams at high currents. Facility and diagnostic upgrades include an expanded poloidal field coil system for improved plasma control, new divertor coils, new plasma gun-electrode injector assemblies, a Thomson scattering system, expanded gas fueling techniques, and support for doubling the toroidal field.

  13. Focusing of nonducted whistlers by the equatorial anomaly

    NASA Technical Reports Server (NTRS)

    Sonwalkar, Vikas S.; Inan, Umran S.; Aggson, T. L.; Farrell, W. M.; Pfaff, R.

    1995-01-01

    Impulsive ELF/VLF electric field bursts observed by the vector electric field instrument (VEFI) on the Dynamics Explorer 2 (DE 2) satellite on almost every crossing of the geomagnetic equator in the evening hours are interpreted as originating in lightning discharges. These signals that peak in intensity near the magnetic equator are observed within 5-20 deg latitude of the geomagnetic equator at altitudes of 300-500 km with amplitudes of the order of approximately mV/m in the 512- or 1024-Hz frequency band of the VEFI instrument. Whistler-mode ELF/VLF wave propagation through a horizontally stratified ionosphere predicts strong attenuation of subionospheric signals reaching the equator at low altitudes. However, ray tracing analysis shows that the presence of the equatorial density anomaly, commonly observed in the upper ionosphere during evening hours, leads to the focusing of the wave energy from lightning near the geomagnetic equator at low altitudes, thus accounting for all observed aspects of the phenomenon. The observations presented here indicate that during certain hours in the evening, almost all the energy input from lightning discharges entering the ionosphere at less than 30 deg latitude remains confined to a small region (in altitude and latitude) near the geomagnetic equator. The net wideband electric field, extrapolated from the observed electric field values in the 512- to 1024-Hz band, can be approximately 10 mV/m or higher. These strong electric fields generated in the ionosphere by lightning at local evening times may be important for the equatorial electrodynamics of the ionosphere.

  14. Global Specification of the Post-Sunset Equatorial Ionization Anomaly

    NASA Astrophysics Data System (ADS)

    Coker, C.; Dandenault, P. B.; Dymond, K.; Budzien, S. A.; Nicholas, A. C.; Chua, D. H.; McDonald, S. E.; Metzler, C. A.; Walker, P. W.; Scherliess, L.; Schunk, R. W.; Gardner, L. C.; Zhu, L.

    2012-12-01

    The Special Sensor Ultraviolet Limb Imager (SSULI) on the Defense Meteorological Satellite Program (DMSP) is used to specify the post-sunset Equatorial Ionization Anomaly. Ultraviolet emission profiles of 135.6 nm and 91.1 nm emissions from O++ e recombination are measured in successive altitude scans along the orbit of the satellite. The overlapping sample geometry provides for a high resolution reconstruction of the ionosphere in altitude and latitude for each pass of the satellite. Emission profiles are ingested by the Global Assimilation of Ionospheric Measurements (GAIM) space weather model, which was developed by Utah State University and is run operationally at the Air Force Weather Agency (AFWA). The resulting specification of the equatorial ionosphere reveals significant variability in the postsunset anomaly, which is reflective of the driving space weather processes, namely, electric fields and neutral winds. Significant longitudinal and day-to-day variability in the magnitude (or even existence) of the post-sunset anomaly reveal the influence of atmospheric tides and waves as well as geomagnetic disturbances on the pre-reversal enhancement of the electric field. Significant asymmetry between anomaly crests reveals the influence of atmospheric tides and waves on meridional neutral winds. A neutral wind parallel to the magnetic field line pushes plasma up (or down) the field lines, which raises (or lowers) the altitude of the crests and modifies the horizontal location and magnitude of the crests. The variability in the post-sunset anomaly is one of the largest sources of error in ionospheric specification models. The SSULI instrument provides critical data towards the reduction of this specification error and the determination of key driver parameters used in ionospheric forecasting. Acknowledgements: This research was supported by the USAF Space and Missile Systems Center (SMC), the Naval Research Laboratory (NRL) Base Program, and the Office of Naval

  15. Engineering and Design of the Steady Inductive Helicity Injected Torus (HIT--SI)

    NASA Astrophysics Data System (ADS)

    Sieck, P. E.; Jarboe, T. R.; Nelson, B. A.; Rogers, J. A.; Shumlak, U.

