Science.gov

Sample records for equiatomic ternary transition

  1. Thermodynamic properties and phase transitions of ternary Co-Cu-Si alloys with equiatomic Co/Cu ratio

    NASA Astrophysics Data System (ADS)

    Zhai, Wei; Hu, Liang; Zhou, Kai; Wei, Bingbo

    2016-04-01

    Different amounts of Si element were introduced into binary Co50Cu50 alloy to investigate the thermodynamic properties and phase transitions of ternary Co50-x/2Cu50-x/2Si x (x  =  10, 20, 30, 40 and 50 at%) alloys. Their liquidus and solidus temperatures versus Si content were determined by the differential scanning calorimetry (DSC) method. It was found that the addition of Si element depressed both the liquidus and solidus temperatures as compared with binary Co50Cu50 alloy. In particular, the additions of 10 and 20 at% Si remarkably reduced the critical undercooling for liquid demixing to only 3 and 1 K, whereas no liquid phase separation took place in other Co50-x/2Cu50-x/2Si x alloys. The relationship between the enthalpy of fusion and alloy composition was also established by a polynomial function on the basis of the measured data. The solidification microstructures of the DSC samples were investigated corresponding to the calorimetric signals, based on which the solidification pathway for each Co50-x/2Cu50-x/2Si x alloy was elucidated. The Si element displays stronger affinity with the Co element than the Cu element. As Si content rises, the pseudobinary eutectic (Co  +  Co2Si), (Co2Si  +  CoSi), (CoSi  +  CoSi2) and (Cu3Si  +  Si) structures were successively formed, and there were no ternary intermetallic compounds in these alloys. The thermal diffusivity of solid ternary Co50-x/2Cu50-x/2Si x alloys was determined by a laser flash method in a wide temperature range from 300 to 1180 K, which showed a decreasing tendency with the increase of Si content.

  2. Prediction of the crystal structure types of equiatomic ternary silicides and germanides

    NASA Astrophysics Data System (ADS)

    Kiselyova, N. N.; Stolyarenko, A. V.; Sen'ko, O. V.; Dokukin, A. A.

    2013-05-01

    New unsynthesized equiatomic ABX ( A and B are various metals; X = Si or Ge) compounds are predicted, and their types of crystal structure are forecasted under standard conditions. Only the data on the properties of the elements—components of compounds are used for their prediction. The calculations are performed using a special-purpose software package of computer analysis of information intended for searching for regularities in databases on the properties of inorganic compounds, and this package is based on the methods of precedent pattern recognition. Computer analysis of the data on the well-known compounds shows that the functions that are most important for the classification of systems in the sign of formation or absence of equiatomic compounds are M( A) × M( B) and I( A) × I( X), where M is the Mendeleev-Pettifor number of element A or B and I is the thermal conductivity of element A or X. The parameters that most strongly separate compounds for crystal chemical classification are functions T( A) + T( B) (where T is the melting temperature of element A or B), I( A), M( A) × M( B), and I( A) × I( X).

  3. Pressure-induced structural and magnetic phase transitions in ordered and disordered equiatomic FeCo

    NASA Astrophysics Data System (ADS)

    Torchio, R.; Kvashnin, Y. O.; Marini, C.; Mathon, O.; Garbarino, G.; Mezouar, M.; Wright, J. P.; Bruno, P.; Genovese, L.; Baudelet, F.; Meneghini, C.; Mobilio, S.; Morley, N. A.; Gibbs, M. R. J.; Pascarelli, S.

    2013-11-01

    The magnetic and structural phase diagram of equiatomic FeCo has been studied up to 45 GPa using K-edge x-ray magnetic circular dichroism, x-ray absorption near edge spectroscopy, x-ray diffraction, and supporting density-functional-theory-based calculations. FeCo foils with different degrees of chemical order were obtained by magnetron sputtering. Our results show that Fe0.5Co0.5 undergo the bcc ferromagnetic to hcp nonferromagnetic transition in the 30-45 GPa pressure range. Interestingly, the chemical order, i.e., the relative arrangements of Fe and Co atoms, plays a major role in affecting the high-pressure structural and magnetic phase diagram of these alloys. This result is confirmed by first-principles modeling of different structures of equiatomic FeCo alloy. Moreover, the total-energy analysis reveals a strong competition between different magnetic hcp states upon compression. A possible emergence of antiferromagnetism is emphasized and requires further experimental investigation.

  4. High temperature properties of equiatomic FeAl with ternary additions

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Vedula, K. M.; Anderson, G. G.

    1985-01-01

    The aluminide intermetallic compounds are considered potential structural materials for aerospace applications. The B2 binary aluminide FeAl has a melting point in excess of 1500 K, is of simple cubic structure, exists over a wide range of composition with solubility for third elements and is potentially self-protecting in extreme environments. The B2 FeAl compound has been alloyed with 1 to 5 at. pct ternary additions of Si, Ti, Zr, Hf, Cr, Ni, Co, Nb, Ta, Mo, W, and Re. The alloys were prepared by blending a third elemental powder with pre-alloyed binary FeAl powder. Consolidation was by hot extrusion at 1250 K. Annealing studies on the extruded rods showed that the third element addition can be classified into three categories based upon the amount of homogenization and the extent of solid solutioning. Constant strain rate compression tests were performed to determine the flow stress as a function of temperature and composition. The mechanical strength behavior was dependent upon the third element homogenization classification.

  5. High temperature properties of equiatomic FeAl with ternary additions

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Vedula, K. M.; Anderson, G. G.

    1984-01-01

    The aluminide intermetallic compounds are considered potential structural materials for aerospace applications. The B2 binary aluminide FeAl has a melting point in excess of 1500 K, is of simple cubic structure, exits over a wide range of composition with solubility for third elements and is potentially self-protecting in extreme environments. The B2 FeAl compound has been alloyed with 1 to 5 at % ternary additions of Si, Ti, Zr, Hf, Cr, Ni, Co, Nb, Ta, Mo, W, and Re. The alloys were prepared by blending a third elemental powder with prealloyed binary FeAl powder. Consolidation was by hot extrusion at 1250 K. Annealing studies on the extruded rods showed that the third element addition can be classified into three categories based upon the amount of homogenization and the extent of solid solutioning. Constant strain rate compression tests were performed to determine the flow stress as a function of temperature and composition. The mechanical strength behavior was dependent upon the third element homogenization classification.

  6. Plurality of inherent states in equiatomic solid solutions

    NASA Astrophysics Data System (ADS)

    Demkowicz, M. J.

    2017-03-01

    We show that single-crystal, equiatomic solid solutions of Lennard-Jones particles have a plurality of inherent states: mechanically stable configurations with identical lattice site occupancies, yet distinct potential-energy minima. External loading triggers transitions between inherent states via localized shear transformations. A plurality of inherent states and mechanically activated transitions between them make equiatomic solid solutions an unusual form of matter: one that is crystalline like single-component metals, yet exhibits localized shear transformations like metallic glasses.

  7. Topologically insulating states in ternary transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Lin, Xianqing; Ni, Jun

    2017-01-01

    The topological and electronic properties of monolayered monoclinic transition metal dichalcogenide (TMD) alloys (1T '-M1-xNxX2 with M, N = Cr, Mo, W and X = S, Se) have been studied through calculations based on the projected Wannier functions obtained from first-principles calculations. We predict that the ternary compounds 1T '-Mo1-xCrxS2 with x up to 7/12 and all 1T '-Mo1-xWxSe2 host topologically insulating states with band gaps comparable to the pure systems. For Cr contained alloys, the mechanism of sign changing of Berry curvature is proposed to explain the trivial band topology of some configurations. The predicted topologically insulating ternary TMDs may be promising candidates for future realization of topological devices.

  8. Finding new ternary transition metal selenides and sulphides

    NASA Astrophysics Data System (ADS)

    Narayan, Awadhesh; Bhutani, Ankita; Eckstein, James N.; Shoemaker, Daniel P.; Wagner, Lucas K.

    The transition metal oxides exhibit many interesting physical properties, and have been explored in detail over time. Recently, the transition metal chalchogenides including selenium and sulfur have been of interest because of their correlated electron properties, as seen in the iron based superconductors and the layered transition metal dichalchogenides. However, the chalchogenides are much less explored than the oxides, and there is an open question of whether there may be new materials heretofore undiscovered. We perform a systematic combined theoretical and experimental search over ternary phase diagrams that are empty in the Inorganic Crystal Structure Database containing cations, transition metals, and one of selenium or sulfur. In these 27 ternary systems, we use a probabilistic model to reduce the likelihood of false negative predictions, which results in a list of 24 candidate materials. We then conduct a variety of synthesis experiments to check the candidate materials for stability. While the prediction method did obtain compositions that are stable, none of the candidate materials formed in our experiments. We come to the conclusion that these phase diagrams are either truly empty or have unusual structures or synthesis requirements. This work was supported by the Center for Emergent Superconductivity, Department of Energy Frontier Research Center under Grant No. DEAC0298CH1088.

  9. Glass transition behavior of ternary disaccharide-ethylene glycol-water solutions

    NASA Astrophysics Data System (ADS)

    Yu, Tongxu; Zhao, Lishan; Wang, Qiang; Cao, Zexian

    2017-06-01

    Glass transition behavior of ternary disaccharide-ethylene glycol-water solutions, in reference to that of the binary combinations, has been investigated towards a better understanding of their cryoprotective ability. In water-deficient solutions, the disaccharides, including trehalose, sucrose and maltose, can associate with more than 100 ethylene glycol molecules to form amorphous complex, one order of magnitude larger than the corresponding hydration numbers. In water-rich solutions, a second glass transition emerges with increasing molar fraction of ethylene glycol, indicating the possible synergy of disaccharides and ethylene glycol in vitrification of the ternary aqueous solution.

  10. A complexed precursor approach to the synthesis of ternary transition metal nitrides

    SciTech Connect

    Weil, K.S.; Kumta, P.N.

    1996-12-31

    A new chemical synthesis approach has been developed in which ternary transition metal nitride powders are synthesized from hydrolyzed alkanoamine complexed precursors. In this technique, two different metal chlorides are dissolved in a common solvent such as acetonitrile, then reacted with ethanolamine to form a highly viscous solution which settles out of the solvent phase. Simultaneous evaporation of the solvent and forced hydrolysis of the remaining liquid results in the formation of a precipitate which can be filtered and dried. The precursor is heat treated in ammonia to form the corresponding ternary nitride. The approach has been successfully used to synthesize Ni{sub 3}Mo{sub 3}N, FeWN{sub 2}, and Ti{sub 3}AlN powders, each of which have been characterized using X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM).

  11. Strong and Ductile Non-equiatomic High-Entropy Alloys: Design, Processing, Microstructure, and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Li, Zhiming; Raabe, Dierk

    2017-08-01

    We present a brief overview on recent developments in the field of strong and ductile non-equiatomic high-entropy alloys (HEAs). The materials reviewed are mainly based on massive transition-metal solute solutions and exhibit a broad spectrum of microstructures and mechanical properties. Three relevant aspects of such non-equiatomic HEAs with excellent strength-ductility combination are addressed in detail, namely phase stability-guided design, controlled and inexpensive bulk metallurgical processing routes for appropriate microstructure and compositional homogeneity, and the resultant microstructure-property relations. In addition to the multiple principal substitutional elements used in these alloys, minor interstitial alloying elements are also considered. We show that various groups of strong and ductile HEAs can be obtained by shifting the alloy design strategy from single-phase equiatomic to dual- or multiphase non-equiatomic compositional configurations with carefully designed phase instability. This design direction provides ample possibilities for joint activation of a number of strengthening and toughening mechanisms. Some potential research efforts which can be conducted in the future are also proposed.

  12. Effects of temperature and pressure on phase transitions in a ternary microemulsion system

    NASA Astrophysics Data System (ADS)

    Nagao, Michihiro; Seto, Hideki; Takeda, Takayoshi; Kawabata, Youhei

    2001-12-01

    Temperature variation experiments of small angle neutron scattering (SANS) and neutron spin echo (NSE) were carried out in order to compare effects of temperature and pressure on a structural formation in a ternary microemulsion system composed of AOT (Aerosol-OT; dioctyl sulfosuccinate sodium salt), D2O, and n-decane. From SANS measurements, a phase transition from one-phase dense water-in-oil droplet to two-phase coexistence with a lamellar and a disordered structure was observed with increasing temperature, similar to the case of pressure variation. Another phase transition was observed at a higher temperature above the lamellar phase, although such a subsequent phase transition has not been observed at higher pressure. The characteristic features of structural phase transitions by temperature and by pressure were compared by introducing a reduced temperature and pressure. The dynamical property observed from the NSE measurement was different between the high-temperature phase and the high-pressure phase. These results indicate that the mechanism of the phase transition induced by temperature is different from that by pressure.

  13. Ternary Amides Containing Transition Metals for Hydrogen Storage: A Case Study with Alkali Metal Amidozincates.

    PubMed

    Cao, Hujun; Richter, Theresia M M; Pistidda, Claudio; Chaudhary, Anna-Lisa; Santoru, Antonio; Gizer, Gökhan; Niewa, Rainer; Chen, Ping; Klassen, Thomas; Dornheim, Martin

    2015-11-01

    The alkali metal amidozincates Li4 [Zn(NH2)4](NH2)2 and K2[Zn(NH2)4] were, to the best of our knowledge, studied for the first time as hydrogen storage media. Compared with the LiNH2-2 LiH system, both Li4 [Zn(NH2)4](NH2)2-12 LiH and K2[Zn(NH2)4]-8 LiH systems showed improved rehydrogenation performance, especially K2[Zn(NH2)4]-8 LiH, which can be fully hydrogenated within 30 s at approximately 230 °C. The absorption properties are stable upon cycling. This work shows that ternary amides containing transition metals have great potential as hydrogen storage materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Studies on microstructural changes and phase transition during preparation of FeGeNi ternary alloy by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Lin, Fangting; Shi, Wangzhou; Jiang, Dongmei; Ma, Xueming; Shen, Gang

    2006-01-01

    FeGeNi ternary alloy has been prepared by mechanical alloying followed by thermal treatment. Microstructure of the as-milled and annealed samples as well as thermally induced phase transition and variations in degree of order were investigated through a combination of X-ray diffraction and Mössbauer spectroscopy. The results show that alloying in the (Fe 0.81Ni 0.19) 3.94Ge 2 ternary system initiates during ball milling, with the appearance of partially D0 3-ordered A2 solid solution phase and paramagnetic B8 2 FeGeNi ternary phase. A subsequent thermal treatment of 2 h at 800 K produces a remarkable increase in the degree of the D0 3 order, whilst ferromagnetic phase with amorphous character in the as-milled sample is transformed into paramagnetic B8 2 FeGeNi ternary phase where almost all Ni atoms occupy the vacant 2d site. Therefore in the annealed system coexist two phases, namely the D0 3 phase and paramagnetic B8 2 FeGeNi ternary phase.

  15. Stoichiometry determined exchange interactions in amorphous ternary transition metal oxides: Theory and experiment

    SciTech Connect

    Hu, Shu-jun; Yan, Shi-shen Zhang, Yun-peng; Zhao, Ming-wen; Kang, Shi-shou; Mei, Liang-mo

    2014-07-28

    Amorphous transition metal oxides exhibit exotic transport and magnetic properties, while the absence of periodic structure has long been a major obstacle for the understanding of their electronic structure and exchange interaction. In this paper, we have formulated a theoretical approach, which combines the melt-quench approach and the spin dynamic Monte-Carlo simulations, and based on it, we explored amorphous Co{sub 0.5}Zn{sub 0.5}O{sub 1−y} ternary transition metal oxides. Our theoretical results reveal that the microstructure, the magnetic properties, and the exchange interactions of Co{sub 0.5}Zn{sub 0.5}O{sub 1−y} are strongly determined by the oxygen stoichiometry. In the oxygen-deficient sample (y > 0), we have observed the long-range ferromagnetic spin ordering which is associated with the non-stoichiometric cobalt-rich region rather than metallic clusters. On the other hand, the microstructure of stoichiometric sample takes the form of continuous random networks, and no long-range ferromagnetism has been observed in it. Magnetization characterization of experimental synthesized Co{sub 0.61}Zn{sub 0.39}O{sub 1−y} films verifies the relation between the spin ordering and the oxygen stoichiometry. Furthermore, the temperature dependence of electrical transport shows a typical feature of semiconductors, in agreement with our theoretical results.

  16. Ternary rare earth and actinoid transition metal carbides viewed as carbometalates

    SciTech Connect

    Dashjav, Enkhtsetseg; Kreiner, Guido; Schnelle, Walter; Wagner, Frank R.; Kniep, Ruediger Jeitschko, Wolfgang

    2007-02-15

    Ternary carbides A{sub x}T{sub y}C{sub z} (A=rare earth metals and actinoids; T=transition metals) with monoatomic species C{sup 4-} as structural entities are classified according to the criteria (i) metal to carbon ratio, (ii) coordination number of the transition metal by carbon atoms, and (iii) the dimensionality of the anionic network [T{sub y}C{sub z}]{sup n-}. Two groups are clearly distinguishable, depending on the metal to carbon ratio. Those where this ratio is equal to or smaller than 2 may be viewed as carbometalates, thus extending the sequence of complex anions from fluoro-, oxo-, and nitridometalates to carbometalates. The second group, metal-rich carbides with metal to carbon ratios equal to or larger than 4 is better viewed as typical intermetallics (''interstitial carbides''). The chemical bonding properties have been investigated by analyzing the Crystal Orbital Hamilton Population (COHP). The chemical bonding situation with respect to individual T-C bonds is similar in both classes. The main difference is the larger number of metal-metal bonds in the crystal structures of the metal-rich carbides.

  17. Study of mixed ternary transition metal ferrites as potential electrodes for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Bhujun, Bhamini; Tan, Michelle T. T.; Shanmugam, Anandan S.

    Nanocrystallites of three mixed ternary transition metal ferrite (MTTMF) were prepared by a facile sol-gel method and adopted as electrode material for supercapacitors. The phase development of the samples was determined using Fourier transform infrared (FT-IR) and thermal gravimetric analysis (TG). X-ray diffraction (XRD) analysis revealed the formation of a single-phase spinel ferrite in CuCoFe2O4 (CuCoF), NiCoFe2O4 (NiCoF) and NiCuFe2O4 (NiCuF). The surface characteristics and elemental composition of the nanocomposites have been studied by means of field emission scanning electron microscopy (FESEM), as well as energy dispersive spectroscopy (EDS). The electrochemical performance of the nanomaterials was evaluated using a two-electrode configuration by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic technique in 1 M KOH electrolyte and was found to be in the order of: CuCoF > NiCoF > NiCuF. A maximum specific capacitance of 221 Fg-1 was obtained with CuCoF at a scan rate of 5 mV s-1. In addition to an excellent cycling stability, an energy density of 7.9 kW kg-1 was obtained at a current density of 1 Ag-1. The high electrochemical performance of the MTTMF nanocomposites obtained indicates that these materials are promising electrodes for supercapacitors.

  18. Proposed thermodynamic method to predict the glass formation of the ternary transition metal systems.

    PubMed

    Wang, T L; Li, J H; Liu, B X

    2009-04-14

    By considering the energetic competition between the crystalline solid solution and glass phase, a thermodynamic method is proposed to predict/determine the glass forming range of a ternary metal system and in terms of the dynamics, the parameter gamma(ABC)* is further defined to search for a proper alloy with superior glass forming ability in the system. 10 more ternary/binary metal systems, e.g. the Cu-Zr-Ti and Cu-Hf-Ti systems, were studied and the predicted alloys of superior glass forming ability match well with those reported from experimental observations.

  19. Preparation of single crystals of binary and ternary transition metal and uranium arsenides and antimonides from reactive-fluxes

    NASA Astrophysics Data System (ADS)

    Albrecht-Schmitt, Thomas E.; Almond, Philip M.; Illies, Andreas J.; Raymond, Casey C.; Talley, Catherine E.

    2000-08-01

    Single crystals as large as 2 mm of binary transition metal and uranium arsenides and antimonides can be grown from the reactions of titanium, chromium, zirconium, hafnium, tantalum, rhenium, or uranium with alkali metal arsenides and antimonides from 500°C to 950°C. Single crystals of the ternary uranium copper arsenide phases UCuAs 2 and U 2Cu 4As 5 can also be grown from the reaction of uranium and copper with Cs 3As 7. The resulting crystals were analyzed by electron dispersive analysis by X-rays (EDX) and single crystal X-ray diffraction.

  20. Temperature Dependence of the Mechanical Properties of Equiatomic Solid Solution Alloys with FCC Crystal Structures

    DOE PAGES

    Wu, Zhenggang; Bei, Hongbin; Pharr, George M.; ...

    2014-10-03

    We found that compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. Likewise, to clarify the mechanical behavior of this interesting new class of materials, we investigate heremore » a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10-3 s-1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. Moreover, to better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the temperature

  1. Temperature Dependence of the Mechanical Properties of Equiatomic Solid Solution Alloys with FCC Crystal Structures

    SciTech Connect

    Wu, Zhenggang; Bei, Hongbin; Pharr, George M.; George, Easo P.

    2014-10-03

    We found that compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. Likewise, to clarify the mechanical behavior of this interesting new class of materials, we investigate here a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10-3 s-1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. Moreover, to better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the

  2. Ternary alkali-metal and transition metal or metalloid acetylides as alkali-metal intercalation electrodes for batteries

    SciTech Connect

    Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z

    2015-02-10

    Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.

  3. Pressure effect and electron diffraction on the anomalous transition in ternary superconductor Bi2Rh3Se2

    NASA Astrophysics Data System (ADS)

    Chen, C. Y.; Chan, C. L.; Mukherjee, S.; Chou, C. C.; Tseng, C. M.; Hsu, S. L.; Chu, M.-W.; Lin, J.-Y.; Yang, H. D.

    2014-01-01

    The effect of external hydrostatic pressure up to 22.23 kbar on the temperature-dependent transport properties of the ternary compound Bi2Rh3Se2 is investigated. Interestingly, the resistive anomaly at Ts~250 K, previously proposed as a charge-density-wave (CDW) transition, is shifted to higher temperature with increasing pressure, in distinct contrast to an established knowledge for CDW. Using temperature-dependent electron-diffraction characterizations, we have unraveled that this transition is, in effect, of a structural phase-transformation nature, experiencing the symmetry reduction from a high-symmetry C-centered monoclinic lattice to a low-symmetry primitive one below Ts. A more elaborately determined room-temperature C-centered lattice was also proposed.

  4. Thermal activation mechanisms and Labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys

    DOE PAGES

    Wu, Zhenggang; Gao, Yanfei; Bei, Hongbin

    2016-11-01

    To understand the underlying strengthening mechanisms, thermal activation processes are investigated from stress-strain measurements with varying temperatures and strain rates for a family of equiatomic quinary, quaternary, ternary, and binary, face-center-cubic-structured, single phase solid-solution alloys, which are all subsystems of the FeNiCoCrMn high-entropy alloy. Our analysis suggests that the Labusch-type solution strengthening mechanism, rather than the lattice friction (or lattice resistance), governs the deformation behavior in equiatomic alloys. First, upon excluding the Hall-Petch effects, the activation volumes for these alloys are found to range from 10 to 1000 times the cubic power of Burgers vector, which are much larger thanmore » that required for kink pairs (i.e., the thermal activation process for the lattice resistance mechanism in body-center-cubic-structured metals). Second, the Labusch-type analysis for an N-element alloy is conducted by treating M-elements (M < N) as an effective medium and summing the strengthening contributions from the rest of N-M elements as individual solute species. For all equiatomic alloys investigated, a qualitative agreement exists between the measured strengthening effect and the Labusch strengthening factor from arbitrary M to N elements based on the lattice and modulus mismatches. Furthermore, the Labusch strengthening factor provides a practical critique to understand and design such compositionally complex but structurally simple alloys.« less

  5. Thermal activation mechanisms and Labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys

    SciTech Connect

    Wu, Zhenggang; Gao, Yanfei; Bei, Hongbin

    2016-11-01

    To understand the underlying strengthening mechanisms, thermal activation processes are investigated from stress-strain measurements with varying temperatures and strain rates for a family of equiatomic quinary, quaternary, ternary, and binary, face-center-cubic-structured, single phase solid-solution alloys, which are all subsystems of the FeNiCoCrMn high-entropy alloy. Our analysis suggests that the Labusch-type solution strengthening mechanism, rather than the lattice friction (or lattice resistance), governs the deformation behavior in equiatomic alloys. First, upon excluding the Hall-Petch effects, the activation volumes for these alloys are found to range from 10 to 1000 times the cubic power of Burgers vector, which are much larger than that required for kink pairs (i.e., the thermal activation process for the lattice resistance mechanism in body-center-cubic-structured metals). Second, the Labusch-type analysis for an N-element alloy is conducted by treating M-elements (M < N) as an effective medium and summing the strengthening contributions from the rest of N-M elements as individual solute species. For all equiatomic alloys investigated, a qualitative agreement exists between the measured strengthening effect and the Labusch strengthening factor from arbitrary M to N elements based on the lattice and modulus mismatches. Furthermore, the Labusch strengthening factor provides a practical critique to understand and design such compositionally complex but structurally simple alloys.

  6. Thermal activation mechanisms and Labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys

    DOE PAGES

    Wu, Zhenggang; Gao, Yanfei; Bei, Hongbin

    2016-11-01

    To understand the underlying strengthening mechanisms, thermal activation processes are investigated from stress-strain measurements with varying temperatures and strain rates for a family of equiatomic quinary, quaternary, ternary, and binary, face-center-cubic-structured, single phase solid-solution alloys, which are all subsystems of the FeNiCoCrMn high-entropy alloy. Our analysis suggests that the Labusch-type solution strengthening mechanism, rather than the lattice friction (or lattice resistance), governs the deformation behavior in equiatomic alloys. First, upon excluding the Hall-Petch effects, the activation volumes for these alloys are found to range from 10 to 1000 times the cubic power of Burgers vector, which are much larger thanmore » that required for kink pairs (i.e., the thermal activation process for the lattice resistance mechanism in body-center-cubic-structured metals). Second, the Labusch-type analysis for an N-element alloy is conducted by treating M-elements (M < N) as an effective medium and summing the strengthening contributions from the rest of N-M elements as individual solute species. For all equiatomic alloys investigated, a qualitative agreement exists between the measured strengthening effect and the Labusch strengthening factor from arbitrary M to N elements based on the lattice and modulus mismatches. Furthermore, the Labusch strengthening factor provides a practical critique to understand and design such compositionally complex but structurally simple alloys.« less

  7. Thermal activation mechanisms and Labusch-type strengthening analysis for a family of high-entropy and equiatomic solid-solution alloys

    SciTech Connect

    Wu, Zhenggang; Gao, Yanfei; Bei, Hongbin

    2016-11-01

    To understand the underlying strengthening mechanisms, thermal activation processes are investigated from stress-strain measurements with varying temperatures and strain rates for a family of equiatomic quinary, quaternary, ternary, and binary, face-center-cubic-structured, single phase solid-solution alloys, which are all subsystems of the FeNiCoCrMn high-entropy alloy. Our analysis suggests that the Labusch-type solution strengthening mechanism, rather than the lattice friction (or lattice resistance), governs the deformation behavior in equiatomic alloys. First, upon excluding the Hall-Petch effects, the activation volumes for these alloys are found to range from 10 to 1000 times the cubic power of Burgers vector, which are much larger than that required for kink pairs (i.e., the thermal activation process for the lattice resistance mechanism in body-center-cubic-structured metals). Second, the Labusch-type analysis for an N-element alloy is conducted by treating M-elements (M < N) as an effective medium and summing the strengthening contributions from the rest of N-M elements as individual solute species. For all equiatomic alloys investigated, a qualitative agreement exists between the measured strengthening effect and the Labusch strengthening factor from arbitrary M to N elements based on the lattice and modulus mismatches. Furthermore, the Labusch strengthening factor provides a practical critique to understand and design such compositionally complex but structurally simple alloys.

  8. Phase Behavior of Diblock Copolymer–Homopolymer Ternary Blends: Congruent First-Order Lamellar–Disorder Transition

    SciTech Connect

    Hickey, Robert J.; Gillard, Timothy M.; Irwin, Matthew T.; Morse, David C.; Lodge, Timothy P.; Bates, Frank S.

    2016-10-13

    We have established the existence of a line of congruent first-order lamellar-to-disorder (LAM–DIS) transitions when appropriate amounts of poly(cyclohexylethylene) (C) and poly(ethylene) (E) homopolymers are mixed with a corresponding compositionally symmetric CE diblock copolymer. The line of congruent transitions, or the congruent isopleth, terminates at the bicontinuous microemulsion (BμE) channel, and its trajectory appears to be influenced by the critical composition of the C/E binary homopolymer blend. Blends satisfying congruency undergo a direct LAM–DIS transition without passing through a two-phase region. We present complementary optical transmission, small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and dynamic mechanical spectroscopy (DMS) results that establish the phase behavior at constant copolymer volume fraction and varying C/E homopolymer volume ratios. Adjacent to the congruent composition at constant copolymer volume fraction, the lamellar and disordered phases are separated by two-phase coexistence windows, which converge, along with the line of congruent transitions, at an overall composition in the phase prism coincident with the BμE channel. Hexagonal and cubic (double gyroid) phases occur at higher diblock copolymer concentrations for asymmetric amounts of C and E homopolymers. These results establish a quantitative method for identifying the detailed phase behavior of ternary diblock copolymer–homopolymer blends, especially in the vicinity of the BμE.

  9. Two-band model interpretation of the p- to n-transition in ternary tetradymite topological insulators

    NASA Astrophysics Data System (ADS)

    Chasapis, T. C.; Koumoulis, D.; Leung, B.; Calta, N. P.; Lo, S.-H.; Dravid, V. P.; Bouchard, L.-S.; Kanatzidis, M. G.

    2015-08-01

    The requirement for large bulk resistivity in topological insulators has led to the design of complex ternary and quaternary phases with balanced donor and acceptor levels. A common feature of the optimized phases is that they lie close to the p- to n-transition. The tetradymite Bi2Te3-xSex system exhibits minimum bulk conductance at the ordered composition Bi2Te2Se. By combining local and integral measurements of the density of states, we find that the point of minimum electrical conductivity at x = 1.0 where carriers change from hole-like to electron-like is characterized by conductivity of the mixed type. Our experimental findings, which are interpreted within the framework of a two-band model for the different carrier types, indicate that the mixed state originates from different types of native defects that strongly compensate at the crossover point.

  10. Two-band model interpretation of the p- to n-transition in ternary tetradymite topological insulators

    SciTech Connect

    Chasapis, T. C. E-mail: m-kanatzidis@northwestern.edu; Calta, N. P.; Kanatzidis, M. G. E-mail: m-kanatzidis@northwestern.edu; Koumoulis, D.; Leung, B.; Lo, S.-H.; Dravid, V. P.; Bouchard, L.-S.

    2015-08-01

    The requirement for large bulk resistivity in topological insulators has led to the design of complex ternary and quaternary phases with balanced donor and acceptor levels. A common feature of the optimized phases is that they lie close to the p- to n-transition. The tetradymite Bi{sub 2}Te{sub 3−x}Se{sub x} system exhibits minimum bulk conductance at the ordered composition Bi{sub 2}Te{sub 2}Se. By combining local and integral measurements of the density of states, we find that the point of minimum electrical conductivity at x = 1.0 where carriers change from hole-like to electron-like is characterized by conductivity of the mixed type. Our experimental findings, which are interpreted within the framework of a two-band model for the different carrier types, indicate that the mixed state originates from different types of native defects that strongly compensate at the crossover point.

  11. Studies of high temperature ternary phases in mixed-metal-rich early transition metal sulfide and phosphide systems

    SciTech Connect

    Marking, Gregory Allen

    1994-01-04

    Investigations of ternary mixed early transition metal-rich sulfide and phosphide systems resulted in the discovery of new structures and new phases. A new series of Zr and Hf - group V transition metal - sulfur K-phases was synthesized and crystallographically characterized. When the group V transition metal was Nb or Ta, the unit cell volume was larger than any previously reported K-phase. The presence of adventitious oxygen was determined in two K-phases through a combination of neutron scattering and X-ray diffraction experiments. A compound Hf10Ta3S3 was found to crystallize in a new-structure type similar to the known gamma brasses. This structure is unique in that it is the only reported "stuffed" gamma-brass type structure. The metal components, Hf and Ta, are larger in size and more electropositive than the metals found in normal gamma brasses (e.g. Cu and Zn) and because of the larger metallic radii, sulfur can be incorporated into the structure where it plays an integral role in stabilizing this phase relative to others. X-ray single-crystal, X-ray powder and neutron powder refinements were performed on this structure. A new structure was found in the ternary Nb-Zr-P system which has characteristics in common with many known early transition metal-rich sulfides, selenides, and phosphides. This structure has the simplest known interconnection of the basic building blocks known for this structural class. Anomalous scattering was a powerful tool for differentiating between Zr and Nb when using Mo Kα X-radiation. The compounds ZrNbP and HfNbP formed in the space group Prima with the simple Co2Si structure which is among the most common structures found for crystalline solid materials. Solid solution compounds in the Ta-Nb-P, Ta-Zr-P, Nb-Zr-P, Hf-Nb-P, and Hf-Zr-S systems were crystallographically characterized. The structural information corroborated ideas about bonding in metal-rich compounds.

  12. TERNARY PHASE EQUILIBRIA IN TRANSITION METAL-BORON-CARBON-SILICON SYSTEMS. PART II. TERNARY SYSTEMS. VOLUME XVI. V-NB-C SYSTEM,

    DTIC Science & Technology

    Phase equilibria in the ternary system vanadium-niobium-carbon from 800C through the melting ranges of the cubic monocarbide solid solutions were...established on the basis of X-ray, melting point and metallographic studies. The phase equilibria above 1400C are presented in a three-dimensional...temperature-composition constitutional diagram, since the phase equilibria below 1400C were not thoroughly investigated due to kinetic problems. Vanadium

  13. Monolayer MoS2 metal insulator transition based memcapacitor modeling with extension to a ternary device

    NASA Astrophysics Data System (ADS)

    Khan, Abdul Karim; Lee, Byoung Hun

    2016-09-01

    Memcapacitor model based on its one possible physical realization is developed and simulated in order to know its limitation before making a real device. The proposed device structure consists of vertically stacked dielectric layer and MoS2 monolayer between two external metal plates. The Metal Insulator Transition (MIT) phenomenon of MoS2 monolayer is represented in terms of percolation probabilty which is used as the system state. Cluster based site percolation theory is used to mimic the MIT of MoS2 which shows slight discontinuous change in MoS2 monolayer conductivity. The metal to insulator transition switches the capacitance of the device in hysterical way. An Ioffe Regel criterion is used to determine the MIT state of MoS2 monolayer. A good control of MIT time in the range of psec is also achieved by changing a single parameter in the model. The model shows memcapacitive behavior with an edge of fast switching (in psec range) over the previous general models. The model is then extended into vertical cascaded version which behaves like a ternary device instead of binary.

  14. Equiatomic quaternary Heusler alloys: A material perspective for spintronic applications

    NASA Astrophysics Data System (ADS)

    Bainsla, Lakhan; Suresh, K. G.

    2016-09-01

    Half-metallic ferromagnetic (HMF) materials show high spin polarization and are therefore interesting to researchers due to their possible applications in spintronic devices. In these materials, while one spin sub band has a finite density of states at the Fermi level, the other sub band has a gap. Because of their high Curie temperature (TC) and tunable electronic structure, HMF Heusler alloys have a special importance among the HMF materials. Full Heusler alloys with the stoichiometric composition X2YZ (where X and Y are the transition metals and Z is a sp element) have the cubic L21 structure with four interpenetrating fcc sublattices. When each of these four fcc sublattices is occupied by different atoms (XX'YZ), a quaternary Heusler structure with different structural symmetries (space group F-43m, #216) is obtained. Recently, these equiatomic quaternary Heusler alloys (EQHAs) with 1:1:1:1 stoichiometry have attracted a lot of attention due to their superior magnetic and transport properties. A special class of HMF materials identified recently is known as spin gapless semiconductors (SGS). The difference in this case, compared with HMFs, is that the density of states for one spin band is just zero at the Fermi level, while the other has a gap as in the case of HMFs. Some of the reported SGS materials belong to EQHAs family. This review is dedicated to almost all reported materials belonging to EQHAs family. The electronic structure and hence the physical properties of Heusler alloys strongly depend on the degree of structural order and distribution of the atoms in the crystal lattice. A variety of experimental techniques has been used to probe the structural parameters and degree of order in these alloys. Their magnetic properties have been investigated using the conventional methods, while the spin polarization has been probed by point contact Andreev reflection technique. The experimentally obtained values of saturation magnetization are found to be in

  15. Equiatomic quaternary Heusler alloys: A material perspective for spintronic applications

    SciTech Connect

    Bainsla, Lakhan E-mail: suresh@phy.iitb.ac.in; Suresh, K. G. E-mail: suresh@phy.iitb.ac.in

    2016-09-15

    Half-metallic ferromagnetic (HMF) materials show high spin polarization and are therefore interesting to researchers due to their possible applications in spintronic devices. In these materials, while one spin sub band has a finite density of states at the Fermi level, the other sub band has a gap. Because of their high Curie temperature (T{sub C}) and tunable electronic structure, HMF Heusler alloys have a special importance among the HMF materials. Full Heusler alloys with the stoichiometric composition X{sub 2}YZ (where X and Y are the transition metals and Z is a sp element) have the cubic L2{sub 1} structure with four interpenetrating fcc sublattices. When each of these four fcc sublattices is occupied by different atoms (XX′YZ), a quaternary Heusler structure with different structural symmetries (space group F-43m, #216) is obtained. Recently, these equiatomic quaternary Heusler alloys (EQHAs) with 1:1:1:1 stoichiometry have attracted a lot of attention due to their superior magnetic and transport properties. A special class of HMF materials identified recently is known as spin gapless semiconductors (SGS). The difference in this case, compared with HMFs, is that the density of states for one spin band is just zero at the Fermi level, while the other has a gap as in the case of HMFs. Some of the reported SGS materials belong to EQHAs family. This review is dedicated to almost all reported materials belonging to EQHAs family. The electronic structure and hence the physical properties of Heusler alloys strongly depend on the degree of structural order and distribution of the atoms in the crystal lattice. A variety of experimental techniques has been used to probe the structural parameters and degree of order in these alloys. Their magnetic properties have been investigated using the conventional methods, while the spin polarization has been probed by point contact Andreev reflection technique. The experimentally obtained values of saturation magnetization are

  16. Synthesis and characterization of new ternary transition metal sulfide anodes for H 2S-powered solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Vorontsov, V.; Luo, J. L.; Sanger, A. R.; Chuang, K. T.

    A number of ternary transition metal sulfides with general composition AB 2S 4 (where A and B are different transition metal atoms) have been prepared and investigated as potential anode catalysts for use in H 2S-powered solid oxide fuel cells (SOFCs). For the initial screening, polarization resistance of the materials was measured in a two electrode symmetrical cell at 700-850 °C. Vanadium-based materials showed the lowest polarization resistance, and so were chosen for subsequent full cell tests using the configuration [H 2S, AV 2S 4/YSZ/Pt, air] (where A = Ni, Cr, Mo). MoV 2S 4 anode had superior activity and performance in the full cell setup, consistent with results from symmetrical cell tests. Polarization curves showed MoV 2S 4 had the lowest potential drop, with up to a 200 mA cm -2 current density at 800 °C. The highest power density of ca. 275 mW cm -2 at 800 °C was obtained with a pure H 2S stream. Polarization resistance of materials was a strong function of current density, and showed a sharp change of slope attributable to a change in the rate-limiting step of the anode reaction mechanism. MoV 2S 4 was chemically stable during prolonged (10 days) exposure to H 2S at 850 °C, and fuel cell performance was stable during continuous 3-day operation at 370 mA cm -2 current density.

  17. Uranyl binary and ternary chelates of tenoxicam Synthesis, spectroscopic and thermal characterization of ternary chelates of tenoxicam and alanine with transition metals.

    PubMed

    El-Gamel, Nadia E A

    2007-11-01

    Ternary Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO(2)(II) chelates with tenoxicam (Ten) drug (H(2)L(1)) and dl-alanine (Ala) (HL(2)) and also the binary UO(2)(II) chelate with Ten were studied. The structures of the chelates were elucidated using elemental, molar conductance, magnetic moment, IR, diffused reflectance and thermal analyses. UO(2)(II) binary chelate was isolated in 1:2 ratio with the formula [UO(2)(H(2)L)(2)](NO(3))(2). The ternary chelates were isolated in 1:1:1 (M:H(2)L(1):L(2)) ratios and have the general formulae [M(H(2)L(1))(L(2))(Cl)(n)(H(2)O)(m)].yH(2)O (M=Fe(III) (n=2, m=0, y=2), Co(II) (n=1, m=1, y=2) and Ni(II) (n=1, m=1, y=3)); [M(H(2)L(1))(L(2))](X)(z).yH(2)O (M=Cu(II) (X=AcO, z=1, y=0), Zn(II) (X=AcO, z=1, y=3) and UO(2)(II) (X=NO(3), z=1, y=2)). IR spectra reveal that Ten behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl-O groups, while Ala behaves as a uninegatively bidentate ligand coordinated to the metal ions via the deprotonated carboxylate-O and amino-N. The magnetic and reflectance spectral data confirm that all the chelates have octahedral geometry except Cu(II) and Zn(II) chelates have tetrahedral structures. Thermal decomposition of the chelates was discussed in relation to structure and different thermodynamic parameters of the decomposition stages were evaluated.

  18. Uranyl binary and ternary chelates of tenoxicam. Synthesis, spectroscopic and thermal characterization of ternary chelates of tenoxicam and alanine with transition metals

    NASA Astrophysics Data System (ADS)

    El-Gamel, Nadia E. A.

