Science.gov

Sample records for equatorial magnetic helicity

  1. Helicity and celestial magnetism

    NASA Astrophysics Data System (ADS)

    Moffatt, H. K.

    2016-06-01

    This informal article discusses the central role of magnetic and kinetic helicity in relation to the evolution of magnetic fields in geophysical and astrophysical contexts. It is argued that the very existence of magnetic fields of the intensity and scale observed is attributable in large part to the chirality of the background turbulence or random-wave field of flow, the simplest measure of this chirality being non-vanishing helicity. Such flows are responsible for the generation of large-scale magnetic fields which themselves exhibit magnetic helicity. In the geophysical context, the turbulence has a `magnetostrophic' character in which the force balance is primarily that between buoyancy forces, Coriolis forces and Lorentz forces associated with the dynamo-generated magnetic field; the dominant nonlinearity here arises from the convective transport of buoyant elements erupting from the `mushy zone' at the inner core boundary. At the opposite extreme, in a highly conducting low-density plasma, the near-invariance of magnetic field topology (and of associated helicity) presents the challenging problem of `magnetic relaxation under topological constraints', of central importance both in astrophysical contexts and in controlled-fusion plasma dynamics. These problems are reviewed and open issues, particularly concerning saturation mechanisms, are reconsidered.

  2. Magnetic helicity in astrophysical dynamos

    NASA Astrophysics Data System (ADS)

    Candelaresi, Simon

    2012-09-01

    The broad variety of ways in which magnetic helicity affects astrophysical systems, in particular dynamos, is discussed. The so-called alpha effect is responsible for the growth of large-scale magnetic fields. The conservation of magnetic helicity, however, quenches the alpha effect, in particular for high magnetic Reynolds numbers. Predictions from mean-field theories state particular power law behavior of the saturation strength of the mean fields, which we confirm in direct numerical simulations. The loss of magnetic helicity in the form of fluxes can alleviate the quenching effect, which means that large-scale dynamo action is regained. Physically speaking, galactic winds or coronal mass ejections can have fundamental effects on the amplification of galactic and solar magnetic fields. The gauge dependence of magnetic helicity is shown to play no effect in the steady state where the fluxes are represented in form of gauge-independent quantities. This we demonstrate in the Weyl-, resistive- and pseudo Lorentz-gauge. Magnetic helicity transport, however, is strongly affected by the gauge choice. For instance the advecto-resistive gauge is more efficient in transporting magnetic helicity into small scales, which results in a distinct spectrum compared to the resistive gauge. The topological interpretation of helicity as linking of field lines is tested with respect to the realizability condition, which imposes a lower bound for the spectral magnetic energy in presence of magnetic helicity. It turns out that the actual linking does not affect the relaxation process, unlike the magnetic helicity content. Since magnetic helicity is not the only topological variable, I conduct a search for possible others, in particular for non-helical structures. From this search I conclude that helicity is most of the time the dominant restriction in field line relaxation. Nevertheless, not all numerical relaxation experiments can be described by the conservation of magnetic helicity

  3. Magnetic Helicity and Planetary Dynamos

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2012-01-01

    A model planetary dynamo based on the Boussinesq approximation along with homogeneous boundary conditions is considered. A statistical theory describing a large-scale MHD dynamo is found, in which magnetic helicity is the critical parameter

  4. Magnetic helicity in emerging solar active regions

    SciTech Connect

    Liu, Y.; Hoeksema, J. T.; Bobra, M.; Hayashi, K.; Sun, X.; Schuck, P. W.

    2014-04-10

    Using vector magnetic field data from the Helioseismic and Magnetic Imager instrument aboard the Solar Dynamics Observatory, we study magnetic helicity injection into the corona in emerging active regions (ARs) and examine the hemispheric helicity rule. In every region studied, photospheric shearing motion contributes most of the helicity accumulated in the corona. In a sample of 28 emerging ARs, 17 follow the hemisphere rule (61% ± 18% at a 95% confidence interval). Magnetic helicity and twist in 25 ARs (89% ± 11%) have the same sign. The maximum magnetic twist, which depends on the size of an AR, is inferred in a sample of 23 emerging ARs with a bipolar magnetic field configuration.

  5. Conservation of magnetic helicity during plasma relaxation

    SciTech Connect

    Ji, H.; Prager, S.C.; Sarff, J.S.

    1994-07-01

    Decay of the total magnetic helicity during the sawtooth relaxation in the MST Reversed-Field Pinch is much larger than the MHD prediction. However, the helicity decay (3--4%) is smaller than the magnetic energy decay (7--9%), modestly supportive of the helicity conservation hypothesis in Taylor`s relaxation theory. Enhanced fluctuation-induced helicity transport during the relaxation is observed.

  6. Magnetic Helicity in a Cyclic Convective Dynamo

    NASA Astrophysics Data System (ADS)

    Miesch, Mark S.; Zhang, Mei; Augustson, Kyle C.

    2016-05-01

    Magnetic helicity is a fundamental agent for magnetic self-organization in magnetohydrodynamic (MHD) dynamos. As a conserved quantity in ideal MHD, it establishes a strict topological coupling between large and small-scale magnetic fields. The generation of magnetic fields on scales larger than the velocity field is linked to an upscale transfer of magnetic helicity, either locally in spectral space as in the inverse cascade of magnetic helicity in MHD turbulence or non-locally, as in the turbulent alpha-effect of mean-field dynamo theory. Thus, understanding the generation, transport, and dissipation of magnetic helicity is an essential prerequisite to understanding manifestations of magnetic self-organization in the solar dynamo, including sunspots, the prominent dipole and quadrupole moments, and the 22-year magnetic activity cycle. We investigate the role of magnetic helicity in a convective dynamo model that exhibits regular magnetic cycles. The cycle is marked by coherent bands of toroidal field that persist within the convection zone and that are antisymmetric about the equator. When these toriodal bands interact across the equator, it initiates a global restructuring of the magnetic topology that contributes to the reversal of the dipole moment. Thus, the polar field reversals are preceeded by a brief reversal of the subsurface magnetic helicity. There is some evidence that the Sun may exhibit a similar magnetic helicity reversal prior to its polar field reversals.

  7. The AGS synchrotron with four helical magnets

    SciTech Connect

    Tsoupas N.; Huang, H.; Roser, T.; MacKay, W.W.; Trbojevic, D.

    2012-05-20

    The idea of using two partial helical magnets was applied successfully to the AGS synchrotron to preserve the proton beam polarization. In this paper we explore in details the idea of using four helical magnets placed symmetrically in the AGS ring. The placement of four helical magnets in the AGS ring provides many advantages over the present setup of the AGS which uses two partial helical magnets. First, the symmetric placement of the four helical magnets allows for a better control of the AGS optics with reduced values of the beta functions especially near beam injection, second, the vertical spin direction during beam injection and extraction is closer to vertical, and third, it provides for a larger 'spin tune gap', which allows the vertical and horizontal tunes to be placed, and prevent the horizontal and vertical intrinsic spin resonances of the AGS to occur during the acceleration cycle. Although the same spin gap can be obtained with a single or two partial helices, the required high field strength of a single helix makes its use impractical, and that of the double helix rather difficult. In this paper we will provide results on the spin tune and on the optics of the AGS with four partial helical magnets, and compare these results with the present setup of the AGS that uses two partial helical magnets.

  8. The AGS with four helical magnets

    SciTech Connect

    Tsoupas, N.; Huang, H.; MacKay, W.W.; Roser, T.; Trbojevic, D.

    2010-02-25

    The idea of using multiple partial helical magnets was applied successfully to the AGS synchrotron, to preserve the proton beam polarization. In this paper we explore in details the idea of using four helical magnets placed symmetrically in the AGS ring. This modification provides many advantages over the present setup of the AGS that uses two partial helical magnets. First, it provides a larger 'spin tune gap' for the placement of the vertical betatron tune of the AGS during acceleration, second, the vertical spin direction during the beam injection and extraction is closer to vertical, third, the symmetric placement of the snakes allows for a better control of the AGS optics, and for reduced values of the beta and eta functions, especially near injection, fourth, the optical properties of the helical magnets also favor the placement of the horizontal betatron tune in the 'spin tune gap', thus eliminating the horizontal spin resonances. In this paper we provide results on the spin tune and on the optics of the AGS with four partial helical magnets, and we compare these results with the present setup of the AGS that uses two partial helical magnets.

  9. FILAMENT CHANNEL FORMATION VIA MAGNETIC HELICITY CONDENSATION

    SciTech Connect

    Knizhnik, K. J.; Antiochos, S. K.; DeVore, C. R.

    2015-08-20

    A major unexplained feature of the solar atmosphere is the accumulation of magnetic shear in the form of filament channels at photospheric polarity inversion lines (PILs). In addition to free energy, this shear represents magnetic helicity, which is conserved under reconnection. In this paper we address the problem of filament channel formation and show how filaments acquire their shear and magnetic helicity. The results of three-dimensional (3D) simulations using the Adaptively Refined Magnetohydrodynamics Solver are presented. Our findings support the model of filament channel formation by magnetic helicity condensation that was developed by Antiochos. We consider the small-scale photospheric twisting of a quasi-potential flux system that is bounded by a PIL and contains a coronal hole (CH). The magnetic helicity injected by the small-scale photospheric motions is shown to inverse cascade up to the largest allowable scales that define the closed flux system: the PIL and the CH. This process produces field lines that are both sheared and smooth, and are sheared in opposite senses at the PIL and the CH. The accumulated helicity and shear flux are shown to be in excellent quantitative agreement with the helicity condensation model. We present a detailed analysis of the simulations, including comparisons of our analytical and numerical results, and discuss their implications for observations.

  10. Decay of helical and nonhelical magnetic knots

    NASA Astrophysics Data System (ADS)

    Candelaresi, Simon; Brandenburg, Axel

    2011-07-01

    We present calculations of the relaxation of magnetic field structures that have the shape of particular knots and links. A set of helical magnetic flux configurations is considered, which we call n-foil knots of which the trefoil knot is the most primitive member. We also consider two nonhelical knots; namely, the Borromean rings as well as a single interlocked flux rope that also serves as the logo of the Inter-University Centre for Astronomy and Astrophysics in Pune, India. The field decay characteristics of both configurations is investigated and compared with previous calculations of helical and nonhelical triple-ring configurations. Unlike earlier nonhelical configurations, the present ones cannot trivially be reduced via flux annihilation to a single ring. For the n-foil knots the decay is described by power laws that range form t-2/3 to t-1/3, which can be as slow as the t-1/3 behavior for helical triple-ring structures that were seen in earlier work. The two nonhelical configurations decay like t-1, which is somewhat slower than the previously obtained t-3/2 behavior in the decay of interlocked rings with zero magnetic helicity. We attribute the difference to the creation of local structures that contain magnetic helicity which inhibits the field decay due to the existence of a lower bound imposed by the realizability condition. We show that net magnetic helicity can be produced resistively as a result of a slight imbalance between mutually canceling helical pieces as they are being driven apart. We speculate that higher order topological invariants beyond magnetic helicity may also be responsible for slowing down the decay of the two more complicated nonhelical structures mentioned above.

  11. Large-scale dynamics of magnetic helicity

    NASA Astrophysics Data System (ADS)

    Linkmann, Moritz; Dallas, Vassilios

    2016-11-01

    In this paper we investigate the dynamics of magnetic helicity in magnetohydrodynamic (MHD) turbulent flows focusing at scales larger than the forcing scale. Our results show a nonlocal inverse cascade of magnetic helicity, which occurs directly from the forcing scale into the largest scales of the magnetic field. We also observe that no magnetic helicity and no energy is transferred to an intermediate range of scales sufficiently smaller than the container size and larger than the forcing scale. Thus, the statistical properties of this range of scales, which increases with scale separation, is shown to be described to a large extent by the zero flux solutions of the absolute statistical equilibrium theory exhibited by the truncated ideal MHD equations.

  12. Magnetic stripes and skyrmions with helicity reversals

    PubMed Central

    Yu, Xiuzhen; Mostovoy, Maxim; Tokunaga, Yusuke; Zhang, Weizhu; Kimoto, Koji; Matsui, Yoshio; Kaneko, Yoshio; Nagaosa, Naoto; Tokura, Yoshinori

    2012-01-01

    It was recently realized that topological spin textures do not merely have mathematical beauty but can also give rise to unique functionalities of magnetic materials. An example is the skyrmion—a nano-sized bundle of noncoplanar spins—that by virtue of its nontrivial topology acts as a flux of magnetic field on spin-polarized electrons. Lorentz transmission electron microscopy recently emerged as a powerful tool for direct visualization of skyrmions in noncentrosymmetric helimagnets. Topologically, skyrmions are equivalent to magnetic bubbles (cylindrical domains) in ferromagnetic thin films, which were extensively explored in the 1970s for data storage applications. In this study we use Lorentz microscopy to image magnetic domain patterns in the prototypical magnetic oxide–M-type hexaferrite with a hint of scandium. Surprisingly, we find that the magnetic bubbles and stripes in the hexaferrite have a much more complex structure than the skyrmions and spirals in helimagnets, which we associate with the new degree of freedom—helicity (or vector spin chirality) describing the direction of spin rotation across the domain walls. We observe numerous random reversals of helicity in the stripe domain state. Random helicity of cylindrical domain walls coexists with the positional order of magnetic bubbles in a triangular lattice. Most unexpectedly, we observe regular helicity reversals inside skyrmions with an unusual multiple-ring structure. PMID:22615354

  13. Magnetic stripes and skyrmions with helicity reversals.

    PubMed

    Yu, Xiuzhen; Mostovoy, Maxim; Tokunaga, Yusuke; Zhang, Weizhu; Kimoto, Koji; Matsui, Yoshio; Kaneko, Yoshio; Nagaosa, Naoto; Tokura, Yoshinori

    2012-06-05

    It was recently realized that topological spin textures do not merely have mathematical beauty but can also give rise to unique functionalities of magnetic materials. An example is the skyrmion--a nano-sized bundle of noncoplanar spins--that by virtue of its nontrivial topology acts as a flux of magnetic field on spin-polarized electrons. Lorentz transmission electron microscopy recently emerged as a powerful tool for direct visualization of skyrmions in noncentrosymmetric helimagnets. Topologically, skyrmions are equivalent to magnetic bubbles (cylindrical domains) in ferromagnetic thin films, which were extensively explored in the 1970s for data storage applications. In this study we use Lorentz microscopy to image magnetic domain patterns in the prototypical magnetic oxide-M-type hexaferrite with a hint of scandium. Surprisingly, we find that the magnetic bubbles and stripes in the hexaferrite have a much more complex structure than the skyrmions and spirals in helimagnets, which we associate with the new degree of freedom--helicity (or vector spin chirality) describing the direction of spin rotation across the domain walls. We observe numerous random reversals of helicity in the stripe domain state. Random helicity of cylindrical domain walls coexists with the positional order of magnetic bubbles in a triangular lattice. Most unexpectedly, we observe regular helicity reversals inside skyrmions with an unusual multiple-ring structure.

  14. Magnetic Helicity and Large Scale Magnetic Fields: A Primer

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.

    2015-05-01

    Magnetic fields of laboratory, planetary, stellar, and galactic plasmas commonly exhibit significant order on large temporal or spatial scales compared to the otherwise random motions within the hosting system. Such ordered fields can be measured in the case of planets, stars, and galaxies, or inferred indirectly by the action of their dynamical influence, such as jets. Whether large scale fields are amplified in situ or a remnant from previous stages of an object's history is often debated for objects without a definitive magnetic activity cycle. Magnetic helicity, a measure of twist and linkage of magnetic field lines, is a unifying tool for understanding large scale field evolution for both mechanisms of origin. Its importance stems from its two basic properties: (1) magnetic helicity is typically better conserved than magnetic energy; and (2) the magnetic energy associated with a fixed amount of magnetic helicity is minimized when the system relaxes this helical structure to the largest scale available. Here I discuss how magnetic helicity has come to help us understand the saturation of and sustenance of large scale dynamos, the need for either local or global helicity fluxes to avoid dynamo quenching, and the associated observational consequences. I also discuss how magnetic helicity acts as a hindrance to turbulent diffusion of large scale fields, and thus a helper for fossil remnant large scale field origin models in some contexts. I briefly discuss the connection between large scale fields and accretion disk theory as well. The goal here is to provide a conceptual primer to help the reader efficiently penetrate the literature.

  15. SUPERCONDUCTING HELICAL SNAKE MAGNETS: CONSTRUCTION AND MEASUREMENTS.

    SciTech Connect

    MACKAY,W.W.

    1999-05-17

    In order to collide polarized protons, the RHIC project will have two snakes in each ring and four rotators around each of two interaction regions. Two snakes on opposite sides of each ring can minimize depolarization during acceleration by keeping the spin tune at a half. Since the spin direction is normally along the vertical direction in a flat ring, spin rotators must be used around an interaction point to have longitudinal polarization in a collider experiment. Each snake or rotator will be composed of four helical dipoles to provide the required rotation of spin with minimal transverse orbit excursions in a compact length of 10m. The basic helical dipole is a superconducting magnet producing a transverse dipole field which is twisted about the magnet axis through 360{degree} in a length of 2.4 m. The design and construction of the magnets is described in this paper.

  16. Bistability between equatorial and axial dipoles during magnetic field reversals.

    PubMed

    Gissinger, Christophe; Petitdemange, Ludovic; Schrinner, Martin; Dormy, Emmanuel

    2012-06-08

    Numerical simulations of the geodynamo in the presence of heterogeneous heating are presented. We study the dynamics and the structure of the magnetic field when the equatorial symmetry of the flow is broken. If the symmetry breaking is sufficiently strong, the m=0 axial dipolar field is replaced by a hemispherical magnetic field, dominated by an oscillating m=1 magnetic field. Moreover, for moderate symmetry breaking, a bistability between the axial and the equatorial dipole is observed. In this bistable regime, the axial magnetic field exhibits chaotic switches of its polarity, involving the equatorial dipole during the transition period. This new scenario for magnetic field reversals is discussed within the framework of Earth's dynamo.

  17. Absolute magnetic helicity and the cylindrical magnetic field

    SciTech Connect

    Low, B. C.

    2011-05-15

    The different magnetic helicities conserved under conditions of perfect electrical conductivity are expressions of the fundamental property that every evolving fluid surface conserves its net magnetic flux. This basic hydromagnetic point unifies the well known Eulerian helicities with the Lagrangian helicity defined by the conserved fluxes frozen into a prescribed set of disjoint toroidal tubes of fluid flowing as a permanent partition of the entire fluid [B. C. Low, Astrophys. J. 649, 1064 (2006)]. This unifying theory is constructed from first principles, beginning with an analysis of the Eulerian and Lagrangian descriptions of fluids, separating the ideas of fluid and magnetic-flux tubes and removing the complication of the magnetic vector potential's free gauge from the concept of helicity. The analysis prepares for the construction of a conserved Eulerian helicity, without that gauge complication, to describe a 3D anchored flux in an upright cylindrical domain, this helicity called absolute to distinguish it from the well known relative helicity. In a version of the Chandrasekhar-Kendall representation, the evolving field at any instant is a unique superposition of a writhed, untwisted axial flux with a circulating flux of field lines all closed and unlinked within the cylindrical domain. The absolute helicity is then a flux-weighted sum of the writhe of that axial flux and its mutual linkage with the circulating flux. The absolute helicity is also conserved if the frozen-in field and its domain are continuously deformed by changing the separation between the rigid cylinder-ends with no change of cylinder radius. This hitherto intractable cylindrical construction closes a crucial conceptual gap for the fundamentals to be complete at last. The concluding discussion shows the impact of this development on our understanding of helicity, covering (i) the helicities of wholly contained and anchored fields; (ii) the Eulerian and Lagrangian descriptions of field

  18. Equatorial irregularity belt and its movement during a magnetic storm

    NASA Technical Reports Server (NTRS)

    Vats, H. O.; Chandra, H.; Deshpande, M. R.; Rastogi, R. G.; Murthy, B. S.; Janve, A. V.; Rai, R. K.; Singh, M.; Gurm, H. S.; Jain, A. R.

    1978-01-01

    Evidence for an equatorial irregularity belt and its movement during a magnetic storm has been obtained from Faraday rotation measurements at a chain of 140-MHz radio beacons receiving from the ATS-6 satellite. The stations covered a latitude region from the magnetic equator to the 45 deg N dip on the Indian subcontinent. An irregularity belt extending from the magnetic equator to about 27 deg N latitude was observed during the main phase of the magnetic storm of 10 January, 1976.

  19. Faraday signature of magnetic helicity from reduced depolarization

    SciTech Connect

    Brandenburg, Axel; Stepanov, Rodion

    2014-05-10

    Using one-dimensional models, we show that a helical magnetic field with an appropriate sign of helicity can compensate the Faraday depolarization resulting from the superposition of Faraday-rotated polarization planes from a spatially extended source. For radio emission from a helical magnetic field, the polarization as a function of the square of the wavelength becomes asymmetric with respect to zero. Mathematically speaking, the resulting emission occurs then either at observable or at unobservable (imaginary) wavelengths. We demonstrate that rotation measure (RM) synthesis allows for the reconstruction of the underlying Faraday dispersion function in the former case, but not in the latter. The presence of positive magnetic helicity can thus be detected by observing positive RM in highly polarized regions in the sky and negative RM in weakly polarized regions. Conversely, negative magnetic helicity can be detected by observing negative RM in highly polarized regions and positive RM in weakly polarized regions. The simultaneous presence of two magnetic constituents with opposite signs of helicity is shown to possess signatures that can be quantified through polarization peaks at specific wavelengths and the gradient of the phase of the Faraday dispersion function. Similar polarization peaks can tentatively also be identified for the bi-helical magnetic fields that are generated self-consistently by a dynamo from helically forced turbulence, even though the magnetic energy spectrum is then continuous. Finally, we discuss the possibility of detecting magnetic fields with helical and non-helical properties in external galaxies using the Square Kilometre Array.

  20. Evolution of field line helicity during magnetic reconnection

    SciTech Connect

    Russell, A. J. B. Hornig, G.; Wilmot-Smith, A. L.; Yeates, A. R.

    2015-03-15

    We investigate the evolution of field line helicity for magnetic fields that connect two boundaries without null points, with emphasis on localized finite-B magnetic reconnection. Total (relative) magnetic helicity is already recognized as an important topological constraint on magnetohydrodynamic processes. Field line helicity offers further advantages because it preserves all topological information and can distinguish between different magnetic fields with the same total helicity. Magnetic reconnection changes field connectivity and field line helicity reflects these changes; the goal of this paper is to characterize that evolution. We start by deriving the evolution equation for field line helicity and examining its terms, also obtaining a simplified form for cases where dynamics are localized within the domain. The main result, which we support using kinematic examples, is that during localized reconnection in a complex magnetic field, the evolution of field line helicity is dominated by a work-like term that is evaluated at the field line endpoints, namely, the scalar product of the generalized field line velocity and the vector potential. Furthermore, the flux integral of this term over certain areas is very small compared to the integral of the unsigned quantity, which indicates that changes of field line helicity happen in a well-organized pairwise manner. It follows that reconnection is very efficient at redistributing helicity in complex magnetic fields despite having little effect on the total helicity.

  1. Evolution of field line helicity during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Russell, A. J. B.; Yeates, A. R.; Hornig, G.; Wilmot-Smith, A. L.

    2015-03-01

    We investigate the evolution of field line helicity for magnetic fields that connect two boundaries without null points, with emphasis on localized finite-B magnetic reconnection. Total (relative) magnetic helicity is already recognized as an important topological constraint on magnetohydrodynamic processes. Field line helicity offers further advantages because it preserves all topological information and can distinguish between different magnetic fields with the same total helicity. Magnetic reconnection changes field connectivity and field line helicity reflects these changes; the goal of this paper is to characterize that evolution. We start by deriving the evolution equation for field line helicity and examining its terms, also obtaining a simplified form for cases where dynamics are localized within the domain. The main result, which we support using kinematic examples, is that during localized reconnection in a complex magnetic field, the evolution of field line helicity is dominated by a work-like term that is evaluated at the field line endpoints, namely, the scalar product of the generalized field line velocity and the vector potential. Furthermore, the flux integral of this term over certain areas is very small compared to the integral of the unsigned quantity, which indicates that changes of field line helicity happen in a well-organized pairwise manner. It follows that reconnection is very efficient at redistributing helicity in complex magnetic fields despite having little effect on the total helicity.

  2. The global distribution of magnetic helicity in the solar corona

    NASA Astrophysics Data System (ADS)

    Yeates, A. R.; Hornig, G.

    2016-10-01

    By defining an appropriate field line helicity, we apply the powerful concept of magnetic helicity to the problem of global magnetic field evolution in the Sun's corona. As an ideal-magnetohydrodynamic invariant, the field line helicity is a meaningful measure of how magnetic helicity is distributed within the coronal volume. It may be interpreted, for each magnetic field line, as a magnetic flux linking with that field line. Using magneto-frictional simulations, we investigate how field line helicity evolves in the non-potential corona as a result of shearing by large-scale motions on the solar surface. On open magnetic field lines, the helicity injected by the Sun is largely output to the solar wind, provided that the coronal relaxation is sufficiently fast. But on closed magnetic field lines, helicity is able to build up. We find that the field line helicity is non-uniformly distributed, and is highly concentrated in twisted magnetic flux ropes. Eruption of these flux ropes is shown to lead to sudden bursts of helicity output, in contrast to the steady flux along the open magnetic field lines. Movies are available at http://www.aanda.org

  3. JOINT INVERSE CASCADE OF MAGNETIC ENERGY AND MAGNETIC HELICITY IN MHD TURBULENCE

    SciTech Connect

    Stepanov, R.; Frick, P.; Mizeva, I.

    2015-01-10

    We show that oppositely directed fluxes of energy and magnetic helicity coexist in the inertial range in fully developed magnetohydrodynamic (MHD) turbulence with small-scale sources of magnetic helicity. Using a helical shell model of MHD turbulence, we study the high Reynolds number MHD turbulence for helicity injection at a scale that is much smaller than the scale of energy injection. In a short range of scales larger than the forcing scale of magnetic helicity, a bottleneck-like effect appears, which results in a local reduction of the spectral slope. The slope changes in a domain with a high level of relative magnetic helicity, which determines that part of the magnetic energy is related to the helical modes at a given scale. If the relative helicity approaches unity, the spectral slope tends to –3/2. We show that this energy pileup is caused by an inverse cascade of magnetic energy associated with the magnetic helicity. This negative energy flux is the contribution of the pure magnetic-to-magnetic energy transfer, which vanishes in the non-helical limit. In the context of astrophysical dynamos, our results indicate that a large-scale dynamo can be affected by the magnetic helicity generated at small scales. The kinetic helicity, in particular, is not involved in the process at all. An interesting finding is that an inverse cascade of magnetic energy can be provided by a small-scale source of magnetic helicity fluctuations without a mean injection of magnetic helicity.

  4. The magnetic helicity spectrum from solar vector magnetograms

    NASA Astrophysics Data System (ADS)

    Brandenburg, Axel; Zhang, Hongqi; Sokoloff, Dmitry

    2016-05-01

    The gauge-invariant (or relative) magnetic helicity is often measured to characterize the degree of magnetic complexity of active regions. However, magnetic helicity is expected to have different signs on different length scales that can be identified with the large- and small-scale fields used in dynamo theory. To address this, it is important to determine magnetic helicity spectra as functions of wavenumber. These spectra are defined such that the integral over all wavenumbers gives the usual magnetic helicity density in a particular patch of interest. Using vector magnetograms from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory for active region NOAA 11515, which was on the southern hemisphere, we show that the magnetic helicity spectrum has positive sign on scales below 30 Mm, but negative sign on larger scales. This active region was rather complex and its magnetic helicity was within 26% of its theoretical maximum value. This is much more than that of NOAA 11158, which was also rather complex, but only within 5% of its theoretical maximum value. Since the contribution of larger length scales turned out to be important in the case of NOAA 11515, its total magnetic helicity is dominated by the negative values from large length scales, which explains the unusual sign for the southern hemisphere. Measuring magnetic helicity spectra with DKIST may become an important tool to learn about the workings of the underlying dynamo.

  5. CURRENT HELICITY OF ACTIVE REGIONS AS A TRACER OF LARGE-SCALE SOLAR MAGNETIC HELICITY

    SciTech Connect

    Zhang, H.; Gao, Y.; Xu, H.; Moss, D.; Kleeorin, N.; Rogachevskii, I.; Kuzanyan, K.; Sokoloff, D.

    2012-05-20

    We demonstrate that the current helicity observed in solar active regions traces the magnetic helicity of the large-scale dynamo generated field. We use an advanced two-dimensional mean-field dynamo model with dynamo saturation based on the evolution of the magnetic helicity and algebraic quenching. For comparison, we also studied a more basic two-dimensional mean-field dynamo model with simple algebraic alpha-quenching only. Using these numerical models we obtained butterfly diagrams both for the small-scale current helicity and also for the large-scale magnetic helicity, and compared them with the butterfly diagram for the current helicity in active regions obtained from observations. This comparison shows that the current helicity of active regions, as estimated by -A {center_dot} B evaluated at the depth from which the active region arises, resembles the observational data much better than the small-scale current helicity calculated directly from the helicity evolution equation. Here B and A are, respectively, the dynamo generated mean magnetic field and its vector potential. A theoretical interpretation of these results is given.

  6. Helical Magnetic Fields from Sphaleron Decay and Baryogenesis

    SciTech Connect

    Copi, Craig J.; Ferrer, Francesc; Vachaspati, Tanmay; Achucarro, Ana

    2008-10-24

    Many models of baryogenesis rely on anomalous particle physics processes to give baryon number violation. By numerically evolving the electroweak equations on a lattice, we show that baryogenesis in these models creates helical cosmic magnetic fields, though the helicity created is smaller than earlier analytical estimates. After a transitory period, electroweak dynamics is found to conserve the Chern-Simons number and the total electromagnetic helicity. We argue that baryogenesis could lead to magnetic fields of nano-Gauss strength today on astrophysical length scales. In addition to being astrophysically relevant, such helical magnetic fields can provide an independent probe of baryogenesis and CP violation in particle physics.

  7. EVOLUTION OF RELATIVE MAGNETIC HELICITY AND CURRENT HELICITY IN NOAA ACTIVE REGION 11158

    SciTech Connect

    Jing, Ju; Liu, Chang; Lee, Jeongwoo; Xu, Yan; Deng, Na; Wang, Haimin; Park, Sung-Hong; Wiegelmann, Thomas E-mail: chang.liu@njit.edu E-mail: na.deng@njit.edu E-mail: freemler@kasi.re.kr E-mail: wiegelmann@linmpi.mpg.de

    2012-06-10

    Both magnetic and current helicities are crucial ingredients for describing the complexity of active-region magnetic structure. In this Letter, we present the temporal evolution of these helicities contained in NOAA active region 11158 during five days from 2011 February 12 to 16. The photospheric vector magnetograms of the Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory were used as the boundary conditions for the coronal field extrapolation under the assumption of nonlinear force-free field, from which we calculated both relative magnetic helicity and current helicity. We construct a time-altitude diagram in which altitude distribution of the magnitude of current helicity density is displayed as a function of time. This diagram clearly shows a pattern of upwardly propagating current helicity density over two days prior to the X2.2 flare on February 15 with an average propagation speed of {approx}36 m s{sup -1}. The propagation is synchronous with the emergence of magnetic flux into the photosphere, and indicative of a gradual energy buildup for the X2.2 flare. The time profile of the relative magnetic helicity shows a monotonically increasing trend most of the time, but a pattern of increasing and decreasing magnetic helicity above the monotonic variation appears prior to each of two major flares, M6.6 and X2.2, respectively. The physics underlying this bump pattern is not fully understood. However, the fact that this pattern is apparent in the magnetic helicity evolution but not in the magnetic flux evolution makes it a useful indicator in forecasting major flares.

  8. Helical dipole magnets for polarized protons in RHIC

    SciTech Connect

    Syphers, M.; Courant, E.; Fischer, W.

    1997-07-01

    Superconducting helical dipole magnets will be used in the Brookhaven Relativistic Heavy Ion Collider (RHIC) to maintain polarization of proton beams and to perform localized spin rotations at the two major experimental detector regions. Requirements for the helical dipole system are discussed, and magnet prototype work is reported.

  9. Determining How Magnetic Helicity Injection Really Works

    SciTech Connect

    Paul M. Bellan

    2001-10-09

    OAK-B135 The goal of the Caltech program is to determine how helicity injection works by investigating the actual dynamics and topological evolution associated with magnetic relaxation. A new coaxial helicity injection source has been constructed and brought into operation. The key feature of this source is that it has maximum geometric simplicity. Besides being important for fusion research, this work also has astrophysical implications. Photos obtained using high-speed cameras show a clear sequence of events in the formation process. In particular, they show initial merging/reconnection processes, jet-like expansion, kinking, and separation of the plasma from the source. Various diagnostics have been developed, including laser induced fluorescence and soft x-ray detection using high speed diodes. Gas valves have been improved and a patent disclosure relating to puffed gas valves has been filed. Presentations on this work have been given in the form of invited talks at several university physics departments that were previously unfamiliar with laboratory plasma experiments.

  10. Small-Scale Magnetic Reconnection at Equatorial Coronal Hole Boundaries

    NASA Astrophysics Data System (ADS)

    Lamb, Derek; DeForest, C. E.

    2011-05-01

    Coronal holes have long been known to be the source of the fast solar wind at both high and low latitudes. The equatorial extensions of polar coronal holes have long been assumed to have substantial magnetic reconnection at their boundaries, because they rotate more rigidly than the underlying photosphere. However, evidence for this reconnection has been sparse until very recently. We present some evidence that reconnection due to the evolution of small-scale magnetic fields may be sufficient to drive coronal hole boundary evolution. We hypothesize that a bias in the direction of that reconnection is sufficient to give equatorial coronal holes their rigid rotation. We discuss the prospects for investigating this using FLUX, a reconnection-controlled coronal MHD simulation framework. This work was funded by the NASA SHP-GI program.

  11. Magnetic helicity balance in the Sustained Spheromak Plasma Experiment

    NASA Astrophysics Data System (ADS)

    Stallard, B. W.; Hooper, E. B.; Woodruff, S.; Bulmer, R. H.; Hill, D. N.; McLean, H. S.; Wood, R. D.

    2003-07-01

    The magnetic helicity balance between the helicity input injected by a magnetized coaxial gun, the rate-of-change in plasma helicity content, and helicity dissipation in electrode sheaths and Ohmic losses have been examined in the Sustained Spheromak Plasma Experiment (SSPX) [E. B. Hooper, L. D. Pearlstein, and R. H. Bulmer, Nucl. Fusion 39, 863 (1999)]. Helicity is treated as a flux function in the mean-field approximation, allowing separation of helicity drive and losses between closed and open field volumes. For nearly sustained spheromak plasmas with low fluctuations, helicity balance analysis implies a decreasing transport of helicity from the gun input into the spheromak core at higher spheromak electron temperature. Long pulse discharges with continuously increasing helicity and larger fluctuations show higher helicity coupling from the edge to the spheromak core. The magnitude of the sheath voltage drop, inferred from cathode heating and a current threshold dependence of the gun voltage, shows that sheath losses are important and reduce the helicity injection efficiency in SSPX.

  12. Flare Activity and Magnetic Helicity Injection By Photospheric Horizontal Motions

    NASA Astrophysics Data System (ADS)

    Moon, Y.-J.; Chae, J.; Choe, G.; Wang, H.; Park, Y. D.; Yun, H. S.; Yurchyshyn, V.; Goode, P. R.

    2002-05-01

    We present observational evidence that the occurrence of homologous flares in an active region is physically related to the injection of magnetic helicity by horizontal photospheric motions. We have analyzed a set of 1 minute cadence magnetograms of NOAA AR 8100 taken over a period of 6.5 hours by Michelson Doppler Imager (MDI) on board Solar and Heliospheric Observatory (SOHO). During this observing time span, seven homologous flares took place in the active region. We have computed the magnetic helicity injection rate into the solar atmosphere by photospheric shearing motions, and found that a significant amount of magnetic helicity was injected during the observing period. In a strong M4.1 flare, the magnetic helicity injection rate impulsively increased and peaked at the same time as the X-ray flux did. The flare X-ray flux integrated over the X-ray emission time strongly correlates with the magnetic helicity injected during the flaring interval. The integrated X-ray flux is found to be a logarithmically increasing function of the injected magnetic helicity. Our results suggest that injection of helicity and abrupt increase of helicity magnitude play a significant role in flare triggering. This work has been supported by NASA grants NAG5-10894 and NAG5-7837, by MURI grant of AFOSR, by the US-Korea Cooperative Science Program (NSF INT-98-16267), by NRL M10104000059-01J000002500 of the Korean government, and by the BK 21 project of the Korean government.

  13. Scale Dependence of Magnetic Helicity in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Brandenburg, Axel; Subramanian, Kandaswamy; Balogh, Andre; Goldstein, Melvyn L.

    2011-01-01

    We determine the magnetic helicity, along with the magnetic energy, at high latitudes using data from the Ulysses mission. The data set spans the time period from 1993 to 1996. The basic assumption of the analysis is that the solar wind is homogeneous. Because the solar wind speed is high, we follow the approach first pioneered by Matthaeus et al. by which, under the assumption of spatial homogeneity, one can use Fourier transforms of the magnetic field time series to construct one-dimensional spectra of the magnetic energy and magnetic helicity under the assumption that the Taylor frozen-in-flow hypothesis is valid. That is a well-satisfied assumption for the data used in this study. The magnetic helicity derives from the skew-symmetric terms of the three-dimensional magnetic correlation tensor, while the symmetric terms of the tensor are used to determine the magnetic energy spectrum. Our results show a sign change of magnetic helicity at wavenumber k approximately equal to 2AU(sup -1) (or frequency nu approximately equal to 2 microHz) at distances below 2.8AU and at k approximately equal to 30AU(sup -1) (or nu approximately equal to 25 microHz) at larger distances. At small scales the magnetic helicity is positive at northern heliographic latitudes and negative at southern latitudes. The positive magnetic helicity at small scales is argued to be the result of turbulent diffusion reversing the sign relative to what is seen at small scales at the solar surface. Furthermore, the magnetic helicity declines toward solar minimum in 1996. The magnetic helicity flux integrated separately over one hemisphere amounts to about 10(sup 45) Mx(sup 2) cycle(sup -1) at large scales and to a three times lower value at smaller scales.

  14. Measurements of Magnetic Helicity within Two Interacting Flux Ropes

    NASA Astrophysics Data System (ADS)

    Dehaas, Timothy; Gekelman, Walter

    2016-10-01

    Magnetic helicity (HM) has become a useful tool in the exploration of astrophysical plasmas. Its conservation in the MHD limit (and even some fluid approaches) constrains the global behavior of large plasma structures. One such astrophysical structure is a magnetic flux rope: a rope-like, current-carrying plasma embedded in an external magnetic field. Bundles of these ropes are commonly observed extending from the solar surface and can be found in the near-earth environment. In this well-diagnosed experiment (3D measurements of ne, Te, Vp, B, J, E, uflow) , two magnetic flux ropes were generated in the Large Plasma Device at UCLA. These ropes were driven kink-unstable, commencing complex motion. As they interact, helicity conservation is broken in regions of reconnection, turbulence, and instabilities. The changes in helicity can be visualized as 1) the transport of helicity (ϕB +E × A) and 2) the dissipation of the helicity (-2EB). Magnetic helicity is observed to have a negative sign and its counterpart, cross helicity, a positive one. These qualities oscillate 8% peak-to-peak. As the ropes move and the topology of the field lines change, a quasi-separatrix layer (QSL) is formed. The volume averaged HM and the largest value of Q both oscillate but not in phase. In addition to magnetic helicity, similar quantities such as self-helicity, mutual-helicity, vorticity, and canonical helicity are derived and will be presented. This work is supported by LANL-UC research Grant and done at the Basic Plasma Science Facility, which is funded by DOE and NSF.

  15. Decay of magnetic helicity producing polarized Alfven waves

    SciTech Connect

    Yoshida, Z.; Mahajan, S.M.

    1994-02-01

    When a super-Alfvenic electron beam propagates along an ambient magnetic field, the left-hand circularly polarized Alfven wave is Cherenkov-emitted (two stream instability). This instability results in a spontaneous conversion of the background plasma helicity to the wave helicity. The background helicity induces a frequency (energy) shift in the eigenmodes, which changes the critical velocity for Cherenkov emission, and it becomes possible for a sub-Alfvenic electron beam to excite a nonsingular Alfven mode.

  16. Role of helicities for the dynamics of turbulent magnetic fields

    NASA Astrophysics Data System (ADS)

    Müller, Wolf-Christian; Malapaka, Shiva Kumar

    2013-02-01

    Investigations of the inverse cascade of magnetic helicity are conducted with pseudospectral, three-dimensional direct numerical simulations of forced and decaying incompressible magnetohydrodynamic turbulence. The high-resolution simulations which allow for the necessary scale-separation show that the observed self-similar scaling behavior of magnetic helicity and related quantities can only be understood by taking the full nonlinear interplay of velocity and magnetic fluctuations into account. With the help of the eddy-damped quasi-normal Markovian approximation a probably universal relation between kinetic and magnetic helicities is derived that closely resembles the extended definition of the prominent dynamo pseudoscalar $\\alpha$. This unexpected similarity suggests an additional nonlinear quenching mechanism of the current-helicity contribution to $\\alpha$.

  17. Magnetic Helicity Density and Its Flux in Weakly Inhomogeneous Turbulence

    NASA Astrophysics Data System (ADS)

    Subramanian, Kandaswamy; Brandenburg, Axel

    2006-09-01

    A gauge-invariant and hence physically meaningful definition of magnetic helicity density for random fields is proposed, using the Gauss linking formula, as the density of correlated field line linkages. This definition is applied to the random small-scale field in weakly inhomogeneous turbulence, whose correlation length is small compared with the scale on which the turbulence varies. For inhomogeneous systems, with or without boundaries, our technique then allows one to study the local magnetic helicity density evolution in a gauge-independent fashion, which was not possible earlier. This evolution equation is governed by local sources (owing to the mean field) and by the divergence of a magnetic helicity flux density. The role of magnetic helicity fluxes in alleviating catastrophic quenching of mean field dynamos is discussed.

  18. Discrete helical modes in imploding and exploding cylindrical, magnetized liners

    NASA Astrophysics Data System (ADS)

    Yager-Elorriaga, D. A.; Zhang, P.; Steiner, A. M.; Jordan, N. M.; Campbell, P. C.; Lau, Y. Y.; Gilgenbach, R. M.

    2016-12-01

    Discrete helical modes have been experimentally observed from implosion to explosion in cylindrical, axially magnetized ultrathin foils (Bz = 0.2 - 2.0 T) using visible self-emission and laser shadowgraphy. The striation angle of the helices, ϕ, was found to increase during the implosion and decrease during the explosion, despite the large azimuthal magnetic field (>40 T). These helical striations are interpreted as discrete, non-axisymmetric eigenmodes that persist from implosion to explosion, obeying the simple relation ϕ = m/kR, where m, k, and R are the azimuthal mode number, axial wavenumber, and radius, respectively. Experimentally, we found that (a) there is only one, or at the most two, dominant unstable eigenmode, (b) there does not appear to be a sharp threshold on the axial magnetic field for the emergence of the non-axisymmetric helical modes, and (c) higher axial magnetic fields yield higher azimuthal modes.

  19. Solar cycle-dependent helicity transport by magnetic clouds

    NASA Astrophysics Data System (ADS)

    Lynch, B. J.; Gruesbeck, J. R.; Zurbuchen, T. H.; Antiochos, S. K.

    2005-08-01

    Magnetic clouds observed with the Wind and ACE spacecraft are fit with the static, linear force-free cylinder model to obtain estimates of the chirality, fluxes, and magnetic helicity of each event. The fastest magnetic clouds (MCs) are shown to carry the most flux and helicity. We calculate the net cumulative helicity which measures the difference in right- and left-handed helicity contained in MCs over time. The net cumulative helicity does not average to zero; rather, a strong left-handed helicity bias develops over the solar cycle, dominated by the largest events of cycle 23: Bastille Day 2000 and 28 October 2003. The majority of MCs ("slow" events, < 500 km/s) have a net cumulative helicity profile that appears to be modulated by the solar activity cycle. This is far less evident for "fast" MC events ( ≥ 500 km/s), which were disproportionately left-handed over our data set. A brief discussion about the various solar sources of CME helicity and their implication for dynamo processes is included.

  20. Determining how magnetic helicity injection really works. Annual progress report

    SciTech Connect

    Bellan, P.M.

    1998-10-21

    Magnetic helicity injection is the essential process underlying both spheromak formation and helicity injection toroidal current drive in tokamaks (e.g., HIT and NSTX). The dynamical details of the helicity injection process are poorly understood because existing models avoid a dynamic description. In particular, Taylor relaxation, the main model motivating helicity injection efforts, is an argument that predicts the state to which a turbulent magnetic configuration relaxes after all dynamics are over. The goal of the Caltech experiment is to investigate the actual dynamics and topological evolution associated with relaxation and so determine how helicity injection really works. Although the global relaxation model (i.e., Taylor model) typically invokes axisymmetry, simple physical arguments (Cowling`s theorem) show that the detailed dynamics must involve topologically complex, non-axisymmetric processes. Progress for this project is given here.

  1. The Effects of Spatial Smoothing on Solar Magnetic Helicity and the Hemispheric Helicity Sign Rule

    NASA Astrophysics Data System (ADS)

    Koch Ocker, Stella; Petrie, Gordon

    2016-05-01

    The hemispheric sign rule for solar magnetic helicity, which states that negative/positive helicity occurs preferentially in the northern/southern hemisphere, provides clues to the causes of twisted, flaring magnetic fields. However, previous studies on the hemisphere rule may have been significantly affected by seeing from atmospheric turbulent motions. Using Hinode/SOT-SP data spanning from 2006 to 2012, we studied the effects of two important data processing steps that imitate the effects of atmospheric seeing: noise reduction by ignoring pixel values that are weaker than the estimated noise threshold, and Gaussian spatial smoothing. We applied these processing techniques to the helicity distribution maps for active regions NOAA 11158 and NOAA 11243, along with the average helicities of 36 active regions, in order to imitate and understand the effects of seeing from atmospheric turbulence. We found that rather than changing trends in the helicity distributions, Gaussian smoothing and noise reduction enhanced existing trends by pushing outliers towards the mean or removing them altogether. We also found that, when separated for weak and strong magnetic fields, the average helicities of the 36 active regions conformed to the hemisphere rule for weak field helicities and breached the rule for strong field helicities. In general, we found that data processing did not affect whether the hemisphere rule held for data taken from space-based instruments, and thus that seeing from atmospheric turbulence did not significantly affect previous studies' ground-based results on the hemisphere rule. This work was carried out through the National Solar Observatory Research Experiences for Undergraduates (REU) Program, which is funded by the National Science Foundation (NSF). The National Solar Observatory is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the NSF.

  2. Helicity charging and eruption of magnetic flux from the Sun

    NASA Technical Reports Server (NTRS)

    Rust, David M.; Kumar, A.

    1994-01-01

    The ejection of helical toroidal fields from the solar atmosphere and their detection in interplanetary space are described. The discovery that solar magnetic fields are twisted and that they are segregated by hemisphere according to their chirality has important implications for the escape process. The roles played by erupting prominences, coronal mass ejections (CME's) and active region (AR) loops in expressing the escape of magnetic flux and helicity are discussed. Sporadic flux escape associated with filament eruptions accounts for less than one-tenth the flux loss. Azimuthal flux loss by CME's could account for more, but the major contributor to flux escape may be AR loop expansion. It is shown how the transfer of magnetic helicity from the sun's interior into emerged loops ('helicity charging') could be the effective driver of solar eruptions and of flux loss from the sun.

  3. Two-scale Analysis of Solar Magnetic Helicity

    NASA Astrophysics Data System (ADS)

    Brandenburg, Axel; Petrie, Gordon J. D.; Singh, Nishant K.

    2017-02-01

    We develop a two-scale formalism to determine global magnetic helicity spectra in systems where the local magnetic helicity has opposite signs on both sides of the equator, giving rise to cancellation with conventional methods. We verify this approach using first a synthetic one-dimensional magnetic field and then two-dimensional slices from a three-dimensional α effect-type dynamo-generated magnetic field, with forced turbulence of opposite helicity above and below the midplane of the domain. We then apply this formalism to global solar synoptic vector magnetograms. To improve the statistics, data from three consecutive Carrington rotations (2161–2163) are combined into a single map. We find that the spectral magnetic helicity representative of the northern hemisphere is negative at all wavenumbers and peaks at ≈ 0.06 {{Mm}}-1 (scales around 100 {Mm}). There is no evidence of bihelical magnetic fields that are found in three-dimensional turbulence simulations of helicity-driven α effect-type dynamos.

  4. Helical Dipole Magnets for Polarized Protons in RHIC

    NASA Astrophysics Data System (ADS)

    Syphers, M.; Courant, E.; Fischer, W.; Luccio, A.; Mariam, F.; Peggs, S.; Pilat, F.; Roser, T.; Tepikian, S.; Tsoupas, N.; Willen, E.; Katayama, T.; Hatanaka, K.; Kawaguchi, T.; Okamura, M.; Tominaka, T.; Wu, H.; Ptitsin, V.; Shatunov, Y.

    1997-05-01

    The Brookhaven Relativistic Heavy Ion Collider (RHIC) will be able to support experiments using polarized proton beams. Siberian Snakes are used to maintain polarization in this high energy superconducting collider. To make efficient use of available space while taking advantage of high field superconducting magnets, 4 Tesla helical dipole magnets will be used. These magnets generate a central dipole field in which the field direction rotates through 360^circ about the longitudinal axis over the length of the device. An arrangement of four such magnets can produce the desired change in the spin direction while keeping the proton orbit outside of the ``Snake'' unaltered. Similar magnet arrangements will be used to produce longitudinal polarization at the two major interaction points in RHIC. The basic requirements and layout of these magnets are described, as well as tolerances on field quality and integrated field strengths. First results of tests of prototype helical magnets will be discussed.

  5. Latitudinal variation of helicity of photospheric magnetic fields

    NASA Technical Reports Server (NTRS)

    Pevtsov, Alexei A.; Canfield, Richard C.; Metcalf, Thomas R.

    1995-01-01

    Using a 1988-1994 data set of original photospheric vector magnetograms as well as published data, we have studied the average magnetic helicity of 69 diverse active regions, adopting the linear force-free field parameter alpha as a measure. This average value was determined by minimizing the differences between the computed constant-alpha force-free and observed horizontal magnetic fields. The average magnetic helicity shows a sign difference at the 2 sigma level in opposite hemispheres. In our data set, 76% of the active regions in the northern hemisphere have negative helicity, and 69% in the southern hemisphere, positive. Although the data show considerable variation from one active region to the next, the data set as a whole suggest that the magnitude of the average helicity increases with solar latitude, starting at zero near the equator, reaches a maximum near 15 deg - 25 deg in both hemispheres, and drops back toward smaller values avove 35 deg - 40 deg. Qualitative comparison with published models shows that such latitudinal variation of the average magnetic helicity may result from either turbulent convective motions or differential rotation, although our studies of rotating sunspots lead us to favor the former.

  6. The Role of Magnetic Helicity in Structuring the Solar Corona

    NASA Astrophysics Data System (ADS)

    Knizhnik, K. J.; Antiochos, S. K.; DeVore, C. R.

    2017-01-01

    Two of the most widely observed and striking features of the Sun's magnetic field are coronal loops, which are smooth and laminar, and prominences or filaments, which are strongly sheared. Loops are puzzling because they show little evidence of tangling or braiding, at least on the quiet Sun, despite the chaotic nature of the solar surface convection. Prominences are mysterious because the origin of their underlying magnetic structure—filament channels—is poorly understood at best. These two types of features would seem to be quite unrelated and wholly distinct. We argue that, on the contrary, they are inextricably linked and result from a single process: the injection of magnetic helicity into the corona by photospheric motions and the subsequent evolution of this helicity by coronal reconnection. In this paper, we present numerical simulations of the response of a Parker (1972) corona to photospheric driving motions that have varying degrees of helicity preference. We obtain four main conclusions: (1) in agreement with the helicity condensation model of Antiochos (2013), the inverse cascade of helicity by magnetic reconnection in the corona results in the formation of filament channels localized about polarity inversion lines; (2) this same process removes most complex fine structure from the rest of the corona, resulting in smooth and laminar coronal loops; (3) the amount of remnant tangling in coronal loops is inversely dependent on the net helicity injected by the driving motions; and (4) the structure of the solar corona depends only on the helicity preference of the driving motions and not on their detailed time dependence. We discuss the implications of our results for high-resolution observations of the corona.

  7. The Effects of Spatial Smoothing on Solar Magnetic Helicity Parameters and the Hemispheric Helicity Sign Rule

    NASA Astrophysics Data System (ADS)

    Koch Ocker, Stella; Petrie, Gordon

    2016-12-01

    The hemispheric preference for negative/positive helicity to occur in the northern/southern solar hemisphere provides clues to the causes of twisted, flaring magnetic fields. Previous studies on the hemisphere rule may have been affected by seeing from atmospheric turbulence. Using Hinode/SOT-SP data spanning 2006-2013, we studied the effects of two spatial smoothing tests that imitate atmospheric seeing: noise reduction by ignoring pixel values weaker than the estimated noise threshold, and Gaussian spatial smoothing. We studied in detail the effects of atmospheric seeing on the helicity distributions across various field strengths for active regions (ARs) NOAA 11158 and NOAA 11243, in addition to studying the average helicities of 179 ARs with and without smoothing. We found that, rather than changing trends in the helicity distributions, spatial smoothing modified existing trends by reducing random noise and by regressing outliers toward the mean, or removing them altogether. Furthermore, the average helicity parameter values of the 179 ARs did not conform to the hemisphere rule: independent of smoothing, the weak-vertical-field values tended to be negative in both hemispheres, and the strong-vertical-field values tended to be positive, especially in the south. We conclude that spatial smoothing does not significantly affect the overall statistics for space-based data, and thus seeing from atmospheric turbulence seems not to have significantly affected previous studies’ ground-based results on the hemisphere rule.

  8. Rashba Torque Driven Domain Wall Motion in Magnetic Helices.

    PubMed

    Pylypovskyi, Oleksandr V; Sheka, Denis D; Kravchuk, Volodymyr P; Yershov, Kostiantyn V; Makarov, Denys; Gaididei, Yuri

    2016-03-24

    Manipulation of the domain wall propagation in magnetic wires is a key practical task for a number of devices including racetrack memory and magnetic logic. Recently, curvilinear effects emerged as an efficient mean to impact substantially the statics and dynamics of magnetic textures. Here, we demonstrate that the curvilinear form of the exchange interaction of a magnetic helix results in an effective anisotropy term and Dzyaloshinskii-Moriya interaction with a complete set of Lifshitz invariants for a one-dimensional system. In contrast to their planar counterparts, the geometrically induced modifications of the static magnetic texture of the domain walls in magnetic helices offer unconventional means to control the wall dynamics relying on spin-orbit Rashba torque. The chiral symmetry breaking due to the Dzyaloshinskii-Moriya interaction leads to the opposite directions of the domain wall motion in left- or right-handed helices. Furthermore, for the magnetic helices, the emergent effective anisotropy term and Dzyaloshinskii-Moriya interaction can be attributed to the clear geometrical parameters like curvature and torsion offering intuitive understanding of the complex curvilinear effects in magnetism.

  9. Magnetic clouds, helicity conservation, and intrinsic scale flux ropes

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Rust, D. M.

    1995-01-01

    An intrinsic-scale flux-rope model for interplanetary magnetic clouds, incorporating conservation of magnetic helicity, flux and mass is found to adequately explain clouds' average thermodynamic and magnetic properties. In spite their continuous expansion as they balloon into interplanetary space, magnetic clouds maintain high temperatures. This is shown to be due to magnetic energy dissipation. The temperature of an expanding cloud is shown to pass through a maximum above its starting temperature if the initial plasma beta in the cloud is less than 2/3. Excess magnetic pressure inside the cloud is not an important driver of the expansion as it is almost balanced by the tension in the helical field lines. It is conservation of magnetic helicity and flux that requires that clouds expand radially as they move away from the Sun. Comparison with published data shows good agreement between measured cloud properties and theory. Parameters determined from theoretical fits to the data, when extended back to the Sun, are consistent with the origin of interplanetary magnetic clouds in solar filament eruptions. A possible extension of the heating mechanism discussed here to heating of the solar corona is discussed.

  10. Rashba Torque Driven Domain Wall Motion in Magnetic Helices

    PubMed Central

    Pylypovskyi, Oleksandr V.; Sheka, Denis D.; Kravchuk, Volodymyr P.; Yershov, Kostiantyn V.; Makarov, Denys; Gaididei, Yuri

    2016-01-01

    Manipulation of the domain wall propagation in magnetic wires is a key practical task for a number of devices including racetrack memory and magnetic logic. Recently, curvilinear effects emerged as an efficient mean to impact substantially the statics and dynamics of magnetic textures. Here, we demonstrate that the curvilinear form of the exchange interaction of a magnetic helix results in an effective anisotropy term and Dzyaloshinskii–Moriya interaction with a complete set of Lifshitz invariants for a one-dimensional system. In contrast to their planar counterparts, the geometrically induced modifications of the static magnetic texture of the domain walls in magnetic helices offer unconventional means to control the wall dynamics relying on spin-orbit Rashba torque. The chiral symmetry breaking due to the Dzyaloshinskii–Moriya interaction leads to the opposite directions of the domain wall motion in left- or right-handed helices. Furthermore, for the magnetic helices, the emergent effective anisotropy term and Dzyaloshinskii–Moriya interaction can be attributed to the clear geometrical parameters like curvature and torsion offering intuitive understanding of the complex curvilinear effects in magnetism. PMID:27008975

  11. Fabrication of a magnetic helical mesostructured silica rod

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Zhang Qiao, Shi; Cheng, Lina; Yan, Zifeng; Qing Lu, Gao Max

    2008-10-01

    We report a one-step synthesis of magnetic helical mesostructured silica (MHMS) by self-assembly of an achiral surfactant, magnetic nanocrystals with stearic acid ligands and silicate. This core-shell structured material consists of an Fe3O4 superparamagnetic nanocrystal core and a highly ordered periodic helical mesoporous silica shell. We propose that the formation of the helical structure is induced by the interaction between the surfactant and dissociated stearic acid ligands. The MHMS obtained possesses superparamagnetism, uniform mesostructure, narrow pore size distribution, high surface area, and large pore volume. Furthermore, the drug release process is demonstrated using aspirin as a drug model and MHMS as a drug carrier in a sodium phosphate buffer solution.

  12. Inverse cascade of magnetic helicity in magnetohydrodynamic turbulence.

    PubMed

    Müller, Wolf-Christian; Malapaka, Shiva Kumar; Busse, Angela

    2012-01-01

    The nonlinear dynamics of magnetic helicity HM, which is responsible for large-scale magnetic structure formation in electrically conducting turbulent media, is investigated in forced and decaying three-dimensional magnetohydrodynamic turbulence. This is done with the help of high-resolution direct numerical simulations and statistical closure theory. The numerically observed spectral scaling of HM is at variance with earlier work using a statistical closure model [Pouquet et al., J. Fluid Mech. 77, 321 (1976)]. By revisiting this theory, a universal dynamical balance relation is found that includes the effects of kinetic helicity as well as kinetic and magnetic energies on the inverse cascade of HM and explains the above-mentioned discrepancy. Consideration of the result in the context of mean-field dynamo theory suggests a nonlinear modification of the α-dynamo effect, which is important in the context of magnetic-field excitation in turbulent plasmas.

  13. Current-induced Orbital and Spin Magnetizations in Crystals with Helical Structure

    PubMed Central

    Yoda, Taiki; Yokoyama, Takehito; Murakami, Shuichi

    2015-01-01

    We theoretically show that in a crystal with a helical lattice structure, orbital and spin magnetizations along a helical axis are induced by an electric current along the helical axis. We propose a simple tight-binding model for calculations, and the results can be generalized to any helical crystals. The induced magnetizations are opposite for right-handed and left-handed helices. The current-induced spin magnetization along the helical axis comes from a radial spin texture on the Fermi surface. This is in sharp contrast to Rashba systems where the induced spin magnetization is perpendicular to the applied current. PMID:26156643

  14. Magnetic helicity injection in NOAA 11261 associated with flares

    NASA Astrophysics Data System (ADS)

    Xu, Haiqing; Zhang, Hongqi; Su, Jiangtao; Ruan, Guiping; liu, Jihong

    2013-07-01

    Magnetic helicity was found important in understanding solar activities such as flares and coronal mass ejections (CME). Berger and field (1984) derived an expression for helicity flux dHm/dt, that can be applied to an individual solar active region (AR) occupying an area S of the photosphere, (1) \\begin{linenomath}dHm/dt=-2\\ints[(\\mathbf{Ap}\\cdot \\mathbf{V})\\mathbf{B}-(\\mathbf{Ap} \\cdot \\mathbf{B})\\mathbf{V}] dS, \\eqno{(1)}\\end{linenomath} where Ap is the vector potential of potential field, and V is the plasma velocity at the surface S. The first term describes the effect of magnetic footpoint motions on the surface S. The second term describes the flux of helicity advected through the surface when already twisted and/or writhed flux ropes emerge. Chae (2001) proposed a method of self-consistently determining magnetic helicity injection rate, dH/dt, using a time series of longitudinal magnetograms only: (2) \\begin{linenomath}dH/dt=-\\int2(\\textbf{A}p\\cdot \\textbf{V}LCT)BndS, \\eqno{(2)}\\end{linenomath} where n is the normal component of magnetic field. Ap is the vector potential computed from Bn by Fourier transform method. V LCT is the horizontal component of velocity determined by the technique of local correlation tracking (LCT). This technique was applied by some scientists (e.g., Chae et al., 2001; Nindos and Zhang, 2002; Romano et al., 2003). Magnetic helicity injection was found to be strongly correlated with the occurrence of major flares (Moon et al. 2002a, 2002b; Park et al., 2008; Labonte et al., 2007; Maeshiro et al., 2009).

  15. Model of quiescent prominence with the helical magnetic field

    NASA Astrophysics Data System (ADS)

    Solov'ev, A. A.; Korolkova, O. A.; Kirichek, E. A.

    2016-12-01

    A new exact analytical solution of the magnetohydrostatic problem describes the equilibrium of a solitary, dense-cool solar filament maintained against the gravity by magnetic force in hot solar corona at heights up to 20-40 Mm. The filament is assumed to be uniform along the axis (the translation symmetry). The magnetic field of the filament has the helical structure (magnetic flux rope) with a typical strength of a few Gauss in the region of minimal temperature (about 4000 K). The model can be applied to the quiescent prominence of both normal and inverse magnetic polarity.

  16. Helical magnetic field models for parsec-scale radio jets

    NASA Astrophysics Data System (ADS)

    Papageorgiou, A.

    2006-10-01

    Total intensity and polarization structure of extragalactic radio jets are presented in support of models that jets are threaded by helical magnetic fields. Helical magnetic field models predict the following features i) asymmetric distribution in both or either the total and polarized intensity across the jet, ii)displacement between the maxima of total and polarized intensity distributions, iii) abrupt rotation (90 degrees) of the magnetic field position angle (MVPA) and iv) edge brightening in polarization and total intensity. VLBI observations of parsec-scale jets are presented, showing examples of the above predicted features; in one case all four predicted features are present in one source (1055+018).%T GPS studies during the ENIGMA era

  17. JET ROTATION DRIVEN BY MAGNETOHYDRODYNAMIC SHOCKS IN HELICAL MAGNETIC FIELDS

    SciTech Connect

    Fendt, Christian

    2011-08-10

    In this paper, we present a detailed numerical investigation of the hypothesis that a rotation of astrophysical jets can be caused by magnetohydrodynamic (MHD) shocks in a helical magnetic field. Shock compression of the helical magnetic field results in a toroidal Lorentz force component that will accelerate the jet material in the toroidal direction. This process transforms magnetic angular momentum (magnetic stress) carried along the jet into kinetic angular momentum (rotation). The mechanism proposed here only works in a helical magnetic field configuration. We demonstrate the feasibility of this mechanism by axisymmetric MHD simulations in 1.5 and 2.5 dimensions using the PLUTO code. In our setup, the jet is injected into the ambient gas with zero kinetic angular momentum (no rotation). We apply different dynamical parameters for jet propagation such as the jet internal Alfven Mach number and fast magnetosonic Mach number, the density contrast of the jet to the ambient medium, and the external sonic Mach number of the jet. The mechanism we suggest should work for a variety of jet applications, e.g., protostellar or extragalactic jets, and internal jet shocks (jet knots) or external shocks between the jet and the ambient gas (entrainment). For typical parameter values for protostellar jets, the numerically derived rotation feature looks consistent with the observations, i.e., rotational velocities of 0.1%-1% of the jet bulk velocity.

  18. Considerations of variations in ionospheric field effects in mapping equatorial lithospheric Magsat magnetic anomalies

    NASA Technical Reports Server (NTRS)

    Ravat, D.; Hinze, W. J.

    1993-01-01

    The longitudinal, seasonal, and altitude-dependent variability of the magnetic field in equatorial latitudes is investigated to determine the effect of these variabilities on the isolation of lithospheric Magsat magnetic anomalies. It was found that the amplitudes of the dawn dip-latitude averages were small compared to the dusk averages, and that they were of the opposite sign. The longitudinal variation in the equatorial amplitudes of the dawn dip-latitude averages was not entirely consistent with the present knowledge of the electrojet field. Based on the results, a procedure is implemented for reducing the equatorial ionospheric effects from the Magsat data on the lithospheric component.

  19. Goldstone mode in the conical phase of helical magnets

    NASA Astrophysics Data System (ADS)

    Sang, Yan; Belitz, D.; Kirkpatrick, T. R.

    2010-03-01

    We investigate theoretically the nature of the Goldstone mode in the conical phase of helical magnets such as MnSi. A Dzyaloshinsky-Moriya term in the action leads to helical order in the ground state, characterized by a pitch vector q [1]. The Goldstone mode in the helical phase, the helimagnon, is known to have an anisotropic dispersion relation of the form 2̂kz^2 + k^4/q^2, analogous to smectic or cholesteric liquid crystals [2]. In the presence of a homogeneous external magnetic field H the helix is superimposed by a homogeneous magnetization, which leads to a conical phase [3]. The Goldstone mode in the latter is found to be a modified helimagnon, with a dispersion relation of the structure 2̂φ0^2 + H^2 k^2. The additional term H^2 k^2 is a result of the magnetic field breaking the rotational symmetry. In addition, there are remnants of ferromagnetic magnons with masses H^2. [1] P. Bak and M.H. Jensen, J. Phys. C 13, L881 (1980). [2] D. Belitz, T.R. Kirkpatrick, and A. Rosch, Phys. Rev. B 73, 054431 (2006). [3] Y. Ishikawa, G. Shirane, J.A. Tarvin, and M. Kohgi, Phys. Rev. B 16, 4956 (1977).

  20. New mode of operating a magnetized coaxial plasma gun for injecting magnetic helicity into a spheromak.

    PubMed

    Woodruff, S; Hill, D N; Stallard, B W; Bulmer, R; Cohen, B; Holcomb, C T; Hooper, E B; McLean, H S; Moller, J; Wood, R D

    2003-03-07

    By operating a magnetized coaxial plasma gun continuously with just sufficient current to enable plasma ejection, large gun-voltage spikes (approximately 1 kV) are produced, giving the highest sustained voltage approximately 500 V and highest sustained helicity injection rate observed in the Sustained Spheromak Physics Experiment. The spheromak magnetic field increases monotonically with time, exhibiting the lowest fluctuation levels observed during formation of any spheromak (B/B>/=2%). The results suggest an important mechanism for field generation by helicity injection, namely, the merging of helicity-carrying filaments.

  1. Chiral charge erasure via thermal fluctuations of magnetic helicity

    SciTech Connect

    Long, Andrew J.; Sabancilar, Eray

    2016-05-11

    We consider a relativistic plasma of fermions coupled to an Abelian gauge field and carrying a chiral charge asymmetry, which might arise in the early Universe through baryogenesis. It is known that on large length scales, λ≳1/(αμ{sub 5}), the chiral anomaly opens an instability toward the erasure of chiral charge and growth of magnetic helicity. Here the chemical potential μ{sub 5} parametrizes the chiral asymmetry and α is the fine-structure constant. We study the process of chiral charge erasure through the thermal fluctuations of magnetic helicity and contrast with the well-studied phenomenon of Chern-Simons number diffusion. Through the fluctuation-dissipation theorem we estimate the amplitude and time scale of helicity fluctuations on the length scale λ, finding δ H∼λT and τ∼αλ{sup 3}T{sup 2} for a relativistic plasma at temperature T. We argue that the presence of a chiral asymmetry allows the helicity to grow diffusively for a time t∼T{sup 3}/(α{sup 5}μ{sub 5}{sup 4}) until it reaches an equilibrium value H∼μ{sub 5}T{sup 2}/α, and the chiral asymmetry is partially erased. If the chiral asymmetry is small, μ{sub 5}magnetic effect for which t∼T/(α{sup 3}μ{sub 5}{sup 2}). This mechanism for chiral charge erasure can be important for the hypercharge sector of the Standard Model as well as extensions including U(1) gauge interactions, such as asymmetric dark matter models.

  2. Chiral charge erasure via thermal fluctuations of magnetic helicity

    NASA Astrophysics Data System (ADS)

    Long, Andrew J.; Sabancilar, Eray

    2016-05-01

    We consider a relativistic plasma of fermions coupled to an Abelian gauge field and carrying a chiral charge asymmetry, which might arise in the early Universe through baryogenesis. It is known that on large length scales, λ gtrsim 1/(αμ5), the chiral anomaly opens an instability toward the erasure of chiral charge and growth of magnetic helicity. Here the chemical potential μ5 parametrizes the chiral asymmetry and α is the fine-structure constant. We study the process of chiral charge erasure through the thermal fluctuations of magnetic helicity and contrast with the well-studied phenomenon of Chern-Simons number diffusion. Through the fluctuation-dissipation theorem we estimate the amplitude and time scale of helicity fluctuations on the length scale λ, finding δScript H ~ λT and τ ~ αλ3T2 for a relativistic plasma at temperature T. We argue that the presence of a chiral asymmetry allows the helicity to grow diffusively for a time t ~ T3/(α5μ54) until it reaches an equilibrium value Script H ~ μ5T2/α, and the chiral asymmetry is partially erased. If the chiral asymmetry is small, μ5 < T/α, this avenue for chiral charge erasure is found to be slower than the chiral magnetic effect for which t ~ T/(α3μ52). This mechanism for chiral charge erasure can be important for the hypercharge sector of the Standard Model as well as extensions including U(1) gauge interactions, such as asymmetric dark matter models.