    1999-11-01

    Steady Inductive Helicity Injection (SIHI) is an inductive helicity injection method that injects helicity at a nearly constant rate, without open field lines, and without removing any helicity or magnetic energy from the plasma.(T.R. Jarboe, Fusion Technology, 36) (1), p. 85, 1999 SIHI directly produces a rotating magnetic field structure, and in the frame of the rotating field the current profile is nearly time independent. The Steady Inductive Helicity Injected Torus (HIT--SI) is a spheromak designed to implement SIHI so that the current profile in the rotating frame is optimized. The geometry of HIT--SI will be presented, including the manufacturing techniques and metallurgical processes planned for construction of the close-fitting flux conserver. The flux conserver is made of aged chromium copper with 80% the conductivity of pure copper. The detailed electrical insulation requirements in the helicity injector design lead to a complex o-ring seal and a plasma-sprayed alumina insulation coating. This has prompted the construction of an o-ring prototype test fixture having the main features of the o-ring design and the alumina coating. The design and evaluation of this fixture will also be presented with vacuum and voltage test results.

  16. Multistation study of nighttime scintillations in low latitudes - Evidence of control by equatorial F region irregularities

    NASA Astrophysics Data System (ADS)

    Somayajulu, Y. V.; Garg, S. C.; Dabas, R. S.; Singh, L.; Tyagi, T. R.; Lokanadham, B.; Ramakrishna, S.; Navneeth, G.

    1984-06-01

    Equatorial spread F (ESF) and VHF scintillations have only in recent years been related to large-scale upwelling plumelike irregularity structures identified on VHF backscatter radar intensity maps. The present investigation is concerned with the results of an experiment of VHF scintillations recorded at a meridian chain of stations in India extending from close to the magnetic equator to 24.8 deg N magnetic latitude. It is found that the latitudinal development of scintillation-producing irregularities during high solar activity conditions is controlled by the development of ESF irregularities over the magnetic equator. Scintillations at all the stations equatorward of 21 deg N magnetic latitude are saturated, and their onset in the postsunset hours is almost abrupt. The occurrence of scintillations at latitudes away from the equator is dependent on their prior occurrence near the magnetic equator.

  17. Multistation study of nighttime scintillations in low latitudes: evidence of control by equatorial F region irregularities

    SciTech Connect

    Somayajulu, Y.V.; Garg, S.C.; Dabas, R.S.; Singh, L.

    1984-05-01

    Equatorial spread F (ESF) and VHF scintillations have only in recent years been related to large-scale upwelling plumelike irregularity structures identified on VHF backscatter radar intensity maps. The present investigation is concerned with the results of an experiment of VHF scintillations recorded at a meridian chain of stations in India extending from close to the magnetic equator to 24.8 deg N magnetic latitude. It is found that the latitudinal development of scintillation-producing irregularities during high solar activity conditions is controlled by the development of ESF irregularities over the magnetic equator. Scintillations at all the stations equatorward of 21 deg N magnetic latitude are saturated, and their onset in the postsunset hours is almost abrupt. The occurrence of scintillations at latitudes away from the equator is dependent on their prior occurrence near the magnetic equator. 57 references.

  18. Understanding the Interiors of Saturn and Mercury through Magnetic Field Observation and Dynamo Modeling

    NASA Astrophysics Data System (ADS)

    Cao, Hao

    action. The second concerns about the possible heterogeneous heat transfer efficiency in the outer envelope of Saturn and its influence on Saturn's dynamo action. We then carried out numerical convective dynamo simulations using the community dynamo code MagIC version 3.44 to test our dynamo hypothesis. In our numerical dynamo experiments, the central core sizes and the outer boundary heat flow heterogeneities are both varied. We find that the central core size is an important factor that can strongly influence the geometry of the dynamo generated magnetic field. Such influence is rendered through the tangent cylinder, which is an imaginary cylinder with its axis parallel to the spin axis of the planet and is tangent to the central core at the equator. We find that both the convective motion and the magnetic field generation efficiency, represented by kinetic helicity, are weaker inside the tangent cylinder than those outside the tangent cylinder. As a result, the magnetic fields inside the tangent cylinder are consistently weaker than those outside the tangent cylinder. Thus the lack of a polar field minimum region at Saturn could be indicative of the absence or a small central core inside Saturn. MESSENGER observations revealed that Mercury's magnetic field is more unusual than previously thought. In particular, Mercury's magnetic field is strongly north-south asymmetric: the magnetic field strength in the northern hemisphere is three times as strong as that in the southern hemisphere. Yet, there is no evidence for any such north-south asymmetry in the basic properties of Mercury that could possibly influence the present-day dynamo action. Here we propose a mechanism to break the equatorial symmetry of Mercury's magnetic field within the framework of convective dynamos. The essence of our mechanism is the mutual excitation of two fundamental modes of columnar convection in rapidly rotating spherical shells. Such mutual excitation results in equatorially asymmetric

  19. Coupling and energetics of the equatorial ionosphere-thermosphere system: advances during the STEP period

    NASA Astrophysics Data System (ADS)

    Abdu, M. A.