    2007-11-01

    Ternary Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and UO 2(II) chelates with tenoxicam (Ten) drug (H 2L 1) and dl-alanine (Ala) (HL 2) and also the binary UO 2(II) chelate with Ten were studied. The structures of the chelates were elucidated using elemental, molar conductance, magnetic moment, IR, diffused reflectance and thermal analyses. UO 2(II) binary chelate was isolated in 1:2 ratio with the formula [UO 2(H 2L) 2](NO 3) 2. The ternary chelates were isolated in 1:1:1 (M:H 2L 1:L 2) ratios and have the general formulae [M(H 2L 1)(L 2)(Cl) n(H 2O) m]· yH 2O (M = Fe(III) ( n = 2, m = 0, y = 2), Co(II) ( n = 1, m = 1, y = 2) and Ni(II) ( n = 1, m = 1, y = 3)); [M(H 2L 1)(L 2)](X) z· yH 2O (M = Cu(II) (X = AcO, z = 1, y = 0), Zn(II) (X = AcO, z = 1, y = 3) and UO 2(II) (X = NO 3, z = 1, y = 2)). IR spectra reveal that Ten behaves as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl-O groups, while Ala behaves as a uninegatively bidentate ligand coordinated to the metal ions via the deprotonated carboxylate-O and amino-N. The magnetic and reflectance spectral data confirm that all the chelates have octahedral geometry except Cu(II) and Zn(II) chelates have tetrahedral structures. Thermal decomposition of the chelates was discussed in relation to structure and different thermodynamic parameters of the decomposition stages were evaluated.

  19. Equiatomic CoPt thin films with extremely high coercivity

    SciTech Connect

    Varghese, Binni; Piramanayagam, S. N. Yang, Yi; Kai Wong, Seng; Khume Tan, Hang; Kiat Lee, Wee; Okamoto, Iwao

    2014-05-07

    In this paper, magnetic and structural properties of near-equiatomic CoPt thin films, which exhibited a high coercivity in the film-normal direction—suitable for perpendicular magnetic recording media applications—are reported. The films exhibited a larger coercivity of about 6.5 kOe at 8 nm. The coercivity showed a monotonous decrease as the film thickness was increased. The transmission electron microscopy images indicated that the as fabricated CoPt film generally consists of a stack of magnetically hard hexagonal-close-packed phase, followed by stacking faults and face-centred-cubic phase. The thickness dependent magnetic properties are explained on the basis of exchange-coupled composite media. Epitaxial growth on Ru layers is a possible factor leading to the unusual observation of magnetically hard hcp-phase at high concentrations of Pt.

  20. Reevaluating glyphosate as a transition-state inhibitor of EPSP synthase: identification of an EPSP synthase.EPSP.glyphosate ternary complex.

    PubMed

    Sammons, R D; Gruys, K J; Anderson, K S; Johnson, K A; Sikorski, J A

    1995-05-16

    Numerous studies have confirmed that glyphosate forms a tight ternary complex with EPSP synthase and shikimate 3-phosphate. It has been proposed [Anton, D., Hedstrom, L., Fish, S., & Abeles, R. (1983) Biochemistry 22, 5903-5908; Steinrücken, H. C., & Amrhein, N. (1984) Eur. J. Biochem. 143, 351-357] that in this complex glyphosate functions as a transition-state analog of the putative phosphoenolpyruvoyl oxonium ion. For this to be true, glyphosate must occupy the space in the enzyme active site that is normally associated with PEP and, through turnover, the carboxyvinyl group of the product EPSP. According to this model, one would predict that, in the reverse EPSP synthase reaction with EPSP and phosphate as substrates, there should be little if any interaction of glyphosate with enzyme or enzyme.substrate complexes. In contrast to this expectation, rapid gel filtration experiments provided direct evidence that glyphosate could be trapped on the enzyme in the presence of EPSP to form a ternary complex of EPSPS.EPSP.glyphosate. The experimentally determined stoichiometry for this complex, 0.62 equiv of glyphosate/mole of EPSPS, is similar to that found for the EPSPS.S3P.glyphosate ternary complex (0.66). This direct binding result was corroborated and quantitated by fluorescence titration experiments which demonstrated that glyphosate forms a reasonably tight (Kd = 56 +/- 1 microM) ternary complex with enzyme and EPSP. This finding was further verified, and its impact on substrate turnover analyzed, by steady-state kinetics. Glyphosate was found to be an uncompetitive inhibitor versus EPSP with Kii(app) = 54 +/- 2 microM.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Atomic defects and dopants in ternary Z-phase transition-metal nitrides Cr M N with M =V , Nb, Ta investigated with density functional theory

    NASA Astrophysics Data System (ADS)

    Urban, Daniel F.; Elsässer, Christian

    2017-09-01

    A density functional theory study of atomic defects and dopants in ternary Z-phase transition-metal nitrides Cr M N with M =V , Nb, or Ta is presented. Various defect formation energies of native point defects and of substitutional atoms of other metal elements which are abundant in the steel as well are evaluated. The dependence thereof on the thermodynamic environment, i.e., the chemical conditions of a growing Z-phase precipitate, is studied, and different growth scenarios are compared. The results obtained may help to relate results of experimental atomic-scale analysis by atom probe tomography or transmission electron microscopy to the theoretical modeling of the formation process of the Z phase from binary transition-metal nitrides.

  2. The effect of oxygen on ball milling of a near-equiatomic FeV sigma phase

    NASA Astrophysics Data System (ADS)

    Costa, B. F. O.; Le Caër, G.; Malaman, B.

    2008-10-01

    A coarse-grained near-equiatomic tetragonal sigma phase Fe48V52 is milled in argon in a vibratory mill with a small steady air supply. The oxygen content increases regularly at a rate of about 0.25at.%/h. Besides a classical short step, during which the sigma phase transforms into an alpha phase, two main steps occur. During the first step, from ˜40to˜140h of milling, the bcc alpha phase is enriched in iron and heterogeneous because of a preferential oxidation of vanadium atoms. The bcc phase is partially amorphized as it is when milling in the absence of oxygen and nanocrystalline vanadium oxides do form. The second step is characterized by the coarsening of vanadium oxide particles and by the formation of ternary ferrous oxides. The results are discussed in the light of a vacancy mechanism proposed recently to account for the high stability of oxide nanoclusters in oxide dispersion strengthened Fe-based alloys processed by ball milling.

  3. Synthesis and thermal characterization of new ternary chelates of piroxicam and tenoxicam with glycine and DL-phenylalanine and some transition metals

    NASA Astrophysics Data System (ADS)

    Zayed, M. A.; El-Dien, F. A. Nour; Mohamed, Gehad G.; El-Gamel, Nadia E. A.

    2006-05-01

    The ternary chelates of piroxicam (Pir) and tenoxicam (Ten) with Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) in the presence of various amino acids such as glycine (Gly) or DL-phenylalanine (PhA) were prepared and characterized with different physicochemical methods. IR spectra confirm that Pir and Ten behave as a neutral bidentate ligand coordinated to the metal ions via the pyridine- N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its deprotonated carboxylic group. In addition, PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its deprotonated carboxylic and amino groups. The solid reflectance spectra and magnetic moment measurements confirm that all the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. Thermal behaviour of the complexes is extensively studied using TG and DTA techniques. TG results show that water molecules (hydrated and coordinated) and anions are removed in the first and second steps while Gly, PhA, Pir and Ten are decomposed in the next and subsequent steps. The pyrolyses of the chelates into different gases are observed in the DTA curves as exo- or endothermic peaks. Also, phase transition states are observed in some chelates. Different thermodynamic parameters are calculated using Coats-Redfern method and the results are interpreted.

  4. Synthesis and thermal characterization of new ternary chelates of piroxicam and tenoxicam with glycine and DL-phenylalanine and some transition metals.

    PubMed

    Zayed, M A; El-Dien, F A Nour; Mohamed, Gehad G; El-Gamel, Nadia E A

    2006-05-01

    The ternary chelates of piroxicam (Pir) and tenoxicam (Ten) with Fe(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) in the presence of various amino acids such as glycine (Gly) or dl-phenylalanine (PhA) were prepared and characterized with different physicochemical methods. IR spectra confirm that Pir and Ten behave as a neutral bidentate ligand coordinated to the metal ions via the pyridine-N and carbonyl group of the amide moiety. Gly molecule acted as a uninegatively monodentate ligand and coordinate to the metal ions through its deprotonated carboxylic group. In addition, PhA acted as a uninegatively bidentate ligand and coordinate to the metal ions through its deprotonated carboxylic and amino groups. The solid reflectance spectra and magnetic moment measurements confirm that all the chelates have octahedral geometrical structures while Cu(II)- and Zn(II)-ternary chelates with PhA have square planar geometrical structures. Thermal behaviour of the complexes is extensively studied using TG and DTA techniques. TG results show that water molecules (hydrated and coordinated) and anions are removed in the first and second steps while Gly, PhA, Pir and Ten are decomposed in the next and subsequent steps. The pyrolyses of the chelates into different gases are observed in the DTA curves as exo- or endothermic peaks. Also, phase transition states are observed in some chelates. Different thermodynamic parameters are calculated using Coats-Redfern method and the results are interpreted.

  5. Carbon-Coated Honeycomb Ni-Mn-Co-O Inverse Opal: A High Capacity Ternary Transition Metal Oxide Anode for Li-ion Batteries.

    PubMed

    McNulty, David; Geaney, Hugh; O'Dwyer, Colm

    2017-02-10

    We present the formation of a carbon-coated honeycomb ternary Ni-Mn-Co-O inverse opal as a conversion mode anode material for Li-ion battery applications. In order to obtain high capacity via conversion mode reactions, a single phase crystalline honeycombed IO structure of Ni-Mn-Co-O material was first formed. This Ni-Mn-Co-O IO converts via reversible redox reactions and Li2O formation to a 3D structured matrix assembly of nanoparticles of three (MnO, CoO and NiO) oxides, that facilitates efficient reactions with Li. A carbon coating maintains the structure without clogging the open-worked IO pore morphology for electrolyte penetration and mass transport of products during cycling. The highly porous IO was compared in a Li-ion half-cell to nanoparticles of the same material and showed significant improvement in specific capacity and capacity retention. Further optimization of the system was investigated by incorporating a vinylene carbonate additive into the electrolyte solution which boosted performance, offering promising high-rate performance and good capacity retention over extended cycling. The analysis confirms the possibility of creating a ternary transition metal oxide material with binder free accessible open-worked structure to allow three conversion mode oxides to efficiently cycle as an anode material for Li-ion battery applications.

  6. Carbon-Coated Honeycomb Ni-Mn-Co-O Inverse Opal: A High Capacity Ternary Transition Metal Oxide Anode for Li-ion Batteries

    PubMed Central

    McNulty, David; Geaney, Hugh; O’Dwyer, Colm

    2017-01-01

    We present the formation of a carbon-coated honeycomb ternary Ni-Mn-Co-O inverse opal as a conversion mode anode material for Li-ion battery applications. In order to obtain high capacity via conversion mode reactions, a single phase crystalline honeycombed IO structure of Ni-Mn-Co-O material was first formed. This Ni-Mn-Co-O IO converts via reversible redox reactions and Li2O formation to a 3D structured matrix assembly of nanoparticles of three (MnO, CoO and NiO) oxides, that facilitates efficient reactions with Li. A carbon coating maintains the structure without clogging the open-worked IO pore morphology for electrolyte penetration and mass transport of products during cycling. The highly porous IO was compared in a Li-ion half-cell to nanoparticles of the same material and showed significant improvement in specific capacity and capacity retention. Further optimization of the system was investigated by incorporating a vinylene carbonate additive into the electrolyte solution which boosted performance, offering promising high-rate performance and good capacity retention over extended cycling. The analysis confirms the possibility of creating a ternary transition metal oxide material with binder free accessible open-worked structure to allow three conversion mode oxides to efficiently cycle as an anode material for Li-ion battery applications. PMID:28186183

  7. Phase equilibria in the Mo-Fe-P system at 800 °C and structure of ternary phosphide (Mo(1-x)Fe(x))3P (0.10 ≤ x ≤ 0.15).

    PubMed

    Oliynyk, Anton O; Lomnytska, Yaroslava F; Dzevenko, Mariya V; Stoyko, Stanislav S; Mar, Arthur

    2013-01-18

    Construction of the isothermal section in the metal-rich portion (<67 atom % P) of the Mo-Fe-P phase diagram at 800 °C has led to the identification of two new ternary phases: (Mo(1-x)Fe(x))(2)P (x = 0.30-0.82) and (Mo(1-x)Fe(x))(3)P (x = 0.10-0.15). The occurrence of a Co(2)Si-type ternary phase (Mo(1-x)Fe(x))(2)P, which straddles the equiatomic composition MoFeP, is common to other ternary transition-metal phosphide systems. However, the ternary phase (Mo(1-x)Fe(x))(3)P is unusual because it is distinct from the binary phase Mo(3)P, notwithstanding their similar compositions and structures. The relationship has been clarified through single-crystal X-ray diffraction studies on Mo(3)P (α-V(3)S-type, space group I42m, a = 9.7925(11) Å, c = 4.8246(6) Å) and (Mo(0.85)Fe(0.15))(3)P (Ni(3)P-type, space group I4, a = 9.6982(8) Å, c = 4.7590(4) Å) at -100 °C. Representation in terms of nets containing fused triangles provides a pathway to transform these closely related structures through twisting. Band structure calculations support the adoption of these structure types and the site preference of Fe atoms. Electrical resistivity measurements on (Mo(0.85)Fe(0.15))(3)P reveal metallic behavior but no superconducting transition.

  8. Damage buildup and edge dislocation mobility in equiatomic multicomponent alloys

    NASA Astrophysics Data System (ADS)

    Granberg, F.; Djurabekova, F.; Levo, E.; Nordlund, K.

    2017-02-01

    A new class of single phase metal alloys of equal atomic concentrations has shown very promising mechanical properties and good corrosion resistance. Moreover, a significant reduction in damage accumulation during prolonged irradiation has also been observed in these equiatomic multicomponent alloys. A comparison of elemental Ni with the two component NiFe- and the three component NiCoCr-alloy showed a substantial reduction in damage in both alloys, and an even larger difference was seen if only larger clusters were considered. One of the factors limiting the damage build-up in the alloys compared to the elemental material was seen to be dislocation mobility (Granberg et al., 2016). In this Article, we focus on a more thorough investigation of the mobility of edge dislocations in different cases of the Ni-, NiFe- and NiCoCr-samples. We find that even though the saturated amount of defects in the alloys is lower than in elemental Ni, the defect buildup in the early stages is faster in the alloys. We also find that the dislocation mobility in NiFe is lower than in Ni, at low stresses, and that the onset stress in NiFe is higher than in Ni. The same phenomenon was seen in comparison between NiFe and NiCoCr, since the three component alloy had lower dislocation mobility and higher onset stress. The dislocation velocity in elemental Ni plateaued out just under the forbidden velocity, whereas the alloys showed a more complex behaviour.

  9. The Transition Rules of 2D Linear Cellular Automata Over Ternary Field and Self-Replicating Patterns

    NASA Astrophysics Data System (ADS)

    Sahin, Uḡur; Uguz, Selman; Akin, Hasan

    In this paper we start with two-dimensional (2D) linear cellular automata (CA) in relation with basic mathematical structure. We investigate uniform linear 2D CA over ternary field, i.e. ℤ3. Present work is related to theoretical and imaginary investigations of 2D linear CA. Even though the basic construction of a CA is a discrete model, its macroscopic level behavior at large times and on large scales could be a close approximation to a continuous system. Considering some statistical properties, someone may also study geometrical aspects of patterns generated by cellular automaton evolution. After iteratively applying the linear rules, CA have been shown capable of producing interesting complex behaviors. Some examples of CA produce remarkably regular behavior on finite configurations. Using some simple initial configurations, the produced pattern can be self-replicating regarding some linear rules. Here we deal with the theory 2D uniform periodic, adiabatic and reflexive boundary CA (2D PB, AB and RB) over the ternary field ℤ3 and the applications of image processing for patterns generation. From the visual appearance of the patterns, it is seen that some rules display sensitive dependence on boundary conditions and their rule numbers.

  10. Study of pressure induced polyamorphic transition in Ce-based ternary BMG using in situ x-ray scattering and electrical conductivity measurement

    NASA Astrophysics Data System (ADS)

    Chen, J.; Ma, C.; Tang, R.; Li, L.; Liu, H.; Gao, C.; Yang, W.

    2015-12-01

    In situ high energy x-ray scattering and electrical conductivity measurements on Ce70Al10Cu20 bulk metallic glass have been conducted using a diamond anvil cell (DAC) in conjunction with synchrotron x-rays or a laboratory electrical measurement system. The relative volumetric change (V/V0) as a function of pressure is inferred using the first sharp diffraction peak (FSDP) and the universal fractional noncubic power law[1]. The result indicates a pressure-induced polyamorphic transition at about 4 GPa in the ternary system. While the observed pressure of such polyamorphic transition in the Ce-base binary BMG is not very sensitive to its composition based on some of the previous studies[2, 3], this study indicates that such transition pressure increases considerably when a new component is added to the system. In the electrical conductivity measurement, a significant resistance change was observed in the pressure range coupled to polyamorphic transition. More discussions will be given regarding the electrical conductivity behavior of this system under high pressure to illustrate the delocalization of 4f electrons as the origin of the observed polyamorphic transition. References: 1. Zeng Q, Kono Y, Lin Y, Zeng Z, Wang J, Sinogeikin SV, Park C, Meng Y, Yang W, Mao H-K (2014) Universal fractional noncubic power law for density of metallic glasses. Physical Review Letters 112: 185502-185502 2. Zeng Q-S, Ding Y, Mao WL, Yang W, Sinogeikin SV, Shu J, Mao H-K, Jiang JZ (2010) Origin of pressure-induced polyamorphism in Ce75Al25 metallic glass. Physical Review Letters 104: 105702-105702 3. Sheng HW, Liu HZ, Cheng YQ, Wen J, Lee PL, Luo WK, Shastri SD, Ma E (2007) Polyamorphism in a metallic glass. Nature Materials DOI: 10.1038/nmat1839.

  11. Indirect-to-direct band gap transition in relaxed and strained Ge{sub 1−x−y}Si{sub x}Sn{sub y} ternary alloys

    SciTech Connect

    Attiaoui, Anis; Moutanabbir, Oussama

    2014-08-14

    Sn-containing group IV semiconductors create the possibility to independently control strain and band gap thus providing a wealth of opportunities to develop an entirely new class of low dimensional systems, heterostructures, and silicon-compatible electronic and optoelectronic devices. With this perspective, this work presents a detailed investigation of the band structure of strained and relaxed Ge{sub 1−x−y}Si{sub x}Sn{sub y} ternary alloys using a semi-empirical second nearest neighbors tight binding method. This method is based on an accurate evaluation of the deformation potential constants of Ge, Si, and α-Sn using a stochastic Monte-Carlo approach as well as a gradient based optimization method. Moreover, a new and efficient differential evolution approach is also developed to accurately reproduce the experimental effective masses and band gaps. Based on this, we elucidated the influence of lattice disorder, strain, and composition on Ge{sub 1−x−y}Si{sub x}Sn{sub y} band gap energy and directness. For 0 ≤ x ≤ 0.4 and 0 ≤ y ≤ 0.2, we found that tensile strain lowers the critical content of Sn needed to achieve a direct band gap semiconductor with the corresponding band gap energies below 0.76 eV. This upper limit decreases to 0.43 eV for direct gap, fully relaxed ternary alloys. The obtained transition to direct band gap is given by y > 0.605 × x + 0.077 and y > 1.364 × x + 0.107 for epitaxially strained and fully relaxed alloys, respectively. The effects of strain, at a fixed composition, on band gap directness were also investigated and discussed.

  12. Influence of ternary addition of transition elements (Cr, Si and Mn) on the microstructure and magnetic properties of nano-structured CuCo alloy

    NASA Astrophysics Data System (ADS)

    Mondal, B. N.; Chabri, S.; Basumallick, A.; Chattopadhyay, P. P.

    2012-09-01

    The current state of studies presents the effect of ternary addition of transition elements such as Mn, Cr and Si (10 wt%) on the mechanically driven non-equilibrium solubility of 40 wt% Co containing Cu-Co alloy. X-ray powder diffraction analysis indicates that addition of Mn has been found to be the most effective in enhancing the solubility and formation of a complete solid solution between Co and Cu in a short duration (30 h) of ball milling. The microstructure of the ball milled CuCoMn alloy was found to be stable after the isothermal annealing up to a temperature of 450 °C for 1 h. The magnetic properties such as magnetic saturation, coercivity and remanence of ball milled CuCo alloy in the presence of Mn significantly altered after annealing in the temperature range 350-650 °C for 1 h. The best combination of magnetic properties of CuCoMn alloy has been found after annealing at 550 °C for 1 h.

  13. New synthesis route for ternary transition metal amides as well as ultrafast amide-hydride hydrogen storage materials.

    PubMed

    Cao, Hujun; Santoru, Antonio; Pistidda, Claudio; Richter, Theresia M M; Chaudhary, Anna-Lisa; Gizer, Gökhan; Niewa, Rainer; Chen, Ping; Klassen, Thomas; Dornheim, Martin

    2016-04-14

    K2[Mn(NH2)4] and K2[Zn(NH2)4] were successfully synthesized via a mechanochemical method. The mixture of K2[Mn(NH2)4] and LiH showed excellent rehydrogenation properties. In fact, after dehydrogenation K2[Mn(NH2)4]-8LiH fully rehydrogenates within 60 seconds at ca. 230 °C and 5 MPa of H2. This is one of the fastest rehydrogenation rates in amide-hydride systems known to date. This work also shows a strategy for the synthesis of transition metal nitrides by decomposition of the mixtures of M[M'(NH2)n] (where M is an alkali or alkaline earth metal and M' is a transition metal) and metal hydrides.

  14. Transitional liquid crystalline phases between the hexagonal and lamellar phases in ternary cesium N-tetradecanoate-water-additive mixtures

    SciTech Connect

    Blackburn, J.C.; Kilpatrick, P.K. )

    1993-04-01

    The effects of added salt (CsOH, CsCl), long-chain carboxylic acid, and long-chain alcohol on the lyotropic liquid crystalline phase behavior in the cesium n-tetradecanoate (CsTD)-water system is reported. The transitional region between the hexagonal (H) and lamellar (L) phases was the compositional range of focus. Three transitional phases were observed: (i) the ribbon (R) phase, a biaxial phase consisting of cylinders of ellipsoidal cross section; (ii) the viscous isotropic (VI) phase, an isotropic phase thought to consist of interconnected rods on an Ia3d lattice; and (iii) the intermediate (Int) phase, a uniaxial anisotropic phase thought to consist of interconnected rods on a planar lattice. The effect of the additives was to decrease the interfacial curvature of the surfactant head group layer by varying head group repulsion and by varying the surfactant tail volume relative to the surfactant head group area. These changes resulted in formation of transitional phases seeming to possess curvature between that of the cylindrical H phase and the planar L phase. The ionic repulsion between carboxylate head groups was reduced by the addition of CsOH or CsCl, and resulted in destabilization of the VI phase and the formation of the anisotropic Int phase. With the addition of cosurfactants, n-tetradecanoic acid (TDA) and 1-tetradecanol (TDOH), no Int phase was observed. With 7 wt% added TDA the R phase was stabilized up to temperatures of 336 K, above the 330 K temperature limit in the binary CsTD-D[sub 2]O system. In all four systems, sufficient additive (5-10 wt%) resulted in a transition to the L phase, which was stable over a large portion of the compositional range. In order of apparently decreasing mean curvature, the phase sequence is: hexagonal, ribbon, viscous isotropic, intermediate, and lamellar.

  15. Chemical bonding in the ternary transition metal bismuthides Ti{sub 4}TBi{sub 2} with T=Cr, Mn, Fe, Co, and Ni

    SciTech Connect

    Rytz, R.; Hoffman, R.

    1999-04-05

    The electronic structure and chemical bonding in the ternary transition metal bismuthides Ti{sub 4}TBi{sub 2} (T = Cr, Mn, Fe, Co, and Ni) is investigated by approximate MO calculations of the extended Hueckel tight-binding type. These intermetallic compounds crystallize in a layer structure, repeating sequence T-Ti/Bi-T-Ti/Bi, stacking along c; the late transition metals form linear chains with short T-T bonds. Other important structural elements are face-sharing chains of Ti{sub 4}Bi{sub 2} octahedra and Bi channels. The decrease of the T-T bond lengths from Cr to Ni is more pronounced than expected from the decrease of the metallic radii alone. The analysis of the electronic structure indicates that this behavior arises from the titanium-titanium and titanium-bismuth interlayer interactions. Diminution of the titanium-titanium interlayer distances as one goes from Ti{sub 4}CrBi{sub 2} to Ti{sub 4}NiBi{sub 2} is due to Ti(d)-Ti(d) bonding, which increases with increasing electron filling of the titanium d levels. The titanium-bismuth interactions remain strong along this series, as can also be seen by the constant intralayer/titanium-bismuth distances. A distinguishing feature of the title compounds is the channels formed by bismuth atoms. These channels are filled by Bi-centered, essentially unhybridized 6p orbitals forming a 2D net stacking along c and interacting with each other, stronger in the c direction than perpendicular to it. The possibility of intercalating electrophilic species into these electron-filled voids is also investigated.

  16. Structural transitions of ternary imide Li{sub 2}Mg(NH){sub 2} for hydrogen storage

    SciTech Connect

    Liang, C.; Gao, M. X.; Pan, H. G. Liu, Y. F.

    2014-08-25

    Phase transitions and energetic properties of Li{sub 2}Mg(NH){sub 2} with different crystal structures are investigated by experiments and first-principles calculations. The Li{sub 2}Mg(NH){sub 2} with the primitive cubic and orthorhombic structure is obtained by dynamically dehydrogenating a Mg(NH{sub 2}){sub 2}-2LiH mixture up to 280 °C under an initial vacuum and 9.0 bars H{sub 2}, respectively. It is found that the obtained orthorhombic Li{sub 2}Mg(NH){sub 2} is converted to a primitive cubic structure as the dehydrogenation temperature is further increased to 400 °C or performed by a 36 h of high-energetic ball milling. Moreover, the primitive cubic phase can be converted to an orthorhombic phase after heating at 280 °C under 9.0 bars H{sub 2} for 1 h. Thermodynamic calculations show that the orthorhombic phase is the ground state structure of Li{sub 2}Mg(NH){sub 2}. The mechanism for phase transitions of Li{sub 2}Mg(NH){sub 2} is also discussed from the angle of energy.

  17. 2D Transition Metal Dichalcogenides and Graphene-Based Ternary Composites for Photocatalytic Hydrogen Evolution and Pollutants Degradation

    PubMed Central

    Chen, Ying; Sun, Hongqi; Peng, Wenchao

    2017-01-01

    Photocatalysis have attracted great attention due to their useful applications for sustainable hydrogen evolution and pollutants degradation. Transition metal dichalcogenides (TMDs) such as MoS2 and WS2 have exhibited great potential as cocatalysts to increase the photo-activity of some semiconductors. By combination with graphene (GR), enhanced cocatalysts of TMD/GR hybrids could be synthesized. GR here can act as a conductive electron channel for the transport of the photogenerated electrons, while the TMDs nanosheets in the hybrids can collect electrons and act as active sites for photocatalytic reactions. This mini review will focus on the application of TMD/GR hybrids as cocatalysts for semiconductors in photocatalytic reactions, by which we hope to provide enriched information of TMD/GR as a platform to develop more efficient photocatalysts for solar energy utilization. PMID:28336898

  18. Large scale simulations of the mechanical properties of layered transition metal ternary compounds for fossil energy power system applications

    SciTech Connect

    Ching, Wai-Yim

    2014-12-31

    Advanced materials with applications in extreme conditions such as high temperature, high pressure, and corrosive environments play a critical role in the development of new technologies to significantly improve the performance of different types of power plants. Materials that are currently employed in fossil energy conversion systems are typically the Ni-based alloys and stainless steels that have already reached their ultimate performance limits. Incremental improvements are unlikely to meet the more stringent requirements aimed at increased efficiency and reduce risks while addressing environmental concerns and keeping costs low. Computational studies can lead the way in the search for novel materials or for significant improvements in existing materials that can meet such requirements. Detailed computational studies with sufficient predictive power can provide an atomistic level understanding of the key characteristics that lead to desirable properties. This project focuses on the comprehensive study of a new class of materials called MAX phases, or Mn+1AXn (M = a transition metal, A = Al or other group III, IV, and V elements, X = C or N). The MAX phases are layered transition metal carbides or nitrides with a rare combination of metallic and ceramic properties. Due to their unique structural arrangements and special types of bonding, these thermodynamically stable alloys possess some of the most outstanding properties. We used a genomic approach in screening a large number of potential MAX phases and established a database for 665 viable MAX compounds on the structure, mechanical and electronic properties and investigated the correlations between them. This database if then used as a tool for materials informatics for further exploration of this class of intermetallic compounds.

  19. Magnetic phase transitions in the ternary carbides Ln 2Cr 2C 3 (Ln=Tb, Ho, Er)

    NASA Astrophysics Data System (ADS)

    Reehuis, M.; Zeppenfeld, K.; Jeitschko, W.; Stüsser, N.; Ouladdiaf, B.; Loidl, A.

    2002-11-01

    The magnetic structures of the monoclinic carbides Tb 2Cr 2C 3, Ho 2Cr 2C 3 and Er 2Cr 2C 3 (space group C2/m) have been investigated by neutron powder diffraction. Below the Néel temperatures TN=49(1), 14.0(5) and 6.8(5) K the magnetic moments of the terbium, holmium and erbium atoms order antiferromagnetically within the monoclinic ac-plane, respectively. In the case of Tb 2Cr 2C 3 the magnetic structure can be described with the propagation vector k=(0 1 0) and it is stable up to the Néel temperature. The magnetic ordering in Ho 2Cr 2C 3 and Er 2Cr 2C 3 is more complex requiring different sets of coexisting wave vectors pertaining to distinct domains and comprising incommensurate regions and lock-in phase transitions. For the erbium compound the low-temperature ordering is described by the coexisting wave vectors k1=(0 0 {1}/{2}) and k2=(0 1 0) and both are stable up to Tt=5.5(3) K. Between 4.5(3) K and TN=6.8(5) K a sine-wave modulated structure with k3=(τ x,0, {1}/{2}-τ z) appears, where the vector components vary with the temperature. At 5.3 K one obtains τx=0.055(1) and τz=0.070(1). For Ho 2Cr 2C 3 the ordering associated with k1=(0 1 {1}/{2}) is stable between 1.6 K and Tt=12.7(3) K. A second type of ordering appears below TN=14.0(5) K and corresponds to a sine-wave modulated structure with k2=(τ x,0,-τ z) . The length of k2 varies from (0.8856, 0, -0.1395) at 13 K to (0.9935, 0, -0.1075) at Tt=10.2(2), where the modulated structure undergoes a transition to a square-wave one manifested by the presence of higher harmonics.

  20. Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy

    SciTech Connect

    Zuo, Tingting; Yang, Xiao; Liaw, Peter K.; Zhang, Yong

    2015-09-07

    The non-equiatomic FeCoNiAlSi alloy is prepared by the Bridgman solidification (BS) technique at different withdrawal velocities (V = 30, 100, and 200 μm/s). Various characterization techniques have been used to study the microstructure and crystal orientation. The morphological evolutions accompanying the crystal growth of the alloy prepared at different withdrawal velocities are nearly the same, from equiaxed grains to columnar crystals. The transition of coercivity is closely related to the local microstructure, while the saturation magnetization changes little at different sites. The coercivity can be significantly reduced from the equiaxed grain area to the columnar crystal area when the applied magnetic field direction is parallel to the crystal growth direction, no matter what is the withdrawal velocity. As a result, the alloy possesses magnetic anisotropy when the applied magnetic field is in different directions.

  1. Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy

    DOE PAGES

    Zuo, Tingting; Yang, Xiao; Liaw, Peter K.; ...

    2015-09-07

    The non-equiatomic FeCoNiAlSi alloy is prepared by the Bridgman solidification (BS) technique at different withdrawal velocities (V = 30, 100, and 200 μm/s). Various characterization techniques have been used to study the microstructure and crystal orientation. The morphological evolutions accompanying the crystal growth of the alloy prepared at different withdrawal velocities are nearly the same, from equiaxed grains to columnar crystals. The transition of coercivity is closely related to the local microstructure, while the saturation magnetization changes little at different sites. The coercivity can be significantly reduced from the equiaxed grain area to the columnar crystal area when the appliedmore » magnetic field direction is parallel to the crystal growth direction, no matter what is the withdrawal velocity. As a result, the alloy possesses magnetic anisotropy when the applied magnetic field is in different directions.« less

  2. Inhomogeneous 2D linear intergrowth structures among novel Y-Cu-Mg ternary compounds with yttrium/copper equiatomic ratio

    NASA Astrophysics Data System (ADS)

    Solokha, Pavlo; De Negri, Serena; Pavlyuk, Volodymyr; Saccone, Adriana

    2009-04-01

    Single crystals of the Y 5Cu 5Mg 8, Y 5Cu 5Mg 13, Y 5Cu 5Mg 16 and YCuMg 4 compounds were synthesized by heating in a resistance furnace evacuated quartz vials containing Ta-crucibles with element pieces. SEM-EDXS analyses were performed to check phases composition. The structures were refined from X-ray single crystal diffraction data. Y 5Cu 5Mg 8, Y 5Cu 5Mg 13 and Y 5Cu 5Mg 16 represent new structure types: Y 5Cu 5Mg 8 - orthorhombic, Pmma, oP36, a = 2.63723(15), b = 0.40066(2), c = 0.74115(6) nm, Z = 2, wR2 = 0.0597, 939 F2 values, 60 variables; Y 5Cu 5Mg 13 - orthorhombic, Cmcm, oS92, a = 0.40973(2), b = 1.92794(8), c = 2.57907(11) nm, Z = 4, wR2 = 0.1134, 1208 F2 values, 75 variables; Y 5Cu 5Mg 16 - orthorhombic, Cmcm, oS104, a = 0.41360(8), b = 1.9239(4), c = 2.9086(6) nm, Z = 4, wR2 = 0.0760, 1383 F2 values, 84 variables. YCuMg 4 crystallizes in the TbCuMg 4 structure type ( Cmmm, oS48, a = 1.35754(4), b = 2.03153(6), c = 0.39060(1) nm, Z = 8, wR2 = 0.0401, 661 F2 values, 45 variables). The crystal chemistry of these two-layer structures is comparatively discussed. Majority of novel compounds were characterized as members of inhomogeneous 2D intergrowth structure series of R 5M 5X 5, X 4 (Mg 4) and empty Mg octahedra building blocks of general formula R 5 kM 5 kX 5 k + 4 l + m. The common pentagonal prism derivative structural fragments around the most electropositive yttrium atoms were outlined in all these intermetallics.

  3. Crystal growth and magnetic properties of equiatomic CeAl

    NASA Astrophysics Data System (ADS)

    Das, Pranab Kumar; Thamizhavel, A.

    2015-03-01

    Single crystal of CeAl has been grown by flux method using Ce-Al self-flux. Several needle like single crystals were obtained and the length of the needle corresponds to the [001] crystallographic direction. Powder x-ray diffraction revealed that CeAl crystallizes in orthorhombic CrB-type structure with space group Cmcm (no. 63). The magnetic properties have been investigated by means of magnetic susceptibility, isothermal magnetization, electrical transport, and heat capacity measurements. CeAl is found to order antiferromagnetically with a Neel temperature TN = 10 K. The magnetization data below the ordering temperature reveals two metamagentic transitions for fields less than 20 kOe. From the inverse magnetic susceptibility an effective moment of 2.66 μB/Ce has been estimated, which indicates that Ce is in its trivalent state. Electrical resistivity data clearly shows a sharp drop at 10 K due to the reduction of spin disorder scattering of conduction electrons thus confirming the magnetic ordering. The estimated residual resistivity ratio (RRR) is 33, thus indicating a good quality of the single crystal. The bulk nature of the magnetic ordering is also confirmed by heat capacity data. From the Schottky anomaly of the heat capacity we have estimated the crystal field level splitting energies of the (2J + 1) degenerate ground state as 25 K and 175 K respectively for the fist and second excited states.

  4. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys

    SciTech Connect

    Otto, Frederik; Yang, Ying; Bei, Hongbin; George, Easo P

    2013-01-01

    High configurational entropies have been hypothesized to stabilize solid solutions in equiatomic, multi-element alloys which have attracted much attention recently as high-entropy alloys with potentially interesting properties. To evaluate the usefulness of configurational entropy as a predictor of single-phase (solid solution) stability, we prepared five new equiatomic, quinary alloys by replacing individual elements one at a time in a CoCrFeMnNi alloy that was previously shown to be single-phase [1]. An implicit assumption here is that, if any one element is replaced by another, while keeping the total number of elements constant, the configurational entropy of the alloy is unchanged; therefore, the new alloys should also be single-phase. Additionally, the substitute elements that we chose, Ti for Co, Mo or V for Cr, V for Fe, and Cu for Ni, had the same room-temperature crystal structure and comparable size/electronegativity as the elements being replaced to maximize solid solubility consistent with the Hume-Rothery rules. For comparison, the base CoCrFeMnNi alloy was also prepared. After three-day anneals at elevated temperatures, multiple phases were observed in all but the base CoCrFeMnNi alloy suggesting that, by itself, configurational entropy is generally not able to override competing driving forces that also govern phase stability. Thermodynamic analyses were carried out for each of the constituent binaries in the investigated alloys (Co-Cr, Fe-Ni, Mo-Mn, etc,). Experimental results combined with the thermodynamic analyses suggest that, in general, enthalpy and non-configurational entropy have bigger influences on phase stability in equiatomic, multi-component alloys. Only when the alloy microstructure is a single-phase, approximately ideal solid solution does the contribution of configurational entropy to the total Gibbs free energy become dominant. Thus, high configurational entropy provides a way to rationalize, after the fact, why a solid solution

  5. Temperature-induced and electric-field-induced phase transitions in rhombohedral Pb(In 1 /2Nb1 /2) O3-Pb(Mg 1 /3Nb2 /3)O3-PbTiO3 ternary single crystals

    NASA Astrophysics Data System (ADS)

    Wang, Yaojin; Wang, Zhiguang; Ge, Wenwei; Luo, Chengtao; Li, Jiefang; Viehland, D.; Chen, Jianwei; Luo, Haosu

    2014-10-01

    Temperature and electric field effects on rhombohedral (R ) ternary Pb(In 1 /2Nb1 /2) O3-Pb(Mg 1 /3Nb2 /3)O3-PbTiO3 (PIN-PMN-PT) ferroelectric single crystals were comprehensively studied by x-ray diffraction. We have focused on how the individual phase transitions as well as the phase transition sequences depend on thermal and electrical history. Electric field-temperature phase diagrams have been constructed under [001] field-cooling and field-heating conditions. As happens to the R phase of binary PMN-PT crystals [H. Cao, J. F. Li, D. Viehland, and G. Y. Xu, Phys. Rev. B 73, 184110 (2006), 10.1103/PhysRevB.73.184110], the R phase of the zero-field-cooled (ZFC) state is replaced by a monoclinic A (M A) phase in the field-cooled (FC) diagram. In particular, reciprocal-space mesh scans demonstrated that the M A phase was stable for crystals poled along the [001] crystallographic direction rather than the initial R phase of the ZFC state. Furthermore, an E -field-induced phase transformational sequence of R →M A→ tetragonal (T ) was observed at constant temperature, revealing a gradual increase in the c lattice parameter. These findings demonstrate that the ternary PIN-PMN-PT crystals exhibit common phase transition features with binary PMN-PT and Pb(Zn 1 /3Nb2 /3)O3-PbTiO3 (PZN-PT) ones for compositions in the low PT side of the morphotropic phase boundary.

  6. High spin polarization in CoFeMnGe equiatomic quaternary Heusler alloy

    SciTech Connect

    Bainsla, Lakhan; Suresh, K. G.; Nigam, A. K.; Manivel Raja, M.; Varaprasad, B. S. D. Ch. S.; Takahashi, Y. K.; Hono, K.

    2014-11-28

    We report the structure, magnetic property, and spin polarization of CoFeMnGe equiatomic quaternary Heusler alloy. The alloy was found to crystallize in the cubic Heusler structure (prototype LiMgPdSn) with considerable amount of DO{sub 3} disorder. Thermal analysis result indicated the Curie temperature is about 750 K without any other phase transformation up to melting temperature. The magnetization value was close to that predicted by the Slater-Pauling curve. Current spin polarization of P = 0.70 ± 0.01 was deduced using point contact andreev reflection measurements. The temperature dependence of electrical resistivity has been fitted in the temperature range of 5–300 K in order to check for the half metallic behavior. Considering the high spin polarization and Curie temperature, this material appears to be promising for spintronic applications.

  7. Evolution of irradiation-induced strain in an equiatomic NiFe alloy

    DOE PAGES

    Ullah, Mohammad W.; Zhang, Yanwen; Sellami, Neila; ...

    2017-07-10

    Here, we investigate the formation and accumulation of irradiation-induced atomic strain in an equiatomic NiFe concentrated solid-solution alloy using both atomistic simulations and x-ray diffraction (XRD) analysis of irradiated samples. Experimentally, the irradiations are performed using 1.5 MeV Ni ions to fluences ranging from 1 × 1013 to 1 × 1014 cm-2. The irradiation simulations are carried out by overlapping 5 keV Ni recoils cascades up to a total of 300 recoils. An increase of volumetric strain is observed at low dose, which is associated with production of point defects and small clusters. A relaxation of strain occurs at highermore » doses, when large defect clusters, like dislocation loops, dominate.« less

  8. The evolution of the deformation substructure in a Ni-Co-Cr equiatomic solid solution alloy

    DOE PAGES

    Miao, Jiashi; Slone, C. E.; Smith, T. M.; ...

