Science.gov

Sample records for equatorial plasma bubbles

  1. Gravity Wave Seeding of Equatorial Plasma Bubbles

    NASA Technical Reports Server (NTRS)

    Singh, Sardul; Johnson, F. S.; Power, R. A.

    1997-01-01

    Some examples from the Atmosphere Explorer E data showing plasma bubble development from wavy ion density structures in the bottomside F layer are described. The wavy structures mostly had east-west wavelengths of 150-800 km, in one example it was about 3000 km. The ionization troughs in the wavy structures later broke up into either a multiple-bubble patch or a single bubble, depending upon whether, in the precursor wavy structure, shorter wavelengths were superimposed on the larger scale wavelengths. In the multiple bubble patches, intrabubble spacings vaned from 55 km to 140 km. In a fully developed equatorial spread F case, east-west wavelengths from 690 km down to about 0.5 km were present simultaneously. The spacings between bubble patches or between bubbles in a patch appear to be determined by the wavelengths present in the precursor wave structure. In some cases, deeper bubbles developed on the western edge of a bubble patch, suggesting an east-west asymmetry. Simultaneous horizontal neutral wind measurements showed wavelike perturbations that were closely associated with perturbations in the plasma horizontal drift velocity. We argue that the wave structures observed here that served as the initial seed ion density perturbations were caused by gravity waves, strengthening the view that gravity waves seed equatorial spread F irregularities.

  2. Guest investigator program study: Physics of equatorial plasma bubbles

    NASA Technical Reports Server (NTRS)

    Tsunoda, Roland T.

    1994-01-01

    Plasma bubbles are large-scale (10 to 100 km) depletions in plasma density found in the night-time equatorial ionosphere. Their formation has been found to entail the upward transport of plasma over hundreds of kilometers in altitude, suggesting that bubbles play significant roles in the physics of many of the diverse and unique features found in the low-latitude ionosphere. In the simplest scenario, plasma bubbles appear first as perturbations in the bottomside F layer, which is linearly unstable to the gravitationally driven Rayleigh-Taylor instability. Once initiated, bubbles develop upward through the peak of the F layer into its topside (sometimes to altitudes in excess of 1000 km), a behavior predicted by the nonlinear form of the same instability. While good general agreement has been found between theory and observations, little is known about the detailed physics associated with plasma bubbles. Our research activity centered around two topics: the shape of plasma bubbles and associated electric fields, and the day-to-day variability in the occurrence of plasma bubbles. The first topic was pursued because of a divergence in view regarding the nonlinear physics associated with plasma bubble development. While the development of perturbations in isodensity contours in the bottomside F layer into plasma bubbles is well accepted, some believed bubbles to be cylinder-like closed regions of depleted plasma density that floated upward leaving a turbulent wake behind them (e.g., Woodman and LaHoz, 1976; Ott, 1978; Kelley and Ott, 1978). Our results, summarized in a paper submitted to the Journal of Geophysical Research, consisted of incoherent scatter radar measurements that showed unambiguously that the depleted region is wedgelike and not cylinderlike, and a case study and modeling of SM-D electric field instrument (EFI) measurements that showed that the absence of electric-field perturbations outside the plasma-depleted region is a distinct signature of wedge

  3. Post-midnight occurrence of equatorial plasma bubbles

    NASA Astrophysics Data System (ADS)

    Ajith, K. K.; Otsuka, Yuichi; Yamamoto, Mamoru; Yokoyama, Tatsuhiro; Tulasiram, S.

    2016-07-01

    The equatorial plasma bubbles (EPBs)/equatorial spread F (ESF) irregularities are an important topic of space weather interest because of their impact on transionospheric radio communications, satellite-based navigation and augmentation systems. This local plasma depleted structures develop at the bottom side F layer through Rayleigh-Taylor instability and rapidly grow to topside ionosphere via polarization electric fields within them. The steep vertical gradients due to quick loss of bottom side ionization and rapid uplift of equatorial F layer via prereversal enhancement (PRE) of zonal electric field makes the post-sunset hours as the most preferred local time for the formation of EPBs. However, there is a different class of irregularities that occurs during the post-midnight hours of June solstice reported by the previous studies. The occurrence of these post-midnight EPBs maximize during the low solar activity periods. The growth characteristics and the responsible mechanism for the formation of these post-midnight EPBs are not yet understood. Using the rapid beam steering ability of 47 MHz Equatorial Atmosphere Radar (EAR) at Kototabang (0.2°S geographic latitude, 100.3°E geographic longitude, and 10.4°S geomagnetic latitude), Indonesia, the spatial and temporal evolution of equatorial plasma bubbles (EPBs) were examined to classify the evolutionary-type EPBs from those which formed elsewhere and drifted into the field of view of radar. The responsible mechanism for the genesis of summer time post-midnight EPBs were discussed in light of growth rate of Rayleigh-Taylor instability using SAMI2 model.

  4. Equatorial plasma bubbles/range spread firregularities and the QBO

    NASA Astrophysics Data System (ADS)

    Chen, Pei-Ren

    1993-11-01

    Investigation of the relationship between the percentage occurrence of equatorial plasma bubbles/range spread F irregularities (EPBRSI) and the Quasi-Biennial Oscillation (QBO) of the lower stratospheric mean zonal wind in the equatorial zone reveals a QBO-modulation effect on the percentage occurrence of the EPBRSI. A longitudinal dependence of this QBO-modulation effect has also been found: the percentage occurrence of EPBRSI increases (decreases) in the easterly phase of the QBO in the Indian-East African sector (in the American sector) and decreases (increases) in the westerly phase of the QBO in the Indian-East African sector (in the American sector). It is suggested that this represents new evidence that the low-latitude ionosphere is modulated by atmospheric planetary waves from below.

  5. Equatorial plasma bubbles with enhanced ion and electron temperatures

    NASA Astrophysics Data System (ADS)

    Park, Jaeheung; Min, Kyoung Wook; Kim, Vitaly P.; Kil, Hyosub; Su, Shin-Yi; Chao, Chi Kuang; Lee, Jae-Jin

    2008-09-01

    While the ion and electron temperatures inside equatorial plasma bubbles (EPBs) are normally lower than those in an ambient plasma, bubbles with enhanced temperatures (BETs) are found occasionally in the topside ionosphere. Here we report the characteristics of BETs identified from observations of the first Republic of China Satellite (ROCSAT-1), the first Korea Multi-purpose Satellite (KOMPSAT-1), and the Defense Meteorological Satellite Program (DMSP) F15 during the solar maximum period between 2000 and 2001. The oxygen ion fraction inside the BETs, which was no lower than that of the ambient ionosphere, was similar to the case of ordinary low-temperature EPBs. These observations indicate that the BETs and low-temperature EPBs detected on the topside were produced by the upward drift of low-density plasma from lower altitudes. The feature that distinguishes BETs from normal EPBs is the occurrence of an unusually fast poleward field-aligned plasma flow relative to the ambient plasma. The BETs occurred preferentially around geomagnetic latitudes of 10° in the summer hemisphere, where the ambient ion and electron temperatures are lower than those in the conjugate winter hemisphere. The occurrence of BETs did not show any notable dependence on geomagnetic activities. The characteristics of the BETs suggest that the BETs were produced by adiabatic plasma heating associated with a fast poleward oxygen ion transport along magnetic flux tubes.

  6. GPS Observations of Plasma Bubbles and Scintillations over Equatorial Africa

    NASA Astrophysics Data System (ADS)

    Carrano, C. S.; Valladares, C. E.; Semala, G. K.; Bridgwood, C. T.; Adeniyi, J.; Amaeshi, L. L.; Damtie, B.; D'Ujanga Mutonyi, F.; Ndeda, J. D.; Baki, P.; Obrou, O. K.; Okere, B.; Tsidu, G. M.

    2010-12-01

    Sponsored in part by the International Heliophysical Year (IHY) program, Boston College, Air Force Research Laboratory (AFRL), and several universities in Africa have collaborated to deploy a network of GPS receivers throughout equatorial Africa, a region which has been largely devoid of ground-based ionospheric monitoring instruments. High date-rate GPS receivers capable of measuring Total Electron Content (TEC) and GPS scintillations were installed at Abidjan, Ivory Coast (5.3°N, 4.0°W, dip 3.5°S); Addis Ababa (9.0°N, 38.8°E, dip 0.1°N ); Bahir Dar, Ethiopia (26.1°N, 50.6°E, dip 20.1°N); Cape Verde (16.6°S, 22.9°W, dip 4.9°N); Ilorin, Nigeria (8.4°S, 4.7°E, dip 1.9°S); Kampala, Uganda (0.3°S, 32.6°E, dip 9.2°S); Lagos, Nigeria (6.5°N, 3.4°E, dip 3.1°S); Nairobi, Kenya (1.3°S, 36.8°W, dip 10.7°S); Nsukka, Nigeria (6.8°S, 7.4°W, dip 3.0°S); and Zanzibar, Tanzania (6.2°S, 39.2°E, dip 15.9°S). In this paper we report on the longitudinal, local time and seasonal occurrence of plasma bubbles and L band scintillations over equatorial Africa in 2009 and 2010, as a first step toward establishing the climatology of ionospheric irregularities over Africa. The scintillation intensity is obtained by measuring the standard deviation of normalized GPS signal power. The plasma bubbles are detected using an automated technique, whereby the GPS TEC is detrended to remove the diurnal variation and excursions exceeding a particular threshold are extracted for further analysis. A harmonic analysis (FFT) of these extracted events is performed to exclude wavelike features indicative of gravity waves or traveling ionospheric disturbances, and the remaining events are identified as plasma bubbles. Our findings suggest that the occurrence of plasma bubbles and L band scintillations over Africa are well correlated, but that some discrepancies in their morphologies are evident. While plasma bubbles and scintillations are generally observed during equinoctial

  7. Longitudinal Variability of Equatorial Plasma Bubbles Observed by DMSP and ROCSAT-1

    DTIC Science & Technology

    2007-11-02

    interest in geophysical causes of equatorial displays and ionograms , EPBs are also referred to as plasma spread F (ESF) and equatorial plasma bubbles...propagation, they are not identical. The term that plumes/bubbles have elongated, wedge-like cross sec- ESF describes irregular signatures on ionograms

  8. Climatology characterization of equatorial plasma bubbles using GPS data

    NASA Astrophysics Data System (ADS)

    Magdaleno, Sergio; Herraiz, Miguel; Altadill, David; de la Morena, Benito A.

    2017-01-01

    The climatology of equatorial plasma bubbles (EPBs) for the period 1998-2008 was studied using slant total electron content (sTEC) derived from global positioning system (GPS) data. The sTEC values were calculated from data measured at 67 International GNSS Service (IGS) stations distributed worldwide around the geomagnetic equator and embracing the region of the ionospheric equatorial anomaly (IEA). EPBs and their characteristics were obtained using the Ionospheric Bubble Seeker (IBS) application, which detects and distinguishes sTEC depletions associated with EPBs. This technique bases its analysis on the time variation of the sTEC and on the population variance of this time variation. IBS finds an EPB by default when an sTEC depletion is greater than 5 TEC units (TECu). The analysis of the spatial behavior shows that the largest rate of EPB takes place at the equator and in the South America-Africa sector, while their occurrence decreases as the distance from the magnetic equator increases. The depth and duration of the sTEC depletions also maximize at the equator and in the South America-Africa sector and weaken departing from the equator. The results of the temporal analysis for the data of the IGS stations located in AREQ, NKLG, IISC, and GUAM indicate that the greatest rate of EPB occurrence is observed for high solar activity.

  9. Numerical simulation of equatorial plasma bubbles over Cachimbo: COPEX campaign

    NASA Astrophysics Data System (ADS)

    Carrasco, A. J.; Batista, I. S.; Abdu, M. A.

    2014-08-01

    The problem of day-to-day variability in onset of equatorial spread F (ESF) is addressed using data from the 2002 COPEX observational campaign in Brazil and numerical modeling. The observational results show that for values of virtual height of the F layer base less than 355 km at around 18:35 LT, and for the prereversal peak enhancement of the vertical plasma drift (Vp) less than 30 m/s, the spread-F (ESF) was absent on four nights over Cachimbo (9.5°S, 54.8°W, dip latitude = -2.1°). In this work we analyze the geophysical conditions for the generation of the irregularities by comparing the nights with and without the ESF. In the comparison a numerical code is used to simulate plasma irregularity development in an extended altitude range from the bottom of the equatorial F layer. The code uses the flux corrected transport method with Boris-Book’s flux limiter for the spatial integration and a predictor-corrector method for the direct time integration of the continuity equation for O+ and the SOR (Successive-Over-Relaxation) method for electric potential equation. The code is tested with different evening eastward electric fields (or vertical drifts Vp < 30 m/s and Vp > 30 m/s) in order to study the influence of the prereversal enhancement in the zonal electric field on plasma bubble formation and development. The code also takes into account the zonal wind, the vertical electric field and the collision frequency of ions with neutrals and the amplitude of initial perturbation. The simulation shows a good agreement with the observational results of the ESF. The results of the code suggest that the instability can grow at the F layer bottomside by the Rayleigh-Taylor mechanism only when the Vp > 30 m/s. In the analyzed cases we have considered the competition of other geophysical parameters in the generation of plasma structures.

  10. Measuring the equatorial plasma bubble drift velocities over Morroco

    NASA Astrophysics Data System (ADS)

    Lagheryeb, Amine; Benkhaldoun, Zouhair; Makela, Jonathan J.; Harding, Brian; Kaab, Mohamed; Lazrek, Mohamed; Fisher, Daniel J.; Duly, Timothy M.; Bounhir, Aziza; Daassou, Ahmed

    2015-08-01

    In this work, we present a method to measure the drift velocities of equatorial plasma bubbles (EPBs) in the low latitude ionosphere. To calculate the EPB drift velocity, we use 630.0-nm airglow images collected by the Portable Ionospheric Camera and Small Scale Observatory (PICASSO) system deployed at the Oukkaimden observatory in Morocco. To extract the drift velocity, the individual images were processed by first spatially registering the images using the star field. After this, the stars were removed from the images using a point suppression methodology, the images were projected into geographic coordinates assuming an airglow emission altitude of 250 km. Once the images were projected into geographic coordinates, the intensities of the airglow along a line of constant geomagnetic latitude (31°) are used to detect the presence of an EPB, which shows up as a depletion in airglow intensity. To calculate the EPB drift velocity, we divide the spatial lag between depletions found in two images (found by the application of correlation analysis) by the time difference between these two images. With multiple images, we will have several velocity values and consequently we can draw the EPB drift velocity curve. Future analysis will compare the estimates of the plasma drift velocity with the thermospheric neutral wind velocity estimated by a collocated Fabry-Perot interferometer (FPI) at the observatory.

  11. Some new insights of the characteristics of equatorial plasma bubbles obtained from Indian region

    NASA Astrophysics Data System (ADS)

    Narayanan, V. L.; Gurubaran, S.; Shiny, M. B. Berlin; Emperumal, K.; Patil, P. T.

    2017-04-01

    All-sky imaging observations of OI 630.0 nm airglow were carried out in campaign mode from Panhala (16.8°N, 74.1°E geographic; 11.1°N dip latitude), India, during January to March 2008. On 14 of 37 nights, equatorial plasma bubbles were observed. The drift speeds were observed to decrease with time in concurrence with the previous results. The tilts were mostly westward while on rare occasions the plasma bubbles tilted eastwards. The drifts were found to be relatively lesser on disturbed nights while the tilts appear to be marginally larger. The interdepletion distances (or bubble spacings) also showed a decreasing trend with time till midnight indicating that the bubbles approach each other with the passage of time. Such a behavior is not reported earlier and it seems to have important implications for understanding the time evolution of plasma bubbles. On occasions, the bubbles occurred in groups. An ionosonde operating over Indian dip equatorial site Tirunelveli (1.1°N dip latitude) was used to study the variations in the base height of the ionosphere during the plasma bubble observations. The ionosonde measurements indicate lack of significant pre-reversal enhancement (PRE) during geomagnetic quiet days in which the bubbles were observed.

  12. Height variation of electron temperature associated with equatorial plasma bubbles - some recent rocket observations

    NASA Astrophysics Data System (ADS)

    Muralikrishna, P.; Batista, I. S.; Domingos, S.; Aquino, M. G.

    2013-05-01

    In-situ measurements made from Brazil recently using rocket-borne swept-bias Langmuir Probes show that the electron temperatures in the valley region between the equatorial E and F regions get modified before the onset of plasma bubbles. During one of the post sunset launches made on 18-th December 1995 from the equatorial rocket launching station CLA in Alcântara, Brazil the Langmuir probe measured abnormally large electron temperatures below the F-region just before the onset of plasma bubbles but temperatures became normal soon after the onset of bubbles. Later on 2-nd December 2011 a Brazilian VS-30 single stage rocket was launched from the equatorial rocket launching station CLBI in Natal, Brazil carrying a Langmuir probe operating alternately in swept and constant bias modes to measure both electron temperature and electron density respectively. The ground equipments operated before and during the rocket launch clearly showed the presence of plasma bubbles above the F-region. At the time of launch the bubble activity was at its peak. The electron density and temperature height profiles could be estimated from the LP data up to the rocket apogee altitude of 139km. During the rocket upleg and downleg the valley region showed the presence electron temperatures as high as 2000 degree K while the temperatures expected from the existing models are around 500 degree K. A two stage VS-30/Orion rocket was launched on 8-th December soon after sunset carrying a Langmuir Probe operating alternately in swept and constant bias modes to measure the electron density and electron temperature, mainly in the valley between the E and F regions. At the time of launch ground equipments operated at equatorial stations showed ionospheric conditions favorable for the generation of plasma bubbles. These profiles are compared with model electron density and temperature profiles as well as with electron density and temperature profiles observed under conditions of no plasma bubbles.

  13. The onset condition of equatorial plasma bubbles - the role of seeding mechanism and growth condition

    NASA Astrophysics Data System (ADS)

    Kil, H.; Choi, J. M.; Kwak, Y. S.; Lee, W. K.; Park, J.

    2015-12-01

    We investigate the role of seeding mechanism and growth condition of perturbations in the creation of equatorial plasma bubbles by analyzing the C/NOFS and ROCSAT-1 satellite observations. The initial development times of bubbles were identified by manual processing of the data, and the periodic characteristics in the occurrence of bubbles were investigated using periodograms obtained from segments of bubble chains. Our preliminary results show that bubbles initiate at the time that the pre-reversal enhancement (PRE) ends. This time corresponds to the time that the F region reaches the highest altitude where the growth rate of the Rayleigh-Taylor (R-T) instability is large. The initial onset time of bubbles varies with season and longitude in accordance with the variation of the PRE ending time. Our investigation of the periodicity in the occurrence of bubbles (spacing between bubbles) shows that a dominant periodicity does not exist; the spacing between bubbles ranges from 100 km to over 1000 km. A pronounced periodicity occurs in some series of bubbles, but, in general, multiple periodicity co-exists. The initiation of bubbles at a specific local time but the absence of a preferential wave property in the occurrence of bubbles lead to the conclusion that the onset of bubbles is controlled by the growth condition of the R-T instability.

  14. Seasonal-Longitudinal Variability of Equatorial Plasma Bubbles

    DTIC Science & Technology

    2007-11-02

    ionograms , EPBs are also referred our comparisons, to as plasma plumes (Woodman and La Hoz, 1976) and We have sorted data acquired during more than 75 000...Eastward become important. Damping by interhemispheric winds ap- fields enhance growth, and westward fields quench it. A for- pears to be responsible...magnetic equator, and Up is the vertically down- fects of weak gradients in Pedersen conductance near dusk. ward component of neutral wind velocity

  15. Equatorial broad plasma depletions associated with the evening prereversal enhancement and plasma bubbles during the 17 March 2015 storm

    NASA Astrophysics Data System (ADS)

    Kil, Hyosub; Lee, Woo Kyoung; Paxton, Larry J.; Hairston, Marc R.; Jee, Geonhwa

    2016-10-01

    Broad plasma depletions (BPDs) in the equatorial F region represent plasma depletions whose longitudinal and latitudinal scales are much greater than those of normal plasma bubbles. This study investigates the characteristics and origin of BPDs using the coincident ionospheric observations by the Communication/Navigation Outage Forecasting System, Defense Meteorological Satellite Program, and Swarm satellites during the 2015 St. Patrick's Day (17 March) storm. Two types of BPDs were detected before midnight during the main phase of the storm. One type of BPDs showed a gradual plasma density variation (Type 1), and the other type of BPDs showed a steep density gradient (Type 2) at the walls of BPDs. The Type 1 BPDs were detected with no signature of plasma bubbles nearby, whereas the Type 2 BPDs were accompanied by bubbles. The formation of the Type 1 BPDs is attributed to the uplift of the bottomside of the F region above the satellite altitude by the action of storm-induced electric fields. The steep walls of Type 2 BPDs are associated with the ionospheric uplift and the spatial discontinuity of the ionosphere produced by bubbles. The detection of BPDs that are more than 15° wide in latitude by the polar orbit Swarm satellites arises from the elongation of bubbles along the magnetic field lines and the alignment of the elongation with the plane of the orbit.

  16. An alternative possibility to equatorial plasma bubble forecasting through mathematical modeling and Digisonde data

    NASA Astrophysics Data System (ADS)

    Sousasantos, J.; Kherani, E. A.; Sobral, J. H. A.

    2017-02-01

    Equatorial plasma bubbles (EPBs), or large-scale plasma depleted regions, are one of the subjects of great interest in space weather research since such phenomena have been extensively reported to cause strong degrading effects on transionospheric radio propagation at low latitudes, especially over the Brazilian region, where satellite communication interruptions by the EPBs have been, frequently, registered. One of the most difficult tasks for this field of scientific research is the forecasting of such plasma-depleted structures. This forecasting capability would be of significant help for users of positioning/navigation systems operating in the low-latitude/equatorial region all over the world. Recently, some efforts have been made trying to assess and improve the capability of predicting the EPB events. The purpose of this paper is to present an alternative approach to EPB prediction by means of the use of mathematical numerical simulation associated with ionospheric vertical drift, obtained through Digisonde data, focusing on telling beforehand whether ionospheric plasma instability processes will evolve or not into EPB structures. Modulations in the ionospheric vertical motion induced by gravity waves prior to the prereversal enhancement occurrence were used as input in the numerical model. A comparison between the numerical results and the observed EPB phenomena through CCD all-sky image data reveals a considerable coherence and supports the hypothesis of a capability of short-term forecasting.

  17. Characteristics of evolutionary-type plasma bubbles observed from Equatorial Atmosphere Radar

    NASA Astrophysics Data System (ADS)

    Ajith, K. K.; Otsuka, Yuichi; Yamamoto, Mamoru; Yokoyama, Tatsuhiro; Tulasiram, S.

    2016-07-01

    Using the fan sector backscatter maps of 47 MHz Equatorial Atmosphere Radar (EAR) at Kototabang (0.2°S geographic latitude, 100.3°E geographic longitude, and 10.4°S geomagnetic latitude), Indonesia, the spatial and temporal evolution of equatorial plasma bubbles (EPBs) were examined to classify the evolutionary-type EPBs from those which formed elsewhere and drifted into the field of view of radar. A total of 535 EPBs were observed during the low to moderate solar activity years 2010-2012, out of which about 210 (~39%) are of evolving type and the remaining 325 (~61%) are drifting-in EPBs. In general, both the evolving-type and drifting-in EPBs exhibit predominance during the post-sunset hours of equinoxes and December solstices. Interestingly, during June solstice the occurrence of evolving-type EPBs exhibits a clear secondary peak around midnight (2300-0100 LT). Further, the occurrence of evolving-type EPBs exhibits a clear secondary peak around midnight (2300-0100 LT), primarily, due to higher rate of occurrence during the post-midnight hours of June solstices. A significant number (~33%) of post-midnight EPBs generated during June solstices did not exhibited any clear zonal drift, while about 14% of EPBs drifted westward. Also, the westward drifting EPBs are confined only to June solstices. In the present study, we calculated the vertical bubble rise velocity of evolutionary-type EPBs during 2010-2012.

  18. On the fresh development of equatorial plasma bubbles around the midnight hours of June solstice

    NASA Astrophysics Data System (ADS)

    Ajith, K. K.; Tulasi Ram, S.; Yamamoto, M.; Otsuka, Y.; Niranjan, K.

    2016-09-01

    Using the 47 MHz Equatorial Atmosphere Radar (EAR) at Kototabang, Indonesia, the nocturnal evolution of equatorial plasma bubbles (EPBs) was examined during the moderate solar activity years 2011-2012. While the evolution of EPBs was mostly (86%) confined to post sunset hours (1900-2100 LT) during equinoxes, in contrast, the majority of EPBs ( 71%) in June solstice found evolve around the midnight hours (2200-0300 LT). The mechanisms behind the fresh evolution of summer time midnight EPBs were investigated, for the first time, through SAMI2 model simulations with a realistic input of background ExB drift variation derived from CINDI IVM on board C/NOFS satellite. The term-by-term analysis of linear growth rate of RT instability indicates that the formation of high flux tube electron content height gradient (KF) (steep vertical gradient) region at higher altitudes is the key factor for the enhanced growth rate of RT instability. The responsible factors are discussed in light of relatively weak westward zonal electric field in the presence of equatorward neutral wind and bottomside recombination around the midnight hours of June solstice. The effects of neutral winds and weak westward electric fields on the uplift of equatorial F layer were examined separately using controlled SAMI2 simulations. The results indicate that relatively larger linear growth rate is more likely to occur around midnight during June solstice because of relatively weak westward electric field than other local times in the presence of equatorward meridional wind.

  19. Periodicity in the occurrence of equatorial plasma bubbles derived from the C/NOFS observations in 2008-2012

    NASA Astrophysics Data System (ADS)

    Choi, Jong-Min; Kil, Hyosub; Kwak, Young-Sil; Park, Jaeheung; Lee, Woo Kyoung; Kim, Yong Ha

    2017-01-01

    The quasi-periodic occurrence of equatorial plasma bubbles is understood in terms of seeding mechanisms in the bottomside F region. However, no quantitative investigation has been conducted to identify how often quasi-periodic bubbles occur. This study investigates the wave property in the bubble occurrence (or spacing between bubbles) using the measurements of the plasma density in 2008-2012 by the Planar Langmuir Probe on board the Communication/Navigation Outage Forecasting System (C/NOFS) satellite. The wave property is investigated using the Lomb-Scargle periodograms derived from 664 segments of series of bubbles. In the majority of segments, the spacing between bubbles is represented by the combination of several wave components. Periodic bubbles whose property is represented by a few pronounced wave components are rare events. These results indicate that the spacing between bubbles is generally irregular. The manner of bubble occurrence does not show any notable variation with longitude and season. Because a consistent wave property does not exist in the occurrence of bubbles and the appearance of bubbles in the topside is affected by many factors, the manner of bubble occurrence in satellite observations does not provide a precise diagnostic of seeding mechanisms.

  20. Electric field observations of equatorial bubbles

    NASA Astrophysics Data System (ADS)

    Aggson, T. L.; Maynard, N. C.; Hanson, W. B.; Saba, Jack L.

    1992-03-01

    Results from the double floating probe experiment performed on the San Marco D satellite are presented, with emphasis on the observation of large incremental changes in the convective electric field vector at the boundary of equatorial plasma bubbles. Attention is given to isolated bubble structures in the upper ionospheric F regions; these observed bubble encounters are divided into two types - type I (live bubbles) and type II (dead bubbles). Type I bubbles show varying degrees of plasma depletion and large upward velocities range up to 1000 km/s. The geometry of these bubbles is such that the spacecraft orbit may cut them where they are tilting either eastward or (more often) westward. Type II bubbles exhibit plasma density depletion but no appreciable upward convection. Both types of events are usually surrounded by a halo of plasma turbulence, which can extend considerably beyond the region of plasma depletion.

  1. Electric field observations of equatorial bubbles

    NASA Technical Reports Server (NTRS)

    Aggson, T. L.; Maynard, N. C.; Hanson, W. B.; Saba, Jack L.

    1992-01-01

    Results from the double floating probe experiment performed on the San Marco D satellite are presented, with emphasis on the observation of large incremental changes in the convective electric field vector at the boundary of equatorial plasma bubbles. Attention is given to isolated bubble structures in the upper ionospheric F regions; these observed bubble encounters are divided into two types - type I (live bubbles) and type II (dead bubbles). Type I bubbles show varying degrees of plasma depletion and large upward velocities range up to 1000 km/s. The geometry of these bubbles is such that the spacecraft orbit may cut them where they are tilting either eastward or (more often) westward. Type II bubbles exhibit plasma density depletion but no appreciable upward convection. Both types of events are usually surrounded by a halo of plasma turbulence, which can extend considerably beyond the region of plasma depletion.

  2. Equatorial spread F and plasma bubbles: Preliminary results from the COPEX campaign

    NASA Astrophysics Data System (ADS)

    Batista, I.; Abdu, M.; Reinisch, B.; de Paula, E.; Groves, K.

    2003-04-01

    The Conjugate Point Equatorial Experiment (COPEX) was conducted in Brazil from October 1 to December 10, 2002. The configuration of the experiment was planed in such a way that the equipments should be located in three sites along a magnetic meridian, one at the magnetic equator and the other two at magnetically conjugate points. The magnetic conjugate points should be located such that the conjugate E layers were field line mapped to the F layer peak, or to the bottomside, over the magnetic equator. The three selected locations were Campo Grande (20.5 S, 54.7 W, southern conjugate point); Boa Vista (2.8 N, 60.7 W, northern conjugate point) and Cachimbo (9.5 S, 54.8 W, magnetic equatorial point). Various instruments such as Digital Portable Sounders (DPS-4), optical imagers, GPS receivers for scintillation monitoring and for TEC measurements, magnetometers, HF receivers and a 50 MHz radar were operated during the campaign. The campaign was coordinated by the Aeronomy group at the Brazilian National Institute for Space Research (Instituto Nacional de Pesquisas Espaciais- INPE), in collaboration with the Brazilian Air Force group from CTA (Centro Técnico Aeroespacial) and with international groups from the Center for Atmospheric Research, University of Massachusetts Lowell (Lowell, MA, USA), the Air Force Research Laboratory Space Vehicles Directorate (AFRL/VSBX, Hanscom AFB, MA, USA), and the Japanese group from the Communication Research Laboratory (CRL), Tokyo. The data collected during the campaign are been used to study the equatorial spread F (ESF), a phenomena that produces large turbulent like variations of electron density at F region heights producing large index of refraction variations. ESF occurs in association with the plasma depleted flux tubes, known as plasma bubbles, which develop at the dusk hours into vertically extended formations extending to 1500 km over the magnetic equator and thousands of kilometers ( 25 ) into the low latitude ionosphere

  3. Evolution and dynamics of equatorial plasma bubbles: Relationships to ExB drift, postsunset total electron content enhancements, and equatorial electrojet strength

    NASA Astrophysics Data System (ADS)

    Dabas, R. S.; Singh, Lakha; Lakshmi, D. R.; Subramanyam, P.; Chopra, P.; Garg, S. C.

    2003-08-01

    The growth in altitude/latitude of equatorial plasma bubbles was monitored, using simultaneous recordings of VHF scintillations at five locations situated between 3° and 23°N magnetic latitudes along a common meridian (84°E) during February 1980. The onsets of postsunset scintillation were mostly abrupt in character, and their occurrence at higher latitudes was conditional on their prior appearance at lower latitudes, indicating a causal link to irregularities associated with rising equatorial plasma bubbles. The day-to-day occurrence and the latitudinal, and effectively altitudinal, growths are examined in relation to the prereversal enhancement in h'F during sunset hours and its rate of rise, the onset of a postsunset secondary maximum (PSSM) in ionospheric electron content (IEC), and equatorial electrojet strength (EEJ) variations. It is observed that the bubble and associated irregularities, after its onset over the magnetic equator, reached the highest altitudes/latitudes only on those days when a prior PSSM in IEC is observed there in addition to high values of h'F, dh'F/dt and bubble rise velocity; otherwise it will be confined to near equatorial latitudes only. Also, the equatorial h'F, dh'F/dt, magnitude of PSSM and intensity of 4 GHz scintillations at low latitude are all showing positive correlation with daytime EEJ strength variations. It is concluded that, after the initial development of a bubble, the ExB drift and the PSSM play an important role in the subsequent growth and evolution, and EEJ is a useful parameter for the prediction of the development.

  4. Faith in a seed: on the origins of equatorial plasma bubbles

    NASA Astrophysics Data System (ADS)

    Retterer, J. M.; Roddy, P.

    2014-05-01

    Our faith in the seeds of equatorial plasma irregularities holds that there will generally always be density perturbations sufficient to provide the seeds for irregularity development whenever the Rayleigh-Taylor instability is active. When the duration of the time of the Rayleigh-Taylor instability is short, however, the magnitude of the seed perturbations can make a difference in whether the irregularities have a chance to grow to a strength at which the nonlinear development of plumes occurs. In addition, the character of the resulting irregularities reflects the characteristics of the initial seed density perturbation, e.g., their strength, spacing, and, to some extent, their spatial scales, and it is important to know the seeds to help determine the structure of the developed irregularities. To this end, we describe the climatology of daytime and early-evening density irregularities that can serve as seeds for later development of plumes, as determined from the Planar Langmuir Probe (PLP) plasma density measurements on the C/NOFS (Communication and Navigation Outage Forecast System) satellite mission, presenting their magnitude as a function of altitude, latitude, longitude, local time, season, and phase in the solar cycle (within the C/NOFS observation era). To examine some of the consequences of these density perturbations, they are used as initial conditions for the PBMOD PBMOD (Retterer, 2010a) 3-D irregularity model to follow their potential development into larger-amplitude irregularities, plumes, and radio scintillation. "Though I do not believe that a pla[sma bubble] will spring up where no seed has been, I have great faith in a seed. Convince me that you have a seed there, and I am prepared to expect wonders." - Henry David Thoreau

  5. T he Analysis of the seasonal variations of equatorial plasma bubble, occurrence observed from Oukaimeden Observatory, Morroco

    NASA Astrophysics Data System (ADS)

    Amine, Lagheryeb; Zouhair, Benkhaldoun; Jonathan, Makela; Mohamed, Kaab; Aziza, Bounhir; Brian, Hardin; Dan, Fisher; Tmuthy, Duly

    2016-04-01

    T he Analysis of the seasonal variations of equatorial plasma bubble, occurrence using the 630.0 nm airglow images collected by the PICASSO imager deployed at the Oukkaimden observatory in Morocco. Data have been taken since November 2013 to december 2015. We show the monthly average of appearance of EPBs. A maximum probability for bubble development is seen in the data in January and between late February and early March. We also observe that there are a maximum period of appearance where the plasma is observed (3-5 nights successivies) and we will discuss its connection with the solar activity in storm time. Future analysis will compare the probability of bubble occurrence in our site with the data raised in other observation sites.

  6. Effects of solar and geomagnetic activity on the occurrence of equatorial plasma bubbles over Hong Kong

    NASA Astrophysics Data System (ADS)

    Kumar, Sanjay; Chen, Wu; Liu, Zhizhao; Ji, Shengyue

    2016-09-01

    In the present study, the occurrence and characteristics of equatorial plasma bubble (EPB) has been analyzed using the GPS data from continuously operating reference stations network over Hong Kong during 2001-2012. The analysis found maximum EPB occurrences during the equinoctial months and minimum EPB occurrences during the December solstice throughout 2001-2012 except during the solar minimum in 2007-2009. The maximum EPB occurrences were observed in June solstice during 2007-2008, whereas for 2009, EPB occurrences were quite higher for June solstice but slightly smaller than the March equinox. The seasonal maximum in EPB occurrences have been discussed in terms of plasma density seed perturbation caused by gravity waves as well as the post sunset F-layer rise due to the pre-reversal enhancement of zonal electric field. Generally, EPB occurrences are found to be more prominent during nighttime hours (19:00-24:00 h) than daytime hours. The day and nighttime EPB occurrences were inferred and found to vary linearly with solar activity and have an annual correlation coefficient (R) of 0.92 with F10.7 cm solar flux and 0.88 with sunspot number. Moreover, the impact of solar activity on EPB occurrences is found to be dependent on seasons with maximum during the equinox (R = 0.80) and minimum during the summer season (R = 0.68). The detail study of EPB occurrences during two typical cases of geomagnetic storms on 6 November and 24 November 2001 found that the storm on 24 November triggered the EPB occurrence whereas storm on 6 November suppressed the EPB occurrence. The enhancement/suppression of EPB occurrences during storms periods is a consequence of a storm-induced prompt penetration electric field as well as disturbance dynamo electric field effects associated with the main phase of the geomagnetic storm.

  7. Climatology of successive equatorial plasma bubbles observed by GPS ROTI over Malaysia

    NASA Astrophysics Data System (ADS)

    Buhari, S. M.; Abdullah, M.; Yokoyama, T.; Otsuka, Y.; Nishioka, M.; Hasbi, A. M.; Bahari, S. A.; Tsugawa, T.

    2017-02-01

    The occurrence rate of the equatorial plasma bubble (EPB) with season, solar activity, and geomagnetic conditions are investigated using long-term data sets of Malaysia Real-Time Kinematics Network (MyRTKnet) from 2008 to 2013. The rate of TEC (total electron content) change index (ROTI) in 5 min was derived from MyRTKnet data to detect the EPB with scale sizes around tens of kilometers. Then, the daily east-west cross sections of 2-D ROTI maps were used to examine the EPB features over 100°E-119°E longitudes. The EPBs tend to occur successively in one night along the observational coverage of MyRTKnet during equinoxes in high solar activity years. The perturbations in a form of wavelike structures along the observed longitudes might be responsible for the development of successive EPBs due to high growth rate of the Rayleigh-Taylor instability (RTI) process. On the contrary, the occurrence of successive EPBs is infrequent and the occurrence day of EPB remains active during equinoctial months in low solar activity years. The small growth rate of the RTI process during low solar activity years might require a strong seed perturbation to generate the EPB structure. The occurrence probability of the EPB was found to be similar during quiet and disturbed geomagnetic conditions. The results imply that the strong perturbations play an important role in the development of the EPB in low solar activity years. Nonetheless, the high growth rate of the RTI could cause the successive occurrence of the EPB in high solar activity years.

  8. Investigation of low-latitude E and valley region irregularities: Their relationship to equatorial plasma bubble bifurcation

    NASA Astrophysics Data System (ADS)

    Li, Guozhu; Ning, Baiqi; Patra, A. K.; Wan, Weixing; Hu, Lianhuan

    2011-11-01

    The low-latitude E, valley and F region 3 m scale irregularities are studied with the Sanya (18.4°N, 109.6°E, dip latitude 12.8°N) VHF coherent scatter radar. The observations show that the E region irregularities (ERIs) often weaken or disappear during the development of postsunset equatorial plasma bubbles (EPBs) in equinoctial months. However, the valley region irregularities (VRIs) are found to occur during the EPB development and show structures with close relation to those of EPBs. The interesting aspect is that the ERI disruption and VRI generation are simultaneously detected. In terms of the electric field coupling from the equatorial F region down to low-latitude E and valley regions, the polarization electric fields (PEFs) associated with the EPB bifurcation are suggested to play key roles in the evolution of ERIs and VRIs. It is shown that the mapping of upward and eastward PEFs generated within the equatorial west tilted bubble would inhibit the occurrence of low-latitude ERIs. However, for the east tilted bubble structure, the associated downward PEFs might map to the low-latitude valley region and play an active role for the development of 3 m scale irregularities through gradient drift instability.

  9. Remote detection of the maximum altitude of equatorial ionospheric plasma bubbles

    NASA Technical Reports Server (NTRS)

    Benson, R. F.

    1981-01-01

    Nearly 200 post-sunset low-altitude passes of the Alouette 2 and ISIS 1 satellites near the dip equator are studied in order to find the maximum ionospheric plasma bubble altitudes, which are determined by calculating the apex altitude of the magnetic field line passing through the satellite when it is immersed in a bubble. The calculations are made only upon the observation of conjugate hemisphere ionospheric echoes, which result from ducted HF sounder signals that are guided along field-aligned irregularities within the plasma depletion. The maximum bubble altitudes corresponding to the three longitude sectors centered on zero deg, 75 deg W, and 105 deg E, are found to often exceed 1000 km, but seldom 3000 km. The electron density depletions within these field-aligned bubbles, as measured at the point of satellite encounter with the topside ionosphere, are generally less than a factor of two but may exceed a factor of ten.

  10. Development of intermediate-scale structure at different altitudes within an equatorial plasma bubble: Implications for L-band scintillations

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, A.; Kakad, B.; Gurram, P.; Sripathi, S.; Sunda, S.

    2017-01-01

    An important aspect of the development of intermediate-scale length (approximately hundred meters to few kilometers) irregularities in an equatorial plasma bubble (EPB) that has not been considered in the schemes to predict the occurrence pattern of L-band scintillations in low-latitude regions is how these structures develop at different heights within an EPB as it rises in the postsunset equatorial ionosphere due to the growth of the Rayleigh-Taylor instability. Irregularities at different heights over the dip equator map to different latitudes, and their spectrum as well as the background electron density determine the strength of L-band scintillations at different latitudes. In this paper, VHF and L-band scintillations recorded at different latitudes together with theoretical modeling of the scintillations are used to study the implications of this structuring of EPBs on the occurrence and strength of L-band scintillations at different latitudes. Theoretical modeling shows that while S4 index for scintillations on a VHF signal recorded at an equatorial station may be >1, S4 index for scintillations on a VHF signal recorded near the crest of the equatorial ionization anomaly (EIA) generally does not exceed the value of 1 because the intermediate-scale irregularity spectrum at F layer peak near the EIA crest is shallower than that found in the equatorial F layer peak. This also explains the latitudinal distribution of L-band scintillations. Thus, it is concluded that there is greater structuring of an EPB on the topside of the equatorial F region than near the equatorial F layer peak.

  11. Distributions of TEC Fluctuations and Losses of Lock Associated with Equatorial Plasma Bubbles

    NASA Astrophysics Data System (ADS)

    Nakata, H.; Kikuchi, H.; Tsugawa, T.; Otsuka, Y.; Takano, T.; Shimakura, S.; Shiokawa, K.; Ogawa, T.

    2009-12-01

    Equatorial plasma bubbles (EPBs) are local depletions of the electron density in the ionosphere. Due to field-aligned irregularities (FAIs) with various spatial scales, EPBs affect wide-band radio waves and cause scintillations in GPS navigation system. Strong scintillation can cause a GPS receiver to lose lock on GPS signals because of rapid variations of signal amplitude and phase, and limit the availability of carrier phase measurements. Since the scintillation is caused by Fresnel diffraction, the spatial scale of FAIs that causes the scintillation of GPS signals is about 2-300 m. Therefore, loss of phase lock (LOL) on GPS signals is a reference of hundred-meter-scale FAIs. As EPBs are also associated with fluctuations of the total electron content (TEC), the enhancement of Rate of TEC change index (ROTI) occurs around EPBs. Assuming that the altitude of the ionosphere is about 400 km, the velocity of the pierce point of the GPS radio wave at the ionospheric altitude is approximately 70 m/s around the zenith. Thus, ROTI averaged during 5 minutes is a reference of ten-kilometer-scale fluctuations. In this study, we analyzed LOL and 5-min. ROTI associated with EPBs to examine the spatial and temporal scales of electron density disturbances associated with EPBs. We selected 11 EPBs from 630-nm airglow images obtained by all-sky imager at Sata, Japan, in 2001. LOL and ROTI are obtained from GPS data from GPS Earth Observation Network (GEONET) of Japan, which consists of more than 1000 GPS receivers. As a result, it is shown that both LOL and the enhancement of ROTI are observed in 8 events out of 11 events. The distributions of LOL are approximately consistent with the areas in which the ionospheric electron density is depleted. The enhancements of ROTI are observed in the vicinities of EPBs. The enhancement of ROTI expands especially in the west side of EPBs. After the EPBs pass through, therefore, LOLs are vanished but the enhancements of ROTI last a while. This

  12. A New 50 MHz Phased-Array Radar on Pohnpei: A Fresh Perspective on Equatorial Plasma Bubbles

    NASA Astrophysics Data System (ADS)

    Tsunoda, R. T.

    2014-12-01

    A new, phased-array antenna-steering capability has recently been added to an existing 50-MHz radar on Pohnpei, Federated States of Micronesia, in the central Pacific region. This radar, which we refer to as PAR-50, is capable of scanning in the vertical east-west plane, ±60° about the zenith. The alignment in the magnetic east-west direction allows detection of radar backscatter from small-scale irregularities that develop in the equatorial ionosphere, including those associated with equatorial plasma bubbles (EPBs). The coverage, about ±800 km in zonal distance, at an altitude of 500 km, is essentially identical to that provided by ALTAIR, a fully-steerable incoherent-scatter radar, which has been used in a number of studies of EPBs. Unlike ALTAIR, which has only been operated for several hours on a handful of selected nights, the PAR-50 has already been operated continuously, while performing repeated scans, since April 2014. In this presentation, we describe the PAR-50, then, compare it to ALTAIR and the Equatorial Atmospheric Radar (EAR); the latter is the only other phased-array system in use for equatorial studies. We then assess what we have learned about EPBs from backscatter radar measurements, and discuss how the PAR-50 can provide a fresh perspective to our understanding. Clearly, the ability to sort out the space-time ambiguities in EPB development from sequences of spatial maps of EPBs is crucial to our understanding of how EPBs develop.

  13. Topside sounder observations of equatorial bubbles

    NASA Technical Reports Server (NTRS)

    Dyson, P. L.; Benson, R. F.

    1978-01-01

    Large scale regions of depleted equatorial ionospheric plasma, called equatorial bubbles, are investigated using topside sounder data. The sounder's unique remote measuring capability enables the magnetic field-aligned nature of the bubbles to be investigated. A search of all available Alouette 2 and ISIS 1 ionograms during nighttime perigee passes near the magnetic equator has revealed a variety of echo signatures associated with bubbles. In addition to a sudden drop in electron density, these signatures usually include in situ spread F and ducted traces. The ducted traces have been used to determine the electron density distribution and to infer changes in ion composition along the magnetic field line within the duct associated with the bubble. In some cases it can be determined that the bubble is asymmetric with respect to the magnetic equator. Even though such features require 3 dimensional models for their explanation, the great field-aligned extent of the bubbles (relative to their cross section) suggests that current theories, which ignore variations along the magnetic field, are still applicable.

  14. Spectral fluctuation analysis of ionospheric inhomogeneities over Brazilian territory. Part I: Equatorial F-region plasma bubbles

    NASA Astrophysics Data System (ADS)

    Fornari, G.; Rosa, R. R.; de Meneses, F. C.; Muralikrishna, P.

    2016-11-01

    In this Part I of a more general paper on the analysis of ionospheric irregularities over Brazilian territory, we apply the Detrended Fluctuation Analysis (DFA) method to evaluate in situ equatorial F-region plasma bubbles events carried out with a sounding rocket over equatorial region in Brazil. The range of scaling exponents derived from the DFA technique are compared to previous results obtained using Power Spectral Density (PSD) technique (which is widely used in this area despite its recognized inaccuracy to analyze short series). The results obtained in this first part of our investigation, using DFA, also show a wide range of spectral index variation with standard deviation of the same order found from the previous application using PSD (σm ≫ 10 %). Therefore, since the dependence of the technique are disregarded, our findings also supports that the observed lack of a universality class characterized by the nonexistence of a single spectral index (with σm ≈ 2 %) may be due to non-homogeneity energy cascades that can appear in the incoherent ionospheric turbulent process.

  15. A statistical analysis of equatorial plasma bubble structures based on an all-sky airglow imager network in China

    NASA Astrophysics Data System (ADS)

    Sun, Longchang; Xu, Jiyao; Wang, Wenbin; Yuan, Wei; Li, Qinzeng; Jiang, Chaowei

    2016-11-01

    This paper investigates the statistical features of equatorial plasma bubbles (EPBs) using airglow images from 2012 to 2014 from a ground-based network of four imagers in the equatorial region of China. It is found that (1) EPBs mainly occur during 21:00-00:00 local time (LT) in equinoxes. There is an asymmetry in occurrence rates between March (June) and September equinoxes (December solstices). (2) Most EPBs occur in groups of two to six depletions. The distance between adjacent EPB depletions is 100-700 km, and the average is 200-300 km. The zonal extension of an EPB group is usually less than 1500 km but can reach 3000 km. (3) EPBs usually have a maximum drift velocity near 100 m/s at 21:00-22:00 LT in 9.5° ± 1.5° geomagnetic latitude and then decrease to 50-70 m/s toward sunrise. (4) The averaged westward tilt angle of most EPBs (with respect to the geographic north-south) increased from 5°-10° to 23°-30° with LT between 20:00 and 03:00 LT, then decreasing to 10°-20° toward sunrise. (5) When 90 < F10.7 < 140, the maximum magnetic latitudinal extension (PMLE) is usually lower than 15.0° (apex height 725 km), but it can reach 23.0° (apex height 1330 km) when F10.7 > 140. The maximum PMLE increases by 3.4°-5.5° when F10.7 changes from 90 to 190. (6) The EPB occurrence patterns and zonal drift velocities are significantly different from those at Kolhapur, India, which locates west to our stations by 20.0°-32.0° in longitude.

  16. Magnetic-Field-Aligned Characteristics of Plasma Bubbles in the Nighttime Equatorial Ionosphere.

    DTIC Science & Technology

    1979-07-01

    The best evidence published to date is that of Dyson and Benson [19781. Using topside ionograms taken from Alouette II and ISIS I satellites, they...inferred the existence of depleted magnetic flux tubes in the equatorial ionosphere by interpreting anomalous ionogram traces in terms of high-frequency

  17. Hemispheric asymmetry in transition from equatorial plasma bubble to blob as deduced from 630.0 nm airglow observations at low latitudes

    NASA Astrophysics Data System (ADS)

    Park, Jaeheung; Martinis, Carlos R.; Lühr, Hermann; Pfaff, Robert F.; Kwak, Young-Sil

    2016-01-01

    Transitions from depletions to enhancements of 630.0 nm nighttime airglow have been observed at Arecibo. Numerical simulations by Krall et al. (2009) predicted that they should occur only in one hemisphere, which has not yet been confirmed observationally. In this study we investigate the hemispheric conjugacy of the depletion-to-enhancement transition using multiple instruments. We focus on one event observed in the American longitude sector on 22 December 2014: 630.0 nm airglow depletions evolved into enhancements in the Northern Hemisphere while the evolution did not occur in the conjugate location in the Southern Hemisphere. Concurrent plasma density measured by low Earth orbit (LEO) satellites and 777.4 nm airglow images support that the depletions and enhancements of 630.0 nm nighttime airglow reflect plasma density decreases and increases (blobs), respectively. Characteristics of the airglow depletions, in the context of the LEO satellite data, further suggest that the plasma density depletion deduced from the airglow data represents equatorial plasma bubbles (EPBs) rather than medium-scale traveling ionospheric disturbances from midlatitudes. Hence, the event in this study can be interpreted as EPB-to-blob transition.

  18. Explicit characteristics of evolutionary-type plasma bubbles observed from Equatorial Atmosphere Radar during the low to moderate solar activity years 2010-2012

    NASA Astrophysics Data System (ADS)

    Ajith, K. K.; Ram, S. Tulasi; Yamamoto, M.; Yokoyama, T.; Gowtam, V. Sai; Otsuka, Y.; Tsugawa, T.; Niranjan, K.

    2015-02-01

    Using the fan sector backscatter maps of 47 MHz Equatorial Atmosphere Radar (EAR) at Kototabang (0.2°S geographic latitude, 100.3°E geographic longitude, and 10.4°S geomagnetic latitude), Indonesia, the spatial and temporal evolution of equatorial plasma bubbles (EPBs) were examined to classify the evolutionary-type EPBs from those which formed elsewhere and drifted into the field of view of radar. A total of 535 EPBs were observed during the low to moderate solar activity years 2010-2012, out of which about 210 (~39%) are of evolving type and the remaining 325 (~61%) are drifting-in EPBs. In general, both the evolving-type and drifting-in EPBs exhibit predominance during the postsunset hours of equinoxes and December solstices. Interestingly, a large number of EPBs were found to develop even a few minutes prior to the apex sunset during equinoxes. Further, the occurrence of evolving-type EPBs exhibits a clear secondary peak around midnight (2300-0100 LT), primarily, due to higher rate of occurrence during the postmidnight hours of June solstices. A significant number (~33%) of postmidnight EPBs generated during June solstices did not exhibited any clear zonal drift, while about 14% of EPBs drifted westward. Also, the westward drifting EPBs are confined only to June solstices. The responsible mechanisms for the genesis of fresh EPBs during postmidnight hours were discussed in light of equatorward meridional winds in the presence of weak westward electric fields.

  19. Multi-instrument investigation of troposphere-ionosphere coupling through gravity waves and the role of gravity waves in the formation of equatorial plasma bubbles (EPBs)

    NASA Astrophysics Data System (ADS)

    Sivakandan, Mani; Patra, Amit; Sripathi, Samireddipelle; Thokuluwa, Ramkumar; Paulino, Igo; Taori, Alok; Kandula, Niranjan

    2016-07-01

    Equatorial plasma bubble (EPB) occurs in the equatorial ionosphere in pre-mid night (most of the time) as well as post-midnight (rarely) hours. The generation of EPBs by Rayleigh-Taylor Instability (RTI) due to seeding of gravity wave perturbation (polarization electric field) have well been explained theoretically by several authors but experimental evidence supporting this hypothesis is very limited. Using co-located observations from Gadanki (13.5oN, 79.2o E) using an all sky airglow imager and Gadanki Ionospheric Radar Interferometer (GIRI) and Ionosonde observations from Tirunelveli (8.7o N, 77.8o E), we investigate the role of gravity waves in the generation EPB during geomagnetic quiet conditions. To avoid any changes occurring in the background ionosphere owing to the large scale features (e.g., seasonal variation), we use four consecutive nights (03-06, February, 2014). Out of these four nights on two nights we have noted very strong plasma depletions in the OI 630 nm airglow emission and radar plumes. We analyse data to identify cases where, 1) EPBs occurred with large amplitudes of mesospheric gravity waves, 2) Occurrence of EPBs without large amplitudes of mesospheric gravity waves, and 3) identifiable mesospheric gravity waves without occurrence of EPBs. In order to calculate the mesospheric gravity wave parameter we used mesospheric OH airglow emission imager data, to identify their propagation to the E-region, we used E-region observations made using the MST radar which resembled the gravity wave signatures. Together with these, by using ray tracing techniques, we have identified the source region of the noted gravity wave events also. These results are discussed in detail in the present study.

  20. Global distribution of equatorial plasma bubbles in the premidnight sector during solar maximum as observed by KOMPSAT-1 and Defense Meteorological Satellite Program F15

    NASA Astrophysics Data System (ADS)

    Park, Jaeheung; Min, Kyoung Wook; Kim, Vitaly P.; Kil, Hyosub; Lee, Jae-Jin; Kim, Hee-Jun; Lee, Ensang; Lee, Dae Young

    2005-07-01

    We investigated the global distribution of equatorial plasma bubbles (EPBs) using in situ plasma density measurements from Korea Multipurpose Satellite-1 (KOMPSAT-1) and Defense Meteorological Satellite Program (DMSP) F15 during the solar maximum period from June 2000 to August 2001. The results were generally consistent with those of previous studies. EPBs were observed at all longitudes around the magnetic dip equator in the equinoctial seasons with the peak occurrence in the American-Atlantic-African regions. During the June solstice, EPBs occurred predominantly in the African sector, with enhancements in the magnetic north in the Indian and west Pacific regions, but were totally suppressed in the American-Atlantic sector. During the December solstice, EPBs occurred frequently in the American-Atlantic sector but were suppressed in the other longitude sectors, especially in the Pacific sector. The EPB occurrence probability was seen to be correlated with the observed topside plasma density and the model prereversal upward drift speed of ambient plasmas (Fejer et al., 1999), with their respective dominance dependent on the seasons. However, the peak EPB occurrence in the American-Atlantic sector during the December solstice was displaced somewhat from the region of peak density and upward drift, probably due to a strong solar terminator influence on the flux tube-integrated E region Pedersen conductivity and due to anomaly morphology. The peak EPB occurrence in the African sector during the June solstice is consistent only with the high ambient density in that region, for there was no coincidence with the maximum vertical drift or the minimum E region Pedersen conductivity.

  1. An effective TEC data detrending method for the study of equatorial plasma bubbles and traveling ionospheric disturbances

    NASA Astrophysics Data System (ADS)

    Pradipta, Rezy; Valladares, Cesar E.; Doherty, Patricia H.

    2015-12-01

    Using a mechanical analogy of rolling a cylindrical barrel on a rough uneven surface, we developed a special method for detrending the GPS-derived total electron content (TEC) data. This method is specifically designed to recognize the presence of depletions in the TEC time series data and handle them differently from wavelike features. We also demonstrate a potential application of this technique to map the detailed geographic profile of TEC depletions over the equatorial region, using the South American sector as an example.

  2. Sunrise enhancement of equatorial vertical plasma drift

    NASA Astrophysics Data System (ADS)

    Liu, Libo; Zhang, Ruilong; Le, Huijun

    2016-04-01

    Sunrise enhancement in vertical plasma drift over equatorial regions is not discernible in the statistical picture compared with the significant enhancement during dusk hours. In this report, it is the first time to investigate the occurrence of the dawn enhancement in the equatorial ionospheric vertical plasma drift from ROCSAT-1 observations during geomagnetic quiet times. The dawn enhancements occur most frequently in June solstice and least frequently in December solstice. The statistical survey shows that the occurrence depends on the magnetic declination. The enhancement has the strongest amplitude in regions near 320° longitude and peaks during June solstice. The dawn enhancement reaches its peak after the sunrise in conjugated E regions. Furthermore, it is found that the dawn enhancement is closely related to the difference between the sunrise times in the conjugated E regions (sunrise time lag). The dawn enhancement occurs easily in regions with a large sunrise time lag. Moreover, we will report the effects of the sunrise enhancement of vertical plasma drift on the equatorial ionosphere as indicated from the observations and model simulations. We thanks National Central University of Taiwan providing the ROCSAT-1 data. The Ap and F107 indices are obtained from the National Geophysical Data Center (http://spidr.ngdc.noaa.gov/spidr/). This research is supported by National Natural Science Foundation of China (41231065), the Chinese Academy of Sciences project (KZZD-EW-01-3), National Key Basic Research Program of China (2012CB825604) and National Natural Science Foundation of China (41321003).

  3. Plasma bubble detection in the DEMETER micro-satellite data

    NASA Astrophysics Data System (ADS)

    Onishi, T.; Nguyen, C.-T.; Berthelier, J.-J.

    2012-04-01

    The occurrence of plasma bubbles is the most important phenomenon that affects the night time equatorial ionosphere resulting in strong and localized drops of the plasma density with often very sharp boundaries. Besides its own interest for ionospheric physics this phenomenon is also of significant practical importance since it disrupts HF communication and GPS signal reception. In the frame of a French ANR funded project to model the rise and development of plasma bubbles we have searched for specific disturbances of the low latitude ionosphere that might be considered as "precursors" of plasma bubbles, possibly leading, under favourable conditions, to an instable ionosphere. To this aim, we have manually selected and classified typical events observed on data from two instruments on board the DEMETER satellite, IAP (Plasma analyzer) and ISL (Langmuir probe experiment). We present in this poster the various types of events and show that one of them appears to be associated with the later occurrence of plasma bubbles. From the first list of events recorded during an ~ 18 month period we will discuss in detail the plasma disturbances and present initial results of a statistical study.

  4. First observations of super plasma bubbles in Europe

    NASA Astrophysics Data System (ADS)

    Cherniak, Iurii; Zakharenkova, Irina

    2016-11-01

    Ionospheric plasma bubbles of equatorial origin have never been registered at midlatitudes in Europe. During the 22-23 June 2015 geomagnetic storm the prompt penetration electric fields caused the occurrence of plasma bite-outs in the postsunset sector over low latitudes of Western Africa and large-scale plasma bubbles extended toward Europe. For the first time, using multisite GPS and Global Navigation Satellite System observations ( 1500 stations), the super plasma bubble signatures were registered in Europe. They were observed more than 8 h (20-04 UT) and covered a broad area within 30°-40°N and 20°W-10°E. These unique results were confirmed by measurements on board Swarm and DMSP satellites and ground-based absolute total electron content observations. Occurrence of the super plasma bubbles in Europe affected Global Navigation Satellite Systems measurements over a number of stations in Spain, Portugal, southern France, and Italy and led to performance degradation of the European Geostationary Navigation Overlay Service.

  5. Ionospheric plasma bubble encounters or F region bottomside traversals

    SciTech Connect

    Benson, R.F.; Brinton, H.C.

    1983-08-01

    In situ AE-C and AE-E ion composition measurements, together with Manila and Huancayo ionosonde electron density profiles, are used in an attempt to distinguish between spacecraft encounters with equatorial plasma bubbles which have been pinched off from below, those still in the formation stage, and spacecraft excursions below the steep ionization gradient at the bottom edge of the postsunset F layer. Such excursions can result from quasi-periodic oscillations of the altitude of the F layer: as deduced from the ion composition measurements during the circular orbit phase of the low-inclination satellite AE-E. It is found that depletion features that appear to be due to topside bubbles which have been pinched off from below seldom have ion concentration reductions as high as a factor of 10/sup 2/; concentration drops associated with bubbles directly connected to bottomside plasma via vertical plasma density contours or those due to bottomside excursions, however, can be nearly a factor of 10/sup 4/. In the former case, O/sup +/ remains the dominant ion; in the latter case NO/sup +/ often becomes dominant. These results have important theoretical implications in that they are consistent with placing the bubble generation region on the steep density gradient of the lower ledge of F region where O/sup +/ is the dominant ion.

  6. Plasma turbulence in the equatorial ionospheric F region

    NASA Astrophysics Data System (ADS)

    McDaniel, Rickey Dale

    Equatorial spread F is a spectacular phenomenon in which the equatorial region ionosphere is reshaped after sunset. The plasma instabilities responsible for equatorial spread F are fascinating since they occur on time scales ranging from seconds to hours and length scales from centimeters to tens of kilometers. The plasma irregularities that occur in the F region also influence the performance and reliability of space borne and ground based electronic systems and may cause the disruption of satellite operations, communications, navigation, and electrical power distribution grids, leading to potentially broad economic losses. The ionospheric model equations that describe these plasma instabilities display different dynamical behavior based on the value of the ion-neutral collision frequency. The transition occurs at the so-called inertial regime of the ionosphere, where the model equations are similar to the Navier Stokes equations except applied to inhomogeneous fluids. A general analytic solution does not exist for these nonlinear equations; however, a numerical model is developed by maintaining charge neutrality in the vicinity of a circular bubble rising from the collisional to the inertial regime. Using this model, we are able to determine the location of the inertial regime as a function of local time, longitude, season, and solar cycle. The model results determine that the regime occurs generally from about 2000 and 2100 local time and 500-900 km apex height. Also, the model predicts that solar minimum periods are generally more conducive for inertial effects than solar maximum periods. Time series analysis performed on Dynamics Explorer II ion density data show that a turbulent cascade form in the inertial regime predicted by the model. Intermediate scale density power spectra all obey k-5/3 spectra scaling when measured in altitude and local time windows predicted by our model as failing within the inertial regime. Meanwhile, density power spectra for data

  7. Investigation of the role of gravity waves in the generation of equatorial bubbles

    NASA Technical Reports Server (NTRS)

    Johnson, Francis S.; Coley, William R.

    1995-01-01

    The following areas of interest in this progress report are: (1) the continuation of software development in the examination of F-region gravity-wave power using in-situ data from the Atmosphere Explorer (AE-E); (2) the inquiry into the use of the San Marco data for the study of the initiation and growth of bubbles, particularly when the satellite passes through the early evening hours at relatively high altitudes, and the development of bubbles using not only the San Marco data but includes the use of airglow observations made in Hawaii; and (3) the promising development in the observation of distinct well formed waves at about 400 km altitude in the equatorial region. These waves look very much like waves seen over the polar cap that are attributed to internal gravity waves in the neutral atmosphere driving ionization up and down the magnetic field lines. These equatorial waves show no modulation of the total ion concentration.

  8. Estimation of the initial amplitude of perturbation and its use in numerical simulation of plasma bubbles

    NASA Astrophysics Data System (ADS)

    Batista, Inez S.; Carrasco, Alexander J.; Abdu, Mangalathayil A.

    2012-07-01

    This work describes an experimental method for the calculation of the initial amplitude of plasma bubble seed perturbation in the bottomside F layer from ionograms. The observations show that after sunset the ionograms exhibit irregularities in the base of the F trace. In the context of the plasma depletion in the bottomside F-layer, the irregularities in ionograms can be seen like isodensity contour in evolution (in space and time). The initial amplitudes, calculated using the methodology, were used to simulate plasma bubbles through the use of flux corrected transport method with Boris-Book's flux limiter for the spatial integration and a predictor-corrector method for the direct time integration of the continuity equation of {O}^{+} and the SOR method for electric potential equation. Generalized Rayleigh-Taylor instability plays a predominant role in the evolution of long-wavelength irregularities in the equatorial ionosphere. This instability is influenced by the vertical density gradient at bottom of the F layer, and the magnitude and shape of the density perturbation that seeds the instability. The code is tested with different enhanced evening eastward electric fields to study the influences of pre-reversal enhancement in the zonal electric field on plasma bubble formation and development. The values of the zonal electric fields are based on Digisonde observations over the dip equatorial station of Cachimbo (9.5° S, 54.8° W) during the 2002 COPEX (Conjugate Point Equatorial Experiment) campaign in Brazil.

  9. Oscillating plasma bubbles. I. Basic properties and instabilities

    SciTech Connect

    Stenzel, R. L.; Urrutia, J. M.

    2012-08-15

    Plasma bubbles are created in an ambient discharge plasma. A bubble is a plasma volume of typically spherical shape, which is separated from the ambient plasma by a negatively biased grid of high transparency. Ions and electrons from the ambient plasma flow into the bubble volume. In steady state the flow of particles and currents is divergence-free, which is established by the plasma potential inside the bubble. The grid has two sheaths, one facing the ambient plasma, the other the bubble plasma. The inner sheath is observed to become unstable, causing the plasma potential in the bubble to oscillate. The instability arises from an excess of ions and a deficiency of electrons. Its frequency is in the range of the ion plasma frequency but depends on all parameters which influence the charge density in the sheath. When the grid voltage is very negative, electrons cannot enter the outer sheath, and the inner sheath becomes a virtual anode which reflects ions such that the bubble interior is empty. When an electron source is placed into the bubble it can neutralize the ions and the bubble refills. Without plasma sources or sinks the bubble plasma is extremely sensitive to perturbations by probes. Modified current-voltage characteristics of Langmuir and emissive probes are demonstrated. A sequence of papers first describes the basic steady-state properties, then the time evolution of bubbles, the effects of electron sources in bubbles, and the role of the grid and bubble geometry. The physics of plasma bubbles is important to several fields of basic plasma physics such as sheaths, sheath instabilities, diagnostic probes, electrostatic confinement, and current and space charge neutralization of beams.

  10. Generation of pulsed discharge plasma in water with fine bubbles

    NASA Astrophysics Data System (ADS)

    Hayashi, Yui; Takada, Noriharu; Kanda, Hideki; Goto, Motonobu; Goto laboratory Team

    2015-09-01

    Recently, some researchers have proposed electric discharge methods with bubbles in water because the discharge plasma inside bubble was easy to be generated compared to that in water. Almost all of these methods introduced bubbles in the order of millimeter size from a nozzle placed in water. In these methods, bubbles rose one after another owing to high rising speed of millibubble, leading to inefficient gas consumption. We proposed fine bubbles introduction at the discharge area in water. A fine bubble is determined a bubble with less than 100 μm in a diameter. Fine bubbles exhibit extremely slow rising speed. Fine bubbles decrease in size during bubble rising and subsequently collapse in water with OH radical generation. Therefore, combining the discharge plasma with fine bubbles is expected to generate more active species with small amount of gas consumption. In this work, fine bubbles were introduced in water and pulsed discharge plasma was generated between two cylindrical electrodes which placed in water. We examined effects of fine bubbles on electric discharge in water when argon or oxygen gas was utilized as feed gas. Fine bubbles enhanced optical emission of hydrogen and oxygen atoms from H2O molecules, but that of feed gas was not observed. The formation mechanism of H2O2 by electric discharge was supposed to be different from that with no bubbling. Dissolved oxygen in water played a role in H2O2 formation by the discharge with fine bubbles.

  11. Mesospheric gravity waves and ionospheric plasma bubbles observed during the COPEX campaign

    NASA Astrophysics Data System (ADS)

    Paulino, I.; Takahashi, H.; Medeiros, A. F.; Wrasse, C. M.; Buriti, R. A.; Sobral, J. H. A.; Gobbi, D.

    2011-07-01

    During the Conjugate Point Experiment (COPEX) campaign performed at Boa Vista (2.80∘N;60.70∘W, dip angle21.7∘N) from October to December 2002, 15 medium-scale gravity waves in the OHNIR airglow images were observed. Using a Keogram image analysis, we estimate their parameters. Most of the waves propagate to Northwest, indicating that their main sources are Southeast of Boa Vista. Quasi-simultaneous plasma bubble activities in the OI 630 nm images were observed in seven cases. The distances between the bubble depletions have a linear relationship with the wavelengths of the gravity waves observed in the mesosphere, which suggests a direct contribution of the mesospheric medium-scale gravity waves in seeding the equatorial plasma bubbles.

  12. The dawn enhancement of the equatorial ionospheric vertical plasma drift

    NASA Astrophysics Data System (ADS)

    Zhang, Ruilong; Liu, Libo; Chen, Yiding; Le, Huijun

    2015-12-01

    Previous studies have reported that a dawn enhancement does not present in the statistical picture of the equatorial ionospheric vertical plasma drift, while it clearly shows in case measurements. In this statistical study, it is the first time to investigate the occurrence of the dawn enhancement in the equatorial ionospheric vertical plasma drift from ROCSAT-1 observations during geomagnetic quiet times. The dawn enhancements occur most frequently in June solstice and least frequently in December solstice. The statistical survey shows that the occurrence depends on the magnetic declination. The enhancement has the strongest amplitude in regions near 320° longitude and peaks during June solstice. The dawn enhancement reaches its peak after the sunrise in conjugated E regions. Furthermore, it is found that the dawn enhancement is closely related to the difference between the sunrise times in the conjugated E regions (sunrise time lag). The dawn enhancement occurs easily in regions with a large sunrise time lag.