    1999-01-01

    The equatorial ionosphere-thermosphere system (EITS) investigations during the STEP period (1990-1997) were focused on improving our understanding of the dymanic and electrodynamic-coupling process and energetics that govern the climatology of the system, as well as the variabilities of the system arising from forcing by magnetospheric and high latitude processes and by atmospheric waves from below. Thermosphere dynamics and dynamo electric fields serving as drivers of the coupling process are responsible for the major EITS phenomena and their variabilities at different time scales. Especially, the day-to-day variabilities of the equatorial spread F (ESF) have recieved specific attention because of interest in space application areas as well Significant advances were achieved in our understanding and representation of quiet and disturbed electric fields. The STEP period also marked notable improvement in the experimental diagnostic facilities available in the equatorialregions as well as in theoretical modeling of the interactive process that control the major EITS phenomena. Data from coordinated observational campaigns have contributed to a better understanding of the EITS global responses to magnetospheric disturbances. The advances to be briefly discussed in this paper concern most of the major phenomena and the inherent characteristics of the EITS: the equatorial electric field and its sunset enhancement; thermospheric winds and temperature including the MTM (midnight temperature maximum); peculiar features of the ionosphere in the immediate vicinity of the magnetic equator; equatorial spread F/plasma bubble erregularities, including the energy requirement for large scale field aligned irregularities; equatorial anomalies in ion/neutral densities and temperatures. Also presented briefly is an overview of the results on the disturbance characteristics of the key EITS parameters and driving forces under magnetospheric disturbances and atmospheric wave forcing.

  20. Dynamics of three-dimensional helical domain wall in cylindrical NiFe nanowires

    NASA Astrophysics Data System (ADS)

    Wong, D. W.; Chandra Sekhar, M.; Gan, W. L.; Purnama, I.; Lew, W. S.

    2015-05-01

    We report on a micromagnetic study on the dynamics of current-driven helical domain wall (DW) in cylindrical NiFe nanowires. The helical DW is a three-dimensional transition region between magnetizations with clockwise and anticlockwise vortex orientations. A minimum current density is needed to overcome an intrinsic pinning to drive the helical DW, and the propagation along the nanowire is accompanied by a rotational motion. As the driving current strength is increased, the rotation ceases while the DW propagates at an increased velocity. However, a velocity barrier is experienced which results in the decrease of the DW mobility. Throughout its motion, the propagated helical DW maintains a stable profile without showing any sign of structural breakdown even at relatively high driving current.

  1. Day-to-day variability of Equatorial Ionization Anomaly over the Indian and Brazilian sectors - the role of Equatorial Electrojet

    NASA Astrophysics Data System (ADS)

    Kavutarapu, Venkatesh; Gende, Mauricio; Fagundes, Paulo Roberto; De Jesus, Rodolfo; Denardini, Clezio Marcos; De Abreu, Alessandro

    2016-07-01

    The equatorial electrojet (EEJ) is a narrow band of current flowing eastward at the ionospheric E-region altitudes along the dayside dip equator. Mutually perpendicular electric and magnetic fields over the equator results in the formation of Equatorial Ionization Anomaly (EIA) which in turn generates large electron density variabilities. Simultaneous study on the characteristics of EEJ and EIA is necessary to understand the role of EEJ on the EIA variabilities. Present study reports simultaneous variations of EEJ and GPS-TEC over Indian and Brazilian sectors to understand the role of EEJ on the day-to-day characteristics of the EIA. Magnetometer measurements during the low solar activity year 2004 are used to derive the EEJ values over the two different sectors. The characteristics of EIA are studied using two different chains of GPS receivers along the common meridian of 770E (India) and 450W (Brazil). The diurnal, seasonal and day-to-day variations of EEJ and TEC are described simultaneously. Variations of EIA during different seasons are presented along with the variations of the EEJ in the two hemispheres. The role of EEJ variations on the characteristic features of the EIA such as the strength and temporal extent of the EIA crest etc., have also been reported. Further, the time delay between the occurrences of the day maximum EEJ and the well-developed EIA are studied and corresponding results are presented in this paper. Further, the results from a study on the noon time bite-outs at the anomaly crest locations with their absence over the equator in the Indian and Brazilian sector are also discussed in this paper.

  2. 2-D simulation of a waveguide free electron laser having a helical undulator

    SciTech Connect

    Kim, S.K.; Lee, B.C.; Jeong, Y.U.

    1995-12-31

    We have developed a 2-D simulation code for the calculation of output power from an FEL oscillator having a helical undulator and a cylindrical waveguide. In the simulation, the current and the energy of the electron beam is 2 A and 400 keV, respectively. The parameters of the permanent-magnet helical undulator are : period = 32 mm, number of periods = 20, magnetic field = 1.3 kG. The gain per pass is 10 and the output power is calculated to be higher than 10 kW The results of the 2-D simulation are compared with those of 1-D simulation.