  3. Effects of Magnetic and Kinetic Helicities on the Growth of Magnetic Fields in Laminar and Turbulent Flows by Helical Fourier Decomposition

    NASA Astrophysics Data System (ADS)

    Linkmann, Moritz; Sahoo, Ganapati; McKay, Mairi; Berera, Arjun; Biferale, Luca

    2017-02-01

    We present a numerical and analytical study of incompressible homogeneous conducting fluids using a helical Fourier representation. We analytically study both small- and large-scale dynamo properties, as well as the inverse cascade of magnetic helicity, in the most general minimal subset of interacting velocity and magnetic fields on a closed Fourier triad. We mainly focus on the dependency of magnetic field growth as a function of the distribution of kinetic and magnetic helicities among the three interacting wavenumbers. By combining direct numerical simulations of the full magnetohydrodynamics equations with the helical Fourier decomposition, we numerically confirm that in the kinematic dynamo regime the system develops a large-scale magnetic helicity with opposite sign compared to the small-scale kinetic helicity, a sort of triad-by-triad α-effect in Fourier space. Concerning the small-scale perturbations, we predict theoretically and confirm numerically that the largest instability is achived for the magnetic component with the same helicity of the flow, in agreement with the Stretch–Twist–Fold mechanism. Vice versa, in the presence of Lorentz feedback on the velocity, we find that the inverse cascade of magnetic helicity is mostly local if magnetic and kinetic helicities have opposite signs, while it is more nonlocal and more intense if they have the same sign, as predicted by the analytical approach. Our analytical and numerical results further demonstrate the potential of the helical Fourier decomposition to elucidate the entangled dynamics of magnetic and kinetic helicities both in fully developed turbulence and in laminar flows.

  4. A new self-propelled magnetic bearing with helical windings

    NASA Astrophysics Data System (ADS)

    Shayak, B.

    2016-12-01

    In this work, a design is proposed for an active, permanent magnet based, self-propelled magnetic bearing, i.e. levitating motor having the following features: (i) simple winding structure, (ii) high load supporting capacity, (iii) no eccentricity sensors, (iv) stable confinement in all translational dimensions, (v) stable confinement in all rotational dimensions, and (vi) high efficiency. This design uses an architecture consisting of a helically wound three-phase stator, and a rotor with the magnets also arranged in a helical manner. Active control is used to excite the rotor at a torque angle lying in the second quadrant. This torque angle is independent of the rotor's position inside the stator cavity; hence the control algorithm is similar to that of a conventional permanent magnet synchronous motor. It is motivated through a physical argument that the bearing rotor develops a lift force proportional to the output torque and that it remains stably confined in space. These assertions are then proved rigorously through a calculation of the magnetic fields, forces and torques. The stiffness matrix of the system is presented and a discussion of stable and unstable operating regions is given.

  5. Response of night-time equatorial F-region to magnetic disturbances

    NASA Astrophysics Data System (ADS)

    Somayajulu, V. V.; Murthy, B. V. K.; Subbarao, K. S. V.

    1991-10-01

    The responsne of the equatorial night-time F-region to magnetic stormtime disturbances has been examined using mainly ionograms recorded at Trivandrum and magnetograms recorded at high, middle and low latitudes during the magnetic storm of 23-26 November 1986. The analysis revealed a close coupling between the equatorial F-region and high-latitude magnetic field disturbances originating in solar wind-magnetosphere interactions. The presence of spread-F on ionograms during this period is found to be consistent with the Rayleigh-Taylor instability mechanism for the growth of the irregularities.

  6. Chiral Magnetism in an Itinerant Helical Magnet, MnSi - An Extended 29Si NMR Study

    NASA Astrophysics Data System (ADS)

    Yasuoka, Hiroshi; Motoya, Kiyoichiro; Majumder, Mayukh; Witt, Sebastian; Krellner, Cornelius; Baenitz, Michael

    2016-07-01

    The microscopic magnetism in the helical, conical and ferromagnetically polarized phases in an itinerant helical magnet, MnSi, has been studied by an extended 29Si NMR at zero field and under external magnetic fields. The temperature dependence of the staggered moment, MQ(T), determined by the 29Si NMR frequency, ν(T), and the nuclear relaxation rate, 1/T1(T), at zero field is in general accord with the SCR theory for weak itinerant ferromagnetic metals and its extension to helical magnets. The external field dependence of resonance frequency, ν(H), follows a vector sum of the contributions from the atomic hyperfine and macroscopic fields with a field induced moment characteristic to itinerant magnets. A discontinuous jump of the resonance frequency at the critical field, Hc, between the conical and the polarized phases has also been found, which suggests a first order like change of the electronic states at Hc.

  7. Particle energization through time-periodic helical magnetic fields.

    PubMed

    Mitra, Dhrubaditya; Brandenburg, Axel; Dasgupta, Brahmananda; Niklasson, Eyvind; Ram, Abhay

    2014-04-01

    We solve for the motion of charged particles in a helical time-periodic ABC (Arnold-Beltrami-Childress) magnetic field. The magnetic field lines of a stationary ABC field with coefficients A=B=C=1 are chaotic, and we show that the motion of a charged particle in such a field is also chaotic at late times with positive Lyapunov exponent. We further show that in time-periodic ABC fields, the kinetic energy of a charged particle can increase indefinitely with time. At late times the mean kinetic energy grows as a power law in time with an exponent that approaches unity. For an initial distribution of particles, whose kinetic energy is uniformly distributed within some interval, the probability density function of kinetic energy is, at late times, close to a Gaussian but with steeper tails.

  8. MAGNETIC HELICITY OF ION KINETIC TURBULENCE WITH A NONZERO ELECTRON TEMPERATURE

    SciTech Connect

    Markovskii, S. A.; Vasquez, Bernard J. E-mail: bernie.vasquez@unh.edu

    2016-03-20

    Hybrid numerical simulations of strong turbulence with a nonzero electron temperature are carried out in the proton kinetic range. The turbulent cascade is initiated by a large-scale spectrum with a nonzero cross-helicity. The turbulence evolves freely and produces a magnetic helicity spectrum with a peak at smaller scales. Testing is performed to verify that the shape of the peak is not affected by numerical artifacts. The magnetic helicity spectrum is shown to be determined by both the electron and proton thermal pressures, rather than the proton pressure alone. Implications for the observed correlations between the magnetic helicity and the plasma parameters in the solar wind are discussed.

  9. Magnetic-Field-Aligned Characteristics of Plasma Bubbles in the Nighttime Equatorial Ionosphere.

    DTIC Science & Technology

    1979-07-01

    The best evidence published to date is that of Dyson and Benson [19781. Using topside ionograms taken from Alouette II and ISIS I satellites, they...inferred the existence of depleted magnetic flux tubes in the equatorial ionosphere by interpreting anomalous ionogram traces in terms of high-frequency

  10. Current Noise from a Magnetic Moment in a Helical Edge

    NASA Astrophysics Data System (ADS)

    Väyrynen, Jukka I.; Glazman, Leonid I.

    2017-03-01

    We calculate the two-terminal current noise generated by a magnetic moment coupled to a helical edge of a two-dimensional topological insulator. When the system is symmetric with respect to in-plane spin rotation, the noise is dominated by the Nyquist component even in the presence of a voltage bias V . The corresponding noise spectrum S (V ,ω ) is determined by a modified fluctuation-dissipation theorem with the differential conductance G (V ,ω ) in place of the linear one. The differential noise ∂S /∂V , commonly measured in experiments, is strongly dependent on frequency on a small scale τK-1≪T set by the Korringa relaxation rate of the local moment. This is in stark contrast to the case of conventional mesoscopic conductors where ∂S /∂V is frequency independent and defined by the shot noise. In a helical edge, a violation of the spin-rotation symmetry leads to the shot noise, which becomes important only at a high bias. Uncharacteristically for a fermion system, this noise in the backscattered current is super-Poissonian.

  11. Three-dimensional prominence-hosting magnetic configurations: Creating a helical magnetic flux rope

    SciTech Connect

    Xia, C.; Keppens, R.; Guo, Y.

    2014-01-10

    The magnetic configuration hosting prominences and their surrounding coronal structure is a key research topic in solar physics. Recent theoretical and observational studies strongly suggest that a helical magnetic flux rope is an essential ingredient to fulfill most of the theoretical and observational requirements for hosting prominences. To understand flux rope formation details and obtain magnetic configurations suitable for future prominence formation studies, we here report on three-dimensional isothermal magnetohydrodynamic simulations including finite gas pressure and gravity. Starting from a magnetohydrostatic corona with a linear force-free bipolar magnetic field, we follow its evolution when introducing vortex flows around the main polarities and converging flows toward the polarity inversion line near the bottom of the corona. The converging flows bring the feet of different loops together at the polarity inversion line, where magnetic reconnection and flux cancellation happen. Inflow and outflow signatures of the magnetic reconnection process are identified, and thereby the newly formed helical loops wind around preexisting ones so that a complete flux rope grows and ascends. When a macroscopic flux rope is formed, we switch off the driving flows and find that the system relaxes to a stable state containing a helical magnetic flux rope embedded in an overlying arcade structure. A major part of the formed flux rope is threaded by dipped field lines that can stably support prominence matter, while the total mass of the flux rope is in the order of 4-5× 10{sup 14} g.

  12. MAGNETIC HELICITY OF SELF-SIMILAR AXISYMMETRIC FORCE-FREE FIELDS

    SciTech Connect

    Zhang Mei; Flyer, Natasha; Low, Boon Chye

    2012-08-10

    In this paper, we continue our theoretical studies addressing the possible consequences of magnetic helicity accumulation in the solar corona. Our previous studies suggest that coronal mass ejections (CMEs) are natural products of coronal evolution as a consequence of magnetic helicity accumulation and that the triggering of CMEs by surface processes such as flux emergence also have their origin in magnetic helicity accumulation. Here, we use the same mathematical approach to study the magnetic helicity of axisymmetric power-law force-free fields but focus on a family whose surface flux distributions are defined by self-similar force-free fields. The semi-analytical solutions of the axisymmetric self-similar force-free fields enable us to discuss the properties of force-free fields possessing a huge amount of accumulated magnetic helicity. Our study suggests that there may be an absolute upper bound on the total magnetic helicity of all bipolar axisymmetric force-free fields. With the increase of accumulated magnetic helicity, the force-free field approaches being fully opened up with Parker-spiral-like structures present around a current-sheet layer as evidence of magnetic helicity in the interplanetary space. It is also found that among the axisymmetric force-free fields having the same boundary flux distribution, the one that is self-similar is the one possessing the maximum amount of total magnetic helicity. This gives a possible physical reason why self-similar fields are often found in astrophysical bodies, where magnetic helicity accumulation is presumably also taking place.

  13. Increasing the magnetic helicity content of a plasma by pulsing a magnetized source.

    PubMed

    Woodruff, S; Stallard, B W; McLean, H S; Hooper, E B; Bulmer, R; Cohen, B I; Hill, D N; Holcomb, C T; Moller, J; Wood, R D

    2004-11-12

    By operating a magnetized coaxial gun in a pulsed mode it is possible to produce large voltage pulses of duration approximately 500 mus while reaching a few kV, giving a discrete input of helicity into a spheromak. In the sustained spheromak physics experiment (SSPX), it is observed that pulsing serves to nearly double the stored magnetic energy and double the temperature. We discuss these results by comparison with 3D MHD simulations of the same phenomenon.

  14. Magnetic reconnection process in transient coaxial helicity injection

    SciTech Connect

    Ebrahimi, F.; Hooper, E. B.; Sovinec, C. R.; Raman, R.

    2013-09-15

    The physics of magnetic reconnection and fast flux closure in transient coaxial helicity injection experiments in NSTX is examined using resistive MHD simulations. These simulations have been performed using the NIMROD code with fixed boundary flux (including NSTX poloidal coil currents) in the NSTX experimental geometry. Simulations show that an X point is formed in the injector region, followed by formation of closed flux surfaces within 0.5 ms after the driven injector voltage and injector current begin to rapidly decrease. As the injector voltage is turned off, the field lines tend to untwist in the toroidal direction and magnetic field compression exerts a radial J × B force and generates a bi-directional radial E{sub toroidal}×B{sub poloidal} pinch flow to bring oppositely directed field lines closer together to reconnect. At sufficiently low magnetic diffusivity (high Lundquist number), and with a sufficiently narrow injector flux footprint width, the oppositely directed field lines have sufficient time to reconnect (before dissipating), leading to the formation of closed flux surfaces. The reconnection process is shown to have transient Sweet-Parker characteristics.

  15. Measuring the magnetic field of a trans-equatorial loop system using coronal seismology

    NASA Astrophysics Data System (ADS)

    Long, David; Perez-Suarez, David; Valori, Gherardo

    2016-05-01

    First observed by SOHO/EIT, "EIT waves" are strongly associated with the initial evolution of coronal mass ejections (CMEs) and after almost 20 years of investigation a consensus is being reached which interprets them as freely-propagating waves produced by the rapid expansion of a CME in the low corona. An "EIT wave" was observed on 6 July 2012 to erupt from active region AR11514 into a particularly structured corona that included multiple adjacent active regions as well as an adjacent trans-equatorial loop system anchored at the boundary of a nearby coronal hole. The eruption was well observed by SDO/AIA and CoMP, allowing the effects of the "EIT wave" on the trans-equatorial loop system to be studied in detail. In particular, it was possible to characterise the oscillation of the loop system using Doppler velocity measurements from CoMP. These Doppler measurements were used to estimate the magnetic field strength of the trans-equatorial loop system via coronal seismology. It was then possible to compare these inferred magnetic field values with extrapolated magnetic field values derived using a Potential Field Source Surface extrapolation as well as the direct measurements of magnetic field provided by CoMP. These results show that the magnetic field strength of loop systems in the solar corona may be estimated using loop seismology.

  16. EVOLUTION OF MAGNETIC HELICITY AND ENERGY SPECTRA OF SOLAR ACTIVE REGIONS

    SciTech Connect

    Zhang, Hongqi; Brandenburg, Axel; Sokoloff, D. D.

    2016-03-10

    We adopt an isotropic representation of the Fourier-transformed two-point correlation tensor of the magnetic field to estimate the magnetic energy and helicity spectra as well as current helicity spectra of two individual active regions (NOAA 11158 and NOAA 11515) and the change of the spectral indices during their development as well as during the solar cycle. The departure of the spectral indices of magnetic energy and current helicity from 5/3 are analyzed, and it is found that it is lower than the spectral index of the magnetic energy spectrum. Furthermore, the fractional magnetic helicity tends to increase when the scale of the energy-carrying magnetic structures increases. The magnetic helicity of NOAA 11515 violates the expected hemispheric sign rule, which is interpreted as an effect of enhanced field strengths at scales larger than 30–60 Mm with opposite signs of helicity. This is consistent with the general cycle dependence, which shows that around the solar maximum the magnetic energy and helicity spectra are steeper, emphasizing the large-scale field.

  17. SOLAR MAGNETIC HELICITY INJECTED INTO THE HELIOSPHERE: MAGNITUDE, BALANCE, AND PERIODICITIES OVER SOLAR CYCLE 23

    SciTech Connect

    Georgoulis, M. K.; Rust, D. M.; Bernasconi, P. N.; Pevtsov, A. A.; Kuzanyan, K. M.

    2009-11-01

    Relying purely on solar photospheric magnetic field measurements that cover most of solar cycle 23 (1996-2005), we calculate the total relative magnetic helicity injected into the solar atmosphere, and eventually shed into the heliosphere, over the latest cycle. Large active regions dominate the helicity injection process with approx5.7 x 10{sup 45} Mx{sup 2} of total injected helicity. The net helicity injected is approx<1% of the above output. Peculiar active-region plasma flows account for approx80% of this helicity; the remaining approx20% is due to solar differential rotation. The typical helicity per active-region CME ranges between (1.8-7) x 10{sup 42} Mx{sup 2} depending on the CME velocity. Accounting for various minor underestimation factors, we estimate a maximum helicity injection of approx6.6 x 10{sup 45} Mx{sup 2} for solar cycle 23. Although no significant net helicity exists over both solar hemispheres, we recover the well-known hemispheric helicity preference, which is significantly enhanced by the solar differential rotation. We also find that helicity injection in the solar atmosphere is an inherently disorganized, impulsive, and aperiodic process.

  18. Successive injection of opposite magnetic helicity in solar active region NOAA 11928

    NASA Astrophysics Data System (ADS)

    Vemareddy, P.; Démoulin, P.

    2017-01-01

    Aims: Understanding the nature and evolution of the photospheric helicity flux transfer is crucial to revealing the role of magnetic helicity in coronal dynamics of solar active regions. Methods: We computed the boundary-driven helicity flux with a 12-min cadence during the emergence of the AR 11928 using SDO/HMI photospheric vector magnetograms and the derived flow velocity field. Accounting for the footpoint connectivity defined by nonlinear, force-free magnetic extrapolations, we derived and analyzed the corrected distribution of helicity flux maps. Results: The photospheric helicity flux injection is found to change sign during the steady emergence of the AR. This reversal is confirmed with the evolution of the photospheric electric currents and with the coronal connectivity as observed in EUV wavelengths with SDO/AIA. During approximately the three first days of emergence, the AR coronal helicity is positive while later on the field configuration is close to a potential field. As theoretically expected, the magnetic helicity cancellation is associated with enhanced coronal activity. Conclusions: The study suggests a boundary driven transformation of the chirality in the global AR magnetic structure. This may be the result of the emergence of a flux rope with positive twist around its apex while it has negative twist in its legs. The origin of such mixed helicity flux rope in the convective zone is challenging for models.

  19. Peculiarities of the magnetic flux emerging in the equatorial solar zone

    NASA Astrophysics Data System (ADS)

    Merzlyakov, V. L.; Starkova, L. I.

    2016-12-01

    The magnetic flux longitudinal distribution in the equatorial solar zone has been studied. The magnetic synoptic maps of the Wilcox Solar Observatory (WSO) during Carrington rotations (CRs) 2052-2068 in 2007 and early 2008 have been analyzed. The longitudinal distributions of the area of the zones where the photospheric magnetic field locally enhanced have been constructed for each CR. The obtained distributions indicate that the zones are located discretely and that a clearly defined one narrow longitudinal interval with the maximum flux is present. The longitudinal position of this maximum shifted discretely by ≈130° at an interval of 5.5 ± 0.5 CRs. A longitudinal shift of the zones with an increased magnetic flux multiple of 60° was observed between the hemispheres. In addition, a time shift of ≈2.5 CRs existed between the instants when the position of maximum fluxes in different hemispheres shifted. The established peculiarities of the magnetic flux longitudinal distribution and time dynamics are interpreted as an action of supergiant convection cells. These actions result in that magnetic fields are removed from the generation region through the channels that are formed between such cells at a longitudinal interval of 120°. The average synodic rotation velocity of the considered equatorial channels, through which the magnetic flux emerges, is 13.43° day-1.

  20. The magnetic field of the equatorial magnetotail from 10 to 40 earth radii

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.

    1986-01-01

    A statistical study of IMP 6, 7, and 8 magnetotail magnetic field measurements near the equatorial plane reveals new information about various aspects of magnetospheric structure. More magnetic flux crosses the equatorial plane on the dawn and dusk flanks of the tail than near midnight, but no evidence is found for a dependence on the interplanetary magnetic field sector polarity. Field magnitudes within 3 earth radii of the equatorial plane near dawn are more than twice as large as those near dusk for Xsm = -20 to -10 earth radii. The frequency of occurrence of southward fields is greatest near midnight, and such fields are seen almost twice as often for Xsm = -20 to -10 earth radii as for Xsm beyond -20 earth radii. This latter result supports the idea that the midnight region of the tail between 10 and 20 is a special location where neutral lines are particularly apt to form. Such a neutral line will approach nearest the earth in the midnight and premidnight region, where substorms are thought to have their onset.

  1. Circularly polarized soft x-ray diffraction study of helical magnetism in hexaferrite

    NASA Astrophysics Data System (ADS)

    Mulders, A. M.; Lawrence, S. M.; Princep, A. J.; Staub, U.; Bodenthin, Y.; García-Fernández, M.; Garganourakis, M.; Hester, J.; Macquart, R.; Ling, C. D.

    2010-03-01

    Magnetic spiral structures can exhibit ferroelectric moments as recently demonstrated in various multiferroic materials. In such cases the helicity of the magnetic spiral is directly correlated with the direction of the ferroelectric moment and measurement of the helicity of magnetic structures is of current interest. Soft x-ray resonant diffraction is particularly advantageous because it combines element selectivity with a large magnetic cross-section. We calculate the polarization dependence of the resonant magnetic x-ray cross-section (electric dipole transition) for the basal plane magnetic spiral in hexaferrite Ba0.8Sr1.2Zn2Fe12O22 and deduce its domain population using circular polarized incident radiation. We demonstrate there is a direct correlation between the diffracted radiation and the helicity of the magnetic spiral.

  2. EFFECTS OF THE NON-RADIAL MAGNETIC FIELD ON MEASURING MAGNETIC HELICITY TRANSPORT ACROSS THE SOLAR PHOTOSPHERE

    SciTech Connect

    Song, Y. L.; Zhang, M.

    2015-05-10

    It is generally believed that the evolution of magnetic helicity has a close relationship with solar activity. Before the launch of the Solar Dynamics Observatory (SDO), earlier studies had mostly used Michelson Doppler Imager/SOHO line of sight (LOS) magnetograms and assumed that magnetic fields are radial when calculating the magnetic helicity injection rate from photospheric magnetograms. However, this assumption is not necessarily true. Here we use the vector magnetograms and LOS magnetograms, both taken by the Helioseismic and Magnetic Imager on SDO, to estimate the effects of the non-radial magnetic field on measuring the magnetic helicity injection rate. We find that: (1) the effect of the non-radial magnetic field on estimating tangential velocity is relatively small; (2) when estimating the magnetic helicity injection rate, the effect of the non-radial magnetic field is strong when active regions are observed near the limb and is relatively weak when active regions are close to disk center; and (3) the effect of the non-radial magnetic field becomes minor if the amount of accumulated magnetic helicity is the only concern.

  3. Helicity Transformation under the Collision and Merging of Magnetic Flux Ropes

    NASA Astrophysics Data System (ADS)

    Dehaas, Timothy

    2016-10-01

    A magnetic flux rope is a tube-like, current carrying plasma embedded in an external magnetic field. The magnetic field lines resemble threads in a rope, which vary in pitch according to radius. Flux ropes are ubiquitous in astrophysical plasmas, and bundles of these structures play an important role in the dynamics of the space environment. They are observed in the solar atmosphere and near-earth environment where they are seen to twist, merge, tear, and writhe. In this MHD context, their global dynamics are bound by rules of magnetic helicity conservation, unless, under a non-ideal process, helicity is transformed through magnetic reconnection, turbulence, or localized instabilities. These processes are tested under experimental conditions in the Large Plasma Device (LAPD). The device is a twenty-meter long, one-meter diameter, cylindrical vacuum vessel designed to generate a highly reproducible, magnetized plasma. Reliable shot-to-shot repetition of plasma parameters and over four hundred diagnostic ports enable the collection of volumetric datasets (measurements of ne, Te, Vp, B, J, E, uflow) as two kink-unstable flux ropes form, move, collide, and merge. Similar experiments on the LAPD have utilized these volumetric datasets, visualizing magnetic reconnection through a topological quasi-separatrix layer, or QSL. This QSL is shown to be spatially coincident with the reconnection rate, ∫ E . dl , and oscillates (although out of phase) with global helicity. Magnetic helicity is observed to have a negative sign and its counterpart, cross helicity, a positive one. These quantities oscillate 8% peak-to-peak, and the changes in helicity are visualized as 1) the transport of helicity (ϕB + E × A) and 2) the dissipation of the helicity - 2 E . B . This work is supported by LANL-UC research Grant and done at the Basic Plasma Science Facility, which is funded by DOE and NSF.

  4. Effect of magnetic helicity upon rectilinear propagation of charged particles in random magnetic fields

    NASA Technical Reports Server (NTRS)

    Earl, James A.

    1992-01-01

    When charged particles spiral along a large constant magnetic field, their trajectories are scattered by any random field components that are superposed on the guiding field. If the random field configuration embodies helicity, the scattering is asymmetrical with respect to a plane perpendicular to the guiding field, for particles moving into the forward hemisphere are scattered at different rates from those moving into the backward hemisphere. This asymmetry gives rise to new terms in the transport equations that describe propagation of charged particles. Helicity has virtually no impact on qualitative features of the diffusive mode of propagation. However, characteristic velocities of the coherent modes that appear after a highly anisotropic injection exhibit an asymmetry related to helicity. Explicit formulas, which embody the effects of helicity, are given for the anisotropies, the coefficient diffusion, and the coherent velocities. Predictions derived from these expressions are in good agreement with Monte Carlo simulations of particle transport, but the simulations reveal certain phenomena whose explanation calls for further analytical work.

  5. On the resilience of helical magnetic fields to turbulent diffusion and the astrophysical implications

    NASA Astrophysics Data System (ADS)

    Blackman, Eric G.; Subramanian, Kandaswamy

    2013-02-01

    The extent to which large-scale magnetic fields are susceptible to turbulent diffusion is important for interpreting the need for in situ large-scale dynamos in astrophysics and for observationally inferring field strengths compared to kinetic energy. By solving coupled evolution equations for magnetic energy and magnetic helicity in a system initialized with isotropic turbulence and an arbitrarily helical large-scale field, we quantify the decay rate of the latter for a bounded or periodic system. The magnetic energy associated with the non-helical large-scale field decays at least as fast as the kinematically estimated turbulent diffusion rate, but the decay rate of the helical part depends on whether the ratio of its magnetic energy to the turbulent kinetic energy exceeds a critical value given by M1, c = (k1/k2)2, where k1 and k2 are the wavenumbers of the large and forcing scales. Turbulently diffusing helical fields to small scales while conserving magnetic helicity requires a rapid increase in total magnetic energy. As such, only when the helical field is subcritical can it so diffuse. When supercritical, it decays slowly, at a rate determined by microphysical dissipation even in the presence of macroscopic turbulence. In effect, turbulent diffusion of such a large-scale helical field produces small-scale helicity whose amplification abates further turbulent diffusion. Two curious implications are that (1) standard arguments supporting the need for in situ large-scale dynamos based on the otherwise rapid turbulent diffusion of large-scale fields require re-thinking since only the large-scale non-helical field is so diffused in a closed system. Boundary terms could however provide potential pathways for rapid change of the large-scale helical field. (2) Since M1, c ≪ 1 for k1 ≪ k2, the presence of long-lived ordered large-scale helical fields as in extragalactic jets do not guarantee that the magnetic field dominates the kinetic energy.

  6. Effects of a magnetic cloud simultaneously observed on the equatorial ionosphere in midday and midnight sectors

    NASA Astrophysics Data System (ADS)

    Rastogi, R. G.; Chandra, H.; Das, A. C.; Sridharan, R.; Reinisch, B. W.; Ahmed, Khurshid

    2012-04-01

    An impact of a magnetic cloud on the Earth's magnetosphere occurred at 1636 UT on 25 June, 1998, associated with a sudden increase of the solar wind density and velocity, as well as a sudden increase of the zenithal component of the interplanetary magnetic field (IMF- B z). Following the impact of the magnetic cloud, IMF- B z was northward (10 nT) and remained steadily strong (about 15 nT) for the next six hours. IMF- B z turned southward at 2330 UT on 25 June, 1998, and remained strongly southward (-15 nT) for the next four hours. During the positive phase of IMF- B z, both the Auroral index and ring current index SYM/H remained steadily low indicating complete isolation of the Earth's magnetosphere from the solar wind and no significant changes were observed in the equatorial ionosphere. After the southward turning, the steady southward IMF- B z permitted solar wind energy to penetrate the magnetosphere and caused the generation of a magnetic storm associated with strong auroral electrojet activity ( A E index). Strong southward IMF- B z corresponds to the dawn-dusk interplanetary electric field (eastward on the dayside and westward on the night side). The ionograms at Jicamarca (night side) showed strong spread- F and at Thumba (dayside) showed an absence of equatorial type of sporadic- E, indicating a dusk-to-dawn electric field. Thus, the observations point to an electric field opposite in direction to that expected by the prompt penetration of the interplanetary electric field. An abnormally-large Auroral index ( A E) associated with the start of the storm suggests that the cause of the equatorial electric field changes is due to the disturbance dynamo effect.

  7. Morphology of blazar-induced gamma ray halos due to a helical intergalactic magnetic field

    SciTech Connect

    Long, Andrew J.; Vachaspati, Tanmay E-mail: tvachasp@asu.edu

    2015-09-01

    We study the characteristic size and shape of idealized blazar-induced cascade halos in the 1–100,GeV energy range assuming various non-helical and helical configurations for the intergalactic magnetic field (IGMF). While the magnetic field creates an extended halo, the helicity provides the halo with a twist. Under simplifying assumptions, we assess the parameter regimes for which it is possible to measure the size and shape of the halo from a single source and then to deduce properties of the IGMF. We find that blazar halo measurements with an experiment similar to Fermi-LAT are best suited to probe a helical magnetic field with strength and coherence length today in the ranges 10{sup −17} ∼< B{sub 0} / Gauss ∼< 10{sup −13} and 10 Mpc ∼< λ ∼< 10 Gpc where H ∼ B{sub 0}{sup 2} / λ is the magnetic helicity density. Stronger magnetic fields or smaller coherence scales can still potentially be investigated, but the connection between the halo morphology and the magnetic field properties is more involved. Weaker magnetic fields or longer coherence scales require high photon statistics or superior angular resolution.

  8. CMB anisotropies generated by a stochastic background of primordial magnetic fields with non-zero helicity

    SciTech Connect

    Ballardini, Mario

    2015-10-01

    We consider the impact of a stochastic background of primordial magnetic fields with non-vanishing helicity on CMB anisotropies in temperature and polarization. We compute the exact expressions for the scalar, vector and tensor part of the energy-momentum tensor including the helical contribution, by assuming a power-law dependence for the spectra and a comoving cutoff which mimics the damping due to viscosity. We also compute the parity-odd correlator between the helical and non-helical contribution which generate the TB and EB cross-correlation in the CMB pattern. We finally show the impact of including the helical term on the power spectra of CMB anisotropies up to multipoles with ℓ ∼ O(10{sup 3})

  9. Magnetic Helicity of the Global Field in Solar Cycles 23 and 24

    NASA Astrophysics Data System (ADS)

    Pipin, V. V.; Pevtsov, A. A.

    2014-07-01

    For the first time we reconstruct the magnetic helicity density of the global axisymmetric field of the Sun using the method proposed by Brandenburg et al. and Pipin et al. To determine the components of the vector potential, we apply a gauge which is typically employed in mean-field dynamo models. This allows for a direct comparison of the reconstructed helicity with the predictions from the mean-field dynamo models. We apply this method to two different data sets: the synoptic maps of the line-of-sight magnetic field from the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) and vector magnetic field measurements from the Vector Spectromagnetograph (VSM) on the Synoptic Optical Long-term Investigations of the Sun (SOLIS) system. Based on the analysis of the MDI/SOHO data, we find that in solar cycle 23 the global magnetic field had positive (negative) magnetic helicity in the northern (southern) hemisphere. This hemispheric sign asymmetry is opposite to the helicity of the solar active regions, but it is in agreement with the predictions of mean-field dynamo models. The data also suggest that the hemispheric helicity rule may have reversed its sign during the early and late phases of cycle 23. Furthermore, the data indicate an imbalance in magnetic helicity between the northern and southern hemispheres. This imbalance seems to correlate with the total level of activity in each hemisphere in cycle 23. The magnetic helicity for the rising phase of cycle 24 is derived from SOLIS/VSM data, and qualitatively its latitudinal pattern is similar to the pattern derived from SOHO/MDI data for cycle 23.

  10. New method to determine proton trajectories in the equatorial plane of a dipole magnetic field.

    PubMed

    Ioanoviciu, Damaschin

    2015-01-01

    A parametric description of proton trajectories in the equatorial plane of Earth's dipole magnetic field has been derived. The exact expression of the angular coordinate contains an integral to be performed numerically. The radial coordinate results from the initial conditions by basic mathematical operations and by using trigonometric functions. With the approximate angular coordinate formula, applicable for a wide variety of cases of protons trapped in Earth's radiation belts, no numerical integration is needed. The results of exact and approximate expressions were compared for a specific case and small differences were found.

  11. Validation and Benchmarking of a Practical Free Magnetic Energy and Relative Magnetic Helicity Budget Calculation in Solar Magnetic Structures

    NASA Astrophysics Data System (ADS)

    Moraitis, K.; Tziotziou, K.; Georgoulis, M. K.; Archontis, V.

    2014-12-01

    In earlier works we introduced and tested a nonlinear force-free (NLFF) method designed to self-consistently calculate the coronal free magnetic energy and the relative magnetic helicity budgets of observed solar magnetic structures. In principle, the method requires only a single, photospheric or low-chromospheric, vector magnetogram of a quiet-Sun patch or an active region and performs calculations without three-dimensional magnetic and velocity-field information. In this work we strictly validate this method using three-dimensional coronal magnetic fields. Benchmarking employs both synthetic, three-dimensional magnetohydrodynamic simulations and nonlinear force-free field extrapolations of the active-region solar corona. Our time-efficient NLFF method provides budgets that differ from those of more demanding semi-analytical methods by a factor of approximately three, at most. This difference is expected to come from the physical concept and the construction of the method. Temporal correlations show more discrepancies that are, however, soundly improved for more complex, massive active regions, reaching correlation coefficients on the order of, or exceeding, 0.9. In conclusion, we argue that our NLFF method can be reliably used for a routine and fast calculation of the free magnetic energy and relative magnetic helicity budgets in targeted parts of the solar magnetized corona. As explained in this article and in previous works, this is an asset that can lead to valuable insight into the physics and triggering of solar eruptions.

  12. Laboratory studies of magnetic vortices. I. Directional radiation of whistler waves based on helicity injection

    NASA Astrophysics Data System (ADS)

    Stenzel, R. L.; Urrutia, J. M.

    1999-08-01

    A novel principle for the directional excitation of whistler waves is demonstrated in a laboratory experiment. It is based on helicity conservation of electron magnetohydrodynamic fields in plasmas. Whistler wave packets propagating in opposite directions to a static magnetic field have opposite signs of helicity. Injection of helicity of one sign produces radiation in one direction. This is accomplished with an antenna consisting of a loop linked through a torus. Directionality of 20 dB is readily achieved. The direction of radiation is electronically reversible. Transmission between two antennas is unidirectional, hence nonreciprocal. Possible applications include secure communication, direction finding, and efficient power deposition in radio frequency (rf) heating.

  13. Laboratory studies of magnetic vortices. I. Directional radiation of whistler waves based on helicity injection

    NASA Astrophysics Data System (ADS)

    Stenzel, R. L.; Urrutia, J. M.

    1999-12-01

    A novel principle for the directional excitation of whistler waves is demonstrated in a laboratory experiment. It is based on helicity conservation of electron magnetohydrodynamic fields in plasmas. Whistler wave packets propagating in opposite directions to a static magnetic field have opposite signs of helicity. Injection of helicity of one sign produces radiation in one direction. This is accomplished with an antenna consisting of a loop linked through a torus. Directionality of 20 dB is readily achieved. The direction of radiation is electronically reversible. Transmission between two antennas is unidirectional, hence nonreciprocal. Possible applications include secure communication, direction finding, and efficient power deposition in radio frequency (rf) heating.

  14. Note: On-chip multifunctional fluorescent-magnetic Janus helical microswimmers

    NASA Astrophysics Data System (ADS)

    Hwang, G.; Decanini, D.; Leroy, L.; Haghiri-Gosnet, A. M.

    2016-03-01

    Microswimmers integrated into microfluidic devices that are capable of self-illumination through fluorescence could revolutionize many aspects of technology, especially for biological applications. Few illumination and propulsion techniques of helical microswimmers inside microfluidic channels have been demonstrated. This paper presents the fabrication, detachment, and magnetic propulsions of multifunctional fluorescent-magnetic helical microswimmers integrated inside microfluidics. The fabrication process is based on two-photon laser lithography to pattern 3-D nanostructures from fluorescent photoresist coupled with conventional microfabrication techniques for magnetic thin film deposition by shadowing. After direct integration inside a microfluidic device, injected gas bubble allows gentle detachment of the integrated helical microswimmers whose magnetic propulsion can then be directly applied inside the microfluidic channel using external electromagnetic coil setup. With their small scale, fluorescence, excellent resistance to liquid/gas surface tension, and robust propulsion capability inside the microfluidic channel, the microswimmers can be used as high-resolution and large-range mobile micromanipulators inside microfluidic channels.

  15. Theory for nanoparticle retention time in the helical channel of quadrupole magnetic field-flow fractionation

    NASA Astrophysics Data System (ADS)

    Williams, P. Stephen; Carpino, Francesca; Zborowski, Maciej

    2009-05-01

    Quadrupole magnetic field-flow fractionation (QMgFFF) is a separation and characterization technique for magnetic nanoparticles such as those used for cell labeling and for targeted drug therapy. A helical separation channel is used to efficiently exploit the quadrupole magnetic field. The fluid and sample components therefore have angular and longitudinal components to their motion in the thin annular space occupied by the helical channel. The retention ratio is defined as the ratio of the times for non-retained and a retained material to pass through the channel. Equations are derived for the respective angular and longitudinal components to retention ratio.

  16. Bifurcation to 3D helical magnetic equilibrium in an axisymmetric toroidal device.

    PubMed

    Bergerson, W F; Auriemma, F; Chapman, B E; Ding, W X; Zanca, P; Brower, D L; Innocente, P; Lin, L; Lorenzini, R; Martines, E; Momo, B; Sarff, J S; Terranova, D

    2011-12-16

    We report the first direct measurement of the internal magnetic field structure associated with a 3D helical equilibrium generated spontaneously in the core of an axisymmetric toroidal plasma containment device. Magnetohydrodynamic equilibrium bifurcation occurs in a reversed-field pinch when the innermost resonant magnetic perturbation grows to a large amplitude, reaching up to 8% of the mean field strength. Magnetic topology evolution is determined by measuring the Faraday effect, revealing that, as the perturbation grows, toroidal symmetry is broken and a helical equilibrium is established.

  17. Seeded and unseeded helical modes in magnetized, non-imploding cylindrical liner-plasmas

    NASA Astrophysics Data System (ADS)

    Yager-Elorriaga, D. A.; Zhang, P.; Steiner, A. M.; Jordan, N. M.; Lau, Y. Y.; Gilgenbach, R. M.

    2016-10-01

    In this research, we generated helical instability modes using unseeded and kink-seeded, non-imploding liner-plasmas at the 1 MA Linear Transformer Driver facility at the University of Michigan in order to determine the effects of externally applied, axial magnetic fields. In order to minimize the coupling of sausage and helical modes to the magneto Rayleigh-Taylor instability, the 400 nm-thick aluminum liners were placed directly around straight-cylindrical (unseeded) or threaded-cylindrical (kink-seeded) support structures to prevent implosion. The evolution of the instabilities was imaged using a combination of laser shadowgraphy and visible self-emission, collected by a 12-frame fast intensified CCD camera. With no axial magnetic field, the unseeded liners developed an azimuthally correlated m = 0 sausage instability (m is the azimuthal mode number). Applying a small external axial magnetic field of 1.1 T (compared to peak azimuthal field of 30 T) generated a smaller amplitude, helically oriented instability structure that is interpreted as an m = +2 helical mode. The kink-seeded liners showed highly developed helical structures growing at the seeded wavelength of λ = 1.27 mm. It was found that the direction of the axial magnetic field played an important role in determining the overall stabilization effects; modes with helices spiraling in the opposite direction of the global magnetic field showed the strongest stabilization. Finally, the Weis-Zhang analytic theory [Weis et al., Phys. Plasmas 22, 032706 (2015)] is used to calculate sausage and helical growth rates for experimental parameters in order to study the effects of axial magnetic fields.

  18. Interplanetary magnetic field variations and the electromagnetic state of the equatorial ionosphere

    NASA Technical Reports Server (NTRS)

    Patel, V. L.

    1978-01-01

    The Esq phenomena were selected in order to examine the effect of the interplanetary magnetic field (IMF) on the ionospheric plasma and to obtain insight into the interplanetary ionospheric coupling processes. January-March 1973 interplanetary magnetic field data of Explorer 43, Huancayo ionograms, and surface equatorial magnetograms were used. The IMF observations from Explorer 43 in the form of 15-sec averages were examined around the time of disappearance of the Esq. The IMF z-component was observed to change from a negative to a positive value before the disappearance of the Esq in four events where simultaneous data were available. The general explanation is that the induced electric field becomes westward from a previous eastward direction, coinciding with the IMF z-component reversal. Thus, just before the Esq disappears, the magnetosphere is subjected to the westward electric field. If this field is impressed to the low-latitude ionosphere, the resultant electric field in the equatorial ionosphere changes from eastward (westward) to westward (eastward) in the daytime (nighttime).

  19. Faraday Rotation Measure Gradients from a Helical Magnetic Field in 3C273

    SciTech Connect

    Zavala, Robert T.; Taylor, G.B.; /NRAO, Socorro /KIPAC, Menlo Park

    2005-06-06

    Using high frequency (12-22 GHz) VLBA observations we confirm the existence of a Faraday rotation measure gradient of {approx}500 rad m{sup -2} mas{sup -1} transverse to the jet axis in the quasar 3C273. The gradient is seen in two epochs spaced roughly six months apart. This stable transverse rotation measure gradient is expected if a helical magnetic field wraps around the jet. The overall order to the magnetic field in the inner projected 40 parsecs is consistent with a helical field. However, we find an unexpected increase in fractional polarization along the edges of the source, contrary to expectations. This high fractional polarization rules out internal Faraday rotation, but is not readily explained by a helical field. After correcting for the rotation measure, the intrinsic magnetic field direction in the jet of 3C273 changes from parallel to nearly perpendicular to the projected jet motion at two locations. If a helical magnetic field causes the observed rotation measure gradient then the synchrotron emitting electrons must be separate from the helical field region. The presence or absence of transverse rotation measure gradients in other sources is also discussed.

  20. Ionospheric effects of the March 13, 1989, magnetic storm at low and equatorial latitudes

    SciTech Connect

    Batista, I.S.; De Paula, E.R.; Abdu, M.A.; Trivedi, N.B. ); Greenspan, M.E. )

    1991-08-01

    The great geomagnetic storm of March 13, 1989 caused severely anomalous behavior in the equatorial and low latitude ionosphere in the Brazilian longitude sector. The ionograms over Fortaleza indicated F region upward plasma drifts exceeding 200 m s{sup {minus}1} at 1,830 LT as compared to normal values of 40 m s{sup {minus}1} for this epoch. Large negative phases were observed in foF2 over Fortaleza and Cachoeira Paulista and in total electron content measured over Sao Jose dos Campos. The equatorial ionization anomaly was totally absent either because of its anomalous expansion to higher latitudes or because of inhibition of its development on the two nights following the storm. Many anomalous variations in F region peak density and height, occurring simultaneously with sharp variations on H component of magnetic field over Fortaleza and with auroral substorms, give strong evidence of penetration of magnetospheric electric fields to equatorial and low latitudes. Auroral type sporadic E and night E layers are observed after 1,830 LT over Cachoeira Paulista, the latter showing peak electron density of about 6 {times} 10{sup 4} el cm{sup {minus}3}, therefore comparable to the E layer peak density in the morning hours at that station. The Fortaleza ionograms show the presence of the F1 layer at night, a phenomenon that has never been observed over our two stations before. The role played by electric fields penetrating from high to low latitudes, particle precipitation, and composition changes in explaining the observations is discussed.

  1. Continuous day-time time series of E-region equatorial electric fields derived from ground magnetic observatory data

    NASA Astrophysics Data System (ADS)

    Alken, P.; Chulliat, A.; Maus, S.

    2012-12-01

    The day-time eastward equatorial electric field (EEF) in the ionospheric E-region plays an important role in equatorial ionospheric dynamics. It is responsible for driving the equatorial electrojet (EEJ) current system, equatorial vertical ion drifts, and the equatorial ionization anomaly (EIA). Due to its importance, there is much interest in accurately measuring and modeling the EEF. However, there are limited sources of direct EEF measurements with full temporal and spatial coverage of the equatorial ionosphere. In this work, we propose a method of estimating a continuous day-time time series of the EEF at any longitude, provided there is a pair of ground magnetic observatories in the region which can accurately track changes in the strength of the EEJ. First, we derive a climatological unit latitudinal current profile from direct overflights of the CHAMP satellite and use delta H measurements from the ground observatory pair to determine the magnitude of the current. The time series of current profiles is then inverted for the EEF by solving the governing electrodynamic equations. While this method has previously been applied and validated in the Peruvian sector, in this work we demonstrate the method using a pair of magnetometers in Africa (Samogossoni, SAM, 0.18 degrees magnetic latitude and Tamanrasset, TAM, 11.5 degrees magnetic latitude) and validate the resulting EEF values against the CINDI ion velocity meter (IVM) instrument on the C/NOFS satellite. We find a very good 80% correlation with C/NOFS IVM measurements and a root-mean-square difference of 9 m/s in vertical drift velocity. This technique can be extended to any pair of ground observatories which can capture the day-time strength of the EEJ. We plan to apply this work to more observatory pairs around the globe and distribute real-time equatorial electric field values to the community.

  2. Plasma transport in the equatorial ionosphere during the great magnetic storm of March 1989

    SciTech Connect

    Rasmussen, C.E. ); Greenspan, M.E. )

    1993-01-01

    We have modeled plasma transport in the low-latitude and equatorial ionosphere during the great magnetic storm of March 1989. Our goal was to provide a consistent explanation for the DMSP (Defense Meteorological Satellite Program) observations of dramatic decreases in ion density and rapid ion drifts in the low latitude ionosphere over South America during the storm. The modeling effort supports the hypothesis that abnormally large upward drifts lifted F region plasma above the satellite's altitude and created the density depletions observed by DMSP. Modeled O[sup +] densities at the satellite's altitude have a strong qualitative resemblance to DMSP observations. Both the model and the observations indicate a deep density through with extremely sharp boundaries surrounding the equator. The widths of both the modeled and the observed equatorial troughs increase with time. Vertical ion drifts predicted by the model also have been compared with DMSP measurements. Like the observed vertical drifts, the modeled drifts reversed sign near the trough boundaries. The modeled vertical drifts are of the same order and direction as the vertical component of E x B convection near the equator, but of opposite direction (downward) near the trough boundaries and outside of the trough. 12 refs., 8 figs., 1 tab.

  3. Magnetic Energy and Helicity in Two Emerging Active Regions in the Sun

    NASA Technical Reports Server (NTRS)

    Liu, Y.; Schuck, P. W.

    2012-01-01

    The magnetic energy and relative magnetic helicity in two emerging solar active regions, AR 11072 and AR 11158,are studied. They are computed by integrating over time the energy and relative helicity fluxes across the photosphere. The fluxes consist of two components: one from photospheric tangential flows that shear and braid field lines (shear term), the other from normal flows that advect magnetic flux into the corona (emergence term). For these active regions: (1) relative magnetic helicity in the active-region corona is mainly contributed by the shear term,(2) helicity fluxes from the emergence and the shear terms have the same sign, (3) magnetic energy in the corona (including both potential energy and free energy) is mainly contributed by the emergence term, and(4) energy fluxes from the emergence term and the shear term evolved consistently in phase during the entire flux emergence course.We also examine the apparent tangential velocity derived by tracking field-line footpoints using a simple tracking method. It is found that this velocity is more consistent with tangential plasma velocity than with the flux transport velocity, which agrees with the conclusion by Schuck.

  4. MAGNETIC ENERGY AND HELICITY IN TWO EMERGING ACTIVE REGIONS IN THE SUN

    SciTech Connect

    Liu, Y.; Schuck, P. W.

    2012-12-20

    The magnetic energy and relative magnetic helicity in two emerging solar active regions, AR 11072 and AR 11158, are studied. They are computed by integrating over time the energy and relative helicity fluxes across the photosphere. The fluxes consist of two components: one from photospheric tangential flows that shear and braid field lines (shear term), the other from normal flows that advect magnetic flux into the corona (emergence term). For these active regions: (1) relative magnetic helicity in the active-region corona is mainly contributed by the shear term, (2) helicity fluxes from the emergence and the shear terms have the same sign, (3) magnetic energy in the corona (including both potential energy and free energy) is mainly contributed by the emergence term, and (4) energy fluxes from the emergence term and the shear term evolved consistently in phase during the entire flux emergence course. We also examine the apparent tangential velocity derived by tracking field-line footpoints using a simple tracking method. It is found that this velocity is more consistent with tangential plasma velocity than with the flux transport velocity, which agrees with the conclusion by Schuck.

  5. Free magnetic energy and relative magnetic helicity diagnostics for the quality of NLFF field extrapolations

    NASA Astrophysics Data System (ADS)

    Moraitis, Kostas; Archontis, Vasilis; Tziotziou, Konstantinos; Georgoulis, Manolis K.

    We calculate the instantaneous free magnetic energy and relative magnetic helicity of solar active regions using two independent approaches: a) a non-linear force-free (NLFF) method that requires only a single photospheric vector magnetogram, and b) well known semi-analytical formulas that require the full three-dimensional (3D) magnetic field structure. The 3D field is obtained either from MHD simulations, or from observed magnetograms via respective NLFF field extrapolations. We find qualitative agreement between the two methods and, quantitatively, a discrepancy not exceeding a factor of 4. The comparison of the two methods reveals, as a byproduct, two independent tests for the quality of a given force-free field extrapolation. We find that not all extrapolations manage to achieve the force-free condition in a valid, divergence-free, magnetic configuration. This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.

  6. Magnetic Helicity Estimations in Models and Observations of the Solar Magnetic Field. Part I: Finite Volume Methods

    NASA Astrophysics Data System (ADS)

    Valori, Gherardo; Pariat, Etienne; Anfinogentov, Sergey; Chen, Feng; Georgoulis, Manolis K.; Guo, Yang; Liu, Yang; Moraitis, Kostas; Thalmann, Julia K.; Yang, Shangbin

    2016-11-01

    Magnetic helicity is a conserved quantity of ideal magneto-hydrodynamics characterized by an inverse turbulent cascade. Accordingly, it is often invoked as one of the basic physical quantities driving the generation and structuring of magnetic fields in a variety of astrophysical and laboratory plasmas. We provide here the first systematic comparison of six existing methods for the estimation of the helicity of magnetic fields known in a finite volume. All such methods are reviewed, benchmarked, and compared with each other, and specifically tested for accuracy and sensitivity to errors. To that purpose, we consider four groups of numerical tests, ranging from solutions of the three-dimensional, force-free equilibrium, to magneto-hydrodynamical numerical simulations. Almost all methods are found to produce the same value of magnetic helicity within few percent in all tests. In the more solar-relevant and realistic of the tests employed here, the simulation of an eruptive flux rope, the spread in the computed values obtained by all but one method is only 3 %, indicating the reliability and mutual consistency of such methods in appropriate parameter ranges. However, methods show differences in the sensitivity to numerical resolution and to errors in the solenoidal property of the input fields. In addition to finite volume methods, we also briefly discuss a method that estimates helicity from the field lines' twist, and one that exploits the field's value at one boundary and a coronal minimal connectivity instead of a pre-defined three-dimensional magnetic-field solution.

  7. Characteristics of magnetic island formation due to resistive interchange instability in helical plasma

    SciTech Connect

    Ueda, R.; Matsumoto, Y.; Itagaki, M.; Oikawa, S.; Watanabe, K. Y.; Sato, M.

    2014-05-15

    Focusing attention on the magnetic island formation, we investigate the characteristics of the resistive interchange magnetohydrodynamics instabilities, which would limit a high beta operational regime in helical type fusion reactors. An introduction of a new index, i.e., the ratio of the magnetic fluctuation level to the radial displacement, enables us to make a systematic analysis on the magnetic island formation in the large helical device-like plasmas during the linear growth phase; (i) the interchange instability with the second largest growth rate makes the magnetic island larger than that with the largest growth rate when the amplitude of the radial displacement in both cases is almost the same as each other; (ii) applied to a typical tearing instability, the index is smaller than that for the interchange instability with the second largest growth rate.

  8. Observation of turbulent intermittency scaling with magnetic helicity in an MHD plasma wind tunnel.

    PubMed

    Schaffner, D A; Wan, A; Brown, M R

    2014-04-25

    The intermittency in turbulent magnetic field fluctuations has been observed to scale with the amount of magnetic helicity injected into a laboratory plasma. An unstable spheromak injected into the MHD wind tunnel of the Swarthmore Spheromak Experiment displays turbulent magnetic and plasma fluctuations as it relaxes into a Taylor state. The level of intermittency of this turbulence is determined by finding the flatness of the probability distribution function of increments for magnetic pickup coil fluctuations B˙(t). The intermittency increases with the injected helicity, but spectral indices are unaffected by this variation. While evidence is provided which supports the hypothesis that current sheets and reconnection sites are related to the generation of this intermittent signal, the true nature of the observed intermittency remains unknown.

  9. HF wave propagation and induced ionospheric turbulence in the magnetic equatorial region

    NASA Astrophysics Data System (ADS)

    Eliasson, B.; Papadopoulos, K.

    2016-03-01

    The propagation and excitation of artificial ionospheric turbulence in the magnetic equatorial region by high-frequency electromagnetic (EM) waves injected into the overhead ionospheric layer is examined. EM waves with ordinary (O) mode polarization reach the critical layer only if their incidence angle is within the Spitze cone. Near the critical layer the wave electric field is linearly polarized and directed parallel to the magnetic field lines. For large enough amplitudes, the O mode becomes unstable to the four-wave oscillating two-stream instability and the three-wave parametric decay instability driving large-amplitude Langmuir and ion acoustic waves. The interaction between the induced Langmuir turbulence and electrons located within the 50-100 km wide transmitter heating cone at an altitude of 230 km can potentially accelerate the electrons along the magnetic field to several tens to a few hundreds of eV, far beyond the thresholds for optical emissions and ionization of the neutral gas. It could furthermore result in generation of shear Alfvén waves such as those recently observed in laboratory experiments at the University of California, Los Angeles Large Plasma Device.

  10. Kinetic, Magnetic and Cross-helicity Contributions to the Turbulent Cascade in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Forman, M. A.; Stawarz, J. E.; Smith, C. W.

    2009-12-01

    In classic Kolmogorov theory of inertial-range turbulence, the third moment of velocity fluctuations at spatial lag L, is proportional to L times the rate of energy input at large scales (= epsilon = dissipation rate). Furthermore, the turbulent power is proportional to the 2/3 power of epsilon. In the MHD solar wind, energy and energy cascade involve both velocity and magnetic fluctuations, and the third moment related to energy dissipation has three terms: (1) the same hydrodynamic term, of correlations between velocity fluctuations and kinetic energy, (2) correlations between velocity fluctuations and magnetic energy, and (3) correlations between magnetic fluctuations and cross-helicity. We used ACE MAG/SWEPAM merged data set for the last decade, to separately determine these three third moments at lags from 64 seconds to 2 hours to see how each term varies with L, and contributes to the energy cascade, and how they add up. Moments were calculated for 12-hour intervals. Mean values and error bars were calculated for intervals in 12 types of solar wind sorted by their turbulent energy level and their bulk cross-helicity, or “imbalance”. With calculated accuracy, we report that when the cross-helicity is small, 1. Energy dissipation rate is proportional to turbulent power^3/2, as Kolmogorov theory predicts 2. The magnetic energy term is approximately equal to the kinetic energy (hydrodynamic) term; however 3. The cross-helicity term nearly cancels the magnetic energy term, so that the energy third moment is only slightly larger than the hydrodynamic term alone. When the cross-helicity is large, 1. All three Energy third moments are dramatically suppressed. 2. Energy dissipation rate deduced from third moment scaling is small or possibly negative, and does NOT agree with Kolmogorov, implying that 3. Most of the energy in fluctuating fields is NOT part of a direct inertial cascade.

  11. Global-scale consequences of magnetic-helicity injection and condensation on the sun

    SciTech Connect

    Mackay, Duncan H.; DeVore, C. Richard; Antiochos, Spiro K.

    2014-04-01

    In the recent paper of Antiochos, a new concept for the injection of magnetic helicity into the solar corona by small-scale convective motions and its condensation onto polarity inversion lines (PILs) was developed. We investigate this concept through global simulations of the Sun's photospheric and coronal magnetic fields, and compare the results with the hemispheric pattern of solar filaments. Assuming that the vorticity of the cells is predominantly counterclockwise/clockwise in the northern/southern hemisphere, the convective motions inject negative/positive helicity into each hemisphere. The simulations show that: (1) on a north-south oriented PIL, both differential rotation and convective motions inject the same sign of helicity, which matches that required to reproduce the hemispheric pattern of filaments. (2) On a high-latitude east-west oriented polar crown or subpolar crown PIL, the vorticity of the cells has to be approximately 2-3 times greater than the local differential-rotation gradient in order to overcome the incorrect sign of helicity injection from differential rotation. (3) In the declining phase of the cycle, as a bipole interacts with the polar field, in some cases, helicity condensation can reverse the effect of differential rotation along the east-west lead arm but not in all cases. The results show that this newly developed concept of magnetic helicity injection and condensation, in conjunction with the mechanisms used in Yeates et al., is a viable explanation for the hemispheric pattern of filaments. Future observational studies should focus on examining the vorticity component within convective motions to determine both its magnitude and latitudinal variation relative to the differential-rotation gradient on the Sun.

  12. Global-Scale Consequences of Magnetic-Helicity Injection and Condensation on the Sun

    NASA Technical Reports Server (NTRS)

    Mackay, Duncan H.; DeVore, C. Richard; Antiochos, Spiro K.

    2013-01-01

    In the recent paper of Antiochos, a new concept for the injection of magnetic helicity into the solar corona by small-scale convective motions and its condensation onto polarity inversion lines (PILs) has been developed. We investigate this concept through global simulations of the Sun's photospheric and coronal magnetic fields and compare the results with the hemispheric pattern of solar filaments. Assuming that the vorticity of the cells is predominately counter-clockwise/clockwise in the northern/southern hemisphere, the convective motions inject negative/positive helicity into each hemisphere. The simulations show that: (i) On a north-south orientated PIL, both differential rotation and convective motions inject the same sign of helicity which matches that required to reproduce the hemispheric pattern of filaments. (ii) On a high latitude east-west orientated polar crown or sub-polar crown PIL, the vorticity of the cells has to be approximately 2-3 times greater than the local differential rotation gradient in order to overcome the incorrect sign of helicity injection from differential rotation. (iii) In the declining phase of the cycle, as a bipole interacts with the polar field, in some cases helicity condensation can reverse the effect of differential rotation along the East-West lead arm, but not in all cases. The results show that this newly developed concept of magnetic helicity injection and condensation is a viable method to explain the hemispheric pattern of filaments in conjunction with the mechanisms used in Yeates et al. (2008). Future observational studies should focus on determining the vorticity component within convective motions to determine, both its magnitude and latitudinal variation relative to the differential rotation gradient on the Sun.

  13. Effect of magnetic configuration on the neutral particle transport in compact helical system edge region

    NASA Astrophysics Data System (ADS)

    Matsuura, H.; Suzuki, C.; Okamura, S.

    2007-06-01

    Neutral particle behavior in compact helical system (CHS) was studied with the Monte Carlo simulation code DEGAS. By shifting the magnetic axis position, magnetic configuration of CHS device changes from the material limiter to the magnetic divertor. We estimated Hα emission from excited hydrogen atoms and dissociated molecules with a collisional radiation model, and compared experimental observations to study the change of recycling condition. With the comparison of simulation result with Hα detector signal, the change of recycling source by the magnetic axis shift was qualitatively confirmed.

  14. Dynamic response functions and helical gaps in interacting Rashba nanowires with and without magnetic fields

    NASA Astrophysics Data System (ADS)

    Pedder, Christopher J.; Meng, Tobias; Tiwari, Rakesh P.; Schmidt, Thomas L.

    2016-12-01

    A partially gapped spectrum due to the application of a magnetic field is one of the main probes of Rashba spin-orbit coupling in nanowires. Such a "helical gap" manifests itself in the linear conductance, as well as in dynamic response functions such as the spectral function, the structure factor, or the tunneling density of states. In this paper we investigate theoretically the signature of the helical gap in these observables with a particular focus on the interplay between Rashba spin-orbit coupling and electron-electron interactions. We show that in a quasi-one-dimensional wire, interactions can open a helical gap even without magnetic field. We calculate the dynamic response functions using bosonization, a renormalization group analysis, and the exact form factors of the emerging sine-Gordon model. For special interaction strengths, we verify our results by re-fermionization. We show how the two types of helical gaps, caused by magnetic fields or interactions, can be distinguished in experiments.

  15. Helical and tubular lipid microstructures that are electroless-coated with CoNiReP for wireless magnetic manipulation.

    PubMed

    Schuerle, Simone; Pané, Salvador; Pellicer, Eva; Sort, Jordi; Baró, Maria D; Nelson, Bradley J

    2012-05-21

    Hybrid magnetic phospholipidic-based tubular and helical microagents are wirelessly manipulated by means of a 5-DOF electromagnetic system. Two different strategies are used to manipulate these nanostructures in simulated biologic capillaries. Tubules are pulled by applying magnetic field gradients and oriented by magnetic fields. Helices exhibit a cork-screw motion similar to the swimming strategy used by motile bacteria such as E. coli.

  16. Magnetic-field-induced Fabry-Pérot resonances in helical edge states

    NASA Astrophysics Data System (ADS)

    Soori, Abhiram; Das, Sourin; Rao, Sumathi

    2012-09-01

    We study electronic transport across a helical edge state exposed to a uniform magnetic (B⃗) field over a finite length. We show that this system exhibits Fabry-Pérot-type resonances in electronic transport. The intrinsic spin anisotropy of the helical edge states allows us to tune these resonances by changing the direction of the B⃗ field while keeping its magnitude constant. This is in sharp contrast to the case of nonhelical one-dimensional electron gases with a parabolic dispersion, where similar resonances do appear in individual spin channels (↑ and ↓) separately which, however, cannot be tuned by merely changing the direction of the B⃗ field. These resonances provide a unique way to probe the helical nature of the theory. We study the robustness of these resonances against a possible static impurity in the channel.

  17. One-way helical electromagnetic wave propagation supported by magnetized plasma

    PubMed Central

    Yang, Biao; Lawrence, Mark; Gao, Wenlong; Guo, Qinghua; Zhang, Shuang

    2016-01-01

    In this paper we reveal the presence of photonic one-way helical surface states in a simple natural system- magnetized plasma. The application of an external magnetic field to a bulk plasma body not only breaks time-reversal-symmetry but also leads to separation of Equi-Frequency Contour surfaces (EFCs) to form topologically nontrivial gaps in k space. Interestingly, these EFCs support topologically protected surface states. We numerically investigate an interface between magnetized plasma, using a realistic model for parameter dispersion, and vacuum, to confirm the existence of one-way scatter-immune helical surface states. Unlike previous proposals for achieving photonic one-way propagation, our scheme does not require the use of artificial structures and should therefore be simple to implement experimentally. PMID:26883883

  18. Noiseless manipulation of helical edge state transport by a quantum magnet

    NASA Astrophysics Data System (ADS)

    Silvestrov, P. G.; Recher, P.; Brouwer, P. W.

    2016-05-01

    The current through a helical edge state of a quantum spin Hall insulator may be fully transmitted through a magnetically gapped region due to a combination of spin-transfer torque and spin pumping [Meng et al., Phys. Rev. B 90, 205403 (2014), 10.1103/PhysRevB.90.205403]. Using a scattering approach, we here argue that in such a system the current is effectively carried by electrons with energies below the magnet-induced gap and well below the Fermi energy. This has striking consequences, such as the absence of shot noise, an exponential suppression of thermal noise, and an obstruction of thermal transport. For two helical edges covered by the same quantum magnet, the device can act as a robust noiseless current splitter.

  19. Magnet design with 100-kA HTS STARS conductors for the helical fusion reactor

    NASA Astrophysics Data System (ADS)

    Yanagi, N.; Terazaki, Y.; Ito, S.; Tamura, H.; Hamaguchi, S.; Mito, T.; Hashizume, H.; Sagara, A.

    2016-12-01

    The high-temperature superconducting (HTS) option is employed for the conceptual design of the LHD-type helical fusion reactor FFHR-d1. The 100-kA-class STARS (Stacked Tapes Assembled in Rigid Structure) conductor is used for the magnet system including the continuously wound helical coils. Protection of the magnet system in case of a quench is a crucial issue and the hot-spot temperature during an emergency discharge is estimated based on the zero-dimensional and one-dimensional analyses. The number of division of the coil winding package is examined to limit the voltage generation. For cooling the HTS magnet, helium gas flow is considered and its feasibility is examined by simple analysis as a first step.

  20. Self-similar inverse cascade of magnetic helicity driven by the chiral anomaly

    NASA Astrophysics Data System (ADS)

    Hirono, Yuji; Kharzeev, Dmitri E.; Yin, Yi

    2015-12-01

    For systems with charged chiral fermions, the imbalance of chirality in the presence of magnetic field generates an electric current—this is the chiral magnetic effect (CME). We study the dynamical real-time evolution of electromagnetic fields coupled by the anomaly to the chiral charge density and the CME current by solving the Maxwell-Chern-Simons equations. We find that the CME induces the inverse cascade of magnetic helicity toward the large distances, and that at late times this cascade becomes self-similar, with universal exponents. We also find that in terms of gauge field topology the inverse cascade represents the transition from linked electric and magnetic fields (Hopfions) to the knotted configuration of magnetic field (Chandrasekhar-Kendall states). The magnetic reconnections are accompanied by the pulses of the CME current directed along the magnetic field lines. We devise an experimental signature of these phenomena in heavy ion collisions, and speculate about implications for condensed matter systems.

  1. HELICAL MAGNETIC FIELDS IN THE NGC 1333 IRAS 4A PROTOSTELLAR OUTFLOWS

    SciTech Connect

    Ching, Tao-Chung; Lai, Shih-Ping; Zhang, Qizhou; Girart, Josep M.; Yang, Louis; Rao, Ramprasad

    2016-03-10

    We present Submillimeter Array polarization observations of the CO J = 3–2 line toward NGC 1333 IRAS 4A. The CO Stokes I maps at an angular resolution of ∼1″ reveal two bipolar outflows from the binary sources of NGC 1333 IRAS 4A. The kinematic features of the CO emission can be modeled by wind-driven outflows at ∼20° inclined from the plane of the sky. Close to the protostars the CO polarization, at an angular resolution of ∼2.″3, has a position angle approximately parallel to the magnetic field direction inferred from the dust polarizations. The CO polarization direction appears to vary smoothly from an hourglass field around the core to an arc-like morphology wrapping around the outflow, suggesting a helical structure of magnetic fields that inherits the poloidal fields at the launching point and consists of toroidal fields at a farther distance of outflow. The helical magnetic field is consistent with the theoretical expectations for launching and collimating outflows from a magnetized rotating disk. Considering that the CO polarized emission is mainly contributed from the low-velocity and low-resolution data, the helical magnetic field is likely a product of the wind–envelope interaction in the wind-driven outflows. The CO data reveal a PA of ∼30° deflection in the outflows. The variation in the CO polarization angle seems to correlate with the deflections. We speculate that the helical magnetic field contributes to ∼10° deflection of the outflows by means of Lorentz force.

  2. Realizing topological stability of magnetic helices in exchange-coupled multilayers for all-spin-based system

    PubMed Central

    Fust, Sergej; Mukherjee, Saumya; Paul, Neelima; Stahn, Jochen; Kreuzpaintner, Wolfgang; Böni, Peter; Paul, Amitesh

    2016-01-01

    Topologically stabilized spin configurations like helices in the form of planar domain walls (DWs) or vortex-like structures with magnetic functionalities are more often a theoretical prediction rather than experimental realization. In this paper we report on the exchange coupling and helical phase characteristics within Dy-Fe multilayers. The magnetic hysteresis loops with temperature show an exchange bias field of around 1.0 kOe at 10 K. Polarized neutron reflectivity reveal (i) ferrimagnetic alignment of the layers at low fields forming twisted magnetic helices and a more complicated but stable continuous helical arrangement at higher fields (ii) direct evidence of helices in the form of planar 2π-DWs within both layers of Fe and Dy. The helices within the Fe layers are topologically stabilized by the reasonably strong induced in-plane magnetocrystalline anisotropy of Dy and the exchange coupling at the Fe-Dy interfaces. The helices in Dy are plausibly reminiscent of the helical ordering at higher temperatures induced by the field history and interfacial strain. Stability of the helical order even at large fields have resulted in an effective modulation of the periodicity of the spin-density like waves and subsequent increase in storage energy. This opens broad perspectives for future scientific and technological applications in increasing the energy density for systems in the field of all-spin-based engineering which has the potential for energy-storing elements on nanometer length scales. PMID:27677227

  3. Realizing topological stability of magnetic helices in exchange-coupled multilayers for all-spin-based system

    NASA Astrophysics Data System (ADS)

    Fust, Sergej; Mukherjee, Saumya; Paul, Neelima; Stahn, Jochen; Kreuzpaintner, Wolfgang; Böni, Peter; Paul, Amitesh

    2016-09-01

    Topologically stabilized spin configurations like helices in the form of planar domain walls (DWs) or vortex-like structures with magnetic functionalities are more often a theoretical prediction rather than experimental realization. In this paper we report on the exchange coupling and helical phase characteristics within Dy-Fe multilayers. The magnetic hysteresis loops with temperature show an exchange bias field of around 1.0 kOe at 10 K. Polarized neutron reflectivity reveal (i) ferrimagnetic alignment of the layers at low fields forming twisted magnetic helices and a more complicated but stable continuous helical arrangement at higher fields (ii) direct evidence of helices in the form of planar 2π-DWs within both layers of Fe and Dy. The helices within the Fe layers are topologically stabilized by the reasonably strong induced in-plane magnetocrystalline anisotropy of Dy and the exchange coupling at the Fe-Dy interfaces. The helices in Dy are plausibly reminiscent of the helical ordering at higher temperatures induced by the field history and interfacial strain. Stability of the helical order even at large fields have resulted in an effective modulation of the periodicity of the spin-density like waves and subsequent increase in storage energy. This opens broad perspectives for future scientific and technological applications in increasing the energy density for systems in the field of all-spin-based engineering which has the potential for energy-storing elements on nanometer length scales.

  4. Realizing topological stability of magnetic helices in exchange-coupled multilayers for all-spin-based system.

    PubMed

    Fust, Sergej; Mukherjee, Saumya; Paul, Neelima; Stahn, Jochen; Kreuzpaintner, Wolfgang; Böni, Peter; Paul, Amitesh

    2016-09-28

    Topologically stabilized spin configurations like helices in the form of planar domain walls (DWs) or vortex-like structures with magnetic functionalities are more often a theoretical prediction rather than experimental realization. In this paper we report on the exchange coupling and helical phase characteristics within Dy-Fe multilayers. The magnetic hysteresis loops with temperature show an exchange bias field of around 1.0 kOe at 10 K. Polarized neutron reflectivity reveal (i) ferrimagnetic alignment of the layers at low fields forming twisted magnetic helices and a more complicated but stable continuous helical arrangement at higher fields (ii) direct evidence of helices in the form of planar 2π-DWs within both layers of Fe and Dy. The helices within the Fe layers are topologically stabilized by the reasonably strong induced in-plane magnetocrystalline anisotropy of Dy and the exchange coupling at the Fe-Dy interfaces. The helices in Dy are plausibly reminiscent of the helical ordering at higher temperatures induced by the field history and interfacial strain. Stability of the helical order even at large fields have resulted in an effective modulation of the periodicity of the spin-density like waves and subsequent increase in storage energy. This opens broad perspectives for future scientific and technological applications in increasing the energy density for systems in the field of all-spin-based engineering which has the potential for energy-storing elements on nanometer length scales.