    2017-05-15

    The equiatomic NiCoCr alloy exhibits an excellent combination of strength and ductility, even greater than the FeNiCrCoMn high entropy alloy, and also displays a simultaneous increase in strength and ductility with decreasing the testing temperature. To systemically investigate the origin of the exceptional properties of NiCoCr alloy, which are related to the evolution of the deformation substructure with strain, interrupted tensile testing was conducted on the equiatomic NiCoCr single-phase solid solution alloy at both cryogenic and room temperatures at five different plastic strain levels of 1.5%, 6.5%, 29%, 50% and 70%. The evolution of deformation substructure was examined using electronmore » backscatter diffraction (EBSD), transmission Kikuchi diffraction (TKD), conventional transmission electron microscopy (CTEM), diffraction contrast imaging using STEM (DCI-STEM) and atomic resolution scanning transmission electron microscopy. While the deformation substructure mainly consisted of planar dislocation slip and the dissociation of dislocations into stacking faults at small strain levels (≤6.5%), at larger strain levels, additional substructures including nanotwins and a new phase with hexagonal close packed (HCP) lamellae also appeared. The volume fraction of the HCP lamellae increases with increasing deformation, especially at cryogenic temperature. First principles calculations at 0 K indicate that the HCP phase is indeed energetically favorable relative to FCC for this composition. In conclusion, the effects of the nanotwin and HCP lamellar structures on hardening rate and ductility at both cryogenic and room temperature are qualitatively discussed.« less

  9. Multicomponent equiatomic rare earth oxides with a narrow band gap and associated praseodymium multivalency.

    PubMed

    Sarkar, Abhishek; Loho, Christoph; Velasco, Leonardo; Thomas, Tiju; Bhattacharya, Subramshu S; Hahn, Horst; Djenadic, Ruzica

    2017-09-04

    New multicomponent equiatomic rare earth oxides (ME-REOs) containing 3-7 rare earth elements (Ce, Gd, La, Nd, Pr, Sm and Y) in equiatomic proportions are synthesized using nebulized spray pyrolysis. All the systems crystallized as a phase pure fluorite type (Fm3[combining macron]m) structure in spite of the high chemical complexity. A nominal increase in the lattice parameter compared to CeO2 is observed in all ME-REOs. X-ray photoelectron spectroscopy performed on the ME-REOs confirmed that all the constituent rare earth elements are present in the 3+ oxidation state, except for Ce and Pr which are present in 4+ and in a mixed (3+/4+) oxidation state, respectively. The presence of Ce(4+) contributes substantially to the observed stability of the single phase structure. These new oxide systems have narrow direct band gaps in the range of 1.95-2.14 eV and indirect band gaps in the range of 1.40-1.64 eV, enabling light absorption over the entire visible spectral range. Furthermore, the oxygen vacancy concentration rapidly increases and then saturates with the number of rare earth elements that are incorporated into the ME-REOs. The lowering of the band gap is found to be closely related to the presence of multivalent Pr. Interestingly, the band gap values are relatively invariant with respect to the composition or thermal treatments. Considering the high level of oxygen vacancies present and the observed low band gap values, these new material systems can be of importance where the presence of oxygen vacancies is essential or in applications where a narrow band gap is desirable.

  10. Infrared Plasmonics with Conductive Ternary Nitrides.

    PubMed

    Metaxa, C; Kassavetis, S; Pierson, J F; Gall, D; Patsalas, P

    2017-03-29

    Conductive transition metal nitrides are emerging as promising alternative plasmonic materials that are refractory and CMOS-compatible. In this work, we show that ternary transition metal nitrides of the B1 structure and consisting of a combination of group-IVb transition metal, such as Ti or Zr, and group III (Sc, Y, Al) or group II (Mg, Ca) elements can have tunable plasmonic activity in the infrared range in contrast to Ta-based ternary nitrides, which exhibit plasmonic performance in the visible and UV ranges. We consider the intrinsic quality factors of surface plasmon polariton for the ternary nitrides, and we calculate the dispersion of surface plasmon polariton and the field enhancement at the vicinity of nitride/silica interfaces. Based on these calculations, it is shown that among these nitrides the most promising are TixSc1-xN and TixMg1-xN. In particular, TixSc1-xN can have plasmonic activity in the usual telecom bands at 850, 1300, and 1550 nm. Still, these nitrides exhibit substantial electronic losses mostly due to fine crystalline grains that deteriorate the plasmonic field enhancement. This unequivocally calls for improved growth processes that would enable the fabrication of such ternary nitrides of high crystallinity.

  11. Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo

    NASA Astrophysics Data System (ADS)

    Niu, C.; Zaddach, A. J.; Oni, A. A.; Sang, X.; Hurt, J. W.; LeBeau, J. M.; Koch, C. C.; Irving, D. L.

    2015-04-01

    Spin-driven ordering of Cr in an equiatomic fcc NiFeCrCo high entropy alloy (HEA) was predicted by first-principles calculations. Ordering of Cr is driven by the reduction in energy realized by surrounding anti-ferromagnetic Cr with ferromagnetic Ni, Fe, and Co in an alloyed L12 structure. The fully Cr-ordered alloyed L12 phase was predicted to have a magnetic moment that is 36% of that for the magnetically frustrated random solid solution. Three samples were synthesized by milling or casting/annealing. The cast/annealed sample was found to have a low temperature magnetic moment that is 44% of the moment in the milled sample, which is consistent with theoretical predictions for ordering. Scanning transmission electron microscopy measurements were performed and the presence of ordered nano-domains in cast/annealed samples throughout the equiatomic NiFeCrCo HEA was identified.

  12. Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo

    SciTech Connect

    Niu, C.; Zaddach, A. J.; Oni, A. A.; Sang, X.; LeBeau, J. M.; Koch, C. C.; Irving, D. L.; Hurt, J. W.

    2015-04-20

    Spin-driven ordering of Cr in an equiatomic fcc NiFeCrCo high entropy alloy (HEA) was predicted by first-principles calculations. Ordering of Cr is driven by the reduction in energy realized by surrounding anti-ferromagnetic Cr with ferromagnetic Ni, Fe, and Co in an alloyed L1{sub 2} structure. The fully Cr-ordered alloyed L1{sub 2} phase was predicted to have a magnetic moment that is 36% of that for the magnetically frustrated random solid solution. Three samples were synthesized by milling or casting/annealing. The cast/annealed sample was found to have a low temperature magnetic moment that is 44% of the moment in the milled sample, which is consistent with theoretical predictions for ordering. Scanning transmission electron microscopy measurements were performed and the presence of ordered nano-domains in cast/annealed samples throughout the equiatomic NiFeCrCo HEA was identified.

  13. True ternary fission

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, K. R.; Balasubramaniam, M.; von Oertzen, W.

    2015-04-01

    The study of the ternary fission of nuclei has received new interest recently. It is of general interest for nuclear dynamics, although the process is very rare. In the present work, we discuss the possibilities of true ternary fission (fragment masses A >30 ) in 252Cf for different mass splits. These mass splits are strongly favored in a collinear geometry. Based on the three cluster model (TCM), it is shown that the true ternary fission into fragments with almost equal masses is one of the possible fission modes in 252Cf . For general decays it is shown that the formation of the lightest fragment at the center has the highest probability. Further the formation of tin isotopes and/or other closed shell fragments are favored. For the decay products the presence of closed shell nuclei among the three fragments enhances the decay probabilities.

  14. Shock-induced martensitic transformations in near-equiatomic NiTi alloys

    SciTech Connect

    Thakur, A.M.; Thadhani, N.N.; Schwarz, R.B.

    1997-07-01

    Shock-impact generated tensile-stress pulses were used to induce B2-to-monoclinic martensitic transformations in two near-equiatomic NiTi alloys having different martensite transformation start (M{sub s}) temperatures. The NiTi-I alloy (M{sub s} {approx} +27 C) impacted at room temperature at 2.0 and 2.7 GPa tensile stress-pulse magnitude, showed acicular martensite morphology. These martensite needles had a substructure containing microtwins, typical of stress-assisted martensite. The NiTi-II alloy (M{sub s} {approx} {minus}45 C) showed no martensite formation when shocked with tensile-stress pulses of 2 GPa. For tensile stresses of 4.1 GPa, the alloy showed spall initiation near the region of maximum tensile-stress duration. In addition, monoclinic martensite needles, with a well-defined dislocation substructure, typical of strain-induced martensite, were seen clustering around the spall region. No stress-assisted martensite was formed in this alloy due to its very low M{sub s} temperature. The present article documents results of the use of a metallurgical technique for generating large-amplitude tensile stress pulses of finite duration for studies of phase transformations involving changes from a high density to a low density state.

  15. Ion irradiation induced defect evolution in Ni and Ni-based FCC equiatomic binary alloys

    SciTech Connect

    Jin, Ke; Zhang, Yanwen; Bei, Hongbin

    2016-01-01

    In order to explore the chemical effects on radiation response of alloys with multi-principal elements, defect evolution under Au ion irradiation was investigated in the elemental Ni, equiatomic NiCo and NiFe alloys. Single crystals were successfully grown in an optical floating zone furnace and their (100) surfaces were irradiated with 3 MeV Au ions at fluences ranging from 1 × 1013 to 5 × 1015 ions cm–2 at room temperature. The irradiation-induced defect evolution was analyzed by using ion channeling technique. Experiment shows that NiFe is more irradiation-resistant than NiCo and pure Ni at low fluences. With continuously increasing the ion fluences, damage level is eventually saturated for all materials but at different dose levels. The saturation level in pure Ni appears at relatively lower irradiation fluence than the alloys, suggesting that damage accumulation slows down in the alloys. Here, under high-fluence irradiations, pure Ni has wider damage ranges than the alloys, indicating that defects in pure Ni have high mobility.

  16. Ion irradiation induced defect evolution in Ni and Ni-based FCC equiatomic binary alloys

    DOE PAGES

    Jin, Ke; Zhang, Yanwen; Bei, Hongbin

    2016-01-01

    In order to explore the chemical effects on radiation response of alloys with multi-principal elements, defect evolution under Au ion irradiation was investigated in the elemental Ni, equiatomic NiCo and NiFe alloys. Single crystals were successfully grown in an optical floating zone furnace and their (100) surfaces were irradiated with 3 MeV Au ions at fluences ranging from 1 × 1013 to 5 × 1015 ions cm–2 at room temperature. The irradiation-induced defect evolution was analyzed by using ion channeling technique. Experiment shows that NiFe is more irradiation-resistant than NiCo and pure Ni at low fluences. With continuously increasing themore » ion fluences, damage level is eventually saturated for all materials but at different dose levels. The saturation level in pure Ni appears at relatively lower irradiation fluence than the alloys, suggesting that damage accumulation slows down in the alloys. Here, under high-fluence irradiations, pure Ni has wider damage ranges than the alloys, indicating that defects in pure Ni have high mobility.« less

  17. Ion irradiation induced defect evolution in Ni and Ni-based FCC equiatomic binary alloys

    NASA Astrophysics Data System (ADS)

    Jin, K.; Bei, H.; Zhang, Y.

    2016-04-01

    In order to explore the chemical effects on radiation response of alloys with multi-principal elements, defect evolution under Au ion irradiation was investigated in the elemental Ni, equiatomic NiCo and NiFe alloys. Single crystals were successfully grown in an optical floating zone furnace and their (100) surfaces were irradiated with 3 MeV Au ions at fluences ranging from 1 × 1013 to 5 × 1015 ions cm-2 at room temperature. The irradiation-induced defect evolution was analyzed by using ion channeling technique. Experiment shows that NiFe is more irradiation-resistant than NiCo and pure Ni at low fluences. With continuously increasing the ion fluences, damage level is eventually saturated for all materials but at different dose levels. The saturation level in pure Ni appears at relatively lower irradiation fluence than the alloys, suggesting that damage accumulation slows down in the alloys. Under high-fluence irradiations, pure Ni has wider damage ranges than the alloys, indicating that defects in pure Ni have high mobility.

  18. Radiation damage buildup and dislocation evolution in Ni and equiatomic multicomponent Ni-based alloys

    NASA Astrophysics Data System (ADS)

    Levo, E.; Granberg, F.; Fridlund, C.; Nordlund, K.; Djurabekova, F.

    2017-07-01

    Single-phase multicomponent alloys of equal atomic concentrations (;equiatomic;) have proven to exhibit promising mechanical and corrosion resistance properties, that are sought after in materials intended for use in hazardous environments like next-generation nuclear reactors. In this article, we investigate the damage production and dislocation mobility by simulating irradiation of elemental Ni and the alloys NiCo, NiCoCr, NiCoFe and NiFe, to assess the effect of elemental composition. We compare the defect production and the evolution of dislocation networks in the simulation cells of two different sizes, for all five studied materials. We find that the trends in defect evolution are in good agreement between the different cell sizes. The damage is generally reduced with increased alloy complexity, and the dislocation evolution is specific to each material, depending on its complexity. We show that increasing complexity of the alloys does not always lead to decreased susceptibility to damage accumulation under irradiation. We show that, for instance, the NiCo alloy behaves very similarly to Ni, while presence of Fe or Cr in the alloy even as a third component reduces the saturated level of damage substantially. Moreover, we linked the defect evolution with the dislocation transformations in the alloys. Sudden drops in defect number and large defect fluctuations from the continuous irradiation can be explained from the dislocation activity.

  19. NaF-KF-AlF3 System: Phase Transition in K2NaAl3F12 Ternary Fluoride.

    PubMed

    Kirik, Sergei D; Zaitseva, Yulia N; Leshok, Darya Yu; Samoilo, Alexandr S; Dubinin, Petr S; Yakimov, Igor S; Simakov, Dmitry A; Gusev, Alexandr O

    2015-06-15

    Phase formation in the NaF-KF-AlF3 system, in the vicinity of the K2NaAl3F12 composition, has been studied. The samples have been prepared by melting the starting components at 650 °C. A new phase has been revealed, which appeared to be a low-temperature form of the well-known K2NaAl3F12 ternary fluoride obtained by the hydrothermal synthesis method. The high-temperature form melts at 598 °C and is stable in a narrow temperature region of about 15 deg below the melting point. Thermal analysis, high temperature X-ray diffraction, IR-spectroscopy, X-ray fluorescence, and X-ray powder diffraction crystal structure analysis have been applied to study the composition, crystal structure, and thermal properties of the low-temperature phase. The crystal structure consists of trigonal-hexagonal two-dimensional (2D) grids built from the [AlF6] octahedra connected via vertices. The 2D grids have a specific wave-like conformation with a wavelength of 11.88 Å and an amplitude of 0.46 Å. There is a shift of the adjacent grids relative to each other. Because of this shift, the space between the grids changes. The shift leads to the formation of pores adapted to potassium and sodium ions. The reasons for the wave-like structure of layers are discussed. It is shown that the two polymorphic forms differ in the order of cation occupations.

  20. High-pressure high-temperature crystal growth of equiatomic rare earth stannides RENiSn and REPdSn

    SciTech Connect

    Heymann, Gunter; Heying, Birgit; Rodewald, Ute Ch.; Janka, Oliver; Huppertz, Hubert; Pöttgen, Rainer

    2016-04-15

    The two series of equiatomic rare earth (RE) stannides RENiSn and REPdSn were systematically studied with respect to high-pressure modifications. The normal-pressure (NP) low-temperature (LT) modifications were synthesized by arc-melting and subsequently treated under high-pressure (P{sub max}=11.5 GPa) and high-temperature (T{sub max}=1570 K) conditions in a Walker-type multi-anvil press. The pressure and temperature conditions were systematically varied in order to improve the crystallization conditions. The new ZrNiAl-type high-pressure modifications HP-RENiSn (RE=Sc, Y, La, Gd–Lu) and HP-REPdSn (RE=Y, Sm–Dy) were obtained in 80 mg quantities, several of them in X-ray pure form. Some of the REPdSn stannides with the heavy rare earth elements show high-temperature (HT) modifications. The structures of HP-ScNiSn, HP-GdNiSn, HP-DyNiSn (both ZrNiAl-type), NP-YbNiSn, and HT-ErPdSn (both TiNiSi-type) were refined from single crystal diffractometer data, indicating full ordering of the transition metal and tin sites. TiNiSi-type NP-EuPdSn transforms to MgZn{sub 2}-type HP-EuPdSn: P6{sub 3}/mmc, a=588.5(2), c=917.0(3) pm, wR2=0.0769, 211 F{sup 2} values, 11 variables. The structure refinement indicated statistical occupancy of the palladium and tin sites on the tetrahedral network. The X-ray pure high-pressure phases were studied with respect to their magnetic properties. HP-YPdSn is a Pauli paramagnet. The susceptibility data of HP-TbNiSn, HP-DyNiSn, HP-GdPdSn, and HP-TbPdSn show experimental magnetic moments close to the free ion values of RE{sup 3+} and antiferromagnetic ordering at low temperature with the highest Néel temperature of 15.8 K for HP-TbPdSn. HP-SmPdSn shows the typical Van Vleck type behavior along with antiferromagnetic ordering at T{sub N}=5.1 K. HP-EuPdSn shows divalent europium and antiferromagnetic ordering at 8.9 K followed by a spin reorientation at 5.7 K. - Graphical abstract: Packing of the polyhedra in the high-pressure phase of Eu

  1. Equiatomic intermetallic compounds REPtMg (RE = Y, Eu, Tb-Tm, Lu) - Structure and magnetism

    NASA Astrophysics Data System (ADS)

    Stein, Sebastian; Heletta, Lukas; Block, Theresa; Gerke, Birgit; Pöttgen, Rainer

    2017-05-01

    Eight new equiatomic REPtMg intermetallics with RE = Y, Eu, Tb-Tm, Lu were synthesized from the elements in sealed niobium ampoules (induction melting followed by different annealing sequences). All samples were characterized through X-ray powder patterns and the structures of YPtMg, EuPtMg, DyPtMg, HoPtMg and TmPtMg were refined from single crystal X-ray diffractometer data. The REPtMg phases crystallize with two different structure types. The representatives with RE = Y, Tb-Ho crystallize with the hexagonal ZrNiAl type, space group P 6 bar 2 m , while those with RE = Eu, Yb and Lu adopt the orthorhombic TiNiSi type, space group Pnma. ErPtMg and TmPtMg are dimorphic with a ZrNiAl type high and a TiNiSi type low-temperature modification. Temperature-dependent magnetic susceptibility measurements indicate Pauli paramagnetism for YPtMg and LuPtMg while EuPtMg, TbPtMg, DyPtMg and HoPtMg are Curie-Weiss paramagnets. Antiferromagnetic (TN = 12.6 K for EuPtMg) respectively ferromagnetic ordering (TC = 56.3 K for TbPtMg, 28.8 K for DyPtMg and 19.9 K for HoPtMg) occurs in the low-temperature regime. 151Eu Mössbauer spectra confirm divalent europium (δ = -8.03 mm s-1 at 78 K) in EuPtMg and show strong magnetic hyperfine field splitting below the Néel temperature.

  2. Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys

    SciTech Connect

    Jin, K.; Lu, C.; Wang, L. M.; Qu, J.; Weber, W. J.; Zhang, Y.; Bei, H.

    2016-04-14

    The impact of compositional complexity on the ion-irradiation induced swelling and hardening is studied in Ni and six Ni-containing equiatomic alloys with face-centered cubic structure. The irradiation resistance at the temperature of 500 °C is improved by controlling the number and, especially, the type of alloying elements. Alloying with Fe and Mn has a stronger influence on swelling reduction than does alloying with Co and Cr. Lastly, the quinary alloy NiCoFeCrMn, with known excellent mechanical properties, has shown 40 times higher swelling tolerance than nickel.

  3. Effects of compositional complexity on the ion-irradiation induced swelling and hardening in Ni-containing equiatomic alloys

    DOE PAGES

    Jin, K.; Lu, C.; Wang, L. M.; ...

    2016-04-14

    The impact of compositional complexity on the ion-irradiation induced swelling and hardening is studied in Ni and six Ni-containing equiatomic alloys with face-centered cubic structure. The irradiation resistance at the temperature of 500 °C is improved by controlling the number and, especially, the type of alloying elements. Alloying with Fe and Mn has a stronger influence on swelling reduction than does alloying with Co and Cr. Lastly, the quinary alloy NiCoFeCrMn, with known excellent mechanical properties, has shown 40 times higher swelling tolerance than nickel.

  4. Structural phase transition of ternary dielectric SmGdO{sub 3}: Evidence from angle dispersive x-ray diffraction and Raman spectroscopic studies

    SciTech Connect

    Sharma, Yogesh E-mail: satya504@gmail.com Sahoo, Satyaprakash E-mail: satya504@gmail.com Misra, Pankaj; Pavunny, Shojan P.; Katiyar, Ram S. E-mail: satya504@gmail.com; Mishra, A. K.; Dwivedi, Abhilash; Sharma, S. M.

    2015-03-07

    High-pressure synchrotron based angle dispersive x-ray diffraction (ADXRD) studies were carried out on SmGdO{sub 3} (SGO) up to 25.7 GPa at room temperature. ADXRD results indicated a reversible pressure-induced phase transition from ambient monoclinic to hexagonal phase at ∼8.9 GPa. The observed pressure-volume data were fitted with the third order Birch-Murnaghan equation of state yielding zero pressure bulk modulus B{sub 0} = 132(22) and 177(9) GPa for monoclinic (B-type) and hexagonal (A-type) phases, respectively. Pressure dependent micro-Raman spectroscopy further confirmed the monoclinic to hexagonal phase transition at about 5.24 GPa. The mode Grüneisen parameters and pressure coefficients for different Raman modes corresponding to each individual phases of SGO were calculated using pressure dependent Raman mode analysis.

  5. Simulation of structural phase transitions in NiTi

    NASA Astrophysics Data System (ADS)

    Mutter, Daniel; Nielaba, Peter

    2010-12-01

    By means of molecular-dynamics simulations, temperature-driven diffusionless structural phase transitions in equiatomic and nearly equiatomic ordered nickel-titanium alloys were investigated. For this purpose, a model potential from the literature was adopted [W. S. Lai and B. X. Liu, J. Phys.: Condens. Matter 12, L53 (2000)10.1088/0953-8984/12/5/101], which is based on the tight-binding model in second moment approximation. The model predicts a stable B19' phase at low temperatures and a nearly cubic B2 phase at high temperatures. After an analysis of crystallography and energetics of the emerging structures, the experimentally known strong dependence of transition temperatures on composition is confirmed and related to lattice instability. Free-energy calculations finally give insight into the driving forces of the phase transitions and reveal free energy barriers inhibiting them below the transition temperatures.

  6. Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity

    SciTech Connect

    Jin, Ke; Sales, Brian C.; Stocks, George Malcolm; Samolyuk, German D.; Daene, Markus; Weber, William J.; Zhang, Yanwen; Bei, Hongbin

    2016-02-01

    We discovered that equiatomic alloys (e.g. high entropy alloys) have recently attracted considerable interest due to their exceptional properties, which might be closely related to their extreme disorder induced by the chemical complexity. To understand the effects of chemical complexity on their fundamental physical properties, a family of (eight) Ni-based, face-center-cubic (FCC), equiatomic alloys, extending from elemental Ni to quinary high entropy alloys, has been synthesized, and their electrical, thermal, and magnetic properties are systematically investigated in the range of 4–300 K by combining experiments with ab initio Korring-Kohn-Rostoker coherent-potential-approximation (KKR-CPA) calculations. The scattering of electrons is significantly increased due to the chemical (especially magnetic) disorder. It has weak correlation with the number of elements but strongly depends on the type of elements. Thermal conductivities of the alloys are largely lower than pure metals, primarily because the high electrical resistivity suppresses the electronic thermal conductivity. Moreover, the temperature dependence of the electrical and thermal transport properties is further discussed, and the magnetization of five alloys containing three or more elements is measured in magnetic fields up to 4 T.

  7. Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity

    DOE PAGES

    Jin, Ke; Sales, Brian C.; Stocks, George Malcolm; ...

    2016-02-01

    We discovered that equiatomic alloys (e.g. high entropy alloys) have recently attracted considerable interest due to their exceptional properties, which might be closely related to their extreme disorder induced by the chemical complexity. To understand the effects of chemical complexity on their fundamental physical properties, a family of (eight) Ni-based, face-center-cubic (FCC), equiatomic alloys, extending from elemental Ni to quinary high entropy alloys, has been synthesized, and their electrical, thermal, and magnetic properties are systematically investigated in the range of 4–300 K by combining experiments with ab initio Korring-Kohn-Rostoker coherent-potential-approximation (KKR-CPA) calculations. The scattering of electrons is significantly increased duemore » to the chemical (especially magnetic) disorder. It has weak correlation with the number of elements but strongly depends on the type of elements. Thermal conductivities of the alloys are largely lower than pure metals, primarily because the high electrical resistivity suppresses the electronic thermal conductivity. Moreover, the temperature dependence of the electrical and thermal transport properties is further discussed, and the magnetization of five alloys containing three or more elements is measured in magnetic fields up to 4 T.« less

  8. Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity

    PubMed Central

    Jin, K.; Sales, B. C.; Stocks, G. M.; Samolyuk, G. D.; Daene, M.; Weber, W. J.; Zhang, Y.; Bei, H.

    2016-01-01

    Equiatomic alloys (e.g. high entropy alloys) have recently attracted considerable interest due to their exceptional properties, which might be closely related to their extreme disorder induced by the chemical complexity. In order to understand the effects of chemical complexity on their fundamental physical properties, a family of (eight) Ni-based, face-center-cubic (FCC), equiatomic alloys, extending from elemental Ni to quinary high entropy alloys, has been synthesized, and their electrical, thermal, and magnetic properties are systematically investigated in the range of 4–300 K by combining experiments with ab initio Korring-Kohn-Rostoker coherent-potential-approximation (KKR-CPA) calculations. The scattering of electrons is significantly increased due to the chemical (especially magnetic) disorder. It has weak correlation with the number of elements but strongly depends on the type of elements. Thermal conductivities of the alloys are largely lower than pure metals, primarily because the high electrical resistivity suppresses the electronic thermal conductivity. The temperature dependence of the electrical and thermal transport properties is further discussed, and the magnetization of five alloys containing three or more elements is measured in magnetic fields up to 4 T. PMID:26832223

  9. The Effect of Deformation Heating on Restoration and Constitutive Equation of a Wrought Equi-Atomic NiTi Alloy

    NASA Astrophysics Data System (ADS)

    Ahadi, A.; Karimi Taheri, A.; Karimi Taheri, K.; Sarraf, I. S.; Abbasi, S. M.

    2012-04-01

    In this study, a set of constitutive equation corrected for deformation heating is proposed for a near equi-atomic NiTi shape memory alloy using isothermal hot compression tests in temperature range of 700 to 1000 °C and strain rate of 0.001 to 1 s-1. In order to determine the temperature rise due to deformation heating, Abaqus simulation was employed and varied thermal properties were considered in the simulation. The results of hot compression tests showed that at low pre-set temperatures and high strain rates the flow curves exhibit a softening, while after correction of deformation heating the softening is vanished. Using the corrected flow curves, the power-law constitutive equation of the alloy was established and the variation of constitutive constants with strain was determined. Moreover, it was found that deformation heating introduces an average relative error of about 9.5% at temperature of 800 °C and strain rate of 0.1 s-1. The very good agreement between the fitted flow stress (by constitutive equation) and the measured ones indicates the accuracy of the constitutive equation in analyzing the hot deformation behavior of equi-atomic NiTi alloy.

  10. Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity.

    PubMed

    Jin, K; Sales, B C; Stocks, G M; Samolyuk, G D; Daene, M; Weber, W J; Zhang, Y; Bei, H

    2016-02-01

    Equiatomic alloys (e.g. high entropy alloys) have recently attracted considerable interest due to their exceptional properties, which might be closely related to their extreme disorder induced by the chemical complexity. In order to understand the effects of chemical complexity on their fundamental physical properties, a family of (eight) Ni-based, face-center-cubic (FCC), equiatomic alloys, extending from elemental Ni to quinary high entropy alloys, has been synthesized, and their electrical, thermal, and magnetic properties are systematically investigated in the range of 4-300 K by combining experiments with ab initio Korring-Kohn-Rostoker coherent-potential-approximation (KKR-CPA) calculations. The scattering of electrons is significantly increased due to the chemical (especially magnetic) disorder. It has weak correlation with the number of elements but strongly depends on the type of elements. Thermal conductivities of the alloys are largely lower than pure metals, primarily because the high electrical resistivity suppresses the electronic thermal conductivity. The temperature dependence of the electrical and thermal transport properties is further discussed, and the magnetization of five alloys containing three or more elements is measured in magnetic fields up to 4 T.

  11. Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity

    NASA Astrophysics Data System (ADS)

    Jin, K.; Sales, B. C.; Stocks, G. M.; Samolyuk, G. D.; Daene, M.; Weber, W. J.; Zhang, Y.; Bei, H.

    2016-02-01

    Equiatomic alloys (e.g. high entropy alloys) have recently attracted considerable interest due to their exceptional properties, which might be closely related to their extreme disorder induced by the chemical complexity. In order to understand the effects of chemical complexity on their fundamental physical properties, a family of (eight) Ni-based, face-center-cubic (FCC), equiatomic alloys, extending from elemental Ni to quinary high entropy alloys, has been synthesized, and their electrical, thermal, and magnetic properties are systematically investigated in the range of 4–300 K by combining experiments with ab initio Korring-Kohn-Rostoker coherent-potential-approximation (KKR-CPA) calculations. The scattering of electrons is significantly increased due to the chemical (especially magnetic) disorder. It has weak correlation with the number of elements but strongly depends on the type of elements. Thermal conductivities of the alloys are largely lower than pure metals, primarily because the high electrical resistivity suppresses the electronic thermal conductivity. The temperature dependence of the electrical and thermal transport properties is further discussed, and the magnetization of five alloys containing three or more elements is measured in magnetic fields up to 4 T.

  12. Equiatomic compounds REIrMg (RE = Y, La-Nd, Sm, Gd-Tm) and RERhMg (RE = Y, Sm, Gd-Tm)

    NASA Astrophysics Data System (ADS)

    Stein, Sebastian; Heletta, Lukas; Pöttgen, Rainer

    2017-09-01

    The equiatomic intermetallic compounds REIrMg (RE = Y, La-Nd, Sm, Gd-Tm) and RERhMg (RE = Y, Sm, Gd-Tm) were synthesized from the elements in sealed niobium ampoules in a high-frequency furnace and characterized based on X-ray powder data. LaIrMg and CeIrMg crystallize with the orthorhombic LaNiAl type structure (Pnma), while all other compounds adopt the TiNiSi type. The structures of YRhMg, GdRh1.190(4)Mg0.810(4), DyRh1.126(5)Mg0.874(5), LaIrMg, NdIr1.033(2)Mg0.967(2) and ErIr1.059(3)Mg0.941(3) were refined from single-crystal X-ray diffractometer data. The striking structural motifs of these phases are tricapped trigonal prisms around the transition metal atoms formed by RE and Mg. The two structure types differ in the connectivity pattern of the trigonal prisms. The rhodium (iridium) atoms build up three-dimensional [RhMg] and [IrMg] networks in which cavities are filled by the rare earth atoms. Temperature dependent magnetic susceptibility measurements on X-ray pure samples of NdIrMg, SmRhMg, GdRhMg, TbRhMg and DyRhMg show Curie-Weiss paramagnetism of the trivalent rare earth ions and magnetic ordering at low temperatures: TC = 9.5 K for NdIrMg and Néel temperatures of 10.0, 16.7, 10.6 and 11.3 K for SmRhMg, GdRhMg, TbRhMg and DyRhMg. TbRhMg and DyRhMg exhibit field-induced spin reorientations (metamagnetism).

  13. Magnetization of ternary alloys based on Fe0.65Ni0.35 invar with 3d transition metal additions: An ab initio study

    NASA Astrophysics Data System (ADS)

    Onoue, Masatoshi; Trimarchi, Giancarlo; Freeman, Arthur J.; Popescu, Voicu; Matsen, Marc R.

    2015-01-01

    Smart susceptors are being developed for use as tooling surfaces in molding machines that use apply electro-magnetic induction heating to mold and form plastics or metal powders into structural parts, e.g., on aerospace and automotive manufacturing lines. The optimal magnetic materials for the induction heating process should have large magnetization, high magnetic permeability, but also small thermal expansion coefficient. The Fe0.65Ni0.35 invar alloy with its negligible thermal expansion coefficient is thus a natural choice for this application. Here, we use density functional theory as implemented through the Korringa-Kohn-Rostoker method within the coherent-potential approximation, to design new alloys with the large magnetization desired for smart susceptor applications. We consider the Fe0.65-xNi0.35-yMx+y alloys derived from Fe0.65Ni0.35 invar adding a third element M = Sc, Ti, V, Cr, Mn, or Co with concentration (x + y) reaching up to 5 at. %. We find that the total magnetization depends linearly on the concentration of M. Specifically, the early 3d transition metals from Sc to Cr decrease the magnetization with respect to that of the invar alloy whereas Mn and Co increase it.

  14. Structural evaluation of crystalline ternary γ-cyclodextrin complex.

    PubMed

    Higashi, Kenjirou; Ideura, Saori; Waraya, Haruka; Moribe, Kunikazu; Yamamoto, Keiji

    2011-01-01

    The structure of a crystalline γ-cyclodextrin (γ-CD) ternary complex containing salicylic acid (SA) and flurbiprofen (FBP) prepared by sealed heating was investigated. FBP/γ-CD inclusion complex was prepared by coprecipitation; its molar ratio was determined as 1/1. Powder X-ray diffraction measurements showed that the molecular packing of γ-CD changed from hexagonal to monoclinic columnar form by sealed heating of SA with dried FBP/γ-CD inclusion complex, indicating ternary complex formation. The stoichiometry of SA/FBP/γ-CD was estimated as 2/1/1. Solid-state transformation of γ-CD molecular packing upon water vapor adsorption and desorption was irreversible for this ternary complex, in contrast to the reversible transition for the FBP/γ-CD inclusion complex. The ternary complex contained one FBP molecule in the cavity of γ-CD and two SA molecules in the intermolecular space between neighboring γ-CD column stacks. Infrared and (13) C solid-state NMR spectroscopies revealed that the molecular states of SA and FBP changed upon ternary complex formation. In the complex, dimer FBP molecules were sandwiched between two γ-CD molecules whereas each monomer SA molecule was present in the intermolecular space of γ-CD. Ternary complex formation was also observed for other drug-guest systems using naproxen and ketoprofen. Thus, the complex can be used to formulate variety of drugs.

  15. New ternary praseodymium germanides

    SciTech Connect

    Fedyna, M.F.; Pecharskii, V.K.; Bodak, O.I.

    1987-09-01

    Using the powder method (DRON-2.0 diffractometer; Fe K/sub ..cap alpha../ radiation; theta/2theta recording method, sin theta/sub max//lambda = 5 nm/sup -1/), the crystal structure of the ternary compounds Pr/sub 1-x/(NiGe)/sub 13/ (x = 0.24), Pr/sub 3/Ni/sub 4/Ge/sub 4/, Pr/sub 1-x/(CoGe)/sub 13/ (x = 0.31), Pr/sub 2/Co/sub 3/Ge/sub 5/, and PrFe/sub 1-x/Ge/sub 3/ (x = 0.46) were determined. The germanides P/sub 1-x/(NiGe)/sub 13/ and Pr/sub 1-x/(NiGe)/sub 13/ belong to the structural type of CeNi/sub 8.5/Si/sub 4.5/ and the ternary compounds Pr/sub 3/Ni/sub 4/Ge/sub 4/, Pr/sub 2/Co/sub 3/Ge/sub 5/, and PrFe/sub 1-x/Ge/sub 3/ crystallize in the structural types of U/sub 3/Ni/sub 4/Si/sub 4/, U/sub 2/Co/sub 3/Si/sub 5/, and BaNiSn/sub 3/. During investigations of the equilibrium phase diagrams of the systems Pr-/Fe, Co, Ni/-Ge, new ternary compounds were discovered, viz., Pr/sub 1-x/(NiGe)/sub 13/ (X = 0.24), Pr/sub 3/Ni/sub 4/Ge/sub 4/, Pr/sub 1-x/(CoGe)/sub 13/ (x = 0.31), Pr/sub 2/Co/sub 3/Ge/sub 5/, PrFe/sub 1-x/Ge/sub 3/ (x = 0.46).

  16. Ternary titanium transition metal bismuthides Ti{sub 4}TBi{sub 2} with T = Cr, Mn, Fe, Co, and Ni

    SciTech Connect

    Richter, C.G.; Jeitschko, W.; Kuennen, B.; Gerdes, M.H.

    1997-11-01

    The title compounds were prepared by reaction of the elemental components and with the exception of the isotypic chromium compound their tetragonal V{sub 4}SiSb{sub 2}-type crystal structures (I4/mcm, Z = 4) were determined and refined from single-crystal X-ray data. Ti{sub 4}CrBi{sub 2}: a = 1051.6(l), c = 506.7(1) pm; Ti{sub 4}Mn Bi{sub 2}: a = 1049.1 (1), c = 497.8 (1) pm, R = 0.031 for 176 structure factors; Ti{sub 4}FeBi{sub 2}: a = 1048.6(1), c = 493.3(1) pm, R = 0.013 (274 F values); Ti{sub 4}CoBi{sub 2}: a = 1050.6(2), c = 488.2(1) pm, R = 0.038 (472 F values); Ti{sub 4}NiBi{sub 2}: a = 1055.4(1), c = 481.4(1) pm, R = 0.020(373 F values), and 14 variable parameters each. The compounds are isotypic with V{sub 4}SiSb{sub 2}, a structure which is isopointal with U{sub 6}Mn and closely related to the structures of W{sub 5}Si{sub 3} and TlTe. All atoms have high coordination numbers. Unusual features of the structure are channels formed solely by the bismuth atoms and linear chains of the heavier transition metal ions with bond distances varying between 253.3 (Cr-Cr) and 240.7 pm (Ni-Ni). The electrical conductivities of Ti{sub 4}TBi{sub 2} (T= Fe,Co, Ni)--determined with a four-probe technique for sintered polycrystalline samples between 4 K and room temperature--indicate metallic behavior. The magnetic susceptibilities of the five compounds were determined with a SQUID magnetometer. Ti{sub 4}CrBi{sub 2}, T{sub i}4FeBi{sub 2}, and Ti{sub 4}NiBi{sub 2} are Pauli paramagnetic. The magnetic susceptibilities of Ti{sub 4}MnBi{sub 2} and Ti{sub 4}CoBi{sub 2} are strongly temperature dependent. The evaluation of these data according to a modified Curie-Weiss law suggests that both compounds contain one unpaired electron per formula unit. A brief discussion of chemical bonding in these compounds leads to the conclusion that considerable Ti-Ti bonding must be present in these bismuthides, in spite of the fact that the shortest Ti-Ti bonds are as long as 299 pm.

  17. Solidification of ternary systems with a nonlinear phase diagram

    NASA Astrophysics Data System (ADS)

    Alexandrov, D. V.; Dubovoi, G. Yu.; Malygin, A. P.; Nizovtseva, I. G.; Toropova, L. V.

    2017-02-01

    The directional solidification of a ternary system with an extended phase transition region is theoretically studied. A mathematical model is developed to describe quasi-stationary solidification, and its analytical solution is constructed with allowance for a nonlinear liquidus line equation. A deviation of the liquidus equation from a linear function is shown to result in a substantial change in the solidification parameters.

  18. Neutron Damage and MAX Phase Ternary Compounds

    SciTech Connect

    Barsoum, Michael; Hoffman, Elizabeth; Sindelar, Robert; Garcua-Duaz, Brenda; Kohse, Gordon

    2014-06-17

    The Demands of Gen IV nuclear power plants for long service life under neutron radiation at high temperature are severe. Advanced materials that would withstand high temperatures (up to 1000+ C) to high doses in a neutron field would be ideal for reactor internal structures and would add to the long service life and reliability of the reactors. The objective of this work is to investigate the response of a new class of machinable, conductive, layered, ternary transition metal carbides and nitrides - the so-called MAX phases - to low and moderate neutron dose levels.

  19. Ternary compound electrode for lithium cells

    DOEpatents

    Raistrick, I.D.; Godshall, N.A.; Huggins, R.A.

    1980-07-30

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and of light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated in the temperature range of about 350 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems. The present invention provides an electrochemical cell in which lithium is the electroactive species. The cell has a positive electrode which includes a ternary compound generally represented as Li-M-O, wherein M is a transition metal. Corrosion of the inventive cell is considerably reduced.

  20. Ternary compound electrode for lithium cells

    DOEpatents

    Raistrick, Ian D.; Godshall, Ned A.; Huggins, Robert A.

    1982-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and of light weight. One type of lithium-based cell utilizes a molten salt electrolyte and normally is operated in the temperature range of about 350.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems. The present invention provides an electrochemical cell in which lithium is the electroactive species. The cell has a positive electrode which includes a ternary compound generally represented as Li-M-O, wherein M is a transition metal. Corrosion of the inventive cell is considerably reduced.

  1. Enhanced electromechanical properties and phase transition temperatures in [001] textured Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ternary ceramics

    NASA Astrophysics Data System (ADS)

    Chang, Yunfei; Wu, Jie; Sun, Yuan; Zhang, Shantao; Wang, Xiaohui; Yang, Bin; Messing, Gary L.; Cao, Wenwu

    2015-08-01

    [001] oriented relaxor based ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) ceramics were fabricated by templated grain growth. The effects of BaTiO3 template amount on the [001] orientation degree, microstructure, and resulting changes in dielectric, piezoelectric, and ferroelectric properties of PIN-PMN-PT were investigated. A high [001] texture fraction of 93% was achieved in the PIN-PMN-PT ceramics at 5 vol. % BaTiO3 template. Giant electromechanical properties (d33* = 1555 pC/N, d33 = 824 pC/N, and kp = 0.81) and high ferroelectric properties (Ec = 8.3 kV/cm and Pr = 31 μC/cm2) were obtained from those highly textured ceramics, which are much superior to those of randomly oriented counterpart. Furthermore, the textured ternary ceramics exhibited remarkably improved phase transition temperatures (Tr-t = 120 °C and Tc = 203 °C) compared with previously reported binary PMN-PT textured ceramics. The domain structure was characterized by piezoelectric force microscopy, and domain contribution to the enhanced piezoelectric response in the textured PIN-PMN-PT ceramics was analyzed. The high-quality textured ternary ceramics are very promising for new-generation electromechanical devices with high performance and wide temperature usage range.

  2. Influence of Addition of Nb on Phase Transformation, Microstructure and Mechanical Properties of Equiatomic NiTi SMA

    NASA Astrophysics Data System (ADS)

    Jiang, Shuyong; Liang, Yulong; Zhang, Yanqiu; Zhao, Yanan; Zhao, Chengzhi

    2016-10-01

    Three novel NiTiNb shape memory alloys, which possess a nominal chemical composition of Ni50- x/2-Ti50- x/2-Nb x (at.%) where x stands for 2, 4 and 6, respectively, were designed in order to investigate the influence of the addition of Nb on phase transformation, microstructure and mechanical properties of equiatomic NiTi shape memory alloy. All the three NiTiNb shape memory alloys contain B2 austenite phase, B19' martensite phase and β-Nb precipitate phase. Martensite type II twin can be observed in the case of Ni49Ti49Nb2 alloy. In the case of Ni48Ti48Nb4 alloy, there exists a boundary between Ti2Ni precipitate phase and β-Nb precipitate phase. As for Ni47Ti47Nb6 alloy, it can be observed that there exists an orientation relationship of [01bar{1}]_{{β{{ - Nb}}}} //[01bar{1}]_{{B2}} between β-Nb precipitate phase and B2 austenite matrix. The increase in Nb content contributes to enhancing the yield stress of NiTiNb shape memory alloy, but it leads to the decrease in compression fracture stress. The addition of Nb to equiatomic NiTi shape memory alloy does not have a significant influence on the transformation hysteresis of the alloy, which is attributed to the fact that NiTiNb shape memory alloy is not subjected to plastic deformation and hence β-Nb precipitate phase is unable to relax the elastic strain in the martensite interface.