  3. Density filament and helical field line structures in three dimensional Weibel-mediated collisionless shocks

    NASA Astrophysics Data System (ADS)

    Moritaka, Toseo; Sakawa, Youichi; Kuramitsu, Yasuhiro; Morita, Taichi; Yamaura, Yuta; Ishikawa, Taishi; Takabe, Hideaki

    2016-03-01

    Collisionless shocks mediated by Weibel instability are attracting attention for their relevance to experimental demonstrations of astrophysical shocks in high-intensity laser facilities. The three dimensional structure of Weibel-mediated shocks is investigated through a fully kinetic particle-in-cell simulation. The structures obtained are characterized by the following features: (i) helical magnetic field lines elongated in the direction upstream of the shock region, (ii) high and low density filaments inside the helical field lines. These structures originate from the interaction between counter-streaming plasma flow and magnetic vortexes caused by Weibel instability, and potentially affect the shock formation mechanism.

  4. MACSAT - A Near Equatorial Earth Observation Mission

    NASA Astrophysics Data System (ADS)

    Kim, B. J.; Park, S.; Kim, E.-E.; Park, W.; Chang, H.; Seon, J.

    MACSAT mission was initiated by Malaysia to launch a high-resolution remote sensing satellite into Near Equatorial Orbit (NEO). Due to its geographical location, Malaysia can have large benefits from NEO satellite operation. From the baseline circular orbit of 685 km altitude with 7 degrees of inclination, the neighboring regions around Malaysian territory can be frequently monitored. The equatorial environment around the globe can also be regularly observed with unique revisit characteristics. The primary mission objective of MACSAT program is to develop and validate technologies for a near equatorial orbit remote sensing satellite system. MACSAT is optimally designed to accommodate an electro-optic Earth observation payload, Medium-sized Aperture Camera (MAC). Malaysian and Korean joint engineering teams are formed for the effective implementation of the satellite system. An integrated team approach is adopted for the joint development for MACSAT. MAC is a pushbroom type camera with 2.5 m of Ground Sampling Distance (GSD) in panchromatic band and 5 m of GSD in four multi-spectral bands. The satellite platform is a mini-class satellite. Including MAC payload, the satellite weighs under 200 kg. Spacecraft bus is designed optimally to support payload operations during 3 years of mission life. The payload has 20 km of swath width with +/- 30 o of tilting capability. 32 Gbits of solid state recorder is implemented as the mass image storage. The ground element is an integrated ground station for mission control and payload operation. It is equipped with S- band up/down link for commanding and telemetry reception as well as 30 Mbps class X-band down link for image reception and processing. The MACSAT system is capable of generating 1:25,000-scale image maps. It is also anticipated to have capability for cross-track stereo imaging for Digital elevation Model (DEM) generation.

  5. Ionospheric Storms in Equatorial Region: Digisonde Observations

    NASA Astrophysics Data System (ADS)

    Paznukhov, V.; Altadill, D.; Blanch, E.

    2011-12-01

    We present a study of the ionospheric storms observed in the low-latitude and equatorial ionosphere at several digisonde stations: Jicamarca (Geomagnetic Coordinates: 2.0 S, 355.3 E), Kwajalein Island (3.8 N, 238.2 E), Ascension Island (2.5 S, 56.8 E), Fortaleza (4.8 N, 33.7 W), and Ramey (28.6 N, 5.2 E). The strongest geomagnetic storms from years 1995-2009 have been analyzed. The main ionospheric characteristics, hmF2 and foF2 were used in the study, making it possible to investigate the changes in the ionosphere peak density and height during the storms. All digisonde data were manually processed to assure the accuracy of the measurements. Solar wind data, geomagnetic field variations, and auroral activity indices have been used to characterize the geomagnetic environment during the events. It was found in our analysis that the major drivers for the ionospheric storms, electric field and neutral wind have approximately equal importance at the low-latitude and equatorial latitudes. This is noticeably different from the behavior of the ionsphere in the middle latitudes, where the neutral wind is usually a dominant factor. It was found that the auroral index, AE is the best precursor of the ionospheric effects observed during the storms in this region. We analyze the difference between time delays of the storm effects observed at the stations located in different local time sectors. The overall statistics of the time delays of the storms as a function of the local time at the stations is also presented. Several very interesting cases of sudden very strong ionospheric uplifting and their possible relation to the equatorial super fountain effect are investigated in greater details.

  6. Relation between the variations of the solar wind and the noon-time equatorial ionospheric electric fields

    NASA Astrophysics Data System (ADS)

    Manoj, C.; Maus, S.; Alken, P.; Gentile, L.; Burke, W.