  13. Predawn plasma bubble cluster observed in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Watthanasangmechai, Kornyanat; Yamamoto, Mamoru; Saito, Akinori; Tsunoda, Roland; Yokoyama, Tatsuhiro; Supnithi, Pornchai; Ishii, Mamoru; Yatini, Clara

    2016-06-01

    Predawn plasma bubble was detected as deep plasma depletion by GNU Radio Beacon Receiver (GRBR) network and in situ measurement onboard Defense Meteorological Satellite Program F15 (DMSPF15) satellite and was confirmed by sparse GPS network in Southeast Asia. In addition to the deep depletion, the GPS network revealed the coexisting submesoscale irregularities. A deep depletion is regarded as a primary bubble. Submesoscale irregularities are regarded as secondary bubbles. Primary bubble and secondary bubbles appeared together as a cluster with zonal wavelength of 50 km. An altitude of secondary bubbles happened to be lower than that of the primary bubble in the same cluster. The observed pattern of plasma bubble cluster is consistent with the simulation result of the recent high-resolution bubble (HIRB) model. This event is only a single event out of 76 satellite passes at nighttime during 3-25 March 2012 that significantly shows plasma depletion at plasma bubble wall. The inside structure of the primary bubble was clearly revealed from the in situ density data of DMSPF15 satellite and the ground-based GRBR total electron content.

  14. Spread F plasma bubble vertical rise velocities determined from spaced ionosonde observations

    SciTech Connect

    Abdu, M.A.; de Medeiros, R.T.; Sobral, J.H.A.; Bittencourt, J.A.

    1983-11-01

    Systematic time differences in the onsets of spread F events in the ionograms are observed between the magnetic equatorial station Fortaleza (4/sup 0/S, 38/sup 0/W, dip latitude 1.8/sup 0/S) and the low-latitude station Cachoeira Paulista (23/sup 0/S, 45/sup 0/W, dip latitude 14/sup 0/S), two stations in Brazil, located at close-by magnetic meridional planes (actually some 12/sup 0/ of magnetic longitude apart). On the assumption, justified from different experimental observations, that the spread F irregularities occur in strongly field-aligned plasma bubbles that extend several degrees on either side of the magnetic equator, and rise up in vertically elongated columns over the magnteic equator, we have related the observed time differences in the onsets of spread F events at the two stations to the plasma bubble vertical rise velocities of the plasma bubbles so determined are found to be well within the values measured by VHF radar and satellite techniques, and further show, at times, good correlations with the amplitude of the prereversal peak in the vertical drift velocities and the heights of the evening equatorial F layer. Possible implications of these results are discussed.

  15. Generation of large-scale equatorial F-region plasma depletions during geomagnetic storms: A review

    NASA Astrophysics Data System (ADS)

    Sahai, Y.; Fagundes, P.; Bittencourt, J.; Pimenta, A.

    All-sky imaging observations of the F-region OI 630 nm nightglow emission allow us to visualize large - scale equatorial plasma depletions, generally known as transequatorial plasma bubbles. These quasi north south direction aligned- ionospheric plasma depletions are o tical signatures of strong range type equatorialp spread-F. An extensive data base of the OI 630 nm emission all-sky imaging- observations has been obtained at Cachoeira Paulista (22.7o S, 45.0 o W; dip latitude ~16o S), Brazil, between the years 1987 and 2000. An analysis of these observations revealed that normally large-scale ionospheric plasma depletions do not occur during the months of May to August (southern winter) in the Brazilian sector. However, large-scale ionospheric plasma depletions during thes e months have been observed on several occasions in association with geomagnetic storms. In this paper, a detailed analysis of the events when large - scale ionospheric plasma depletions were initiated and evolved during magnetic disturbances will be present ed and discussed.

  16. Plasma Turbulence in the Local Bubble

    NASA Astrophysics Data System (ADS)

    Spangler, Steven R.

    Turbulence in the Local Bubble could play an important role in the thermodynamics of the gas that is there. This turbulence could also determine the transport of cosmic rays and perhaps heat flow through this phase of the interstellar medium. The best astronomical technique for measuring turbulence in astrophysical plasmas is radio scintillation. Scintillation measurements yield information on the intensity and spectral characteristics of plasma turbulence between the source of the radio waves and the observer. Measurements of the level of scattering to the nearby pulsar B0950+08 by Philips and Clegg in 1992 showed a markedly lower value for the line-of-sight averaged turbulent intensity parameter than is observed for other pulsars, qualitatively consistent with radio wave propagation through a highly rarefied plasma. In this paper, we discuss the observational progress that has been made since that time. The main development has been improved measurements of pulsar parallaxes with the Very Long Baseline Array. This provides better knowledge of the media along the lines of sight. At present, there are four pulsars (B0950+08, B1133+16, J0437-4715, and B0809+74) whose lines of sight seem to lie mainly within the local bubble. The mean densities and line of sight components of the interstellar magnetic field along these lines of sight are smaller than nominal values for pulsars, but not by as large a factor as might be expected. Three of the four pulsars also have measurements of interstellar scintillation. The value of the parameter is smaller than normal for two of them, but is completely nominal for the third. This inconclusive status of affairs could be improved by measurements and analysis of "arcs" in "secondary spectra" of pulsars, which contain information on the location and intensity of localized screens of turbulence along the lines of sight. Similar data could be obtained from observations of highly compact extragalactic radio sources

  17. Plasma Turbulence in the Local Bubble

    NASA Astrophysics Data System (ADS)

    Spangler, Steven R.

    2009-03-01

    Turbulence in the Local Bubble could play an important role in the thermodynamics of the gas that is there. This turbulence could also determine the transport of cosmic rays and perhaps heat flow through this phase of the interstellar medium. The best astronomical technique for measuring turbulence in astrophysical plasmas is radio scintillation. Scintillation measurements yield information on the intensity and spectral characteristics of plasma turbulence between the source of the radio waves and the observer. Measurements of the level of scattering to the nearby pulsar B0950+08 by Philips and Clegg in 1992 showed a markedly lower value for the line-of-sight averaged turbulent intensity parameter < C {/N 2}> than is observed for other pulsars, qualitatively consistent with radio wave propagation through a highly rarefied plasma. In this paper, we discuss the observational progress that has been made since that time. The main development has been improved measurements of pulsar parallaxes with the Very Long Baseline Array. This provides better knowledge of the media along the lines of sight. At present, there are four pulsars (B0950+08, B1133+16, J0437-4715, and B0809+74) whose lines of sight seem to lie mainly within the local bubble. The mean densities and line of sight components of the interstellar magnetic field along these lines of sight are smaller than nominal values for pulsars, but not by as large a factor as might be expected. Three of the four pulsars also have measurements of interstellar scintillation. The value of the parameter < C {/N 2}> is smaller than normal for two of them, but is completely nominal for the third. This inconclusive status of affairs could be improved by measurements and analysis of “arcs” in “secondary spectra” of pulsars, which contain information on the location and intensity of localized screens of turbulence along the lines of sight. Similar data could be obtained from observations of highly compact extragalactic

  18. Scale analysis of equatorial plasma irregularities derived from Swarm constellation

    NASA Astrophysics Data System (ADS)

    Xiong, Chao; Stolle, Claudia; Lühr, Hermann; Park, Jaeheung; Fejer, Bela G.; Kervalishvili, Guram N.

    2016-07-01

    In this study, we investigated the scale sizes of equatorial plasma irregularities (EPIs) using measurements from the Swarm satellites during its early mission and final constellation phases. We found that with longitudinal separation between Swarm satellites larger than 0.4°, no significant correlation was found any more. This result suggests that EPI structures include plasma density scale sizes less than 44 km in the zonal direction. During the Swarm earlier mission phase, clearly better EPI correlations are obtained in the northern hemisphere, implying more fragmented irregularities in the southern hemisphere where the ambient magnetic field is low. The previously reported inverted-C shell structure of EPIs is generally confirmed by the Swarm observations in the northern hemisphere, but with various tilt angles. From the Swarm spacecrafts with zonal separations of about 150 km, we conclude that larger zonal scale sizes of irregularities exist during the early evening hours (around 1900 LT).

  19. Mathematical modeling of plasma drifts over equatorial low latitude regions

    NASA Astrophysics Data System (ADS)

    Sundaresan, S.; Nageswara Rao, B.

    2010-09-01

    This paper presents a mathematical model to simulate ionospheric plasma drifts at equatorial low latitude regions by coupling of E- and F-regions. The governing non-linear differential equations (of elliptic and parabolic nature) are solved numerically through finite-difference schemes and obtained neutral winds and electric fields. The temperature and electron density profiles are generated utilizing MSIS-86 atmospheric model. The continuity equation is employed to obtain night-time E-region density profile using measured ionograms at Trivandrum (India). The computed vertical and zonal plasma drifts are comparable with measured Jacamarca plasma drifts with little variations during noon and evening times. The plasma drifts at Trivandrum (8.5° N, 76.5° E, dip 0.5° N) are compared with those of Jicamarca (12° S, 76.9° W, dip 2° N). Neutral wind simulations of present model agree well with those of horizontal wind model (HWM-93). The post-sunset enhancement and its reversal are also discussed.

  20. DEMETER Observations of Equatorial Plasma Depletions and Related Ionospheric Phenomena

    NASA Astrophysics Data System (ADS)

    Berthelier, J.; Malingre, M.; Pfaff, R.; Jasperse, J.; Parrot, M.

    2008-12-01

    DEMETER, the first micro-satellite of the CNES MYRIAD program, was launched from Baikonour on June 29, 2004 on a nearly circular, quasi helio-synchronous polar orbit at ~ 715 km altitude. The DEMETER mission focuses primarily on the search for a possible coupling between seismic activity and ionospheric disturbances as well as on the effects of natural phenomena such as tropospheric thunderstorms and man-made activities on the ionosphere. The scientific payload provides fairly complete measurements of the ionospheric plasma, energetic particles above ~ 70 keV, and plasma waves, up to 20 kHz for the magnetic and 3.3 MHz for the electric components. Several studies related to space weather and ionospheric physics have been conducted over the past years. Following a brief description of the payload and the satellite modes of operation, this presentation will focus on a set of results that provide a new insight into the physics of instabilities in the night-time equatorial ionosphere. The observations were performed during the major magnetic storm of November 2004. Deep plasma depletions were observed on several night-time passes at low latitudes characterized by the decrease of the plasma density by nearly 3 orders of magnitude relative to the undisturbed plasma, and a significant abundance of molecular ions. These features can be best interpreted as resulting from the rise of the F-layer above the satellite altitude over an extended region of the ionosphere. In one of the passes, DEMETER was operated in the Burst mode and the corresponding high resolution data allowed for the discovery of two unexpected phenomena. The first one is the existence of high intensity monochromatic wave packets at the LH frequency that develop during the decay phase of intense bursts of broadband LH turbulence. The broadband LH turbulence is triggered by whistlers emitted by lightning from atmospheric thunderstorms beneath the satellite. The second unexpected feature is the detection of a

  1. Oscillating plasma bubbles. III. Internal electron sources and sinks

    SciTech Connect

    Stenzel, R. L.; Urrutia, J. M.

    2012-08-15

    An internal electron source has been used to neutralize ions injected from an ambient plasma into a spherical grid. The resultant plasma is termed a plasma 'bubble.' When the electron supply from the filament is reduced, the sheath inside the bubble becomes unstable. The plasma potential of the bubble oscillates near but below the ion plasma frequency. Different modes of oscillations have been observed as well as a subharmonic and multiple harmonics. The frequency increases with ion density and decreases with electron density. The peak amplitude occurs for an optimum current and the instability is quenched at large electron densities. The frequency also increases if Langmuir probes inside the bubble draw electrons. Allowing electrons from the ambient plasma to enter, the bubble changes the frequency dependence on grid voltage. It is concluded that the net space charge density in the sheath determines the oscillation frequency. It is suggested that the sheath instability is caused by ion inertia in an oscillating sheath electric field which is created by ion bunching.

  2. Plasma sheets, plasma currents and electric field double layers in the equatorial ionosphere

    SciTech Connect

    Gupta, S.P.

    1981-01-01

    Plasma measurements carried out in the equatorial ionosphere at altitudes of 80-200 km are discussed. It is found that within this region the ion collision frequency exceeds the gyro-frequency. For electrons, however, the collision frequency is much lower than their gyro-frequency. It is pointed out that the earth's magnetic field is horizontal in the equatorial ionosphere, particularly at altitudes of approximately 100 km, where the curvature of the magnetic field can be neglected. The results obtained from rocket-borne probes in the equatorial ionosphere over Thumba (India) are presented. Localized regions illustrating the polarity of the vertical electric field are shown, as are current density profiles obtained at different times of the day. It is found that as expected, the vertical electric field becomes very small during a weak magnetic storm.

  3. Rocket in situ observation of equatorial plasma irregularities in the region between E and F layers over Brazil

    NASA Astrophysics Data System (ADS)

    Savio Odriozola, Siomel; de Meneses, Francisco Carlos, Jr.; Muralikrishna, Polinaya; Alvares Pimenta, Alexandre; Alam Kherani, Esfhan

    2017-03-01

    A two-stage VS-30 Orion rocket was launched from the equatorial rocket launching station in Alcântara, Brazil, on 8 December 2012 soon after sunset (19:00 LT), carrying a Langmuir probe operating alternately in swept and constant bias modes. At the time of launch, ground equipment operated at equatorial stations showed rapid rise in the base of the F layer, indicating the pre-reversal enhancement of the F region vertical drift and creating ionospheric conditions favorable for the generation of plasma bubbles. Vertical profiles of electron density estimated from Langmuir probe data showed wave patterns and small- and medium-scale plasma irregularities in the valley region (100-300 km) during the rocket upleg and downleg. These irregularities resemble those detected by the very high frequency (VHF) radar installed at Jicamarca and so-called equatorial quasi-periodic echoes. We present evidence suggesting that these observations could be the first detection of this type of irregularity made by instruments onboard a rocket.

  4. Investigation of plasma motion in the equatorial ionosphere

    NASA Astrophysics Data System (ADS)

    Oyekola, Oyedemi S.

    2016-07-01

    The structure of evening and nighttime F-region vertical drift component of is vital for understanding the physics of the development of the occurrence of equatorial irregularities. In addition, postsunset ionospheric height has also been attributed as one of the most important factors for the occurrence of equatorial irregularities. We report vertical plasma drift velocities derived from the base (h'F) and the peak height (hmF2) of F-layer using 1-year of data obtained at Ibadan (Geog Long 3.9oE) during International Geophysical Year (1957-58) period for geomagnetic quiet-time and high solar activity conditions. We compared our results with International Reference Ionosphere 2012 model (IRI-2012). The results of this investigation include: (a) overall local- time characteristics of vertical drift between 1800 LT and 0600 LT are in good agreement for equinoxes, December, and June; (b) annual vertical drift derived from time variation of h'F and hmF2 and the corresponding annual variation of h'F and hmF2 variation indicate low correlation (R = 0.30), while IRI-2012 model vertical drift and IRI-2012 model of hmF2 show fairly good correlation ( R = 0.67); (c) regression analysis between time variation of h'F and Scherliess / Fejer model demonstrate correlation coefficient of approximately 0.74 (equinox), 0.85 (December), 0.57 (June) and 0.74 (all-year), while that of time variation of hmF2 and IRI-2012 vertical velocities show 0.95 (equinox), 0.74 (December), 0.43 (June), and 0.74 (all-year); (d) plasma motion derived from the time rate of change of h'F and those of hmF2 are correlated at 0.94, 0.88, 0.63, and 0.90 for equinoxes, December, June, and all-year, respectively; (e) the evening prereversal vertical drifts enhancement rage between ~20 - 45 m/s, ~18 - 46 m/s, ~20 - 50 m/s for time variation of h'F, hmF2, and Scherliess / Fejer model, respectively; (f) the corresponding peak altitudes vary between 430 - 540 km (h'F), 560 - 740 km ( hmF2), and 570 - 620 km (IRI

  5. Laboratory Experiments on Propagating Plasma Bubbles into Vacuum, Vacuum Magnetic Field, and Background Plasmas

    NASA Astrophysics Data System (ADS)

    Lynn, Alan G.; Zhang, Yue; Gilmore, Mark; Hsu, Scott

    2014-10-01

    We discuss the dynamics of plasma ``bubbles'' as they propagate through a variety of background media. These bubbles are formed by a pulsed coaxial gun with an externally applied magnetic field. Bubble parameters are typically ne ~1020 m-3, Te ~ 5 - 10 eV, and Ti ~ 10 - 15 eV. The structure of the bubbles can range from unmagnetized jet-like structures to spheromak-like structures with complex magnetic flux surfaces. Some of the background media the bubbles interact with are vacuum, vacuum with magnetic field, and other magnetized plasmas. These bubbles exhibit different qualitative behavior depending on coaxial gun parameters such as gas species, gun current, and gun bias magnetic field. Their behavior also depends on the parameters of the background they propagate through. Multi-frame fast camera imaging and magnetic probe data are used to characterize the bubble evolution under various conditions.

  6. Oscillating plasma bubbles. IV. Grids, geometry, and gradients

    SciTech Connect

    Stenzel, R. L.; Urrutia, J. M.

    2012-08-15

    Plasma bubbles are created in an ambient plasma. The bubble is formed inside a cavity bounded by a negatively biased grid. Ions are injected through the grid and neutralized by electrons from either the background plasma or an internal electron emitter. The external electron supply is controlled by the grid bias relative to the external plasma potential. When the electron flux is restricted to the ion flux, the sheath of the bubble becomes unstable and causes the plasma potential to oscillate near the ion plasma frequency. The exact frequency depends on the net space charge density in the bubble sheath. The frequency increases with density and grid voltage, provided the grid forms a parallel equipotential surface. The present investigation shows that when the Debye length becomes smaller than the grid openings the electron flux cannot be controlled by the grid voltage. The frequency dependence on grid voltage and density is modified creating frequency and amplitude jumps. Low frequency sheath oscillations modulate the high frequency normal oscillations. Harmonics and subharmonics are excited by electrons in an ion-rich sheath. When the plasma parameters vary over the bubble surface, the sheath may oscillate at different frequencies. A cavity with two isolated grids has been used to investigate anisotropies of the energetic electron flux in a discharge plasma. The frequency dependence on grid voltage is entirely different when the grid controls the energetic electrons or the bulk electrons. These observations are important to several fields of basic plasma physics, such as sheaths, sheath instabilities, diagnostic probes, current, and space charge neutralization of ion beams.

  7. Dynamics and interactions of pulsed laser generated plasma bubbles in dusty plasma liquids

    SciTech Connect

    Chu Hongyu; Liao Chenting; I Lin

    2005-10-31

    The plasma bubble with dust particle depletion can be generated by a nano-second laser pulse focused on one of the dust particles suspended in a strongly coupled dusty plasma liquid. The bubble dynamics at different time scales, including the initial forming and later traveling stages are investigated. In the first stage, dust particles are pushed outward by the outward ion flow associated with the plume generated by the more intensed plasma. The bubble then travels downward at a speed about 60 mm/s associated with a surrounding dipole-like dust flow field. Two bubbles can also be simultaneously generated at different locations by separated laser pulses to study their interactions. Strong coupling is observed between two vertical bubbles. However, two horizontal bubbles are weakly coupled. The possible mechanism is discussed.

  8. Interaction of field-aligned cold plasma flows with an equatorially-trapped hot plasma - Electrostatic shock formation

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra

    1993-01-01

    Effects of equatorially trapped hot plasma on the highly supersonic cold-plasma flow occurring during early stage plasmaspheric refilling are studied by means of numerical simulations. It is shown that the equatorially trapped hot ions set up a potential barrier for the cold ion beams and facilitate formation of electrostatic shocks by reflecting them from the equatorial region. Simulations with and without the hot plasma show different flow properties; the formation of electrostatic shocks occur only in the former case. The simulation with the hot plasma also reveals that the magnetic trapping in conjunction with the evolution of the electrostatic potential barrier produces ion velocity distribution functions consisting of a cold core and a hot ring in the perpendicular velocity. Such a distribution function provides a source of free energy for equatorial waves. The corresponding electron population is warm and field-aligned.

  9. Analysis of Plasma Bubble Signatures in the Ionosphere

    DTIC Science & Technology

    2011-03-01

    exams forced me to expand the boundaries of my critical thinking skills. I also learned a new way to cut watermelons and even enjoyed a stint of rare...take the form of vertically elongated wedges of depleted plasma resembling upside down watermelon slices with an apex height determined by the 11...farther distances are detected, resulting in lower affected elevation angles. Overall, the upside-down watermelon shape of the plasma bubbles elongated

  10. Propagation of plasma bubbles observed in Brazil from GPS and airglow data

    NASA Astrophysics Data System (ADS)

    Haase, J. S.; Dautermann, T.; Taylor, Michael J.; Chapagain, N.; Calais, E.; Pautet, D.

    2011-05-01

    Equatorial spread-F is a common occurrence in the equatorial ionosphere that is associated with large variations in plasma density that often cause scintillation and interference in communication signals. These events are known to result from Rayleigh-Taylor instability, but the day-to-day variability of their occurrence is not well understood. The triggering mechanism of plasma depletions is still a matter of debate, but may be linked to gravity waves that under favorable conditions propagate to the middle atmosphere. Understanding the triggering of ESF was the focus of the SpreadFEx campaign near Brasilia, Brazil in 2005. The campaign provided co-located airglow and GPS observations to study the onset of plasma depletions and their evolution as they traversed the region. Comparisons between the 630.0 nm airglow data and GPS data demonstrate the ability of the compact dual frequency GPS array to detect the plasma bubbles and retrieve reliable propagation characteristics of the depletions. In this case study, a plasma depletion was detected and moved over the array at velocities of 85-110 m/s, slowing as it moved towards the east. Correlation of consecutive airglow images gives consistent estimates of the eastward drift over the same time period. Mapping the airglow data to the GPS line-of-sight geometry allows direct comparison and reveals a resolvable westward tilt of the plasma depletion that may be due to vertical shear. The uniqueness of this study is the ability to resolve locally the characteristics of the plasma depletion without relying on assumptions about the mapping of the depletion along magnetic field lines to large latitudinal distances. It presents new information for understanding ESF development and the development of depletions strong enough to produce scintillation.

  11. Plasma formation and temperature measurement during single-bubble cavitation

    NASA Astrophysics Data System (ADS)

    Flannigan, David J.; Suslick, Kenneth S.

    2005-03-01

    Single-bubble sonoluminescence (SBSL) results from the extreme temperatures and pressures achieved during bubble compression; calculations have predicted the existence of a hot, optically opaque plasma core with consequent bremsstrahlung radiation. Recent controversial reports claim the observation of neutrons from deuterium-deuterium fusion during acoustic cavitation. However, there has been previously no strong experimental evidence for the existence of a plasma during single- or multi-bubble sonoluminescence. SBSL typically produces featureless emission spectra that reveal little about the intra-cavity physical conditions or chemical processes. Here we report observations of atomic (Ar) emission and extensive molecular (SO) and ionic (O2+) progressions in SBSL spectra from concentrated aqueous H2SO4 solutions. Both the Ar and SO emission permit spectroscopic temperature determinations, as accomplished for multi-bubble sonoluminescence with other emitters. The emissive excited states observed from both Ar and O2+ are inconsistent with any thermal process. The Ar excited states involved are extremely high in energy (>13eV) and cannot be thermally populated at the measured Ar emission temperatures (4,000-15,000K) the ionization energy of O2 is more than twice its bond dissociation energy, so O2+ likewise cannot be thermally produced. We therefore conclude that these emitting species must originate from collisions with high-energy electrons, ions or particles from a hot plasma core.

  12. Plasma formation and temperature measurement during single-bubble cavitation.

    PubMed

    Flannigan, David J; Suslick, Kenneth S

    2005-03-03

    Single-bubble sonoluminescence (SBSL) results from the extreme temperatures and pressures achieved during bubble compression; calculations have predicted the existence of a hot, optically opaque plasma core with consequent bremsstrahlung radiation. Recent controversial reports claim the observation of neutrons from deuterium-deuterium fusion during acoustic cavitation. However, there has been previously no strong experimental evidence for the existence of a plasma during single- or multi-bubble sonoluminescence. SBSL typically produces featureless emission spectra that reveal little about the intra-cavity physical conditions or chemical processes. Here we report observations of atomic (Ar) emission and extensive molecular (SO) and ionic (O2+) progressions in SBSL spectra from concentrated aqueous H2SO4 solutions. Both the Ar and SO emission permit spectroscopic temperature determinations, as accomplished for multi-bubble sonoluminescence with other emitters. The emissive excited states observed from both Ar and O2+ are inconsistent with any thermal process. The Ar excited states involved are extremely high in energy (>13 eV) and cannot be thermally populated at the measured Ar emission temperatures (4,000-15,000 K); the ionization energy of O2 is more than twice its bond dissociation energy, so O2+ likewise cannot be thermally produced. We therefore conclude that these emitting species must originate from collisions with high-energy electrons, ions or particles from a hot plasma core.

  13. Plasmas generated in bubbles immersed in liquids: direct current streamers versus microwave plasma

    NASA Astrophysics Data System (ADS)

    Levko, Dmitry; Sharma, Ashish; Raja, Laxminarayan L.

    2016-07-01

    Two approaches to generate non-equilibrium atmospheric-pressure plasma in bubbles immersed in liquids are compared using high-fidelity 2D fluid simulations. In the first approach, corona/streamer like plasma is generated using high-voltage negative and positive pulses applied between two electrodes (pin-to-plane geometry) immersed in liquid. In the second, the plasma is generated using a remote microwave source (frequency 2.45 GHz). We find that the microwave approach requires less energy, while generating a denser, more chemically reactive and more uniform plasma within the bubble volume, as compared to the plasma generated using high-voltage pulsing.

  14. First in situ observations of equatorial ionospheric bubbles by Indian satellite SROSS-C2 and simultaneous multisatellite scintillations

    NASA Astrophysics Data System (ADS)

    Paul, A.; Ray, S.; Dasgupta, A.; Garg, S. C.

    2002-10-01

    The first observation of equatorial ionospheric irregularities by RPA probe of the Indian low Earth orbiting satellite SROSS-C2 is presented in this paper. Amplitude scintillations of medium Earth orbiting Global Positioning System (GPS) satellites and geostationary FLEETSATCOM (244 MHz, 73°E) and INMARSAT (1.5 GHz, 65°E) signals recorded simultaneously at Calcutta (lat: 22.97° N, long: 88.50°E geographic; dip: 32°N) are used for a coordinated study of equatorial F region irregularities in the Indian zone. Cases of ionospheric irregularities identified from the SROSS-C2 records obtained during the initial one-and-a-half years since its launch in May 1994 have been analyzed. Some events of in situ ion density irregularities are compared with scintillations simultaneously observed on the transionospheric satellite links. Intense bite-outs of ion density (maximum relative irregularity amplitude ΔN/N ˜ 65%) were detected on one occasion (October 29, 1994) coupled with deep fadings (S4 ˜ 1 at VHF, ˜0.52 at L-band, and ˜0.69 at GPS L1 frequency) on ground-based satellite links. An estimate of scintillation indices from the observed in situ density deviations compares well with the ground-based measurements. The development of intense equatorial bubbles even on a day like October 29, 1994, under low solar activity conditions, may be attributed to a prompt penetration of magnetospheric electric field equatorwards during the main phase of a magnetic storm in progress [maximum negative excursion of Dst ˜ -127 nT at 1600UT (2100MLT) with a dDst/dt rate -37 nT/hr at 1300-1400UT (1800-1900MLT)]. The drift velocity and spatial extent of these irregularities have been estimated from ground-based observations.

  15. A method for determining the drift velocity of plasma depletions in the equatorial ionosphere using far-ultraviolet spacecraft observations

    NASA Astrophysics Data System (ADS)

    Park, S. H.; England, S. L.; Immel, T. J.; Frey, H. U.; Mende, S. B.

    2007-11-01

    The Far-Ultraviolet Imager (IMAGE-FUV) on board the NASA IMAGE satellite has been used to observe plasma depletions in the nightside equatorial ionosphere. Observations from periods around spacecraft apogee, during which equatorial regions are visible for several hours, have allowed the velocity of these plasma depletions to be determined. A new method for determining the velocity of these depletions using an image analysis technique, Tracking Of Airglow Depletions (TOAD), has been developed. TOAD allows the objective identification and tracking of depletions. The automation of this process has also allowed for the tracking of a greater number of depletions than previously achieved without requiring any human input, which shows that TOAD is suitable for use with large data sets and for future routine monitoring of the ionosphere from space. Furthermore, this automation allows the drift velocities of each bubble to be determined as a function of magnetic latitude, which will give us the capability of retrieving geophysically important parameters such as the electric field, which are believed to vary rapidly with magnetic latitude.

  16. Eastward traverse of equatorial plasma plumes observed with the Equatorial Atmosphere Radar in Indonesia

    NASA Astrophysics Data System (ADS)

    Fukao, S.; Yokoyama, T.; Tayama, T.; Yamamoto, M.; Maruyama, T.; Saito, S.

    2006-07-01

    The zonal structure of radar backscatter plumes associated with Equatorial Spread F (ESF), probably modulated by atmospheric gravity waves, has been investigated with the Equatorial Atmosphere Radar (EAR) in West Sumatra, Indonesia (0.20° S, 100.32° E; dip latitude 10.1° S) and the FM-CW ionospheric sounders on the same magnetic meridian as the EAR. The occurrence locations and zonal distances of the ESF plumes were determined with multi-beam observations with the EAR. The ESF plumes drifted eastward while keeping distances of several hundred to a thousand kilometers. Comparing the occurrence of the plumes and the F-layer uplift measured by the FM-CW sounders, plumes were initiated within the scanned area around sunset only, when the F-layer altitude rapidly increased. Therefore, the PreReversal Enhancement (PRE) is considered as having a zonal variation with the scales mentioned above, and this variation causes day-to-day variability, which has been studied for a long time. Modulation of the underlying E-region conductivity by gravity waves, which causes inhomogeneous sporadic-E layers, for example, is a likely mechanism to determine the scale of the PRE.

  17. Enhanced ionospheric plasma bubble generation in more active ITCZ

    NASA Astrophysics Data System (ADS)

    Li, Guozhu; Otsuka, Yuichi; Ning, Baiqi; Abdu, M. A.; Yamamoto, M.; Wan, Weixing; Liu, Libo; Abadi, Prayitno

    2016-03-01

    A close link between the atmospheric Intertropical Convergence Zone (ITCZ) and ionospheric plasma bubble has been proposed since the last century. But this relationship has often appeared to be less than convincing due to the simultaneous roles played by several other factors in shaping the global distribution of ionospheric bubbles. From simultaneous collaborative radar multibeam steering measurements at Kototabang (0.2°S, 100.3°E) and Sanya (18.4°N, 109.6°E), conducted during September-October of 2012 and 2013, we find that the total numbers of nights with bubble (i.e., occurrence rates) at the two closely located longitudes (Kototabang and Sanya) are comparable. But interestingly, the total number of nights with locally generated bubble (i.e., generation rate) over Kototabang is clearly more than that over Sanya. Further analysis reveals that a more active ITCZ is situated around the longitude of Kototabang. We surmise that the enhanced ionospheric bubble generation at Kototabang longitude could be caused by a higher gravity wave activity associated with the more active ITCZ.

  18. Assessment of the Effects of Plasma Bubbles on GAIM-GM

    DTIC Science & Technology

    2011-09-01

    bubble takes the form of a vertically elongated wedge of depleted plasma, resembling an upside down watermelon slice, that can be hundreds of kilometers...grid points were chosen to form the outline of the plasma bubble. The bubble was shaped like an upside down watermelon slice elongated along Earth’s

  19. Finger evolution of a gas bubble driven by atmospheric pressure plasma

    NASA Astrophysics Data System (ADS)

    Shiu, Jia-Hau; Chu, Hong-Yu

    2016-12-01

    We report the generation and evolution of a finger-shaped bubble in liquid by dielectric discharge setup. The spherical gas bubble is deformed into a finger-shaped bubble after the ignition of plasma. The presence of the filamentary discharge in the bubble not only provides the local heating to the bubble, it also changes the distribution of the electric field in the bubble and the bubble mutually provides the pathway to the discharge. The reduced surface tension on the liquid-gas interface due to the rise of temperature by plasma heating and the nonuniform electric field caused by the presence of filamentary discharge might induce the concave-shaped bubble. We also observe the formation of the quasi-two-dimensional bubble, which is generated from the bubble and attached on one side of the electrodes. It is found that the discharge induces the growth of the periodic fluctuations in the thin layer of gas.

  20. Longitudinal statistics of plasma bubbles: Possible tropospheric influence

    NASA Astrophysics Data System (ADS)

    Sidorova, L. N.; Filippov, S. V.

    2016-07-01

    The assumption about the possible influence of a tropospheric source on the nature of the longitudinal statistics variation (relative frequency of observation) of plasma bubbles determined by the He+ density in the upper ionosphere altitudes is tested. To do this, the statistics are comparatively analyzed with a number of characteristics of the ionosphere and thermosphere, the longitudinal changes of which can be related to the DE3 tidal wave generated in the troposphere. Evidence of the possible influence of the troposphere on the longitudinal statistics of plasma bubbles has been obtained. Based on qualitative analysis, it was found that the thermospheric winds modulated by the DE3 tidal wave can link these statistics with processes in the troposphere.

  1. C/NOFS satellite observations of equatorial ionospheric plasma structures supported by multiple ground-based diagnostics in October 2008

    NASA Astrophysics Data System (ADS)

    Nishioka, M.; Basu, Su.; Basu, S.; Valladares, C. E.; Sheehan, R. E.; Roddy, P. A.; Groves, K. M.

    2011-10-01

    In early October 2008, the C/NOFS satellite orbited near the magnetic equator at its perigee altitude of ˜400 km at dusk in the Peruvian sector. This provided an ideal opportunity for a comparison, under the current very low solar flux condition, of equatorial ionospheric disturbances observed with the Communication/Navigation Outage Forecasting System (C/NOFS) in situ measurements and ground-based observations available near Jicamarca Observatory. The primary objective was the comparison of plasma density disturbances measured by a Planar Langmuir Probe (PLP) instrument on the C/NOFS satellite with VHF scintillation activity at Ancon near Jicamarca for this period. Here we discuss in detail two extreme cases: one in which severe in situ disturbances were accompanied by mild scintillation on a particular day, namely, 10 October while there was little in situ disturbance with strong scintillation on 5 October. This apparent contradiction was diagnosed further by a latitudinal ground-based GPS network at Peruvian longitudes, a Digisonde, and the incoherent scatter radar (ISR) at Jicamarca. The crucial distinction was provided by the behavior of the equatorial ionization anomaly (EIA). The EIA was well-developed on the day having severe in situ disturbances (10 Oct). This led to lower equatorial plasma density and total electron content (TEC) at the equator and consequently reduced the scintillations detected at Ancon. On the other hand, on the day with severe scintillations (5 Oct), the EIA was not so well developed as on 10 October, leading to relatively higher equatorial plasma density and TEC. Consequently the severe scintillations at Ancon were likely caused by ionospheric structure located below the altitude of C/NOFS. The NRL SAMI2 model was utilized to gain a greater understanding of the role of neutral winds and electric fields in reproducing the TEC as a function of latitude for both classes of irregularities. Spectral studies with high resolution in situ

  2. Understanding the Unique Equatorial Density Irregularities

    DTIC Science & Technology

    2015-04-01

    monitoring devices. In addition, the Low Earth Orbiting (LEO) satellites ion density observations show unique features for the African sector [Hei et al. 2005...installed in Africa [Amory-Mazaudier, et al. 2009] since 2007. Alongside this activity, universities in Africa (e.g. Bahir Dar Uni- versity, Ethiopia...African sector, show unique equatorial iono- spheric structure [Hei et al. 2005]. For example, this region equatorial plasma bubbles, which produce

  3. Dynamics of Magnetized Plasma Jets and Bubbles Launched into a Background Magnetized Plasma

    NASA Astrophysics Data System (ADS)

    Wallace, B.; Zhang, Y.; Fisher, D. M.; Gilmore, M.

    2016-10-01

    The propagation of dense magnetized plasma, either collimated with mainly azimuthal B-field (jet) or toroidal with closed B-field (bubble), in a background plasma occurs in a number of solar and astrophysical cases. Such cases include coronal mass ejections moving in the background solar wind and extragalactic radio lobes expanding into the extragalactic medium. Understanding the detailed MHD behavior is crucial for correctly modeling these events. In order to further the understanding of such systems, we are investigating the injection of dense magnetized jets and bubbles into a lower density background magnetized plasma using a coaxial plasma gun and a background helicon or cathode plasma. In both jet and bubble cases, the MHD dynamics are found to be very different when launched into background plasma or magnetic field, as compared to vacuum. In the jet case, it is found that the inherent kink instability is stabilized by velocity shear developed due to added magnetic tension from the background field. In the bubble case, rather than directly relaxing to a minimum energy Taylor state (spheromak) as in vacuum, there is an expansion asymmetry and the bubble becomes Rayleigh-Taylor unstable on one side. Recent results will be presented. Work supported by the Army Research Office Award No. W911NF1510480.

  4. Sterilization Effect of Wet Oxygen Plasma in the Bubbling Method.

    PubMed

    Tamazawa, Kaoru; Shintani, Hideharu; Tamazawa, Yoshinori; Shimauchi, Hidetoshi

    2015-01-01

    A new low-temperature sterilization method to replace the ethylene oxide gas sterilization is needed. Strong bactericidal effects of OH and O2H radicals are well known. The purpose of this study was to evaluate the sterilization effect of wet oxygen ("O2+H2O") plasma in the bubbling method, confirming the effect of humidity. Sterility assurance was confirmed by using a biological indicator (Geobacillus stearothermophilus ATCC7953, Namsa, USA). One hundred and eight samples (10(5) spores/carrier) were divided into three groups of 36 in each for treatment with a different type of gas (O2, O2+H2O, Air+H2O). Plasma processing was conducted using a plasma ashing apparatus (13.56 MHz, PACK-3(®), Y. A. C., Japan) under various gas pressures (13, 25, 50 Pa) and gas flows (50, 100, 200 sccm). Fixed plasma treatment parameters were power at 150 W, temperature of 60 ℃, treatment time of 10 min. The samples after treatment were incubated in trypticase soy broth at 58 ℃ for 72 h. The negative culture rate in the "O2+H2O" group was significantly (Mantel-Haenszel procedure, p<0.001) higher than in the other gas groups. It is suggested that the significant sterilization effect of the "O2+H2O" group depends on the bubbling method which is the method of introducing vapor into the chamber. The bubbling method seems able to generate OH and O2H radicals in a stable way.

  5. Microwave plasmas generated in bubbles immersed in liquids for hydrocarbons reforming

    NASA Astrophysics Data System (ADS)

    Levko, Dmitry; Sharma, Ashish; Raja, Laxminarayan L.

    2016-06-01

    We present a computational modeling study of microwave plasma generated in cluster of atmospheric-pressure argon bubbles immersed in a liquid. We demonstrate that the use of microwaves allows the generation of a dense chemically active non-equilibrium plasma along the gas-liquid interface. Also, microwaves allow generation of overdense plasma in all the bubbles considered in the cluster which is possible because the collisional skin depth of the wave exceeds the bubble dimension. These features of microwave plasma generation in bubbles immersed in liquids are highly desirable for the large-scale liquid hydrocarbon reforming technologies.

  6. Plasma quenching by air during single-bubble sonoluminescence.

    PubMed

    Flannigan, David J; Suslick, Kenneth S

    2006-08-03

    We report the observation of sudden and dramatic changes in single-bubble sonoluminescence (SBSL) intensity (i.e., radiant power, phi(SL)) and spectral profiles at a critical acoustic pressure (P(c)) for solutions of sulfuric acid (H2SO4) containing mixtures of air and noble gas. Nitric oxide (NO), nitrogen (N2), and atomic oxygen emission lines are visible just below P(c). At P(c), very bright (factor of 7000 increase in phi(SL)) and featureless SBSL is observed when Ar is present. In addition, Ar lines are observed from a dimmed bubble that has been driven above P(c). These observations suggest that bright SBSL from H2SO4 is due to a plasma, and that molecular components of air suppress the onset of bright light emission through quenching mechanisms and endothermic processes. Determination of temperatures from simulations of the emission lines shows that air limits the heating during single-bubble cavitation. When He is present, phi(SL) increases by only a factor of 4 at P(c), and the SBSL spectrum is not featureless as for Ar, but instead arises from sulfur oxide (SO) and sulfur dioxide (SO2) bands. These differences are attributed to the high thermal conductivity and ionization potential of He compared to Ar.

  7. Effects of pre-reversal enhancement of E × B drift on the latitudinal extension of plasma bubble in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Abadi, Prayitno; Otsuka, Yuichi; Tsugawa, Takuya

    2015-05-01

    We investigated the effects of the F region bottomside altitude ( h'F), maximum upward E × B drift velocity, duration of pre-reversal enhancement and the integral of upward E × B drift on the latitudinal extension of equatorial plasma bubbles in the Southeast Asian sector using the observations recorded by three GPS receivers and two ionosondes. The GPS receivers are installed at Kototabang (0.2°S, 100.3°E; 9.9°S magnetic latitude), Pontianak (0.02°S, 109.3°E; 9.8°S magnetic latitude) and Bandung (6.9°S, 107.6°E; 16.7°S magnetic latitude) in Indonesia. The ionosondes are installed at magnetically equatorial stations, Chumphon (10.7°N, 99.4°E; 0.86°N magnetic latitude) in Thailand and Bac Lieu (9.3°N, 105.7°E; 0.62°N magnetic latitude) in Vietnam. We analysed those observations acquired in the equinoctial months (March, April, September and October) in 2010-2012, when the solar activity index F 10.7 was in the range from 75 to 150. Assuming that plasma bubbles are the major source of scintillations, the latitudinal extension of the bubbles was determined according to the S4 index. We have found that the peak of h'F, maximum upward E × B drift and the integral of upward E × B drift during the pre-reversal enhancement period are positively correlated with the maximum latitude extension of plasma bubbles, but that duration of pre-reversal enhancement does not show correlation. The plasma bubbles reached magnetic latitudes of 10°-20° in the following conditions: (1) the peak value of h'F is greater than 250-450 km, (2) the maximum upward E × B drift is greater than 10-70 m/s and (3) the integral of upward E × B drift is greater than 50-250 m/s. These results suggest that the latitudinal extension of plasma bubbles is controlled mainly by the magnitude of pre-reversal enhancement and the peak value of h'F at the initial phase of development of plasma bubbles (or equatorial spread F) rather than by the duration of pre-reversal enhancement.

  8. Micro Dynamics of Pulsed Laser Induced Bubbles in Dusty Plasma Liquids

    SciTech Connect

    Teng, L.-W.; Tsai, C.-Y.; Tseng, Y.-P.; I Lin

    2008-09-07

    We experimentally study the micro dynamics of the laser induced plasma bubble in a dusty plasma liquid formed by negatively charged dust particles suspended in a low pressure rf Ar glow discharge. The plume from the ablation of the suspended dust particles pushes away dust particle and generates a dust-free plasma bubble. It then travels downward. The spatio-temporal evolution of the dust density fluctuation surrounding the bubble is monitored by directly tracking dust motion through optical video microscopy. The micro dynamics of the bubble associated dust acoustic type solitary oscillation in the wake field is investigated and discussed.

  9. Bubbles

    NASA Astrophysics Data System (ADS)

    Prosperetti, Andrea

    2004-06-01

    Vanitas vanitatum et omnia vanitas: bubbles are emptiness, non-liquid, a tiny cloud shielding a mathematical singularity. Born from chance, a violent and brief life ending in the union with the (nearly) infinite. But a wealth of phenomena spring forth from this nothingness: underwater noise, sonoluminescence, boiling, and many others. Some recent results on a "blinking bubble" micropump and vapor bubbles in sound fields are outlined. The last section describes Leonardo da Vinci's observation of the non-rectlinear ascent of buoyant bubbles and justifies the name Leonardo's paradox recently attributed to this phenomenon.

  10. Comparison of the ionospheric plasma turbulence over seismic and equatorial regions.

    NASA Astrophysics Data System (ADS)

    Kosciesza, M.; Blecki, J.; Parrot, M.; Wronowski, R.

    2012-04-01

    Many strong earthquakes which are objects of interest in investigations of the changes registered in the electric field in the ELF frequency range (1 Hz - 1250 Hz) in the ionospheric plasma, occurs in the equatorial region. In order to determine, if the observed disturbances are connected with the coupling between the ground and the ionosphere in the seismic active region, it is necessary to analyse and compare plasma instability phenomena occurring in the equatorial F-region ionosphere and are known as equatorial spread F (ESF) to changes before earthquakes because their character is very similar. The aim of this paper is the analysis of changes in the electromagnetic ELF field, registered by the French micro-satellite DEMETER over epicentres of three selected strong earthquakes with magnitude bigger than 6, which took place in: Sichuan, Chile and Haiti. A comparison between those cases and changes observed by the same satellite over the equatorial region in the similar time of year is presented. The analysis of the data, was conducted with the Fourier, wavelet and bispectral methods. The last one gives answer to question, whether the changes localized with the spectral analysis are nonlinear. Further processing consists the determination of the power spectrum and its slope, which allows to determine the type of turbulence which was inducted by the three wave interaction. The last stage of the presented research, was finding the characteristic remarks of changes, by calculation of the probability density function (PDF) and calculation of its characteristic values such as kurtosis and skewness.

  11. Analytic model of electromagnetic fields around a plasma bubble in the blow-out regime

    SciTech Connect

    Yi, S. A.; Khudik, V.; Siemon, C.; Shvets, G.

    2013-01-15

    An analytic model of the electric and magnetic fields surrounding the nonlinear plasma 'bubble' formed around the high-current electron bunch in a plasma wakefield accelerator is developed. The model, justified by the results of particle-in-cell simulations, accurately captures the thin high-density plasma sheath and extended return current layer surrounding the bubble. The resulting global fields inside and outside the bubble are used to investigate electron self-injection in a plasma with a smooth density gradient. It is shown that accurate description of the current/density sheaths is crucial for quantitative description of self-injection.

  12. Hiss or equatorial noise? Ambiguities in analyzing suprathermal ion plasma wave resonance

    NASA Astrophysics Data System (ADS)

    Sarno-Smith, Lois K.; Liemohn, Michael W.; Skoug, Ruth M.; Santolik, Ondrej; Morley, Steven K.; Breneman, Aaron; Larsen, Brian A.; Reeves, Geoff; Wygant, John R.; Hospodarsky, George; Kletzing, Craig; Moldwin, Mark B.; Katus, Roxanne M.; Zou, Shasha

    2016-10-01

    Previous studies have shown that low-energy ion heating occurs in the magnetosphere due to strong equatorial noise emission. Observations from the Van Allen Probes Helium Oxygen Proton Electron (HOPE) instrument recently determined that there was a depletion in the 1-10 eV ion population in the postmidnight sector of Earth during quiet times at L < 3. The diurnal variation of equatorially mirroring 1-10 eV H+ ions at 2 < L < 3 is connected with similar diurnal variation in the electric field component of plasma waves ranging between 150 and 600 Hz. Measurements from the Van Allen Probes Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) data set are used to analyze waves of this frequency in near-Earth space. However, when we examine the polarization of the waves in the 150 to 600 Hz range in the equatorial plane, the majority are right-hand polarized plasmaspheric hiss waves. The 1-10 eV H+ equatorially mirroring population does not interact with right-hand waves, despite a strong statistical relationship suggesting that the two are linked. We present evidence supporting the relationship, both in our own work and the literature, but we ultimately conclude that the 1-10 eV H+ heating is not related to the strong enhancement of 150 to 600 Hz waves.

  13. Low latitude ionospheric scintillation and zonal plasma irregularity drifts climatology around the equatorial anomaly crest over Kenya

    NASA Astrophysics Data System (ADS)

    Olwendo, O. J.; Baki, P.; Cilliers, P. J.; Doherty, P.; Radicella, S.

    2016-02-01

    In this study we have used a VHF and GPS-SCINDA receiver located at Nairobi (36.8°E, 1.3°S, dip -24.1°) in Kenya to investigate the climatology of ionospheric L-band scintillation occurrences for the period 2009 to 2012; and seasonal variation of the zonal plasma drift irregularities derived from a VHF receiver for the period 2011. The annual and diurnal variations of L-band scintillation indicate occurrence at post sunset hours and peaks in the equinoctial months. However VHF scintillation occurs at all seasons around the year and is characterized by longer duration of activity and a slow fading that continues till early morning hours unlike in the L-band where they cease after midnight hours. A directional analysis has shown that the spatial distribution of scintillation events is mainly on the Southern and Western part of the sky over Nairobi station closer to the edges of the crest of the Equatorial Ionization Anomaly. The distribution of zonal drift velocities of the VHF related scintillation structures indicates that they move at velocities in the range of 20-160 m/s and their dimension in the East-West direction is in the range of 100-00 km. The December solstice is associated with the largest plasma bubbles in the range of 600-900 km. The most significant observation from this study is the occurrence of post-midnight scintillation without pre-midnight scintillations during magnetically quiet periods. The mechanism leading to the formation of the plasma density irregularity causing scintillation is believed to be via the Rayleigh Tailor Instability; it is however not clear whether we can also attribute the post-midnight plasma bubbles during magnetic quiet times to the same mechanism. From our observations in this study, we suggest that a more likely cause of the east ward zonal electric fields at post-midnight hours is the coupling of the ionosphere with the lower atmosphere during nighttime. This however needs a further investigation based on relevant

  14. KINETIC THEORY OF EQUILIBRIUM AXISYMMETRIC COLLISIONLESS PLASMAS IN OFF-EQUATORIAL TORI AROUND COMPACT OBJECTS

    SciTech Connect

    Cremaschini, Claudio; Kovář, Jiří; Slaný, Petr; Stuchlík, Zdeněk; Karas, Vladimír

    2013-11-01

    The possible occurrence of equilibrium off-equatorial tori in the gravitational and electromagnetic fields of astrophysical compact objects has been recently proved based on non-ideal magnetohydrodynamic theory. These stationary structures can represent plausible candidates for the modeling of coronal plasmas expected to arise in association with accretion disks. However, accretion disk coronae are formed by a highly diluted environment, and so the fluid description may be inappropriate. The question is posed of whether similar off-equatorial solutions can also be determined in the case of collisionless plasmas for which treatment based on kinetic theory, rather than a fluid one, is demanded. In this paper the issue is addressed in the framework of the Vlasov-Maxwell description for non-relativistic, multi-species axisymmetric plasmas subject to an external dominant spherical gravitational and dipolar magnetic field. Equilibrium configurations are investigated and explicit solutions for the species kinetic distribution function are constructed, which are expressed in terms of generalized Maxwellian functions characterized by isotropic temperature and non-uniform fluid fields. The conditions for the existence of off-equatorial tori are investigated. It is proved that these levitating systems are admitted under general conditions when both gravitational and magnetic fields contribute to shaping the spatial profiles of equilibrium plasma fluid fields. Then, specifically, kinetic effects carried by the equilibrium solution are explicitly provided and identified here with diamagnetic energy-correction and electrostatic contributions. It is shown that these kinetic terms characterize the plasma equation of state by introducing non-vanishing deviations from the assumption of thermal pressure.

  15. Kinetic Theory of Equilibrium Axisymmetric Collisionless Plasmas in Off-equatorial Tori around Compact Objects

    NASA Astrophysics Data System (ADS)

    Cremaschini, Claudio; Kovář, Jiří; Slaný, Petr; Stuchlík, Zdeněk; Karas, Vladimír

    2013-11-01

    The possible occurrence of equilibrium off-equatorial tori in the gravitational and electromagnetic fields of astrophysical compact objects has been recently proved based on non-ideal magnetohydrodynamic theory. These stationary structures can represent plausible candidates for the modeling of coronal plasmas expected to arise in association with accretion disks. However, accretion disk coronae are formed by a highly diluted environment, and so the fluid description may be inappropriate. The question is posed of whether similar off-equatorial solutions can also be determined in the case of collisionless plasmas for which treatment based on kinetic theory, rather than a fluid one, is demanded. In this paper the issue is addressed in the framework of the Vlasov-Maxwell description for non-relativistic, multi-species axisymmetric plasmas subject to an external dominant spherical gravitational and dipolar magnetic field. Equilibrium configurations are investigated and explicit solutions for the species kinetic distribution function are constructed, which are expressed in terms of generalized Maxwellian functions characterized by isotropic temperature and non-uniform fluid fields. The conditions for the existence of off-equatorial tori are investigated. It is proved that these levitating systems are admitted under general conditions when both gravitational and magnetic fields contribute to shaping the spatial profiles of equilibrium plasma fluid fields. Then, specifically, kinetic effects carried by the equilibrium solution are explicitly provided and identified here with diamagnetic energy-correction and electrostatic contributions. It is shown that these kinetic terms characterize the plasma equation of state by introducing non-vanishing deviations from the assumption of thermal pressure.

  16. Impact of Ionization DEPLETIONS/TEC Bite-Outs of Equatorial Plasma Structures on Transionospheric Satellite Signals Using Global Positioning System (GPS)

    NASA Astrophysics Data System (ADS)

    Das, Tanmay

    2016-07-01

    This paper represents the impact of ionization depletions/TEC bite-outs of equatorial plasma structures on transionospheric satellite signals received from Calcutta (latitude: 22.58oN, longitude: 88.38oE geographic; 32oN magnetic dip) is situated near the northern crest of the equatorial ionization anomaly (EIA) in the Indian longitude sector, using Global Positioning System (GPS) during the equinoctial months of February-April 2011, August-October, 2011 and February-April 2012. It is observed that when a bubble moves across a satellite link, scintillations and ionization are usually encountered. The apparent duration of the bite-outs may be different from the true east-west duration, as observed with geostationary links, because of the presence of a relative velocity between the irregularity cloud and the satellite. The trajectory of a GPS satellite plays a vital role in observing the bubble characteristics. The distributions of amplitude and the parameters characterizing the ionization depletions, namely, the duration, depth and the leading and trailing edge slopes of the bubbles have been obtained during the same equinoctial months of 2011 and 2012. It is evident that the range error, extent of the bubble and ionization gradients measured in these equinoctial months of the equatorial region provides the worst case figures for system designers. The high range error (~ 3-4 m) is observed during these equinoctial months. The statistical distribution of the TEC depletions showed some significant results. Out of 29 bite-outs in February-April, 2011 equinox, the maximum amplitude was found to be about 23.25 TECU with a median depletion of about 5.92 TECU. The maximum amplitude corresponds to a range error of about 3.7 m at GPS L1 frequency. The majority of the bubbles were found to have observed duration between 10-20 minutes with a maximum of 28.14 minutes. The median value of actual duration 2.37 minutes translates to nearly 150sec of possible satellite signal

  17. Characteristics of the Plasma Distribution in Mercury's Equatorial Magnetosphere Derived from MESSENGER Magnetic Field and Plasma Observations

    NASA Astrophysics Data System (ADS)

    Korth, H.; Anderson, B. J.; Johnson, C. L.; Winslow, R. M.; Raines, J. M.; Slavin, J. A.; Purucker, M. E.; Zurbuchen, T.; Solomon, S. C.; McNutt, R. L.

    2012-12-01

    Localized reductions in the magnetic field associated with plasma pressure in Mercury's plasma sheet have been routinely observed by the Magnetometer on the MErcury Surface, Space ENvironment, Geochemistry, and Ranging (MESSENGER) spacecraft. We present a statistical analysis of near-equatorial magnetic depressions to derive the structure of Mercury's plasma sheet pressure. Because the plasma pressure in the magnetosphere correlates with solar wind density, the pressures were normalized to a Mercury heliocentric distance of 0.39 AU. A model magnetic field was used to map observations obtained on the ascending and descending orbit nodes to the magnetic equator, and the mapped equatorial distribution revealed the presence of plasma in a toroidal section extending on the nightside from dusk to dawn. Mapping the data to invariant magnetic latitude shows that the pressure is symmetric about the magnetic equator. The average pressure normalized for heliocentric distance is 1.45 nPa and exhibits a weak, 0.05 nPa/h, dusk-to-dawn gradient with local time. The plasma sheet pressure can vary between successive orbits by an order of magnitude. Unlike the predictions of some global simulations of Mercury's magnetosphere but consistent with observations by MESSENGER's Fast Imaging Plasma Spectrometer, the plasma enhancements do not form a closed distribution around the planet. This difference may arise from the idealized solar wind and interplanetary magnetic field conditions used in the simulations, conditions that maximize the size and stability of the magnetosphere and thus promote the formation of drift paths that close around the planet. For typical plasma sheet energies, 5 keV, the first adiabatic invariant for protons fails to be conserved even within 500 km altitude at midnight, implying that stochastic processes must be considered in plasma sheet transport.

  18. Plasma diagnostics with Langmuir probes in the equatorial ionosphere: II. Evaluation of DEOS flight F06

    NASA Astrophysics Data System (ADS)

    Hirt, M.; Steigies, C. T.; Piel, A.

    2001-09-01

    The flight data of an ionospheric sounding rocket (DEOS campaign flight F06) are evaluated with respect to electron density and temperature profiles. The probe characteristic is analysed in the frame of a model that takes the influence of the geomagnetic field and of a contamination layer into account, as described in part I (Piel et al 2001 J. Phys. D: Appl. Phys.). The electron temperature of the night-time ionosphere is found to be higher (1300 K) than that predicted by the IRI-95 model (Bilitza D 1999 J. Atmos. Terr. Phys. 61 167), but in general agreement with the model of Watanabe et al (Watanabe et al 1995 J. Geophys. Res. 100 14 581). It is also found that the electron temperature in depleted plasma regions (plasma bubbles) is lower than in the unperturbed plasma. This is a hint at the action of the Rayleigh-Taylor mechanism that convects cold low-density plasma from the bottomside of the F-layer to higher altitudes inside the plasma bubbles. An absolute comparison of the electron density profiles from the analysis of the Langmuir probe and by an independent impedance probe is performed. Excellent agreement of the profile shape and of absolute density values can be achieved over the entire altitude regime. It is demonstrated which steps in the evaluation procedure of the probe characteristic may lead to systematic errors in electron density.

  19. Electrons trajectories around a bubble regime in intense laser plasma interaction

    SciTech Connect

    Lu, Ding; Xie, Bai-Song; Ali Bake, Muhammad; Sang, Hai-Bo; Zhao, Xue-Yan; Wu, Hai-Cheng

    2013-06-15

    Some typical electrons trajectories around a bubble regime in intense laser plasma interaction are investigated theoretically. By considering a modification of the fields and ellipsoid bubble shape due to the presence of residual electrons in the bubble regime, we study in detail the electrons nonlinear dynamics with or without laser pulse. To examine the electron dynamical behaviors, a set of typical electrons, which locate initially at the front of the bubble, on the transverse edge and at the bottom of the bubble respectively, are chosen for study. It is found that the range of trapped electrons in the case with laser pulse is a little narrower than that without laser pulse. The partial phase portraits for electrons around the bubble are presented numerically and their characteristic behaviors are discussed theoretically. Implication of our results on the high quality electron beam generation is also discussed briefly.

  20. Subsurface deuterium bubble formation in W due to low-energy high flux deuterium plasma exposure

    NASA Astrophysics Data System (ADS)

    Jia, Y. Z.; Liu, W.; Xu, B.; Qu, S. L.; Shi, L. Q.; Morgan, T. W.

    2017-03-01

    The deuterium (D) bubbles formed in W exposed to high flux D plasma were researched by scanning electron microscopy and transmission electron microscopy. After D plasma exposure at 500 K and 1000 K, a layer of nano-sized bubbles were homogenously distributed in W subsurface region. The D bubbles were homogenously nucleated due to the high D concentration, and the nucleation process is not related to the vacancy defects. At low temperature (500 K), D bubbles can grow by surface blistering, which caused different nano scale morphologies on different surfaces. At high temperature (1000 K), D bubbles mainly grow by vacancy clustering, which caused pinholes on the surface.

  1. Plasmas in Multiphase Media: Bubble Enhanced Discharges in Liquids and Plasma/Liquid Phase Boundaries

    SciTech Connect

    Kushner, Mark Jay

    2014-07-10

    In this research project, the interaction of atmospheric pressure plasmas with multi-phase media was computationally investigated. Multi-phase media includes liquids, particles, complex materials and porous surfaces. Although this investigation addressed fundamental plasma transport and chemical processes, the outcomes directly and beneficially affected applications including biotechnology, medicine and environmental remediation (e.g., water purification). During this project, we made advances in our understanding of the interaction of atmospheric pressure plasmas in the form of dielectric barrier discharges and plasma jets with organic materials and liquids. We also made advances in our ability to use computer modeling to represent these complex processes. We determined the method that atmospheric pressure plasmas flow along solid and liquid surfaces, and through endoscopic like tubes, deliver optical and high energy ion activation energy to organic and liquid surfaces, and produce reactivity in thin liquid layers, as might cover a wound. We determined the mechanisms whereby plasmas can deliver activation energy to the inside of liquids by sustaining plasmas in bubbles. These findings are important to the advancement of new technology areas such as plasma medicine

  2. Plasma transport in the equatorial ionosphere during the great magnetic storm of March 1989

    SciTech Connect

    Rasmussen, C.E. ); Greenspan, M.E. )

    1993-01-01

    We have modeled plasma transport in the low-latitude and equatorial ionosphere during the great magnetic storm of March 1989. Our goal was to provide a consistent explanation for the DMSP (Defense Meteorological Satellite Program) observations of dramatic decreases in ion density and rapid ion drifts in the low latitude ionosphere over South America during the storm. The modeling effort supports the hypothesis that abnormally large upward drifts lifted F region plasma above the satellite's altitude and created the density depletions observed by DMSP. Modeled O[sup +] densities at the satellite's altitude have a strong qualitative resemblance to DMSP observations. Both the model and the observations indicate a deep density through with extremely sharp boundaries surrounding the equator. The widths of both the modeled and the observed equatorial troughs increase with time. Vertical ion drifts predicted by the model also have been compared with DMSP measurements. Like the observed vertical drifts, the modeled drifts reversed sign near the trough boundaries. The modeled vertical drifts are of the same order and direction as the vertical component of E x B convection near the equator, but of opposite direction (downward) near the trough boundaries and outside of the trough. 12 refs., 8 figs., 1 tab.

  3. Generation of Shock-Wave Disturbances at Plasma-Vapor Bubble Oscillation

    NASA Astrophysics Data System (ADS)

    Kuznetsova, N. S.; Yudin, A. S.; Voitenko, N. V.

    2015-11-01

    The complex physical and mathematical model describing all steps of plasma-vapor bubble evolution in the system of the water-ground condensed media is presented. Discharge circuit operation, discharge plasma channel expansion, its transformation into the vapor-plasma bubble and its pulsation, pressure wave generation and propagation of the mechanical stress waves in the ground are self-consistently considered in the model. The model allows investigation of the basic laws of stored energy transformation into the discharge plasma channel, next to the plasma-vapor bubble and transformation of this energy to the energy of pressure wave compressing the surrounding ground. Power characteristics of wave disturbances generated by gas-vapor bubble oscillation in liquid depending on the circuit parameters are analyzed for the prediction of the ground boundary displacement. The dynamics of the shock-wave propagation in water-ground condensed media depending on the rate of the plasma channel energy release is investigated. Simulation of the shock-wave phenomena at a plasma-vapor bubble oscillation in condensed media consecutively describes the physical processes underlying technology for producing piles by electro-discharge stuffing. The quantitative model verified by physical experimental tests will allow optimization of pulse generator parameters and electrode system construction of high-voltage equipment.

  4. Hybrid Laser Wakefield and Direct Laser Plasma Accelerator in the Plasma Bubble Regime

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Khudik, Vladimir; Pukhov, Alexander; Shvets, Gennady

    2015-11-01

    The concept of hybrid laser wakefield and direct laser plasma accelerator in plasma bubble regime was recently proposed. The advantage of this approach is two-fold: (a) electrons' energy gains from the laser and from the wake add up, and (b) dephasing is slowed down. Using 2D VLPL simulations, we will demonstrate that two conditions must be met by the electrons injected into the hybrid accelerator: (1) strong spatial overlap with the laser field, and (2) large initial transverse energy. The firstcondition is met by employing two laser pulses: one to produce a plasma bubble, and the second time-delayed pulse to interact with the injected electrons. We will show that there are two approaches to meeting the second condition: self-injection using an engineered density bump and ionization-injection. The criteria for direct laser acceleration of ionization-injected electrons will be discussed. Combinations of laser pulses with different wavelengths will also be considered. This work is supported by the US DOE grant DE-SC0007889 and the AFOSR grant FA9550-14-1-0045.

  5. Holographic Study Of Bubble Dissolution In Human Plasma

    NASA Astrophysics Data System (ADS)

    Buckles, Richard G.; Cox, M. E.; Eckenhoff, J. B.

    1981-05-01

    When a deep-sea diver returns to the surface, he may suffer decompression sickness (commonly known as the bends). The disease occurs when the excess inert gas that dissolves in tissues during the dive (N2 or He) forms bubbles. The standard treatment is rapid recompression in order to redissolve the bubbles. The diver is placed in a hyperbaric chamber, which is then pressurized to a point where symptoms are relieved; this pressure is maintained for an arbitrary period presumed adequate to fully dissolve all bubbles. The pressure is then reduced gradually until atomospheric pressure is reached. If all has gone well, the diver experiences no residual effects.

  6. Beam loading in the bubble regime in plasmas with hollow channels

    NASA Astrophysics Data System (ADS)

    Golovanov, A. A.; Kostyukov, I. Yu.; Thomas, J.; Pukhov, A.

    2016-09-01

    Based on the already existing analytical theory of the strong nonlinear wakefield (which is called "bubble") in transversely inhomogeneous plasmas, we study the particular behavior of non-loaded (empty) bubbles and bubbles with accelerated bunches. We obtain an analytical expression for the shape of a non-loaded bubble in a general case and verify it with particle-in-cell (PIC) simulations. We derive a method of calculating the acceleration efficiency for arbitrary accelerated bunches. The influence of flat-top electron bunches on the shape of a bubble is studied. It is also shown that it is possible to achieve the acceleration in a homogeneous longitudinal electric field by the adjustment of the longitudinal density profile of the accelerated electron bunch. The predictions of the model are verified by 3D PIC simulations and are in a good agreement with them.

  7. Energy enhancement of proton acceleration in combinational radiation pressure and bubble by optimizing plasma density

    SciTech Connect

    Bake, Muhammad Ali; Xie Baisong; Shan Zhang; Hong Xueren; Wang Hongyu

    2012-08-15

    The combinational laser radiation pressure and plasma bubble fields to accelerate protons are researched through theoretical analysis and numerical simulations. The dephasing length of the accelerated protons bunch in the front of the bubble and the density gradient effect of background plasma on the accelerating phase are analyzed in detail theoretically. The radiation damping effect on the accelerated protons energy is also considered. And it is demonstrated by two-dimensional particle-in-cell simulations that the protons bunch energy can be increased by using the background plasma with negative density gradient. However, radiation damping makes the maximal energy of the accelerated protons a little reduction.

  8. Dynamics of bubbles created by plasma in heptane for micro-gap conditions.

    PubMed

    Hamdan, A; Noel, C; Kosior, F; Henrion, G; Belmonte, T

    2013-08-01

    The determination of the initial pressure at the bubble wall created by a discharge in heptane for micro-gap conditions cannot be determined straightforwardly by modeling the time-oscillations of the bubble. The resolution of the Gilmore equation gives the same solutions beyond 1 μs typically for various sets of initial parameters, making impossible the determination of the initial pressure at the bubble wall. Furthermore, the very first instant of the bubble formation is not easily accessible at very short time scales because of the plasma emission. Since the pressure waves propagate in the liquid, it is much easier to gain information on the first instants of the bubble formation by studying the pressure field far from the emission source. Then, it is possible to deduce by modeling what happened at the beginning of the emission of the pressure waves. The proposed solution consists in looking at the oscillations affecting another bubble located at least twice farther from the interelectrode gap than the maximum radius reached by the discharge bubble. The initial plasma pressure can be determined by this method.

  9. Longitudinal and Seasonal Variations in Nighttime Plasma Temperatures in the Equatorial Topside Ionosphere During Solar Maximum

    NASA Technical Reports Server (NTRS)

    Venkatraman, Sarita; Heelis, Rod

    1999-01-01

    Latitude profiles of the ion and electron temperatures and total ion concentration across the equatorial region near 800 km altitude are routinely obtained from Defense Meteorological Satellite Program (DMSP) spacecraft. We have examined these profiles at 2100 hours local time to discover the influences of field-aligned plasma transport induced by F region neutral winds. Such dependencies are readily seen by contrasting observations at different seasons and different longitudes distinguished by different magnetic declinations. These data show strong evidence for adiabatic heating produced by interhemispheric plasma transport. This heating manifests itself as a local temperature maximum that appears in the winter hemisphere during the solstices and is generally absent during equinox. A longitudinal variation in the appearance of this maximum is consistent with the roles of meridional and zonal winds in modulating the field-aligned plasma velocities. The data also show a local temperature minimum near the dip equator. However, it is not so easy to attribute this minimum to adiabatic cooling since transport of plasma from below and the latitude variation in the flux tube content may also produce such a minimum.

  10. Plasma pressure in Mercury's equatorial magnetosphere derived from MESSENGER Magnetometer observations

    NASA Astrophysics Data System (ADS)

    Korth, Haje; Anderson, Brian J.; Raines, Jim M.; Slavin, James A.; Zurbuchen, Thomas H.; Johnson, Catherine L.; Purucker, Michael E.; Winslow, Reka M.; Solomon, Sean C.; McNutt, Ralph L., Jr.

    2011-11-01

    Since insertion of the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft into orbit around Mercury on 18 March 2011, the probe's Magnetometer has routinely observed localized reductions of the magnetic field magnitude below the level predicted by a planetary dipole model corrected for magnetospheric magnetic fields. These magnetic depressions are observed on almost every orbit, and the latitude at which they are observed is local-time dependent. The depression signatures are indicators of the presence of enhanced plasma pressures, which inflate the magnetic field locally to maintain pressure balance, thus lowering the magnetic flux density. Mapping the magnetic depressions in local time and latitude provides insight into the plasma distribution near the planet, which complements that provided by MESSENGER's Fast Imaging Plasma Spectrometer. The spatial distribution shows that magnetic depressions are concentrated in two distinct regions, one near the equator on the nightside and another at high latitudes principally on the dayside. Here we focus on the nightside, equatorial pressure signatures, which we attribute to the magnetotail plasma sheet. The plasma-sheet pressures extend from dusk to dawn and are offset northward from the planetary geographic equator by about 10° in latitude, commensurate with the offset of the planetary dipole. The pressures associated with the plasma-sheet depressions range from 0.1 to 3 nPa and are systematically higher at dawn than at dusk. Proton gradient-curvature and convection drift in Mercury's dipole magnetic field with a dawn-to-dusk electric field result in low drift velocities near dawn, leading to systematically higher densities and pressures at dawn than at dusk, consistent with the observations.