  5. Flow Driven by an Archimedean Helical Permanent Magnetic Field. Part I: Flow Patterns and Their Transitions

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Wang, Xiaodong; Etay, Jacqueline; Na, Xianzhao; Zhang, Xinde; Fautrelle, Yves

    2016-04-01

    In this study, an Archimedean helical permanent magnetic field was constructed and its driving effects on liquid metal were examined. A magnetic stirrer was constructed using a series of arc-like magnets. The helical distribution of its magnetic field, which was confirmed via Gauss probe measurements and numerical simulations, can be considered a combination of rotating and traveling magnetic fields. The characteristics of the flow patterns, particularly the transitions between the meridian secondary flow (two vortices) and the global axial flow (one vortex), driven by this magnetic field were quantitatively measured using ultrasonic Doppler velocimetry. The transient and modulated flow behaviors will be presented in a companion article. The D/ H dimension ratio was used to characterize the transitions of these two flow patterns. The results demonstrated that the flow patterns depend on not only the intrinsic structure of the magnetic field, e.g., the helix lead angle, but also the performance parameters, e.g., the dimensional ratio of the liquid bulk. The notable opposing roles of these two flow patterns in the improvement of macrosegregations when imposing such magnetic fields near the solidifying front were qualitatively addressed.

  6. Assembly of alginate microfibers to form a helical structure using micromanipulation with a magnetic field

    NASA Astrophysics Data System (ADS)

    Sun, Tao; Huang, Qiang; Shi, Qing; Wang, Huaping; Hu, Chengzhi; Li, Pengyun; Nakajima, Masahiro; Fukuda, Toshio

    2016-10-01

    Helical structures assembled using alginate microfibers have a promising spatial architecture mimicking in vivo vessels for culturing vascular cells. However, the helical structure can only be assembled at the macroscale, since a microassembly-based approach has not yet been developed. In this paper, we propose a magnetic-field-based micromanipulation method to fabricate a helical microstructure. By microfluidic spinning, alginate microfibers encapsulating magnetic nanoparticles are synthesized to enable the control of an electromagnetic needle (EMN). We developed a microrobotic system to actuate a micropipette to fix a free end of the microfiber, and then move the EMN to reel the microfiber around a micropillar. The motion of the EMN is guided using an upright microscope and a side-view camera. Because of the limitation of operation space, a spacer sleeve was designed to keep the tip of the EMN attracted to the microfiber, and simultaneously to keep the other part of the EMN isolated from the microfiber. To ensure the availability of the microfiber for continuously coiling, we enable the EMN tip to slide on the surface of the microfiber without changing the tensioning of the microfiber for positioning control. Furthermore, stable and repeatable micromanipulation was achieved to form multi-turn microfiber coils based on the motion planning of the EMN. Finally, we successfully fabricated a helical microstructure that can be applied in vascular tissue engineering in the future.

  7. Numerical simulation of a helical shape electric arc in the external axial magnetic field

    NASA Astrophysics Data System (ADS)

    Urusov, R. M.; Urusova, I. R.

    2016-10-01

    Within the frameworks of non-stationary three-dimensional mathematical model, in approximation of a partial local thermodynamic equilibrium, a numerical calculation was made of characteristics of DC electric arc burning in a cylindrical channel in the uniform external axial magnetic field. The method of numerical simulation of the arc of helical shape in a uniform external axial magnetic field was proposed. This method consists in that that in the computational algorithm, a "scheme" analog of fluctuations for electrons temperature is supplemented. The "scheme" analogue of fluctuations increases a weak numerical asymmetry of electrons temperature distribution, which occurs randomly in the course of computing. This asymmetry can be "picked up" by the external magnetic field that continues to increase up to a certain value, which is sufficient for the formation of helical structure of the arc column. In the absence of fluctuations in the computational algorithm, the arc column in the external axial magnetic field maintains cylindrical axial symmetry, and a helical form of the arc is not observed.

  8. Characteristics of 3-component Magnetic Fields of Equatorial Pi 2s - MAGDAS/CPMN Observations in Daytime and Nighttime -

    NASA Astrophysics Data System (ADS)

    Hirayama, Y.; Yumoto, K.; Uozumi, T.; Yoshikawa, A.; Group, M.

    2008-12-01

    At the onset of magnetospheric substorms, impulsive hydromagnetic oscillations with periods of 40-150 sec, so called Pi 2 magnetic pulsations, occur globally in the magnetosphere. Pi 2 pulsations have been researched for a long time. However, equatorial Pi 2 pulsations have not been analyzed sufficiently and in the most of past studies only H-component of equatorial Pi 2 pulsations were examined. In our previous study, we analyzed H-component magnetic data obtained from MAGDAS/CPMN stations, AAB(G.long.=38.77), LKW(99.78), CEB(123.91), DAV(125.40), YAP(138.08), ANC(-77.15) and EUS(-38.43) which are located near the dip equator. We found that enhancement of H-component wave amplitude of Pi 2 pulsations are occurred near the daytime dip equator. Furthermore, by comparing the data obtained from CEB, DAV and YAP, we also found that as the observation site is nearer to the dip equator, the Pi 2 amplitudes tended to become larger. This amplitude enhancement of Pi 2 pulsations was seen not only in daytime but also in nighttime. We could explain the enhancement in daytime as effect of equatorial electrojet, but we had no idea to explain the enhancement in nighttime. In the present study, we analyze H, D and Z-component wave amplitudes of equatorial Pi 2 pulsations obtained from CEB, DAV and ANC stations for the period of January 1-31, March 1~31 and Jun 1~30 2005. The following new results are obtained; (1) Amplitude ratio of H-component of equatorial Pi 2s at DAV (Dip Lat =-0.65) to CEB (2.73) is found to be almost 1.5 in nighttime, while that in daytime to show the equatorial enhancement and a monthly dependence. (2) Amplitude ratio of D-component to H-component of equatorial Pi 2 are found to be almost 0.3, in particularly to enhance to 0.5 at near local sunrise and sunset time, while H-component equatorial Pi 2 amplitude decrease at sunrise and sunset time. (3) Amplitude ratio of Z-component to H-component of equatorial Pi 2 are found to be 0.3 at CEB and ANC, and 0

  9. SPECTRO-POLARIMETRIC IMAGING REVEALS HELICAL MAGNETIC FIELDS IN SOLAR PROMINENCE FEET

    SciTech Connect

    González, M. J. Martínez; Sainz, R. Manso; Ramos, A. Asensio; Beck, C.; Díaz, A. J.

    2015-03-20

    Solar prominences are clouds of cool plasma levitating above the solar surface and insulated from the million-degree corona by magnetic fields. They form in regions of complex magnetic topology, characterized by non-potential fields, which can evolve abruptly, disintegrating the prominence and ejecting magnetized material into the heliosphere. However, their physics is not yet fully understood because mapping such complex magnetic configurations and their evolution is extremely challenging, and must often be guessed by proxy from photometric observations. Using state-of-the-art spectro-polarimetric data, we reconstruct the structure of the magnetic field in a prominence. We find that prominence feet harbor helical magnetic fields connecting the prominence to the solar surface below.

  10. The role of magnetic helicity in cosmic ray transport theory

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Matthaeus, W. H.

    1981-01-01

    It has been found that the computed values of the mean free path for pitch angle scattering of low rigidity cosmic rays computed from weak turbulence theory are systematically larger than the values inferred from analyses of solar particle events. Reasons for this discrepancy are considered, taking into account components of the spectral tensor of the magnetic field fluctuations which can contribute to pitch angle scattering. The contributions of the additional terms can be estimated from the interplanetary magnetic field. It is shown that these additional contributions can be significant. A description is given of a formalism which includes the possibility that the field magnitude is constant. The formalism provides a formal basis for the heuristic arguments made by Goldstein (1980).

  11. Collective instabilities of the electron beam in magnetic fields of a helical undulator and solenoid

    NASA Astrophysics Data System (ADS)

    Artamonov, A. S.; Inozemtsev, N. I.

    1989-03-01

    The collective instabilities of a continuous electron beam propagating in the magnetic fields of a helical undulator and solenoid are analyzed theoretically in the framework of a one-dimensional model. Modulation of charge density is investigated along with modulation of the transverse velocity of the electrons by an electromagnetic wave. A dispersion equation describing the collective-excitation spectrum is obtained, and analyzed in the hydrodynamic approximation for two-, three-, and four-wave interaction.

  12. Experimental determination of the magnetic field spectrum in the Helically Symmetric Experiment using passing particle orbits

    NASA Astrophysics Data System (ADS)

    Talmadge, J. N.; Sakaguchi, V.; Anderson, F. S. B.; Anderson, D. T.; Almagri, A. F.

    2001-12-01

    The leading terms of the magnetic field spectrum for the Helically Symmetric Experiment [Fusion Technol. 27, 273 (1995)] at low magnetic field are determined by analyzing the orbits of passing particles. The images produced by the intersection of electron orbits with a fluorescent mesh are recorded with a charge coupled device and transformed into magnetic coordinates using a neural network. To obtain the spectral components, the transformed orbits are then fit to an analytic expression that models the drift orbits of the electrons. The results confirm for the first time that quasihelical stellarators have a large effective transform that results in small excursions of particles from a magnetic surface. The drift orbits are also consistent with a very small toroidal curvature component in the spectrum. An external magnetic perturbation, nearly resonant with the transform, is shown to induce a large excursion of the particle orbit off a flux surface.

  13. [Magnetic helicity and current drive in fusion devices]. Final technical report

    SciTech Connect

    1998-02-02

    The research program focused on two main themes: (i) magnetic helicity and (ii) current drive by low-frequency waves. At first these themes seemed unrelated, but as time progressed, they became interwoven, and ultimately closely connected. A sub-theme is that while the MHD model of a plasma stimulates many intriguing counter-intuitive ideas for creating and sustaining magnetic confinement configurations, usually the crux of these schemes involves some sort of breakdown of MHD, i.e., involves physics which transcends MHD.

  14. Helicity, anisotropies, and their competition in a multiferroic magnet: Insight from the phase diagram

    NASA Astrophysics Data System (ADS)

    Gvozdikova, M. V.; Ziman, T.; Zhitomirsky, M. E.

    2016-07-01

    Motivated by the complex phase diagram of MnWO4, we investigate the competition between anisotropy, magnetic field, and helicity for the anisotropic next-nearest-neighbor Heisenberg model. Apart from two competing exchanges, which favor a spiral magnetic structure, the model features the biaxial single-ion anisotropy. The model is treated in the real-space mean-field approximation and the phase diagram containing various incommensurate and commensurate states is obtained for different field orientations. We discuss the similarities and differences of the theoretical phase diagram and the experimental diagram of MnWO4.

  15. DIRECT DETECTION OF THE HELICAL MAGNETIC FIELD GEOMETRY FROM 3D RECONSTRUCTION OF PROMINENCE KNOT TRAJECTORIES

    SciTech Connect

    Zapiór, Maciej; Martinez-Gómez, David

    2016-02-01

    Based on the data collected by the Vacuum Tower Telescope located in the Teide Observatory in the Canary Islands, we analyzed the three-dimensional (3D) motion of so-called knots in a solar prominence of 2014 June 9. Trajectories of seven knots were reconstructed, giving information of the 3D geometry of the magnetic field. Helical motion was detected. From the equipartition principle, we estimated the lower limit of the magnetic field in the prominence to ≈1–3 G and from the Ampère’s law the lower limit of the electric current to ≈1.2 × 10{sup 9} A.

  16. Relationships between Fluid Vorticity, Kinetic Helicity, and Magnetic Field on Small-scales (Quiet-Network) on the Sun

    NASA Astrophysics Data System (ADS)

    Sangeetha, C. R.; Rajaguru, S. P.

    2016-06-01

    We derive horizontal fluid motions on the solar surface over large areas covering the quiet-Sun magnetic network from local correlation tracking of convective granules imaged in continuum intensity and Doppler velocity by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory. From these we calculate the horizontal divergence, the vertical component of vorticity, and the kinetic helicity of fluid motions. We study the correlations between fluid divergence and vorticity, and between vorticity (kinetic helicity) and the magnetic field. We find that the vorticity (kinetic helicity) around small-scale fields exhibits a hemispherical pattern (in sign) similar to that followed by the magnetic helicity of large-scale active regions (containing sunspots). We identify this pattern to be a result of the Coriolis force acting on supergranular-scale flows (both the outflows and inflows), consistent with earlier studies using local helioseismology. Furthermore, we show that the magnetic fields cause transfer of vorticity from supergranular inflow regions to outflow regions, and that they tend to suppress the vortical motions around them when magnetic flux densities exceed about 300 G (from HMI). We also show that such an action of the magnetic fields leads to marked changes in the correlations between fluid divergence and vorticity. These results are speculated to be of importance to local dynamo action (if present) and to the dynamical evolution of magnetic helicity at the small-scale.

  17. Evolution of the magnetic helicity flux during the formation and eruption of flux ropes

    SciTech Connect

    Romano, P.; Zuccarello, F. P.; Guglielmino, S. L.; Zuccarello, F.

    2014-10-20

    We describe the evolution and the magnetic helicity flux for two active regions (ARs) since their appearance on the solar disk: NOAA 11318 and NOAA 11675. Both ARs hosted the formation and destabilization of magnetic flux ropes. In the former AR, the formation of the flux rope culminated in a flare of C2.3 GOES class and a coronal mass ejection (CME) observed by Large Angle and Spectrometric Coronagraph Experiment. In the latter AR, the region hosting the flux rope was involved in several flares, but only a partial eruption with signatures of a minor plasma outflow was observed. We found a different behavior in the accumulation of the magnetic helicity flux in the corona, depending on the magnetic configuration and on the location of the flux ropes in the ARs. Our results suggest that the complexity and strength of the photospheric magnetic field is only a partial indicator of the real likelihood of an AR producing the eruption of a flux rope and a subsequent CME.

  18. Magnetic helicity conservation and inverse energy cascade in electron magnetohydrodynamic wave packets.

    PubMed

    Cho, Jungyeon

    2011-05-13

    Electron magnetohydrodynamics (EMHD) provides a fluidlike description of small-scale magnetized plasmas. An EMHD wave propagates along magnetic field lines. The direction of propagation can be either parallel or antiparallel to the magnetic field lines. We numerically study propagation of three-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results. (1) Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite-traveling wave packets via self-interaction and cascade energy to smaller scales. (2) EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and two-dimensional (2D) hydrodynamic turbulence.

  19. Nonlinear Magnetic Induction by Helical Motion in a Liquid Sodium Turbulent Flow

    NASA Astrophysics Data System (ADS)

    Pétrélis, F.; Bourgoin, M.; Marié, L.; Burguete, J.; Chiffaudel, A.; Daviaud, F.; Fauve, S.; Odier, P.; Pinton, J.-F.

    2003-05-01

    We report an experimental study of the magnetic field B→ induced by a turbulent swirling flow of liquid sodium submitted to a transverse magnetic field B→0. We show that the induced field can behave nonlinearly as a function of the magnetic Reynolds number, Rm. At low Rm, the induced mean field along the axis of the flow, , and the one parallel to B→0, , first behave like R2m, whereas the third component, , is linear in Rm. The sign of is determined by the flow helicity. At higher Rm, B→ strongly depends on the local geometry of the mean flow: decreases to zero in the core of the swirling flow but remains finite outside. We compare the experimental results with the computed magnetic induction due to the mean flow alone.

  20. Sign-Singularity of the Reduced Magnetic Helicity in the Solar Wind Plasma

    SciTech Connect

    Carbone, V.; Perri, S.; Yordanova, E.; Khotyaintsev, Y.; Andre, M.; Veltri, P.; Bruno, R.

    2010-05-07

    We investigate the scaling laws of a signed measure derived from the reduced magnetic helicity which has been determined from Cluster data in the solar wind. This quantifies the handedness of the magnetic field; namely, it can be related to the polarization of the magnetic field fluctuations (right or left hand). The measure results to be sign-singular; that is, we do not observe any scale-dependent effect at the ion- and at electron-cyclotron frequencies. Cancellations between right- and left-hand polarizations go on in the dispersive or dissipative range, beyond the electron-cyclotron frequency. This means that the mechanism responsible for the generation of the dispersive or dissipative range is rather insensitive to the polarization of the magnetic field fluctuations.

  1. The magnetic field of the equatorial magnetotail - AMPTE/CCE observations at R less than 8.8 earth radii

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.; Acuna, M. H.; Zanetti, L. J.; Potemra, T. A.

    1987-01-01

    The MPTE/CCE magnetic field experiment has been used to obtain a quantitative evaluation of the frequency and extent of magnetic field distortion in the near-tail region at less than 8.8 earth radii. The variation of this distortion with Kp, radial distance, longitude, and near-equatorial latitude is reported. It has been found that taillike distortions from the dipole field direction may reach 80 deg near the MPTE/CE apogee of 8.8 earth radii. The Bz field component in dipole coordinates was always positive within 0.5 earth radii of the equatorial current sheet, indicating the neutral lines were never seen inside of 8.8 earth radii. Fields were most taillike near midnight and during times of high Kp. At 8.5 earth radii the equatorial field magnitude depressions were roughly half the dipole field strength of 51 nT. These depressions are larger at lesser distances, reaching -40 nT at 3.4 earth radii for Kp of 2- or less and -80 nT and Kp of 3+ and greater.

  2. Ion heating during magnetic relaxation in the helicity injected torus-II experiment

    SciTech Connect

    O'Neill, R.G.; Redd, A.J.; Hamp, W.T.; Smith, R.J.; Jarboe, T.R.

    2005-12-15

    Ion doppler spectroscopy (IDS) is applied to the helicity injected torus (HIT-II) spherical torus to measure impurity ion temperature and flows. [A. J. Redd et al., Phys. Plasmas 9, 2006 (2002)] The IDS instrument employs a 16-channel photomultiplier and can track temperature and velocity continuously through a discharge. Data for the coaxial helicity injection (CHI), transformer, and combined current drive configurations are presented. Ion temperatures for transformer-driven discharges are typically equal to or somewhat lower than electron temperatures measured by Thomson scattering. Internal reconnection events in transformer-driven discharges cause rapid ion heating. The CHI discharges exhibit anomalously high ion temperatures >250 eV, which are an order of magnitude higher than Thomson measurements, indicating ion heating through magnetic relaxation. The CHI discharges that exhibit current and poloidal flux buildup after bubble burst show sustained ion heating during current drive.

  3. Vollhardt invariant and phase transition in the helical itinerant magnet MnSi

    NASA Astrophysics Data System (ADS)

    Stishov, S. M.; Petrova, A. E.

    2016-10-01

    In this Rapid Communication we argue that rounded "hills" or "valleys" demonstrated by the heat capacity, thermal expansion coefficient, and elastic moduli are indications of a smeared second-order phase transition, which is flattened and spread out by the application of a magnetic field. As a result, some of the curves which display a temperature dependence of the corresponding quantities cross almost at a single point. Thus, the Vollhardt crossing point should not be identified with any specific energy scale. The smeared phase transition in MnSi preceding the helical first-order transition most probably corresponds to planar ferromagnetic ordering, with a small or negligible correlation between planes. At lower temperatures, the system of ferromagnetic planes becomes correlated, acquiring a helical twist.

  4. Anisotropic heat diffusion on stochastic magnetic field in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Suzuki, Yasuhiro

    2016-10-01

    The magnetic topology is a key issue in fusion plasma researches. An example is the Resonant Magnetic Perturbation (RMP) to control the transport and MHD activities in tokamak and stellarator experiments. However, the physics how the RMP affects the transport and MHD is not clear. One reason is a role of the magnetic topology is unclear. That problem is connecting to the identification of the magnetic topology in the experiment. In the experiment, the finite temperature gradient is observed on the stochastic field where is stochastized by the theoretical prediction. In a classical theory, the electron temperature gradient should be zero on the stochastic magnetic field. We need to study the stochastic magnetic field can keep the finite temperature gradient or not. In this study, we study the anisotropic heat diffusion equation to simulate the heat transport on the stochastic magnetic field. Changing a ratio of κ∥ and κ⊥, the distribution of the temperature on the stochastic magnetic field is obtained. Hudson et al. pointed out the KAM surface is a barrier to keep the finite temperature. We simulate those results in realistic magnetic field of the Large Helical Device.

  5. Internal magnetic field measurements on the Helicity Injected Tokamak (HIT) using the Transient Internal Probe (TIP)

    SciTech Connect

    Galambos, J.P.; Bohnet, M.A.; Jarboe, T.R.; Mattick, A.T.

    1996-12-31

    The Transient Internal Probe (TIP) is a novel diagnostic designed to measure internal magnetic fields in hot plasmas. The diagnostic involves shooting a magneto-optic probe through the plasma at high velocities (greater than 2 km/s) using a two stage light gas gun. Local fields are obtained by illuminating the probe with an argon ion laser and measuring the amount of Faraday rotation in the laser light reflected from the moving probe. Currently, internal magnetic profile measurements are being conducted on the Helicity Injected tokamak (HIT). HIT is a low aspect ratio (A = 1.5) tokamak designed to investigate steady state current drive using coaxial helicity injection. Operating parameters are T{sub e} {approx} 100, n{sub e} {approx} 5 {times} 10{sup 13} cm{sup {minus}3} and I{sub p} = 250 kA. Internal magnetic field profile data will be presented. The TIP diagnostic has a spatial resolution of 1 cm and 20 gauss magnetic field resolution. System frequency response is 10 MHz.

  6. Generation of the magnetic helicity in a neutron star driven by the electroweak electron-nucleon interaction

    SciTech Connect

    Dvornikov, Maxim; Semikoz, Victor B. E-mail: semikoz@yandex.ru

    2015-05-01

    We study the instability of magnetic fields in a neutron star core driven by the parity violating part of the electron-nucleon interaction in the Standard Model. Assuming a seed field of the order 10{sup 12} G, that is a common value for pulsars, one obtains its amplification due to such a novel mechanism by about five orders of magnitude, up to 10{sup 17} G, at time scales ∼ (10{sup 3}–10{sup 5}) yr. This effect is suggested to be a possible explanation of the origin of the strongest magnetic fields observed in magnetars. The growth of a seed magnetic field energy density is stipulated by the corresponding growth of the magnetic helicity density due to the presence of the anomalous electric current in the Maxwell equation. Such an anomaly is the sum of the two competitive effects: (i) the chiral magnetic effect driven by the difference of chemical potentials for the right and left handed massless electrons and (ii) constant chiral electroweak electron-nucleon interaction term, which has the polarization origin and depends on the constant neutron density in a neutron star core. The remarkable issue for the decisive role of the magnetic helicity evolution in the suggested mechanism is the arbitrariness of an initial magnetic helicity including the case of non-helical fields from the beginning. The tendency of the magnetic helicity density to the maximal helicity case at large evolution times provides the growth of a seed magnetic field to the strongest magnetic fields in astrophysics.

  7. Dynamical process of skyrmion-helical magnetic transformation of the chiral-lattice magnet FeGe probed by small-angle resonant soft x-ray scattering

    NASA Astrophysics Data System (ADS)

    Yamasaki, Y.; Morikawa, D.; Honda, T.; Nakao, H.; Murakami, Y.; Kanazawa, N.; Kawasaki, M.; Arima, T.; Tokura, Y.

    2015-12-01

    Small-angle soft x-ray scattering in resonance with Fe L absorption edge has been investigated for helical magnetic order and magnetic skyrmion crystal (SkX) in B20-type cubic FeGe. Transformation of magnetic structures among helical, conical, SkX, and field-polarized spin-collinear forms is observed with the application of a magnetic field parallel to the incident soft x-ray. The resonant soft x-ray scattering with high q -resolution revealed a transient dynamics of SkX, such as rotation of SkX and variation of the SkX lattice constant, upon the change of magnetic field.

  8. INTERPRETING ERUPTIVE BEHAVIOR IN NOAA AR 11158 VIA THE REGION'S MAGNETIC ENERGY AND RELATIVE-HELICITY BUDGETS

    SciTech Connect

    Tziotziou, Kostas; Georgoulis, Manolis K.; Liu Yang

    2013-08-01

    In previous works, we introduced a nonlinear force-free method that self-consistently calculates the instantaneous budgets of free magnetic energy and relative magnetic helicity in solar active regions (ARs). Calculation is expedient and practical, using only a single vector magnetogram per computation. We apply this method to a time series of 600 high-cadence vector magnetograms of the eruptive NOAA AR 11158 acquired by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory over a five-day observing interval. Besides testing our method extensively, we use it to interpret the dynamical evolution in the AR, including eruptions. We find that the AR builds large budgets of both free magnetic energy and relative magnetic helicity, sufficient to power many more eruptions than the ones it gave within the interval of interest. For each of these major eruptions, we find eruption-related decreases and subsequent free-energy and helicity budgets that are consistent with the observed eruption (flare and coronal mass ejection (CME)) sizes. In addition, we find that (1) evolution in the AR is consistent with the recently proposed (free) energy-(relative) helicity diagram of solar ARs, (2) eruption-related decreases occur before the flare and the projected CME-launch times, suggesting that CME progenitors precede flares, and (3) self terms of free energy and relative helicity most likely originate from respective mutual terms, following a progressive mutual-to-self conversion pattern that most likely stems from magnetic reconnection. This results in the non-ideal formation of increasingly helical pre-eruption structures and instigates further research on the triggering of solar eruptions with magnetic helicity firmly placed in the eruption cadre.

  9. Engineered materials for all-optical helicity-dependent magnetic switching

    NASA Astrophysics Data System (ADS)

    Mangin, S.; Gottwald, M.; Lambert, C.-H.; Steil, D.; Uhlíř, V.; Pang, L.; Hehn, M.; Alebrand, S.; Cinchetti, M.; Malinowski, G.; Fainman, Y.; Aeschlimann, M.; Fullerton, E. E.

    2014-03-01

    The possibility of manipulating magnetic systems without applied magnetic fields have attracted growing attention over the past fifteen years. The low-power manipulation of the magnetization, preferably at ultrashort timescales, has become a fundamental challenge with implications for future magnetic information memory and storage technologies. Here we explore the optical manipulation of the magnetization in engineered magnetic materials. We demonstrate that all-optical helicity-dependent switching (AO-HDS) can be observed not only in selected rare earth-transition metal (RE-TM) alloy films but also in a much broader variety of materials, including RE-TM alloys, multilayers and heterostructures. We further show that RE-free Co-Ir-based synthetic ferrimagnetic heterostructures designed to mimic the magnetic properties of RE-TM alloys also exhibit AO-HDS. These results challenge present theories of AO-HDS and provide a pathway to engineering materials for future applications based on all-optical control of magnetic order.

  10. Structural and magnetic properties of a variety of transition metal incorporated DNA double helices.

    PubMed

    Samanta, Pralok K; Pati, Swapan K

    2014-02-03

    By using density functional theory calculations, the structural, energetic, magnetic, and optical properties for a variety of transition metal (M = Mn, Fe, Co, Ni and Cu) ions incorporated modified-DNA (M-DNA) double helices has been investigated. The DNA is modified with either hydroxypyridone (H) or bis(salicylaldehyde)ethylenediamine (S-en) metalated bases. We find the formation of extended M-O network leading to the ferromagnetic interactions for the case of H-DNA for all the metal ions. More ordered stacking arrangement was found for S-en-DNA. We calculate the exchange coupling constant (J) considering Heisenberg Hamiltonian for quantitative description of magnetic interactions. The ferromagnetic and antiferromagnetic interactions are obtained by varying different transition metal ions. The extent of the magnetic interaction depends on the number of transition metal ions. Optical profiles show peaks below 2 eV, a clear signature of spin-spin coupling.

  11. The Tayler instability at low magnetic Prandtl numbers: between chiral symmetry breaking and helicity oscillations

    NASA Astrophysics Data System (ADS)

    Weber, Norbert; Galindo, Vladimir; Stefani, Frank; Weier, Tom

    2015-11-01

    The Tayler instability is a kink-type, current driven instability that plays an important role in plasma physics but might also be relevant in liquid metal applications with high electrical currents. In the framework of the Tayler-Spruit dynamo model of stellar magnetic field generation (Spruit 2002 Astron. Astrophys. 381 923-32), the question of spontaneous helical (chiral) symmetry breaking during the saturation of the Tayler instability has received considerable interest (Zahn et al 2007 Astron. Astrophys. 474 145-54 Gellert et al 2011 Mon. Not. R. Astron. Soc. 414 2696-701 Bonanno et al 2012 Phys. Rev. E 86 016313). Focusing on fluids with low magnetic Prandtl numbers, for which the quasistatic approximation can be applied, we utilize an integro-differential equation approach (Weber et al 2013 New J. Phys.15 043034) in order to investigate the saturation mechanism of the Tayler instability. Both the exponential growth phase and the saturated phase are analysed in terms of the action of the α and β effects of mean-field magnetohydrodynamics. In the exponential growth phase we always find a spontaneous chiral symmetry breaking which, however, disappears in the saturated phase. For higher degrees of supercriticality, we observe helicity oscillations in the saturated regime. For Lundquist numbers in the order of one we also obtain chiral symmetry breaking of the saturated magnetic field.

  12. Characteristics of the Plasma Distribution in Mercury's Equatorial Magnetosphere Derived from MESSENGER Magnetic Field and Plasma Observations

    NASA Astrophysics Data System (ADS)

    Korth, H.; Anderson, B. J.; Johnson, C. L.; Winslow, R. M.; Raines, J. M.; Slavin, J. A.; Purucker, M. E.; Zurbuchen, T.; Solomon, S. C.; McNutt, R. L.

    2012-12-01

    Localized reductions in the magnetic field associated with plasma pressure in Mercury's plasma sheet have been routinely observed by the Magnetometer on the MErcury Surface, Space ENvironment, Geochemistry, and Ranging (MESSENGER) spacecraft. We present a statistical analysis of near-equatorial magnetic depressions to derive the structure of Mercury's plasma sheet pressure. Because the plasma pressure in the magnetosphere correlates with solar wind density, the pressures were normalized to a Mercury heliocentric distance of 0.39 AU. A model magnetic field was used to map observations obtained on the ascending and descending orbit nodes to the magnetic equator, and the mapped equatorial distribution revealed the presence of plasma in a toroidal section extending on the nightside from dusk to dawn. Mapping the data to invariant magnetic latitude shows that the pressure is symmetric about the magnetic equator. The average pressure normalized for heliocentric distance is 1.45 nPa and exhibits a weak, 0.05 nPa/h, dusk-to-dawn gradient with local time. The plasma sheet pressure can vary between successive orbits by an order of magnitude. Unlike the predictions of some global simulations of Mercury's magnetosphere but consistent with observations by MESSENGER's Fast Imaging Plasma Spectrometer, the plasma enhancements do not form a closed distribution around the planet. This difference may arise from the idealized solar wind and interplanetary magnetic field conditions used in the simulations, conditions that maximize the size and stability of the magnetosphere and thus promote the formation of drift paths that close around the planet. For typical plasma sheet energies, 5 keV, the first adiabatic invariant for protons fails to be conserved even within 500 km altitude at midnight, implying that stochastic processes must be considered in plasma sheet transport.

  13. Electrically controlled spin-transistor operation in a helical magnetic field

    NASA Astrophysics Data System (ADS)

    Wójcik, P.; Adamowski, J.

    2016-03-01

    A proposal of an electrically controlled spin transistor in a helical magnetic field is presented. In the proposed device, the transistor action is driven by the Landau-Zener transitions that lead to a backscattering of spin polarized electrons and switching the transistor into the high-resistance state (off state). The on/off state of the transistor can be controlled by the all-electric means using Rashba spin-orbit coupling that can be tuned by the voltages applied to the side electrodes.

  14. Self-similar inverse cascade of magnetic helicity driven by the chiral anomaly

    DOE PAGES

    Hirono, Yuji; Kharzeev, Dmitri E.; Yin, Yi

    2015-12-28

    For systems with charged chiral fermions, the imbalance of chirality in the presence of magnetic field generates an electric current—this is the chiral magnetic effect (CME). We study the dynamical real-time evolution of electromagnetic fields coupled by the anomaly to the chiral charge density and the CME current by solving the Maxwell-Chern-Simons equations. We find that the CME induces the inverse cascade of magnetic helicity toward the large distances, and that at late times this cascade becomes self-similar, with universal exponents. We also find that in terms of gauge field topology the inverse cascade represents the transition from linked electricmore » and magnetic fields (Hopfions) to the knotted configuration of magnetic field (Chandrasekhar-Kendall states). The magnetic reconnections are accompanied by the pulses of the CME current directed along the magnetic field lines. In conclusion, we devise an experimental signature of these phenomena in heavy ion collisions, and speculate about implications for condensed matter systems.« less

  15. Self-similar inverse cascade of magnetic helicity driven by the chiral anomaly

    SciTech Connect

    Hirono, Yuji; Kharzeev, Dmitri E.; Yin, Yi

    2015-12-28

    For systems with charged chiral fermions, the imbalance of chirality in the presence of magnetic field generates an electric current—this is the chiral magnetic effect (CME). We study the dynamical real-time evolution of electromagnetic fields coupled by the anomaly to the chiral charge density and the CME current by solving the Maxwell-Chern-Simons equations. We find that the CME induces the inverse cascade of magnetic helicity toward the large distances, and that at late times this cascade becomes self-similar, with universal exponents. We also find that in terms of gauge field topology the inverse cascade represents the transition from linked electric and magnetic fields (Hopfions) to the knotted configuration of magnetic field (Chandrasekhar-Kendall states). The magnetic reconnections are accompanied by the pulses of the CME current directed along the magnetic field lines. In conclusion, we devise an experimental signature of these phenomena in heavy ion collisions, and speculate about implications for condensed matter systems.

  16. Dispersion relation for electromagnetic propagation in stochastic dielectric and magnetic helical photonic crystals

    NASA Astrophysics Data System (ADS)

    Avendaño, Carlos G.; Reyes, Arturo

    2017-03-01

    We theoretically study the dispersion relation for axially propagating electromagnetic waves throughout a one-dimensional helical structure whose pitch and dielectric and magnetic properties are spatial random functions with specific statistical characteristics. In the system of coordinates rotating with the helix, by using a matrix formalism, we write the set of differential equations that governs the expected value of the electromagnetic field amplitudes and we obtain the corresponding dispersion relation. We show that the dispersion relation depends strongly on the noise intensity introduced in the system and the autocorrelation length. When the autocorrelation length increases at fixed fluctuation and when the fluctuation augments at fixed autocorrelation length, the band gap widens and the attenuation coefficient of electromagnetic waves propagating in the random medium gets larger. By virtue of the degeneracy in the imaginary part of the eigenvalues associated with the propagating modes, the random medium acts as a filter for circularly polarized electromagnetic waves, in which only the propagating backward circularly polarized wave can propagate with no attenuation. Our results are valid for any kind of dielectric and magnetic structures which possess a helical-like symmetry such as cholesteric and chiral smectic-C liquid crystals, structurally chiral materials, and stressed cholesteric elastomers.

  17. Testing for Helical Magnetic Fields in the Orion Molecular Cloud Integral-Shaped Filament

    NASA Astrophysics Data System (ADS)

    Cashman, Lauren; Clemens, Dan P.

    2014-06-01

    The Orion Molecular Cloud (OMC) is one of the closest and most well-studied regions of ongoing star formation. Within the OMC, the Integral-Shaped Filament (ISF) is a long, filamentary structure of gas and dust that stretches over 7 pc and is itself comprised of many smaller filaments. Radial density profiles of the ISF indicate that these filamentary structures may be supported by helical magnetic fields (Johnstone & Bally 1999). To test for the presence of helical fields, we have collected deep near-infrared (NIR) H-band (1.6 μm) and K-band (2.2 μm) linear polarimetry of background starlight for a grid of six 10x10 arcmin fields of view fully spanning the ISF. NIR polarizations from scattered light and young stellar objects, which do not trace the magnetic field, are identified by examining the ratio of percent polarization in H-band to K-band. The data were collected using the Mimir NIR instrument on the 1.8m Perkins Telescope located outside of Flagstaff, AZ. This work is partially supported by NSF grant AST 09-07790.

  18. Flow Driven by an Archimedean Helical Permanent Magnetic Field. Part II: Transient and Modulated Flow Behaviors

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Wang, Xiaodong; Fautrelle, Yves; Etay, Jacqueline; Na, Xianzhao; Baltaretu, Florin

    2016-12-01

    The present study considers the transient and modulated flow behaviors of liquid metal driven by a helical permanent magnetic field. The transient process, in which the fluid at rest experiences an increase in the angular velocity, is observed both in secondary and global axial flow with duration time less than 1 second. The flow fields are measured quantitatively to reveal the evolution of the transient flow, and the transient process is due to the variation of the electromagnetic force. Besides, the modulated flow behaviors of global axial flow, which is significantly different from that of secondary flow, is expected to avoid flow-induced macrosegregation in solidification process if the modulated time is suitable because its direction reversed periodically with the modulated helical stirrer. In addition, an optimal modulation frequency, under which the magnetic field could efficiently stir the solute at the solidification front, exists both in secondary and global axial flow (0.1 Hz and 0.625 Hz, respectively). Future investigations will focus on additional metallic alloy solidification experiments.

  19. Magnetic crystals and helical liquids in alkaline-earth fermionic gases

    PubMed Central

    Barbarino, Simone; Taddia, Luca; Rossini, Davide; Mazza, Leonardo; Fazio, Rosario

    2015-01-01

    The joint action of a magnetic field and of interactions is crucial for the appearance of exotic quantum phenomena, such as the quantum Hall effect. Owing to their rich nuclear structure, equivalent to an additional synthetic dimension, one-dimensional alkaline-earth(-like) fermionic gases with synthetic gauge potential and atomic contact repulsion may display similar related properties. Here we show the existence and the features of a hierarchy of fractional insulating and conducting states by means of analytical and numerical methods. We demonstrate that the gapped states are characterized by density and magnetic order emerging solely for gases with effective nuclear spin larger than 1/2, whereas the gapless phases can support helical modes. We finally argue that these states are related to an unconventional fractional quantum Hall effect in the thin-torus limit and that their properties can be studied in state-of-the-art laboratories. PMID:26350624

  20. Equatorial ionospheric plasma drifts and O+ concentration enhancements associated with disturbance dynamo during the 2015 St. Patrick's Day magnetic storm

    NASA Astrophysics Data System (ADS)

    Huang, Chao-Song; Wilson, Gordon R.; Hairston, Marc R.; Zhang, Yongliang; Wang, Wenbin; Liu, Jing

    2016-08-01

    Disturbance dynamo is an important dynamic process during magnetic storms. However, very few direct observations of dynamo-induced plasma drifts and ion composition changes in the equatorial ionosphere are available. In this study, we use measurements of the Defense Meteorological Satellite Program (DMSP) satellites to identify the characteristics of the disturbance dynamo process in the topside equatorial ionosphere near dawn during the magnetic storm with a minimum Dst of -223 nT on 17 March 2015. Data from four DMSP satellites with equatorial crossings at 0245, 0430, 0630, and 0730 LT are available for this case. The dynamo process was first observed in the postmidnight sector 3-4.7 h after the beginning of the storm main phase and lasted for 31 h, covering the second storm intensification and the initial 20 h of the recovery phase. The dynamo vertical ion drift was upward (up to 150-200 m s-1) in the postmidnight sector and downward (up to ~80 m s-1) in the early morning sector. The dynamo zonal ion drift was westward at these locations and reached ~100 m s-1. The dynamo process caused large enhancements of the O+ concentration (the ratio of the oxygen ion density to the total ion density) at the altitude of 840 km near dawn. The O+ concentration increased from below 60% during the prestorm period to 80-90% during the storm time. More specifically, the O+ density was increased, and the H+ density was decreased. The variations of the O+ concentration were well correlated with the vertical ion drift.

  1. a New Method to Calculate the Density Map of Magnetic Equatorial Plane of the Plasmasphere from the EUV Data

    NASA Astrophysics Data System (ADS)

    Zheng, Jie

    The Extreme Ultraviolet (EUV) data was collected by the EUV sensor on the American IMAGE satellite which represented the line integrals of the density of He+ along the EUV radiation. In this paper, we introduce a new method which can be used to calculate the density map of magnetic equatorial plane of the plasmasphere from the EUV data. The new method is derived from the ART algorithm in computed tomography (CT) which is different from the several existing methods. The value of each element of the EUV data is back-projected to the corresponded L-curves. It is assumed that the He+ density is constant along L-curve. Different from the existing methods, each element of EUV data is considered as a sum of all the He+ densities on the L-curves which are passed though by the corresponding EUV radiation ray. Finally, the numerical experimental results are presented to verify our new method for the plasmasphere density in the magnetic equatorial plane.

  2. Magnetic material in mean-field dynamos driven by small scale helical flows

    NASA Astrophysics Data System (ADS)

    Giesecke, A.; Stefani, F.; Gerbeth, G.

    2014-07-01

    We perform kinematic simulations of dynamo action driven by a helical small scale flow of a conducting fluid in order to deduce mean-field properties of the combined induction action of small scale eddies. We examine two different flow patterns in the style of the G O Roberts flow but with a mean vertical component and with internal fixtures that are modelled by regions with vanishing flow. These fixtures represent either rods that lie in the center of individual eddies, or internal dividing walls that provide a separation of the eddies from each other. The fixtures can be made of magnetic material with a relative permeability larger than one which can alter the dynamo behavior. The investigations are motivated by the widely unknown induction effects of the forced helical flow that is used in the core of liquid sodium cooled fast reactors, and from the key role of soft iron impellers in the von-Kármán-sodium dynamo. For both examined flow configurations the consideration of magnetic material within the fluid flow causes a reduction of the critical magnetic Reynolds number of up to 25%. The development of the growth-rate in the limit of the largest achievable permeabilities suggests no further significant reduction for even larger values of the permeability. In order to study the dynamo behavior of systems that consist of tens of thousands of helical cells we resort to the mean-field dynamo theory (Krause and Rädler 1980 Mean-field Magnetohydrodynamics and Dynamo Theory (Oxford: Pergamon)) in which the action of the small scale flow is parameterized in terms of an α- and β-effect. We compute the relevant elements of the α- and the β-tensor using the so called testfield method. We find a reasonable agreement between the fully resolved models and the corresponding mean-field models for wall or rod materials in the considered range 1\\leqslant {{\\mu }_{r}}\\leqslant 20. Our results may be used for the development of global large scale models with recirculation

  3. Status of UCLA Helical Permanent-Magnet Inverse Free Electron Laser

    SciTech Connect

    Knyazik, A.; Tikhoplav, R.; Frederico, J. T.; Affolter, M.; Rosenzweig, J. B.

    2009-01-22

    A helical undulator, utilizing permanent-magnet of cylindrically symmetric (Halbach) geometry is being developed at UCLA's Neptune Facility. The initial prototype is a short 10 cm, 7 periods long helical undulator, designed to test the electron-photon coupling by observing the micro-bunching is currently being constructed. The Neptune IFEL facility utilizes a 15 MeV Photoinjector-generated electron beam of 0.5 nC interacting with CO{sub 2} of peak energy up to 100 J, estimated to have acceleration of 100 MeV/m. An Open Iris-Loaded Waveguide Structure (OILS) scheme which conserves laser mode size and wave fronts throughout the undulator, is utilized to avoid Gouy phase shift caused by focusing of the drive laser. Undulator design was tested by computer simulations Radia and Genesis 1.3. Coherent Transition Radiation and Coherent Cherenkov Radiation will be used for micro-bunching diagnostic. Currently permanent dipoles and their aluminum holders have been built, and the project is in its final state of assembly and undulator testing.

  4. Physics of forced magnetic reconnection in coaxial helicity injection experiments in National Spherical Torus Experiment

    SciTech Connect

    Ebrahimi, F.; Bhattacharjee, A.; Raman, R.; Hooper, E. B.; Sovinec, C. R.

    2014-05-15

    We numerically examine the physics of fast flux closure in transient coaxial helicity injection (CHI) experiments in National Spherical Torus Experiment (NSTX). By performing resistive Magnetohydrodynamics (MHD) simulations with poloidal injector coil currents held constant in time, we find that closed flux surfaces are formed through forced magnetic reconnection. Through a local Sweet-Parker type reconnection with an elongated current sheet in the injector region, closed flux surfaces expand in the NSTX global domain. Simulations demonstrate outflows approaching poloidally Alfvénic flows and reconnection times consistent with the Sweet-Parker model. Critical requirements for magnetic reconnection and flux closure are studied in detail. These primary effects, which are magnetic diffusivity, injector flux, injector flux footprint width, and rate of injector voltage reduction, are simulated for transient CHI experiments. The relevant time scales for effective reconnection are τ{sub V}<τ{sub rec}≈τ{sub A}√(S)(1+Pm){sup 1/4}<τ{sub R}, where τ{sub V} is the time for the injector voltage reduction, τ{sub A} is the poloidal Alfvén transit time, τ{sub R} is the global resistive diffusion time, and Pm and S are Prandtl and Lundquist numbers.

  5. On the helical instability and efficient stagnation pressure production in thermonuclear magnetized inertial fusion

    NASA Astrophysics Data System (ADS)

    Sefkow, A. B.

    2016-10-01

    Magneto-inertial fusion experiments produce thermonuclear neutrons from plasma compressed to high convergence via z-pinch. Fusion fuel contained within a cylindrical metal liner is premagnetized with an axial field and laser-preheated prior to the liner's implosion by the JxB force. Convergence greater than 40 is inferred from x-ray self-emission spectroscopy and backlit x-ray radiography. The unprecedented stability is enabled by helical modes induced in the magnetized liner, the cause of which will be discussed, because of the suppression of the ubiquitous m=0 modes of the magneto-Rayleigh-Taylor instability found in many z-pinch implosions. The plasma temperature and flux are compressed to several keV and 100 MG at stagnation, enough to magnetically trap alpha particles and provide ``bootstrap'' self-heating when scaled to larger fusion yields with DT fuel. We present quantitative comparison between experimental observables and 3D modeling in support of the interpretation that this approach to laboratory fusion can scale to larger thermonuclear yields. Namely, the implosions efficiently convert liner kinetic energy to stagnated fuel internal energy with the expected pressures of 1 Gbar and burn durations of 2 ns, in agreement with both 2D and 3D modeling. Therefore, the analysis indicates the magnetized hot-spot dynamics are not dominated by implosion instability or residual kinetic energy in our best-performing experiments, wherein laser-induced non-fuel mix into the forming hot spot is low.

  6. The dynamics of Wolf numbers based on nonlinear dynamos with magnetic helicity: comparisons with observations

    NASA Astrophysics Data System (ADS)

    Kleeorin, Y.; Safiullin, N.; Kleeorin, N.; Porshnev, S.; Rogachevskii, I.; Sokoloff, D.

    2016-08-01

    We investigate the dynamics of solar activity using a nonlinear one-dimensional dynamo model and a phenomenological equation for the evolution of Wolf numbers. This system of equations is solved numerically. We take into account the algebraic and dynamic nonlinearities of the alpha effect. The dynamic nonlinearity is related to the evolution of a small-scale magnetic helicity, and it leads to a complicated behaviour of solar activity. The evolution equation for the Wolf number is based on a mechanism of formation of magnetic spots as a result of the negative effective magnetic pressure instability (NEMPI). This phenomenon was predicted 25 yr ago and has been investigated intensively in recent years through direct numerical simulations and mean-field simulations. The evolution equation for the Wolf number includes the production and decay of sunspots. Comparison between the results of numerical simulations and observational data of Wolf numbers shows a 70 per cent correlation over all intervals of observation (about 270 yr). We determine the dependence of the maximum value of the Wolf number versus the period of the cycle and the asymmetry of the solar cycles versus the amplitude of the cycle. These dependences are in good agreement with observations.

  7. Simulation of RF Cavity Dark Current In Presence of Helical Magnetic Field

    SciTech Connect

    Romanov, Gennady; Kashikhin, Vladimir; /Fermilab

    2012-05-01

    In order to produce muon beam of high enough quality to be used for a Muon Collider, its large phase space must be cooled several orders of magnitude. This task can be accomplished by ionization cooling. Ionization cooling consists of passing a high-emittance muon beam alternately through regions of low Z material, such as liquid hydrogen, and very high accelerating RF cavities within a multi-Tesla solenoidal focusing channel. But first high power tests of RF cavity with beryllium windows in solenoidal magnetic field showed a dramatic drop in accelerating gradient due to RF breakdowns. It has been concluded that external magnetic fields parallel to RF electric field significantly modifies the performance of RF cavities. However, magnetic field in Helical Cooling Channel has a strong dipole component in addition to solenoidal one. The dipole component essentially changes electron motion in a cavity compare to pure solenoidal case, making dark current less focused at field emission sites. The simulation of dark current dynamic in HCC performed with CST Studio Suit is presented in this paper.

  8. Simulation of RF Cavity Dark Current in Presence of Helical Magnetic Field

    SciTech Connect

    Romanov, Gennady; Kashikhin, Vladimir; /Unlisted

    2010-09-01

    In order to produce muon beam of high enough quality to be used for a Muon Collider, its large phase space must be cooled several orders of magnitude. This task can be accomplished by ionization cooling. Ionization cooling consists of passing a high-emittance muon beam alternately through regions of low Z material, such as liquid hydrogen, and very high accelerating RF cavities within a multi-Tesla solenoidal focusing channel. But first high power tests of RF cavity with beryllium windows in solenoidal magnetic field showed a dramatic drop in accelerating gradient due to RF breakdowns. It has been concluded that external magnetic fields parallel to RF electric field significantly modifies the performance of RF cavities. However, magnetic field in Helical Cooling Channel has a strong dipole component in addition to solenoidal one. The dipole component essentially changes electron motion in a cavity compare to pure solenoidal case, making dark current less focused at field emission sites. The simulation of dark current dynamic in HCC performed with CST Studio Suit is presented in this paper.

  9. Engineered materials for all-optical helicity-dependent magnetic switching

    NASA Astrophysics Data System (ADS)

    Fullerton, Eric

    2014-03-01

    The possibilities of manipulating magnetization without applied magnetic fields have attracted growing attention over the last fifteen years. The low-power manipulation of magnetization, preferably at ultra-short time scales, has become a fundamental challenge with implications for future magnetic information memory and storage technologies. Here we explore the optical manipulation of the magnetization of engineered materials and devices using 100 fs optical pulses. We demonstrate that all optical - helicity dependent switching (AO-HDS) can be observed not only in selected rare-earth transition-metal (RE-TM) alloy films but also in a much broader variety of materials, including alloys, multilayers, heterostructures and RE-free Co-Ir-based synthetic ferrimagnets. The discovery of AO-HDS in RE-free TM-based synthetic ferrimagnets can enable breakthroughs for numerous applications since it exploits materials that are currently used in magnetic data storage, memories and logic technologies. In addition, this materials study of AO-HDS offers valuable insight into the underlying mechanisms involved. Indeed the common denominator of the diverse structures showing AO-HDS in this study is that two ferromagnetic sub-lattices exhibit magnetization compensation (and therefore angular momentum compensation) at temperatures near or above room temperature. We are highlighting that compensation plays a major role and that this compensation can be established at the atomic level as in alloys but also over a larger nanometers scale as in the multilayers or in heterostructures. We will also discuss the potential to extend AO-HDS to new classes of magnetic materials. This work was done in collaboration with S. Mangin, M. Gottwald, C-H. Lambert, D. Steil, V. Uhlíř, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, and M. Aeschlimann. Supported by the ANR-10-BLANC-1005 ``Friends,'' a grant from the Advanced Storage Technology Consortium, Partner University Fund

  10. Study of magnetic helicity injection in the active region NOAA 9236 producing multiple flare-associated coronal mass ejection events

    SciTech Connect

    Park, Sung-Hong; Cho, Kyung-Suk; Bong, Su-Chan; Kumar, Pankaj; Kim, Yeon-Han; Park, Young-Deuk; Kusano, Kanya; Chae, Jongchul; Park, So-Young

    2013-11-20

    To better understand a preferred magnetic field configuration and its evolution during coronal mass ejection (CME) events, we investigated the spatial and temporal evolution of photospheric magnetic fields in the active region NOAA 9236 that produced eight flare-associated CMEs during the time period of 2000 November 23-26. The time variations of the total magnetic helicity injection rate and the total unsigned magnetic flux are determined and examined not only in the entire active region but also in some local regions such as the main sunspots and the CME-associated flaring regions using SOHO/MDI magnetogram data. As a result, we found that (1) in the sunspots, a large amount of positive (right-handed) magnetic helicity was injected during most of the examined time period, (2) in the flare region, there was a continuous injection of negative (left-handed) magnetic helicity during the entire period, accompanied by a large increase of the unsigned magnetic flux, and (3) the flaring regions were mainly composed of emerging bipoles of magnetic fragments in which magnetic field lines have substantially favorable conditions for making reconnection with large-scale, overlying, and oppositely directed magnetic field lines connecting the main sunspots. These observational findings can also be well explained by some MHD numerical simulations for CME initiation (e.g., reconnection-favored emerging flux models). We therefore conclude that reconnection-favored magnetic fields in the flaring emerging flux regions play a crucial role in producing the multiple flare-associated CMEs in NOAA 9236.

  11. THEOS-2 Orbit Design: Formation Flying in Equatorial Orbit and Damage Prevention Technique for the South Atlantic Magnetic Anomaly (SAMA)

    NASA Astrophysics Data System (ADS)

    Pimnoo, Ammarin

    2016-07-01

    Geo-Informatics and Space Technology Development Agency (GISTDA) has initiative THEOS-2 project after the THEOS-1 has been operated for more than 7 years which is over the lifetime already. THEOS-2 project requires not only the development of earth observation satellite(s), but also the development of the area-based decision making solution platform comprising of data, application systems, data processing and production system, IT infrastructure improvement and capacity building through development of satellites, engineering model, and infrastructures capable of supporting research in related fields. The developing satellites in THEOS-2 project are THAICHOTE-2 and THAICHOTE-3. This paper focuses the orbit design of THAICHOTE-2 & 3. It discusses the satellite orbit design for the second and third EOS of Thailand. In this paper, both THAICHOTE will be simulated in an equatorial orbit as a formation flying which will be compared the productive to THAICHOTE-1 (THEOS-1). We also consider a serious issue in equatorial orbit design, namely the issue of the geomagnetic field in the area of the eastern coast of South America, called the South Atlantic Magnetic Anomaly (SAMA). The high-energy particles of SAMA comprise a radiation environment which can travel through THAICHOTE-2 & 3 material and deposit kinetic energy. This process causes atomic displacement or leaves a stream of charged atoms in the incident particles' wake. It can cause damage to the satellite including reduction of power generated by solar arrays, failure of sensitive electronics, increased background noise in sensors, and exposure of the satellite devices to radiation. This paper demonstrates the loss of ionizing radiation damage and presents a technique to prevent damage from high-energy particles in the SAMA.

  12. Evolution of the baryon asymmetry through the electroweak crossover in the presence of a helical magnetic field

    NASA Astrophysics Data System (ADS)

    Kamada, Kohei; Long, Andrew J.

    2016-12-01

    We elaborate upon the model of baryogenesis from decaying magnetic helicity by focusing on the evolution of the baryon number and magnetic field through the Standard Model electroweak crossover. The baryon asymmetry is determined by a competition between the helical hypermagnetic field, which sources baryon number, and the electroweak sphaleron, which tends to wash out baryon number. At the electroweak crossover, both of these processes become inactive; the hypermagnetic field is converted into an electromagnetic field, which does not source baryon number, and the weak gauge boson masses grow, suppressing the electroweak sphaleron reaction. An accurate prediction of the relic baryon asymmetry requires a careful treatment of the crossover. We extend our previous study [K. Kamada and A. J. Long, Phys. Rev. D 94, 063501 (2016)], taking into account the gradual conversion of the hypermagnetic into the electromagnetic field. If the conversion is not completed by the time of sphaleron freeze-out, as both analytic and numerical studies suggest, the relic baryon asymmetry is enhanced compared to previous calculations. The observed baryon asymmetry of the Universe can be obtained for a primordial magnetic field that has a present-day field strength and coherence length of B0˜10-17 G and λ0˜10-3 pc and a positive helicity. For larger B0 the baryon asymmetry is overproduced, which may be in conflict with blazar observations that provide evidence for an intergalactic magnetic field of strength B0≳10-14 - 16 G .

  13. First Synoptic Maps of Photospheric Vector Magnetic Field from SOLIS/VSM: Non-radial Magnetic Fields and Hemispheric Pattern of Helicity

    NASA Astrophysics Data System (ADS)

    Gosain, S.; Pevtsov, A. A.; Rudenko, G. V.; Anfinogentov, S. A.

    2013-07-01

    We use daily full-disk vector magnetograms from Vector Spectromagnetograph on Synoptic Optical Long-term Investigations of the Sun system to synthesize the first Carrington maps of the photospheric vector magnetic field. We describe these maps and make a comparison of the observed radial field with the radial field estimate from line-of-sight magnetograms. Furthermore, we employ these maps to study the hemispheric pattern of current helicity density, Hc , during the rising phase of solar cycle 24. The longitudinal average over the 23 consecutive solar rotations shows a clear signature of the hemispheric helicity rule, i.e., Hc is predominantly negative in the north and positive in the south. Although our data include the early phase of cycle 24, there appears to be no evidence for a possible (systematic) reversal of the hemispheric helicity rule at the beginning of the cycle as predicted by some dynamo models. Furthermore, we compute the hemispheric pattern in active region latitudes (-30° <= θ <= 30°) separately for weak (100 G < |Br | < 500 G) and strong (|Br | > 1000 G) radial magnetic fields. We find that while the current helicity of strong fields follows the well-known hemispheric rule (i.e., θ · Hc < 0), Hc of weak fields exhibits an inverse hemispheric behavior (i.e., θ · Hc > 0), albeit with large statistical scatter. We discuss two plausible scenarios to explain the opposite hemispheric trend of helicity in weak and strong field regions.

  14. Domain size criterion for the observation of all-optical helicity-dependent switching in magnetic thin films

    NASA Astrophysics Data System (ADS)

    El Hadri, Mohammed Salah; Hehn, Michel; Pirro, Philipp; Lambert, Charles-Henri; Malinowski, Grégory; Fullerton, Eric E.; Mangin, Stéphane

    2016-08-01

    To understand the necessary condition for the observation of all-optical helicity-dependent switching (AO-HDS) of magnetization in thin films, we investigated ferromagnetic Co/Pt and Co/Ni multilayers as well as ferrimagnetic TbCo alloys as a function of magnetic layer compositions and thicknesses. We show that both ferro- and ferrimagnets with high saturation magnetization show AO-HDS if their magnetic thickness is strongly reduced below a material-dependent threshold thickness. By taking into account the demagnetizing energy and the domain wall energy, we are able to define a criterion to predict whether AO-HDS or thermal demagnetization (TD) will be observed. This criterion for the observation of AO-HDS is that the equilibrium size of magnetic domains forming during the cooling process should be larger than the laser spot size. From these results we anticipate that more magnetic materials are expected to show AO-HDS. However, the effect of the optical pulses' helicity is hidden by the formation of small magnetic domains during the cooling process.

  15. Quantum dot as a magnetic impurity in a helical edge: a source of resistance weakly dependent on temperature

    NASA Astrophysics Data System (ADS)

    Vayrynen, Jukka; Goldstein, Moshe; Gefen, Yuval; Glazman, Leonid

    2014-03-01

    The bulk of a doped two-dimensional topological insulator may accommodate spontaneously-formed quantum dots (charge puddles). We show that a Coulomb blockaded quantum dot hosting an odd number of electrons acts as a magnetic impurity effective in backscattering of electron moving along the helical edge. The exchange interaction between the dot and the edge, derived from a microscopic Hamiltonian, is anisotropic in general. The exchange anisotropy makes the dot spin an efficient backscatterer. The resulting negative correction to the helical edge conductance may exhibit a broad plateau in its temperature dependence. Being averaged over the Fermi level position, the correction to the ideal conductance becomes logarithmic in temperature. The effect of external magnetic field on transport is also discussed, and a connection to recent experiments is made.

  16. Control of the Helicity Content of a Gun-Generated Spheromak by Incorporating a Conducting Shell into a Magnetized Coaxial Plasma Gun

    NASA Astrophysics Data System (ADS)

    Matsumoto, Tadafumi; Sekiguchi, Jun'ichi; Asai, Tomohiko

    In the formation of magnetized plasmoid by a magnetized coaxial plasma gun (MCPG), the magnetic helicity content of the generated plasmoid is one of the critical parameters. Typically, the bias coil to generate a poloidal flux is mounted either on the outer electrode or inside the inner electrode. However, most of the flux generated in the conventional method spreads even radially outside of the formation region. Thus, only a fraction of the total magnetic flux is actually exploited for helicity generation in the plasmoid. In the proposed system, the plasma gun incorporates a copper shell mounted on the outer electrode. By changing the rise time of the discharge bias coil current and the geometrical structure of the shell, the magnetic field structure and its time evolution can be controlled. The effect of the copper shell has been numerically simulated for the actual gun structure, and experimentally confirmed. This may increase the magnetic helicity content results, through increased poloidal magnetic field.

  17. Equatorial density depletions observed at 840 km during the great magnetic storm of March 1989

    SciTech Connect

    Greenspan, M.E. ); Rasmussen, C.E. ); Burke, W.J. ); Abdu, M.A. )

    1991-08-01

    Early on March 14, 1989, a thermal plasma probe on the Defense Meteorological Satellite Program (DMSP) F9 spacecraft detected extensive and dramatic decreases in the ion density at 840 km, near 2130 LT, during two consecutive transequatorial passes over South America. The order of magnitude decreases in the ion density extended more than 4,000 km along the satellite track. The depletions were accompanied by upward and westward plasma drifts, both in excess of 100 m/s. Their onsets and terminations were marked by extremely sharp density gradients. A partial depletion was detected over the eastern Pacific during the following orbit. The DMSP F9 ground track passed slightly west of a Brazilian total electron content (TEC) station and two Brazilian ionosondes during the first depletion encounter. The TEC fell far below normal during the night of March 13-14. The ionosonde measurements indicate that, in the hour after sunset, before DMSP passed through the depletions, the F{sub 2} layer rose rapidly and disappeared, but at the time of the first depletion encounter, h{sub m}F{sub 2} was decreasing over one of the stations. The authors develop a phenomenological model reconciling DMSP F8, F9 and ground-based measurements. The calculations show that rapid upward drifts sustained for several hours can produce depletions in the equatorial ion density with sharp gradients at their high-latitude boundaries, consistent with the data. They discuss possible contributing mechanisms for generating these upward drifts. These include direct penetration of the magnetospheric electric field to low latitudes, the electric fields generated by the disturbance dynamo, and the effects of conductivity gradients near the dusk terminator and the South Atlantic anomaly.

  18. Kinematics of and Emission from Helically Orbiting Blobs in a Relativistic Magnetized Jet

    NASA Astrophysics Data System (ADS)

    Mohan, P.; Mangalam, A.

    2015-06-01

    We present a general relativistic (GR) model of jet variability in active galactic nuclei due to orbiting blobs in helical motion along a funnel or cone-shaped magnetic surface anchored to the accretion disk near the black hole. Considering a radiation pressure driven flow in the inner region, we find that it stabilizes the flow, yielding Lorentz factors ranging between 1.1 and 7 at small radii for reasonable initial conditions. Assuming these as inputs, simulated light curves (LCs) for the funnel model include Doppler and gravitational shifts, aberration, light bending, and time delay. These LCs are studied for quasi-periodic oscillations (QPOs) and the power spectral density (PSD) shape, and yield an increased amplitude (˜12%), a beamed portion and a systematic phase shift with respect to that from a previous special relativistic model. The results strongly justify implementing a realistic magnetic surface geometry in Schwarzschild geometry to describe effects on emission from orbital features in the jet close to the horizon radius. A power-law-shaped PSD with a typical slope of -2 and QPOs with timescales in the range of (1.37-130.7) days consistent with optical variability in blazars, emerges from the simulations for black hole masses {{M}\\bullet }=(0.5-5)× {{10}8} {{M}⊙ } and initial Lorentz factors {{γ }jet,i}=2-10. The models presented here can be applied to explain radio, optical, and X-ray variability from a range of jetted sources including active galactic nuclei, X-ray binaries, and neutron stars.

  19. The vector potential and stored energy of thin cosine (n{theta}) helical wiggler magnet

    SciTech Connect

    Caspi, S.

    1995-12-01

    Expressions for pure multipole field components that are present in helical devices have been derived from a current distribution on the surface of an infinitely thin cylinder of radius R. The strength of such magnetic fields varies purely as a Fourier sinusoidal series of the longitudinal coordinate Z in proportion to cos(n{theta}- {omega}{sub m}z), where {omega}{sub m} = (2m-1){pi}/L, L denotes the half-period and m = 1, 2, 3 etc. As an alternative to describing such field components as given by the negative gradient of a scalar potential function (Appendix A), one of course can derive these same fields as the curle of a vector potential function {rvec A}--specifically one for which {nabla} {times} {nabla} {times} {rvec A} = 0 and {nabla}{center_dot}{rvec A} = 0. It is noted that we seek a divergence-free vector that exhibits continuity in any of its components across the interface r = R, a feature that is free of possible concern when applying Stokes` theorem in connection with this form of vector potential. Alternative simpler forms of vector potential, that individually are divergence-free in their respective regions (r < R and r > R), do not exhibit full continuity on r = R and whose curl evaluations provide in these respective regions the correct components of magnetic field are not considered here. Such alternative forms must differ merely by the gradient of scalar functions that with the divergence-free property are required to be ``harmonic`` ({nabla}{sup 2}{Psi} = 0).

  20. Evidence for Helical Magnetic fields in Kiloparsec-Scale AGN Jets and the Action of a Cosmic Battery

    NASA Technical Reports Server (NTRS)

    Gabuzda, D. C.; Christodoulou, D. M.; Contopulos, I.; Kazanas, D.

    2012-01-01

    A search for transverse kiloparsec-scale gradients in Faraday rotation-measure (RM) maps of extragalactic radio sources in the literature has yielded 6 AGNs displaying continuous, monotonic RM gradients across their jets, oriented roughly orthogonal to the local jet direction. The most natural interpretation of such transverse RM gradients is that they are caused by the systematic change in the line-of-sight components of helical magnetic fields associated with these jets. All the identified transverse RM gradients increase in the counterclockwise (CCW) direction on the sky relative to the centers of these AGNs. Taken together with the results of Contopoulos et al. who found evidence for a predominance of clockwise (CW) transverse RM gradients across parsec-scale (VLBI) jets, this provides new evidence for preferred orientations of RM gradients due to helical jet magnetic fields, with a reversal from CW in the inner jets to CCW farther from the centers of activity. This can be explained by the "Poynting-Robertson cosmic-battery" mechanism, which can generate helical magnetic fields with a. characteristic "twist," which are expelled with the jet outflows. If the Poynting-Robertson battery mechanism is not operating, an alternative mechanism must be identified, which is able to explain the 'predominance of CW /CCW RM gradients on parsec/kiloparsec scales.

  1. Towards developing an analytical procedure of defining the equatorial electrojet for correcting satellite magnetic anomaly data

    NASA Technical Reports Server (NTRS)

    Ravat, Dhananjay; Hinze, William J.

    1991-01-01

    Analysis of the total magnetic intensity MAGSAT data has identified and characterized the variability of ionospheric current effects as reflected in the geomagnetic field as a function of longitude, elevation, and time (daily as well as monthly variations). This analysis verifies previous observations in POGO data and provides important boundary conditions for theoretical studies of ionospheric currents. Furthermore, the observations have led to a procedure to remove these temporal perturbations from lithospheric MAGSAT magnetic anomaly data based on 'along-the-dip-latitude' averages from dawn and dusk data sets grouped according to longitudes, time (months), and elevation. Using this method, high-resolution lithospheric magnetic anomaly maps have been prepared of the earth over a plus or minus 50 deg latitude band. These maps have proven useful in the study of the structures, nature, and processes of the lithosphere.

  2. Analysis of the Variation of Energetic Electron Flux with Respect to Longitude and Distance Normal to the Magnetic Equatorial Plane for Galileo Energetic Particle Detector Data

    NASA Technical Reports Server (NTRS)

    Swimm, Randall; Garrett, Henry B.; Jun, Insoo; Evans, Robin W.

    2004-01-01

    In this study we examine ten-minute omni-directional averages of energetic electron data measured by the Galileo spacecraft Energetic Particle Detector (EPD). Count rates from electron channels B1, DC2, and DC3 are evaluated using a power law model to yield estimates of the differential electron fluxes from 1 MeV to 11 MeV at distances between 8 and 51 Jupiter radii. Whereas the orbit of the Galileo spacecraft remained close to the rotational equatorial plane of Jupiter, the approximately 11 degree tilt of the magnetic axis of Jupiter relative to its rotational axis allowed the EPD instrument to sample high energy electrons at limited distances normal to the magnetic equatorial plane. We present a Fourier analysis of the semi-diurnal variation of electron fluxes with longitude.

  3. New-generation empirical magnetic field models: Increasing resolution of equatorial and Birkeland currents and transition from modeling to nowcasting

    NASA Astrophysics Data System (ADS)

    Stephens, G. K.; Sitnov, M. I.; Redmon, R. J.

    2015-12-01

    Classical empirical geomagnetic field models were built using rigid electric current modules whose amplitude and size were determined by predefined functions of solar wind and global parameters, which limited their ability to reconstruct the global morphology of the magnetosphere and its dynamic evolution during geomagnetic storms. The TS07D model mitigated these limitations by replacing the equatorial current modules with basis-function expansions and by introducing a dynamical binning approach based on nearest neighbors. Here we further progress this avenue. Firstly, the number of basis functions is increased and new data from Van Allen Probes and THEMIS missions is added, allowing the model to resolve the spatial structure and evolution of the innermost eastward and banana currents. Then, an enhanced Birkeland current module that more accurately reconstructs the realistic morphology, including the Harang discontinuity and IMF By dependence, is discussed. Lastly, the performance of various nowcasting versions of the model with different sets of the binning parameters is examined for the first time using their direct validation by in-situ geomagnetic field observations, leading to an optimum nowcasting version of the model. Furthermore, the plasma pressure is reconstructed assuming force balance with the empirical magnetic field, and the role of pressure-driven currents is examined.

  4. Helicity content and tokamak applications of helicity

    SciTech Connect

    Boozer, A.H.