    2007-12-01

    We compare the solar wind measurements from ACE satellite with the vertical plasma drift (observed by JULIA radar) and the EEJ magnetic signals (observed at HUA observatory) from the South American equatorial sector. The aim is to understand the effect of solar wind on the variations of the electric field in the noon time equatorial ionosphere. We restrict our study to local noon time conditions, geomagnetically active days and while interplanetary Bz is negative. The estimates of electric field intensities (E_VS) at equatorial plain of the magnetosphere were made from ACE data using a combination of Volland-Stern and Siscoe-Hill models (Burke et al, 2007). The JULIA and magnetometer data were high-pass filtered to remove the regular daily variations. The relation between the data set will be presented as a coherence spectrum. In addition, the use of the ACE measurements to improve the climatological models of EEJ during geomagnetically active days will be explored.

  7. Equatorial Oscillations in Jupiter's and Saturn's Atmospheres

    NASA Technical Reports Server (NTRS)

    Flasar, F. Michael; Guerlet, S.; Fouchet, T.; Schinder, P. J.

    2011-01-01

    Equatorial oscillations in the zonal-mean temperatures and zonal winds have been well documented in Earth's middle atmosphere. A growing body of evidence from ground-based and Cassini spacecraft observations indicates that such phenomena also occur in the stratospheres of Jupiter and Saturn. Earth-based midinfrared measurements spanning several decades have established that the equatorial stratospheric temperatures on Jupiter vary with a cycle of 4-5 years and on Saturn with a cycle of approximately 15 years. Spectra obtained by the Composite Infrared Spectrometer (CIRS) during the Cassini swingby at the end of 2000, with much better vertical resolution than the ground-based data, indicated a series of vertically stacked warm and cold anomalics at Jupiter's equator; a similar structurc was seen at Saturn's equator in CIRS limb measurements made in 2005, in the early phase of Cassini's orbital tour. The thermal wind equation implied similar patterns of mean zonal winds increasing and decreasing with altitude. On Saturn the peak-to-pcak amplitude of this variation was nearly 200 meters per second. The alternating vertical pattern of wanner and colder cquatorial tcmperatures and easterly and westerly tendencies of the zonal winds is seen in Earth's equatorial oscillations, where the pattern descends with time, The Cassini Jupiter and early Saturn observations were snapshots within a limited time interval, and they did not show the temporal evolution of the spatial patterns. However, more recent Saturn observations by CIRS (2010) and Cassini radio-occultation soundings (2009-2010) have provided an opportunity to follow the change of the temperature-zonal wind pattern, and they suggest there is descent, at a rate of roughly one scale height over four years. On Earth, the observed descent in the zonal-mean structure is associated with the absorption of a combination of vertically propagating waves with easlerly and westerly phase velocities. The peak-to-peak zonal wind

  8. Probing and controlling liquid crystal helical nanofilaments.

    PubMed

    Zhu, Chenhui; Wang, Cheng; Young, Anthony; Liu, Feng; Gunkel, Ilja; Chen, Dong; Walba, David; Maclennan, Joseph; Clark, Noel; Hexemer, Alexander

    2015-05-13

    We report the first in situ measurement of the helical pitch of the helical nanofilament B4 phase of bent-core liquid crystals using linearly polarized, resonant soft X-ray scattering at the carbon K-edge. A strong, anisotropic scattering peak corresponding to the half-pitch of the twisted smectic layer structure was observed. The equilibrium helical half-pitch of NOBOW is found to be 120 nm, essentially independent of temperature. However, the helical pitch can be tuned by mixing guest organic molecules with the bent-core host, followed by thermal annealing.

  9. Building blocks for subleading helicity operators

    NASA Astrophysics Data System (ADS)

    Kolodrubetz, Daniel W.; Moult, Ian; Stewart, Iain W.

    2016-05-01

    On-shell helicity methods provide powerful tools for determining scattering amplitudes, which have a one-to-one correspondence with leading power helicity operators in the Soft-Collinear Effective Theory (SCET) away from singular regions of phase space. We show that helicity based operators are also useful for enumerating power suppressed SCET operators, which encode subleading amplitude information about singular limits. In particular, we present a complete set of scalar helicity building blocks that are valid for constructing operators at any order in the SCET power expansion. We also describe an interesting angular momentum selection rule that restricts how these building blocks can be assembled.