  11. Radio-Tomographic Images of Post-midnight Equatorial Plasma Depletions

    NASA Astrophysics Data System (ADS)

    Hei, M. A.; Bernhardt, P. A.; Siefring, C. L.; Wilkens, M.; Huba, J. D.; Krall, J.; Valladares, C. E.; Heelis, R. A.; Hairston, M. R.; Coley, W. R.; Chau, J. L.

    2013-12-01

    For the first time, post-midnight equatorial plasma depletions (EPDs) have been imaged in the longitude-altitude plane using radio-tomography. High-resolution (~10 km × 10 km) electron-density reconstructions were created from total electron content (TEC) data using an array of receivers sited in Peru and the Multiplicative Algebraic Reconstruction Technique (MART) inversion algorithm. TEC data were obtained from the 150 and 400 MHz signals transmitted by the CERTO beacon on the C/NOFS satellite. In-situ electron density data from the C/NOFS CINDI instrument and electron density profiles from the UML Jicamarca ionosonde were used to generate an initial guess for the MART inversion, and also to constrain the inversion process. Observed EPDs had widths of 100-1000 km, spacings of 300-900 km, and often appeared 'pinched off' at the bottom. Well-developed EPDs appeared on an evening with a very small (4 m/s) Pre-Reversal-Enhancement (PRE), suggesting that postmidnight enhancements of the vertical plasma drift and/or seeding-induced uplifts (e.g. gravity waves) were responsible for driving the Rayleigh-Taylor Instability into the nonlinear regime on this night. On another night the Jicamarca ISR recorded postmidnight (~0230 LT) Eastward electric fields nearly twice as strong as the PRE fields seven hours earlier. These electric fields lifted the whole ionosphere, including embedded EPDs, over a longitude range ~14° wide. CINDI detected a dawn depletion in exactly the area where the reconstruction showed an uplifted EPD. Strong Equatorial Spread-F observed by the Jicamarca ionosonde during receiver observation times confirmed the presence of ionospheric irregularities.

  12. Modelling chemical reactions in dc plasma inside oxygen bubbles in water

    NASA Astrophysics Data System (ADS)

    Takeuchi, N.; Ishii, Y.; Yasuoka, K.

    2012-02-01

    Plasmas generated inside oxygen bubbles in water have been developed for water purification. Zero-dimensional numerical simulations were used to investigate the chemical reactions in plasmas driven by dc voltage. The numerical and experimental results of the concentrations of hydrogen peroxide and ozone in the solution were compared with a discharge current between 1 and 7 mA. Upon increasing the water vapour concentration inside bubbles, we saw from the numerical results that the concentration of hydrogen peroxide increased with discharge current, whereas the concentration of ozone decreased. This finding agreed with the experimental results. With an increase in the discharge current, the heat flux from the plasma to the solution increased, and a large amount of water was probably vaporized into the bubbles.

  13. Equatorial plasma fountain and its effects over three locations: Evidence for an additional layer, the F3 layer

    NASA Astrophysics Data System (ADS)

    Balan, N.; Bailey, G. J.; Abdu, M. A.; Oyama, K. I.; Richards, P. G.; MacDougall, J.; Batista, I. S.

    1997-02-01

    The equatorial plasma fountain and equatorial anomaly in the ionospheres over Jicamarca (77°W), Trivandrum (77°E), and Fortaleza (38°W) are presented using the Sheffield University plasmasphere-ionosphere model under magnetically quiet equinoctial conditions at high solar activity. The daytime plasma fountain and its effects in the regions outside the fountain lead to the formation of an additional layer, the F3 layer, at latitudes within about plus or minus 10° of the magnetic equator in each ionosphere. The maximum plasma concentration of the F3 layer, which occurs at about 550 km altitude, becomes greater than that of the F2 layer for a short period of time before noon when the vertical E×B drift is large. Within the F3 layer the plasma temperature decreases by as much as 100 K. The ionograms recorded at Fortaleza on January 15, 1995, provide observational evidence for the development and decay of an F3 layer before noon. The neutral wind, which causes large north-south asymmetries in the plasma fountain in each ionosphere during both daytime and nighttime, becomes least effective during the prereversal strengthening of the upward drift. During this time the plasma fountain is symmetrical with respect to the magnetic equator and rises to over 1200 km altitude at the equator, with accompanying plasma density depletions in the bottomside of the underlying F region. The north-south asymmetries of the equatorial plasma fountain and equatorial anomaly are more strongly dependent upon the displacement of the geomagnetic and geographic equators (Jicamarca and Trivandrum) than on the magnetic declination angle (Fortaleza).

  14. Topside ionosphere bubbles, seen as He+ density depletions: connection with ESF, vertical plasma drift, thermosphere wind and solar activity

    NASA Astrophysics Data System (ADS)

    Sidorova, Larissa

    He+ density depletions, considered as originating from equatorial plasma bubbles (PB), or as possible fossil bubble signatures, were involved in this study. He+ density depletions were observed during a high solar activity (1978-79, F10.7 200) at the topside ionosphere altitudes deeply inside the plasmasphere (L 1.3-3) (Karpachev and Sidorova, ASR, 2002; Sidorova, ASR, 2004, 2007). It is suggested that the equatorial F region irregularities, their post sunset development, evolution, and decay processes are controlled by the sunset electrodynamics of the equatorial region. The He+ density depletion peculiarities were considered in connection with equatorial F-spread (ESF) and vertical plasma drift. The depletion values as function of local time (evening-night hours) were compared with the vertical plasma drift velocity variations, obtained for the same periods (1978-79, F10.7 200; AE-E, IS radar, Jicamarca). Striking similarity in development dynamics was revealed for the different seasons. The monthly mean PB occurrence probability, plotted in local time versus month, was compared with the similar plots for global ESF occurrence probability, derived from ISS-b data (1978-79). Good seasonal correlation (R=0.6) was obtained. Moreover, the comparison of the regional maps, derived from ground-based ionograms, obtained over Brazilian regions (Abdu et al., ASR, 2000) for period with the similar solar activity (1980-81, F10.7 230), shows very well correlation (R=0.67). It is also suggested, that the PBs, produced by Rayleigh-Taylor (R-T) instability at the bottomside of ionosphere and transported up to the topside ionosphere/plasmasphere, could be strong affected by meridional wind during a generation due to inhibiting the growth of R-T instability and flux tube integrated conductivity. For better understanding competing/complementary roles of thermospheric winds in the development of PBs, seen as He+ density depletions, the evaluation of the possible influence of the

  15. Positron acceleration in plasma bubble wakefield driven by an ultraintense laser

    SciTech Connect

    Hou, Ya-Juan; Wan, Feng; Sang, Hai-Bo Xie, Bai-Song

    2016-01-15

    The dynamics of positrons accelerating in electron-positron-ion plasma bubble fields driven by an ultraintense laser is investigated. The bubble wakefield is obtained theoretically when laser pulses are propagating in the electron-positron-ion plasma. To restrict the positrons transversely, an electron beam is injected. Acceleration regions and non-acceleration ones of positrons are obtained by the numerical simulation. It is found that the ponderomotive force causes the fluctuation of the positrons momenta, which results in the trapping of them at a lower ion density. The energy gaining of the accelerated positrons is demonstrated, which is helpful for practical applications.

  16. HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEWTRON DETECTORS

    SciTech Connect

    FISHER,RK

    2002-10-01

    OAK B202 HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEWTRON DETECTORS. Bubble detectors, which can detect neutrons with a spatial resolution of 5 to 30 {micro}, are a promising approach to high-resolution imaging of NIF target plasmas. Gel bubble detectors were used in successful proof-of-principle imaging experiments on OMEGA. Until recently, bubble detectors appeared to be the only approach capable of achieving neutron images of NIF targets with the desired 5 {micro} spatial resolution in the target plane. In 2001, NIF reduced the required standoff distance from the target, so that diagnostic components can now be placed as close as 10 cm to the target plasma. This will allow neutron imaging with higher magnification and may make it possible to obtain 5 {micro}m resolution images on NIF using deuterated scintillators. Having accomplished all that they can hope to on OMEGA using gel detectors, they suggested that the 2002 NLUF shots be used to allow experimental tests of the spatial resolution of the CEA-built deuterated scintillators. The preliminary CEA data from the June 2002 run appears to show the spatial resolution using the deuterated scintillator detector array is improved over that obtained in earlier experiments using the proton-based scintillators. Gel detectors, which consist of {approx} 10 {micro}m diameter drops of bubble detector liquid suspended in an inactive support gel that occupies {approx} 99% of the detector volume, were chosen for the initial tests on OMEGA since they are easy to use. The bubbles could be photographed several hours after the neutron exposure. Imaging NIF target plasmas at neutron yields of 10{sup 15} will require a higher detection efficiency detector. Using a liquid bubble chamber detector should result in {approx} 1000 times higher neutron detection efficiency which is comparable to that possible using scintillation detectors. A pressure-cycled liquid bubble detector will require a light

  17. GPS and in situ Swarm observations of the equatorial plasma density irregularities in the topside ionosphere

    NASA Astrophysics Data System (ADS)

    Zakharenkova, Irina; Astafyeva, Elvira; Cherniak, Iurii

    2016-07-01

    Here we study the global distribution of the plasma density irregularities in the topside ionosphere by using the concurrent GPS and Langmuir probe measurements onboard the Swarm satellites. We analyze 18 months (from August 2014 till January 2016) of data from Swarm A and B satellites that flew at 460 and 510 km altitude, respectively. To identify the occurrence of the ionospheric irregularities, we have analyzed behavior of two indices ROTI and RODI based on the change rate of total electron content and electron density, respectively. The obtained results demonstrate a high degree of similarities in the occurrence pattern of the seasonal and longitudinal distribution of the topside ionospheric irregularities derived from both types of the satellite observations. Among the seasons with good data coverage, the maximal occurrence rates for the post-sunset equatorial irregularities reached 35-50 % for the September 2014 and March 2015 equinoxes and only 10-15 % for the June 2015 solstice. For the equinox seasons the intense plasma density irregularities were more frequently observed in the Atlantic sector, for the December solstice in the South American-Atlantic sector. The highest occurrence rates for the post-midnight irregularities were observed in African longitudinal sector during the September 2014 equinox and June 2015 solstice. The observed differences in SWA and SWB results could be explained by the longitude/LT separation between satellites, as SWB crossed the same post-sunset sector increasingly later than the SWA did.

  18. Quasi-Analytic Models for Density Bubbles and Plasma Clouds in the Equatorial Ionosphere

    DTIC Science & Technology

    2006-06-01

    not display a currently valid OMB control number. 1. REPORT DATE 01 JUN 2006 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE...replaced by a Pedersen conductivity enhancement as the sense of the potential (Figure 2b) is reversed. The parameter “b” simultaneously controls the...parameters Ne0, HP, H0, H01, H02 and H1 control the shape of the layer. The analytic simulation uses peak density Ne0 = 106 cm-3, peak altitude HP

  19. Ionospheric storm effects and equatorial plasma irregularities during the 17-18 March 2015 event

    NASA Astrophysics Data System (ADS)

    Zhou, Yun-Liang; Lühr, Hermann; Xiong, Chao; Pfaff, Robert F.

    2016-09-01

    The intense magnetic storm on 17-18 March 2015 caused large disturbances of the ionosphere. Based on the plasma density (Ni) observations performed by the Swarm fleet of satellites, the Gravity Recovery and Climate Experiment mission, and the Communications/Navigation Outage Forecasting System satellite, we characterize the storm-related perturbations at low latitudes. All these satellites sampled the ionosphere in morning and evening time sectors where large modifications occurred. Modifications of plasma density are closely related to changes of the solar wind merging electric field (Em). We consider two mechanisms, prompt penetration electric field (PPEF) and disturbance dynamo electric field (DDEF), as the main cause for the Ni redistribution, but effects of meridional wind are also taken into account. At the start of the storm main phase, the PPEF is enhancing plasma density on the dayside and reducing it on the nightside. Later, DDEF takes over and causes the opposite reaction. Unexpectedly, there appears during the recovery phase a strong density enhancement in the morning/prenoon sector and a severe Ni reduction in the afternoon/evening sector, and we suggest a combined effect of vertical plasma drift, and meridional wind is responsible for these ionospheric storm effects. Different from earlier studies about this storm, we also investigate the influence of storm dynamics on the initiation of equatorial plasma irregularities (EPIs). Shortly after the start of the storm main phase, EPIs appear in the postsunset sector. As a response to a short-lived decline of Em, EPI activity appears in the early morning sector. Following the second start of the main phase, EPIs are generated for a few hours in the late evening sector. However, for the rest of the storm main phase, no more EPIs are initiated for more than 12 h. Only after the onset of recovery phase does EPI activity start again in the postmidnight sector, lasting more than 7 h. This comprehensive view of

  20. Evidence and effects of the sunrise enhancement of the equatorial vertical plasma drift in the F region ionosphere

    NASA Astrophysics Data System (ADS)

    Zhang, Ruilong; Liu, Libo; Le, Huijun; Chen, Yiding

    2016-05-01

    Recent studies based on the satellite observations demonstrated that the equatorial vertical plasma drift can also enhance near sunrise in a way similar to the prereversal enhancement. However, it is not clear whether the signature of this sunrise enhancement appears in observations with other sounding techniques. In this work, we explore the Jicamarca (12°S, 283.2°E) incoherent scatter radar measurements to present the evidence of sunrise enhancement in vertical plasma drift on 12 May and 10 June 2004, which are under magnetically quiet and solar minimum conditions. The effects of the sunrise enhancement on the ionosphere are, for the first time, investigated by analyzing the ionograms recorded by the Digisonde Portable Sounder at Jicamarca and conducting the Theoretical Ionospheric Model of the Earth in Institute of Geology and Geophysics, Chinese Academy of Sciences. The observations showed that, during the sunrise enhancement, the F2 layer peak height is lifted remarkably, and the F2 layer peak density and bottomside electron density tend to decrease compared to the days without sunrise enhancements. The simulations indicated that the sunrise enhancement drift can lift the equatorial ionosphere to higher heights and distort the equatorial electron density profiles. What is more, the simulations display an F3 layer in the equatorial F region during the sunrise enhancement, and a new F2 layer develops at lower altitudes under the jointed control of the usual photochemical and dynamical processes.

  1. Design of a Compact Coaxial Magnetized Plasma Gun for Magnetic Bubble Expansion Experiments

    DTIC Science & Technology

    2009-06-01

    magnetic bubble expansion into a lower pressure background plasma as a laboratory model for extragalactic radio lobe expansion into the interstellar...control system, bias flux cap-bank power system, and experimental data are provided. I. INTRODUCTION Astrophysical radio lobe structures...jet’s radio lobe structures. Outstanding plasma physics issues regarding astrophysical jets and radio lobes include (ⅰ) the nature of radio lobe

  2. Development of a capillary plasma pump with vapour bubble for water purification: experimental and theoretical investigation

    NASA Astrophysics Data System (ADS)

    Uehara, S.; Ishihata, K.; Nishiyama, H.

    2016-10-01

    This paper describes the development of a small-sized reactive plasma pump driven by capillary bubble discharge for the purification of treated water. The apparatus we developed decomposes the pollutants in the water by using chemical species generated by the plasma discharge. The resulting stream of bubbles obviates the need for an external gas supply or pump to transport the water. A high-speed camera was used to investigate the bubble dynamics responsible for the pumping effect, which is achieved by selecting the shape of the capillary such that the bubble ejections within enhance the ‘self-repetition’ action required for the pumping motion. Our experiments showed that optimal bubble generation requires a consumed power of 17.8 W. A theoretical model was developed to investigate the pumping mechanism. We solve the problems associated with liquid oscillations in the U-shaped water reservoir by employing a non-uniform cross-sectional area in our model. The chemical reactivity of the device was confirmed by using emission spectroscopy of OH radical and by measuring the decomposition of methylene blue.

  3. Ground-based Solar Observations and Plasma Bubbles in Brazilian Sector During a Period of Extreme Low Solar Activity

    NASA Astrophysics Data System (ADS)

    Tardelli-Coelho, F.; Abalde, J. R.; Tardelli, A.; de Abreu, A. J.

    2016-04-01

    Studies presented on the relation of the Sun-Earth system are currently of great importance. Ionospheric irregularities in the F-region, caused by geomagnetic storms have significant and adverse effects on the Earth. The recent advancement in technological techniques for monitoring space weather has facilitated these studies. The focus of this study was to determine whether a geomagnetic storm interfered with the generation, propagation, and durability of plasma bubbles that occurred over a period of solar minimum in two cities in the Brazilian sector, São José dos Campos - SP, designated SJC, (23.21°S, 45.86°W; dip latitude 17.6°S), low-latitude region and near the south crest of the ionospheric equatorial anomaly; and Palmas - TO, called PAL (10.28°S, 48.33°W; dip latitude 6.7°S), near the magnetic equator, located in the geographical South, tropical region and the hemisphere opposite the magnetic equator. This study was conducted with data analysis of five years (2006-2010) for SJC and four years (2007-2010) for PAL, considering the 24th solar cycle, using an all-sky imaging photometer operating with interference filters in OI 630.0 nm emission resulting from dissociative recombination process that occurs at an altitude of 250-300 km (F-region).

  4. Airglow-imaging observation of plasma bubble disappearance at geomagnetically conjugate points

    NASA Astrophysics Data System (ADS)

    Shiokawa, Kazuo; Otsuka, Yuichi; Lynn, Kenneth JW; Wilkinson, Philip; Tsugawa, Takuya

    2015-03-01

    We report the first observation of the disappearance of a plasma bubble over geomagnetically conjugate points. It was observed by airglow imagers at Darwin, Australia (magnetic latitude: -22°N) and Sata, Japan (21°N) on 8 August 2002. The plasma bubble was observed in 630-nm airglow images from 1530 (0030 LT) to 1800 UT (0300 LT) and disappeared equatorward at 1800 to 1900 UT (0300 to 0400 LT) in the field of view. The ionograms at Darwin and Yamagawa (20 km north of Sata) show strong spread-F signatures at approximately 16 to 21 UT. At Darwin, the F-layer virtual height suddenly increased from approximately 200 to approximately 260 km at the time of bubble disappearance. However, a similar F-layer height increase was not observed over the conjugate point at Yamagawa, indicating that this F-layer rise was caused not by an eastward electric field but by enhancement of the equatorward thermospheric wind over Darwin. We think that this enhancement of the equatorward neutral wind was caused by an equatorward-propagating large-scale traveling ionospheric disturbance, which was identified in the north-south keogram of 630-nm airglow images. We speculate that polarization electric field associated with this equatorward neutral wind drive plasma drift across the magnetic field line to cause the observed bubble disappearance.

  5. Dynamics of electron bunches at the laser-plasma interaction in the bubble regime

    NASA Astrophysics Data System (ADS)

    Maslov, V. I.; Svystun, O. M.; Onishchenko, I. N.; Tkachenko, V. I.

    2016-09-01

    The multi-bunches self-injection, observed in laser-plasma accelerators in the bubble regime, affects the energy gain of electrons accelerated by laser wakefield. However, understanding of dynamics of the electron bunches formed at laser-plasma interaction may be challenging. We present here the results of fully relativistic electromagnetic particle-in-cell (PIC) simulation of laser wakefield acceleration driven by a short laser pulse in an underdense plasma. The trapping and acceleration of three witness electron bunches by the bubble-like structures were observed. It has been shown that with time the first two witness bunches turn into drivers and contribute to acceleration of the last witness bunch.

  6. Analytic model of electron self-injection in a plasma wakefield accelerator in the strongly nonlinear bubble regime

    SciTech Connect

    Yi, S. A.; Khudik, V.; Siemon, C.; Shvets, G.

    2012-12-21

    Self-injection of background electrons in plasma wakefield accelerators in the highly nonlinear bubble regime is analyzed using particle-in-cell and semi-analytic modeling. It is shown that the return current in the bubble sheath layer is crucial for accurate determination of the trapped particle trajectories.

  7. Multi-wavelength emission from the Fermi bubbles. I. Stochastic acceleration from background plasma

    SciTech Connect

    Cheng, K. S.; Chernyshov, D. O.; Dogiel, V. A.; Ko, C. M.

    2014-07-20

    We analyze processes of electron acceleration in the Fermi bubbles in order to define parameters and restrictions of the models, which are suggested for the origin of these giant radio and gamma-ray structures. In the case of the leptonic origin of the nonthermal radiation from the bubbles, these electrons should be produced somehow in situ because of the relatively short lifetime of high-energy electrons, which lose their energy by synchrotron and inverse-Compton processes. It has been suggested that electrons in bubbles may be accelerated by shocks produced by tidal disruption of stars accreting onto the central black hole or a process of re-acceleration of electrons ejected by supernova remnants. These processes will be investigated in subsequent papers. In this paper, we focus on in situ stochastic (Fermi) acceleration by a hydromagnetic/supersonic turbulence, in which electrons can be directly accelerated from the background plasma. We showed that the acceleration from the background plasma is able to explain the observed fluxes of radio and gamma-ray emission from the bubbles, but the range of permitted parameters of the model is strongly restricted.

  8. Instabilities observed at the bubble edge of a laser produced plasma during its expansion in an ambient tenuous plasma

    NASA Astrophysics Data System (ADS)

    Lee, Bo Ram; Clark, S. E.; Hoffmann, D. H. H.; Niemann, C.

    2014-10-01

    The Raptor kJ class 1053 nm Nd:Glass laser in the Phoenix laser laboratory at University of California, Los Angeles, is used to ablate a dense debris plasma from a graphite or plastic target embedded in a tenuous, uniform, and quiescent ambient magnetized plasma in the Large Plasma Device (LAPD) which provides a peak plasma density of ni ~ 1013 cm-3. Its background magnetic field can vary between 200 and 1200 G. Debris ions from laser produced plasma expand out conically with super-Alfvénic speed (MA ~ 2) and expel the background magnetic field and ambient ions to form a diamagnetic bubble. The debris plasma interacts with the ambient plasma and the magnetic field and acts as a piston which can create collisionless shocks. Flute-type instabilities, which are probably large Larmor radius Rayleigh Taylor instabilities or lower hybrid drift instabilities, are developed at the bubble edge and also observed in the experiment. The amplitude and wavelength dependence of the instabilities, which might be a strong function of debris to ambient mass to charge ratio, is studied and the experimental results are compared to the two dimensional hybrid simulations. the Deutsche Forschungsgemeinschaft in the framework of the Excellence Initiative Darmstadt Graduate School of Energy Science and Engineering (GSC1070).

  9. Instability of a witness bunch in a plasma bubble

    SciTech Connect

    Burov, A.; Lebedev, V.; Nagaitsev, S.

    2016-02-16

    The stability of a trailing witness bunch, accelerated by a plasma wake accelerator (PWA) in a blow-out regime, is discussed. The instability growth rate as well as the energy spread, required for BNS damping, are obtained. A relationship between the PWA power efficiency and the BNS energy spread is derived.

  10. Non-thermal plasma ethanol reforming in bubbles immersed in liquids

    NASA Astrophysics Data System (ADS)

    Levko, Dmitry; Sharma, Ashish; Raja, Laxminarayan L.

    2017-03-01

    Ethanol reforming in non-thermal plasma generated in atmospheric-pressure argon bubbles immersed in liquid ethanol/water solution is studied using a self-consistent multi-species fluid model. The influence of the dielectric constant of the liquid on the plasma dynamics and its effect on the generation of active species is analyzed. Several modes of discharge are obtained for large liquid dielectric constant. In these modes, we obtain either an axial streamer or a combination of two simultaneous streamers propagating along the bubble axis and near the liquid wall. The influence of these modes on the production of active species is also studied. The main reactions responsible for the generation of molecular hydrogen and light hydrocarbon species are analyzed. A possible mechanism of hydrogen generation in liquid phase is discussed.

  11. Investigation of MHD Instabilities in Jets and Bubbles Using a Compact Coaxial Plasma Gun in a Background Magnetized Plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Fisher, D. M.; Wallace, B.; Gilmore, M.; Hsu, S. C.

    2016-10-01

    A compact coaxial plasma gun is employed for experimental investigation of launching plasma into a lower density background magnetized plasma. Experiments are being conducted in the linear device HelCat at UNM. Four distinct operational regimes with qualitatively different dynamics are identified by fast CCD camera images. For regime I plasma jet formation, a global helical magnetic configuration is determined by a B-dot probe array data. Also the m =1 kink instability is observed and verified. Furthermore, when the jet is propagating into background magnetic field, a longer length and lifetime jet is formed. Axial shear flow caused by the background magnetic tension force contributes to the increased stability of the jet body. In regime II, a spheromak-like plasma bubble formation is identified when the gun plasma is injected into vacuum. In contrast, when the bubble propagates into a background magnetic field, the closed magnetic field configuration does not hold anymore and a lateral side, Reilgh-Taylor instability develops. Detailed experimental data and analysis will be presented for these cases.

  12. Analytic model of electron self-injection in a plasma wakefield accelerator in the strongly nonlinear bubble regime

    NASA Astrophysics Data System (ADS)

    Yi, Sunghwan; Khudik, Vladimir; Shvets, Gennady

    2012-10-01

    We study self-injection into a plasma wakefield accelerator in the blowout (or bubble) regime, where the bubble evolves due to background density inhomogeneities. To explore trapping, we generalize an analytic model for the wakefields inside the bubble [1] to derive expressions for the fields outside. With this extended model, we show that a return current in the bubble sheath layer plays an important role in determining the trapped electron trajectories. We explore an injection mechanism where bubble growth due to a background density downramp causes reduction of the electron Hamiltonian in the co-moving frame, trapping the particle in the dynamically deepening potential well [2]. Model calculations agree quantitatively with PIC simulations on the bubble expansion rate required for trapping, as well as the range of impact parameters for which electrons are trapped. This is an improvement over our previous work [3] using a simplified spherical bubble model, which ignored the fields outside of the bubble and hence overestimated the expansion rate required for trapping. [4pt] [1] W. Lu et al., Phys. Plasmas 13, 056709 (2006).[0pt] [2] S. Kalmykov et al., Phys. Rev. Lett 103, 135004 (2009).[0pt] [3] S.A. Yi et al., Plasma Phys. Contr. Fus. 53, 014012 (2011).

  13. A new inversion method of plasma density distribution of plasmasphere in the geomagnetic equatorial plane from IMAGE data

    NASA Astrophysics Data System (ADS)

    Li, Liang; Chen, Zhiqiang; Xu, Ronglan; Huang, Ya

    2011-12-01

    The plasma density distribution of plasmasphere in the geomagnetic equatorial plane can help us study the magnetosphere like plasmasphere, ionosphere and their kinetics. In this paper, we introduce a new inversion method, GE-ART, to calculate the plasma density distribution in the geomagnetic equatorial plane from the Extreme Ultraviolet (EUV) data of IMAGE satellite under the assumption that the plasma density is constant along each geomagnetic field line. The new GE-ART algorithm was derived from the traditional Algebraic Reconstruction Techniques (ART) in Computed Tomography (CT) which was different from the several existing methods. In this new method, each value of the EUV image data was back-projected evenly to the geomagnetic field lines intersected by this EUV sight. A 3-D inversion matrix was produced by the contributions of all the voxels contained in the plasmasphere covered by the EUV sensor. That is, we considered that each value of the EUV image data was relative to the plasma densities of all the voxels passed through by the corresponding EUV radiation, which is the biggest difference to all the existing inversion methods. Finally, the GE-ART algorithm was evaluated by the real EUV data from the IMAGE satellite.

  14. Synergistic Direct/Wakefield Acceleration of Plasma Electrons In the Plasma Bubble Regime Using Tailored Laser Pulses

    NASA Astrophysics Data System (ADS)

    Shvets, Gennady

    2016-10-01

    The integration of direct laser acceleration (DLA) and laser wakefield acceleration (LWFA) is a new approach to plasma-based acceleration that confers several benefits over both schemes taken separately. Such integration requires a significant portion of the laser energy (e.g., a separate laser pulse) to trail the main bubble-producing laser pulse, and resonantly interact with the trapped accelerated electrons undergoing betatron motion inside the plasma bubble. I will demonstrate how electron dephasing from the accelerating wakefield, which is one of the key limitations of LWFA, is reduced by their growing undulating motion. Moreover, the distinct energy gains from wake and the laser pulse are compounding, thereby increasing the total energy gain. Even more significant increases of the overall acceleration can be obtained by moving away from single-frequency laser format toward combining mid-infrared laser pulses for plasma bubble generation with short-wavelength trailing pulses for DLA. Various injection mechanisms, such as ionization injection, external injection, self-injection, and their advantages will also be discussed. Translating these new concepts into specific experiments will take advantage of recent technological advances in synchronizing laser and electron beams, and using multiple beamlines for producing sophisticated laser pulse formats.

  15. Plasma Discharges in Gas Bubbles in Liquid Water: Breakdown Mechanisms and Resultant Chemistry

    NASA Astrophysics Data System (ADS)

    Gucker, Sarah M. N.

    The use of atmospheric pressure plasmas in gases and liquids for purification of liquids has been investigated by numerous researchers, and is highly attractive due to their strong potential as a disinfectant and sterilizer. However, the fundamental understanding of plasma production in liquid water is still limited. Despite the decades of study dedicated to electrical discharges in liquids, many physical aspects of liquids, such as the high inhomogeneity of liquids, complicate analyses. For example, the complex nonlinearities of the fluid have intricate effects on the electric field of the propagating streamer. Additionally, the liquid material itself can vaporize, leading to discontinuous liquid-vapor boundaries. Both can and do often lead to notable hydrodynamic effects. The chemistry of these high voltage discharges on liquid media can have circular effects, with the produced species having influence on future discharges. Two notable examples include an increase in liquid conductivity via charged species production, which affects the discharge. A second, more complicated scenario seen in some liquids (such as water) is the doubling or tripling of molecular density for a few molecule layers around a high voltage electrode. These complexities require technological advancements in optical diagnostics that have only recently come into being. This dissertation investigates several aspects of electrical discharges in gas bubbles in liquids. Two primary experimental configurations are investigated: the first allows for single bubble analysis through the use of an acoustic trap. Electrodes may be brought in around the bubble to allow for plasma formation without physically touching the bubble. The second experiment investigates the resulting liquid phase chemistry that is driven by the discharge. This is done through a dielectric barrier discharge with a central high voltage surrounded by a quartz discharge tube with a coil ground electrode on the outside. The plasma

  16. The response of equatorial electrojet, vertical plasma drift, and thermospheric zonal wind to enhanced solar wind input

    NASA Astrophysics Data System (ADS)

    Xiong, Chao; Lühr, Hermann; Fejer, Bela G.

    2016-06-01

    In this study we used observations from the CHAMP and ROCSAT-1 satellites to investigate the solar wind effects on the equatorial electrojet (EEJ), vertical plasma drift, and thermospheric zonal wind. We show that an abrupt increase in solar wind input has a significant effect on the low-latitude ionosphere-thermosphere system, which can last for more than 24 h. The disturbance EEJ and zonal wind are mainly westward for all local times and show most prominent responses during 07-12 and 00-06 magnetic local time (MLT), respectively. The equatorial disturbance electric field is mainly eastward at night (most prominent for 00-05 MLT) and westward at daytime with small amplitudes. In this study we show for the first time that the penetration electric field is little dependent on longitude at both the day and night sides, while the disturbance zonal wind is quite different at different longitude sectors, implying a significant longitudinal dependence of the ionospheric disturbance dynamo. Our result also indicates that the F region equatorial zonal electric field reacts faster than E region dynamo, to the enhanced solar wind input.

  17. Damping in the growth of plasma irregularities caused by meteoric dust particles in the equatorial E-region

    NASA Astrophysics Data System (ADS)

    Muralikrishna, Polinaya

    2016-07-01

    Two stream and gradient drift instability mechanisms operating in the E-region of the equatorial ionosphere can be affected by dust particles of meteoric origin. The dust particles can capture the ambient electrons and cause considerable increase in the loss rate of electrons thus affecting the growth rates and amplitudes of the plasma irregularities. The attachment of electrons on dust particles can increase the threshold velocities needed for the onset of two stream and gradient drift instability mechanisms responsible for the generation of Type I and Type II plasma irregularities respectively, observed in the equatorial E-region plasma. Also from simple theoretical considerations one can see that the growth rate and amplitude of both Type I and Type II irregularities can be reduced considerably by the meteoric dust particles by increasing the collision frequencies. Observation of persistence of Leonid meteor trails is probably due to the reduction in the wave amplitudes and their dependent diffusion rate caused by the electron bite outs produced by the ambient dust particles. In situ rocket observations also indicate that, under similar ambient conditions, the amplitudes of Type II irregularities observed in the lower E-region are considerably smaller than those observed at higher altitudes. This probably is a direct evidence for the effect of dust particles that dominate the lower E-region altitudes practically all the time.

  18. Supra-bubble regime for laser acceleration of coldelectron beams in tenuous plasma

    SciTech Connect

    Geyko, V. I.; Dodin, I. Y.; Fisch, N. J.; Fraiman, G. M.

    2009-01-18

    Relativistic electrons can be accelerated by an ultraintense laser pulse in the "supra-bubble" regime, that is, in the blow-out regime ahead of the plasma bubble (as opposed to the conventional method, when particles remain inside the bubble). The acceleration is caused by the ponderomotive force of the pulse, via the so-called snow-plow mechanism. The maximum energy gain, Δγ ~ γg a, is attained when the particle Lorentz factor γ is initially about γg/a, where γg is the pulse group speed Lorentz factor, and a is the laser parameter, proportional to the laser field amplitude. The scheme operates at a ≤ γg, yielding Δγ of up to that via wakefield acceleration for the same plasma and laser parameters, Δγ ~ γ2g. The interaction length is shorter than that for the wake field mechanism but grows with the particle energy, hindering acceleration in multiple stages.

  19. Equatorial spread-F (ESF) and vertical winds

    NASA Astrophysics Data System (ADS)

    Raghavarao, R.; Suhasini, R.; Mayr, H. G.; Hoegy, W. R.; Wharton, L. E.

    1999-05-01

    The Equatorial Spread-F (ESF) phenomenon is recorded in ionograms as a hierarchy of plasma instabilities in the F-layer of the equatorial ionosphere. The ESF is characterized by irregularities in the plasma (electron and ion) density and electric field distributions perpendicular to the Earth's magnetic field. Large scale irregularities are generated by a primary plasma instability that develops in electric fields and plasma densities. Other secondary instabilities then develop and generate irregularities at several scale sizes that often produce a plasma `hole' or `bubble' that rises up with high E×B velocities. The ESF/plasma bubble phenomenon has been studied extensively with experimental techniques and modeling, which revealed important features. In the bottom side F-layer, near sunset, when the vertical density gradient steepens as the layer is supported by the horizontal (North-South) Earth's magnetic field lines against the omnipresent Earth's gravitational acceleration (g), the plasma conditions can give rise to Rayleigh-Taylor (RT) type instability. But the observed day to day variability of the ESF occurrence suggested that other agencies may also be involved in generating the instability. Sekar and Raghavarao (1987) with linear theory, and Raghavarao, Sekar and Suhasini (1992), with non-linear numerical modeling, suggested that vertical downward (upward) winds in the ambient gas have the potential to cause (inhibit) the ESF/bubble phenomenon. The presence of downward winds near the equator was reported earlier. In this paper, we show evidence for the presence of downward winds collocated with irregularities in electric fields and plasma densities as revealed by an unique combination of highly accurate measurements with instruments onboard the DE-2 satellite. The observations reported here are also consistent with the notion that the build-up of the equatorial ionization anomaly (EIA) prior to local sunset is important for the ESF instability.

  20. Evidence of cold bubble-like structure in START density limit plasmas

    SciTech Connect

    Ribeiro, C.; Jenkins, I.; Martin, R.; Sykes, A.; Walsh, M. J.

    2008-09-15

    Cold bubble (CB) structures were observed in START density limit studies for the first time in a low aspect ratio tokamak. They seem related to minor and major disruption processes, clearly identified here as a trigger to those events. Enormous discrepancies on the CB velocities in several devices are reported. This shows that the physical mechanisms related to the time scales for its propagation should be revised. Several models related to CB formation and its role in the disruptive process or just in a plasma with the presence of sawteeth qualitatively predict a great part of the observations.

  1. Upwelling: a unit of disturbance in equatorial spread F

    NASA Astrophysics Data System (ADS)

    Tsunoda, Roland T.

    2015-12-01

    Plasma structure in the nighttime equatorial F layer, often referred to as equatorial spread F (ESF), is not uniformly distributed, either in time or in space. Observations indicate that ESF in the bottomside F layer takes the form of patches; plasma structure within the F layer takes the form of localized plasma depletions, called equatorial plasma bubbles (EPBs), which tend to occur in clusters. Another observed feature is an upwelling, which has been described as a localized, upward modulation of isodensity contours in the bottomside F layer. Interestingly, zonal widths of ESF patches, EPB clusters, and upwellings are similar. Moreover, all display an east-west asymmetry. The objective of this paper is to show, for the first time, that an ESF patch is the bottomside counterpart of an EPB cluster, and that both are products of the electrodynamical process that takes place within an upwelling. The process can be described as having three phases: (1) amplification of upwelling amplitude during the post-sunset rise of the F layer, (2) launching of the first EPB of the evening, from crest of the upwelling, and (3) structuring of plasma within the upwelling. Hence, an upwelling, whose presence is responsible for the formation of ESF patches and EPB clusters, can be envisioned as a unit of disturbance that occurs in the nighttime equatorial ionosphere.

  2. Equatorial ionospheric plasma drifts and O+ concentration enhancements associated with disturbance dynamo during the 2015 St. Patrick's Day magnetic storm

    NASA Astrophysics Data System (ADS)

    Huang, Chao-Song; Wilson, Gordon R.; Hairston, Marc R.; Zhang, Yongliang; Wang, Wenbin; Liu, Jing

    2016-08-01

    Disturbance dynamo is an important dynamic process during magnetic storms. However, very few direct observations of dynamo-induced plasma drifts and ion composition changes in the equatorial ionosphere are available. In this study, we use measurements of the Defense Meteorological Satellite Program (DMSP) satellites to identify the characteristics of the disturbance dynamo process in the topside equatorial ionosphere near dawn during the magnetic storm with a minimum Dst of -223 nT on 17 March 2015. Data from four DMSP satellites with equatorial crossings at 0245, 0430, 0630, and 0730 LT are available for this case. The dynamo process was first observed in the postmidnight sector 3-4.7 h after the beginning of the storm main phase and lasted for 31 h, covering the second storm intensification and the initial 20 h of the recovery phase. The dynamo vertical ion drift was upward (up to 150-200 m s-1) in the postmidnight sector and downward (up to ~80 m s-1) in the early morning sector. The dynamo zonal ion drift was westward at these locations and reached ~100 m s-1. The dynamo process caused large enhancements of the O+ concentration (the ratio of the oxygen ion density to the total ion density) at the altitude of 840 km near dawn. The O+ concentration increased from below 60% during the prestorm period to 80-90% during the storm time. More specifically, the O+ density was increased, and the H+ density was decreased. The variations of the O+ concentration were well correlated with the vertical ion drift.

  3. Formation and ascent of nonisothermal ionospheric and chromospheric bubbles

    SciTech Connect

    Genkin, L.G.; Erukhimov, L.M.; Myasnikov, E.N.; Shvarts, M.M.

    1987-11-01

    The influences of nonisothermicity on the dynamics of ionospheric and chromospheric bubbles is discussed. The possibility of the existence in the ionosphere of a recombination-thermal instability, arising from the temperature dependence of the coefficient of charge exchange between molecules and atomic ions, is shown, and its influence on the formation and evolution of equatorial bubbles is analyzed. It is shown that the formation and dynamics of bubbles may depend on recombination processes and gravity, while plasma heating (predominantly by vertical electric fields) leads to the deepening and preservation of bubbles as they move to greater altitudes. The hypothesis is advanced that the formation of bubbles may be connected with the ascent of clumps of molecules in ionospheric tornados.

  4. Airglow-imaging observation of plasma bubble disappearance at geomagnetically conjugate points

    NASA Astrophysics Data System (ADS)

    Shiokawa, K.; Otsuka, Y.; Lynn, K. J. W.; Wilkinson, P. W.; Tsugawa, T.

    2014-12-01

    We report the first observation of the disappearance of plasma bubbles overgeomagnetically conjugate points. It was observed by airglow imagers at Darwin,Australia (magnetic latitude: -22N) and Sata, Japan (21N) on 8 August 2002. Theplasma bubble was observed in 630-nm airglow images from 1530 UT (0030 LT) to1800 UT (0300 LT) and disappeared equatorward at 1800-1900 UT (0300-0400 LT) inthe field of view. The ionograms at Darwin and Yamagawa (20 km north of Sata)show strong spread-F signatures at ~16-21 UT. At Darwin, the F-layer virtualheight suddenly increased from ~200 km to ~260 km at the time of bubbledisappearance. However a similar F-layer height increase was not observed overthe conjugate point at Yamagawa, indicating that this F-layer rise was causednot by an eastward electric field but by enhancement of the equatorwardthermospheric wind over Darwin. We think that this enhancement of theequatorward neutral wind was caused by an equatorward-propagating large-scaletraveling ionospheric disturbance, which was identified in the north-southkeogram of 630-nm airglow images. We suggest that either F-region dynamoor polarization electric field associated with this equatorward neutral winddrive plasma drift across the magnetic field line to cause the observed bubbledisappearance.

  5. Insights in the laser-induced breakdown spectroscopy signal generation underwater using dual pulse excitation — Part I: Vapor bubble, shockwaves and plasma

    NASA Astrophysics Data System (ADS)

    Lazic, V.; Laserna, J. J.; Jovicevic, S.

    2013-04-01

    Plasma and vapor bubble formation and evolution after a nanosecond laser pulse delivered to aluminum targets inside water were studied by fast photography. This technique was also applied to monitor the plasma produced by a second laser pulse and for different interpulse delays. The bubble growth was evident only after 3 μs from the first laser pulse and the bubble shape changed during expansion and collapse cycles. The evolution and propagation of the initial shockwave and its reflections both from the back sample surface and cell walls were detected by Schlieren photography. The primary plasma develops in two phases: violent particle expulsion and ionization during the first μs, followed by slow plasma growth from the ablation crater into the evolving vapor bubble. The shape of the secondary plasma strongly depends on the inner bubble pressure whereas the particle expulsion into the expanded bubble is much less evident. Both the primary and secondary plasma have similar duration of about 30 μs. Detection efficiency of the secondary plasma is much reduced by light refraction at the curved bubble-water interface, which behaves as a negative lens; this leads to an apparent reduction of the plasma dimensions. Defocusing power of the bubble lens increases with its expansion due to the lowering of the vapor's refraction index with respect to that of the surrounding liquid (Lazic et al., 2012 [1]). Smell's reflections of secondary plasma radiation at the expanded bubble wall redistribute the detected intensity on a wavelength-dependent way and allow gathering of the emission also from the external plasma layer that otherwise, would not enter into the optical system.

  6. Nanosecond Pulsed Discharge in Water without Bubbles: A Fundamental Study of Initiation, Propagation and Plasma Characteristics

    NASA Astrophysics Data System (ADS)

    Seepersad, Yohan

    The state of plasma is widely known as a gas-phase phenomenon, but plasma in liquids have also received significant attention over the last century. Generating plasma in liquids however is theoretically challenging, and this problem is often overcome via liquid-gas phase transition preceding the actual plasma formation. In this sense, plasma forms in gas bubbles in the liquid. Recent work at the Drexel Plasma Institute has shown that nanosecond pulsed electric fields can initiate plasma in liquids without any initial cavitation phase, at voltages below theoretical direct-ionization thresholds. This unique regime is poorly understood and does not fit into any current descriptive mechanisms. As with all new phenomena, a complete fundamental description is paramount to understanding its usefulness to practical applications. The primary goals of this research were to qualitatively and quantitatively understand the phenomenon of nanosecond pulsed discharge in liquids as a means to characterizing properties that may open up niche application possibilities. Analysis of the plasma was based on experimental results from non-invasive, sub-nanosecond time-resolved optical diagnostics, including direct imaging, transmission imaging (Schlieren and shadow), and optical emission spectroscopy. The physical characteristics of the plasma were studied as a function of variations in the electric field amplitude and polarity, liquid permittivity, and pulse duration. It was found that the plasma size and emission intensity was dependent on the permittivity of the liquid, as well as the voltage polarity, and the structure and dynamics were explained by a 'cold-lightning' mechanism. The under-breakdown dynamics at the liquid-electrode interface were investigated by transmission imaging to provide evidence for a novel mechanism for initiation based on the electrostriction. This mechanism was proposed by collaborators on the project and developed alongside the experimental work in this

  7. The dependence of pulsating auroral events on energetic electrons and cold plasma near the equatorial plane

    SciTech Connect

    Nemzek, R.J.; Belian, R.D.; McComas, D.J.; Thomsen, M.F.; Nakamura, R.; Baker, D.N.; Yamamoto, T.

    1992-10-01

    Pulsating auroras are a substorm recovery phase phenomenon, occurring shortly after an auroral breakup. The current theory of the pulsating aurora involves a ``relaxation oscillator`` mechanism requiring a population of high-energy (10`s of keV) electrons and a low-energy plasma number density on the order of a few particles per cm{sup 3}. We investigated this relationship by comparing energetic electron and plasma data from a geosynchronous satellite to pulsating auroras recorded by an all-sky video camera which contained the satellite`s ionospheric conjugate point in its field of view. Pulsating auroral events were generally closely connected to substorm injections on the satellite, but there was no clear correlation with changes in plasma density. During all of the events the density was in an acceptable range for the relaxation oscillator mechanism to function. The relationship to substorm injections impiles that the pulsating aurora can be used to map the substorm injection region down to the ionosphere. An unusual diminishing of the pulsating aurora during the growth phase of a subsequent substorm was also discovered.

  8. The dependence of pulsating auroral events on energetic electrons and cold plasma near the equatorial plane

    SciTech Connect

    Nemzek, R.J.; Belian, R.D.; McComas, D.J.; Thomsen, M.F. ); Nakamura, R.; Baker, D.N. . Goddard Space Flight Center); Yamamoto, T. )

    1992-01-01

    Pulsating auroras are a substorm recovery phase phenomenon, occurring shortly after an auroral breakup. The current theory of the pulsating aurora involves a relaxation oscillator'' mechanism requiring a population of high-energy (10's of keV) electrons and a low-energy plasma number density on the order of a few particles per cm{sup 3}. We investigated this relationship by comparing energetic electron and plasma data from a geosynchronous satellite to pulsating auroras recorded by an all-sky video camera which contained the satellite's ionospheric conjugate point in its field of view. Pulsating auroral events were generally closely connected to substorm injections on the satellite, but there was no clear correlation with changes in plasma density. During all of the events the density was in an acceptable range for the relaxation oscillator mechanism to function. The relationship to substorm injections impiles that the pulsating aurora can be used to map the substorm injection region down to the ionosphere. An unusual diminishing of the pulsating aurora during the growth phase of a subsequent substorm was also discovered.

  9. On the Azimuthal Variation of Core Plasma in the Equatorial Magnetosphere

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Craven, P. D.; Comfort, R. H.; Moore, T. E.

    1995-01-01

    Previous results of plasmapause position surveys have been synthesized into a description of the underlying global distribution of plasmasphere-like or core plasma densities unique to a steady state magnetosphere. Under these steady conditions, the boundary between high- and low-density regions is taken to represent the boundary between diurnal near-corotation and large-scale circulation streamlines that traverse the entire magnetosphere. Results indicate a boundary that has a pronounced bulge in the dusk sector that is rotated westward and markedly reduced in size at increased levels of geomagnetic activity (and presumably magnetospheric convection). The derived profile is empirical confirmation of an underlying 'tear drop' distribution of core plasma, which is valid only for prolonged steady conditions and is somewhat different from that associated with the simple superposition of sunward flow and corotation, both in its detailed shape and in its varying orientation. Variation away from the tear drop profile suggests that magnetospheric circulation departs from a uniform flow field, having a radial dependence with respect to the Earth that is qualitatively consistent with electrostatic shielding of the convection electric field and which is rotated westward at increased levels of geophysical activity.

  10. Study of Large-Scale Wave Structure and Development of Equatorial Plasma Bubbles Using the C/NOFS Satellite

    DTIC Science & Technology

    2012-10-31

    include Kwajalein and Guam. The scientific value of the Pacific cluster is enhanced by ionograms being collected with three ionosondes (Kwajalein, Pohnpei...R.T., Multi-reflected echoes: Another ionogram signature of large-scale wave structure, Geophys. Res. Lett., 36, L01102, doi:10.1029/2008GL036221...Geophys. Res. Lett., 38, L20102, doi:10.1029/2011GL049173, 2011. Thampi, S.V., R. Tsunoda, L. Jose, and T.K. Pant, Ionogram signatures of large-scale

  11. Concurrence of monoenergetic electron beams and bright X-rays from an evolving laser-plasma bubble

    PubMed Central

    Yan, Wenchao; Chen, Liming; Li, Dazhang; Zhang, Lu; Hafz, Nasr A. M.; Dunn, James; Ma, Yong; Huang, Kai; Su, Luning; Chen, Min; Sheng, Zhengming; Zhang, Jie

    2014-01-01

    Desktop laser plasma acceleration has proven to be able to generate gigaelectronvolt-level quasi-monoenergetic electron beams. Moreover, such electron beams can oscillate transversely (wiggling motion) in the laser-produced plasma bubble/channel and emit collimated ultrashort X-ray flashes known as betatron radiation with photon energy ranging from kiloelectronvolts to megaelectronvolts. This implies that usually one cannot obtain bright betatron X-rays and high-quality electron beams with low emittance and small energy spread simultaneously in the same accelerating wave bucket. Here, we report the first (to our knowledge) experimental observation of two distinct electron bunches in a single laser shot, one featured with quasi-monoenergetic spectrum and another with continuous spectrum along with large emittance. The latter is able to generate high-flux betatron X-rays. Such is observed only when the laser self-guiding is extended over 4 mm at a fixed plasma density (4 × 1018 cm−3). Numerical simulation reveals that two bunches of electrons are injected at different stages due to the bubble evolution. The first bunch is injected at the beginning to form a stable quasi-monoenergetic electron beam, whereas the second one is injected later due to the oscillation of the bubble size as a result of the change of the laser spot size during the propagation. Due to the inherent temporal synchronization, this unique electron–photon source can be ideal for pump–probe applications with femtosecond time resolution. PMID:24711405

  12. Concurrence of monoenergetic electron beams and bright X-rays from an evolving laser-plasma bubble.

    PubMed

    Yan, Wenchao; Chen, Liming; Li, Dazhang; Zhang, Lu; Hafz, Nasr A M; Dunn, James; Ma, Yong; Huang, Kai; Su, Luning; Chen, Min; Sheng, Zhengming; Zhang, Jie

    2014-04-22

    Desktop laser plasma acceleration has proven to be able to generate gigaelectronvolt-level quasi-monoenergetic electron beams. Moreover, such electron beams can oscillate transversely (wiggling motion) in the laser-produced plasma bubble/channel and emit collimated ultrashort X-ray flashes known as betatron radiation with photon energy ranging from kiloelectronvolts to megaelectronvolts. This implies that usually one cannot obtain bright betatron X-rays and high-quality electron beams with low emittance and small energy spread simultaneously in the same accelerating wave bucket. Here, we report the first (to our knowledge) experimental observation of two distinct electron bunches in a single laser shot, one featured with quasi-monoenergetic spectrum and another with continuous spectrum along with large emittance. The latter is able to generate high-flux betatron X-rays. Such is observed only when the laser self-guiding is extended over 4 mm at a fixed plasma density (4 × 10(18) cm(-3)). Numerical simulation reveals that two bunches of electrons are injected at different stages due to the bubble evolution. The first bunch is injected at the beginning to form a stable quasi-monoenergetic electron beam, whereas the second one is injected later due to the oscillation of the bubble size as a result of the change of the laser spot size during the propagation. Due to the inherent temporal synchronization, this unique electron-photon source can be ideal for pump-probe applications with femtosecond time resolution.

  13. Wave structures observed in the equatorial F-region plasma density and temperature during the sunset period

    NASA Astrophysics Data System (ADS)

    Savio, S.; Muralikrishna, P.; Batista, I. S.; de Meneses, F. C.

    2016-11-01

    Electron density and temperature measurements were carried out with Langmuir probes (LP) on board Brazilian sounding rockets launched soon after the local sunset from Natal (5.8°S, 35.2°W, dip 23.7°S) and Alcântara (2.3°S, 44.4°W, dip 7°S), Brazil, on December 02, 2011, and December 08, 2012, respectively. Digisondes operating near the launching sites revealed a rapid rise in the F-region base indicating a probable pre-reversal enhancement of the vertical plasma drift. Strong spread-F traces are also visible on the ionograms simultaneously recorded, suggesting the occurrence of ionospheric bubbles during these campaigns. Electron density and temperature vertical profiles estimated from the LP data exhibit in the E-F region valley (120-300 km) the presence of large-amplitude wave activity, and electron temperature values higher than 1600 K, respectively, phenomena probably related to the electrodynamic processes that occur during the sunset period.

  14. Modeling study of equatorial ionospheric height and spread F occurrence

    NASA Astrophysics Data System (ADS)

    Maruyama, Takashi

    1996-03-01

    In the ionospheric F region at equatorial latitudes, the strength of the zonal electric field in the evening hours is closely connected with the generation of equatorial spread F and plasma bubbles. Many researchers discuss the electric fields and dynamics of the ionosphere in terms of the time derivative of F layer virtual heights (dh'F/dt) scaled on the ionograms, and this paper examines the accuracy of zonal electric fields derived by such a method. Although the effect of transequatorial thermospheric wind had been thought to be negligible, model calculations of ion concentration show that this wind significantly changes ionospheric height in the evening hours. Further, the electric field strength is estimated based on observed dh'F/dt, considering the apparent vertical drift of the ionosphere due to the thermospheric wind effect. Rayleigh-Taylor growth rates calculated for those electric fields agree quantitatively with the spread F occurrence.

  15. Observations and Simulations of Formation of Broad Plasma Depletions Through Merging Process

    NASA Technical Reports Server (NTRS)

    Huang, Chao-Song; Retterer, J. M.; Beaujardiere, O. De La; Roddy, P. A.; Hunton, D.E.; Ballenthin, J. O.; Pfaff, Robert F.

    2012-01-01

    Broad plasma depletions in the equatorial ionosphere near dawn are region in which the plasma density is reduced by 1-3 orders of magnitude over thousands of kilometers in longitude. This phenomenon is observed repeatedly by the Communication/Navigation Outage Forecasting System (C/NOFS) satellite during deep solar minimum. The plasma flow inside the depletion region can be strongly upward. The possible causal mechanism for the formation of broad plasma depletions is that the broad depletions result from merging of multiple equatorial plasma bubbles. The purpose of this study is to demonstrate the feasibility of the merging mechanism with new observations and simulations. We present C/NOFS observations for two cases. A series of plasma bubbles is first detected by C/NOFS over a longitudinal range of 3300-3800 km around midnight. Each of the individual bubbles has a typical width of approx 100 km in longitude, and the upward ion drift velocity inside the bubbles is 200-400 m/s. The plasma bubbles rotate with the Earth to the dawn sector and become broad plasma depletions. The observations clearly show the evolution from multiple plasma bubbles to broad depletions. Large upward plasma flow occurs inside the depletion region over 3800 km in longitude and exists for approx 5 h. We also present the numerical simulations of bubble merging with the physics-based low-latitude ionospheric model. It is found that two separate plasma bubbles join together and form a single, wider bubble. The simulations show that the merging process of plasma bubbles can indeed occur in incompressible ionospheric plasma. The simulation results support the merging mechanism for the formation of broad plasma depletions.

  16. Equatorial F region vertical plasma drifts: seasonal and longitudinal asymmetries in the American sector

    SciTech Connect

    Batista, I.S.; Abdu, M.A.; Bittencourt, J.A.

    1986-11-01

    Longitudinal and seasonal asymmetries in the evening ionospheric F region plasma vertical drift (V/sub z/) enhancements, between two longitudinally separated stations situated along the magnetic equator, in the American sector, are investigated under solar maximum conditions, based on results obtained from the analysis of ionosonde data for these stations. The two stations are Huancayo, Peru, and Fortaleza, Brazil, which have markedly different magnetic declination angles. The observed asymmetries are interpreted using a detailed numerical simulation of the E and F region electrodynamic coupling process that takes into account also its asymmetry about the magnetic equator arising from the finite magnetic declination angle. The results of the simulation show, in agreement with observations, that the occurrence time of the evening F region vertical drift prereversal peak and its seasonal variation at a station are controlled by the magnetic declination angle at that station, which determines the seasonal variation of the sunset times (and hence the integrated Pedersen conductivity longitudinal gradient) at its magnetic conjugate E layers. The amplitude of the prereversal peak, on the other hand, undergoes the influence of the magnetic declination angle as well as of the thermospheric zonal wind component.

  17. HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEUTRON DETECTORS, Final Report for the Period November 1, 1999 - February 28, 2001

    SciTech Connect

    FISHER,RK

    2003-02-01

    OAK B202 HIGH SPATIAL RESOLUTION IMAGING OF INERTIAL FUSION TARGET PLASMAS USING BUBBLE NEUTRON DETECTORS. Bubble detectors, which can detect neutrons with a spatial 5 to 30 {micro}, are the most promising approach to imaging NIF target plasmas with the desired 5 {micro} spatial resolution in the target plane. Gel bubble detectors are being tested to record neutron images of ICF implosions in OMEGA experiments. By improving the noise reduction techniques used in analyzing the data taken in June 2000, we have been able to image the neutron emission from 6 {center_dot} 10{sup 13} yield DT target plasmas with a target plane spatial resolution of {approx} 140 {micro}. As expected, the spatial resolution was limited by counting statistics as a result of the low neutron detection efficiency of the easy-to-use gel bubble detectors. The results have been submitted for publication and will be the subject of an invited talk at the October 2001 Meeting of the Division of Plasma Physics of the American Physical Society. To improve the counting statistics, data was taken in May 2001 using a stack of four gel detectors and integrated over a series of up to seven high-yield DT shots. Analysis of the 2001 data is still in its early stages. Gel detectors were chosen for these initial tests since the bubbles can be photographed several hours after the neutron exposure. They consist of {approx} 5000 drops ({approx} 100 {micro} in diameter) of bubble detector liquid/cm{sup 3} suspended in an inactive support gel that occupies {approx} 99% of the detector volume. Using a liquid bubble chamber detector and a light scattering system to record the bubble locations a few microseconds after the neutron exposure when the bubbles are {approx} 10 {micro} in diameter, should result in {approx} 1000 times higher neutron detection efficiency and a target plane resolution on OMEGA of {approx} 10 to 50 {micro}.

  18. Ionospheric bubbles detection algorithms: Analysis in low latitudes

    NASA Astrophysics Data System (ADS)

    Magdaleno, S.; Cueto, M.; Herraiz, M.; Rodríguez-Caderot, G.; Sardón, E.; Rodríguez, I.

    2013-04-01

    Plasma depletions (or bubbles) are strong reductions in the ionospheric F-region plasma density due to the appearance of a Rayleigh-Taylor instability in the post-sunset, producing severe radio signal disruptions when crossing them. Most of the plasma depletions are confined on the Appleton Anomaly region, which also shows the presence of strong scintillations activity. Therefore, stations located in the vicinity of the geomagnetic equator are expected to be frequently affected by the presence of plasma depletions. This paper provides a comparison between the plasma depletion detection results achieved using two algorithms: one developed by the National Institute for Aerospace Technology and the University Complutense of Madrid and one developed by GMV. Six equatorial stations distributed all over the world and different solar activity and seasonal conditions have been selected to analyze the algorithms’ response to different plasma depletions characteristics. A regional behavior analysis of the plasma depletion occurrence and characteristics is also provided.

  19. Influence of the equatorial irregularities and precipitations in the South Atlantic magnetic anomaly on the generation of auroral-type plasma instabilities

    SciTech Connect

    Prange, R.; Bruston, P.

    1980-08-01

    Observational evidence of upward field-aligned beams in the keV range has been obtained in the sub-equatorial ionosphere above South America. These events can be related to coupled magnetic and ionospheric activity (magnetic storm, ionospheric irregularities). This result is in opposition with the current theory of the low-latitude ionosphere. Its interpretation must assume that conditions exist for the growth of plasma instabilities. This implies a low plasma density, a close coupling between the ionosphere and the magnetosphere, and field-aligned currents. Such suitable conditions have independently been observed in ionospheric irregularities (density, currents) or during magnetic storms (energetic particle precipitation) or they are deduced from the structure of the Anomaly (field-aligned currents). This allows us to suggest that the South Atlantic Anomaly sometimes compares to the auroral oval and may develop some current-driven plasma instabilities.

  20. Calculation of Magnetospheric Equilibria and Evolution of Plasma Bubbles with a New Finite-Volume MHD/Magnetofriction Code

    NASA Astrophysics Data System (ADS)

    Silin, I.; Toffoletto, F.; Wolf, R.; Sazykin, S. Y.

    2013-12-01

    We present a finite-volume MHD code for simulations of magnetospheric dynamics of the plasma sheet and the inner magnetosphere. The code uses staggered non-uniform Cartesian grids to preserve the divergence-free magnetic fields, along with various numerical approximations and flux limiters for the plasma variables. The code can be initialized with empirical magnetic field models, such as the Tsyganenko models along with pressure information from either the Tsyganenko-Mukai models, or observational data, such as DMSP pressure maps. Artificial "friction term" can be added to the momentum equation, which turns the MHD code into "magnetofriction" code which can be used to construct approximate equilibrium solutions. We demonstrate some applications for our code, in both the "magnetofriction" and MHD mode, including relaxation of the empirical models to equilibrium and the evolution of a plasma bubble in the near magnetotail. The latter MHD simulation results exhibit oscillations about their equilibrium position in agreement with recent observations.

  1. Electric field and plasma density measurements in the strongly driven daytime equatorial electrojet. I - The unstable layer and gradient drift waves. II - Two-stream waves

    NASA Technical Reports Server (NTRS)

    Pfaff, R. F.; Kelley, M. C.; Kudeki, E.; Fejer, B. G.; Baker, K. D.

    1987-01-01

    The results of electric field and plasma density measurements in the strongly driven daytime equatorial electrojet over Peru, made during the March 1983 Condor electrojet experiment from Punta Lobos, Peru, are discussed together with the rocket instrumentation used for the measurements and the pertinent payload dynamics. The overall characteristics of the irregularity layer observed in situ in the electrojet are described. Special consideration is given to the waves generated by the gradient drift instability (observed between 90 and 106.5 km) and to primary and secondary two-stream waves detected by the two probes on the topside between 103 and 111 km, where the electron current was considered to be strongest.

  2. A method for determining the drift velocity of plasma depletions in the equatorial ionosphere using far-ultraviolet spacecraft observations: initial results

    NASA Astrophysics Data System (ADS)

    England, S. L.; Immel, T. J.; Park, S. H.; Frey, H. U.; Mende, S. B.

    2007-12-01

    The Far-Ultraviolet Imager (IMAGE-FUV) on-board the NASA IMAGE satellite has been used to observe plasma depletions in the nightside equatorial ionosphere. Observations from periods around spacecraft apogee, during which equatorial regions are visible for several hours, have allowed the velocity of these plasma depletions to be determined. A new method for determining the velocity of these depletions using an image analysis technique, Tracking Of Airglow Depletions (TOAD), has been developed. TOAD allows the objective identification and tracking of depletions. The automation of this process has also allowed for the tracking of a greater number of depletions than previously achieved without requiring any human input, which shows that TOAD is suitable for use with large data sets and for future routine monitoring of the ionosphere from space. Furthermore, this allows the drift velocities of each depletion to be determined as a function of magnetic latitude as well as local time. Previous ground-based airglow observations from a small number of locations have indicated that the drift velocities of depletions may vary rapidly with magnetic latitude. Here we shall present the first results from TOAD of this shear in drift velocities from our global sample of depletion drift velocities.

  3. Direct laser acceleration of electrons in plasma bubbles or ion channels with and without a longitudinal wakefield

    NASA Astrophysics Data System (ADS)

    Khudik, Vladimir; Zhang, Xi; Arefiev, Alexey; Shvets, Gennady

    2017-03-01

    We investigate the motion of electrons in a plasma bubble (or an ion channel) under combined action of an oscillating laser field, quasistatic transverse wakefield, and longitudinal electric field. The longitudinal field E∥ significantly influences the broadband resonance between betatron oscillations of electrons and oscillations of the laser wave, which results in the profoundly different electron dynamics at different signs and magnitudes of the longitudinal force -eE∥. Specifically, we make a contrast between three representative cases: when this force is absent (-eE∥ = 0), when it accelerates electrons (-eE∥ > 0), and when it decelerates them (-eE∥ < 0). We estimate the electron energy gain at given laser-plasma parameters.

  4. Equatorial Guinea.

    PubMed

    1984-06-01

    Attention in this discussion of Equatorial Guinea is directed to the following: the people, history, geography, government, political conditions, the economy, foreign relations, and relations between the US and Equatorial Guinea. The population was estimated at 304,000 in 1983 and the annual growth rate was estimated in the range of 1.7-2.5. The infant mortality rate is 142.9/1000 with a life expectancy of 44.4 years for males and 47.6 years for females. The majority of the Equatoguinean people are of Bantu origin. The largest tribe, the Fang, is indigenous to the mainland, although many now also live on Bioko Island. Portuguese explorers found the island of Bioko in 1471, and the Portuguese retained control until 1778, when the island, adjacent islets, and the commercial rights to the mainland between the Niger and Ogooue Rivers were ceded to Spain. Spain lacked the wealth and the interest to develop an extensive economic infrastructure in Equatorial Guinea during the 1st half of this century, but the Spanish did help Equatorial Guinea achieve 1 of the highest literacy rates in Africa. They also founded a good network of health care facilities. In March 1968, under pressure from Guinean nationalists, Spain announced that it would grant independence to Equatorial Guinea as rapidly as possible. A referendum was held on August 11, 1968, and 63% of the electorate voted in favor of the constitution, which provided for a government with a general assembly and presidentially appointed judges in the Supreme Court. After the coup in August 1979, power was placed in the hands of a Supreme Military Council. A new constitution came into effect after a popular vote in August 1982, abolishing the Supreme Military Council. Under the terms of the constitution, the president was given extensive powers. By the end of 1983, a 60-member Chamber of Representatives of the people had been formed. The government, which is credited with restoring greater personal freedom, is regarded

  5. A Modeling Study of the Latitudinal Variations in the Nighttime Plasma Temperatures of the Equatorial Topside Ionosphere During Northern Winter at Solar Maximum

    NASA Technical Reports Server (NTRS)

    Bailey, G. J.; Denton, M. H.; Heelis, R. A.; Venkatraman, S.

    2000-01-01

    Latitudinal variations in the nighttime plasma temperatures of the equatorial topside ionosphere during northern winter at solar maximum have been examined by using values modelled by SUPIM (Sheffield University Plasmasphere Ionosphere Model) and observations made by the DMSP F10 satellite at 21.00 LT near 800 km altitude. The modelled values confirm that the crests observed near 15 deg latitude in the winter hemisphere are due to adiabatic heating and the troughs observed near the magnetic equator are due to adiabatic cooling as plasma is transported along the magnetic field lines from the summer hemisphere to the winter hemisphere. The modelled values also confirm that the interhemispheric plasma transport needed to produce the required adiabatic heating/cooling can be induced by F-region neutral winds. It is shown that the longitudinal variations in the observed troughs and crests arise mainly from the longitudinal variations in the magnetic meridional wind. At longitudes where the magnetic declination angle is positive the eastward geographic zonal wind combines with the northward (summer hemisphere to winter hemisphere) geographic meridional wind to enhance the northward magnetic meridional wind. This leads to deeper troughs and enhanced crests. At longitudes where the magnetic declination angle is negative the eastward geographic zonal wind opposes the northward geographic meridional wind and the trough depth and crest values are reduced. The characteristic features of the troughs and crests depend, in a complicated manner, on the field-aligned flow of plasma, thermal conduction, and inter-gas heat transfer. At the latitudes of the troughs/crests, the low/high plasma temperatures lead to increased/decreased plasma concentrations.

  6. Influence of sodium carbonate on decomposition of formic acid by pulsed discharge plasma inside bubble in water

    NASA Astrophysics Data System (ADS)

    Iwabuchi, Masashi; Takahashi, Katsuyuki; Takaki, Koichi; Satta, Naoya

    2016-07-01

    The influence of sodium carbonate on the decomposition of formic acid by discharge inside bubbles in water was investigated experimentally. Oxygen or argon gases were injected into the water through a vertically positioned glass tube, in which the high-voltage wire electrode was placed to generate plasmas at low applied voltage. The concentration of formic acid was determined by ion chromatography. In the case of sodium carbonate additive, the pH increased owing to the decomposition of the formic acid. In the case of oxygen injection, the percentage of conversion of formic acid increased with increasing pH because the reaction rate of ozone with formic acid increased with increasing pH. In the case of argon injection, the percentage of conversion was not affected by the pH owing to the high rate loss of hydroxyl radicals.

  7. Comment on "The night when the auroral and equatorial ionospheres converged" by Martinis, C., J. Baumgardner, M. Mendillo, J. Wroten, A. Coster, and L. Paxton

    NASA Astrophysics Data System (ADS)

    Kil, Hyosub; Miller, Ethan S.; Jee, Geonhwa; Kwak, Young-Sil; Zhang, Yongliang; Nishioka, Michi

    2016-10-01

    Intense OI 630.0 nm emission depletions were detected over Mexico by an all-sky imager during the main phase of the geomagnetic storm on 1 June 2013 (minimum Dst index: -119 nT). Those emission depletions were interpreted to be associated with equatorial plasma bubbles. If bubbles were responsible for those middle-latitude emission depletions, they would have been extreme bubbles which extended over 40° magnetic latitudes and 7000 km in altitude at the magnetic equator. However, a few factors challenge this interpretation. First, the emission depletions detected over Mexico showed westward drift, whereas the equatorial ionosphere including bubbles drifted eastward on that night. Second, the middle-latitude emission depletions were tilted westward with respect to the geographic meridian, but the westward tilt of bubbles was not identified. Third, the growth of bubbles was not evident when the middle-latitude emission depletions grew. The westward tilt and westward propagation of the middle-latitude emission depletions are consistent with the characteristics of medium-scale traveling ionospheric disturbances (MSTIDs) observed over the United States on that night. Thus, the emission depletions over Mexico can be interpreted to be the signature of MSTIDs.