  3. Ternary Fission of CF Isotopes

    NASA Astrophysics Data System (ADS)

    Vermote, S.; Wagemans, C.; Serot, O.; Soldner, T.; Geltenbort, P.; Almahamid, I.; Lukens, W.; Floyd, J.

    2008-04-01

    During the last years, different Cm and Cf isotopes have been studied by our research group in the frame of a systematic investigation of gas emission characteristics in ternary fission. In this paper we report on the energy distribution and the emission probability of 3H, 4He and 6He particles emitted in neutron induced ternary fission of 249Cf and 251Cf. Both measurements were performed at the high flux reactor of the Institute Laue-Langevin (Grenoble, France), using suited ΔE-E telescope detectors, consisting of well-calibrated silicon surface barrier detectors. In this way, the available database can be expanded with new results for Z=98 isotopes, for which the information on neutron induced ternary fission is almost nonexistent. These measurements are important for the systematic investigation of gas emission characteristics in ternary fission.

  4. Ternary complexes in analytical chemistry.

    PubMed

    Babko, A K

    1968-08-01

    Reactions between a complex AB and a third component C do not always proceed by a displacement mechanism governed by the energy difference of the chemical bonds A-B and A-C. The third component often becomes part of the complex, forming a mixed co-ordination sphere or ternary complex. The properties of this ternary complex ABC are not additive functions of the properties of AB and AC. Such reactions are important in many methods in analytical chemistry, particularly in photometric analysis, extractive separation, masking, etc. The general properties of the four basic types of ternary complex are reviewed and examples given. The four types comprise the systems (a) metal ion, electronegative ligand, organic base, (b) one metal ion, two different electronegative ligands, (c) ternary heteropoly acids, and (d) two different metal ions, one ligand.

  5. Plasmonic spectral tunability of conductive ternary nitrides

    SciTech Connect

    Kassavetis, S.; Patsalas, P.; Bellas, D. V.; Lidorikis, E.; Abadias, G.

    2016-06-27

    Conductive binary transition metal nitrides, such as TiN and ZrN, have emerged as a category of promising alternative plasmonic materials. In this work, we show that ternary transition metal nitrides such as Ti{sub x}Ta{sub 1−x}N, Ti{sub x}Zr{sub 1−x}N, Ti{sub x}Al{sub 1−x}N, and Zr{sub x}Ta{sub 1−x}N share the important plasmonic features with their binary counterparts, while having the additional asset of the exceptional spectral tunability in the entire visible (400–700 nm) and UVA (315–400 nm) spectral ranges depending on their net valence electrons. In particular, we demonstrate that such ternary nitrides can exhibit maximum field enhancement factors comparable with gold in the aforementioned broadband range. We also critically evaluate the structural features that affect the quality factor of the plasmon resonance and we provide rules of thumb for the selection and growth of materials for nitride plasmonics.

  6. Transitions.

    ERIC Educational Resources Information Center

    Agnew, Jeanne L.; Choike, James R.

    1987-01-01

    Mathematical observations are made about some continuous curves, called transitions, encountered in well-known experiences. The transition parabola, the transition spiral, and the sidestep maneuver are presented. (MNS)

  7. Diffuse interface simulation of ternary fluids in contact with solid

    NASA Astrophysics Data System (ADS)

    Zhang, Chun-Yu; Ding, Hang; Gao, Peng; Wu, Yan-Ling

    2016-03-01

    In this article we developed a geometrical wetting condition for diffuse-interface simulation of ternary fluid flows with moving contact lines. The wettability of the substrate in the presence of ternary fluid flows is represented by multiple contact angles, corresponding to the different material properties between the respective fluid and the substrate. Displacement of ternary fluid flows on the substrate leads to the occurrence of moving contact point, at which three moving contact lines meet. We proposed a weighted contact angle model, to replace the jump in contact angle at the contact point by a relatively smooth transition of contact angle over a region of 'diffuse contact point' of finite size. Based on this model, we extended the geometrical formulation of wetting condition for two-phase flows with moving contact lines to ternary flows with moving contact lines. Combining this wetting condition, a Navier-Stokes solver and a ternary-fluid model, we simulated two-dimensional spreading of a compound droplet on a substrate, and validated the numerical results of the drop shape at equilibrium by comparing against the analytical solution. We also checked the convergence rate of the simulation by investigating the axisymmetric drop spreading in a capillary tube. Finally, we applied the model to a variety of applications of practical importance, including impact of a circular cylinder into a pool of two layers of different fluids and sliding of a three-dimensional compound droplet in shear flows.

  8. Ternary boride product and process

    NASA Technical Reports Server (NTRS)

    Clougherty, Edward V. (Inventor)

    1976-01-01

    A hard, tough, strong ceramic body is formed by hot pressing a mixture of a powdered metal and a powdered metal diboride. The metal employed is zirconium, titanium or hafnium and the diboride is the diboride of a different member of the same group of zirconium, titanium or hafnium to form a ternary composition. During hot pressing at temperatures above about 2,000.degree.F., a substantial proportion of acicular ternary monoboride is formed.

  9. Ternary Silver Halide Nanocrystals.

    PubMed

    Abeyweera, Sasitha C; Rasamani, Kowsalya D; Sun, Yugang

    2017-07-18

    Nanocrystalline silver halides (AgX) such as AgCl, AgBr, and AgI, a class of semiconductor materials with characteristics of both direct and indirect band gaps, represent the most crucial components in traditional photographic processing. The nanocrystal surfaces provide sensitivity specks that can turn into metallic silver, forming an invisible latent image, upon exposure to light. The photographic processing implies that the AgX nanoparticles possess unique properties. First, pristine AgX nanoparticles absorb light only at low efficiency to convert surface AgX into tiny clusters of silver atoms. Second, AgX nanoparticles represent an excellent class of materials to capture electrons efficiently. Third, small metallic silver clusters can catalyze the reduction of AgX nanoparticles to Ag nanoparticles in the presence of mild reducing reagents, known as self-catalytic reduction. These properties indicate that AgX nanoparticles can be partially converted to metallic silver with high precision, leading to the formation of hybrid AgX/Ag nanoparticles. The nanosized metallic Ag usually exhibit intense absorption bands in the visible spectral region due to their strong surface plasmon resonances, which make the AgX/Ag nanoparticles a class of promising visible-light-driven photocatalysts for environmental remediation and CO2 reduction. Despite the less attention paid to their ability of capturing electrons, AgX nanoparticles might be a class of ideal electron shuttle materials to bridge light absorbers and catalysts on which electrons can drive chemical transformations. In this Account, we focus on ternary silver halide alloy (TSHA) nanoparticles, containing two types of halide ions, which increase the composition complexity of the silver halide nanoparticles. Interdiffusion of halide ions between two types of AgX at elevated temperatures has been developed for fabricating ternary silver halide alloy crystals, such as silver chlorobromide optical fibers for infrared

  10. Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy

    DOE PAGES

    Laplanche, G.; Gadaud, P.; Horst, O.; ...

    2014-11-15

    The equiatomic CoCrFeMnNi alloy is now regarded as a model face-centered cubic single-phase high-entropy alloy. Consequently, determination of its intrinsic properties such as the temperature dependencies of elastic moduli and thermal expansion coefficient are important to improve understanding of this new class of material. Lastly, these temperature dependencies were measured over a large temperature range (200–1270 K) in this study.

  11. Transitions.

    ERIC Educational Resources Information Center

    Nathanson, Jeanne H., Ed.

    1993-01-01

    This theme issue on transitions for individuals with disabilities contains nine papers discussing transition programs and issues. "Transition Issues for the 1990s," by Michael J. Ward and William D. Halloran, discusses self-determination, school responsibility for transition, continued educational engagement of at-risk students, and service…

  12. Formation and Stability of Equiatomic and Nonequiatomic Nanocrystalline CuNiCoZnAlTi High-Entropy Alloys by Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Varalakshmi, S.; Kamaraj, M.; Murty, B. S.

    2010-10-01

    Nanocrystalline equiatomic high-entropy alloys (HEAs) have been synthesized by mechanical alloying in the Cu-Ni-Co-Zn-Al-Ti system from the binary CuNi alloy to the hexanary CuNiCoZnAlTi alloy. An attempt also has been made to find the influence of nonequiatomic compositions on the HEA formation by varying the Cu content up to 50 at. pct (Cu x NiCoZnAlTi; x = 0, 8.33, 33.33, 49.98 at. pct). The phase formation and stability of mechanically alloyed powder at an elevated temperature (1073 K [800 °C] for 1 hour) were studied. The nanocrystalline equiatomic Cu-Ni-Co-Zn-Al-Ti alloys have a face-centered cubic (fcc) structure up to quinary compositions and have a body-centered cubic (bcc) structure in a hexanary alloy. In nonequiatomic alloys, bcc is the dominating phase in the alloys containing 0 and 8.33 at. pct of Cu, and the fcc phase was observed in alloys with 33.33 and 49.98 at. pct of Cu. The Vicker’s bulk hardness and compressive strength of the equiatomic nanocrystalline hexanary CuNiCoZnAlTi HEA after hot isostatic pressing is 8.79 GPa, and the compressive strength is 2.76 GPa. The hardness of these HEAs is higher than most commercial hard facing alloys ( e.g., Stellite, which is 4.94 GPa).

  13. Transitions.

    ERIC Educational Resources Information Center

    Field, David; And Others

    1992-01-01

    Includes four articles: "Career Aspirations" (Field); "Making the Transition to a New Curriculum" (Baker, Householder); "How about a 'Work to School' Transition?" (Glasberg); and "Technological Improvisation: Bringing CNC to Woodworking" (Charles, McDuffie). (SK)

  14. Superconductivity at 3.1 K in the orthorhombic ternary silicide ScRuSi

    NASA Astrophysics Data System (ADS)

    Ruan, Bin-Bin; Wang, Xiao-Chuan; Yu, Jia; Pan, Bo-Jin; Mu, Qing-Ge; Liu, Tong; Chen, Gen-Fu; Ren, Zhi-An

    2017-02-01

    We report the synthesis, crystal structure, superconductivity and physical property characterizations of the ternary equiatomic compound ScRuSi. Polycrystalline samples of ScRuSi were prepared by an arc-melting method. The as-prepared samples were identified as the orthorhombic Co2P-type o-ScRuSi by powder x-ray diffraction analysis. Electrical resistivity measurements show o-ScRuSi to be a metal which superconducts below a T c of 3.1 K; the upper critical field μ 0 H c2(0) is estimated to be 0.87 T. The magnetization and specific heat measurements confirm the bulk type-II superconductivity in o-ScRuSi, with a specific heat jump within the BCS weak coupling limit. o-ScRuSi is the first Co2P-type superconductor to contain scandium. After annealing at 1273 K for a week, o-ScRuSi transforms into hexagonal Fe2P-type h-ScRuSi, which is a Pauli-paramagnetic metal with no superconductivity observed above 1.8 K.

  15. Structural and magnetic properties of epitaxial thin films of the equiatomic quaternary CoFeMnSi Heusler alloy

    NASA Astrophysics Data System (ADS)

    Bainsla, Lakhan; Yilgin, Resul; Okabayashi, Jun; Ono, Atsuo; Suzuki, Kazuya; Mizukami, Shigemi

    2017-09-01

    We report the structural and magnetic properties of CoFeMnSi equiatomic quaternary Heusler alloy thin films. The epitaxial growth of the single-crystalline films with full B 2 and partial L 21 ordering on the Cr-buffered MgO(001) substrate was achieved using the in situ postannealing at temperature (Ta) of 500-600°C. A saturation magnetization value of about 3.5 μB/f .u . (where f.u. represents formula unit) was obtained at room temperature for the sample with Ta=600°/C, which is very close to the value of 3.7 μB/f .u . reported previously for a bulk sample. Ferromagnetic resonance unveiled that negligible extrinsic relaxation due to magnetic softness as well as small intrinsic spin relaxation, i.e., the Gilbert damping constant of 0.005, which is smaller than that of permalloy. The spin magnetic moments for Co, Fe, and Mn atoms for the sample with Ta=600°C deduced from the x-ray magnetic circular dichroism were in agreement with those previously reported in the bulk sample, the effects of Fe-Mn swapping and Mn antisite disorder were discussed.

  16. Formation of the Nanocrystalline Structure in an Equiatomic NiTi Shape-Memory Alloy by Thermomechanical Processing

    NASA Astrophysics Data System (ADS)

    Mohammad Sharifi, E.; Kermanpur, A.; Karimzadeh, F.; Esmaili, A.

    2014-04-01

    The microstructural evolution during cold rolling followed by annealing of an equiatomic NiTi shape-memory alloy was investigated. The high purity Ni50Ti50 alloy was cast by a copper boat vacuum induction-melting technique. The as-cast ingots were then homogenized, hot rolled, and annealed to prepare the suitable initial microstructure. Thereafter, annealed specimens were cold rolled up to 70 % thickness reduction at room temperature. Post-deformation annealing was conducted at 400 °C for 1 h. The microstructure was characterized using scanning electron microscopy, transmission electron microscopy, x-ray diffraction, and differential scanning calorimetry techniques. The initial microstructure was free from segregation and Ti- or Ni-rich precipitates and was composed of coarse grains with an average size of 50 μm. The cold rolling of NiTi alloy resulted in a partial amorphization and the deformation-induced grain refinement. A nanocrystalline structure with the grain size of about 20-70 nm was formed during the post-deformation annealing.

  17. Observation of large magnetocaloric effect in equiatomic binary compound ErZn

    NASA Astrophysics Data System (ADS)

    Li, Lingwei; Yuan, Ye; Xu, Chi; Qi, Yang; Zhou, Shengqiang

    2017-05-01

    The magnetism, magnetocaloric effect and universal behaviour in rare earth Zinc binary compound of ErZn have been studied. The ErZn compound undergoes a second order paramagnetic (PM) to ferromagnetic (FM) transition at Curie temperature of TC ˜ 20 K. The ErZn compound exhibits a large reversible magnetocaloric effect (MCE) around its own TC. The rescaled magnetic entropy change curves overlap with each other under various magnetic field changes, further confirming the ErZn with the second order phase transition. For the magnetic field change of 0-7 T, the maximum values of the magnetic entropy change (-Δ SMmax ) , relative cooling power (RCP) and refrigerant capacity (RC) for ErZn are 23.3 J/kg K, 581 J/kg and 437 J/kg, respectively.

  18. Status and prospects for ternary organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Lu, Luyao; Kelly, Mary Allison; You, Wei; Yu, Luping

    2015-08-01

    In the past few years, ternary organic solar cells (OSCs) featuring multiple donor or acceptor materials in the active layer have emerged as a promising structure to simultaneously improve all solar cell parameters compared with traditional binary OSCs. Power conversion efficiencies around 10% have been achieved for conjugated polymers in a ternary structure, showing the great potential of ternary systems. In this review, we summarize progress in developing ternary OSCs and discuss many of the designs, chemistries and mechanisms that have been investigated. We conclude by highlighting the challenges and future directions for further development in the field of ternary blend OSCs.

  19. [Synthesis, characterization and luminescence properties of novel beta-diketone and Eu(III) ternary complex].

    PubMed

    Cheng, Guo; Wei, Chang-Ping; Ren, Xiao-Ming; Wang, He; Wei, Wen-Tao

    2011-09-01

    The novel beta-diketone 1-(4-bromophenyl)-3-phenylpropane-1, 3-dione (L) was synthesized at room temperature by classical Claisen condensation reaction. With the beta-diketone L as the first ligand and phen as the secondary ligand, and a new rare-earth Eu (III) ternary complex was prepared. The ligand L and ternary complex were characterized by elemental analysis, IR spectra, UV spectra and fluorescence spectra. IR spectra indicated that: the novel ligand L contained the structure of beta-diketone, where the content of enol was high; the Eu3+ ion in the ternary complex was coordinated with six oxygen atoms of three L ligands and two nitrogen atoms of the second ligand phen. UV spectra showed that the main absorption was from the first ligand L in the Eu (III) ternary complex. The excitation and emission spectra of the ternary complex were measured and investigated. Fluorescence spectra demonstrated that the ternary complex could emit characteristic fluorescence of rare earth Eu3+ ion and the strongest emission band was narrow which was attributed to the 5 D0 --> 7 F2 transitions of the 4f electrons of the central Eu3+ ions. So, the new Eu(III) ternary complex is an excellent red-emitter which would be regarded as a valuable material with bright red fluorescence because it presents good monochromaticity.

  20. Transition.

    ERIC Educational Resources Information Center

    Thompson, Sandy, Ed.; And Others

    1990-01-01

    This "feature issue" focuses on transition from school to adult life for persons with disabilities. Included are "success stories," brief program descriptions, and a list of resources. Individual articles include the following titles and authors: "Transition: An Energizing Concept" (Paul Bates); "Transition…

  1. Tri And Rot Effects In Ternary Fission: What Can Be Learned?

    SciTech Connect

    Goennenwein, F.; Gagarski, A.; Petrov, G.; Guseva, I.; Zavarukhina, T.; Mutterer, M.; Kalben, J. von; Kopatch, Yu.; Tiourine, G.; Trzaska, W.; Sillanpaea, M.; Soldner, T.; Nesvizhevsky, V.

    2010-04-30

    Inducing fission by polarized neutrons allows studying subtle effects of the dynamics of the process. In the present experiments ternary fission of {sup 235}U and {sup 239}Pu was investigated with cold neutrons in the (n,f) reaction at the Institut Laue-Langevin, Grenoble. Asymmetries in the emission of ternary particles were discovered by making use of the neutron spin flipping. It was found that two effects are interfering. There is first an asymmetry in the total yields of ternary particles having been called the TRI-effect. Second, it was observed that the angular distributions of ternary particles are shifted back and forth when flipping the neutron spin. This shift was named ROT effect. Guided by trajectory calculations of the three-body decay, the signs and sizes of the ROT effect are interpreted in terms of the K-numbers of the transition states at the saddle point of fission.

  2. Surface Segregation in Ternary Alloys

    NASA Technical Reports Server (NTRS)

    Good, Brian; Bozzolo, Guillermo H.; Abel, Phillip B.

    2000-01-01

    Surface segregation profiles of binary (Cu-Ni, Au-Ni, Cu-Au) and ternary (Cu-Au-Ni) alloys are determined via Monte Carlo-Metropolis computer simulations using the BFS method for alloys for the calculation of the energetics. The behavior of Cu or Au in Ni is contrasted with their behavior when both are present. The interaction between Cu and Au and its effect on the segregation profiles for Cu-Au-Ni alloys is discussed.

  3. Metal biosorption equilibria in a ternary system

    SciTech Connect

    Chong, K.H.; Volesky, B.

    1996-03-20

    Equilibrium metal uptake performance of a biosorbent prepared from Ascophyllum nodosum seaweed biomass was studied using aqueous solutions containing copper, cadmium, and zinc ions in binary and ternary mixtures. Triangular equilibrium diagrams can graphically represent all the ternary equilibrium sorption data. Application of the multicomponent Langmuir model to describe the three-metal system revealed its nonideal characteristics, whereby the value of apparent dissociation constants for the respective metals differed for each system. This restricted the prediction of the ternary equilibria from the binary systems. However, some predictions of the ternary system behavior from the model were consistent with experimental data and with conclusions postulated from the three possible binary subsystems.

  4. Mixed ternary heterojunction solar cell

    DOEpatents

    Chen, Wen S.; Stewart, John M.

    1992-08-25

    A thin film heterojunction solar cell and a method of making it has a p-type layer of mixed ternary I-III-VI.sub.2 semiconductor material in contact with an n-type layer of mixed binary II-VI semiconductor material. The p-type semiconductor material includes a low resistivity copper-rich region adjacent the back metal contact of the cell and a composition gradient providing a minority carrier mirror that improves the photovoltaic performance of the cell. The p-type semiconductor material preferably is CuInGaSe.sub.2 or CuIn(SSe).sub.2.

  5. Development and application of high strength ternary boride base cermets

    SciTech Connect

    Takagi, Ken-ichi . E-mail: u4381@toyokohan.co.jp

    2006-09-15

    Reaction boronizing sintering is a novel strategy to form a ternary boride coexisting with a metal matrix in a cermet during liquid phase sintering. This new sintering technique has successfully developed world first ternary boride base cermets with excellent mechanical properties such as Mo{sub 2}FeB{sub 2}, Mo{sub 2}NiB{sub 2} and WCoB base ones. In these cermets Mo{sub 2}FeB{sub 2} and Mo{sub 2}NiB{sub 2} base ones consist of a tetragonal M {sub 3}B{sub 2} (M: metal)-type complex boride as a hard phase and a transition metal base matrix. The cermets have already been applied to wear resistant applications such as injection molding machine parts, can making tools, and hot copper extruding dies, etc. This paper focuses on the characteristics, effects of the additional elements on the mechanical properties and structure, and practical applications of the ternary boride base cermets. - Graphical abstract: TRS and hardness of Ni-5B-51Mo-17.5Cr and Ni-5B-51Mo-12.5Cr-5V-xMn mass% cermets as functions of Mn content (Fig. 17)

  6. Optical, Thermal Studies on Binary and Ternary Hydrogen-Bonded Liquid Crystal Complexes

    NASA Astrophysics Data System (ADS)

    Mahalingam, T.; Venkatachalam, T.; Jayaprakasam, R.; Vijayakumar, V. N.

    2016-06-01

    Hydrogen-bonded ferroelectric liquid crystalline (HBFLC) complexes are synthesized from binary mixtures of l-(+)-tartaric acid with 4-dodecyloxybenzoic acid and cholesteryl acetate. A ternary complex has been obtained from l-(+)-tartaric acid, 4-dodecyloxybenzoic acid, and cholesteryl acetate. Fourier transform infrared spectroscopy (FTIR) studies confirm the formation of an intermolecular hydrogen bond in the binary as well as the ternary complex. The l-(+)-tartaric acid does not show any mesomorphic behavior, but the hydrogen-bonded binary and ternary complexes are exhibiting the nematic phase along with tilted smectic phases. Phase transition properties of HBFLC mixtures have been investigated by means of differential scanning calorimetry (DSC) and polarizing optical microscope (POM). The DSC and POM clearly reveal the existence of nematic and smectic phases in the HBFLC mixtures. The optical tilt angle of binary and ternary mixtures for smectic C* phase and thermal stability factors of the mesogenic phases have been discussed. The noteworthy observation is that there is a significant reduction of phase transition temperatures with enhanced phase width, lowering melting temperature, and clearing point in the HBFLC ternary complex.

  7. Single crystal plastic behavior of a single-phase, face-center-cubic-structured, equiatomic FeNiCrCo alloy

    DOE PAGES

    Wu, Zhenggang; Gao, Y. F.; Bei, Hongbin

    2015-07-25

    To understand the fundamental deformation mechanisms of compositionally complex alloys, single crystals of a multi-component equiatomic FeNiCoCr alloy with face-centered cubic (FCC) structure were grown for mechanical studies. Similarly to typical FCC pure metals, slip trace analyses indicate that dislocation slips take place on (1 1 1) planes along [11¯0] directions. The critical resolved shear stress (CRSS) obeys the Schmid law at both 77 and 293 K, and tension–compression asymmetry is not observed. Although this material slips in a normal FCC manner both at 293 and 77 K, compared to typical FCC metals the CRSS’s strong temperature dependence is abnormal.

  8. Evolution of microstructure and crystallographic texture in severely cold rolled high entropy equiatomic CoCrFeMnNi alloy during annealing

    NASA Astrophysics Data System (ADS)

    Sathiaraj, G. D.; Lee, C.; Tsai, C. W.; Yeh, J. W.; Bhattacharjee, P. P.

    2015-04-01

    An equiatomic FCC CoCrFeMnNi high entropy alloy (HEA) was heavily cold rolled up to 90% reduction in thickness followed by isochronal annealing for 1 hour at temperatures ranging between 700°C to 1100°C. A strong brass texture was observed in the cold-rolled condition indicating the low stacking fault energy of the material. A fine stable microstructure was observed during annealing at low temperatures. The recrystallization texture was characterized by the presence of deformation texture components, in particular, the α-fiber (ND//<110>), S ({123} <634>) and the typical brass recrystallization texture component ({236} <385>). Annealing twins were shown to have important effect on the formation of annealing texture.

  9. Effect of thermocycling on the temperatures of phase transformations, structure, and properties of the equiatomic alloy Ti50.0Ni50.0

    NASA Astrophysics Data System (ADS)

    Churakova, A. A.; Gunderov, D. V.

    2016-01-01

    This article is devoted to studying the influence of thermocycling in the range of temperatures of the thermoelastic martensitic transformation B2- B19' on the microstructure, the temperatures of the martensitic transformations, and the mechanical properties of the equiatomic alloy Ti50Ni50 in the coarse-grained (CG) and ultrafine-grained (UFG) states, the latter obtained by equal-channel angular pressing (ECAP). One hundred cycles of thermocycling and the related increase in the dislocation density in the CG alloy led to a decrease in the temperatures of martensitic transformations. In the UFG alloy, the temperatures of the forward transformation ( M s, M f) decrease by 2-3 K, and the temperatures of the reverse transformation ( A s, A f) increase by 6 K. The ultimate strength remains almost unaltered upon the thermocycling, but the yield stress increases substantially from 430 to 550 MPa and from 935 to 1120 MPa for the CG and UFG states, respectively.

  10. Single crystal plastic behavior of a single-phase, face-center-cubic-structured, equiatomic FeNiCrCo alloy

    SciTech Connect

    Wu, Zhenggang; Gao, Y. F.; Bei, Hongbin

    2015-07-25

    To understand the fundamental deformation mechanisms of compositionally complex alloys, single crystals of a multi-component equiatomic FeNiCoCr alloy with face-centered cubic (FCC) structure were grown for mechanical studies. Similarly to typical FCC pure metals, slip trace analyses indicate that dislocation slips take place on (1 1 1) planes along [11¯0] directions. The critical resolved shear stress (CRSS) obeys the Schmid law at both 77 and 293 K, and tension–compression asymmetry is not observed. Although this material slips in a normal FCC manner both at 293 and 77 K, compared to typical FCC metals the CRSS’s strong temperature dependence is abnormal.

  11. TERNARY ALLOY-CONTAINING PLUTONIUM

    DOEpatents

    Waber, J.T.

    1960-02-23

    Ternary alloys of uranium and plutonium containing as the third element either molybdenum or zirconium are reported. Such alloys are particularly useful as reactor fuels in fast breeder reactors. The alloy contains from 2 to 25 at.% of molybdenum or zirconium, the balance being a combination of uranium and plutonium in the ratio of from 1 to 9 atoms of uranlum for each atom of plutonium. These alloys are prepared by melting the constituent elements, treating them at an elevated temperature for homogenization, and cooling them to room temperature, the rate of cooling varying with the oomposition and the desired phase structure. The preferred embodiment contains 12 to 25 at.% of molybdenum and is treated by quenching to obtain a body centered cubic crystal structure. The most important advantage of these alloys over prior binary alloys of both plutonium and uranium is the lack of cracking during casting and their ready machinability.

  12. Thermodynamic Approach to Phase Coexistence in Ternary Phospholipid-Cholesterol Mixtures

    NASA Astrophysics Data System (ADS)

    Wolff, J.; Marques, C. M.; Thalmann, F.

    2011-03-01

    We introduce a simple and predictive model for determining the phase stability of ternary phospholipid-cholesterol mixtures. Assuming that competition between the liquid and gel order of the phospholipids is the main driving force behind lipid segregation, we derive a Gibbs free energy of mixing, based on the thermodynamic properties of the lipids main transition. A numerical approach was devised that enables the fast and efficient determination of the ternary diagrams associated with our Gibbs free energy. The computed phase coexistence diagram of DOPC/DPPC/cholesterol reproduces well-known features for this system at 10°C, as well as its evolution with temperature.

  13. All-optical symmetric ternary logic gate

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Tanay

    2010-09-01

    Symmetric ternary number (radix=3) has three logical states (1¯, 0, 1). It is very much useful in carry free arithmetical operation. Beside this, the logical operation using this type of number system is also effective in high speed computation and communication in multi-valued logic. In this literature all-optical circuits for three basic symmetrical ternary logical operations (inversion, MIN and MAX) are proposed and described. Numerical simulation verifies the theoretical model. In this present scheme the different ternary logical states are represented by different polarized state of light. Terahertz optical asymmetric demultiplexer (TOAD) based interferometric switch has been used categorically in this manuscript.

  14. Rational Development of Ternary Alloy Electrocatalysts

    SciTech Connect

    Wang, Chao; Li, Dongguo; Chi, Miaofang; Pearson, John; Rankin, Rees; Greeley, Jeff; Duan, Zhiyao; Wang, Guofeng; Van der Vliet, Dennis; More, Karren Leslie; Markovic, Nenad; Stamenkovic, Vojislav

    2012-01-01

    Improving the efficiency of electrocatalytic reduction of oxygen represents one of the main challenges for the development of renewable energy technologies. Here, we report the systematic evaluation of Pt-ternary alloys (Pt{sub 3}(MN){sub 1} with M, N = Fe, Co, or Ni) as electrocatalysts for the oxygen reduction reaction (ORR). We first studied the ternary systems on extended surfaces of polycrystalline thin films to establish the trend of electrocatalytic activities and then applied this knowledge to synthesize ternary alloy nanocatalysts by a solvothermal approach. This study demonstrates that the ternary alloy catalysts can be compelling systems for further advancement of ORR electrocatalysis, reaching higher catalytic activities than bimetallic Pt alloys and improvement factors of up to 4 versus monometallic Pt.

  15. Some Geometric Aspects of the Ternary Diagram.

    ERIC Educational Resources Information Center

    Philip, G. M.; Watson, D. F.

    1989-01-01

    Uses the process of normalization in the Cartesian coordinate system which entails radial projection onto a transect to compare different compositions of minerals. Warns that the ternary diagram should not be used as a framework for calculations. (MVL)

  16. SiGeSn Ternaries for Efficient Group IV Heterostructure Light Emitters.

    PubMed

    von den Driesch, Nils; Stange, Daniela; Wirths, Stephan; Rainko, Denis; Povstugar, Ivan; Savenko, Aleksei; Breuer, Uwe; Geiger, Richard; Sigg, Hans; Ikonic, Zoran; Hartmann, Jean-Michel; Grützmacher, Detlev; Mantl, Siegfried; Buca, Dan

    2017-02-03

    SiGeSn ternaries are grown on Ge-buffered Si wafers incorporating Si or Sn contents of up to 15 at%. The ternaries exhibit layer thicknesses up to 600 nm, while maintaining a high crystalline quality. Tuning of stoichiometry and strain, as shown by means of absorption measurements, allows bandgap engineering in the short-wave infrared range of up to about 2.6 µm. Temperature-dependent photoluminescence experiments indicate ternaries near the indirect-to-direct bandgap transition, proving their potential for ternary-based light emitters in the aforementioned optical range. The ternaries' layer relaxation is also monitored to explore their use as strain-relaxed buffers, since they are of interest not only for light emitting diodes investigated in this paper but also for many other optoelectronic and electronic applications. In particular, the authors have epitaxially grown a GeSn/SiGeSn multiquantum well heterostructure, which employs SiGeSn as barrier material to efficiently confine carriers in GeSn wells. Strong room temperature light emission from fabricated light emitting diodes proves the high potential of this heterostructure approach.

  17. Synergism among ternary mixtures of fourteen sweeteners.

    PubMed

    Schiffman, S S; Sattely-Miller, E A; Graham, B G; Booth, B J; Gibes, K M

    2000-04-01

    The purpose of the present study was to determine the degree of synergism of sweet taste among ternary mixtures of 14 sweeteners. A trained panel evaluated ternary mixtures of 14 sweeteners varying in chemical structure and type. The ternary mixtures that were tested were limited to those in which the compounds comprising the mixture were synergistic in binary combinations, according to an earlier study. All sweeteners in the ternary mixtures were isointense with 2% sucrose, according to a previously developed formulae. Each self-mixture was also tested (e.g. 2% sucrose + 2% sucrose + 2% sucrose). The triad with the highest mean sweetness intensity rating was alitame-neohesperidin dihydrochalcone-rebaudioside-A (10.8). This represents an increase of 99.4% when compared with the average of the self-mixtures. While this is greater than the maximum of 74% increase found for binary mixtures, more dyadic combinations of sweeteners tested previously exhibited synergism than ternary combinations tested here. However, most ternary mixtures were synergistic (significantly greater than the average of the three self-mixtures) to some degree.

  18. Optical dispersion of ternary II-VI semiconductor alloys

    NASA Astrophysics Data System (ADS)

    Liu, Xinyu; Furdyna, J. K.

    2004-06-01

    The wavelength dependence of the refractive indices n of a series of II-VI ternary alloys—ZnCdSe, ZnBeSe, ZnMgSe, ZnMnSe, ZnCdTe, ZnMnTe, ZnMgSe, and ZnSeTe—were measured at frequencies below their respective energy gaps using the combined techniques of optical reflectivity and the prism coupler method. To facilitate the analysis of the results—including those obtained in the wavelength region near the fundamental energy gap—we have modified the semiempirical single-effective-oscillator (SEO) model of n by introducing an additional term that explicitly accounts for interband transitions at the fundamental gap. Using the SEO model modified in this manner to fit the wavelength dependence of n, a set of semiempirical parameters was established for the above ternary II-VI-based alloys, where the fitting parameters for each alloy family are themselves expressed as functions of the alloy composition. The availability of these parameters makes it possible to calculate the index of refraction of any given II-VI ternary alloy for any composition and at any wavelength. Furthermore, these parameters provide valuable physical insights, such as the relationship between the covalency (or ionicity) of the material and its refractive index. In addition to its fundamental usefulness, this approach can—by appropriate extrapolation—also be used for obtaining the dispersion properties for "hypothetical" zinc blende compounds that do not form under equilibrium crystal growth conditions (such as MnTe, MnSe, or BeSe).

  19. Ternary Porous Cobalt Phosphoselenide Nanosheets: An Efficient Electrocatalyst for Electrocatalytic and Photoelectrochemical Water Splitting.

    PubMed

    Hou, Yang; Qiu, Ming; Zhang, Tao; Zhuang, Xiaodong; Kim, Chang-Soo; Yuan, Chris; Feng, Xinliang

    2017-09-01

    Exploring efficient and earth-abundant electrocatalysts is of great importance for electrocatalytic and photoelectrochemical hydrogen production. This study demonstrates a novel ternary electrocatalyst of porous cobalt phosphoselenide nanosheets prepared by a combined hydrogenation and phosphation strategy. Benefiting from the enhanced electric conductivity and large surface area, the ternary nanosheets supported on electrochemically exfoliated graphene electrodes exhibit excellent catalytic activity and durability toward hydrogen evolution in alkali, achieving current densities of 10 and 20 mA cm(-2) at overpotentials of 150 and 180 mV, respectively, outperforming those reported for transition metal dichalcogenides and first-row transition metal pyrites catalysts. Theoretical calculations reveal that the synergistic effects of Se vacancies and subsequent P displacements of Se atoms around the vacancies in the resulting cobalt phosphoselenide favorably change the electronic structure of cobalt selenide, assuring a rapid charge transfer and optimal energy barrier of hydrogen desorption, and thus promoting the proton kinetics. The overall-water-splitting with 10 mA cm(-2) at a low voltage of 1.64 V is achieved using the ternary electrode as both the anode and cathode, and the performance surpasses that of the Ir/C-Pt/C couple for sufficiently high overpotentials. Moreover, the integration of ternary nanosheets with macroporous silicon enables highly efficient solar-driven photoelectrochemical hydrogen production. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Atomistic simulation of martensite-austenite phase transition in nanoscale nickel-titanium crystals

    NASA Astrophysics Data System (ADS)

    Kexel, Christian; Schramm, Stefan; Solov'yov, Andrey V.

    2015-09-01

    Shape-memory (SM) alloys can, after initial inelastic deformation, reconstruct their pristine lattice structure upon heating. The underlying phenomenon is the structural solid-solid phase transition from low-temperature lower-symmetry martensite to the high-temperature higher-symmetry austenite. Conventional nickel-titanium (NiTi) with near-equiatomic concentration already possesses an eminent importance for many applications, whereas the nanostructured equivalent can exhibit yet enhanced thermomechanical properties. However, no plausible microscopic theory of the SM effect in NiTi exists, especially for nanoscale systems. We investigate the thermally induced martensite-austenite phase transition in free equiatomic nanocrystals, comprising up to approximately 40 000 atoms, by means of molecular-dynamics simulations (MD) using a classical Gupta-type many-body scheme. Thereby we complement and extend a previously published study [D. Mutter, P. Nielaba, Eur. Phys. J. B 84, 109 (2011)]. The structural transition, revealing features of a first-order phase transition, is demonstrated. It is contrasted with the melting phase transition, a quantum solid model and bulk experimental findings. Moreover, a nucleation-growth process is observed as well as the irreversibility of the transition upon cooling.

  1. Optimal Symmetric Ternary Quantum Encryption Schemes

    NASA Astrophysics Data System (ADS)

    Wang, Yu-qi; She, Kun; Huang, Ru-fen; Ouyang, Zhong

    2016-11-01

    In this paper, we present two definitions of the orthogonality and orthogonal rate of an encryption operator, and we provide a verification process for the former. Then, four improved ternary quantum encryption schemes are constructed. Compared with Scheme 1 (see Section 2.3), these four schemes demonstrate significant improvements in term of calculation and execution efficiency. Especially, under the premise of the orthogonal rate ɛ as secure parameter, Scheme 3 (see Section 4.1) shows the highest level of security among them. Through custom interpolation functions, the ternary secret key source, which is composed of the digits 0, 1 and 2, is constructed. Finally, we discuss the security of both the ternary encryption operator and the secret key source, and both of them show a high level of security and high performance in execution efficiency.

  2. Core-shell-structured magnetic ternary nanocubes.

    PubMed

    Wang, Lingyan; Wang, Xin; Luo, Jin; Wanjala, Bridgid N; Wang, Chongmin; Chernova, Natasha A; Engelhard, Mark H; Liu, Yao; Bae, In-Tae; Zhong, Chuan-Jian

    2010-12-22

    We report a novel core-shell-structured ternary nanocube of MnZn ferrite synthesized by controlling the reaction temperature and composition in the absence of conventionally used reducing agents. The highly monodispersed core-shell structure consists of an Fe(3)O(4) core and an MnZn Ferrite shell. The observation of a Moiré pattern indicates that the core and the shell are two highly crystalline materials with slightly different lattice constants that are rotated relative to each other by a small angle. The ternary core-shell nanocubes display magnetic properties regulated by a combination of the core-shell composition and exhibit an increased coercivity and field-cooled/zero-field-cooled characteristics drastically different from those of regular MnZn ferrite nanoparticles. The ability to engineer the spatial nanostructures of ternary magnetic nanoparticles in terms of shape and composition offers atomic-level versatility in fine-tuning the nanoscale magnetic properties.

  3. Organic ternary solar cells: a review.

    PubMed

    Ameri, Tayebeh; Khoram, Parisa; Min, Jie; Brabec, Christoph J

    2013-08-21

    Recently, researchers have paid a great deal of attention to the research and development of organic solar cells, leading to a breakthrough of over 10% power conversion efficiency. Though impressive, further development is required to ensure a bright industrial future for organic photovoltaics. Relatively narrow spectral overlap of organic polymer absorption bands within the solar spectrum is one of the major limitations of organic solar cells. Among different strategies that are in progress to tackle this restriction, the novel concept of ternary organic solar cells is a promising candidate to extend the absorption spectra of large bandgap polymers to the near IR region and to enhance light harvesting in single bulk-heterojunction solar cells. In this contribution, we review the recent developments in organic ternary solar cell research based on various types of sensitizers. In addition, the aspects of miscibility, morphology complexity, charge transfer dynamics as well as carrier transport in ternary organic composites are addressed.

  4. In vitro corrosion study by EIS of an equiatomic NiTi alloy and an implant quality AISI 316 stainless steel.

    PubMed

    Rondelli, G; Torricelli, P; Fini, M; Rimondini, L; Giardino, R

    2006-11-01

    The electrochemical impedance spectroscopy (EIS) technique was used for the study of the electrochemical behavior of an equiatomic NiTi alloy and an implant quality AISI 316 stainless steel type ASTM F138. Experiments were carried out using four different different test solutions: phosphate buffered saline (PBS), Dulbecco minimum essential medium (MEM), MEM + fetal calf serum (FCS), and MEM + fetal calf serum + fibroblast cell (CELL). Specimens were finished to 600-grit SiC paper and were tested in conditions that did not provoke abrupt mechanical damage of the passive film. Bode-phase spectra showed the presence of two maxima and were fitted with an equivalent circuit characterized by two parallel combinations (R, resistance; CPE, constant phase element). The R(1) and CPE(1) branch was assigned to the inner compact passive film and the R(2) and CPE(2) branch to the external porous film. The resistance of the inner film R(1), roughly corresponding to the polarization resistance (R(p)), which is inversely proportional to the material's corrosion rate, increased with the immersion time and was generally greater in PBS than in other media. With the exception of FCS solution, R(1) for NiTi alloy is better or similar to that of ASTM F138.

  5. Ternary fission of nuclei into comparable fragments

    SciTech Connect

    Karpeshin, F. F.

    2015-07-15

    The problem of nuclear fission into three comparable fragments is considered. A mechanism of true ternary fission is proposed. In contrast to sequential fission, where the three fragments arise upon two sequential events of binary fission, the mechanism in question relies on a scenario that originally involves fission into three fragments. This mechanism is driven by a hexadecapole deformation of the fissioning nucleus, in contrast to binary fission associated with quadrupole vibrations of the nuclear surface. The fragment-mass ratios are estimated. The dynamics of formation of collinear fragments and their subsequent motion in opposite directions is traced. The calculated probability of true ternary fission complies with observed values.