  10. Helical tomotherapy superficial dose measurements

    SciTech Connect

    Ramsey, Chester R.; Seibert, Rebecca M.; Robison, Benjamin; Mitchell, Martha

    2007-08-15

    Helical tomotherapy is a treatment technique that is delivered from a 6 MV fan beam that traces a helical path while the couch moves linearly into the bore. In order to increase the treatment delivery dose rate, helical tomotherapy systems do not have a flattening filter. As such, the dose distributions near the surface of the patient may be considerably different from other forms of intensity-modulated delivery. The purpose of this study was to measure the dose distributions near the surface for helical tomotherapy plans with a varying separation between the target volume and the surface of an anthropomorphic phantom. A hypothetical planning target volume (PTV) was defined on an anthropomorphic head phantom to simulate a 2.0 Gy per fraction IMRT parotid-sparing head and neck treatment of the upper neck nodes. A total of six target volumes were created with 0, 1, 2, 3, 4, and 5 mm of separation between the surface of the phantom and the outer edge of the PTV. Superficial doses were measured for each of the treatment deliveries using film placed in the head phantom and thermoluminescent dosimeters (TLDs) placed on the phantom's surface underneath an immobilization mask. In the 0 mm test case where the PTV extends to the phantom surface, the mean TLD dose was 1.73{+-}0.10 Gy (or 86.6{+-}5.1% of the prescribed dose). The measured superficial dose decreases to 1.23{+-}0.10 Gy (61.5{+-}5.1% of the prescribed dose) for a PTV-surface separation of 5 mm. The doses measured by the TLDs indicated that the tomotherapy treatment planning system overestimates superficial doses by 8.9{+-}3.2%. The radiographic film dose for the 0 mm test case was 1.73{+-}0.07 Gy, as compared to the calculated dose of 1.78{+-}0.05 Gy. Given the results of the TLD and film measurements, the superficial calculated doses are overestimated between 3% and 13%. Without the use of bolus, tumor volumes that extend to the surface may be underdosed. As such, it is recommended that bolus be added for these

  11. Investigation of the role of gravity waves in the generation of equatorial bubbles

    NASA Technical Reports Server (NTRS)

    Johnson, Francis S.; Coley, William R.

    1995-01-01

    The following areas of interest in this progress report are: (1) the continuation of software development in the examination of F-region gravity-wave power using in-situ data from the Atmosphere Explorer (AE-E); (2) the inquiry into the use of the San Marco data for the study of the initiation and growth of bubbles, particularly when the satellite passes through the early evening hours at relatively high altitudes, and the development of bubbles using not only the San Marco data but includes the use of airglow observations made in Hawaii; and (3) the promising development in the observation of distinct well formed waves at about 400 km altitude in the equatorial region. These waves look very much like waves seen over the polar cap that are attributed to internal gravity waves in the neutral atmosphere driving ionization up and down the magnetic field lines. These equatorial waves show no modulation of the total ion concentration.

  12. Three-dimensional numerical simulation of equatorial spread F including bottomside shear flow effects

    NASA Astrophysics Data System (ADS)

    Aveiro, H. C.; Hysell, D. L.

    2010-12-01

    A three-dimensional numerical simulation of plasma density irregularities in the postsunset equatorial F region ionosphere leading to equatorial spread F (ESF) is described. The simulation advances the plasma number density and electrostatic potential forward in time by enforcing the constraints of quasineutrality and momentum conservation for atomic and molecular species. The magnetic field lines are not modeled as equipotentials. Simulations are performed incorporating realistic background circulation including bottomside shear flow and strong vertical current. Generalized Rayleigh Taylor instability is found to combine with collisional shear instability to produce growing waveforms with characteristics that match observations more closely than either instability acting alone. The growth rate of the emergent instability, its mixing depth, and its overall morphology are compared with radar data from Jicamarca and Kwajalein.

  13. SUNSPOT ROTATION, FLARE ENERGETICS, AND FLUX ROPE HELICITY: THE ERUPTIVE FLARE ON 2005 MAY 13

    SciTech Connect

    Kazachenko, Maria D.; Canfield, Richard C.; Longcope, Dana W.; Qiu, Jiong; DesJardins, Angela; Nightingale, Richard W.

    2009-10-20

    We use the Michelson Doppler Imager and TRACE observations of photospheric magnetic and velocity fields in NOAA 10759 to build a three-dimensional coronal magnetic field model. The most dramatic feature of this active region is the 34{sup 0} rotation of its leading polarity sunspot over 40 hr. We describe a method for including such rotation in the framework of the Minimum Current Corona model. We apply this method to the buildup of energy and helicity associated with the eruptive flare of 2005 May 13. We find that including the sunspot rotation almost triples the modeled flare energy (1.0 x 10{sup 31} erg) and flux rope self-helicity (-7.1 x 10{sup 42} Mx{sup 2}). This makes the results consistent with observations: the energy derived from GOES is 1.0 x 10{sup 31} erg, the magnetic cloud helicity from WIND is -5 x 10{sup 42} Mx{sup 2}. Our combined analysis yields the first quantitative picture of the helicity and energy content processed through a flare in an active region with an obviously rotating sunspot and shows that rotation dominates the energy and helicity budget of this event.