  8. The STP/S3-4 Satellite Experiment: Equatorial F-region Irregularities.

    DTIC Science & Technology

    1981-07-14

    mean i-n mass fluctuations at 5-20 meter resolution. The S3-4 experiment has been discussed by Szuszczewicz et al. (1981). In this paper , we discuss...observations of irregularities in an isolated and decaying plasma bubble", Paper presented at International Symposium on Equatorial Aeronomy, Aguidilla, P.R...backscatter plumes", DNA report, SRI International, (Nov. 1979). 12 Tsunoda, R.T.: M.J. Baron, J. Owen and D.M. Towle , "Altair: An incoherent

  9. Characteristics of the equatorial plasma drifts as obtained by using Canadian Doppler ionosonde over southern tip of India

    NASA Astrophysics Data System (ADS)

    Sripathi, S.; Singh, Ram; Banola, S.; Sreekumar, Sreeba; Emperumal, K.; Selvaraj, C.

    2016-08-01

    We present here characteristics of the Doppler drift measurements over Tirunelveli (8.73°N, 77.70°E; dip 0.5°N), an equatorial site over Southern India using Doppler interferometry technique of Canadian ionosonde. Three-dimensional bulk motions of the scatterers as reflected from the ionosphere are derived by using Doppler interferometry technique at selected frequencies using spaced receivers arranged in magnetic E-W and N-S directions. After having compared with Lowell's digisonde drifts at Trivandrum, we studied the temporal and seasonal variabilities of quiet time drifts for the year 2012. The observations showed higher vertical drifts during post sunset in the equinox followed by winter and summer seasons. The comparison of Doppler vertical drifts with the drifts obtained from (a) virtual height and (b) Fejer drift model suggests that Doppler vertical drifts are relatively higher as compared to the drifts obtained from model and virtual height methods. Further, it is seen that vertical drifts exhibited equinoctial asymmetry in prereversal enhancement quite similar to such asymmetry observed in the spread F in the ionograms and GPS L band scintillations. The zonal drifts, on the other hand, showed westward during daytime with mean drifts of ~150-200 m/s and correlated well with equatorial electrojet strength indicating the role of E region dynamo during daytime, while they are eastward during nighttime with mean drifts of ~100 m/s resembling F region dynamo process. Also, zonal drifts showed large westward prior to the spread F onset during autumn equinox than vernal equinox, suggesting strong zonal shears which might cause equinoctial asymmetry in spread F.

  10. Automatically identification of Equatorial Spread-F occurrence on ionograms

    NASA Astrophysics Data System (ADS)

    Pillat, Valdir Gil; Fagundes, Paulo Roberto; Guimarães, Lamartine Nogueira Frutuoso

    2015-12-01

    F-region large-scale irregularities, also called plasma bubbles, are one of the most interesting equatorial ionospheric phenomena. These irregularities are generated in the equatorial region and afterwards extend to lower latitudes. They are one of the important topics of investigation in equatorial ionosphere electrodynamics and, therefore, are subject to intense theoretical and experimental research. The ionosonde is the most used scientific equipment to study the ionosphere and the F-region. With advancement of digital ionosonde, it is now possible to carry out an ionospheric sounding with a cadence of 5 min or even with 1-minute cadence. To analyse a large amount of ionograms, more sophisticated tools are needed. Thus, development of algorithms to identify and analyse different aspects of ionograms has become very important to space science researchers. Multiple echoes recorded on ionograms are the signature of these irregularities in the ionograms, usually called Spread-F. Spread-F is classified into three types: range, frequency, and mixed. Thus, automatic identification of Spread-F is important in ionospheric studies, because studies usually involve the analysis and interpretation of large numbers of ionograms. The main objective of this paper is to present a new computational tool, based on fuzzy relation, designed to automatically identify the occurrence of Spread-F in ionograms. The test was conducted in ionograms recorded in the Brazilian sector (São José dos Campos (23.2°S, 45.9°W, dip latitude 17.6°S-low latitude) and Palmas (10.2°S, 48.2°W, dip latitude 5.5°S-near the magnetic equatorial)). The automatic identification of Spread-F occurrence was compared with those obtained manually and good agreement was found.

  11. Automatically identification of Equatorial Spread-F occurrence on ionograms

    NASA Astrophysics Data System (ADS)

    Fagundes, P. R.; Pillat, V. G.; Guimarães, L. N. F.

    2015-12-01

    F-region large-scale irregularities, also called plasma bubbles, are one of the most interesting equatorial ionospheric phenomena. These irregularities are generated in the equatorial region and afterwards extend to lower latitudes. They are one of the important topics of investigation in equatorial ionosphere electrodynamics and, therefore, are subject to intense theoretical and experimental research. The ionosonde is the most used scientific equipment to study the ionosphere and the F-region. With advancement of digital ionosonde, it is now possible to carry out an ionospheric sounding with a cadence of 5 minutes or even with 1-minute cadence. To analyse a large amount of ionograms, more sophisticated tools are needed. Thus, development of algorithms to identify and analyse different aspects of ionograms has become very important to space science researchers. Multiple echoes recorded on ionograms are the signature of these irregularities in the ionograms, usually called Spread-F. Spread-F is classified into three types: range, frequency, and mixed. Thus, automatic identification of Spread-F is important in ionospheric studies, because studies usually involve the analysis and interpretation of large numbers of ionograms. The main objective of this paper is to present a new computational tool, based on fuzzy relation, designed to automatically identify the occurrence of Spread-F in ionograms. The test was conducted in ionograms recorded in the Brazilian sector (São José dos Campos (23.2° S, 45.9° W, dip latitude 17.6° S - low latitude) and Palmas (10.2° S, 48.2° W, dip latitude 5.5° S - near the magnetic equatorial)). The automatic identification of Spread-F occurrence was compared with those obtained manually and good agreement was found.

  12. An axisymmetric magnetohydrodynamic model for the Crab pulsar wind bubble

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.; Li, Zhi-Yun

    1992-01-01

    We extend Kennel and Coroniti's (1984) spherical magnetohydrodynamic models for the Crab Nebula to include the pinching effect of the toroidal magnetic field. Since the bulk nebular flow is likely to be very submagnetosonic, a quasi-static treatment is possible. We show that the pinching effect can be responsible for the observed elongation of the pulsar wind bubble, as indicated by the surface brightness contours of optical synchrotron radiation. From the observed elongation we estimate a value for sigma, the ratio of Poynting flux to plasma kinetic energy flux in the free pulsar wind, which is consistent with previous results from spherical models. Using the inferred magnetic field configuration inside the pulsar wind bubble, combined with the observed dimensions of the X-ray nebula, we are able to constrain the particle distribution function. We conclude that, for a power-law injection function, the maximum energy has to be much larger in the pulsar equatorial region than in the polar region.

  13. ESPERIA: an Equatorial Magnetic, Plasma and Particle Mission for Monitoring Perturbations in the Topside Ionosphere and for Defining the Near-Earth Magnetic Environment.

    NASA Astrophysics Data System (ADS)

    Sgrigna, V.; Console, R.; Buzzi, A.; Conti, L.; Galper, A. M.; Malvezzi, V.; Parrot, M.; Picozza, P.; Scrimaglio, R.; Spillantini, P.; Zilpimiani, D.

    2004-05-01

    ESPERIA is an equatorial space mission planned with a LEO small-satellite and a multi-instrument payload. The project has been ideally conceived to define the near-Earth electromagnetic, plasma, and particle environment, both in steady-state and perturbed-state conditions. In recent times has been observed that either Earth's interior processes or near-Earth space phenomena have a privileged and sensitive zone of investigation constituted by the ionosphere-magnetosphere transition region, at altitudes ranging around 500 / 1000 km. In fact, sun and cosmic rays as well as, seismic, anthropogenic and thunderstorm activities, influence the structure and dynamics of the zone. These external and internal contributions play an important role in defining the particle and electromagnetic field character of the region, both in steady-state and perturbed-state conditions. So, a suitable monitoring of the topside ionosphere may give an help in studying many important physical phenomena as pre-earthquake and anthropogenic electromagnetic emissions, solar wind and flares, as well as in mapping the geomagnetic field. Concerning the Earth's magnetic field mapping, ESPERIA can be seen as an equatorial coordinated and simultaneous complement to polar missions, like SWARM. The first step in realizing the project was an opportunity given by the Italian Space Agency (ASI) for a Phase A Study, concerned with detecting any tectonic and preseismic related signals, and studying seismo-associated perturbations and instabilities in the topside ionosphere. The study has been performed by an International Consortium lead by the University Roma Tre, and the ESPERIA Phase A report is now available. The ASI constrains restricted the scientific objectives of the above-mentioned ideally conceived project, but recent contacts with other missions and science teams give indications to reconcile the project to its original aims.

  14. Development of a passive VHF radar system using software-defined radio for equatorial plasma instability studies

    NASA Astrophysics Data System (ADS)

    Tuysuz, B.; Urbina, J.; Lind, F. D.

    2013-07-01

    In this paper, a bistatic passive radar receiver system named "Coherent-scatter Atmospheric Passive Radar Imager (CAPRI)" is described. It is primarily designed to study the dynamics of the upper atmosphere by utilizing "transmitters of opportunity" as the RF target illuminators. CAPRI is constructed using the open source software-defined radio toolkit, GNU Radio, to meet the signal processing requirements in combination with the open source hardware, Universal Software Radio Peripheral 2, for data acquisition. The resultant system is highly flexible, and we present the details of the design as well as a performance analysis. CAPRI will be deployed in Peru, near the magnetic equator, for long-term operations in the area. FM stations near Lima, Peru, will be utilized with the targets of interest being the equatorial electrojet and the spread F. The results will then be compared to the Jicamarca Unattended Long-term investigations of the Ionosphere and Atmosphere (JULIA) radar data, and CAPRI will be used to improve the simultaneous time and spatial coverage in the region in a more cost-effective manner.

  15. Solar wind, F10.7, and geomagnetic activity relationship to the equatorial plasma mass density at geosynchronous orbit

    NASA Astrophysics Data System (ADS)

    Veibell, V.; Weigel, R. S.; Denton, R. E.

    2016-12-01

    We consider two types of events, identified by decreases in Dst below a threshold value and increases in the equatorial mass density at geosynchronous altitudes, ρeq, above a threshold value using the Takahashi et al. (2010) data set. From the Dst events and 1 day averages, we find that there is a statistically weak and small-amplitude difference between ρeq on the day of the event and the days before and after. When hourly averages are considered, a significant peak is found to occur 6 h after event onset, and the primary factor that determines the postonset peak amplitude in ρeq is elevated F10.7. In addition, for hourly averages, ρeq following the onset of a Dst event depends on the north-south component of the interplanetary magnetic field, Bz, after the time of onset, with higher average Bz 4 h after the event onset corresponding to larger ρeq values 7-11 h after onset. From the ρeq events, we find a weak dependence on Bz after the onset of an event, with higher average Bz 4 h after the event onset corresponding to larger ρeq values 24-36 h after onset.

  16. Vertical neutral wind in the equatorial F-region deduced from electric field and ion density measurements

    NASA Technical Reports Server (NTRS)

    Laakso, Harri; Aggson, Thomas L.; Herrero, F. A.; Pfaff, Robert F.; Hanson, William B.

    1995-01-01

    Direct current (DC) electric field and ion density measurements near density depletion regions (that is, equatorial plasma bubbles) are used to estimate the vertical neutral wind speed. The measured zonal electric field in a series of density depletions crossed by the San Marco D satellite at 01.47-01.52 Universal Time (UT) on 25 October 1988, can be explained if a downward neutral wind of 15-30 m/s exists. Simultaneously, the F-region plasma was moving downward at a speed of 30-50 m/s. These events appear in the local time sector of 23.00-23.15 in which strong downward neutral winds may occur. Indeed, airglow measurements suggest that downward neutral velocities of 25-50 m/s are possible at time near midnight in the equatorial F-region.

  17. Equatorial spread F initiation and growth from satellite traces as revealed from conjugate point observations in Brazil

    NASA Astrophysics Data System (ADS)

    Abdu, M. A.; Kherani, E. A.; Batista, I. S.; Reinisch, B. W.; Sobral, J. H. A.

    2014-01-01

    better understanding of the precursor conditions for the instability growth is very important for identifying the causes of day-to-day variability in the equatorial spread F (ESF)/plasma bubble irregularity development. We investigate here the satellite trace (S-trace) in the ionograms, a precursor to the postsunset ESF occurrence, as observed by Digisondes operated at an equatorial and two magnetic conjugate sites in Brazil during a 66 day observational campaign (Conjugate Point Equatorial Experiment 2002). The satellite traces first occur at the equatorial site, and sequentially, after a variable delay of approximately 20 to 50 min, they are observed nearly simultaneously over the two conjugate sites. The evening prereversal enhancement in the zonal electric field/vertical drift is found to control its development. Using a three-dimensional simulation code based on collisional interchange instability mechanism, it is shown that the observed S-trace occurrence sequence is fully consistent with the instability initiation over the equator with the field-aligned plasma depletion vertical growth marked by latitudinal expansion of its extremities to conjugate locations. The delay in the S-trace occurrence at the conjugate sites (a measure of the nonlinear growth of the instability for plasma depletion) is controlled also by field line parallel (meridional) neutral wind. The relationship between the S-trace and the large-scale wave structure in the F layer, another widely known characterization of the precursor condition for the ESF development, is also clarified.

  18. GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma

    NASA Astrophysics Data System (ADS)

    Lécz, Zs.; Konoplev, I. V.; Seryi, A.; Andreev, A.

    2016-10-01

    This paper proposes a novel and effective method for generating GigaGauss level, solenoidal quasi-static magnetic fields in under-dense plasma using screw-shaped high intensity laser pulses. This method produces large solenoidal fields that move with the driving laser pulse and are collinear with the accelerated electrons. This is in contrast with already known techniques which rely on interactions with over-dense or solid targets and generates radial or toroidal magnetic field localized at the stationary target. The solenoidal field is quasi-stationary in the reference frame of the laser pulse and can be used for guiding electron beams. It can also provide synchrotron radiation beam emittance cooling for laser-plasma accelerated electron and positron beams, opening up novel opportunities for designs of the light sources, free electron lasers, and high energy colliders based on laser plasma acceleration.

  19. GigaGauss solenoidal magnetic field inside bubbles excited in under-dense plasma

    PubMed Central

    Lécz, Zs.; Konoplev, I. V.; Seryi, A.; Andreev, A.

    2016-01-01

    This paper proposes a novel and effective method for generating GigaGauss level, solenoidal quasi-static magnetic fields in under-dense plasma using screw-shaped high intensity laser pulses. This method produces large solenoidal fields that move with the driving laser pulse and are collinear with the accelerated electrons. This is in contrast with already known techniques which rely on interactions with over-dense or solid targets and generates radial or toroidal magnetic field localized at the stationary target. The solenoidal field is quasi-stationary in the reference frame of the laser pulse and can be used for guiding electron beams. It can also provide synchrotron radiation beam emittance cooling for laser-plasma accelerated electron and positron beams, opening up novel opportunities for designs of the light sources, free electron lasers, and high energy colliders based on laser plasma acceleration. PMID:27796327

  20. Global characteristics of the cold plasma in the equatorial plasmapause region as deduced from the geos 1 mutual impedance probe

    SciTech Connect

    Decreu, P.M.E.; Beghin, C.; Parrot, M.

    1982-02-01

    Thermal plasma parameters derived by the muntal impedance experiment on GEOS are described. The experiment is well suited to the measurement of the electron density and temperature of the outer plasmasphere (when kT/sub e//N/sub e/<1.6 eV/cm/sup 3/). This investigation of the whole set of data supplied by GEOS 1 (4plasma trough. In the plasmasphere, we observe profiles with N/sub e/proportionalL/sup -4/, while T/sub e/ stands around 10,000 /sup 0/K or less. The intermediate region, situated next to the plasmasphere and above it, is always present in the day sector, where the ionospheric source plays a leading part. In that zone, the plasma parameters, poorly known up to now, exhibit N/sub e/ values approx.2 to 20 cm/sup -3/, together with T/sub e/ values of 20,000 /sup 0/K on the average, dispersed over a 5,000 to 100,000 /sup 0/K range during disturbances. In the night sector, the intermediate region is seen only during the recovery phase. The region of depleted density is observed at the higher L values in the night and morning MTL sectors. There, plasmas out of Maxwellian equilibrium are seen under disturbed conditions. The dynamic response of the thermal plasma parameters to temporal variations of the a/sub m/ index of magnetic activity follows a known scenario as concerns N/sub e/, making apparent a night-to-day, MTL dependent time delay. As concerns T/sub e/, the dynamical study reveals striking features, such as the persistance of the T/sub e/ modifications into the dusk sector, the interpretation of which remains to be clarified.

  1. Responses in the polar and equatorial ionosphere to the March 2015 St. Patrick Day storm

    NASA Astrophysics Data System (ADS)

    Hairston, Marc; Coley, W. R.; Stoneback, Russell

    2016-11-01

    The St. Patrick Day storm of 2015 (17 March 2015) occurred at a unique time when there were multiple spacecraft observing the Earth's ionosphere between 350 and 885 km. Observations of the plasma flows and densities from the five operational polar-orbiting DMSP spacecraft combined with those from the equatorial-orbiting C/NOFS spacecraft provided a comprehensive global record of the both the polar and equatorial ionosphere regions' responses to the storm. This paper presents an overview of the data from this suite of spacecraft focusing on the following aspects: (1) the polar cap ionosphere's reaction to the storm, (2) the change in the penetration electric field in the midlatitude region as a function of time and the solar local time during the storm, (3) the equatorial ionosphere's response of the meridional (vertical) flows to the penetration electric field and the disturbance dynamo during the storm, and (4) the creation of a predawn ionospheric bubble system near the equator during the storm's main phase that was observed at low altitudes by C/NOFS and later at high altitudes by several DMSP. Examining these phenomenon enable us to trace the dynamic flow of energy from the solar wind input in the polar ionosphere all the way to the equatorial ionosphere.

  2. Vapor Bubbles

    NASA Astrophysics Data System (ADS)

    Prosperetti, Andrea

    2017-01-01

    This article reviews the fundamental physics of vapor bubbles in liquids. Work on bubble growth and condensation for stationary and translating bubbles is summarized and the differences with bubbles containing a permanent gas stressed. In particular, it is shown that the natural frequency of a vapor bubble is proportional not to the inverse radius, as for a gas bubble, but to the inverse radius raised to the power 2/3. Permanent gas dissolved in the liquid diffuses into the bubble with strong effects on its dynamics. The effects of the diffusion of heat and mass on the propagation of pressure waves in a vaporous bubbly liquid are discussed. Other topics briefly touched on include thermocapillary flow, plasmonic nanobubbles, and vapor bubbles in an immiscible liquid.

  3. Synchronised electrical monitoring and high speed video of bubble growth associated with individual discharges during plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Troughton, S. C.; Nominé, A.; Nominé, A. V.; Henrion, G.; Clyne, T. W.

    2015-12-01

    Synchronised electrical current and high speed video information are presented from individual discharges on Al substrates during PEO processing. Exposure time was 8 μs and linear spatial resolution 9 μm. Image sequences were captured for periods of 2 s, during which the sample surface was illuminated with short duration flashes (revealing bubbles formed where the discharge reached the surface of the coating). Correlations were thus established between discharge current, light emission from the discharge channel and (externally-illuminated) dimensions of the bubble as it expanded and contracted. Bubbles reached radii of 500 μm, within periods of 100 μs, with peak growth velocity about 10 m/s. It is deduced that bubble growth occurs as a consequence of the progressive volatilisation of water (electrolyte), without substantial increases in either pressure or temperature within the bubble. Current continues to flow through the discharge as the bubble expands, and this growth (and the related increase in electrical resistance) is thought to be responsible for the current being cut off (soon after the point of maximum radius). A semi-quantitative audit is presented of the transformations between different forms of energy that take place during the lifetime of a discharge.

  4. Doughnut-shaped soap bubbles

    NASA Astrophysics Data System (ADS)

    Préve, Deison; Saa, Alberto

    2015-10-01

    Soap bubbles are thin liquid films enclosing a fixed volume of air. Since the surface tension is typically assumed to be the only factor responsible for conforming the soap bubble shape, the realized bubble surfaces are always minimal area ones. Here, we consider the problem of finding the axisymmetric minimal area surface enclosing a fixed volume V and with a fixed equatorial perimeter L . It is well known that the sphere is the solution for V =L3/6 π2 , and this is indeed the case of a free soap bubble, for instance. Surprisingly, we show that for V <α L3/6 π2 , with α ≈0.21 , such a surface cannot be the usual lens-shaped surface formed by the juxtaposition of two spherical caps, but is rather a toroidal surface. Practically, a doughnut-shaped bubble is known to be ultimately unstable and, hence, it will eventually lose its axisymmetry by breaking apart in smaller bubbles. Indisputably, however, the topological transition from spherical to toroidal surfaces is mandatory here for obtaining the global solution for this axisymmetric isoperimetric problem. Our result suggests that deformed bubbles with V <α L3/6 π2 cannot be stable and should not exist in foams, for instance.

  5. Bubble and bubble cloud dynamics

    NASA Astrophysics Data System (ADS)

    Matsumoto, Yoichiro

    2000-07-01

    Cavitation bubbles are formed from small air bubbles, so-called nuclei, with the surrounding pressure reduction caused by the flow, and then, the bubbles shrink and collapse with the surrounding pressure rise. Such volumetric changes of bubbles are calculated in detail and it is found that they are significantly influenced by the internal phenomena, such as thermal diffusion, mist formation due to a homogeneous condensation, mass diffusion between vapor and noncondensable gas, heat and mass transfer through the bubble wall. The structure in cavitating flow interacts with the cavitation bubbles, and those bubbles form a cloud cavitation. It is well known that cloud cavitation is one of the most destructive forms. The behavior of bubble clouds is simulated numerically. An inward propagating shock wave is formed during the collapse of the bubble cloud, and the shock wave and its precursor are focused at the cloud center area. These phenomena associate high frequency pressure oscillations and violent bubble collapses. Those bubble collapses emit high pressure peaks, which are several hundreds times larger than that of a single bubble collapse.

  6. Equatorial MU Radar project

    NASA Astrophysics Data System (ADS)

    Yamamoto, Mamoru; Hashiguchi, H.; Tsuda, Toshitaka; Yamamoto, Masayuki

    Research Institute for Sustainable Humanosphere, Kyoto University (RISH) has been studying the atmosphere by using radars. The first big facility was the MU (Middle and Upper atmosphere) radar installed in Shiga, Japan in 1984. This is one of the most powerful and multi-functional radar, and is successful of revealing importance of atmospheric waves for the dynamical vertical coupling processes. The next big radar was the Equatorial Atmosphere Radar (EAR) installed at Kototabang, West Sumatra, Indonesia in 2001. The EAR was operated under close collaboration with LAPAN (Indonesia National Institute for Aeronautics and Space), and conducted the long-term continuous observations of the equatorial atmosphere/ionosphere for more than 10 years. The MU radar and the EAR are both utilized for inter-university and international collaborative research program for long time. National Institute for Polar Research (NIPR) joined EISCAT Scientific Association together with Nagoya University, and developed the PANSY radar at Syowa base in Antarctica as a joint project with University of Tokyo. These are the efforts of radar study of the atmosphere/ionosphere in the polar region. Now we can find that Japan holds a global network of big atmospheric/ionospheric radars. The EAR has the limitation of lower sensitivity compared with the other big radars shown above. RISH now proposes a plan of Equatorial MU Radar (EMU) that is to establish the MU-radar class radar next to the EAR. The EMU will have an active phased array antenna with the 163m diameter and 1055 cross-element Yagis. Total output power of the EMU will be more than 500kW. The EMU can detect turbulent echoes from the mesosphere (60-80km). In the ionosphere incoherent-scatter observations of plasma density, drift, and temperature would be possible. Multi-channel receivers will realize radar-imaging observations. The EMU is one of the key facilities in the project "Study of coupling processes in the solar-terrestrial system

  7. Single-Bubble and Multibubble Sonoluminescence

    NASA Astrophysics Data System (ADS)

    Yasui, Kyuichi

    1999-11-01

    Computer simulations of radiation processes in an air bubble and an argon bubble are performed under a condition of single-bubble sonoluminescence (SBSL) based on a quasiadiabatic compression model of a bubble collapse. It is clarified that emissions from excited molecules are strongly quenched by high pressure and temperature inside a SBSL bubble and SBSL originates in the emissions from plasma. It is pointed out that sonoluminescence from cavitation fields (MBSL) originates in emissions from excited molecules, which is not quenched due to the much lower pressure and temperature inside the MBSL bubbles.

  8. Bubble Combustion

    NASA Technical Reports Server (NTRS)

    Corrigan, Jackie

    2004-01-01

    A method of energy production that is capable of low pollutant emissions is fundamental to one of the four pillars of NASA s Aeronautics Blueprint: Revolutionary Vehicles. Bubble combustion, a new engine technology currently being developed at Glenn Research Center promises to provide low emissions combustion in support of NASA s vision under the Emissions Element because it generates power, while minimizing the production of carbon dioxide (CO2) and nitrous oxides (NOx), both known to be Greenhouse gases. and allows the use of alternative fuels such as corn oil, low-grade fuels, and even used motor oil. Bubble combustion is analogous to the inverse of spray combustion: the difference between bubble and spray combustion is that spray combustion is spraying a liquid in to a gas to form droplets, whereas bubble combustion involves injecting a gas into a liquid to form gaseous bubbles. In bubble combustion, the process for the ignition of the bubbles takes place on a time scale of less than a nanosecond and begins with acoustic waves perturbing each bubble. This perturbation causes the local pressure to drop below the vapor pressure of the liquid thus producing cavitation in which the bubble diameter grows, and upon reversal of the oscillating pressure field, the bubble then collapses rapidly with the aid of the high surface tension forces acting on the wall of the bubble. The rapid and violent collapse causes the temperatures inside the bubbles to soar as a result of adiabatic heating. As the temperatures rise, the gaseous contents of the bubble ignite with the bubble itself serving as its own combustion chamber. After ignition, this is the time in the bubble s life cycle where power is generated, and CO2, and NOx among other species, are produced. However, the pollutants CO2 and NOx are absorbed into the surrounding liquid. The importance of bubble combustion is that it generates power using a simple and compact device. We conducted a parametric study using CAVCHEM

  9. Precursor wave structure, prereversal vertical drift, and their relative roles in the development of post sunset equatorial spread-F

    NASA Astrophysics Data System (ADS)

    Abdu, Mangalathayil; Sobral, José; alam Kherani, Esfhan; Batista, Inez S.; Souza, Jonas

    2016-07-01

    The characteristics of large-scale wave structure in the equatorial bottomside F region that are present during daytime as precursor to post sunset development of the spread F/plasma bubble irregularities are investigated in this paper. Digisonde data from three equatorial sites in Brazil (Fortaleza, Sao Luis and Cachimbo) for a period of few months at low to medium/high solar activity phases are analyzed. Small amplitude oscillations in the F layer true heights, representing wave structure in polarization electric field, are identified as upward propagating gravity waves having zonal scale of a few hundred kilometers. Their amplitudes undergo amplification towards sunset, and depending on the amplitude of the prereversal vertical drift (PRE) they may lead to post sunset generation of ESF/plasma bubble irregularities. On days of their larger amplitudes they appear to occur in phase coherence on all days, and correspondingly the PRE vertical drift velocities are larger than on days of the smaller amplitudes of the wave structure that appear at random phase on the different days. The sustenance of these precursor waves structures is supported by the relatively large ratio (approaching unity) of the F region-to- total field line integrated Pedersen conductivities as calculated using the SUPIM simulation of the low latitude ionosphere. This study examines the role of the wave structure relative to that of the prereversal vertical drift in the post sunset spread F irregularity development.

  10. Sinking Bubbles

    NASA Astrophysics Data System (ADS)

    Koch, Jeremy; Ewoldt, Randy

    2016-11-01

    Intuition tells us that bubbles will rise and steel objects will sink in liquids, though here we describe the opposite. With experimental demonstration and theoretical rationale, we describe how the motion of containers of liquid with immersed solid objects and air bubbles can cause curious behaviors: sinking bubbles and rising high-density particles. Bubbles and solid spheres of diameter on the order of a few millimeters are introduced into fluids with different rheological constitutive behaviors. Imposed motion of the rigid container allows for control of the trajectories of the immersed particles - without the container imparting direct shearing motion on the fluid. Results demonstrate the necessary conditions to prevent or produce net motion of the bubbles and heavy particles, both with and against gravitational expectations.

  11. Bubble, Bubble, Toil and Trouble.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 2001

    2001-01-01

    Bubbles are a fun way to introduce the concepts of surface tension, intermolecular forces, and the use of surfactants. Presents two activities in which students add chemicals to liquid dishwashing detergent with water in order to create longer lasting bubbles. (ASK)

  12. Spread F - an old equatorial aeronomy problem finally resolved?

    NASA Astrophysics Data System (ADS)

    Woodman, R. F.

    2009-05-01

    One of the oldest scientific topics in Equatorial Aeronomy is related to Spread-F. It includes all our efforts to understand the physical mechanisms responsible for the existence of ionospheric F-region irregularities, the spread of the traces in a night-time equatorial ionogram - hence its name - and all other manifestations of the same. It was observed for the first time as an abnormal ionogram in Huancayo, about 70 years ago. But only recently are we coming to understand the physical mechanisms responsible for its occurrence and its capricious day to day variability. Several additional techniques have been used to reveal the spatial and temporal characteristics of the F-region irregularities responsible for the phenomenon. Among them we have, in chronological order, radio star scintillations, trans-equatorial radio propagation, satellite scintillations, radar backscatter, satellite and rocket in situ measurements, airglow, total electron content techniques using the propagation of satellite radio signals and, recently, radar imaging techniques. Theoretical efforts are as old as the observations. Nevertheless, 32 years after their discovery, Jicamarca radar observations showed that none of the theories that had been put forward could explain them completely. The observations showed that irregularities were detected at altitudes that were stable according to the mechanisms proposed. A breakthrough came a few years later, again from Jicamarca, by showing that some of the "stable" regions had become unstable by the non-linear propagation of the irregularities from the unstable to the stable region of the ionosphere in the form of bubbles of low density plasma. A problem remained, however; the primary instability mechanism proposed, an extended (generalized) Rayleigh-Taylor instability, was too slow to explain the rapid development seen by the observations. Gravity waves in the neutral background have been proposed as a seeding mechanism to form irregularities from

  13. Bubble diagnostics

    DOEpatents

    Visuri, Steven R.; Mammini, Beth M.; Da Silva, Luiz B.; Celliers, Peter M.

    2003-01-01

    The present invention is intended as a means of diagnosing the presence of a gas bubble and incorporating the information into a feedback system for opto-acoustic thrombolysis. In opto-acoustic thrombolysis, pulsed laser radiation at ultrasonic frequencies is delivered intraluminally down an optical fiber and directed toward a thrombus or otherwise occluded vessel. Dissolution of the occlusion is therefore mediated through ultrasonic action of propagating pressure or shock waves. A vapor bubble in the fluid surrounding the occlusion may form as a result of laser irradiation. This vapor bubble may be used to directly disrupt the occlusion or as a means of producing a pressure wave. It is desirable to detect the formation and follow the lifetime of the vapor bubble. Knowledge of the bubble formation and lifetime yields critical information as to the maximum size of the bubble, density of the absorbed radiation, and properties of the absorbing material. This information can then be used in a feedback system to alter the irradiation conditions.

  14. Pump-probe imaging of nanosecond laser-induced bubbles in distilled water solutions: Observations of laser-produced-plasma

    NASA Astrophysics Data System (ADS)

    Evans, R.; Camacho-López, S.

    2010-11-01

    This article presents the analysis of the laser-produced-plasma (LPP) formed by the focusing of a 9 ns laser pulse, λ =532 nm, with a NA=0.6 aspherical lens using energies between 100-1500 μJ, into distilled water with varying solutions of table salt. Observations of the filamentation plasma were made, which are explained by self-focusing of the laser pulse by the LPP through ponderomotive cavitation of the electron plasma in the center of the beam. The filamentation of the beam through a low density plasma wave guide explains why the transmission of the pump laser through the interaction region was notably higher on previous experiments that we performed [R. Evans et al., Opt. Express 16, 7481 (2008)], than a very similar set of experiments performed by Noack and Vogel [IEEE J. Quantum Electron. 35, 1156 (1999)].

  15. Pump-probe imaging of nanosecond laser-induced bubbles in distilled water solutions: Observations of laser-produced-plasma

    SciTech Connect

    Evans, R.; Camacho-Lopez, S.

    2010-11-15

    This article presents the analysis of the laser-produced-plasma (LPP) formed by the focusing of a 9 ns laser pulse, {lambda}=532 nm, with a NA=0.6 aspherical lens using energies between 100-1500 {mu}J, into distilled water with varying solutions of table salt. Observations of the filamentation plasma were made, which are explained by self-focusing of the laser pulse by the LPP through ponderomotive cavitation of the electron plasma in the center of the beam. The filamentation of the beam through a low density plasma wave guide explains why the transmission of the pump laser through the interaction region was notably higher on previous experiments that we performed [R. Evans et al., Opt. Express 16, 7481 (2008)], than a very similar set of experiments performed by Noack and Vogel [IEEE J. Quantum Electron. 35, 1156 (1999)].

  16. Duskside enhancement of equatorial zonal electric field response to convection electric fields during the St. Patrick's Day storm on 17 March 2015

    NASA Astrophysics Data System (ADS)

    Tulasi Ram, S.; Yokoyama, T.; Otsuka, Y.; Shiokawa, K.; Sripathi, S.; Veenadhari, B.; Heelis, R.; Ajith, K. K.; Gowtam, V. S.; Gurubaran, S.; Supnithi, P.; Le Huy, M.

    2016-01-01

    The equatorial zonal electric field responses to prompt penetration of eastward convection electric fields (PPEF) were compared at closely spaced longitudinal intervals at dusk to premidnight sectors during the intense geomagnetic storm of 17 March 2015. At dusk sector (Indian longitudes), a rapid uplift of equatorial F layer to >550 km and development of intense equatorial plasma bubbles (EPBs) were observed. These EPBs were found to extend up to 27.13°N and 25.98°S magnetic dip latitudes indicating their altitude development to ~1670 km at apex. In contrast, at few degrees east in the premidnight sector (Thailand-Indonesian longitudes), no significant height rise and/or EPB activity has been observed. The eastward electric field perturbations due to PPEF are greatly dominated at dusk sector despite the existence of background westward ionospheric disturbance dynamo (IDD) fields, whereas they were mostly counter balanced by the IDD fields in the premidnight sector. In situ observations from SWARM-A and SWARM-C and Communication/Navigation Outage Forecasting System satellites detected a large plasma density depletion near Indian equatorial region due to large electrodynamic uplift of F layer to higher than satellite altitudes. Further, this large uplift is found to confine to a narrow longitudinal sector centered on sunset terminator. This study brings out the significantly enhanced equatorial zonal electric field in response to PPEF that is uniquely confined to dusk sector. The responsible mechanisms are discussed in terms of unique electrodynamic conditions prevailing at dusk sector in the presence of convection electric fields associated with the onset of a substorm under southward interplanetary magnetic field Bz.

  17. Primordial Bubbles within Primordial Bubbles

    NASA Astrophysics Data System (ADS)

    Occhionero, Franco; Amendola, Luca; Corasaniti, Pier Stefano

    The nucleation of primordial bubbles during an inflationary phase transition has been suggested to promote the formation of structure either above or below the horizon, depending on whether the nucleation occurs more or less than 60 e-folds before the end of inflation. Here we propose a mechanism which has both features and produces subhorizon cavities up to hundreds of h-1 Mpc -- where excess power is observed -- inside superhorizon bubbles, i.e. in open universes. For this purpose we build a new inflationary two-field model with two vacuum channels in the potential surface: by modulating the energy difference between these channels, episodes of back and forth transition occur in sequence during inflation. Thus, one physical process may i) reconcile inflation with openness and ii) seed a distribution of observable voids. Bubble spectra are given in terms of phenomenological parameters which in turn are functions of microscopic physical parameters. In principle large scale structure constrains fundamental physics: for example, to account for power at scales of hundreds of h-1 Mpc the singularity in the Euclidean action -- which separates the first from the second phase transition -- must be mild enough. The smoking gun of the process might be the imprint of non-Gaussian, ring-like signals on the microwave background at l > 1000 by the subhorizon bubbles. On the other end of the spectrum, the contribution to l =1,2 from the off-centerness of the observer in the open bubble, is being evaluated.

  18. Electromagnetic and Stress Analyses of the ITER Equatorial Thermal Shield

    NASA Astrophysics Data System (ADS)

    Lei, Mingzhun; Song, Yuntao; Wang, Songke; Wang, Xianwei

    2013-08-01

    The ITER equatorial thermal shield is located inside the cryostat and outside the vacuum vessel, and its purpose is to provide a thermal shield from hot components to the superconducting magnets. Electromagnetic analysis of the equatorial thermal shield was performed using the ANSYS code, because electromagnetic load was one of the main loads. The 40° sector finite element model was established including the vacuum vessel, equatorial thermal shield, and superconducting magnets. The main purpose of this analysis was to investigate the eddy current and electromagnetic force in the equatorial thermal shield during plasma disruption. Stress analysis was implemented under the electromagnetic load. The results show that the equatorial thermal shield can accommodate the calculated electromagnetic loads.

  19. Leverage bubble

    NASA Astrophysics Data System (ADS)

    Yan, Wanfeng; Woodard, Ryan; Sornette, Didier

    2012-01-01

    Leverage is strongly related to liquidity in a market and lack of liquidity is considered a cause and/or consequence of the recent financial crisis. A repurchase agreement is a financial instrument where a security is sold simultaneously with an agreement to buy it back at a later date. Repurchase agreement (repo) market size is a very important element in calculating the overall leverage in a financial market. Therefore, studying the behavior of repo market size can help to understand a process that can contribute to the birth of a financial crisis. We hypothesize that herding behavior among large investors led to massive over-leveraging through the use of repos, resulting in a bubble (built up over the previous years) and subsequent crash in this market in early 2008. We use the Johansen-Ledoit-Sornette (JLS) model of rational expectation bubbles and behavioral finance to study the dynamics of the repo market that led to the crash. The JLS model qualifies a bubble by the presence of characteristic patterns in the price dynamics, called log-periodic power law (LPPL) behavior. We show that there was significant LPPL behavior in the market before that crash and that the predicted range of times predicted by the model for the end of the bubble is consistent with the observations.

  20. Tiny Bubbles.

    ERIC Educational Resources Information Center

    Kim, Hy

    1985-01-01

    A simple oxygen-collecting device (easily constructed from glass jars and a lid) can show bubbles released by water plants during photosynthesis. Suggestions are given for: (1) testing the collected gas; (2) using various carbon dioxide sources; and (3) measuring respiration. (DH)

  1. Bubble Drag Reduction Requires Large Bubbles

    NASA Astrophysics Data System (ADS)

    Verschoof, Ruben A.; van der Veen, Roeland C. A.; Sun, Chao; Lohse, Detlef

    2016-09-01

    In the maritime industry, the injection of air bubbles into the turbulent boundary layer under the ship hull is seen as one of the most promising techniques to reduce the overall fuel consumption. However, the exact mechanism behind bubble drag reduction is unknown. Here we show that bubble drag reduction in turbulent flow dramatically depends on the bubble size. By adding minute concentrations (6 ppm) of the surfactant Triton X-100 into otherwise completely unchanged strongly turbulent Taylor-Couette flow containing bubbles, we dramatically reduce the drag reduction from more than 40% to about 4%, corresponding to the trivial effect of the bubbles on the density and viscosity of the liquid. The reason for this striking behavior is that the addition of surfactants prevents bubble coalescence, leading to much smaller bubbles. Our result demonstrates that bubble deformability is crucial for bubble drag reduction in turbulent flow and opens the door for an optimization of the process.

  2. Structuring of intermediate scale equatorial spread F irregularities during intense geomagnetic storm of solar cycle 24

    NASA Astrophysics Data System (ADS)

    Kakad, B.; Gurram, P.; Tripura Sundari, P. N. B.; Bhattacharyya, A.

    2016-07-01

    Here we examine the structuring of equatorial plasma bubble (EPB) during intense geomagnetic storm of solar cycle (SC) 24 that occurred on 17 March 2015 using spaced receiver scintillation observations on a 251 MHz radio signal, recorded by a network of stations in Indian region. As yet, this is the strongest geomagnetic storm (Dstmin˜-223nT) that occurred in present SC. Present study reveals that the structuring of equatorial spread F (ESF) irregularities was significantly different on 17 March as compared to quiet days of corresponding month. ESF irregularities of intermediate scale (100 m to few kilometers) are observed at unusually higher altitudes (≥ 800 km) covering wider longitudinal-latitudinal belt over Indian region. A presence of large-scale irregularity structures with stronger ΔN at raised F peak with small-scale irregularities at even higher altitudes is observed. It caused strong focusing effect (S4>1) that prevails throughout premidnight hours at dip equatorial station Tirunelveli. Other observational aspect is that zonal irregularity drifts over low-latitude station Kolhapur exhibited a large deviation of ˜230 m/s from their average quiet time pattern. During this geomagnetic storm, two southward turnings of significant strength (BZ≤-15 nT) occurred at 11.4 IST (Indian standard time) and 17.9 IST. The later southward turning of interplanetary magnetic field (IMF)BZ resulted in a large eastward prompt penetration electric field (PPEF) close to sunset hours in Indian longitude. Estimates of PPEF obtained from real-time ionospheric model are too low to explain the observed large upliftment of F region in the post sunset hours. Possible reason for observed enhanced PPEF-linked effects is discussed.

  3. Study of equatorial scintillations

    NASA Technical Reports Server (NTRS)

    Pomalaza, J.; Woodman, R.; Tisnado, G.; Nakasone, E.

    1972-01-01

    Observations of the amplitude scintillations produced by the F-region in equatorial areas are presented. The equipment used for conducting the observations is described. The use of transmissions from the ATS-1, ATS-3, and ATS-5 for obtaining data is described. The two principal subjects discussed are: (1) correlation between satellite and incoherent radar observations of scintillations and (2) simultaneous observations of scintillations at 136 MHz and 1550 MHz.

  4. Bubbling orientifolds

    NASA Astrophysics Data System (ADS)

    Mukhi, Sunil; Smedbäck, Mikael

    2005-08-01

    We investigate a class of 1/2-BPS bubbling geometries associated to orientifolds of type-IIB string theory and thereby to excited states of the SO(N)/Sp(N) Script N = 4 supersymmetric Yang-Mills theory. The geometries are in correspondence with free fermions moving in a harmonic oscillator potential on the half-line. Branes wrapped on torsion cycles of these geometries are identified in the fermi fluid description. Besides being of intrinsic interest, these solutions may also occur as local geometries in flux compactifications where orientifold planes are present to ensure global charge cancellation. We comment on the extension of this procedure to M-theory orientifolds.

  5. Magnetic Dipole Inflation with Cascaded ARC and Applications to Mini-Magnetospheric Plasma Propulsion

    NASA Technical Reports Server (NTRS)

    Giersch, L.; Winglee, R.; Slough, J.; Ziemba, T.; Euripides, P.

    2003-01-01

    Mini-Magnetospheric Plasma Propulsion (M2P2) seeks to create a plasma-inflated magnetic bubble capable of intercepting significant thrust from the solar wind for the purposes of high speed, high efficiency spacecraft propulsion. Previous laboratory experiments into the M2P2 concept have primarily used helicon plasma sources to inflate the dipole magnetic field. The work presented here uses an alternative plasma source, the cascaded arc, in a geometry similar to that used in previous helicon experiments. Time resolved measurements of the equatorial plasma density have been conducted and the results are discussed. The equatorial plasma density transitions from an initially asymmetric configuration early in the shot to a quasisymmetric configuration during plasma production, and then returns to an asymmetric configuration when the source is shut off. The exact reasons for these changes in configuration are unknown, but convection of the loaded flux tube is suspected. The diffusion time was found to be an order of magnitude longer than the Bohm diffusion time for the period of time after the plasma source was shut off. The data collected indicate the plasma has an electron temperature of approximately 11 eV, an order of magnitude hotter than plasmas generated by cascaded arcs operating under different conditions. In addition, indirect evidence suggests that the plasma has a beta of order unity in the source region.

  6. Effects of the intense geomagnetic storm of September-October 2012 on the equatorial, low- and mid-latitude F region in the American and African sector during the unusual 24th solar cycle

    NASA Astrophysics Data System (ADS)

    de Jesus, R.; Fagundes, P. R.; Coster, A.; Bolaji, O. S.; Sobral, J. H. A.; Batista, I. S.; de Abreu, A. J.; Venkatesh, K.; Gende, M.; Abalde, J. R.; Sumod, S. G.

    2016-02-01

    The main purpose of this paper is to investigate the response of the ionospheric F layer in the American and African sectors during the intense geomagnetic storm which occurred on 30 September-01 October 2012. In this work, we used observations from a chain of 20 GPS stations in the equatorial, low- and mid-latitude regions in the American and African sectors. Also, in this study ionospheric sounding data obtained during 29th September to 2nd October, 2012 at Jicamarca (JIC), Peru, São Luis (SL), Fortaleza (FZ), Brazil, and Port Stanley (PST), are presented. On the night of 30 September-01 October, in the main and recovery phase, the h´F variations showed an unusual uplifting of the F region at equatorial (JIC, SL and FZ) and mid- (PST) latitude stations related with the propagations of traveling ionospheric disturbances (TIDs) generated by Joule heating at auroral regions. On 30 September, the VTEC variations and foF2 observations at mid-latitude stations (American sector) showed a long-duration positive ionospheric storm (over 6 h of enhancement) associated with large-scale wind circulations and equatorward neutral winds. Also, on 01 October, a long-duration positive ionospheric storm was observed at equatorial, low- and mid- latitude stations in the African sector, related with the large-scale wind circulations and equatorward neutral winds. On 01 and 02 October, positive ionospheric storms were observed at equatorial, low- and mid-latitude stations in the American sector, possibly associated with the TIDs and an equatorward neutral wind. Also, on 01 October negative ionospheric storms were observed at equatorial, low- and mid-latitude regions in the American sector, probably associated with the changes in the O/N2 ratio. On the night of 30 September-01 October, ionospheric plasma bubbles were observed at equatorial, low- and mid- latitude stations in the South American sector, possibly associated with the occurrence of geomagnetic storm.

  7. Modeling the equatorial electrojet

    NASA Astrophysics Data System (ADS)

    Stening, R. J.

    1985-02-01

    The equatorial electrojet is studied using a conductivity model with electron collision frequencies consistent with laboratory results. Electric fields and currents are calculated by an equivalent circuit method, and the results are compared with observations. Results are obtained for the electrojet height profile, the height and latitude of the cross-section profile, the height-integrated current density, the internal currents contribution, the scaling problem, the horizontal and vertical magnetic variation with latitude, and the effects of local winds in the F region.

  8. Single Bubble Sonoluminescence

    NASA Astrophysics Data System (ADS)

    Farley, Jennifer; Hough, Shane

    2003-05-01

    Single Bubble Sonoluminescence is the emission of light from a single bubble suspended in a liquid caused by a continuum of repeated implosions due to pressure waves generated from a maintained ultrasonic sinusoidal wave source. H. Frenzel and H. Schultz first studied it in 1934 at the University of Cologne. It was not until 1988 with D.F. Gaitan that actual research began with single bubble sonoluminescence. Currently many theories exist attempting to explain the observed bubble phenomenon. Many of these theories require spherical behavior of the bubble. Observation of the bubble has shown that the bubble does not behave spherically in most cases. One explanation for this is known as jet theory. A spectrum of the bubble will give us the mean physical properties of the bubble such as temperature and pressure inside the bubble. Eventually, with the aide of fluorocene dye a full spectrum of the bubble will be obtained.

  9. Acoustic bubble removal method

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Elleman, D. D.; Wang, T. G. (Inventor)

    1983-01-01

    A method is described for removing bubbles from a liquid bath such as a bath of molten glass to be used for optical elements. Larger bubbles are first removed by applying acoustic energy resonant to a bath dimension to drive the larger bubbles toward a pressure well where the bubbles can coalesce and then be more easily removed. Thereafter, submillimeter bubbles are removed by applying acoustic energy of frequencies resonant to the small bubbles to oscillate them and thereby stir liquid immediately about the bubbles to facilitate their breakup and absorption into the liquid.

  10. In-situ observation of abnormal electron temperure in the F-region valley associated with the prereversal enhancement in the vertical plasma drift

    NASA Astrophysics Data System (ADS)

    Muralikrishna, Polinaya; Batista, Inez S.; Odriozola, Siomel

    During one of the post sunset rocket launches made on 18-th December 1995 from the equatorial rocket launching station CLA in Alcântara, Brazil a Langmuir probe measured abnormally large electron temperatures below the F-region just before the onset of plasma bubbles but temperatures became normal soon after the onset of bubbles. In-situ measurements made from Brazil recently using rocket-borne swept-bias Langmuir Probes show that the electron temperatures in the valley region between the equatorial E and F regions get modified before the onset of plasma bubbles, probably associated with the prereversal enhancement in the vertical plasma drift. On 2-nd December 2011 a Brazilian VS-30 single stage rocket was launched from the equatorial rocket launching station CLBI in Natal, Brazil carrying a Langmuir probe operating alternately in swept and constant bias modes to measure both electron temperature and electron density respectively. The ground equipments operated during the rocket launch clearly showed the rapid rise of the F-region base indicating the prereversal enhancement of the F-region vertical drift. At the time of launch the bubble activity was also at its peak. The electron density and temperature height profiles could be estimated from the LP data up to the rocket apogee altitude of 139km. During the rocket upleg and downleg the valley region showed the presence of electron temperatures as high as 2000 ºK while the temperatures expected from the existing models are around 500 ºK. A two stage VS-30/Orion rocket was again launched on 8-th December 2012 soon after sunset carrying a Langmuir Probe operating alternately in swept and constant bias modes. At the time of launch ground equipments operated at equatorial stations showed rapid rise in the base of the F-layer and creating ionospheric conditions favorable for the generation of plasma bubbles. Electron temperatures as high as 3500ºK were observed in the valley region during the rocket upleg and

  11. Bubble drag reduction requires large bubbles

    NASA Astrophysics Data System (ADS)

    Verschoof, Ruben; van der Veen, Roeland; Sun, Chao; Lohse, Detlef

    2016-11-01

    In the maritime industry, the injection of air bubbles into the turbulent boundary layer under the ship hull is seen as one of the most promising techniques to reduce the overall fuel consumption. A few volume percent (<= 4 %) of bubbles can reduce the overall drag up to 40% and beyond. However, the exact mechanism is unknown, thus hindering further progress and optimization. Here we show that bubble drag reduction in turbulent flow dramatically depends on the bubble size. By adding minute concentrations (6 ppm) of the surfactant Triton X-100 into otherwise completely unchanged strongly turbulent Taylor-Couette flow containing bubbles, we dramatically reduce the drag reduction from more than 40% to about 4%, corresponding to the trivial effect of the bubbles on the density and viscosity of the liquid . The reason for this striking behavior is that the addition of surfactants prevents bubble coalescence, leading to much smaller bubbles. Our result demonstrates that bubble deformability is crucial for bubble drag reduction in turbulent flow. We acknowledge support from STW and FOM.

  12. On the Geometrical Aspects of GPS Scintillations during the Conjugate Point Equatorial Experiment (copex) Campaign in Brazil

    NASA Astrophysics Data System (ADS)

    Carrano, C. S.; Valladares, C. E.; Groves, K.

    2011-12-01

    We examine the geometrical aspects of GPS scintillations at three locations in Brazil during the Oct-Dec 2002 Conjugate Point Equatorial Experiment (COPEX): Boa Vista (2.85N, 60.70°W, dip 12.60°N); Alta Floresta (9.87°S, 56.1°W, dip 0.75°S); and Campo Grande (20.47°S, 54.66°W, dip 10.77°S). Previous authors [Muella et al., 2008; de Paula et al., 2010] have established the association between the GPS scintillations during the campaign and equatorial plasma bubbles generated by plasma interchange instabilities after sunset. Our aim is to demonstrate the effect of satellite motion and the direction of signal propagation with respect to the magnetic field on the depth and rate of signal fading, both of which affect the probability of scintillation-induced loss of lock on the GPS signals and degrade GPS positioning accuracy [Humphreys et al., 2010; Carrano et al., 2010]. We report on the behavior of the scintillation intensity index (S4) and the intensity decorrelation time (τ) as a function of dip latitude, local time, and the speed and direction at which the line of sight scans through the drifting plasma irregularities. We remove the geometrical effects using weak scatter diffraction theory to estimate the turbulent intensity and spatial decorrelation length in the magnetic west-east direction. From these parameters, it is possible to infer the depth and rate of signal fading for any propagation geometry in the region, a capability which is needed for modeling GPS scintillation impacts on GPS positioning accuracy.

  13. Unique Capabilities of the Situational Awareness Sensor Suite for the ISS (SASSI) Mission Concept to Study the Equatorial Ionosphere

    NASA Astrophysics Data System (ADS)

    Habash Krause, L.; Gilchrist, B. E.; Minow, J. I.; Gallagher, D. L.; Hoegy, W. R.; Coffey, V. N.; Willis, E. M.

    2014-12-01

    We present an overview of a mission concept named Situational Awareness Sensor Suite for the ISS (SASSI) with a special focus here on low-latitude ionospheric plasma turbulence measurements relevant to equatorial spread-F. SASSI is a suite of sensors that improves Space Situational Awareness for the ISS local space environment, as well as unique ionospheric measurements and support active plasma experiments on the ISS. As such, the mission concept has both operational and basic research objectives. We will describe two compelling measurement techniques enabled by SASSI's unique mission architecture. That is, SASSI provides new abilities to 1) measure space plasma potentials in low Earth orbit over ~100 m relative to a common potential, and 2) to investigate multi-scale ionospheric plasma turbulence morphology simultaneously of both ~ 1 cm and ~ 10 m scale lengths. The first measurement technique will aid in the distinction of vertical drifts within equatorial plasma bubbles from the vertical motions of the bulk of the layer due to zonal electric fields. The second will aid in understanding ionospheric plasma turbulence cascading in scale sizes that affect over the horizon radar. During many years of ISS operation, we have conducted effective (but not perfect) human and robotic extravehicular activities within the space plasma environment surrounding the ISS structure. However, because of the complexity of the interaction between the ISS and the space environment, there remain important sources of unpredictable environmental situations that affect operations. Examples of affected systems include EVA safety, solar panel efficiency, and scientific instrument integrity. Models and heuristically-derived best practices are well-suited for routine operations, but when it comes to unusual or anomalous events or situations, there is no substitute for real-time monitoring. SASSI is being designed to deploy and operate a suite of low-cost, medium/high-TRL plasma sensors on

  14. Occurrence of Equatorial F Region Irregularities: Evidence for Tropospheric Seeding

    NASA Technical Reports Server (NTRS)

    McClure, J. P.; Singh, S.; Bamgboye, D. K.; Johnson, F. S.; Kil, Hyosub

    1998-01-01

    We present a new gap-free version of the seasonal and longitudinal 0 (s/l) variations of P(sub EFI), the equatorial F region irregularity (EFI) occurrence probability, based on data from the AE-E spacecraft. The agreement of this and three earlier partial P(sub EFI) patterns verifies all four. We reinterpret another earlier gap-ridden pattern, that of D(bar)(sub RSF), a topside ionogram index of average darkening by range spread F. We compare it with P(sub EFI) and, using ionosonde radio science considerations, we conclude that D(bar)(sub RSF) = P(sub EFI) times a factor depending on the average number of topside plasma bubbles visible to the ionosonde. The s/l variations of D(baar)(sub RSF) thus imply s/l variations in the average spacing of bubbles, whose seeds have an occurrence probability pattern P(sub seed). For discussion we assume P(sub EFI) = P(sub inst)P(sub seed) is the pattern of F region instability. The P(sub EFI) pattern, which is by definition independent of seed and/or bubble spacing, is far too complex to be explained by the dominant paradigm, that of changes in P(sub inst) by simple changes in the F region altitude and/or north-south asymmetry. We examine evidence behind this dominance, and find it unconvincing. Both the asymmetry and sunset-node/altitude hypotheses of 1984 and 1985, respectively, seem to be partly based on misunderstood data, and their features appear displaced in time and space from those of our repeatable P(sub EFI) pattern. In contrast, if P(sub seed) variations influence the P(sub EFI) pattern and depend on thermospheric gravity waves from tropospheric convection near the dip equator, then the seasonal maxima (minima) Of P(sub EFI) could be explained, since they all occur above relatively warm (cold) surface features, where convection is maximal (minimal). Also, the hypothesis of the dominance of the P(sub seed) term could explain an unusual December/January P(sub EFI) maximum in the deep, wide, normal Pacific minimum in the

  15. Bubbly Cavitation Flows.

    DTIC Science & Technology

    1991-03-31

    and 12. Comparison is also made with analytical predictions based on the Rayleigh - Plesset equations. In addition to the single bubble studies, the...bubble maximum size distributions and those predicted using the measured nuclei number distribution and the Rayleigh - Plesset model for the bubble dyna...tions 7, 9, 11, 12, 13 examined travelling bubble cavitation on two classic axisymmetric headforms (a Schiebe body and the ITTC headform) and, with the

  16. Spectroscopy of Luminescence from Laser-Created Bubbles in Water Laser-Created Bubbles in Water Laser-Created Bubbles in Water

    NASA Astrophysics Data System (ADS)

    Tabbert, Bernd; Baghdassarian, Ohan; Williams, Gary A.

    2000-03-01

    Focusing a laser pulse into water creates initially a plama hot spot, and then a bubble which grows to a maximum of about a millimeter and collapses. At the collapse point a luminescence pulse several nanoseconds in duration is emitted. We report the first measurements of the spectrum of the light emission from these bubbles. The spectrum of the laser-induced bubble luminescence (LIBL) is compared to the spectrum of single-bubble sonoluminescence (SBSL) and to that of the plasma generated in the initial laser pulse ionizing the water. We find that the spectrum of the light emitted from the initial laser plasma is strikingly similar to that of SBSL, providing strong proof that SBSL is indeed light from a plasma. Similarly, the spectrum of the LIBL is also a continuum that appears to come from a cooler but much larger plasma: the spectrum peaks at 350 nm and then decreases into the ultraviolet.

  17. Comparison of induced damage, range, reflection, and sputtering yield between amorphous, bcc crystalline, and bubble-containing tungsten materials under hydrogen isotope and noble gas plasma irradiations

    NASA Astrophysics Data System (ADS)

    Saito, Seiki; Nakamura, Hiroaki; Tokitani, Masayuki

    2017-01-01

    Binary-collision-approximation simulation of hydrogen isotope (i.e., hydrogen, deuterium, and tritium) and noble gas (i.e., helium, neon, and argon) injections into tungsten materials is performed. Three tungsten structures (i.e., amorphous, bcc crystalline, and helium bubble-containing structures) are prepared as target materials. Then, the trajectories of incident atoms, the distribution of recoil atoms, the penetration depth range of incident atoms, the sputtering yield, and the reflection rate are carefully investigated for these target materials.

  18. Stretching cells and delivering drugs with bubbles

    NASA Astrophysics Data System (ADS)

    Ohl, Claus-Dieter; Li, Fenfang; Chon U, Chan; Gao, Yu; Xu, Chenjie

    2015-11-01

    In this talk we'll review our work on impulsive cell stretching using cavitation bubbles and magnetic microbubbles for drug delivery. For sufficient short times cells can sustain a much larger areal strain than the yield strain obtained from quasi-static stretching. Experiments with red blood cells show that even then the rupture of the cell is slow process; it is caused by diffusive swelling rather than mechanical violation of the plasma membrane. In the second part we'll discuss bubbles coated with magnetic and drug loaded particles. These bubbles offer an interesting vector for on demand delivery of drugs using mild ultrasound and magnetic fields. We report on basic experiments in microfluidic channels revealing the release of the agent during bubble oscillations and first in vivo validation with a mouse tumor model. Singapore National Research Foundations Competitive Research Program funding (NRF-CRP9-2011-04).

  19. Transient bubble oscillations near an elastic membrane in water

    NASA Astrophysics Data System (ADS)

    Turangan, C. K.; Khoo, B. C.

    2015-12-01

    We present a study of transient oscillating bubble-elastic membrane interaction by means of an experiment and a numerical simulation to study the dynamics of bubble's inertial collapse near an elastic interface. The bubble is generated very close to a thin elastic membrane using an electric spark, and their interaction is observed using high speed photography. The high pressure and temperature plasma from the dielectric breakdown precedes the bubble formation. The bubble then expands and creates a dimple on the membrane. After reaching its maximum size, the bubble begins to collapse. The membrane retracts back, transmitting a perturbation on the bubble surface. The coupling between bubble contraction and this perturbation strengthens the collapse and leads to the formation of a mushroom-shaped bubble, bubble pinching and splitting. Towards the end of the collapse, the water inertia surrounding the bubble pulls the membrane upwards forming a relatively sharp conical hump. The dynamics of this interaction is well predicted by the boundary element method (BEM) simulation.

  20. Acoustic levitation of soap bubbles in air: Beyond the half-wavelength limit of sound

    NASA Astrophysics Data System (ADS)

    Zang, Duyang; Lin, Kejun; Li, Lin; Chen, Zhen; Li, Xiaoguang; Geng, Xingguo

    2017-03-01

    We report on the behavior of levitated soap bubbles in a single-axis acoustic field. For a single bubble, its surface in the polar regions is under compression, but in the equatorial region, it is under suction. Levitation becomes unstable when the height of the bubble approaches half the wavelength of the sound wave because horizontal fluctuations lead to a negative recovery force and a negative levitation force. Vertically stacked double bubbles notably can be stable under levitation if their total vertical length is ˜5λ/6, significantly beyond λ/2 in consequence of the formation of a toroidal high-pressure region around the waist of the two bubbles. Our results provide a deeper insight into the stability of acoustic levitation and the coupling between bubbles and sound field.

  1. Acoustic bubble traps

    NASA Astrophysics Data System (ADS)

    Geisler, Reinhard; Kurz, Thomas; Lauterborn, Werner

    2000-07-01

    A small, oscillating bubble in a liquid can be trapped in the antinode of an acoustic standing wave field. Bubble stability is required for the study of single bubble sonoluminescence (SBSL). The properties of the acoustic resonator are essential for the stable trapping of sonoluminescing bubbles. Resonators can be chosen according to the intended application: size and geometry can be varied in a wide range. In this work, the acoustic responses of different resonators were measured by means of holographic interferometry, hydrophones and a laser vibrometer. Also, high-speed photography was used to observe the bubble dynamics. Several single, stable sonoluminescent bubbles were trapped simultaneously within an acoustic resonator in the pressure antinodes of a higher harmonic mode (few bubble sonoluminescence, FBSL).

  2. Magnetic Bubble Expansion as an Experimental Model for Extra-Galactic Radio Lobes

    NASA Astrophysics Data System (ADS)

    Lynn, Alan; Zhang, Yue; Hsu, Scott

    2010-11-01

    The Plasma Bubble Expansion Experiment (PBEX) is conducting laboratory experiments to address outstanding nonlinear plasma physics issues related to how magnetic energy and helicity carried by extra-galactic jets interacts with the intergalactic medium to form radio lobe structures. Experiments are being conducted in the 4 meter long, 50 cm diameter HELCAT linear plasma device at UNM. A pulsed magnetized coaxial gun (˜10 kV, ˜100 kA, ˜2 mWb) forms and injects magnetized plasma bubbles perpendicularly into a lower pressure weakly magnetized background plasma formed by a helicon and/or hot cathode source in HELCAT. Ideal MHD simulations show that an MHD shock develops ahead of the bubble as it propagates, and that the bubble develops asymmetries due to the background field [1]. Experimental data from plasma bubble injection into a background plasma, particularly magnetic probe measurements, will be discussed. [4pt] [1] W. Liu et al., Phys. Plasmas 15, 072905 (2008).

  3. Studies on equatorial shock formation during plasmaspheric refilling

    NASA Technical Reports Server (NTRS)

    Singh, N.

    1994-01-01

    Investigations based on small-scale simulations of microprocesses occurring when a magnetic flux tube refills with a cold plasma are summarized. Results of these investigations are reported in the following attached papers: (1) 'Numerical Simulation of Filling a Magnetic Flux Tube with a Cold Plasma: The Role of Ion Beam-Driven Instabilities'; and (2) 'Numerical Simulation of Filling a Magnetic Flux Tube with a Cold Plasma: Effects of Magnetically Trapped Hot Plasma'. Other papers included are: 'Interaction of Field-Aligned Cold Plasma Flows with an Equatorially-Trapped Hot Plasma: Electrostatic Shock Formation'; and 'Comparison of Hydrodynamic and Semikinetic Treatments for a Plasma Flow along Closed Field Lines'. A proposal for further research is included.

  4. Radio Bubbles in Clusters of Galaxies

    SciTech Connect

    Dunn, Robert J.H.; Fabian, A.C.; Taylor, G.B.; /NRAO, Socorro /KIPAC, Menlo Park

    2005-12-14

    We extend our earlier work on cluster cores with distinct radio bubbles, adding more active bubbles, i.e. those with GHz radio emission, to our sample, and also investigating ''ghost bubbles'', i.e. those without GHz radio emission. We have determined k, which is the ratio of the total particle energy to that of the electrons radiating between 10MHz and 10GHz. Constraints on the ages of the active bubbles confirm that the ratio of the energy factor, k, to the volume filling factor, f lies within the range 1 {approx}< k/f {approx}< 1000. In the assumption that there is pressure equilibrium between the radio-emitting plasma and the surrounding thermal X-ray gas, none of the radio lobes has equipartition between the relativistic particles and the magnetic field. A Monte-Carlo simulation of the data led to the conclusion that there are not enough bubbles present in the current sample to be able to determine the shape of the population. An analysis of the ghost bubbles in our sample showed that on the whole they have higher upper limits on k/f than the active bubbles, especially when compared to those in the same cluster. A study of the Brightest 55 cluster sample shows that 17, possibly 20, clusters required some form of heating as they have a short central cooling time, t{sub cool} {approx}< 3 Gyr, and a large central temperature drop, T{sub centre}/T{sub outer} < 1/2. Of these between 12 (70 per cent) and 15 (75 per cent), contain bubbles. This indicates that the duty cycle of bubbles is large in such clusters and that they can play a major role in the heating process.

  5. Evolution of Ion Clouds in the Equatorial Ionosphere

    NASA Astrophysics Data System (ADS)

    Petrochuk, Yevgeny; Blaunstein, Nathan; Mishin, Evgeny; Pedersen, Todd; Caton, Ron; Viggiano, Al; Schuman, Nick

    2015-11-01

    We report on the results of 2- and 3-dimentional numerical investigations of the evolution of samarium ion clouds injected in the equatorial ionosphere, alike the recent MOSC experiments. The ambient conditions are described by a standard model of the quiet-time equatorial ionosphere from 90 to 350 km. The altitudinal distribution of the transport processes and ambient electric and magnetic fields is taken into account. The fast process of stratification of ion clouds and breaking into small plasmoids occur only during the late stage of the cloud evolution. The role of the background plasma and its depletion zones formed due to the short-circuiting currents is not as evident as in mid latitudes. It is also revealed that the altitudinal dependence of the diffusion and drift plays a minor role in the cloud evolution at the equator. Likewise, the cloud remains stable with respect to the Raleigh-Taylor and gradient-drift instabilities. These two features are defined by the equatorial near-horizontal magnetic field which leads to a strongly-elongated ellipsoid-like plasma cloud. The critical dip angle separating the stable (equatorial) and unstable (mid-latitude) cloud regimes will be defined in future simulation studies, as well as the dependence on the ambient electric field and neutral wind. 2Space Vehicles Directorate, Air Force Research Laboratory

  6. Fast and ultrafast Kelvin wave modulations of the equatorial evening F region vertical drift and spread F development

    NASA Astrophysics Data System (ADS)

    Abdu, Mangalathayil A.; Brum, Christiano GM; Batista, Paulo P.; Gurubaran, Subramanian; Pancheva, Dora; Bageston, Jose V.; Batista, Inez S.; Takahashi, Hisao

    2015-01-01

    In this paper, we investigate the role of eastward and upward propagating fast (FK) and ultrafast Kelvin (UFK) waves in the day-to-day variability of equatorial evening prereversal vertical drift and post sunset generation of spread F/plasma bubble irregularities. Meteor wind data from Cariri and Cachoeira Paulista (Brazil) and medium frequency (MF) radar wind data from Tirunelveli (India) are analyzed together with Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry (TIMED/SABER) temperature in the 40- to 100-km region to characterize the zonal and vertical propagations of these waves. Also analyzed are the F region evening vertical drift and spread F (ESF) development features as diagnosed by Digisonde (Lowell Digisonde International, LLC, Lowell, MA, USA) operated at Fortaleza and Sao Luis in Brazil. The SABER temperature data permitted determination of the upward propagation characteristics of the FK (E1) waves with propagation speed in the range of 4 km/day. The radar mesosphere and lower thermosphere (MLT) winds in the widely separated longitude sectors have yielded the eastward phase velocity of both the FK and UFK waves. The vertical propagation of these waves cause strong oscillation in the F region evening prereversal vertical drift, observed for the first time at both FK and UFK periodicities. A delay of a few (approximately 10) days is observed in the F region vertical drift perturbation with respect to the corresponding FK/UFK zonal wind oscillations, or temperature oscillations in the MLT region, which has permitted a direct identification of the sunset electrodynamic coupling process as being responsible for the generation of the FK/UFK-induced vertical drift oscillation. The vertical drift oscillations are found to cause significant modulation in the spread F/plasma bubble irregularity development. The overall results highlight the role of FK/UFK waves in the day

  7. SWARM Observations of the Motion of Low-latitude Plasma Depletions Coordinated with Ground-based TEC Measurements

    NASA Astrophysics Data System (ADS)

    Valladares, C. E.; Pradipta, R.; Sheehan, R. E.; Coisson, P.; Knudsen, D. J.