  6. Ternary carbon composite films for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Tran, Minh-Hai; Jeong, Hae Kyung

    2017-09-01

    A simple, binder-free, method of making supercapacitor electrodes is introduced, based on modification of activated carbon with graphite oxide and carbon nanotubes. The three carbon precursors of different morphologies support each other to provide outstanding electrochemical performance, such as high capacitance and high energy density. The ternary carbon composite shows six times higher specific capacitance compared to that of activated carbon itself with high retention. The excellent electrochemical properties of the ternary composite attribute to the high surface area of 1933 m2 g-1 and low equivalent series resistance of 2 Ω, demonstrating that it improve the electrochemical performance for supercapacitor applications.

  7. Binary and ternary NiTi-based shape memory films deposited by simultaneous sputter deposition from elemental targets

    SciTech Connect

    Sanjabi, S.; Cao, Y.Z.; Sadrnezhaad, S.K.; Barber, Z.H.

    2005-09-15

    The most challenging requirement for depositing NiTi-based shape memory thin films is the control of film composition because a small deviation can strongly shift the transformation temperatures. This article presents a technique to control film composition via adjustment of the power supplied to the targets during simultaneous sputter deposition from separate Ni, Ti, and X (e.g., Hf) targets. After optimization of sputter parameters such as working gas pressure, target-substrate distance, and target power ratio, binary Ni{sub 100-x}Ti{sub x} thin films were fabricated and characterized by energy dispersive x-ray spectroscopy in a scanning electron microscope (to measure the film composition and uniformity), in situ x-ray diffraction (to identify the phase structures), and differential scanning calorimetry (to indicate the transformation and crystallization temperatures). To explore the possibility of depositing ternary shape memory NiTi-based thin films with a high temperature transformation >100 deg. C, a Hf target was added to the NiTi deposition system. Annealing was carried out in a high vacuum furnace slightly above the films' crystallization temperatures (500 and 550 deg. C for NiTi and NiTiHf films, respectively). Differential scanning calorimetry (DSC) results of free-standing films illustrated the dependence of transformation temperatures on film composition: Ap and Mp (referring to the austenitic and martensitic peaks in the DSC curve) were above room temperature in near equiatomic NiTi and Ti-rich films, but below it in Ni-rich films. In NiTiHf films, the transformation temperatures were a function of Hf content, reaching as high as 414 deg. C (Ap) at a Hf content of 24.4 at. %. Atomic force microscopy revealed nanostructure surface morphology of both NiTi and NiTiHf films. Detailed characterization showed that the film properties were comparable with those of NiTi and NiTiHf bulk alloys.

  8. Magnetic properties of the new ternary cerium intermetallic compound CeRuSi{sub 2}

    SciTech Connect

    Velikhovski, A.A.; Nikiforov, V.N.; Mirkovic, J.; Kovacik, V.; Baran, M.; Szymczak, H.

    1994-03-01

    The authors present a study of the magnetic properties of the new cerium ternary intermetallic compound CeRuSi{sub 2} which demonstrates heavy-fermion-like behavior and reveals magnetic transition at {Tc} = 11K. The temperature (5

  9. Transport and magnetic properties of the new cerium ternary Ce-Pt-Ge compounds

    SciTech Connect

    Velikhovski, A.A.; Nikiforov, V.N.; Mirkovic, J.; Kovacik, V.; Baran, M.; Szymczak, H.; Gribanov, A.V.; Seropegin, Y.D.

    1994-03-01

    The new cerium ternary compounds Ce{sub 3}Pt{sub 4}Ge{sub 6} and Ce{sub 2}Pt{sub 7}Ge{sub 4} with novel crystal structure types have been prepared and characterized. The authors present transport and magnetic properties of these compounds in temperature range (2--300) K. Behavior of resistivity and magnetization is similar, both compounds demonstrate Kondo-like features and possible magnetic transition near the helium temperature.

  10. A simple urea-based route to ternary metal oxynitride nanoparticles

    SciTech Connect

    Gomathi, A.; Reshma, S.; Rao, C.N.R.

    2009-01-15

    Ternary metal oxynitrides are generally prepared by heating the corresponding metal oxides with ammonia for long durations at high temperatures. In order to find a simple route that avoids use of gaseous ammonia, we have employed urea as the nitriding agent. In this method, ternary metal oxynitrides are obtained by heating the corresponding metal carbonates and transition metal oxides with excess urea. By this route, ternary metal oxynitrides of the formulae MTaO{sub 2}N (M=Ca, Sr or Ba), MNbO{sub 2}N (M=Sr or Ba), LaTiO{sub 2}N and SrMoO{sub 3-x}N{sub x} have been prepared successfully. The oxynitrides so obtained were generally in the form of nanoparticles, and were characterized by various physical techniques. - Graphical abstract: Nanoparticles of ternary metal oxynitrides can be synthesized by means of urea route. Given is the TEM image of the nanoparticles of CaTaO{sub 2}N so obtained and the insets show the SAED pattern and HREM image of the nanoparticles.

  11. Does Science Also Prefer a Ternary Pattern?

    ERIC Educational Resources Information Center

    Pogliani, L.; Klein, D. J.; Balaban, A. T.

    2006-01-01

    Through the importance of the number three in our culture and the strange preference for a ternary pattern of our nature one can perceive how and why number theory degraded to numerology. The strong preference of our minds for simple patterns can be read as the key to understanding not only the development of numerology, but also why scientists…

  12. Ternary rare earth-lanthanide sulfides

    DOEpatents

    Takeshita, Takuo; Gschneidner JR., Karl A.; Beaudry, Bernard J.

    1987-01-06

    A new ternary rare earth sulfur compound having the formula: where M is a rare earth element selected from the group europium, samarium and ytterbium and x=0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to 1000.degree. C.

  13. TERNARY ALLOYS OF URANIUM, COLUMBIUM, AND ZIRCONIUM

    DOEpatents

    Foote, F.G.

    1960-08-01

    Ternary alloys of uranium are described which are useful as neutron- reflecting materials in a fast neutron reactor. They are especially resistant to corrosion caused by oxidative processes of gascous or aqueous origin and comprise uranium as the predominant metal with zirconiunn and niobium wherein the total content of the minor alloying elements is between 2 and 8% by weight.

  14. Ternary Dy-Er-Al magnetic refrigerants

    DOEpatents

    Gschneidner, K.A. Jr.; Takeya, Hiroyuki

    1995-07-25

    A ternary magnetic refrigerant material comprising (Dy{sub 1{minus}x}Er{sub x})Al{sub 2} for a magnetic refrigerator using the Joule-Brayton thermodynamic cycle spanning a temperature range from about 60K to about 10K, which can be adjusted by changing the Dy to Er ratio of the refrigerant. 29 figs.

  15. Ternary Dy-Er-Al magnetic refrigerants

    DOEpatents

    Gschneidner, Jr., Karl A.; Takeya, Hiroyuki

    1995-07-25

    A ternary magnetic refrigerant material comprising (Dy.sub.1-x Er.sub.x)Al.sub.2 for a magnetic refrigerator using the Joule-Brayton thermodynamic cycle spanning a temperature range from about 60K to about 10K, which can be adjusted by changing the Dy to Er ratio of the refrigerant.

  16. Design of a novel quantum reversible ternary up-counter

    NASA Astrophysics Data System (ADS)

    Houshmand, Pouran; Haghparast, Majid

    2015-08-01

    Reversible logic has been recently considered as an interesting and important issue in designing combinational and sequential circuits. The combination of reversible logic and multi-valued logic can improve power dissipation, time and space utilization rate of designed circuits. Only few works have been reported about sequential reversible circuits and almost there are no paper exhibited about quantum ternary reversible counter. In this paper, first we designed 2-qutrit and 3-qutrit quantum reversible ternary up-counters using quantum ternary reversible T-flip-flop and quantum reversible ternary gates. Then we proposed generalized quantum reversible ternary n-qutrit up-counter. We also introduced a new approach for designing any type of n-qutrit ternary and reversible counter. According to the results, we can conclude that applying second approach quantum reversible ternary up-counter is better than the others.

  17. On the theory of ternary melt crystallization with a non-linear phase diagram

    NASA Astrophysics Data System (ADS)

    Toropova, L. V.; Dubovoi, G. Yu; Alexandrov, D. V.

    2017-04-01

    The present study is concerned with a theoretical analysis of unidirectional solidification process of ternary melts in the presence of a phase transition (mushy) layer. A new analytical solution of heat and mass transfer equations describing the steady-state crystallization scenario is found with allowance for a non-linear liquidus equation. The model under consideration takes into account the presence of two phase transition layers, namely, the primary and cotectic mushy regions. We demonstrate that the phase diagram nonlinearity leads to substantial changes of analytical solutions.

  18. Dynamic thermodiffusion theory for ternary liquid mixtures

    NASA Astrophysics Data System (ADS)

    Eslamian, Morteza; Ziad Saghir, M.

    2010-04-01

    Following the non-equilibrium thermodynamics approach, we develop expressions for the calculation of the thermal diffusion coefficients in a ternary system. On the basis of some physical justifications, we approximate the net heat of transport with the activation energy of viscous flow. In parallel, we revisit the Kempers model and propose new expressions for the estimation of the thermal diffusion factors in a ternary mixture. The proposed expressions are based on a dynamic modeling approach, as they incorporate the activation energy of viscous flow, which is a fluid flow property and contains the effects of some of the parameters that govern thermodiffusion. The proposed expressions, the Kempers and Ghorayeb-Firoozabadi-Shukla models are evaluated against the experimental data. Our expression which was developed on the basis of the Kempers approach has the best performance.

  19. On the capacity of ternary Hebbian networks

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1991-01-01

    Networks of ternary neurons storing random vectors over the set -1,0,1 by the so-called Hebbian rule are considered. It is shown that the maximal number of stored patterns that are equilibrium states of the network with probability tending to one as N tends to infinity is at least on the order of (N exp 2-1/alpha)/K, where N is the number of neurons, K is the number of nonzero elements in a pattern, and t = alpha x K, alpha between 1/2 and 1, is the threshold in the neuron function. While, for small K, this bound is similar to that obtained for fully connected binary networks, the number of interneural connections required in the ternary case is considerably smaller. Similar bounds, incorporating error probabilities, are shown to guarantee, in the same probabilistic sense, the correction of errors in the nonzero elements and in the location of these elements.

  20. Ternary algebraic approach to extended superconformal algebras

    NASA Astrophysics Data System (ADS)

    Günaydin, Murat; Hyun, Seungjoon

    1992-04-01

    The construction of extended ( N = 2 and N = 4) superconformal algebras (SCA) over very general classes of ternary algebras (triple systems) is given. For N = 2 this construction leads to superconformal algebras corresponding to certain Kählerian coset spaces of Lie groups with non-vanishing torsion. In general, a given Lie group admits more than one coset space of this type. The construction and a complete classification of N = 2 SCAs over Kantor triple system is given. In particular, the division algebras and their tensor products lead to N = 2 superconformal algebras associated with the coset spaces of the groups of the Magic Square. For a very special class of ternary algebras, namely the Freudenthal triple (FT) systems, the N = 2 superconformal algebras can be extended to N = 4 superconformal algebras with the gauge group SU(2)×SU(2)×U(1). The realization and a complete classification of N = 2 and N = 4

  1. Phase behavior of ternary polymer brushes

    DOE PAGES

    Simocko, Chester K.; Frischknecht, Amalie L.; Huber, Dale L.

    2016-01-07

    Ternary polymer brushes consisting of polystyrene, poly(methyl methacrylate), and poly(4-vinylpyridine) have been synthesized. These brushes laterally phase separate into several distinct phases and can be tailored by altering the relative polymer composition. Self-consistent field theory has been used to predict the phase diagram and model both the horizontal and vertical phase behavior of the polymer brushes. As a result, all phase behaviors observed experimentally correlate well with the theoretical model.

  2. Ternary rare earth-lanthanide sulfides

    DOEpatents

    Takeshita, Takuo; Gschneidner, Jr., Karl A.; Beaudry, Bernard J.

    1987-01-06

    A new ternary rare earth sulfur compound having the formula: La.sub.3-x M.sub.x S.sub.4 where M is a rare earth element selected from the group europium, samarium and ytterbium and x=0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to 1000.degree. C.

  3. More statistics on intermetallic compounds - ternary phases.

    PubMed

    Dshemuchadse, Julia; Steurer, Walter

    2015-05-01

    How many different intermetallic compounds are known so far, and in how many different structure types do they crystallize? What are their chemical compositions, the most abundant ones and the rarest ones? These are some of the questions we are trying to find answers for in our statistical analysis of the structures of the 20,829 intermetallic phases included in the database Pearson's Crystal Data, with the goal of gaining insight into some of their ordering principles. In the present paper, we focus on the subset of 13,026 ternary intermetallics, which crystallize in 1391 different structure types; remarkably, 667 of them have just one representative. What makes these 667 structures so unique that they are not adopted by any other of the known intermetallic compounds? Notably, ternary compounds are known in only 5109 of the 85,320 theoretically possible ternary intermetallic systems so far. In order to get an overview of their chemical compositions we use structure maps with Mendeleev numbers as ordering parameters.

  4. The ternary system uranium-boron-carbon

    NASA Astrophysics Data System (ADS)

    Rogl, Peter; Bauer, Josef; Debuigne, Jean

    1989-04-01

    Phase equilibria in the ternary system U-B-C have been established by means of X-ray, metallographic and melting point analyses in the temperature range from 1000 ° C to melting. Three ternary compounds were found to exist: besides the well known monoboroncarbide UBC two new uranium boroncarbides, UB 2C and "U 5B 2C 7". Ternary phase equilibria are characterized by the incompatibility of uranium metal with boroncarbide B 4C and by the incompatibility of elemental boron and uranium carbides; an isothermal section of the system U-B-C at 1600° C is presented. At high temperatures the crystal structure of UB 2C was found to be isotypic with the homologous compound ThB 2C; at temperatures below (1675 ± 25)°C h-UB 2C transforms into a low temperature modification with a new (unknown) structure type. The crystal structure of "U 5B 2C 7" is closely related to the structure type of Ho 5B 2C 6-7 as a derivative of La 52C 6 Employing the Pirani-technique, congruent melting was revealed for UBC and UB 2C at (2144 ± 25)°C and (2282 ± 30)°C respectively. Using the clear-cross principle in studying possible phase reactions, the thermodynamic stabilities of UBC, UB 2C and U 5B 2C 7 were estimated.

  5. Thermal analysis of tertiary butyl alcohol/sucrose/water ternary system.

    PubMed

    Zuo, Jian-Guo; Hua, Tse-Chao; Liu, Bao-Lin; Zhou, Guo-Yan

    2005-01-01

    The purpose of this work is to investigate the freezing properties of tertiary butyl alcohol (TBA)/sucrose/water ternary system. Differential scanning calorimetry (DSC) is employed to determine the glass transition temperature of the maximally freeze-concentrated solution Tg' and the crystallization (or devitrification) temperature Tr. DSC measurements show that the presence of sucrose hinders the crystallization of TBA during cooling. The residual TBA in the glassy state will cause a decrease in Tg' and will crystallize during heating. An increase in the cooling rate causes a decrease in Tg'. For 10% TBA/10% sucrose/water ternary system, the critical heating rate is approximately 250 degrees C/min. Annealing treatment at temperatures below Tg' causes the crystallization of TBA, which indicates that TBA molecules still have appreciable mobility even at temperatures below Tg'. When the ratio of TBA to sucrose is less than 0.2, TBA cannot crystallize during cooling.

  6. New Data on the Ternary Fission of {sup 252}Cf from the Gammasphere Facility

    SciTech Connect

    Ter-Akopian, G.M.; Daniel, A.V.; Fomichev, A.S.; Popeko, G.S.; Rodin, A.M.; Oganessian, Yu.Ts.; Hamilton, J.H.; Ramayya, A.V.; Kormicki, J.; Hwang, J.K.; Fong, D.; Gore, P.; Cole, J.D.; Jandel, M.; Kliman, J.; Krupa, L.; Rasmussen, J.O.; Lee, I.Y.; Macchiavelli, A.O.; Fallon, P.

    2004-10-01

    Ternary fission of {sup 252}Cf was studied at Gammasphere using eight {delta}E x E particle telescopes. Helium, beryllium, boron, and carbon light charged particles (LCPs) emitted with kinetic energy more than 9, 21, 26, and 32 MeV, respectively, were identified. The 3368-keV {gamma} transition from the first 2{sup +} excited state in {sup 10}Be was found and the population probability ratio N(2{sup +})/N(0{sup +}) = 0.160 {+-} 0.025 was estimated. No evidence was found for 3368-keV {gamma} rays emitted from a triple molecular state. For the first time, charge distributions are obtained for ternary fission fragments emitted with helium, beryllium, and carbon LCPs.

  7. LiF/CaF2/LiBaF3 ternary fluoride eutectic scintillator

    NASA Astrophysics Data System (ADS)

    Hishinuma, Kosuke; Kamada, Kei; Kurosawa, Shunsuke; Yamaji, Akihiro; Pejchal, Jan; Yokota, Yuui; Ohashi, Yuji; Yoshikawa, Akira

    2015-04-01

    LiF/CaF2/LiBaF3 ternary eutectic scintillators were grown by the µ-PD method. In the solidified eutectic the phases were uniformly distributed in the transverse direction and aligned along the growth direction. For the Eu-doped samples, the expected emission peak observed at 425 nm was ascribed to Eu2+ 5d-4f transition from Eu:CaF2 under X-ray excitation. The LiF/CaF2/LiBaF3 ternary eutectic scintillators showed a light yield around 7,000 photons/neutron and decay time of 260 ns (73.6%) and 50 ns (26.4%).

  8. Superconductivity in the Metal Rich Li-Pd-B Ternary Boride

    NASA Astrophysics Data System (ADS)

    Togano, K.; Badica, P.; Nakamori, Y.; Orimo, S.; Takeya, H.; Hirata, K.

    2004-12-01

    Superconductivity at about 8K was observed in the metal-rich Li-Pd-B ternary system. Structural, microstructural, electrical, and magnetic investigations for various compositions proved that the Li2Pd3B compound, which has an antiperovskite cubic structure composed of distorted Pd6B octahedrons, is responsible for the superconductivity. This is the first observation of superconductivity in metal-rich ternary borides containing alkaline metal and Pd as a late transition metal. The compound prepared by arc melting has a high density and is relatively stable in the air. The upper critical fields Hc2(0) estimated by linear extrapolation and the Werthamer-Helfand-Hohenberg theory are 6.2 and 4.8T, respectively.

  9. Basics of Ternary Algebras and their underlying Nambu Brackets

    NASA Astrophysics Data System (ADS)

    Zachos, Cosmas K.

    2013-12-01

    Ternary algebras amount to closing systems of antisymmetrized trinomials of operators. The Filippov conditions (FI, which are not identities) for ternary algebras are contrasted to Bremner's identities dictated by associativity of operator products, and thus analogous to Jacobi identities. Maps of the known FI-compliant ternary algebras to underlying classical Nambu brackets are constructed, which then explain this compliance: FI-compliant ternary algebras are essentially classical Nambu brackets in disguise. In some cases involving infinite algebras, we show the classical limit may be obtained by a contraction of the quantal ternary algebra, and then explicitly realized through classical Nambu brackets. We illustrate this classical-contraction method on our Virasoro-Witt ternary algebra paradigm. The content of the talk is in the two references.

  10. Structure and electronic properties of conducting, ternary TixTa1-xN films

    NASA Astrophysics Data System (ADS)

    Matenoglou, G. M.; Lekka, Ch. E.; Koutsokeras, L. E.; Karras, G.; Kosmidis, C.; Evangelakis, G. A.; Patsalas, P.

    2009-05-01

    We report on the electronic structure and optical properties of conducting ternary transition metal nitrides consisting of metals of different groups of the periodic table of elements. For the study of the bonding, electronic structure, and optical properties of conducting TixTa1-xN film growth, optical spectroscopy and ab initio calculations were used. Despite the different valence electron configuration of the constituent elements, Ta(d3s2) and Ti(d2s2), we show that TiN and TaN are completely soluble due to the hybridization of the d and sp electrons of the metals and N, respectively, that stabilizes the ternary TixTa1-xN systems to the rocksalt structure. The optical properties of TixTa1-xN have been studied using spectroscopic methods and detailed electronic structure calculations, revealing that the plasma energy of the fully dense TixTa1-xN is varying between 7.8 and 9.45 eV. Additional optical absorption bands are manifested due to the N p →Ti/Ta d interband transition the t2g→eg transition due to splitting of the metals' d band, with the major exception of the Ti0.50Ta0.50N, where the eg unoccupied states are not manifested due to the local structure of the ternary system; this finding is observed for the first time and proves previous assignments of optical transitions in TaN.

  11. Large field-induced-strain at high temperature in ternary ferroelectric crystals.

    PubMed

    Wang, Yaojin; Chen, Lijun; Yuan, Guoliang; Luo, Haosu; Li, Jiefang; Viehland, D

    2016-10-13

    The new generation of ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric single crystals have potential applications in high power devices due to their surperior operational stability relative to the binary system. In this work, a reversible, large electric field induced strain of over 0.9% at room temperature, and in particular over 0.6% above 380 K was obtained. The polarization rotation path and the phase transition sequence of different compositions in these ternary systems have been determined with increasing electric field applied along [001] direction based on x-ray diffraction data. Thereafter, composition dependence of field-temperature phase diagrams were constructed, which provide compositional and thermal prospectus for the electromechanical properties. It was found the structural origin of the large stain, especially at higher temperature is the lattice parameters modulated by dual independent variables in composition of these ternary solid solution crystals.

  12. Large field-induced-strain at high temperature in ternary ferroelectric crystals

    PubMed Central

    Wang, Yaojin; Chen, Lijun; Yuan, Guoliang; Luo, Haosu; Li, Jiefang; Viehland, D.

    2016-01-01

    The new generation of ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric single crystals have potential applications in high power devices due to their surperior operational stability relative to the binary system. In this work, a reversible, large electric field induced strain of over 0.9% at room temperature, and in particular over 0.6% above 380 K was obtained. The polarization rotation path and the phase transition sequence of different compositions in these ternary systems have been determined with increasing electric field applied along [001] direction based on x-ray diffraction data. Thereafter, composition dependence of field-temperature phase diagrams were constructed, which provide compositional and thermal prospectus for the electromechanical properties. It was found the structural origin of the large stain, especially at higher temperature is the lattice parameters modulated by dual independent variables in composition of these ternary solid solution crystals. PMID:27734908

  13. Large field-induced-strain at high temperature in ternary ferroelectric crystals

    NASA Astrophysics Data System (ADS)

    Wang, Yaojin; Chen, Lijun; Yuan, Guoliang; Luo, Haosu; Li, Jiefang; Viehland, D.

    2016-10-01

    The new generation of ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric single crystals have potential applications in high power devices due to their surperior operational stability relative to the binary system. In this work, a reversible, large electric field induced strain of over 0.9% at room temperature, and in particular over 0.6% above 380 K was obtained. The polarization rotation path and the phase transition sequence of different compositions in these ternary systems have been determined with increasing electric field applied along [001] direction based on x-ray diffraction data. Thereafter, composition dependence of field-temperature phase diagrams were constructed, which provide compositional and thermal prospectus for the electromechanical properties. It was found the structural origin of the large stain, especially at higher temperature is the lattice parameters modulated by dual independent variables in composition of these ternary solid solution crystals.

  14. Ternary eutectic growth of Ag-Cu-Sb alloy within ultrasonic field

    NASA Astrophysics Data System (ADS)

    Zhai, Wei; Hong, Zhenyu; Wei, Bingbo

    2007-08-01

    The liquid to solid transformation of ternary Ag42.4Cu21.6Sb36 eutectic alloy was accomplished in an ultrasonic field with a frequency of 35 kHz, and the growth mechanism of this ternary eutectic was examined. Theoretical calculations predict that the sound intensity in the liquid phase at the solidification interface increases gradually as the interface moves up from the sample bottom to its top. The growth mode of ( ɛ + θ + Sb) ternary eutectic exhibits a transition of “divorced eutectic—mixture of anomalous and regular structures—regular eutectic” along the sample axis due to the inhomogeneity of sound field distribution. In the top zone with the highest sound intensity, the cavitation effect promotes the three eutectic phases to nucleate independently, while the acoustic streaming efficiently suppresses the coupled growth of eutectic phases. In the meantime, the ultrasonic field accelerates the solute transportation at the solid-liquid interface, which reduces the solute solubility of eutectic phases.

  15. Normal state properties of the ternary molybdenum sulfides

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Alterovitz, S. A.

    1978-01-01

    By making a large number of normal state and superconducting properties measurements, all on the same ternary molybdenum sulfide samples, we obtain values for Fermi surface and superconducting parameters. From these we conclude that sputtered ternary molybdenum sulfides are not completely in the dirty superconductor limit, and that they are d-band metals with a high electron carrier density.

  16. Demonstration of Complementary Ternary Graphene Field-Effect Transistors

    PubMed Central

    Kim, Yun Ji; Kim, So-Young; Noh, Jinwoo; Shim, Chang Hoo; Jung, Ukjin; Lee, Sang Kyung; Chang, Kyoung Eun; Cho, Chunhum; Lee, Byoung Hun

    2016-01-01

    Strong demand for power reduction in state-of-the-art semiconductor devices calls for novel devices and architectures. Since ternary logic architecture can perform the same function as binary logic architecture with a much lower device density and higher information density, a switch device suitable for the ternary logic has been pursued for several decades. However, a single device that satisfies all the requirements for ternary logic architecture has not been demonstrated. We demonstrated a ternary graphene field-effect transistor (TGFET), showing three discrete current states in one device. The ternary function was achieved by introducing a metal strip to the middle of graphene channel, which created an N-P-N or P-N-P doping pattern depending on the work function of the metal. In addition, a standard ternary inverter working at room temperature has been achieved by modulating the work function of the metal in a graphene channel. The feasibility of a ternary inverter indicates that a general ternary logic architecture can be realized using complementary TGFETs. This breakthrough will provide a key stepping-stone for an extreme-low-power computing technology. PMID:27991594

  17. Normal state properties of the ternary molybdenum sulfides

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Alterovitz, S. A.

    1978-01-01

    By making a large number of normal state and superconducting properties measurements, all on the same ternary molybdenum sulfide samples, we obtain values for Fermi surface and superconducting parameters. From these we conclude that sputtered ternary molybdenum sulfides are not completely in the dirty superconductor limit, and that they are d-band metals with a high electron carrier density.

  18. Demonstration of Complementary Ternary Graphene Field-Effect Transistors.

    PubMed

    Kim, Yun Ji; Kim, So-Young; Noh, Jinwoo; Shim, Chang Hoo; Jung, Ukjin; Lee, Sang Kyung; Chang, Kyoung Eun; Cho, Chunhum; Lee, Byoung Hun

    2016-12-19

    Strong demand for power reduction in state-of-the-art semiconductor devices calls for novel devices and architectures. Since ternary logic architecture can perform the same function as binary logic architecture with a much lower device density and higher information density, a switch device suitable for the ternary logic has been pursued for several decades. However, a single device that satisfies all the requirements for ternary logic architecture has not been demonstrated. We demonstrated a ternary graphene field-effect transistor (TGFET), showing three discrete current states in one device. The ternary function was achieved by introducing a metal strip to the middle of graphene channel, which created an N-P-N or P-N-P doping pattern depending on the work function of the metal. In addition, a standard ternary inverter working at room temperature has been achieved by modulating the work function of the metal in a graphene channel. The feasibility of a ternary inverter indicates that a general ternary logic architecture can be realized using complementary TGFETs. This breakthrough will provide a key stepping-stone for an extreme-low-power computing technology.

  19. Demonstration of Complementary Ternary Graphene Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Kim, Yun Ji; Kim, So-Young; Noh, Jinwoo; Shim, Chang Hoo; Jung, Ukjin; Lee, Sang Kyung; Chang, Kyoung Eun; Cho, Chunhum; Lee, Byoung Hun

    2016-12-01

    Strong demand for power reduction in state-of-the-art semiconductor devices calls for novel devices and architectures. Since ternary logic architecture can perform the same function as binary logic architecture with a much lower device density and higher information density, a switch device suitable for the ternary logic has been pursued for several decades. However, a single device that satisfies all the requirements for ternary logic architecture has not been demonstrated. We demonstrated a ternary graphene field-effect transistor (TGFET), showing three discrete current states in one device. The ternary function was achieved by introducing a metal strip to the middle of graphene channel, which created an N-P-N or P-N-P doping pattern depending on the work function of the metal. In addition, a standard ternary inverter working at room temperature has been achieved by modulating the work function of the metal in a graphene channel. The feasibility of a ternary inverter indicates that a general ternary logic architecture can be realized using complementary TGFETs. This breakthrough will provide a key stepping-stone for an extreme-low-power computing technology.

  20. Balancing Accuracy and Computational Efficiency for Ternary Gas Hydrate Systems

    NASA Astrophysics Data System (ADS)

    White, M. D.

    2011-12-01

    phase transitions. This paper describes and demonstrates a numerical solution scheme for ternary hydrate systems that seeks a balance between accuracy and computational efficiency. This scheme uses a generalize cubic equation of state, functional forms for the hydrate equilibria and cage occupancies, variable switching scheme for phase transitions, and kinetic exchange of hydrate formers (i.e., CH4, CO2, and N2) between the mobile phases (i.e., aqueous, liquid CO2, and gas) and hydrate phase. Accuracy of the scheme will be evaluated by comparing property values and phase equilibria against experimental data. Computational efficiency of the scheme will be evaluated by comparing the base scheme against variants. The application of interest will the production of a natural gas hydrate deposit from a geologic formation, using the guest molecule exchange process; where, a mixture of CO2 and N2 are injected into the formation. During the guest-molecule exchange, CO2 and N2 will predominately replace CH4 in the large and small cages of the sI structure, respectively.

  1. Symmetric weak ternary quantum homomorphic encryption schemes

    NASA Astrophysics Data System (ADS)

    Wang, Yuqi; She, Kun; Luo, Qingbin; Yang, Fan; Zhao, Chao

    2016-03-01

    Based on a ternary quantum logic circuit, four symmetric weak ternary quantum homomorphic encryption (QHE) schemes were proposed. First, for a one-qutrit rotation gate, a QHE scheme was constructed. Second, in view of the synthesis of a general 3 × 3 unitary transformation, another one-qutrit QHE scheme was proposed. Third, according to the one-qutrit scheme, the two-qutrit QHE scheme about generalized controlled X (GCX(m,n)) gate was constructed and further generalized to the n-qutrit unitary matrix case. Finally, the security of these schemes was analyzed in two respects. It can be concluded that the attacker can correctly guess the encryption key with a maximum probability pk = 1/33n, thus it can better protect the privacy of users’ data. Moreover, these schemes can be well integrated into the future quantum remote server architecture, and thus the computational security of the users’ private quantum information can be well protected in a distributed computing environment.

  2. Equal area rule methods for ternary systems

    SciTech Connect

    Shyu, G.S.; Hanif, N.S.M.; Alvarado, J.F.J.; Hall, K.R.; Eubank, P.T.

    1995-12-01

    The phase equilibrium behavior of fluid mixtures is an important design consideration for both chemical processes and oil production. Eubank and Hall have recently shown the equal area rule (EAR) applies to the composition derivative of the Gibbs energy of a binary system at fixed pressure and temperature regardless of derivative continuity. A sufficient condition for equilibria, EAR is faster and simpler than either the familiar tangent-line method or the area method of Eubank et al. Here, the authors show that EAR can be extended to ternary systems exhibiting one, two, or three phases at equilibrium. A single directional vector is searched in composition space; at equilibrium, this vector is the familiar tie line. A sensitive criterion for equilibrium under EAR is equality of orthogonal derivatives such as ({partial_derivative}g/{partial_derivative}x{sub 1}){sub x{sub 2}P,T} at the end points ({alpha} and {beta}), where g {equivalent_to} ({Delta}{sub m}G/RT). Repeated use of the binary algorithm published in the first reference allows rapid, simple solution of ternary problems, even with hand-held calculations for cases where the background model is simple (e.g., activity coefficient models) and the derivative continuous.

  3. Phase Behavior of Ternary Polymer Blends: Asymmetry, Segregation Strength, and Coexisting Phases

    NASA Astrophysics Data System (ADS)

    Habersberger, Brian McLean

    The bicontinuous microemulsion phase, found in ternary polymer blends containing immiscible A and B homopolymers and an amphiphilic A-B diblock copolymer, has attracted interest due to its combination of properties that make it attractive for use as a template for nanoporous materials. While recent work has demonstrated that a variety of materials can be templated from a single blend system, future work may demand incorporation of a variety of polymers into microemulsion-forming blends. Such systems fall beyond the currently understood model phase behavior for ternary blends. In this thesis, the effect of well-controlled nonidealities and other extensions of ternary blend phase behavior are described. Systems were designed to investigate the influence of conformational asymmetry---a difference in the radius of gyration per molar volume of two polymers---on blend phase behavior. Previous work suggested that the influence was significant, and resulted in a broad region of a hexagonally symmetric phase in the vicinity of the microemulsion. This behavior could inhibit the process of capturing of microemulsion for templating purposes, so it is important to understand conformational asymmetry's influence. A related series of systems was designed to investigate the effect of increased segregation strength by using amphiphilic diblocks of varying molecular weight. Finally, a previous study incorporating an ABA triblock, C homopolymer, and ABABA--C amphiphilic hexablock was expanded to incorporate ordered components, allowing for hierarchical microphase separation. This study demonstrates that model ternary blend phase behavior can be extended to systems containing more complex linear polymer architectures. Additionally, two phenomena observed in these systems were investigated in detail. First, light scattering was observed in the vicinity of the order-disorder transition of blends; this scattering is a result of coexisting ordered and disordered phases. Finally, catalytic

  4. The ternary system cerium-rhodium-silicon

    SciTech Connect

    Lipatov, Alexey; Gribanov, Alexander; Grytsiv, Andriy; Safronov, Sergey; Rogl, Peter; Rousnyak, Julia; Seropegin, Yurii; Giester, Gerald

    2010-04-15

    Phase relations have been established in the ternary system Ce-Rh-Si for the isothermal section at 800 deg. C based on X-ray powder diffraction and EPMA on about 80 alloys, which were prepared by arc melting under argon or by powder reaction sintering. From the 25 ternary compounds observed at 800 deg. C 13 phases have been reported earlier. Based on XPD Rietveld refinements the crystal structures for 9 new ternary phases were assigned to known structure types. Structural chemistry of these compounds follows the characteristics already outlined for their prototype structures: tau{sub 7}-Ce{sub 3}RhSi{sub 3}, (Ba{sub 3}Al{sub 2}Ge{sub 2}-type), tau{sub 8}-Ce{sub 2}Rh{sub 3-x}Si{sub 3+x} (Ce{sub 2}Rh{sub 1.35}Ge{sub 4.65}-type), tau{sub 10}-Ce{sub 3}Rh{sub 4-x}Si{sub 4+x} (U{sub 3}Ni{sub 4}Si{sub 4}-type), tau{sub 11}-CeRh{sub 6}Si{sub 4} (LiCo{sub 6}P{sub 4}-type), tau{sub 13}-Ce{sub 6}Rh{sub 30}Si{sub 19.3} (U{sub 6}Co{sub 30}Si{sub 19}-type), tau{sub 18}-Ce{sub 4}Rh{sub 4}Si{sub 3} (Sm{sub 4}Pd{sub 4}Si{sub 3}-type), tau{sub 21}-CeRh{sub 2}Si (CeIr{sub 2}Si-type), tau{sub 22}-Ce{sub 2}Rh{sub 3+x}Si{sub 1-x} (Y{sub 2}Rh{sub 3}Ge-type) and tau{sub 24}-Ce{sub 8}(Rh{sub 1-x}Si{sub x}){sub 24}Si (Ce{sub 8}Pd{sub 24}Sb-type). For tau{sub 25}-Ce{sub 4}(Rh{sub 1-x}Si{sub x}){sub 12}Si a novel bcc structure was proposed from Rietveld analysis. Detailed crystal structure data were derived for tau{sub 3}-CeRhSi{sub 2} (CeNiSi{sub 2}-type) and tau{sub 6}-Ce{sub 2}Rh{sub 3}Si{sub 5} (U{sub 2}Co{sub 3}Si{sub 5}-type) by X-ray single crystal experiments, confirming the structure types. The crystal structures of tau{sub 4}-Ce{sub 22}Rh{sub 22}Si{sub 56}, tau{sub 5}-Ce{sub 20}Rh{sub 27}Si{sub 53} and tau{sub 23}-Ce{sub 33.3}Rh{sub 58.2-55.2}Si{sub 8.5-11.5} are unknown. High temperature compounds with compositions Ce{sub 10}Rh{sub 51}Si{sub 33} (U{sub 10}Co{sub 51}Si{sub 33}-type) and CeRhSi (LaIrSi-type) have been observed in as-cast alloys but these phases do not participate in

  5. Electron-spectroscopic investigations on ternary HFS: CeT 2X 2

    NASA Astrophysics Data System (ADS)

    Schmied, B.; Wilhelm, M.; Kübler, U.; Getzlaff, M.; Fecher, G. H.; Schönhense, G.

    1997-02-01

    Investigations of the electronic properties were carried out for ternary Ce-based heavy fermion systems. The well-ordered surfaces of HFS were prepared by MBE on W (110) with subsequent annealing. The layers are characterised by MEED, LEED, AES and XPS. For the electron-spectroscopic investigations, ARUPS and SPEELS were used. In the photoemission spectra, dispersion effects could be detected. By means of SPEELS, the dipole-forbidden Ce f-f transitions could be observed. The comparison of the energy loss spectra above and below the characteristic temperature T ∗ reveals differences in the energy losses as well as in the asymmetries.

  6. Monte Carlo simulation of Prussian blue analogs described by Heisenberg ternary alloy model

    NASA Astrophysics Data System (ADS)

    Yüksel, Yusuf

    2015-11-01

    Within the framework of Monte Carlo simulation technique, we simulate magnetic behavior of Prussian blue analogs based on Heisenberg ternary alloy model. We present phase diagrams in various parameter spaces, and we compare some of our results with those based on Ising counterparts. We clarify the variations of transition temperature and compensation phenomenon with mixing ratio of magnetic ions, exchange interactions, and exchange anisotropy in the present ferro-ferrimagnetic Heisenberg system. According to our results, thermal variation of the total magnetization curves may exhibit N, L, P, Q, R type behaviors based on the Néel classification scheme.

  7. Incommensurate Magnetic Structure in the Cubic Noncentrosymmetric Ternary Compound Pr5Ru3Al2

    NASA Astrophysics Data System (ADS)

    Makino, Koya; Okuyama, Daisuke; Avdeev, Maxim; Sato, Taku J.

    2016-07-01

    Magnetic susceptibility and neutron powder diffraction experiments have been performed on the noncentrosymmetric ternary compound Pr5Ru3Al2. The previously reported ferromagnetic transition at 24 K was not detected in our improved-quality samples. Instead, magnetic ordering was observed in the DC magnetic susceptibility at T{c} ≃ 3.8 K. The neutron powder diffraction experiment further indicates that an incommensurate magnetic structure is established below Tc with the magnetic modulation vector {{q}} ≃ (0.066,0.066,0.066) (r.l.u.). A candidate for the magnetic structure is proposed using representation analysis.

  8. Superconductivity in the Hexagonal Ternary Phosphide ScIrP

    NASA Astrophysics Data System (ADS)

    Okamoto, Yoshihiko; Inohara, Takumi; Yamakawa, Youichi; Yamakage, Ai; Takenaka, Koshi

    2016-01-01

    We report the discovery of a bulk superconducting transition at 3.4 K in the ternary phosphide, ScIrP, which crystallizes in a hexagonal ZrNiAl-type structure without spatial inversion symmetry. On the basis of heat capacity data in a zero magnetic field, ScIrP is suggested to be a weakly-coupled Bardeen-Cooper-Schrieffer superconductor. Alternatively, experimental results under magnetic fields indicate that this material is a type-II superconductor with an upper critical field Hc2 at magnetic fields above 5 T at zero temperature. This moderately high Hc2 does not violate the Pauli limit, but it does imply that there is a significant effect from the strong spin-orbit interaction of Ir 5d electrons in the noncentrosymmetric crystal structure. Electronic structure calculations show an interesting feature of ScIrP, where both the Sc 3d and Ir 5d orbitals contribute to the electronic density of states at the Fermi level.

  9. Host Atom Diffusion in Ternary Fe-Cr-Al Alloys

    NASA Astrophysics Data System (ADS)

    Rohrberg, Diana; Spitzer, Karl-Heinz; Dörrer, Lars; Kulińska, Anna J.; Borchardt, Günter; Fraczkiewicz, Anna; Markus, Torsten; Jacobs, Michael H. G.; Schmid-Fetzer, Rainer

    2014-01-01

    In the Fe-rich corner of the Fe-Cr-Al ternary phase diagram, both interdiffusion experiments [1048 K to 1573 K (775 °C to 1300 °C)] and 58Fe tracer diffusion experiments [873 K to 1123 K (600 °C to 850 °C)] were performed along the Fe50Cr50-Fe50Al50 section. For the evaluation of the interdiffusion data, a theoretical model was used which directly yields the individual self-diffusion coefficients of the three constituents and the shift of the original interface of the diffusion couple through inverse modeling. The driving chemical potential gradients were derived using a phenomenological Gibbs energy function which was based on thoroughly assessed thermodynamic data. From the comparison of the individual self-diffusivities of Fe as obtained from interdiffusion profiles and independent 58Fe tracer diffusivities, the influence of the B2-A2 order-disorder transition becomes obvious, resulting in a slightly higher activation enthalpy for the bcc-B2 phase and a significantly lower activation entropy for this phase.

  10. The influence of ternary alloying elements on the Al-Si eutectic microstructure and the Si morphology

    NASA Astrophysics Data System (ADS)

    Darlapudi, A.; McDonald, S. D.; Terzi, S.; Prasad, A.; Felberbaum, M.; StJohn, D. H.

    2016-01-01

    The influence of the ternary alloying elements Cu, Mg and Fe on the Al-Si eutectic microstructure is investigated using a commercial purity Al-10 wt%Si alloy in unmodified and Sr-modified conditions. A change in the Al-Si eutectic microstructure was associated with a change in the nucleation density of the eutectic grains caused by the addition of ternary alloying elements. When the ternary alloying element addition resulted in an increase in the eutectic nucleation frequency, a fibrous to flake-like transition was observed within the eutectic grain. When the ternary alloying element addition decreased the eutectic nucleation frequency significantly, a change in the eutectic morphology from flake-like to a mixture of flake-like and fibrous morphologies was observed. The mechanism of Al-Si eutectic modification is discussed. The growth velocity of the eutectic grain - liquid interface and the constitutional driving force available for growth are proposed as important parameters that influence the degree of eutectic modification in Al-Si alloys.