  14. MAGNETIC FIELDS FROM QCD PHASE TRANSITIONS

    SciTech Connect

    Tevzadze, Alexander G.; Kisslinger, Leonard; Kahniashvili, Tina; Brandenburg, Axel

    2012-11-01

    We study the evolution of QCD phase transition-generated magnetic fields (MFs) in freely decaying MHD turbulence of the expanding universe. We consider an MF generation model that starts from basic non-perturbative QCD theory and predicts stochastic MFs with an amplitude of the order of 0.02 {mu}G and small magnetic helicity. We employ direct numerical simulations to model the MHD turbulence decay and identify two different regimes: a 'weakly helical' turbulence regime, when magnetic helicity increases during decay, and 'fully helical' turbulence, when maximal magnetic helicity is reached and an inverse cascade develops. The results of our analysis show that in the most optimistic scenario the magnetic correlation length in the comoving frame can reach 10 kpc with the amplitude of the effective MF being 0.007 nG. We demonstrate that the considered model of magnetogenesis can provide the seed MF for galaxies and clusters.

  15. Polar and Equatorial Coronal Hole Winds at Solar Minima: From the Heliosphere to the Inner Corona

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Landi, E.

    2014-02-01

    Fast solar wind can be accelerated from at least two different sources: polar coronal holes and equatorial coronal holes. Little is known about the relationship between the wind coming from these two different latitudes and whether these two subcategories of fast wind evolve in the same way during the solar cycle. Nineteen years of Ulysses observations, from 1990 to 2009, combined with ACE observations from 1998 to the present provide us with in situ measurements of solar wind properties that span two entire solar cycles. These missions provide an ideal data set to study the properties and evolution of the fast solar wind originating from equatorial and polar holes. In this work, we focus on these two types of fast solar wind during the minima between solar cycles 22 and 23 and 23 and 24. We use data from SWICS, SWOOPS, and VHM/FGM on board Ulysses and SWICS, SWEPAM, and MAG on board ACE to analyze the proton kinetic, thermal, and dynamic characteristics, heavy ion composition, and magnetic field properties of these two fast winds. The comparison shows that: (1) their kinetic, thermal, compositional, and magnetic properties are significantly different at any time during the two minima and (2) they respond differently to the changes in solar activity from cycle 23 to 24. These results indicate that equatorial and polar fast solar wind are two separate subcategories of fast wind. We discuss the implications of these results and relate them to remote-sensing measurements of the properties of polar and equatorial coronal holes carried out in the inner corona during these two solar minima.

  16. Polar and equatorial coronal hole winds at solar minima: From the heliosphere to the inner corona

    SciTech Connect

    Zhao, L.; Landi, E.

    2014-02-01

    Fast solar wind can be accelerated from at least two different sources: polar coronal holes and equatorial coronal holes. Little is known about the relationship between the wind coming from these two different latitudes and whether these two subcategories of fast wind evolve in the same way during the solar cycle. Nineteen years of Ulysses observations, from 1990 to 2009, combined with ACE observations from 1998 to the present provide us with in situ measurements of solar wind properties that span two entire solar cycles. These missions provide an ideal data set to study the properties and evolution of the fast solar wind originating from equatorial and polar holes. In this work, we focus on these two types of fast solar wind during the minima between solar cycles 22 and 23 and 23 and 24. We use data from SWICS, SWOOPS, and VHM/FGM on board Ulysses and SWICS, SWEPAM, and MAG on board ACE to analyze the proton kinetic, thermal, and dynamic characteristics, heavy ion composition, and magnetic field properties of these two fast winds. The comparison shows that: (1) their kinetic, thermal, compositional, and magnetic properties are significantly different at any time during the two minima and (2) they respond differently to the changes in solar activity from cycle 23 to 24. These results indicate that equatorial and polar fast solar wind are two separate subcategories of fast wind. We discuss the implications of these results and relate them to remote-sensing measurements of the properties of polar and equatorial coronal holes carried out in the inner corona during these two solar minima.

  17. Nighttime ionospheric D region: Equatorial and nonequatorial

    NASA Astrophysics Data System (ADS)

    Thomson, Neil R.; McRae, Wayne M.