    2015-12-01

    During the early phase of the SWARM mission, the distance between the trajectories of all three satellites of the constellation was tens of km and the temporal separation was of order one minute. This unique geometry allows us to conduct multiple and almost simultaneous in-situ measurements through the same low-latitude plasma depletion to investigate their spatial coherence and the motion of structures embedded within the equatorial plasma bubbles. We have used the number density measured with the Electric Field Instrument (EFI) on-board the three satellites of the SWARM constellation during December 2013 and January 2014 and concurrent TEC values obtained by ground-based GPS receivers to fully diagnose the bubble characteristics at multiple scale sizes. We have applied correlation and cross-spectra analysis to the density values measured by the EFI probes to derive the longitudinal variability of plasma density structures and their velocity. Our results indicate a very strong variability of the plasma bubbles in longitude. More specifically, it shows that structures with scale sizes corresponding to 100 and 10 seconds are not in phase. TEC values measures on the ground indicated that TEC plasma depletions moved with a velocity of order 100 m/s and have a westward tilt of order 10°. This presentation will show results for several specific days of SWARM observations during passes in the American sector.

  8. Gas bubble detector

    NASA Technical Reports Server (NTRS)

    Mount, Bruce E. (Inventor); Burchfield, David E. (Inventor); Hagey, John M. (Inventor)

    1995-01-01

    A gas bubble detector having a modulated IR source focused through a bandpass filter onto a venturi, formed in a sample tube, to illuminate the venturi with modulated filtered IR to detect the presence of gas bubbles as small as 0.01 cm or about 0.004 in diameter in liquid flowing through the venturi. Means are provided to determine the size of any detected bubble and to provide an alarm in the absence of liquid in the sample tube.

  9. Tightrope walking bubbles

    NASA Astrophysics Data System (ADS)

    de Maleprade, Helene; Clanet, Christophe; Quere, David

    2016-11-01

    A fiber can hold a certain amount of liquid, which allows us to capture flying drops and control their motion. Immersed in water, a fiber can efficiently capture air bubbles only if it is hydrophobic. Using a superhydrophobic coating on an inclined wire, we experimentally control the rising velocity of air bubbles walking along the tightrope. We discuss the nature of the friction around the walker, and the resulting speed of bubbles.

  10. Photon Bubbles and the Vertical Structure of Accretion Disks

    NASA Astrophysics Data System (ADS)

    Begelman, Mitchell C.

    2006-06-01

    We consider the effects of ``photon bubble'' shock trains on the vertical structure of radiation pressure-dominated accretion disks. These density inhomogeneities are expected to develop spontaneously in radiation-dominated accretion disks where magnetic pressure exceeds gas pressure, even in the presence of magnetorotational instability (MRI). They increase the rate at which radiation escapes from the disk and may allow disks to exceed the Eddington limit by a substantial factor without blowing themselves apart. To refine our earlier analysis of photon bubble transport in accretion disks, we generalize the theory of photon bubbles to include the effects of finite optical depths and radiation damping. Modifications to the diffusion law at low τ tend to ``fill in'' the low-density regions of photon bubbles, while radiation damping inhibits the formation of photon bubbles at large radii, small accretion rates, and small heights above the equatorial plane. Accretion disks dominated by photon bubble transport may reach luminosities from 10 to >100 times the Eddington limit (LEdd), depending on the mass of the central object, while remaining geometrically thin. However, photon bubble-dominated disks with α-viscosity are subject to the same thermal and viscous instabilities that plague standard radiation pressure-dominated disks, suggesting that they may be intrinsically unsteady. Photon bubbles can lead to a ``core-halo'' vertical disk structure. In super-Eddington disks the halo forms the base of a wind, which carries away substantial energy and mass, but not enough to prevent the luminosity from exceeding LEdd. Photon bubble-dominated disks may have smaller color corrections than standard accretion disks of the same luminosity. They remain viable contenders for some ultraluminous X-ray sources and may play a role in the rapid growth of supermassive black holes at high redshift.

  11. Understanding the Longitudinal Variability of Equatorial Electrodynamics using integrated Ground- and Space-based Observations

    NASA Astrophysics Data System (ADS)

    Yizengaw, E.; Moldwin, M.; Zesta, E.

    2015-12-01

    The currently funded African Meridian B-Field Education and Research (AMBER) magnetometer array comprises more than thirteen magnetometers stationed globally in the vicinity of geomagnetic equator. One of the main objectives of AMBER network is to understand the longitudinal variability of equatorial electrodynamics as function of local time, magnetic activity, and season. While providing complete meridian observation in the region and filling the largest land-based gap in global magnetometer coverage, the AMBER array addresses two fundamental areas of space physics: first, the processes governing electrodynamics of the equatorial ionosphere as a function of latitude (or L-shell), local time, longitude, magnetic activity, and season, and second, ULF pulsation strength at low/mid-latitude regions and its connection with equatorial electrojet and density fluctuation. The global AMBER network can also be used to augment observations from space-based instruments, such us the triplet SWARM mission and the upcoming ICON missions. Thus, in coordination with space-based and other ground-based observations, the AMBER magnetometer network provides a great opportunity to understand the electrodynamics that governs equatorial ionosphere motions. In this paper we present the longitudinal variability of the equatorial electrodynamics using the combination of instruments onboard SWARM and C/NOFS satellites and ground-based AMBER network. Both ground- and pace-based observations show stronger dayside and evening sector equatorial electrodynamics in the American and Asian sectors compared to the African sector. On the other hand, the African sector is home to stronger and year-round ionospheric bubbles/irregularities compared to the American and Asian sectors. This raises the question if the evening sector equatorial electrodynamics (vertical drift), which is believed to be the main cause for the enhancement of Rayleigh-Taylor (RT) instability growth rate, is stronger in the

  12. The streaming-trapped ion interface in the equatorial inner magnetosphere

    NASA Technical Reports Server (NTRS)

    Lin, J.; Horwitz, J. L.; Gallagher, D.; Pollock, C. J.

    1994-01-01

    Spacecraft measurements of core ions on L=4-7 field-lines typically show trapped ion distributions near the magnetic equator, and frequently indicate field-aligned ion streams at higher latitudes. The nature of the transition between them may indicate both the microphysics of hot-cold plasma interactions and overall consequences for core plasma evolution. We have undertaken a statistical analysis and characterization of this interface and its relation to the equatorial region of the inner magnetosphere. In this analysis, we have characterized such features as the equatorial ion flux anisotropy, the penetration of field-aligned ionospheric streams into the equatorial region, the scale of the transition into trapped ion populations, and the transition latitude. We found that most transition latitudes occur within 13 deg of the equator. The typical values of equatorial ion anisotropies are consistent with bi-Maxwellian temperature ratios of T(sub perpendicular)/T(sub parallel) in the range of 3-5. The latitudinal scales for the edges of the trapped ion populations display a rather strong peak in the 2-3 deg range. We also found that there is a trend for the penetration ratio, the anisotropy half width, and the transition scale length to decrease with a higher equatorial ion anisotropy. We may interpret these features in terms of Liouville mapping of equatorially trapped ions and the reflection of the incoming ionospheric ion streams from the equatorial potential peaks associated with such trapped ions.

  13. Study of zonal large scale wave structure (LSWS) and equatorial scintillation with low-latitude GRBR network over Southeast Asia and African sectors

    NASA Astrophysics Data System (ADS)

    Ram Sudarsanam, Tulasi; Yamamoto, Mamoru; Gurubaran, Subramanian; Tsunoda, Roland

    2012-07-01

    The day-to-day variability of Equatorial Spread-F, when and where the equatorial plasma bubbles (EPBs) may initiate, were the challenging problems that puzzling the space weather researchers for several decades. The zonal large scale wave structure (LSWS) at the base of F-layer is the earliest manifestation of seed perturbation for the evolution of EPBs by R-T instability processes, hence, found to play deterministic role on the development of ESF. Yet, only a little is known about LSWS with lack of sufficient observations, primarily because of inability to detect the LSWS with the currently existing instruments except with steerable incoherent scatter radar such as ALTAIR radar. This situation, however, was recently changed with launch of C/NOFS in a unique low-inclination (13 ^{o}) orbit. With the availability of CERTO beacon transmissions from C/NOFS in a near equatorial orbit, it is now possible to detect and resolve the roles by LSWS on a regular basis. A ground based low-latitude GNU Radio Beacon Receiver (GRBR) Network has been recently established that provide coverage of Southeast Asia, Pacific and African low-latitude regions. Recent observations suggest that these wave structures with zonal wave lengths varying between 200 and 800 km can be earliest detected even before E-region sunset and found to grow significantly after sunset, probably, aided by the polarization electric fields. Further, these zonal structures consistently found to be aligned with field lines for several hundreds of kilometers and EPBs were found to grow from the westward walls of upwellings. The characteristic differences on the strength of LSWS between the Asian and African longitudes were identified during the recent increasing solar activity and discussed in this paper.

  14. Prospects for bubble fusion

    SciTech Connect

    Nigmatulin, R.I.; Lahey, R.T. Jr.

    1995-09-01

    In this paper a new method for the realization of fusion energy is presented. This method is based on the superhigh compression of a gas bubble (deuterium or deuterium/thritium) in heavy water or another liquid. The superhigh compression of a gas bubble in a liquid is achieved through forced non-linear, non-periodic resonance oscillations using moderate amplitudes of forcing pressure. The key feature of this new method is a coordination of the forced liquid pressure change with the change of bubble volume. The corresponding regime of the bubble oscillation has been called {open_quotes}basketball dribbling (BD) regime{close_quotes}. The analytical solution describing this process for spherically symmetric bubble oscillations, neglecting dissipation and compressibility of the liquid, has been obtained. This solution shown no limitation on the supercompression of the bubble and the corresponding maximum temperature. The various dissipation mechanisms, including viscous, conductive and radiation heat losses have been considered. It is shown that in spite of these losses it is possible to achieve very high gas bubble temperatures. This because the time duration of the gas bubble supercompression becomes very short when increasing the intensity of compression, thus limiting the energy losses. Significantly, the calculated maximum gas temperatures have shown that nuclear fusion may be possible. First estimations of the affect of liquid compressibility have been made to determine possible limitations on gas bubble compression. The next step will be to investigate the role of interfacial instability and breaking down of the bubble, shock wave phenomena around and in the bubble and mutual diffusion of the gas and the liquid.

  15. Highly localized unique electrodynamics and plasma irregularities linked with the 17 March 2015 severe magnetic storm observed using multitechnique common-volume observations from Gadanki, India

    NASA Astrophysics Data System (ADS)

    Patra, A. K.; Chaitanya, P. Pavan; Dashora, N.; Sivakandan, M.; Taori, A.

    2016-11-01

    In this paper we study equatorial electrodynamics and plasma irregularities linked with the 17 March 2015 severe magnetic storm in the Indian sector by using common volume observations made by the Gadanki Ionospheric Radar Interferometer, airglow imager, Digisonde, and GPS receiver established at Gadanki (13.5°N, 79.2°E). Observations show that with the initiation of the storm at 06:00 UT on 17 March, which happened to be midday in the Indian sector, the low-latitude ionosphere responded in tune with the storm-induced electric field and by the sunset time the base of the F layer ascended to an altitude of 470 km with a peak upward velocity of 50 m s-1 eventually manifesting equatorial plasma bubble and irregularities causing strong GPS scintillation. The most important finding found in this study is the confinement of plasma bubble and irregularities in a narrow longitude zone of 69°E-98°E. Results also show reversal of zonal drift of the irregularities from 120 m s-1 eastward drift to 120 m s-1 westward drift in a time span of 30 min. Both observations are shown to be linked with very special electrodynamical conditions induced by the magnetic storm-related electric field in the dusk sector. Intriguing details of the longitudinally localized electrodynamics and plasma irregularities are discussed in terms of prompt penetration and disturbed dynamo electric field effects.

  16. Acoustical emission from bubbles

    NASA Astrophysics Data System (ADS)

    Longuet-Higgins, Michael S.

    1991-12-01

    The scientific objectives of this report are to investigate the dynamics of bubbles formed from a free surface (particularly the upper surface of the ocean) by breaking waves, and the resulting emission of underwater sound. The chief natural source of underwater sound in the ocean at frequencies from 0.5 to 50 kHz is known to be the acoustical emission from newly-formed bubbles and bubble clouds, particularly those created by breaking waves and rain. Attention has been drawn to the occurrence of high-speed jets directed into the bubble just after bubble closure. They have been observed both in rain-drop impacts and in the release of bubbles from an underwater nozzle. Qualitatively they are similar to the inward jets seen in the collapse of a cavitation bubble. There is also a similarity to the highly-accelerated upward jets in standing water waves (accelerations greater than 20g) or in bubbles bursting at a free surface. We have adopted a theoretical approach based on the dynamics of incompressible fluids with a free surface.

  17. Evaporation, Boiling and Bubbles

    ERIC Educational Resources Information Center

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  18. Let Them Blow Bubbles.

    ERIC Educational Resources Information Center

    Korenic, Eileen

    1988-01-01

    Describes a series of activities and demonstrations involving the science of soap bubbles. Starts with a recipe for bubble solution and gives instructions for several activities on topics such as density, interference colors, optics, static electricity, and galaxy formation. Contains some background information to help explain some of the effects.…

  19. Simulating Surfzone Bubbles

    DTIC Science & Technology

    2012-09-30

    D (Ripple) and 3-D ( Truchas ) Navier- Stokes solvers. In the continuation of this work, our objectives are to: 1) Implement a physics-based...a bubble phase with multiple bubble size (or, more accurately, mass) bins. The existing 3-D model Truchas has been extended to include Carrica et al

  20. Bubble collision with gravitation

    SciTech Connect

    Hwang, Dong-il; Lee, Bum-Hoon; Lee, Wonwoo; Yeom, Dong-han E-mail: bhl@sogang.ac.kr E-mail: innocent.yeom@gmail.com

    2012-07-01

    In this paper, we study vacuum bubble collisions with various potentials including gravitation, assuming spherical, planar, and hyperbolic symmetry. We use numerical calculations from double-null formalism. Spherical symmetry can mimic the formation of a black hole via multiple bubble collisions. Planar and especially hyperbolic symmetry describes two bubble collisions. We study both cases, when two true vacuum regions have the same field value or different field values, by varying tensions. For the latter case, we also test symmetric and asymmetric bubble collisions, and see details of causal structures. If the colliding energy is sufficient, then the vacuum can be destabilized, and it is also demonstrated. This double-null formalism can be a complementary approach in the context of bubble collisions.

  1. Interfacial Bubble Deformations

    NASA Astrophysics Data System (ADS)

    Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert

    Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.

  2. Effects of magnetic storm phases on f-layer irregularities from auroral to equatorial latitudes. Quarterly report, 1 January-31 March 1993

    SciTech Connect

    Aarons, J.; Mendillo, M.

    1993-03-31

    Equatorial ionospheric irregularities in the F layer have been the subject of intensive experimental and theoretical investigations during recent years. The class of irregularities which continues to receive much attention is characterized by large scale plasma depletions, generally referred to as ionospheric plumes and bubbles. The F-region nightglow emissions arising from recombination processes can be used to observe the dynamics of transequatorial ionospheric plasma bubbles and smaller scale plasma irregularities. In a collaborative project between the Center for Space Physics of Boston University and the Brazilian Institute for Space Research (INPE), an all-sky imaging system was operated at Cachoeira Paulista (22.7 deg S, 45.0 deg W, dip latitude 15.8 deg S), between March 1987 and October 1991. In addition to the imager, photometer and VHF polarimeter observations were conducted at Cachoeira Paulista with ionospheric soundings carried out at C. Paulista and Fortaleza, the latter at 3.9 deg S. 38.4 deg W, dip latitude 3.7 deg S. A VHF electronic polarimeter is in operation at C. Paulista. This long series of 01 630.0 nm imaging observations has permitted determination that when there are extended plumes, the altitudes affected over the magnetic equator often exceed 1500 km and probably exceed 2500 km at times, the maximum projection that can be seen from Cachoeira Paulista. This holds true even during years of low solar flux. For this longitude, the observed seasonal variation of the airglow depletions shows a maximum from October through March and a very low occurrence of airglow depletions from April through September.

  3. Tribonucleation of bubbles

    PubMed Central

    Wildeman, Sander; Lhuissier, Henri; Sun, Chao; Lohse, Detlef; Prosperetti, Andrea

    2014-01-01

    We report on the nucleation of bubbles on solids that are gently rubbed against each other in a liquid. The phenomenon is found to depend strongly on the material and roughness of the solid surfaces. For a given surface, temperature, and gas content, a trail of growing bubbles is observed if the rubbing force and velocity exceed a certain threshold. Direct observation through a transparent solid shows that each bubble in the trail results from the early coalescence of several microscopic bubbles, themselves detaching from microscopic gas pockets forming between the solids. From a detailed study of the wear tracks, with atomic force and scanning electron microscopy imaging, we conclude that these microscopic gas pockets originate from a local fracturing of the surface asperities, possibly enhanced by chemical reactions at the freshly created surfaces. Our findings will be useful either for preventing undesired bubble formation or, on the contrary, for “writing with bubbles,” i.e., creating controlled patterns of microscopic bubbles. PMID:24982169

  4. Bubble core field modification by residual electrons inside the bubble

    SciTech Connect

    Wu Haicheng; Xie Baisong; Zhao Xueyan; Zhang Shan; Hong Xueren; Liu Mingping

    2010-11-15

    Bubble core field modification due to the nondepleted electrons present inside the bubble is investigated theoretically. These residual electrons induce charge and current densities that can induce the bubble core field modification as well as the bubble shape change. It is found that the electrons entering into the bubble move backward at almost light speed and would weaken the transverse bubble fields. This reduces the ratio of longitudinal to transverse radius of the bubble. For the longitudinal bubble field, two effects compensate with each other because of their competition between the enhancement by the shortening of bubble shape and the reduction by the residual electrons. Therefore the longitudinal field is hardly changeable. As a comparison we perform particle-in-cell simulations and it is found that the results from theoretical consideration are consistent with simulation results. Implication of the modification of fields on bubble electron acceleration is also discussed briefly.

  5. Viscosity Destabilizes Sonoluminescing Bubbles

    NASA Astrophysics Data System (ADS)

    Toegel, Ruediger; Luther, Stefan; Lohse, Detlef

    2006-03-01

    In single-bubble sonoluminescence (SBSL) microbubbles are trapped in a standing sound wave, typically in water or water-glycerol mixtures. However, in viscous liquids such as glycol, methylformamide, or sulphuric acid it is not possible to trap the bubble in a stable position. This is very peculiar as larger viscosity normally stabilizes the dynamics. Suslick and co-workers call this new mysterious state of SBSL “moving-SBSL.” We identify the history force (a force nonlocal in time) as the origin of this destabilization and show that the instability is parametric. A force balance model quantitatively accounts for the observed quasiperiodic bubble trajectories.

  6. Viscosity destabilizes sonoluminescing bubbles.

    PubMed

    Toegel, Ruediger; Luther, Stefan; Lohse, Detlef

    2006-03-24

    In single-bubble sonoluminescence (SBSL) microbubbles are trapped in a standing sound wave, typically in water or water-glycerol mixtures. However, in viscous liquids such as glycol, methylformamide, or sulphuric acid it is not possible to trap the bubble in a stable position. This is very peculiar as larger viscosity normally stabilizes the dynamics. Suslick and co-workers call this new mysterious state of SBSL "moving-SBSL." We identify the history force (a force nonlocal in time) as the origin of this destabilization and show that the instability is parametric. A force balance model quantitatively accounts for the observed quasiperiodic bubble trajectories.

  7. Rotating bubble membrane radiator

    DOEpatents

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  8. Cardiovascular bubble dynamics.

    PubMed

    Bull, Joseph L

    2005-01-01

    Gas bubbles can form in the cardiovascular system as a result of patho-physiological conditions or can be intentionally introduced for diagnostic or therapeutic reasons. The dynamic behavior of these bubbles is caused by a variety of mechanisms, such as inertia, pressure, interfacial tension, viscosity, and gravity. We review recent advances in the fundamental mechanics and applications of cardiovascular bubbles, including air embolism, ultrasound contrast agents, targeted microbubbles for drug delivery and molecular imaging, cavitation-induced tissue erosion for ultrasonic surgery, microbubble-induced angiogenesis and arteriogenesis, and gas embolotherapy.

  9. Time-resolved imaging of electrical discharge development in underwater bubbles

    SciTech Connect

    Tu, Yalong; Xia, Hualei; Yang, Yong E-mail: luxinpei@hust.edu.cn; Lu, Xinpei E-mail: luxinpei@hust.edu.cn

    2016-01-15

    The formation and development of plasma in single air bubbles submerged in water were investigated. The difference in the discharge dynamics and the after-effects on the bubble were investigated using a 900 000 frame per second high-speed charge-coupled device camera. It was observed that depending on the position of the electrodes, the breakdown could be categorized into two modes: (1) direct discharge mode, where the high voltage and ground electrodes were in contact with the bubble, and the streamer would follow the shortest path and propagate along the axis of the bubble and (2) dielectric barrier mode, where the ground electrode was not in touch with the bubble surface, and the streamer would form along the inner surface of the bubble. The oscillation of the bubble and the development of instabilities on the bubble surface were also discussed.

  10. Effects of surface orientation on lifetime of near-surface nanoscale He bubble in tungsten

    NASA Astrophysics Data System (ADS)

    Cui, Jiechao; Fu, Baoqin; Wu, Zhangwen; Hou, Qing

    2017-02-01

    In multiscale modeling of the morphological evolution of plasma facing materials in nuclear fusion reactors, the knowledge of the timescales of the involved physical processes is important. In the present study, a new method based on molecular dynamics simulations was developed to extract the lifetime of helium bubbles near tungsten surfaces. It was found that the lifetime of a helium bubble can be described by the Arrhenius equation. However, the lifetime of a helium bubble depends on the thickness of tungsten film above the helium bubble in the substrate and the bubble size. The influence of surface orientations on the lifetime of helium bubbles was also observed, and the performance of helium bubbles on the (1 1 1) surface is very different from on the (0 0 1) and (0 1 1) surfaces. The role of the helium bubble lifetime in other simulation techniques, such as in kinetic Monte Carlo methods and rate theory, is discussed.

  11. The life of bubbles under negative pressure

    NASA Astrophysics Data System (ADS)

    Choi, Jin Woo; Park, Keunhwan; Nagashima, So; Moon, Myoung-Woon; Kim, Ho-Young

    2016-11-01

    Cavitation of sap in plant vessels, or embolism, may occur when the liquid pressure becomes negative either in a high elevation or a dry environment. Effective suppression of nucleation and growth of cavitation bubbles is important for continuous transport of water and thus survival of the plant. Here we investigate the life of cavitation bubbles under negative pressure from their nucleation through growth and maturation. As a model system for the plant vessel, we fabricate hydrogel microchannels whose inner pressure is reduced to a negative value. The roughness of the channel surface is modified by plasma treatment to form wrinkles emulating observed xylem wall surfaces. We find a finite effect of surface wrinkles on the critical nucleation pressure. Also, dense wrinkles tend to slow down bubble growth. In all the channel roughness conditions, the bubbles grow diffusively with time until their maturation. Then in the matured stage, the growth speed is substantially lowered and follows the value determined by Darcy's law. Our results suggest that surface wrinkles or roughness can be used to control the nucleation pressure and bubble growth behavior. Also, the observations can give deeper insight into embolism control mechanisms of tall trees.

  12. Altitude and latitude dependence of the equatorial electrojet

    NASA Astrophysics Data System (ADS)

    Singh, A.; Cole, K. D.

    1988-07-01

    A self-consistent and high-resolution dynamo model is used to investigate the effects of day-to-day or seasonal variation of altitude and latitude profiles of the E-plasma density in the equatorial ionosphere on equatorial electrojet (EEJ) structure. Variations in the E-layer peak altitude and amplitude are shown to significantly affect EEJ structure. The results indicate that, for any shape, the EEJ peak appears at or below the E-layer peak altitude. Distinct double peaks occur in the EEJ structure if the E-layer peak is above 105 km or if the gradient is large. The effect of the latitudinal variation of the integrated conductivities of ionospheric field lines upon the amplitude and altitude of the EEJ peak is discussed.

  13. Chemistry in Soap Bubbles.

    ERIC Educational Resources Information Center

    Lee, Albert W. M.; Wong, A.; Lee, H. W.; Lee, H. Y.; Zhou, Ning-Huai

    2002-01-01

    Describes a laboratory experiment in which common chemical gases are trapped inside soap bubbles. Examines the physical and chemical properties of the gases such as relative density and combustion. (Author/MM)

  14. What's in a Bubble?

    ERIC Educational Resources Information Center

    Saunderson, Megan

    2000-01-01

    Describes a unit on detergents and bubbles that establishes an interest in the properties of materials and focuses on active learning involving both hands- and minds-on learning rather than passive learning. (ASK)

  15. Blowing magnetic skyrmion bubbles

    NASA Astrophysics Data System (ADS)

    Jiang, Wanjun; Upadhyaya, Pramey; Zhang, Wei; Yu, Guoqiang; Jungfleisch, M. Benjamin; Fradin, Frank Y.; Pearson, John E.; Tserkovnyak, Yaroslav; Wang, Kang L.; Heinonen, Olle; te Velthuis, Suzanne G. E.; Hoffmann, Axel

    2015-07-01

    The formation of soap bubbles from thin films is accompanied by topological transitions. Here we show how a magnetic topological structure, a skyrmion bubble, can be generated in a solid-state system in a similar manner. Using an inhomogeneous in-plane current in a system with broken inversion symmetry, we experimentally “blow” magnetic skyrmion bubbles from a geometrical constriction. The presence of a spatially divergent spin-orbit torque gives rise to instabilities of the magnetic domain structures that are reminiscent of Rayleigh-Plateau instabilities in fluid flows. We determine a phase diagram for skyrmion formation and reveal the efficient manipulation of these dynamically created skyrmions, including depinning and motion. The demonstrated current-driven transformation from stripe domains to magnetic skyrmion bubbles could lead to progress in skyrmion-based spintronics.

  16. Interplay Between the Equatorial Geophysical Processes

    NASA Astrophysics Data System (ADS)

    Sridharan, R.

    2006-11-01

    r_sridharanspl@yahoo.com With the sun as the main driving force, the Equatorial Ionosphere- thermosphere system supports a variety of Geophysical phenomena, essentially controlled by the neutral dynamical and electro dynamical processes that are peculiar to this region. All the neutral atmospheric parameters and the ionospheric parameters show a large variability like the diurnal, seasonal semi annual, annual, solar activity and those that are geomagnetic activity dependent. In addition, there is interplay between the ionized and the neutral atmospheric constituents. They manifest themselves as the Equatorial Electrojet (EEJ), Equatorial Ionization Anomaly (EIA), Equatorial Spread F (ESF), Equatorial Temperature and Wind Anomaly (ETWA). Recent studies have revealed that these phenomena, though apparently might show up as independent ones, are in reality interlinked. The interplay between these equatorial processes forms the theme for the present talk.

  17. Blowing DNA bubbles.

    PubMed

    Severin, N; Zhuang, W; Ecker, C; Kalachev, A A; Sokolov, I M; Rabe, J P

    2006-11-01

    We report here experimental observations which indicate that topologically or covalently formed polymer loops embedded in an ultrathin liquid film on a solid substrate can be "blown" into circular "bubbles" during scanning force microscopy (SFM) imaging. In particular, supercoiled vector DNA has been unraveled, moved, stretched, and overstretched to two times its B-form length and then torn apart. We attribute the blowing of the DNA bubbles to the interaction of the tapping SFM tip with the ultrathin liquid film.

  18. 2012 Problem 8: Bubbles

    NASA Astrophysics Data System (ADS)

    Zhu, Kejing; Xia, Qing; Wang, Sihui; Zhou, Huijun

    2015-10-01

    When a large number of bubbles exist in the water, an object may float on the surface or sink. The assumption of equivalent density is proposed in this article to explain the concrete example. According to the assumption, an object is floatable only if its density is less than the equivalent density of the water-bubble mixture. This conclusion is supported by the floating experiment and by measuring the pressure underwater to a satisfactory approximation.

  19. Bubble coalescence in magmas

    NASA Technical Reports Server (NTRS)

    Herd, Richard A.; Pinkerton, Harry

    1993-01-01

    The most important factors governing the nature of volcanic eruptions are the primary volatile contents, the ways in which volatiles exsolve, and how the resulting bubbles grow and interact. In this contribution we assess the importance of bubble coalescence. The degree of coalescence in alkali basalts has been measured using Image Analysis techniques and it is suggested to be a process of considerable importance. Binary coalescence events occur every few minutes in basaltic melts with vesicularities greater than around 35 percent.

  20. Clustering in Bubble Suspensions

    NASA Astrophysics Data System (ADS)

    Zenit, Roberto

    2000-11-01

    A monidisperse bubble suspension is studied experimentally for the limit in which the Weber number is small and the Reynolds number is large. For this regime the suspension can be modeled using potential flow theory to describe the dynamics of the interstitial fluid. Complete theoretical descriptions have been composed (Spelt and Sangani, 1998) to model the behavior of these suspensions. Bubble clustering is a natural instability that arises from the potential flow considerations, in which bubbles tend to align in horizontal rafts as they move upwards. The appearance of bubble clusters was recently corroborated experimentally by Zenit et al. (2000), who found that although clusters did appear, their strength was not as strong as the predictions. Experiments involving gravity driven shear flows are used to explain the nature of the clustering observed in these type of flows. Balances of the bubble phase pressure (in terms of a calculated diffusion coefficient) and the Maxwell pressure (from the potential flow description) are presented to predict the stability of the bubble suspension. The predictions are compared with experimental results.

  1. Aerosol Transport Over Equatorial Africa

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Tyson, P. D.; Annegarn, H. J.; Kinyua, A. M.; Piketh, S.; King, M.; Helas, G.

    1999-01-01

    Long-range and inter-hemispheric transport of atmospheric aerosols over equatorial Africa has received little attention so far. Most aerosol studies in the region have focussed on emissions from rain forest and savanna (both natural and biomass burning) and were carried out in the framework of programs such as DECAFE (Dynamique et Chimie Atmospherique en Foret Equatoriale) and FOS (Fires of Savanna). Considering the importance of this topic, aerosols samples were measured in different seasons at 4420 meters on Mt Kenya and on the equator. The study is based on continuous aerosol sampling on a two stage (fine and coarse) streaker sampler and elemental analysis by Particle Induced X-ray Emission. Continuous samples were collected for two seasons coinciding with late austral winter and early austral spring of 1997 and austral summer of 1998. Source area identification is by trajectory analysis and sources types by statistical techniques. Major meridional transports of material are observed with fine-fraction silicon (31 to 68 %) in aeolian dust and anthropogenic sulfur (9 to 18 %) being the major constituents of the total aerosol loading for the two seasons. Marine aerosol chlorine (4 to 6 %), potassium (3 to 5 %) and iron (1 to 2 %) make up the important components of the total material transport over Kenya. Minimum sulfur fluxes are associated with recirculation of sulfur-free air over equatorial Africa, while maximum sulfur concentrations are observed following passage over the industrial heartland of South Africa or transport over the Zambian/Congo Copperbelt. Chlorine is advected from the ocean and is accompanied by aeolian dust recirculating back to land from mid-oceanic regions. Biomass burning products are transported from the horn of Africa. Mineral dust from the Sahara is transported towards the Far East and then transported back within equatorial easterlies to Mt Kenya. This was observed during austral summer and coincided with the dying phase of 1997/98 El

  2. Equatorial refuge amid tropical warming

    NASA Astrophysics Data System (ADS)

    Karnauskas, Kristopher B.; Cohen, Anne L.

    2012-07-01

    Upwelling across the tropical Pacific Ocean is projected to weaken in accordance with a reduction of the atmospheric overturning circulation, enhancing the increase in sea surface temperature relative to other regions in response to greenhouse-gas forcing. In the central Pacific, home to one of the largest marine protected areas and fishery regions in the global tropics, sea surface temperatures are projected to increase by 2.8°C by the end of this century. Of critical concern is that marine protected areas may not provide refuge from the anticipated rate of large-scale warming, which could exceed the evolutionary capacity of coral and their symbionts to adapt. Combining high-resolution satellite measurements, an ensemble of global climate models and an eddy-resolving regional ocean circulation model, we show that warming and productivity decline around select Pacific islands will be mitigated by enhanced upwelling associated with a strengthening of the equatorial undercurrent. Enhanced topographic upwelling will act as a negative feedback, locally mitigating the surface warming. At the Gilbert Islands, the rate of warming will be reduced by 0.7+/-0.3°C or 25+/-9% per century, or an overall cooling effect comparable to the local anomaly for a typical El Niño, by the end of this century. As the equatorial undercurrent is dynamically constrained to the Equator, only a handful of coral reefs stand to benefit from this equatorial island effect. Nevertheless, those that do face a lower rate of warming, conferring a significant advantage over neighbouring reef systems. If realized, these predictions help to identify potential refuges for coral reef communities from anticipated climate changes of the twenty-first century.

  3. Radio wave scintillations at equatorial regions

    NASA Technical Reports Server (NTRS)

    Poularikas, A. D.

    1972-01-01

    Radio waves, passing through the atmosphere, experience amplitude and phase fluctuations know as scintillations. A characterization of equatorial scintillation, which has resulted from studies of data recorded primarily in South America and equatorial Africa, is presented. Equatorial scintillation phenomena are complex because they appear to vary with time of day (pre-and postmidnight), season (equinoxes), and magnetic activity. A wider and more systematic geographical coverage is needed for both scientific and engineering purposes; therefore, it is recommended that more observations should be made at earth stations (at low-geomagnetic latitudes) to record equatorial scintillation phenomena.

  4. Central Equatorial Pacific Experiment (CEPEX)

    SciTech Connect

    Not Available

    1993-01-01

    The Earth's climate has varied significantly in the past, yet climate records reveal that in the tropics, sea surface temperatures seem to have been remarkably stable, varying by less than a few degrees Celsius over geologic time. Today, the large warm pool of the western Pacific shows similar characteristics. Its surface temperature always exceeds 27[degree]C, but never 31[degree]C. Heightened interest in this observation has been stimulated by questions of global climate change and the exploration of stabilizing climate feedback processes. Efforts to understand the observed weak sensitivity of tropical sea surface temperatures to climate forcing has led to a number of competing ideas about the nature of this apparent thermostat. Although there remains disagreement on the processes that regulate tropical sea surface temperature, most agree that further progress in resolving these differences requires comprehensive field observations of three-dimensional water vapor concentrations, solar and infrared radiative fluxes, surface fluxes of heat and water vapor, and cloud microphysical properties. This document describes the Central Equatorial Pacific Experiment (CEPEX) plan to collect such observations over the central equatorial Pacific Ocean during March of 1993.

  5. The dynamics of histotripsy bubbles

    NASA Astrophysics Data System (ADS)

    Kreider, Wayne; Bailey, Michael R.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Crum, Lawrence A.

    2011-09-01

    Histotripsy describes treatments in which high-amplitude acoustic pulses are used to excite bubbles and erode tissue. Though tissue erosion can be directly attributed to bubble activity, the genesis and dynamics of bubbles remain unclear. Histotripsy lesions that show no signs of thermal coagulative damage have been generated with two different acoustic protocols: relatively long acoustic pulses that produce local boiling within milliseconds and relatively short pulses that are higher in amplitude but likely do not produce boiling. While these two approaches are often distinguished as `boiling' versus `cavitation', such labels can obscure similarities. In both cases, a bubble undergoes large changes in radius and vapor is transported into and out of the bubble as it oscillates. Moreover, observations from both approaches suggest that bubbles grow to a size at which they cease to collapse violently. In order to better understand the dynamics of histotripsy bubbles, a single-bubble model has been developed that couples acoustically excited bubble motions to the thermodynamic state of the surrounding liquid. Using this model for bubbles exposed to histotripsy sound fields, simulations suggest that two mechanisms can act separately or in concert to lead to the typically observed bubble growth. First, nonlinear acoustic propagation leads to the evolution of shocks and an asymmetry in the positive and negative pressures that drive bubble motion. This asymmetry can have a rectifying effect on bubble oscillations whereby the bubble grows on average during each acoustic cycle. Second, vapor transport to/from the bubble tends to produce larger bubbles, especially at elevated temperatures. Vapor transport by itself can lead to rectified bubble growth when the ambient temperature exceeds 100 °C (`boiling') or local heating in the vicinity of the bubble leads to a superheated boundary layer.

  6. Statistical equilibrium of bubble oscillations in dilute bubbly flows

    PubMed Central

    Colonius, Tim; Hagmeijer, Rob; Ando, Keita; Brennen, Christopher E.

    2008-01-01

    The problem of predicting the moments of the distribution of bubble radius in bubbly flows is considered. The particular case where bubble oscillations occur due to a rapid (impulsive or step change) change in pressure is analyzed, and it is mathematically shown that in this case, inviscid bubble oscillations reach a stationary statistical equilibrium, whereby phase cancellations among bubbles with different sizes lead to time-invariant values of the statistics. It is also shown that at statistical equilibrium, moments of the bubble radius may be computed using the period-averaged bubble radius in place of the instantaneous one. For sufficiently broad distributions of bubble equilibrium (or initial) radius, it is demonstrated that bubble statistics reach equilibrium on a time scale that is fast compared to physical damping of bubble oscillations due to viscosity, heat transfer, and liquid compressibility. The period-averaged bubble radius may then be used to predict the slow changes in the moments caused by the damping. A benefit is that period averaging gives a much smoother integrand, and accurate statistics can be obtained by tracking as few as five bubbles from the broad distribution. The period-averaged formula may therefore prove useful in reducing computational effort in models of dilute bubbly flow wherein bubbles are forced by shock waves or other rapid pressure changes, for which, at present, the strong effects caused by a distribution in bubble size can only be accurately predicted by tracking thousands of bubbles. Some challenges associated with extending the results to more general (nonimpulsive) forcing and strong two-way coupled bubbly flows are briefly discussed. PMID:19547725

  7. Colliding with a crunching bubble

    SciTech Connect

    Freivogel, Ben; Freivogel, Ben; Horowitz, Gary T.; Shenker, Stephen

    2007-03-26

    In the context of eternal inflation we discuss the fate of Lambda = 0 bubbles when they collide with Lambda< 0 crunching bubbles. When the Lambda = 0 bubble is supersymmetric, it is not completely destroyed by collisions. If the domain wall separating the bubbles has higher tension than the BPS bound, it is expelled from the Lambda = 0 bubble and does not alter its long time behavior. If the domain wall saturates the BPS bound, then it stays inside the Lambda = 0 bubble and removes a finite fraction of future infinity. In this case, the crunch singularity is hidden behind the horizon of a stable hyperbolic black hole.

  8. A Bubble Bursts

    NASA Technical Reports Server (NTRS)

    2005-01-01

    RCW 79 is seen in the southern Milky Way, 17,200 light-years from Earth in the constellation Centaurus. The bubble is 70-light years in diameter, and probably took about one million years to form from the radiation and winds of hot young stars.

    The balloon of gas and dust is an example of stimulated star formation. Such stars are born when the hot bubble expands into the interstellar gas and dust around it. RCW 79 has spawned at least two groups of new stars along the edge of the large bubble. Some are visible inside the small bubble in the lower left corner. Another group of baby stars appears near the opening at the top.

    NASA's Spitzer Space Telescope easily detects infrared light from the dust particles in RCW 79. The young stars within RCW 79 radiate ultraviolet light that excites molecules of dust within the bubble. This causes the dust grains to emit infrared light that is detected by Spitzer and seen here as the extended red features.

  9. The Dueling Bubble Experiment

    NASA Astrophysics Data System (ADS)

    Roy, Anshuman; Borrell, Marcos; Felts, John; Leal, Gary; Hirsa, Amir

    2007-11-01

    When two drops or bubbles are brought into close proximity to each other, the thin film of the fluid between them drains as they are squeezed together. If the film becomes thin enough that intermolecular forces of attraction overwhelm capillary forces, the drops/bubbles coalesce and the time it takes for this to happen, starting from the point of apparent contact is referred to as the drainage time. One practical version of this scenario occurs during the formation of foams, when the thin film forms between gas bubbles that are growing in volume with time. We performed an experimental study that is intended to mimic this process in which the two drops (or bubbles) in the size range of 50-100 microns diameter are created by oozing a liquid/gas out of two capillaries of diameter less than 100 microns directly facing each other and immersed in a second fluid. We present measurements of drainage times for the cases of very low viscosity ratios PDMS drops in Castor oil (less than 0.05) and bubbles of air in PDMS, and highlight the differences that arise in part due to the different boundary conditions for thin film drainage for liquid-liquid versus gas-liquid systems, and in part due to the different Hamaker constants for the two systems.

  10. Bubbles of Metamorphosis

    NASA Astrophysics Data System (ADS)

    Prakash, Manu

    2011-11-01

    Metamorphosis presents a puzzling challenge where, triggered by a signal, an organism abruptly transforms its entire shape and form. Here I describe the role of physical fluid dynamic processes during pupal metamorphosis in flies. During early stages of pupation of third instar larvae into adult flies, a physical gas bubble nucleates at a precise temporal and spatial location, as part of the normal developmental program in Diptera. Although its existence has been known for the last 100 years, the origin and control of this ``cavitation'' event has remained completely mysterious. Where does the driving negative pressure for bubble nucleation come from? How is the location of the bubble nucleation site encoded in the pupae? How do molecular processes control such a physical event? What is the role of this bubble during development? Via developing in-vivo imaging techniques, direct bio-physical measurements in live insect pupal structures and physical modeling, here I elucidate the physical mechanism for appearance and disappearance of this bubble and predict the site of nucleation and its exact timing. This new physical insight into the process of metamorphosis also allows us to understand the inherent design of pupal shell architectures in various species of insects. Milton Award, Harvard Society of Fellows; Terman Fellowship, Stanford

  11. Instability of some equatorially trapped waves

    PubMed Central

    Constantin, Adrian; Germain, Pierre

    2013-01-01

    [1] A high-frequency asymptotics approach within the Lagrangian framework shows that some exact equatorially trapped three-dimensional waves are linearly unstable when their steepness exceeds a specific threshold. Citation: Constantin, A., and P. Germain (2013), Instability of some equatorially trapped waves, J. Geophys. Res. Oceans, 118, 2802–2810, doi:10.1002/jgrc.20219. PMID:26213669

  12. Equatorial potassium currents in lenses.

    PubMed

    Wind, B E; Walsh, S; Patterson, J W

    1988-02-01

    Earlier work with the vibrating probe demonstrated the existence of outward potassium currents at the equator and inward sodium currents at the optical poles of the lens. By adding microelectrodes to the system, it is possible to relate steady currents (J) to the potential difference (PD) measured with a microelectrode. By injecting an outward current (I), it is possible to determine resistances and also the PD at which the steady outward potassium current becomes zero (PDJ = 0). At this PD the concentration gradient for potassium efflux and the electrical gradient for potassium influx are balanced so that there is no net flow of potassium across the membranes associated with the production of J. The PDJ = 0 for 18 rat lenses was 86 mV and that for 12 frogs lenses was -95 mV. This agrees with the potassium equilibrium potential and provides strong evidence to support the view that the outward equatorial current, J, is a potassium current. With the injection of outward current, I, the PD becomes more negative, the outward equatorial current, J, decreases, and the inward current at the optical poles increases. This suggests that there are separate electrical loops for K+ and Na+ that are partially linked by the Na, K-pump. Using Ohm's law, it is possible to calculate the input resistance (R = delta PD/I), the resistance related to the production of J (RJ = delta PD/delta J), and the effect of the combined resistances (delta J/I). The driving force for J can be estimated (PDJ = 0-PD). The relationships among currents, voltages and resistance can be used to determine the characteristics of the membranes that are associated with the outward potassium current observed at the equator. The effects of graded deformation of the lens were determined. The effects were reversible. The sites of inward and outward currents were not altered. Following deformation, the equatorial current, J, increased, and the PD became less negative. The PDJ = 0 remains the same so the ratio of K

  13. Absolute electron density measurements in the equatorial ionosphere

    NASA Technical Reports Server (NTRS)

    Baker, K. D.; Howlett, L. C.; Rao, N. B.; Ulwick, J. C.; Labelle, J.

    1985-01-01

    Accurate measurement of the electron density profile and its variations is crucial to further progress in understanding the physics of the disturbed equatorial ionosphere. To accomplish this, a plasma frequency probe was included in the payload complement of two rockets flown during the Condor rocket campaign conducted from Peru in March 1983. This paper presents density profiles of the disturbed equatorial ionosphere from a night-time flight in which spread-F conditions were present and from a day-time flight during strong electrojet conditions. Results from both flights are in excellent agreement with simultaneous radar data in that the regions of highly disturbed plasma coincide with the radar signatures. The spread-F rocket penetrated a topside depletion during both the upleg and downleg. The electrojet measurements showed a profile peaking at 1.3 x 10 to the 5th per cu cm at 106 km, with large scale fluctuations having amplitudes of roughly 10 percent seen only in the upward gradient in electron density. This is in agreement with plasma instability theory. It is further shown that simultaneous measurements by fixed-bias Langmuir probes, when normalized at a single point to the altitude profile of electron density, are inadequate to correctly parameterize the observed enhancements and depletions.

  14. Equatorial ionosphere 'fountain- effect' above imminent earthquake epicenter

    NASA Astrophysics Data System (ADS)

    Ruzhin, Yu.; Depueva, A. H.; Devi, M.

    2003-04-01

    Existence of lithosphere-ionosphere interaction is known for a long time, but it does not mean that the ionospheric morphology above areas of earthquakes preparation is investigated sufficiently well. It was shown that seismo-precursor variations of the atmosphere electricity cause appropriate electric field at the ionospheric heights, which being added to existing natural field may both increase or decrease its action on the ionospheric plasma characteristics: drifts, aeronomy, plasma chemistry, ion composition etc. Anomalous variations appear inside whole ionosphere volume from the lowest boundary of Earth's plasma shell (100 km) up to 1000km and higher. Under fortunate coincidence seismo-precursor electric field can generate natural ionosphere phenomena, 'fountain- effect', leading to Appleton anomaly in the equatorial ionosphere over future earthquake position. Our basic idea is to take into account dependence of the observable effects on a geographical position of the earthquake epicenter. As for low latitudes it is proved by specificity of formation and dynamics of equatorial ionosphere (seismogenic ""fountain" effect , first of all), and also by features of earth crust structure close to the equator (mainly meridionally alongated tectonic faults). Ionospheric effects of low-latitude earthquakes were not investigated separately so far though rather semo-active zones are located namely at low latitudes: India, Peru, Oceania. We used the data of topside sounding of ALOUETTE-1 and ISS-b satellites, and also data of ground-based vertical sounding stationary stations Kodaikanal, Huancayo, Djibouti etc. and records of the total electron content (TEC).

  15. Characteristics of ionospheric bubbles determined from aspect sensitive scatter spread F observed with Alouette 1

    SciTech Connect

    Muldrew, D.B.

    1980-05-01

    Aspect sensitive scatter from bubbles is observed on a large percentage of equatorial Alouette 1 ionograms. The occurrence frequency of bubbles increases sharply (from zero) after sunset and reaches a maximum at about 23--24 hours local time. Near midnight, bubbles are observed in the topside ionosphere on about 65% of American and African satellite passes and on about 50% of Asian passes. The frequency of occurrence decreases gradually throughout the postmidnight and morning periods and becomes almost zero near noon. Averaged over the whole day, the occurrence of bubbles at Asian logitudes is about one half that at American and African longitudes. The occurrence of bubbles peaks at the December solstice for American longitudes and at the June solstice for Asian longitudes. The above observations imply that bubbles are initiated by field-aligned currents at the steep density gradient at the bottom of the postsunset F layer by the mechanism proposed by K. D. Cole. After initiation the Rayleigh-Taylor instability takes over to raise the bubbles through the F layer. Alouette 1 observations indicate that the bubbles rise to a maximum height of about 600--1000 km near midnight. The height then decreases gradually until some time after sunrise. Ray tracing, assuming aspect sensitive scatter and a circular cross section for the field-aligned bubble, indicates that a particular, typical bubble was about 28 km in radius and intersected the vertical plane through the satellite in the magnetic east-west direction, about 550 km below and about 750 km to the east or west of the satellite. In the topside ionosphere below Alouette 1, bubbles never seem to occupy more than about 2% of the total space.

  16. Bubbles from nothing

    SciTech Connect

    Blanco-Pillado, Jose J.; Ramadhan, Handhika S.; Shlaer, Benjamin E-mail: handhika@cosmos.phy.tufts.edu

    2012-01-01

    Within the framework of flux compactifications, we construct an instanton describing the quantum creation of an open universe from nothing. The solution has many features in common with the smooth 6d bubble of nothing solutions discussed recently, where the spacetime is described by a 4d compactification of a 6d Einstein-Maxwell theory on S{sup 2} stabilized by flux. The four-dimensional description of this instanton reduces to that of Hawking and Turok. The choice of parameters uniquely determines all future evolution, which we additionally find to be stable against bubble of nothing instabilities.

  17. Multivariate bubbles and antibubbles

    NASA Astrophysics Data System (ADS)

    Fry, John

    2014-08-01

    In this paper we develop models for multivariate financial bubbles and antibubbles based on statistical physics. In particular, we extend a rich set of univariate models to higher dimensions. Changes in market regime can be explicitly shown to represent a phase transition from random to deterministic behaviour in prices. Moreover, our multivariate models are able to capture some of the contagious effects that occur during such episodes. We are able to show that declining lending quality helped fuel a bubble in the US stock market prior to 2008. Further, our approach offers interesting insights into the spatial development of UK house prices.

  18. Fluid Dynamics of Bubbly Liquids

    NASA Technical Reports Server (NTRS)

    Tsang, Y. H.; Koch, D. L.; Zenit, R.; Sangani, A.; Kushch, V. I.; Spelt, P. D. M.; Hoffman, M.; Nahra, H.; Fritz, C.; Dolesh, R.

    2002-01-01

    Experiments have been performed to study the average flow properties of inertially dominated bubbly liquids which may be described by a novel analysis. Bubbles with high Reynolds number and low Weber number may produce a fluid velocity disturbance that can be approximated by a potential flow. We studied the behavior of suspensions of bubbles of about 1.5 mm diameter in vertical and inclined channels. The suspension was produced using a bank of 900 glass capillaries with inner diameter of about 100 microns in a quasi-steady fashion. In addition, salt was added to the suspension to prevent bubble-bubble coalescence. As a result, a nearly monodisperse suspension of bubble was produced. By increasing the inclination angle, we were able to explore an increasing amount of shear to buoyancy motion. A pipe flow experiment with the liquid being recirculated is under construction. This will provide an even larger range of shear to buoyancy motion. We are planning a microgravity experiment in which a bubble suspension is subjected to shearing in a couette cell in the absence of a buoyancy-driven relative motion of the two phases. By employing a single-wire, hot film anemometer, we were able to obtain the liquid velocity fluctuations. The shear stress at the wall was measured using a hot film probe flush mounted on the wall. The gas volume fraction, bubble velocity, and bubble velocity fluctuations were measured using a homemade, dual impedance probe. In addition, we also employed a high-speed camera to obtain the bubble size distribution and bubble shape in a dilute suspension. A rapid decrease in bubble velocity for a dilute bubble suspension is attributed to the effects of bubble-wall collisions. The more gradual decrease of bubble velocity as gas volume fraction increases, due to subsequent hindering of bubble motion, is in qualitative agreement with the predictions of Spelt and Sangani for the effects of potential-flow bubble-bubble interactions on the mean velocity. The

  19. Bubble injected hydrocyclone flotation cell

    SciTech Connect

    Stanley, D.A.; Jordon, C.E.

    1990-11-20

    This patent describes an apparatus for selective separation of a mixture of hydrophobic and hydrophilic mineral particles. It comprises: a bubble-injected hydrocyclone flotation cell and a bubble slurry. The cell comprises an enclosed body section; a mineral pulp feed port; a bubble slurry feed port; and a vortex finder.

  20. The Early Years: Blowing Bubbles

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2016-01-01

    Blowing bubbles is not only a favorite summer activity for young children. Studying bubbles that are grouped together, or "foam," is fun for children and fascinating to many real-world scientists. Foam is widely used--from the bedroom (mattresses) to outer space (insulating panels on spacecraft). Bubble foam can provide children a…

  1. Cohesion of Bubbles in Foam

    ERIC Educational Resources Information Center

    Ross, Sydney

    1978-01-01

    The free-energy change, or binding energy, of an idealized bubble cluster is calculated on the basis of one mole of gas, and on the basis of a single bubble going from sphere to polyhedron. Some new relations of bubble geometry are developed in the course of the calculation. (BB)

  2. The Liberal Arts Bubble

    ERIC Educational Resources Information Center

    Agresto, John

    2011-01-01

    The author expresses his doubt that the general higher education bubble will burst anytime soon. Although tuition, student housing, and book costs have all increased substantially, he believes it is still likely that the federal government will continue to pour billions into higher education, largely because Americans have been persuaded that it…

  3. EQUATORIAL SUPERROTATION ON TIDALLY LOCKED EXOPLANETS

    SciTech Connect

    Showman, Adam P.; Polvani, Lorenzo M.

    2011-09-01

    The increasing richness of exoplanet observations has motivated a variety of three-dimensional (3D) atmospheric circulation models of these planets. Under strongly irradiated conditions, models of tidally locked, short-period planets (both hot Jupiters and terrestrial planets) tend to exhibit a circulation dominated by a fast eastward, or 'superrotating', jet stream at the equator. When the radiative and advection timescales are comparable, this phenomenon can cause the hottest regions to be displaced eastward from the substellar point by tens of degrees longitude. Such an offset has been subsequently observed on HD 189733b, supporting the possibility of equatorial jets on short-period exoplanets. Despite its relevance, however, the dynamical mechanisms responsible for generating the equatorial superrotation in such models have not been identified. Here, we show that the equatorial jet results from the interaction of the mean flow with standing Rossby waves induced by the day-night thermal forcing. The strong longitudinal variations in radiative heating-namely intense dayside heating and nightside cooling-trigger the formation of standing, planetary-scale equatorial Rossby and Kelvin waves. The Rossby waves develop phase tilts that pump eastward momentum from high latitudes to the equator, thereby inducing equatorial superrotation. We present an analytic theory demonstrating this mechanism and explore its properties in a hierarchy of one-layer (shallow-water) calculations and fully 3D models. The wave-mean-flow interaction produces an equatorial jet whose latitudinal width is comparable to that of the Rossby waves, namely the equatorial Rossby deformation radius modified by radiative and frictional effects. For conditions typical of synchronously rotating hot Jupiters, this length is comparable to a planetary radius, explaining the broad scale of the equatorial jet obtained in most hot-Jupiter models. Our theory illuminates the dependence of the equatorial jet

  4. Inertial confinement fusion based on the ion-bubble trigger

    SciTech Connect

    Jafari, S. Nilkar, M.; Ghasemizad, A.; Mehdian, H.

    2014-10-15

    Triggering the ion-bubble in an inertial confinement fusion, we have developed a novel scheme for the fast ignition. This scheme relies on the plasma cavitation by the wake of an intense laser pulse to generate an ion-bubble. The bubble acts both as an intense electron accelerator and as an electron wiggler. Consequently, the accelerated electrons trapped in the bubble can emit an intense tunable laser light. This light can be absorbed by an ablation layer on the outside surface of the ignition capsule, which subsequently drills it and thereby produces a guide channel in the pellet. Finally, the relativistic electron beam created in the bubble is guided through the channel to the high density core igniting the fusion fuel. The normalized beam intensity and beam energy required for triggering the ignition have been calculated when core is heated by the e-beam. In addition, through solving the momentum transfer, continuity and wave equations, a dispersion relation for the electromagnetic and space-charge waves has been analytically derived. The variations of growth rate with the ion-bubble density and electron beam energy have been illustrated. It is found that the growth rates of instability are significantly controlled by the ions concentration and the e-beam energy in the bubble.

  5. On the modelling of equatorial waves

    NASA Astrophysics Data System (ADS)

    Constantin, A.

    2012-03-01

    The present theory of geophysical waves that either raise or lower the equatorial thermocline, based on the reduced-gravity shallow-water equations on the β-plane, ignores vertical variations of the flow. In particular, the vertical structure of the Equatorial Undercurrent is absent. As a remedy we propose a simple approach by modeling this geophysical process as a wave-current interaction in the f-plane approximation, the underlying current being of positive constant vorticity. The explicit dispersion relation allows us to conclude that, despite its simplicity, the proposed model captures to a reasonable extent essential features of equatorial waves.

  6. Bubbly Little Star

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In this processed Spitzer Space Telescope image, baby star HH 46/47 can be seen blowing two massive 'bubbles.' The star is 1,140 light-years away from Earth.

    The infant star can be seen as a white spot toward the center of the Spitzer image. The two bubbles are shown as hollow elliptical shells of bluish-green material extending from the star. Wisps of green in the image reveal warm molecular hydrogen gas, while the bluish tints are formed by starlight scattered by surrounding dust.

    These bubbles formed when powerful jets of gas, traveling at 200 to 300 kilometers per second, or about 120 to 190 miles per second, smashed into the cosmic cloud of gas and dust that surrounds HH 46/47. The red specks at the end of each bubble show the presence of hot sulfur and iron gas where the star's narrow jets are currently crashing head-on into the cosmic cloud's gas and dust material.

    Whenever astronomers observe a star, or snap a stellar portrait, through the lens of any telescope, they know that what they are seeing is slightly blurred. To clear up the blurring in Spitzer images, astronomers at the Jet Propulsion Laboratory developed an image processing technique for Spitzer called Hi-Res deconvolution.

    This process reduces blurring and makes the image sharper and cleaner, enabling astronomers to see the emissions around forming stars in greater detail. When scientists applied this image processing technique to the Spitzer image of HH 46/47, they were able to see winds from the star and jets of gas that are carving the celestial bubbles.

    This infrared image is a three-color composite, with data at 3.6 microns represented in blue, 4.5 and 5.8 microns shown in green, and 24 microns represented as red.

  7. Bubble dynamics and bubble-induced turbulence of a single-bubble chain

    NASA Astrophysics Data System (ADS)

    Lee, Joohyoung; Park, Hyungmin

    2016-11-01

    In the present study, the bubble dynamics and liquid-phase turbulence induced by a chain of bubbles injected from a single nozzle have been experimentally investigated. Using a high-speed two-phase particle image velociemtry, measurements on the bubbles and liquid-phase velocity field are conducted in a transparent tank filled with water, while varying the bubble release frequency from 0.1 to 35 Hz. The tested bubble size ranges between 2.0-3.2 mm, and the corresponding bubble Reynolds number is 590-1100, indicating that it belongs to the regime of path instability. As the release frequency increases, it is found that the global shape of bubble dispersion can be classified into two regimes: from asymmetric (regular) to axisymmetric (irregular). In particular, at higher frequency, the wake vortices of leading bubbles cause an irregular behaviour of the following bubble. For the liquid phase, it is found that a specific trend on the bubble-induced turbulence appears in a strong relation to the above bubble dynamics. Considering this, we try to provide a theoretical model to estimate the liquid-phase turbulence induced by a chain of bubbles. Supported by a Grant funded by Samsung Electronics, Korea.

  8. Signature of anisotropic bubble collisions

    SciTech Connect

    Salem, Michael P.

    2010-09-15

    Our universe may have formed via bubble nucleation in an eternally inflating background. Furthermore, the background may have a compact dimension--the modulus of which tunnels out of a metastable minimum during bubble nucleation--which subsequently grows to become one of our three large spatial dimensions. When in this scenario our bubble universe collides with other ones like it, the collision geometry is constrained by the reduced symmetry of the tunneling instanton. While the regions affected by such bubble collisions still appear (to leading order) as disks in an observer's sky, the centers of these disks all lie on a single great circle, providing a distinct signature of anisotropic bubble nucleation.

  9. Ring Bubbles of Dolphins

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Marten, Ken; Psarakos, Suchi; White, Don J.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    The article discusses how dolphins create and play with three types of air-filled vortices. The underlying physics is discussed. Photographs and sketches illustrating the dolphin's actions and physics are presented. The dolphins engage in this behavior on their own initiative without food reward. These behaviors are done repeatedly and with singleminded effort. The first type is the ejection of bubbles which, after some practice on the part of the dolphin, turn into toroidal vortex ring bubbles by the mechanism of baroclinic torque. These bubbles grow in radius and become thinner as they rise vertically to the surface. One dolphin would blow two in succession and guide them to fuse into one. Physicists call this a vortex reconnection. In the second type, the dolphins first create an invisible vortex ring in the water by swimming on their side and waving their tail fin (also called flukes) vigorously. This vortex ring travels horizontally in the water. The dolphin then turns around, finds the vortex and injects a stream of air into it from its blowhole. The air "fills-out" the core of the vortex ring. Often, the dolphin would knock-off a smaller ring bubble from the larger ring (this also involves vortex reconnection) and steer the smaller ring around the tank. One other dolphin employed a few other techniques for planting air into the fluke vortex. One technique included standing vertically in the water with tail-up, head-down and tail piercing the free surface. As the fluke is waved to create the vortex ring, air is entrained from above the surface. Another technique was gulping air in the mouth, diving down, releasing air bubbles from the mouth and curling them into a ring when they rose to the level of the fluke. In the third type, demonstrated by only one dolphin, the longitudinal vortex created by the dorsal fin on the back is used to produce 10-15 foot long helical bubbles. In one technique she swims in a curved path. This creates a dorsal fin vortex since

  10. Longitudinal variations of the equatorial electojet

    NASA Astrophysics Data System (ADS)

    Shume, Esayas

    We have utilized a three dimensional electrostatic potential model to explain the longitudinal variations of the equatorial electrojet. The model runs were constrained by net H component magnetic field measurements from three equatorial stations, namely, Huancayo (Peru) 12.05 S, 284.67 E; Addis Ababa (Ethiopia) 9.8 N, 38.8 E; Tirunelveli (India) 8.42 N, 77.48 E. The model runs were done in an iterative fashion until the computed and measured H component magnetic field values come into a close agreement. The physical mechanisms for the longitudinal variations of the equatorial electrojet were inferred by comparing and contrasting the resulting computed vertical polarization electric field (which drives the equatorial electrojet), and zonal current density profiles for the three stations mentioned above.

  11. Equatorial thermosphere anomaly: Observations and simulations

    NASA Astrophysics Data System (ADS)

    Lei, J.; Thayer, J. P.; Wang, W.; Richmond, A. D.

    2011-12-01

    Several mechanisms including heat transport due to zonal winds, chemical heating and field-aligned ion drag have been proposed to explain the formation of the Equatorial Thermosphere Anomaly (ETA), but the real cause of the ETA formation in thermosphere temperature is still a mystery. Various observations of the ionosphere and thermosphere have been used to investigate the variations of equatorial anomalies in both the ETA and EIA, and their interactions. The similarities and differences between the ETA and the EIA can provide important insight to the physical connections of this ion-neutral coupling problem. Meanwhile, the combination of observations and theoretical models allows us to understand the fundamental physical and chemical ion-neutral processes in the equatorial F region. This talk will highlight the recent progress of the formation of the ETA associated with the ion-neutral coupling in the equatorial region.

  12. Measurements of fast neutrons by bubble detectors

    SciTech Connect

    Castillo, F.; Martinez, H.; Leal, B.; Rangel, J.; Reyes, P. G.

    2013-07-03

    Neutron bubble detectors have been studied using Am-Be and D-D neuron sources, which give limited energy information. The Bubble Detector Spectrometer (BDS) have six different energy thresholds ranging from 10 KeV to 10 Mev. The number of bubbles obtained in each measurement is related to the dose (standardized response R) equivalent neutrons through sensitivity (b / {mu}Sv) and also with the neutron flux (neutrons per unit area) through a relationship that provided by the manufacturer. Bubble detectors were used with six different answers (0.11 b/ {mu}Sv, 0093 b/{mu}Sv, 0.14 b/{mu}Sv, 0.17 b/{mu}Sv, 0051 b/{mu}Sv). To test the response of the detectors (BDS) radiate a set of six of them with different energy threshold, with a source of Am-Be, placing them at a distance of one meter from it for a few minutes. Also, exposed to dense plasma focus Fuego Nuevo II (FN-II FPD) of ICN-UNAM, apparatus which produces fusion plasma, generating neutrons by nuclear reactions of neutrons whose energy emitting is 2.45 MeV. In this case the detectors were placed at a distance of 50 cm from the pinch at 90 Degree-Sign this was done for a certain number of shots. In both cases, the standard response is reported (Dose in {mu}Sv) for each of the six detectors representing an energy range, this response is given by the expression R{sub i}= B{sub i} / S{sub i} where B{sub i} is the number of bubbles formed in each and the detector sensitivity (S{sub i}) is given for each detector in (b / {mu}Sv). Also, reported for both cases, the detected neutron flux (n cm{sup -2}), by a given ratio and the response involves both standardized R, as the average cross section sigma. The results obtained have been compared with the spectrum of Am-Be source. From these measurements it can be concluded that with a combination of bubble detectors, with different responses is possible to measure the equivalent dose in a range of 10 to 100 {mu}Sv fields mixed neutron and gamma, and pulsed generated fusion

  13. Measurements of fast neutrons by bubble detectors

    NASA Astrophysics Data System (ADS)

    Castillo, F.; Leal, B.; Martınez, H.; Rangel, J.; Reyes, P. G.

    2013-07-01

    Neutron bubble detectors have been studied using Am-Be and D-D neuron sources, which give limited energy information. The Bubble Detector Spectrometer (BDS) have six different energy thresholds ranging from 10 KeV to 10 Mev. The number of bubbles obtained in each measurement is related to the dose (standardized response R) equivalent neutrons through sensitivity (b / μSv) and also with the neutron flux (neutrons per unit area) through a relationship that provided by the manufacturer. Bubble detectors were used with six different answers (0.11 b/ μSv, 0093 b/μSv, 0.14 b/μSv, 0.17 b/μSv, 0051 b/μSv). To test the response of the detectors (BDS) radiate a set of six of them with different energy threshold, with a source of Am-Be, placing them at a distance of one meter from it for a few minutes. Also, exposed to dense plasma focus Fuego Nuevo II (FN-II FPD) of ICN-UNAM, apparatus which produces fusion plasma, generating neutrons by nuclear reactions of neutrons whose energy emitting is 2.45 MeV. In this case the detectors were placed at a distance of 50 cm from the pinch at 90° this was done for a certain number of shots. In both cases, the standard response is reported (Dose in μSv) for each of the six detectors representing an energy range, this response is given by the expression Ri = Bi / Si where Bi is the number of bubbles formed in each and the detector sensitivity (Si) is given for each detector in (b / μSv). Also, reported for both cases, the detected neutron flux (n cm-2), by a given ratio and the response involves both standardized R, as the average cross section sigma. The results obtained have been compared with the spectrum of Am-Be source. From these measurements it can be concluded that with a combination of bubble detectors, with different responses is possible to measure the equivalent dose in a range of 10 to 100 μSv fields mixed neutron and gamma, and pulsed generated fusion devices.

  14. EQUATORIAL ZONAL JETS AND JUPITER's GRAVITY

    SciTech Connect

    Kong, D.; Liao, X.; Zhang, K.; Schubert, G.

    2014-08-20

    The depth of penetration of Jupiter's zonal winds into the planet's interior is unknown. A possible way to determine the depth is to measure the effects of the winds on the planet's high-order zonal gravitational coefficients, a task to be undertaken by the Juno spacecraft. It is shown here that the equatorial winds alone largely determine these coefficients which are nearly independent of the depth of the non-equatorial winds.

  15. Periodic Structures in the Equatorial Ionosphere (Postprint)

    DTIC Science & Technology

    2012-05-13

    AFRL-RV-PS- AFRL-RV-PS- TP-2012-0004 TP-2012-0004 PERIODIC STRUCTURES IN THE EQUATORIAL IONOSPHERE (POSTPRINT) Cheryl Y. Huang...in the Equatorial Ionosphere (Postprint) 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) 5d. PROJECT NUMBER 2301...International Reference Ionosphere model to remove variations in density due to changes in spacecraft altitude and latitude along the orbit. In this

  16. Observations of discrete harmonics emerging from equatorial noise.

    PubMed

    Balikhin, Michael A; Shprits, Yuri Y; Walker, Simon N; Chen, Lunjin; Cornilleau-Wehrlin, Nicole; Dandouras, Iannis; Santolik, Ondrej; Carr, Christopher; Yearby, Keith H; Weiss, Benjamin

    2015-07-14

    A number of modes of oscillations of particles and fields can exist in space plasmas. Since the early 1970s, space missions have observed noise-like plasma waves near the geomagnetic equator known as 'equatorial noise'. Several theories were suggested, but clear observational evidence supported by realistic modelling has not been provided. Here we report on observations by the Cluster mission that clearly show the highly structured and periodic pattern of these waves. Very narrow-banded emissions at frequencies corresponding to exact multiples of the proton gyrofrequency (frequency of gyration around the field line) from the 17th up to the 30th harmonic are observed, indicating that these waves are generated by the proton distributions. Simultaneously with these coherent periodic structures in waves, the Cluster spacecraft observes 'ring' distributions of protons in velocity space that provide the free energy for the waves. Calculated wave growth based on ion distributions shows a very similar pattern to the observations.

  17. Observations of discrete harmonics emerging from equatorial noise

    NASA Astrophysics Data System (ADS)

    Balikhin, Michael A.; Shprits, Yuri Y.; Walker, Simon N.; Chen, Lunjin; Cornilleau-Wehrlin, Nicole; Dandouras, Iannis; Santolik, Ondrej; Carr, Christopher; Yearby, Keith H.; Weiss, Benjamin

    2015-07-01

    A number of modes of oscillations of particles and fields can exist in space plasmas. Since the early 1970s, space missions have observed noise-like plasma waves near the geomagnetic equator known as `equatorial noise'. Several theories were suggested, but clear observational evidence supported by realistic modelling has not been provided. Here we report on observations by the Cluster mission that clearly show the highly structured and periodic pattern of these waves. Very narrow-banded emissions at frequencies corresponding to exact multiples of the proton gyrofrequency (frequency of gyration around the field line) from the 17th up to the 30th harmonic are observed, indicating that these waves are generated by the proton distributions. Simultaneously with these coherent periodic structures in waves, the Cluster spacecraft observes `ring' distributions of protons in velocity space that provide the free energy for the waves. Calculated wave growth based on ion distributions shows a very similar pattern to the observations.