  11. Hfq-bridged ternary complex is important for translation activation of rpoS by DsrA

    PubMed Central

    Wang, Weiwei; Wang, Lijun; Wu, Jihui; Gong, Qingguo; Shi, Yunyu

    2013-01-01

    The rpoS mRNA, which encodes the master regulator σS of general stress response, requires Hfq-facilitated base pairing with DsrA small RNA for efficient translation at low temperatures. It has recently been proposed that one mechanism underlying Hfq action is to bridge a transient ternary complex by simultaneously binding to rpoS and DsrA. However, no structural evidence of Hfq simultaneously bound to different RNAs has been reported. We detected simultaneous binding of Hfq to rpoS and DsrA fragments. Crystal structures of AU6A•Hfq•A7 and Hfq•A7 complexes were resolved using 1.8- and 1.9-Å resolution, respectively. Ternary complex has been further verified in solution by NMR. In vivo, activation of rpoS translation requires intact Hfq, which is capable of bridging rpoS and DsrA simultaneously into ternary complex. This ternary complex possibly corresponds to a meta-stable transition state in Hfq-facilitated small RNA–mRNA annealing process. PMID:23605038

  12. Synthesis, Structure, and Properties of New Ternary Calcium Nitrides

    NASA Astrophysics Data System (ADS)

    Chern, Ming-Yau

    The discussion of the chemistry of nitrides, its relationship with oxides, especially the high T _{rm c} oxides, and ways to approach new nitrides is introduced in Chapter 1. Chapter 2 describes the synthesis and physical properties of a new metallic ternary nitride, CaNiN, prepared by the reaction of Ca_3N _2 and Ni in N_2 gas at 1000^circC. The structure is a simple one with all atoms occupying fixed special positions, yet it features interesting and uncommon--Ni -N-Ni-N--linear chains. Although Ni usually has a 2+ or 3+ formal oxidation state in oxides and sulfides, it has the unusual oxidation state of 1+ in CaNiN. In Chapter 3, a new ternary nitride Ca _2ZnN_2, prepared by the reaction of Ca_3N _2 and Zn in N_2 gas at 680^circC is described. The structure, refined by Rietveld profile analysis of x-ray powder diffraction data, is tetragonal (I 4/m m m) with a = 3.5835(4)A, c = 12.6583(7)A, and Z = 2. It features condensed nitrogen-centered metal octahedra and an unusual linear coordination of Zn by two nitrogen atoms. Conductivity and magnetic measurements show that Ca_2 ZnN_2 is insulating and diamagnetic. A family of anti-perovskite nitrides of the formula Ca_3MN, where M is a Group IV or a Group V element, is reported in Chapter 4. Ca _3BiN is the first one synthesized in this family. It is semiconducting and diamagnetic as expected from the closed shell electronic configuration of each species, i.e. Bi^{3-}, N^{3-}, and Ca ^{2+}. The anionic bismuth suggests that it can be subsituted for by other trivalent anions Sb^{3-}, As^ {3-}, and P^{3-} . The structure of Ca_3AsN and Ca_3PN are actually distorted from the cubic cell at room temperature because As ^{3-} and P^{3 -} are smaller than Bi^{3 -}. Structural phase transitions were also observed at high temperatures by magnetic susceptibility measurements in those two phases. In the last chapter, Chapter 6, the use and design of several apparatuses in characterizing the compounds mentioned above are presented

  13. The ternary system cerium-rhodium-silicon

    NASA Astrophysics Data System (ADS)

    Lipatov, Alexey; Gribanov, Alexander; Grytsiv, Andriy; Safronov, Sergey; Rogl, Peter; Rousnyak, Julia; Seropegin, Yurii; Giester, Gerald

    2010-04-01

    Phase relations have been established in the ternary system Ce-Rh-Si for the isothermal section at 800 °C based on X-ray powder diffraction and EPMA on about 80 alloys, which were prepared by arc melting under argon or by powder reaction sintering. From the 25 ternary compounds observed at 800 °C 13 phases have been reported earlier. Based on XPD Rietveld refinements the crystal structures for 9 new ternary phases were assigned to known structure types. Structural chemistry of these compounds follows the characteristics already outlined for their prototype structures: τ7—Ce 3RhSi 3, (Ba 3Al 2Ge 2-type), τ8—Ce 2Rh 3-xSi 3+x (Ce 2Rh 1.35Ge 4.65-type), τ10—Ce 3Rh 4-xSi 4+x (U 3Ni 4Si 4-type), τ11—CeRh 6Si 4 (LiCo 6P 4-type), τ13—Ce 6Rh 30Si 19.3 (U 6Co 30Si 19-type), τ18—Ce 4Rh 4Si 3 (Sm 4Pd 4Si 3-type), τ21—CeRh 2Si (CeIr 2Si-type), τ22—Ce 2Rh 3+xSi 1-x (Y 2Rh 3Ge-type) and τ24—Ce 8(Rh 1-xSi x) 24Si (Ce 8Pd 24Sb-type). For τ25—Ce 4(Rh 1-xSi x) 12Si a novel bcc structure was proposed from Rietveld analysis. Detailed crystal structure data were derived for τ3—CeRhSi 2 (CeNiSi 2-type) and τ6—Ce 2Rh 3Si 5 (U 2Co 3Si 5-type) by X-ray single crystal experiments, confirming the structure types. The crystal structures of τ4—Ce 22Rh 22Si 56, τ5—Ce 20Rh 27Si 53 and τ23—Ce 33.3Rh 58.2-55.2Si 8.5-11.5 are unknown. High temperature compounds with compositions Ce 10Rh 51Si 33 (U 10Co 51Si 33-type) and CeRhSi (LaIrSi-type) have been observed in as-cast alloys but these phases do not participate in the phase equilibria at 800 °C.

  14. [Construction of Three-Dimensional Isobologram for Ternary Pollutant Mixtures].

    PubMed

    2015-12-01

    Tongji University, Shanghai 200092, China) Isobolographic analysis was widely used in the interaction assessment of binary mixtures. However, how to construct a three-dimensional (3D) isobologram for the assessment of toxicity interaction within ternary mixtures is still not reported up to date. The main purpose of this paper is to develop a 3D isobologram where the relative concentrations of three components are acted as three coordinate axes in 3D space to examine the toxicity interaction within ternary mixtures. Taking six commonly used pesticides in China, including three herbicides (2, 4-D, desmetryne and simetryn) and three insecticides ( dimethoate, imidacloprid and propoxur) as the mixture components, the uniform design ray procedure (UD-Ray) was used to rationally design the concentration composition of various components in the ternary mixtures so that effectively and comprehensively reflected the variety of actual environmental concentrations. The luminescent inhibition toxicities of single pesticides and their ternary mixtures to Vibrio fischeri at various concentration levels were determined by the microplate toxicity analysis. Selecting concentration addition (CA) as the addition reference, 3D isobolograms were constructed to study the toxicity interactions of various ternary mixtures. The results showed that the 3D isobologram could clearly and directly exhibit the toxicity interactions of ternary mixtures, and extend the use of isobolographic analysis into the ternary mixtures.

  15. Ternary compounds and isothermal section in Lu-Fe-Ga ternary system at 773 K

    NASA Astrophysics Data System (ADS)

    Liu, Fusheng; Ao, Weiqin; Pan, Laicai; Wang, Qibao; Yan, Jialing; Li, Junqin

    2013-06-01

    The isothermal section of the Lu-Fe-Ga ternary system at 773 K was investigated and constructed based on X-ray powder diffraction analysis. Thirteen binary compounds, Lu2Fe17, Lu6Fe23, LuFe2, LuGa3, LuGa2, Lu3Ga5, LuGa, Lu3Ga2, Lu5Ga3, Fe3Ga, Fe6Ga5, Fe3Ga4, FeGa3, nine ternary solid solutions, T1-LuFe2-1.43Ga0-0.57, T2-LuFe1.34-0.92Ga0.68-1.08, T3-LuFe0.52-0.26Ga1.48-1.74, T5-LuFe2.04-1.72Ga0.96-1.28, T6-Lu6Fe23-21.4Ga0-1.6, T7-Lu2Fe17-14.5Ga0-3.5, T8-Lu2Fe12.9-8.1Ga4.1-8.9, T9-LuFe6.8-5.5Ga5.2-6.5, T10-LuFe5.2-4.5Ga6.8-7.5, and two ternary compounds, T4-LuFe2.35Ga0.65 and T11-Lu2FeGa8 have been confirmed. The structures of the five new ternary compounds or solid solution T2, T3, T4, T5 and T8 are determined by Rietveld refinement method.

  16. Phase stability of ternary fcc and bcc Fe-Cr-Ni alloys

    NASA Astrophysics Data System (ADS)

    Wróbel, Jan S.; Nguyen-Manh, Duc; Lavrentiev, Mikhail Yu.; Muzyk, Marek; Dudarev, Sergei L.

    2015-01-01

    The phase stability of fcc and bcc magnetic binary Fe-Cr, Fe-Ni, and Cr-Ni alloys, and ternary Fe-Cr-Ni alloys is investigated using a combination of density functional theory (DFT), cluster expansion (CE), and magnetic cluster expansion (MCE) approaches. Energies, magnetic moments, and volumes of more than 500 alloy structures have been evaluated using DFT, and the predicted most stable configurations are compared with experimental observations. Deviations from the Vegard law in fcc Fe-Cr-Ni alloys, resulting from the nonlinear variation of atomic magnetic moments as functions of alloy composition, are observed. The accuracy of the CE model is assessed against the DFT data, where for ternary Fe-Cr-Ni alloys the cross-validation error is found to be less than 12 meV/atom. A set of cluster interaction parameters is defined for each alloy, where it is used for predicting new ordered alloy structures. The fcc Fe2CrNi phase with Cu2NiZn -like crystal structure is predicted to be the global ground state of ternary Fe-Cr-Ni alloys, with the lowest chemical ordering temperature of 650 K. DFT-based Monte Carlo (MC) simulations are applied to the investigation of order-disorder transitions in Fe-Cr-Ni alloys. The enthalpies of formation of ternary alloys predicted by MC simulations at 1600 K, combined with magnetic correction derived from MCE, are in excellent agreement with experimental values measured at 1565 K. The relative stability of fcc and bcc phases is assessed by comparing the free energies of alloy formation. The evaluation of the free energies involved the application of a dedicated algorithm for computing the configurational entropies of the alloys. Chemical order is analyzed, as a function of temperature and composition, in terms of the Warren-Cowley short-range order (SRO) parameters and effective chemical pairwise interactions. In addition to compositions close to binary intermetallic phases CrNi2, FeNi, FeNi3, and FeNi8, pronounced chemical order is found

  17. Intrinsic DX Centers in Ternary Chalcopyrite Semiconductors

    SciTech Connect

    Lany, S.; Zunger, A.

    2008-01-01

    In III-V and II-VI semiconductors, certain nominally electron-donating impurities do not release electrons but instead form deep electron-traps known as 'DX centers.' While in these compounds, such traps occur only after the introduction of foreign impurity atoms, we find from first-principles calculations that in ternary I-III-VI{sub 2} chalcopyrites like CuInSe{sub 2} and CuGaSe{sub 2}, DX-like centers can develop without the presence of any extrinsic impurities. These intrinsic DX centers are suggested as a cause of the difficulties to maintain high efficiencies in CuInSe{sub 2}-based thin-film solar-cells when the band gap is increased by addition of Ga.

  18. Designing thin film materials — Ternary borides from first principles

    PubMed Central

    Euchner, H.; Mayrhofer, P.H.

    2015-01-01

    Exploiting the mechanisms responsible for the exceptional properties of aluminum based nitride coatings, we apply ab initio calculations to develop a recipe for designing functional thin film materials based on ternary diborides. The combination of binary diborides, preferring different structure types, results in supersaturated metastable ternary systems with potential for phase transformation induced effects. For the exemplary cases of MxW1 − xB2 (with M = Al, Ti, V) we show by detailed ab initio calculations that the respective ternary solid solutions are likely to be experimentally accessible by modern depositions techniques. PMID:26082562

  19. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOEpatents

    Anderson, I.E.; Yost, F.G.; Smith, J.F.; Miller, C.M.; Terpstra, R.L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217 C and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid ``mushy`` zone) relative to the eutectic melting temperature (e.g. up to 15 C above the eutectic melting temperature). 5 figs.

  20. Pb-free Sn-Ag-Cu ternary eutectic solder

    DOEpatents

    Anderson, Iver E.; Yost, Frederick G.; Smith, John F.; Miller, Chad M.; Terpstra, Robert L.

    1996-06-18

    A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217.degree. C. and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid "mushy" zone) relative to the eutectic melting temperature (e.g. up to 15.degree. C. above the eutectic melting temperature).

  1. A Three-dimensional Topological Model of Ternary Phase Diagram

    NASA Astrophysics Data System (ADS)

    Mu, Yingxue; Bao, Hong

    2017-01-01

    In order to obtain a visualization of the complex internal structure of ternary phase diagram, the paper realized a three-dimensional topology model of ternary phase diagram with the designed data structure and improved algorithm, under the guidance of relevant theories of computer graphics. The purpose of the model is mainly to analyze the relationship between each phase region of a ternary phase diagram. The model not only obtain isothermal section graph at any temperature, but also extract a particular phase region in which users are interested.

  2. Ternary particle yields in 249Cf(nth,f)

    NASA Astrophysics Data System (ADS)

    Tsekhanovich, I.; Büyükmumcu, Z.; Davi, M.; Denschlag, H. O.; Gönnenwein, F.; Boulyga, S. F.

    2003-03-01

    An experiment measuring ternary particle yields in 249Cf(nth,f) was carried out at the high flux reactor of the Institut Laue-Langevin using the Lohengrin recoil mass separator. Parameters of energy distributions were determined for 27 ternary particles up to 30Mg and their yields were calculated. The yields of 17 further ternary particles were estimated on the basis of the systematics developed. The heaviest particles observed in the experiment are 37Si and 37S; their possible origin is discussed.

  3. Particular features of ternary fission induced by polarized neutrons in the major actinides U,235233 and Pu,241239

    NASA Astrophysics Data System (ADS)

    Gagarski, A.; Gönnenwein, F.; Guseva, I.; Jesinger, P.; Kopatch, Yu.; Kuzmina, T.; Lelièvre-Berna, E.; Mutterer, M.; Nesvizhevsky, V.; Petrov, G.; Soldner, T.; Tiourine, G.; Trzaska, W. H.; Zavarukhina, T.

    2016-05-01

    Ternary fission in (n ,f ) reactions was studied with polarized neutrons for the isotopes U,235233 and Pu,241239. A cold longitudinally polarized neutron beam was available at the High Flux Reactor of the Institut Laue-Langevin in Grenoble, France. The beam was hitting the fissile targets mounted at the center of a reaction chamber. Detectors for fission fragments and ternary particles were installed in a plane perpendicular to the beam. In earlier work it was discovered that the angular correlations between neutron spin and the momenta of fragments and ternary particles were very different for 233U or 235U. These correlations could now be shown to be simultaneously present in all of the above major actinides though with different weights. For one of the correlations it was observed that up to scission the compound nucleus is rotating with the axis of rotation parallel to the neutron beam polarization. Entrained by the fragments also the trajectories of ternary particles are turned away albeit by a smaller angle. The difference in turning angles becomes observable upon reversing the sense of rotation by flipping neutron spin. All turning angles are smaller than 1∘. The phenomenon was called the ROT effect. As a distinct second phenomenon it was found that for fission induced by polarized neutrons an asymmetry in the emission probability of ternary particles relative to a plane formed by fragment momentum and neutron spin appears. The asymmetry is attributed to the Coriolis force present in the nucleus while it is rotating up to scission. The size of the asymmetry is typically 10-3. This asymmetry was termed the TRI effect. The interpretation of both effects is based on the transition state model. Both effects are shown to be steered by the properties of the collective (J ,K ) transition states which are specific for any of the reactions studied. The study of asymmetries of ternary particle emission in fission induced by slow polarized neutrons provides a new

  4. Neural correlates of intentional switching from ternary to binary meter in a musical hemiola pattern.

    PubMed

    Fujioka, Takako; Fidali, Brian C; Ross, Bernhard

    2014-01-01

    Musical rhythms are often perceived and interpreted within a metrical framework that integrates timing information hierarchically based on interval ratios. Endogenous timing processes facilitate this metrical integration and allow us using the sensory context for predicting when an expected sensory event will happen ("predictive timing"). Previously, we showed that listening to metronomes and subjectively imagining the two different meters of march and waltz modulated the resulting auditory evoked responses in the temporal lobe and motor-related brain areas such as the motor cortex, basal ganglia, and cerebellum. Here we further explored the intentional transitions between the two metrical contexts, known as hemiola in the Western classical music dating back to the sixteenth century. We examined MEG from 12 musicians while they repeatedly listened to a sequence of 12 unaccented clicks with an interval of 390 ms, and tapped to them with the right hand according to a 3 + 3 + 2 + 2 + 2 hemiola accent pattern. While participants listened to the same metronome sequence and imagined the accents, their pattern of brain responses significantly changed just before the "pivot" point of metric transition from ternary to binary meter. Until 100 ms before the pivot point, brain activities were more similar to those in the simple ternary meter than those in the simple binary meter, but the pattern was reversed afterwards. A similar transition was also observed at the downbeat after the pivot. Brain areas related to the metric transition were identified from source reconstruction of the MEG using a beamformer and included auditory cortices, sensorimotor and premotor cortices, cerebellum, inferior/middle frontal gyrus, parahippocampal gyrus, inferior parietal lobule, cingulate cortex, and precuneus. The results strongly support that predictive timing processes related to auditory-motor, fronto-parietal, and medial limbic systems underlie metrical representation and its transitions.

  5. Neural correlates of intentional switching from ternary to binary meter in a musical hemiola pattern

    PubMed Central

    Fujioka, Takako; Fidali, Brian C.; Ross, Bernhard

    2014-01-01

    Musical rhythms are often perceived and interpreted within a metrical framework that integrates timing information hierarchically based on interval ratios. Endogenous timing processes facilitate this metrical integration and allow us using the sensory context for predicting when an expected sensory event will happen (“predictive timing”). Previously, we showed that listening to metronomes and subjectively imagining the two different meters of march and waltz modulated the resulting auditory evoked responses in the temporal lobe and motor-related brain areas such as the motor cortex, basal ganglia, and cerebellum. Here we further explored the intentional transitions between the two metrical contexts, known as hemiola in the Western classical music dating back to the sixteenth century. We examined MEG from 12 musicians while they repeatedly listened to a sequence of 12 unaccented clicks with an interval of 390 ms, and tapped to them with the right hand according to a 3 + 3 + 2 + 2 + 2 hemiola accent pattern. While participants listened to the same metronome sequence and imagined the accents, their pattern of brain responses significantly changed just before the “pivot” point of metric transition from ternary to binary meter. Until 100 ms before the pivot point, brain activities were more similar to those in the simple ternary meter than those in the simple binary meter, but the pattern was reversed afterwards. A similar transition was also observed at the downbeat after the pivot. Brain areas related to the metric transition were identified from source reconstruction of the MEG using a beamformer and included auditory cortices, sensorimotor and premotor cortices, cerebellum, inferior/middle frontal gyrus, parahippocampal gyrus, inferior parietal lobule, cingulate cortex, and precuneus. The results strongly support that predictive timing processes related to auditory-motor, fronto-parietal, and medial limbic systems underlie metrical representation and its

  6. Investigation of structural stability, electronic and mechanical properties of ternary imides Li{sub 2}M(NH){sub 2} (M = Be, Mg)

    SciTech Connect

    Santhosh, M.; Rajeswarapalanichamy, R. Manikandan, M.

    2016-05-06

    Ab initio calculations are performed to investigate the structural stability, electronic structure and mechanical properties of ternary imides Li{sub 2}M(NH){sub 2} (M = Be, Mg) for two different crystal structures, namely α-orthorhombic (Iba{sub 2}) and β-cubic (F-43m). Among the considered structures, orthorhombic (Iba{sub 2}) phase is found to be the most stable phase for these imides at 0K. A pressure induced structural phase transition from α to β phase is observed in all the two ternary imides. The electronic structure reveals that these imides are semiconductors. The calculated elastic constants indicate that these ternary imides are mechanically stable at 0K.

  7. Incoming nucleotide binds to Klenow ternary complex leading to stable physical sequestration of preceding dNTP on DNA

    PubMed Central

    Ramanathan, Sunita; Chary, K. V. R.; Rao, Basuthkar J.

    2001-01-01

    Klenow–DNA complex is known to undergo a rate-limiting, protein conformational transition from an ‘open’ to ‘closed’ state, upon binding of the ‘correct’ dNTP at the active site. In the ‘closed’ state, Mg2+ mediates a rapid chemical step involving nucleophilic displacement of pyrophosphate by the 3′ hydroxyl of the primer terminus. The enzyme returns to the ‘open’ state upon the release of PPi and translocation permits the next round of reaction. To determine whether Klenow can translocate to the next site on the addition of the next dNTP, without the preceding chemical step, we studied the ternary complex (Klenow–DNA–dNTP) in the absence of Mg2+. While the ternary complex is proficient in chemical addition of dNTPs in Mg2+, as revealed by primer extensions, the same in Mg2+-deficient conditions lead to non-covalent (physical) sequestration of first two ‘correct’ dNTPs in the ternary complex. Moreover, the second dNTP traps the first one in the DNA-helix of the ternary complex. Such a dNTP–DNA complex is found to be stable even after the dissociation of Klenow. This reveals the novel state of the dNTP–DNA complex where the complementary base is stacked in a DNA-helix non-covalently, without the phosphodiester linkage. Further, shuttling of the DNA between the polymerase and the exonuclease site mediates the release of such a DNA complex. Interestingly, Klenow in such a Mg2+-deficient ternary complex exhibits a ‘closed’ conformation. PMID:11353079

  8. Incoming nucleotide binds to Klenow ternary complex leading to stable physical sequestration of preceding dNTP on DNA.

    PubMed

    Ramanathan, S; Chary, K V; Rao, B J

    2001-05-15

    Klenow-DNA complex is known to undergo a rate-limiting, protein conformational transition from an 'open' to 'closed' state, upon binding of the 'correct' dNTP at the active site. In the 'closed' state, Mg(2+) mediates a rapid chemical step involving nucleophilic displacement of pyrophosphate by the 3' hydroxyl of the primer terminus. The enzyme returns to the 'open' state upon the release of PPi and translocation permits the next round of reaction. To determine whether Klenow can translocate to the next site on the addition of the next dNTP, without the preceding chemical step, we studied the ternary complex (Klenow-DNA-dNTP) in the absence of Mg(2+). While the ternary complex is proficient in chemical addition of dNTPs in Mg(2+), as revealed by primer extensions, the same in Mg(2+)-deficient conditions lead to non-covalent (physical) sequestration of first two 'correct' dNTPs in the ternary complex. Moreover, the second dNTP traps the first one in the DNA-helix of the ternary complex. Such a dNTP-DNA complex is found to be stable even after the dissociation of KLENOW: This reveals the novel state of the dNTP-DNA complex where the complementary base is stacked in a DNA-helix non-covalently, without the phosphodiester linkage. Further, shuttling of the DNA between the polymerase and the exonuclease site mediates the release of such a DNA complex. Interestingly, Klenow in such a Mg(2+)-deficient ternary complex exhibits a 'closed' conformation.

  9. The ternary system cerium-palladium-silicon

    SciTech Connect

    Lipatov, Alexey; Gribanov, Alexander; Grytsiv, Andriy; Rogl, Peter; Murashova, Elena; Seropegin, Yurii; Giester, Gerald; Kalmykov, Konstantin

    2009-09-15

    Phase relations in the ternary system Ce-Pd-Si have been established for the isothermal section at 800 deg. C based on X-ray powder diffraction and EMPA techniques on about 130 alloys, which were prepared by arc-melting under argon or powder reaction sintering. Eighteen ternary compounds have been observed to participate in the phase equilibria at 800 deg. C. Atom order was determined by direct methods from X-ray single-crystal counter data for the crystal structures of tau{sub 8}-Ce{sub 3}Pd{sub 4}Si{sub 4} (U{sub 3}Ni{sub 4}Si{sub 4}-type, Immm; a=0.41618(1), b=0.42640(1), c=2.45744(7) nm), tau{sub 16}-Ce{sub 2}Pd{sub 14}Si (own structure type, P4/nmm; a=0.88832(2), c=0.69600(2) nm) and also for tau{sub 18}-CePd{sub 1-x}Si{sub x} (x=0.07; FeB-type, Pnma; a=0.74422(5), b=0.45548(3), c=0.58569(4) nm). Rietveld refinements established the atom arrangement in the structures of tau{sub 5}-Ce{sub 3}PdSi{sub 3} (Ba{sub 3}Al{sub 2}Ge{sub 2}-type, Immm; a=0.41207(1), b=0.43026(1), c=1.84069(4) nm) and tau{sub 13}-Ce{sub 3-x}Pd{sub 20+x}Si{sub 6} (0<=x<=1, Co{sub 20}Al{sub 3}B{sub 6}-type, Fm3-barm; a=1.21527(2) nm). The ternary compound Ce{sub 2}Pd{sub 3}Si{sub 3} (structure-type Ce{sub 2}Rh{sub 1.35}Ge{sub 4.65}, Pmmn; a=0.42040(1), b=0.42247(1), c=1.72444(3) nm) was detected as a high-temperature compound, however, does not participate in the equilibria at 800 deg. C. Phase equilibria in Ce-Pd-Si are characterized by the absence of cerium solubility in palladium silicides. Mutual solubility among cerium silicides and cerium-palladium compounds are significant whereby random substitution of the almost equally sized atom species palladium and silicon is reflected in extended homogeneous regions at constant Ce-content such as for tau{sub 2}-Ce(Pd{sub x}Si{sub 1-x}){sub 2} (AlB{sub 2}-derivative type), tau{sub 6}-Ce(Pd{sub x}Si{sub 1-x}){sub 2} (ThSi{sub 2}-type) and tau{sub 7}-CePd{sub 2-x}Si{sub 2+x}. The crystal structures of compounds tau{sub 4}-Ce{sub a}pprox{sub 8}Pd

  10. Maxwell-Stefan diffusion coefficient estimation for ternary systems: an ideal ternary alcohol system.

    PubMed

    Allie-Ebrahim, Tariq; Zhu, Qingyu; Bräuer, Pierre; Moggridge, Geoff D; D'Agostino, Carmine

    2017-06-21

    The Maxwell-Stefan model is a popular diffusion model originally developed to model diffusion of gases, which can be considered thermodynamically ideal mixtures, although its application has been extended to model diffusion in non-ideal liquid mixtures as well. A drawback of the model is that it requires the Maxwell-Stefan diffusion coefficients, which are not based on measurable quantities but they have to be estimated. As a result, numerous estimation methods, such as the Darken model, have been proposed to estimate these diffusion coefficients. However, the Darken model was derived, and is only well defined, for binary systems. This model has been extended to ternary systems according to two proposed forms, one by R. Krishna and J. M. van Baten, Ind. Eng. Chem. Res., 2005, 44, 6939-6947 and the other by X. Liu, T. J. H. Vlugt and A. Bardow, Ind. Eng. Chem. Res., 2011, 50, 10350-10358. In this paper, the two forms have been analysed against the ideal ternary system of methanol/butan-1-ol/propan-1-ol and using experimental values of self-diffusion coefficients. In particular, using pulsed gradient stimulated echo nuclear magnetic resonance (PGSTE-NMR) we have measured the self-diffusion coefficients in various methanol/butan-1-ol/propan-1-ol mixtures. The experimental values of self-diffusion coefficients were then used as the input data required for the Darken model. The predictions of the two proposed multicomponent forms of this model were then compared to experimental values of mutual diffusion coefficients for the ideal alcohol ternary system. This experimental-based approach showed that the Liu's model gives better predictions compared to that of Krishna and van Baten, although it was only accurate to within 26%. Nonetheless, the multicomponent Darken model in conjunction with self-diffusion measurements from PGSTE-NMR represents an attractive method for a rapid estimation of mutual diffusion in multicomponent systems, especially when compared to exhaustive

  11. NbOsSi and TaOsSi - Two new superconducting ternary osmium silicides

    NASA Astrophysics Data System (ADS)

    Benndorf, Christopher; Heletta, Lukas; Heymann, Gunter; Huppertz, Hubert; Eckert, Hellmut; Pöttgen, Rainer

    2017-06-01

    The new equiatomic silicides NbOsSi and TaOsSi as well as ZrOsSi, TIrSi (T = Zr, Hf, Nb, Ta) and TPtSi (T = Nb, Ta) were prepared from the elements by arc-melting. These silicides crystallize with the orthorhombic TiNiSi type structure, space group Pnma. Irregularly shaped crystals of ZrOsSi, NbOsSi, TaOsSi, ZrIrSi and HfIrSi were separated from the annealed samples and investigated by single-crystal X-ray diffraction (a = 640.46(7), b = 404.07(5), c = 743.66(8) pm, wR2 = 0.0285, 390 F2 values, 20 variables for ZrOsSi; a = 629.78(6), b = 388.72(4), c = 727.48(7) pm, wR2 = 0.0350, 397 F2 values, 20 variables for NbOsSi, a = 626.80(6), b = 389.36(4), c = 726.22(7) pm, wR2 = 0.0501, 385 F2 values, 20 variables for TaOsSi, a = 653.48(8), b = 395.35(4), c = 739.19(8) pm, wR2 = 0.0427, 413 F2 values, 20 variables for ZrIrSi and a = 646.34(12), b = 393.57(7), c = 736.8(14) pm, wR2 = 0.0582, 371 F2 values, 20 variables for HfIrSi). The striking structural motifs in the new osmium compounds are three-dimensional [OsSi] networks (Os-Si: 240-251 pm) in which the osmium atoms have strongly distorted tetrahedral silicon coordination. High-pressure/high-temperature experiments (9.5 GPa/1520 K) on TaOsSi gave no hint for a structural phase transition. Temperature dependent measurements of the magnetic susceptibility and the electrical conductivity of NbOsSi and TaOsSi showed superconductivity below TC = 3.5 and 5.5 K, respectively. 29Si solid state MAS NMR investigations of the prepared silicides approved the structural models and showed a correlation between the observed 29Si resonance shifts and the electronegativity of the involved refractory metal.

  12. Pattern selection in ternary mushy layers

    NASA Astrophysics Data System (ADS)

    Guba, Peter; Anderson, Daniel

    2015-11-01

    We consider finite-amplitude convection in a mushy layer during the primary solidification of a ternary alloy. A previous linear theory identified, for the case of vanishing latent heat, solute rejection and background solidification, a direct mode of convective instability when all the individual stratifying agencies (thermal and two solutal) were statically stabilizing. The physical mechanism behind this instability was attributed to the local-phase-change effect on the net solute balance through the liquid-phase solutal diffusivity. A weakly nonlinear development of this instability is investigated in detail. We examine the stability of two-dimensional roll, and three-dimensional square and hexagonal convection patterns. The amplitude evolution equations governing roll/square and roll/hexagon competition are derived. We find that any of rolls, squares or hexagons can be nonlinearly stable, depending on the relative importance of a number of physical effects as reflected in the coefficients of the amplitude equations. The results for a special case are found to isolate a purely double-diffusive phase-change mechanism of pattern selection. Subcritical behaviour is identified inside the domain of individual static stability.

  13. Mesoscale inhomogeneities in an aqueous ternary system

    NASA Astrophysics Data System (ADS)

    Subramanian, Deepa; Hayward, Stephen; Altabet, Elia; Collings, Peter; Anisimov, Mikhail

    2012-02-01

    Aqueous solutions of certain low-molecular-weight organic compounds, such as alcohols, amines, or ethers, which are considered macroscopically homogeneous, show the presence of mysterious mesoscale inhomogeneities, order of a hundred nm in size. We have performed static and dynamic light scattering experiments in an aqueous ternary system consisting of tertiary butyl alcohol and propylene oxide. Tertiary butyl alcohol is completely soluble in water and in propylene oxide, and forms strong hydrogen bonds with water molecules. Based on results of the study, we hypothesize that the mesoscale inhomogeneities are akin to a micro phase separation, resulting from a competition between water molecules and propylene oxide molecules, wanting to be adjacent to amphiphilic tertiary butyl alcohol molecules. Coupling between two competing order parameters, super-lattice binary-alloy-like (``antiferromagnetic'' type) and demixing (``ferromagnetic'' type) may explain the formation of these inhomogeneities. Long-term stability investigation of this supramolecular structure has revealed that these inhomogeneities are exceptionally long-lived non-equilibrium structures that persist for weeks or even months.

  14. Lunar granites with unique ternary feldspars

    NASA Technical Reports Server (NTRS)

    Ryder, G.; Stoeser, D. B.; Marvin, U. B.; Bower, J. F.

    1975-01-01

    An unusually high concentration of granitic fragments, with textures ranging from holocrystalline to glassy, occurs throughout Boulder 1, a complex breccia of highland rocks from Apollo 17, Station 2. Among the minerals included in the granites are enigmatic K-Ca-rich feldspars that fall in the forbidden region of the ternary diagram. The great variability in chemistry and texture is probably the result of impact degradation and melting of a granitic source-rock. Studies of the breccia matrix suggest that this original granitic source-rock may have contained more pyroxenes and phosphates than most of the present clasts contain. Petrographic observations on Apollo 15 KREEP basalts indicate that granitic liquids may be produced by differentiation without immiscibility, and the association of the granites with KREEP-rich fragments in the boulder suggests that the granites represent a residual liquid from the plutonic fractional crystallization of a KREEP-rich magma. Boulder 1 is unique among Apollo 17 samples in its silica-KREEP-rich composition. We conclude that the boulder represents a source-rock unlike the bedrock of South Massif.

  15. Development of high reliability and high processability thermosets for electronic packaging applications based on ternary systems of benzoxazine, epoxy and phenolic resins

    NASA Astrophysics Data System (ADS)

    Rimdusit, Sarawut

    We have developed new polymeric systems based on the ternary mixture of benzoxazine, epoxy, and phenolic novolac resins. Low melt viscosity resins render void free specimens with minimal processing steps. The material properties show a wide range of desirable reliability and processability which are highly dependent on the composition of the monomers in the mixture. Fourier transform mechanical spectroscopy techniques (FTMS) are utilized as a powerful tool to study the sol-gel transition of covalently bonded polymeric networks. The gelation of the ternary mixture shows an Arrhenius-type behavior and the gel time can be well-predicted by the Arrhenius equation. The synergism in the glass transition temperature of these ternary systems is also reported. The molecular rigidity from benzoxazine and the improved crosslink density from epoxy contribute to the synergestic behavior. The mechanical relaxation spectra of the fully cured ternary systems in the temperature range of -140°C to 350°C show four types of relaxation transitions i.e. gamma, beta, alpha1, and alpha2-transitions. Thermal conductivity of the molding compounds based on these ternary mixtures exhibits a very high value of about 27 W/mk in aggregate-type boron nitride filler and the value of about 8.6 W/mk in flake-like crystal boron nitride filler comparing at the same filler loading of 68% by volume. The presence of epoxy resin in the ternary systems is found to provide improvement in a high temperature adhesion. The curing kinetics based on dynamic DSC results of this ternary system show nth order kinetics with an overall reaction order of 1.5 having activation energy of 111 kJ/mol whereas that of the gelation process is 75 kJ/mol. Thermal degradation process of this resin is deceleratory type with activation energy of 185 kJ/mol. A choice of a resin used for the study can provide maximum Tg of about 220°C in its fully cured specimen. The system has a potential use as high performance electronic

  16. Thermodynamic Calculations of Ternary Polyalcohol and Amine Phase Diagrams for Thermal Energy Storage Materials

    NASA Astrophysics Data System (ADS)

    Shi, Renhai

    Organic polyalcohol and amine globular molecular crystal materials as phase change materials (PCMs) such as Pentaglycerine (PG-(CH3)C(CH 2OH)3), Tris(hydroxymethyl)aminomethane (TRIS-(NH2)C(CH 2OH)3), 2-amino-2methyl-1,3-propanediol (AMPL-(NH2)(CH3)C(CH2OH)2), and neopentylglycol (NPG-(CH3)2C(CH2OH) 2) can be considered to be potential candidates for thermal energy storage (TES) applications such as waste heat recovery, solar energy utilization, energy saving in buildings, and electronic device management during heating or cooling process in which the latent heat and sensible heat can be reversibly stored or released through solid state phase transitions over a range of temperatures. In order to understand the polymorphism of phase transition of these organic materials and provide more choice of materials design for TES, binary systems have been studied to lower the temperature of solid-state phase transition for the specific application. To our best knowledge, the study of ternary systems in these organic materials is limited. Based on this motivation, four ternary systems of PG-TRIS-AMPL, PG-TRIS-NPG, PG-AMPL-NPG, and TRIS-AMPL-NPG are proposed in this dissertation. Firstly, thermodynamic assessment with CALPHAD method is used to construct the Gibbs energy functions into thermodynamic database for these four materials based on available experimental results from X-Ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC). The phase stability and thermodynamic characteristics of these four materials calculated from present thermodynamic database with CALPHAD method can match well the present experimental results from XRD and DSC. Secondly, related six binary phase diagrams of PG-TRIS, PG-AMPL, PG-NPG, TRIS-AMPL, TRIS-NPG, and AMPL-NPG are optimized with CALPHAD method in Thermo-Calc software based on available experimental results, in which the substitutional model is used and excess Gibbs energy is expressed with Redlich-Kister formalism. The

  17. Two-layer synchronized ternary quantum-dot cellular automata wire crossings.

    PubMed

    Bajec, Iztok Lebar; Pečar, Primož

    2012-04-16

    : Quantum-dot cellular automata are an interesting nanoscale computing paradigm. The introduction of the ternary quantum-dot cell enabled ternary computing, and with the recent development of a ternary functionally complete set of elementary logic primitives and the ternary memorizing cell design of complex processing structures is becoming feasible. The specific nature of the ternary quantum-dot cell makes wire crossings one of the most problematic areas of ternary quantum-dot cellular automata circuit design. We hereby present a two-layer wire crossing that uses a specific clocking scheme, which ensures the crossed wires have the same effective delay.

  18. The structure and properties of ternary zinc phosphate glasses for optical applications

    NASA Astrophysics Data System (ADS)

    Smith, Charmayne Elizabeth

    This dissertation focuses on the properties and structures of ternary zinc phosphate glasses that have recently been investigated as substrates for femto-second (fs) laser writing. Although these glasses have potential for use as optical substrates, their poor chemical properties limit their applications. In this work, ternary zinc phosphate glasses were studied to find compositions with enhanced chemical durability and the properties and structures of the investigated glasses are reported. Paper 1 and Paper 2 include the first systematic studies of the properties, structures of zinc aluminophosphate (ZAP) glasses and phase relationships in the ZnO-Al2O3-P2O5 system, respectively. Adding alumina to a Zn-metaphosphate glass reduces dissolution rates in water by 4 orders of magnitude and increases the glass transition temperatures. The average Al coordination number can be predicted from a structural model that considers the number of non-bridging oxygens to coordinate metal cations, and this work is the first reported use of this model for a ternary phosphate glass. Paper 3 is the first systematic study of how the properties and structures of zinc magnesium polyphosphate glasses change when MgO replaces ZnO for compositions with fixed O/P ratios. The Mg2+ and Zn2+ ions have similar field strengths, but have much different effects on glass properties that are discussed in terms of relative polarizabilities (refractivities) and electron configurations of the Mg2+ and Zn2+ ions. In Paper 4, the creation of electronic defects in zinc phosphate glasses by exposure to ultraviolet and x-ray radiation is described. The nature of the defects formed is dependent on the glass composition and similar defects are created when these glasses are exposed to femto-second laser radiation.

  19. Structural and electronic properties of the ordered ternary 3-5 semiconductors

    NASA Astrophysics Data System (ADS)

    Teng, Dan

    1990-09-01

    Modern-growth techniques have allowed control of deposition down to the monolayer level. Under certain experimental conditions, some materials spontaneously form ordered structures. These new ordered ternary compounds have recently attracted widespread attention. Five forms of ordered ternary III-V semiconductors are investigated. Three aspects of these semiconductors are investigated: (1) the determination of the locations of atoms in the crystal; (2) the electric band structure; and (3) the behaviors of the interband optical transition. To focus on trends and characteristic features of these new materials, phenomenological models are used. A Keating-type model is employed to calculate the structural properties. In this model, strain energy comes from the changes of the bond lengths and the bond angles from their equilibrium positions and follows Hooke's Law. For band-structure calculations, two empirical theories are employed: a simple tight-binding theory and a valence-force field model. Strain-included tetragonal and internal distortions as well as the spin-orbit interaction cause a splitting of the top of valence band. Trends in this splitting and the band gap variation are studied for the 18 combinations of III-V elements. The Hopfield quasicubic crystal-field model is found to accurately describe this splitting for all chalcopyrite compounds. But Hopfield's model is found to fail for several (0,0,1) and (1,1,1) superlattice compounds containing large strain distortions. It is also confirmed that band-gap narrowing is the result of noncubic crystal-field splitting, strain effects, and the chemical difference between different anions or cations of a ternary compound. As an application of these studies, the imaginary part of the dielectric constant of a realistic material, the GaP(sub 1)/InP(sub 1) (1,1,1) superlattice are calculated.