    1986-05-01

    Magnetic helicity is approximately conserved by the turbulence associated with resistive instabilities of plasmas. To generalize the application of the concept of helicity, the helicity content of an arbitrary bounded region of space will be defined. The definition has the virtues that both the helicity content and its time derivative have simple expressions in terms of the poloidal and toroidal magnetic fluxes, the average toroidal loop voltage and the electric potential on the bounding surface, and the volume integral of E-B. The application of the helicity concept to tokamak plasmas is illustrated by a discussion of so-called MHD current drive, an example of a stable tokamak q profile with q less than one in the center, and a discussion of the possibility of a natural steady-state tokamak due to the bootstrap current coupling to tearing instabilities.

  5. Equatorial electromagnetic emission with discrete spectra near harmonics of oxygen gyrofrequency during magnetic storm

    SciTech Connect

    Liu, H.; Kokubun, S.; Hayashi, K. )

    1994-02-01

    The authors examine ELF data taken by the Akebono satellite in the low altitude plasmasphere during magnetic storms. They find that there are a set of these wave observations which are frequency related to the oxygen ion gyrofrequency. They observe emissions at frequencies closely related to the first and second harmonic of the oxygen ion gyrofrequency. The spacing between bands observed in the ELF are at the first or second oxygen ion gyrofrequency, and the frequency varies with the geomagnetic field. The authors argue that these emissions orginate from oxygen ions in the ring current region.

  6. An equatorial solar wind model with angular momentum conservation and nonradial magnetic fields and flow velocities at an inner boundary

    NASA Astrophysics Data System (ADS)

    Tasnim, S.; Cairns, Iver H.

    2016-06-01

    An analytic, self-consistent, theoretical model for the solar wind is developed that generalizes previous models to include all of the following: conservation of angular momentum, frozen-in magnetic fields, both radial (r) and azimuthal (ϕ) components of the magnetic field (Br and Bϕ) and velocity (vr and vϕ) from the inner boundary rs to 1 AU, and the detailed tracing back of observations at 1 AU to the inner boundary and all intervening (r,ϕ). The new model applies near the solar equatorial plane, assumes constant radial wind speed at each heliolongitude, and enforces corotation at the inner boundary. It is shown that the new theoretical model can be reduced to the previous models in the appropriate limits. We apply the model to two solar rotations of Wind spacecraft data, one near solar minimum (1-27 August 2010) and one near solar maximum (1-27 July 2002). The model analytically predicts the Alfvénic critical radius ra from the radial Alfvénic Mach number observed at 1 AU. Typically, the values are less than 15 solar radii, in agreement with some recent observations, and vary with longitude. Values of vϕ(r,ϕ) are predicted from the model, being always in the sense of corotation but varying in magnitude with r and ϕ. Reasonable and self-consistent results are found for Br(r,ϕ), Bϕ(r,ϕ), vϕ(r,ϕ), and n(r,ϕ) from rs to 1 AU. Both the azimuthal and radial magnetic fields at rs vary with time by more than an order of magnitude and usually |Br(rs,ϕs)|≥|Bϕ(rs,ϕs)|. Typically, though not always, magnetic contributions to the total angular momentum are small. Interestingly, however, the azimuthal flow velocities observed at 1 AU are not always in the corotation direction and usually have much larger magnitudes than predicted by the model. Conservation of angular momentum alone cannot explain these azimuthal velocities and the standard interpretation involving stream-stream interactions and dynamical behavior seems reasonable. Issues regarding the

  7. Equatorially connected diruthenium(II,III) units toward paramagnetic supramolecular structures with singular magnetic properties.

    PubMed

    Barral, M Carmen; Gallo, Teresa; Herrero, Santiago; Jiménez-Aparicio, Reyes; Torres, M Rosario; Urbanos, Francisco A

    2006-05-01

    The reaction of Ru2Cl(O2CMe)(DPhF)3 (DPhF = N,N'-diphenylformamidinate) with mono- and polycarboxylic acids gives a clean substitution of the acetate ligand, leading to the formation of complexes Ru2Cl(O2CC6H5)(DPhF)3 (1), Ru2Cl(O2CC6H4-p-CN)(DPhF)3 (2), [Ru2Cl(DPhF)3(H2O)]2(O2C)2 (3), [Ru2Cl(DPhF)3]2[C6H4-p-(CO2)2] (4), and [Ru2Cl(DPhF)3]3[C6H3-1,3,5-(CO2)3] (5). The preparation of [Ru2(NCS)(DPhF)3]3[C6H3-1,3,5-(CO2)3] (6) and {[Ru2(DPhF)3(H2O)]3[C6H3-1,3,5-(CO2)3]}(SO3CF3)3 (7) from 5 is also described. All complexes are characterized by elemental analysis, IR and electronic spectroscopy, mass spectrometry, cyclic voltammetry, and variable-temperature magnetic measurements. The crystal structure determinations of complexes 2.0.5THF and 3.THF.4H2O (THF = tetrahydrofuran) are reported. The reactions carried out demonstrate the high chemical stability of the fragment [Ru2(DPhF)3]2+, which is preserved in all tested experimental conditions. The stability of this fragment is also corroborated by the mass spectra. Electrochemical measurements reveal in all complexes one redox process due to the equilibrium Ru2(5+) <--> Ru2(6+). In the polynuclear complex 7, some additional oxidation processes are also observed that have been ascribed to the presence of two types of dimetallic units rather than two consecutive reversible oxidations. The magnetic behavior toward temperature for complexes 1-7 from 300 to 2 K is analyzed. Complexes 1-7 show low values of antiferromagnetic coupling in accordance with the molecular nature in 1 and 2 and the absence of important antiferromagnetic interaction through the carboxylate bridging ligands in 3-7, respectively. In addition, the magnetic properties of complex 7 do not correspond to any magnetic behavior described for diruthenium(II,III) complexes. The experimental data of compound 7 are simulated considering a physical mixture of S = 1/2 and 3/2 spin states. This magnetic study demonstrates the high sensitivity of the electronic

  8. MAGNETIC HELICITY SPECTRUM OF SOLAR WIND FLUCTUATIONS AS A FUNCTION OF THE ANGLE WITH RESPECT TO THE LOCAL MEAN MAGNETIC FIELD

    SciTech Connect

    Podesta, J. J.; Gary, S. P.

    2011-06-10

    Magnetic field data acquired by the Ulysses spacecraft in high-speed streams over the poles of the Sun are used to investigate the normalized magnetic helicity spectrum {sigma}{sub m} as a function of the angle {theta} between the local mean magnetic field and the flow direction of the solar wind. This spectrum provides important information about the constituent modes at the transition to kinetic scales that occurs near the spectral break separating the inertial range from the dissipation range. The energetically dominant signal at scales near the thermal proton gyroradius k{sub perpendicular{rho}i} {approx} 1 often covers a wide band of propagation angles centered about the perpendicular direction, {theta} {approx_equal} 90{sup 0} {+-} 30{sup 0}. This signal is consistent with a spectrum of obliquely propagating kinetic Alfven waves with k{sub perpendicular} >> k{sub ||} in which there is more energy in waves propagating away from the Sun and along the direction of the local mean magnetic field than toward the Sun. Moreover, this signal is principally responsible for the reduced magnetic helicity spectrum measured using Fourier transform techniques. The observations also reveal a subdominant population of nearly parallel propagating electromagnetic waves near the proton inertial scale k{sub ||} c/{omega}{sub pi} {approx} 1 that often exhibit high magnetic helicity |{sigma}{sub m}| {approx_equal} 1. These waves are believed to be caused by proton pressure anisotropy instabilities that regulate distribution functions in the collisionless solar wind. Because of the existence of a drift of alpha particles with respect to the protons, the proton temperature anisotropy instability that operates when T{sub pperpendicular}/T{sub p||} > 1 preferentially generates outward propagating ion-cyclotron waves and the fire-hose instability that operates when T{sub pperpendicular}/T{sub p||} < 1 preferentially generates inward propagating whistler waves. These kinetic processes

  9. First Synoptic Maps of Photospheric Vector Magnetic Field from SOLIS/VSM: Non-radial Magnetic Fields and Hemispheric Pattern of Helicity

    NASA Astrophysics Data System (ADS)

    Gusain, Sanjay; Pevtsov, A. A.; Rudenko, G. V.; Anfinogentov, S. A.; Pevtsov, A. A.; Rudenko, G. V.; Anfinogentov, S. A.

    2013-07-01

    We use daily full-disk vector magnetograms from Vector Spectromagnetograph (VSM) on Solar Optical Long-term Investigations of the Sun (SOLIS) system to synthesize the first Carrington maps of the photospheric vector magnetic field. We describe these maps and make a comparison of observed radial field with the radial field estimate from LOS magnetograms. Further, we employ these maps to study the hemispheric pattern of current helicity density, Hc, during the rising phase of the solar cycle 24. Longitudinal average over the 23 consecutive solar rotations shows a clear signature of the hemispheric helicity rule, i.e. Hc is predominantly negative in the North and positive in South. The hemispheric pattern for individual Carrington rotations is statistically weak, consistent with previous studies of active regions’ helicity. Although our data include the early phase of cycle 24, there appears no evidence for a possible (systematic) reversal of the hemispheric helicity rule at the beginning of cycle as predicted by some dynamo models. Further, we compute the hemispheric pattern in active region latitudes (-30 ≤ θ ≤ 30) separately for weak (100< |Br| <500 G)and strong (|Br| >1000 G) radial magnetic fields. We find that while the current helicity of strong fields follows the well-known hemispheric rule (i.e., θ.Hc < 0), Hc of weak fields exhibits an inverse hemispheric behavior (i.e., θ.Hc > 0) albeit with large statistical scatter.Abstract (2,250 Maximum Characters): We use daily full-disk vector magnetograms from Vector Spectromagnetograph (VSM) on Solar Optical Long-term Investigations of the Sun (SOLIS) system to synthesize the first Carrington maps of the photospheric vector magnetic field. We describe these maps and make a comparison of observed radial field with the radial field estimate from LOS magnetograms. Further, we employ these maps to study the hemispheric pattern of current helicity density, Hc, during the rising phase of the solar cycle 24

  10. Effects of magnetic-storm phases on F-layer irregularities from auroral to equatorial latitudes. Quarterly report, 1 Oct-31 Dec 90

    SciTech Connect

    Aarons, J.; Mendillo, M.

    1990-12-31

    Partial Contents: The effects of electric field and ring current energy increases on F-layer irregularities at auroral and sub-auroral latitudes; The role of the ring current in generating or inhibiting equatorial F-layer irregularities during magnetic storms; Auroral and sub-auroral F-layer irregularities and high plasma convection during the magnetically active periods of September 17-24, 1984; and Simultaneous All-Sky Optical Airglow Imaging Observations and San Marco Satellite Measurements in the Pacific Sector.

  11. ESPERIA: an Equatorial Magnetic, Plasma and Particle Mission for Monitoring Perturbations in the Topside Ionosphere and for Defining the Near-Earth Magnetic Environment.

    NASA Astrophysics Data System (ADS)

    Sgrigna, V.; Console, R.; Buzzi, A.; Conti, L.; Galper, A. M.; Malvezzi, V.; Parrot, M.; Picozza, P.; Scrimaglio, R.; Spillantini, P.; Zilpimiani, D.

    2004-05-01

    ESPERIA is an equatorial space mission planned with a LEO small-satellite and a multi-instrument payload. The project has been ideally conceived to define the near-Earth electromagnetic, plasma, and particle environment, both in steady-state and perturbed-state conditions. In recent times has been observed that either Earth's interior processes or near-Earth space phenomena have a privileged and sensitive zone of investigation constituted by the ionosphere-magnetosphere transition region, at altitudes ranging around 500 / 1000 km. In fact, sun and cosmic rays as well as, seismic, anthropogenic and thunderstorm activities, influence the structure and dynamics of the zone. These external and internal contributions play an important role in defining the particle and electromagnetic field character of the region, both in steady-state and perturbed-state conditions. So, a suitable monitoring of the topside ionosphere may give an help in studying many important physical phenomena as pre-earthquake and anthropogenic electromagnetic emissions, solar wind and flares, as well as in mapping the geomagnetic field. Concerning the Earth's magnetic field mapping, ESPERIA can be seen as an equatorial coordinated and simultaneous complement to polar missions, like SWARM. The first step in realizing the project was an opportunity given by the Italian Space Agency (ASI) for a Phase A Study, concerned with detecting any tectonic and preseismic related signals, and studying seismo-associated perturbations and instabilities in the topside ionosphere. The study has been performed by an International Consortium lead by the University Roma Tre, and the ESPERIA Phase A report is now available. The ASI constrains restricted the scientific objectives of the above-mentioned ideally conceived project, but recent contacts with other missions and science teams give indications to reconcile the project to its original aims.

  12. Effects of magnetic-storm phases on F-layer irregularities from auroral to equatorial latitudes. Quarterly report, 1 April-30 June 1990

    SciTech Connect

    Aarons, J.; Mendillo, M.

    1990-06-30

    In progress is a major study of the effect of the ring current on the sub-auroral and equatorial generation of patches of irregularities. In addition studies are on-going for determining the dynamics of electric field penetration in latitude with the start of a major geomagnetic storm. For the first time simultaneous observations of irregularities at high and equatorial latitudes will be utilized. The studies use scintillation and spread F data as well as optical observations for data from 1971-1989. Two basic concepts are being studied. With the statistics of morphology of F-layer irregularities now in hand, it is possible to forecast in broad terms what to expect at equatorial, auroral and polar latitudes during various levels of solar flux. With the beginning of an understanding of the effect of the various phases of magnetic storms on generating irregularities as noted from the solar wind, ring current, convection, auroral index, and magnetic index parameters, it is possible to roughly forecast levels of F-layer irregularity intensity. With these in hand, the utility of space, time, and frequency diversity can be evaluated. Diversity could be used if forecasting in real time was possible.

  13. HOMOLOGOUS HELICAL JETS: OBSERVATIONS BY IRIS, SDO, AND HINODE AND MAGNETIC MODELING WITH DATA-DRIVEN SIMULATIONS

    SciTech Connect

    Cheung, Mark C. M.; Pontieu, B. De; Tarbell, T. D.; Fu, Y.; Martínez-Sykora, J.; Boerner, P.; Wülser, J. P.; Lemen, J.; Title, A. M.; Hurlburt, N.; Tian, H.; Testa, P.; Reeves, K. K.; Golub, L.; McKillop, S.; Saar, S.; Kleint, L.; Kankelborg, C.; Jaeggli, S.; Carlsson, M.; and others

    2015-03-10

    We report on observations of recurrent jets by instruments on board the Interface Region Imaging Spectrograph, Solar Dynamics Observatory (SDO), and Hinode spacecraft. Over a 4 hr period on 2013 July 21, recurrent coronal jets were observed to emanate from NOAA Active Region 11793. Far-ultraviolet spectra probing plasma at transition region temperatures show evidence of oppositely directed flows with components reaching Doppler velocities of ±100 km s{sup −1}. Raster Doppler maps using a Si iv transition region line show all four jets to have helical motion of the same sense. Simultaneous observations of the region by SDO and Hinode show that the jets emanate from a source region comprising a pore embedded in the interior of a supergranule. The parasitic pore has opposite polarity flux compared to the surrounding network field. This leads to a spine-fan magnetic topology in the coronal field that is amenable to jet formation. Time-dependent data-driven simulations are used to investigate the underlying drivers for the jets. These numerical experiments show that the emergence of current-carrying magnetic field in the vicinity of the pore supplies the magnetic twist needed for recurrent helical jet formation.

  14. Effects of magnetic storm phases on F-layer irregularities from auroral to equatorial latitudes. Quarterly report, 1 July-30 September 1993

    SciTech Connect

    Aarons, J.; Mendillo, M.

    1993-09-30

    Although the general pattern of equatorial F-layer irregularities as a function of latitude, longitude, and geophysical conditions is in hand, the day to day variations are still difficult to evaluate. The forcing functions for day to day variations appear to be neutral winds and electric field conditions. The data indicate that at times in the irregularity season', irregularities are produced day after day. However nights of irregularities are at other times followed by one or more nights with an absence of irregularities. For the equatorial region, using scintillation data at 136 MHz, the authors have correlated the occurrence of irregularities at several stations along a relatively narrow range of longitudes at various latitudes in the Pacific sector. The sites used are in the Philippines, Taiwan, and Korea. The correlation of daily occurrence was poor. For example at magnetically quiet times there are irregularities noted at a station such as Osan, Korea (dip latitude 30 deg) with little irregularity activity at Manila (dip latitude 5 deg ), relatively close in longitude. For latitudes somewhat higher that the anomaly region, the problem arises of separating polewards effects of the equatorial plumes and the equatorwards motion of irregularity development originating in the auroral region during severe magnetic storms. A possibility exists for the generation of another class of F-layer irregularities at mid-latitudes with a body of data from Japan, Port Moresby, Osan, and Palehua, Hawaii. This is suggestive that at least in the Pacific region there is a low latitude generation of irregularities distinct from equatorial or auroral mechanisms.

  15. Helical Tomotherapy Planning for Lung Cancer Based on Ventilation Magnetic Resonance Imaging

    SciTech Connect

    Cai Jing; McLawhorn, Robert; Altes, Tallisa A.; Lange, Eduard de; Read, Paul W.; Larner, James M.; Benedict, Stanley H.; Sheng Ke

    2011-01-01

    To investigate the feasibility of lung ventilation-based treatment planning, computed tomography and hyperpolarized (HP) helium-3 (He-3) magnetic resonance imaging (MRI) ventilation images of 6 subjects were coregistered for intensity-modulated radiation therapy planning in Tomotherapy. Highly-functional lungs (HFL) and less-functional lungs (LFL) were contoured based on their ventilation image intensities, and a cylindrical planning-target-volume was simulated at locations adjacent to both HFL and LFL. Annals of an anatomy-based plan (Plan 1) and a ventilation-based plan (Plan 2) were generated. The following dosimetric parameters were determined and compared between the 2 plans: percentage of total/HFL volume receiving {>=}20 Gy, 15 Gy, 10 Gy, and 5 Gy (TLV{sub 20}, HFLV{sub 20}, TLV{sub 15}, HFLV{sub 15}, TLV{sub 10}, HFLV{sub 10}, TLV{sub 5}, HFLV{sub 5}), mean total/HFL dose (MTLD/HFLD), maximum doses to all organs at risk (OARs), and target dose conformality. Compared with Plan 1, Plan 2 reduced mean HFLD (mean reduction, 0.8 Gy), MTLD (mean reduction, 0.6 Gy), HFLV{sub 20} (mean reduction, 1.9%), TLV{sub 20} (mean reduction, 1.5%), TLV{sub 15} (mean reduction, 1.7%), and TLV{sub 10} (mean reduction, 2.1%). P-values of the above comparisons are less than 0.05 using the Wilcoxon signed rank test. For HFLV{sub 15}, HFLV{sub 10}, TLV{sub 5}, and HTLV{sub 5}, Plan 2 resulted in lower values than plan 1 but the differences are not significant (P-value range, 0.063-0.219). Plan 2 did not significantly change maximum doses to OARs (P-value range, 0.063-0.563) and target conformality (P = 1.000). HP He-3 MRI of patients with lung disease shows a highly heterogeneous ventilation capacity that can be utilized for functional treatment planning. Moderate but statistically significant improvements in sparing functional lungs were achieved using helical tomotherapy plans.

  16. Modification of tokamak edge plasma turbulence and transport by biasing and resonant helical magnetic field.

    PubMed

    Lafouti, Mansoureh; Ghoranneviss, Mahmood; Meshkani, Sakineh; Salar Elahi, Ahmad

    2013-05-01

    In this paper, both Resonant Helical magnetic Field (RHF) and limiter biasing have been applied to the tokamak. We have investigated their effects on the turbulence and transport of the particles at the edge of the plasma. The biased limiter voltage has been fixed at 200 V and RHF has L = 2 and L = 3. Also, the effects of the time order of the application of RHF and biasing to the tokamak have been explored. The experiment has been performed under three conditions. At first, the biasing and RHF were applied at t = 15 ms and at t = 20 ms. In the next step, RHF and biasing were applied at t = 15 ms and t = 20 ms, respectively. Finally, both of them were turned on at t = 15 ms until the end of the shot. For this purpose, the ion saturation current (I(sat)) and the floating potential (V(f)) have been measured by the Langmuir probe at r/a = 0.9. Moreover, the power spectra of I(sat) and floating potential gradient (∇V(f)), the coherency, the phase between them, and the particle diffusion coefficient have been calculated. The density fluctuations of the particles have been measured by the Rake probe and they have been analyzed with the Probability Distribution Function (PDF) technique. Also the particle diffusion coefficient has been determined by the Fick's law. The results show that, when RHF and biasing were applied at the same time to the plasma (during flatness region of plasma current), the radial particle density gradient, the radial particle flux, and the particle diffusion coefficient decrease about 50%, 60%, and 55%, respectively, compared to the other conditions. For more precision, the average values of the particle flux and the particle density gradient were calculated in the work. When the time is less than 15 ms, the average values of the particle flux and the particle density gradient are identical under all conditions, but in the other time interval they change. They reduce with the simultaneous application of biasing and RHF. The same results obtain

  17. Two novel CPs with double helical chains based rigid tripodal ligands: Syntheses, crystal structures, magnetic susceptibility and fluorescence properties

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Hou, Xiang-Yang; Zhai, Quan-Guo; Hu, Man-Cheng

    2016-11-01

    Two three-dimensional coordination polymers (CPs), namely [Cd(bpydb)- (H2bpydb)]n·0.5nH2O (1), and [Cu2(bpydb)2]n (2) (2,6-di-p-carboxyphenyl-4,4'- bipyridine1 = H2bpydb), containing a novel double-helical chains, which have been solvothermal synthesized, characterized, and structure determination. CPs 1-2 reveal the new (3,5)-net and (3,6)-net alb topology, respectively. The fluorescence properties of CPs 1-2 were investigated, and magnetic susceptibility measurements indicate that compound 1 has dominating antiferromagnetic couplings between metal ions.

  18. Goddard Space Flight Center specification for Helical-Scan 8-millimeter (mm) magnetic digital data tape cartridge

    NASA Technical Reports Server (NTRS)

    Perry, Jimmy L.

    1992-01-01

    The same kind of standard and controls are established that are currently in use for the procurement of new analog, digital, and IBM/IBM compatible 3480 tape cartridges, and 1 in wide channel video magnetic tapes. The Magnetic Tape Certification Facility (MTCF) maintains a Qualified Products List (QPL) for the procurement of new magnetic media and uses the following specifications for the QPL and Acceptance Tests: (1) NASA TM-79724 is used for the QPL and Acceptance Testing of new analog magnetic tapes; (2) NASA TM-80599 is used for the QPL and Acceptance Testing of new digital magnetic tapes; (3) NASA TM-100702 is used for the QPL and Acceptance Testing of new IBM/IBM compatible 3840 magnetic tape cartridges; and (4) NASA TM-100712 is used for the QPL and Acceptance Testing of new 1 in wide channel video magnetic tapes. This document will be used for the QPL and Acceptance Testing of new Helical Scan 8 mm digital data tape cartridges.

  19. Equatorial Guinea.

    PubMed

    1984-06-01

    Attention in this discussion of Equatorial Guinea is directed to the following: the people, history, geography, government, political conditions, the economy, foreign relations, and relations between the US and Equatorial Guinea. The population was estimated at 304,000 in 1983 and the annual growth rate was estimated in the range of 1.7-2.5. The infant mortality rate is 142.9/1000 with a life expectancy of 44.4 years for males and 47.6 years for females. The majority of the Equatoguinean people are of Bantu origin. The largest tribe, the Fang, is indigenous to the mainland, although many now also live on Bioko Island. Portuguese explorers found the island of Bioko in 1471, and the Portuguese retained control until 1778, when the island, adjacent islets, and the commercial rights to the mainland between the Niger and Ogooue Rivers were ceded to Spain. Spain lacked the wealth and the interest to develop an extensive economic infrastructure in Equatorial Guinea during the 1st half of this century, but the Spanish did help Equatorial Guinea achieve 1 of the highest literacy rates in Africa. They also founded a good network of health care facilities. In March 1968, under pressure from Guinean nationalists, Spain announced that it would grant independence to Equatorial Guinea as rapidly as possible. A referendum was held on August 11, 1968, and 63% of the electorate voted in favor of the constitution, which provided for a government with a general assembly and presidentially appointed judges in the Supreme Court. After the coup in August 1979, power was placed in the hands of a Supreme Military Council. A new constitution came into effect after a popular vote in August 1982, abolishing the Supreme Military Council. Under the terms of the constitution, the president was given extensive powers. By the end of 1983, a 60-member Chamber of Representatives of the people had been formed. The government, which is credited with restoring greater personal freedom, is regarded

  20. Helical plasma thruster

    SciTech Connect

    Beklemishev, A. D.

    2015-10-15

    A new scheme of plasma thruster is proposed. It is based on axial acceleration of rotating magnetized plasmas in magnetic field with helical corrugation. The idea is that the propellant ionization zone can be placed into the local magnetic well, so that initially the ions are trapped. The E × B rotation is provided by an applied radial electric field that makes the setup similar to a magnetron discharge. Then, from the rotating plasma viewpoint, the magnetic wells of the helically corrugated field look like axially moving mirror traps. Specific shaping of the corrugation can allow continuous acceleration of trapped plasma ions along the magnetic field by diamagnetic forces. The accelerated propellant is expelled through the expanding field of magnetic nozzle. By features of the acceleration principle, the helical plasma thruster may operate at high energy densities but requires a rather high axial magnetic field, which places it in the same class as the VASIMR{sup ®} rocket engine.

  1. Helical plasma thruster

    NASA Astrophysics Data System (ADS)

    Beklemishev, A. D.

    2015-10-01

    A new scheme of plasma thruster is proposed. It is based on axial acceleration of rotating magnetized plasmas in magnetic field with helical corrugation. The idea is that the propellant ionization zone can be placed into the local magnetic well, so that initially the ions are trapped. The E × B rotation is provided by an applied radial electric field that makes the setup similar to a magnetron discharge. Then, from the rotating plasma viewpoint, the magnetic wells of the helically corrugated field look like axially moving mirror traps. Specific shaping of the corrugation can allow continuous acceleration of trapped plasma ions along the magnetic field by diamagnetic forces. The accelerated propellant is expelled through the expanding field of magnetic nozzle. By features of the acceleration principle, the helical plasma thruster may operate at high energy densities but requires a rather high axial magnetic field, which places it in the same class as the VASIMR® rocket engine.

  2. Impact of magnetic topology on radial electric field profile in the scrape-off layer of the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; Ida, K.; Kamiya, K.; Yoshinuma, M.; Tsuchiya, H.; Kobayashi, M.; Kawamura, G.; Ohdachi, S.; Sakakibara, S.; Watanabe, K. Y.; Hudson, S.; Feng, Y.; Yamada, I.; Yasuhara, R.; Tanaka, K.; Akiyama, T.; Morisaki, T.; The LHD Experiment Group

    2016-09-01

    The radial electric field in the plasma edge is studied in the Large Helical Device (LHD) experiments. When magnetic field lines become stochastic or open at the plasma edge and connected to the vessel, electrons are lost faster than ions along these field lines. Then, a positive electric field appears in the plasma edge. The radial electric field profile can be used to detect the effective plasma boundary. Magnetic topology is an important issue in stellarator and tokamak research because the 3D boundary has the important role of controlling MHD edge stability with respect to ELMs, and plasma detachment. Since the stochastic magnetic field layer can be controlled in the LHD by changing the preset vacuum magnetic axis, this device is a good platform to study the properties of the radial electric field that appear with the different stochastic layer width. Two magnetic configurations with different widths of the stochastic layer as simulated in vacuum are studied for low-β discharges. It has been found that a positive electric field appeared outside of the last closed flux surface. In fact the positions of the positive electric field are found in the boundary between of the stochastic layer and the scrape-off layer. To understand where is the boundary of the stochastic layer and the scrape-off layer, the magnetic field lines are analyzed statistically. The variance of the magnetic field lines in the stochastic layer is increased outwards for both configurations. However, the skewness, which means the asymmetry of the distribution of the magnetic field line, increases for only one configuration. If the skewness is large, the connection length becomes effectively short. Since that is consistent with the experimental observation, the radial electric field can be considered as an index of the magnetic topology.

  3. Influence of the equatorial irregularities and precipitations in the South Atlantic magnetic anomaly on the generation of auroral-type plasma instabilities

    SciTech Connect

    Prange, R.; Bruston, P.

    1980-08-01

    Observational evidence of upward field-aligned beams in the keV range has been obtained in the sub-equatorial ionosphere above South America. These events can be related to coupled magnetic and ionospheric activity (magnetic storm, ionospheric irregularities). This result is in opposition with the current theory of the low-latitude ionosphere. Its interpretation must assume that conditions exist for the growth of plasma instabilities. This implies a low plasma density, a close coupling between the ionosphere and the magnetosphere, and field-aligned currents. Such suitable conditions have independently been observed in ionospheric irregularities (density, currents) or during magnetic storms (energetic particle precipitation) or they are deduced from the structure of the Anomaly (field-aligned currents). This allows us to suggest that the South Atlantic Anomaly sometimes compares to the auroral oval and may develop some current-driven plasma instabilities.

  4. Effects of magnetic storm phases on f-layer irregularities from auroral to equatorial latitudes. Quarterly report, 1 October-31 December 1993

    SciTech Connect

    Aarons, J.; Mendillo, M.

    1993-12-31

    During this quarter there was the start of an extensive review of the literature on middle latitude irregularities. In earlier reports the authors have noted the levels of irregularities at latitudes above the equatorial anomaly region (within 15 degrees of the magnetic equator) thru their analysis of a few examples of raw data from Osan, Korea. They then began to reduce and analyze data from Puerto Rico and Hawaii using 136 MHz scintillation data taken during both high and low solar flux years. At the levels that can be noted (peak to peak excursions of 15-20 dB) there is considerable activity.

  5. Magnetic Configuration Effects on Fast Ion Losses Induced by Fast Ion Driven Toroidal Alfven Eigenmodes in the Large Helical Device

    SciTech Connect

    Ogawa, K.; Isobe, M.; Watanabe, F.; Spong, Donald A; Shimizu, A.; Osakabe, M.; Ohdachi, S.; Sakakibara, S.

    2012-01-01

    Beam-ion losses induced by fast-ion-driven toroidal Alfven eigenmodes (TAE) were measured with a scintillator-based lost fast-ion probe (SLIP) in the large helical device (LHD). The SLIP gave simultaneously the energy E and the pitch angle chi = arccos(v(parallel to)/v) distribution of the lost fast ions. The loss fluxes were investigated for three typical magnetic configurations of R{sub ax{_}vac} = 3.60 m, 3.75 m, and 3.90 m, where R{sub ax{_}vac} is the magnetic axis position of the vacuum field. Dominant losses induced by TAEs in these three configurations were observed in the E/chi regions of 50 similar to 190 keV/40 degrees, 40 similar to 170 keV/25 degrees, and 30 similar to 190 keV/30 degrees, respectively. Lost-ion fluxes induced by TAEs depend clearly on the amplitude of TAE magnetic fluctuations, R{sub ax{_}vac} and the toroidal field strength B{sub t}. The increment of the loss fluxes has the dependence of (b{sub TAE}/B{sub t}){sup s}. The power s increases from s = 1 to 3 with the increase of the magnetic axis position in finite beta plasmas.

  6. Efficient generation of closed magnetic flux surfaces in a large spherical tokamak using coaxial helicity injection.

    PubMed

    Raman, R; Nelson, B A; Bell, M G; Jarboe, T R; Mueller, D; Bigelow, T; Leblanc, B; Maqueda, R; Menard, J; Ono, M; Wilson, R

    2006-10-27

    A method of coaxial helicity injection has successfully produced a closed flux current without the use of the central solenoid in the NSTX device, on a size scale closer to a spherical torus reactor, for a proof-of-principle demonstration of this concept. For the first time, a remarkable 60 times current multiplication factor was achieved. Grad-Shafranov plasma equilibrium reconstructions are used to verify the existence of closed flux current. In some discharges the generated current persists for a surprisingly long time approximately 400 ms.

  7. Efficient Generation of Closed Magnetic Flux Surfaces in a Large Spherical Tokamak Using Coaxial Helicity Injection

    SciTech Connect

    Raman, R.

    2006-10-01

    A method of coaxial helicity injection has successfully produced a closed flux current without the use of the central solenoid in the NSTX device, on a size scale closer to a spherical torus reactor, for a proof-of-principle demonstration of this concept. For the first time, a remarkable 60 times current multiplication factor was achieved. Grad-Shafranov plasma equilibrium reconstructions are used to verify the existence of closed flux current. In some discharges the generated current persists for a surprisingly long time ~400 ms.

  8. Excitation of stable Alfvén eigenmodes by application of alternating magnetic field perturbations in the Compact Helical System

    NASA Astrophysics Data System (ADS)

    Ito, T.; Toi, K.; Matsunaga, G.; Isobe, M.; Nagaoka, K.; Takeuchi, M.; Akiyama, T.; Matsuoka, K.; Minami, T.; Nishimura, S.; Okamura, S.; Shimizu, A.; Suzuki, C.; Yoshimura, Y.; Takahashi, C.; Chs Experimental Group

    2009-09-01

    Stable toroidicity-induced Alfvén eigenmodes (TAEs) with low toroidal mode number (n =1 and n =2) were excited by application of alternating magnetic field perturbations generated with a set of electrodes inserted into the edge region of neutral beam injection heated plasmas on the Compact Helical System [K. Nishimura, K. Matsuoka, M. Fujiwara et al., Fusion Technol. 17, 86 (1990)]. The gap locations of TAEs excited by the electrodes are in the plasma peripheral region of ρ >0.7 (ρ is the normalized minor radius) where energetic ion drive is negligibly small, while some AEs are excited by energetic ions in the plasma core region of ρ <0.4. The damping rate of these stable TAEs derived from plasma responses to applied perturbations is fairly large, that is, ˜9% to ˜12% of the angular eigenfrequency. This large damping rate is thought to be dominantly caused by continuum damping and radiative damping.

  9. Excitation of stable Alfven eigenmodes by application of alternating magnetic field perturbations in the Compact Helical System

    SciTech Connect

    Ito, T.; Toi, K.; Isobe, M.; Nagaoka, K.; Takeuchi, M.; Akiyama, T.; Matsuoka, K.; Minami, T.; Nishimura, S.; Okamura, S.; Shimizu, A.; Suzuki, C.; Yoshimura, Y.; Takahashi, C.; Matsunaga, G.

    2009-09-15

    Stable toroidicity-induced Alfven eigenmodes (TAEs) with low toroidal mode number (n=1 and n=2) were excited by application of alternating magnetic field perturbations generated with a set of electrodes inserted into the edge region of neutral beam injection heated plasmas on the Compact Helical System [K. Nishimura, K. Matsuoka, M. Fujiwara et al., Fusion Technol. 17, 86 (1990)]. The gap locations of TAEs excited by the electrodes are in the plasma peripheral region of {rho}>0.7 ({rho} is the normalized minor radius) where energetic ion drive is negligibly small, while some AEs are excited by energetic ions in the plasma core region of {rho}<0.4. The damping rate of these stable TAEs derived from plasma responses to applied perturbations is fairly large, that is, {approx}9% to {approx}12% of the angular eigenfrequency. This large damping rate is thought to be dominantly caused by continuum damping and radiative damping.

  10. Helical axis stellarator with noninterlocking planar coils

    DOEpatents

    Reiman, Allan; Boozer, Allen H.

    1987-01-01

    A helical axis stellarator using only noninterlocking planar, non-circular coils, generates magnetic fields having a magnetic well and large rotational transform with resultant large equilibrium beta.

  11. Overview of transport and MHD stability study: focusing on the impact of magnetic field topology in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Ida, K.; Nagaoka, K.; Inagaki, S.; Kasahara, H.; Evans, T.; Yoshinuma, M.; Kamiya, K.; Ohdach, S.; Osakabe, M.; Kobayashi, M.; Sudo, S.; Itoh, K.; Akiyama, T.; Emoto, M.; Dinklage, A.; Du, X.; Fujii, K.; Goto, M.; Goto, T.; Hasuo, M.; Hidalgo, C.; Ichiguchi, K.; Ishizawa, A.; Jakubowski, M.; Kawamura, G.; Kato, D.; Morita, S.; Mukai, K.; Murakami, I.; Murakami, S.; Narushima, Y.; Nunami, M.; Ohno, N.; Pablant, N.; Sakakibara, S.; Seki, T.; Shimozuma, T.; Shoji, M.; Tanaka, K.; Tokuzawa, T.; Todo, Y.; Wang, H.; Yokoyama, M.; Yamada, H.; Takeiri, Y.; Mutoh, T.; Imagawa, S.; Mito, T.; Nagayama, Y.; Watanabe, K. Y.; Ashikawa, N.; Chikaraishi, H.; Ejiri, A.; Furukawa, M.; Fujita, T.; Hamaguchi, S.; Igami, H.; Isobe, M.; Masuzaki, S.; Morisaki, T.; Motojima, G.; Nagasaki, K.; Nakano, H.; Oya, Y.; Suzuki, C.; Suzuki, Y.; Sakamoto, R.; Sakamoto, M.; Sanpei, A.; Takahashi, H.; Tsuchiya, H.; Tokitani, M.; Ueda, Y.; Yoshimura, Y.; Yamamoto, S.; Nishimura, K.; Sugama, H.; Yamamoto, T.; Idei, H.; Isayama, A.; Kitajima, S.; Masamune, S.; Shinohara, K.; Bawankar, P. S.; Bernard, E.; von Berkel, M.; Funaba, H.; Huang, X. L.; T., Ii; Ido, T.; Ikeda, K.; Kamio, S.; Kumazawa, R.; Kobayashi, T.; Moon, C.; Muto, S.; Miyazawa, J.; Ming, T.; Nakamura, Y.; Nishimura, S.; Ogawa, K.; Ozaki, T.; Oishi, T.; Ohno, M.; Pandya, S.; Shimizu, A.; Seki, R.; Sano, R.; Saito, K.; Sakaue, H.; Takemura, Y.; Tsumori, K.; Tamura, N.; Tanaka, H.; Toi, K.; Wieland, B.; Yamada, I.; Yasuhara, R.; Zhang, H.; Kaneko, O.; Komori, A.; Collaborators

    2015-10-01

    The progress in the understanding of the physics and the concurrent parameter extension in the large helical device since the last IAEA-FEC, in 2012 (Kaneko O et al 2013 Nucl. Fusion 53 095024), is reviewed. Plasma with high ion and electron temperatures (Ti(0) ˜ Te(0) ˜ 6 keV) with simultaneous ion and electron internal transport barriers is obtained by controlling recycling and heating deposition. A sign flip of the nondiffusive term of impurity/momentum transport (residual stress and convection flow) is observed, which is associated with the formation of a transport barrier. The impact of the topology of three-dimensional magnetic fields (stochastic magnetic fields and magnetic islands) on heat momentum, particle/impurity transport and magnetohydrodynamic stability is also discussed. In the steady state operation, a 48 min discharge with a line-averaged electron density of 1 × 1019 m-3 and with high electron and ion temperatures (Ti(0) ˜ Te(0) ˜ 2 keV), resulting in 3.36 GJ of input energy, is achieved.

  12. Specific features of the motion of neutrons in a medium with a helical magnetic structure

    SciTech Connect

    Fraerman, A. A. Udalov, O. G.

    2007-02-15

    The specific features of the motion of neutrons in a noncoplanar magnetic field are considered by an example of the magnetization distribution in the form of a conical helix. The reflection coefficients of neutrons from holmium crystals are calculated. It is shown that, for a noncoplanar distribution of a magnetic field in a crystal, the reflection coefficient of neutrons with spin flip exhibits an additional feature.

  13. Equatorial E region electric fields at the dip equator: 2. Seasonal variabilities and effects over Brazil due to the secular variation of the magnetic equator

    NASA Astrophysics Data System (ADS)

    Moro, J.; Denardini, C. M.; Resende, L. C. A.; Chen, S. S.; Schuch, N. J.

    2016-10-01

    In this work, the seasonal dependency of the E region electric field (EEF) at the dip equator is examined. The eastward zonal (Ey) and the daytime vertical (Ez) electric fields are responsible for the overall phenomenology of the equatorial and low-latitude ionosphere, including the equatorial electrojet (EEJ) and its plasma instability. The electric field components are studied based on long-term backscatter radars soundings (348 days for both systems) collected during geomagnetic quiet days (Kp ≤ 3+), from 2001 to 2010, at the São Luís Space Observatory (SLZ), Brazil (2.33°S, 44.20°W), and at the Jicamarca Radio Observatory (JRO), Peru (11.95°S, 76.87°W). Among the results, we observe, for the first time, a seasonal difference between the EEF in these two sectors in South America based on coherent radar measurements. The EEF is more intense in summer at SLZ, in equinox at JRO, and has been highly variable with season in the Brazilian sector compared to the Peruvian sector. In addition, the secular variation on the geomagnetic field and its effect on the EEJ over Brazil resulted that as much farther away is the magnetic equator from SLZ, later more the EEJ is observed (10 h LT) and sooner it ends (16 h LT). Moreover, the time interval of type II occurrence decreased significantly after the year 2004, which is a clear indication that SLZ is no longer an equatorial station due to the secular variation of the geomagnetic field.

  14. Modeling the equatorial electrojet

    NASA Astrophysics Data System (ADS)

    Stening, R. J.

    1985-02-01

    The equatorial electrojet is studied using a conductivity model with electron collision frequencies consistent with laboratory results. Electric fields and currents are calculated by an equivalent circuit method, and the results are compared with observations. Results are obtained for the electrojet height profile, the height and latitude of the cross-section profile, the height-integrated current density, the internal currents contribution, the scaling problem, the horizontal and vertical magnetic variation with latitude, and the effects of local winds in the F region.

  15. Radio wave scintillations at equatorial regions

    NASA Technical Reports Server (NTRS)

    Poularikas, A. D.

    1972-01-01

    Radio waves, passing through the atmosphere, experience amplitude and phase fluctuations know as scintillations. A characterization of equatorial scintillation, which has resulted from studies of data recorded primarily in South America and equatorial Africa, is presented. Equatorial scintillation phenomena are complex because they appear to vary with time of day (pre-and postmidnight), season (equinoxes), and magnetic activity. A wider and more systematic geographical coverage is needed for both scientific and engineering purposes; therefore, it is recommended that more observations should be made at earth stations (at low-geomagnetic latitudes) to record equatorial scintillation phenomena.

  16. A COMPARATIVE STUDY OF RIBO-, DEOXYRIBO-, AND HYBRID OLIGONUCLEOTIDE HELICES BY NUCLEAR MAGNETIC RESONANCE

    SciTech Connect

    Pardi, Arthur; Martin, Francis H.; Tinoco, Jr., Ignacio

    1980-11-01

    The nonexchangeable base protons and the hydrogen- bonding NH-N imino protons were used to study the conformations and the helix-coil transitions in the following oligonucleotides: (I) dCT{sub 5}G + dCA{sub 5}G, (II) rCU{sub 5}G + rCA{sub 5}G, (III) dCT{sub 5}G + rCA{sub 5}G, (IV) rCU{sub 5}G + dCA{sub 5}G. The first three mixtures all form stable double-helical structures at 5{degrees}C, whereas IV forms a triple strand with a ratio of 2:1 rCU{sub 5}G:dCA{sub 5}G. The chemical shifts of the imino protons in the double strands indicate that I, II, and III have different conformations in solution. For example, the hydrogen-bonded proton of one of the C-G base pairs is more shielded (a 0.4-ppm upfield shift) in helix I than in helix II or III. This implies a significant change in helical parameters, such as the winding angle, the distance between base pairs, or overlap of the bases. The coupling constants of the H1’ sugar protons show that helix I has 90% 2’-endo sugar conformation, whereas helix III has greater than 85% 3’-endo conformation for the observed sugar rings. The sugar pucker data are consistent with helix I having B-family geometry; III has A-family geometry. The chemical shifts of the nonexchangeable base protons in system I were followed with increasing temperature. The midpoints for the transitions, T{sub m}’s, for all the base protons were 28-30 {degrees}C; this indicates an all-or-none transition.

  17. Fundamental mechanism for all-optical helicity-dependent switching of magnetization

    PubMed Central

    Chen, Xiang-Jun

    2017-01-01

    Switching magnetizations with femtosecond circularly polarized lasers may have revolutionary impacts on magnetic data storage and relevant applications. Achievements in ferrimagnetic and ferromagnetic materials of various structures strongly imply a general phenomenon of fundamental atom-laser interaction. Rotating an atom’s wave function with the rotating electric field of a circularly polarized laser, I show the quantum mechanics for the atom is equivalent to that in a static electric field of the same magnitude and a tremendous static magnetic field which interacts with the atom in somewhat different ways. When some conditions are satisfied, transitions of atoms in these two crossed effective fields lead to a highly nonequilibrium state with orbital magnetic moments inclining to the effective magnetic field. The switching finally completes after the pulse duration via relaxation. PMID:28117460

  18. Fundamental mechanism for all-optical helicity-dependent switching of magnetization

    NASA Astrophysics Data System (ADS)

    Chen, Xiang-Jun

    2017-01-01

    Switching magnetizations with femtosecond circularly polarized lasers may have revolutionary impacts on magnetic data storage and relevant applications. Achievements in ferrimagnetic and ferromagnetic materials of various structures strongly imply a general phenomenon of fundamental atom-laser interaction. Rotating an atom’s wave function with the rotating electric field of a circularly polarized laser, I show the quantum mechanics for the atom is equivalent to that in a static electric field of the same magnitude and a tremendous static magnetic field which interacts with the atom in somewhat different ways. When some conditions are satisfied, transitions of atoms in these two crossed effective fields lead to a highly nonequilibrium state with orbital magnetic moments inclining to the effective magnetic field. The switching finally completes after the pulse duration via relaxation.

  19. Helical-D pinch

    SciTech Connect

    Schaffer, M.J.

    1997-08-01

    A stabilized pinch configuration is described, consisting of a D-shaped plasma cross section wrapped tightly around a guiding axis. The {open_quotes}helical-D{close_quotes} geometry produces a very large axial (toroidal) transform of magnetic line direction that reverses the pitch of the magnetic lines without the need of azimuthal (poloidal) plasma current. Thus, there is no need of a {open_quotes}dynamo{close_quotes} process and its associated fluctuations. The resulting configuration has the high magnetic shear and pitch reversal of the reversed field pinch (RFP). (Pitch = P = qR, where R = major radius). A helical-D pinch might demonstrate good confinement at q << 1.

  20. Physical interpretation of the angle-dependent magnetic helicity spectrum in the solar wind: The nature of turbulent fluctuations near the proton gyroradius scale

    SciTech Connect

    Klein, Kristopher G.; Howes, Gregory G.; TenBarge, Jason M.; Podesta, John J.

    2014-04-20

    Motivated by recent observations of distinct parallel and perpendicular signatures in magnetic helicity measurements segregated by wave period and angle between the local magnetic field and the solar wind velocity, this paper undertakes a comparison of three intervals of Ulysses data with synthetic time series generated from a physically motivated turbulence model. From these comparisons, it is hypothesized that the observed signatures result from a perpendicular cascade of Alfvénic fluctuations and a local, non-turbulent population of ion-cyclotron or whistler waves generated by temperature anisotropy instabilities. By constraining the model's free parameters through comparison to in situ data, it is found that, on average, ∼95% of the power near dissipative scales is contained in a perpendicular Alfvénic cascade and that the parallel fluctuations are propagating nearly unidirectionally. The effects of aliasing on magnetic helicity measurements are considered and shown to be significant near the Nyquist frequency.

  1. Hybrid helical snakes and rotators for RHIC

    SciTech Connect

    Courant, E.D.

    1995-06-13

    The spin rotators and Siberian snakes presently envisaged for RHIC utilize helical dipole magnets. The snakes and the rotators each consist of four helices, each with a full twist (360{degrees}) of the field. Here we investigate an alternate layout, namely combinations of helical and pure bending magnet, and show that this may have advantages.

  2. Chinks in Solar Dynamo Theory: Turbulent Diffusion, Dynamo Waves and Magnetic Helicity

    NASA Technical Reports Server (NTRS)

    DeLuca, E. E.; Wagner, William J. (Technical Monitor)

    2001-01-01

    We have investigated the generation of magnetic fields in the Sun using two-dimensional and three-dimensional numerical simulations. The results of our investigations have been presented at scientific meetings and published.

  3. Design and development of high-temperature superconducting magnet system with joint-winding for the helical fusion reactor

    NASA Astrophysics Data System (ADS)

    Yanagi, N.; Ito, S.; Terazaki, Y.; Seino, Y.; Hamaguchi, S.; Tamura, H.; Miyazawa, J.; Mito, T.; Hashizume, H.; Sagara, A.

    2015-05-01

    An innovative winding method is developed by connecting high-temperature superconducting (HTS) conductors to enable efficient construction of a magnet system for the helical fusion reactor FFHR-d1. A large-current capacity HTS conductor, referred to as STARS, is being developed by the incorporation of several innovative ideas, such as the simple stacking of state-of-the-art yttrium barium copper oxide tapes embedded in a copper jacket, surrounded by electrical insulation inside a conductor, and an outer stainless-steel jacket cooled by helium gas. A prototype conductor sample was fabricated and reached a current of 100 kA at a bias magnetic field of 5.3 T with the temperature at 20 K. At 4.2 K, the maximum current reached was 120 kA, and a current of 100 kA was successfully sustained for 1 h. A low-resistance bridge-type mechanical lap joint was developed and a joint resistance of 2 nΩ was experimentally confirmed for the conductor sample.

  4. Equatorial electrojet 3-M irregularity dynamics during magnetic disturbances over Brazil: results from the new VHF radar at Sa~o Luís

    NASA Astrophysics Data System (ADS)

    Abdu, M. A.; Dinardini, C. M.; Sobral, J. H. A.; Batista, I. S.; Muralikrishna, P.; Iyer, K. N.; Veliz, O.; de Paula, E. R.

    2003-09-01

    Data collected during the first two observational campaigns, conducted in August 1998 and December 1999, using the new 50MHz coherent back-scatter radar, developed at INPE, that became operational at the magnetic equatorial site at Sa~o Luís, (2.33°S,44.2°W), Brazil, are analyzed in this paper. The spatial and temporal distribution of 3-m irregularity power in the form of range-time-intensity maps and spectral distribution in the form of spectrograms are analyzed for `quiet' conditions and during geomagnetic storm disturbances. The analysis has brought out some new findings, besides confirming some of the already known storm response features of the EEJ and its plasma instabilities. Among the highlights of the results are: the electrical coupling between the equatorial and auroral electrojets is important even on a `quiet' day, and gets very strong during magnetic storm disturbances; disturbance prompt penetration electric field, and the delayed electric field from disturbance dynamo, control the 3-m plasma wave development and inhibition in different degrees during the storm main phase and recovery phase; the amplitudes of the disturbance are larger during the morning hours than in the afternoon, in agreement with theoretical models; the height dependence of the relative dominance of the type-1 and type-2 waves generated by disturbance electric field is different from that of quiet conditions, the relative power of the type-2 getting enhanced at higher levels in the former case. A few other results are also discussed in this paper.

  5. Dynamic Chiral Magnetic Effect and Faraday Rotation in Macroscopically Disordered Helical Metals

    NASA Astrophysics Data System (ADS)

    Ma, J.; Pesin, D. A.

    2017-03-01

    We develop an effective medium theory for electromagnetic wave propagation through gapless nonuniform systems with a dynamic chiral magnetic effect. The theory allows us to calculate macroscopic-disorder-induced corrections to the values of optical, as well as chiral magnetic conductivities. In particular, we show that spatial fluctuations of the optical conductivity induce corrections to the effective value of the chiral magnetic conductivity. The absolute value of the effect varies strongly depending on the system parameters, but yields the leading frequency dependence of the polarization rotation and circular dichroism signals. Experimentally, these corrections can be observed as features in the Faraday rotation angle near frequencies that correspond to the bulk plasmon resonances of a material. Such features are not expected to be present in single-crystal samples.

  6. Test of a NbTi Superconducting Quadrupole Magnet Based on Alternating Helical Windings

    SciTech Connect

    Caspi, S.; Trillaud, F.; Godeke, A.; Dietderich, D.; Ferracin, P.; Sabbi, G.; Giloux, C.; Perez, J. G.; Karppinen, M.

    2009-08-16

    It has been shown that by superposing two solenoid-like thin windings, that are oppositely skewed (tilted) with respect to the bore axis, the combined current density on the surface is cos({theta})-like and the resulting magnetic field in the bore is a pure dipole field. Following a previous test of such a superconducting dipole magnet, a quadrupole magnet was designed and built using similar principles. This paper describes the design, construction and test of a 75 mm bore 600 mm long superconducting quadrupole made with NbTi wire. The simplicity of the design, void of typical wedges, end-spacers and coil assembly, is especially suitable for future high field insert coils using Nb{sub 3}Sn as well as HTS wires. The 3 mm thick coil reached 46 T/m but did not achieve its current plateau.

  7. TEST OF THE HEMISPHERIC RULE OF MAGNETIC HELICITY IN THE SUN USING THE HELIOSEISMIC AND MAGNETIC IMAGER (HMI) DATA

    SciTech Connect

    Liu, Y.; Hoeksema, J. T.; Sun, X.

    2014-03-01

    Magnetic twist in solar active regions (ARs) has been found to have a hemispheric preference in sign (hemisphere rule): negative in the northern hemisphere and positive in the southern. The preference reported in previous studies ranges greatly, from ∼ 58% to 82%. In this study, we examine this hemispheric preference using vector magnetic field data taken by Helioseismic and Magnetic Imager and find that 75% ± 7% of 151 ARs studied obey the hemisphere rule, well within the preference range in previous studies. If the sample is divided into two groups—ARs having magnetic twist and writhe of the same sign and having opposite signs—the strength of the hemispheric preference differs substantially: 64% ± 11% for the former group and 87% ± 8% for the latter. This difference becomes even more significant in a sub-sample of 82 ARs having a simple bipole magnetic configuration: 56% ± 16% for the ARs having the same signs of twist and writhe, and 93% with lower and upper confidence bounds of 80% and 98% for the ARs having the opposite signs. The error reported here is a 95% confidence interval. This may suggest that, prior to emergence of magnetic tubes, either the sign of twist does not have a hemispheric preference or the twist is relatively weak.

  8. Helical modulation of the electrostatic plasma potential due to edge magnetic islands induced by resonant magnetic perturbation fields at TEXTOR

    SciTech Connect

    Ciaccio, G. Spizzo, G.; Schmitz, O. Frerichs, H.; Abdullaev, S. S.; Evans, T. E.; White, R. B.

    2015-10-15

    The electrostatic response of the edge plasma to a magnetic island induced by resonant magnetic perturbations to the plasma edge of the circular limiter tokamak TEXTOR is analyzed. Measurements of plasma potential are interpreted by simulations with the Hamiltonian guiding center code ORBIT. We find a strong correlation between the magnetic field topology and the poloidal modulation of the measured plasma potential. The ion and electron drifts yield a predominantly electron driven radial diffusion when approaching the island X-point while ion diffusivities are generally an order of magnitude smaller. This causes a strong radial electric field structure pointing outward from the island O-point. The good agreement found between measured and modeled plasma potential connected to the enhanced radial particle diffusivities supports that a magnetic island in the edge of a tokamak plasma can act as convective cell. We show in detail that the particular, non-ambipolar drifts of electrons and ions in a 3D magnetic topology account for these effects. An analytical model for the plasma potential is implemented in the code ORBIT, and analyses of ion and electron radial diffusion show that both ion- and electron-dominated transport regimes can exist, which are known as ion and electron root solutions in stellarators. This finding and comparison with reversed field pinch studies and stellarator literature suggest that the role of magnetic islands as convective cells and hence as major radial particle transport drivers could be a generic mechanism in 3D plasma boundary layers.

  9. Helical temperature perturbations associated with radially asymmetric magnetic island chains in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Richard

    2016-12-01

    The simple analysis of Rutherford [Phys. Fluids 16, 1903 (1973)] is generalized in order to incorporate radial magnetic island asymmetry into the nonlinear theory of tearing mode stability in a low-β, large aspect-ratio, quasi-cylindrical, tokamak plasma. The calculation is restricted to cases in which the radial shifts of the island X- and O-points are (almost) equal and opposite. For the sake of simplicity, the calculation concentrates on a particular (but fairly general) class of radially asymmetric island magnetic flux-surfaces that can all be mapped to the same symmetric flux-surfaces by means of a suitable coordinate transform. The combination of island asymmetry (in which the radial shifts of the X- and O-points are almost equal and opposite) and temperature-induced changes in the inductive current profile in the immediate vicinity of the island is found to have no effect on tearing mode stability.

  10. Chinks in Solar Dynamo Theory: Turbulent Diffusion, Dynamo Waves and Magnetic Helicity

    NASA Technical Reports Server (NTRS)

    DeLuca, E. E.; Hurlburt, N.

    1998-01-01

    In this first year of our investigation we explored the role of compressibility and stratification in the dissipation of magnetic fields. The predictions of Mean Field Electrodynamics have been questioned because of the strong feedback of small scale magnetic structure on the velocity fields. In 2-D, this nonlinear feedback results in a lengthening of the turbulent decay time. In 3-D alpha-quenching is predicted. Previous studies assumed a homogeneous fluid. This first year we present recent results from 2-D compressible MHD decay simulations in a highly stratified atmosphere that more closely resembles to solar convection zone. We have applied for NCCS T3E time to assist in the performance of our 3-D calculations.

  11. An improved neoclassical drift-magnetohydrodynamical fluid model of helical magnetic island equilibria in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Richard

    2016-05-01

    The effect of the perturbed ion polarization current on the stability of neoclassical tearing modes in tokamak plasmas is calculated using an improved, neoclassical, four-field, drift-magnetohydrodynamical model. The calculation involves the self-consistent determination of the pressure and scalar electric potential profiles in the vicinity of the associated magnetic island chain, which allows the chain's propagation velocity to be fixed. Two regimes are considered. First, a regime in which neoclassical ion poloidal flow damping is not strong enough to enhance the magnitude of the polarization current (relative to that found in slab geometry). Second, a regime in which neoclassical ion poloidal flow damping is strong enough to significantly enhance the magnitude of the polarization current. In both regimes, two types of solution are considered. First, a freely rotating solution (i.e., an island chain that is not interacting with a static, resonant, magnetic perturbation). Second, a locked solution (i.e., an island chain that has been brought to rest in the laboratory frame via interaction with a static, resonant, magnetic perturbation). In all cases, the polarization current is found to be either always stabilizing or stabilizing provided that ηi≡d ln Ti/d ln ne does not exceed some threshold value. In certain ranges of ηi, the polarization current is found to have a stabilizing effect on a freely rotating island, but a destabilizing effect on a corresponding locked island.

  12. Forced Magnetic Reconnection and Field Penetration of an Externally Applied Rotating Helical Magnetic Field in the TEXTOR Tokamak

    SciTech Connect

    Kikuchi, Y.; Finken, K. H.; Jakubowski, M.; Koslowski, H. R.; Kraemer-Flecken, A.; Lehnen, M.; Liang, Y.; Reiser, D.; Wolf, R. C.; Zimmermann, O.; Bock, M. F. M. de; Jaspers, R.; Matsunaga, G.

    2006-08-25

    The magnetic field penetration process into a magnetized plasma is of basic interest both for plasma physics and astrophysics. In this context special measurements on the field penetration and field amplification are performed by a Hall probe on the dynamic ergodic divertor (DED) on the TEXTOR tokamak and the data are interpreted by a two-fluid plasma model. It is observed that the growth of the forced magnetic reconnection by the rotating DED field is accompanied by a change of the plasma fluid rotation. The differential rotation frequency between the DED field and the plasma plays an important role in the process of the excitation of tearing modes. The momentum input from the rotating DED field to the plasma is interpreted by both a ponderomotive force at the rational surface and a radial electric field modified by an edge ergodization.

  13. Concurrent observations at the magnetic equator of small-scale irregularities and large-scale depletions associated with equatorial spread F

    NASA Astrophysics Data System (ADS)

    Hickey, Dustin A.; Martinis, Carlos R.; Rodrigues, Fabiano S.; Varney, Roger H.; Milla, Marco A.; Nicolls, Michael J.; Strømme, Anja; Arratia, Juan F.

    2015-12-01

    In 2014 an all-sky imager (ASI) and an Advanced Modular Incoherent Scatter Radar consisting of 14 panels (AMISR-14) system were installed at the Jicamarca Radio Observatory. The ASI measures airglow depletions associated with large-scale equatorial spread F irregularities (10-500 km), while AMISR-14 detects small-scale irregularities (0.34 m). This study presents simultaneous observations of equatorial spread F (ESF) irregularities at 50-200 km scale sizes using the all-sky imager, at 3 m scale sizes using the JULIA (Jicamarca Unattended Long-term Investigations of the Ionosphere and Atmosphere) radar, and at 0.34 m scales using the AMISR-14 radar. We compare data from the three instruments on the night of 20-21 August 2014 by locating the radar scattering volume in the optical images. During this night no topside plumes were observed, and we only compare with bottomside ESF. AMISR-14 had five beams perpendicular to the magnetic field covering ~200 km in the east-west direction at 250 km altitude. Comparing the radar data with zenith ASI measurements, we found that most of the echoes occur on the western wall of the depletions with fewer echoes observed the eastern wall and center, contrary to previous comparisons of topside plumes that showed most of the echoes in the center of depleted regions. We attribute these differences to the occurrence of irregularities produced at submeter scales by the lower hybrid drift instability. Comparisons of the ASI observations with JULIA images show similar results to those found in the AMISR-14 and ASI comparison.

  14. The transport of relative canonical helicity

    SciTech Connect

    You, S.

    2012-09-15

    The evolution of relative canonical helicity is examined in the two-fluid magnetohydrodynamic formalism. Canonical helicity is defined here as the helicity of the plasma species' canonical momentum. The species' canonical helicity are coupled together and can be converted from one into the other while the total gauge-invariant relative canonical helicity remains globally invariant. The conversion is driven by enthalpy differences at a surface common to ion and electron canonical flux tubes. The model provides an explanation for why the threshold for bifurcation in counter-helicity merging depends on the size parameter. The size parameter determines whether magnetic helicity annihilation channels enthalpy into the magnetic flux tube or into the vorticity flow tube components of the canonical flux tube. The transport of relative canonical helicity constrains the interaction between plasma flows and magnetic fields, and provides a more general framework for driving flows and currents from enthalpy or inductive boundary conditions.

  15. Mn4 single-molecule-magnet-based polymers of a one-dimensional helical chain and a three-dimensional network: syntheses, crystal structures, and magnetic properties.

    PubMed

    Tsai, Hui-Lien; Yang, Chen-I; Wernsdorfer, Wolfgang; Huang, Siang-Hua; Jhan, Siang-Yu; Liu, Ming-Hsuan; Lee, Gene-Hsiang

    2012-12-17

    Two Mn(4) single-molecule-magnet (SMM)-based coordination polymers, {[Mn(4)O(salox)(3)(N(3))(3)(DMF)(2)(H(2)O)(dpp)]·0.5MeOH}(n) (1·0.5MeOH; H(2)salox = salicylaldoxime; dpp = 1,3-di-4-pyridylpropane; DMF = N,N-dimethylformamide) and {[Mn(4)O(Me-salox)(3)(N(3))(3)(dpp)(1.5)]·1.5Et(2)O}(n) (2·1.5Et(2)O; Me-H(2)salox = hydroxyphenylethanone oxime), are self-assembled from Mn(ClO(4))(2)·6H(2)O/H(2)salox and Mn(ClO(4))(2)·6H(2)O/Me-H(2)salox systems with dpp and NaN(3) in DMF/MeOH, respectively. Both compounds comprise a mixed-valence tetranuclear manganese core, [Mn(II)Mn(III)(3)O](9+), which serves as a building unit for subsequent assembly via oximate and azido ligands. The flexible dpp ligand links with a Mn(4) unit, leading to the formation of a one-dimensional helical structure in 1·0.5MeOH and a three-dimensional pcu network in 2·1.5Et(2)O. The magnetic data analysis shows that antiferromagnetic interactions within the Mn(4) units resulted in S = (3)/(2) and (7)/(2) ground states for 1·0.5MeOH and 2·1.5Et(2)O, respectively. Both compounds show SMM behavior, as evidenced by frequency-dependent out-of-phase signals in alternating-current magnetic susceptibility and magnetic hysteresis loop studies with an energy barrier of U(eff) = 37 K for 2·1.5Et(2)O.

  16. Energetic heavy ions with nuclear charge Z greater than or equal to 4 in the equatorial radiation belts of the earth - Magnetic storms

    NASA Technical Reports Server (NTRS)

    Spjeldvik, W. N.; Fritz, T. A.

    1981-01-01

    Direct in situ observations of trapped energetic heavy ions with nuclear charge Z greater than or equal to 4 at energies in the lower MeV range made with Explorer 45 during the period June-December 1972 are presented. It is noted that all measurements were carried out in the vicinity of the geomagnetic equatorial plane and that the data show the varying effects of four major magnetic storm periods. Orders of magnitude increases in the trapped heavy ion population are seen deep within the radiation belts following the August 1972 solar flare and magnetic storm events. Fluxes of the Z greater than or equal to 4 ions are found to decay faster than those of helium ions of comparable energies; typical decay times for these ions are found to be 24-40 days at L less than or equal to 4 and shorter at higher L shells. The observations are compared with the expected post-injection long-term behavior of atomic oxygen ions deduced from charge exhange, radial diffusive transport, and Coulomb collisions. Good agreement is found between theory and observations.

  17. Longitudinal variations of the equatorial electojet

    NASA Astrophysics Data System (ADS)

    Shume, Esayas

    We have utilized a three dimensional electrostatic potential model to explain the longitudinal variations of the equatorial electrojet. The model runs were constrained by net H component magnetic field measurements from three equatorial stations, namely, Huancayo (Peru) 12.05 S, 284.67 E; Addis Ababa (Ethiopia) 9.8 N, 38.8 E; Tirunelveli (India) 8.42 N, 77.48 E. The model runs were done in an iterative fashion until the computed and measured H component magnetic field values come into a close agreement. The physical mechanisms for the longitudinal variations of the equatorial electrojet were inferred by comparing and contrasting the resulting computed vertical polarization electric field (which drives the equatorial electrojet), and zonal current density profiles for the three stations mentioned above.

  18. Higher helicity invariants and solar dynamo

    NASA Astrophysics Data System (ADS)

    Sokolov, D. D.; Illarionov, E. A.; Akhmet'ev, P. M.

    2017-01-01

    Modern models of nonlinear dynamo saturation in celestial bodies (specifically, on the Sun) are largely based on the consideration of the balance of magnetic helicity. This physical variable has also a topological meaning: it is associated with the linking coefficient of magnetic tubes. In addition to magnetic helicity, magnetohydrodynamics has a number of topological integrals of motion (the so-called higher helicity moments). We have compared these invariants with magnetic helicity properties and concluded that they can hardly serve as nonlinear constraints on dynamo action.

  19. Single-molecule magnet behavior in an octanuclear dysprosium(iii) aggregate inherited from helical triangular Dy3 SMM-building blocks.

    PubMed

    Zhang, Li; Zhang, Peng; Zhao, Lang; Wu, Jianfeng; Guo, Mei; Tang, Jinkui

    2016-06-28

    An unprecedented octanuclear dysprosium(iii) cluster with the formula [Dy8L6(μ3-OH)4(μ2-CH3O)2(CH3OH)6(H2O)2]·6H2O·10CH3OH·2CH3CN () based on a nonlinearly tritopic aroylhydrazone ligand H3L has been isolated, realizing the successful linking of pairwise interesting triangular Dy3 SMMs. It is noteworthy that two enantiomers (Λ and Δ configurations) individually behaving as a coordination-induced chirality presented in the Dy3 helicate are connected in the meso Dy8 cluster. Remarkably, alternating-current magnetic susceptibility measurements revealed that the Dy8 cluster shows typical SMM behavior inherited from its Dy3 helical precursor. It is one of the rare polynuclear Lnn SMMs (n > 7) under zero dc field.

  20. Effects of magnetic-storm phases on F-layer irregularities from auroral to equatorial latitudes. Quarterly report, 1 Oct-31 Dec 91

    SciTech Connect

    Aarons, J.; Mendillo, M.

    1991-12-31

    Several periods of interest in the low sunspot years of 1985 and 1986 have been identified when data were available from Kiruna, Sweden and from Goose Bay, Labrador as well as from equatorial sites. A contouring program was developed to handle the Transit data and in fact have received data from several sample periods of very low magnetic activity over a period of several days. Just begun is this study of determining the pattern of F-layer irregularities during years of low solar flux. The evaluation of data sets has included new analysis (for Manila, for example) as well as evaluating older data, much of it at this date unused for scientific purposes. While F-region irregularities are frequently spoken of occuring in the auroral region, the behavior of the irregularities as a function of sunspot number is significantly different from the behavior of the auroral region. Auroral data, primarily of the E layer green line, show no significant changes as a function of sunspot number in the latitude of the occurrence of this phenomenon; F-region irregularities show a great movement towards the polar region with a low sunspot number. In order to predict the occurrence and level of the effects on trans-ionospheric propagation, the relationship to sunspot number must be ascertained. We feel the comparison of high latitude data from Sweden and Canada will allow us to state that a polar movement of the region during low sunspot years is a global phenomenon.

  1. Effects of magnetic-storm phases on F-layer irregularities from auroral to equatorial latitudes. Quarterly report, 1 Jan-31 Mar 92

    SciTech Connect

    Aarons, J.; Mendillo, M.

    1992-03-31

    Determining the morphology of F layer irregularities as a function of longitude in the equatorial region is vital for understanding the physics of the development of these irregularities. We aim to lay the observational basis which then can be used to test theoretical models. Theoretical models have been developed, notably the papers by R.T. Tsunoda (Rev. Geophys. 26, 719, 1988) and by T. Maruyama and N. Matuura (J. Geophys. Res. 89, 10903, 1984). The question is whether the models are consistent with the morphology as we see it. According to our criteria, the data used should be confined to observations taken near the magnetic equator during quiet magnetic periods and at times within a few hours after sunset. Anomaly region data should be omitted for studying the generation mechanism. The questions to be answered by proposed mechanisms are: (1) why do the equinox months have high levels of occurrence over all longitudes; (2) why are there relatively high levels of occurrence in the Central Pacific Sector in the July-August period and in the 0-75 deg West Sector in the November-December period; and (3) why are there very low levels of occurrence in November and December in the Central Pacific Sector and in July and August in the 0-75 deg West Sector. Satellite in-situ data, scintillation and spread F observations will be reviewed. The limitation of each data set will be outlined particularly as relevant to the bias produced by the existence of thin versus extended layers of irregularities. A cartoon as to the occurrence pattern, as we see it, as a function of longitude will be shown.