  18. Bubble dynamics in drinks

    NASA Astrophysics Data System (ADS)

    Broučková, Zuzana; Trávníček, Zdeněk; Šafařík, Pavel

    2014-03-01

    This study introduces two physical effects known from beverages: the effect of sinking bubbles and the hot chocolate sound effect. The paper presents two simple "kitchen" experiments. The first and second effects are indicated by means of a flow visualization and microphone measurement, respectively. To quantify the second (acoustic) effect, sound records are analyzed using time-frequency signal processing, and the obtained power spectra and spectrograms are discussed.

  19. Slurry bubble column hydrodynamics

    NASA Astrophysics Data System (ADS)

    Rados, Novica

    Slurry bubble column reactors are presently used for a wide range of reactions in both chemical and biochemical industry. The successful design and scale up of slurry bubble column reactors require a complete understanding of multiphase fluid dynamics, i.e. phase mixing, heat and mass transport characteristics. The primary objective of this thesis is to improve presently limited understanding of the gas-liquid-solid slurry bubble column hydrodynamics. The effect of superficial gas velocity (8 to 45 cm/s), pressure (0.1 to 1.0 MPa) and solids loading (20 and 35 wt.%) on the time-averaged solids velocity and turbulent parameter profiles has been studied using Computer Automated Radioactive Particle Tracking (CARPT). To accomplish this, CARPT technique has been significantly improved for the measurements in highly attenuating systems, such as high pressure, high solids loading stainless steel slurry bubble column. At a similar set of operational conditions time-averaged gas and solids holdup profiles have been evaluated using the developed Computed Tomography (CT)/Overall gas holdup procedure. This procedure is based on the combination of the CT scans and the overall gas holdup measurements. The procedure assumes constant solids loading in the radial direction and axially invariant cross-sectionally averaged gas holdup. The obtained experimental holdup, velocity and turbulent parameters data are correlated and compared with the existing low superficial gas velocities and atmospheric pressure CARPT/CT gas-liquid and gas-liquid-solid slurry data. The obtained solids axial velocity radial profiles are compared with the predictions of the one dimensional (1-D) liquid/slurry recirculation phenomenological model. The obtained solids loading axial profiles are compared with the predictions of the Sedimentation and Dispersion Model (SDM). The overall gas holdup values, gas holdup radial profiles, solids loading axial profiles, solids axial velocity radial profiles and solids

  20. Sonoluminescence, sonochemistry and bubble dynamics of single bubble cavitation

    NASA Astrophysics Data System (ADS)

    Hatanaka, Shin-ichi

    2012-09-01

    The amount of hydroxyl radicals produced from a single cavitation bubble was quantified by terephthalate dosimetry at various frequencies and pressure amplitudes, while the dynamics of the single bubble was observed by stroboscopic and light-scattering methods. Also, sonoluminescence (SL), sonochemiluminescence (SCL) of luminol, and sodium atom emission (Na*) in the cavitation field were observed. The amount of hydroxyl radicals per cycle as well as the intensity of SL was proportional to pressure amplitude at every frequency performed, and it decreased with increasing frequency. When the single bubble was dancing with a decrease in pressure amplitude, however, the amount of hydroxyl radicals was greater than that for the stable bubble at the higher pressure amplitude and did not significantly decrease with frequency. Furthermore, SCL and Na* were detected only under unstable bubble conditions. These results imply that the instability of bubbles significantly enhances sonochemical efficiency for non-volatile substances in liquid phase.

  1. Bubble colloidal AFM probes formed from ultrasonically generated bubbles.

    PubMed

    Vakarelski, Ivan U; Lee, Judy; Dagastine, Raymond R; Chan, Derek Y C; Stevens, Geoffrey W; Grieser, Franz

    2008-02-05

    Here we introduce a simple and effective experimental approach to measuring the interaction forces between two small bubbles (approximately 80-140 microm) in aqueous solution during controlled collisions on the scale of micrometers to nanometers. The colloidal probe technique using atomic force microscopy (AFM) was extended to measure interaction forces between a cantilever-attached bubble and surface-attached bubbles of various sizes. By using an ultrasonic source, we generated numerous small bubbles on a mildly hydrophobic surface of a glass slide. A single bubble picked up with a strongly hydrophobized V-shaped cantilever was used as the colloidal probe. Sample force measurements were used to evaluate the pure water bubble cleanliness and the general consistency of the measurements.

  2. Instability of two rising bubbles

    NASA Astrophysics Data System (ADS)

    Galper, Alexander; Miloh, Touvia

    1999-11-01

    We consider the stability of two rising ideal gas spherical bubbles subject of an intrinsic dynamics. The dynamics is prescribed or governed by the Rayleigh-Plesset equation adjusted for the pressure field induced by the other bubble in the center of each. Hence, each bubble exhibits linear (nonlinear) oscillations about a stable equilibrium. In order to treat the Liapunov stability problem of bubbles spatial motion we develop the corresponding Hamiltonian formalism. Thus, we find that the oscillations can stabilize the side-by-side and one-below-the-other bubbles translation. These types of translation are known to be asymptotically stable (unstable) for the motion of a pair of purely spherical rigid bubbles. The stabilization phenomenon depends on the frequency and phase difference in the bubbles fast oscillations. The ``rigid'' bubbles theory of the motion is known to have certain discrepancies with the relevant experiments. In order to remove them it is proposed to account for the vorticity wake behind each bubble. Nevertheless, we are able to explain the experiments remaining within the potential framework. Finally, we consider the case of chaotic pulsations. The motion of the two bubbles can also inherit a chaotic character. It results, in turn, in a certain strange attractor for the spatial motion of a pair.

  3. Rectified growth of histotripsy bubbles

    PubMed Central

    Kreider, Wayne; Maxwell, Adam D.; Khokhlova, Tatiana; Simon, Julianna C.; Khokhlova, Vera A.; Sapozhnikov, Oleg; Bailey, Michael R.

    2015-01-01

    Histotripsy treatments use high-amplitude shock waves to fractionate tissue. Such treatments have been demonstrated using both cavitation bubbles excited with microsecond-long pulses and boiling bubbles excited for milliseconds. A common feature of both approaches is the need for bubble growth, where at 1 MHz cavitation bubbles reach maximum radii on the order of 100 microns and boiling bubbles grow to about 1 mm. To explore how histotripsy bubbles grow, a model of a single, spherical bubble that accounts for heat and mass transport was used to simulate the bubble dynamics. Results suggest that the asymmetry inherent in nonlinearly distorted waveforms can lead to rectified bubble growth, which is enhanced at elevated temperatures. Moreover, the rate of this growth is sensitive to the waveform shape, in particular the transition from the peak negative pressure to the shock front. Current efforts are focused on elucidating this behavior by obtaining an improved calibration of measured histotripsy waveforms with a fiber-optic hydrophone, using a nonlinear propagation model to assess the impact on the focal waveform of higher harmonics present at the source’s surface, and photographically observing bubble growth rates. PMID:26413193

  4. Latitudinal comparisons of equatorial Pacific zooplankton

    NASA Astrophysics Data System (ADS)

    Roman, M. R.; Dam, H. G.; Le Borgne, R.; Zhang, X.

    Zooplankton biomass and rates of ingestion, egestion and production in the equatorial Pacific Ocean along 140°W and 180° exhibit maximum values in the High-Nutrient Low-Chlorophyll (HNLC) zone associated with equatorial upwelling (5°S-5°N) as compared to the more oligotrophic regions to the north and south. Zooplankton biomass and rates are not usually highest on the equator, but increase "downstream" of the upwelling center as the zooplankton populations exhibit a delayed response to enhanced phytoplankton production. The vertical distribution of zooplankton biomass in the equatorial HNLC area tends to be concentrated in surface waters and is more uniform with depth in oligotrophic regions to the north and south of the equatorial upwelling zone. In general, the amount of mesozooplankton (>200 μm) carbon biomass is approximately 25% of estimated phytoplankton biomass and 30% of bacterial biomass in the HNLC area of the equatorial Pacific Ocean. Zooplankton grazing on phytoplankton is low in the equatorial Pacific Ocean, generally <5% of the total chlorophyll-a standing stock grazed per day. Based on estimates of metabolic demand, it is apparent that zooplankton in the equatorial Pacific Ocean are omnivores, consuming primarily microzooplankton and detritus. Estimated zooplankton growth rates in the warm waters of the HNLC equatorial Pacific Ocean are high, ranging from 0.58 d -1 for 64-200 μm zooplankton to 0.08 d -1 for 1000-2000 μm zooplankton. Thus, the numerical and functional response of equatorial zooplankton to increases in phytoplankton production are more rapid than normally occurs in sub-tropical and temperate waters. Potential zooplankton fecal pellet production, estimated from metabolic demand, is approximately 1.6 times the estimated gravitational carbon flux at 150 m in the zone of equatorial upwelling (5°S-5°N) and 1.1 times the export flux in the more oligotrophic regions to the north and south. The active flux of carbon by diel migrant

  5. In Search of the Big Bubble

    ERIC Educational Resources Information Center

    Simoson, Andrew; Wentzky, Bethany

    2011-01-01

    Freely rising air bubbles in water sometimes assume the shape of a spherical cap, a shape also known as the "big bubble". Is it possible to find some objective function involving a combination of a bubble's attributes for which the big bubble is the optimal shape? Following the basic idea of the definite integral, we define a bubble's surface as…

  6. Multiscale equatorial electrojet turbulence for GNSS disruption physics

    NASA Astrophysics Data System (ADS)

    Horton, W., Jr.; Hassan, E.; Litt, S. K.; Smolyakov, A. I.; Rainwater, D.

    2015-12-01

    The spatial and spectral characteristics of the turbulent plasma density and electric fields are modeled in ionospheric E region using a new set of nonlinear plasma fluid equations. The fluid model combines both Farley-Buneman (Type-I) and Gradient-Drift (Type-II) plasma instabilities in the equatorial electrojet region. The unified model of the plasma instabilities includes the ion viscosity in the ion momentum equation and electron inertia in the electron momentum equation. Electron heating from the electrojet currents is included. Nonlinear simulations in 2D and 3D in massively parallel codes for the coupled equations are run on TACC and NERSC computers. Rising plumes and falling spikes of high-density plasma are ubiquitous as in earlier 2D simulations. 3D movies of structures like TIDs are shown. The simulation results show some agreement with a number of features of rocket and radar observations as reported in Hassan et al. JGR 2015. At sunset, the strong electric fields driven both by neutral thermosphere winds and the dynamo electric field the turbulence are severe. The source field aligned currents [FACs] is the solar wind dynamo electric field. During periods of magnetospheric storms and substorms these plasma currents surge to large values producing ionospheric storms. The turbulent fluctuations in the ionosphere are intrinsic part of the dynamics of ionosphere-magnetosphere coupling. The plasma fluctuations are a source of multipath GNSS rays and loss-of-lock. Monitoring of ionosphere irregularities is used as a diagnostic tool for the state of the ionosphere for GNSS disruption and space weather issues. The theoretical/simulation model of ionospheric irregularities is based on advanced nonlinear plasma physics.

  7. Irregularity Decay in an Isolated Plasma Bubble.

    DTIC Science & Technology

    1984-05-31

    irregularities that they produce as they develop, are clearly associated with radar back- scatter, ionogram spread F, airglow depletions and radio-wave scintil...can structure as a result of the gra- dient drift instability. At these local times, the zonal neutral wind is large (; 2150 m/s) and eastward, so

  8. Seismo-ionospheric coupling appearing as equatorial electron density enhancements observed via DEMETER electron density measurements

    NASA Astrophysics Data System (ADS)

    Ryu, K.; Lee, E.; Chae, J. S.; Parrot, M.; Pulinets, S.

    2014-10-01

    We report the processes and results of statistical analysis on the ionospheric electron density data measured by the Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) satellite over a period of 6 years (2005-2010), in order to investigate the correlation between seismic activity and equatorial plasma density variations. To simplify the analysis, three equatorial regions with frequent earthquakes were selected and then one-dimensional time series analysis between the daily seismic activity indices and the equatorial ionization anomaly (EIA) intensity indices, which represent relative equatorial electron density increase, were performed for each region. The statistically significant values of the lagged cross-correlation function, particularly in the region with minimal effects of longitudinal asymmetry, indicate that some of the very large earthquakes with M > 5.0 in the low-latitude region can accompany observable precursory and concurrent EIA enhancements, even though the seismic activity is not the most significant driver of the equatorial ionospheric evolution. The physical mechanisms of the seismo-ionospheric coupling is consistent with our observation, and the possibility of earthquake prediction using the EIA intensity variation is discussed.

  9. Collapse of large vapor bubbles

    NASA Technical Reports Server (NTRS)

    Tegart, J.; Dominick, S.

    1982-01-01

    The refilling of propellant tanks while in a low-gravity environment requires that entrapped vapor bubbles be collapsed by increasing the system pressure. Tests were performed to verify the mechanism of collapse for these large vapor bubbles with the thermodynamic conditions, geometry, and boundary conditions being those applicable to propellant storage systems. For these conditions it was found that conduction heat transfer determined the collapse rate, with the specific bubble geometry having a significant influence.

  10. Evolution of structural properties of Si(001) subsurface layer containing He bubbles by low temperature annealing

    NASA Astrophysics Data System (ADS)

    Lomov, Andrey A.; Shcherbachev, Kirill D.; Chesnokov, Yury M.; Kiselev, Dmitrii A.; Miakonkikh, Andrew V.

    2016-12-01

    Transformation of microstructure of the buried He bubbles of silicon surface layer after He+ low energy plasma immersion ion implantation and subsequent low-thermal annealing were studied by high resolution X-ray diffraction and reflectivity, Rutherford backscattering spectroscopy, transmission electron and atomic force microscopy methods. The ion energies varied in the range 2 - 5 keV at constant exposure ion doses 5×·1017 cm-2. Formation of a three-layer structure (amorphous a-SiOx layer at the surface, amorphous a-Si layer with helium bubbles and buried helium bubbles heavy damaged tensile strained crystalline c-Si layer) that is retained after annealing was observed. Helium-filled bubbles are observed in an as-implanted sample. Evolution of the multilayer structure and the bubbles due to annealing are revealed and comparing with the structural parameters of an as-implanted sample was done. The bubbles are shown to trend into two-model distribution after annealing. The characteristic bubble size is determined to be in a range of 2-20 nm. Large size helium-filled bubbles are located in the amorphous a-Si layer. Small size bubbles are revealed inside the damaged crystalline Si layer. These bubbles are a major source of tensile strain in c-Si layer.

  11. The effect of a negatively chirped laser pulse on the evolution of bubble structure in nonlinear bubble regime

    NASA Astrophysics Data System (ADS)

    Vosoughian, H.; Riazi, Z.; Afarideh, H.; Sarri, G.

    2016-12-01

    In the nonlinear bubble regime, due to localized depletion at the front of the pulse during its propagation through the plasma, the phase shift between carrier waves and pulse envelope plays an important role in plasma response. The Carrier-Envelope Phase (CEP) breaks down the symmetric transverse ponderomotive force of the laser pulse that makes the bubble structure unstable. Our studies using a series of two-dimensional particle-in-cell simulations show that the utilization of a negatively chirped laser pulse is more effective in controlling the pulse depletion rate, and consequently, the effect of the CEP in the bubble regime. The results indicate that the pulse depletion rate diminishes during the propagation of the pulse in plasma that leads to postponing the effect of Carrier-Envelope Phase (CEP) in plasma response, and therefore, maintaining the stability of the bubble shape for a longer time than the un-chirped laser pulse. As a result, a localized electron bunch with higher maximum energy is produced during the acceleration process.

  12. Neutron detection via bubble chambers.

    PubMed

    Jordan, D V; Ely, J H; Peurrung, A J; Bond, L J; Collar, J I; Flake, M; Knopf, M A; Pitts, W K; Shaver, M; Sonnenschein, A; Smart, J E; Todd, L C

    2005-01-01

    Research investigating the application of pressure-cycled bubble chambers to fast neutron detection is described. Experiments with a Halon-filled chamber showed clear sensitivity to an AmBe neutron source and insensitivity to a (137)Cs gamma source. Bubble formation was documented using high-speed photography, and a ceramic piezo-electric transducer element registered the acoustic signature of bubble formation. In a second set of experiments, the bubble nucleation response of a Freon-134a chamber to an AmBe neutron source was documented with high-speed photography.

  13. Helium bubble bursting in tungsten

    SciTech Connect

    Sefta, Faiza; Juslin, Niklas; Wirth, Brian D.

    2013-12-28

    Molecular dynamics simulations have been used to systematically study the pressure evolution and bursting behavior of sub-surface helium bubbles and the resulting tungsten surface morphology. This study specifically investigates how bubble shape and size, temperature, tungsten surface orientation, and ligament thickness above the bubble influence bubble stability and surface evolution. The tungsten surface is roughened by a combination of adatom “islands,” craters, and pinholes. The present study provides insight into the mechanisms and conditions leading to various tungsten topology changes, which we believe are the initial stages of surface evolution leading to the formation of nanoscale fuzz.

  14. Droplets, Bubbles and Ultrasound Interactions.

    PubMed

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics.

  15. Bubble measuring instrument and method

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)

    2003-01-01

    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer, respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  16. Bubble Measuring Instrument and Method

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)

    2002-01-01

    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer. respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  17. Simulations of the equatorial thermosphere anomaly: Geomagnetic activity modulation

    NASA Astrophysics Data System (ADS)

    Lei, Jiuhou; Wang, Wenbin; Thayer, Jeffrey P.; Luan, Xiaoli; Dou, Xiankang; Burns, Alan G.; Solomon, Stanley C.

    2014-08-01

    The modulation of geomagnetic activity on the equatorial thermosphere anomaly (ETA) in thermospheric temperature under the high solar activity condition is investigated using the Thermosphere Ionosphere Electrodynamics General Circulation Model simulations. The model simulations during the geomagnetically disturbed interval, when the north-south component of the interplanetary magnetic field (Bz) oscillates between southward and northward directions, are analyzed and also compared with those under the quiet time condition. Our results show that ionospheric electron densities increase greatly in the equatorial ionization anomaly (EIA) crest region and decrease around the magnetic equator during the storm time, resulting from the enhanced eastward electric fields. The impact of both the direct heat deposition at high latitudes and the modulation of the storm time enhanced EIA crests on the ETA are subsequently studied. The increased plasma densities over the EIA crest region enhance the field-aligned ion drag that accelerates the poleward meridional winds and consequently their associated adiabatic cooling effect. This process alone produces a deeper temperature trough over the magnetic equator as a result of the enhanced divergence of meridional winds. Moreover, the enhanced plasma-neutral collisional heating at higher latitudes associated with the ionospheric positive storm effect causes a weak increase of the ETA crests. On the other hand, strong changes of the neutral temperature are mainly confined to higher latitudes. Nevertheless, the changes of the ETA purely due to the increased plasma density are overwhelmed by those associated with the storm time heat deposition, which is the major cause of an overall elevated temperature in both the ETA crests and trough during the geomagnetically active period. Associated with the enhanced neutral temperature at high latitudes due to the heat deposition, the ETA crest-trough differences become larger under the minor

  18. Bubble Size Distribution in a Vibrating Bubble Column

    NASA Astrophysics Data System (ADS)

    Mohagheghian, Shahrouz; Wilson, Trevor; Valenzuela, Bret; Hinds, Tyler; Moseni, Kevin; Elbing, Brian

    2016-11-01

    While vibrating bubble columns have increased the mass transfer between phases, a universal scaling law remains elusive. Attempts to predict mass transfer rates in large industrial scale applications by extrapolating laboratory scale models have failed. In a stationary bubble column, mass transfer is a function of phase interfacial area (PIA), while PIA is determined based on the bubble size distribution (BSD). On the other hand, BSD is influenced by the injection characteristics and liquid phase dynamics and properties. Vibration modifies the BSD by impacting the gas and gas-liquid dynamics. This work uses a vibrating cylindrical bubble column to investigate the effect of gas injection and vibration characteristics on the BSD. The bubble column has a 10 cm diameter and was filled with water to a depth of 90 cm above the tip of the orifice tube injector. BSD was measured using high-speed imaging to determine the projected area of individual bubbles, which the nominal bubble diameter was then calculated assuming spherical bubbles. The BSD dependence on the distance from the injector, injector design (1.6 and 0.8 mm ID), air flow rates (0.5 to 5 lit/min), and vibration conditions (stationary and vibration conditions varying amplitude and frequency) will be presented. In addition to mean data, higher order statistics will also be provided.

  19. Plasma observations at the earth's magnetic equator

    NASA Technical Reports Server (NTRS)

    Olsen, R. C.; Shawhan, S. D.; Gallagher, D. L.; Chappell, C. R.; Green, J. L.

    1987-01-01

    New observations of particle and wave data from the magnetic equator from the DE 1 spacecraft are reported. The results demonstrate that the equatorial plasma population is predominantly hydrogen and that the enhanced ion fluxes observed at the equator occur without an increase in the total plasma density. Helium is occasionally found heated along with the protons, and forms about 10 percent of the equatorially trapped population at such times. The heated H(+) ions can be characterized by a bi-Maxwellian with kT(parallel) = 0.5-1.0 eV and kT = 5-50 eV, with a density of 10-100/cu cm. The total plasma density is relatively constant with latitude. First measurements of the equatorially trapped plasma and coincident UHR measurements show that the trapped plasma is found in conjunction with equatorial noise.

  20. Space plasma physics research

    NASA Technical Reports Server (NTRS)

    Comfort, Richard H.; Horwitz, James L.

    1993-01-01

    During the course of this grant, work was performed on a variety of topics and there were a number of significant accomplishments. A summary of these accomplishments is included. The topics studied include empirical model data base, data reduction for archiving, semikinetic modeling of low energy plasma in the inner terrestrial magnetosphere and ionosphere, O(+) outflows, equatorial plasma trough, and plasma wave ray-tracing studies. A list of publications and presentations which have resulted from this research is also included.

  1. Visualization of airflow growing soap bubbles

    NASA Astrophysics Data System (ADS)

    Al Rahbi, Hamood; Bock, Matthew; Ryu, Sangjin

    2016-11-01

    Visualizing airflow inside growing soap bubbles can answer questions regarding the fluid dynamics of soap bubble blowing, which is a model system for flows with a gas-liquid-gas interface. Also, understanding the soap bubble blowing process is practical because it can contribute to controlling industrial processes similar to soap bubble blowing. In this study, we visualized airflow which grows soap bubbles using the smoke wire technique to understand how airflow blows soap bubbles. The soap bubble blower setup was built to mimic the human blowing process of soap bubbles, which consists of a blower, a nozzle and a bubble ring. The smoke wire was placed between the nozzle and the bubble ring, and smoke-visualized airflow was captured using a high speed camera. Our visualization shows how air jet flows into the growing soap bubble on the ring and how the airflow interacts with the soap film of growing bubble.

  2. Ion-neutral coupling: Geomagnetic activity modulation of the Equatorial Thermosphere Anomaly

    NASA Astrophysics Data System (ADS)

    Lei, J.; Dou, X.; Thayer, J. P.; Wang, W.; Luan, X.

    2012-12-01

    The two-way momentum coupling between the neutral thermosphere and its plasma environment plays an important role in producing the trough of the Equatorial Thermosphere Anomaly (ETA). It was found that field-aligned ion drag associated with the equatorial ionosphere anomaly (EIA) can result in vertical motion in the neutral gas over the magnetic equator leading to a reduction in temperature and a trough in thermosphere density at a given altitude. It was also found that the formation of the ETA crests is attributed to plasma-neutral heating which has two peaks in the topside ionosphere aside the magnetic equator. This study is devoted to address the geomagnetic activity affect on the coupling between the equatorial ionosphere and thermosphere on the basis of satellite observations and first-principle ionosphere-thermosphere simulations. The deposited magnetospheric energy into the upper atmosphere associated with geomagnetic activity changes the ionosphere and its background neutral atmosphere significantly and hence their coupling processes. On the other hand, the enhanced electric field and neutral wind during storm time can modulate the EIA and ETA and alter the momentum and energy coupling between the thermosphere and ionosphere in the equatorial F region. Results from NCAR-TIEGCM simulations will help elucidate the ion-neutral coupling processes related to the ETA under active geomagnetic conditions

  3. Digital hf radar observations of equatorial spread-F

    SciTech Connect

    Argo, P.E.

    1984-01-01

    Modern digital ionosondes, with both direction finding and doppler capabilities can provide large scale pictures of the Spread-F irregularity regions. A morphological framework has been developed that allows interpretation of the hf radar data. A large scale irregularity structure is found to be nightward of the dusk terminator, stationary in the solar reference frame. As the plasma moves through this foehn-wall-like structure it descends, and irregularities may be generated. Localized upwellings, or bubbles, may be produced, and they drift with the background plasma. The spread-F irregularity region is found to be best characterized as a partly cloudy sky, due to the patchiness of the substructures. 13 references, 16 figures.

  4. Stable tridimensional bubble clusters in multi-bubble sonoluminescence (MBSL).

    PubMed

    Rosselló, J M; Dellavale, D; Bonetto, F J

    2015-01-01

    In the present work, stable clusters made of multiple sonoluminescent bubbles are experimentally and theoretically studied. Argon bubbles were acoustically generated and trapped using bi-frequency driving within a cylindrical chamber filled with a sulfuric acid aqueous solution (SA85w/w). The intensity of the acoustic pressure field was strong enough to sustain, during several minutes, a large number of positionally and spatially fixed (without pseudo-orbits) sonoluminescent bubbles over an ellipsoidally-shaped tridimensional array. The dimensions of the ellipsoids were studied as a function of the amplitude of the applied low-frequency acoustic pressure (PAc(LF)) and the static pressure in the fluid (P0). In order to explain the size and shape of the bubble clusters, we performed a series of numerical simulations of the hydrodynamic forces acting over the bubbles. In both cases the observed experimental behavior was in excellent agreement with the numerical results. The simulations revealed that the positionally stable region, mainly determined by the null primary Bjerknes force (F→Bj), is defined as the outer perimeter of an axisymmetric ellipsoidal cluster centered in the acoustic field antinode. The role of the high-frequency component of the pressure field and the influence of the secondary Bjerknes force are discussed. We also investigate the effect of a change in the concentration of dissolved gas on the positional and spatial instabilities through the cluster dimensions. The experimental and numerical results presented in this paper are potentially useful for further understanding and modeling numerous current research topics regarding multi-bubble phenomena, e.g. forces acting on the bubbles in multi-frequency acoustic fields, transient acoustic cavitation, bubble interactions, structure formation processes, atomic and molecular emissions of equal bubbles and nonlinear or unsteady acoustic pressure fields in bubbly media.

  5. Bubble formation in microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    1996-01-01

    An extensive experimental program was initiated for the purpose of understanding the mechanisms leading to bubble generation during fluid handling procedures in a microgravity environment. Several key fluid handling procedures typical for PCG experiments were identified for analysis in that program. Experiments were designed to specifically understand how such procedures can lead to bubble formation. The experiments were then conducted aboard the NASA KC-135 aircraft which is capable of simulating a low gravity environment by executing a parabolic flight attitude. However, such a flight attitude can only provide a low gravity environment of approximately 10-2go for a maximum period of 30 seconds. Thus all of the tests conducted for these experiments were designed to last no longer than 20 seconds. Several experiments were designed to simulate some of the more relevant fluid handling procedures during protein crystal growth experiments. These include submerged liquid jet cavitation, filling of a cubical vessel, submerged surface scratch, attached drop growth, liquid jet impingement, and geysering experiments. To date, four separate KC-135 flight campaigns were undertaken specifically for performing these experiments. However, different experiments were performed on different flights.

  6. Bubble formation in microgravity

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    1994-01-01

    Two KC-135 flight campaigns have been conducted to date which are specifically dedicated to study bubble formation in microgravity. The first flight was conducted during March 14-18, 1994, and the other during June 20-24, 1994. The results from the June 1994 flight have not been analyzed yet, while the results from the March flight have been partially analyzed. In the first flight three different experiments were performed, one with the specific aim at determining whether or not cavitation can take place during any of the fluid handling procedures adopted in the shuttle bioprocessing experiments. The other experiments were concerned with duplicating some of the procedures that resulted in bubble formation, namely the NCS filling procedure and the needle scratch of a solid surface. The results from this set of experiments suggest that cavitation did not take place during any of the fluid handling procedures. The results clearly indicate that almost all were generated as a result of the breakup of the gas/liquid interface. This was convincingly demonstrated in the scratch tests as well as in the liquid fill tests.

  7. Triangular bubble spline surfaces

    PubMed Central

    Kapl, Mario; Byrtus, Marek; Jüttler, Bert

    2011-01-01

    We present a new method for generating a Gn-surface from a triangular network of compatible surface strips. The compatible surface strips are given by a network of polynomial curves with an associated implicitly defined surface, which fulfill certain compatibility conditions. Our construction is based on a new concept, called bubble patches, to represent the single surface patches. The compatible surface strips provide a simple Gn-condition between two neighboring bubble patches, which are used to construct surface patches, connected with Gn-continuity. For n≤2, we describe the obtained Gn-condition in detail. It can be generalized to any n≥3. The construction of a single surface patch is based on Gordon–Coons interpolation for triangles. Our method is a simple local construction scheme, which works uniformly for vertices of arbitrary valency. The resulting surface is a piecewise rational surface, which interpolates the given network of polynomial curves. Several examples of G0, G1 and G2-surfaces are presented, which have been generated by using our method. The obtained surfaces are visualized with reflection lines to demonstrate the order of smoothness. PMID:22267872

  8. Tuning bubbly structures in microchannels

    PubMed Central

    Vuong, Sharon M.; Anna, Shelley L.

    2012-01-01

    Foams have many useful applications that arise from the structure and size distribution of the bubbles within them. Microfluidics allows for the rapid formation of uniform bubbles, where bubble size and volume fraction are functions of the input gas pressure, liquid flow rate, and device geometry. After formation, the microchannel confines the bubbles and determines the resulting foam structure. Bubbly structures can vary from a single row (“dripping”), to multiple rows (“alternating”), to densely packed bubbles (“bamboo” and dry foams). We show that each configuration arises in a distinct region of the operating space defined by bubble volume and volume fraction. We describe the boundaries between these regions using geometric arguments and show that the boundaries are functions of the channel aspect ratio. We compare these geometric arguments with foam structures observed in experiments using flow-focusing, T-junction, and co-flow designs to generate stable nitrogen bubbles in aqueous surfactant solution and stable droplets in oil containing dissolved surfactant. The outcome of this work is a set of design parameters that can be used to achieve desired foam structures as a function of device geometry and experimental control parameters. PMID:22655008

  9. Bubble Transport through Micropillar Arrays

    NASA Astrophysics Data System (ADS)

    Lee, Kenneth; Savas, Omer

    2012-11-01

    In current energy research, artificial photosynthetic devices are being designed to split water and harvest hydrogen gas using energy from the sun. In one such design, hydrogen gas bubbles evolve on the catalytic surfaces of arrayed micropillars. If these bubbles are not promptly removed from the surface, they can adversely affect gas evolution rates, water flow rates, sunlight capture, and heat management of the system. Therefore, an efficient method of collecting the evolved gas bubbles is crucial. Preliminary flow visualization has been conducted of bubbles advecting through dense arrays of pillars. Bubbles moving through square and hexagonal arrays are tracked, and the results are qualitatively described. Initial attempts to correlate bubble motion with relevant lengthscales and forces are also presented. These observations suggest how bubble transport within such pillar arrays can be managed, as well as guide subsequent experiments that investigate bubble evolution and collection. This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993.

  10. Bubble detector investigations in China.

    PubMed

    Guo, Shi-Lun

    2006-01-01

    Investigation on bubble detectors started in China in 1989. Five types of bubble detectors have been developed, with LET thresholds ranging from 0.05 to 6.04 MeV mg(-1) cm(2) at 25 degrees C. The neutron response of bubble detectors made with freon-12 has been investigated with mono-energetic neutrons from 20 keV to 19 MeV. Its effective threshold energy for neutron detection is approximately 100 keV at 28 degrees C. The response above this threshold is approximately 1.5 x 10(-4) (bubble cm(-2))/(n cm(-2)). Bubble detectors are unique not only for neutron dosimetry but also for monitoring and identifying high-energy heavy ions such as cosmic radiation in the space. High-energy heavy ion tracks in large size bubble detectors have been investigated in cooperation with scientists in Japan. The key parameter behind the thresholds of bubble detectors for track registration is the critical rate of energy loss. Three approaches to identify high-energy heavy ions with bubble detectors are suggested.

  11. He bubble growth and interaction in W nano-tendrils

    NASA Astrophysics Data System (ADS)

    Smirnov, R. D.; Krasheninnikov, S. I.

    2015-11-01

    Tungsten plasma-facing components (PFCs) in fusion devices are exposed to variety of extreme plasma conditions, which can lead to alteration of tungsten micro-structure and degradation of the PFCs. In particular, it is known that filamentary nano-structures called fuzz can grow on helium plasma exposed tungsten surfaces. However, mechanism of the fuzz growth is still not fully understood. Existing experimental observations indicate that formation of helium nano-bubbles in tungsten plays essential role in fuzz formation and growth. In this work we investigate mechanisms of growth and interaction of helium bubbles in fuzz-like nano-tendrils using molecular dynamics simulations with LAMMPS code. We show that growth of the bubbles has anisotropic character producing complex stress field in the nano-tendrils with distinct compression and tension regions. We found that formation of large inter-bubble tension regions can cause lateral stretching and bending of the tendrils that consequently lead to their elongation and thinning at the stretching sites. The rate of nano-tendril growth due to the described mechanism is also evaluated from the simulations.

  12. Intense low-energy ion populations at low equatorial altitudes

    NASA Technical Reports Server (NTRS)

    Williams, D. J.; Frank, L. A.

    1984-01-01

    The ISEE 1 satellite trajectory often passed through the magnetospheric region during the time from November 1977 to April 1978. On every occasion, the medium energy particles instrument (MEPI) of the satellite recorded an intense ion population in a region corresponding to low equatorial altitudes. An intensity peak was observed in the lowest MEPI energy channel. A comparison of high bit rate MEPI data with simultaneous data from the LEPEDEA plasma instrument on Nov. 29, 1977 1930-2000 UT shows additional peaks in the ion population existing in the L of 2 to at least 4. In the present report, data characterizing these ion populations are presented, and implications are discussed in terms of source and loss mechanisms.

  13. Implications of the small aspect angles of equatorial spread F

    SciTech Connect

    Hysell, D.L.; Farley, D.T.

    1996-03-01

    Small-scale equatorial spread F irregularities are almost perfectly aligned with the geomagnetic field. The authors develop here an analytic plasma kinetic theory of small-scale, quasi-field-aligned irregularities that include ion viscosity and finite Larmor radius effects. They conclude, for one thing, that the measured aspect angles are too small to be consistent with a dissipative drift wave source of 3-m irregularities. Nonlinearly driven flute modes appear to be the only available mechanism. The authors compare the relative influence of parallel and perpendicular dissipation and conclude that the aspect width depends only weakly on any single geophysical parameters, such as collision frequency, gradient length, temperature, etc. This finding is consistent with their observation that the measured aspect angles vary little with altitude and only weakly with instability level. 29 refs., 5 figs.

  14. Poynting vector and wave vector directions of equatorial chorus

    NASA Astrophysics Data System (ADS)

    Taubenschuss, Ulrich; Santolík, Ondřej; Breuillard, Hugo; Li, Wen; Le Contel, Olivier

    2016-12-01

    We present new results on wave vectors and Poynting vectors of chorus rising and falling tones on the basis of 6 years of THEMIS (Time History of Events and Macroscale Interactions during Substorms) observations. The majority of wave vectors is closely aligned with the direction of the ambient magnetic field (B0). Oblique wave vectors are confined to the magnetic meridional plane, pointing away from Earth. Poynting vectors are found to be almost parallel to B0. We show, for the first time, that slightly oblique Poynting vectors are directed away from Earth for rising tones and toward Earth for falling tones. For the majority of lower band chorus elements, the mutual orientation between Poynting vectors and wave vectors can be explained by whistler mode dispersion in a homogeneous collisionless cold plasma. Upper band chorus seems to require inclusion of collisional processes or taking into account azimuthal anisotropies in the propagation medium. The latitudinal extension of the equatorial source region can be limited to ±6∘ around the B0 minimum or approximately ±5000 km along magnetic field lines. We find increasing Poynting flux and focusing of Poynting vectors on the B0 direction with increasing latitude. Also, wave vectors become most often more field aligned. A smaller group of chorus generated with very oblique wave normals tends to stay close to the whistler mode resonance cone. This suggests that close to the equatorial source region (within ˜20∘ latitude), a wave guidance mechanism is relevant, for example, in ducts of depleted or enhanced plasma density.

  15. The Dynamics of Equatorial F Layer Irregularities.

    DTIC Science & Technology

    2014-09-26

    RD-8158 650 THE DYNAMICS OF EQUATORIAL F LAYER IRREGULARITIE5(U) BOSTON UNIV MR DEPT OF ASTRONOMY J AARONS ET AL. 38 JUN 85 RCBU-6276-5 N88814-82-K...Jules Aarons and Michael Mendillo, Co-Principal Investigators Department of Astronomy Boston University Boston, MA 02215 BOSTON UNIVERSITY Thi doumnt

  16. Three-Dimensional Numerical Simulations of Equatorial Spread F: Results and Observations in the Pacific Sector

    NASA Technical Reports Server (NTRS)

    Aveiro, H. C.; Hysell, D. L.; Caton, R. G.; Groves, K. M.; Klenzing, J.; Pfaff, R. F.; Stoneback, R.; Heelis, R. A.

    2012-01-01

    A three-dimensional numerical simulation of plasma density irregularities in the postsunset equatorial F region ionosphere leading to equatorial spread F (ESF) is described. The simulation evolves under realistic background conditions including bottomside plasma shear flow and vertical current. It also incorporates C/NOFS satellite data which partially specify the forcing. A combination of generalized Rayleigh-Taylor instability (GRT) and collisional shear instability (CSI) produces growing waveforms with key features that agree with C/NOFS satellite and ALTAIR radar observations in the Pacific sector, including features such as gross morphology and rates of development. The transient response of CSI is consistent with the observation of bottomside waves with wavelengths close to 30 km, whereas the steady state behavior of the combined instability can account for the 100+ km wavelength waves that predominate in the F region.

  17. Constrained Vapor Bubble

    NASA Technical Reports Server (NTRS)

    Huang, J.; Karthikeyan, M.; Plawsky, J.; Wayner, P. C., Jr.

    1999-01-01

    The nonisothermal Constrained Vapor Bubble, CVB, is being studied to enhance the understanding of passive systems controlled by interfacial phenomena. The study is multifaceted: 1) it is a basic scientific study in interfacial phenomena, fluid physics and thermodynamics; 2) it is a basic study in thermal transport; and 3) it is a study of a heat exchanger. The research is synergistic in that CVB research requires a microgravity environment and the space program needs thermal control systems like the CVB. Ground based studies are being done as a precursor to flight experiment. The results demonstrate that experimental techniques for the direct measurement of the fundamental operating parameters (temperature, pressure, and interfacial curvature fields) have been developed. Fluid flow and change-of-phase heat transfer are a function of the temperature field and the vapor bubble shape, which can be measured using an Image Analyzing Interferometer. The CVB for a microgravity environment, has various thin film regions that are of both basic and applied interest. Generically, a CVB is formed by underfilling an evacuated enclosure with a liquid. Classification depends on shape and Bond number. The specific CVB discussed herein was formed in a fused silica cell with inside dimensions of 3x3x40 mm and, therefore, can be viewed as a large version of a micro heat pipe. Since the dimensions are relatively large for a passive system, most of the liquid flow occurs under a small capillary pressure difference. Therefore, we can classify the discussed system as a low capillary pressure system. The studies discussed herein were done in a 1-g environment (Bond Number = 3.6) to obtain experience to design a microgravity experiment for a future NASA flight where low capillary pressure systems should prove more useful. The flight experiment is tentatively scheduled for the year 2000. The SCR was passed on September 16, 1997. The RDR is tentatively scheduled for October, 1998.

  18. Wave Forcing of Saturn's Equatorial Oscillation

    NASA Technical Reports Server (NTRS)

    Flasar, F. M.; Schlinder, P. J.; Guerlet, S.; Fouchet, T.

    2011-01-01

    Ground-based measurements and Cassini data from CIRS thermal-infrared spectra and radio-occultation soundings have characterized the spatial structure and temporal behavior of a 15-year equatorial oscillation in Saturn's stratosphere. The equatorial region displays a vertical pattern of alternating warm and cold anomalies and, concomitantly, easterly and westerly winds relative to the cloud-top winds, with a peak-to-peak amplitude of 200 m/s. Comparison of the Cassini data over a four-year period has established that the pattern of mean zonal winds and temperatures descends at a rate of roughly I scale height over 4 years. This behavior is reminiscent of the equatorial oscillations in Earth's middle atmosphere. Here the zonal-mean spatial structure and descending pattern are driven by the absorption of vertically propagating waves. The maximum excursions in the pattern of easterly and westerly winds is determined by the limits of the zonal phase velocities of the waves. Here we report on the characterization of the waves seen in the temperature profiles retrieved from the Cassini radio-occultation soundings. The equatorial profiles exhibit a complex pattern of wavelike structure with dimensions one pressure scale height and smaller. We combine a spectral decomposition with a WKBJ analysis, where the vertical wavelength is assumed to vary slowly with the ambient static stability and doppler-shifted phase velocity of the wave. Use of the temperature and zonal wind maps from CIRS makes this approach viable. On Earth, the wave forcing associated with the equatorial oscillations generates secondary meridional circulations that affect the mean flow and planetary wave ducting well away from the equator. This may relate to the triggering of the recently reported mid-latitude storms on Saturn.

  19. Quasi-Analytic Model of OTHR Clutter from Equatorial Bubbles in the Ionosphere

    DTIC Science & Technology

    2006-02-27

    raytrace code developed to study OTH radar clutter is based on the theory provided by Hazelgrove [1954], Yeh and Liu [1972], Jones and Stephenson [1975... radar (OTHR) sky wave becomes Doppler shifted because the ionosphere through which the radio rays are propagating changes. One source of these changes...trace computations to yield predictions for Doppler shifts in the unstable ionosphere. 15. SUBJECT TERMS Over-the-horizon radar Computer model of the

  20. Statistical description of low-latitude plasma blobs as observed by DMSP F15 and KOMPSAT-1

    NASA Astrophysics Data System (ADS)

    Park, J.; Min, K. W.; Kim, V. P.; Kil, H.; Kim, H. J.; Lee, J. J.; Lee, E.; Kim, S. J.; Lee, D. Y.; Hairston, M.

    We investigated the global distribution of low-latitude plasma blobs using in-situ plasma density measurements from Korea Multi-Purpose Satellite-1 KOMPSAT-1 and Defense Meteorological Satellite Program DMSP F15 The seasonal-longitudinal S L distribution of blobs is generally consistent with that of equatorial plasma bubbles EPBs but between them exist two notable differences First during equinoxes the blob activity is inhibited around the Atlantic region Second during the June solstice the African peak is rather suppressed in the distribution KOMPSAT-1 at the lower altitude encountered blobs more frequently than DMSP F15 The occurrence probability of plasma blobs is less subjected to the yearly variation of solar activity And the latitudinal distribution of the blobs shows strong asymmetry during solstices Most of them are concentrated on the winter hemisphere where the background density is low and the inter-hemispheric plasma transport is poleward along the geomagnetic field line And the asymmetry becomes weak as the solar activity decreases suggesting that the blob generation bears connection with the fountain effect inside EPBs and the poleward plasma transport

  1. Bubble Growth in Lunar Basalts

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2009-05-01

    Although Moon is usually said to be volatile-"free", lunar basalts are often vesicular with mm-size bubbles. The vesicular nature of the lunar basalts suggests that they contained some initial gas concentration. A recent publication estimated volatile concentrations in lunar basalts (Saal et al. 2008). This report investigates bubble growth on Moon and compares with that on Earth. Under conditions relevant to lunar basalts, bubble growth in a finite melt shell (i.e., growth of multiple regularly-spaced bubbles) is calculated following Proussevitch and Sahagian (1998) and Liu and Zhang (2000). Initial H2O content of 700 ppm (Saal et al. 2008) or lower is used and the effect of other volatiles (such as carbon dioxide, halogens, and sulfur) is ignored. H2O solubility at low pressures (Liu et al. 2005), concentration-dependent diffusivity in basalt (Zhang and Stolper 1991), and lunar basalt viscosity (Murase and McBirney 1970) are used. Because lunar atmospheric pressure is essentially zero, the confining pressure on bubbles is completely supplied by the overlying magma. Due to low H2O content in lunar basaltic melt (700 ppm H2O corresponds to a saturation pressure of 75 kPa), H2O bubbles only grow in the upper 16 m of a basalt flow or lake. A depth of 20 mm corresponds to a confining pressure of 100 Pa. Hence, vesicular lunar rocks come from very shallow depth. Some findings from the modeling are as follows. (a) Due to low confining pressure as well as low viscosity, even though volatile concentration is very low, bubble growth rate is extremely high, much higher than typical bubble growth rates in terrestrial melts. Hence, mm-size bubbles in lunar basalts are not strange. (b) Because the pertinent pressures are so low, bubble pressure due to surface tension plays a main role in lunar bubble growth, contrary to terrestrial cases. (c) Time scale to reach equilibrium bubble size increases as the confining pressure increases. References: (1) Liu Y, Zhang YX (2000) Earth

  2. Partial coalescence of soap bubbles

    NASA Astrophysics Data System (ADS)

    Harris, Daniel M.; Pucci, Giuseppe; Bush, John W. M.

    2015-11-01

    We present the results of an experimental investigation of the merger of a soap bubble with a planar soap film. When gently deposited onto a horizontal film, a bubble may interact with the underlying film in such a way as to decrease in size, leaving behind a smaller daughter bubble with approximately half the radius of its progenitor. The process repeats up to three times, with each partial coalescence event occurring over a time scale comparable to the inertial-capillary time. Our results are compared to the recent numerical simulations of Martin and Blanchette and to the coalescence cascade of droplets on a fluid bath.

  3. Three dimensional breakdown of an impulsively forced laminar separation bubble

    NASA Astrophysics Data System (ADS)

    Michelis, Theodoros; Kotsonis, Marios

    2016-11-01

    The spatio-temporal behaviour of a short laminar separation bubble is investigated experimentally. The bubble develops on a flat plate driven by an adverse pressure gradient wall at Reynolds number based on displacement thickness at separation of Reδs* = 975 . The boundary layer is impulsively forced by means of AC dielectric barrier discharge plasma actuator located upstream of the separation point. The full four-dimensional flow development is captured by time resolved tomographic PIV measurements using the multi-pass light amplification technique. Immediately after forcing, a convectively unstable wave packet emerges due to selective amplification of modes which interacts with the reattachment process. The interaction becomes non-linear at the reattachment region, where Λ structures typical of laminar separation bubbles are captured before the occurrence of breakdown. The structures and breakdown are characterised in terms of temporal evolution, spanwise coherence and energy budget. The diminishing of Λ structures triggers a sharp reduction in size of the separation bubble by interfering with the natural shedding process. As a result, the bubble significantly elongates without shedding undergoing bursting before recovering to its unperturbed state.

  4. Terminating marine methane bubbles by superhydrophobic sponges.

    PubMed

    Chen, Xiao; Wu, Yuchen; Su, Bin; Wang, Jingming; Song, Yanlin; Jiang, Lei

    2012-11-14

    Marine methane bubbles are absorbed, steadily stored, and continuously transported based on the employment of superhydrophobic sponges. Antiwetting sponges are water-repellent in the atmosphere and absorb gas bubbles under water. Their capacity to store methane bubbles increases with enhanced submerged depth. Significantly, trapped methane bubbles can be continuously transported driven by differential pressure.

  5. Bubble Dynamics and Resulting Noise from Traveling Bubble Cavitation.

    DTIC Science & Technology

    1982-04-13

    has resulted in models which aqree well with bubble dynamics recorded by high speed film . Chahine, et. al. (23) incorporated asymmetric bubble...recording on the tape soundtrack . 3.8 Measurement of Gas Nuclei in Water The role of nuclei density and size in cavitation inception has been the subject...interference between the coherent background and the particle-diffracted radiation exooses photographic film in the far-field of the nuclei. This

  6. Aspherical bubble dynamics and oscillation times

    SciTech Connect

    Vogel, A.; Noack, J.; Chapyak, E.J.; Godwin, R.P.

    1999-06-01

    The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored by time-resolved photography and numerical simulations. The growth-collapse period of cylindrical bubbles of large aspect ratio (length:diameter {approximately}20) differs only slightly from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble size and energy even for aspherical bubbles. The change of the oscillation period of bubbles near solid walls and elastic (tissue-like) boundaries relative to that of isolated spherical bubbles is also investigated.

  7. Transient bubbles, bublets and breakup

    NASA Astrophysics Data System (ADS)

    Keen, Giles; Blake, John

    1999-11-01

    The non-spherical nature of the collapse of bubbles has important ramifications in many practical situations such as ultrasonic cleaning, tanning of leather, and underwater explosions. In particular the high speed liquid jet that can thread a collapsing bubble is central to the functional performance. An impressive photographic record of a liquid jet was obtained by Crum using a bubble situated in the vicinity of a platform oscillating vertically at a frequency of 60 Hz. A boundary integral method is used to model this situation and is found to closely mimic some of the observations. However, a slight variation of parameters or a change in the phase of the driving frequency can lead to dramatically different bubble behaviour, a feature also observed by Crum.

  8. Partial coalescence of soap bubbles

    NASA Astrophysics Data System (ADS)

    Pucci, G.; Harris, D. M.; Bush, J. W. M.

    2015-06-01

    We present the results of an experimental investigation of the merger of a soap bubble with a planar soap film. When gently deposited onto a horizontal film, a bubble may interact with the underlying film in such a way as to decrease in size, leaving behind a smaller daughter bubble with approximately half the radius of its progenitor. The process repeats up to three times, with each partial coalescence event occurring over a time scale comparable to the inertial-capillary time. Our results are compared to the recent numerical simulations of Martin and Blanchette ["Simulations of surfactant effects on the dynamics of coalescing drops and bubbles," Phys. Fluids 27, 012103 (2015)] and to the coalescence cascade of droplets on a fluid bath.

  9. Driving bubbles out of glass

    NASA Technical Reports Server (NTRS)

    Mattox, D. M.

    1981-01-01

    Surface tension gradient in melt forces gas bubbles to surface, increasing glass strength and transparency. Conventional chemical and buoyant fining are extremely slow in viscous glasses, but tension gradient method moves 250 um bubbles as rapidly as 30 um/s. Heat required for high temperature part of melt is furnished by stationary electrical or natural-gas heater; induction and laser heating are also possible. Method has many applications in industry processes.

  10. Slowing down bubbles with sound

    NASA Astrophysics Data System (ADS)

    Poulain, Cedric; Dangla, Remie; Guinard, Marion

    2009-11-01

    We present experimental evidence that a bubble moving in a fluid in which a well-chosen acoustic noise is superimposed can be significantly slowed down even for moderate acoustic pressure. Through mean velocity measurements, we show that a condition for this effect to occur is for the acoustic noise spectrum to match or overlap the bubble's fundamental resonant mode. We render the bubble's oscillations and translational movements using high speed video. We show that radial oscillations (Rayleigh-Plesset type) have no effect on the mean velocity, while above a critical pressure, a parametric type instability (Faraday waves) is triggered and gives rise to nonlinear surface oscillations. We evidence that these surface waves are subharmonic and responsible for the bubble's drag increase. When the acoustic intensity is increased, Faraday modes interact and the strongly nonlinear oscillations behave randomly, leading to a random behavior of the bubble's trajectory and consequently to a higher slow down. Our observations may suggest new strategies for bubbly flow control, or two-phase microfluidic devices. It might also be applicable to other elastic objects, such as globules, cells or vesicles, for medical applications such as elasticity-based sorting.

  11. Temperature measurements in cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Coutier-Delgosha, Olivier

    2016-11-01

    Cavitation is usually a nearly isothermal process in the liquid phase, but in some specific flow conditions like hot water or cryogenic fluids, significant temperature variations are detected. In addition, a large temperature increase happens inside the cavitation bubbles at the very end of their collapse, due to the fast compression of the gas at the bubble core, which is almost adiabatic. This process is of primary interest in various biomedical and pharmaceutical applications, where the mechanisms of bubble collapse plays a major role. To investigate the amplitude and the spatial distribution of these temperature variations inside and outside the cavitation bubbles, a system based on cold wires has been developed. They have been tested in a configuration of a single bubble obtained by submitting a small air bubble to a large amplitude pressure wave. Some promising results have been obtained after the initial validation tests. This work is funded by the Office of Naval Research Global under Grant N62909-16-1-2116, Dr. Salahuddin Ahmed & Ki-Han Kim program managers.

  12. Bubble baths: just splashing around?

    NASA Astrophysics Data System (ADS)

    Robinson, Wesley; Speirs, Nathan; Sharker, Saberul Islam; Hurd, Randy; Williams, Bj; Truscott, Tadd

    2016-11-01

    Soap Bubbles on the water surface would seem to be an intuitive means for splash suppression, but their presence appears to be a double edged sword. We present on the water entry of hydrophilic spheres where the liquid surface is augmented by the presence of a bubble layer, similar to a bubble bath. While the presence of a bubble layer can diminish splashing upon impact at low Weber numbers, it also induces cavity formation at speeds below the critical velocity. The formation of a cavity generally results in larger Worthington jets and thus, larger amounts of ejected liquid. Bubble layers induce cavity formation by wetting the sphere prior to liquid impact, causing them to form cavities similar to those created by hydrophobic spheres. Droplets present on a pre-wetted sphere disrupt the flow of the advancing liquid during entry, pushing it away from the impacting body to form an entrained air cavity. This phenomena was noted by Worthington with pre-wetted stone marbles, and suggests that the application of a bubble layer is generally ineffective as a means of splash suppression.

  13. Long waves in the equatorial Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Philander, George; Halpern, David; Hansen, Donald; Legeckis, Richard; Miller, Laury; Watts, Randolph; Wimbush, Mark; Paul, Carl; Watts, Randolph; Weisberg, Robert

    Westward traveling waves, with a period of 3 weeks and a wavelength of ˜1000 km, are observed intermittently in the central and eastern equatorial Pacific Ocean (see cover). The waves were first detected in 1975 in satellite measurements of the sea surface temperature [Legeckis, 1977]. Since then, additional measurements (under the auspices of the NOAA program Equatorial Pacific Ocean Climate Studies (EPOCS)) with a variety of instruments—drifting buoys, current meters and temperature sensors on moorings, and inverted echo sounders—have provided considerable information about these waves and have confirmed the hypothesis that they are caused by instabilities associated primarily with the latitudinal shear of the surface currents near the equator [Philander, 1978a; Cox, 1980].

  14. Effect of ouabain on lens equatorial currents.

    PubMed

    Wind, B E; Walsh, S; Patterson, J W

    1988-11-01

    The equatorial potassium current measured with the vibrating probe is a segment of the potassium electrical loop. The equatorial current, J, was measured simultaneously with the PD and with the response to an injected current, I. The injection of sufficient inward current, I, made the PD more negative and increased the electrical gradient so that the current J became zero. The PD at which this occurs (PDJ-0) is the reversal potential. Following treatment with ouabain, the PD and PDJ-0 both become less negative. Since the driving force for the current, J, is equal to the difference between PD and PDJ-0, J may increase, stay the same or decrease depending on the relative changes in PD and PDJ-0. In the presence of ouabain, the PDJ-0 changes in parallel with or more rapidly than the PD.

  15. Bubble-Pen Lithography.

    PubMed

    Lin, Linhan; Peng, Xiaolei; Mao, Zhangming; Li, Wei; Yogeesh, Maruthi N; Rajeeva, Bharath Bangalore; Perillo, Evan P; Dunn, Andrew K; Akinwande, Deji; Zheng, Yuebing

    2016-01-13

    Current lithography techniques, which employ photon, electron, or ion beams to induce chemical or physical reactions for micro/nano-fabrication, have remained challenging in patterning chemically synthesized colloidal particles, which are emerging as building blocks for functional devices. Herein, we develop a new technique - bubble-pen lithography (BPL) - to pattern colloidal particles on substrates using optically controlled microbubbles. Briefly, a single laser beam generates a microbubble at the interface of colloidal suspension and a plasmonic substrate via plasmon-enhanced photothermal effects. The microbubble captures and immobilizes the colloidal particles on the substrate through coordinated actions of Marangoni convection, surface tension, gas pressure, and substrate adhesion. Through directing the laser beam to move the microbubble, we create arbitrary single-particle patterns and particle assemblies with different resolutions and architectures. Furthermore, we have applied BPL to pattern CdSe/ZnS quantum dots on plasmonic substrates and polystyrene (PS) microparticles on two-dimensional (2D) atomic-layer materials. With the low-power operation, arbitrary patterning and applicability to general colloidal particles, BPL will find a wide range of applications in microelectronics, nanophotonics, and nanomedicine.

  16. Models of the Equatorial Ocean Circulation.

    DTIC Science & Technology

    1980-01-01

    doctoral committee for their encouragement and advice in the development of this work. I am especially indebted to Dr. Julian P. McCreary of Nova University...large scale wind fluctuations thousands of kilometers to the west in the Central Pacific ( McCreary , 1977). A better understanding of such events could...all equatorial oceans can be found in Knauss (1963); Philander (1973b); Leetmaa, McCreary and Moore (1980); Tsuchiya (1975); Cochrane et al. (1979) and

  17. Equatorial scintillations: advances since ISEA-6

    SciTech Connect

    Not Available

    1985-01-01

    Our understanding of the morphology of equatorial scintillations has advanced due to more intensive observations at the equatorial anomaly locations in the different longitude zones. The unmistakable effect of the sunspot cycle in controlling irregularity belt width and electron concentration responsible for strong scintillation in the controlling the magnitude of scintillations has been recognized by interpreting scintillation observations inthe light of realistic models of total electron content at various longitudes. A hypothesis based on the alignment of the solar terminator with the geomagnetic flux tubes as an indicator of enhanced scintillation occurrence and another based on the influence of a transequatorial thermospheric neutral wind have been postulated to describe the observed longitudinal variation. A distinct class of equatorial irregularities known as the bottomside sinusoidal (BSS) type was identified. These irregularities occur in very large patches, sometimes in excess of several thousand kilometers in the E-W direction and are associated with frequency spread on ionograms. Scintillations caused by such irregularities exist only in the VHF band, exhibit Fresnel oscillations in intensity spectra and are found to give rise to extremely long durations (approx. several hours) of uninterrrupted scintillations.

  18. Acoustical Emission from Bubbles and Dynamics of Bubbles and Bubble Clouds.

    DTIC Science & Technology

    1997-01-01

    distribution of bubble sizes from a breaking wave , that is immediately following on the entrainment and disintegration of a given volume of air? In the...experimental confirmation was found by later workers. A simple statistical model has been proposed for the initial bubble sizes from breaking waves ...which also has received experimental support. A direct method of calculating wave -generated ripples has been proposed, which accounts quantitatively

  19. FEASTING BLACK HOLE BLOWS BUBBLES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A monstrous black hole's rude table manners include blowing huge bubbles of hot gas into space. At least, that's the gustatory practice followed by the supermassive black hole residing in the hub of the nearby galaxy NGC 4438. Known as a peculiar galaxy because of its unusual shape, NGC 4438 is in the Virgo Cluster, 50 million light-years from Earth. These NASA Hubble Space Telescope images of the galaxy's central region clearly show one of the bubbles rising from a dark band of dust. The other bubble, emanating from below the dust band, is barely visible, appearing as dim red blobs in the close-up picture of the galaxy's hub (the colorful picture at right). The background image represents a wider view of the galaxy, with the central region defined by the white box. These extremely hot bubbles are caused by the black hole's voracious eating habits. The eating machine is engorging itself with a banquet of material swirling around it in an accretion disk (the white region below the bright bubble). Some of this material is spewed from the disk in opposite directions. Acting like high-powered garden hoses, these twin jets of matter sweep out material in their paths. The jets eventually slam into a wall of dense, slow-moving gas, which is traveling at less than 223,000 mph (360,000 kph). The collision produces the glowing material. The bubbles will continue to expand and will eventually dissipate. Compared with the life of the galaxy, this bubble-blowing phase is a short-lived event. The bubble is much brighter on one side of the galaxy's center because the jet smashed into a denser amount of gas. The brighter bubble is 800 light-years tall and 800 light-years across. The observations are being presented June 5 at the American Astronomical Society meeting in Rochester, N.Y. Both pictures were taken March 24, 1999 with the Wide Field and Planetary Camera 2. False colors were used to enhance the details of the bubbles. The red regions in the picture denote the hot gas

  20. Digital ionosonde observations during equatorial spread F-italic

    SciTech Connect

    Argo, P.E.; Kelley, M.C.

    1986-05-01

    In this paper we present and discuss equatorial spread F-italic data taken with a digital ionosonde/HF radar located at Huancayo, Peru. A modified phenomenology is developed which uses the system's ability to do echo location. The onset of irregularities is seen to occur in the east and to move westward, while inside this large-scale structure the plasma is found to drift eastward. A very curious difference has been identified between spread F-italic observations with the ionosonde and with the VHF radar at Jicamarca. At VHF, spread F-italic onset often occurs when the ionosphere is rising, whereas in all five examples presented here, the digital ionosonde detected onset when the apparent ionosphere motion was downward. The result even held on the one night of common data taking. The effect could be instrumental but may be related to the considerable orographic differences in the two sites. Isolated scattering patches are observed and are tentatively identified as detached or ''fossil'' plumes. At frequencies above the nominal f-italic/sub 0/F-italic/sub 2/ the system (and other ionosondes) may in fact function as a coherent radar. During one night, data were obtained simultaneously with the HF radar, a rocket, and the Jicamarca VHF radar. Comparisons of these data are discussed in detail. Finally, additional evidence is presented that acoustic gravity waves play a role in the development of equatorial spread F-italic and in the formation of detached plumes. To be self-consistent, the gravity waves must come from nearby sources such as the tropical rain forest to the east of Jicamarca.

  1. Single-bubble sonoluminescence from hydrogen

    NASA Astrophysics Data System (ADS)

    Yasui, Kyuichi

    1999-09-01

    Single-bubble sonoluminescence (SBSL) from a hydrogen bubble is studied theoretically based on a quasiadiabatic compression model of a bubble collapse. It is clarified that the maximum temperature in a hydrogen bubble in 20 °C water under conditions of SBSL is always about 6000 K due to the effect of chemical reactions inside the bubble. It is suggested that the light emission at such temperature is by the transition from the lowest stable triplet state of the H2 molecule to the repulsive state resulting from two normal atoms (H2*→2H+hν). It is shown that the number of hydrogen molecules inside the bubble remains almost constant in spite of the high temperature and pressure inside the bubble at the collapse. It is also shown that the addition of argon to a hydrogen bubble results in the higher maximum temperature inside the bubble.

  2. Observations of discrete harmonics emerging from equatorial noise

    PubMed Central

    Balikhin, Michael A.; Shprits, Yuri Y.; Walker, Simon N.; Chen, Lunjin; Cornilleau-Wehrlin, Nicole; Dandouras, Iannis; Santolik, Ondrej; Carr, Christopher; Yearby, Keith H.; Weiss, Benjamin

    2015-01-01

    A number of modes of oscillations of particles and fields can exist in space plasmas. Since the early 1970s, space missions have observed noise-like plasma waves near the geomagnetic equator known as ‘equatorial noise'. Several theories were suggested, but clear observational evidence supported by realistic modelling has not been provided. Here we report on observations by the Cluster mission that clearly show the highly structured and periodic pattern of these waves. Very narrow-banded emissions at frequencies corresponding to exact multiples of the proton gyrofrequency (frequency of gyration around the field line) from the 17th up to the 30th harmonic are observed, indicating that these waves are generated by the proton distributions. Simultaneously with these coherent periodic structures in waves, the Cluster spacecraft observes ‘ring' distributions of protons in velocity space that provide the free energy for the waves. Calculated wave growth based on ion distributions shows a very similar pattern to the observations. PMID:26169360

  3. The Physics of Ion Decoupling in Magnetized Plasma Explosions

    SciTech Connect

    Hewett, D; Larson, D; Brecht, S

    2011-02-08

    When a finite pulse of plasma expands into a magnetized background plasma, MHD predicts the pulse expel background plasma and its B-field - i.e. cause a magnetic 'bubble'. The expanding plasma is confined within the bubble, later to escape down the B-field lines. MHD suggests that the debris energy goes to expelling the B-field from the bubble volume and kinetic energy of the displaced background. For HANEs, this is far from the complete story. For many realistic HANE regimes, the long mean-free-path for collisions necessitates a Kinetic Ion Simulation Model (KISM). The most obvious effect is that the debris plasma can decouple and slip through the background plasma. The implications are: (1) the magnetic bubble is not as large as expected and (2) the debris is no longer confined within the magnetic bubble.

  4. A Campaign to Study Equatorial Ionospheric Phenomena over Guam

    NASA Astrophysics Data System (ADS)

    Habash Krause, L.; Balthazor, R.; Dearborn, M.; Enloe, L.; Lawrence, T.; McHarg, M.; Petrash, D.; Reinisch, B. W.; Stuart, T.

    2007-05-01

    With the development of a series of ground-based and space-based experiments, the United States Air Force Academy (USAFA) is in the process of planning a campaign to investigate the relationship between equatorial ionospheric plasma dynamics and a variety of space weather effects, including: 1) ionospheric plasma turbulence in the F region, and 2) scintillation of radio signals at low latitudes. A Digisonde Portable Sounder DPS-4 will operate from the island of Guam (with a magnetic latitude of 5.6° N) and will provide measurements of ionospheric total electron content (TEC), vertical drifts of the bulk ionospheric plasma, and electron density profiles. Additionally, a dual-frequency GPS TEC/scintillation monitor will be located along the Guam magnetic meridian at a magnetic latitude of approximately 15° N. In campaign mode, we will combine these ground-based observations with those collected from space during USAFA's FalconSAT-3 and FalconSAT-5 low-earth orbit satellite missions, the first of which is scheduled to be active over a period of several months beginning in the 2007 calendar year. The satellite experiments are designed to characterize in situ irregularities in plasma density, and include measurements of bulk ion density and temperature, minority-to- majority ion mixing ratios, small scale (10 cm to 1 m) plasma turbulence, and ion distribution spectra in energy with sufficient resolution for observations of non-thermalized distributions that may be associated with velocity- space instabilities. Specific targets of investigation include: a) a comparison of plasma turbulence observed on- orbit with spread F on ionograms as measured with the Digisonde, b) a correlation between the vertical lifting of the ionospheric layer over Guam and the onset of radio scintillation activity along the Guam meridian at 15° N magnetic latitude, and c) a correlation between on-orbit turbulence and ionospheric scintillation at 15° N magnetic latitude. These relationships

  5. Anomalous opening of the Equatorial Atlantic due to an equatorial mantle thermal minimum

    NASA Astrophysics Data System (ADS)

    Bonatti, Enrico

    1996-09-01

    The geology of the Equatorial Atlantic is dominated by a broad east-west megashear belt where a cluster of large fracture zones offsets anomalously deep segments of the Mid-Atlantic Ridge (MAR). The origin and evolution of this megashear region may lie ultimately in an equatorial mantle thermal minimum. The notion of a mantle thermal minimum in the Equatorial Atlantic is supported by an equatorial minimum of zero-age topography, a maximum in mantle shear waves seismic velocity and a minimum in the degree of melting, indicated by the chemistry of MAR basalts and peridotites. This thermal minimum has probably been a stable feature since before the Cretaceous separation of Africa from South America; it caused a pre-opening equatorial continental lithosphere thicker and colder than normal. The Cretaceous Benue Trough in western Africa and the Amazon depression in South America are interpreted as morphostructural depressions created or rejuvenated by strike-slip, transpressional and transtensional tectonics ducing extension of the cold/thick equatorial lithosphere. The oceanic rift propagating northward from the South Atlantic impinged against the equatorial thicker, colder and, therefore, stronger than normal continental, lithosphere that consequently acted as a 'locked zone'. This, and a low magmatic budget due to the cold upper mantle, caused a lower than normal rate of propagation of the oceanic rift into the equatorial belt, with diffuse deformation during mostly amagmatic extension. The thick/cold lithosphere prevented major Cretaceous igneous activity from the St. Helena plume. Eventually initial 'weak' isolated nuclei oceanic lithosphere were emplaced, separated by E-W continent/continent transforms. Opening occurred largely by strike-slip motion along these initial transforms. The consequences were that the Equatorial Atlantic opened prevalently along an E-W direction, in contrast to the N-S opening of the North and South Atlantic, and that sheared continental

  6. Optimization of the ITER electron cyclotron equatorial launcher for improved heating and current drive functional capabilities

    SciTech Connect

    Farina, D.; Figini, L.; Henderson, M.; Saibene, G.

    2014-06-15

    The design of the ITER Electron Cyclotron Heating and Current Drive (EC H and CD) system has evolved in the last years both in goals and functionalities by considering an expanded range of applications. A large effort has been devoted to a better integration of the equatorial and the upper launchers, both from the point of view of the performance and of the design impact on the engineering constraints. However, from the analysis of the ECCD performance in two references H-mode scenarios at burn (the inductive H-mode and the advanced non-inductive scenario), it was clear that the EC power deposition was not optimal for steady-state applications in the plasma region around mid radius. An optimization study of the equatorial launcher is presented here aiming at removing this limitation of the EC system capabilities. Changing the steering of the equatorial launcher from toroidal to poloidal ensures EC power deposition out to the normalized toroidal radius ρ ≈ 0.6, and nearly doubles the EC driven current around mid radius, without significant performance degradation in the core plasma region. In addition to the improved performance, the proposed design change is able to relax some engineering design constraints on both launchers.