  20. The use of acoustic spectroscopy in the characterisation of ternary phase diagrams.

    PubMed

    Bonacucina, Giulia; Cespi, Marco; Mencarelli, Giovanna; Casettari, Luca; Palmieri, Giovanni F

    2013-01-30

    This study shows novel and interesting applications of acoustic spectroscopy for characterisation of ternary systems such as isopropylmiristate (IPM)/polysorbate 80 (T)/water (W). Particle size and microrheological extensional moduli (i.e. G' and G″) of different systems were determined by means of acoustic parameters such as sound attenuation and speed. Electric conductivity was also measured using the same instrument. The ultrasonic profile in terms of attenuation and sound speed in the megahertz frequency range, allowed the characterisation of the different zones of the ternary diagram such as microemulsion, emulsion and gel zones, as well as the evaluation of water state and particle size. This last parameter is a very effective tool in quantifying the phase transitions of systems and understanding which system is formed in any phase diagram zone. In fact, it is possible to analyse samples without dilution and despite their degree of turbidity, allowing complete characterisation of both properties and structure. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Bergman Clusters, Multiple Bonds, and Defect Planes: Synthetic Outcomes of Chemical Frustration in Ternary Intermetallic Systems

    NASA Astrophysics Data System (ADS)

    Hadler, Amelia Beth

    Intermetallics crystallize in a variety of complex structures, many of which show unusual bonding or intriguing properties. Understanding what factors drive this structural chemistry would be a valuable step towards designing new intermetallics with specific structures or properties. One pathway towards understanding and predicting the structures of complex intermetallics is chemical frustration, a design tool which harnesses competition between incompatible bonding or packing modes to induce complexity in ternary intermetallic systems. The research outlined in this thesis focuses on developing chemical frustration through exploratory synthesis in ternary systems designed to induce frustration between the tetrahedral close packing of many intermetallics and the simple cubic packing seen for ionic salts or elemental metals. Syntheses in three systems yielded six new ternary intermetallics, four of which crystallize in novel structure types. Three were discovered in the Ca-Cu-Cd system: Ca5Cu2Cd and Ca2Cu 2Cd9, which adopt ternary variants of binary structures, and Ca10Cu2Cd27, which crystallizes in a new structure built from Bergman clusters. All three structures can be traced to electronic packing frustration induced by the similar electronegativities but different metallic radii of Cu and Cd. The Gd-Fe-C system yielded the new carbometalate Gd13Fe 10C13 and an oxycarbide derivative. These phases crystallize in structures built from Gd tricapped trigonal prisms interpenetrated by an Fe-C network. Theoretical analyses reveal that Fe-Fe and Fe-C multiple bonding is found throughout this network. A theoretical investigation of similar carbides uncovers additional metal-metal, metal-carbon, and carbon-carbon multiple bonding. This unusual bonding stabilizes the carbides by satisfying preferred electron counts for their transition metal sites. One new phase, Mg4.5Pd5Ge1.5, was found in the Mg-Pd-Ge system. Its structure is closely related to the CsCl-type structure of

  2. Phase transitions in CsCl-type intemetallic compounds

    SciTech Connect

    Chen, Bai-Hao.

    1990-06-13

    Phase transitions in binary intermetallic compounds with the CsCl-type structure have been studied by a novel combination of high-temperature powder X-ray diffraction and Rietveld Landau theory of symmetry and phase transitions and the Gibbs-Knonvalow equation have been applied to understand the phase behavior of some systems with the CsCl-type structure. The nonstoichiometric compounds RhTi, NbRu, and RuTa with the CsCl-type structure at high temperature undergo thermal symmetry breaking transitions upon cooling. The transitions are first to the AuCu-type tetragonal, and taken to the orthorhombic NbRu-type with Cmmm symmetry. Alloys Ir-Ti which are titanium rich have the CsCl-type structure. This cubic structure transforms to the AuCu-type tetragonal structure and then to the NbRu-type structure with increasing atomic percent iridium. New partial phase diagrams for the composition ranges in near equiatomic MnAu, NbRu, and RuTa are also presented.

  3. Double-ternary complex affinity chromatography: preparation of alcohol dehydrogenases.

    PubMed

    Lange, L G; Vallee, B L

    1976-10-19

    A general affinity chromatographic method for alcohol dehydrogenase purification has been developed by employing immobilized 4-substituted pyrazole derivatives that isolate the enzyme through formation of a specific ternary complex. Sepharose 4B is activated with 300 mg of cyanogen bromide/ml of packed gel and coupled to 4-[3-(N-6-aminocaproyl)aminopropyl]pyrazole. From crude liver extracts in 50 mM phosphate-0.37 mM nicotinamide adenine dinucleotide, pH 7.5, alcohol dehydrogenase is optimally bound at a capacity of 4-5 mg of enzyme/ml of gel. Addition of ethanol, propanol, or butanol, 500 mM, results in the formation of a second ternary complex, which allows the elution of bound enzyme in high yield and purity. This double-ternary complex affinity chromatography has been applied successfully to human, horse, rat, and rabbit liver extracts to isolate the respective homogeneous alcohol dehydrogenases.

  4. Ternary bulk heterojunction for wide spectral range organic photodetectors

    NASA Astrophysics Data System (ADS)

    Shin, Hojung; Kim, Jaehoon; Lee, Changhee

    2017-08-01

    Ternary bulk heterojunction (BHJ) system, dual electron donors and an acceptor, was studied for developing wide spectral range organic photodetectors (OPDs). With two electron donor polymers with different bandgaps and an efficient electron acceptor of [6,6]-Phenyl-C71-butyric acid methyl ester (PC70BM), different blend ratios for ternary BHJ OPD were examined to achieve high photoresponsivity over a wide spectral range. OPDs based on ternary BHJ showed improved photovoltage response compared to binary BHJ. Current-voltage (J-V) characteristics as a function of external bias and light illumination were measured to reveal the underlying charge recombination mechanism which is found to be dominantly ruled by space charge limit (SCL) effect. Additional in-depth analyses including absorbance, cross-section scanning electron microscope (SEM), incident photon-to-electron conversion efficiency (IPCE) were performed.

  5. Competitive surface enrichment of alcohols in ternary water alcohol mixtures

    NASA Astrophysics Data System (ADS)

    Raina, G.; Kulkarni, G. U.

    2003-05-01

    Molecular beams generated from the vapors above the surfaces of ternary mixtures, water-methanol-ethanol, water-ethanol-1-propanol and water-methanol-1-propanol have been examined by mass spectrometry. The propensity for surface enrichment of the alcohols is obtained in terms of the vapor mole fractions of the alcohols, which in turn were estimated from the cluster populations in the molecular beam. The enriching propensities in the ternary mixtures are compared with those in the binary mixtures. The net surface enrichment in ternary mixtures is generally lowered in comparison to that in the binary mixtures, except in the case of water-methanol-ethanol, where it is similar. While the surface enriching ability of methanol is nearly unaffected, that of ethanol is enhanced. The enriching ability of the longer chain propanol, however decreases significantly.

  6. Phase evolution, microstructure and mechanical properties of equi-atomic substituted TiZrHfNiCu and TiZrHfNiCuM (M = Co, Nb) high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Park, Hae Jin; Na, Young Sang; Hong, Sung Hwan; Kim, Jeong Tae; Kim, Young Seok; Lim, Ka Ram; Park, Jin Man; Kim, Ki Buem

    2016-07-01

    In this study, alloys with composition of equi-atomic substituted TiZrHfNiCu, TiZrHfNiCuCo, and TiZrHfNiCuNb high-entropy alloys (HEAs) were produced by suction casting method. The effects of addition elements on phase composition, microstructure and mechanical behaviors of the HEA were studied. The suction casted Ti20Zr20Hf20Ni20Cu20 HEA exhibits single C14 Laves phase (MgZn2-type) with fine homogeneous microstructure. When Co or Nb elements are added, morphologies are slightly modulated toward well-developed dendritic microstructure, phase constitutions are significantly changed from single Laves phase to mixed multi-phases as well as mechanical properties are also altered with increased plasticity and high strength. It is believed that modulated mechanical properties are mainly ascribed to the change of phase constitution and crystalline structure, together with the microstructural characteristics. This clearly reveals that the selection and addition of supplementary elements based on the formation rule for HEAs play an important role on the evolution of phase, microstructural morphology and mechanical properties of Ti20Zr20Hf20Ni20Cu20 HEA.

  7. Solubility enhancement of miconazole nitrate: binary and ternary mixture approach.

    PubMed

    Rai, Vineet Kumar; Dwivedi, Harinath; Yadav, Narayan Prasad; Chanotiya, Chandan Singh; Saraf, Shubhini A

    2014-08-01

    Enhancement of aqueous solubility of very slightly soluble Miconazole Nitrate (MN) is required to widen its application from topical formulation to oral/mucoadhesive formulations. Aim of the present investigation was to enhance the aqueous solubility of MN using binary and ternary mixture approach. Binary mixtures such as solvent deposition, inclusion complexation and solid dispersion were adopted to enhance solubility using different polymers like lactose, beta-cyclodextrin (β-CD) and polyethylene-glycol 6000 (PEG 6000), respectively. Batches of binary mixtures with highest solubility enhancement potentials were further mixed to form ternary mixture by a simple kneading method. Drug polymer interaction and mixture morphology was studied using the Fourier transform infrared spectroscopy and the scanning electron microscopy, respectively along with their saturation solubility studies and drug release. An excellent solubility enhancement, i.e. up to 72 folds and 316 folds of MN was seen by binary and ternary mixture, respectively. Up to 99.5% drug was released in 2 h from the mixtures of MN and polymers. RESULTS revealed that solubility enhancement by binary mixtures is achieved due to surface modification and by increasing wettability of MN. Tremendous increase in solubility of MN by ternary mixture could possibly be due to blending of water soluble polymers, i.e. lactose and PEG 6000 with β-CD which was found to enhance the solubilizing nature of β-CD. Owing to the excellent solubility enhancement potential of ternary mixtures in enhancing MN solubility from 110.4 μg/ml to 57640.0 μg/ml, ternary mixture approach could prove to be promising in the development of oral/mucoadhesive formulations.

  8. Adiabatic pipelining: a key to ternary computing with quantum dots.

    PubMed

    Pečar, P; Ramšak, A; Zimic, N; Mraz, M; Lebar Bajec, I

    2008-12-10

    The quantum-dot cellular automaton (QCA), a processing platform based on interacting quantum dots, was introduced by Lent in the mid-1990s. What followed was an exhilarating period with the development of the line, the functionally complete set of logic functions, as well as more complex processing structures, however all in the realm of binary logic. Regardless of these achievements, it has to be acknowledged that the use of binary logic is in computing systems mainly the end result of the technological limitations, which the designers had to cope with in the early days of their design. The first advancement of QCAs to multi-valued (ternary) processing was performed by Lebar Bajec et al, with the argument that processing platforms of the future should not disregard the clear advantages of multi-valued logic. Some of the elementary ternary QCAs, necessary for the construction of more complex processing entities, however, lead to a remarkable increase in size when compared to their binary counterparts. This somewhat negates the advantages gained by entering the ternary computing domain. As it turned out, even the binary QCA had its initial hiccups, which have been solved by the introduction of adiabatic switching and the application of adiabatic pipeline approaches. We present here a study that introduces adiabatic switching into the ternary QCA and employs the adiabatic pipeline approach to successfully solve the issues of elementary ternary QCAs. What is more, the ternary QCAs presented here are sizewise comparable to binary QCAs. This in our view might serve towards their faster adoption.

  9. Diffusion Research in BCC Ti-Al-Mo Ternary Alloys

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Tang, Bin; Xu, Guanglong; Wang, Chuanyun; Kou, Hongchao; Li, Jinshan; Cui, Yuwen

    2014-04-01

    Interdiffusion in Ti-Al-Mo β solid solution was investigated at 1523 K (1250 °C) by analyzing diffusion couples. From the concentration profiles analytically represented by error function expansion (ERFEX), the ternary interdiffusion coefficients and impurity diffusivity were extracted by the Whittle-Green and generalized Hall methods. A comparison of the diffusion in five Ti-Al-X (Co, Cr, Fe, Mo, and V) ternaries reveals Ti-Al-Mo is comparably like Ti-Al-(Cr, V) while Ti-Al-(Co, Fe) are predominantly of interstitial nature.

  10. Ternary jitter-based true random number generator

    NASA Astrophysics Data System (ADS)

    Latypov, Rustam; Stolov, Evgeni

    2017-01-01

    In this paper a novel family of generators producing true uniform random numbers in ternary logic is presented. The generator consists of a number of identical ternary logic combinational units connected into a ring. All the units are provided to have a random delay time, and this time is supposed to be distributed in accordance with an exponential distribution. All delays are supposed to be independent events. The theory of the generator is based on Erlang equations. The generator can be used for test production in various systems. Features of multidimensional random vectors, produced by the generator, are discussed.

  11. Liquid-liquid equilibria for ternary polymer mixtures

    NASA Astrophysics Data System (ADS)

    Oh, Suk Yung; Bae, Young Chan

    2011-01-01

    A molecular thermodynamic model for multicomponent systems based on a closed-packed lattice model is presented based on two contributions; entropy and energy contribution. The calculated liquid-liquid equilibria of ternary chainlike mixtures agreed with Monte Carlo simulation results. The proposed model can satisfactorily predict Types 0, 1, 2 and 3 phase separations of the Treybal classification. The model parameters obtained from the binary systems were used to directly predict real ternary systems and the calculated results correlated well with experimental data using few adjustable parameters. Specific interactions in associated binary systems were considered using a secondary lattice.

  12. Electron probe microanalysis in the ternary Gd B C system

    NASA Astrophysics Data System (ADS)

    Ruiz, Domingo; Garland, Maria Teresa; Saillard, Jean-Yves; Halet, Jean-François; Bohn, Marcel; Bauer, Josef

    2002-09-01

    EPMA exploration of the Gd-B-C system in the region "Gd-GdB 2-GdBC" and in the neighborhood of the recently described Gd 4B 3C 4 compound led to the identification of 9 new ternary phases, which allows to clear up the phase diagram of this ternary system. A structural description of the bonding between the non-metal atoms in most of the identified compounds is proposed, on the basis of simple electron counting rules and using the planar repeat units or the finite linear anions which have been shown to exist in the structurally characterized rare-earth borocarbide compounds.

  13. High pressure Raman study of layered Mo0.5W0.5S2 ternary compound

    NASA Astrophysics Data System (ADS)

    Kim, Joon-Seok; Moran, Samuel T.; Nayak, Avinash P.; Pedahzur, Shahar; Ruiz, Itzel; Ponce, Gabriela; Rodriguez, Daniela; Henny, Joanna; Liu, Jin; Lin, Jung-Fu; Akinwande, Deji

    2016-06-01

    Ternary two-dimensional (2D) transition metal dichalcogenide compounds exhibit a tunable electronic structure allowing for control of the interlayer and the intralayer atomic displacement to efficiently tune their physical and electronic properties. Using a diamond anvil cell, hydrostatic pressure was applied to Mo0.5W0.5S2 up to 40 GPa in order to study the optical phonon vibrational modes. Analysis of the high-pressure Raman spectra shows that the two in-plane E2g modes resembling that of pristine MoS2 and WS2, as well as disorder-activated longitudinal acoustic phonon mode, are hardened and suppressed as pressure increases. The two A1g modes of the ternary compound that resemble the A1g modes of pristine MoS2 and WS2, displayed similar Raman shifts to the pristine compounds as pressure increases. A Raman peak at 470 cm-1 that is close to A1g peaks emerges at ˜8 GPa, which represents a disorder-activated pressure-induced out-of-plane Raman mode observed only in the ternary compound under high pressure. At pressures above ˜30 GPa, a Raman peak at approximately 340 cm-1 is observed, signifying additional disorder-activated vibration mode. Our results reveal the enhanced interactions in the structural and vibrational behavior of the MoS2 and WS2 domains in the Mo0.5W0.5S2 compound under hydrostatic pressure. These results could have implications in understanding the electronic, optical, and structural properties of the new 2D ternary compound materials under extreme mechanical conditions.

  14. Direct observation of interface and nanoscale compositional modulation in ternary III-As heterostructure nanowires

    SciTech Connect

    Venkatesan, Sriram; Scheu, Christina; Madsen, Morten H.; Krogstrup, Peter; Johnson, Erik; Schmid, Herbert

    2013-08-05

    Straight, axial InAs nanowire with multiple segments of Ga{sub x}In{sub 1−x}As was grown. High resolution X-ray energy-dispersive spectroscopy (EDS) mapping reveals the distribution of group III atoms at the axial interfaces and at the sidewalls. Significant Ga enrichment, accompanied by a structural change is observed at the Ga{sub x}In{sub 1−x}As/InAs interfaces and a higher Ga concentration for the early grown Ga{sub x}In{sub 1−x}As segments. The elemental map and EDS line profile infer Ga enrichment at the facet junctions between the sidewalls. The relative chemical potentials of ternary alloys and the thermodynamic driving force for liquid to solid transition explains the growth mechanisms behind the enrichment.

  15. Molecular dynamics study of the ternary Cu50Ti25Zr25 bulk glass forming alloy

    NASA Astrophysics Data System (ADS)

    Senturk Dalgic, S.; Celtek, M.

    2011-05-01

    The structure and thermodynamic properties of a ternary Cu50Ti25Zr25 metallic glass forming alloy in solid-liquid to glass phases were studied using molecular dynamics (MD) method based on tight-binding (TB) potentials. An atomic description of the melting, glass formation and crystallization process has been analyzed using different heating and cooling rates. The computed Glass Forming Ability (GFA) parameters are in good agreement with experimental data. The structure analysis of the Cu50Ti25Zr25 based on molecular dynamics simulation will be also presented and compared with available MD results. We have also discussed the crystallization transition with two different interatomic potentials used in this work

  16. Dynamic visualisation of municipal waste management performance in the EU using Ternary Diagram method.

    PubMed

    Pomberger, R; Sarc, R; Lorber, K E

    2017-03-01

    This contribution describes the dynamic visualisation of European (EU 28) municipal waste management performance, using the Ternary Diagram Method. Municipal waste management performance depends primarily on three treatment categories: recycling & composting, incineration and landfilling. The framework of current municipal waste management including recycling targets, etc. is given by the Waste Framework Directive - 2008/98/EC. The proposed Circular Economy Package should stimulate Europe's transition towards more sustainable resources and energy oriented waste management. The Package also includes a revised legislative proposal on waste that sets ambitious recycling rates for municipal waste for 2025 (60%) and 2030 (65%). Additionally, the new calculation method for monitoring the attainment of the targets should be applied. In 2014, ca. 240 million tonnes of municipal waste were generated in the EU. While in 1995, 17% were recycled and composted, 14% incinerated and 64% landfilled, in 2014 ca. 71% were recovered but 28% landfilled only. Considering the treatment performance of the individual EU member states, the EU 28 can be divided into three groups, namely: "Recovery Countries", "Transition Countries" and "Landfilling Countries". Using Ternary Diagram Method, three types of visualization for the municipal waste management performance have been investigated and extensively described. Therefore, for better understanding of municipal waste management performance in the last 20years, dynamic visualisation of the Eurostat table-form data on all 28 member states of the EU has been carried out in three different ways: 1. "Performance Positioning" of waste management unit(s) at a specific date; 2. "Performance dynamics" over a certain time period and; 3. "Performance development" expressed as a track(s). Results obtained show that the Ternary Diagram Method is very well suited to be used for better understanding of past developments and coherences, for monitoring of

  17. A Simple Refraction Experiment for Probing Diffusion in Ternary Mixtures

    ERIC Educational Resources Information Center

    Coutinho, Cecil A.; Mankidy, Bijith D.; Gupta, Vinay K.

    2010-01-01

    Diffusion is a fundamental phenomenon that is vital in many chemical processes such as mass transport in living cells, corrosion, and separations. We describe a simple undergraduate-level experiment based on Weiner's Method to probe diffusion in a ternary aqueous mixture of small molecular-weight molecules. As an illustration, the experiment…

  18. [Use of ternary algebra in the analysis of medical data].

    PubMed

    Bernard, M J

    1976-01-05

    Logical methods are most valuable in the field of Medicine. They are usually based on Boolean algebra and can thus only deal with binary data) (Present)/(Absent)). Use of ternary algebra opens the way to treatment of the triple-state variables ((Present)/(absent)/(Don't know)) frequently encountered in medical context.

  19. Making Ternary Quantum Dots From Single-Source Precursors

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Banger, Kulbinder; Castro, Stephanie; Hepp, Aloysius

    2007-01-01

    A process has been devised for making ternary (specifically, CuInS2) nanocrystals for use as quantum dots (QDs) in a contemplated next generation of high-efficiency solar photovoltaic cells. The process parameters can be chosen to tailor the sizes (and, thus, the absorption and emission spectra) of the QDs.

  20. Using Nuclear Magnetic Resonance Spectroscopy for Measuring Ternary Phase Diagrams

    ERIC Educational Resources Information Center

    Woodworth, Jennifer K.; Terrance, Jacob C.; Hoffmann, Markus M.

    2006-01-01

    A laboratory experiment is presented for the upper-level undergraduate physical chemistry curriculum in which the ternary phase diagram of water, 1-propanol and n-heptane is measured using proton nuclear magnetic resonance (NMR) spectroscopy. The experiment builds upon basic concepts of NMR spectral analysis, typically taught in the undergraduate…

  1. A Simple Refraction Experiment for Probing Diffusion in Ternary Mixtures

    ERIC Educational Resources Information Center

    Coutinho, Cecil A.; Mankidy, Bijith D.; Gupta, Vinay K.

    2010-01-01

    Diffusion is a fundamental phenomenon that is vital in many chemical processes such as mass transport in living cells, corrosion, and separations. We describe a simple undergraduate-level experiment based on Weiner's Method to probe diffusion in a ternary aqueous mixture of small molecular-weight molecules. As an illustration, the experiment…

  2. Using Nuclear Magnetic Resonance Spectroscopy for Measuring Ternary Phase Diagrams

    ERIC Educational Resources Information Center

    Woodworth, Jennifer K.; Terrance, Jacob C.; Hoffmann, Markus M.

    2006-01-01

    A laboratory experiment is presented for the upper-level undergraduate physical chemistry curriculum in which the ternary phase diagram of water, 1-propanol and n-heptane is measured using proton nuclear magnetic resonance (NMR) spectroscopy. The experiment builds upon basic concepts of NMR spectral analysis, typically taught in the undergraduate…

  3. Ternary diffusion path in terms of eigenvalues and eigenvectors

    NASA Astrophysics Data System (ADS)

    Ram-Mohan, L. R.; Dayananda, Mysore A.

    2016-04-01

    Based on the transfer matrix methodology, a new analysis is presented for the description of slopes of the ternary diffusion path for a solid-solid diffusion couple. Concentration profiles and diffusion paths for isothermal, ternary diffusion couples are examined in the context of eigenvalues and eigenvectors obtained from the diagonalisation of the ? ternary interdiffusion coefficients employed for their representation. New relations are derived relating the decoupled interdiffusion fluxes to combinations of concentration gradients through the major and minor eigenvalues, and the diffusion path becomes parallel to the major eigenvector at each path end. General expressions for the slope of the ternary diffusion path at any section of the couple are also derived in terms of eigenvalue and eigenvector parameters. Expressions for the path slope at the Matano plane involve only concentrations, major and minor eigenvalues and eigenvector parameters. New constraints relating the eigenvalues and the concentration gradients of the individual components are also presented at selected sections, where the diffusion path is parallel to the straight line joining the terminal composition points on an isotherm. Applications of the various relations are illustrated with the aid of a hypothetical couple and an experimental Cu-Ni-Zn diffusion couple.

  4. Ternary versus binary material systems for gradient index optics

    NASA Astrophysics Data System (ADS)

    Beadie, G.; Mait, J.; Flynn, R. A.; Milojkovic, P.

    2017-05-01

    Previous work developed a first-order theory for picking optimal pairs of materials for gradient index (GRIN) achromatic singlets. This work extends that concept to include the addition of a third material to a GRIN blend, to improve performance further. Several ternary-based GRIN lens designs are compared to binary versions. Implications for material development in gradient index optics are discussed.

  5. Interdiffusion in Ternary Magnesium Solid Solutions of Aluminum and Zinc

    SciTech Connect

    Kammerer, Catherine; Kulkarni, Nagraj S; Warmack, Robert J Bruce; Sohn, Yong Ho

    2016-01-11

    Al and Zn are two of the most common alloying elements in commercial Mg alloys, which can improve the physical properties through solid solution strengthening and precipitation hardening. Diffusion plays a key role in the kinetics of these and other microstructural design relevant to Mg-alloy development. However, there is a lack of multicomponent diffusion data available for Mg alloys. Through solid-to-solid diffusion couples, diffusional interactions of Al and Zn in ternary Mg solid-solution at 400° and 450 °C were examined by an extension of the Boltzmann-Matano analysis based on Onsager s formalism. Concentration profiles of Mg-Al-Zn ternary alloys were determined by electron probe microanalysis, and analyzed to determine the ternary interdiffusion coefficients as a function of composition. Zn was determined to interdiffuse the fastest, followed by Mg and Al. Appreciable diffusional interactions among Mg, Al, and Zn were observed by variations in sign and magnitude of cross interdiffusion coefficients. In particular, Zn was found to significantly influence the interdiffusion of Mg and Al significantly: the and ternary cross interdiffusion coefficients were both negative, and large in magnitude, in comparison to and , respectively. Al and Mg were observed influence the interdiffusion of Mg and Al, respectively, with positive and interdiffusion coefficients, but their influence on the Zn interdiffusion was negligible.

  6. Interdiffusion in Ternary Magnesium Solid Solutions of Aluminum and Zinc

    DOE PAGES

    Kammerer, Catherine; Kulkarni, Nagraj S; Warmack, Robert J Bruce; ...

    2016-01-11

    Al and Zn are two of the most common alloying elements in commercial Mg alloys, which can improve the physical properties through solid solution strengthening and precipitation hardening. Diffusion plays a key role in the kinetics of these and other microstructural design relevant to Mg-alloy development. However, there is a lack of multicomponent diffusion data available for Mg alloys. Through solid-to-solid diffusion couples, diffusional interactions of Al and Zn in ternary Mg solid-solution at 400° and 450 °C were examined by an extension of the Boltzmann-Matano analysis based on Onsager s formalism. Concentration profiles of Mg-Al-Zn ternary alloys were determinedmore » by electron probe microanalysis, and analyzed to determine the ternary interdiffusion coefficients as a function of composition. Zn was determined to interdiffuse the fastest, followed by Mg and Al. Appreciable diffusional interactions among Mg, Al, and Zn were observed by variations in sign and magnitude of cross interdiffusion coefficients. In particular, Zn was found to significantly influence the interdiffusion of Mg and Al significantly: the and ternary cross interdiffusion coefficients were both negative, and large in magnitude, in comparison to and , respectively. Al and Mg were observed influence the interdiffusion of Mg and Al, respectively, with positive and interdiffusion coefficients, but their influence on the Zn interdiffusion was negligible.« less

  7. Wurtzite-derived ternary I-III-O2 semiconductors.

    PubMed

    Omata, Takahisa; Nagatani, Hiraku; Suzuki, Issei; Kita, Masao

    2015-04-01

    Ternary zincblende-derived I-III-VI2 chalcogenide and II-IV-V2 pnictide semiconductors have been widely studied and some have been put to practical use. In contrast to the extensive research on these semiconductors, previous studies into ternary I-III-O2 oxide semiconductors with a wurtzite-derived β-NaFeO2 structure are limited. Wurtzite-derived β-LiGaO2 and β-AgGaO2 form alloys with ZnO and the band gap of ZnO can be controlled to include the visible and ultraviolet regions. β-CuGaO2, which has a direct band gap of 1.47 eV, has been proposed for use as a light absorber in thin film solar cells. These ternary oxides may thus allow new applications for oxide semiconductors. However, information about wurtzite-derived ternary I-III-O2 semiconductors is still limited. In this paper we review previous studies on β-LiGaO2, β-AgGaO2 and β-CuGaO2 to determine guiding principles for the development of wurtzite-derived I-III-O2 semiconductors.

  8. Wurtzite-derived ternary I–III–O2 semiconductors

    PubMed Central

    Nagatani, Hiraku; Suzuki, Issei; Kita, Masao

    2015-01-01

    Ternary zincblende-derived I–III–VI2 chalcogenide and II–IV–V2 pnictide semiconductors have been widely studied and some have been put to practical use. In contrast to the extensive research on these semiconductors, previous studies into ternary I–III–O2 oxide semiconductors with a wurtzite-derived β-NaFeO2 structure are limited. Wurtzite-derived β-LiGaO2 and β-AgGaO2 form alloys with ZnO and the band gap of ZnO can be controlled to include the visible and ultraviolet regions. β-CuGaO2, which has a direct band gap of 1.47 eV, has been proposed for use as a light absorber in thin film solar cells. These ternary oxides may thus allow new applications for oxide semiconductors. However, information about wurtzite-derived ternary I–III–O2 semiconductors is still limited. In this paper we review previous studies on β-LiGaO2, β-AgGaO2 and β-CuGaO2 to determine guiding principles for the development of wurtzite-derived I–III–O2 semiconductors. PMID:27877769

  9. Ternary copper complexes and manganese (III) tetrakis(4-benzoic acid) porphyrin catalyze peroxynitrite-dependent nitration of aromatics.

    PubMed

    Ferrer-Sueta, G; Ruiz-Ramírez, L; Radi, R

    1997-12-01

    Peroxynitrite is a powerful oxidant formed in biological systems from the reaction of nitrogen monoxide and superoxide and is capable of nitrating phenols at neutral pH and ambient temperature. This peroxynitrite-mediated nitration is catalyzed by a number of Lewis acids, including CO2 and transition-metal ion complexes. Here we studied the effect of ternary copper-(II) complexes constituted by a 1,10-phenanthroline and an amino acid as ligands. All the complexes studied accelerate both the decomposition of peroxynitrite and its nitration of 4-hydroxyphenylacetic acid at pH > 7. The rate of these reactions depends on the copper complex concentration in a hyperbolic plus linear manner. The yield of nitrated products increases up to 2.6-fold with respect to proton-catalyzed nitration and has a dependency on the concentration of copper complexes which follows the same function as observed for the rate constants. The manganese porphyrin complex, Mn(III)tetrakis(4-benzoic acid)porphyrin [Mn(tbap)], also promoted peroxynitrite-mediated nitration with an even higher yield (4-fold increase) than the ternary copper complexes. At pH = 7.5 +/- 0.2 the catalytic behavior of the copper complexes can be linearly correlated with the pKa of the phenanthroline present as a ligand, implying that a peroxynitrite anion is coordinated to the copper ion prior to the nitration reaction. These observations may prove valuable to understand the biological effects of these transition-metal complexes (i.e., copper and manganese) that can mimic superoxide dismutase activity and, in the case of the ternary copper complexes, show antineoplastic activity.

  10. Chemical equilibria in the binary and ternary uranyl(VI)-hydroxide-peroxide systems.

    PubMed

    Zanonato, Pier Luigi; Di Bernardo, Plinio; Grenthe, Ingmar

    2012-03-28

    The composition and equilibrium constants of the complexes formed in the binary U(VI)-hydroxide and the ternary U(VI)-hydroxide-peroxide systems have been studied using potentiometric and spectrophotometric data at 25 °C in a 0.100 M tetramethylammonium nitrate medium. The data for the binary U(VI) hydroxide complexes were in good agreement with previous studies. In the ternary system two complexes were identified, [UO(2)(OH)(O(2))](-) and [(UO(2))(2)(OH)(O(2))(2)](-). Under our experimental conditions the former is predominant over a broad p[H(+)] region from 9.5 to 11.5, while the second is found in significant amounts at p[H(+)] < 10.5. The formation of the ternary peroxide complexes results in a strong increase in the molar absorptivity of the test solutions. The absorption spectrum for [(UO(2))(2)(OH)(O(2))(2)](-) was resolved into two components with peaks at 353 and 308 nm with molar absorptivity of 16200 and 20300 M(-1) cm(-1), respectively, suggesting that the electronic transitions are dipole allowed. The molar absorptivity of [(UO(2))(OH)(O(2))](-) at the same wave lengths are significantly lower, but still about one to two orders of magnitude larger than the values for UO(2)(2+)(aq) and the binary uranyl(VI) hydroxide complexes. It is of interest to note that [(UO(2))(OH)(O(2))](-) might be the building block in cluster compounds such as [UO(2)(OH)(O(2))](60)(60-) studied by Burns et al. (P. C. Burns, K. A. Kubatko, G. Sigmon, B. J. Fryer, J. E. Gagnon, M. R. Antonio and L. Soderholm, Angew. Chem. 2005, 117, 2173-2177). Speciation calculations using the known equilibrium constants for the U(vi) hydroxide and peroxide complexes show that the latter are important in alkaline solutions even at very low total concentrations of peroxide, suggesting that they may be involved when the uranium minerals Studtite and meta-Studtite are formed by α-radiolysis of water. Radiolysis will be much larger in repositories for spent nuclear fuel where hydrogen peroxide

  11. Ternary rare earth silicides RE2M3Si4 (RE = Sc, Y, Lu; M = Mo, W): crystal structure, coloring and electronic properties.

    PubMed

    Nielsen, Morten B; Xie, Weiwei; Cava, Robert J

    2016-03-07

    The ternary compounds Sc2Mo3Si4, Y2Mo3Si4, Lu2Mo3Si4 and Sc2W3Si4 have been synthesized using arc melting and structurally characterized using single crystal X-ray diffraction. The compounds are isostructural with Gd5Si4 but with coloring (order of the rare earth and transition metals) on the Gd site. In contrast to group 4 and 5 ternaries of the same type, we observe no site mixing between the rare earth and transition metals. The Y compound displays a different, less common coloring from the others and through DFT calculations and investigation of the solid solution between Sc2Mo3Si4 and Y2Mo3Si4 it is shown that the different coloring of the latter is only marginally more stable. The electronic structures of the ternary compounds have been investigated using DFT calculations, yielding densities of states very similar to Gd5Si4. These predict metallic behavior and no magnetism, which is confirmed through resistivity and magnetization measurements.

  12. Influence of polyethylene glycol chain length on compatibility and release characteristics of ternary solid dispersions of itraconazole in polyethylene glycol/hydroxypropylmethylcellulose 2910 E5 blends.

    PubMed

    Janssens, Sandrien; Denivelle, Samgar; Rombaut, Patrick; Van den Mooter, Guy

    2008-10-02

    The present study aims to elucidate the influence of the polyethylene glycol chain length on the miscibility of PEG/HPMC 2910 E5 polymer blends, the influence of polymer compatibility on the degree of molecular dispersion of itraconazole, and in vitro dissolution. PEG 2000, 6000, 10,000 and 20,000 were included in the study. Solid dispersions were prepared by spray drying and characterized with MDSC, XRPD and in vitro dissolution testing. The polymer miscibility increased with decreasing chain length due to a decrease in the Gibbs free energy of mixing. Recrystallization of itraconazole occurred as soon as a critical temperature of ca. 75 degrees C was reached for the glass transition that represents the ternary amorphous phase. Due to the lower miscibility degree between the longer PEG types and HPMC 2910 E5, the ternary amorphous phase was further separated, leading to a more rapid decrease of the ternary amorphous phase glass transition as a function of PEG and itraconazole weight percentage and hence, itraconazole recrystallization. In terms of release, an advantage of the shorter chain length PEG types (2000, 6000) over the longer chain length PEG types (10,000, 20,000) was observed for the polymer blends with 5% of PEG with respect to the binary itraconazole/HPMC 2910 E5 solid dispersion. Among the formulations with a 15/85 (w/w) PEG/HPMC 2910 E5 ratio on the other hand, there was no difference in the release profile.

  13. The synthesis of ternary acetylides with tellurium: Li 2 TeC 2 and Na 2 TeC 2

    SciTech Connect

    Németh, Károly; Unni, Aditya K.; Kalnmals, Christopher; Segre, Carlo U.; Kaduk, James; Bloom, Ira D.; Maroni, Victor A.

    2015-01-01

    The synthesis of ternary acetylides Li2TeC2 and Na2TeC2 is presented as the first example of ternary acetylides with metalloid elements instead of transition metals. The synthesis was carried out by the direct reaction of the corresponding bialkali acetylides with tellurium powder in liquid ammonia. Alternatively, the synthesis of Na2TeC2 was also carried out by the direct reaction of tellurium powder and two equivalents of NaC2H in liquid ammonia leading to Na2TeC2 and acetylene gas through an equilibrium containing the assumed NaTeC2H molecules besides the reactants and the products. The resulting disordered crystalline materials were characterized by X-ray diffraction and Raman spectroscopy. Implications of these new syntheses on the synthesis of other ternary acetylides with metalloid elements and transition metals are also discussed.

  14. Miscibility critical pressures in monolayers of ternary lipid mixtures.

    PubMed Central

    Keller, S L; Anderson, T G; McConnell, H M

    2000-01-01

    When phospholipids are mixed with cholesterol in a monolayer at an air-water interface, coexisting 2-dimensional liquid phases can be observed if the surface pressure, pi, is lower than the miscibility critical pressure, pi(c). Ternary mixtures of two phospholipid species with dihydrocholesterol have been reported to have critical pressures that are linearly proportional to the relative composition of the phospholipids. However, we report here that, if the acyl chains of the two phospholipids differ significantly in length or unsaturation, the behavior is markedly different. In this case, the critical pressure of the ternary mixture can be remarkably high, exceeding the critical pressures of the corresponding binary mixtures. High critical pressures are also seen in binary mixtures of phospholipid and dihydrocholesterol when the two acyl chains of the phospholipid differ sufficiently in length. Using regular solution theory, we interpret the elevated critical pressures of these mixtures as an attractive interaction between the phospholipid components. PMID:11023907

  15. Ternary structure reveals mechanism of a membrane diacylglycerol kinase

    SciTech Connect

    Li, Dianfan; Stansfeld, Phillip J.; Sansom, Mark S. P.; Keogh, Aaron; Vogeley, Lutz; Howe, Nicole; Lyons, Joseph A.; Aragao, David; Fromme, Petra; Fromme, Raimund; Basu, Shibom; Grotjohann, Ingo; Kupitz, Christopher; Rendek, Kimberley; Weierstall, Uwe; Zatsepin, Nadia A.; Cherezov, Vadim; Liu, Wei; Bandaru, Sateesh; English, Niall J.; Gati, Cornelius; Barty, Anton; Yefanov, Oleksandr; Chapman, Henry N.; Diederichs, Kay; Messerschmidt, Marc; Boutet, Sébastien; Williams, Garth J.; Marvin Seibert, M.; Caffrey, Martin

    2015-12-17

    Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the membrane/cytosol interface. How nature has accomplished this extraordinary feat is revealed here in a crystal structure of the kinase captured as a ternary complex with bound lipid substrate and an ATP analogue. Residues, identified as essential for activity by mutagenesis, decorate the active site and are rationalized by the ternary structure. The γ-phosphate of the ATP analogue is positioned for direct transfer to the primary hydroxyl of the lipid whose acyl chain is in the membrane. A catalytic mechanism for this unique enzyme is proposed. As a result, the active site architecture shows clear evidence of having arisen by convergent evolution.

  16. Ternary structure reveals mechanism of a membrane diacylglycerol kinase

    NASA Astrophysics Data System (ADS)

    Li, Dianfan; Stansfeld, Phillip J.; Sansom, Mark S. P.; Keogh, Aaron; Vogeley, Lutz; Howe, Nicole; Lyons, Joseph A.; Aragao, David; Fromme, Petra; Fromme, Raimund; Basu, Shibom; Grotjohann, Ingo; Kupitz, Christopher; Rendek, Kimberley; Weierstall, Uwe; Zatsepin, Nadia A.; Cherezov, Vadim; Liu, Wei; Bandaru, Sateesh; English, Niall J.; Gati, Cornelius; Barty, Anton; Yefanov, Oleksandr; Chapman, Henry N.; Diederichs, Kay; Messerschmidt, Marc; Boutet, Sébastien; Williams, Garth J.; Marvin Seibert, M.; Caffrey, Martin

    2015-12-01

    Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the membrane/cytosol interface. How nature has accomplished this extraordinary feat is revealed here in a crystal structure of the kinase captured as a ternary complex with bound lipid substrate and an ATP analogue. Residues, identified as essential for activity by mutagenesis, decorate the active site and are rationalized by the ternary structure. The γ-phosphate of the ATP analogue is positioned for direct transfer to the primary hydroxyl of the lipid whose acyl chain is in the membrane. A catalytic mechanism for this unique enzyme is proposed. The active site architecture shows clear evidence of having arisen by convergent evolution.

  17. Ternary structure reveals mechanism of a membrane diacylglycerol kinase

    PubMed Central

    Li, Dianfan; Stansfeld, Phillip J.; Sansom, Mark S. P.; Keogh, Aaron; Vogeley, Lutz; Howe, Nicole; Lyons, Joseph A.; Aragao, David; Fromme, Petra; Fromme, Raimund; Basu, Shibom; Grotjohann, Ingo; Kupitz, Christopher; Rendek, Kimberley; Weierstall, Uwe; Zatsepin, Nadia A.; Cherezov, Vadim; Liu, Wei; Bandaru, Sateesh; English, Niall J.; Gati, Cornelius; Barty, Anton; Yefanov, Oleksandr; Chapman, Henry N.; Diederichs, Kay; Messerschmidt, Marc; Boutet, Sébastien; Williams, Garth J.; Marvin Seibert, M.; Caffrey, Martin

    2015-01-01

    Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the membrane/cytosol interface. How nature has accomplished this extraordinary feat is revealed here in a crystal structure of the kinase captured as a ternary complex with bound lipid substrate and an ATP analogue. Residues, identified as essential for activity by mutagenesis, decorate the active site and are rationalized by the ternary structure. The γ-phosphate of the ATP analogue is positioned for direct transfer to the primary hydroxyl of the lipid whose acyl chain is in the membrane. A catalytic mechanism for this unique enzyme is proposed. The active site architecture shows clear evidence of having arisen by convergent evolution. PMID:26673816

  18. Synthesis and Characterization of Ternary Al-C-N Compound

    NASA Astrophysics Data System (ADS)

    Jiang, N.; Xu, S.; Ostrikov, K. N.; Tsakadze, E. L.; Long, J. D.; Chai, J. W.; Tsakadze, Z. L.

    An attempt for modification of carbon nitride material by introduction of Al to form a ternary Al-C-N compound in a thin film deposited using inductively coupled plasma (ICP) assisted DC magnetron sputtering is reported. Optical emission spectroscopy (OES) is used for in-situ observation and identification of reactive species. The films were characterized using x-ray photoelectron spectroscopy (XPS) and x-ray diffraction spectroscopy (XRD). The results indicate that C-N bond is formed in the plasma. The XPS narrow scam spectra confirm the existence of C-Al, sp2C-N and sp3C-N bonds. Elemental proportion of carbon increases with the CH4/N2 flow rate ratio, and has a tendency to saturate. The film is dominated by c-AlN (111), mixed with Al4C3 and AlCN ternary compound.