  2. Plasma driven by helical electrodes

    NASA Astrophysics Data System (ADS)

    Akcay, Cihan; Finn, John; Nebel, Richard; Barnes, Daniel

    2016-10-01

    A novel plasma state, obtained by applying a helical voltage at the wall with a uniform axial magnetic field, is studied by means of zero-pressure resistive MHD simulations in a periodic cylinder. The radial magnetic field at the wall is taken to be zero. For a small helical electrode voltage, the helical perturbation in the plasma is small and localized to the edge. Beyond a critical electrode voltage, there is a bifurcation to the newly discovered state, which is a single-helicity Ohmic equilibrium with the same helicity as the electrodes, i.e., the fields depend only on radius and mθ - nφ , where θ and φ = z / R are the poloidal and toroidal angles. For electrostatic driving with m = 1 , the mean magnetic field (m = n = 0) has field line safety factor q(r) equal to the pitch of the electrodes m / n = 1 / n except near the edge, where it monotonically increases an amount of order unity. The plasma is force-free in the interior. Near the edge, however, the current crosses the field lines to enter and exit through the helical electrodes. A large helical plasma flow related Pfirsch-Schlüter-like currents exist in this edge vicinity. Applications to current drive in tokamaks, as well as to straight plasmas with endcap electrodes are discussed.

  3. A mechanism for the dynamo terms to sustain closed-flux current, including helicity balance, by driving current which crosses the magnetic field

    SciTech Connect

    Jarboe, T. R.; Nelson, B. A.; Sutherland, D. A.

    2015-07-15

    An analysis of imposed dynamo current drive (IDCD) [T.R. Jarboe et al., Nucl. Fusion 52 083017 (2012)] reveals: (a) current drive on closed flux surfaces seems possible without relaxation, reconnection, or other flux-surface-breaking large events; (b) the scale size of the key physics may be smaller than is often computationally resolved; (c) helicity can be sustained across closed flux; and (d) IDCD current drive is parallel to the current which crosses the magnetic field to produce the current driving force. In addition to agreeing with spheromak data, IDCD agrees with selected tokamak data.

  4. Effects of magnetic storm phases on F-layer irregularities from auroral to equatorial latitudes. Quarterly report, 1 Apr-30 Jun 92

    SciTech Connect

    Aarons, J.; Mendillo, M.

    1992-06-30

    The review of equatorial data relative to F-layer irregularities continued during this period with an emphasis in this quarter on the results of a long series of optical measurements. The study uses the largest optical data base yet obtained of equatorial airglow depletions to describe such observational features of irregularity plume onset and development under different seasonal and geomagnetic conditions. They are most interested in the data showing the extreme altitudes/latitudes reached by such effects.

  5. Effects of magnetic storm phases on f-layer irregularities from auroral to equatorial latitudes. Quarterly report, 1 January-31 March 1993

    SciTech Connect

    Aarons, J.; Mendillo, M.

    1993-03-31

    Equatorial ionospheric irregularities in the F layer have been the subject of intensive experimental and theoretical investigations during recent years. The class of irregularities which continues to receive much attention is characterized by large scale plasma depletions, generally referred to as ionospheric plumes and bubbles. The F-region nightglow emissions arising from recombination processes can be used to observe the dynamics of transequatorial ionospheric plasma bubbles and smaller scale plasma irregularities. In a collaborative project between the Center for Space Physics of Boston University and the Brazilian Institute for Space Research (INPE), an all-sky imaging system was operated at Cachoeira Paulista (22.7 deg S, 45.0 deg W, dip latitude 15.8 deg S), between March 1987 and October 1991. In addition to the imager, photometer and VHF polarimeter observations were conducted at Cachoeira Paulista with ionospheric soundings carried out at C. Paulista and Fortaleza, the latter at 3.9 deg S. 38.4 deg W, dip latitude 3.7 deg S. A VHF electronic polarimeter is in operation at C. Paulista. This long series of 01 630.0 nm imaging observations has permitted determination that when there are extended plumes, the altitudes affected over the magnetic equator often exceed 1500 km and probably exceed 2500 km at times, the maximum projection that can be seen from Cachoeira Paulista. This holds true even during years of low solar flux. For this longitude, the observed seasonal variation of the airglow depletions shows a maximum from October through March and a very low occurrence of airglow depletions from April through September.

  6. Quasi-single helicity state by a small positive pulse of toroidal magnetic field in TPE-RX reversed field pinch experiment

    SciTech Connect

    Hirano, Y.; Koguchi, H.; Yambe, K.; Sakakita, H.; Kiyama, S.

    2006-12-15

    By applying a small positive pulse ({delta}B{sub ta}) in toroidal magnetic field, the quasi-single helicity (QSH) state can be obtained with a controllable and reproducible manner in a reversed-field pinch (RFP) experiment on the large RFP machine, TPE-RX [Y. Yagi et al., Fusion Eng. Des. 45, 421 (1999)]. The QSH state in RFP is one of the states where the improved confinement can be observed, and is important for development toward the pure single helicity (SH) state. In the SH state, the dynamo-action for sustaining the RFP configuration will be driven by a single helical mode and its harmonics, and the anomalous plasma loss can be avoided which is caused by the multi-helicity dynamo action in ordinary RFPs. In the operating condition presented here, the reversal of toroidal magnetic field (B{sub ta}) is maintained at a shallow value ({approx}-1 mT) for a certain period ({approx}20 ms) after the setting up of the RFP configuration and then the positive {delta}B{sub ta} ((less-or-similar sign)5 mT magnitude and {approx}2 ms width) is applied to the B{sub ta}, which is usually negative during the sustaining phase of RFP. Just after applying the pulse, the m/n=1/6 mode (m and n being the poloidal and toroidal Fourier mode numbers, respectively) grows dominantly and the configuration goes into QSH state. This QSH state can be sustained for a long period (up to {approx}45 ms) almost until the end of discharge by applying a delayed reversal of B{sub ta} with appropriate timing and magnitude. The setting up of the QSH states shows a reproducibility of almost 100% with the same timing corresponding to the applied positive pulse. This observation can confirm the interpretation in the former report [Y. Hirano et al., Phys. Plasmas 12, 112501 (2005)], in which it is claimed that the QSH state is obtained when a small positive pulse in toroidal magnetic field spontaneously appears.

  7. Three-dimensional analysis of the effect of the ergodic magnetic field line structure on particle fueling in the large helical device

    NASA Astrophysics Data System (ADS)

    Shoji, M.; Yamazaki, K.; Komori, A.; Yamada, H.; Miyazawa, J.; LHD Experimental Group

    2003-03-01

    The particle fueling via the ergodic magnetic field line structure formed around the core plasma is investigated by using a CCD camera with an H α interference filter and a fully three-dimensional neutral particle transport simulation. The measurements of the plasma density profile and the calculations of the radial profile of the particle fueling rate in additional gas fueling experiments show inward plasma transport from around the last closed magnetic surface (LCMS) into the core plasma. The analyses of the particle fueling rate in various plasma density cases prove that the dependence of the particle fueling inside of the LCMS on the line averaged plasma density agrees with that of the measured increments of the plasma content due to the gas fueling, which indicates that particle fueling just inside of the LCMS can effectively contribute to the core plasma density by the effect of the inward plasma transport in large helical device plasmas.

  8. Helically linked mirror arrangement

    SciTech Connect

    Ranjan, P.

    1986-08-01

    A scheme is described for helical linking of mirror sections, which endeavors to combine the better features of toroidal and mirror devices by eliminating the longitudinal loss of mirror machines, having moderately high average ..beta.. and steady state operation. This scheme is aimed at a device, with closed magnetic surfaces having rotational transform for equilibrium, one or more axisymmetric straight sections for reduced radial loss, a simple geometrical axis for the links and an overall positive magnetic well depth for stability. We start by describing several other attempts at linking of mirror sections, made both in the past and the present. Then a description of our helically linked mirror scheme is given. This example has three identical straight sections connected by three sections having helical geometric axes. A theoretical analysis of the magnetic field and single-particle orbits in them leads to the conclusion that most of the passing particles would be confined in the device and they would have orbits independent of pitch angle under certain conditions. Numerical results are presented, which agree well with the theoretical results as far as passing particle orbits are concerned.

  9. Flexible helical-axis stellarator

    DOEpatents

    Harris, Jeffrey H.; Hender, Timothy C.; Carreras, Benjamin A.; Cantrell, Jack L.; Morris, Robert N.

    1988-01-01

    An 1=1 helical winding which spirals about a conventional planar, circular central conductor of a helical-axis stellarator adds a significant degree of flexibility by making it possible to control the rotational transform profile and shear of the magnetic fields confining the plasma in a helical-axis stellarator. The toroidal central conductor links a plurality of toroidal field coils which are separately disposed to follow a helical path around the central conductor in phase with the helical path of the 1=1 winding. This coil configuration produces bean-shaped magnetic flux surfaces which rotate around the central circular conductor in the same manner as the toroidal field generating coils. The additional 1=1 winding provides flexible control of the magnetic field generated by the central conductor to prevent the formation of low-order resonances in the rotational transform profile which can produce break-up of the equilibrium magnetic surfaces. Further, this additional winding can deepen the magnetic well which together with the flexible control provides increased stability.

  10. Scaling laws in decaying helical hydromagnetic turbulence

    NASA Astrophysics Data System (ADS)

    Christensson, M.; Hindmarsh, M.; Brandenburg }%, A.

    2005-07-01

    We study the evolution of growth and decay laws for the magnetic field coherence length ξ, energy E_M and magnetic helicity H in freely decaying 3D MHD turbulence. We show that with certain assumptions, self-similarity of the magnetic power spectrum alone implies that ξ σm t1/2. This in turn implies that magnetic helicity decays as Hσm t-2s, where s=(ξ_diff/ξH)2, in terms of ξ_diff, the diffusion length scale, and ξ_H, a length scale defined from the helicity power spectrum. The relative magnetic helicity remains constant, implying that the magnetic energy decays as E_M σm t-1/2-2s. The parameter s is inversely proportional to the magnetic Reynolds number Re_M, which is constant in the self-similar regime.

  11. Thermally activated helicity reversals of skyrmions

    NASA Astrophysics Data System (ADS)

    Yu, X. Z.; Shibata, K.; Koshibae, W.; Tokunaga, Y.; Kaneko, Y.; Nagai, T.; Kimoto, K.; Taguchi, Y.; Nagaosa, N.; Tokura, Y.

    2016-04-01

    Magnetic bubbles with winding number S =1 are topologically equivalent to skyrmions. Here we report the discovery of helicity (in-plane magnetization-swirling direction) reversal of skyrmions, while keeping their hexagonal lattice form, at above room temperature in a thin hexaferrite magnet. We have observed that the frequency of helicity reversals dramatically increases with temperature in a thermally activated manner, revealing that the generation energy of a kink-soliton pair for switching helicity on a skyrmion rapidly decreases towards the magnetic transition temperature.

  12. Electromagnetic and Stress Analyses of the ITER Equatorial Thermal Shield

    NASA Astrophysics Data System (ADS)

    Lei, Mingzhun; Song, Yuntao; Wang, Songke; Wang, Xianwei

    2013-08-01

    The ITER equatorial thermal shield is located inside the cryostat and outside the vacuum vessel, and its purpose is to provide a thermal shield from hot components to the superconducting magnets. Electromagnetic analysis of the equatorial thermal shield was performed using the ANSYS code, because electromagnetic load was one of the main loads. The 40° sector finite element model was established including the vacuum vessel, equatorial thermal shield, and superconducting magnets. The main purpose of this analysis was to investigate the eddy current and electromagnetic force in the equatorial thermal shield during plasma disruption. Stress analysis was implemented under the electromagnetic load. The results show that the equatorial thermal shield can accommodate the calculated electromagnetic loads.

  13. Helical axis stellarator equilibrium model

    SciTech Connect

    Koniges, A.E.; Johnson, J.L.

    1985-02-01

    An asymptotic model is developed to study MHD equilibria in toroidal systems with a helical magnetic axis. Using a characteristic coordinate system based on the vacuum field lines, the equilibrium problem is reduced to a two-dimensional generalized partial differential equation of the Grad-Shafranov type. A stellarator-expansion free-boundary equilibrium code is modified to solve the helical-axis equations. The expansion model is used to predict the equilibrium properties of Asperators NP-3 and NP-4. Numerically determined flux surfaces, magnetic well, transform, and shear are presented. The equilibria show a toroidal Shafranov shift.

  14. A SOLAR TORNADO OBSERVED BY AIA/SDO: ROTATIONAL FLOW AND EVOLUTION OF MAGNETIC HELICITY IN A PROMINENCE AND CAVITY

    SciTech Connect

    Li, Xing; Morgan, Huw; Leonard, Drew; Jeska, Lauren

    2012-06-20

    During 2011 September 24, as observed by the Atmospheric Imaging Assembly instrument of the Solar Dynamic Observatory and ground-based H{alpha} telescopes, a prominence and associated cavity appeared above the southwest limb. On 2011 September 25 8:00 UT, material flows upward from the prominence core along a narrow loop-like structure, accompanied by a rise ({>=}50,000 km) of the prominence core and the loop. As the loop fades by 10:00, small blobs and streaks of varying brightness rotate around the top part of the prominence and cavity, mimicking a cyclone. The most intense and coherent rotation lasts for over three hours, with emission in both hot ({approx}1 MK) and cold (hydrogen and helium) lines. We suggest that the cyclonic appearance and overall evolution of the structure can be interpreted in terms of the expansion of helical structures into the cavity, and the movement of plasma along helical structures which appears as a rotation when viewed along the helix axis. The coordinated movement of material between prominence and cavity suggests that they are structurally linked. Complexity is great due to the combined effect of these actions and the line-of-sight integration through the structure which contains tangled fields.

  15. Helical Siberian snakes

    SciTech Connect

    Courant, E.D.

    1988-01-01

    To eliminate spin resonances in circular accelerators ''Siberian Snakes'' may be inserted at one or more azimuths in such a way that the overall spin precession tune ..nu../sub s/ equals 1/2. A snake is a sequence of horizontal and vertical deflection magnets whose overall effect is to rotate the spin by ..pi.. about an axis in the plane of the orbit, either longitudinal or transverse or any angle /var phi/ in between. At the same time the magnets of the snake should be arranged so as to produce zero net deflection and displacement of the particle orbit. We investigate here how the orbit deflections can be made small by using helical deflecting magnets rather than discrete horizontal and vertical deflectors.

  16. Helical phases in superconductors

    NASA Astrophysics Data System (ADS)

    Sandhu, Raminder P. Kaur

    In conventional superconductors, the Cooper pairs are formed from quasiparticles with opposite momentum and spins because of the degeneracy of the quasiparticles under time reversal and inversion. The absence of any of these symmetries will have pronounced effects on superconducting states. Time reversal symmetry can be broken in the presence of magnetic impurities or by the application of a magnetic field. Similarly, the dislocation of crystal ions from their higher symmetric positions can cause broken inversion symmetry. We studied the effects of broken time reversal and inversion symmetries on unconventional superconductors, such as high temperature cuprates, Sr2RuO 4, and CePt3Si. In the cuprates, the superconducting state exists near the antiferromagnetic order. Sr2RuO4 and CePt3Si do not have spatial inversion, and the superconducting states coexist with magnetic order. In cuprates, the broken time reversal symmetry has been reported in the pseudogap phase which will effect the d-wave superconducting state of underdoped regime. On the basis of symmetry analysis we found that a mixture of spin-singlet and -triplet state, d+ip, which is shown to give rise to a helical superconducting phase. Consequences of this d+ip state on Josephson experiments are also discussed. Sr2RuO 4 is known to be another broken time reversal superconductor with spin triplet superconductivity. The widely believed superconducting state, the chiral p wave state, has been extensively studied through Ginzburg Landau theory, but the predictions for this state contradict some experimental observations like anisotropy in the upper critical field, and the existence of a second vortex state. We have formalize quasiclassical theory to find the origin of these contradictions, and also extended the theory to study other possible super-conducting states. Surprisingly, we find that a superconducting state corresponding to freely rotating in-plane d-vector explains the existing experimental results

  17. Magnetic turbulence and pressure gradient feedback effect of the 1/2 mode soft-hard magnetohydrodynamic limit in large helical device

    SciTech Connect

    Varela, J.; Watanabe, K. Y.; Ohdachi, S.; Narushima, Y.

    2014-09-15

    The aim of this study was to analyze the feedback process between the magnetic turbulence and the pressure gradients in Large Helical Device (LHD) inward-shifted configurations as well as its role in the transition between the soft-hard magnetohydrodynamic (MHD) regimes for instabilities driven by the mode 1/2 in the middle plasma. In the present paper, we summarize the results of two simulations with different Lundquist numbers, S=2.5×10{sup 5} and 10{sup 6}, assuming a plasma in the slow reconnection regime. The results for the high Lundquist number simulation show that the magnetic turbulence and the pressure gradient in the middle plasma region of LHD are below the critical value to drive the transition to the hard MHD regime, therefore only relaxations in the soft MHD limit are triggered (1/2 sawtooth-like events) [Phys. Plasmas 19, 082512 (2012)]. In the case of the simulation with low Lundquist number, the system reaches the hard MHD limit and a plasma collapse is observed.

  18. Magnetic configuration effects on TAE-induced losses and a comparison with the orbit-following model in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Ogawa, Kunihiro; Isobe, Mitsutaka; Toi, Kazuo; Spong, Donald A.; Osakabe, Masaki; LHD Experiment Group

    2012-09-01

    Fast-ion losses from Large Helical Device (LHD) plasmas due to toroidal Alfvén eigenmodes (TAEs) were measured by a scintillator-based lost fast-ion probe (SLIP) to understand the loss processes. TAE-induced losses measured by the SLIP appeared in energy E ranges of around 50-180 keV with pitch angles χ between 35°-45°, and increased with the increase in TAE amplitudes. Position shifts of the magnetic axis due to a finite plasma pressure led not only to an increase in TAE-induced losses but also to a stronger scaling of fast-ion losses on TAE amplitudes. Characteristics of the observed fast-ion losses were compared with a numerical simulation based on orbit-following models in which the TAE fluctuations are taken into account. The calculation indicated that the number of lost fast ions reaching the SLIP increased with the increase in the TAE amplitude at the TAE gap. Moreover, the calculated dependence of fast-ion loss fluxes on the fluctuation amplitude became stronger in the case of large magnetic axis shifts, compared with the case of smaller shifts, as was observed in the experiments. The simulation results agreed qualitatively with the experimental observations in the LHD.

  19. Elliptical Muon Helical Cooling Channel Coils

    SciTech Connect

    Kahn, S. A.; Flanagan, G.; Lopes, M. L.; Yonehara, K.

    2013-09-01

    A helical cooling channel (HCC) consisting of a pressurized gas absorber imbedded in a magnetic channel that provides solenoid, helical dipole and helical quadrupole fields has shown considerable promise in providing six-dimensional phase space reduction for muon beams. The most effective approach to implementing the desired magnetic field is a helical solenoid (HS) channel composed of short solenoid coils arranged in a helical pattern. The HS channel along with an external solenoid allows the B$_z$ and B$_{\\phi}$ components along the reference orbit to be set to any desired values. To set dB$_{\\phi}$/dr to the desired value for optimum focusing requires an additional variable to tune. We shall show that using elliptical shaped coils in the HS channel allows the flexibility to achieve the desired dB$_{\\phi}$/dr on the reference orbit without significant change to B$_z$ and B$_{\\phi}$.

  20. Effects of magnetic storm phases on f-layer irregularities from auroral to equatorial latitudes. Quarterly report, 1 September-31 December 1992

    SciTech Connect

    Aarons, J.; Mendillo, M.

    1992-01-01

    The review of equatorial data relative to F-layer irregularities continued during this period with an emphasis in this quarter on determining the effects of localized effects on the generation of F-region irregularities. The study compares initially for one month TEC and scintillation data for Manila, the Philippines, Palehau, Hawaii, Tepei, Taiwan, and Osan, Korea all in the Pacific Sector. We are working on airglow depletion data taken in Brazil over a span of years which include years of both high and low solar flux.

  1. Effects of magnetic storm phases on f-layer irregularities from auroral to equatorial latitudes. Quarterly report, 1 July-30 September 1992

    SciTech Connect

    Aarons, J.; Mendillo, M.

    1992-09-30

    The review of equatorial data relative to F-layer irregularities continued during this period with an emphasis in this quarter on determining the effects of localized effects on the generation of F-region irregularities. The study compares initially for one month TEC and scintillation data for Manila, the Philippines, Palehua, Hawaii Tepei, Taiwan, and Osan, Korea all in the Pacific Sector. For some periods in 1980 and 1981, all the data are available. The initial study will be the data set for July 1980.

  2. Hydrodynamic and kinetic models for spin-1/2 electron-positron quantum plasmas: Annihilation interaction, helicity conservation, and wave dispersion in magnetized plasmas

    SciTech Connect

    Andreev, Pavel A.

    2015-06-15

    We discuss the complete theory of spin-1/2 electron-positron quantum plasmas, when electrons and positrons move with velocities mach smaller than the speed of light. We derive a set of two fluid quantum hydrodynamic equations consisting of the continuity, Euler, spin (magnetic moment) evolution equations for each species. We explicitly include the Coulomb, spin-spin, Darwin and annihilation interactions. The annihilation interaction is the main topic of the paper. We consider the contribution of the annihilation interaction in the quantum hydrodynamic equations and in the spectrum of waves in magnetized electron-positron plasmas. We consider the propagation of waves parallel and perpendicular to an external magnetic field. We also consider the oblique propagation of longitudinal waves. We derive the set of quantum kinetic equations for electron-positron plasmas with the Darwin and annihilation interactions. We apply the kinetic theory to the linear wave behavior in absence of external fields. We calculate the contribution of the Darwin and annihilation interactions in the Landau damping of the Langmuir waves. We should mention that the annihilation interaction does not change number of particles in the system. It does not related to annihilation itself, but it exists as a result of interaction of an electron-positron pair via conversion of the pair into virtual photon. A pair of the non-linear Schrodinger equations for the electron-positron plasmas including the Darwin and annihilation interactions is derived. Existence of the conserving helicity in electron-positron quantum plasmas of spinning particles with the Darwin and annihilation interactions is demonstrated. We show that the annihilation interaction plays an important role in the quantum electron-positron plasmas giving the contribution of the same magnitude as the spin-spin interaction.

  3. Hydrodynamic interaction between two helical swimmers

    NASA Astrophysics Data System (ADS)

    Ruiz Esparza, Alejandro; Godinez, Francisco; Lauga, Eric; Zenit, Roberto

    2016-11-01

    Many motile bacteria, such as E. coli, possess several helical flagellar filaments that bundle together to form a coherent helical element for propulsion. In order to understand the process of bundling, we study the interaction between two identical helical magnetic swimmers that self propel in a highly viscous Newtonian fluid due to the rotation of an external magnetic field. Our experiments reveal that hydrodynamic interactions lead to nontrivial collective and relative effects, both in translation and rotation. We will present our experimental results and discuss the physical mechanisms responsible for our observations.

  4. Helical Emg Effective Resistance

    NASA Astrophysics Data System (ADS)

    Chernyshev, V. K.; Zharinov, E. I.; Busin, V. N.; Grinevich, B. E.; Sokolova, O. V.; Smirnova, G. N.; Klimushkin, K. N.

    2004-11-01

    The efficiency of explosive-magnetic system operation depends on the magnetic flux losses produced under circuit deformation. Losses primarily arise from circuit ohmic resistance and flux pocketing due to the disturbed continuity of helix wires deformation. This is because of technological faults in fabrication and potential electric breakdowns resulting from the voltage overload in the generator circuit. Since it is rather difficult to identify each type of loss mentioned, all soles are expressed as the effective resistance of the circuit, Reff. The EMG-160 multi-sectional helical generator with a 760 mm long helix having an inner diameter of 160 mm is considered as an example. EMG-160 initial conductance was 34 μH and the final inductance was 25 nH. The effective resistance of the circuit was calculated for this experiment. The method of determining the effective resistance allows estimation of EMG efficiency at all stages of generator operation.

  5. Polarization signatures of relativistic magnetohydrodynamic shocks in the blazar emission region. I. Force-free helical magnetic fields

    SciTech Connect

    Zhang, Haocheng; Deng, Wei; Li, Hui; Bottcher, Markus

    2016-01-20

    The optical radiation and polarization signatures in blazars are known to be highly variable during flaring activities. It is frequently argued that shocks are the main driver of the flaring events. However, the spectral variability modelings generally lack detailed considerations of the self-consistent magnetic field evolution modeling; thus, so far the associated optical polarization signatures are poorly understood. We present the first simultaneous modeling of the optical radiation and polarization signatures based on 3D magnetohydrodynamic simulations of relativistic shocks in the blazar emission environment, with the simplest physical assumptions. By comparing the results with observations, we find that shocks in a weakly magnetized environment will largely lead to significant changes in the optical polarization signatures, which are seldom seen in observations. Hence an emission region with relatively strong magnetization is preferred. In such an environment, slow shocks may produce minor flares with either erratic polarization fluctuations or considerable polarization variations, depending on the parameters; fast shocks can produce major flares with smooth polarization angle rotations. In addition, the magnetic fields in both cases are observed to actively revert to the original topology after the shocks. In addition, all these features are consistent with observations. Future observations of the radiation and polarization signatures will further constrain the flaring mechanism and the blazar emission environment.

  6. Polarization signatures of relativistic magnetohydrodynamic shocks in the blazar emission region. I. Force-free helical magnetic fields

    DOE PAGES

    Zhang, Haocheng; Deng, Wei; Li, Hui; ...

    2016-01-20

    The optical radiation and polarization signatures in blazars are known to be highly variable during flaring activities. It is frequently argued that shocks are the main driver of the flaring events. However, the spectral variability modelings generally lack detailed considerations of the self-consistent magnetic field evolution modeling; thus, so far the associated optical polarization signatures are poorly understood. We present the first simultaneous modeling of the optical radiation and polarization signatures based on 3D magnetohydrodynamic simulations of relativistic shocks in the blazar emission environment, with the simplest physical assumptions. By comparing the results with observations, we find that shocks inmore » a weakly magnetized environment will largely lead to significant changes in the optical polarization signatures, which are seldom seen in observations. Hence an emission region with relatively strong magnetization is preferred. In such an environment, slow shocks may produce minor flares with either erratic polarization fluctuations or considerable polarization variations, depending on the parameters; fast shocks can produce major flares with smooth polarization angle rotations. In addition, the magnetic fields in both cases are observed to actively revert to the original topology after the shocks. In addition, all these features are consistent with observations. Future observations of the radiation and polarization signatures will further constrain the flaring mechanism and the blazar emission environment.« less

  7. POLARIZATION SIGNATURES OF RELATIVISTIC MAGNETOHYDRODYNAMIC SHOCKS IN THE BLAZAR EMISSION REGION. I. FORCE-FREE HELICAL MAGNETIC FIELDS

    SciTech Connect

    Zhang, Haocheng; Deng, Wei; Li, Hui; Böttcher, Markus

    2016-01-20

    The optical radiation and polarization signatures in blazars are known to be highly variable during flaring activities. It is frequently argued that shocks are the main driver of the flaring events. However, the spectral variability modelings generally lack detailed considerations of the self-consistent magnetic field evolution modeling; thus, so far the associated optical polarization signatures are poorly understood. We present the first simultaneous modeling of the optical radiation and polarization signatures based on 3D magnetohydrodynamic simulations of relativistic shocks in the blazar emission environment, with the simplest physical assumptions. By comparing the results with observations, we find that shocks in a weakly magnetized environment will largely lead to significant changes in the optical polarization signatures, which are seldom seen in observations. Hence an emission region with relatively strong magnetization is preferred. In such an environment, slow shocks may produce minor flares with either erratic polarization fluctuations or considerable polarization variations, depending on the parameters; fast shocks can produce major flares with smooth polarization angle rotations. In addition, the magnetic fields in both cases are observed to actively revert to the original topology after the shocks. All these features are consistent with observations. Future observations of the radiation and polarization signatures will further constrain the flaring mechanism and the blazar emission environment.

  8. Generalized helicity and Beltrami fields

    SciTech Connect

    Buniy, Roman V.; Kephart, Thomas W.

    2014-05-15

    We propose covariant and non-abelian generalizations of the magnetic helicity and Beltrami equation. The gauge invariance, variational principle, conserved current, energy–momentum tensor and choice of boundary conditions elucidate the subject. In particular, we prove that any extremal of the Yang–Mills action functional 1/4 ∫{sub Ω}trF{sub μν}F{sup μν}d{sup 4}x subject to the local constraint ε{sup μναβ}trF{sub μν}F{sub αβ}=0 satisfies the covariant non-abelian Beltrami equation. -- Highlights: •We introduce the covariant non-abelian helicity and Beltrami equation. •The Yang–Mills action and instanton term constraint lead to the Beltrami equation. •Solutions of the Beltrami equation conserve helicity.

  9. The influence of helical background fields on current helicity and electromotive force of magnetoconvection

    NASA Astrophysics Data System (ADS)

    Rüdiger, G.; Küker, M.

    2016-07-01

    Motivated by the empirical finding that the known hemispheric rules for the current helicity at the solar surface are not strict, we demonstrate the excitation of small-scale current helicity by the influence of large-scale helical magnetic background fields on nonrotating magnetoconvection. This is shown within a quasilinear analytic theory of driven turbulence and by nonlinear simulations of magnetoconvection that the resulting small-scale current helicity has the same sign as the large-scale current helicity, while the ratio of both pseudoscalars is of the order of the magnetic Reynolds number of the convection. The same models do not provide finite values of the small-scale kinetic helicity. On the other hand, a turbulence-induced electromotive force is produced including the diamagnetic pumping term, as well as the eddy diffusivity but, however, no α effect. It has thus been argued that the relations for the simultaneous existence of small-scale current helicity and α effect do not hold for the model of nonrotating magnetoconvection under consideration. Calculations for various values of the magnetic Prandtl number demonstrate that, for the considered diffusivities, the current helicity increases for growing magnetic Reynolds number, which is not true for the velocity of the diamagnetic pumping, which is in agreement with the results of the quasilinear analytical approximation.

  10. Overview of the Equatorial Electrojet and Related Ionospheric Current Systems

    DTIC Science & Technology

    2007-11-02

    NUWC-NPT Technical Report 11,676 25 April 2005 Overview of the Equatorial Electrojet and Related Ionospheric Current Systems John P. Casey...Overview of the Equatorial Electrojet and Related Ionospheric Current Systems PR A590045 6. AUTHOR(S) John P. Casey 7. PERFORMING ORGANIZATION NAME(S) AND...that flows in the ionosphere in a narrow zone above the magnetic dip equator during the daytime. The electrojet current produces a large enhancement of

  11. Study of equatorial scintillations

    NASA Technical Reports Server (NTRS)

    Pomalaza, J.; Woodman, R.; Tisnado, G.; Nakasone, E.

    1972-01-01

    Observations of the amplitude scintillations produced by the F-region in equatorial areas are presented. The equipment used for conducting the observations is described. The use of transmissions from the ATS-1, ATS-3, and ATS-5 for obtaining data is described. The two principal subjects discussed are: (1) correlation between satellite and incoherent radar observations of scintillations and (2) simultaneous observations of scintillations at 136 MHz and 1550 MHz.

  12. Dynamics of helical worm-like chains. VIII. Higher-order subspace approximations to dielectric and magnetic relaxation and fluorescence depolarization for flexible chains

    NASA Astrophysics Data System (ADS)

    Yamakawa, Hiromi; Yoshizaki, Takenao; Fujii, Motoharu

    1986-04-01

    Following the general scheme developed in the preceding paper (paper VII), dielectric and magnetic relaxation and fluorescence depolarization for flexible chain polymers in dilute solution are reinvestigated on the basis of the discrete helical worm-like chain in the higher-order subspace approximation. A comparison of theory with experiment is made with respect to the dielectric correlation time τD, the spin-lattice relaxation time T1, the spin-spin relaxation time T2, the nuclear Overhauser enhancement (NOE), the fluorescence emission anisotropy r(t), the average fluorescence anisotropy r¯, and the fluorescence correlation time τF. It is found that there is agreement between the diameters of the chains determined from these dynamic properties and those from chemical structures, better than in the previous crude subspace approximation, indicating that the theory is remarkably improved in the present approximation. The magnetic correlation time τM is in general not an observable, and therefore an empirical equation to be used for its determination from the observed T1 is constructed. It is then found that there is good correlation between the dynamic chain stiffness τX/τ0X and the static chain stiffness λ-1, where τ0X is the correlation time of the isolated subbody (monomer unit) with X=D, M, and F; τX/τ0X is a monotonically increasing function of λ-1 nearly independent of X as far as perpendicular dipoles are concerned. An explanation of this result is given. However, the dependence of τX on temperature cannot be explained very satisfactorily.

  13. Helicity Injection by Knotted Antennas into Electron Magnetohydrodynamical Plasmas

    NASA Astrophysics Data System (ADS)

    Rousculp, C. L.; Stenzel, R. L.

    1997-08-01

    A fully three-dimensional computer simulation of an ideal electron magnetohydrodynamical plasma is performed. By introducing various pulsed inductive antenna sources, magnetic helicity ( H = A˙B dV) injection is studied. Confirming experimental results, a simple loop provides no net helicity injection. Linked and knotted antennas, however, do inject helicity and preferentially radiate whistler wave packets parallel or antiparallel to the ambient magnetic field. Relative efficiencies of these antennas are reported as well as their unique directional properties.

  14. Eruption of a Multiple-Turn Helical Magnetic Flux Tube in a Large Flare: Evidence for External and Internal Reconnection that Fits the Breakout Model of Solar Magnetic Eruptions

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Moore, R. L.

    2003-01-01

    We present observations and an interpretation of a unique multiple-turn spiral flux tube eruption from AR10030 on 2002 July 15. The TRACE CIV observations clearly show a flux tube that is helical and that is erupting from within a sheared magnetic field. These observations are interpreted in the context of the breakout model for magnetic field explosions. The initiation of the helix eruption starts 25 seconds after the peak of the flare s strongest impulsive spike of microwave gryosynchrotron radiation early in the flare s explosive phase, implying that the sheared core field is not the site of the initial reconnection. Within the quadrupolar configuration of the active region, the external and internal reconnection sites are identified in each of two consecutive eruptive flares that produce a double CME. The first external breakout reconnection apparently releases an underlying sheared core field and allows it to erupt, leading to internal reconnection in the wake of the erupting helix. This internal reconnection heats the two-ribbon flare and might or might not produce the helix. These events lead to the first CME and are followed by a second breakout that initiates a second and larger halo CME. The strong magnetic shear in the region is associated with rapid proper motion and evolution of the active region. The multiple-turn helix originates from above a sheared-field magnetic inversion line within a filament channel, and starts to erupt only after fast breakout reconnection has started. These observations are counter to the standard flare model and support the breakout model for eruptive flare initiation. However, the observations are compatible with internal reconnection in a sheared magnetic arcade in the formation and eruption of the helix.

  15. Helical Channel Design and Technology for Cooling of Muon Beams

    NASA Astrophysics Data System (ADS)

    Yonehara, K.; Derbenev, Y. S.; Johnson, R. P.

    2010-11-01

    Novel magnetic helical channel designs for capture and cooling of bright muon beams are being developed using numerical simulations based on new inventions such as helical solenoid (HS) magnets and hydrogen-pressurized RF (HPRF) cavities. We are close to the factor of a million six-dimensional phase space (6D) reduction needed for muon colliders. Recent experimental and simulation results are presented.

  16. Topside sounder observations of equatorial bubbles

    NASA Technical Reports Server (NTRS)

    Dyson, P. L.; Benson, R. F.

    1978-01-01

    Large scale regions of depleted equatorial ionospheric plasma, called equatorial bubbles, are investigated using topside sounder data. The sounder's unique remote measuring capability enables the magnetic field-aligned nature of the bubbles to be investigated. A search of all available Alouette 2 and ISIS 1 ionograms during nighttime perigee passes near the magnetic equator has revealed a variety of echo signatures associated with bubbles. In addition to a sudden drop in electron density, these signatures usually include in situ spread F and ducted traces. The ducted traces have been used to determine the electron density distribution and to infer changes in ion composition along the magnetic field line within the duct associated with the bubble. In some cases it can be determined that the bubble is asymmetric with respect to the magnetic equator. Even though such features require 3 dimensional models for their explanation, the great field-aligned extent of the bubbles (relative to their cross section) suggests that current theories, which ignore variations along the magnetic field, are still applicable.

  17. Segregation of helicity in inertial wave packets

    NASA Astrophysics Data System (ADS)

    Ranjan, A.

    2017-03-01

    Inertial waves are known to exist in the Earth's rapidly rotating outer core and could be important for the dynamo generation. It is well known that a monochromatic inertial plane wave traveling parallel to the rotation axis (along positive z ) has negative helicity while the wave traveling antiparallel (negative z ) has positive helicity. Such a helicity segregation, north and south of the equator, is necessary for the α2-dynamo model based on inertial waves [Davidson, Geophys. J. Int. 198, 1832 (2014), 10.1093/gji/ggu220] to work. The core is likely to contain a myriad of inertial waves of different wave numbers and frequencies. In this study, we investigate whether this characteristic of helicity segregation also holds for an inertial wave packet comprising waves with the same sign of Cg ,z, the z component of group velocity. We first derive the polarization relations for inertial waves and subsequently derive the resultant helicity in wave packets forming as a result of superposition of two or more waves. We find that the helicity segregation does hold for an inertial wave packet unless the wave numbers of the constituent waves are widely separated. In the latter case, regions of opposite color helicity do appear, but the mean helicity retains the expected sign. An illustration of this observation is provided by (a) calculating the resultant helicity for a wave packet formed by superposition of four upward-propagating inertial waves with different wave vectors and (b) conducting the direct numerical simulation of a Gaussian eddy under rapid rotation. Last, the possible effects of other forces such as the viscous dissipation, the Lorentz force, buoyancy stratification, and nonlinearity on helicity are investigated and discussed. The helical structure of the wave packet is likely to remain unaffected by dissipation or the magnetic field, but can be modified by the presence of linearly stable stratification and nonlinearity.

  18. An experimental superconducting helical undulator

    SciTech Connect

    Caspi, S.; Taylor, C.

    1995-12-31

    Improvements in the technology of superconducting magnets for high energy physics and recent advancements in SC materials with the artificial pinning centers (APC){sup 2}, have made a bifilar helical SC device an attractive candidate for a single-pass free electron laser (FEL){sup 3}. Initial studies have suggested that a 6.5 mm inner diameter helical device, with a 27 mm period, can generate a central field of 2-2.5 Tesla. Additional studies have also suggested that with a stored energy of 300 J/m, such a device can be made self-protecting in the event of a quench. However, since the most critical area associated with high current density SC magnets is connected with quenching and training, a short experimental device will have to be built and tested. In this paper we discuss technical issues relevant to the construction of such a device, including a conceptual design, fields, and forces.

  19. HELICITY CONSERVATION IN NONLINEAR MEAN-FIELD SOLAR DYNAMO

    SciTech Connect

    Pipin, V. V.; Sokoloff, D. D.; Zhang, H.; Kuzanyan, K. M.

    2013-05-01

    It is believed that magnetic helicity conservation is an important constraint on large-scale astrophysical dynamos. In this paper, we study a mean-field solar dynamo model that employs two different formulations of the magnetic helicity conservation. In the first approach, the evolution of the averaged small-scale magnetic helicity is largely determined by the local induction effects due to the large-scale magnetic field, turbulent motions, and the turbulent diffusive loss of helicity. In this case, the dynamo model shows that the typical strength of the large-scale magnetic field generated by the dynamo is much smaller than the equipartition value for the magnetic Reynolds number 10{sup 6}. This is the so-called catastrophic quenching (CQ) phenomenon. In the literature, this is considered to be typical for various kinds of solar dynamo models, including the distributed-type and the Babcock-Leighton-type dynamos. The problem can be resolved by the second formulation, which is derived from the integral conservation of the total magnetic helicity. In this case, the dynamo model shows that magnetic helicity propagates with the dynamo wave from the bottom of the convection zone to the surface. This prevents CQ because of the local balance between the large-scale and small-scale magnetic helicities. Thus, the solar dynamo can operate in a wide range of magnetic Reynolds numbers up to 10{sup 6}.

  20. New Exact Relations for Helicities in Hall Magnetohydrodynamic Turbulence

    NASA Astrophysics Data System (ADS)

    Banerjee, Supratik; Galtier, Sebastien

    2016-04-01

    Hall magnetohydrodynamics is a mono-fluid plasma model appropriate for probing Final{some of the} physical processes (other than pure kinetic effects) at length scales smaller than the scales of standard MHD. In sub-ionic space plasma turbulence (e.g. the solar wind) this fluid model has been proved to be useful. Three-dimensional incompressible Hall magnetohydrodynamics (MHD) possesses three inviscid invariants which are the total energy, the magnetic helicity and the generalized helicity. In this presentation, we would like to discuss new exact relations for helicities (magnetic helicities and generalized helicities) which are derived for homogeneous stationary (not necessarily isotropic) Hall MHD turbulence (and also for its inertialess electron MHD limit) in the asymptotic limit of large Reynolds numbers. The universal laws are written only in terms of mixed second-order structure functions, i.e. the scalar product of two different increments and are written simply as ηM = di < δ ( {b} × {j}) \\cdot δ {b} >, with ηM the average magnetic helicity flux rate, {b} the magnetic field, {j} the current and ± ηG = < δ ( {v} × {Ω} ) \\cdot δ {Ω} > , with ηM the average generalized helicity flux rate, {v} the fluid velocity and {Ω} = {b} + dI {ω} being the generalized helicity where ω is simply the fluid vorticity ( = nabla × {v}). It provides, therefore, a direct measurement of the dissipation rates for the corresponding helicities even in case of an anisotropic plasma turbulence. This study shows that the generalized helicity cascade is strongly linked to the left polarized fluctuations while the magnetic helicity cascade is linked to the right polarized fluctuations. The newly derived relations also show that like energy, a non-zero helicity flux can only be associated to a departure of Beltrami flow state. {Reference} S. Banerjee & S. Galtier, {Chiral Exact Relations for Helicities in Hall Magnetohydrodynamic Turbulence} (submitted).

  1. Helicity oscillations of Dirac and Majorana neutrinos

    NASA Astrophysics Data System (ADS)

    Dobrynina, Alexandra; Kartavtsev, Alexander; Raffelt, Georg

    2016-06-01

    The helicity of a Dirac neutrino with mass m evolves under the influence of a B field because it has a magnetic dipole moment proportional to m . Moreover, it was recently shown that a polarized or anisotropic medium engenders the same effect for both Dirac and Majorana neutrinos. Because a B field polarizes a background medium, it instigates helicity oscillations even for Majorana neutrinos unless the medium is symmetric between matter and antimatter. Motivated by these observations, we review the impact of a B field and of an anisotropic or polarized medium on helicity oscillations for Dirac and Majorana neutrinos from the common perspective of in-medium dispersion.

  2. Polar and equatorial ionosphere interaction during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Biktash, L.

    The solar wind-magnetosphere-ionosphere coupling as applied to the polar and equatorial ionosphere dynamics is examined. To do this simultaneous observations of the IMF, ground-based measurements of the ionospheric parameters and geomagnetic field variations from the high latitudes to the equator are used during magnetic storms. It is shown that the auroral electric fields during magnetically disturbed conditions by the magnetospheric current systems can play a dominant role in the equatorial ionosphere processes. During magnetic storms the equatorial ionosphere parameters h'F, foF2 and etc. widely deviated from quiet day conditions and different kinds of ionospheric irregularities are formed. The equatorial ionospheric irregularities manifest as spread F in ionograms, reversals of drift velocities, scintillation of radio transmissions through the ionosphere, etc. These phenomena can interpret as the result of direct penetration of electric fields from the high latitude field-aligned currents (FAC) to the equatorial ionosphere. Model of direct penetration of FAC electric field of Polar Regions 1 and Region 2, which are controlled by the solar wind, to the equatorial ionosphere is presented. From this model the solar wind electric field through the FAC is likely to the factor wich generate or inhibit the equatorward penetration of the high latitude electric field. We demonstrate that the model is suitable to explain h'F, foF2 variations and scintillation activity during geomagnetic storms. Taking into account of the equatorial and auroral electric fields coupling, relationship, between these regions can be useful to study difficult auroral conditions during magnetic storms.

  3. Eruption of a Multiple-Turn Helical Magnetic Flux Tube in a Large Flare: Evidence for External and Internal Reconnection that Fits the Breakout Model of Solar Magnetic Eruptions

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Moore, R. L.

    2004-01-01

    We present observations and an interpretation of a unique multiple-turn spiral flux tube eruption from active region 10030 on 2002 July 15. The TRACE C IV observations clearly show a flux tube that is helical and erupting from within a sheared magnetic field. These observations are interpreted in the context of the breakout model for magnetic field explosions. The initiation of the helix eruption. as determined by a linear backward extrapolation, starts 25 s after the peak of the flare's strongest impulsive spike of microwave gyrosynchrotron radiation early in the flare s explosive phase, implying that the sheared core field is not the site of the initial reconnection. Within the quadrupolar configuration of the active region, the external and internal reconnection sites are identified in each of two consecutive eruptive flares that produce a double coronal mass ejection (CME). The first external breakout reconnection apparently releases an underlying sheared core field and allows it to erupt, leading to internal reconnection in the wake of the erupting helix. This internal reconnection releases the helix and heats the two-ribbon flare. These events lead to the first CME and are followed by a second breakout that initiates a second and larger halo CME. The strong magnetic shear in the region is compatible with the observed rapid proper motion and evolution of the active region. The multiple-turn helix originates from above a sheared-field magnetic inversion line within a filament channel. and starts to erupt only after fast breakout reconnection has started. These observations are counter to the standard flare model and support the breakout model for eruptive flare initiation.

  4. Helical axis stellarator with noninterlocking planar coils

    DOEpatents

    Reiman, A.; Boozer, A.H.

    1984-03-06

    The present invention generates stellarator fields having favorable properties (magnetic well and large rotational transform) by a simple coil system consisting only of unlinked planar non-circular coils. At large rotational transform toroidal effects on magnetic well and rotational transform are small and can be ignored. We do so herein, specializing in straight helical systems.

  5. Energy and helicity injection in solar quiet regions

    NASA Astrophysics Data System (ADS)

    Tziotziou, K.; Park, S.-H.; Tsiropoula, G.; Kontogiannis, I.

    2015-09-01

    Aims: We investigate the free magnetic energy and relative magnetic helicity injection in solar quiet regions. Methods: We use the DAVE4VM method to infer the photospheric velocity field and calculate the free magnetic energy and relative magnetic helicity injection rates in 16 quiet-Sun vector magnetograms sequences. Results: We find that there is no dominant sense of helicity injection in quiet-Sun regions, and that both helicity and energy injections are mostly due to surface shuffling motions that dominate the respective emergence by factors slightly larger than two. We, furthermore, estimate the helicity and energy rates per network unit area as well as the respective budgets over a complete solar cycle. Conclusions: Derived helicity and energy budgets over the entire solar cycle are similar to respective budgets derived in a recent work from the instantaneous helicity and free magnetic energy budgets and higher than previously reported values that relied on similar approaches to this analysis. Free-energy budgets, mostly generated like helicity at the network, are high enough to power the dynamics of fine-scale structures residing at the network, such as mottles and spicules, while corresponding estimates of helicity budgets are provided, pending future verification from high-resolution magneto-hydrodynamic simulations and/or observations.

  6. Bioinspired helical microswimmers based on vascular plants.

    PubMed

    Gao, Wei; Feng, Xiaomiao; Pei, Allen; Kane, Christopher R; Tam, Ryan; Hennessy, Camille; Wang, Joseph

    2014-01-08

    Plant-based bioinspired magnetically propelled helical microswimmers are described. The helical microstructures are derived from spiral water-conducting vessels of different plants, harnessing the intrinsic biological structures of nature. Geometric variables of the spiral vessels, such as the helix diameter and pitch, can be controlled by mechanical stretching for the precise fabrication and consistent performance of helical microswimmers. Xylem vessels of a wide variety of different plants have been evaluated for the consistency and reproducibility of their helical parameters. Sequential deposition of thin Ti and Ni layers directly on the spiral vessels, followed by dicing, leads to an extremely simple and cost-efficient mass-production of functional helical microswimmers. The resulting plant-based magnetic microswimmers display efficient propulsion, with a speed of over 250 μm/s, as well as powerful locomotion in biological media such as human serum. The influence of actuation frequencies on the swimming velocity is investigated. Such use of plant vessels results in significant savings in the processing costs and provides an extremely simple, cost-effective fabrication route for the large-scale production of helical magnetic swimmers.

  7. Equatorial MU Radar project

    NASA Astrophysics Data System (ADS)

    Yamamoto, Mamoru; Hashiguchi, H.; Tsuda, Toshitaka; Yamamoto, Masayuki

    Research Institute for Sustainable Humanosphere, Kyoto University (RISH) has been studying the atmosphere by using radars. The first big facility was the MU (Middle and Upper atmosphere) radar installed in Shiga, Japan in 1984. This is one of the most powerful and multi-functional radar, and is successful of revealing importance of atmospheric waves for the dynamical vertical coupling processes. The next big radar was the Equatorial Atmosphere Radar (EAR) installed at Kototabang, West Sumatra, Indonesia in 2001. The EAR was operated under close collaboration with LAPAN (Indonesia National Institute for Aeronautics and Space), and conducted the long-term continuous observations of the equatorial atmosphere/ionosphere for more than 10 years. The MU radar and the EAR are both utilized for inter-university and international collaborative research program for long time. National Institute for Polar Research (NIPR) joined EISCAT Scientific Association together with Nagoya University, and developed the PANSY radar at Syowa base in Antarctica as a joint project with University of Tokyo. These are the efforts of radar study of the atmosphere/ionosphere in the polar region. Now we can find that Japan holds a global network of big atmospheric/ionospheric radars. The EAR has the limitation of lower sensitivity compared with the other big radars shown above. RISH now proposes a plan of Equatorial MU Radar (EMU) that is to establish the MU-radar class radar next to the EAR. The EMU will have an active phased array antenna with the 163m diameter and 1055 cross-element Yagis. Total output power of the EMU will be more than 500kW. The EMU can detect turbulent echoes from the mesosphere (60-80km). In the ionosphere incoherent-scatter observations of plasma density, drift, and temperature would be possible. Multi-channel receivers will realize radar-imaging observations. The EMU is one of the key facilities in the project "Study of coupling processes in the solar-terrestrial system

  8. Numerical Simulations of Helicity Condensation in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Zhao, L.; DeVore, C. R.; Antiochos, S. K.; Zurbuchen, T. H.

    2015-01-01

    The helicity condensation model has been proposed by Antiochos (2013) to explain the observed smoothness of coronal loops and the observed buildup of magnetic shear at filament channels. The basic hypothesis of the model is that magnetic reconnection in the corona causes the magnetic stress injected by photospheric motions to collect only at those special locations where prominences form. In this work we present the first detailed quantitative MHD simulations of the reconnection evolution proposed by the helicity condensation model. We use the well-known ansatz of modeling the closed corona as an initially uniform field between two horizontal photospheric plates. The system is driven by applying photospheric rotational flows that inject magnetic helicity into the system. The flows are confined to a finite region on the photosphere so as to mimic the finite flux system of, for example, a bipolar active region. The calculations demonstrate that, contrary to common belief, coronal loops having opposite helicity do not reconnect, whereas loops having the same sense of helicity do reconnect. Furthermore, we find that for a given amount of helicity injected into the corona, the evolution of the magnetic shear is insensitive to whether the pattern of driving photospheric motions is fixed or quasi-random. In all cases, the shear propagates via reconnection to the boundary of the flow region while the total magnetic helicity is conserved, as predicted by the model. We discuss the implications of our results for solar observations and for future, more realistic simulations of the helicity condensation process.

  9. Sunrise enhancement of equatorial vertical plasma drift

    NASA Astrophysics Data System (ADS)

    Liu, Libo; Zhang, Ruilong; Le, Huijun

    2016-04-01

    Sunrise enhancement in vertical plasma drift over equatorial regions is not discernible in the statistical picture compared with the significant enhancement during dusk hours. In this report, it is the first time to investigate the occurrence of the dawn enhancement in the equatorial ionospheric vertical plasma drift from ROCSAT-1 observations during geomagnetic quiet times. The dawn enhancements occur most frequently in June solstice and least frequently in December solstice. The statistical survey shows that the occurrence depends on the magnetic declination. The enhancement has the strongest amplitude in regions near 320° longitude and peaks during June solstice. The dawn enhancement reaches its peak after the sunrise in conjugated E regions. Furthermore, it is found that the dawn enhancement is closely related to the difference between the sunrise times in the conjugated E regions (sunrise time lag). The dawn enhancement occurs easily in regions with a large sunrise time lag. Moreover, we will report the effects of the sunrise enhancement of vertical plasma drift on the equatorial ionosphere as indicated from the observations and model simulations. We thanks National Central University of Taiwan providing the ROCSAT-1 data. The Ap and F107 indices are obtained from the National Geophysical Data Center (http://spidr.ngdc.noaa.gov/spidr/). This research is supported by National Natural Science Foundation of China (41231065), the Chinese Academy of Sciences project (KZZD-EW-01-3), National Key Basic Research Program of China (2012CB825604) and National Natural Science Foundation of China (41321003).

  10. TURBULENT DYNAMOS WITH SHEAR AND FRACTIONAL HELICITY

    SciTech Connect

    Kaepylae, Petri J.; Brandenburg, Axel

    2009-07-10

    Dynamo action owing to helically forced turbulence and large-scale shear is studied using direct numerical simulations. The resulting magnetic field displays propagating wave-like behavior. This behavior can be modeled in terms of an {alpha}{omega} dynamo. In most cases super-equipartition fields are generated. By varying the fraction of helicity of the turbulence the regeneration of poloidal fields via the helicity effect (corresponding to the {alpha}-effect) is regulated. The saturation level of the magnetic field in the numerical models is consistent with a linear dependence on the ratio of the fractional helicities of the small and large-scale fields, as predicted by a simple nonlinear mean-field model. As the magnetic Reynolds number (Re{sub M}) based on the wavenumber of the energy-carrying eddies is increased from 1 to 180, the cycle frequency of the large-scale field is found to decrease by a factor of about 6 in cases where the turbulence is fully helical. This is interpreted in terms of the turbulent magnetic diffusivity, which is found to be only weakly dependent on the Re{sub M}.

  11. The equatorial electrojet satellite and surface comparison

    NASA Technical Reports Server (NTRS)

    Cain, J. C. (Editor); Sweeney, R. E. (Editor)

    1972-01-01

    The OGO 4 and 6 (POGO) magnetic field results for the equatorial electrojet indicate that while the present models are approximately correct, the possibility of a westward component must be incorporated. The scatter diagrams of POGO amplitudes and surface data show a correlation. The ratios between the amplitudes estimated from surface data and those at 400 km altitude are as follows: India 5 to 8, East Africa (Addis Ababa) 4, Central Africa 3, West Africa (Nigeria) 3, South America (Huancayo) 5, and Philippines 5. The variation in the ratio is due to the conductivity structure of the earth in various zones.

  12. Tokamak Startup Using Point-Source dc Helicity Injection

    SciTech Connect

    Battaglia, D. J.; Bongard, M. W.; Fonck, R. J.; Redd, A. J.; Sontag, A. C.

    2009-06-05

    Startup of a 0.1 MA tokamak plasma is demonstrated on the ultralow aspect ratio Pegasus Toroidal Experiment using three localized, high-current density sources mounted near the outboard midplane. The injected open field current relaxes via helicity-conserving magnetic turbulence into a tokamaklike magnetic topology where the maximum sustained plasma current is determined by helicity balance and the requirements for magnetic relaxation.

  13. Active region helicity evolution and related coronal mass ejection activity.

    NASA Astrophysics Data System (ADS)

    Green, L.; Mandrini, C.; van Driel-Gesztelyi, L.; Demoulin, P.

    The computation of magnetic helicity has become increasingly important in the studies of solar activity. Observations of helical structures in the solar atmosphere, and their subsequent ejection into the interplanetary medium, have resulted in considerable interest to find the link between the amount of helicity in the coronal magnetic field and the origin of coronal mass ejections (CMEs). This is reinforced by theory which shows magnetic helicity to be a well preserved quantity (Berger, 1984), and so with a continued injection into the corona an endless accumulation will occur. CMEs therefore provide a natural method to remove helicity from the corona. Recent works (DeVore, 2000, Chae, 2001, Chae et al., 2001, Demoulin et al., 2002, Green et al., 2002) have endeavoured to find the source of helicity in the corona to explain the observed CME activity in specific cases. The main candidates being differential rotation, shear motions or a transfer of helicity from below the photosphere into the corona. In order to establish a confident relation between CMEs and helicity, these works needs to be expanded to include CME source regions with different characteristics. A study of a very different active region will be presented and the relationship between helicity content and CME activity will be discussed in the framework of the previous studies.

  14. Superconducting helical solenoid systems for muon cooling experiment at Fermilab

    SciTech Connect

    Kashikhin, Vladimir S.; Andreev, Nikolai; Johnson, Rolland P.; Kashikhin, Vadim V.; Lamm, Michael J.; Romanov, Gennady; Yonehara, Katsuya; Zlobin, Alexander V.; /Fermilab

    2007-08-01

    Novel configurations of superconducting magnet system for Muon Beam Cooling Experiment is under design at Fermilab. The magnet system has to generate longitudinal and transverse dipole and quadrupole helical magnetic fields providing a muon beam motion along helical orbit. It was found that such complicated field configuration can be formed by a set of circular coils shifted in transverse directions in such a way that their centers lay on the center of the helical beam orbit. Closed beam orbit configurations were also proposed and investigated. This paper describes the magnetic and mechanical designs and parameters of such magnetic system based on a NbTi Rutherford type cable. The helical solenoid fabrication, assembly and quench protection issues are presented.

  15. Helicity and singular structures in fluid dynamics

    PubMed Central

    Moffatt, H. Keith

    2014-01-01

    Helicity is, like energy, a quadratic invariant of the Euler equations of ideal fluid flow, although, unlike energy, it is not sign definite. In physical terms, it represents the degree of linkage of the vortex lines of a flow, conserved when conditions are such that these vortex lines are frozen in the fluid. Some basic properties of helicity are reviewed, with particular reference to (i) its crucial role in the dynamo excitation of magnetic fields in cosmic systems; (ii) its bearing on the existence of Euler flows of arbitrarily complex streamline topology; (iii) the constraining role of the analogous magnetic helicity in the determination of stable knotted minimum-energy magnetostatic structures; and (iv) its role in depleting nonlinearity in the Navier-Stokes equations, with implications for the coherent structures and energy cascade of turbulence. In a final section, some singular phenomena in low Reynolds number flows are briefly described. PMID:24520175

  16. Midday reversal of equatorial ionospheric electric field

    NASA Astrophysics Data System (ADS)

    Rastogi, R. G.

    1997-10-01

    A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956-1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V×Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.

  17. Helicity comparison among three magnetographs

    NASA Astrophysics Data System (ADS)

    Xu, Haiqing; Gao, Yu; Zhang, Hongqi; Sakurai, T.; Pevtsov, A. A.; Sokoloff, D.

    We compare vector magnetograms of 228 active regions observed by Solar Magnetic Field Telescope (SMFT) at Huairou (HR) Solar Observing Station and the Solar Flare Telescope (SFT) at Mitaka (MTK) of the National Astronomical Observatory of Japan from 1992 to 2005 and 55 active regions observed by SFT and Haleakala Stokes Polarimeter (HSP) at Mees Solar Observatory, University of Hawaii from 1997 to 2000. Two helicity parameters, current helicity density hc and αff coefficient of linear force free field are calculated. From this comparison we conclude: (1) the mean azimuthal angle differences of transverse fields between HR and MTK data are systematic smaller than that between MTK and Mees data; (2) there are 83.8% of hc and 78.1% of αff for 228 active regions observed at HR and MTK agree in sign, and the Pearson linear correlation coefficient between these two data sets is 0.72 for hc and 0.56 for αff. There are 61.8% of hc and 58.2% of αff for 55 active regions observed at MTK and Mees agree in sign, and the Pearson linear correlation coefficient between these two data sets is 0.34 for hc and 0.31 for αff; (3) there is a basic agreement on time variation of helicity parameters in active regions observed at HR, Mees, and MTK.

  18. Emerging double helical nanostructures.

    PubMed

    Zhao, Meng-Qiang; Zhang, Qiang; Tian, Gui-Li; Wei, Fei

    2014-08-21

    As one of the most important and land-mark structures found in nature, a double helix consists of two congruent single helices with the same axis or a translation along the axis. This double helical structure renders the deoxyribonucleic acid (DNA) the crucial biomolecule in evolution and metabolism. DNA-like double helical nanostructures are probably the most fantastic yet ubiquitous geometry at the nanoscale level, which are expected to exhibit exceptional and even rather different properties due to the unique organization of the two single helices and their synergistic effect. The organization of nanomaterials into double helical structures is an emerging hot topic for nanomaterials science due to their promising exceptional unique properties and applications. This review focuses on the state-of-the-art research progress for the fabrication of double-helical nanostructures based on 'bottom-up' and 'top-down' strategies. The relevant nanoscale, mesoscale, and macroscopic scale fabrication methods, as well as the properties of the double helical nanostructures are included. Critical perspectives are devoted to the synthesis principles and potential applications in this emerging research area. A multidisciplinary approach from the scope of nanoscience, physics, chemistry, materials, engineering, and other application areas is still required to the well-controlled and large-scale synthesis, mechanism, property, and application exploration of double helical nanostructures.

  19. A Helical Stairway Project

    ERIC Educational Resources Information Center

    Farmer, Tom

    2008-01-01

    We answer a geometric question that was raised by the carpenter in charge of erecting helical stairs in a 10-story hospital. The explanation involves the equations of lines, planes, and helices in three-dimensional space. A brief version of the question is this: If A and B are points on a cylinder and the line segment AB is projected radially onto…

  20. The Writhe of Helical Structures in the Solar Corona

    DTIC Science & Technology

    2010-04-23

    2010 The writhe of helical structures in the solar corona T. Török1,2, M. A. Berger2,3, and B. Kliem2,4,5 1 LESIA, Observatoire de Paris, CNRS, UPMC...2009; accepted ... ABSTRACT Context. Helicity is a fundamental property of magnetic fields, conserved in ideal MHD. In flux rope topology, it consists of...twist and writhe helicity . Despite the common occurrence of helical structures in the solar atmosphere, little is known about how their shape relates

  1. The formation of an equatorial coronal hole

    NASA Astrophysics Data System (ADS)

    Yang, Liheng; Jiang, Yunchun; Zhang, Jun

    2010-02-01

    The formation of an equatorial coronal hole (CH) from 2006 January 9 to 12 was simultaneously observed by GOES-12/SXI, SOHO/EIT and SOHO/MDI instruments. The varieties of soft X-ray and EUV brightness, coronal temperature, and total magnetic flux in the CH were examined and compared with that of a quiet-sun (QS) region nearby. The following results are obtained. (1) A preexisting dark lane appeared on the location of the followed CH and was reinforced by three enhanced networks. (2) The CH gradually formed in about 81 hours and was predominated by positive magnetic flux. (3) During the formation, the soft X-ray and EUV brightness, coronal temperature, and total magnetic flux obviously decreased in the CH, but were almost no change in the QS region. The decrease of the total magnetic flux may be the result of magnetic reconnection between the open and closed magnetic lines, probably indicating the physical mechanism for the birth of the CH.

  2. Particle entry into the equatorial magnetosphere.

    NASA Technical Reports Server (NTRS)

    Fritz, T. A.; Barfield, J. N.; Smith, P. H.; Hoffman, R. A.; Konradi, A.

    1973-01-01

    Explorer-45 data are reviewed which concern the behavior and dynamics of protons associated with the storm-time and quiet-time extraterrestrial ring current at the equatorial plane. The quiet-time proton energy spectrum exhibits a peak in the interval between 100 and 200 keV. During storm conditions, the intensities of the higher energy protons decrease while the intensities of protons from 10 to 100 keV are greatly enhanced, making them the dominant contributor to the storm-time particle energy density. It is shown that during magnetic storms, the ratio of the particle energy density to the magnetic field energy density reaches values greater than unity, and that the plasmasphere has a strong influence on the characteristics of particle injection.

  3. The equatorial electrojet current modelling from SWARM satellite data

    NASA Astrophysics Data System (ADS)

    Benaissa, Mahfoud

    2016-07-01

    Equatorial ElectroJet (EEJ) is an intense eastward electric current circulating in the ionospheric magnetic equator band between 100 and 130 km of altitude in E region. These currents vary by day, by season, by solar activity, and also with the main magnetic field of internal origin. The irregularity of the ionosphere has a major impact on the performance of communication systems and navigation (GPS), industry.... Then it becomes necessary study the characteristics of EEJ. In this paper, we present a study of the equatorial electrojet (EEJ) phenomenon along one year (2014) period. In addition, the satellite data used in this study are obtained with SWARM satellite scalar magnetometer data respecting magnetically quiet days with KP < 2. In this paper, we process to separate and extract the electrojet intensity signal from other recorded signal-sources interfering with the main signal and reduce considerably the signal to noise ratio during the SWARM measurements. This pre-processing step allows removing all external contributions in regard to EEJ intensity value. Key words: Ionosphere (Equatorial ionosphere; Electric fields and currents; Equatorial electrojet (EEJ)); SWARM.

  4. Solar flares controlled by helicity conservation

    NASA Technical Reports Server (NTRS)

    Gliner, Erast B.; Osherovich, Vladimir A.

    1995-01-01

    The energy release in a class of solar flares is studied on the assumption that during burst events in highly conducting plasma the magnetic helicity of plasma is approximately conserved. The available energy release under a solar flare controlled by the helicity conservation is shown to be defined by the magnetic structure of the associated prominence. The approach throws light on some solar flare enigmas: the role of the associated prominence. The approach throws light on some solar flare enigmas: the role of the associated prominences; the discontinuation of the reconnection of magnetic lines long before the complete reconnection of participated fields occurs; the existence of quiet prominences which, in spite of their usual optical appearance, do not initiate any flare events; the small energy release under a solar flare in comparison with the stockpile of magnetic energy in surrounding fields. The predicted scale of the energy release is in a fair agreement with observations.

  5. Meridional equatorial electrojet current in the American sector

    NASA Astrophysics Data System (ADS)

    Rastogi, R. G.

    1999-02-01

    Huancayo is the only equatorial electrojet station where the daytime increase of horizontal geomagnetic field (H) is associated with a simultaneous increase of eastward geomagnetic field (Y). It is shown that during the counter electrojet period when H is negative, Y also becomes negative. Thus, the diurnal variation of Y at equatorial latitudes is suggested to be a constituent part of the equatorial electrojet current system. Solar flares are known to increase the H field at an equatorial station during normal electrojet conditions (nej). At Huancayo, situated north of the magnetic equator, the solar flare effect, during nej, consists of positive impulses in H and Y and negative impulse in Z field. During counter electrojet periods (cej), a solar flare produces a negative impulse in H and Y and a positive impulse in Z at Huancayo. It is concluded that both the zonal and meridional components of the equatorial electrojet in American longitudes, as in Indian longitudes, flows in the same, E region of the ionosphere.

  6. Helicity Injection by Knotted Antennas into Electron Magnetohydrodynamical Plasmas

    SciTech Connect

    Rousculp, C.L.; Stenzel, R.L.

    1997-08-01

    A fully three-dimensional computer simulation of an ideal electron magnetohydrodynamical plasma is performed. By introducing various pulsed inductive antenna sources, magnetic helicity (H={bold A}{center_dot}{bold B}dV) injection is studied. Confirming experimental results, a simple loop provides no net helicity injection. Linked and knotted antennas, however, do inject helicity and preferentially radiate whistler wave packets parallel or antiparallel to the ambient magnetic field. Relative efficiencies of these antennas are reported as well as their unique directional properties. {copyright} {ital 1997} {ital The American Physical Society}

  7. Higher-order harmonic effect of a three-dimensional helical wiggler on the Larmor rotation of the equilibrium electrons in a free-electron laser with a positive or a reversed guide magnetic field

    SciTech Connect

    Zhang, Shi-Chang

    2013-10-15

    Analytical formulas of the Larmor rotation are derived in detail for the equilibrium electrons motion in a free-electron laser with combination of a three-dimensional (3-D) helical wiggler and a positive or a reversed guide magnetic field. Generally, the Larmor radius in the configuration of a reversed guide field is much smaller than that in a positive guide field. At non-resonance, a helical orbit governed by the zero-order component of a 3-D wiggler field could hold; meanwhile, the higher-harmonic effect definitely influences those electrons with off-axis guiding centers and induces the electron-beam spreads. At resonance, the Larmor radius in the configuration of a positive guide field has a singularity with a limit tending to infinite, which causes all the electrons to hit the waveguide wall before the exit of the wiggler. Although Larmor-radius singularity does not exist in the configuration of a reversed guide field, at anti-resonance, the first-order harmonic of a 3-D wiggler field induces a transverse displacement which rapidly grows in proportion to a square of time, and leads part of the electron beam to hit the waveguide wall before reaching the wiggler exit, which depends on the specific parameters of the individual electrons. The analytical conclusions derived in the present paper are examined by the nonlinear simulations and the experimental observation. Disagreement with the previous literatures is discussed in detail.

  8. Muon Beam Helical Cooling Channel Design

    SciTech Connect

    Johnson, Rolland; Ankenbrandt, Charles; Flanagan, G; Kazakevich, G M; Marhauser, Frank; Neubauer, Michael; Roberts, T; Yoshikawa, C; Derbenev, Yaroslav; Morozov, Vasiliy; Kashikhin, V S; Lopes, Mattlock; Tollestrup, A; Yonehara, Katsuya; Zloblin, A

    2013-06-01

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet.

  9. Evolution of Ion Clouds in the Equatorial Ionosphere

    NASA Astrophysics Data System (ADS)

    Petrochuk, Yevgeny; Blaunstein, Nathan; Mishin, Evgeny; Pedersen, Todd; Caton, Ron; Viggiano, Al; Schuman, Nick

    2015-11-01

    We report on the results of 2- and 3-dimentional numerical investigations of the evolution of samarium ion clouds injected in the equatorial ionosphere, alike the recent MOSC experiments. The ambient conditions are described by a standard model of the quiet-time equatorial ionosphere from 90 to 350 km. The altitudinal distribution of the transport processes and ambient electric and magnetic fields is taken into account. The fast process of stratification of ion clouds and breaking into small plasmoids occur only during the late stage of the cloud evolution. The role of the background plasma and its depletion zones formed due to the short-circuiting currents is not as evident as in mid latitudes. It is also revealed that the altitudinal dependence of the diffusion and drift plays a minor role in the cloud evolution at the equator. Likewise, the cloud remains stable with respect to the Raleigh-Taylor and gradient-drift instabilities. These two features are defined by the equatorial near-horizontal magnetic field which leads to a strongly-elongated ellipsoid-like plasma cloud. The critical dip angle separating the stable (equatorial) and unstable (mid-latitude) cloud regimes will be defined in future simulation studies, as well as the dependence on the ambient electric field and neutral wind. 2Space Vehicles Directorate, Air Force Research Laboratory

  10. Squeezed helical elastica.

    PubMed

    Bouzar, Lila; Müller, Martin Michael; Gosselin, Pierre; Kulić, Igor M; Mohrbach, Hervé

    2016-11-01

    We theoretically study the conformations of a helical semi-flexible filament confined to a flat surface. This squeezed helix exhibits a variety of unexpected shapes resembling circles, waves or spirals depending on the material parameters. We explore the conformation space in detail and show that the shapes can be understood as the mutual elastic interaction of conformational quasi-particles. Our theoretical results are potentially useful to determine the material parameters of such helical filaments in an experimental setting.