  7. OH Production Enhancement in Bubbling Pulsed Discharges

    SciTech Connect

    Lungu, Cristian P.; Porosnicu, Corneliu; Jepu, Ionut; Chiru, Petrica; Zaroschi, Valentin; Lungu, Ana M.; Saito, Nagahiro; Bratescu, Maria; Takai, Osamu; Velea, Theodor; Predica, Vasile

    2010-10-13

    The generation of active species, such as H{sub 2}O{sub 2}, O{sup *}, OH*, HO{sub 2}*, O{sub 3}, N{sub 2}{sup *}, etc, produced in aqueous solutions by HV pulsed discharges was studied in order to find the most efficient way in waste water treatment taking into account that these species are almost stronger oxidizers than ozone. Plasma was generated inside gas bubbles formed by the argon, air and oxygen gas flow between the special designed electrodes. The pulse width and pulse frequency influence was studied in order to increase the efficiency of the OH active species formation. The produced active species were investigated by optical emission spectroscopy and correlated with electrical parameters of the discharges (frequency, pulse width, amplitude, and rise and decay time).

  8. Bubble nucleation in an explosive micro-bubble actuator

    NASA Astrophysics Data System (ADS)

    van den Broek, D. M.; Elwenspoek, M.

    2008-06-01

    Explosive evaporation occurs when a thin layer of liquid reaches a temperature close to the critical temperature in a very short time. At these temperatures spontaneous nucleation takes place. The nucleated bubbles instantly coalesce forming a vapour film followed by rapid growth due to the pressure impulse. In this paper we take a closer look at the bubble nucleation. The moment of bubble nucleation was determined by both stroboscopic imaging and resistance thermometry. Two nucleation regimes could be distinguished. Several different heater designs were investigated under heat fluxes of hundreds of W mm-2. A close correspondence between current density in the heater and point of nucleation was found. This results in design rules for effective heaters.

  9. Measuring helium bubble diameter distributions in tungsten with grazing incidence small angle x-ray scattering (GISAXS)

    NASA Astrophysics Data System (ADS)

    Thompson, M.; Kluth, P.; Doerner, R. P.; Kirby, N.; Riley, D.; Corr, C. S.

    2016-02-01

    Grazing incidence small angle x-ray scattering was performed on tungsten samples exposed to helium plasma in the MAGPIE and Pisces-A linear plasma devices to measure the size distributions of resulting helium nano-bubbles. Nano-bubbles were fitted assuming spheroidal particles and an exponential diameter distribution. These particles had mean diameters between 0.36 and 0.62 nm. Pisces-A exposed samples showed more complex patterns, which may suggest the formation of faceted nano-bubbles or nano-scale surface structures.

  10. Phase diagrams for sonoluminescing bubbles

    NASA Astrophysics Data System (ADS)

    Hilgenfeldt, Sascha; Lohse, Detlef; Brenner, Michael P.

    1996-11-01

    Sound driven gas bubbles in water can emit light pulses. This phenomenon is called sonoluminescence (SL). Two different phases of single bubble SL have been proposed: diffusively stable and diffusively unstable SL. We present phase diagrams in the gas concentration versus forcing pressure state space and also in the ambient radius versus gas concentration and versus forcing pressure state spaces. These phase diagrams are based on the thresholds for energy focusing in the bubble and two kinds of instabilities, namely (i) shape instabilities and (ii) diffusive instabilities. Stable SL only occurs in a tiny parameter window of large forcing pressure amplitude Pa˜1.2-1.5 atm and low gas concentration of less than 0.4% of the saturation. The upper concentration threshold becomes smaller with increased forcing. Our results quantitatively agree with experimental results of Putterman's UCLA group on argon, but not on air. However, air bubbles and other gas mixtures can also successfully be treated in this approach if in addition (iii) chemical instabilities are considered. All statements are based on the Rayleigh-Plesset ODE approximation of the bubble dynamics, extended in an adiabatic approximation to include mass diffusion effects. This approximation is the only way to explore considerable portions of parameter space, as solving the full PDEs is numerically too expensive. Therefore, we checked the adiabatic approximation by comparison with the full numerical solution of the advection diffusion PDE and find good agreement.

  11. Ethnic diversity deflates price bubbles

    PubMed Central

    Levine, Sheen S.; Apfelbaum, Evan P.; Bernard, Mark; Bartelt, Valerie L.; Zajac, Edward J.; Stark, David

    2014-01-01

    Markets are central to modern society, so their failures can be devastating. Here, we examine a prominent failure: price bubbles. Bubbles emerge when traders err collectively in pricing, causing misfit between market prices and the true values of assets. The causes of such collective errors remain elusive. We propose that bubbles are affected by ethnic homogeneity in the market and can be thwarted by diversity. In homogenous markets, traders place undue confidence in the decisions of others. Less likely to scrutinize others’ decisions, traders are more likely to accept prices that deviate from true values. To test this, we constructed experimental markets in Southeast Asia and North America, where participants traded stocks to earn money. We randomly assigned participants to ethnically homogeneous or diverse markets. We find a marked difference: Across markets and locations, market prices fit true values 58% better in diverse markets. The effect is similar across sites, despite sizeable differences in culture and ethnic composition. Specifically, in homogenous markets, overpricing is higher as traders are more likely to accept speculative prices. Their pricing errors are more correlated than in diverse markets. In addition, when bubbles burst, homogenous markets crash more severely. The findings suggest that price bubbles arise not only from individual errors or financial conditions, but also from the social context of decision making. The evidence may inform public discussion on ethnic diversity: it may be beneficial not only for providing variety in perspectives and skills, but also because diversity facilitates friction that enhances deliberation and upends conformity. PMID:25404313

  12. A Comparison of Solar Cycle Variations in the Equatorial Rotation Rates of the Sun's Subsurface, Surface, Corona, and Sunspot Groups

    NASA Astrophysics Data System (ADS)

    Javaraiah, J.

    2013-10-01

    Using the Solar Optical Observing Network (SOON) sunspot-group data for the period 1985 - 2010, the variations in the annual mean equatorial-rotation rates of the sunspot groups are determined and compared with the known variations in the solar equatorial-rotation rates determined from the following data: i) the plasma rotation rates at 0.94R⊙,0.95R⊙,…,1.0R⊙ measured by the Global Oscillation Network Group (GONG) during the period 1995 - 2010, ii) the data on the soft-X-ray corona determined from Yohkoh/SXT full-disk images for the years 1992 - 2001, iii) the data on small bright coronal structures (SBCS) that were traced in Solar and Heliospheric Observatory (SOHO)/EIT images during the period 1998 - 2006, and iv) the Mount Wilson Doppler-velocity measurements during the period 1986 - 2007. A large portion (up to ≈ 30∘ latitude) of the mean differential-rotation profile of the sunspot groups lies between those of the internal differential-rotation rates at 0.94R⊙ and 0.98R⊙. The variation in the yearly mean equatorial-rotation rate of the sunspot groups seems to be lagging behind that of the equatorial-rotation rate determined from the GONG measurements by one to two years. The amplitude of the GONG measurements is very small. The solar-cycle variation in the equatorial-rotation rate of the solar corona closely matches that determined from the sunspot-group data. The variation in the equatorial-rotation rate determined from the Mount Wilson Doppler-velocity data closely resembles the corresponding variation in the equatorial-rotation rate determined from the sunspot-group data that included the values of the abnormal angular motions (> |3∘| day-1) of the sunspot groups. Implications of these results are pointed out.

  13. Boundary effects on streaming flow around a bubble located at the velocity antinode of a standing wave

    NASA Astrophysics Data System (ADS)

    Alhamli, Mohammad

    2016-11-01

    A stable bubble trapped in a standing sound wave with frequency less than the resonance frequency of the bubble will be located at the velocity antinode. Steady streaming flow will develop around the bubble and is directly dependent on the bubble's boundary. Four boundary conditions are possible: 1) nonpulsating; no slip, 2) nonpulsating; free shear, 3) pulsating; no slip, and 4) pulsating; free shear. To solve for these conditions, we expanded the equations of motion with the dimensionless lateral oscillation amplitude, ɛ, using the singular perturbation method. The lateral oscillation amplitude is much smaller than the bubble radius ɛ < < a . Additionally, for the third and fourth cases, the dimensionless radial oscillation amplitude was assumed to be small, ɛ' < < 1 . We also assumed a moderate value for the frequency parameter, | M | , which is the ratio of the bubble radius to the viscous length. For the nonpulsating cases the streaming flow patterns were quadrupole and symmetric across the quadrants and the intensity increases as we increase the frequency parameter. When we introduced the pulsation, we noticed that the streaming was symmetric across the polar plane and asymmetric below the equatorial plane for midrange values of the frequency parameter.

  14. Electrohydrodynamic deformation of drops and bubbles at large Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Schnitzer, Ory

    2015-11-01

    In Taylor's theory of electrohydrodynamic drop deformation by a uniform electric field, inertia is neglected at the outset, resulting in fluid velocities that scale with E2, E being the applied-field magnitude. When considering strong fields and low viscosity fluids, the Reynolds number predicted by this scaling may actually become large, suggesting the need for a complementary large-Reynolds-number analysis. Balancing viscous and electrical stresses reveals that the velocity scales with E 4 / 3. Considering a gas bubble, the external flow is essentially confined to two boundary layers propagating from the poles to the equator, where they collide to form a radial jet. Remarkably, at leading order in the Capillary number the unique scaling allows through application of integral mass and momentum balances to obtain a closed-form expression for the O (E2) bubble deformation. Owing to a concentrated pressure load at the vicinity of the collision region, the deformed profile features an equatorial dimple which is non-smooth on the bubble scale. The dynamical importance of internal circulation in the case of a liquid drop leads to an essentially different deformation mechanism. This is because the external boundary layer velocity attenuates at a short distance from the interface, while the internal boundary-layer matches with a Prandtl-Batchelor (PB) rotational core. The dynamic pressure associated with the internal circulation dominates the interfacial stress profile, leading to an O (E 8 / 3) deformation. The leading-order deformation can be readily determined, up to the PB constant, without solving the circulating boundary-layer problem. To encourage attempts to verify this new scaling, we shall suggest a favourable experimental setup in which inertia is dominant, while finite-deformation, surface-charge advection, and gravity effects are negligible.

  15. Gravity driven flows of bubble suspensions.

    NASA Astrophysics Data System (ADS)

    Zenit, Roberto; Koch, Donald L.; Sangani, Ashok K.

    1999-11-01

    Experiments on vertical and inclined channels were performed to study the behavior of a mono-dispersed bubble suspension for which the dual limit of large Reynolds number and small Weber number is satisfied. A uniform stream of 1.5 mm diameter bubbles is produced by a bank of identical capillaries and coalescence is inhibited by addition of salt to the water. Measurements of the liquid velocity and bubble-probe collision rate are obtained with a hot wire anemometer. The gas volume fraction, bubble velocity, velocity variance and chord length are measured using a dual impedance probe. Image analysis is used to quantify the distributions of bubble size and aspect ratio. For vertical channels the bubble velocity is observed to decrease as the bubble concentration increases in accord with the predictions of Spelt and Sangani (1998). The bubble velocity variance arises largely due to bubble-wall and bubble-bubble collisions. For inclined channels, the strength of the shear flow is controlled by the extent of bubble segregation and the effective viscosity of the bubble phase. The measurements are compared with solutions of the averaged equations of motion for a range of gas volume fractions and channel inclination angles.

  16. Aspherical bubble dynamics and oscillation times

    SciTech Connect

    Godwin, R.P.; Chapyak, E.J.; Noack, J.; Vogel, A.

    1999-03-01

    The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored. Time-resolved experimental photographs and simulations of large aspect ratio (length:diameter {approximately}20) cylindrical bubble dynamics are presented. The experiments and calculations exhibit similar dynamics. A small high-pressure cylindrical bubble initially expands radially with hardly any axial motion. Then, after reaching its maximum volume, a cylindrical bubble collapses along its long axis with relatively little radial motion. The growth-collapse period of these very aspherical bubbles differs only sightly from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble energy even for aspherical bubbles. The prolongation of the oscillation period of bubbles near solid boundaries relative to that of isolated spherical bubbles is also discussed.

  17. Bursting Bubbles and Bilayers

    PubMed Central

    Wrenn, Steven P.; Dicker, Stephen M.; Small, Eleanor F.; Dan, Nily R.; Mleczko, Michał; Schmitz, Georg; Lewin, Peter A.

    2012-01-01

    This paper discusses various interactions between ultrasound, phospholipid monolayer-coated gas bubbles, phospholipid bilayer vesicles, and cells. The paper begins with a review of microbubble physics models, developed to describe microbubble dynamic behavior in the presence of ultrasound, and follows this with a discussion of how such models can be used to predict inertial cavitation profiles. Predicted sensitivities of inertial cavitation to changes in the values of membrane properties, including surface tension, surface dilatational viscosity, and area expansion modulus, indicate that area expansion modulus exerts the greatest relative influence on inertial cavitation. Accordingly, the theoretical dependence of area expansion modulus on chemical composition - in particular, poly (ethylene glyclol) (PEG) - is reviewed, and predictions of inertial cavitation for different PEG molecular weights and compositions are compared with experiment. Noteworthy is the predicted dependence, or lack thereof, of inertial cavitation on PEG molecular weight and mole fraction. Specifically, inertial cavitation is predicted to be independent of PEG molecular weight and mole fraction in the so-called mushroom regime. In the “brush” regime, however, inertial cavitation is predicted to increase with PEG mole fraction but to decrease (to the inverse 3/5 power) with PEG molecular weight. While excellent agreement between experiment and theory can be achieved, it is shown that the calculated inertial cavitation profiles depend strongly on the criterion used to predict inertial cavitation. This is followed by a discussion of nesting microbubbles inside the aqueous core of microcapsules and how this significantly increases the inertial cavitation threshold. Nesting thus offers a means for avoiding unwanted inertial cavitation and cell death during imaging and other applications such as sonoporation. A review of putative sonoporation mechanisms is then presented, including those

  18. Bubbles Responding to Ultrasound Pressure

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Bubble and Drop Nonlinear Dynamics (BDND) experiment was designed to improve understanding of how the shape and behavior of bubbles respond to ultrasound pressure. By understanding this behavior, it may be possible to counteract complications bubbles cause during materials processing on the ground. This 12-second sequence came from video downlinked from STS-94, July 5 1997, MET:3/19:15 (approximate). The BDND guest investigator was Gary Leal of the University of California, Santa Barbara. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced fluid dynamics experiments will be a part of investigations plarned for the International Space Station. (435KB, 13-second MPEG, screen 160 x 120 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300162.html.

  19. How safe is Bubble Soccer?

    PubMed

    Halani, Sameer H; Riley, Jonathan P; Pradilla, Gustavo; Ahmad, Faiz U

    2016-12-01

    Traumatic neurologic injury in contact sports is a rare but serious consequence for its players. These injuries are most commonly associated with high-impact collisions, for example in football, but are found in a wide variety of sports. In an attempt to minimize these injuries, sports are trying to increase safety by adding protection for participants. Most recently is the seemingly 'safe' sport of Bubble Soccer, which attempts to protect its players with inflatable plastic bubbles. We report a case of a 16-year-old male sustaining a cervical spine burst fracture with incomplete spinal cord injury while playing Bubble Soccer. To our knowledge, this is the first serious neurological injury reported in the sport.

  20. Pulsed electrical discharge in gas bubbles in water

    NASA Astrophysics Data System (ADS)

    Gershman, Sophia

    A phenomenological picture of pulsed electrical discharge in gas bubbles in water is produced by combining electrical, spectroscopic, and imaging methods. The discharge is generated by applying one microsecond long 5 to 20 kilovolt pulses between the needle and disk electrodes submerged in water. A gas bubble is generated at the tip of the needle electrode. The study includes detailed experimental investigation of the discharge in argon bubbles and a brief look at the discharge in oxygen bubbles. Imaging, electrical characteristics, and time-resolved optical emission data point to a fast streamer propagation mechanism and formation of a plasma channel in the bubble. Spectroscopic methods based on line intensity ratios and Boltzmann plots of line intensities of argon, atomic hydrogen, and argon ions and the examination of molecular emission bands from molecular nitrogen and hydroxyl radicals provide evidence of both fast beam-like electrons and slow thermalized ones with temperatures of 0.6 -- 0.8 electron-volts. The collisional nature of plasma at atmospheric pressure affects the decay rates of optical emission. Spectroscopic study of rotational-vibrational bands of hydroxyl radical and molecular nitrogen gives vibrational and rotational excitation temperatures of the discharge of about 0.9 and 0.1 electron-volt, respectively. Imaging and electrical evidence show that discharge charge is deposited on the bubble wall and water serves as a dielectric barrier for the field strength and time scales of this experiment. Comparing the electrical and imaging information for consecutive pulses applied at a frequency of 1 Hz indicates that each discharge proceeds as an entirely new process with no memory of the previous discharge aside from long-lived chemical species, such as ozone and oxygen. Intermediate values for the discharge gap and pulse duration, low repetition rate, and unidirectional character of the applied voltage pulses make the discharge process here unique

  1. Global Structure of Isothermal Diffuse X-Ray Emission along the Fermi Bubbles

    NASA Astrophysics Data System (ADS)

    Kataoka, J.; Tahara, M.; Totani, T.; Sofue, Y.; Inoue, Y.; Nakashima, S.; Cheung, C. C.

    2015-07-01

    In our previous works, we found absorbed thermal X-ray plasma with kT ≃ 0.3 keV observed ubiquitously near the edges of the Fermi bubbles and interpreted this emission as weakly shock-heated Galactic halo gas. Here we present a systematic and uniform analysis of archival Suzaku (29 pointings; 6 newly presented) and Swift (68 pointings; 49 newly presented) data within Galactic longitudes | l| < 20° and latitude 5°≲ | b| < 60°, covering the whole extent of the Fermi bubbles. We show that the plasma temperature is constant at kT ≃ 0.30 ± 0.07 keV, while the emission measure (EM) varies by an order of magnitude, increasing toward the Galactic center (i.e., low | b| ) with enhancements at the North Polar Spur (NPS), SE-claw, and NW-clump features. Moreover, the EM distribution of kT ≃ 0.30 keV plasma is highly asymmetric in the northern and southern bubbles. Although the association of the X-ray emission with the bubbles is not conclusive, we compare the observed EM properties with simple models assuming (i) a filled halo without bubbles, whose gas density follows a hydrostatic isothermal model (King profile), and (ii) a bubble-in-halo in which two identical bubbles expand into the halo, forming thick shells of swept halo gas. We argue that the EM profile in the north (b > 0°) favors (ii), whereas that of the south (b < 0°) is rather close to (i), but a weak excess signature is clearly detected also in the south like NPS (South Polar Spur). Such an asymmetry, if due to the bubbles, cannot be fully understood only by the inclination of bubbles’ axis against the Galactic disk normal, thus suggesting asymmetric outflow due to different environmental/initial conditions.

  2. Lunar influence on equatorial atmospheric angular momentum

    NASA Astrophysics Data System (ADS)

    Bizouard, Christian; Zotov, Leonid; Sidorenkov, Nikolay

    2014-11-01

    This study investigates the relationship between the equatorial atmospheric angular momentum oscillation in the nonrotating frame and the quasi-diurnal lunar tidal potential. Between 2 and 30 days, the corresponding equatorial component, called Celestial Atmospheric Angular Momentum (CEAM), is mostly constituted of prograde circular motions, especially of a harmonic at 13.66 days, a sidelobe at 13.63 days, and of a weekly broadband variation. A simple equilibrium tide model explains the 13.66 day pressure term as a result of the O1 lunar tide. The powerful episodic fluctuations between 5 and 8 days possibly reflect an atmospheric normal mode excited by the tidal waves Q1 (6.86 days) and σ1 (7.095 days). The lunar tidal influence on the spectral band from 2 to 30 days is confirmed by two specific features, not occurring for seasonal band dominated by the solar thermal effect. First, Northern and Southern Hemispheres contribute equally and synchronously to the CEAM wind term. Second, the pressure and wind terms are proportional, which follows from angular momentum budget considerations where the topographic and friction torques on the solid Earth are much smaller than the one resulting from the equatorial bulge. Such a configuration is expected for the case of tidally induced circulation, where the surface pressure variation is tesseral and cannot contribute to the topographic torque, and tidal winds blow only at high altitudes. The likely effects of the lunar-driven atmospheric circulation on Earth's nutation are estimated and discussed in light of the present-day capabilities of space geodetic techniques.

  3. From rational bubbles to crashes

    NASA Astrophysics Data System (ADS)

    Sornette, D.; Malevergne, Y.

    2001-10-01

    We study and generalize in various ways the model of rational expectation (RE) bubbles introduced by Blanchard and Watson in the economic literature. Bubbles are argued to be the equivalent of Goldstone modes of the fundamental rational pricing equation, associated with the symmetry-breaking introduced by non-vanishing dividends. Generalizing bubbles in terms of multiplicative stochastic maps, we summarize the result of Lux and Sornette that the no-arbitrage condition imposes that the tail of the return distribution is hyperbolic with an exponent μ<1. We then outline the main results of Malevergne and Sornette, who extend the RE bubble model to arbitrary dimensions d: a number d of market time series are made linearly interdependent via d× d stochastic coupling coefficients. We derive the no-arbitrage condition in this context and, with the renewal theory for products of random matrices applied to stochastic recurrence equations, we extend the theorem of Lux and Sornette to demonstrate that the tails of the unconditional distributions associated with such d-dimensional bubble processes follow power laws, with the same asymptotic tail exponent μ<1 for all assets. The distribution of price differences and of returns is dominated by the same power-law over an extended range of large returns. Although power-law tails are a pervasive feature of empirical data, the numerical value μ<1 is in disagreement with the usual empirical estimates μ≈3. We then discuss two extensions (the crash hazard rate model and the non-stationary growth rate model) of the RE bubble model that provide two ways of reconciliation with the stylized facts of financial data.

  4. Equatorial Oscillations in Jupiter's and Saturn's Atmospheres

    NASA Technical Reports Server (NTRS)

    Flasar, F. Michael; Guerlet, S.; Fouchet, T.; Schinder, P. J.

    2011-01-01

    Equatorial oscillations in the zonal-mean temperatures and zonal winds have been well documented in Earth's middle atmosphere. A growing body of evidence from ground-based and Cassini spacecraft observations indicates that such phenomena also occur in the stratospheres of Jupiter and Saturn. Earth-based midinfrared measurements spanning several decades have established that the equatorial stratospheric temperatures on Jupiter vary with a cycle of 4-5 years and on Saturn with a cycle of approximately 15 years. Spectra obtained by the Composite Infrared Spectrometer (CIRS) during the Cassini swingby at the end of 2000, with much better vertical resolution than the ground-based data, indicated a series of vertically stacked warm and cold anomalics at Jupiter's equator; a similar structurc was seen at Saturn's equator in CIRS limb measurements made in 2005, in the early phase of Cassini's orbital tour. The thermal wind equation implied similar patterns of mean zonal winds increasing and decreasing with altitude. On Saturn the peak-to-pcak amplitude of this variation was nearly 200 meters per second. The alternating vertical pattern of wanner and colder cquatorial tcmperatures and easterly and westerly tendencies of the zonal winds is seen in Earth's equatorial oscillations, where the pattern descends with time, The Cassini Jupiter and early Saturn observations were snapshots within a limited time interval, and they did not show the temporal evolution of the spatial patterns. However, more recent Saturn observations by CIRS (2010) and Cassini radio-occultation soundings (2009-2010) have provided an opportunity to follow the change of the temperature-zonal wind pattern, and they suggest there is descent, at a rate of roughly one scale height over four years. On Earth, the observed descent in the zonal-mean structure is associated with the absorption of a combination of vertically propagating waves with easlerly and westerly phase velocities. The peak-to-peak zonal wind

  5. The equatorial electrojet satellite and surface comparison

    NASA Technical Reports Server (NTRS)

    Cain, J. C. (Editor); Sweeney, R. E. (Editor)

    1972-01-01

    The OGO 4 and 6 (POGO) magnetic field results for the equatorial electrojet indicate that while the present models are approximately correct, the possibility of a westward component must be incorporated. The scatter diagrams of POGO amplitudes and surface data show a correlation. The ratios between the amplitudes estimated from surface data and those at 400 km altitude are as follows: India 5 to 8, East Africa (Addis Ababa) 4, Central Africa 3, West Africa (Nigeria) 3, South America (Huancayo) 5, and Philippines 5. The variation in the ratio is due to the conductivity structure of the earth in various zones.

  6. Removal of hydrogen bubbles from nuclear reactors

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.

    1980-01-01

    Method proposed for removing large hydrogen bubbles from nuclear environment uses, in its simplest form, hollow spheres of palladium or platinum. Methods would result in hydrogen bubble being reduced in size without letting more radioactivity outside reactor.

  7. Unorthodox bubbles when boiling in cold water

    NASA Astrophysics Data System (ADS)

    Parker, Scott; Granick, Steve

    2014-01-01

    High-speed movies are taken when bubbles grow at gold surfaces heated spotwise with a near-infrared laser beam heating water below the boiling point (60-70 °C) with heating powers spanning the range from very low to so high that water fails to rewet the surface after bubbles detach. Roughly half the bubbles are conventional: They grow symmetrically through evaporation until buoyancy lifts them away. Others have unorthodox shapes and appear to contribute disproportionately to heat transfer efficiency: mushroom cloud shapes, violently explosive bubbles, and cavitation events, probably stimulated by a combination of superheating, convection, turbulence, and surface dewetting during the initial bubble growth. Moreover, bubbles often follow one another in complex sequences, often beginning with an unorthodox bubble that stirs the water, followed by several conventional bubbles. This large dataset is analyzed and discussed with emphasis on how explosive phenomena such as cavitation induce discrepancies from classical expectations about boiling.

  8. Soap Bubbles on a Cold Day.

    ERIC Educational Resources Information Center

    Waiveris, Charles

    1994-01-01

    Discusses the effects of blowing bubbles in extremely cold weather. Describes the freezing conditions of the bubbles and some physical properties. Suggests using the activity with all ages of students. (MVL)

  9. Unorthodox bubbles when boiling in cold water.

    PubMed

    Parker, Scott; Granick, Steve

    2014-01-01

    High-speed movies are taken when bubbles grow at gold surfaces heated spotwise with a near-infrared laser beam heating water below the boiling point (60-70 °C) with heating powers spanning the range from very low to so high that water fails to rewet the surface after bubbles detach. Roughly half the bubbles are conventional: They grow symmetrically through evaporation until buoyancy lifts them away. Others have unorthodox shapes and appear to contribute disproportionately to heat transfer efficiency: mushroom cloud shapes, violently explosive bubbles, and cavitation events, probably stimulated by a combination of superheating, convection, turbulence, and surface dewetting during the initial bubble growth. Moreover, bubbles often follow one another in complex sequences, often beginning with an unorthodox bubble that stirs the water, followed by several conventional bubbles. This large dataset is analyzed and discussed with emphasis on how explosive phenomena such as cavitation induce discrepancies from classical expectations about boiling.

  10. Behavior of Rapidly Sheared Bubble Suspensions

    NASA Technical Reports Server (NTRS)

    Sangani, A. S.; Kushch, V. I.; Hoffmann, M.; Nahra, H.; Koch, D. L.; Tsang, Y.

    2002-01-01

    An experiment to be carried out aboard the International Space Station is described. A suspension consisting of millimeter-sized bubbles in water containing some dissolved salt, which prevents bubbles from coalescing, will be sheared in a Couette cylindrical cell. Rotation of the outer cylinder will produce centrifugal force which will tend to accumulate the bubbles near the inner wall. The shearing will enhance collisions among bubbles creating thereby bubble phase pressure that will resist the tendency of the bubbles to accumulate near the inner wall. The bubble volume fraction and velocity profiles will be measured and compared with the theoretical predictions. Ground-based research on measurement of bubble phase properties and flow in vertical channel are described.

  11. Bubble memory module for spacecraft application

    NASA Technical Reports Server (NTRS)

    Hayes, P. J.; Looney, K. T.; Nichols, C. D.

    1985-01-01

    Bubble domain technology offers an all-solid-state alternative for data storage in onboard data systems. A versatile modular bubble memory concept was developed. The key module is the bubble memory module which contains all of the storage devices and circuitry for accessing these devices. This report documents the bubble memory module design and preliminary hardware designs aimed at memory module functional demonstration with available commercial bubble devices. The system architecture provides simultaneous operation of bubble devices to attain high data rates. Banks of bubble devices are accessed by a given bubble controller to minimize controller parts. A power strobing technique is discussed which could minimize the average system power dissipation. A fast initialization method using EEPROM (electrically erasable, programmable read-only memory) devices promotes fast access. Noise and crosstalk problems and implementations to minimize these are discussed. Flight memory systems which incorporate the concepts and techniques of this work could now be developed for applications.

  12. Probing helium nano-bubble formation in tungsten with grazing incidence small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Thompson, M.; Kluth, P.; Doerner, R. P.; Kirby, N.; Corr, C.

    2015-04-01

    Helium nano-bubble formation in plasma facing materials has emerged as a major concern for the next-step fusion experiment ITER, where helium plasmas will be used during the tokamak's start-up phase. Here, we demonstrate that grazing incidence small-angle x-ray scattering is a powerful technique for the analysis of helium nano-bubble formation in tungsten. We measured helium bubbles with sizes between 1.5-2.5 nm in tungsten exposed to helium plasma at 700 °C, where a smaller number of larger bubbles were also observed. Depth distributions can be estimated by taking successive measurements across a range of x-ray incidence angles. Compared with traditional approaches in the field, such as transmission electron microscopy, this technique provides information across a much larger volume with high statistical precision, whilst also being non-destructive.

  13. The importance of ionospheric measurements in Africa for understanding global equatorial electrodynmics

    NASA Astrophysics Data System (ADS)

    Basu, Santimay; Basu, Santimay; Basu, Sunanda

    The major driver of equatorial electrodynamics is the zonal electric field that develops under the action of the zonal neutral wind and is influenced by the east-west conductivity gradient at sunrise and sunset. During daytime, the eastward electric field at the dip equator coupled with the earth's magnetic field creates an upward drift of the plasma and transport to higher latitudes forming the equatorial anomaly in F-region plasma density with a minimum at the dip equator and maxima at 15o north and south dip latitudes. Further, at sunset, the east-west conductivity gradient causes an enhancement in the eastward electric field and sets off plasma instabilities to generate irregularities of electron density. The equatorial anomaly usually persisting beyond dusk, introduces a latitude variation in the magnitude of electron density deviation, thus causing a latitude variation of amplitude and phase scintillations. This pronounced latitude variation of F-region plasma density, the total electron content and scintillations impact greatly the operation of communication and navigation systems in this region. Such measurements in low latitude regions in the Asian and South American sectors show a great deal of day-to-day, seasonal-cum-longitudinal, magnetic disturbance and solar cycle variation. Currently, there is a gap in such long-term measurements at African longitudes. It is therefore extremely important to deploy arrays of instruments under the auspices of IHY and UNBSS Programs to obtain genuinely global measurement set to satisfy the needs of modern space-based communication and navigation systems and development of space weather ionosphere-thermosphere models for use in low latitude regions.

  14. Magma mixing enhanced by bubble segregation

    NASA Astrophysics Data System (ADS)

    Wiesmaier, S.; Daniele, M.; Renggli, C.; Perugini, D.; De Campos, C.; Hess, K. U.; Ertel-Ingrisch, W.; Lavallée, Y.; Dingwell, D. B.

    2014-12-01

    Rising bubbles may significantly affect magma mixing paths as has been demonstrated by analogue experiments in the past. Here, bubble-advection experiments are performed for the first time employing natural materials at magmatic temperatures. Cylinders of basaltic glass were placed below cylinders of rhyolite glass. Upon melting, interstitial air formed bubbles that rose into the rhyolite melt, thereby entraining tails of basaltic liquid. The formation of plume-like filaments of advected basalt within the rhyolite was characterized by microCT and subsequent high-resolution EMP analyses. Melt entrainment by bubble ascent appears as efficient mechanism to mingle contrasting melt compositions. MicroCT imaging shows bubbles trailing each other and trails of multiple bubbles having converged. Rheological modelling of the filaments yields viscosities of up to 2 orders of magnitude lower than for the surrounding rhyolitic liquid. Such a viscosity contrast implies that subsequent bubbles rising are likely to follow the same pathways that previously ascending bubbles have generated. Filaments formed by multiple bubbles would thus experience episodic replenishment with mafic material. Fundamental implications for the concept of bubble advection in magma mixing are thus a) an acceleration of mixing because of decreased viscous resistance for bubbles inside filaments and b) non-conventional diffusion systematics because of intermittent supply of mafic material (instead of a single pulse) inside a filament. Inside these filaments, the mafic material was variably hybridised to andesitic through rhyolitic composition. Compositional profiles alone are ambiguous, however, to determine whether single or multiple bubbles were involved during formation of a filament. Statistical analysis, employing concentration variance as measure of homogenisation, demonstrates that also filaments appearing as single-bubble filaments are likely to have experienced multiple bubbles passing through

  15. Studies to Improve the Science in the GAIM - Full Physics Model

    DTIC Science & Technology

    2014-01-01

    adjusting the drivers (neutral winds and electric fields). Therefore, a graduate student, Omar Nava , studied the effect that equatorial plasma bubbles...RESULTS Plasma Bubbles A graduate student, Omar Nava , studied the effect that equatorial plasma bubbles have on GPS-TEC measurements. The study...Institute of Technology, M. S. Thesis; March, 2011. Nava , O. A., Analysis of plasma bubble signatures in the ionosphere, Utah State University/Air

  16. Frictional drag reduction by bubble injection

    NASA Astrophysics Data System (ADS)

    Murai, Yuichi

    2014-07-01

    The injection of gas bubbles into a turbulent boundary layer of a liquid phase has multiple different impacts on the original flow structure. Frictional drag reduction is a phenomenon resulting from their combined effects. This explains why a number of different void-drag reduction relationships have been reported to date, while early works pursued a simple universal mechanism. In the last 15 years, a series of precisely designed experimentations has led to the conclusion that the frictional drag reduction by bubble injection has multiple manifestations dependent on bubble size and flow speed. The phenomena are classified into several regimes of two-phase interaction mechanisms. Each regime has inherent physics of bubbly liquid, highlighted by keywords such as bubbly mixture rheology, the spectral response of bubbles in turbulence, buoyancy-dominated bubble behavior, and gas cavity breakup. Among the regimes, bubbles in some selected situations lose the drag reduction effect owing to extra momentum transfer promoted by their active motions. This separates engineers into two communities: those studying small bubbles for high-speed flow applications and those studying large bubbles for low-speed flow applications. This article reviews the roles of bubbles in drag reduction, which have been revealed from fundamental studies of simplified flow geometries and from development of measurement techniques that resolve the inner layer structure of bubble-mixed turbulent boundary layers.

  17. The effects of gaseous bubble composition and gap distance on the characteristics of nanosecond discharges in distilled water

    NASA Astrophysics Data System (ADS)

    Hamdan, Ahmad; Cha, Min Suk

    2016-06-01

    Electric discharge in liquids with bubbles can reduce the energy consumption, which increases treatment efficiency. We present an experimental study of nanosecond discharges in distilled water bubbled with the monoatomic gas argon and with the polyatomic gases methane, carbon dioxide, and propane. We monitor the time evolution of the voltage and current waveforms, and calculate the injected charges to characterize the discharge. We establish a relationship between the injected charges and the shape of the plasma by time-resolved imaging to find that increasing the size of the gap reduces the injected charges. Moreover, we determine the plasma characteristics, including electron density, excitation temperatures (for atoms and ions), and rotational temperature of the OH and C2 radicals found in the plasma. Our space- and time-averaged measurements allow us to propose a spatial distribution of the plasma that is helpful for understanding the plasma dynamics necessary to develop and optimize applications based on nanosecond discharges in bubbled liquids.

  18. Nighttime ionospheric D region: Equatorial and nonequatorial

    NASA Astrophysics Data System (ADS)

    Thomson, Neil R.; McRae, Wayne M.

    2009-08-01

    Nighttime ionospheric D region parameters are found to be generally well modeled by the traditional H‧ and β as used by Wait and by the U.S. Navy in their Earth-ionosphere VLF radio waveguide programs. New comparisons with nonequatorial, mainly all-sea VLF path observations reported over several decades are shown to be consistent with the previously determined height H‧ ˜ 85.0 km and sharpness β ˜ 0.63 km-1. These paths include NPM (Hawaii) to Washington, D. C., Omega Hawaii and NLK (Seattle) to Japan, NWC (N.W. Australia) to Madagascar, and NBA (Panama) to Colorado. In marked contrast, transequatorial path observations (even when nearly all-sea) are found to be often not well modeled: for example, for Omega Japan and JJI (Japan) to Dunedin, New Zealand, the observed amplitudes are markedly lower than those which would be expected from H‧ ˜ 85.0 km and β ˜ 0.63 km-1, or any other realistic values of H‧ and β. Other transequatorial observations compared with modeling include NWC to Japan, Omega Hawaii to Dunedin, and NPM (Hawaii) to Dunedin. It is suggested that the effects of irregularities in the equatorial electrojet may extend down into the nighttime D region and so account for the observed equatorial VLF perturbations through scattering or mode conversion.

  19. Central Equatorial Pacific Experiment (CEPEX). Design document

    SciTech Connect

    Not Available

    1993-04-01

    The Earth`s climate has varied significantly in the past, yet climate records reveal that in the tropics, sea surface temperatures seem to have been remarkably stable, varying by less than a few degrees Celsius over geologic time. Today, the large warm pool of the western Pacific shows similar characteristics. Its surface temperature always exceeds 27{degree}C, but never 31{degree}C. Heightened interest in this observation has been stimulated by questions of global climate change and the exploration of stabilizing climate feedback processes. Efforts to understand the observed weak sensitivity of tropical sea surface temperatures to climate forcing has led to a number of competing ideas about the nature of this apparent thermostat. Although there remains disagreement on the processes that regulate tropical sea surface temperature, most agree that further progress in resolving these differences requires comprehensive field observations of three-dimensional water vapor concentrations, solar and infrared radiative fluxes, surface fluxes of heat and water vapor, and cloud microphysical properties. This document describes the Central Equatorial Pacific Experiment (CEPEX) plan to collect such observations over the central equatorial Pacific Ocean during March of 1993.

  20. Midday reversal of equatorial ionospheric electric field

    NASA Astrophysics Data System (ADS)

    Rastogi, R. G.

    1997-10-01

    A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956-1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V×Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.

  1. LF radio wave propagation at equatorial regions

    NASA Astrophysics Data System (ADS)

    Boudjada, Mohammed Y.; Sawas, Sami; Galopeau, Patrick H. M.; Eichelberger, Hans; Schwingenschuh, Konrad

    2016-04-01

    We analyse night-side electric field observations recorded by the ICE experiment onboard the DEMETER micro-satellite. We show the presence of multiple spaced frequency bands between 30 kHz and 500 kHz, and sometimes in the range 3 MHz - 3.5 MHz, the upper frequency of the instrument. The frequency bandwidth is found to be less than 5 kHz and the time duration about several minutes. The frequency bands are recorded close to the equatorial plane, when the satellite latitudes extend between -05° and +05°. Particular enhancements occur at two geographical longitudes: 130°E and 160°W. Those LF radio waves may be associated to density irregularities in the equatorial region. These irregularities are occurring along the ray path between the emission source region and the satellite. We discuss in this study the locations where such frequency bands are generated, and we show that the observed spectral features may be comparable to the kilometric continuum radiation which is considered as a non-thermal radio emission.

  2. Fading of Jupiter's South Equatorial Belt

    NASA Technical Reports Server (NTRS)

    Sola, Michael A.; Orton, Glenn; Baines, Kevin; Yanamandra-Fisher, Padma

    2011-01-01

    One of Jupiter's most dominant features, the South Equatorial Belt, has historically gone through a "fading" cycle. The usual dark, brownish clouds turn white, and after a period of time, the region returns to its normal color. Understanding this phenomenon, the latest occurring in 2010, will increase our knowledge of planetary atmospheres. Using the near infrared camera, NSFCAM2, at NASA's Infrared Telescope Facility in Hawaii, images were taken of Jupiter accompanied by data describing the circumstances of each observation. These images are then processed and reduced through an IDL program. By scanning the central meridian of the planet, graphs were produced plotting the average values across the central meridian, which are used to find variations in the region of interest. Calculations using Albert4, a FORTRAN program that calculates the upwelling reflected sunlight from a designated cloud model, can be used to determine the effects of a model atmosphere due to various absorption, scattering, and emission processes. Spectra that were produced show ammonia bands in the South Equatorial Belt. So far, we can deduce from this information that an upwelling of ammonia particles caused a cloud layer to cover up the region. Further investigations using Albert4 and other models will help us to constrain better the chemical make up of the cloud and its location in the atmosphere.

  3. LRL 25-inch Bubble Chamber

    DOE R&D Accomplishments Database

    Alvarez, L. W.; Gow, J. D.; Barrera, F.; Eckman, G.; Shand, J.; Watt, R.; Norgren, D.; Hernandez, H. P.

    1964-07-08

    The recently completed 25-inch hydrogen bubble chamber combines excellent picture quality with a fast operating cycle. The chamber has a unique optical system and is designed to take several pictures each Bevatron pulse, in conjunction with the Bevatron rapid beam ejection system.

  4. Ice bubbles confirm big chill

    SciTech Connect

    Kerr, R.A.

    1996-06-14

    Clues buried in Greenland`s icesheet indicate that during the last ice age, the climate repeatedly warmed sharply, only to slide into a renewed chill lasting thousands of years. New indicators derived from trapped bubbles of ancient gases, nitrogen and methane, indicate that these were indeed catastrophic events. This article describes the research and adjunct issues.

  5. Bubble-driven inertial micropump

    NASA Astrophysics Data System (ADS)

    Torniainen, Erik D.; Govyadinov, Alexander N.; Markel, David P.; Kornilovitch, Pavel E.

    2012-12-01

    The fundamental action of the bubble-driven inertial micropump is investigated. The pump has no moving parts and consists of a thermal resistor placed asymmetrically within a straight channel connecting two reservoirs. Using numerical simulations, the net flow is studied as a function of channel geometry, resistor location, vapor bubble strength, fluid viscosity, and surface tension. Two major regimes of behavior are identified: axial and non-axial. In the axial regime, the drive bubble either remains inside the channel, or continues to grow axially when it reaches the reservoir. In the non-axial regime, the bubble grows out of the channel and in all three dimensions while inside the reservoir. The net flow in the axial regime is parabolic with respect to the hydraulic diameter of the channel cross-section, but in the non-axial regime it is not. From numerical modeling, it is determined that the net flow is maximal when the axial regime crosses over to the non-axial regime. To elucidate the basic physical principles of the pump, a phenomenological one-dimensional model is developed and solved. A linear array of micropumps has been built using silicon-SU8 fabrication technology that is used to manufacture thermal inkjet printheads. Semi-continuous pumping across a 2 mm-wide channel has been demonstrated experimentally. Measured net flow with respect to viscosity variation is in excellent agreement with simulation results.

  6. Bursting the Taylor cone bubble

    NASA Astrophysics Data System (ADS)

    Pan, Zhao; Truscott, Tadd

    2014-11-01

    A soap bubble fixed on a surface and placed in an electric field will take on the shape of a cone rather than constant curvature (dome) when the electrical field is not present. The phenomenon was introduced by J. Zeleny (1917) and studied extensively by C.T. Wilson & G.I. Taylor (1925). We revisit the Taylor cone problem by studying the deformation and bursting of soap bubbles in a point charge electric field. A single bubble takes on the shape of a cone in the electric field and a high-speed camera equipped with a micro-lens is used to observe the unsteady dynamics at the tip. Rupture occurs as a very small piece of the tip is torn away from the bubble toward the point charge. Based on experiments, a theoretical model is developed that predicts when rupture should occur. This study may help in the design of foam-removal techniques in engineering and provide a better understanding of an electrified air-liquid interface.

  7. Models of cylindrical bubble pulsation

    PubMed Central

    Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hay, Todd A.; Hamilton, Mark F.

    2012-01-01

    Three models are considered for describing the dynamics of a pulsating cylindrical bubble. A linear solution is derived for a cylindrical bubble in an infinite compressible liquid. The solution accounts for losses due to viscosity, heat conduction, and acoustic radiation. It reveals that radiation is the dominant loss mechanism, and that it is 22 times greater than for a spherical bubble of the same radius. The predicted resonance frequency provides a basis of comparison for limiting forms of other models. The second model considered is a commonly used equation in Rayleigh-Plesset form that requires an incompressible liquid to be finite in extent in order for bubble pulsation to occur. The radial extent of the liquid becomes a fitting parameter, and it is found that considerably different values of the parameter are required for modeling inertial motion versus acoustical oscillations. The third model was developed by V. K. Kedrinskii [Hydrodynamics of Explosion (Springer, New York, 2005), pp. 23–26] in the form of the Gilmore equation for compressible liquids of infinite extent. While the correct resonance frequency and loss factor are not recovered from this model in the linear approximation, it provides reasonable agreement with observations of inertial motion. PMID:22978863

  8. Impurity bubbles in a BEC

    NASA Astrophysics Data System (ADS)

    Timmermans, Eddy; Blinova, Alina; Boshier, Malcolm

    2013-05-01

    Polarons (particles that interact with the self-consistent deformation of the host medium that contains them) self-localize when strongly coupled. Dilute Bose-Einstein condensates (BECs) doped with neutral distinguishable atoms (impurities) and armed with a Feshbach-tuned impurity-boson interaction provide a unique laboratory to study self-localized polarons. In nature, self-localized polarons come in two flavors that exhibit qualitatively different behavior: In lattice systems, the deformation is slight and the particle is accompanied by a cloud of collective excitations as in the case of the Landau-Pekar polarons of electrons in a dielectric lattice. In natural fluids and gases, the strongly coupled particle radically alters the medium, e.g. by expelling the host medium as in the case of the electron bubbles in superfluid helium. We show that BEC-impurities can self-localize in a bubble, as well as in a Landau-Pekar polaron state. The BEC-impurity system is fully characterized by only two dimensionless coupling constants. In the corresponding phase diagram the bubble and Landau-Pekar polaron limits correspond to large islands separated by a cross-over region. The same BEC-impurity species can be adiabatically Feshbach steered from the Landau-Pekar to the bubble regime. This work was funded by the Los Alamos LDRD program.

  9. Affirmative Discrimination and the Bubble

    ERIC Educational Resources Information Center

    Clegg, Roger

    2011-01-01

    In this essay, the author discusses how affirmative action contributed to an unnatural rise in enrollments in college. In considering the higher education bubble, he makes the case that as the opposition to preferences continues to build, the momentum of this trend will only increase as funding shrinks. He offers some tentative answers to a series…

  10. "Financial Bubbles" and Monetary Policy

    ERIC Educational Resources Information Center

    Tikhonov, Yuriy A.; Pudovkina, Olga E.; Permjakova, Juliana V.

    2016-01-01

    The relevance of this research is caused by the need of strengthening a role of monetary regulators to prevent financial bubbles in the financial markets. The aim of the article is the analysis of a problem of crisis phenomena in the markets of financial assets owing to an inadequate growth of their cost, owing to subjective reasons. The leading…

  11. Neutron Detection via Bubble Chambers

    SciTech Connect

    Jordan, David V.; Ely, James H.; Peurrung, Anthony J.; Bond, Leonard J.; Collar, J. I.; Flake, Matthew; Knopf, Michael A.; Pitts, W. K.; Shaver, Mark W.; Sonnenschein, Andrew; Smart, John E.; Todd, Lindsay C.

    2005-10-06

    The results of a Pacific Northwest National Laboratory (PNNL) exploratory research project investigating the feasibility of fast neutron detection using a suitably prepared and operated, pressure-cycled bubble chamber are described. The research was conducted along two parallel paths. Experiments with a slow pressure-release Halon chamber at the Enrico Fermi Institute at the University of Chicago showed clear bubble nucleation sensitivity to an AmBe neutron source and insensitivity to the 662 keV gammas from a 137Cs source. Bubble formation was documented via high-speed (1000 frames/sec) photography, and the acoustic signature of bubble formation was detected using a piezo-electric transducer element mounted on the base of the chamber. The chamber’s neutron sensitivity as a function of working fluid temperature was mapped out. The second research path consisted of the design, fabrication, and testing of a fast pressure-release Freon-134a chamber at PNNL. The project concluded with successful demonstrations of the PNNL chamber’s AmBe neutron source sensitivity and 137Cs gamma insensitivity. The source response tests of the PNNL chamber were documented with high-speed photography.

  12. PARTON BUBBLE MODEL FOR TWO PARTICLE ANGULAR CORRELATIONS AT RHIC/LHC.

    SciTech Connect

    LINDENBAUM S.J.; LONGACRE, R.S.

    2006-06-27

    In an earlier paper we developed a bubble model, based on a view we had shared with van Hove for over two decades. Namely, that if a quark-gluon plasma is produced in a high energy heavy ion collider, then its hadronization products would likely be emitted from small bubbles localized in phase space containing plasma. In this paper we refined the model to become a parton bubble model in which each localized bubble contains initially 3-4 partons which are almost entirely gluons forming a gluon hot spot. We greatly expanded the transverse momentum interval investigated, and thus are able to treat recombination effects within each bubble. We again utilize two particle correlations as a sensitive method for detecting the average bubble substructure. In this manuscript we make many predictions for angular correlations detectable at RHIC and which will be later modified to LHC conditions. Some early available low precision correlation analyses is qualitatively explained. However a critical consistency test of the model can be made with high precision data expected in the near future.

  13. The effects of bubble-bubble interactions on pressures and temperatures produced by bubbles collapsing near a rigid surface

    NASA Astrophysics Data System (ADS)

    Alahyari Beig, Shahaboddin; Johnsen, Eric

    2016-11-01

    Cavitation occurs in a wide range of hydraulic applications, and one of its most important consequences is structural damage to neighboring surfaces following repeated bubble collapse. A number of studies have been conducted to predict the pressures produced by the collapse of a single bubble. However, the collapse of multiple bubbles is known to lead to enhanced collapse pressures. In this study, we quantify the effects of bubble-bubble interactions on the bubble dynamics and pressures/temperatures produced by the collapse of a pair of bubbles near a rigid surface. For this purpose, we use an in-house, high-order accurate shock- and interface-capturing method to solve the 3D compressible Navier-Stokes equations for gas/liquid flows. The non-spherical bubble dynamics are investigated and the subsequent pressure and temperature fields are characterized based on the relevant parameters entering the problem: stand-off distance, geometrical configuation, collapse strength. We demonstrate that bubble-bubble interactions amplify/reduce pressures and temperatures produced at the collapse, and increase the non-sphericity of the bubbles and the collapse time, depending on the flow parameters.

  14. Statistical description of low-latitude plasma blobs as observed by DMSP F15 and KOMPSAT-1

    NASA Astrophysics Data System (ADS)

    Park, J.; Min, K. W.; Kim, V. P.; Kil, H.; Kim, H. J.; Lee, J. J.; Lee, E.; Kim, S. J.; Lee, D. Y.; Hairston, M.

    The global distribution of low-latitude plasma blobs was investigated by in-situ plasma density measurements from the Korea Multi-Purpose Satellite-1 (KOMPSAT-1) and Defense Meteorological Satellite Program (DMSP) F15. In the observations, blobs occurred in the longitude sector where the activity of the equatorial plasma bubble (EPB) was appreciable, and additional blobs were found at the lower (KOMPSAT-1) altitude as in the EPBs. However, several notable differences exist between the distributions of EPBs and blobs. First, KOMPSAT-1 found few blobs around 0°E in March and June, as did DMSP F15 from 30°W to 120°E for every season. Second, the overall occurrences in December and March at the DMSP F15 (840 km) altitude were somewhat lower than expected from those of the EBPs. Third, at the DMSP F15 altitude, the occurrence probability of plasma blobs was less controlled by yearly variations in the solar activity. These results imply that topside ionospheric conditions as well as the existence of EPBs control further development of blobs. Additionally, it was found that the blob latitudes became higher as the yearly solar activity increased. Moreover, most of the blobs were encountered in the winter hemisphere, possibly due to the low ambient density.

  15. Tiny Bubbles in my BEC

    SciTech Connect

    Blinova, Alina A.

    2012-08-01

    Ultracold atomic gases provide a unique way for exploring many-body quantum phenomena that are inaccessible to conventional low-temperature experiments. Nearly two decades ago the Bose-Einstein condensate (BEC) - an ultracold gas of bosons in which almost all bosons occupy the same single-particle state - became experimentally feasible. Because a BEC exhibits superfluid properties, it can provide insights into the behavior of low-temperature helium liquids. We describe the case of a single distinguishable atom (an impurity) embedded in a BEC and strongly coupled to the BEC bosons. Depending on the strength of impurity-boson and boson-boson interactions, the impurity self-localizes into two fundamentally distinct regimes. The impurity atom can behave as a tightly localized 'polaron,' akin to an electron in a dielectric crystal, or as a 'bubble,' an analog to an electron bubble in superfluid helium. We obtain the ground state wavefunctions of the impurity and BEC by numerically solving the two coupled Gross-Pitaevskii equations that characterize the system. We employ the methods of imaginary time propagation and conjugate gradient descent. By appropriately varying the impurity-boson and boson-boson interaction strengths, we focus on the polaron to bubble crossover. Our results confirm analytical predictions for the polaron limit and uncover properties of the bubble regime. With these results we characterize the polaron to bubble crossover. We also summarize our findings in a phase diagram of the BEC-impurity system, which can be used as a guide in future experiments.

  16. Upscaling energy concentration in multifrequency single-bubble sonoluminescence with strongly degassed sulfuric acid

    NASA Astrophysics Data System (ADS)

    Dellavale, Damián; Rechiman, Ludmila; Rosselló, Juan Manuel; Bonetto, Fabián

    2012-07-01

    Single-bubble sonoluminescence (SBSL) was explored under a variety of multifrequency excitations. In particular, biharmonic excitation was used to produce SBSL for unprecedented low dissolved noble gas concentrations in a sulfuric acid solution. Reducing the amount of dissolved noble gas makes it possible to reach higher acoustic pressures on the SL bubble, which otherwise are not attainable because of the Bjerknes instability. By using biharmonic excitation, we were able to experimentally trap and to spatially stabilize SL bubbles for xenon pressure overhead as low as 1mbar. As a result, we have access to regions in phase space where the plasma temperatures are higher than the ones reached before for bubbles driven at ≈30kHz.

  17. Upscaling energy concentration in multifrequency single-bubble sonoluminescence with strongly degassed sulfuric acid.

    PubMed

    Dellavale, Damián; Rechiman, Ludmila; Rosselló, Juan Manuel; Bonetto, Fabián

    2012-07-01

    Single-bubble sonoluminescence (SBSL) was explored under a variety of multifrequency excitations. In particular, biharmonic excitation was used to produce SBSL for unprecedented low dissolved noble gas concentrations in a sulfuric acid solution. Reducing the amount of dissolved noble gas makes it possible to reach higher acoustic pressures on the SL bubble, which otherwise are not attainable because of the Bjerknes instability. By using biharmonic excitation, we were able to experimentally trap and to spatially stabilize SL bubbles for xenon pressure overhead as low as 1 mbar. As a result, we have access to regions in phase space where the plasma temperatures are higher than the ones reached before for bubbles driven at ≈30 kHz.

  18. Optical investigation of cavitation erosion by laser-induced bubble collapse

    NASA Astrophysics Data System (ADS)

    Chen, X.; Xu, R. Q.; Shen, Z. H.; Lu, J.; Ni, X. W.

    2004-04-01

    By means of a new force sensor based on optical beam deflection (OBD), the mechanical effects of laser-matter interaction underwater at different incident laser energy are investigated in detail. The experimental results show that a target underwater is impacted in turn by laser-plasma ablation force and high-speed liquid-jet impulse induced by bubbles collapse in the vicinity of a solid boundary. Furthermore, the amplitudes of the two forces increase monotonously with laser energy. According to the ablation force detected by the experiment and the theoretical relationship between laser intensity and ablation pressure, the value of liquid-jet impact against a solid boundary can be easily obtained. In addition, based on the model of a collapsing bubble, some characteristic parameters, such as the liquid-jet impact velocity, the maximum bubble radius, the bubble energy can also be obtained at different laser energy, which are valuable in the corresponding research fields.

  19. Data collapse of the spectra of water-based stable single-bubble sonoluminescence

    SciTech Connect

    Levinsen, Mogens T.

    2010-09-15

    In the early days of stable single-bubble sonoluminescence, it was strongly debated whether the emission was blackbody radiation or whether the bubble was transparent to its own radiation (volume emission). Presently, the volume emission picture is nearly universally accepted. We present new measurements of spectra with apparent color temperatures ranging from 6000 to 21 000 K. We show through data collapse that within experimental uncertainty, apart from a constant, the spectra of strongly driven stable single-bubble sonoluminescence in water can be written as the product between a universal function of wavelength and a functional form that only depends on wavelength and apparent temperature but has no reference to any other parameter specific to the experimental situation. This remarkable result does question our theoretical understanding of the state of the plasma in the interior of strongly driven stable sonoluminescent bubbles.

  20. Antioscillons from bubble collisions at finite temperature

    NASA Astrophysics Data System (ADS)

    Mersini-Houghton, Laura

    2014-04-01

    We study the role of the topology of bubbles at finite temperatures plays on collisions and the existence of new field configurations. We show that in the case of false vacuum decay at finite temperature, the cylindrical symmetry of bubbles admits a new exotic field with negative energies, the antiperiodic "twisted" field. New field configurations arise generically, not only at finite temperatures but whenever a cluster of bubbles resulting from collisions form nontrivial topologies. The interaction of both configurations induces instabilites on the bubble. Collisions of bubbles occupied by the new fields can lead to the emergence of new structures, named antioscillons.

  1. Asymmetric interface temperature during vapor bubble growth

    NASA Astrophysics Data System (ADS)

    Diana, A.; Castillo, M.; Steinberg, T.; Brutin, D.

    2013-07-01

    We investigate the nucleation, growth, and detachment of single vapor bubbles at the interface microscale. Shear flow is used to investigate pool and convective boiling situations using visible and infrared visualizations. We determine a threshold Reynolds number for the onset of asymmetric interfacial temperatures. Below this threshold, bubble growth is geometrically and thermally symmetric, while above, bubbles no longer grow thermally symmetrically. This is explained by the dominance of convective heat transfer removal over viscous effects at the bubble interface. We experimentally demonstrate asymmetric interfacial temperature profiles that should be taken into account for future bubble growth modeling.

  2. Theory of supercompression of vapor bubbles and nanoscale thermonuclear fusion

    NASA Astrophysics Data System (ADS)

    Nigmatulin, Robert I.; Akhatov, Iskander Sh.; Topolnikov, Andrey S.; Bolotnova, Raisa Kh.; Vakhitova, Nailya K.; Lahey, Richard T.; Taleyarkhan, Rusi P.

    2005-10-01

    shock waves in both phases, which converge toward and reflect from the center of the bubble, causing dissociation, ionization, and other related plasma physics phenomena during the final stage of bubble collapse. For a vapor bubble in a deuterated organic liquid (e.g., acetone), during the final stage of collapse there is a nanoscale region (diameter ˜100nm) near the center of the bubble in which, for a fraction of a picosecond, the temperatures and densities are extremely high (˜108K and ˜10g/cm3, respectively) such that thermonuclear fusion may take place. To quantify this, the kinetics of the local deuterium/deuterium (D/D) nuclear fusion reactions was used in the HYDRO code to determine the intensity of the fusion reactions. Numerical HYDRO code simulations of the bubble implosion process have been carried out for the experimental conditions used by Taleyarkhan et al. [Science 295, 1868 (2002); Phys. Rev. E 69, 036109 (2004)] at Oak Ridge National Laboratory. The results show good agreement with the experimental data on bubble fusion that was measured in chilled deuterated acetone.

  3. Theory of supercompression of vapor bubbles and nanoscale thermonuclear fusion

    SciTech Connect

    Nigmatulin, Robert I.; Akhatov, Iskander Sh.; Topolnikov, Andrey S.; Bolotnova, Raisa Kh.; Vakhitova, Nailya K.; Lahey, Richard T. Jr.; Taleyarkhan, Rusi P.

    2005-10-01

    shock waves in both phases, which converge toward and reflect from the center of the bubble, causing dissociation, ionization, and other related plasma physics phenomena during the final stage of bubble collapse. For a vapor bubble in a deuterated organic liquid (e.g., acetone), during the final stage of collapse there is a nanoscale region (diameter {approx}100 nm) near the center of the bubble in which, for a fraction of a picosecond, the temperatures and densities are extremely high ({approx}10{sup 8} K and {approx}10 g/cm{sup 3}, respectively) such that thermonuclear fusion may take place. To quantify this, the kinetics of the local deuterium/deuterium (D/D) nuclear fusion reactions was used in the HYDRO code to determine the intensity of the fusion reactions. Numerical HYDRO code simulations of the bubble implosion process have been carried out for the experimental conditions used by Taleyarkhan et al. [Science 295, 1868 (2002); Phys. Rev. E 69, 036109 (2004)] at Oak Ridge National Laboratory. The results show good agreement with the experimental data on bubble fusion that was measured in chilled deuterated acetone.

  4. Alternative model of single-bubble sonoluminescence

    NASA Astrophysics Data System (ADS)

    Yasui, Kyuichi

    1997-12-01

    A model of single-bubble sonoluminescence (SBSL) is constructed. In the model, the temperature is assumed to be spatially uniform inside the bubble except at the thermal boundary layer near the bubble wall even at the strong collapse based on the theoretical results of Kwak and Na [Phys. Rev. Lett. 77, 4454 (1996)]. In the model, the effect of the kinetic energy of gases inside the bubble is taken into account, which heats up the whole bubble when gases stop their motions at the end of the strong collapse. In the model, a bubble in water containing air is assumed to consist mainly of argon based on the hypothesis of Lohse et al. [Phys. Rev. Lett. 78, 1359 (1997)]. Numerical calculations under a SBSL condition reveal that the kinetic energy of gases heats up the whole bubble considerably. It is also clarified that vapor molecules (H2O) undergo chemical reactions in the heated interior of the bubble at the collapse and that chemical reactions decrease the temperature inside the bubble considerably. It is suggested that SBSL originates in thermal radiation from the whole bubble rather than a local point (the bubble center) heated by a converging spherical shock wave widely suggested in the previous theories of SBSL.

  5. Mechanics of gas-vapor bubbles

    NASA Astrophysics Data System (ADS)

    Hao, Yue; Zhang, Yuhang; Prosperetti, Andrea

    2017-03-01

    Most bubbles contain a mixture of vapor and incondensible gases. While the limit cases of pure vapor and pure gas bubbles are well studied, much less is known about the more realistic case of a mixture. The bubble contents continuously change due to the combined effects of evaporation and condensation and of gas diffusion in the liquid and in the bubble. This paper presents a model for this situation and illustrates by means of examples several physical processes that can occur: a bubble undergoing a temporary pressure reduction, which makes the liquid temporarily superheated; a bubble subjected to a burst of sound; and a bubble continuously growing by rectified diffusion of heat in the presence of an incondensible gas.

  6. Initial thermal plasma observations from ISEE-1

    NASA Technical Reports Server (NTRS)

    Baugher, C. R.; Chappell, C. R.; Horwitz, J. L.; Shelley, E. G.; Young, D. T.

    1980-01-01

    The initial measurements of magnetospheric thermal ions by the Plasma Composition Experiment on ISEE-1 are presented to demonstrate the surprising variety in this plasma population. The data provide evidence that the adiabatic mapping of the high latitude ionosphere to the equatorial plasma trough provides an insufficient description of the origin, transport, and accumulation processes which supply low energy ions to the outer plasmasphere and plasma trough.

  7. Initial thermal plasma observations from ISEE-1

    NASA Astrophysics Data System (ADS)

    Baugher, C. R.; Chappell, C. R.; Horwitz, J. L.; Shelley, E. G.; Young, D. T.

    1980-09-01

    The initial measurements of magnetospheric thermal ions by the Plasma Composition Experiment on ISEE-1 are presented to demonstrate the surprising variety in this plasma population. The data provide evidence that the adiabatic mapping of the high latitude ionosphere to the equatorial plasma trough provides an insufficient description of the origin, transport, and accumulation processes which supply low energy ions to the outer plasmasphere and plasma trough.

  8. Evening and nighttime features of equatorial ionospheric F2 layer

    NASA Astrophysics Data System (ADS)

    Oyekola, Oyedemi S.

    2016-07-01

    We have used ionosonde observations recorded at Ibadan (7.4 degree North, 3.9 degree East) during the International Geophysical year (1957-58) to investigate evening and nighttime characteristic features of equatorial ionosphere during high solar flux and quiet magnetic conditions. We have also used International Reference Ionosphere model (IRI-2012) data. Our results show that the base of the ionosphere descends at a rate of -27.5 km/hr between 2000 LT and 0400 LT, whereas the observed bottomside peak of the ionosphere move down at a rate of -29.3 km/hr between 1900 and 0500 LT, while IRI2012 bottomside peak show -29.8 km/hr between 2000 LT and 0500 LT. The downward flow rate of plasma concentration between 1900 LT and 0500 LT and between 1800 LT and 0400 LT is approximately 0.040 electron per cubic metre per hour and 0.081 electron per cubic metre per hour, respectively for observed and for modeled NmF2. Month-by-month averaged altitudes (h'F, hmF2, and modeled hmF2) indicate significant local time variation. In addition, the month-by month variation indicates nighttime double crest of averaged peak height (hmF2) in the ionosonde measurements and in the IRI-2012 empirical model with a trough in June-August for data and In July for model. The monthly mean downward vertical drift velocities derived from local time variation of h'F and hmF2 together with global drift model essential demonstrate much fluctuations. We found a "domed shape" in modeled drift velocity, indicating equatorward plasma between April and September.

  9. Physical conditions and chemical processes during single-bubble sonoluminescence

    NASA Astrophysics Data System (ADS)

    Flannigan, David J.

    In order to gain insight into the physical conditions and chemical processes associated with single-bubble sonoluminescence (SBSL), nonvolatile liquids such as concentrated sulfuric acid (H2SO 4) were explored. The SBSL radiant powers from H2SO 4 aqueous solutions were found to be over 103 times larger than those typically observed for SBSL from water. In addition, the emission spectra contain extensive bands and lines from molecules, atoms, and ions. The population of high-energy states of atoms (20 eV) and ions (37 eV) provides definitive experimental evidence of the formation of a plasma. By using various techniques (e.g., small molecules and atoms as intra-cavity probes, standard methods of plasma diagnostics, and spectrometric methods of pyrometry), it was possible to quantify the heavy particle temperatures (15,000 K), heavy particle densities (1021 cm-3) and pressures (4,000 bar), and plasma electron densities (1018 cm -3) generated during SBSL from H2SO4. It was also found that SBSL from H2SO4 containing mixtures of noble gas and air was quenched up to a critical acoustic pressure, above which the radiant powers increased by 104. From the spectral profiles it was determined that the air limited heating and plasma formation by endothermic chemical reactions and energy-transfer reactions. Simultaneous stroboscopic and spectroscopic studies of SBSL in H2SO4 containing alkali-metal sulfates showed that dramatic changes in the bubble dynamics correlated with the onset of emission from nonvolatile species such as Na and K atoms. These effects were attributed to the development of interfacial instabilities with increasing translational velocity of the bubble.

  10. Ion dynamics in the plasma mantle

    NASA Astrophysics Data System (ADS)

    Akinrimisi, J.; Orsini, S.; Candidi, M.; Balsiger, H.

    1990-11-01

    A comprehensive statistical analysis has been performed on plasma mantle data from the positive ion experiment (EGD) on ISEE-2 and the Ion Composition Experiment (ICE) on ISEE-1; the data were collected during the first six months of 1978 and 1979 in the earth's magnetotail. Particular emphasis has been placed on plasma mantle-plasma sheet crossings so as to elucidate the role of mantle plasma in the refilling of the plasma sheet. It is shown that mantle plasma contiguous to the plasma sheet is convected primarily away from the magnetopause toward the center of the tail equatorial region. Evidence is found in the data that, when the mantle plasma reaches a region close to the plasma sheet, it undergoes processes of energization and thermalization. The mantle plasma characteristics gradually change to those of the plasma sheet as observed immediately after, suggesting that the same plasma has changed properties in such a way as to become plasma sheet plasma.

  11. Generation of Bubbly Suspensions in Low Gravity

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Hoffmann, Monica I.; Hussey, Sam; Bell, Kimberly R.

    2000-01-01

    Generation of a uniform monodisperse bubbly suspension in low gravity is a rather difficult task because bubbles do not detach as easily as on Earth. Under microgravity, the buoyancy force is not present to detach the bubbles as they are formed from the nozzles. One way to detach the bubbles is to establish a detaching force that helps their detachment from the orifice. The drag force, established by flowing a liquid in a cross or co-flow configuration with respect to the nozzle direction, provides this additional force and helps detach the bubbles as they are being formed. This paper is concerned with studying the generation of a bubbly suspension in low gravity in support of a flight definition experiment titled "Behavior of Rapidly Sheared Bubbly Suspension." Generation of a bubbly suspension, composed of 2 and 3 mm diameter bubbles with a standard deviation <10% of the bubble diameter, was identified as one of the most important engineering/science issues associated with the flight definition experiment. This paper summarizes the low gravity experiments that were conducted to explore various ways of making the suspension. Two approaches were investigated. The first was to generate the suspension via a chemical reaction between the continuous and dispersed phases using effervescent material, whereas the second considered the direct injection of air into the continuous phase. The results showed that the reaction method did not produce the desired bubble size distribution compared to the direct injection of bubbles. However, direct injection of air into the continuous phase (aqueous salt solution) resulted in uniform bubble-diameter distribution with acceptable bubble-diameter standard deviation.

  12. Multiscale equatorial electrojet turbulence: Energy conservation, coupling, and cascades in a baseline 2-D fluid model

    NASA Astrophysics Data System (ADS)

    Hassan, Ehab; Hatch, D. R.; Morrison, P. J.; Horton, W.

    2016-09-01

    Progress in understanding the coupling between plasma instabilities in the equatorial electrojet based on a unified fluid model is reported. Simulations with parameters set to various ionospheric background conditions revealed properties of the gradient-drift and Farley-Buneman instabilities. Notably, sharper density gradients increase linear growth rates at all scales, whereas variations in cross-field E × B drift velocity only affect small-scale instabilities. A formalism defining turbulent fluctuation energy for the system is introduced, and the turbulence is analyzed within this framework. This exercise serves as a useful verification test of the numerical simulations and also elucidates the physics underlying the ionospheric turbulence. Various physical mechanisms involved in the energetics are categorized as sources, sinks, nonlinear transfer, and cross-field coupling. The physics of the nonlinear transfer terms is studied to identify their roles in producing energy cascades, which explain the generation of small-scale structures that are stable in the linear regime. The theory of two-step energy cascading to generate the 3 m plasma irregularities in the equatorial electrojet is verified for the first time in the fluid regime. In addition, the nonlinearity of the system allows the possibility of an inverse energy cascade, potentially responsible for generating large-scale plasma structures at the top of the electrojet as found in different rocket and radar observations.