    2009-08-01

    Nighttime ionospheric D region parameters are found to be generally well modeled by the traditional H‧ and β as used by Wait and by the U.S. Navy in their Earth-ionosphere VLF radio waveguide programs. New comparisons with nonequatorial, mainly all-sea VLF path observations reported over several decades are shown to be consistent with the previously determined height H‧ ˜ 85.0 km and sharpness β ˜ 0.63 km-1. These paths include NPM (Hawaii) to Washington, D. C., Omega Hawaii and NLK (Seattle) to Japan, NWC (N.W. Australia) to Madagascar, and NBA (Panama) to Colorado. In marked contrast, transequatorial path observations (even when nearly all-sea) are found to be often not well modeled: for example, for Omega Japan and JJI (Japan) to Dunedin, New Zealand, the observed amplitudes are markedly lower than those which would be expected from H‧ ˜ 85.0 km and β ˜ 0.63 km-1, or any other realistic values of H‧ and β. Other transequatorial observations compared with modeling include NWC to Japan, Omega Hawaii to Dunedin, and NPM (Hawaii) to Dunedin. It is suggested that the effects of irregularities in the equatorial electrojet may extend down into the nighttime D region and so account for the observed equatorial VLF perturbations through scattering or mode conversion.

  18. Fading of Jupiter's South Equatorial Belt

    NASA Technical Reports Server (NTRS)

    Sola, Michael A.; Orton, Glenn; Baines, Kevin; Yanamandra-Fisher, Padma

    2011-01-01

    One of Jupiter's most dominant features, the South Equatorial Belt, has historically gone through a "fading" cycle. The usual dark, brownish clouds turn white, and after a period of time, the region returns to its normal color. Understanding this phenomenon, the latest occurring in 2010, will increase our knowledge of planetary atmospheres. Using the near infrared camera, NSFCAM2, at NASA's Infrared Telescope Facility in Hawaii, images were taken of Jupiter accompanied by data describing the circumstances of each observation. These images are then processed and reduced through an IDL program. By scanning the central meridian of the planet, graphs were produced plotting the average values across the central meridian, which are used to find variations in the region of interest. Calculations using Albert4, a FORTRAN program that calculates the upwelling reflected sunlight from a designated cloud model, can be used to determine the effects of a model atmosphere due to various absorption, scattering, and emission processes. Spectra that were produced show ammonia bands in the South Equatorial Belt. So far, we can deduce from this information that an upwelling of ammonia particles caused a cloud layer to cover up the region. Further investigations using Albert4 and other models will help us to constrain better the chemical make up of the cloud and its location in the atmosphere.

  19. Gravity Wave Seeding of Equatorial Plasma Bubbles

    NASA Technical Reports Server (NTRS)

    Singh, Sardul; Johnson, F. S.; Power, R. A.

    1997-01-01

    Some examples from the Atmosphere Explorer E data showing plasma bubble development from wavy ion density structures in the bottomside F layer are described. The wavy structures mostly had east-west wavelengths of 150-800 km, in one example it was about 3000 km. The ionization troughs in the wavy structures later broke up into either a multiple-bubble patch or a single bubble, depending upon whether, in the precursor wavy structure, shorter wavelengths were superimposed on the larger scale wavelengths. In the multiple bubble patches, intrabubble spacings vaned from 55 km to 140 km. In a fully developed equatorial spread F case, east-west wavelengths from 690 km down to about 0.5 km were present simultaneously. The spacings between bubble patches or between bubbles in a patch appear to be determined by the wavelengths present in the precursor wave structure. In some cases, deeper bubbles developed on the western edge of a bubble patch, suggesting an east-west asymmetry. Simultaneous horizontal neutral wind measurements showed wavelike perturbations that were closely associated with perturbations in the plasma horizontal drift velocity. We argue that the wave structures observed here that served as the initial seed ion density perturbations were caused by gravity waves, strengthening the view that gravity waves seed equatorial spread F irregularities.

  20. Central Equatorial Pacific Experiment (CEPEX). Design document

    SciTech Connect

    Not Available

    1993-04-01

    The Earth`s climate has varied significantly in the past, yet climate records reveal that in the tropics, sea surface temperatures seem to have been remarkably stable, varying by less than a few degrees Celsius over geologic time. Today, the large warm pool of the western Pacific shows similar characteristics. Its surface temperature always exceeds 27{degree}C, but never 31{degree}C. Heightened interest in this observation has been stimulated by questions of global climate change and the exploration of stabilizing climate feedback processes. Efforts to understand the observed weak sensitivity of tropical sea surface temperatures to climate forcing has led to a number of competing ideas about the nature of this apparent thermostat. Although there remains disagreement on the processes that regulate tropical sea surface temperature, most agree that further progress in resolving these differences requires comprehensive field observations of three-dimensional water vapor concentrations, solar and infrared radiative fluxes, surface fluxes of heat and water vapor, and cloud microphysical properties. This document describes the Central Equatorial Pacific Experiment (CEPEX) plan to collect such observations over the central equatorial Pacific Ocean during March of 1993.