  11. Local and nonlocal advected invariants and helicities in magnetohydrodynamics and gas dynamics I: Lie dragging approach

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; Dasgupta, B.; McKenzie, J. F.; Hu, Q.; Zank, G. P.

    2014-03-01

    In this paper advected invariants and conservation laws in ideal magnetohydrodynamics (MHD) and gas dynamics are obtained using Lie dragging techniques. There are different classes of invariants that are advected or Lie dragged with the flow. Simple examples are the advection of the entropy S (a 0-form), and the conservation of magnetic flux (an invariant 2-form advected with the flow). The magnetic flux conservation law is equivalent to Faraday's equation. The gauge condition for the magnetic helicity to be advected with the flow is determined. Different variants of the helicity in ideal fluid dynamics and MHD including: fluid helicity, cross helicity and magnetic helicity are investigated. The fluid helicity conservation law and the cross-helicity conservation law in MHD are derived for the case of a barotropic gas. If the magnetic field lies in the constant entropy surface, then the gas pressure can depend on both the entropy and the density. In these cases the conservation laws are local conservation laws. For non-barotropic gases, we obtain nonlocal conservation laws for fluid helicity and cross helicity by using Clebsch variables. These nonlocal conservation laws are the main new results of the paper. Ertel's theorem and potential vorticity, the Hollman invariant, and the Godbillon-Vey invariant for special flows for which the magnetic helicity is zero are also discussed.

  12. Response of the Equatorial Ionosphere to the Geomagnetic DP 2 Current System

    NASA Technical Reports Server (NTRS)

    Yizengaw, E.; Moldwin, M. B.; Zesta, E.; Magoun, M.; Pradipta, R.; Biouele, C. M.; Rabiu, A. B.; Obrou, O. K.; Bamba, Z.; Paula, E. R. De

    2016-01-01

    The response of equatorial ionosphere to the magnetospheric origin DP 2 current system fluctuations is examined using ground-based multiinstrument observations. The interaction between the solar wind and fluctuations of the interplanetary magnetic field (IMF) Bz, penetrates nearly instantaneously to the dayside equatorial region at all longitudes and modulates the electrodynamics that governs the equatorial density distributions. In this paper, using magnetometers at high and equatorial latitudes, we demonstrate that the quasiperiodic DP 2 current system penetrates to the equator and causes the dayside equatorial electrojet (EEJ) and the independently measured ionospheric drift velocity to fluctuate coherently with the high-latitude DP 2 current as well as with the IMF Bz component. At the same time, radar observations show that the ionospheric density layers move up and down, causing the density to fluctuate up and down coherently with the EEJ and IMF Bz.

  13. A helically distorted MHD flux rope model

    NASA Technical Reports Server (NTRS)

    Theobald, Michael L.; Montgomery, David

    1990-01-01

    A flux rope model is proposed which has a variable degree of helical distortion from axisymmetry. The basis for this suggestion is a series of numerical and analytical investigations of magnetohydrodynamic states which result when an axial electric current is directed down on dc magnetic field. The helically distorted states involve a flow velocity and seem to be favored because of their lower rate of energy dissipation. Emphasis is on the magnetometer and particle energy analyzer traces that might be characteristic of such flux ropes. It is shown that even a fractionally small helical distortion may considerably alter the traces in minimum-variance coordinates. In short, what may be fairly common MHD processes can render a flux rope almost unrecognizable under standard diagnostics, even if the departures from axisymmetry are not great.

  14. A Helical Cooling Channel System for Muon Colliders

    SciTech Connect

    Katsuya Yonehara, Rolland Johnson, Michael Neubauer, Yaroslav Derbenev

    2010-03-01

    Fast muon beam six dimensional (6D) phase space cooling is essential for muon colliders. The Helical Cooling Channel (HCC) uses hydrogen-pressurized RF cavities imbedded in a magnet system with solenoid, helical dipole, and helical quadrupole components that provide the continuous dispersion needed for emittance exchange and effective 6D beam cooling. A series of HCC segments, each with sequentially smaller aperture, higher magnetic field, and higher RF frequency to match the beam size as it is cooled, has been optimized by numerical simulation to achieve a factor of 105 emittance reduction in a 300 m long channel with only a 40% loss of beam. Conceptual designs of the hardware required for this HCC system and the status of the RF studies and HTS helical solenoid magnet prototypes are described.

  15. Design of Helical Cooling Channel for Muon Collider

    SciTech Connect

    Yonehara, Katsuya; /Fermilab

    2010-07-30

    Fast muon beam six dimensional (6D) phase space cooling is essential for muon colliders. The Helical Cooling Channel (HCC) uses hydrogen-pressurized RF cavities imbedded in a magnet system with solenoid, helical dipole, and helical quadrupole components that provide the continuous dispersion needed for emittance exchange and effective 6D beam cooling. A series of HCC segments, each with sequentially smaller aperture, higher magnetic field, and higher RF frequency to match the beam size as it is cooled, has been optimized by numerical simulation to achieve a factor of 10{sup 5} emittance reduction in a 300 m long channel with only a 40% loss of beam. Conceptual designs of the hardware required for this HCC system and the status of the RF studies and HTS helical solenoid magnet prototypes are described.

  16. Field of a helical Siberian Snake

    SciTech Connect

    Luccio, A.

    1995-02-01

    To preserve the spin polarization of a beam of high energy protons in a circular accelerator, magnets with periodic magnetic field, called Siberian Snakes are being used. Recently, it was proposed to build Siberian Snakes with superconducting helical dipoles. In a helical, or twisted dipole, the magnetic field is perpendicular to the axis of the helix and rotates around it as one proceeds along the magnet. In an engineering study of a 4 Tesla helical snake, the coil geometry is derived, by twisting, from the geometry of a cosine superconducting dipole. While waiting for magnetic measurement data on such a prototype, an analytical expression for the field of the helice is important, to calculate the particle trajectories and the spin precession in the helix. This model will also allow to determine the optical characteristics of the snake, as an insertion in the lattice of the accelerator. In particular, one can calculate the integrated multipoles through the magnet and the equivalent transfer matrix. An expression for the field in the helix body, i.e., excluding the fringe field was given in a classical paper. An alternate expression can be found by elaborating on the treatment of the field of a transverse wiggler obtained under the rather general conditions that the variables are separable. This expression exactly satisfies Maxwell`s div and curl equations for a stationary field, {del} {center_dot} B = 0, {del} x B = 0. This approach is useful in that it will allow one to use much of the work already done on the problem of inserting wigglers and undulators in the lattice of a circular accelerator.

  17. NUMERICAL SIMULATIONS OF HELICITY CONDENSATION IN THE SOLAR CORONA

    SciTech Connect

    Zhao, L.; Zurbuchen, T. H.; DeVore, C. R.; Antiochos, S. K.

    2015-05-20

    The helicity condensation model has been proposed by Antiochos to explain the observed smoothness of coronal loops and the observed buildup of magnetic shear at filament channels. The basic hypothesis of the model is that magnetic reconnection in the corona causes the magnetic stress injected by photospheric motions to collect only at those special locations where prominences are observed to form. In this work we present the first detailed quantitative MHD simulations of the reconnection evolution proposed by the helicity condensation model. We use the well-known ansatz of modeling the closed corona as an initially uniform field between two horizontal photospheric plates. The system is driven by applying photospheric rotational flows that inject magnetic helicity into the corona. The flows are confined to a finite region on the photosphere so as to mimic the finite flux system of a bipolar active region, for example. The calculations demonstrate that, contrary to common belief, opposite helicity twists do not lead to significant reconnection in such a coronal system, whereas twists with the same sense of helicity do produce substantial reconnection. Furthermore, we find that for a given amount of helicity injected into the corona, the evolution of the magnetic shear is insensitive to whether the pattern of driving photospheric motions is fixed or quasi-random. In all cases, the shear propagates via reconnection to the boundary of the flow region while the total magnetic helicity is conserved, as predicted by the model. We discuss the implications of our results for solar observations and for future, more realistic simulations of the helicity condensation process.

  18. Helicities and Lie Dragged Invariants in Magnetohydrodynamics and Gas Dynamics

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; Dasgupta, B.; McKenzie, J. F.; Hu, Q.; Zank, G. P.

    2013-12-01

    We discuss helicity conservation in ideal fluid mechanics, and cross helicity and magnetic helicity conservation laws in magnetohydrodynamics (MHD) . Local helicity and cross helicity conservation laws are obtained for the case of a barotropic gas where the gas pressure depends only on the gas density D and not on the entropy S. We show how these conservation laws can be generalized for the case of a non-barotropic equation of state for the gas where the gas pressure depends on both the density and the entropy by using Clebsch variables. These generalized helicity conservation laws are nonlocal because the Clebsch potentials are nonlocal. We also discuss the local conservation law for magnetic helicity in MHD and the advantages of using a gauge in which the one-form for the magnetic vector potential is Lie dragged with the flow. We also discuss Lie dragged invariants in MHD and gas dynamics and the connection of these results with Noether's theorems and gauge transformations for the action and Casimir invariants.

  19. The alpha dynamo parameter and measurability of helicities in magnetohydrodynamic turbulence

    NASA Technical Reports Server (NTRS)

    Matthaeus, W. H.; Goldstein, M. L.; Lantz, S. R.

    1986-01-01

    Alpha, an important parameter in dynamo theory, is shown to be proportional to either the kinetic, current, magnetic, or velocity helicities of the fluctuating magnetic field and fluctuating velocity field. The particular helicity to which alpha is proportional depends on the assumptions used in deriving the first-order smoothed equations that describe the alpha effect. In two cases, viz., when alpha is proportional to either the magnetic helicity or velocity helicity, alpha can be determined experimentally from two-point measurements of the fluctuating fields in incompressible, homogeneous turbulence with arbitrary rotational symmetry. For the other two possibilities, alpha can be determined if the turbulence is isotropic.

  20. Quantized Chiral Magnetic Current from Reconnections of Magnetic Flux

    DOE PAGES

    Hirono, Yuji; Kharzeev, Dmitri E.; Yin, Yi

    2016-10-20

    We introduce a new mechanism for the chiral magnetic e ect that does not require an initial chirality imbalance. The chiral magnetic current is generated by reconnections of magnetic ux that change the magnetic helicity of the system. The resulting current is entirely determined by the change of magnetic helicity, and it is quantized.

  1. Inverse moments equilibria for helical anisotropic systems

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Hirshman, S. P.; Depassier, M. C.

    1987-11-01

    An energy functional is devised for magnetic confinement schemes that have anisotropic plasma pressure. The minimization of this energy functional is demonstrated to reproduce components of the magnetohydrodynamic (MHD) force balance relation in systems with helical symmetry. An iterative steepest descent procedure is applied to the Fourier moments of the inverse magnetic flux coordinates to minimize the total energy and thus generate anisotropic pressure MHD equilibria. Applications to straight ELMO Snaky Torus (NTIS Document No. DE-84002406) configurations that have a magnetic well on the outermost flux surfaces have been obtained.

  2. CONVECTIVE BURSTS AND THE COUPLING OF SATURN'S EQUATORIAL STORMS AND INTERIOR ROTATION

    SciTech Connect

    Heimpel, Moritz; Aurnou, Jonathan M. E-mail: aurnou@ucla.edu

    2012-02-10

    Temporal variations of Saturn's equatorial jet and magnetic field hint at rich dynamics coupling the atmosphere and the deep interior. However, it has been assumed that rotation of the interior dynamo must be steady over tens of years of modern observations. Here we use a numerical convection model and scaling estimates to show how equatorial convective bursts can transfer angular momentum to the deeper interior. The numerical model allows angular momentum transfer between a fluid outer spherical shell and a rigid inner sphere. Convection drives a prograde equatorial jet exhibiting quasiperiodic bursts that fill the equatorial volume outside the tangent cylinder. For each burst strong changes in the equatorial surface velocity are associated with retrograde torque on the inner sphere. Our results suggest that Saturn's Great White Spot, a giant storm that was observed to fill the equatorial region in 1990, could mobilize a volume of fluid carrying roughly 15% of Saturn's moment of inertia. Conservation of angular momentum then implies that a 20% change in the equatorial jet angular velocity could change the average interior rotation rate by about 0.1%-roughly an order of magnitude less than the apparent rotation rate changes associated with Saturn's kilometric radio (SKR) signal. However, if the SKR signal originates outside the liquid metal core in a 'planetary tachocline' that separates the layer of fast zonal flow from the magnetically controlled and slowly convecting deep interior, then convective bursts can provide a possible mechanism for the observed {approx}1% SKR changes.

  3. Dynamics of helical states in MST

    NASA Astrophysics Data System (ADS)

    Munaretto, Stefano; Auriemma, F.; Brower, D.; Chapman, B. E.; den Hartog, D. J.; Ding, W. X.; Duff, J.; Franz, P.; Goetz, J. A.; Holly, D.; Lin, L.; McCollam, K. J.; McGarry, M.; Morton, L.; Nornberg, M. D.; Parke, E.; Sarff, J. S.

    2014-10-01

    The thermal and the magnetic dynamics of quasi-single-helicity (QSH) plasmas evolve independently during the formation and sustainment of the core helical structure. At higher plasma current (and Lundquist number) MST plasmas transition from an axisymmetric multi-helicity state to a QSH state characterized by a strong core helical mode and reduced secondary mode amplitudes. Plasmas in the QSH state tend to wall-lock, often in an orientation that is unfavorable for optimized measurements of the 3D structure using MST's advanced diagnostics. Recently a technique to control the locking position through an applied resonant magnetic perturbation has been developed. Using this technique it is possible to adjust the 3D phase more optimally for specific diagnostics, to study the dynamics of the QSH structure and thermal features. The multi-chord FIR interferometer shows the presence of a density structure for the duration of the QSH state. Measurements of the time evolution of the electron temperature profile using the Thomson Scattering diagnostic reveal that the transition to QSH allows the presence of a 3D thermal structure, but this structure is intermittent. Understanding the mechanism(s) driving these dynamics is the goal of this work. Work supported by the US DOE and NSF.

  4. Trend of photospheric helicity flux in active regions generating halo CMEs

    NASA Astrophysics Data System (ADS)

    Smyrli, Aimilia; Zuccarello, Francesco; Zuccarello, Francesca; Romano, Paolo; Guglielmino, Salvatore Luigi; Spadaro, Daniele; Hood, Alan; Mackay, Duncan

    Coronal Mass Ejections (CMEs) are very energetic events initiated in the solar atmosphere, re-sulting in the expulsion of magnetized plasma clouds that propagate into interplanetary space. It has been proposed that CMEs can play an important role in shedding magnetic helicity, avoiding its endless accumulation in the corona. We therefore investigated the behavior of magnetic helicity accumulation in sites where the initiation of CMEs occurred, in order to de-termine whether and how changes in magnetic helicity accumulation are temporally correlated with CME occurrence. After identifying the active regions (AR) where the CMEs were ini-tiated by means of a double cross-check based on the flaring-eruptive activity and the use of SOHO/EIT difference images, we used MDI magnetograms to calculate magnetic flux evolu-tion, magnetic helicity injection rate and magnetic helicity injection in 10 active regions that gave rise to 12 halo CMEs observed during the period February 2000 -June 2003. No unique behavior in magnetic helicity injection accompanying halo CME occurrence is found. In fact, in some cases there is an abrupt change in helicity injection timely correlated with the CME event, while in some others no significant variation is recorded. However, our analysis show that the most significant changes in magnetic flux and magnetic helicity injection are associated with impulsive CMEs rather than gradual CMEs. Moreover, the most significant changes in mag-netic helicity are observed when X-class flares or eruptive filaments occur, while the occurrence of flares of class C or M seems not to affect significantly the magnetic helicity accumulation.

  5. Helical screw viscometer

    DOEpatents

    Aubert, J.H.; Chapman, R.N.; Kraynik, A.M.

    1983-06-30

    A helical screw viscometer for the measurement of the viscosity of Newtonian and non-Newtonian fluids comprising an elongated cylindrical container closed by end caps defining a circular cylindrical cavity within the container, a cylindrical rotor member having a helical screw or ribbon flight carried by the outer periphery thereof rotatably carried within the cavity whereby the fluid to be measured is confined in the cavity filling the space between the rotor and the container wall. The rotor member is supported by axle members journaled in the end caps, one axle extending through one end cap and connectable to a drive source. A pair of longitudinally spaced ports are provided through the wall of the container in communication with the cavity and a differential pressure meter is connected between the ports for measuring the pressure drop caused by the rotation of the helical screw rotor acting on the confined fluid for computing viscosity.

  6. Helical dipole partial Siberian snake for the AGS

    NASA Astrophysics Data System (ADS)

    Takano, J.; Ahrens, L. A.; Alforque, R.; Bai, M.; Brown, K.; Courant, E. D.; Ganetis, G.; Gardner, C. J.; Glenn, J. W.; Hattori, T.; Huang, H.; Jain, A.; Luccio, A. U.; MacKay, W. W.; Okamura, M.; Roser, T.; Tsoupas, N.; Tepikian, S.; Tuozzolo, J.; Wood, J.; Zelenski, A.; Zeno, K.

    2006-11-01

    Overcoming depolarization resonances in medium class synchrotrons (3 to 50 GeV) is one of the key issues in accelerating a highly polarized proton beam up to very high energies. Since such synchrotrons, including the Alternating Gradient Synchrotron (AGS) and the J-PARC Main Ring, generally do not have sufficiently long straight sections to accommodate full Siberian snakes with reasonable beam excursions, the practical solution is to use partial Siberian snakes that rotate the particle spin about a horizontal axis by a fraction of 180 degrees. For the AGS, we designed and installed a new partial Siberian snake consisting of a helical dipole magnet with a double pitch structure. The helical structure reduced the amount of transverse coupling as compared to that achieved by the previous solenoidal partial snake. This coupling led to partial depolarization at certain energies from horizontal betatron oscillations. The helical magnetic field in the snake magnet was calculated using a 3D magnetic field code TOSCA, and was optimized by segmenting the helical pitch and varying the lengths of the segments. Fabrication errors were checked and verified to be within required tolerances. Finally, the transverse field was measured by rotating harmonic coils. After installation, we achieved a 37.5% improvement in polarization - from 40% with the old solenoid to 55% with the new helical snake, thereby demonstrating that the helical partial snake is an effective device to suppress depolarization resonances in medium-sized synchrotrons.

  7. PROMINENCE FORMATION ASSOCIATED WITH AN EMERGING HELICAL FLUX ROPE

    SciTech Connect

    Okamoto, Takenori J.; Tsuneta, Saku; Katsukawa, Yukio; Suematsu, Yoshinori; Lites, Bruce W.; Kubo, Masahito; Yokoyama, Takaaki; Berger, Thomas E.; Shine, Richard A.; Tarbell, Theodore D.; Title, Alan M.; Shimizu, Toshifumi

    2009-05-20

    The formation and evolution process and magnetic configuration of solar prominences remain unclear. In order to study the formation process of prominences, we examine continuous observations of a prominence in NOAA AR 10953 with the Solar Optical Telescope on the Hinode satellite. As reported in our previous Letter, we find a signature suggesting that a helical flux rope emerges from below the photosphere under a pre-existing prominence. Here we investigate more detailed properties and photospheric indications of the emerging helical flux rope, and discuss their relationship to the formation of the prominence. Our main conclusions are: (1) a dark region with absence of strong vertical magnetic fields broadens and then narrows in Ca II H-line filtergrams. This phenomenon is consistent with the emergence of the helical flux rope as photospheric counterparts. The size of the flux rope is roughly 30,000 km long and 10,000 km wide. The width is larger than that of the prominence. (2) No shear motion or converging flows are detected, but we find diverging flows such as mesogranules along the polarity inversion line. The presence of mesogranules may be related to the emergence of the helical flux rope. (3) The emerging helical flux rope reconnects with magnetic fields of the pre-existing prominence to stabilize the prominence for the next several days. We thus conjecture that prominence coronal magnetic fields emerge in the form of helical flux ropes that contribute to the formation and maintenance of the prominence.

  8. Helical spring holder assembly

    NASA Technical Reports Server (NTRS)

    Newman, Wyatt S. (Inventor)

    1987-01-01

    A helically-threaded spring holder on which a helically wound spring is mounted has a groove formed in one side of the thread at the end where the spring engages the spring holder. The groove relieves the portion of the side in which it is formed from restricting the spring against axial movement during deflection of the spring. The circumferential length of this groove is chosen to establish the number of spring coils which can be deflected without contacting the side of the thread. The end of the thread is also made rigid to prevent flexing thereof during maximal elongation of the spring.

  9. The quantum Hall effect helicity

    SciTech Connect

    Shrivastava, Keshav N.

    2015-04-16

    The quantum Hall effect in semiconductor heterostructures is explained by two signs in the angular momentum j=l±s and g=(2j+1)/(2l+1) along with the Landau factor (n+1/2). These modifications in the existing theories explain all of the fractional charges. The helicity which is the sign of the product of the linear momentum with the spin p.s plays an important role for the understanding of the data at high magnetic fields. In particular it is found that particles with positive sign in the spin move in one direction and those with negative sign move in another direction which explains the up and down stream motion of the particles.

  10. CURRENT AND KINETIC HELICITY OF LONG-LIVED ACTIVITY COMPLEXES

    SciTech Connect

    Komm, Rudolf; Gosain, Sanjay

    2015-01-01

    We study long-lived activity complexes and their current helicity at the solar surface and their kinetic helicity below the surface. The current helicity has been determined from synoptic vector magnetograms from the NSO/SOLIS facility, and the kinetic helicity of subsurface flows has been determined with ring-diagram analysis applied to full-disk Dopplergrams from NSO/GONG and SDO/HMI. Current and kinetic helicity of activity complexes follow the hemispheric helicity rule with mainly positive values (78%; 78%, respectively, with a 95% confidence level of 31%) in the southern hemisphere and negative ones (80%; 93%, respectively, with a 95% confidence level of 22% and 14%, respectively) in the northern hemisphere. The locations with the dominant sign of kinetic helicity derived from Global Oscillation Network Group (GONG) and SDO/HMI data are more organized than those of the secondary sign even if they are not part of an activity complex, while locations with the secondary sign are more fragmented. This is the case for both hemispheres even for the northern one where it is not as obvious visually due to the large amount of magnetic activity present as compared to the southern hemisphere. The current helicity shows a similar behavior. The dominant sign of current helicity is the same as that of kinetic helicity for the majority of the activity complexes (83% with a 95% confidence level of 15%). During the 24 Carrington rotations analyzed here, there is at least one longitude in each hemisphere where activity complexes occur repeatedly throughout the epoch. These ''active'' longitudes are identifiable as locations of strong current and kinetic helicity of the same sign.

  11. Helical Muon Beam Cooling Channel Engineering Design

    SciTech Connect

    Kashikhin, V.S.; Lopes, M.L.; Romanov, G.V.; Tartaglia, M.A.; Yonehara, K.; Yu, M.; Zlobin, A.V.; Flanagan, G.; Johnson, R.P.; Kazakevich, G.M.; Marhauser, F.; /MUONS Inc., Batavia

    2012-05-01

    The Helical Cooling Channel (HCC), a novel technique for six-dimensional (6D) ionization cooling of muon beams, has shown considerable promise based on analytic and simulation studies. However, the implementation of this revolutionary method of muon cooling requires new techniques for the integration of hydrogen-pressurized, high-power RF cavities into the low-temperature superconducting magnets of the HCC. We present the progress toward a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb{sub 3}Sn based HCC test section. We include discussions on the pressure and thermal barriers needed within the cryostat to maintain operation of the magnet at 4.2 K while operating the RF and energy absorber at a higher temperature. Additionally, we include progress on the Nb{sub 3}Sn helical solenoid design.

  12. Magnetic island formation in tokamaks

    SciTech Connect

    Yoshikawa, S.

    1989-04-01

    The size of a magnetic island created by a perturbing helical field in a tokamak is estimated. A helical equilibrium of a current- carrying plasma is found in a helical coordinate and the helically flowing current in the cylinder that borders the plasma is calculated. From that solution, it is concluded that the helical perturbation of /approximately/10/sup /minus/4/ of the total plasma current is sufficient to cause an island width of approximately 5% of the plasma radius. 6 refs.

  13. The Helicity of Vortex Filaments.

    NASA Astrophysics Data System (ADS)

    Petrich, Dean; Tao, Louis

    1996-03-01

    The helicity, defined by H = int dV v \\cdot nabla × v, is a conserved quantity of the three-dimensional Euler equations. Traditionally the helicity has been viewed as a measure of the topology of vortex lines, but it is shown that the helicity measures their geometry as well as their topology (J.D. Bekenstein, Physics Letters B), 282 (1992) 44-49.. The existence of helicity-preserving reconnection events is discussed.

  14. Analytical and experimental studies of the helical magnetohydrodynamic thruster design

    SciTech Connect

    Gilbert, J.B. II; Lin, T.F.

    1994-12-31

    This paper describes the results of analytical and experimental studies of a helical magnetohydrodynamic (MHD) seawater thruster using a 8-Tesla (T) solenoid magnet. The application of this work is in marine vehicle propulsion. Analytical models are developed to predict the performance of the helical MHD thruster in a closed-loop condition. The analytical results are compared with experimental data and good agreement is obtained.

  15. Eastward traverse of equatorial plasma plumes observed with the Equatorial Atmosphere Radar in Indonesia

    NASA Astrophysics Data System (ADS)

    Fukao, S.; Yokoyama, T.; Tayama, T.; Yamamoto, M.; Maruyama, T.; Saito, S.

    2006-07-01

    The zonal structure of radar backscatter plumes associated with Equatorial Spread F (ESF), probably modulated by atmospheric gravity waves, has been investigated with the Equatorial Atmosphere Radar (EAR) in West Sumatra, Indonesia (0.20° S, 100.32° E; dip latitude 10.1° S) and the FM-CW ionospheric sounders on the same magnetic meridian as the EAR. The occurrence locations and zonal distances of the ESF plumes were determined with multi-beam observations with the EAR. The ESF plumes drifted eastward while keeping distances of several hundred to a thousand kilometers. Comparing the occurrence of the plumes and the F-layer uplift measured by the FM-CW sounders, plumes were initiated within the scanned area around sunset only, when the F-layer altitude rapidly increased. Therefore, the PreReversal Enhancement (PRE) is considered as having a zonal variation with the scales mentioned above, and this variation causes day-to-day variability, which has been studied for a long time. Modulation of the underlying E-region conductivity by gravity waves, which causes inhomogeneous sporadic-E layers, for example, is a likely mechanism to determine the scale of the PRE.

  16. Interplay Between the Equatorial Geophysical Processes

    NASA Astrophysics Data System (ADS)

    Sridharan, R.

    2006-11-01

    r_sridharanspl@yahoo.com With the sun as the main driving force, the Equatorial Ionosphere- thermosphere system supports a variety of Geophysical phenomena, essentially controlled by the neutral dynamical and electro dynamical processes that are peculiar to this region. All the neutral atmospheric parameters and the ionospheric parameters show a large variability like the diurnal, seasonal semi annual, annual, solar activity and those that are geomagnetic activity dependent. In addition, there is interplay between the ionized and the neutral atmospheric constituents. They manifest themselves as the Equatorial Electrojet (EEJ), Equatorial Ionization Anomaly (EIA), Equatorial Spread F (ESF), Equatorial Temperature and Wind Anomaly (ETWA). Recent studies have revealed that these phenomena, though apparently might show up as independent ones, are in reality interlinked. The interplay between these equatorial processes forms the theme for the present talk.

  17. The streaming-trapped ion interface in the equatorial inner magnetosphere

    NASA Technical Reports Server (NTRS)

    Lin, J.; Horwitz, J. L.; Gallagher, D.; Pollock, C. J.

    1994-01-01

    Spacecraft measurements of core ions on L=4-7 field-lines typically show trapped ion distributions near the magnetic equator, and frequently indicate field-aligned ion streams at higher latitudes. The nature of the transition between them may indicate both the microphysics of hot-cold plasma interactions and overall consequences for core plasma evolution. We have undertaken a statistical analysis and characterization of this interface and its relation to the equatorial region of the inner magnetosphere. In this analysis, we have characterized such features as the equatorial ion flux anisotropy, the penetration of field-aligned ionospheric streams into the equatorial region, the scale of the transition into trapped ion populations, and the transition latitude. We found that most transition latitudes occur within 13 deg of the equator. The typical values of equatorial ion anisotropies are consistent with bi-Maxwellian temperature ratios of T(sub perpendicular)/T(sub parallel) in the range of 3-5. The latitudinal scales for the edges of the trapped ion populations display a rather strong peak in the 2-3 deg range. We also found that there is a trend for the penetration ratio, the anisotropy half width, and the transition scale length to decrease with a higher equatorial ion anisotropy. We may interpret these features in terms of Liouville mapping of equatorially trapped ions and the reflection of the incoming ionospheric ion streams from the equatorial potential peaks associated with such trapped ions.

  18. Observations of ULF wave related equatorial electrojet and density fluctuations

    NASA Astrophysics Data System (ADS)

    Yizengaw, E.; Zesta, E.; Moldwin, M.; Damtie, B.; Mebrahtu, A.; Anad, F.; Pfaff, R. F.

    2011-12-01

    Global magnetospheric Ultra Low Frequency (ULF) pulsations with frequencies in the Pc 4-5 range (f = 1.0 - 8 mHz) have been observed for decades in space and on Earth. ULF pulsations contribute to magnetospheric particle transport and diffusion and play an important role in magnetospheric dynamics. However, only a few studies have been performed on ionospheric observations of ULF wave-related perturbations in the vicinity of the equatorial region. In this paper we report on Pc5 wave related electric field and thus vertical drift velocity oscillations at the equator as observed by ground magnetometers and radar. We show that the magnetometer estimated equatorial ExB drift oscillate with the same frequency as ULF Pc5 waves, creating significant ionospheric density fluctuations. For independent confirmation of the vertical drift velocity fluctuation, we used JULIA 150 km radar drift velocities and found similar fluctuation with the period of 8-10 minutes. We also show ionospheric density fluctuations during the period when we observed ULF wave activities. All these demonstrate that the Pc5 wave can penetrate to the equatorial ionosphere and modulate the equatorial electrodynamics. Finally, in order to detect the ULF activities both on the ground and in space, we use groundbased magnetometer data from African Meridian B-field Education and Research (AMBER) and the South American Meridional B-field Array (SAMBA). From space, we use magnetic field observations from the GOES 12 and the Communication/Navigation Outage and Forecast System (C/NOFS) satellites. Using the WIND spacecraft as the upstream solar wind monitor, we present direct evidence that solar wind number density and ram pressure fluctuations observed far upstream from the terrestrial magnetosphere are the main drivers of ULF wave activity inside the magnetosphere. Finally, we show that the ULF waves in the same frequency range are observed in the magnetosphere by the geosynchronous GOES spacecraft, in the

  19. Aerosol Transport Over Equatorial Africa

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Tyson, P. D.; Annegarn, H. J.; Kinyua, A. M.; Piketh, S.; King, M.; Helas, G.

    1999-01-01

    Long-range and inter-hemispheric transport of atmospheric aerosols over equatorial Africa has received little attention so far. Most aerosol studies in the region have focussed on emissions from rain forest and savanna (both natural and biomass burning) and were carried out in the framework of programs such as DECAFE (Dynamique et Chimie Atmospherique en Foret Equatoriale) and FOS (Fires of Savanna). Considering the importance of this topic, aerosols samples were measured in different seasons at 4420 meters on Mt Kenya and on the equator. The study is based on continuous aerosol sampling on a two stage (fine and coarse) streaker sampler and elemental analysis by Particle Induced X-ray Emission. Continuous samples were collected for two seasons coinciding with late austral winter and early austral spring of 1997 and austral summer of 1998. Source area identification is by trajectory analysis and sources types by statistical techniques. Major meridional transports of material are observed with fine-fraction silicon (31 to 68 %) in aeolian dust and anthropogenic sulfur (9 to 18 %) being the major constituents of the total aerosol loading for the two seasons. Marine aerosol chlorine (4 to 6 %), potassium (3 to 5 %) and iron (1 to 2 %) make up the important components of the total material transport over Kenya. Minimum sulfur fluxes are associated with recirculation of sulfur-free air over equatorial Africa, while maximum sulfur concentrations are observed following passage over the industrial heartland of South Africa or transport over the Zambian/Congo Copperbelt. Chlorine is advected from the ocean and is accompanied by aeolian dust recirculating back to land from mid-oceanic regions. Biomass burning products are transported from the horn of Africa. Mineral dust from the Sahara is transported towards the Far East and then transported back within equatorial easterlies to Mt Kenya. This was observed during austral summer and coincided with the dying phase of 1997/98 El

  20. Equatorial refuge amid tropical warming

    NASA Astrophysics Data System (ADS)

    Karnauskas, Kristopher B.; Cohen, Anne L.

    2012-07-01

    Upwelling across the tropical Pacific Ocean is projected to weaken in accordance with a reduction of the atmospheric overturning circulation, enhancing the increase in sea surface temperature relative to other regions in response to greenhouse-gas forcing. In the central Pacific, home to one of the largest marine protected areas and fishery regions in the global tropics, sea surface temperatures are projected to increase by 2.8°C by the end of this century. Of critical concern is that marine protected areas may not provide refuge from the anticipated rate of large-scale warming, which could exceed the evolutionary capacity of coral and their symbionts to adapt. Combining high-resolution satellite measurements, an ensemble of global climate models and an eddy-resolving regional ocean circulation model, we show that warming and productivity decline around select Pacific islands will be mitigated by enhanced upwelling associated with a strengthening of the equatorial undercurrent. Enhanced topographic upwelling will act as a negative feedback, locally mitigating the surface warming. At the Gilbert Islands, the rate of warming will be reduced by 0.7+/-0.3°C or 25+/-9% per century, or an overall cooling effect comparable to the local anomaly for a typical El Niño, by the end of this century. As the equatorial undercurrent is dynamically constrained to the Equator, only a handful of coral reefs stand to benefit from this equatorial island effect. Nevertheless, those that do face a lower rate of warming, conferring a significant advantage over neighbouring reef systems. If realized, these predictions help to identify potential refuges for coral reef communities from anticipated climate changes of the twenty-first century.

  1. Relationship between Fe /+/ ions and equatorial spread F.

    NASA Technical Reports Server (NTRS)

    Hanson, W. B.; Sanatani, S.

    1971-01-01

    Evaluation of observations from the retarding potential analyzer on Ogo 6 near the magnetic equator, demonstrating an intimate relationship between the presence of Fe(+) ions and irregularities in the total ion concentration. The ionospheric irregularities (or structure) are probably another manifestation of equatorial spread F, although this has not yet been verified. Nearly half the nighttime equatorial crossings below 700 km exhibit both Fe(+) and structure, but only 10% of the passes without Fe(+) have structure. Approximately one-third of the passes with Fe(+) are not structured, which indicates that Fe(+) may be a necessary but not sufficient condition for structure formation. The Atlantic region shows an extremely high and detailed correlation between Fe(+) ions and the irregularities.

  2. Lunar-solar interactions in the equatorial electrojet

    NASA Astrophysics Data System (ADS)

    Gasperini, F.; Forbes, J. M.

    2014-05-01

    To first order the ground magnetic signature of the equatorial electrojet (EEJ) reflects the height integral of J = σE, where σis a conductivity and E represents some combination of the global dynamo-generated electric field and the electric field due to local winds. Day-to-day variations in the conductivity are strongly controlled by the solar flux, while E depends on solar and lunar tides, planetary waves, and the disturbance dynamo. In this study we demonstrate how complexity is introduced into the EEJ due to the interaction between lunar tide variability in the equatorial electric field and solar-driven variability in the E region conductivity. Toward this end, we analyze magnetometer data from the Huancayo observatory both in the time and frequency domain. We present results for the year 1990, and we show that 86% of the variance in the EEJ is due to the lunar-solar interaction.

  3. The dawn enhancement of the equatorial ionospheric vertical plasma drift

    NASA Astrophysics Data System (ADS)

    Zhang, Ruilong; Liu, Libo; Chen, Yiding; Le, Huijun

    2015-12-01

    Previous studies have reported that a dawn enhancement does not present in the statistical picture of the equatorial ionospheric vertical plasma drift, while it clearly shows in case measurements. In this statistical study, it is the first time to investigate the occurrence of the dawn enhancement in the equatorial ionospheric vertical plasma drift from ROCSAT-1 observations during geomagnetic quiet times. The dawn enhancements occur most frequently in June solstice and least frequently in December solstice. The statistical survey shows that the occurrence depends on the magnetic declination. The enhancement has the strongest amplitude in regions near 320° longitude and peaks during June solstice. The dawn enhancement reaches its peak after the sunrise in conjugated E regions. Furthermore, it is found that the dawn enhancement is closely related to the difference between the sunrise times in the conjugated E regions (sunrise time lag). The dawn enhancement occurs easily in regions with a large sunrise time lag.

  4. The Writhe of Helical Structures in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Toeroek, T.; Berger, M. A.; Kliem, B.

    2010-01-01

    Context. Helicity is a fundamental property of magnetic fields, conserved in ideal MHD. In flux rope topology, it consists of twist and writhe helicity. Despite the common occurrence of helical structures in the solar atmosphere, little is known about how their shape relates to the writhe, which fraction of helicity is contained in writhe, and how much helicity is exchanged between twist and writhe when they erupt. Aims. Here we perform a quantitative investigation of these questions relevant for coronal flux ropes. Methods. The decomposition of the writhe of a curve into local and nonlocal components greatly facilitates its computation. We use it to study the relation between writhe and projected S shape of helical curves and to measure writhe and twist in numerical simulations of flux rope instabilities. The results are discussed with regard to filament eruptions and coronal mass ejections (CMEs). Results. (1) We demonstrate that the relation between writhe and projected S shape is not unique in principle, but that the ambiguity does not affect low-lying structures, thus supporting the established empirical rule which associates stable forward (reverse) S shaped structures low in the corona with positive (negative) helicity. (2) Kink-unstable erupting flux ropes are found to transform a far smaller fraction of their twist helicity into writhe helicity than often assumed. (3) Confined flux rope eruptions tend to show stronger writhe at low heights than ejective eruptions (CMEs). This argues against suggestions that the writhing facilitates the rise of the rope through the overlying field. (4) Erupting filaments which are S shaped already before the eruption and keep the sign of their axis writhe (which is expected if field of one chirality dominates the source volume of the eruption), must reverse their S shape in the course of the rise. Implications for the occurrence of the helical kink instability in such events are discussed.

  5. Effects of the equatorial ionosphere on L-band Earth-space transmissions

    NASA Technical Reports Server (NTRS)

    Smith, Ernest K.; Flock, Warren L.

    1993-01-01

    Ionosphere scintillation can effect satellite telecommunication up to Ku-band. Nighttime scintillation can be attributed to large-scale inhomogeneity in the F-region of the ionosphere predominantly between heights of 200 and 600 km. Daytime scintillation has been attributed to sporadic E. It can be thought of as occurring in three belts: equatorial, high-latitude, and mid-latitude, in order of severity. Equatorial scintillation occurs between magnetic latitudes +/- 25 degrees, peaking near +/- 10 degrees. It commonly starts abruptly near 2000 local time and dies out shortly after midnight. There is a strong solar cycle dependence and a seasonal preference for the equinoxes, particularly the vernal one. Equatorial scintillation occurs more frequently on magnetically quiet than on magnetically disturbed days in most longitudes. At the peak of the sunspot cycle scintillation depths as great as 20 dB were observed at L-band.

  6. Plasma sheets, plasma currents and electric field double layers in the equatorial ionosphere

    SciTech Connect

    Gupta, S.P.

    1981-01-01

    Plasma measurements carried out in the equatorial ionosphere at altitudes of 80-200 km are discussed. It is found that within this region the ion collision frequency exceeds the gyro-frequency. For electrons, however, the collision frequency is much lower than their gyro-frequency. It is pointed out that the earth's magnetic field is horizontal in the equatorial ionosphere, particularly at altitudes of approximately 100 km, where the curvature of the magnetic field can be neglected. The results obtained from rocket-borne probes in the equatorial ionosphere over Thumba (India) are presented. Localized regions illustrating the polarity of the vertical electric field are shown, as are current density profiles obtained at different times of the day. It is found that as expected, the vertical electric field becomes very small during a weak magnetic storm.

  7. Helically Coiled Graphene Nanoribbons.

    PubMed

    Daigle, Maxime; Miao, Dandan; Lucotti, Andrea; Tommasini, Matteo; Morin, Jean-François

    2017-03-07

    Graphene is a zero-gap, semiconducting 2D material that exhibits outstanding charge-transport properties. One way to open a band gap and make graphene useful as a semiconducting material is to confine the electron delocalization in one dimension through the preparation of graphene nanoribbons (GNR). Although several methods have been reported so far, solution-phase, bottom-up synthesis is the most promising in terms of structural precision and large-scale production. Herein, we report the synthesis of a well-defined, helically coiled GNR from a polychlorinated poly(m-phenylene) through a regioselective photochemical cyclodehydrochlorination (CDHC) reaction. The structure of the helical GNR was confirmed by (1) H NMR, FT-IR, XPS, TEM, and Raman spectroscopy. This Riemann surface-like GNR has a band gap of 2.15 eV and is highly emissive in the visible region, both in solution and the solid state.

  8. Central Equatorial Pacific Experiment (CEPEX)

    SciTech Connect

    Not Available

    1993-01-01

    The Earth's climate has varied significantly in the past, yet climate records reveal that in the tropics, sea surface temperatures seem to have been remarkably stable, varying by less than a few degrees Celsius over geologic time. Today, the large warm pool of the western Pacific shows similar characteristics. Its surface temperature always exceeds 27[degree]C, but never 31[degree]C. Heightened interest in this observation has been stimulated by questions of global climate change and the exploration of stabilizing climate feedback processes. Efforts to understand the observed weak sensitivity of tropical sea surface temperatures to climate forcing has led to a number of competing ideas about the nature of this apparent thermostat. Although there remains disagreement on the processes that regulate tropical sea surface temperature, most agree that further progress in resolving these differences requires comprehensive field observations of three-dimensional water vapor concentrations, solar and infrared radiative fluxes, surface fluxes of heat and water vapor, and cloud microphysical properties. This document describes the Central Equatorial Pacific Experiment (CEPEX) plan to collect such observations over the central equatorial Pacific Ocean during March of 1993.

  9. Analysis of Helical Waveguide.

    DTIC Science & Technology

    1985-12-23

    tube Efficiency Helix structure Backward wave oscillation Gain 19. ABSTRACT (Continue on reverse if necessary and identofy by block number) The...4,vailabilitY CCdes -vai aidIorDist spec a ." iii "- -. .5- S.. . ANALYSIS OF HELICAL WAVEGUIDE I. INTRODUCTION High power (- 10 kW) and broadband ...sys- tems. The frequency range of interest is 60-100 GHz. In this frequency range, the conventional slow wave circuits such as klystrons and TWTs have

  10. Multifunctionality in bimetallic Ln(III)[W(V)(CN)8]3- (Ln = Gd, Nd) coordination helices: optical activity, luminescence, and magnetic coupling.

    PubMed

    Chorazy, Szymon; Nakabayashi, Koji; Arczynski, Mirosław; Pełka, Robert; Ohkoshi, Shin-ichi; Sieklucka, Barbara

    2014-06-02

    Two chiral luminescent derivatives of pyridine bis(oxazoline) (Pybox), (SS/RR)-iPr-Pybox (2,6-bis[4-isopropyl-2-oxazolin-2-yl]pyridine) and (SRSR/RSRS)-Ind-Pybox (2,6-bis[8H-indeno[1,2-d]oxazolin-2-yl]pyridine), have been combined with lanthanide ions (Gd(3+), Nd(3+)) and octacyanotungstate(V) metalloligand to afford a remarkable series of eight bimetallic CN(-)-bridged coordination chains: {[Ln(III)(SS/RR-iPr-Pybox)(dmf)4]3[W(V)(CN)8]3}n ⋅dmf⋅4 H2O (Ln = Gd, 1-SS and 1-RR; Ln = Nd, 2-SS and 2-RR) and {[Ln(III)(SRSR/RSRS-Ind-Pybox)(dmf)4][W(V)(CN)8]}n⋅5 MeCN⋅4 MeOH (Ln = Gd, 3-SRSR and 3-RSRS; Ln = Nd, 4-SRSR and 4-RSRS). These materials display enantiopure structural helicity, which results in strong optical activity in the range 200-450 nm, as confirmed by natural circular dichroism (NCD) spectra and the corresponding UV/Vis absorption spectra. Under irradiation with UV light, the Gd(III)-W(V) chains show dominant ligand-based red phosphorescence, with λmax ≈660 nm for 1-(SS/RR) and 680 nm for 3-(SRSR/RSRS). The Nd(III)-W(V) chains, 2-(SS/RR) and 4-(SRSR/RSRS), exhibit near-infrared luminescence with sharp lines at 986, 1066, and 1340 nm derived from intra-f (4)F3/2 → (4)I9/2,11/2,13/2 transitions of the Nd(III) centers. This emission is realized through efficient ligand-to-metal energy transfer from the Pybox derivative to the lanthanide ion. Due to the presence of paramagnetic lanthanide(III) and [W(V)(CN)8](3-) moieties connected by cyanide bridges, 1-(SS/RR) and 3-(SRSR/RSRS) are ferrimagnetic spin chains originating from antiferromagnetic coupling between Gd(III) (SGd = 7/2) and W(V) (SW = 1/2) centers with J1-(SS) = -0.96(1) cm(-1), J1-(RR) =-0.95(1) cm(-1), J3-(SRSR) = -0.91(1) cm(-1), and J3-(RSRS) =-0.94(1) cm(-1). 2-(SS/RR) and 4-(SRSR/RSRS) display ferromagnetic coupling within their Nd(III)-NC-W(V) linkages.

  11. Conversion of Chern-Simons Number to Electromagnetic Helicity

    NASA Astrophysics Data System (ADS)

    Zhang, Yiyang; Ferrer, Francesc; Vachaspati, Tanmay

    2017-01-01

    Non-perturbative electroweak processes accessible in the early universe are known to violate baryon plus lepton number, which may give a clue on the cosmic matter-antimatter asymmetry. The associated change in Chern-Simons number has been related to the generation of helical magnetic fields. We study the full dynamics of the Higgs field and the electroweak gauge fields during the electroweak phase transition. Specifically, we set up a pure gauge SU(2) configuration with non-trivial winding in a region with vanishing Higgs field. By numerically evolving the classical equations of motion in the lattice, we confirm that the phase transition results in a change of Chern-Simons number and the generation of a helical magnetic field. The magnitude of the change of Chern-Simons number and magnetic helicity depend on the initial conditions. DOE at Washington University in St. Louis.

  12. Studies on equatorial shock formation during plasmaspheric refilling

    NASA Technical Reports Server (NTRS)

    Singh, N.

    1994-01-01

    Investigations based on small-scale simulations of microprocesses occurring when a magnetic flux tube refills with a cold plasma are summarized. Results of these investigations are reported in the following attached papers: (1) 'Numerical Simulation of Filling a Magnetic Flux Tube with a Cold Plasma: The Role of Ion Beam-Driven Instabilities'; and (2) 'Numerical Simulation of Filling a Magnetic Flux Tube with a Cold Plasma: Effects of Magnetically Trapped Hot Plasma'. Other papers included are: 'Interaction of Field-Aligned Cold Plasma Flows with an Equatorially-Trapped Hot Plasma: Electrostatic Shock Formation'; and 'Comparison of Hydrodynamic and Semikinetic Treatments for a Plasma Flow along Closed Field Lines'. A proposal for further research is included.

  13. Understanding the Longitudinal Variability of Equatorial Electrodynamics using integrated Ground- and Space-based Observations

    NASA Astrophysics Data System (ADS)

    Yizengaw, E.; Moldwin, M.; Zesta, E.

    2015-12-01

    The currently funded African Meridian B-Field Education and Research (AMBER) magnetometer array comprises more than thirteen magnetometers stationed globally in the vicinity of geomagnetic equator. One of the main objectives of AMBER network is to understand the longitudinal variability of equatorial electrodynamics as function of local time, magnetic activity, and season. While providing complete meridian observation in the region and filling the largest land-based gap in global magnetometer coverage, the AMBER array addresses two fundamental areas of space physics: first, the processes governing electrodynamics of the equatorial ionosphere as a function of latitude (or L-shell), local time, longitude, magnetic activity, and season, and second, ULF pulsation strength at low/mid-latitude regions and its connection with equatorial electrojet and density fluctuation. The global AMBER network can also be used to augment observations from space-based instruments, such us the triplet SWARM mission and the upcoming ICON missions. Thus, in coordination with space-based and other ground-based observations, the AMBER magnetometer network provides a great opportunity to understand the electrodynamics that governs equatorial ionosphere motions. In this paper we present the longitudinal variability of the equatorial electrodynamics using the combination of instruments onboard SWARM and C/NOFS satellites and ground-based AMBER network. Both ground- and pace-based observations show stronger dayside and evening sector equatorial electrodynamics in the American and Asian sectors compared to the African sector. On the other hand, the African sector is home to stronger and year-round ionospheric bubbles/irregularities compared to the American and Asian sectors. This raises the question if the evening sector equatorial electrodynamics (vertical drift), which is believed to be the main cause for the enhancement of Rayleigh-Taylor (RT) instability growth rate, is stronger in the

  14. Studies of a gas-filled helical muon beam cooling channel

    SciTech Connect

    Yonehara, K.; Derbenev, Y.; Johnson, R.P.; Roberts, T.J.; /MUONS Inc., Batavia

    2006-06-01

    A helical cooling channel (HCC) can quickly reduce the six dimensional phase space of muon beams for muon colliders, neutrino factories, and intense muon sources. The HCC is composed of solenoidal, helical dipole, and helical quadrupole magnetic fields to provide the focusing and dispersion needed for emittance exchange as the beam follows an equilibrium helical orbit through a continuous homogeneous absorber. The beam dynamics of a gas-filled helical muon beam cooling channel is studied by using Monte Carlo simulations. The results verify the cooling theory [1] of the helical magnet. The cooling performance has been improved by correcting chromatic aberration and the non-linear effects caused by the ionization energy loss process. With these improvements, a simulated cooling channel of 160 meters length has achieved a reduction of 6-dimensional (6D) phase space by a factor of 50,000.

  15. Directional Antenna for Whistlers Based on Helicity Injection

    NASA Astrophysics Data System (ADS)

    Stenzel, R. L.; Urrutia, J. M.; Rousculp, C. L.

    1997-11-01

    In an unbounded uniform magnetoplasma, spatial whistler wave packets with ω_ci << ω << ω_ce have positive/negative helicity (int A \\cdot B dv; int J \\cdot B dv) for propagation along/against the background field B_0. An antenna which injects no helicity, e.g., a simple dipole, radiates equal wave packets along ±B0 which conserves net zero helicity. Vice versa, helicity injection produces asymmetric radiation patterns.(C. L. Rousculp and R. L. Stenzel, Phys. Rev. Lett., July 1997.) Based on this principle, a directional antenna has been built consisting of a field-aligned magnetic loop on the axis of a torus. The radiation properties have been measured in a large laboratory plasma. Positive helicity injection is observed to produce radiation along B_0, negative helicity injection radiates opposite to B_0, with good directionality (20 dB). Transmission between two identical antennas is unidirectional, hence non reciprocal. Possible applications of directional helicity antennas will be shown.

  16. Instability of some equatorially trapped waves

    PubMed Central

    Constantin, Adrian; Germain, Pierre

    2013-01-01

    [1] A high-frequency asymptotics approach within the Lagrangian framework shows that some exact equatorially trapped three-dimensional waves are linearly unstable when their steepness exceeds a specific threshold. Citation: Constantin, A., and P. Germain (2013), Instability of some equatorially trapped waves, J. Geophys. Res. Oceans, 118, 2802–2810, doi:10.1002/jgrc.20219. PMID:26213669

  17. Broadband optical isolator based on helical metamaterials.

    PubMed

    Cao, Hu; Yang, ZhenYu; Zhao, Ming; Wu, Lin; Zhang, Peng

    2015-05-01

    Based on helical metamaterials, a new broadband optical isolator with a triple-helix structure is proposed in this paper. The right-handed circularly polarized light can transmit through the isolator with its polarization unchanged. The reverse propagating light, which is caused by the reflection of the latter optical devices, is converted into left-handed circularly polarized light that is suppressed by the proposed isolator because of absorption. Our design has some unprecedented advantages such as broad frequency ranges and a compact structure; moreover, neither polarizers nor adscititious magnetic fields are required. Properties of the isolator are investigated using the finite-difference time-domain method, and this phenomenon is studied by the mechanism of helical antenna theory.

  18. Spheromak Formation by Steady Inductive Helicity Injection

    SciTech Connect

    Jarboe, T. R.; Hamp, W. T.; Marklin, G. J.; Nelson, B. A.; O'Neill, R. G.; Redd, A. J.; Sieck, P. E.; Smith, R. J.; Wrobel, J. S.

    2006-09-15

    A spheromak is formed for the first time using a new steady state inductive helicity injection method. Using two inductive injectors with odd symmetry and oscillating at 5.8 kHz, a steady state spheromak with even symmetry is formed and sustained through nonlinear relaxation. A spheromak with about 13 kA of toroidal current is formed and sustained using about 3 MW of power. This is a much lower power threshold for spheromak production than required for electrode-based helicity injection. Internal magnetic probe data, including oscillations driven by the injectors, agree with the plasma being in the Taylor state. The agreement is remarkable considering the only fitting parameter is the amplitude of the spheromak component of the state.

  19. Helical propulsion in shear-thinning fluids

    NASA Astrophysics Data System (ADS)

    Gómez, Saúl; Godínez, Francisco A.; Lauga, Eric; Zenit, Roberto

    2017-02-01

    Swimming microorganisms often have to propel in complex, non-Newtonian fluids. We carry out experiments with self-propelling helical swimmers driven by an externally rotating magnetic field in shear-thinning, inelastic fluids. Similarly to swimming in a Newtonian fluid, we obtain for each fluid a locomotion speed which scales linearly with the rotation frequency of the swimmer, but with a prefactor which depends on the power index of the fluid. The fluid is seen to always increase the swimming speed of the helix, up to 50% faster and thus the strongest of such type reported to date. The maximum relative increase for a fluid power index of around 0.6. Using simple scalings, we argue that the speed increase is not due to the local decrease of the flow viscosity around the helical filament but hypothesise instead that it originates from confinement-like effect due to viscosity stratification around the swimmer.

  20. Coherent electron transport in a helical nanotube

    NASA Astrophysics Data System (ADS)

    Liang, Guo-Hua; Wang, Yong-Long; Du, Long; Jiang, Hua; Kang, Guang-Zhen; Zong, Hong-Shi

    2016-09-01

    The quantum dynamics of carriers bound to helical tube surfaces is investigated in a thin-layer quantization scheme. By numerically solving the open-boundary Schrödinger equation in curvilinear coordinates, geometric effect on the coherent transmission spectra is analysed in the case of single propagating mode as well as multimode. It is shown that, the coiling endows the helical nanotube with different transport properties from a bent cylindrical surface. Fano resonance appears as a purely geometric effect in the conductance, the corresponding energy of quasibound state is obviously influenced by the torsion and length of the nanotube. We also find new plateaus in the conductance. The transport of double-degenerate mode in this geometry is reminiscent of the Zeeman coupling between the magnetic field and spin angular momentum in quasi-one-dimensional structure.

  1. Equatorial potassium currents in lenses.

    PubMed

    Wind, B E; Walsh, S; Patterson, J W

    1988-02-01

    Earlier work with the vibrating probe demonstrated the existence of outward potassium currents at the equator and inward sodium currents at the optical poles of the lens. By adding microelectrodes to the system, it is possible to relate steady currents (J) to the potential difference (PD) measured with a microelectrode. By injecting an outward current (I), it is possible to determine resistances and also the PD at which the steady outward potassium current becomes zero (PDJ = 0). At this PD the concentration gradient for potassium efflux and the electrical gradient for potassium influx are balanced so that there is no net flow of potassium across the membranes associated with the production of J. The PDJ = 0 for 18 rat lenses was 86 mV and that for 12 frogs lenses was -95 mV. This agrees with the potassium equilibrium potential and provides strong evidence to support the view that the outward equatorial current, J, is a potassium current. With the injection of outward current, I, the PD becomes more negative, the outward equatorial current, J, decreases, and the inward current at the optical poles increases. This suggests that there are separate electrical loops for K+ and Na+ that are partially linked by the Na, K-pump. Using Ohm's law, it is possible to calculate the input resistance (R = delta PD/I), the resistance related to the production of J (RJ = delta PD/delta J), and the effect of the combined resistances (delta J/I). The driving force for J can be estimated (PDJ = 0-PD). The relationships among currents, voltages and resistance can be used to determine the characteristics of the membranes that are associated with the outward potassium current observed at the equator. The effects of graded deformation of the lens were determined. The effects were reversible. The sites of inward and outward currents were not altered. Following deformation, the equatorial current, J, increased, and the PD became less negative. The PDJ = 0 remains the same so the ratio of K

  2. Macroscopic ordering of helical pores for arraying guest molecules noncentrosymmetrically

    PubMed Central

    Li, Chunji; Cho, Joonil; Yamada, Kuniyo; Hashizume, Daisuke; Araoka, Fumito; Takezoe, Hideo; Aida, Takuzo; Ishida, Yasuhiro

    2015-01-01

    Helical nanostructures have attracted continuous attention, not only as media for chiral recognition and synthesis, but also as motifs for studying intriguing physical phenomena that never occur in centrosymmetric systems. To improve the quality of signals from these phenomena, which is a key issue for their further exploration, the most straightforward is the macroscopic orientation of helices. Here as a versatile scaffold to rationally construct this hardly accessible structure, we report a polymer framework with helical pores that unidirectionally orient over a large area (∼10 cm2). The framework, prepared by crosslinking a supramolecular liquid crystal preorganized in a magnetic field, is chemically robust, functionalized with carboxyl groups and capable of incorporating various basic or cationic guest molecules. When a nonlinear optical chromophore is incorporated in the framework, the resultant complex displays a markedly efficient nonlinear optical output, owing to the coherence of signals ensured by the macroscopically oriented helical structure. PMID:26416086

  3. Observed Helicity of Active Regions in Solar Cycle 21

    NASA Technical Reports Server (NTRS)

    Hagyard, M. J.; Pevtsov, A. A.; Blehm, Z.; Smith, J. E.; Six, Frank (Technical Monitor)

    2003-01-01

    We report the results of a study of helicity in solar active regions during the peak of activity in solar cycle 21 from observations with the Marshall Space Flight Center's solar vector magnetograph. Using the force-free parameter alpha as the proxy for helicity, we calculated an average value of alpha for each of 60 active regions from a total of 449 vector magnetograms that were obtained during the period 1980 March to November. The signs of these average values of alpha were correlated with the latitude of the active regions to test the hemispheric rule of helicity that has been proposed for solar magnetic fields: negative helicity predominant in northern latitudes, positive in the southern ones. We have found that of the 60 regions that were observed, 30 obey the hemispheric rule and 30 do not.

  4. Neoclassical transport in the helical Reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Spizzo, Gianluca; Gobbin, Marco; Marrelli, Lionello; White, Roscoe B.

    2010-11-01

    Test particle evaluation of the diffusion coefficient in a fusion plasma in the reversed-field pinch (RFP) configuration shows distinct similarities with Stellarators when the plasma spontaneously evolves towards a helical shape with reduced magnetic chaos. In particular, we recover the classical Tokamak and Stellarator transition from the banana to the plateau and Pfirsch-Schlüter regimes. The almost total absence of helically trapped (``superbanana'') particles with the values of q typical of the RFP (|q| < 0.16) and at the levels of helical deformation seen in experiment (Bh/B = 10%) causes transport to be proportional to collision frequency (at low collisions). This fact excludes the possibility that the minimum conceivable transport could be inversely proportional to collision frequency, which is typical of un-optimized Stellarators. This result strengthens the perspectives of the helical RFP as a fusion configuration.

  5. Conservation of writhe helicity under anti-parallel reconnection

    NASA Astrophysics Data System (ADS)

    Laing, Christian E.; Ricca, Renzo L.; Sumners, De Witt L.

    2015-03-01

    Reconnection is a fundamental event in many areas of science, from the interaction of vortices in classical and quantum fluids, and magnetic flux tubes in magnetohydrodynamics and plasma physics, to the recombination in polymer physics and DNA biology. By using fundamental results in topological fluid mechanics, the helicity of a flux tube can be calculated in terms of writhe and twist contributions. Here we show that the writhe is conserved under anti-parallel reconnection. Hence, for a pair of interacting flux tubes of equal flux, if the twist of the reconnected tube is the sum of the original twists of the interacting tubes, then helicity is conserved during reconnection. Thus, any deviation from helicity conservation is entirely due to the intrinsic twist inserted or deleted locally at the reconnection site. This result has important implications for helicity and energy considerations in various physical contexts.

  6. Reversed field pinch current drive with oscillating helical fields

    SciTech Connect

    Farengo, Ricardo; Clemente, Roberto Antonio

    2006-04-15

    The use of oscillating helical magnetic fields to produce and sustain the toroidal and poloidal currents in a reversed field pinch (RFP) is investigated. A simple physical model that assumes fixed ions, massless electrons, and uniform density and resistivity is employed. Thermal effects are neglected in Ohm's law and helical coordinates are introduced to reduce the number of coupled nonlinear equations that must be advanced in time. The results show that it is possible to produce RFP-like magnetic field profiles with pinch parameters close to the experimental values. The efficiencies obtained for moderate resistivity, and the observed scaling, indicate that this could be a very attractive method for high temperature plasmas.

  7. Equatorial Staphyloma Associated with Neurofibromatosis Type 1

    PubMed Central

    Shimada, Yoshiaki; Horiguchi, Masayuki

    2016-01-01

    We report a case of a 38-year-old man who presented with a recently self-detected lump under his left eyebrow. Previous ophthalmological history was unremarkable except for unilateral high myopia (left eye) since childhood. The appearance of the left eye was seemingly normal; however, with the top lid pulled up on downward gaze, a dark brown bulge emerged. The bulge was 10 × 7 mm and approximately 4 mm in height, and was covered by the extended superior rectus muscle. The diagnosis of equatorial staphyloma was made after coronal T1-weighted magnetic resonance imaging of the orbit revealed the dilatation of the vitreous cavity. Ocular movements were fully maintained and visual acuity was largely spared: 20/15 in the right eye without correction and 20/25 in the left eye with −10.00 spheres and −4.00 × 80 degrees cylinders. His past and family histories were unremarkable; however, small neurofibromas and café au lait spots all over his body led to the diagnosis of neurofibromatosis type 1 (NF1). From this case, similar to previous reports, we suggest that manifestations of NF1 are extremely variable and unpredictable. PMID:27721788

  8. Longitudinal Differences of Ionospheric Vertical Density Distribution and Equatorial Electrodynamics

    NASA Technical Reports Server (NTRS)

    Yizengaw, E.; Zesta, E.; Moldwin, M. B.; Damtie, B.; Mebrahtu, A.; Valledares, C.E.; Pfaff, R. F.

    2012-01-01

    Accurate estimation of global vertical distribution of ionospheric and plasmaspheric density as a function of local time, season, and magnetic activity is required to improve the operation of space-based navigation and communication systems. The vertical density distribution, especially at low and equatorial latitudes, is governed by the equatorial electrodynamics that produces a vertical driving force. The vertical structure of the equatorial density distribution can be observed by using tomographic reconstruction techniques on ground-based global positioning system (GPS) total electron content (TEC). Similarly, the vertical drift, which is one of the driving mechanisms that govern equatorial electrodynamics and strongly affect the structure and dynamics of the ionosphere in the low/midlatitude region, can be estimated using ground magnetometer observations. We present tomographically reconstructed density distribution and the corresponding vertical drifts at two different longitudes: the East African and west South American sectors. Chains of GPS stations in the east African and west South American longitudinal sectors, covering the equatorial anomaly region of meridian approx. 37 deg and 290 deg E, respectively, are used to reconstruct the vertical density distribution. Similarly, magnetometer sites of African Meridian B-field Education and Research (AMBER) and INTERMAGNET for the east African sector and South American Meridional B-field Array (SAMBA) and Low Latitude Ionospheric Sensor Network (LISN) are used to estimate the vertical drift velocity at two distinct longitudes. The comparison between the reconstructed and Jicamarca Incoherent Scatter Radar (ISR) measured density profiles shows excellent agreement, demonstrating the usefulness of tomographic reconstruction technique in providing the vertical density distribution at different longitudes. Similarly, the comparison between magnetometer estimated vertical drift and other independent drift observation

  9. Helical muon beam cooling channel engineering design

    SciTech Connect

    Johnson, Rolland

    2015-08-07

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet. The first phase of this project saw the development of a conceptual design for the integration of 805 MHz RF cavities into a 10 T Nb3Sn-based HS test section. Two very novel ideas are required to realize the design. The first idea is the use of dielectric inserts in the RF cavities to make them smaller for a given frequency so that the cavities and associated plumbing easily fit inside the magnet cryostat. Calculations indicate that heat loads will be tolerable, while RF breakdown of the dielectric inserts will be suppressed by the pressurized hydrogen gas. The second new idea is the use of a multi-layer Nb3Sn helical solenoid. The technology demonstrations for the two aforementioned key components of a 10T, 805 MHz HCC were begun in this project. The work load in the Fermilab Technical Division made it difficult to test a multi-layer Nb3Sn solenoid as originally planned. Instead, a complementary

  10. On the return current of the equatorial electrojet

    NASA Astrophysics Data System (ADS)

    Onwumechili, C. A.

    In practically all cases, investigators have found it compelling to include westward currents on the flanks of the dip equator in order to fit well the observed dip equatorial magnetic variation profiles. There are three sources of the return currents: the geometry of field lines in the dynamo region, the polarization at the boundaries of enhanced conductivity at the dip equator, and the local neutral winds varying with height. These combine constructively, taking advantage of the peaks of conductivities around 5-deg-dip latitude, to provide for the return currents of practically all the eastward electrojet current. The return currents flow on the flanks of the dip equator for about 3.5 deg to about 20-deg-dip latitude, in any case not extending beyond the Sq focus. The negative correlation between the width and the intensity of the equatorial electrojet has been confirmed with data derived from physical model, indicating its origin in the return currents. The ionospheric current system so far detected by rockets is essentially in two layers. The intense lower layer including the return currents peaking around 5-deg-dip latitude may be associated with the equatorial electrojet; and the weak upper layer that maintains fairly steady altitude characteristics everywhere may be associated with the worldwide part of the Sq currents.

  11. Controlling skyrmion helicity via engineered Dzyaloshinskii-Moriya interactions

    NASA Astrophysics Data System (ADS)

    Díaz, Sebastián A.; Troncoso, Roberto E.

    2016-10-01

    Single magnetic skyrmion dynamics in chiral magnets with a spatially inhomogeneous Dzyaloshinskii-Moriya interaction (DMI) is considered. Based on the relation between DMI coupling and skyrmion helicity, it is argued that the latter must be included as an extra degree of freedom in the dynamics of skyrmions. An effective description of the skyrmion dynamics for an arbitrary inhomogeneous DMI coupling is obtained through the collective coordinates method. The resulting generalized Thiele equation is a dynamical system for the center of mass position and helicity of the skyrmion. It is found that the dissipative tensor and hence the Hall angle become helicity dependent. The skyrmion position and helicity dynamics are fully characterized by our model in two particular examples of engineered DMI coupling: half-planes with opposite-sign DMI and linearly varying DMI. In light of the experiment of Shibata et al (2013 Nat. Nanotechnol. 8 723) on the magnitude and sign of the DMI, our results constitute the first step toward a more complete understanding of the skyrmion helicity as a new degree of freedom that could be harnessed in future high-density magnetic storage and logic devices.

  12. Detection of in-depth helical spin structures by planar Hall effect

    SciTech Connect

    Basaran, Ali C. Guénon, S.; Schuller, Ivan K.; Morales, R.

    2015-06-22

    We developed a method to determine the magnetic helicity and to study reversal mechanisms in exchange biased nanostructures using Planar Hall Effect (PHE). As a test case, we use an in-depth helical spin configuration that occurs during magnetization reversal in exchange coupled Ni/FeF{sub 2} heterostructures. We show the way to induce and determine the sign of the helicity from PHE measurements on a lithographically patterned cross. The helicity sign can be controlled by the angle between the externally applied magnetic field and a well-defined unidirectional anisotropy axis. Furthermore, the PHE signal reveals complex reversal features due to small deviations of the local unidirectional anisotropy axes from the crystallographic easy axis. The simulations using an incomplete domain wall model are in excellent agreement with the experimental data. These studies show that helical spin formations in nanomagnetic systems can be studied using laboratory-based magnetotransport.

  13. Note on the helicity decomposition of spin and orbital optical currents

    NASA Astrophysics Data System (ADS)

    Aiello, Andrea; Berry, M. V.

    2015-06-01

    In the helicity representation, the Poynting vector (current) for a monochromatic optical field, when calculated using either the electric or the magnetic field, separates into right-handed and left-handed contributions, with no cross-helicity contributions. Cross-helicity terms do appear in the orbital and spin contributions to the current. But when the electric and magnetic formulas are averaged (‘electric-magnetic democracy’), these terms cancel, restoring the separation into right-handed and left-handed currents for orbital and spin separately.

  14. Automatically identification of Equatorial Spread-F occurrence on ionograms

    NASA Astrophysics Data System (ADS)

    Pillat, Valdir Gil; Fagundes, Paulo Roberto; Guimarães, Lamartine Nogueira Frutuoso

    2015-12-01

    F-region large-scale irregularities, also called plasma bubbles, are one of the most interesting equatorial ionospheric phenomena. These irregularities are generated in the equatorial region and afterwards extend to lower latitudes. They are one of the important topics of investigation in equatorial ionosphere electrodynamics and, therefore, are subject to intense theoretical and experimental research. The ionosonde is the most used scientific equipment to study the ionosphere and the F-region. With advancement of digital ionosonde, it is now possible to carry out an ionospheric sounding with a cadence of 5 min or even with 1-minute cadence. To analyse a large amount of ionograms, more sophisticated tools are needed. Thus, development of algorithms to identify and analyse different aspects of ionograms has become very important to space science researchers. Multiple echoes recorded on ionograms are the signature of these irregularities in the ionograms, usually called Spread-F. Spread-F is classified into three types: range, frequency, and mixed. Thus, automatic identification of Spread-F is important in ionospheric studies, because studies usually involve the analysis and interpretation of large numbers of ionograms. The main objective of this paper is to present a new computational tool, based on fuzzy relation, designed to automatically identify the occurrence of Spread-F in ionograms. The test was conducted in ionograms recorded in the Brazilian sector (São José dos Campos (23.2°S, 45.9°W, dip latitude 17.6°S-low latitude) and Palmas (10.2°S, 48.2°W, dip latitude 5.5°S-near the magnetic equatorial)). The automatic identification of Spread-F occurrence was compared with those obtained manually and good agreement was found.