  13. Data-driven numerical simulations of equatorial spread F in the Peruvian sector: 2. Autumnal equinox

    NASA Astrophysics Data System (ADS)

    Hysell, D. L.; Milla, M. A.; Condori, L.; Meriwether, J. W.

    2014-08-01

    An ongoing effort to simulate plasma instability in the equatorial ionosphere leading to equatorial spread F (ESF) in the American sector is described. Ionospheric state parameters including plasma number density and vector drift velocity profiles were measured at the Jicamarca Radio Observatory in the period between 20 September and 3 October 2013. Coherent radar backscatter from plasma irregularities was recorded simultaneously, and images of the irregularities were calculated using aperture synthesis methods. Neutral winds were measured by the red line Fabry-Perot interferometers at Jicamarca and Arequipa, Peru. A fully 3-D numerical simulation of ionospheric irregularities, initialized and forced using parameterizations derived from measurements and empirical models, was used to reproduce the ESF activity observed. Simulations were able to recover many of the features of the irregularities, although some important anomalies can be noted. ESF events in which the first appearance of radar plumes occurred either very early or very late were not reproduced in simulation and may be indicative of nonlocal influence.

  14. Formation of Jets and Equatorial Superrotation on Jupiter

    NASA Astrophysics Data System (ADS)

    Liu, Junjun; Schneider, T.

    2008-09-01

    The zonal flow in Jupiter's upper troposphere is organized into alternating retrograde and prograde jets, with a prograde (superrotating) jet at the equator. Existing models posit as the driver of the flow either differential radiative heating of the atmosphere or intrinsic heat fluxes emanating from the deep interior; however, they do not reproduce all large-scale features of Jupiter's jets and thermal structure. Here it is shown that the difficulties in accounting for Jupiter's jets and thermal structure resolve if the effects of differential radiative heating and intrinsic heat fluxes are considered together and if upper-tropospheric dynamics are linked to a magnetohydrodynamic drag deep in the atmosphere. Baroclinic eddies generated by differential radiative heating can account for the off-equatorial jets; meridionally propagating equatorial Rossby waves generated by intrinsic convective heat fluxes can account for the equatorial superrotation. The zonal flow extends deeply into the atmosphere, with its speed changing with depth, up to depths at which the magnetohydrodynamic drag acts. The theory is supported by simulations with an energetically consistent general circulation model of Jupiter's outer atmosphere. A simulation that incorporates differential radiative heating and intrinsic heat fluxes reproduces Jupiter's observed jets and thermal structure. A control simulation that incorporates only differential radiative heating but no intrinsic heat fluxes produces off-equatorial jets but no equatorial superrotation; another control simulation that incorporates only intrinsic heat fluxes but no differential radiative heating produces equatorial superrotation but no off-equatorial jets. The proposed mechanisms act in the atmospheres of all giant planets. Saturn's prograde equatorial jet is wider and stronger than Jupiter's due to its larger tropospheric gravity wave speed and consequently greater equatorial Rossby radius. Uranus and Neptune do not exhibit

  15. The Eastern Equatorial Pacific Chlorophyll Dynamics: Update of the `Equatorial Box' Project

    NASA Astrophysics Data System (ADS)

    Westberry, T.; Wang, X.; Murtugudde, R.; Behrenfeld, M.; Roesler, C.

    2006-12-01

    The `Equatorial Box' Project utilizes the mooring observations along the 125 and 140 TAO lines to provide carbon component data, including chlorophyll, primary production, POC and DOC. These parameters together with other oceanographic properties can be used to validate ocean circulation-ecosystem models. In turn, a validated model can offer considerable promise for not only filling the gaps in the spatial and temporal coverage from the available observations, but also enhancing our understanding of the mechanisms underlying the variability. Here, we present both measured and simulated vertical-meridional chlorophyll distributions and primary production along 125W and 140W. While there is a permanent layer of deep chlorophyll maximum at 30-60 m, there is no deep maximum in phytoplankton carbon biomass or primary production. Our analyses focus on impact of nutrient stress and light conditions on chlorophyll dynamics in the eastern equatorial Pacific. We also compare modeled primary productivity with ocean color derived rates.

  16. Particle entry into the equatorial magnetosphere.

    NASA Technical Reports Server (NTRS)

    Fritz, T. A.; Barfield, J. N.; Smith, P. H.; Hoffman, R. A.; Konradi, A.

    1973-01-01

    Explorer-45 data are reviewed which concern the behavior and dynamics of protons associated with the storm-time and quiet-time extraterrestrial ring current at the equatorial plane. The quiet-time proton energy spectrum exhibits a peak in the interval between 100 and 200 keV. During storm conditions, the intensities of the higher energy protons decrease while the intensities of protons from 10 to 100 keV are greatly enhanced, making them the dominant contributor to the storm-time particle energy density. It is shown that during magnetic storms, the ratio of the particle energy density to the magnetic field energy density reaches values greater than unity, and that the plasmasphere has a strong influence on the characteristics of particle injection.

  17. Three dimensional Visualization of Jupiter's Equatorial Region

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

    This frame is a view to the west, from between the cloud layers and over the patchy white clouds to the east of the hotspot. This is probably an area where moist convection is occurring over large horizontal distances, similar to the atmosphere over the equatorial ocean on Earth. The clouds are high and thick, and are observed to change rapidly over short time scales.

    Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

    The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756

  18. Suppression of cavitation inception by gas bubble injection: a numerical study focusing on bubble-bubble interaction.

    PubMed

    Ida, Masato; Naoe, Takashi; Futakawa, Masatoshi

    2007-10-01

    The dynamic behavior of cavitation and gas bubbles under negative pressure has been studied numerically to evaluate the effect of gas bubble injection into a liquid on the suppression of cavitation inception. In our previous studies, it was demonstrated by direct observation that cavitation occurs in liquid mercury when mechanical impacts are imposed, and this will cause cavitation damage in spallation neutron sources, in which liquid mercury is bombarded by a high-power proton beam. In the present paper, we describe numerical investigations of the dynamics of cavitation bubbles in liquid mercury using a multibubble model that takes into account the interaction of a cavitation bubble with preexisting gas bubbles through bubble-radiated pressure waves. The numerical results suggest that, if the mercury includes gas bubbles whose equilibrium radius is much larger than that of the cavitation bubble, the explosive expansion of the cavitation bubble (i.e., cavitation inception) is suppressed by the positive-pressure wave radiated by the injected bubbles, which decreases the magnitude of the negative pressure in the mercury.

  19. Scintillations associated with bottomside sinusoidal irregularities in the equatorial F region

    NASA Technical Reports Server (NTRS)

    Basu, S.; Basu, S.; Valladares, C. E.; Dasgupta, A.; Whitney, H. E.

    1986-01-01

    Multisatellite scintillation observations and spaced receiver drift measurements are presented for a category of equatorial F region plasma irregularities characterized by nearly sinusoidal waveforms in the ion number density. The observations were made at Huancayo, Peru, and the measurements at Ancon, Peru, associated with irregularities observed by the Atmospheric-Explorer-E satellite on a few nights in December 1979. Utilizing ray paths to various geostationary satellites, it was found that the irregularities grow and decay almost simultaneously in long-lived patches extending at least 1000 km in the east-west direction.

  20. Ozone variability in the equatorial middle atmosphere

    SciTech Connect

    Sun, Chirong; Leovy, C. )

    1990-08-20

    Ozone variability in the equatorial middle atmosphere is investigated and related to temperature and zonal wind variations using data from the Nimbus 7 and Solar Mesosphere Explorer (SME) satellite. The dominant component of the seasonal variability at most levels from the middle stratosphere to the lower thermosphere is the semiannual oscillation (SAO) which has maxima near 10, 3, 0.07, 0.01 mbar, and near or above 0.0024 mbar. There is evidence that the 10-mbar peak is due to vertical advection of odd nitrogen (NO{sub y}) by the semiannually varying residual mean circulation, while temperature dependence of chemical reactions coupled with the thermal SAO near the stratopause and in the upper mesosphere is responsible for the peaks near 3 and 0.07 mbar. The seasonal dependence suggests a contribution from gravity wave modulated vertical mixing of water vapor near the 0.01 mbar level, and the authors speculate that semiannually modulated mixing of atomic oxygen by the (1,1) mode of the thermal tide contributes to the SAO ozone peak above 0.0024 mbar. The negative correlation between temperature and ozone is so strong in the 7- to 0.5-mbar layer that ozone is a useful proxy for temperature variability on time scales from a few days to many months. A preliminary look at annual and interannual variations shows that differing patterns of winter high latitude Rossby wave variability in the two hemispheres are reflected in the signatures of equatorial ozone and temperature in the same layer.

  1. Physical mechanism and statistics of occurrence of an additional layer in the equatorial ionosphere

    NASA Astrophysics Data System (ADS)

    Balan, N.; Batista, I. S.; Abdu, M. A.; MacDougall, J.; Bailey, G. J.

    1998-12-01

    A physical mechanism and the location and latitudinal extent of an additional layer, called the F3 layer, that exists in the equatorial ionosphere are presented. A statistical analysis of the occurrence of the layer recorded at the equatorial station Fortaleza (4°S, 38°W dip 9°S) in Brazil is also presented. The F3 layer forms during the morning-noon period in that equatorial region where the combined effect of the upward E×B drift and neutral wind provides a vertically upward plasma drift velocity at altitudes near and above the F2 peak. This velocity causes the F2 peak to drift upward and form the F3 layer while the normal F2 layer develops at lower altitudes through the usual photochemical and dynamical effects of the equatorial region. The peak electron density of the F3 layer can exceed that of the F2 layer. The F3 layer is predicted to be distinct on the summer side of the geomagnetic equator during periods of low solar activity and to become less distinct as the solar activity increases. Ionograms recorded at Fortaleza in 1995 show the existence of an F3 layer on 49% of the days, with the occurrence being most frequent (75%) and distinct in summer, as expected. During summer the layer occurs earlier and lasts longer compared to the other seasons; on the average, the layer occurs at around 0930 LT and lasts for about 3 hours. The altitude of the layer is also high in summer, with the mean peak virtual height being about 570 km. However, the critical frequency of the layer (foF3) exceeds that of the F2 layer (foF2) by the largest amounts in winter and equinox; foF3 exceeds foF2 by a yearly average of about 1.3 MHz.

  2. Sonoporation from Jetting Cavitation Bubbles

    PubMed Central

    Ohl, Claus-Dieter; Arora, Manish; Ikink, Roy; de Jong, Nico; Versluis, Michel; Delius, Michael; Lohse, Detlef

    2006-01-01

    The fluid dynamic interaction of cavitation bubbles with adherent cells on a substrate is experimentally investigated. We find that the nonspherical collapse of bubbles near to the boundary is responsible for cell detachment. High-speed photography reveals that a wall bounded flow leads to the detachment of cells. Cells at the edge of the circular area of detachment are found to be permanently porated, whereas cells at some distance from the detachment area undergo viable cell membrane poration (sonoporation). The wall flow field leading to cell detachment is modeled with a self-similar solution for a wall jet, together with a kinetic ansatz of adhesive bond rupture. The self-similar solution for the δ-type wall jet compares very well with the full solution of the Navier-Stokes equation for a jet of finite thickness. Apart from annular sites of sonoporation we also find more homogenous patterns of molecule delivery with no cell detachment. PMID:16950843

  3. Etiology of gas bubble disease

    SciTech Connect

    Bouck, G.R.

    1980-11-01

    Gas bubble disease is a noninfectious, physically induced process caused by uncompensated hyperbaric pressure of total dissolved gases. When pressure compensation is inadequate, dissolved gases may form emboli (in blood) and emphysema (in tissues). The resulting abnormal physical presence of gases can block blood vessels (hemostasis) or tear tissues, and may result in death. Population mortality is generally skewed, in that the median time to death occurs well before the average time to death. Judged from mortality curves, three stages occur in gas bubble disease: (1) a period of gas pressure equilibrium, nonlethal cavitation, and increasing morbidity; (2) a period of rapid and heavy mortality; and (3) a period of protracted survival, despite lesions, and dysfunction that eventually terminates in total mortality. Safe limits for gas supersaturation depend on species tolerance and on factors that differ among hatcheries and rivers, between continuous and intermittent exposures, and across ranges of temperature and salinity.

  4. Bubble-induced cave collapse.

    PubMed

    Girihagama, Lakshika; Nof, Doron; Hancock, Cathrine

    2015-01-01

    Conventional wisdom among cave divers is that submerged caves in aquifers, such as in Florida or the Yucatan, are unstable due to their ever-growing size from limestone dissolution in water. Cave divers occasionally noted partial cave collapses occurring while they were in the cave, attributing this to their unintentional (and frowned upon) physical contact with the cave walls or the aforementioned "natural" instability of the cave. Here, we suggest that these cave collapses do not necessarily result from cave instability or contacts with walls, but rather from divers bubbles rising to the ceiling and reducing the buoyancy acting on isolated ceiling rocks. Using familiar theories for the strength of flat and arched (un-cracked) beams, we first show that the flat ceiling of a submerged limestone cave can have a horizontal expanse of 63 meters. This is much broader than that of most submerged Florida caves (~ 10 m). Similarly, we show that an arched cave roof can have a still larger expanse of 240 meters, again implying that Florida caves are structurally stable. Using familiar bubble dynamics, fluid dynamics of bubble-induced flows, and accustomed diving practices, we show that a group of 1-3 divers submerged below a loosely connected ceiling rock will quickly trigger it to fall causing a "collapse". We then present a set of qualitative laboratory experiments illustrating such a collapse in a circular laboratory cave (i.e., a cave with a circular cross section), with concave and convex ceilings. In these experiments, a metal ball represented the rock (attached to the cave ceiling with a magnet), and the bubbles were produced using a syringe located at the cave floor.

  5. Bubble-Induced Cave Collapse

    PubMed Central

    Girihagama, Lakshika; Nof, Doron; Hancock, Cathrine

    2015-01-01

    Conventional wisdom among cave divers is that submerged caves in aquifers, such as in Florida or the Yucatan, are unstable due to their ever-growing size from limestone dissolution in water. Cave divers occasionally noted partial cave collapses occurring while they were in the cave, attributing this to their unintentional (and frowned upon) physical contact with the cave walls or the aforementioned “natural” instability of the cave. Here, we suggest that these cave collapses do not necessarily result from cave instability or contacts with walls, but rather from divers bubbles rising to the ceiling and reducing the buoyancy acting on isolated ceiling rocks. Using familiar theories for the strength of flat and arched (un-cracked) beams, we first show that the flat ceiling of a submerged limestone cave can have a horizontal expanse of 63 meters. This is much broader than that of most submerged Florida caves (~ 10 m). Similarly, we show that an arched cave roof can have a still larger expanse of 240 meters, again implying that Florida caves are structurally stable. Using familiar bubble dynamics, fluid dynamics of bubble-induced flows, and accustomed diving practices, we show that a group of 1-3 divers submerged below a loosely connected ceiling rock will quickly trigger it to fall causing a “collapse”. We then present a set of qualitative laboratory experiments illustrating such a collapse in a circular laboratory cave (i.e., a cave with a circular cross section), with concave and convex ceilings. In these experiments, a metal ball represented the rock (attached to the cave ceiling with a magnet), and the bubbles were produced using a syringe located at the cave floor. PMID:25849088

  6. Development and interactions of two inert gas bubbles during decompression.

    PubMed

    Jiang, Y; Homer, L D; Thalmann, E D

    1996-09-01

    A mathematical model has been developed to simulate the evolution of two inert gas bubbles in tissue. This is useful for understanding the dynamics of bubbles that presumably arise during decompression. It is assumed that they are spherical and that the tissue volume surrounding them is infinite. The total pressure in each bubble is determined by the barometric and metabolic gas pressures as well as the pressure due to surface tension. Bipolar coordinates are employed to determine the inert gas pressure distribution. Two coupled governing equations for bubble radii are then derived and solved numerically. The results demonstrate how bubble evolution is affected by the distance between bubbles and the initial bubble radii. The existence time and bubble surface flux of two equal-sized bubbles are calculated and compared with those of a single gas bubble model. The results indicate that when two bubbles are very close, it takes 20% more time for two bubbles to dissolve than for a single one, and the total surface flux of two bubbles is nearly 20% less than twice of a single bubble. When the center-to-center distance is 10 times of bubble radius, the effect of bubble interaction on bubble existence time and surface flux are about 6 and 9% changes, respectively. We conclude that if bubbles are not too small, the interactions among bubbles should be included in inert gas bubble models predicting bubble evolution.

  7. Armoring confined bubbles in concentrated colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Yu, Yingxian; Khodaparast, Sepideh; Stone, Howard

    2016-11-01

    Encapsulation of a bubble with microparticles is known to significantly improve the stability of the bubble. This phenomenon has recently gained increasing attention due to its application in a variety of technologies such as foam stabilization, drug encapsulation and colloidosomes. Nevertheless, the production of such colloidal armored bubble with controlled size and particle coverage ratio is still a great challenge industrially. We study the coating process of a long air bubble by microparticles in a circular tube filled with a concentrated microparticles colloidal suspension. As the bubble proceeds in the suspension of particles, a monolayer of micro-particles forms on the interface of the bubble, which eventually results in a fully armored bubble. We investigate the phenomenon that triggers and controls the evolution of the particle accumulation on the bubble interface. Moreover, we examine the effects of the mean flow velocity, the size of the colloids and concentration of the suspension on the dynamics of the armored bubble. The results of this study can potentially be applied to production of particle-encapsulated bubbles, surface-cleaning techniques, and gas-assisted injection molding.

  8. Soap bubbles in paintings: Art and science

    NASA Astrophysics Data System (ADS)

    Behroozi, F.

    2008-12-01

    Soap bubbles became popular in 17th century paintings and prints primarily as a metaphor for the impermanence and fragility of life. The Dancing Couple (1663) by the Dutch painter Jan Steen is a good example which, among many other symbols, shows a young boy blowing soap bubbles. In the 18th century the French painter Jean-Simeon Chardin used soap bubbles not only as metaphor but also to express a sense of play and wonder. In his most famous painting, Soap Bubbles (1733/1734) a translucent and quavering soap bubble takes center stage. Chardin's contemporary Charles Van Loo painted his Soap Bubbles (1764) after seeing Chardin's work. In both paintings the soap bubbles have a hint of color and show two bright reflection spots. We discuss the physics involved and explain how keenly the painters have observed the interaction of light and soap bubbles. We show that the two reflection spots on the soap bubbles are images of the light source, one real and one virtual, formed by the curved surface of the bubble. The faint colors are due to thin film interference effects.

  9. Unsteady thermocapillary migration of bubbles

    NASA Technical Reports Server (NTRS)

    Dill, Loren H.; Balasubramaniam, R.

    1988-01-01

    Upon the introduction of a gas bubble into a liquid possessing a uniform thermal gradient, an unsteady thermo-capillary flow begins. Ultimately, the bubble attains a constant velocity. This theoretical analysis focuses upon the transient period for a bubble in a microgravity environment and is restricted to situations wherein the flow is sufficiently slow such that inertial terms in the Navier-Stokes equation and convective terms in the energy equation may be safely neglected (i.e., both Reynolds and Marangoni numbers are small). The resulting linear equations were solved analytically in the Laplace domain with the Prandtl number of the liquid as a parameter; inversion was accomplished numerically using a standard IMSL routine. In the asymptotic long-time limit, the theory agrees with the steady-state theory of Young, Goldstein, and Block. The theory predicts that more than 90 percent of the terminal steady velocity is achieved when the smallest dimensionless time, i.e., the one based upon the largest time scale-viscous or thermal-equals unity.

  10. Role of acoustic-gravity waves in generating equatorial ionospheric irregularities

    SciTech Connect

    Argo, P.E.

    1980-01-01

    Irregularities in the equatorial ionospheric plasma (F-layer) have been observed and studied for many years. Even so, the creation mechanisms have successfully remained a source of controversy for equally many years. This is mainly due to the difficulty in observing the irregularities, because in situ measurements give a spatial trace at a near single time, while radio observations have tended to give a series of height profiles with changing time. One mechanism is the spatial resonance amplification of traveling ionospheric disturbance (TIDs) generated by acoustic gravity waves. As the wave profile in the plasma steepens, the stored energy begins to release through the Rayleigh-Taylor instability, which then creates a spectrum of smaller scale irregularities. In this dissertation the interaction of the acoustic gravity wave and the ionospheric plasma are examined, and it is found that the above mechanism is indeed feasible. In Chapter 3, the interaction between a neutral wave and the plasma is quantified, and the condiions for growth of resonant plasma waves is established. These conditions are met during the post-sunset period near the geomagnetic equator, which is exactly when and where the irregularities are encountered. For irregularity generation the Rayleigh-Taylor mechanism requires a steep positive gradient of density - a fact that previously has seemed to be impossible on the topside of the F-layer. However, in this thesis it is shown that acoustic gravity waves can generate positive slopes even on the topsideF-layer. Consequently, acoustic gravity waves constitute a single mechanism that can be used to explain both bottomside and topside irregularities. Experimental evidence for the creation of equatorial ionospheric irregularities by acoustic gravity waves has been sparse, although wavelike structures appear to permeate the irregularity profiles.

  11. Three-dimensional convective flows of energetic ions in Jupiter's equatorial magnetosphere

    NASA Astrophysics Data System (ADS)

    Waldrop, L. S.; Roelof, E. C.; Fritz, T. A.

    2015-12-01

    From 1995 to 2003, the Galileo Energetic Particles Detector (EPD) measured the three-dimensional distribution of protons, oxygen, and sulfur ions with total energies between 0.1 and 1 MeV throughout the equatorial Jovian magnetosphere. We perform a spherical harmonics expansion of the measured distributions through the second order and use the resulting anisotropy coefficients to identify purely convecting distributions and derive ion flow velocities via the Compton-Getting effect. We demonstrate that the second-order harmonic terms are an essential diagnostic in excluding spurious gradient anisotropies in the velocity derivation. This analysis unambiguously confirms that energetic ion flows in the azimuthal direction are significantly slower than rigid planetary corotation by an amount that is local time dependent, a phenomenon that is qualitatively consistent with expectations of plasma mass loading within an asymmetric magnetic field configuration. However, both the polar and radial components of the ion flows exhibit unexpected and poorly understood global morphology. Consistently northward and inward flows are observed near the dayside and predusk sectors of the equatorial inner magnetosphere, while southward and outward flows are observed within the plasma sheet in the predawn middle magnetosphere. The persistence of southward convection in this region, which is operative regardless of whether the spacecraft was transiting the plasma sheet from the northern magnetic lobe or from the southern lobe, is inconsistent with contemporary models of dynamical plasma sheet motion, while the distinctive local time asymmetries imply that the solar wind is a significant driver of plasma convection at radial distances as small as 15 RJ.

  12. Lidar Observation of Tropopause Ozone Profiles in the Equatorial Region

    NASA Astrophysics Data System (ADS)

    Shibata, Yasukuni; Nagasawa, Chikao; Abo, Makoto

    2016-06-01

    Tropospheric ozone in the tropics zone is significant in terms of the oxidizing efficiency and greenhouse effect. However, in the upper troposphere, the ozone budget in the tropics has not been fully understood yet because of the sparsity of the range-resolved observations of vertical ozone concentration profiles. A DIAL (differential absorption lidar) system for vertical ozone profiles have been installed in the equatorial tropopause region over Kototabang, Indonesia (100.3E, 0.2S). We have observed large ozone enhancement in the upper troposphere, altitude of 13 - 17 km, concurring with a zonal wind oscillation associated with the equatorial Kelvin wave around the tropopause at equatorial region.

  13. Shock wave and cavitation bubble measurements of ultrashort-pulse laser-induced breakdown in water

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Thomas, Robert J.; Frenz, Martin; Jansen, E. Duco; Noojin, Gary D.; Diggs, Sarah J.; Noack, Joachim; Vogel, Alfred; Rockwell, Benjamin A.

    1996-05-01

    Laser-induced breakdown (LIB) has long been used in ophthalmic microsurgery as a mechanism for disruption of tissue. The goal of this surgery has been precise tissue cutting by plasma formation and a minimization of collateral damage due to shock wave and cavitation bubble formation. We investigate the strength of the shock wave emission, the size of the cavitation bubble, and the amount of plasma shielding to determine the efficacy of using femtosecond pulses in surgery to reduce collateral photoacoustic damage. A pump-probe technique is used to image the time-resolved evolution of the cavitation bubble produced by focused laser pulses with pulsewidths of 130 fs, 300 fs, 3 ps, and 60 ps. Simultaneously, a hydrophone is used to measure the pressure response generated by the initial plasma shock wave and subsequent shock waves generated by the collapse and rebound of the cavitation bubbles. In addition, transmission measurements are made which indicate the amount of energy shielded beyond the focus by the plasma. These measurements give a good indication of the degree to which collateral damage may be reduced as the pulsewidths is decreased from the picosecond to the femtosecond time regime.

  14. Three dimensional Visualization of Jupiter's Equatorial Region

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

    This frame is a view to the southeast, from between the cloud layers and over the north center of the region. The tall white clouds in the lower cloud deck are probably much like large terrestrial thunderclouds. They may be regions where atmospheric water powers vertical convection over large horizontal distances.

    Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

    The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on

  15. Three dimensional Visualization of Jupiter's Equatorial Region

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

    This frame is a view to the northeast, from between the cloud layers and above the streaks in the lower cloud leading towards the hotspot. The upper haze layer has some features that match the lower cloud, such as the bright streak in the foreground of the frame. These are probably thick clouds that span several tens of vertical kilometers.

    Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

    The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly

  16. Three dimensional Visualization of Jupiter's Equatorial Region

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

    This frame is a view from the southwest looking northeast, from an altitude just above the high haze layer. The streaks in the lower cloud leading towards the hotspot are visible. The upper haze layer is mostly flat, with notable small peaks that can be matched with features in the lower cloud. In reality, these areas may represent a continuous vertical cloud column.

    Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

    The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756

  17. Three dimensional Visualization of Jupiter's Equatorial Region

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

    This frame is a view to the northeast, from between the cloud layers and above the streaks in the lower cloud leading towards the hotspot. The hotspot is clearly visible as a deep blue feature. The cloud streaks end near the hotspot, consistent with the idea that clouds traveling along these streak lines descend and evaporate as they approach the hotspot. The upper haze layer is slightly bowed upwards above the hotspot.

    Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

    The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional

  18. Three dimensional Visualization of Jupiter's Equatorial Region

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Frames from a three dimensional visualization of Jupiter's equatorial region. The images used cover an area of 34,000 kilometers by 11,000 kilometers (about 21,100 by 6,800 miles) near an equatorial 'hotspot' similar to the site where the probe from NASA's Galileo spacecraft entered Jupiter's atmosphere on December 7th, 1995. These features are holes in the bright, reflective, equatorial cloud layer where warmer thermal emission from Jupiter's deep atmosphere can pass through. The circulation patterns observed here along with the composition measurements from the Galileo Probe suggest that dry air may be converging and sinking over these regions, maintaining their cloud-free appearance. The bright clouds to the right of the hotspot as well as the other bright features may be examples of upwelling of moist air and condensation.

    This frame is a view from above and to the south of the visualized area, showing the entire model. The entire region is overlain by a thin, transparent haze. In places the haze is high and thick, especially to the east (to the right of) the hotspot.

    Galileo is the first spacecraft to image Jupiter in near-infrared light (which is invisible to the human eye) using three filters at 727, 756, and 889 nanometers (nm). Because light at these three wavelengths is absorbed at different altitudes by atmospheric methane, a comparison of the resulting images reveals information about the heights of clouds in Jupiter's atmosphere. This information can be visualized by rendering cloud surfaces with the appropriate height variations.

    The visualization reduces Jupiter's true cloud structure to two layers. The height of a high haze layer is assumed to be proportional to the reflectivity of Jupiter at 889 nm. The height of a lower tropospheric cloud is assumed to be proportional to the reflectivity at 727 nm divided by that at 756 nm. This model is overly simplistic, but is based on more sophisticated studies of Jupiter's cloud structure. The upper

  19. Bernoulli Suction Effect on Soap Bubble Blowing?

    NASA Astrophysics Data System (ADS)

    Davidson, John; Ryu, Sangjin

    2015-11-01

    As a model system for thin-film bubble with two gas-liquid interfaces, we experimentally investigated the pinch-off of soap bubble blowing. Using the lab-built bubble blower and high-speed videography, we have found that the scaling law exponent of soap bubble pinch-off is 2/3, which is similar to that of soap film bridge. Because air flowed through the decreasing neck of soap film tube, we studied possible Bernoulli suction effect on soap bubble pinch-off by evaluating the Reynolds number of airflow. Image processing was utilized to calculate approximate volume of growing soap film tube and the volume flow rate of the airflow, and the Reynolds number was estimated to be 800-3200. This result suggests that soap bubbling may involve the Bernoulli suction effect.

  20. Manipulating bubbles with secondary Bjerknes forces

    SciTech Connect

    Lanoy, Maxime; Derec, Caroline; Leroy, Valentin; Tourin, Arnaud

    2015-11-23

    Gas bubbles in a sound field are submitted to a radiative force, known as the secondary Bjerknes force. We propose an original experimental setup that allows us to investigate in detail this force between two bubbles, as a function of the sonication frequency, as well as the bubbles radii and distance. We report the observation of both attractive and, more interestingly, repulsive Bjerknes force, when the two bubbles are driven in antiphase. Our experiments show the importance of taking multiple scatterings into account, which leads to a strong acoustic coupling of the bubbles when their radii are similar. Our setup demonstrates the accuracy of secondary Bjerknes forces for attracting or repealing a bubble, and could lead to new acoustic tools for noncontact manipulation in microfluidic devices.

  1. Bubbles Rising Through a Soft Granular Material

    NASA Astrophysics Data System (ADS)

    Le Mestre, Robin; MacMinn, Chris; Lee, Sungyon

    2016-11-01

    Bubble migration through a soft granular material involves a strong coupling between the bubble dynamics and the deformation of the material. This is relevant to a variety of natural processes such as gas venting from sediments and gas exsolution from magma. Here, we study this process experimentally by injecting air bubbles into a quasi-2D packing of soft hydrogel beads and measuring the size, speed, and morphology of the bubbles as they rise due to buoyancy. Whereas previous work has focused on deformation resisted by intergranular friction, we focus on the previously inaccessible regime of deformation resisted by elasticity. At low confining stress, the bubbles are irregular and rounded, migrating via local rearrangement. At high confining stress, the bubbles become unstable and branched, migrating via pathway opening. The authors thank The Royal Society for support (International Exchanges Ref IE150885).

  2. BUBBLE DYNAMICS AT GAS-EVOLVING ELECTRODES

    SciTech Connect

    Sides, Paul J.

    1980-12-01

    Nucleation of bubbles, their growth by diffusion of dissolved gas to the bubble surface and by coalescence, and their detachment from the electrode are all very fast phenomena; furthermore, electrolytically generated bubbles range in size from ten to a few hundred microns; therefore, magnification and high speed cinematography are required to observe bubbles and the phenomena of their growth on the electrode surface. Viewing the action from the front side (the surface on which the bubbles form) is complicated because the most important events occur close to the surface and are obscured by other bubbles passing between the camera and the electrode; therefore, oxygen was evolved on a transparent tin oxide "window" electrode and the events were viewed from the backside. The movies showed that coalescence of bubbles is very important for determining the size of bubbles and in the chain of transport processes; growth by diffusion and by coalescence proceeds in series and parallel; coalescing bubbles cause significant fluid motion close to the electrode; bubbles can leave and reattach; and bubbles evolve in a cycle of growth by diffusion and different modes of coalescence. An analytical solution for the primary potential and current distribution around a spherical bubble in contact with a plane electrode is presented. Zero at the contact point, the current density reaches only one percent of its undisturbed value at 30 percent of the radius from that point and goes through a shallow maximum two radii away. The solution obtained for spherical bubbles is shown to apply for the small bubbles of electrolytic processes. The incremental resistance in ohms caused by sparse arrays of bubbles is given by {Delta}R = 1.352 af/kS where f is the void fraction of gas in the bubble layer, a is the bubble layer thickness, k is the conductivity of gas free electrolyte, and S is the electrode area. A densely populated gas bubble layer on an electrode was modeled as a hexagonal array of

  3. Influence of bubble size on effervescent atomization. Part 1: bubble characterization and mean spray features

    NASA Astrophysics Data System (ADS)

    Lewis, Taylor; Shepard, Thomas; Forliti, David

    2016-11-01

    In the effervescent atomization process a gas-liquid bubbly mixture is ejected from a nozzle with the goal of enhancing liquid break-up. In this work, high speed images are taken of the bubbly flow inside of an effervescent atomizer as well as downstream of the atomizer exit. The use of varying porous plate media grades and channel inserts at the air injection site of the atomizer permitted independent control of mean bubble size. Digital image analyses were used for bubble characterization and measuring mean spray features. The roles of air injection geometry on bubble population parameters inside of the effervescent atomizer are detailed. The effect of bubble size is examined at multiple gas to liquid flow rate ratios for which the bubbly flow regime was maintained. Results are presented demonstrating the influence of bubble size on the average jet width, jet dark core length, and liquid break-up.

  4. Equatorial cloud level convection on Venus

    NASA Astrophysics Data System (ADS)

    Lee, Yeon Joo; Imamura, Takeshi; Sugiyama, Koichiro; Sato, Takao M.; Maejima, Yasumitsu

    2016-10-01

    In the equatorial region on Venus, a clear cloud top morphology difference depending on solar local time has been observed through UV images. Laminar flow shaped clouds are shown on the morning side, and convective-like cells on the afternoon side (Titov et al. 2012). Baker et al. (1998) suggested that deep convective motions in the low-to-middle cloud layers at the 40-60 km range can explain cellular shapes. Imamura et al. (2014), however argued that this cannot be a reason, as convection in the low-to-middle cloud layers can be suppressed near sub solar regions due to a stabilizing effect by strong solar heating. We suggest that the observed feature may be related to strong solar heating at local noon time (Lee et al. 2015). Horizontal uneven distribution of an unknown UV absorber and/or cloud top structure may trigger horizontal convection (Toigo et al. 1994). In order to examine these possibilities, we processed 1-D radiative transfer model calculations from surface to 100 km altitude (SHDOM, Evans 1998), which includes clouds at 48-71 km altitudes (Crisp et al. 1986). The results on the equatorial thermal cooling and solar heating profiles were employed in a 2D fluid dynamic model calculation (CReSS, Tsuboki and Sakakibara 2007). The calculation covered an altitude range of 40-80 km and a 100-km horizontal distance. We compared three conditions; an 'effective' global circulation condition that cancels out unbalanced net radiative energy at equator, a condition without such global circulation effect, and the last condition assumed horizontally inhomogeneous unknown UV absorber distribution. Our results show that the local time dependence of lower level cloud convection is consistent with Imamura et al.'s result, and suggest a possible cloud top level convection caused by locally unbalanced net energy and/or horizontally uneven solar heating. This may be related to the observed cloud morphology in UV images. The effective global circulation condition, however

  5. Bursting the bubble of melt inclusions

    USGS Publications Warehouse

    Lowenstern, Jacob B.

    2015-01-01

    Most silicate melt inclusions (MI) contain bubbles, whose significance has been alternately calculated, pondered, and ignored, but rarely if ever directly explored. Moore et al. (2015) analyze the bubbles, as well as their host glasses, and conclude that they often hold the preponderance of CO2 in the MI. Their findings entreat future researchers to account for the presence of bubbles in MI when calculating volatile budgets, saturation pressures, and eruptive flux.

  6. Collapse of vacuum bubbles in a vacuum

    SciTech Connect

    Ng, Kin-Wang; Wang, Shang-Yung

    2011-02-15

    We revisit the dynamics of a false vacuum bubble in a background de Sitter spacetime. We find that there exists a large parameter space that allows the bubble to collapse into a black hole or to form a wormhole. This may have interesting implications for the creation of a baby universe in the laboratory, the string landscape where the bubble nucleation takes place among a plenitude of metastable vacua, and the inflationary physics.

  7. Detailed Jet Dynamics in a Collapsing Bubble

    NASA Astrophysics Data System (ADS)

    Supponen, Outi; Obreschkow, Danail; Kobel, Philippe; Farhat, Mohamed

    2015-12-01

    We present detailed visualizations of the micro-jet forming inside an aspherically collapsing cavitation bubble near a free surface. The high-quality visualizations of large and strongly deformed bubbles disclose so far unseen features of the dynamics inside the bubble, such as a mushroom-like flattened jet-tip, crown formation and micro-droplets. We also find that jetting near a free surface reduces the collapse time relative to the Rayleigh time.

  8. Buoyancy Driven Shear Flows of Bubble Suspensions

    NASA Astrophysics Data System (ADS)

    Hill, R. J.; Zenit, R.; Chellppannair, T.; Koch, D. L.; Spelt, P. D. M.; Sangani, A.

    1998-11-01

    In this work the gas volume fraction and the root-mean-squared fluid velocity are measured in buoyancy driven shear flows of bubble suspensions in a tall, inclined, rectangular channel. The experiments are performed under conditions where We << 1 and Re >> 1 , so that the bubbles are relatively undeformed and the flow is inviscid and approximately irrotational. Nitrogen is introduced through an array of capillaries at the base of a .2x.02x2 m channel filled with an aqueous electrolyte solution (0.06 molL-1 MgSO_4). The rising bubbles generate a unidirectional shear flow, where the denser suspension at the lower surface of the channel falls, while the less dense suspension at the upper surface rises. Hot-film anemometry is used to measure the resulting gas volume fraction and fluid velocity profiles. The bubble collision rate with the sensor is related to the gas volume fraction and the mean and variance of the bubble velocity using an experimentally measured collision surface area for the sensor. Bubble collisions with the sensor are identified by the characteristic slope of the hot-film anemometer signal when bubbles collide with the sensor. It is observed that the steady shear flow develops a bubble phase pressure gradient across the channel gap as the bubbles interchange momentum through direct collisions. The discrete phase presssure gradient balances the buoyancy force driving bubbles toward the upper surface resulting in a steady void fraction profile across the gap width. The strength of the shear flow is controlled by the extent of bubble segregation and by the effective viscosity of the bubble phase. The measurements are compared with solutions of the averaged equations of motion (Kang et al. 1997; Spelt and Sangani, 1998), for a range of gas volume fractions and channel inclination angles.

  9. Bubble, Drop and Particle Unit (BDPU)

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This section of the Life and Microgravity Spacelab (LMS) publication includes the following articles entitled: (1) Oscillatory Thermocapillary Instability; (2) Thermocapillary Convection in Multilayer Systems; (3) Bubble and Drop Interaction with Solidification Front; (4) A Liquid Electrohydrodynamics Experiment; (5) Boiling on Small Plate Heaters under Microgravity and a Comparison with Earth Gravity; (6) Thermocapillary Migration and Interactions of Bubbles and Drops; and (7) Nonlinear Surface Tension Driven Bubble Migration

  10. Estimating some parameters of the equatorial ionosphere electrodynamics from ionosonde data in West Africa

    NASA Astrophysics Data System (ADS)

    Grodji, F. O.; Doumbia, V.; Boka, K.; Amory-Mazaudier, C.; Cohen, Y.; Fleury, R.

    2017-01-01

    During the International Equatorial Electrojet Year (IEEY), an IPS-42 ionosonde located at Korhogo (9.33°N, 5.42°W, -1.88° dip-lat) and a meridian chain of 10 magnetic stations were setup in West Africa (5°West longitude). In this work, some characteristic parameters of the equatorial electrojet were estimated on the basis of the IPS-42 ionosonde data at Korhogo during the years 1993 and 1994. The study consisted of determining the zonal electric field through an estimate of the plasma vertical drift velocity. The daytime plasma vertical drift velocity was estimated from the time rates of change of the F-layer virtual height variations and a correction term that takes into account the ionization production and recombination effects. This method resulted in an improved vertical drift velocity, which was found to be comparable to the results of previous studies. The estimated vertical drift velocity was used in a semi-empirical approach which involved the IRI-2012 model for the Pedersen and Hall conductivities and the IGRF-10 model for the geomagnetic main field intensity. Thus the zonal and polarization electric fields on one hand, and the eastward Pedersen, Hall and the equatorial electrojet current densities on the other hand, were estimated. Furthermore the integrated peak current density at the EEJ center was estimated from ionosonde observations and compared with that inferred from magnetometer data. The integrated EEJ peak current densities obtained from both experiments were found to be in the same order and their seasonal variations exhibit the same trends as well.

  11. FERMI BUBBLE γ-RAYS AS A RESULT OF DIFFUSIVE INJECTION OF GALACTIC COSMIC RAYS

    SciTech Connect

    Thoudam, Satyendra

    2013-11-20

    Recently, the Fermi Space Telescope discovered two large γ-ray emission regions, the so-called Fermi bubbles, that extend up to ∼50° above and below the Galactic center (GC). The γ-ray emission from the bubbles is found to follow a hard spectrum with no significant spatial variation in intensity and spectral shape. The origin of the emission is still not clearly understood. Suggested explanations include the injection of cosmic-ray (CR) nuclei from the GC by high-speed Galactic winds, electron acceleration by multiple shocks, and stochastic electron acceleration inside the bubbles. In this Letter, it is proposed that the γ-rays may be the result of diffusive injection of Galactic CR protons during their propagation through the Galaxy. Considering that the bubbles are slowly expanding, and CRs undergo much slower diffusion inside the bubbles than in the average Galaxy and at the same time suffer losses due to adiabatic expansion and inelastic collisions with the bubble plasma, this model can explain the observed intensity profile, the emission spectrum and the measured luminosity without invoking any additional particle production processes, unlike other existing models.

  12. Alma Observations of Massive Molecular Gas Filaments Encasing Radio Bubbles in the Phoenix Cluster

    NASA Astrophysics Data System (ADS)

    Russell, H. R.; McDonald, M.; McNamara, B. R.; Fabian, A. C.; Nulsen, P. E. J.; Bayliss, M. B.; Benson, B. A.; Brodwin, M.; Carlstrom, J. E.; Edge, A. C.; Hlavacek-Larrondo, J.; Marrone, D. P.; Reichardt, C. L.; Vieira, J. D.

    2017-02-01

    We report new ALMA observations of the CO(3-2) line emission from the 2.1+/- 0.3× {10}10 {M}ȯ molecular gas reservoir in the central galaxy of the Phoenix cluster. The cold molecular gas is fueling a vigorous starburst at a rate of 500{--}800 {M}ȯ {{yr}}-1 and powerful black hole activity in the forms of both intense quasar radiation and radio jets. The radio jets have inflated huge bubbles filled with relativistic plasma into the hot, X-ray atmospheres surrounding the host galaxy. The ALMA observations show that extended filaments of molecular gas, each 10{--}20 {kpc} long with a mass of several billion solar masses, are located along the peripheries of the radio bubbles. The smooth velocity gradients and narrow line widths along each filament reveal massive, ordered molecular gas flows around each bubble, which are inconsistent with gravitational free-fall. The molecular clouds have been lifted directly by the radio bubbles, or formed via thermal instabilities induced in low-entropy gas lifted in the updraft of the bubbles. These new data provide compelling evidence for close coupling between the radio bubbles and the cold gas, which is essential to explain the self-regulation of feedback. The very feedback mechanism that heats hot atmospheres and suppresses star formation may also paradoxically stimulate production of the cold gas required to sustain feedback in massive galaxies.

  13. Some problems of the theory of bubble growth and condensation in bubble chambers

    NASA Technical Reports Server (NTRS)

    Tkachev, L. G.

    1988-01-01

    This work is an attempt to explain the reasons for the discrepancies between the theoretical and experimental values of bubble growth rate in an overheated liquid, and to provide a brief formulation of the main premises of the theory on bubble growth in liquid before making a critical analysis. To simplify the problem, the floating upward of bubbles is not discussed; moreover, the study is based on the results of the theory of the behavior of fixed bubbles.

  14. Single-bubble sonoluminescence from noble gases.

    PubMed

    Yasui, K

    2001-03-01

    Single-bubble sonoluminescence (SBSL) from noble gases in water is studied theoretically in order to clarify the reason of the distinguished feature that the luminescence is strong for all noble gases, while the other systems of cavitation luminescence are greatly enhanced by the presence of the heavy noble gas(xenon). It is clarified that in spite of the larger thermal conductivity of lighter noble gases the maximum temperature in a SBSL bubble of lighter noble gases is higher due both to the segregation of water vapor and noble gas inside a SBSL bubble and the stronger acoustic drive of a SBSL bubble of lighter noble gases.

  15. Single-bubble sonoluminescence from noble gases

    NASA Astrophysics Data System (ADS)

    Yasui, Kyuichi

    2001-03-01

    Single-bubble sonoluminescence (SBSL) from noble gases in water is studied theoretically in order to clarify the reason of the distinguished feature that the luminescence is strong for all noble gases, while the other systems of cavitation luminescence are greatly enhanced by the presence of the heavy noble gas(xenon). It is clarified that in spite of the larger thermal conductivity of lighter noble gases the maximum temperature in a SBSL bubble of lighter noble gases is higher due both to the segregation of water vapor and noble gas inside a SBSL bubble and the stronger acoustic drive of a SBSL bubble of lighter noble gases.

  16. Spectroscopic characteristic of conical bubble luminescence

    NASA Astrophysics Data System (ADS)

    Chen, Qi-Dai; Fu, Li-Min; Ai, Xi-Cheng; Zhang, Jian-Ping; Wang, Long

    2005-04-01

    The conical bubble sonoluminescence (CBSL) from the collapse of the bubble was observed in an improved U-tube apparatus. The emitted light energy of a single CBSL flash was measured to be ~ 1.4mJ. The pulse width was about 100μs. The spectra of luminescence were continuum superimposed with the spectral bands from the excited-state C2, CN and CH. The CBSL provides a link between the light emission of the single-bubble and the multi-bubble sonoluminescence (SBSL and MBSL).

  17. Multiple Spark-Generated Bubble Interactions

    NASA Astrophysics Data System (ADS)

    Khoo, Boo Cheong; Adikhari, Deepak; Fong, Siew Wan; Klaseboer, Evert

    The complex interactions of two and three spark-generated bubbles are studied using high speed photography. The corresponding simulations are performed using a 3D Boundary Element Method (BEM) code. The bubbles generated are between 3 to 5 mm in radius, and they are either in-phase or out-of-phase with one another. The possible interaction phenomena between two identically sized bubbles are summarized. Depending on their relative distances and phase differences, they can coalesce, jet towards or away from one another, split into smaller bubbles, or 'catapult' away from one another. The 'catapult' effect can be utilized to generated high speed jet in the absence of a solid boundary or shockwave. Also three bubble interactions are highlighted. Complicated phenomena such as bubble forming an elliptical shape and bubble splitting are observed. The BEM simulations provide insight into the physics of the phenomena by providing details such as detailed bubble shape changes (experimental observations are limited by the temporal and spatial resolution), and jet velocity. It is noted that the well-tested BEM code [1,2] utilized here is computationally very efficient as compared to other full-domain methods since only the bubble surface is meshed.

  18. Analysis of a deflating soap bubble

    NASA Astrophysics Data System (ADS)

    Jackson, David P.; Sleyman, Sarah

    2010-10-01

    A soap bubble on the end of a cylindrical tube is seen to deflate as the higher pressure air inside the bubble escapes through a tube. We perform an experiment to measure the radius of the slowly deflating bubble and observe that the radius decreases to a minimum before quickly increasing. This behavior reflects the fact that the bubble ends up as a flat surface over the end of the tube. A theoretical analysis reproduces this behavior and compares favorably with the experimental data.

  19. Band gaps in bubble phononic crystals

    NASA Astrophysics Data System (ADS)

    Leroy, V.; Bretagne, A.; Lanoy, M.; Tourin, A.

    2016-12-01

    We investigate the interaction between Bragg and hybridization effects on the band gap properties of bubble phononic crystals. These latter consist of air cavities periodically arranged in an elastomer matrix and are fabricated using soft-lithography techniques. Their transmission properties are affected by Bragg effects due to the periodicity of the structure as well as hybridization between the propagating mode of the embedding medium and bubble resonance. The hybridization gap survives disorder while the Bragg gap requires a periodic distribution of bubbles. The distance between two bubble layers can be tuned to make the two gaps overlap or to create a transmission peak in the hybridization gap.

  20. Electrolytic Bubble Growth on Pillared Arrays

    NASA Astrophysics Data System (ADS)

    Lee, Kenneth; Savas, Omer

    2013-11-01

    In current energy research, artificial photosynthetic (AP) devices are being designed to split water and harvest hydrogen gas using sunlight. In one such design, hydrogen gas bubbles evolve on catalytic surfaces of arrayed micropillars. If these bubbles are not promptly removed from the surface, they can adversely affect gas evolution rates, water flow rates, sunlight capture, and heat management of the system - all of which deteriorate device performance. Therefore, understanding how to remove evolved gas bubbles from the pillar surfaces is crucial. Flow visualization of electrolytic bubble nucleation and detachment from the catalytic pillar surfaces has been conducted. The bubble departure diameter and lift-off frequency are extracted and compared with known correlations from boiling heat transfer. Bubble tracking indicates that bubble detachment is enhanced by local interactions with neighboring bubbles. These observations suggest how hydrogen gas bubbles can be effectively removed from pillared surfaces to prolong AP device longevity. Joint Center for Artificial Photosynthesis, a U.S. Department of Energy (DOE) Energy Innovations Hub.

  1. Sound waves in multifractional liquids with bubbles

    NASA Astrophysics Data System (ADS)

    Gubaidullin, D. A.; Gafiyatov, R. N.

    2017-01-01

    The propagation of sound waves in multifractional mixtures of liquid with vapor–gas and gas bubbles of different sizes and different compositions with phase transitions is studied. The dispersed phase consists of N+M fractions having various gases in bubbles and different in the bubbles radii. Phase transitions accounted for N fractions. The total bubble volume concentration is small (less than 1%). The dispersion relation is derived and dispersion curves is built. The evolution of the weak pulsed perturbations of the pressure in this mixture was calculated numerically.

  2. Bubble formation in additive manufacturing of glass

    NASA Astrophysics Data System (ADS)

    Luo, Junjie; Gilbert, Luke J.; Peters, Daniel C.; Bristow, Douglas A.; Landers, Robert G.; Goldstein, Jonathan T.; Urbas, Augustine M.; Kinzel, Edward C.

    2016-05-01

    Bubble formation is a common problem in glass manufacturing. The spatial density of bubbles in a piece of glass is a key limiting factor to the optical quality of the glass. Bubble formation is also a common problem in additive manufacturing, leading to anisotropic material properties. In glass Additive Manufacturing (AM) two separate types of bubbles have been observed: a foam layer caused by the reboil of the glass melt and a periodic pattern of bubbles which appears to be unique to glass additive manufacturing. This paper presents a series of studies to relate the periodicity of bubble formation to part scan speed, laser power, and filament feed rate. These experiments suggest that bubbles are formed by the reboil phenomena why periodic bubbles result from air being trapped between the glass filament and the substrate. Reboil can be detected using spectroscopy and avoided by minimizing the laser power while periodic bubbles can be avoided by a two-step laser melting process to first establish good contact between the filament and substrate before reflowing the track with higher laser power.

  3. Dynamics of Vapour Bubbles in Nucleate Boiling. 1; Basic Equations of Bubble Evolution

    NASA Technical Reports Server (NTRS)

    Buyevich, Yu A.; Webbon, Bruce W.; Callaway, Robert (Technical Monitor)

    1995-01-01

    We consider the behaviour of a vapour bubble formed at a nucleation site on a heated horizontal wall. There is no forced convection of an ambient liquid, and the bubble is presumably separated from the wall by a thin liquid microlayer. The energy conservation law results in a variational equation for the mechanical energy of the whole system consisting of the bubble and liquid. It leads to a set of two strongly nonlinear equations which govern bubble expansion and motion of its centre of mass. A supplementary equation to find out the vapour temperature follows from consideration of heat transfer to the bubble, both from the bulk of surrounding liquid and through the microlayer. The average thickness of the microlayer is shown to increase monotonously with time as the bubble meniscus spreads along the wall. Bubble expansion is driven by the pressure head between vapour inside and liquid far away from the bubble, with due allowance for surface tension and gravity effects. It is resisted by inertia of liquid being placed into motion as the bubble grows. The inertia originates also a force that presses the bubble to the wall. This force is counteracted by the buoyancy and an effective surface tension force that tends to transform the bubble into a sphere. The analysis brings about quite a new formulation of the familiar problem of bubble growth and detachment under conditions of nucleate pool boiling.

  4. Condor equatorial electrojet campaign: Radar results

    SciTech Connect

    Kudeki, E.; Fejer, B.G.; Farley, D.T.; Hanuise, C.

    1987-12-01

    A review of the experimental and theoretical background to the Condor equatorial electrojet compaign is followed by the presentation and discussion of VHF radar interferometer and HF radar backscatter data taken concurrently with two rocket in situ experiments reported in companion papers (Pfaff et al., this issue (a, b). Both experiments were conducted in strongly driven periods with the on-line radar interferometer displaying signatures of what has been interpreted in earlier radar work (Kudeki et al., 1982) as kilometer scale gradient drift waves. Low-frequency density fluctuations detected by in situ rocket sensors confirm the earlier interpretation. VHF radar/rocket data comparisons also indicate the existence of a turbulent layer in the upper portion of the daytime electrojet at about 108 km altitude driven purely by the two-stream instability. Nonlinear mode coupling of linearly growing two-stream waves to linearly damped 3-m vertical modes could account for the radar echoes scattered from this layer, which showed no indication of large-scale gradient drift waves. Nonlinear mode coupling may therefore compete with the wave-induced anomalous diffusion mechanism proposed recently by Sudan (1983) for the saturation of directly excited two-stream waves. Nighttime radar data show a bifurcated layer with the two parts having comparable echo strength but oppositely directed zonal drift velocities. The lower layer shows narrow backscatter spectra; the upper layer is characterized by kilometer scale waves and vertically propagating type 1 waves.

  5. Vertical motions in the equatorial middle atmosphere

    NASA Technical Reports Server (NTRS)

    Weisman, M. L.

    1979-01-01

    A single station vertical velocity equation which considers ageostrophic and diabatic effects derived from the first law of thermodynamics and a generalized thermal wind relation is presented. An analysis and verification procedure which accounts for measurement and calculation errors as well as time and space continuity arguments and theoretical predictions are described. Vertical velocities are calculated at every kilometer between 25 and 60 km and for approximately every three hours for the above diurnal period at Kourou (French Guiana), Fort Sherman (Panama Canal Zone), Ascension Island, Antigua (British West Indies) and Natal (Brazil). The results, plotted as time series cross sections, suggest vertical motions ranging in magnitude from 1 or 2 cm/sec at 30 km to as much as 15 cm/sec at 60 km. Many of the general features of the results agree well with atmospheric tidal predictions but many particular features suggest that both smaller time scale gravity waves (periods less than 6 hours) and synoptic type waves (periods greater than 1 day) may be interacting significantly with the tidal fields. The results suggest that vertical motions can be calculated for the equatorial middle atmosphere and must be considered a significant part of the motion for time scales from 8 to 24 hours.

  6. Catastrophic ape decline in western equatorial Africa.

    PubMed

    Walsh, Peter D; Abernethy, Kate A; Bermejo, Magdalena; Beyers, Rene; De Wachter, Pauwel; Akou, Marc Ella; Huijbregts, Bas; Mambounga, Daniel Idiata; Toham, Andre Kamdem; Kilbourn, Annelisa M; Lahm, Sally A; Latour, Stefanie; Maisels, Fiona; Mbina, Christian; Mihindou, Yves; Obiang, Sosthène Ndong; Effa, Ernestine Ntsame; Starkey, Malcolm P; Telfer, Paul; Thibault, Marc; Tutin, Caroline E G; White, Lee J T; Wilkie, David S

    2003-04-10

    Because rapidly expanding human populations have devastated gorilla (Gorilla gorilla) and common chimpanzee (Pan troglodytes) habitats in East and West Africa, the relatively intact forests of western equatorial Africa have been viewed as the last stronghold of African apes. Gabon and the Republic of Congo alone are thought to hold roughly 80% of the world's gorillas and most of the common chimpanzees. Here we present survey results conservatively indicating that ape populations in Gabon declined by more than half between 1983 and 2000. The primary cause of the decline in ape numbers during this period was commercial hunting, facilitated by the rapid expansion of mechanized logging. Furthermore, Ebola haemorrhagic fever is currently spreading through ape populations in Gabon and Congo and now rivals hunting as a threat to apes. Gorillas and common chimpanzees should be elevated immediately to 'critically endangered' status. Without aggressive investments in law enforcement, protected area management and Ebola prevention, the next decade will see our closest relatives pushed to the brink of extinction.

  7. Equatorial Staphyloma Associated with Neurofibromatosis Type 1

    PubMed Central

    Shimada, Yoshiaki; Horiguchi, Masayuki

    2016-01-01

    We report a case of a 38-year-old man who presented with a recently self-detected lump under his left eyebrow. Previous ophthalmological history was unremarkable except for unilateral high myopia (left eye) since childhood. The appearance of the left eye was seemingly normal; however, with the top lid pulled up on downward gaze, a dark brown bulge emerged. The bulge was 10 × 7 mm and approximately 4 mm in height, and was covered by the extended superior rectus muscle. The diagnosis of equatorial staphyloma was made after coronal T1-weighted magnetic resonance imaging of the orbit revealed the dilatation of the vitreous cavity. Ocular movements were fully maintained and visual acuity was largely spared: 20/15 in the right eye without correction and 20/25 in the left eye with −10.00 spheres and −4.00 × 80 degrees cylinders. His past and family histories were unremarkable; however, small neurofibromas and café au lait spots all over his body led to the diagnosis of neurofibromatosis type 1 (NF1). From this case, similar to previous reports, we suggest that manifestations of NF1 are extremely variable and unpredictable. PMID:27721788

  8. POGO observations of the equatorial electrojet

    NASA Technical Reports Server (NTRS)

    Cain, J. C.; Sweeney, R. E.

    1972-01-01

    During intervals in 1967 to 1970, the OGO-4 and 6 spacecraft made over 2000 traversals over the equatorial electrojet in the altitude range 400-800 km when local times were between 9 and 15 hours. These spacecraft carried total field magnetometers making measurements to an accuracy of 2 gamma with a sample rate greater than once a second. Delta F values, the deviations from these observations, were formed from an internal reference model. The results were plotted for a 30 deg band about the equator, and the characteristics of the electrojet effect in the data were investigated. This effect was characterized by a sharp negative V-signature of some 16-19 deg in width and a variable amplitude. The position of this minimum was found to lie within 0.5 deg of the dip equator. A slight northward shift was noted at the longitude of Huancayo. The jet amplitudes were normalized to 400 km amplitudes and observed to be highly variable in time. Amplitudes over the longitude range 50 to 90 deg W averaged 60% higher than elsewhere, as expected, due to the weaker main field. However, though the scatter of amplitudes is high, the expected minima in east Asia was not evident. It was speculated that this could be due to a less conducting upper mantle in this area.

  9. The formation of an equatorial coronal hole

    NASA Astrophysics Data System (ADS)

    Yang, Liheng; Jiang, Yunchun; Zhang, Jun

    2010-02-01

    The formation of an equatorial coronal hole (CH) from 2006 January 9 to 12 was simultaneously observed by GOES-12/SXI, SOHO/EIT and SOHO/MDI instruments. The varieties of soft X-ray and EUV brightness, coronal temperature, and total magnetic flux in the CH were examined and compared with that of a quiet-sun (QS) region nearby. The following results are obtained. (1) A preexisting dark lane appeared on the location of the followed CH and was reinforced by three enhanced networks. (2) The CH gradually formed in about 81 hours and was predominated by positive magnetic flux. (3) During the formation, the soft X-ray and EUV brightness, coronal temperature, and total magnetic flux obviously decreased in the CH, but were almost no change in the QS region. The decrease of the total magnetic flux may be the result of magnetic reconnection between the open and closed magnetic lines, probably indicating the physical mechanism for the birth of the CH.

  10. Formation of the equatorial thermosphere anomaly trough: Local time and solar cycle variations

    NASA Astrophysics Data System (ADS)

    Hsu, Vicki W.; Thayer, Jeffrey P.; Lei, Jiuhou; Wang, Wenbin

    2014-12-01

    This paper evaluates the formation and behavior of the equatorial thermosphere anomaly (ETA) trough in neutral temperature and mass density using the National Center for Atmospheric Research thermosphere-ionosphere electrodynamics general circulation model under quiet geomagnetic activity and March equinox conditions. The driving mechanism for the generation of the ETA trough in the model is field-aligned ion drag. In our simulations, during the daytime, field-aligned ion drag on the north-south flanks of the magnetic equator causes a divergence in meridional winds, leading to an upward change in vertical winds, adiabatic cooling, and a reduction in neutral temperature of about 30 K over the magnetic equator near 400 km. This response closely links ETA behavior to variations in the equatorial ionosphere anomaly (EIA) associated with local time and solar cycle. As the EIA begins to disappear in the evening, the processes in the ETA mechanism recede, causing the ETA trough to subside. The ETA trough is not completely eliminated until about after 23:00 LT. In our simulations, the trough becomes more prominent as the solar cycle progresses from low (F10.7=80) to high (F10.7=180), in agreement with observations. The neutral-ion collision frequency (proportional to variations in electron density) controls ETA day-to-night and solar cycle variations, while plasma scale height and gradients in electron number density and plasma temperature produce a secondary structure in ETA local time behavior that varies with solar cycle levels.

  11. Periodic equatorial water flows from a Hamiltonian perspective

    NASA Astrophysics Data System (ADS)

    Ionescu-Kruse, Delia; Martin, Calin Iulian

    2017-04-01

    The main result of this paper is a Hamiltonian formulation of the nonlinear governing equations for geophysical periodic stratified water flows in the equatorial f-plane approximation allowing for piecewise constant vorticity.

  12. Study of cavitation bubble dynamics during Ho:YAG laser lithotripsy by high-speed camera

    NASA Astrophysics Data System (ADS)

    Zhang, Jian J.; Xuan, Jason R.; Yu, Honggang; Devincentis, Dennis

    2016-02-01

    Although laser lithotripsy is now the preferred treatment option for urolithiasis, the mechanism of laser pulse induced calculus damage is still not fully understood. This is because the process of laser pulse induced calculus damage involves quite a few physical and chemical processes and their time-scales are very short (down to sub micro second level). For laser lithotripsy, the laser pulse induced impact by energy flow can be summarized as: Photon energy in the laser pulse --> photon absorption generated heat in the water liquid and vapor (super heat water or plasma effect) --> shock wave (Bow shock, acoustic wave) --> cavitation bubble dynamics (oscillation, and center of bubble movement , super heat water at collapse, sonoluminscence) --> calculus damage and motion (calculus heat up, spallation/melt of stone, breaking of mechanical/chemical bond, debris ejection, and retropulsion of remaining calculus body). Cavitation bubble dynamics is the center piece of the physical processes that links the whole energy flow chain from laser pulse to calculus damage. In this study, cavitation bubble dynamics was investigated by a high-speed camera and a needle hydrophone. A commercialized, pulsed Ho:YAG laser at 2.1 mu;m, StoneLightTM 30, with pulse energy from 0.5J up to 3.0 J, and pulse width from 150 mu;s up to 800 μs, was used as laser pulse source. The fiber used in the investigation is SureFlexTM fiber, Model S-LLF365, a 365 um core diameter fiber. A high-speed camera with frame rate up to 1 million fps was used in this study. The results revealed the cavitation bubble dynamics (oscillation and center of bubble movement) by laser pulse at different energy level and pulse width. More detailed investigation on bubble dynamics by different type of laser, the relationship between cavitation bubble dynamics and calculus damage (fragmentation/dusting) will be conducted as a future study.

  13. Photoelectron escape fluxes over the equatorial and midlatitude regions

    NASA Technical Reports Server (NTRS)

    Narasingarao, B. C.; Singh, R. N.; Maier, E. J.

    1972-01-01

    Satellite measurements of photoelectron escape flux around noontime made by Explorer 31 in 600-800 km altitude range are reported for the equatorial and midlatitude regions. The pitch angle distributions and the spectral distributions are derived from the data. Analyzed data show that the flux for equatorial regions is lower by a factor 2 to 3 in comparison to that of midlatitude regions. Theoretical calculations are also made to compare with observed escape fluxes.

  14. On Irrotational Flows Beneath Periodic Traveling Equatorial Waves

    NASA Astrophysics Data System (ADS)

    Quirchmayr, Ronald

    2016-08-01

    We discuss some aspects of the velocity field and particle trajectories beneath periodic traveling equatorial surface waves over a flat bed in a flow with uniform underlying currents. The system under study consists of the governing equations for equatorial ocean waves within a non-inertial frame of reference, where Euler's equation of motion has to be suitably adjusted, in order to account for the influence of the earth's rotation.

  15. Overview of the Equatorial Electrojet and Related Ionospheric Current Systems

    DTIC Science & Technology

    2007-11-02

    NUWC-NPT Technical Report 11,676 25 April 2005 Overview of the Equatorial Electrojet and Related Ionospheric Current Systems John P. Casey...Overview of the Equatorial Electrojet and Related Ionospheric Current Systems PR A590045 6. AUTHOR(S) John P. Casey 7. PERFORMING ORGANIZATION NAME(S) AND...that flows in the ionosphere in a narrow zone above the magnetic dip equator during the daytime. The electrojet current produces a large enhancement of

  16. Colorful Demos with a Long-Lasting Soap Bubble.

    ERIC Educational Resources Information Center

    Behroozi, F.; Olson, D. W.

    1994-01-01

    Describes several demonstrations that feature interaction of light with soap bubbles. Includes directions about how to produce a long-lasting stationary soap bubble with an easily changeable size and describes the interaction of white light with the bubble. (DDR)

  17. Magma mixing enhanced by bubble segregation

    NASA Astrophysics Data System (ADS)

    Wiesmaier, S.; Morgavi, D.; Renggli, C.; Perugini, D.; De Campos, C. P.; Hess, K.-U.; Ertel-Ingrisch, W.; Lavallée, Y.; Dingwell, D. B.

    2015-04-01

    That rising bubbles may significantly affect magma mixing paths has already been demon strated by analogue experiments. Here, for the first time, bubble-advection experiments are performed employing volcanic melts at magmatic temperatures. Cylinders of basaltic glass were placed below cylinders of rhyolite glass. Upon melting, interstitial air formed bubbles that rose into the rhyolite melt, thereby entraining tails of basaltic liquid. The formation of plume-like filaments of advected basalt within the rhyolite was characterized by microCT and subsequent high-resolution EMP analyses. Melt entrainment by bubble ascent appears to be an efficient mechanism for mingling volcanic melts of highly contrasting compositions and properties. MicroCT imaging reveals bubbles trailing each other and multiple filaments coalescing into bigger ones. Rheological modelling of the filaments yields viscosities of up to 2 orders of magnitude lower than for the surrounding rhyolitic liquid. Such a viscosity contrast implies that bubbles rising successively are likely to follow this pathway of low resistance that previously ascending bubbles have generated. Filaments formed by multiple bubbles would thus experience episodic replenishment with mafic material. Inevitable implications for the concept of bubble advection in magma mixing include thereby both an acceleration of mixing because of decreased viscous resistance for bubbles inside filaments and non-conventional diffusion systematics because of intermittent supply of mafic material (instead of a single pulse) inside a material. Inside the filaments, the mafic material was variably hybridised to andesitic through rhyolitic composition. Compositional profiles alone are ambiguous, however, to determine whether single or multiple bubbles were involved during formation of a filament. Statistical analysis, employing concentration variance as measure of homogenisation, demonstrates that also filaments appearing as single-bubble filaments

  18. Neural basis of economic bubble behavior.

    PubMed

    Ogawa, A; Onozaki, T; Mizuno, T; Asamizuya, T; Ueno, K; Cheng, K; Iriki, A

    2014-04-18

    Throughout human history, economic bubbles have formed and burst. As a bubble grows, microeconomic behavior ceases to be constrained by realistic predictions. This contradicts the basic assumption of economics that agents have rational expectations. To examine the neural basis of behavior during bubbles, we performed functional magnetic resonance imaging while participants traded shares in a virtual stock exchange with two non-bubble stocks and one bubble stock. The price was largely deflected from the fair price in one of the non-bubble stocks, but not in the other. Their fair prices were specified. The price of the bubble stock showed a large increase and battering, as based on a real stock-market bust. The imaging results revealed modulation of the brain circuits that regulate trade behavior under different market conditions. The premotor cortex was activated only under a market condition in which the price was largely deflected from the fair price specified. During the bubble, brain regions associated with the cognitive processing that supports order decisions were identified. The asset preference that might bias the decision was associated with the ventrolateral prefrontal cortex and the dorsolateral prefrontal cortex (DLPFC). The activity of the inferior parietal lobule (IPL) was correlated with the score of future time perspective, which would bias the estimation of future price. These regions were deemed to form a distinctive network during the bubble. A functional connectivity analysis showed that the connectivity between the DLPFC and the IPL was predominant compared with other connectivities only during the bubble. These findings indicate that uncertain and unstable market conditions changed brain modes in traders. These brain mechanisms might lead to a loss of control caused by wishful thinking, and to microeconomic bubbles that expand, on the macroscopic scale, toward bust.

  19. Low and Midlatitude Ionospheric Plasma Density Irregularities and Their Effects on Geomagnetic Field

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tatsuhiro; Stolle, Claudia

    2017-03-01

    Earth's magnetic field results from various internal and external sources. The electric currents in the ionosphere are major external sources of the magnetic field in the daytime. High-resolution magnetometers onboard low-Earth-orbit satellites such as CHAMP and Swarm can detect small-scale currents in the nighttime ionosphere, where plasma density gradients often become unstable and form irregular density structures. The magnetic field variations caused by the ionospheric irregularities are comparable to that of the lithospheric contribution. Two phenomena in the nighttime ionosphere that contribute to the magnetic field variation are presented: equatorial plasma bubble (EPB) and medium-scale traveling ionospheric disturbance (MSTID). EPB is formed by the generalized Rayleigh-Taylor instability over the dip equator and grows nonlinearly to as high