  15. Automatically identification of Equatorial Spread-F occurrence on ionograms

    NASA Astrophysics Data System (ADS)

    Fagundes, P. R.; Pillat, V. G.; Guimarães, L. N. F.

    2015-12-01

    F-region large-scale irregularities, also called plasma bubbles, are one of the most interesting equatorial ionospheric phenomena. These irregularities are generated in the equatorial region and afterwards extend to lower latitudes. They are one of the important topics of investigation in equatorial ionosphere electrodynamics and, therefore, are subject to intense theoretical and experimental research. The ionosonde is the most used scientific equipment to study the ionosphere and the F-region. With advancement of digital ionosonde, it is now possible to carry out an ionospheric sounding with a cadence of 5 minutes or even with 1-minute cadence. To analyse a large amount of ionograms, more sophisticated tools are needed. Thus, development of algorithms to identify and analyse different aspects of ionograms has become very important to space science researchers. Multiple echoes recorded on ionograms are the signature of these irregularities in the ionograms, usually called Spread-F. Spread-F is classified into three types: range, frequency, and mixed. Thus, automatic identification of Spread-F is important in ionospheric studies, because studies usually involve the analysis and interpretation of large numbers of ionograms. The main objective of this paper is to present a new computational tool, based on fuzzy relation, designed to automatically identify the occurrence of Spread-F in ionograms. The test was conducted in ionograms recorded in the Brazilian sector (São José dos Campos (23.2° S, 45.9° W, dip latitude 17.6° S - low latitude) and Palmas (10.2° S, 48.2° W, dip latitude 5.5° S - near the magnetic equatorial)). The automatic identification of Spread-F occurrence was compared with those obtained manually and good agreement was found.

  16. Wave Properties of Equatorial Magnetosonic Waves as Observed by Cluster

    NASA Astrophysics Data System (ADS)

    Balikhin, M. A.; Walker, S. N.; Shprits, Y.

    2014-12-01

    A survey of the Cluster STAFF data set shows a number of periods in which Equatorial Magnetosonic Waves display a discrete spectrum. In some of these instances, the frequency of emissions varies in the same fashion as the background magnetic field, indicating that the wars are observed within their source region. This paper analyses the propagation characteristics of these emissions and investigates the appropriateness of the quasi-linear assumption of a gaussian spectrum used in the numerical modelling of their role in the electron dynamics within the radiation belts based in the Chirikov resonance overlap criterion.

  17. EQUATORIAL SUPERROTATION ON TIDALLY LOCKED EXOPLANETS

    SciTech Connect

    Showman, Adam P.; Polvani, Lorenzo M.

    2011-09-01

    The increasing richness of exoplanet observations has motivated a variety of three-dimensional (3D) atmospheric circulation models of these planets. Under strongly irradiated conditions, models of tidally locked, short-period planets (both hot Jupiters and terrestrial planets) tend to exhibit a circulation dominated by a fast eastward, or 'superrotating', jet stream at the equator. When the radiative and advection timescales are comparable, this phenomenon can cause the hottest regions to be displaced eastward from the substellar point by tens of degrees longitude. Such an offset has been subsequently observed on HD 189733b, supporting the possibility of equatorial jets on short-period exoplanets. Despite its relevance, however, the dynamical mechanisms responsible for generating the equatorial superrotation in such models have not been identified. Here, we show that the equatorial jet results from the interaction of the mean flow with standing Rossby waves induced by the day-night thermal forcing. The strong longitudinal variations in radiative heating-namely intense dayside heating and nightside cooling-trigger the formation of standing, planetary-scale equatorial Rossby and Kelvin waves. The Rossby waves develop phase tilts that pump eastward momentum from high latitudes to the equator, thereby inducing equatorial superrotation. We present an analytic theory demonstrating this mechanism and explore its properties in a hierarchy of one-layer (shallow-water) calculations and fully 3D models. The wave-mean-flow interaction produces an equatorial jet whose latitudinal width is comparable to that of the Rossby waves, namely the equatorial Rossby deformation radius modified by radiative and frictional effects. For conditions typical of synchronously rotating hot Jupiters, this length is comparable to a planetary radius, explaining the broad scale of the equatorial jet obtained in most hot-Jupiter models. Our theory illuminates the dependence of the equatorial jet

  18. Prediction of buried helices in multispan alpha helical membrane proteins.

    PubMed

    Adamian, Larisa; Liang, Jie

    2006-04-01

    Analysis of a database of structures of membrane proteins shows that membrane proteins composed of 10 or more transmembrane (TM) helices often contain buried helices that are inaccessible to phospholipids. We introduce a method for identifying TM helices that are least phospholipid accessible and for prediction of fully buried TM helices in membrane proteins from sequence information alone. Our method is based on the calculation of residue lipophilicity and evolutionary conservation. Given that the number of buried helices in a membrane protein is known, our method achieves an accuracy of 78% and a Matthew's correlation coefficient of 0.68. A server for this tool (RANTS) is available online at http://gila.bioengr.uic.edu/lab/.

  19. Chaotic coordinates for the Large Helical Device

    SciTech Connect

    Hudson, S. R.; Suzuki, Y.

    2014-10-15

    The theory of quadratic-flux-minimizing (QFM) surfaces is reviewed, and numerical techniques that allow high-order QFM surfaces to be efficiently constructed for experimentally relevant, non-integrable magnetic fields are described. As a practical example, the chaotic edge of the magnetic field in the Large Helical Device (LHD) is examined. A precise technique for finding the boundary surface is implemented, the hierarchy of partial barriers associated with the near-critical cantori is constructed, and a coordinate system, which we call chaotic coordinates, that is based on a selection of QFM surfaces is constructed that simplifies the description of the magnetic field, so that flux surfaces become “straight” and islands become “square.”.

  20. Cool and hot flux ropes, their helicity

    NASA Astrophysics Data System (ADS)

    Nindos, Alexander

    2016-07-01

    We will review recent indirect and direct evidence for the existence of magnetic flux ropes in the solar atmosphere. Magnetic flux ropes may appear as S-shaped or reverse S-shaped (sigmoidal) structures in regions that are likely to erupt, and may also show in nonlinear force-free field extrapolations that use data from photospheric vector magnetograms as boundary condition. The availability of high sensitivity data recorded with unprecedented spatial and temporal resolution in hot EUV wavelengths by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) has revealed the existence of coherent structures identified as hot flux ropes. In this presentation, we will review the properties of both cool and hot flux ropes with an emphasis on the frequency of their occurrence in large flares and on their magnetic helicity content.

  1. On the modelling of equatorial waves

    NASA Astrophysics Data System (ADS)

    Constantin, A.

    2012-03-01

    The present theory of geophysical waves that either raise or lower the equatorial thermocline, based on the reduced-gravity shallow-water equations on the β-plane, ignores vertical variations of the flow. In particular, the vertical structure of the Equatorial Undercurrent is absent. As a remedy we propose a simple approach by modeling this geophysical process as a wave-current interaction in the f-plane approximation, the underlying current being of positive constant vorticity. The explicit dispersion relation allows us to conclude that, despite its simplicity, the proposed model captures to a reasonable extent essential features of equatorial waves.

  2. Gyrokinetic investigation of ITG modes in helical RFPs

    NASA Astrophysics Data System (ADS)

    Predebon, I.; Xanthopoulos, P.; Terranova, D.

    2013-10-01

    Micro-instabilities in the RFP have been investigated in the last years from several viewpoints and with various numerical tools. The strongest underlying assumption for all of these approaches is that the magnetic equilibrium does not deviate significantly from axisymmetry. Contrary to this, in RFX-mod, the physical conditions more favorable for the onset of electrostatic/electromagnetic turbulence emerge when magnetic surfaces are helical, i.e., during the single helicity states of the RFP. In general, we wish to systematically revisit the existing gyrokinetic studies of microturbulence focusing on the novel 3D feature. The RFP equilibria are now derived using the VMEC code and subsequently applied to the nonlinear gyrokinetic code GENE with the aid of the GIST interface code. The physical problem we address here is the occurrence of ITG instability in single helicity plasmas, and its distinct properties compared to the axisymmetric geometry.

  3. Propulsion by Helical Strips in Circular Channels

    NASA Astrophysics Data System (ADS)

    Yesilyurt, Serhat; Demir, Ebru

    2016-11-01

    Progress in manufacturing techniques avails the production of artificial micro swimmers (AMS) in various shapes and sizes. There are numerous studies on the generation of efficient locomotion by means of helical tails with circular cross-sections. This work focuses on locomotion with helical strips in circular channels. A CFD model is used to analyze the effects of geometric parameters and the radius of the channel on swimming velocity of infinite helical-strips in circular channels. Results show that there is an optimum wavelength that depends on thickness to channel radius ratio, suggesting that these parameters need to be optimized simultaneously. With constant torque, thinner strips swim faster, whereas under constant angular velocity application, thicker strips (in radial direction) prevail. As width approaches the wavelength, velocity decreases under both conditions, unless a magnetically coated tail is simulated, for which width has an optimum value. Increasing channel radius to helix amplitude ratio increases the velocity up to a maximum and after a slight drop, saturation occurs as bulk swimming conditions are approached.

  4. Bifurcated helical core equilibrium states in tokamaks

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Chapman, I. T.; Schmitz, O.; Turnbull, A. D.; Tobias, B. J.; Lazarus, E. A.; Turco, F.; Lanctot, M. J.; Evans, T. E.; Graves, J. P.; Brunetti, D.; Pfefferlé, D.; Reimerdes, H.; Sauter, O.; Halpern, F. D.; Tran, T. M.; Coda, S.; Duval, B. P.; Labit, B.; Pochelon, A.; Turnyanskiy, M. R.; Lao, L.; Luce, T. C.; Buttery, R.; Ferron, J. R.; Hollmann, E. M.; Petty, C. C.; van Zeeland, M.; Fenstermacher, M. E.; Hanson, J. M.; Lütjens, H.

    2013-07-01

    Tokamaks with weak to moderate reversed central shear in which the minimum inverse rotational transform (safety factor) qmin is in the neighbourhood of unity can trigger bifurcated magnetohydrodynamic equilibrium states, one of which is similar to a saturated ideal internal kink mode. Peaked prescribed pressure profiles reproduce the ‘snake’ structures observed in many tokamaks which has led to a novel explanation of the snake as a bifurcated equilibrium state. Snake equilibrium structures are computed in simulations of the tokamak à configuration variable (TCV), DIII-D and mega amp spherical torus (MAST) tokamaks. The internal helical deformations only weakly modulate the plasma-vacuum interface which is more sensitive to ripple and resonant magnetic perturbations. On the other hand, the external perturbations do not alter the helical core deformation in a significant manner. The confinement of fast particles in MAST simulations deteriorate with the amplitude of the helical core distortion. These three-dimensional bifurcated solutions constitute a paradigm shift that motivates the applications of tools developed for stellarator research in tokamak physics investigations.

  5. Design principles for Bernal spirals and helices with tunable pitch

    NASA Astrophysics Data System (ADS)

    Fejer, Szilard N.; Chakrabarti, Dwaipayan; Kusumaatmaja, Halim; Wales, David J.

    2014-07-01

    Using the framework of potential energy landscape theory, we describe two in silico designs for self-assembling helical colloidal superstructures based upon dipolar dumbbells and Janus-type building blocks, respectively. Helical superstructures with controllable pitch length are obtained using external magnetic field driven assembly of asymmetric dumbbells involving screened electrostatic as well as magnetic dipolar interactions. The pitch of the helix is tuned by modulating the Debye screening length over an experimentally accessible range. The second design is based on building blocks composed of rigidly linked spheres with short-range anisotropic interactions, which are predicted to self-assemble into Bernal spirals. These spirals are quite flexible, and longer helices undergo rearrangements via cooperative, hinge-like moves, in agreement with experiment.Using the framework of potential energy landscape theory, we describe two in silico designs for self-assembling helical colloidal superstructures based upon dipolar dumbbells and Janus-type building blocks, respectively. Helical superstructures with controllable pitch length are obtained using external magnetic field driven assembly of asymmetric dumbbells involving screened electrostatic as well as magnetic dipolar interactions. The pitch of the helix is tuned by modulating the Debye screening length over an experimentally accessible range. The second design is based on building blocks composed of rigidly linked spheres with short-range anisotropic interactions, which are predicted to self-assemble into Bernal spirals. These spirals are quite flexible, and longer helices undergo rearrangements via cooperative, hinge-like moves, in agreement with experiment. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00324a

  6. Equatorial thermosphere anomaly: Observations and simulations

    NASA Astrophysics Data System (ADS)

    Lei, J.; Thayer, J. P.; Wang, W.; Richmond, A. D.

    2011-12-01

    Several mechanisms including heat transport due to zonal winds, chemical heating and field-aligned ion drag have been proposed to explain the formation of the Equatorial Thermosphere Anomaly (ETA), but the real cause of the ETA formation in thermosphere temperature is still a mystery. Various observations of the ionosphere and thermosphere have been used to investigate the variations of equatorial anomalies in both the ETA and EIA, and their interactions. The similarities and differences between the ETA and the EIA can provide important insight to the physical connections of this ion-neutral coupling problem. Meanwhile, the combination of observations and theoretical models allows us to understand the fundamental physical and chemical ion-neutral processes in the equatorial F region. This talk will highlight the recent progress of the formation of the ETA associated with the ion-neutral coupling in the equatorial region.

  7. Primary Cardiac Lymphoma: Helical CT Findings and Radiopathologic Correlation

    SciTech Connect

    Marco de Lucas, Enrique Pagola, Miguel Angel; Fernandez, Fidel; Lastra, Pedro; Delgado, M. Luisa Ruiz; Sadaba, Pablo; Pinto, Jesus; Ballesteros, Ma Angeles; Ortiz, Antonio

    2004-03-15

    Primary tumors of the heart are extremely rare.Clinical manifestations are nondiagnostic and the patients are often misdiagnosed. Magnetic resonance imaging and echocardiography are standard in this diagnostic workup. We report a case of a man with acromegaly, dysphagia, chest pain and weight loss. An invasive cardiac mass was diagnosed by helical-CT. Autopsy demonstrated a B-cell aggressive lymphoma.

  8. Helical Nanofilament Phases

    SciTech Connect

    L Hough; H Jung; D Kruerke; M Heberling; M Nakata; C Jones; D Chen; D Link; N Clark; et al.

    2011-12-31

    In the formation of chiral crystals, the tendency for twist in the orientation of neighboring molecules is incompatible with ordering into a lattice: Twist is expelled from planar layers at the expense of local strain. We report the ordered state of a neat material in which a local chiral structure is expressed as twisted layers, a state made possible by spatial limitation of layering to a periodic array of nanoscale filaments. Although made of achiral molecules, the layers in these filaments are twisted and rigorously homochiral - a broken symmetry. The precise structural definition achieved in filament self-assembly enables collective organization into arrays in which an additional broken symmetry - the appearance of macroscopic coherence of the filament twist-produces a liquid crystal phase of helically precessing layers.

  9. Mixing in Helical Pipes

    NASA Astrophysics Data System (ADS)

    Gratton, Michael B.; Bernoff, Andrew J.

    2001-11-01

    We consider advection and diffusion of a passive scalar in a helical pipe. By assuming that the curvature and torsion are small (equivalent to small Dean number) and the Reynolds number is moderate, we can use a closed form approximation, due to Dean (1927) and Germano (1982), for the induced recirculation. We investigate the problem numerically using a split-step particle method for a variety of localized initial conditions. The problem is governed by two parameters: a nondimensional diffusion constant D (typically small), and the scaled ratio of torsion to curvature λ. At small times, the longitudinal width of the particle distribution, σ, is governed by diffusive effects (σ ∝ √Dt). At large times, Taylor diffusion dominates (σ ∝ √t/D). However, at intermediate times, a ballistic region exists where the width spreads linearly, as postulated by Mezic & Wiggins (1994). We also discuss how these various behaviors scale with the parameters D and λ.

  10. The Advanced Helical Generator

    SciTech Connect

    Reisman, D B; Javedani, J B; Ellsworth, G F; Kuklo, R M; Goerz, D A; White, A D; Tallerico, L J; Gidding, D A; Murphy, M J; Chase, J B

    2009-10-26

    A high explosive pulsed power (HEPP) generator called the Advanced Helical Generator (AHG) has been designed, built, and successfully tested. The AHG incorporates design principles of voltage and current management to obtain a high current and energy gain. Its design was facilitated by the use of modern modeling tools as well as high precision manufacture. The result was a first-shot success. The AHG delivered 16 Mega-Amperes of current and 11 Mega-Joules of energy to a quasi-static 80 nH inductive load. A current gain of 154 times was obtained with a peak exponential rise time of 20 {micro}s. We will describe in detail the design and testing of the AHG.

  11. Peri-equatorial paleolatitudes for Jurassic radiolarian cherts of Greece

    USGS Publications Warehouse

    Aiello, I.W.; Hagstrum, J.T.; Principi, G.

    2008-01-01

    Radiolarian-rich sediments dominated pelagic deposition over large portions of the Tethys Ocean during middle to late Jurassic time as shown by extensive bedded chert sequences found in both continental margin and ophiolite units of the Mediterranean region. Which paleoceanographic mechanisms and paleotectonic setting favored radiolarian deposition during the Jurassic, and the nature of a Tethys-wide change from biosiliceous to biocalcareous (mainly nannofossil) deposition at the beginning of Cretaceous time, have remained open questions. Previous paleomagnetic analyses of Jurassic red radiolarian cherts in the Italian Apennines indicate that radiolarian deposition occurred at low peri-equatorial latitudes, similar to modern day deposition of radiolarian-rich sediments within equatorial zones of high biologic productivity. To test this result for other sectors of the Mediterranean region, we undertook paleomagnetic study of Mesozoic (mostly middle to upper Jurassic) red radiolarian cherts within the Aegean region on the Peloponnesus and in continental Greece. Sampled units are from the Sub-Pelagonian Zone on the Argolis Peninsula, the Pindos-Olonos Zone on the Koroni Peninsula, near Karpenissi in central Greece, and the Ionian Zone in the Varathi area of northwestern Greece. Thermal demagnetization of samples from all sections removed low-temperature viscous and moderate-temperature overprint magnetizations that fail the available fold tests. At Argolis and Koroni, however, the cherts carry a third high-temperature magnetization that generally exhibits a polarity stratigraphy and passes the available fold tests. We interpret the high-temperature component to be the primary magnetization acquired during chert deposition and early diagenesis. At Kandhia and Koliaky (Argolis), the primary declinations and previous results indicate clockwise vertical-axis rotations of ??? 40?? relative to "stable" Europe. Due to ambiguities in hemispheric origin (N or S) and thus

  12. Understanding the Unique Equatorial Density Irregularities

    DTIC Science & Technology

    2015-04-01

    monitoring devices. In addition, the Low Earth Orbiting (LEO) satellites ion density observations show unique features for the African sector [Hei et al. 2005...installed in Africa [Amory-Mazaudier, et al. 2009] since 2007. Alongside this activity, universities in Africa (e.g. Bahir Dar Uni- versity, Ethiopia...African sector, show unique equatorial iono- spheric structure [Hei et al. 2005]. For example, this region equatorial plasma bubbles, which produce

  13. EQUATORIAL ZONAL JETS AND JUPITER's GRAVITY

    SciTech Connect

    Kong, D.; Liao, X.; Zhang, K.; Schubert, G.

    2014-08-20

    The depth of penetration of Jupiter's zonal winds into the planet's interior is unknown. A possible way to determine the depth is to measure the effects of the winds on the planet's high-order zonal gravitational coefficients, a task to be undertaken by the Juno spacecraft. It is shown here that the equatorial winds alone largely determine these coefficients which are nearly independent of the depth of the non-equatorial winds.

  14. Periodic Structures in the Equatorial Ionosphere (Postprint)

    DTIC Science & Technology

    2012-05-13

    AFRL-RV-PS- AFRL-RV-PS- TP-2012-0004 TP-2012-0004 PERIODIC STRUCTURES IN THE EQUATORIAL IONOSPHERE (POSTPRINT) Cheryl Y. Huang...in the Equatorial Ionosphere (Postprint) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) 5d. PROJECT NUMBER 2301...International Reference Ionosphere model to remove variations in density due to changes in spacecraft altitude and latitude along the orbit. In this

  15. A fully relaxed helicity balance model for an inductively driven spheromak

    SciTech Connect

    O'Neill, R. G.; Marklin, G. J.; Jarboe, T. R.; Akcay, C.; Hamp, W. T.; Nelson, B. A.; Redd, A. J.; Smith, R. J.; Stewart, B. T.; Wrobel, J. S.; Sieck, P. E.

    2007-11-15

    Magnetic helicity balance and a fully relaxed Taylor-state model are shown to predict the magnitude of sustained equilibrium current in an inductively driven spheromak. The Helicity Injected Torus with Steady Inductive drive (HIT-SI) [T. R. Jarboe et al., Phys. Rev. Lett. 97, 115003 (2006)] forms and sustains spheromaks using two inductively driven helicity injectors. By assuming helicity is injected at a rate 2V{psi}, and only decays through Spitzer resistivity using T{sub e} measured with a Langmuir probe, the magnitude of the sustained equilibrium current is predicted with no fitting parameters. The model correctly predicts a threshold helicity injection rate for spheromak formation. Although the experimental results suggest a higher effective helicity dissipation rate by a factor of {approx}1.37 compared to the Spitzer value, the prediction is still within the uncertainties of the measured parameters.

  16. Equatorial spread-F (ESF) and vertical winds

    NASA Astrophysics Data System (ADS)

    Raghavarao, R.; Suhasini, R.; Mayr, H. G.; Hoegy, W. R.; Wharton, L. E.

    1999-05-01

    The Equatorial Spread-F (ESF) phenomenon is recorded in ionograms as a hierarchy of plasma instabilities in the F-layer of the equatorial ionosphere. The ESF is characterized by irregularities in the plasma (electron and ion) density and electric field distributions perpendicular to the Earth's magnetic field. Large scale irregularities are generated by a primary plasma instability that develops in electric fields and plasma densities. Other secondary instabilities then develop and generate irregularities at several scale sizes that often produce a plasma `hole' or `bubble' that rises up with high E×B velocities. The ESF/plasma bubble phenomenon has been studied extensively with experimental techniques and modeling, which revealed important features. In the bottom side F-layer, near sunset, when the vertical density gradient steepens as the layer is supported by the horizontal (North-South) Earth's magnetic field lines against the omnipresent Earth's gravitational acceleration (g), the plasma conditions can give rise to Rayleigh-Taylor (RT) type instability. But the observed day to day variability of the ESF occurrence suggested that other agencies may also be involved in generating the instability. Sekar and Raghavarao (1987) with linear theory, and Raghavarao, Sekar and Suhasini (1992), with non-linear numerical modeling, suggested that vertical downward (upward) winds in the ambient gas have the potential to cause (inhibit) the ESF/bubble phenomenon. The presence of downward winds near the equator was reported earlier. In this paper, we show evidence for the presence of downward winds collocated with irregularities in electric fields and plasma densities as revealed by an unique combination of highly accurate measurements with instruments onboard the DE-2 satellite. The observations reported here are also consistent with the notion that the build-up of the equatorial ionization anomaly (EIA) prior to local sunset is important for the ESF instability.

  17. Not much helicity is needed to drive large-scale dynamos.

    PubMed

    Pietarila Graham, Jonathan; Blackman, Eric G; Mininni, Pablo D; Pouquet, Annick

    2012-06-01

    Understanding the in situ amplification of large-scale magnetic fields in turbulent astrophysical rotators has been a core subject of dynamo theory. When turbulent velocities are helical, large-scale dynamos that substantially amplify fields on scales that exceed the turbulent forcing scale arise, but the minimum sufficient fractional kinetic helicity f(h,C) has not been previously well quantified. Using direct numerical simulations for a simple helical dynamo, we show that f(h,C) decreases as the ratio of forcing to large-scale wave numbers k(F)/k(min) increases. From the condition that a large-scale helical dynamo must overcome the back reaction from any nonhelical field on the large scales, we develop a theory that can explain the simulations. For k(F)/k(min)≥8 we find f(h,C)≲3%, implying that very small helicity fractions strongly influence magnetic spectra for even moderate-scale separation.

  18. New observations of ionospheric instabilities in the equatorial electrojet

    NASA Astrophysics Data System (ADS)

    Alken, P.; Maus, S.

    2009-12-01

    The equatorial electrojet (EEJ) is an intense current system flowing along the magnetic equator in the ionospheric E-region on the day-side. Early attempts to model the EEJ found that ionospheric instabilities led to significant changes in the current which had to be accounted for. Early modelers used ad-hoc empirical correction factors in the relevant ionospheric parameters to attempt to account for instability effects. Modern EEJ models continue to use these correction factors, which are still not well understood theoretically. In the last decade, a wealth of new data has been recorded by both satellites and ground radars which allows us to revisit the issue of modeling these ionospheric instabilities. In this work, we use radar and magnetic field measurements at Jicamarca in addition to magnetometer measurements from the CHAMP satellite to study the effects of ionospheric instabilities on the EEJ. We find that the effects of ionospheric instabilities lead to non-linear behavior between the eastward electric field strength and the resulting electrojet current. As predicted, the ratio of current to electric field is highest for westward and weak eastward electric fields, and the ratio decreases with stronger eastward electric fields. Quantifying this non-linearity should help improve the accuracy of equatorial electrodynamic models.

  19. Latitudinal comparisons of equatorial Pacific zooplankton

    NASA Astrophysics Data System (ADS)

    Roman, M. R.; Dam, H. G.; Le Borgne, R.; Zhang, X.

    Zooplankton biomass and rates of ingestion, egestion and production in the equatorial Pacific Ocean along 140°W and 180° exhibit maximum values in the High-Nutrient Low-Chlorophyll (HNLC) zone associated with equatorial upwelling (5°S-5°N) as compared to the more oligotrophic regions to the north and south. Zooplankton biomass and rates are not usually highest on the equator, but increase "downstream" of the upwelling center as the zooplankton populations exhibit a delayed response to enhanced phytoplankton production. The vertical distribution of zooplankton biomass in the equatorial HNLC area tends to be concentrated in surface waters and is more uniform with depth in oligotrophic regions to the north and south of the equatorial upwelling zone. In general, the amount of mesozooplankton (>200 μm) carbon biomass is approximately 25% of estimated phytoplankton biomass and 30% of bacterial biomass in the HNLC area of the equatorial Pacific Ocean. Zooplankton grazing on phytoplankton is low in the equatorial Pacific Ocean, generally <5% of the total chlorophyll-a standing stock grazed per day. Based on estimates of metabolic demand, it is apparent that zooplankton in the equatorial Pacific Ocean are omnivores, consuming primarily microzooplankton and detritus. Estimated zooplankton growth rates in the warm waters of the HNLC equatorial Pacific Ocean are high, ranging from 0.58 d -1 for 64-200 μm zooplankton to 0.08 d -1 for 1000-2000 μm zooplankton. Thus, the numerical and functional response of equatorial zooplankton to increases in phytoplankton production are more rapid than normally occurs in sub-tropical and temperate waters. Potential zooplankton fecal pellet production, estimated from metabolic demand, is approximately 1.6 times the estimated gravitational carbon flux at 150 m in the zone of equatorial upwelling (5°S-5°N) and 1.1 times the export flux in the more oligotrophic regions to the north and south. The active flux of carbon by diel migrant

  20. Use of Helical Fields to Allow a Long Pulse Reversed Field Pinch

    SciTech Connect

    A. Boozer and N. Pomphrey

    2008-11-20

    The maintenance of the magnetic configuration of a Reversed Field Pinch (RFP) is an unsolved problem. Even a toroidal loop voltage does not suffice to maintain the magnetic configuration in axisymmetry but could if the plasma had helical shaping. The theoretical tools for plasma optimization using helical shaping have advanced, so an RFP could be relatively easily designed for optimal performance with a spatially constant toroidal loop voltage. A demonstration that interesting solutions exist is given.

  1. Comparison of equatorial electron content in the Indian and American longitudes

    SciTech Connect

    Klobuchar, J.A.; Rastogi, R.G.

    1988-06-01

    Total electron content (TEC) measurements taken at the magnetically equatorial stations located at Ootacamund, India and Huancayo, Peru by the group delay technique from radio beacon signals transmitted from the ATS 6 geostationary satellite show excellent agreement, though these stations are at widely different longitudes and are at nearly opposite geographic latitudes. Data from both stations were taken during the solar minimum period 1975-1976. The equivalent slab thickness, the ratio TEC/N(max) also indicated similar F region profile shape in the two longitude sectors. The standard deviation of equatorial daytime TEC is significantly smaller than at other latitudes. 20 references.

  2. Observation of low energy particle precipitation at low altitude in the equatorial zone

    NASA Technical Reports Server (NTRS)

    Miah, M. A.

    1989-01-01

    Precipitation of protons in the equatorial zone was investigated by the Phoenix-1 experiment on the S81-1 mission from May to November, 1982. The protons show a precipitation peak along the line of minimum magnetic field strength with a FWHM of 13 deg. The index of equatorial pitch angle distribution is about 19. The peak proton flux shows a fifth-power altitude dependence, and the proton flux shows approximately a factor of 3 times increase in 1982 compared to that in 1969 due, possibly, to the stronger solar maximum conditions of 10.7-cm radiation in 1982.

  3. Ion temperature gradient turbulence in helical and axisymmetric RFP plasmas

    SciTech Connect

    Predebon, I.; Xanthopoulos, P.

    2015-05-15

    Turbulence induced by the ion temperature gradient (ITG) is investigated in the helical and axisymmetric plasma states of a reversed field pinch device by means of gyrokinetic calculations. The two magnetic configurations are systematically compared, both linearly and nonlinearly, in order to evaluate the impact of the geometry on the instability and its ensuing transport, as well as on the production of zonal flows. Despite its enhanced confinement, the high-current helical state demonstrates a lower ITG stability threshold compared to the axisymmetric state, and ITG turbulence is expected to become an important contributor to the total heat transport.

  4. Geometry of kinked protein helices from NMR data.

    PubMed

    Murray, Dylan T; Lu, Yuanting; Cross, T A; Quine, J R

    2011-05-01

    Mathematical questions related to determining the structure of a protein from NMR orientational restraints are discussed. The protein segment is a kinked alpha helix modeled as a regular alpha helix in which two adjacent torsion angles have been varied from their ideal values. Varying these torsion angles breaks the helix into two regular helical segments joined at a kink. The problem is to find the torsion angles at the kink from the relationship of the helical segments to the direction of the magnetic field.

  5. INVESTIGATION OF HELICITY AND ENERGY FLUX TRANSPORT IN THREE EMERGING SOLAR ACTIVE REGIONS

    SciTech Connect

    Vemareddy, P.

    2015-06-20

    We report the results of an investigation of helicity and energy flux transport from three emerging solar active regions (ARs). Using time sequence vector magnetic field observations obtained from the Helioseismic Magnetic Imager, the velocity field of plasma flows is derived by the differential affine velocity estimator for vector magnetograms. In three cases, the magnetic fluxes evolve to pump net positive, negative, and mixed-sign helicity flux into the corona. The coronal helicity flux is dominantly coming from the shear term that is related to horizontal flux motions, whereas energy flux is dominantly contributed by the emergence term. The shear helicity flux has a phase delay of 5–14 hr with respect to absolute magnetic flux. The nonlinear curve of coronal energy versus relative helicity identifies the configuration of coronal magnetic fields, which is approximated by a fit of linear force-free fields. The nature of coronal helicity related to the particular pattern of evolving magnetic fluxes at the photosphere has implications for the generation mechanism of two kinds of observed activity in the ARs.

  6. Microinstability Studies for the Large Helical Device

    SciTech Connect

    G. Rewoldt; L.-P. Ku; W.M. Tang; H. Sugama; N. Nakajima; K.Y. Watanabe; S. Murakami; H. Yamada; W.A. Cooper

    2002-01-28

    Fully kinetic assessments of the stability properties of toroidal drift modes have been obtained for cases for the Large Helical Device (LHD). This calculation employs the comprehensive linear microinstability code FULL, as recently extended for nonaxisymmetric systems. The code retains the important effects in the linearized gyrokinetic equation, using the lowest-order ''ballooning representation'' for high toroidal mode number instabilities in the electrostatic limit. These effects include trapped particles, FLR, transit and bounce and magnetic drift frequency resonances, etc., for any number of plasma species. Results for toroidal drift waves destabilized by trapped electrons and ion temperature gradients are presented, using numerically-calculated three-dimensional MHD equilibria. These are reconstructed from experimental measurements. Quasilinear fluxes of particles and energy for each species are also calculated. Pairs of LHD discharges with different magnetic axis positions and with and without pellet injection are compared.

  7. Helical glasses near ferromagnetic quantum criticality

    NASA Astrophysics Data System (ADS)

    Thomson, S. J.; Krüger, F.; Green, A. G.

    2013-06-01

    We study the effects of quenched charge disorder on the phase reconstruction near itinerant ferromagnetic quantum critical points in three spatial dimensions. Combining a Replica-disorder average with a fermionic version of the quantum order-by-disorder mechanism, we show that weak disorder destabilizes the ferromagnetic state and enhances the susceptibility towards incommensurate, spiral magnetic ordering. The Goldstone modes of the spiral phase are governed by a 3d-XY model. The induced disorder in the pitch of the spiral generates a random anisotropy for the Goldstone modes, inducing vortex lines in the phase of the helical order and rendering the magnetic correlations short ranged with a strongly anisotropic correlation length.

  8. Twist Helicity in Classical Vortices

    NASA Astrophysics Data System (ADS)

    Scheeler, Martin W.; Kedia, Hridesh; Kleckner, Dustin; Irvine, William T. M.

    2015-11-01

    Recent experimental work has demonstrated that a partial measure of fluid Helicity (the sum of linking and writhing of vortex tubes) is conserved even as those vortices undergo topology changing reconnections. Measuring the total Helicity, however, requires additional information about how the vortex lines are locally twisted inside the vortex core. To bridge this gap, we have developed a novel technique for experimentally measuring twist Helicity. Using this method, we are able to measure the production and eventual decay of twist for a variety of vortex evolutions. Remarkably, we observe twist dynamics capable of conserving total Helicity even in the presence of rapidly changing writhe. This work was supported by the NSF MRSEC shared facilities at the University of Chicago (DMR-0820054) and an NSF CAREER award (DMR-1351506). W.T.M.I. further acknowledges support from the A.P. Sloan Foundation and the Packard Foundation.

  9. Helicity multiplexed broadband metasurface holograms

    PubMed Central

    Wen, Dandan; Yue, Fuyong; Li, Guixin; Zheng, Guoxing; Chan, Kinlong; Chen, Shumei; Chen, Ming; Li, King Fai; Wong, Polis Wing Han; Cheah, Kok Wai; Yue Bun Pun, Edwin; Zhang, Shuang; Chen, Xianzhong

    2015-01-01

    Metasurfaces are engineered interfaces that contain a thin layer of plasmonic or dielectric nanostructures capable of manipulating light in a desirable manner. Advances in metasurfaces have led to various practical applications ranging from lensing to holography. Metasurface holograms that can be switched by the polarization state of incident light have been demonstrated for achieving polarization multiplexed functionalities. However, practical application of these devices has been limited by their capability for achieving high efficiency and high image quality. Here we experimentally demonstrate a helicity multiplexed metasurface hologram with high efficiency and good image fidelity over a broad range of frequencies. The metasurface hologram features the combination of two sets of hologram patterns operating with opposite incident helicities. Two symmetrically distributed off-axis images are interchangeable by controlling the helicity of the input light. The demonstrated helicity multiplexed metasurface hologram with its high performance opens avenues for future applications with functionality switchable optical devices. PMID:26354497

  10. Real Space Observation of Helical Spin Order

    NASA Astrophysics Data System (ADS)

    Uchida, Masaya

    2007-03-01

    When a symmetry gets spontaneously broken in a phase transition, topological defects are routinely formed. There are numerous examples of topological defects in condensed matter systems, such as, vortices in superconductors, vortices in superfluid helium, monopoles and strings in liquid crystals, etc. A similar picture would emerge in helimagnets. It is therefore interesting to deepen our understanding of how, what kind of, and why magnetic defects form and how they evolve after formation in helimagnets. In recent years, there have been significant advances in the experiment [1] and in the theories [2] of phases and textures in helimagnets. This will have a significant impact on our understanding of not only the puzzling behavior of the helimagnet MnSi with non-Fermi-liquid transport properties [3], but also phase transitions and phase diagrams in different condensed matter systems. In this paper, we describe the current status of our experiments. To see the helical spin order and magnetic defects in metal silicides such as (Fe, Co)Si and FeGe in real space, we used Lorentz electron microscopy, combined with the transport of intensity equation (TIE) analysis or holographic interference microscopy. This method has allowed us to find the topological defect similar to atomic dislocations in the crystal lattice. Furthermore, by applying magnetic fields, we directly observed the deformation processes of the helical spin order, accompanied by nucleation, movement, and annihilation of the magnetic defects. [1] M. Uchida et al., Science 311, 359 (2006). [2] U. K. R"oßler, A. N. Bogdanov, and C. Pfleiderer, Nature 442, 797 (2006); B. Binz, A. Vishwanath, and V. Aji, Phys. Rev. Lett., 96, 207202 (2006); S. Tewari, D. Belitz, and T. R. Kirkpatric, Phys. Rev. Lett., 96, 47207 (2006). [3] C. Pfleiderer et al., Nature 427, 227 (2004).

  11. Tunable Helical Origami

    NASA Astrophysics Data System (ADS)

    Chen, Zi; Dai, Eric; Zheng, Huang

    2014-03-01

    Origami, the Japanese art of paper folding, is traditionally viewed as an amusing pastime and medium of artistic expression. However, in recent years, origami has begun to inspire innovations in science and engineering. For example, K. Miura led the study of a paper folding pattern in regards to deployment of solar panels to outer space, resulting in more efficient packing and unpacking of the solar panels into tightly constrained spaces. In this work, we study the geometric and mechanical properties of a twisting origami pattern. The pattern created by the fold exhibits several interesting properties, including rigid foldibility, and finely tunable helical coiling, with control over pitch, radius, and handedness of the helix. In addition, the pattern closely mimics the twist buckling patterns shown by thin materials, for example, a mobius strip. In our work, we relate the six parameters of the twisting origami pattern to generate a fully tunable graphical model of the fold. In addition, we demonstrate that the morphogenesis of such folding pattern can be modeled through finite element analysis. We hope our research into the diagonal fold brings insight into the potential scientific and engineering applications of origami and spark further research into how the traditional paper art can be applied as a simple, inexpensive model for complex problems.

  12. Observations of equatorial ionization anomaly over Africa and Middle East during a year of deep minimum

    NASA Astrophysics Data System (ADS)

    Bolaji, Olawale; Owolabi, Oluwafisayo; Falayi, Elijah; Jimoh, Emmanuel; Kotoye, Afolabi; Odeyemi, Olumide; Rabiu, Babatunde; Doherty, Patricia; Yizengaw, Endawoke; Yamazaki, Yosuke; Adeniyi, Jacob; Kaka, Rafiat; Onanuga, Kehinde

    2017-01-01

    In this work, we investigated the veracity of an ion continuity equation in controlling equatorial ionization anomaly (EIA) morphology using total electron content (TEC) of 22 GPS receivers and three ground-based magnetometers (Magnetic Data Acquisition System, MAGDAS) over Africa and the Middle East (Africa-Middle East) during the quietest periods. Apart from further confirmation of the roles of equatorial electrojet (EEJ) and integrated equatorial electrojet (IEEJ) in determining hemispheric extent of EIA crest over higher latitudes, we found some additional roles played by thermospheric meridional neutral wind. Interestingly, the simultaneous observations of EIA crests in both hemispheres of Africa-Middle East showed different morphology compared to that reported over Asia. We also observed interesting latitudinal twin EIA crests domiciled at the low latitudes of the Northern Hemisphere. Our results further showed that weak EEJ strength associated with counter electrojet (CEJ) during sunrise hours could also trigger twin EIA crests over higher latitudes.

  13. omega-Helices in proteins.

    PubMed

    Enkhbayar, Purevjav; Boldgiv, Bazartseren; Matsushima, Norio

    2010-05-01

    A modification of the alpha-helix, termed the omega-helix, has four residues in one turn of a helix. We searched the omega-helix in proteins by the HELFIT program which determines the helical parameters-pitch, residues per turn, radius, and handedness-and p = rmsd/(N - 1)(1/2) estimating helical regularity, where "rmsd" is the root mean square deviation from the best fit helix and "N" is helix length. A total of 1,496 regular alpha-helices 6-9 residues long with p < or = 0.10 A were identified from 866 protein chains. The statistical analysis provides a strong evidence that the frequency distribution of helices versus n indicates the bimodality of typical alpha-helix and omega-helix. Sixty-two right handed omega-helices identified (7.2% of proteins) show non-planarity of the peptide groups. There is amino acid preference of Asp and Cys. These observations and analyses insist that the omega-helices occur really in proteins.

  14. Investigating the effect of geomagnetic storm and equatorial electrojet on equatorial ionospheric irregularity over East African sector

    NASA Astrophysics Data System (ADS)

    Seba, Ephrem Beshir; Nigussie, Melessew

    2016-11-01

    The variability of the equatorial ionosphere is still a big challenge for ionospheric dependent radio wave technology users. To mitigate the effect of equatorial ionospheric irregularity on trans-ionospheric radio waves considerable efforts are being done to understand and model the equatorial electrodynamics and its connection to the creation of ionospheric irregularity. However, the effect of the East-African ionospheric electrodynamics on ionospheric irregularity is not yet well studied due to lack of multiple ground based instruments. But, as a result of International Heliophysical Year (IHY) initiative, which was launched in 2007, some facilities are being deployed in Africa since then. Therefore, recently deployed instruments, in the Ethiopian sector, such as SCINDA-GPS receiver (2.64°N dip angle) for TEC and amplitude scintillation index (S4) data and two magnetometers, which are deployed on and off the magnetic equator, data collected in the March equinoctial months of the years 2011, 2012, and 2015 have been used for this study in conjunction with geomagnetic storm data obtained from high resolution OMNI WEB data center. We have investigated the triggering and inhibition mechanisms for ionospheric irregularities using, scintillation index (S4), equatorial electrojet (EEJ), interplanetary electric field (IEFy), symH index, AE index and interplanetary magnetic field (IMF) Bz on five selected storm and two storm free days. We have found that when the eastward EEJ fluctuates in magnitude due to storm time induced electric fields at around noontime, the post-sunset scintillation is inhibited. All observed post-sunset scintillations in equinox season are resulted when the daytime EEJ is non fluctuating. The strength of noontime EEJ magnitude has shown direct relation with the strength of the post-sunset scintillations. This indicates that non-fluctuating EEJ stronger than 20 nT, can be precursor for the occurrence of the evening time ionospheric irregularities

  15. Seismo-ionospheric coupling appearing as equatorial electron density enhancements observed via DEMETER electron density measurements

    NASA Astrophysics Data System (ADS)

    Ryu, K.; Lee, E.; Chae, J. S.; Parrot, M.; Pulinets, S.

    2014-10-01

    We report the processes and results of statistical analysis on the ionospheric electron density data measured by the Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) satellite over a period of 6 years (2005-2010), in order to investigate the correlation between seismic activity and equatorial plasma density variations. To simplify the analysis, three equatorial regions with frequent earthquakes were selected and then one-dimensional time series analysis between the daily seismic activity indices and the equatorial ionization anomaly (EIA) intensity indices, which represent relative equatorial electron density increase, were performed for each region. The statistically significant values of the lagged cross-correlation function, particularly in the region with minimal effects of longitudinal asymmetry, indicate that some of the very large earthquakes with M > 5.0 in the low-latitude region can accompany observable precursory and concurrent EIA enhancements, even though the seismic activity is not the most significant driver of the equatorial ionospheric evolution. The physical mechanisms of the seismo-ionospheric coupling is consistent with our observation, and the possibility of earthquake prediction using the EIA intensity variation is discussed.

  16. Equatorial noise emissions observed by the DEMETER spacecraft during geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Němec, F.; Parrot, M.; Santolík, O.

    2016-10-01

    Equatorial noise emissions are electromagnetic waves routinely observed in the equatorial region of the inner magnetosphere at frequencies between the proton cyclotron frequency and the lower hybrid frequency. Their observations are, however, typically limited to radial distances larger than about 2RE. We use the data measured by the low-altitude DEMETER spacecraft (altitude of about 700 km) to confirm that during periods of enhanced geomagnetic activity, these emissions penetrate down to low radial distances and eventually become a dominant wave emission close to the proton cyclotron frequency in the equatorial region. Wave data obtained during six intense geomagnetic storms (Dst <- 100 nT) are analyzed. It is shown that during the analyzed time intervals, the daytime wave activity within about 20° from the geomagnetic equator is significantly enhanced, while the nightside wave activity shows a weaker increase at lower frequencies. Multicomponent wave data allow us to determine dayside wave propagation parameters. It is shown that the waves are nearly linearly polarized and their wave vector directions are almost perpendicular to the ambient Earth's magnetic field, as it has been previously observed for equatorial noise emissions. Finally, we analyze the dependence of the equatorial wave intensity at the proton cyclotron frequency on Dst and AE geomagnetic indices, and we demonstrate that the dayside wave intensity increases by as much as 3 orders of magnitude during severely disturbed periods.

  17. Design of Helical Solenoid Combined with RF Cavity

    SciTech Connect

    Kashikhin, Vladimir; Andreev, Nicolai; Kashikhin, Vadim; Lamm, Michael; Makarov, Alexander; Romanov, Gennady; Yonehara, Katsuya; Yu, Miao; Zlobin, Alexander; /Fermilab

    2010-05-01

    Helical Solenoids (HS) were proposed for a muon beam ionization cooling. There are substantial energy losses, up to 30 MeV/m, during the passing of the muon beam through the absorber. The main issue of such a system is the muon beam energy recovery. A conventional RF cavity is too large to be placed inside HS. In the paper the results of a dielectric-filled RF cavity design is presented. The proposed RF cavity has a helical configuration. Helical Cooling Channel (HCC) module design which includes high pressure vessel, RF cavity, and superconducting HS is presented. The parameters of these module sub-systems are discussed, and the results of muon beam tracking in combined magnetic and electric 3D fields are shown.

  18. Yoshizawa's cross-helicity effect and its quenching

    NASA Astrophysics Data System (ADS)

    Brandenburg, A.; Rädler, K.-H.

    2013-02-01

    A central quantity in mean-field magnetohydrodynamics is the mean electromotive force EMF, which in general depends on the mean magnetic field. It may however have a part independent of the mean magnetic field. Here we study an example of a rotating conducting body of turbulent fluid with non-zero cross-helicity, in which a contribution to the EMF proportional to the angular velocity occurs (Yoshizawa 1990). If the forcing is helical, it also leads to an alpha effect, and large-scale magnetic fields can be generated. For not too rapid rotation, the field configuration is such that Yoshizawa's contribution to the EMF is considerably reduced compared to the case without alpha effect. In that case, large-scale flows are also found to be generated.

  19. Evolution and dynamics of equatorial plasma bubbles: Relationships to ExB drift, postsunset total electron content enhancements, and equatorial electrojet strength

    NASA Astrophysics Data System (ADS)

    Dabas, R. S.; Singh, Lakha; Lakshmi, D. R.; Subramanyam, P.; Chopra, P.; Garg, S. C.

    2003-08-01

    The growth in altitude/latitude of equatorial plasma bubbles was monitored, using simultaneous recordings of VHF scintillations at five locations situated between 3° and 23°N magnetic latitudes along a common meridian (84°E) during February 1980. The onsets of postsunset scintillation were mostly abrupt in character, and their occurrence at higher latitudes was conditional on their prior appearance at lower latitudes, indicating a causal link to irregularities associated with rising equatorial plasma bubbles. The day-to-day occurrence and the latitudinal, and effectively altitudinal, growths are examined in relation to the prereversal enhancement in h'F during sunset hours and its rate of rise, the onset of a postsunset secondary maximum (PSSM) in ionospheric electron content (IEC), and equatorial electrojet strength (EEJ) variations. It is observed that the bubble and associated irregularities, after its onset over the magnetic equator, reached the highest altitudes/latitudes only on those days when a prior PSSM in IEC is observed there in addition to high values of h'F, dh'F/dt and bubble rise velocity; otherwise it will be confined to near equatorial latitudes only. Also, the equatorial h'F, dh'F/dt, magnitude of PSSM and intensity of 4 GHz scintillations at low latitude are all showing positive correlation with daytime EEJ strength variations. It is concluded that, after the initial development of a bubble, the ExB drift and the PSSM play an important role in the subsequent growth and evolution, and EEJ is a useful parameter for the prediction of the development.

  20. Interaction of field-aligned cold plasma flows with an equatorially-trapped hot plasma - Electrostatic shock formation

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra

    1993-01-01

    Effects of equatorially trapped hot plasma on the highly supersonic cold-plasma flow occurring during early stage plasmaspheric refilling are studied by means of numerical simulations. It is shown that the equatorially trapped hot ions set up a potential barrier for the cold ion beams and facilitate formation of electrostatic shocks by reflecting them from the equatorial region. Simulations with and without the hot plasma show different flow properties; the formation of electrostatic shocks occur only in the former case. The simulation with the hot plasma also reveals that the magnetic trapping in conjunction with the evolution of the electrostatic potential barrier produces ion velocity distribution functions consisting of a cold core and a hot ring in the perpendicular velocity. Such a distribution function provides a source of free energy for equatorial waves. The corresponding electron population is warm and field-aligned.

  1. Flux amplification in Helicity Injected Torus (HIT-II) coaxial helicity injection discharges

    SciTech Connect

    Redd, A. J.; Jarboe, T. R.; Hamp, W. T.; Nelson, B. A.; O'Neill, R. G.; Smith, R. J.

    2008-02-15

    Recent coaxial helicity injection (CHI) studies using the Helicity Injected Torus device [Redd et al., Phys. Plasmas 9, 2006 (2002)] have produced discharges with measured toroidal plasma currents up to 350 kA and direct evidence of both poloidal flux amplification and toroidal current buildup, resulting from a steady process on millisecond time scales. Internal magnetic probes directly measure the poloidal flux amplification, and also measure a strong paramagnetism. Equilibrium reconstructions of these flux amplification discharges, using only surface magnetics, match the internal probes and multipoint Thomson scattering, and show current-profile relaxation during toroidal current ramp up. The criteria for producing flux amplification include both a sufficiently thin electrode-driven edge region and a large magnetic shear in the CHI injector region, which allows injector reconnection activity to overcome resistive decay and build up a closed plasma core. If the interelectrode distance d is small, then both criteria can be easily met. If d is comparable to the device minor radius, then the injector must be overdriven to produce significant flux amplification. The physics basis for generating CHI discharges with the theoretically maximum toroidal current is now understood, and this basis can be used to guide CHI experiments in any axisymmetric device.

  2. Poynting vector and wave vector directions of equatorial chorus

    NASA Astrophysics Data System (ADS)

    Taubenschuss, Ulrich; Santolík, Ondřej; Breuillard, Hugo; Li, Wen; Le Contel, Olivier

    2016-12-01

    We present new results on wave vectors and Poynting vectors of chorus rising and falling tones on the basis of 6 years of THEMIS (Time History of Events and Macroscale Interactions during Substorms) observations. The majority of wave vectors is closely aligned with the direction of the ambient magnetic field (B0). Oblique wave vectors are confined to the magnetic meridional plane, pointing away from Earth. Poynting vectors are found to be almost parallel to B0. We show, for the first time, that slightly oblique Poynting vectors are directed away from Earth for rising tones and toward Earth for falling tones. For the majority of lower band chorus elements, the mutual orientation between Poynting vectors and wave vectors can be explained by whistler mode dispersion in a homogeneous collisionless cold plasma. Upper band chorus seems to require inclusion of collisional processes or taking into account azimuthal anisotropies in the propagation medium. The latitudinal extension of the equatorial source region can be limited to ±6∘ around the B0 minimum or approximately ±5000 km along magnetic field lines. We find increasing Poynting flux and focusing of Poynting vectors on the B0 direction with increasing latitude. Also, wave vectors become most often more field aligned. A smaller group of chorus generated with very oblique wave normals tends to stay close to the whistler mode resonance cone. This suggests that close to the equatorial source region (within ˜20∘ latitude), a wave guidance mechanism is relevant, for example, in ducts of depleted or enhanced plasma density.

  3. Simulations of the equatorial thermosphere anomaly: Geomagnetic activity modulation

    NASA Astrophysics Data System (ADS)

    Lei, Jiuhou; Wang, Wenbin; Thayer, Jeffrey P.; Luan, Xiaoli; Dou, Xiankang; Burns, Alan G.; Solomon, Stanley C.

    2014-08-01

    The modulation of geomagnetic activity on the equatorial thermosphere anomaly (ETA) in thermospheric temperature under the high solar activity condition is investigated using the Thermosphere Ionosphere Electrodynamics General Circulation Model simulations. The model simulations during the geomagnetically disturbed interval, when the north-south component of the interplanetary magnetic field (Bz) oscillates between southward and northward directions, are analyzed and also compared with those under the quiet time condition. Our results show that ionospheric electron densities increase greatly in the equatorial ionization anomaly (EIA) crest region and decrease around the magnetic equator during the storm time, resulting from the enhanced eastward electric fields. The impact of both the direct heat deposition at high latitudes and the modulation of the storm time enhanced EIA crests on the ETA are subsequently studied. The increased plasma densities over the EIA crest region enhance the field-aligned ion drag that accelerates the poleward meridional winds and consequently their associated adiabatic cooling effect. This process alone produces a deeper temperature trough over the magnetic equator as a result of the enhanced divergence of meridional winds. Moreover, the enhanced plasma-neutral collisional heating at higher latitudes associated with the ionospheric positive storm effect causes a weak increase of the ETA crests. On the other hand, strong changes of the neutral temperature are mainly confined to higher latitudes. Nevertheless, the changes of the ETA purely due to the increased plasma density are overwhelmed by those associated with the storm time heat deposition, which is the major cause of an overall elevated temperature in both the ETA crests and trough during the geomagnetically active period. Associated with the enhanced neutral temperature at high latitudes due to the heat deposition, the ETA crest-trough differences become larger under the minor

  4. Simulations of the equatorial thermosphere anomaly: Field-aligned ion drag effect

    NASA Astrophysics Data System (ADS)

    Lei, Jiuhou; Thayer, Jeffrey P.; Wang, Wenbin; Richmond, Arthur D.; Roble, Raymond; Luan, Xiaoli; Dou, Xiankang; Xue, Xianghui; Li, Tao

    2012-01-01

    In this paper the impact of the field-aligned ion drag on equatorial thermosphere temperature and density is quantitatively investigated on the basis of the National Center for Atmospheric Research Thermosphere Ionosphere Electrodynamics General Circulation Model (NCAR TIEGCM) simulations under high solar activity (F107 = 180). The increase of upward vertical winds over the magnetic equator associated with the additional divergence of meridional winds, caused by the inclusion of field-aligned ion drag, leads to a reduction in thermosphere temperature and density at the magnetic equator through enhanced adiabatic cooling. We found that the field-aligned ion drag has an obvious impact on the thermosphere only over the magnetic equatorial region in the daytime and evening sectors, whereas it has less effect on the equatorial thermosphere anomaly (ETA) crests. The daytime neutral temperature over the magnetic equator is reduced by about 30 K, for altitudes above 250 km without significant altitudinal variations, when field-aligned ion drag is included in the simulation. The thermosphere density in the magnetic equatorial region starts to change slightly at 300 km and depletes by about 5% at 400 km, while experiencing a greater decrease with altitude. Furthermore, the trough produced in the neutral temperature and density corresponds well with the magnetic dip equator. The ETA features during 12:00-18:00 LT become obvious as a result of the inclusion of the field-aligned ion drag. Specifically, our results show that at 400 km the crest-trough differences in neutral temperature are about 30-60 K, and the crest-trough ratios in thermosphere density are 1.03-1.06, comparable with observations.

  5. TURBULENT CROSS-HELICITY IN THE MEAN-FIELD SOLAR DYNAMO PROBLEM

    SciTech Connect

    Pipin, V. V.; Kuzanyan, K. M.; Zhang, H.; Kosovichev, A. G.

    2011-12-20

    We study the dynamical and statistical properties of turbulent cross-helicity (correlation of the aligned fluctuating velocity and magnetic field components). We derive an equation governing generation and evolution of the turbulent cross-helicity and discuss its meaning for the dynamo. Using the symmetry properties of the problem we suggest a general expression for the turbulent cross-helicity. Effects of the density stratification, large-scale magnetic fields, differential rotation, and turbulent convection are taken into account. We investigate the relative contribution of these effects to the cross-helicity evolution for two kinds of dynamo models of the solar cycle: a distributed mean-field model and a flux-transport dynamo model. We show that the contribution from the density stratification follows the evolution of the radial magnetic field, while large-scale electric currents produce a more complicated pattern of the cross-helicity of comparable magnitude. The pattern of the cross-helicity evolution strongly depends on details of the dynamo mechanism. Thus, we anticipate that direct observations of the cross-helicity on the Sun may serve for the diagnostic purpose of the solar dynamo process.

  6. Equatorial Noise Emissions and Their Quasi-Periodic Modulation

    NASA Astrophysics Data System (ADS)

    Nemec, F.; Santolik, O.; Hrbackova, Z.; Pickett, J. S.; Cornilleau-Wehrlin, N.; Parrot, M.; Hayosh, M.

    2015-12-01

    Equatorial noise (EN) emissions are electromagnetic waves at frequencies between the proton cyclotron frequency and the lower hybrid frequency routinely observed in the equatorial region of the inner magnetosphere. They propagate in the extraordinary mode nearly perpendicular to the ambient magnetic field, and they exhibit a harmonic structure related to the ion cyclotron frequency in the source region. We analyze more than 2000 EN events observed by the wave instruments on board the Cluster spacecraft, and we find that about 5% of EN events are not continuous in time, but exhibit a quasi-periodic (QP) modulation of the wave intensity. Typical modulation periods are on the order of minutes. The events predominantly occur in the noon-to-dawn local time sector, and their occurrence is related to the periods of increased geomagnetic activity and higher solar wind speeds. We suggest that the QP modulation of EN events may be due to compressional ULF pulsations, which periodically modulate the wave growth in the source region. These compressional ULF pulsations were identified in about half of the events. Finally, we demonstrate that EN emissions with QP modulation of the wave intensity can propagate down to altitudes as low as 700 km.

  7. Climatology characterization of equatorial plasma bubbles using GPS data

    NASA Astrophysics Data System (ADS)

    Magdaleno, Sergio; Herraiz, Miguel; Altadill, David; de la Morena, Benito A.

    2017-01-01

    The climatology of equatorial plasma bubbles (EPBs) for the period 1998-2008 was studied using slant total electron content (sTEC) derived from global positioning system (GPS) data. The sTEC values were calculated from data measured at 67 International GNSS Service (IGS) stations distributed worldwide around the geomagnetic equator and embracing the region of the ionospheric equatorial anomaly (IEA). EPBs and their characteristics were obtained using the Ionospheric Bubble Seeker (IBS) application, which detects and distinguishes sTEC depletions associated with EPBs. This technique bases its analysis on the time variation of the sTEC and on the population variance of this time variation. IBS finds an EPB by default when an sTEC depletion is greater than 5 TEC units (TECu). The analysis of the spatial behavior shows that the largest rate of EPB takes place at the equator and in the South America-Africa sector, while their occurrence decreases as the distance from the magnetic equator increases. The depth and duration of the sTEC depletions also maximize at the equator and in the South America-Africa sector and weaken departing from the equator. The results of the temporal analysis for the data of the IGS stations located in AREQ, NKLG, IISC, and GUAM indicate that the greatest rate of EPB occurrence is observed for high solar activity.

  8. Expanding Non-solenoidal Startup with Local Helicity Injection to Increased Toroidal Field and Helicity Injection Rate

    NASA Astrophysics Data System (ADS)

    Perry, J. M.; Barr, J. L.; Bodner, G. M.; Bongard, M. W.; Burke, M. G.; Fonck, R. J.; Hinson, E. T.; Lewicki, B. T.; Reusch, J. A.; Schlossberg, D. J.; Winz, G. R.

    2015-11-01

    Local helicity injection (LHI) is a non-solenoidal startup technique under development on the Pegasus ST. Plasma currents up to 0.18 MA have been initiated by LHI in conjunction with poloidal field induction. A 0-D power balance model has been developed to predict plasma current evolution by balancing helicity input against resistive dissipation. The model is being validated against a set of experimental measurements and magnetic reconstructions with radically varied plasma geometric evolutions. Outstanding physics issues with LHI startup are the scalings of confinement and MHD activity with helicity injection rate and toroidal field strength, as well as injector behavior at high field. Preliminary results from the newly-installed Thomson scattering system suggest core temperatures of a few hundred eV during LHI startup. Measurements are being expanded to multiple spatial points for ongoing confinement studies. A set of larger-area injectors is being installed in the lower divertor region, where increased toroidal field will provide a helicity injection rate over 3 times that of outboard injectors. In this regime helicity injection will be the dominant current drive. Experiments with divertor injectors will permit experimental differentiation of several possible confinement models, and demonstrate the feasibility of LHI startup at high field. Work supported by US DOE grant DE-FG02-96ER54375.

  9. Ion-neutral coupling: Geomagnetic activity modulation of the Equatorial Thermosphere Anomaly

    NASA Astrophysics Data System (ADS)

    Lei, J.; Dou, X.; Thayer, J. P.; Wang, W.; Luan, X.

    2012-12-01

    The two-way momentum coupling between the neutral thermosphere and its plasma environment plays an important role in producing the trough of the Equatorial Thermosphere Anomaly (ETA). It was found that field-aligned ion drag associated with the equatorial ionosphere anomaly (EIA) can result in vertical motion in the neutral gas over the magnetic equator leading to a reduction in temperature and a trough in thermosphere density at a given altitude. It was also found that the formation of the ETA crests is attributed to plasma-neutral heating which has two peaks in the topside ionosphere aside the magnetic equator. This study is devoted to address the geomagnetic activity affect on the coupling between the equatorial ionosphere and thermosphere on the basis of satellite observations and first-principle ionosphere-thermosphere simulations. The deposited magnetospheric energy into the upper atmosphere associated with geomagnetic activity changes the ionosphere and its background neutral atmosphere significantly and hence their coupling processes. On the other hand, the enhanced electric field and neutral wind during storm time can modulate the EIA and ETA and alter the momentum and energy coupling between the thermosphere and ionosphere in the equatorial F region. Results from NCAR-TIEGCM simulations will help elucidate the ion-neutral coupling processes related to the ETA under active geomagnetic conditions

  10. Experimental observation of discrete helical modes in imploding cylindrical liners

    NASA Astrophysics Data System (ADS)

    Yager-Elorriaga, D. A.; Zhang, P.; Steiner, A. M.; Jordan, N. M.; Campbell, P. C.; Lau, Y. Y.; Gilgenbach, R. M.

    2016-10-01

    The 1-MA Linear Transformer Driver at the University of Michigan was used to implode ultrathin (400 nm thick) cylindrical aluminum liners1 that were pre-embedded with externally applied, axial magnetic fields of Bz = 0.2 - 2.0 T. Using 12-frame laser shadowgraphy and visible self-emission, helical striations were found that increased in pitch angle during the implosion and decreased in angle during the later time explosion, despite the relatively large, peak azimuthal magnetic field exceeding 40 T. The results are interpreted as a discrete, non-axisymmetric eigenmode of a helical instability that persists from implosion to explosion. The helical pitch angle φ was found to obey the simple relation φ = m / kR , where m, k, and R are the azimuthal mode number, axial wavenumber, and radius of the helical instability. Analytic growth rates2 for experimental parameters are presented, and show that early in the current pulse, axisymmetric modes (m = 0) are completely stabilized while non-axisymmetric modes (m > 1) are found to be unstable. This research was supported by DOE Award DE-SC0012328, Sandia National Laboratories, and the NSF. The fast framing camera was supported by AFOSR Grant #FA9550-15-1-0419.

  11. Position and Trajectrories of helical microswimmers inside circular channels

    NASA Astrophysics Data System (ADS)

    Caldag, Hakan; Yesilyurt, Serhat

    2015-11-01

    This work reports the position and orientation of helical mm-sized microswimmers in circular channels obtained by image processing of recorded images. Microswimmers are biologically inspired structures with huge potential for medical practices such as delivery of potent drugs into tissues. In order to understand the hydrodynamic effects of confinement on the velocity and stability of trajectories of swimmers, we developed helical microswimmers with a magnetic head and a rigid helical tail, similar to those of E. coli bacteria. The experiments are recorded using a digital camera, which is placed above the experimental setup that consists of three Helmholtz pairs, generating a rotating magnetic field. A channel containing the microswimmer is placed along the axis of the innermost coil. Image processing tools based on contrast-enhancement are used to obtain the centroid of the head of the swimmer and orientation of the whole swimmer in the channel. Swimmers that move in the direction of the head, i.e. pushed kinematically by the tail, has helical trajectories, which are more unstable in the presence of Poiesuille flow inside the channel; and the swimmers that are pulled by the tail, have trajectories that stabilize at the centerline of the channel.

  12. Helical CT in emergency radiology.

    PubMed

    Novelline, R A; Rhea, J T; Rao, P M; Stuk, J L

    1999-11-01

    Today, a wide range of traumatic and nontraumatic emergency conditions are quickly and accurately diagnosed with helical computed tomography (CT). Many traditional emergency imaging procedures have been replaced with newer helical CT techniques that can be performed in less time and with greater accuracy, less patient discomfort, and decreased cost. The speed of helical technology permits CT examination of seriously ill patients in the emergency department, as well as patients who might not have been taken to CT previously because of the length of the examinations of the past. Also, helical technology permits multiple, sequential CT scans to be quickly obtained in the same patient, a great advance for the multiple-trauma patient. Higher quality CT examinations result from decreased respiratory misregistration, enhanced intravenous contrast material opacification of vascular structures and parenchymal organs, greater flexibility in image reconstruction, and improved multiplanar and three-dimensional reformations. This report summarizes the role and recommended protocols for the helical CT diagnosis of thoracic aortic trauma; aortic dissection; pulmonary embolism; acute conditions of the neck soft tissues; abdominal trauma; urinary tract stones; appendicitis; diverticulitis; abdominal aortic aneurysm; fractures of the face, spine, and extremities; and acute stroke.

  13. Up and down cascades: three-dimensional magnetic field model.

    PubMed

    Blanter, E M; Shnirman, M G; Le Mouël, J L

    2002-06-01

    In our previous works we already have proposed a two-dimensional model of geodynamo. Now we use the same approach to build a three-dimensional self-excited geodynamo model that generates a large scale magnetic field from whatever small initial field, using the up and down cascade effects of a multiscale turbulent system of cyclones. The multiscale system of turbulent cyclones evolves in six domains of an equatorial cylindrical layer of the core. The appearance of new cyclones is realized by two cascades: a turbulent direct cascade and an inverse cascade of coupling of similar cyclones. The interaction between the different domains is effected through a direct cascade parameter which is essential for the statistics of the long-life symmetry breaking. Generation of the secondary magnetic field results from the interaction of the components of the primary magnetic field with the turbulent cyclones. The amplification of the magnetic field is due to the transfer of energy from the turbulent helical motion to the generated magnetic field. The model demonstrates a phase transition through the parameter characterizing this energy transfer. In the supercritical domain we obtain long-term intervals of constant polarity (chrons) and quick reversals; relevant time constants agree with paleomagnetic observations. Possible application of the model to the study of the geometrical structure of the geomagnetic field (and briefly other planetary fields) is discussed.

  14. The Dynamics of Equatorial F Layer Irregularities.

    DTIC Science & Technology

    2014-09-26

    RD-8158 650 THE DYNAMICS OF EQUATORIAL F LAYER IRREGULARITIE5(U) BOSTON UNIV MR DEPT OF ASTRONOMY J AARONS ET AL. 38 JUN 85 RCBU-6276-5 N88814-82-K...Jules Aarons and Michael Mendillo, Co-Principal Investigators Department of Astronomy Boston University Boston, MA 02215 BOSTON UNIVERSITY Thi doumnt

  15. Resilience of helical fields to turbulent diffusion - II. Direct numerical simulations

    NASA Astrophysics Data System (ADS)

    Bhat, Pallavi; Blackman, Eric G.; Subramanian, Kandaswamy

    2014-03-01

    Blackman and Subramanian (Paper I) found that sufficiently strong large-scale helical magnetic fields are resilient to turbulent diffusion, decaying on resistively slow rather than turbulently fast time-scales. This bolsters fossil field origins for magnetic fields in some astrophysical objects. Here, we study direct numerical simulations (DNS) of decaying large-scale helical magnetic fields in the presence of non-helical turbulence for two cases: (1) the initial helical field is large enough to decay resistively but transitions to fast decay; (2) the case of Paper I, wherein the transition energy for the initial helical field to decay fast directly is sought. Simulations and two-scale modelling (based on Paper 1) reveal the transition energy, Ec1 to be independent of the turbulent forcing scale, within a small range of RM. For case (2), the two-scale theory predicts a large-scale helical transition energy of Ec2 = (k1/kf)2Meq, where k1 and kf are the large-scale and small turbulent forcing scale, respectively, and Meq is the equipartition magnetic energy. The DNS agree qualitatively with this prediction but the RM, currently achievable, is too small to satisfy a condition 3/RM ≪ (k1/kf)2, necessary to robustly reveal the transition, Ec2. That two-scale theory and DNS agree wherever they can be compared suggests that Ec2 of Paper I should be identifiable at higher RM in DNS.

  16. Wave Forcing of Saturn's Equatorial Oscillation

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Schlinder, P. J.; Guerlet, S.; Fouchet, T.

    2011-01-01

    Ground-based measurements and Cassini data from CIRS thermal-infrared spectra and radio-occultation soundings have characterized the spatial structure and temporal behavior of a 15-year equatorial oscillation in Saturn's stratosphere. The equatorial region displays a vertical pattern of alternating warm and cold anomalies and, concomitantly, easterly and westerly winds relative to the cloud-top winds, with a peak-to-peak amplitude of 200 m/s. Comparison of the Cassini data over a four-year period has established that the pattern of mean zonal winds and temperatures descends at a rate of roughly I scale height over 4 years. This behavior is reminiscent of the equatorial oscillations in Earth's middle atmosphere. Here the zonal-mean spatial structure and descending pattern are driven by the absorption of vertically propagating waves. The maximum excursions in the pattern of easterly and westerly winds is determined by the limits of the zonal phase velocities of the waves. Here we report on the characterization of the waves seen in the temperature profiles retrieved from the Cassini radio-occultation soundings. The equatorial profiles exhibit a complex pattern of wavelike structure with dimensions one pressure scale height and smaller. We combine a spectral decomposition with a WKBJ analysis, where the vertical wavelength is assumed to vary slowly with the ambient static stability and doppler-shifted phase velocity of the wave. Use of the temperature and zonal wind maps from CIRS makes this approach viable. On Earth, the wave forcing associated with the equatorial oscillations generates secondary meridional circulations that affect the mean flow and planetary wave ducting well away from the equator. This may relate to the triggering of the recently reported mid-latitude storms on Saturn.

  17. Brownian motion of helical flagella.

    PubMed

    Hoshikawa, H; Saito, N

    1979-07-01

    We develops a theory of the Brownian motion of a rigid helical object such as bacterial flagella. The statistical properties of the random forces acting on the helical object are discussed and the coefficients of the correlations of the random forces are determined. The averages , and are also calculated where z and theta are the position along and angle around the helix axis respectively. Although the theory is limited to short time interval, direct comparison with experiment is possible by using the recently developed cinematography technique.

  18. On steady kinematic helical dynamos

    NASA Astrophysics Data System (ADS)

    Eltayeb, I. A.; Loper, D. E.

    The equations governing steady kinematic helical dynamos are studied, using the formalism of Benton (1979), when the flow has no radial component (in cylindrical coordinates). It is shown that all solutions must decay exponentially to zero at large distances, s, from the axis of the helix. When the flow depends on s only it is shown that a necessary condition for dynamo action is that the flow possesses components along both the primary and secondary helices. It is also found that periodic motion of one mode along the primary helix cannot support dynamo action even if the field is composed of mean and periodic parts.

  19. Scale analysis of equatorial plasma irregularities derived from Swarm constellation

    NASA Astrophysics Data System (ADS)

    Xiong, Chao; Stolle, Claudia; Lühr, Hermann; Park, Jaeheung; Fejer, Bela G.; Kervalishvili, Guram N.

    2016-07-01

    In this study, we investigated the scale sizes of equatorial plasma irregularities (EPIs) using measurements from the Swarm satellites during its early mission and final constellation phases. We found that with longitudinal separation between Swarm satellites larger than 0.4°, no significant correlation was found any more. This result suggests that EPI structures include plasma density scale sizes less than 44 km in the zonal direction. During the Swarm earlier mission phase, clearly better EPI correlations are obtained in the northern hemisphere, implying more fragmented irregularities in the southern hemisphere where the ambient magnetic field is low. The previously reported inverted-C shell structure of EPIs is generally confirmed by the Swarm observations in the northern hemisphere, but with various tilt angles. From the Swarm spacecrafts with zonal separations of about 150 km, we conclude that larger zonal scale sizes of irregularities exist during the early evening hours (around 1900 LT).

  20. Model NbTi Helical Solenoid Fabrication and Test Results

    SciTech Connect

    Andreev, N.; Barzi, E.; Chlachidze, G.; Evbota, D.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Makarov, A.; Novitski, I.; Orris, D.F.; Tartaglia, M.A.; /Fermilab

    2011-09-01

    A program to develop model magnets for a helical cooling channel is under way at Fermilab. In the first steps of a planned sequence of magnets, two four-coil helical solenoid models with 300 mm aperture have been fabricated and tested. These two models, HSM01 and HSM02, used insulated NbTi Rutherford cable wound onto stainless steel rings with spliceless transitions between coils. Strip heaters were included for quench protection of each coil, and the coils were epoxy-impregnated after winding inside the support structures. Based on the results of the first model the second model was made using a cable with optimized cross-section, improved winding and epoxy-impregnation procedures, enhanced ground insulation, and included heat exchange tubing for a test of conduction cooling. We report on the results and lessons learned from fabrication and tests of these two models.

  1. Exact scaling laws for helical three-dimensional two-fluid turbulent plasmas.

    PubMed

    Andrés, N; Galtier, S; Sahraoui, F

    2016-12-01

    We derive exact scaling laws for a three-dimensional incompressible helical two-fluid plasma, without the assumption of isotropy. For each ideal invariant of the two-fluid model, i.e., the total energy, the electron helicity, and the proton helicity, we derive simple scaling laws in terms of two-point increment correlation functions expressed in terms of the velocity field of each species and the magnetic field. These variables are appropriate for comparison with direct numerical simulation data and with in situ measurements in the near-Earth space over a broad range of spatial scales. Finally, using the exact scaling laws and dimensional analysis we predict the magnetic energy and electron helicity spectra for different ranges of scales.

  2. Better understanding of tubular helical buckling

    SciTech Connect

    Wu, J.

    1996-09-01

    Tubular buckling is a significant problem within the oil industry. Although it has been studied for many years, methods to analyze tubular helical buckling continues to appear in the literature. Several criteria have been derived and presented leading to confusion in understanding and correctly predicting tubular helical buckling. The prediction of tubular helical buckling is complicated by the fact that the tubular is confined within the wellbore. The tubular initially buckles sinusoidally, and then changes into the shape of a helix (helical buckling) as the axial load increases. Different approaches in modeling the helical buckling process and the use of energy methods resulted in those different helical buckling criteria. Helical buckling criteria proposed in the literature, as well as their derivations are discussed in this paper, to help better understand and effectively predict tubular helical buckling in engineering operations.

  3. Investigating a horizontal helical antenna for use in the phantom monopole configuration

    NASA Astrophysics Data System (ADS)

    LeMieux, Mattison

    A phantom monopole was successfully simulated using wire loop antennas prior to this thesis work. These wire loop antennas have an undesirable input impedance, making them difficult to match and implement in physical building. A new type of antenna needs to be found that has a more desirable impedance while still maintaining the same near magnetic field and far field radiation pattern. The research done for this problem focused on a horizontally placed helical antenna. There is little research done on a horizontally placed helical antenna. The fact that there isn't information readily available meant that many different parameters of this antenna were investigated. A normal mode helical antenna was chosen because of its size and impedance. A helical antenna is an electrically small antenna, like the wire loop antenna, with an improved impedance compared to the wire loop. The work done not only dealt with computer simulation of the helical antenna, but also physical building of the antenna. The physical testing was done in order to get real world data and to support the computer modeling of the phantom monopole. Through testing and simulations, it was found that a horizontally placed helical antenna provided an alternative to the wire loop antenna originally used. By placing the helical antenna horizontally, the near magnetic field and far field radiation pattern mimicked those found in the original wire loop configuration. This means the phantom monopole is recreated using a new type of antenna that has an improved input impedance.

  4. Theory of incompressible MHD turbulence with scale-dependent alignment, anisotropy, and cross-helicity

    SciTech Connect

    Podesta, John J

    2009-01-01

    A theory of incompressible MHD turbulence with nonvanishing cross-helicity is derived based on two new observations from the Wind spacecraft. The first is the observation that the normalized cross-helicity {sigma}{sub c} is approximately scale-invariant throughout the inertial range. The second is the observation that the probablities p and q for velocity and magnetic field fluctuations to be positively or negatively aligned are also approximately scale-invariant. The theory extends the theory of Boldyrev (2006) to turbulence with nonvanishing cross-helicity assuming that the cascades of the two Elsasser energies are both in a state of critical balance.

  5. Mechanical analysis and test results of 4-coil superconducting helical solenoid model

    SciTech Connect

    Yu, M.; Andreev, N.; Chlachidze, G.; Johnson, R.P.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Lopes, M.L.; Makarov, A.; Tartaglia, M.; Yonehara, K.; /Fermilab

    2010-01-01

    Novel configurations of helical superconducting magnets for muon beam 6D phase space cooling channels and demonstration experiments are being designed at Fermilab. Operating as needed for the beam cooling in a cryogenic environment, the helical solenoid generates longitudinal and transverse magnetic fields; meanwhile, large Lorentz forces are produced, so rigid coil support structures need to be designed. A short model of a helical solenoid (HS), consisting of four coils and supporting structures, was designed, built and tested at Fermilab. The magnetic and mechanical designs were analyzed using TOSCA and ANSYS. The supporting structures were fabricated and assembled using SSC NbTi cable. Strain gauges were utilized to monitor the deformation of the structures due to both thermal contraction and Lorentz forces. The superconducting coils were trained during the test. The model should prove the design concept, fabrication technology, and the magnet system performance.

  6. Note: Helical nanobelt force sensors

    NASA Astrophysics Data System (ADS)

    Hwang, G.; Hashimoto, H.

    2012-12-01

    We present the fabrication and characterization of helical nanobelt force sensors. These self-sensing force sensors are based on the giant piezoresistivity of helical nanobelts. The three-dimensional helical nanobelts are self-formed from 27 nm-thick n-type InGaAs/GaAs bilayers using rolled-up techniques, and assembled onto electrodes on a micropipette using nanorobotic manipulations. The helical nanobelt force sensors can be calibrated using a calibrated atomic force microscope cantilever system under scanning electron microscope. Thanks to their giant piezoresistance coefficient (515 × 10-10 Pa-1), low stiffness (0.03125 N/m), large-displacement capability (˜10 μm), and good fatigue resistance, they are well suited to function as stand-alone, compact (˜20 μm without the plug-in support), light (˜5 g including the plug-in support), versatile and large range (˜μN) and high resolution (˜nN) force sensors.

  7. EVOLUTION OF SPINNING AND BRAIDING HELICITY FLUXES IN SOLAR ACTIVE REGION NOAA 10930

    SciTech Connect

    Ravindra, B.; Yoshimura, Keiji; Dasso, Sergio E-mail: yosimura@solar.physics.montana.edu

    2011-12-10

    Multiplication-Sign 10{sup 43} Mx{sup 2}. The observed reversal in the sign of spinning and braiding helicity fluxes could be the signature of the emergence of a twisted flux tube, which acquires the writhe of an opposite sign. The magnetic cloud associated with the ejected mass has carried about -7 Multiplication-Sign 10{sup 41} Mx{sup 2} of helicity. A time integration of helicity flux of about 1.2 hr integrated backward in time of the observation of the coronal mass ejection is sufficient for this event.

  8. The wobbling-to-swimming transition of rotated helices

    NASA Astrophysics Data System (ADS)

    Man, Yi; Lauga, Eric

    2013-07-01

    A growing body of work aims at designing and testing micron-scale synthetic swimmers. One method, inspired by the locomotion of flagellated bacteria, consists of applying a rotating magnetic field to a rigid, helically shaped, propeller attached to a magnetic head. When the resulting device, termed an artificial bacteria flagellum, is aligned perpendicularly to the applied field, the helix rotates and the swimmer moves forward. Experimental investigation of artificial bacteria flagella shows that at low frequency of the applied field, the axis of the helix does not align perpendicularly to the field but wobbles around the helix, with an angle decreasing as the inverse of the field frequency. Using numerical computations and asymptotic analysis, we provide a theoretical explanation for this wobbling behavior. We numerically demonstrate the wobbling-to-swimming transition as a function of the helix geometry and the dimensionless Mason number which quantifies the ratio of viscous to magnetic torques. We then employ an asymptotic expansion for near-straight helices to derive an analytical estimate for the wobbling angle allowing to rationalize our computations and past experimental results. These results can help guide future design of artificial helical swimmers.

  9. Helical Equilibrium Reconstruction using V3FIT on MST

    NASA Astrophysics Data System (ADS)

    Koliner, J. J.; Chapman, B. E.; Sarff, J. S.; Anderson, J. K.; Capecchi, W.; Eilerman, S.; Reusch, J. A.; Hanson, J. D.; Cianciosa, M. R.; Terranova, D.

    2013-10-01

    Plasmas in the MST reversed field pinch bifurcate to a helical equilibrium, forming a Single Helical Axis (SHAx) at high plasma current (Ip ~ 500 kA) and low density (ne ~ 0.5 × 1019 m-3) . Modeling of these plasmas requires an equilibrium solver that does not assume axisymmetry. The V3FIT 3D equilibrium reconstruction code is applied to helical equilibria with diagnostic measurements as constraints. The 11-chord interferometer-polarimeter, 22-point Thomson scattering system, and 4-camera soft X-ray probes have been included in addition to external magnetics. Inputs have been adapted for MST's close-fitting conducting shell. Investigations into the role of shell eddy currents have been made, including comparison to eigenfunctions generated from the Newcomb equation. At the plasma boundary, ~60% of the static n = 5 toroidal field BT seen by magnetic probes is generated by currents in the shell. The generated VMEC equilibrium serves as the input for applications relevant to the 1 MW, 25 keV neutral beam injector. During beam injection, fast ion confinement is reduced in periods with a SHAx compared to axisymmetric plasmas. A single particle orbit code has been applied to calculate particle trajectories in the 3D case, confirming a strong influence of SHAx equilibria on fast ion orbits. EPM magnetic bursts terminate at the transition to SHAx. Alfvén continua have been generated to study this phenomenon with the reduced-MHD code STELLGAP. Work Supported by USDoE and NSF.

  10. Helicity and the ALPHA-EFFECT:DYNAMO Theory and Observations

    NASA Astrophysics Data System (ADS)

    Kuzanyan, Kirill M.

    The best available tracers of the alpha-effect in the solar convection zone are current helicity and twist of the photospheric magnetic fields obtained by vector magnetographic observations. Here we present results of systematic studies of the current helicity and twist of averaged over a series of solar active regions. The data analysis enables us to reveal latitudinal dependence of the effect which is antisymmetric over the solar equator. Consideration of individual rotation rates of active regions versus the solar internal differential rotation law indicates that the radial structure of the alpha-effect is likely sign-changing. These properties are in agreement with theoretical estimates and numerical simulations of flows in the solar convection zone and model assumptions of dynamo theory. The fine structure of observational signatures of the alpha-effect indicates that the magnetic field generation mainly occurs near the bottom of the convection zone. We revealed some cyclic evolution of current helicity over the solar cycle that is in accord with dynamo models under certain parameter range. Thus knowledge on the spatially-temporal structure of signatures of the alpha-effect leads to further improvement of dynamo theory in description of the mechanism of generation of solar magnetic fields.

  11. Gyroscope precession along bound equatorial plane orbits around a Kerr black hole

    NASA Astrophysics Data System (ADS)

    Bini, Donato; Geralico, Andrea; Jantzen, Robert T.

    2016-09-01

    The precession of a test gyroscope along stable bound equatorial plane orbits around a Kerr black hole is analyzed, and the precession angular velocity of the gyro's parallel transported spin vector and the increment in the precession angle after one orbital period is evaluated. The parallel transported Marck frame which enters this discussion is shown to have an elegant geometrical explanation in terms of the electric and magnetic parts of the Killing-Yano 2-form and a Wigner rotation effect.

  12. Investigation of electron beam transport in a helical undulator

    SciTech Connect

    Jeong, Y.U.; Lee, B.C.; Kim, S.K.

    1995-12-31

    Lossless transport of electrons through the undulator is essential for CW operation of the FELs driven by recirculating electrostatic accelerators. We calculate the transport ratio of an electron beam in a helical undulator by using a 3-D simulation code and compare the results with the experimental results. The energy and the current of the electron beam are 400 keV and 2 A, respectively. The 3-D distribution of the magnetic field of a practical permanent-magnet helical undulator is measured and is used in the calculations. The major parameters of the undutlator are : period = 32 mm, number of periods = 20, number of periods in adiabatic region = 3.5, magnetic field strength = 1.3 kG. The transport ratio is very sensitive to the injection condition of the electron beam such as the emittance, the diameter, the divergence, etc.. The injection motion is varied in the experiments by changing the e-gun voltage or the field strength of the focusing magnet located at the entrance of the undulator. It is confirmed experimentally and with simulations that most of the beam loss occurs at the adiabatic region of the undulator regardless of the length of the adiabatic region The effect of axial guiding magnetic field on the beam finish is investigated. According to the simulations, the increase of the strength of axial magnetic field from 0 to 1 kG results in the increase of the transport ratio from 15 % to 95%.

  13. Helicity Within and Among Macromolecules

    NASA Astrophysics Data System (ADS)

    Green, Mark M.

    2004-03-01

    There are several classes of helical polymers and supramolecular arrays in which the left and right helical senses are of equal probability and as well in dynamic equilibrium. One example of this class of materials is a polymer first created at Dupont as a commercial fiber candidate almost fifty years ago but which did not rise to the level necessary for commercial use. The polymer, nylon 1, widely known as a polyisocyanate, did become a focal point of research for polymer physics because of its stiff archetypical wormlike nature. An array of research tools was able to elucidate the conformational characteristics of this polymer and therefore reveal in quantitative detail both the source of its stiffness and the limit to this characteristic. Further effort explored the nature of the expected lyotropic liquid crystal properties with similar success. As part of these studies, chiral experiments, which were introduced to determine how to favor one helical sense, played a key role. Statistical physical analysis of these chiral experiments first by Shneior Lifson for uniform chiral fields and later by Jonathan Selinger for quenched random chiral fields gave insight into the cooperative characteristics by which the chiral information influenced the helical senses in these polymers. These kinds of experiments finding parallels to the behavior of sergeants and soldiers and to majority rule were later applied widely in the literature offering insight into the cooperative nature of helical polymers and arrays in general. Moreover, the interplay between the character of the single chains and the liquid crystals that arise in concentrated solutions from the polyisocyanates yielded new kinds of information about the cholesteric state formed by lyotropic liquid crystals in general and even led to new phenomena connecting liquid crystal behavior to temperature.

  14. Long waves in the equatorial Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Philander, George; Halpern, David; Hansen, Donald; Legeckis, Richard; Miller, Laury; Watts, Randolph; Wimbush, Mark; Paul, Carl; Watts, Randolph; Weisberg, Robert

    Westward traveling waves, with a period of 3 weeks and a wavelength of ˜1000 km, are observed intermittently in the central and eastern equatorial Pacific Ocean (see cover). The waves were first detected in 1975 in satellite measurements of the sea surface temperature [Legeckis, 1977]. Since then, additional measurements (under the auspices of the NOAA program Equatorial Pacific Ocean Climate Studies (EPOCS)) with a variety of instruments—drifting buoys, current meters and temperature sensors on moorings, and inverted echo sounders—have provided considerable information about these waves and have confirmed the hypothesis that they are caused by instabilities associated primarily with the latitudinal shear of the surface currents near the equator [Philander, 1978a; Cox, 1980].

  15. Effect of ouabain on lens equatorial currents.

    PubMed

    Wind, B E; Walsh, S; Patterson, J W

    1988-11-01

    The equatorial potassium current measured with the vibrating probe is a segment of the potassium electrical loop. The equatorial current, J, was measured simultaneously with the PD and with the response to an injected current, I. The injection of sufficient inward current, I, made the PD more negative and increased the electrical gradient so that the current J became zero. The PD at which this occurs (PDJ-0) is the reversal potential. Following treatment with ouabain, the PD and PDJ-0 both become less negative. Since the driving force for the current, J, is equal to the difference between PD and PDJ-0, J may increase, stay the same or decrease depending on the relative changes in PD and PDJ-0. In the presence of ouabain, the PDJ-0 changes in parallel with or more rapidly than the PD.

  16. A study of the equatorial signatures of long period transient events (600 - 7200 s)

    NASA Astrophysics Data System (ADS)

    Santos, J.; Dutra, S.; Trivedi, N.; Vieira, L.; Echer, E.; Schuch, N.

    Transient variations in the H magnetic field component of magnetograms at high latitude are a common feature. They are associated with energy transference from solar wind to the magnetosphere. Abrupt changes in the solar wind generate Alfvén and fast mode waves through the magnetosphere. The Alfvén wave doesn't propagate in the direction perpendicular to the geomagnetic field, so equatorial signatures are probably caused by fast mode waves. On the other hand, complicated signatures observed at high latitudes represent a composition of Alfvén and fast mode waves. A second suggested propagation mechanism to low latitudes is the Earth-ionosphere wave-guide. In this work, geomagnetic data from the Brazilian magnetic stations at Belém (BLM), Eusébio (EUS), Ji-Paraná (JIP), São luis (SLZ) and São Martinho da Serra (SMS), all located near the geomagnetic equator, are used to look for equatorial signatures of transient events with periods of 600 - 7200s. This period range includes two special types of transient variations named Traveling convection vortices (TCV) and DP2 fluctuations. We try to identify their morphological characteristics and compare with the high latitude phenomena's characteristics. Satellite data (WIND, ACE and GOES) are used to see magnetosphere signatures and solar wind and interplanetary magnetic field (IMF) conditions during the events. The main objective is try to find the contribution of each propagation mechanism of these transient events arriving at the equatorial latitudes.

  17. Models of the Equatorial Ocean Circulation.

    DTIC Science & Technology

    1980-01-01

    doctoral committee for their encouragement and advice in the development of this work. I am especially indebted to Dr. Julian P. McCreary of Nova University...large scale wind fluctuations thousands of kilometers to the west in the Central Pacific ( McCreary , 1977). A better understanding of such events could...all equatorial oceans can be found in Knauss (1963); Philander (1973b); Leetmaa, McCreary and Moore (1980); Tsuchiya (1975); Cochrane et al. (1979) and

  18. Spatial and Temporal Variations of Solar Quiet Daily Sq Variation and Equatorial Electrojet Over Africa: Results From International Heliophysical Year

    NASA Astrophysics Data System (ADS)

    Rabiu, A.; Yumoto, K.; Bello, O.

    2010-12-01

    Space Environment Research Centre of Kyushu University, Japan, installed 13 units of Magnetic Data Acquisition Systems MAGDAS over Africa during the International Heliophysical Year IHY. Magnetic records from 10 stations along the African 96o Magnetic Meridian (Geographical 30o - 40o East) were examined for Solar quiet daily Sq variation in the three geomagnetic field components H, D and Z. Spatial variations of Sq in the geomagnetic components were examined. Signatures of equatorial electrojet and worldwide Sq were identified and studied in detail. H field experienced more variation within the equatorial electrojet zone. Diurnal and seasonal variations of the geomagnetic variations in the three components were discussed. Levels of inter-relationships between the Sq and its variability in the three components were statistically derived and interpreted in line with the mechanisms responsible for the variations of the geomagnetic field. Data from 2 magnetic observatories within equatorial electrojet EEJ strip and 2 stations outside the EEJ strip were employed to evaluate and study the signatures of the Equatorial electrojet over the African sector. The transient variations of the EEJ at two almost parallel axes using Lagos-Ilorin and Nairobi-Addis pairs were examined. The EEJ appear stronger in East than West Africa. The magnitudes and patterns of variation of EEJ strength along the two axes were examined for any simultaneity or otherwise of responses to ionospheric processes. The flow gradient of EEJ along the African sector was estimated and its diurnal variation studied.

  19. Hiss or equatorial noise? Ambiguities in analyzing suprathermal ion plasma wave resonance

    NASA Astrophysics Data System (ADS)

    Sarno-Smith, Lois K.; Liemohn, Michael W.; Skoug, Ruth M.; Santolik, Ondrej; Morley, Steven K.; Breneman, Aaron; Larsen, Brian A.; Reeves, Geoff; Wygant, John R.; Hospodarsky, George; Kletzing, Craig; Moldwin, Mark B.; Katus, Roxanne M.; Zou, Shasha

    2016-10-01

    Previous studies have shown that low-energy ion heating occurs in the magnetosphere due to strong equatorial noise emission. Observations from the Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument recently determined that there was a depletion in the 1-10 eV ion population in the postmidnight sector of Earth during quiet times at L < 3. The diurnal variation of equatorially mirroring 1-10 eV H+ ions at 2 < L < 3 is connected with similar diurnal variation in the electric field component of plasma waves ranging between 150 and 600 Hz. Measurements from the Van Allen Probes Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) data set are used to analyze waves of this frequency in near-Earth space. However, when we examine the polarization of the waves in the 150 to 600 Hz range in the equatorial plane, the majority are right-hand polarized plasmaspheric hiss waves. The 1-10 eV H+ equatorially mirroring population does not interact with right-hand waves, despite a strong statistical relationship suggesting that the two are linked. We present evidence supporting the relationship, both in our own work and the literature, but we ultimately conclude that the 1-10 eV H+ heating is not related to the strong enhancement of 150 to 600 Hz waves.

  20. Equatorial scintillations: advances since ISEA-6

    SciTech Connect

    Not Available

    1985-01-01

    Our understanding of the morphology of equatorial scintillations has advanced due to more intensive observations at the equatorial anomaly locations in the different longitude zones. The unmistakable effect of the sunspot cycle in controlling irregularity belt width and electron concentration responsible for strong scintillation in the controlling the magnitude of scintillations has been recognized by interpreting scintillation observations inthe light of realistic models of total electron content at various longitudes. A hypothesis based on the alignment of the solar terminator with the geomagnetic flux tubes as an indicator of enhanced scintillation occurrence and another based on the influence of a transequatorial thermospheric neutral wind have been postulated to describe the observed longitudinal variation. A distinct class of equatorial irregularities known as the bottomside sinusoidal (BSS) type was identified. These irregularities occur in very large patches, sometimes in excess of several thousand kilometers in the E-W direction and are associated with frequency spread on ionograms. Scintillations caused by such irregularities exist only in the VHF band, exhibit Fresnel oscillations in intensity spectra and are found to give rise to extremely long durations (approx. several hours) of uninterrrupted scintillations.

  1. Predictive supracolloidal helices from patchy particles

    PubMed Central

    Guo, Ruohai; Mao, Jian; Xie, Xu-Ming; Yan, Li-Tang

    2014-01-01

    A priori prediction of supracolloidal architectures from nanoparticle and colloidal assembly is a challenging goal in materials chemistry and physics. Despite intense research in this area, much less has been known about the predictive science of supracolloidal helices from designed building blocks. Therefore, developing conceptually new rules to construct supracolloidal architectures with predictive helicity is becoming an important and urgent task of great scientific interest. Here, inspired by biological helices, we show that the rational design of patchy arrangement and interaction can drive patchy particles to self-assemble into biomolecular mimetic supracolloidal helices. We further derive a facile design rule for encoding the target supracolloidal helices, thus opening the doors to the predictive science of these supracolloidal architectures. It is also found that kinetics and reaction pathway during the formation of supracolloidal helices offer a unique way to study supramolecular polymerization, and that well-controlled supracolloidal helices can exhibit tailorable circular dichroism effects at visible wavelengths. PMID:25387544

  2. Predictive supracolloidal helices from patchy particles

    NASA Astrophysics Data System (ADS)

    Guo, Ruohai; Mao, Jian; Xie, Xu-Ming; Yan, Li-Tang

    2014-11-01

    A priori prediction of supracolloidal architectures from nanoparticle and colloidal assembly is a challenging goal in materials chemistry and physics. Despite intense research in this area, much less has been known about the predictive science of supracolloidal helices from designed building blocks. Therefore, developing conceptually new rules to construct supracolloidal architectures with predictive helicity is becoming an important and urgent task of great scientific interest. Here, inspired by biological helices, we show that the rational design of patchy arrangement and interaction can drive patchy particles to self-assemble into biomolecular mimetic supracolloidal helices. We further derive a facile design rule for encoding the target supracolloidal helices, thus opening the doors to the predictive science of these supracolloidal architectures. It is also found that kinetics and reaction pathway during the formation of supracolloidal helices offer a unique way to study supramolecular polymerization, and that well-controlled supracolloidal helices can exhibit tailorable circular dichroism effects at visible wavelengths.

  3. Anomalous opening of the Equatorial Atlantic due to an equatorial mantle thermal minimum

    NASA Astrophysics Data System (ADS)

    Bonatti, Enrico

    1996-09-01

    The geology of the Equatorial Atlantic is dominated by a broad east-west megashear belt where a cluster of large fracture zones offsets anomalously deep segments of the Mid-Atlantic Ridge (MAR). The origin and evolution of this megashear region may lie ultimately in an equatorial mantle thermal minimum. The notion of a mantle thermal minimum in the Equatorial Atlantic is supported by an equatorial minimum of zero-age topography, a maximum in mantle shear waves seismic velocity and a minimum in the degree of melting, indicated by the chemistry of MAR basalts and peridotites. This thermal minimum has probably been a stable feature since before the Cretaceous separation of Africa from South America; it caused a pre-opening equatorial continental lithosphere thicker and colder than normal. The Cretaceous Benue Trough in western Africa and the Amazon depression in South America are interpreted as morphostructural depressions created or rejuvenated by strike-slip, transpressional and transtensional tectonics ducing extension of the cold/thick equatorial lithosphere. The oceanic rift propagating northward from the South Atlantic impinged against the equatorial thicker, colder and, therefore, stronger than normal continental, lithosphere that consequently acted as a 'locked zone'. This, and a low magmatic budget due to the cold upper mantle, caused a lower than normal rate of propagation of the oceanic rift into the equatorial belt, with diffuse deformation during mostly amagmatic extension. The thick/cold lithosphere prevented major Cretaceous igneous activity from the St. Helena plume. Eventually initial 'weak' isolated nuclei oceanic lithosphere were emplaced, separated by E-W continent/continent transforms. Opening occurred largely by strike-slip motion along these initial transforms. The consequences were that the Equatorial Atlantic opened prevalently along an E-W direction, in contrast to the N-S opening of the North and South Atlantic, and that sheared continental

  4. Elementary study on superconducting electromagnetic ships with helical insulation wall

    NASA Astrophysics Data System (ADS)

    Nishigaki, Kazu; Sha, Ciwen; Takeda, Minoru; Peng, Yan; Zhou, Kuo; Yang, Aihua; Suyama, Daiki; Qing, Qin Jun; Yan, Luguang; Kiyoshi, Tsukasa; Wada, Hitoshi

    2000-01-01

    We, Kobe University of Mercantile Marine (KUMM) and Institute of Electrical Engineering (IEE) research teams, have carried out in Japan, the joint experimental test of the high magnetic field (˜14 T) superconducting electromagnetic ship performance in co-operation with the researchers of NRIM. In this experimental study, the major system components are thruster, seawater circulating system and various measuring instruments. The NRIMs 15 T class superconducting magnet that forms the outmost member of the 40 T class hybrid magnet was used. The flow guide and flow rectifier are of same lengths of 0.2 m, and the length of the electrodes are 0.6 m. The anode's outer diameter is 0.1 m, and the cathode's inner diameter is 0.346 m. The helical insulation wall is 10 mm thick and the pitch number is 3.8. During the experiment, magnetic fields were changed to six stages 3, 5, 8, 10, 12 and 14 T, whereby seawater pressures, temperatures and flow rates were measured. Electric currents were changed from 10 to 700 A. In one of results, the thruster efficiency increases in association with the increase of the magnetic field. It has been demonstrated that the helical-type superconducting electromagnetic thruster is superior, in terms of thruster efficiency, than that of earlier works by Iwata et al. and YAMATO-1's group. So, it is considered that this thruster is better suited to commerical application than earlier works.

  5. Helical screw expander evaluation project

    NASA Astrophysics Data System (ADS)

    McKay, R.

    1982-03-01

    A one MW helical rotary screw expander power system for electric power generation from geothermal brine was evaluated. The technology explored in the testing is simple, potentially very efficient, and ideally suited to wellhead installations in moderate to high enthalpy, liquid dominated field. A functional one MW geothermal electric power plant that featured a helical screw expander was produced and then tested with a demonstrated average performance of approximately 45% machine efficiency over a wide range of test conditions in noncondensing, operation on two-phase geothermal fluids. The Project also produced a computer equipped data system, an instrumentation and control van, and a 1000 kW variable load bank, all integrated into a test array designed for operation at a variety of remote test sites. Data are presented for the Utah testing and for the noncondensing phases of the testing in Mexico. Test time logged was 437 hours during the Utah tests and 1101 hours during the Mexico tests.

  6. Helical screw expander evaluation project

    NASA Technical Reports Server (NTRS)

    Mckay, R.

    1982-01-01

    A one MW helical rotary screw expander power system for electric power generation from geothermal brine was evaluated. The technology explored in the testing is simple, potentially very efficient, and ideally suited to wellhead installations in moderate to high enthalpy, liquid dominated field. A functional one MW geothermal electric power plant that featured a helical screw expander was produced and then tested with a demonstrated average performance of approximately 45% machine efficiency over a wide range of test conditions in noncondensing, operation on two-phase geothermal fluids. The Project also produced a computer equipped data system, an instrumentation and control van, and a 1000 kW variable load bank, all integrated into a test array designed for operation at a variety of remote test sites. Data are presented for the Utah testing and for the noncondensing phases of the testing in Mexico. Test time logged was 437 hours during the Utah tests and 1101 hours during the Mexico tests.

  7. Equatorial F2 characteristic variability: A review of recent observations

    NASA Astrophysics Data System (ADS)

    Somoye, E. O.; Akala, A. O.; Adeniji-Adele, R. A.; Iheonu, E. E.; Onori, E. O.; Ogwala, A.

    2013-10-01

    This paper reviews the variability of equatorial/low latitude F2 characteristics with emphasis on the most general results reported by authors. On a general note, diurnal variation of ionospheric F2 layer characteristics coefficient of variability (CV) is characterised by post- and pre-midnight peaks at all seasons, epochs and longitude. The post-midnight peak is greater than pre-midnight peak for all the characteristics considered except h'F2 CV during high solar activity (HSA) possibly due to occurrence of post-sunset pre-reversal enhancement (PRE) in height of reflection prominent during HSA. NmF2 CV is greater than CV of MUF and h'F2. MUF CV and foF2 CV are of the same order of magnitude. While seasonal trend is little or nil in daytime CV of F2 layer characteristics, nighttime CV is greater in general at the equinoxes and June Solstice. Nighttime F2 layer characteristics CV are found to decrease with increasing sunspot. This is not the case with daytime CV. Except for h'F2 CV, daytime CV of F2 layer characteristics are independent of latitude while nighttime CV decreases with latitude. Equatorial stations east (Vanimo, 2.7°S, 141.3°E, dip 22.5°S) and west (Huancayo, 12°S, 75.3°W, dip 1.9°N) of the Greenwich Meridian (GM) have greater nighttime CV than those in the neighbourhood of the GM (Ouagadougou, 12.4°N, 1.5°W, dip 7.6°N) with those stations west of GM having the greatest CV, implying longitudinal effect on CV. During magnetic storms CV are reported to be greater than during quiet periods.

  8. Longitudinal and geomagnetic activity modulation of the equatorial thermosphere anomaly

    NASA Astrophysics Data System (ADS)

    Lei, Jiuhou; Thayer, Jeffrey P.; Forbes, Jeffrey M.

    2010-08-01

    In this paper we examine the detailed similarities and differences between the equatorial thermosphere anomaly (ETA) and the equatorial ionization anomaly (EIA) from 20 March to 6 April 2002, when both the ETA and the EIA are distinct in the Challenging Minisatellite Payload (CHAMP) observations. The characteristics of the ETA and the EIA are obtained from the CHAMP accelerometer, in situ electron density measurements, and total electron content (TEC) above the CHAMP satellite. Our results show that the trough locations of the ETA and the EIA in latitude show a good agreement, and both correspond well with the dip magnetic equator, while the ETA crests are usually located poleward of the EIA. Meanwhile, the latitudinal locations of the ETA crests exhibit strong hemispheric asymmetry and large variability during our study interval. The longitudinal variations between the EIA and the ETA show significant differences. The EIA crests from the CHAMP observations show strong wave 4 structures, but the primary component in the ETA is wave 1. Moreover, the ETA densities show strong variations in response to geomagnetic activity, whereas CHAMP in situ electron densities and TEC at the EIA do not reflect such large day-to-day variability. Therefore, a simple EIA-ETA relationship cannot explain the dependence of the longitudinal and geomagnetic activity modulation of the ETA and the EIA. The meridional ion drag, which is significantly modulated by enhanced equatorward winds during elevated geomagnetic activity, is probably responsible for some of the observed features in the ETA, although no unambiguous explanation for ETA formation yet exists.

  9. Topology of modified helical gears

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Zhang, J.; Handschuh, R. F.; Coy, J. J.

    1989-01-01

    The topology of several types of modified surfaces of helical gears is proposed. The modified surfaces allow absorption of a linear or almost linear function of transmission errors. These errors are caused by gear misalignment and an improvement of the contact of gear tooth surfaces. Principles and corresponding programs for computer aided simulation of meshing and contact of gears have been developed. The results of this investigation are illustrated with numerical examples.

  10. Emulsification-Induced Homohelicity in Racemic Helical Polymer for Preparing Optically Active Helical Polymer Nanoparticles.

    PubMed

    Zhao, Biao; Deng, Jinrui; Deng, Jianping

    2016-04-01

    Optically active nano- and microparticles have constituted a significant category of advanced functional materials. However, constructing optically active particles derived from synthetic helical polymers still remains as a big challenge. In the present study, it is attempted to induce a racemic helical polymer (containing right- and left-handed helices in equal amount) to prefer one predominant helicity in aqueous media by using emulsifier in the presence of chiral additive (emulsification process). Excitingly, the emulsification process promotes the racemic helical polymer to unify the helicity and directly provides optically active nanoparticles constructed by chirally helical polymer. A possible mechanism is proposed to explain the emulsification-induced homohelicity effect. The present study establishes a novel strategy for preparing chirally helical polymer-derived optically active nanoparticles based on racemic helical polymers.

  11. DEMETER Observations of Equatorial Plasma Depletions and Related Ionospheric Phenomena

    NASA Astrophysics Data System (ADS)

    Berthelier, J.; Malingre, M.; Pfaff, R.; Jasperse, J.; Parrot, M.

    2008-12-01

    DEMETER, the first micro-satellite of the CNES MYRIAD program, was launched from Baikonour on June 29, 2004 on a nearly circular, quasi helio-synchronous polar orbit at ~ 715 km altitude. The DEMETER mission focuses primarily on the search for a possible coupling between seismic activity and ionospheric disturbances as well as on the effects of natural phenomena such as tropospheric thunderstorms and man-made activities on the ionosphere. The scientific payload provides fairly complete measurements of the ionospheric plasma, energetic particles above ~ 70 keV, and plasma waves, up to 20 kHz for the magnetic and 3.3 MHz for the electric components. Several studies related to space weather and ionospheric physics have been conducted over the past years. Following a brief description of the payload and the satellite modes of operation, this presentation will focus on a set of results that provide a new insight into the physics of instabilities in the night-time equatorial ionosphere. The observations were performed during the major magnetic storm of November 2004. Deep plasma depletions were observed on several night-time passes at low latitudes characterized by the decrease of the plasma density by nearly 3 orders of magnitude relative to the undisturbed plasma, and a significant abundance of molecular ions. These features can be best interpreted as resulting from the rise of the F-layer above the satellite altitude over an extended region of the ionosphere. In one of the passes, DEMETER was operated in the Burst mode and the corresponding high resolution data allowed for the discovery of two unexpected phenomena. The first one is the existence of high intensity monochromatic wave packets at the LH frequency that develop during the decay phase of intense bursts of broadband LH turbulence. The broadband LH turbulence is triggered by whistlers emitted by lightning from atmospheric thunderstorms beneath the satellite. The second unexpected feature is the detection of a

  12. Helically twisted photonic crystal fibres.

    PubMed

    Russell, P St J; Beravat, R; Wong, G K L

    2017-02-28

    Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic 'space', cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of 'numerical experiments' based on finite-element solutions of Maxwell's equations in a helicoidal frame.This article is part of the themed issue 'Optical orbital angular momentum'.

  13. Helically twisted photonic crystal fibres

    PubMed Central

    Beravat, R.; Wong, G. K. L.

    2017-01-01

    Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic ‘space’, cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of ‘numerical experiments’ based on finite-element solutions of Maxwell's equations in a helicoidal frame. This article is part of the themed issue ‘Optical orbital angular momentum’. PMID:28069771

  14. Helically twisted photonic crystal fibres

    NASA Astrophysics Data System (ADS)

    Russell, P. St. J.; Beravat, R.; Wong, G. K. L.

    2017-02-01

    Recent theoretical and experimental work on helically twisted photonic crystal fibres (PCFs) is reviewed. Helical Bloch theory is introduced, including a new formalism based on the tight-binding approximation. It is used to explore and explain a variety of unusual effects that appear in a range of different twisted PCFs, including fibres with a single core and fibres with N cores arranged in a ring around the fibre axis. We discuss a new kind of birefringence that causes the propagation constants of left- and right-spinning optical vortices to be non-degenerate for the same order of orbital angular momentum (OAM). Topological effects, arising from the twisted periodic `space', cause light to spiral around the fibre axis, with fascinating consequences, including the appearance of dips in the transmission spectrum and low loss guidance in coreless PCF. Discussing twisted fibres with a single off-axis core, we report that optical activity in a PCF is opposite in sign to that seen in a step-index fibre. Fabrication techniques are briefly described and emerging applications reviewed. The analytical results of helical Bloch theory are verified by an extensive series of `numerical experiments' based on finite-element solutions of Maxwell's equations in a helicoidal frame. This article is part of the themed issue 'Optical orbital angular momentum'.

  15. Helical Antimicrobial Sulfono- {gamma} -AApeptides

    SciTech Connect

    Li, Yaqiong; Wu, Haifan; Teng, Peng; Bai, Ge; Lin, Xiaoyang; Zuo, Xiaobing; Cao, Chuanhai; Cai, Jianfeng

    2015-06-11

    Host-defense peptides (HDPs) such as magainin 2 have emerged as potential therapeutic agents combating antibiotic resistance. Inspired by their structures and mechanism of action, herein we report the fi rst example of antimicrobial helical sulfono- γ - AApeptide foldamers. The lead molecule displays broad-spectrum and potent antimicrobial activity against multi-drug-resistant Gram- positive and Gram-negative bacterial pathogens. Time-kill studies and fl uorescence microscopy suggest that sulfono- γ -AApeptides eradicate bacteria by taking a mode of action analogous to that of HDPs. Clear structure - function relationships exist in the studied sequences. Longer sequences, presumably adopting more-de fi ned helical structures, are more potent than shorter ones. Interestingly, the sequence with less helical propensity in solution could be more selective than the stronger helix-forming sequences. Moreover, this class of antimicrobial agents are resistant to proteolytic degradation. These results may lead to the development of a new class of antimicrobial foldamers combating emerging antibiotic-resistant pathogens.

  16. Effect of the helicity injection rate and the Lundquist number on spheromak sustainment

    SciTech Connect

    García-Martínez, Pablo Luis; Lampugnani, Leandro Gabriel; Farengo, Ricardo

    2014-12-15

    The dynamics of the magnetic relaxation process during the sustainment of spheromak configurations at different helicity injection rates is studied. The three-dimensional activity is recovered using time-dependent resistive magnetohydrodynamic simulations. A cylindrical flux conserver with concentric electrodes is used to model configurations driven by a magnetized coaxial gun. Magnetic helicity is injected by tangential boundary flows. Different regimes of sustainment are identified and characterized in terms of the safety factor profile. The spatial and temporal behavior of fluctuations is described. The dynamo action is shown to be in close agreement with existing experimental data. These results are relevant to the design and operation of helicity injected devices, as well as to basic understanding of the plasma relaxation mechanism in quasi-steady state.

  17. Effect of the helicity injection rate and the Lundquist number on spheromak sustainment

    NASA Astrophysics Data System (ADS)

    García-Martínez, Pablo Luis; Lampugnani, Leandro Gabriel; Farengo, Ricardo

    2014-12-01

    The dynamics of the magnetic relaxation process during the sustainment of spheromak configurations at different helicity injection rates is studied. The three-dimensional activity is recovered using time-dependent resistive magnetohydrodynamic simulations. A cylindrical flux conserver with concentric electrodes is used to model configurations driven by a magnetized coaxial gun. Magnetic helicity is injected by tangential boundary flows. Different regimes of sustainment are identified and characterized in terms of the safety factor profile. The spatial and temporal behavior of fluctuations is described. The dynamo action is shown to be in close agreement with existing experimental data. These results are relevant to the design and operation of helicity injected devices, as well as to basic understanding of the plasma relaxation mechanism in quasi-steady state.

  18. Sunspot Rotation, Flare Energetics and Flux Rope Helicity: The Eruptive Flare on 2005 May 13

    NASA Astrophysics Data System (ADS)

    Kazachenko, Maria; Canfield, R. C.; Longcope, D. W.; Qiu, J.; DesJardins, A.; Nightingale, R. W.

    2009-05-01

    We use MDI and TRACE observations of photospheric magnetic and velocity fields in NOAA 10759 to build a three-dimensional coronal magnetic field model. The most dramatic feature of this active region is the 34 degree rotation of its leading polarity sunspot over 40 hours. We describe a method for including such rotation in the framework of braiding and spinning in a magnetic charge topology (MCT) model. We apply this method to the buildup of energy and helicity associated with the eruptive flare of 2005 May 13. We find that adding rotation almost triples the modeled flare energy (-1.0×1031ergs) and flux rope self helicity (-7.1×1042 Mx2). This makes the results consistent with observations: the energy derived from GOES is -1.0×1031ergs, the magnetic cloud helicity from WIND is -5×1042 Mx2. Our combined analysis yields the first quantitative picture of the helicity and energy content processed through a flare in an active region with an obviously rotating sunspot and shows that rotation dominates the energy and helicity budget of this event.

  19. ELF emissions observed by the EXOS-D satellite around the geomagnetic equatorial region

    SciTech Connect

    Sawada, Akira; Kasahara, Yoshiya; Yamamoto, Masayuki; Kimura, Iwane ); Kokubun, Susumu; Hayashi, Kanji )

    1991-02-01

    As was introduced in the paper by Kimura et al. (1990), interesting ELF emissions in the frequency ranges above the cyclotron frequencies of He{sup +} and/or O{sup +} have been detected by ELF subsystem of the EXOS-D satellite. This paper is to propose that these emissions are ion cyclotron mode emissions trapped along the magnetic field lines around the magnetic equatorial plane, which are very similar phenomena detected in frequencies around the He{sup +} cyclotron frequency, F{sub He{sup +}} by GEOS 1 and 2 nearly the geostationary altitude. The propagation characteristics can be confirmed by ray tracing including the effects of ions.

  20. Scattering bottleneck for spin dynamics in metallic helical antiferromagnetic dysprosium

    NASA Astrophysics Data System (ADS)

    Langner, M. C.; Roy, S.; Kemper, A. F.; Chuang, Y.-D.; Mishra, S. K.; Versteeg, R. B.; Zhu, Y.; Hertlein, M. P.; Glover, T. E.; Dumesnil, K.; Schoenlein, R. W.

    2015-11-01

    Ultrafast studies of magnetization dynamics have revealed fundamental processes that govern spin dynamics, and the emergence of time-resolved x-ray techniques has extended these studies to long-range spin structures that result from interactions with competing symmetries. By combining time-resolved resonant x-ray scattering and ultrafast magneto-optical Kerr studies, we show that the dynamics of the core spins in the helical magnetic structure occur on much longer time scales than the excitation of conduction electrons in the lanthanide metal Dy. The observed spin behavior differs markedly from that observed in the ferromagnetic phase of other lanthanide metals or transition metals and is strongly dependent on temperature and excitation fluence. This unique behavior results from coupling of the real-space helical spin structure to the shape of the conduction electron Fermi surface in momentum space, which creates a bottleneck in spin scattering events that transfer the valence excitation to the core spins. The dependence of the dynamics on the intersite interactions renders the helical ordering much more robust to perturbations than simple ferromagnetic or antiferromagnetic ordering, where dynamics are driven primarily by on-site interactions.

  1. Understanding the Interiors of Saturn and Mercury through Magnetic Field Observation and Dynamo Modeling

    NASA Astrophysics Data System (ADS)

    Cao, Hao

    action. The second concerns about the possible heterogeneous heat transfer efficiency in the outer envelope of Saturn and its influence on Saturn's dynamo action. We then carried out numerical convective dynamo simulations using the community dynamo code MagIC version 3.44 to test our dynamo hypothesis. In our numerical dynamo experiments, the central core sizes and the outer boundary heat flow heterogeneities are both varied. We find that the central core size is an important factor that can strongly influence the geometry of the dynamo generated magnetic field. Such influence is rendered through the tangent cylinder, which is an imaginary cylinder with its axis parallel to the spin axis of the planet and is tangent to the central core at the equator. We find that both the convective motion and the magnetic field generation efficiency, represented by kinetic helicity, are weaker inside the tangent cylinder than those outside the tangent cylinder. As a result, the magnetic fields inside the tangent cylinder are consistently weaker than those outside the tangent cylinder. Thus the lack of a polar field minimum region at Saturn could be indicative of the absence or a small central core inside Saturn. MESSENGER observations revealed that Mercury's magnetic field is more unusual than previously thought. In particular, Mercury's magnetic field is strongly north-south asymmetric: the magnetic field strength in the northern hemisphere is three times as strong as that in the southern hemisphere. Yet, there is no evidence for any such north-south asymmetry in the basic properties of Mercury that could possibly influence the present-day dynamo action. Here we propose a mechanism to break the equatorial symmetry of Mercury's magnetic field within the framework of convective dynamos. The essence of our mechanism is the mutual excitation of two fundamental modes of columnar convection in rapidly rotating spherical shells. Such mutual excitation results in equatorially asymmetric

  2. Equatorial and low-latitude ionospheric response due to 2009 sudden stratospheric warming, South American sector.

    NASA Astrophysics Data System (ADS)

    Fagundes, Paulo Roberto; Gende, Mauricio; De Jesus, Rodolfo; Goncharenko, Larisa; Coster, Anthea; Kavutarapu, Venkatesh; De Abreu, Alessandro; Pillat, ValdirGil; Pezzopane, Michael

    The equatorial and low-latitude ionosphere/thermosphere system is permanently disturbed by waves (MSTIDs, tides, and planetary waves), which are generated in the lower atmosphere or in situ, as well as electric fields and TIDs produced by geomagnetic storm and UV, EUV, and X-ray solar radiation. Until recently it was thought, that during geomagnetic quiet conditions the equatorial and low-latitude F-layer was mainly perturbed by waves that were generated not far away from the observed location or electric fields generated by electroject. On the contrary during geomagnetic storms when the energy sources are in high latitudes the waves (TIDs) travel a very long distance from high latitude to equatorial region and electric fields can be mapped via magnetic field lines. However, recently an unexpected coupling between high latitude, -mid latitude, and -equatorial/low-latitude was discovered during sudden stratospheric warming (SSW). The exploration of all aspects involved in this process must be investigated in order to improve our knowledge about the Earth's atmosphere. This investigation, studies the consequences of the vertical coupling from lower to upper atmosphere during a major Northern Hemisphere sudden stratospheric warming, which took place in January 2009, on the equatorial and low-latitude ionosphere in the Southern Hemisphere. Using 16 ground-based GPS stations over the Brazilian sector, spanning from latitude 2.8N to 30.1S and longitude 62.0W to 37.7W, it was possible to notice that the ionosphere was disturbed by SSW from the Equator to low latitude. The TEC at all 16 stations was severely disturbed during several days after the SSW temperature peak.

  3. ON THE INJECTION OF HELICITY BY THE SHEARING MOTION OF FLUXES IN RELATION TO FLARES AND CORONAL MASS EJECTIONS

    SciTech Connect

    Vemareddy, P.; Ambastha, A.; Maurya, R. A.; Chae, J. E-mail: ambastha@prl.res.in E-mail: jcchae@snu.ac.kr

    2012-12-20

    An investigation of helicity injection by photospheric shear motions is carried out for two active regions (ARs), NOAA 11158 and 11166, using line-of-sight magnetic field observations obtained from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. We derived the horizontal velocities in the ARs from the differential affine velocity estimator (DAVE) technique. Persistent strong shear motions at maximum velocities in the range of 0.6-0.9 km s{sup -1} along the magnetic polarity inversion line and outward flows from the peripheral regions of the sunspots were observed in the two ARs. The helicities injected in NOAA 11158 and 11166 during their six-day evolution period were estimated as 14.16 Multiplication-Sign 10{sup 42} Mx{sup 2} and 9.5 Multiplication-Sign 10{sup 42} Mx{sup 2}, respectively. The estimated injection rates decreased up to 13% by increasing the time interval between the magnetograms from 12 minutes to 36 minutes, and increased up to 9% by decreasing the DAVE window size from 21 Multiplication-Sign 18 to 9 Multiplication-Sign 6 pixel{sup 2}, resulting in 10% variation in the accumulated helicity. In both ARs, the flare-prone regions (R2) had inhomogeneous helicity flux distribution with mixed helicities of both signs and coronal mass ejection (CME) prone regions had almost homogeneous distribution of helicity flux dominated by a single sign. The temporal profiles of helicity injection showed impulsive variations during some flares/CMEs due to negative helicity injection into the dominant region of positive helicity flux. A quantitative analysis reveals a marginally significant association of helicity flux with CMEs but not flares in AR 11158, while for the AR 11166, we find a marginally significant association of helicity flux with flares but not CMEs, providing evidence of the role of helicity injection at localized sites of the events. These short-term variations of helicity flux are further discussed in view of possible

  4. Processes the Govern Helicity Injection in the SSPX Spheromak

    SciTech Connect

    Woodruff, S; Stallard, B W; Holcomb, C T; Cothran, C

    2002-10-08

    The physical processes that govern the gun-voltage and give rise to field generation by helicity injection are surveyed in the Sustained Spheromak Physics experiment (SSPX) using internal magnetic field probes and particular attention to the gun-voltage. SSPX is a gun-driven spheromak, similar in many respects to CTX, although differing substantially by virtue of a programmable vacuum field configuration. Device parameters are: diameter = 1m, I{sub tor}-400kA, T{sub e}{approx}120eV, t{sub pulse}{approx}3ms. SSPX is now in its third year of operation and has demonstrated reasonable confinement (core {chi}{sub e}{approx}30m{sup 2}/s), and evidence for a beta limit (<{beta}{sub e}>{sub vol}{approx}4%), suggesting that the route to high temperature is to increase the spheromak field-strength (or current amplification, A{sub I} = I{sub torr}/I{sub inj}). Some progress has been made to increase A{sub I} in SSPX (A{sub I} = 2.2), although the highest A{sub I} observed in a spheromak of 3 has yet to be beaten. We briefly review helicity injection as the paradigm for spheromak field generation. SSPX results show that the processes that give efficient injection of helicity are inductive, and that these processes rapidly terminate when the current path ceases to change. The inductive processes are subsequently replaced by ones that resistively dissipate the injected helicity. This result means that efficient helicity injection can be achieved by harnessing the inductive processes, possibly by pulsing the gun. A pulsed build-up scenario is presented which gives A{sub I} > 3 and emphasizes the need to maintain reasonable confinement while the field of the spheromak is being built.

  5. An explicit solution for static unbounded helical dynamos

    NASA Astrophysics Data System (ADS)

    Chen, Pisin; Milovich, Jose L.

    The Lortz dynamo with helical symmetry is re-examined. It is shown that by imposing appropriate boundary conditions the set of possible solutions can be broken down into various classes characterized by the behavior of the mean magnetic field. It is found that, as the cylindrical radius, s, tends to zero, 0(sj), const + 0(sj-i), where j>5. It is proved that the azimuthal wavenumber associated with the j=5 class is necessarily equal to 2. The existence of at least one cylindrical surface inside which the dynamo is self-sustained is demonstrated. A new simple explicit solution is obtained. The topology the magnetic field is studied and three-dimensional pictures of the magnetic field lines are exhibited. Finally, a criterion for reversal of the magnetic field as a function of radius is ohtained and is applied to our solution.

  6. Impact of helical boundary conditions in MHD modeling of RFP and tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Bonfiglio, D.; Cappello, S.; Escande, D. F.; Piovesan, P.; Veranda, M.; Chacón, L.

    2012-10-01

    Helical boundary conditions imposed by the active control system of the RFX-mod device provide a handle to govern the plasma dynamics in both RFP and Ohmic tokamak discharges [1]. By applying an edge radial magnetic field with proper helicity, it is possible to increase the persistence of the spontaneous helical RFP states at high current,and to stimulate them also at low current or high density. Helical BCs even allow to access helical states with different helicity than the spontaneous one [2]. In Ohmic tokamak operation at q(a)<2, the presence of the 2/1 RWM reduces the sawtoothing activity of the 1/1 internal kink, which takes a stationary snake-like character instead. Many of these features are qualitatively reproduced in 3D nonlinear MHD modeling. We study the impact of helical BCs on the MHD dynamics in both RFP and tokamak with two successfully benchmarked numerical tools, SpeCyl and PIXIE3D [3]. We recover the bifurcation from a sawtooth to a snake solution when imposing a 2/1 BC in the tokamak case and we interpret this as a toroidal/nonlinear coupling effect. We show that the bifurcation is more easily stimulated with a 1/1 BC.[4pt] [1] P. Piovesan, invited talk this meeting[0pt] [2] M. Veranda et al EPS-ICPP Conference (2012) P4.004[0pt] [3] D. Bonfiglio et al Phys. Plasmas (2010)

  7. Engineering and Design of the Steady Inductive Helicity Injected Torus (HIT--SI)

    NASA Astrophysics Data System (ADS)

    Sieck, P. E.; Jarboe, T. R.; Nelson, B. A.; Rogers, J. A.; Shumlak, U.

    1999-11-01

    Steady Inductive Helicity Injection (SIHI) is an inductive helicity injection method that injects helicity at a nearly constant rate, without open field lines, and without removing any helicity or magnetic energy from the plasma.(T.R. Jarboe, Fusion Technology, 36) (1), p. 85, 1999 SIHI directly produces a rotating magnetic field structure, and in the frame of the rotating field the current profile is nearly time independent. The Steady Inductive Helicity Injected Torus (HIT--SI) is a spheromak designed to implement SIHI so that the current profile in the rotating frame is optimized. The geometry of HIT--SI will be presented, including the manufacturing techniques and metallurgical processes planned for construction of the close-fitting flux conserver. The flux conserver is made of aged chromium copper with 80% the conductivity of pure copper. The detailed electrical insulation requirements in the helicity injector design lead to a complex o-ring seal and a plasma-sprayed alumina insulation coating. This has prompted the construction of an o-ring prototype test fixture having the main features of the o-ring design and the alumina coating. The design and evaluation of this fixture will also be presented with vacuum and voltage test results.

  8. Lunar influence on equatorial atmospheric angular momentum

    NASA Astrophysics Data System (ADS)

    Bizouard, Christian; Zotov, Leonid; Sidorenkov, Nikolay

    2014-11-01

    This study investigates the relationship between the equatorial atmospheric angular momentum oscillation in the nonrotating frame and the quasi-diurnal lunar tidal potential. Between 2 and 30 days, the corresponding equatorial component, called Celestial Atmospheric Angular Momentum (CEAM), is mostly constituted of prograde circular motions, especially of a harmonic at 13.66 days, a sidelobe at 13.63 days, and of a weekly broadband variation. A simple equilibrium tide model explains the 13.66 day pressure term as a result of the O1 lunar tide. The powerful episodic fluctuations between 5 and 8 days possibly reflect an atmospheric normal mode excited by the tidal waves Q1 (6.86 days) and σ1 (7.095 days). The lunar tidal influence on the spectral band from 2 to 30 days is confirmed by two specific features, not occurring for seasonal band dominated by the solar thermal effect. First, Northern and Southern Hemispheres contribute equally and synchronously to the CEAM wind term. Second, the pressure and wind terms are proportional, which follows from angular momentum budget considerations where the topographic and friction torques on the solid Earth are much smaller than the one resulting from the equatorial bulge. Such a configuration is expected for the case of tidally induced circulation, where the surface pressure variation is tesseral and cannot contribute to the topographic torque, and tidal winds blow only at high altitudes. The likely effects of the lunar-driven atmospheric circulation on Earth's nutation are estimated and discussed in light of the present-day capabilities of space geodetic techniques.

  9. Quark Helicity Distributions at Large Longitudinal Momentum Fraction

    SciTech Connect

    Harutyun Avakian; Stanley Brodsky; Alexandre Deur; Feng Yuan

    2007-08-01

    We study the quark helicity distributions at large $x$ in perturbative QCD, taking into account contributions from the valence Fock states of the nucleon which have nonzero orbital angular momentum. These states are necessary to have a nonzero anomalous magnetic moment. We find that the quark orbital angular momentum contributes a large logarithm to the negative helicity quark distribution in addition to its power behavior, scaling as $(1-x)^5\\log^2(1-x)$ in the limit of $x\\to 1$. Our analysis show that the ratio of the polarized over unpolarized down quark distributions, $\\Delta d/d$, will still approach 1 in this limit. By comparing with the current experimental data, we find that this ratio will cross zero at $x\\approx 0.75$.

  10. Equatorial Oscillations in Jupiter's and Saturn's Atmospheres

    NASA Technical Reports Server (NTRS)

    Flasar, F. Michael; Guerlet, S.; Fouchet, T.; Schinder, P. J.

    2011-01-01

    Equatorial oscillations in the zonal-mean temperatures and zonal winds have been well documented in Earth's middle atmosphere. A growing body of evidence from ground-based and Cassini spacecraft observations indicates that such phenomena also occur in the stratospheres of Jupiter and Saturn. Earth-based midinfrared measurements spanning several decades have established that the equatorial stratospheric temperatures on Jupiter vary with a cycle of 4-5 years and on Saturn with a cycle of approximately 15 years. Spectra obtained by the Composite Infrared Spectrometer (CIRS) during the Cassini swingby at the end of 2000, with much better vertical resolution than the ground-based data, indicated a series of vertically stacked warm and cold anomalics at Jupiter's equator; a similar structurc was seen at Saturn's equator in CIRS limb measurements made in 2005, in the early phase of Cassini's orbital tour. The thermal wind equation implied similar patterns of mean zonal winds increasing and decreasing with altitude. On Saturn the peak-to-pcak amplitude of this variation was nearly 200 meters per second. The alternating vertical pattern of wanner and colder cquatorial tcmperatures and easterly and westerly tendencies of the zonal winds is seen in Earth's equatorial oscillations, where the pattern descends with time, The Cassini Jupiter and early Saturn observations were snapshots within a limited time interval, and they did not show the temporal evolution of the spatial patterns. However, more recent Saturn observations by CIRS (2010) and Cassini radio-occultation soundings (2009-2010) have provided an opportunity to follow the change of the temperature-zonal wind pattern, and they suggest there is descent, at a rate of roughly one scale height over four years. On Earth, the observed descent in the zonal-mean structure is associated with the absorption of a combination of vertically propagating waves with easlerly and westerly phase velocities. The peak-to-peak zonal wind

  11. Equatorial spread F and plasma bubbles: Preliminary results from the COPEX campaign

    NASA Astrophysics Data System (ADS)

    Batista, I.; Abdu, M.; Reinisch, B.; de Paula, E.; Groves, K.

    2003-04-01

    The Conjugate Point Equatorial Experiment (COPEX) was conducted in Brazil from October 1 to December 10, 2002. The configuration of the experiment was planed in such a way that the equipments should be located in three sites along a magnetic meridian, one at the magnetic equator and the other two at magnetically conjugate points. The magnetic conjugate points should be located such that the conjugate E layers were field line mapped to the F layer peak, or to the bottomside, over the magnetic equator. The three selected locations were Campo Grande (20.5 S, 54.7 W, southern conjugate point); Boa Vista (2.8 N, 60.7 W, northern conjugate point) and Cachimbo (9.5 S, 54.8 W, magnetic equatorial point). Various instruments such as Digital Portable Sounders (DPS-4), optical imagers, GPS receivers for scintillation monitoring and for TEC measurements, magnetometers, HF receivers and a 50 MHz radar were operated during the campaign. The campaign was coordinated by the Aeronomy group at the Brazilian National Institute for Space Research (Instituto Nacional de Pesquisas Espaciais- INPE), in collaboration with the Brazilian Air Force group from CTA (Centro Técnico Aeroespacial) and with international groups from the Center for Atmospheric Research, University of Massachusetts Lowell (Lowell, MA, USA), the Air Force Research Laboratory Space Vehicles Directorate (AFRL/VSBX, Hanscom AFB, MA, USA), and the Japanese group from the Communication Research Laboratory (CRL), Tokyo. The data collected during the campaign are been used to study the equatorial spread F (ESF), a phenomena that produces large turbulent like variations of electron density at F region heights producing large index of refraction variations. ESF occurs in association with the plasma depleted flux tubes, known as plasma bubbles, which develop at the dusk hours into vertically extended formations extending to 1500 km over the magnetic equator and thousands of kilometers ( 25 ) into the low latitude ionosphere

  12. Hamiltonian magnetohydrodynamics: Helically symmetric formulation, Casimir invariants, and equilibrium variational principles

    SciTech Connect

    Andreussi, T.; Morrison, P. J.; Pegoraro, F.

    2012-05-15

    The noncanonical Hamiltonian formulation of magnetohydrodynamics (MHD) is used to construct variational principles for continuously symmetric equilibrium configurations of magnetized plasma, including flow. In particular, helical symmetry is considered, and results on axial and translational symmetries are retrieved as special cases of the helical configurations. The symmetry condition, which allows the description in terms of a magnetic flux function, is exploited to deduce a symmetric form of the noncanonical Poisson bracket of MHD. Casimir invariants are then obtained directly from the Poisson bracket. Equilibria are obtained from an energy-Casimir principle and reduced forms of this variational principle are obtained by the elimination of algebraic constraints.

  13. Density filament and helical field line structures in three dimensional Weibel-mediated collisionless shocks

    NASA Astrophysics Data System (ADS)

    Moritaka, Toseo; Sakawa, Youichi; Kuramitsu, Yasuhiro; Morita, Taichi; Yamaura, Yuta; Ishikawa, Taishi; Takabe, Hideaki

    2016-03-01

    Collisionless shocks mediated by Weibel instability are attracting attention for their relevance to experimental demonstrations of astrophysical shocks in high-intensity laser facilities. The three dimensional structure of Weibel-mediated shocks is investigated through a fully kinetic particle-in-cell simulation. The structures obtained are characterized by the following features: (i) helical magnetic field lines elongated in the direction upstream of the shock region, (ii) high and low density filaments inside the helical field lines. These structures originate from the interaction between counter-streaming plasma flow and magnetic vortexes caused by Weibel instability, and potentially affect the shock formation mechanism.

  14. Theory of magneto-optical effects in helical multiferroic materials via toroidal magnon excitation

    NASA Astrophysics Data System (ADS)

    Miyahara, S.; Furukawa, N.

    2014-05-01

    We investigate dynamical magnetoelectric effect owing to Nambu-Goldstone magnon resonance in helical multiferroic materials. Using the spin wave expansion, we analyzed magneto- and electroactive modes in the J1-J2 Heisenberg model through the spin-current mechanism. Under external magnetic field, the Nambu-Goldstone magnons accompany dynamical toroidal moments, i.e., toroidal magnons, and their resonant absorption shows anomalous features such as nonreciprocal directional dichroism and natural circular dichroism. The estimation indicates that such effects are gigantic in helical magnets.

  15. 2-D simulation of a waveguide free electron laser having a helical undulator

    SciTech Connect

    Kim, S.K.; Lee, B.C.; Jeong, Y.U.

    1995-12-31

    We have developed a 2-D simulation code for the calculation of output power from an FEL oscillator having a helical undulator and a cylindrical waveguide. In the simulation, the current and the energy of the electron beam is 2 A and 400 keV, respectively. The parameters of the permanent-magnet helical undulator are : period = 32 mm, number of periods = 20, magnetic field = 1.3 kG. The gain per pass is 10 and the output power is calculated to be higher than 10 kW The results of the 2-D simulation are compared with those of 1-D simulation.

  16. Investigation of the role of gravity waves in the generation of equatorial bubbles

    NASA Technical Reports Server (NTRS)

    Johnson, Francis S.; Coley, William R.

    1995-01-01

    The following areas of interest in this progress report are: (1) the continuation of software development in the examination of F-region gravity-wave power using in-situ data from the Atmosphere Explorer (AE-E); (2) the inquiry into the use of the San Marco data for the study of the initiation and growth of bubbles, particularly when the satellite passes through the early evening hours at relatively high altitudes, and the development of bubbles using not only the San Marco data but includes the use of airglow observations made in Hawaii; and (3) the promising development in the observation of distinct well formed waves at about 400 km altitude in the equatorial region. These waves look very much like waves seen over the polar cap that are attributed to internal gravity waves in the neutral atmosphere driving ionization up and down the magnetic field lines. These equatorial waves show no modulation of the total ion concentration.

  17. Phase scintillations due to equatorial F region irregularities with two-component power law spectrum

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, A.; Rastogi, R. G.

    1986-10-01

    Power spectra of weak phase scintillations on a 140-MHz signal, transmitted from the geostationary satellite ATS 6 and observed during premidnight and postmidnight periods at an equatorial station Ootacamund (magnetic dip 6 N), show that the nighttime equatorial F region irregularities in the wavelength range of about hundred meters to a few kilometers exhibit a two-component power law spectrum. The long- and short-wavelength spectral indices and the break scale at which the transition from a shallow to a steep slope occurs are determined self-consistently using both the phase and amplitude scintillation data. As the power spectra of phase scintillations do not exhibit the effect of Fresnel filtering, they provide fairly accurate estimates of the spectral indices and the break scale. These estimated parameters are utilized in a model calculation of the dependence of the S4 index on signal frequency based on weak scattering theory.

  18. Helicity fluctuations in incompressible turbulent flows

    NASA Technical Reports Server (NTRS)

    Rogers, Michael M.; Moin, Parviz

    1987-01-01

    Results from direct numerical simulations of several homogeneous flows and fully developed turbulent channel flow indicate that the probability distribution function (pdf) of relative helicity density exhibits at most a 20 percent deviation from a flat distribution. Isotropic flows exhibit a slight helical nature but the presence of mean strain in homogeneous turbulence suppresses helical behavior. All the homogeneous turbulent flows studied show no correlation between relative helicity density and the dissipation of turbulent kinetic energy. The channel flow simulations indicate that, except for low-dissipation regions near the outer edge of the buffer layer, there is no tendency for the flow to be helical. The strong peaks in the relative helicity density pdf and the association of these peaks with regions of low dissipation found in previous simulations by Pelz et al.(1985) are not observed.

  19. Intergalactic Magnetic Field Observations and their Fundamental Implications

    NASA Astrophysics Data System (ADS)

    Vachaspati, Tanmay

    2017-01-01

    I will review current observational evidence for helical intergalactic magnetic fields at the 10-14 G level on 10 Mpc length scales. The existence of magnetic fields in cosmic voids and their non-trivial helical structure suggest that they might have originated in the early universe due to CP violating fundamental interactions. The large helicity of the magnetic field suggests a possible crucial role for chiral MHD effects in the early universe. Supported by the DOE.

  20. MAGNETIC FIELDS FROM QCD PHASE TRANSITIONS

    SciTech Connect

    Tevzadze, Alexander G.; Kisslinger, Leonard; Kahniashvili, Tina; Brandenburg, Axel

    2012-11-01

    We study the evolution of QCD phase transition-generated magnetic fields (MFs) in freely decaying MHD turbulence of the expanding universe. We consider an MF generation model that starts from basic non-perturbative QCD theory and predicts stochastic MFs with an amplitude of the order of 0.02 {mu}G and small magnetic helicity. We employ direct numerical simulations to model the MHD turbulence decay and identify two different regimes: a 'weakly helical' turbulence regime, when magnetic helicity increases during decay, and 'fully helical' turbulence, when maximal magnetic helicity is reached and an inverse cascade develops. The results of our analysis show that in the most optimistic scenario the magnetic correlation length in the comoving frame can reach 10 kpc with the amplitude of the effective MF being 0.007 nG. We demonstrate that the considered model of magnetogenesis can provide the seed MF for galaxies and clusters.