  19. A New Multifunctional Sensor for Measuring Concentrations of Ternary Solution

    NASA Astrophysics Data System (ADS)

    Wei, Guo; Shida, Katsunori

    This paper presents a multifunctional sensor with novel structure, which is capable of directly sensing temperature and two physical parameters of solutions, namely ultrasonic velocity and conductivity. By combined measurement of these three measurable parameters, the concentrations of various components in a ternary solution can be simultaneously determined. The structure and operation principle of the sensor are described, and a regression algorithm based on natural cubic spline interpolation and the least square method is adopted to estimate the concentrations. The performances of the proposed sensor are experimentally tested by the use of ternary aqueous solution of sodium chloride and sucrose, which is widely involved in food and beverage industries. This sensor could prove valuable as a process control sensor in industry fields.

  20. Experimental Investigation of Ternary Alloys for Fusion Breeding Blankets

    SciTech Connect

    Choi, B. William; Chiu, Ing L.

    2015-10-26

    Future fusion power plants based on the deuterium-tritium (DT) fuel cycle will be required to breed the T fuel via neutron reactions with lithium, which will be incorporated in a breeding blanket that surrounds the fusion source. Recent work by LLNL proposed the used of liquid Li as the breeder in an inertial fusion energy (IFE) power plant. Subsequently, an LDRD was initiated to develop alternatives ternary alloy liquid metal breeders that have reduced chemical reactivity with water and air compared to pure Li. Part of the work plan was to experimentally investigate the phase diagrams of ternary alloys. Of particular interest was measurement of the melt temperature, which must be low enough to be compatible with the temperature limits of the steel used in the construction of the chamber and heat transfer system.

  1. Do aqueous ternary complexes influence the TALSPEAK process?

    SciTech Connect

    Leggett, C. j.; Liu, G.; Jensen, M. P.; Chemical Sciences and Engineering Division

    2010-01-01

    The aqueous speciation of trivalent lanthanide and actinide cations in solutions containing DTPA (diethylenetriamine-N,N,N',N',N'-pentaacetic acid) and lactic acid were studied under conditions representative of the TALSPEAK process. Spectrophotometric titrations, fluorescence spectroscopy, and thermometric titrations were used to search for indications of ternary metal-DTPA-lactate complexes. The addition of lactate anions to metal-DTPA complexes was undetectable by any of these techniques, even at free lactate concentrations of 0.75 M. Although lactic acid is necessary for the optimal performance of the TALSPEAK process, we find that the fractions of aqueous ternary Ln3+/An3+-DTPA-lactate complexes are far too low to account for the observed acid dependence of TALSPEAK metal extraction.

  2. Transient photocurrent measurements in alkali chalcogenide ternary compound semiconductors

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Peters, J. A.; Li, H.; Kanatzidis, M. G.; Wessels, B. W.

    2013-01-01

    The charge transport properties of two alkali metal chalcogenide, semiconductor ternary compounds Cs2Cd3Te4 and Cs2Hg6S7, having potential as efficient high-energy radiation detectors, were investigated. A key property that determines the detector performance is the minority carrier lifetime, which was determined by measurement of photocurrent transients using pulsed laser excitation. The alkali metal chalcogenide semiconductor crystals were grown by a modified Bridgman method. The Cs2Cd3Te4 compound has a minority lifetime of 2.45 µs at 295 K, which is comparable to that of cadmium zinc telluride (CZT). The Cs2Hg6S7 showed charge trapping with decay times of 120 µs. The excellent charge transport properties of Cs2Cd3Te4 indicate that this ternary compound semiconductor should be well suited for gamma radiation detector devices that operate at room temperature.

  3. Applications of ternary systems in specific cosmetic formulations.

    PubMed

    Comelles, F; Megias, V; Sánchez, J; Parra, J L; Coll, J; Balaguer, F; Pelejero, C

    1989-02-01

    Synopsis The study of ternary systems leads to the understanding of the physico-chemical aspect and allows the contribution of the different components to a cosmetic formulation to be developed. The present investigation was centred in the zone of transparent get belonging to a previously studied ternary system containing a broad variety of different structural compositions. The possibility of including an active sunscreen as well as the ability to increase the water content of the gel was studied. The microscopical study of the compositions with polarized light allowed us to assign the corresponding different structures. A correlation between these structures and their physico-chemical properties, with special emphasis to rheology, has been established.

  4. Simulation model for urban ternary mix-traffic flow

    NASA Astrophysics Data System (ADS)

    Deo, Lalit; Akkawi, Faisal; Deo, Puspita

    2007-12-01

    A two-lane two-way traffic light controlled X-intersection for ternary mix traffic (cars + buses (equivalent vehicles) + very large trucks/ buses) is developed based on cellular automata model. This model can provide different matrices such as throughput, queue length and delay time. This paper will describe how the model works and how composition of traffic mix effects the throughput (numbers of vehicles navigate through the intersection per unit of time (vph)) and also compare the result with homogeneous counterpart.

  5. Electrodeposition of amorphous ternary nickel-chromium-phosphorus alloy

    DOEpatents

    Guilinger, Terry R.

    1990-01-01

    Amorphous ternary nickel-chromium-phosphorus alloys are electrodeposited from a bath comprising a nickel salt, a chromium salt, a phosphorus source such as sodium hypophosphite, a complexing agent for the nickel ions, supporting salts to increase conductivity, and a buffering agent. The process is carried out at about room temperature and requires a current density between about 20 to 40 A/dm.sup.2.

  6. Incommensurate and commensurate magnetic structures of the ternary germanide CeNiGe3

    NASA Astrophysics Data System (ADS)

    Durivault, L.; Bourée, F.; Chevalier, B.; André, G.; Weill, F.; Etourneau, J.; Martinez-Samper, P.; Rodrigo, J. G.; Suderow, H.; Vieira, S.

    2003-01-01

    The structural properties of CeNiGe3 have been investigated via electron diffraction and neutron powder diffraction (NPD). This ternary germanide crystallizes in the orthorhombic SmNiGe3-type structure (Cmmm space group). Electrical resistivity, ac- and dc-magnetization measurements show that CeNiGe3 orders antiferromagnetically below TN = 5.5(2) K and exclude the occurrence at low temperatures of a spin-glass state for CeNiGe3 as previously reported. Specific heat measurements and NPD both reveal two magnetic transitions, observed at TN1 = 5.9(2) K and TN2 = 5.0(2) K. Between TN1 and TN2, the Ce magnetic moments in CeNiGe3 are ordered in a collinear antiferromagnetic structure associated with the k1 = (100) wavevector and showing a relationship with the magnetic structure of the Ce3Ni2Ge7 ternary germanide. Below TN2, this k1 = (100) commensurate magnetic structure coexists with an incommensurate helicoîdal magnetic structure associated with k2 = (00.409(1)1/2). This last magnetic structure is highly preponderant below TN2 (93(5)% in volume). At 1.5 K, the Ce atoms in CeNiGe3 carry a reduced ordered magnetic moment (0.8(2) muB). This value, smaller than that obtained in Ce3Ni2Ge7, results from an important hybridization of the 4f(Ce) orbitals with those of the Ni and Ge ligands.

  7. Predicting solubilisation features of ternary phase diagrams of fully dilutable lecithin linker microemulsions.

    PubMed

    Nouraei, Mehdi; Acosta, Edgar J

    2017-06-01

    Fully dilutable microemulsions (μEs), used to design self-microemulsifying delivery system (SMEDS), are formulated as concentrate solutions containing oil and surfactants, without water. As water is added to dilute these systems, various μEs are produced (water-swollen reverse micelles, bicontinuous systems, and oil-swollen micelles), without the onset of phase separation. Currently, the formulation dilutable μEs follows a trial and error approach that has had a limited success. The objective of this work is to introduce the use of the hydrophilic-lipophilic-difference (HLD) and net-average-curvature (NAC) frameworks to predict the solubilisation features of ternary phase diagrams of lecithin-linker μEs and the use of these predictions to guide the formulation of dilutable μEs. To this end, the characteristic curvatures (Cc) of soybean lecithin (surfactant), glycerol monooleate (lipophilic linker) and polyglycerol caprylate (hydrophilic linker) and the equivalent alkane carbon number (EACN) of ethyl caprate (oil) were obtained via phase scans with reference surfactant-oil systems. These parameters were then used to calculate the HLD of lecithin-linkers-ethyl caprate microemulsions. The calculated HLDs were able to predict the phase transitions observed in the phase scans. The NAC was then used to fit and predict phase volumes obtained from salinity phase scans, and to predict the solubilisation features of ternary phase diagrams of the lecithin-linker formulations. The HLD-NAC predictions were reasonably accurate, and indicated that the largest region for dilutable μEs was obtained with slightly negative HLD values. The NAC framework also predicted, and explained, the changes in microemulsion properties along dilution lines. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Dissolution Rate Enhancement of Clarithromycin Using Ternary Ground Mixtures: Nanocrystal Formation

    PubMed Central

    Shahbaziniaz, Malihe; Foroutan, Seyed Mohsen; Bolourchian, Noushin

    2013-01-01

    Clarithromycin (CLA), a broad-spectrum macrolide, is a poorly soluble drug with dissolution rate limited absorption. The aim of this investigation was to prepare CLA nanoparticles from a ternary ground mixture in the presence of sodium lauryl sulfate (SLS) and polyvinyl pyrrolidone (PVP) as co-grinding water-soluble compounds, in order to improve the drug dissolution rate. Different weight ratios of CLA: SLS: PVP were ground in a dry process by planetary ball mill using different grinding ball size. Following the dissolution rate study, physical properties of the best dissolved co-ground formulation was studied. The accelerated stability studies were also conducted on the co-ground formulation. The results revealed that the dissolution rate of ternary ground mixtures was much higher than that of the intact drug (p < 0.001). Decreasing the grinding ball size and weight with the same rotation speed resulted in particles with decreased dissolution. On the other hand, increasing the PVP concentration in the formulations reduced the drug dissolution. Dissolution efficiencies (DE10 and DE30) for the best dissolved formulation, which consisted of the equal ratio of each co-ground component, were 8.7 and 5 folds higher than the untreated CLA, respectively. This formulation formed nanocrystals with enhanced solubility after dispersing in water. X-ray diffraction, differential scanning calorimetry and infrared spectrophotometry confirmed no chemical interaction and phase transition during the process. Accelerated stability studies confirmed that the co-ground mixture almost remained unchanged in terms of dissolution rate, drug assay and particle size after exposing in stability conditions for three months. PMID:24523739

  9. Dissolution rate enhancement of clarithromycin using ternary ground mixtures: nanocrystal formation.

    PubMed

    Shahbaziniaz, Malihe; Foroutan, Seyed Mohsen; Bolourchian, Noushin

    2013-01-01

    Clarithromycin (CLA), a broad-spectrum macrolide, is a poorly soluble drug with dissolution rate limited absorption. The aim of this investigation was to prepare CLA nanoparticles from a ternary ground mixture in the presence of sodium lauryl sulfate (SLS) and polyvinyl pyrrolidone (PVP) as co-grinding water-soluble compounds, in order to improve the drug dissolution rate. Different weight ratios of CLA: SLS: PVP were ground in a dry process by planetary ball mill using different grinding ball size. Following the dissolution rate study, physical properties of the best dissolved co-ground formulation was studied. The accelerated stability studies were also conducted on the co-ground formulation. The results revealed that the dissolution rate of ternary ground mixtures was much higher than that of the intact drug (p < 0.001). Decreasing the grinding ball size and weight with the same rotation speed resulted in particles with decreased dissolution. On the other hand, increasing the PVP concentration in the formulations reduced the drug dissolution. Dissolution efficiencies (DE10 and DE30) for the best dissolved formulation, which consisted of the equal ratio of each co-ground component, were 8.7 and 5 folds higher than the untreated CLA, respectively. This formulation formed nanocrystals with enhanced solubility after dispersing in water. X-ray diffraction, differential scanning calorimetry and infrared spectrophotometry confirmed no chemical interaction and phase transition during the process. Accelerated stability studies confirmed that the co-ground mixture almost remained unchanged in terms of dissolution rate, drug assay and particle size after exposing in stability conditions for three months.

  10. Ternary Porphyrinato Hf(IV) and Zr(IV) - Polyoxometalate Complexes

    PubMed Central

    Falber, Alexander; Burton-Pye, Benjamin P.; Radivojevic, Ivana; Todaro, Louis; Saleh, Raihan; Francesconi, Lynn; Drain, Charles Michael

    2010-01-01

    We report a facile, high yield synthesis and characterization of discrete, ternary porphyrin-metal-polyoxometalate (Por-M-POM) complexes where a group (IV) transition metal ion is bound both to the porphyrin core and to the lacunary site of a Keggin POM, PW11O39−7. The remarkably robust complexes exploit the fact that Hf(IV) and Zr(IV) are 7–8 coordinate and reside outside the plane of the porphyrin macrocycle, thus enabling the simultaneous coordination to meso-tetraphenylporphyrin (TPP) or meso-tetra(4-pyridyl)porphyrin (TPyP) and to the defect site in the Keggin framework. The physical properties of the (TPP)Hf(PW11O39)[TBA]5, (TPyP)Hf(PW11O39)[TBA]5, and (TPP)Zr(PW11O39)[TBA]5 complexes are similar because the metal ions have similar oxidation states, and coordination chemistry. This architecture couples the photonic properties of the porphyrin to the POM because the metal ion is incorporated into both frameworks. Thus the ternary complexes can serve as a basis for the characterization of Hf(IV) and Zr(IV) porphyrins bound to oxide surfaces via the group (IV) metal ions. The Hf(Por) and Zr(Por) bind strongly to TiO2 nanoparticles and indium tin oxide (ITO) surfaces, but significantly less binds to crystalline SiO2 or TiO2 surfaces. Together, the strong binding of the metalloporphyrins to the POM, nanoparticles, and the ITO surfaces, and paucity of binding to crystalline surfaces, suggests that the 3–4 open coordination sites on the Hf(Por) and Zr(Por) are predominantly bound at surface defect sites. PMID:20543903

  11. Design of Ternary Nanoalloy Catalysts: Effect of Nanoscale Alloying and Structural Perfection on Electrocatalytic Enhancement

    SciTech Connect

    Wanjala, Bridgid N.; Fang, Bin; Shan, Shiyao; Petkov, Valeri; Zhu, Pengyu; Loukrakpam, Rameshwori; Chen, Yongsheng; Luo, Jin; Yin, Jun; Yang, Lefu; Shao, Minhua; Zhong, Chuan-Jian

    2012-10-22

    The ability to tune the atomic-scale structural and chemical ordering in nanoalloy catalysts is essential for achieving the ultimate goal of high activity and stability of catalyst by design. This article shows this ability with a ternary nanoalloy of platinum with vanadium and cobalt for oxygen reduction reaction in fuel cells. The strategy is to enable nanoscale alloying and structural perfection through oxidative–reductive thermochemical treatments. The structural manipulation is shown to produce a significant enhancement in the electrocatalytic activity of the ternary nanoalloy catalysts for oxygen reduction reaction. Mass activities as high as 1 A/mg of Pt have been achieved by this strategy based on direct measurements of the kinetic currents from rotating disk electrode data. Using a synchrotron high-energy X-ray diffraction technique coupled with atomic pair function analysis and X-ray absorption fine structure spectroscopy as well as X-ray photoelectron spectroscopy, the atomic-scale structural and chemical ordering in nanoalloy catalysts prepared by the oxidative–reductive thermochemical treatments were examined. A phase transition has been observed, showing an fcc-type structure of the as-prepared and the lower-temperature-treated particles into an fct-type structure for the particles treated at the higher temperature. The results reveal a thermochemically driven evolution of the nanoalloys from a chemically disordered state into chemically ordered state with an enhanced degree of alloying. The increase in the chemical ordering and shrinking of interatomic distances as a result of thermochemical treatment at increased temperature is shown to increase the catalytic activity for oxygen reduction reaction, exhibiting an optimal activity at 600 °C. It is the alloying and structural perfection that allows the optimization of the catalytic performance in a controllable way, highlighting the significant role of atomic-scale structural and chemical ordering

  12. Design of Ternary Nanoalloy Catalysts: Effect of Nanoscale Alloying and Structural Perfection on Electrocatalytic Enhancement

    SciTech Connect

    Wanjala, Bridgid N.; Fang, Bin; Shan, Shiyao; Petkov, Valeri; Zhu, Pengyu; Loukrakpam, Rameshwori; Chen, Yongsheng; Luo, Jin; Yin, Jun; Yang, Lefu; Shao, Minhua; Zhong, Chuan-Jian

    2012-11-27

    The ability to tune the atomic-scale structural and chemical ordering in nanoalloy catalysts is essential for achieving the ultimate goal of high activity and stability of catalyst by design. This article demonstrates this ability with a ternary nanoalloy of platinum with vanadium and cobalt for oxygen reduction reaction in fuel cells. The strategy is to enable nanoscale alloying and structural perfection through oxidative–reductive thermochemical treatments. The structural manipulation is shown to produce a significant enhancement in the electrocatalytic activity of the ternary nanoalloy catalysts for oxygen reduction reaction. Mass activities as high as 1 A/mg of Pt have been achieved by this strategy based on direct measurements of the kinetic currents from rotating disk electrode data. Using a synchrotron high-energy X-ray diffraction technique coupled with atomic pair function analysis and X-ray absorption fine structure spectroscopy as well as X-ray photoelectron spectroscopy, the atomic-scale structural and chemical ordering in nanoalloy catalysts prepared by the oxidative–reductive thermochemical treatments were examined. A phase transition has been observed, showing an fcc-type structure of the as-prepared and the lower-temperature-treated particles into an fct-type structure for the particles treated at the higher temperature. The results reveal a thermochemically driven evolution of the nanoalloys from a chemically disordered state into chemically ordered state with an enhanced degree of alloying. The increase in the chemical ordering and shrinking of interatomic distances as a result of thermochemical treatment at increased temperature is shown to increase the catalytic activity for oxygen reduction reaction, exhibiting an optimal activity at 600 °C. It is the alloying and structural perfection that allows the optimization of the catalytic performance in a controllable way, highlighting the significant role of atomic-scale structural and chemical

  13. Electrochemical intercalation of lithium in ternary metal molybdates MMoO 4 (M: Cu, Zn, Ni and Fe)

    NASA Astrophysics Data System (ADS)

    Leyzerovich, N. N.; Bramnik, K. G.; Buhrmester, T.; Ehrenberg, H.; Fuess, H.

    Ternary oxides with general formula MMoO 4 (where M is a 3d-transitional metal) were characterized as cathode materials for lithium rechargeable batteries by galvanostatic charge-discharge technique and cyclic voltammetry. The significant capacity fading after the first cycle of lithium insertion/removal takes place for different copper molybdates (α-CuMoO 4 and high-pressure modification CuMoO 4-III) corresponding to the irreversible copper reduction and formation of Li 2MoO 4 during the first discharge. X-ray powder diffraction data reveal the decomposition of pristine ZnMoO 4 by electrochemical reaction, lithium zinc oxide with the NaCl-type structure and Li 2MoO 3 seem to be formed. Lithium intercalation into nickel and iron molybdates is shown to proceed without phase transitions, but at unsatisfactory low operating voltages.

  14. Thermodynamic properties of liquid Mg-ln-Cd ternary solutions

    NASA Astrophysics Data System (ADS)

    Moser, Z.; Gasior, W.; Panek, Z.

    1984-09-01

    By means of concentration cells of the following type: Mg(s)∣MgCl2 in (LiCl-KCl)eut( l)∣Mg-In or Mg-ln-Cd( l), the partial thermodynamic data of Mg in Mg-ln and Mg-ln-Cd liquid solutions have been obtained in the composition range 0.1 ≤ XMg ≤ 0.7 for binary while for ternary alloys for t = 0.4, 0.6, and 0.8 (where t = XIn/(XIn + XCd)) and at various mangesium concentrations 0.1≤ XMg ≤ 0.6. Both ternary and binary alloys were investigated at a temperature range 750 to 900 K. Experimental partial excess Gibbs energies of Mg were interpreted by the Pelton and Flengas method. Results for Mg-ln system show a slight difference in comparison with previously published data for the same system also from emf studies. Results of this study for Mg-ln system exhibit negative and positive excess entropies of magnesium and the same is observed in ternary system Mg-ln-Cd at the range of concentration close to Mg-ln.

  15. A Comparative Biocompatibility Analysis of Ternary Nitinol Alloys

    PubMed Central

    Haider, Waseem; Munroe, Norman; Pulletikurthi, Chandan; Singh Gill, Puneet K.; Amruthaluri, Sushma

    2009-01-01

    Nitinol alloys are rapidly being utilized as the material of choice in a variety of applications in the medical industry. It has been used for self-expanding stents, graft support systems, and various other devices for minimally invasive interventional and endoscopic procedures. However, the biocompatibility of this alloy remains a concern to many practitioners in the industry due to nickel sensitivity experienced by many patients. In recent times, several new Nitinol alloys have been introduced with the addition of a ternary element. Nevertheless, there is still a dearth of information concerning the biocompatibility and corrosion resistance of these alloys. This study compared the biocompatibility of two ternary Nitinol alloys prepared by powder metallurgy (PM) and arc melting (AM) and critically assessed the influence of the ternary element. ASTM F 2129-08 cyclic polarization in vitro corrosion tests were conducted to evaluate the corrosion resistance in phosphate buffered saline (PBS). The growth of endothelial cells on NiTi was examined using optical microscopy. PMID:19956791

  16. Ternary fission of 260No in equatorial configuration

    NASA Astrophysics Data System (ADS)

    Ismail, M.; Seif, W. M.; Hashem, A. S.

    2016-10-01

    Spontaneous ternary fission is one of the observed decay modes of heavy nuclei. We systematically investigate the equatorial ternary fission of the 260No isotope. In the framework of the three-cluster model, the three-body interaction potential is calculated in terms of the folded M3Y-Reid nucleon-nucleon force and the Coulomb one. The relative orientations of the deformed heavy nuclei participating in the fragmentation process are taken into account. All possible emitted light particles with even mass numbers A = 4-52 are considered. The favored fragmentation channels are estimated as the ones characterized with peaks in the Q-value and local minima in the fragmentation potential. In the absence of nuclear deformations, the closed shell effects are found to play the key role in determining the channels of minimum fragmentation potential and the involved two heavier fragments tend to be of comparable sizes. Inclusion of nuclear deformations manifest the participation of highly deformed prolate nuclei, with large mass asymmetry, as heavy fragment partners in the estimated favored fragmentation channels. The results indicate that the equatorial ternary fission of 260No is most favored with the light emitted nuclei 4,6,8 2He and 10 4Be through the fragmentation channels 155 60Nd + 4 2He + 101 0Zr, 153 60Nd + 6 2He + 101 40Zr, 152 60Nd + 8 2He + 100 40Zr, and 152 0Nd + 10 4Be + 98 38Sr, respectively.

  17. Formation of a Ternary Complex for Selenocysteine Biosynthesis in Bacteria*

    PubMed Central

    Silva, Ivan R.; Serrão, Vitor H. B.; Manzine, Livia R.; Faim, Lívia M.; da Silva, Marco T. A.; Makki, Raphaela; Saidemberg, Daniel M.; Cornélio, Marinônio L.; Palma, Mário S.; Thiemann, Otavio H.

    2015-01-01

    The synthesis of selenocysteine-containing proteins (selenoproteins) involves the interaction of selenocysteine synthase (SelA), tRNA (tRNASec), selenophosphate synthetase (SelD, SPS), a specific elongation factor (SelB), and a specific mRNA sequence known as selenocysteine insertion sequence (SECIS). Because selenium compounds are highly toxic in the cellular environment, the association of selenium with proteins throughout its metabolism is essential for cell survival. In this study, we demonstrate the interaction of SPS with the SelA-tRNASec complex, resulting in a 1.3-MDa ternary complex of 27.0 ± 0.5 nm in diameter and 4.02 ± 0.05 nm in height. To assemble the ternary complex, SPS undergoes a conformational change. We demonstrated that the glycine-rich N-terminal region of SPS is crucial for the SelA-tRNASec-SPS interaction and selenoprotein biosynthesis, as revealed by functional complementation experiments. Taken together, our results provide new insights into selenoprotein biosynthesis, demonstrating for the first time the formation of the functional ternary SelA-tRNASec-SPS complex. We propose that this complex is necessary for proper selenocysteine synthesis and may be involved in avoiding the cellular toxicity of selenium compounds. PMID:26378233

  18. Core-Shell Structured Magnetic Ternary Nanocubes

    SciTech Connect

    Wang, Lingyan; Wang, Xin; Luo, Jin; Wanjala, Bridgid N.; Wang, Chong M.; Chernova, Natalya; Engelhard, Mark H.; Liu, Yao; Bae, In-Tae; Zhong, Chuan-Jian

    2010-12-01

    While transition metal-doped ferrite nanoparticles constitute an important class of soft magnetic nanomaterials with spinel structures, the ability to control the shape and composition would enable a wide range of applications in homogeneous or heterogeneous reactions such as catalysis and magnetic separation of biomolecules. This report describes novel findings of an investigation of core-shell structured MnZn ferrite nanocubes synthesized in organic solvents by manipulating the reaction temperature and capping agent composition in the absence of the conventionally-used reducing agents. The core-shell structure of the highly-monodispersed nanocubes (~20 nm) are shown to consist of an Fe3O4 core and an (Mn0.5Zn0.5)(Fe0.9, Mn1.1)O4 shell. In comparison with Fe3O4 and other binary ferrite nanoparticles, the core-shell structured nanocubes were shown to display magnetic properties regulated by a combination of the core-shell composition, leading to a higher coercivity (~350 Oe) and field-cool/zero-field-cool characteristics drastically different from many regular MnZn ferrite nanoparticles. The findings are discussed in terms of the unique core-shell composition, the understanding of which has important implication to the exploration of this class of soft magnetic nanomaterials in many potential applications such as magnetic resonance imaging, fuel cells, and batteries.

  19. Facile synthesis, enhanced field emission and photocatalytic activities of Cu2O-TiO2-ZnO ternary hetero-nanostructures

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Yu, Ke; Yin, Haihong; Song, Changqin; Zhang, Zhengli; Li, Shouchuan; Shi, Hui; Zhang, Qingfeng; Zhao, Bin; Zhang, Yingfang; Zhu, Ziqiang

    2013-05-01

    Cu2O-TiO2-ZnO ternary nano-heteroarchitectures were designed and successfully fabricated using titanium (IV) oxideacetylacetonate (TiO(acac)2) as a precursor and polyethyleneimine (PEI) as a binding agent. Field emission and photocatalytic activities of pure Cu2O nanopines, Cu2O-TiO2 core-shell nanopines and Cu2O-TiO2-ZnO ternary composites were investigated and compared. The results revealed that the as-prepared nano-heterojunctions and nanoparticles at the surface remarkably enhanced the field emission and photocatalytic activities of pure Cu2O nanopines. The as-prepared nano-heterojunctions induced interfacial states and energy band differentials, which caused electron transition and the inhibition of photo-induced electron-hole pair recombination. The nanoparticles at the surface formed thousands of surface nano-protrusions and active sites for photocatalytic chemical reactions.

  20. Single-source precursors for ternary chalcopyrite materials, and methods of making and using the same

    NASA Technical Reports Server (NTRS)

    Banger, Kulbinder K. (Inventor); Hepp, Aloysius F. (Inventor); Harris, Jerry D. (Inventor); Jin, Michael Hyun-Chul (Inventor); Castro, Stephanie L. (Inventor)

    2006-01-01

    A single source precursor for depositing ternary I-III-VI.sub.2 chalcopyrite materials useful as semiconductors. The single source precursor has the I-III-VI.sub.2 stoichiometry built into a single precursor molecular structure which degrades on heating or pyrolysis to yield the desired I-III-VI.sub.2 ternary chalcopyrite. The single source precursors effectively degrade to yield the ternary chalcopyrite at low temperature, e.g. below 500.degree. C., and are useful to deposit thin film ternary chalcopyrite layers via a spray CVD technique. The ternary single source precursors according to the invention can be used to provide nanocrystallite structures useful as quantum dots. A method of making the ternary single source precursors is also provided.

  1. Ab Initio Simulations of Temperature Dependent Phase Stability and Martensitic Transitions in NiTi

    NASA Technical Reports Server (NTRS)

    Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.

    2016-01-01

    For NiTi based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. In particular, we show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing these phase transformations is discussed.

  2. Ab initio simulations of phase stability and martensitic transitions in NiTi

    NASA Astrophysics Data System (ADS)

    Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.

    2016-12-01

    For NiTi-based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. We show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing phase transformation temperatures is discussed.

  3. A Ternary Phase-Field Model Incorporating Commercial CALPHAD Software (Preprint)

    DTIC Science & Technology

    2008-10-21

    AFRL-RX-WP-TP-2009-4033 A TERNARY PHASE-FIELD MODEL INCORPORATING COMMERCIAL CALPHAD SOFTWARE (PREPRINT) J.P. Simmons Metals...Article Preprint 01 January 2009 – 31 January 2009 4. TITLE AND SUBTITLE A TERNARY PHASE-FIELD MODEL INCORPORATING COMMERCIAL CALPHAD SOFTWARE...2008 14. ABSTRACT A ternary phase-field model was developed that is linked directly to commercial CALPHAD software to provide quantitative

  4. Efficient hydrogen evolution by ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam

    PubMed Central

    Zhou, Haiqing; Yu, Fang; Huang, Yufeng; Sun, Jingying; Zhu, Zhuan; Nielsen, Robert J.; He, Ran; Bao, Jiming; Goddard III, William A.; Chen, Shuo; Ren, Zhifeng

    2016-01-01

    With the massive consumption of fossil fuels and its detrimental impact on the environment, methods of generating clean power are urgent. Hydrogen is an ideal carrier for renewable energy; however, hydrogen generation is inefficient because of the lack of robust catalysts that are substantially cheaper than platinum. Therefore, robust and durable earth-abundant and cost-effective catalysts are desirable for hydrogen generation from water splitting via hydrogen evolution reaction. Here we report an active and durable earth-abundant transition metal dichalcogenide-based hybrid catalyst that exhibits high hydrogen evolution activity approaching the state-of-the-art platinum catalysts, and superior to those of most transition metal dichalcogenides (molybdenum sulfide, cobalt diselenide and so on). Our material is fabricated by growing ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam. This advance provides a different pathway to design cheap, efficient and sizable hydrogen-evolving electrode by simultaneously tuning the number of catalytic edge sites, porosity, heteroatom doping and electrical conductivity. PMID:27633712

  5. Non-isothermal crystallization kinetics of ternary Se90Te10-xPbx glasses

    NASA Astrophysics Data System (ADS)

    Atyia, H. E.; Farid, A. S.

    2016-02-01

    Ternary Se90Te10-xPbx with (x=2 and 6 at%) glass compositions have been prepared using a melt quenching technique and performed the non-isothermal kinetics by differential thermal analysis (DTA) at various heating rates. The glassy state of the studied samples has been characterized using x-ray diffraction analysis. The glass transition temperature Tg, the onset temperature of crystallization Tc and the peak temperature of crystallization Tp are found to be composition and heating rate dependent. From heating rate dependence of Tg and Tp, the glass transition activation energies Eg and the crystallization activation energies Ec have been determined according to different methods. The transformation mechanisms have been examined by the values of Avrami exponent n and dimensionality of growth m. Thermal stability and glass formation ability have been monitored through the calculation of the thermal stability S, temperature difference ΔT, Hurby parameter Hr, frequency factor Ko, crystallization rate factor K and fragility index F. The compositional dependence of the above-mentioned parameters indicate that, the stability of the studied glass samples decreases with increasing Pb at% content.

  6. Efficient hydrogen evolution by ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam.

    PubMed

    Zhou, Haiqing; Yu, Fang; Huang, Yufeng; Sun, Jingying; Zhu, Zhuan; Nielsen, Robert J; He, Ran; Bao, Jiming; Goddard Iii, William A; Chen, Shuo; Ren, Zhifeng

    2016-09-16

    With the massive consumption of fossil fuels and its detrimental impact on the environment, methods of generating clean power are urgent. Hydrogen is an ideal carrier for renewable energy; however, hydrogen generation is inefficient because of the lack of robust catalysts that are substantially cheaper than platinum. Therefore, robust and durable earth-abundant and cost-effective catalysts are desirable for hydrogen generation from water splitting via hydrogen evolution reaction. Here we report an active and durable earth-abundant transition metal dichalcogenide-based hybrid catalyst that exhibits high hydrogen evolution activity approaching the state-of-the-art platinum catalysts, and superior to those of most transition metal dichalcogenides (molybdenum sulfide, cobalt diselenide and so on). Our material is fabricated by growing ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam. This advance provides a different pathway to design cheap, efficient and sizable hydrogen-evolving electrode by simultaneously tuning the number of catalytic edge sites, porosity, heteroatom doping and electrical conductivity.

  7. Efficient hydrogen evolution by ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam

    NASA Astrophysics Data System (ADS)

    Zhou, Haiqing; Yu, Fang; Huang, Yufeng; Sun, Jingying; Zhu, Zhuan; Nielsen, Robert J.; He, Ran; Bao, Jiming; Goddard, William A., III; Chen, Shuo; Ren, Zhifeng

    2016-09-01

    With the massive consumption of fossil fuels and its detrimental impact on the environment, methods of generating clean power are urgent. Hydrogen is an ideal carrier for renewable energy; however, hydrogen generation is inefficient because of the lack of robust catalysts that are substantially cheaper than platinum. Therefore, robust and durable earth-abundant and cost-effective catalysts are desirable for hydrogen generation from water splitting via hydrogen evolution reaction. Here we report an active and durable earth-abundant transition metal dichalcogenide-based hybrid catalyst that exhibits high hydrogen evolution activity approaching the state-of-the-art platinum catalysts, and superior to those of most transition metal dichalcogenides (molybdenum sulfide, cobalt diselenide and so on). Our material is fabricated by growing ternary molybdenum sulfoselenide particles on self-standing porous nickel diselenide foam. This advance provides a different pathway to design cheap, efficient and sizable hydrogen-evolving electrode by simultaneously tuning the number of catalytic edge sites, porosity, heteroatom doping and electrical conductivity.

  8. Amorphous Ternary Diffusion Barriers for Silicon Metallizations

    NASA Astrophysics Data System (ADS)

    Reid, Jason Sven

    1995-01-01

    Reactively sputtered from transition-metal silicide or boride targets in Ar/N_2 discharges, thin amorphous films of TM-Si-N (TM = Mo, Ta, Ti, or W) and W-B-N are investigated. Resistivity, density, stress, and structure are given as functions of composition, and in some cases, temperature. Transmission electron microscopy shows that most of the films are marginally amorphous with the scale of local order ranging from 0.5 to 1.5 nm. Small -angle scattering measurements reveal chemically dissimilary regions in the films. When fully nitrided, Si appears to be preferentially bonded to nitrogen in the form of Si_3N_4 in the TM-Si-N films, according to extended energy loss fine structure (EXELFS) measurements. By tests on shallow-junction diodes, 100-nm thick TM-Si-N barriers are able to prevent aluminum overlayers from spiking the Si substrate at temperatures above aluminum's melting point, 660^circC. The exceptional stability is partly attributable to a 3 nm, self-sealing AlN layer which grows at the TM-Si-N/Al interface. The performance of the TM-Si-N and W-B-N barriers with copper overlayers is equally impressive. At the proper compositions, 100-nm barriers prevent copper from diffusing into the junction at 800^circC or higher for a 30-min vacuum annealing. Diode failure typically corresponds to the crystallization temperature of the barrier, which can be reduced by the presence of copper. Preliminary diffusion measurements of Cu in Ta _{36}Si_ {14}N_{50} films by SIMS yield an approximate diffusivity constant of D_{CU} = (0.014 cm ^2/s) times exp(-2.7 eV/kT). A 10-nm-thick TM-Si-N barrier with a Cu overlayer on MOS capacitors reveals no penetration of Cu into SiO_2 during an 80 h bias-thermal-stress at 300^circ C and 1 MV/cm applied field. Through a microscopic four-point probe lithographically defined on a Cu/barrier/Cu trilayer stack, the specific contact resistances of barrier/Cu interfaces are determined for TM-Si-N, TiN, and W barriers. In all instances, the

  9. Ternary metal complexes of guaifenesin drug: Synthesis, spectroscopic characterization and in vitro anticancer activity of the metal complexes.

    PubMed

    Mahmoud, W H; Mahmoud, N F; Mohamed, G G; El-Sonbati, A Z; El-Bindary, A A

    2015-01-01

    The coordination behavior of a series of transition metal ions named Cr(III), Fe(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with a mono negative tridentate guaifenesin ligand (GFS) (OOO donation sites) and 1,10-phenanthroline (Phen) is reported. The metal complexes are characterized based on elemental analyses, IR, (1)H NMR, solid reflectance, magnetic moment, molar conductance, UV-vis spectral studies, mass spectroscopy, ESR, XRD and thermal analysis (TG and DTG). The ternary metal complexes were found to have the formulae of [M(GFS)(Phen)Cl]Cl·nH2O (M=Cr(III) (n=1) and Fe(III) (n=0)), [M(GFS)(Phen)Cl]·nH2O (M=Mn(II) (n=0), Zn(II) (n=0) and Cu(II) (n=3)) and [M(GFS)(Phen)(H2O)]Cl·nH2O (M=Co(II) (n=0), Ni(II) (n=0) and Cd(II) (n=4)). All the chelates are found to have octahedral geometrical structures. The ligand and its ternary chelates are subjected to thermal analyses (TG and DTG). The GFS ligand, in comparison to its ternary metal complexes also was screened for their antibacterial activity on gram positive bacteria (Bacillus subtilis and Staphylococcus aureus), gram negative bacteria (Escherichia coli and Neisseria gonorrhoeae) and for in vitro antifungal activity against (Candida albicans). The activity data show that the metal complexes have antibacterial and antifungal activity more than the parent GFS ligand. The complexes were also screened for its in vitro anticancer activity against the Breast cell line (MFC7) and the results obtained show that they exhibit a considerable anticancer activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Crystal structures of the new ternary stannides La{sub 3}Mg{sub 4−x}Sn{sub 2+x} and LaMg{sub 3−x}Sn{sub 2}

    SciTech Connect

    Solokha, P.; De Negri, S.; Minetti, R.; Proserpio, D.M.; Saccone, A.

    2016-01-15

    Synthesis and structural characterization of the two new lanthanum–magnesium–stannides La{sub 3}Mg{sub 4−x}Sn{sub 2+x} (0.12≤x≤0.40) and LaMg{sub 3−x}Sn{sub 2} (0.33≤x≤0.78) are reported. The crystal structures of these intermetallics were determined by single crystal X-ray diffraction analysis and confirmed by Rietveld refinement of powder X-ray diffraction patterns of the corresponding samples. The La{sub 3}Mg{sub 4−x}Sn{sub 2+x} phase crystallizes in the hexagonal Zr{sub 3}Cu{sub 4}Si{sub 2} structure type (P6¯2m, hP9, Z=3, x=0.12(1), a=7.7974(7), c=4.8384(4) Å), which represents an ordered derivative of the hP9-ZrNiAl prototype, ubiquitous among equiatomic intermetallics. The LaMg{sub 3–x}Sn{sub 2} phase is the second representative of the trigonal LaMg{sub 3−x}Ge{sub 2} type, which is a superstructure of the LaLi{sub 3}Sb{sub 2} structure type (P3¯1c, hP34-0.12, Z=6, x=0.35(1), a=8.3222(9), c=14.9546(16) Å). The scheme describing the symmetry reduction/coloring with respect to the parent type is reported here with the purpose to discuss the LaMg{sub 3−x}Sn{sub 2} off-stoichiometry from the geometrical point of view. Structural relationships between the La–Mg–Sn ternary phases, including the already known equiatomic LaMgSn compound (oP12-TiNiSi), are presented in the framework of the AlB{sub 2}-related compounds family and discussed with the aid of group-subgroup relations in the Bärnighausen formalism. - Graphical abstract: Crystal structure of LaMg{sub 3−x}Sn{sub 2} viewed along the (001) direction together with the puckered layer of Mg and Sn atoms hosting Mg2, Mg3 and vacancy □. - Highlights: • Crystal structures of the new La{sub 3}Mg{sub 4−x}Sn{sub 2+x} and LaMg{sub 3−x}Sn{sub 2} phases were determined. • The off-stoichiometry of LaMg{sub 3−x}Sn{sub 2} was discussed from geometrical point of view. • Structural relations between the known La–Mg–Sn phases were established. • The studied compounds are

  11. Modeling of Ternary Element Site Substitution in NiAl

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Honecy, Frank

    2000-01-01

    It is well recognized that ternary alloying additions can have a dramatic impact on the behavior of ordered intermetallic alloys such as nickel aluminides. Properties as diverse as yield strength, fracture strength, fracture mode, cyclic oxidation resistance, creep strength, and thermal and electrical diffusivity can change by orders of magnitude when a few percent or less of a ternary element is added. Yet our understanding of the resulting point defect structures and the simple site preferences of ternary alloying additions is poor because these are extremely difficult characteristics to determine. This disconnection between the understanding of the structure and properties in ordered alloys is at least in part responsible for the limited development and commercialization of these materials. Theoretical methods have provided useful but limited insight in this area, since most techniques suffer from constraints in the type of elements and the crystallographic structures that can be modeled. In an effort to overcome these limitations, the Bozzolo-Ferrante-Smith (BFS) method for alloys was designed. After a brief description of this approximate quantum mechanical approach, we use BFS to investigate the energetics of Si, Ti, V, Cr, Fe, Co, Cu, Zr, Nb, Mo, Ru, Hf, Ta and W additions to B2-ordered, stoichiometric NiAl. In addition to determining the site preference for these alloying additions over a range of compositions, we include results for the concentration dependence of the lattice parameter. In this introductory paper, we performed our analyses in the absence of constitutional and thermal vacancies for alloys of the form Ni50(Al,X)50. Where data exist, a comparison between experimental, theoretical, and BFS results is also included.

  12. Crystal Growth of Ternary Compound Semiconductors in Low Gravity Environment

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua

    2014-01-01

    A low gravity material experiment will be performed in the Material Science Research Rack (MSRR) on International Space Station (ISS). There are two sections of the flight experiment: (I) crystal growth of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, by physical vapor transport (PVT) and (II) melt growth of CdZnTe by directional solidification. The main objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the grown crystals as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. This talk will focus on the ground-based studies on the PVT crystal growth of ZnSe and related ternary compounds. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions.

  13. Modeling of Ternary Element Site Substitution in NiAl

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Honecy, Frank

    2000-01-01

    It is well recognized that ternary alloying additions can have a dramatic impact on the behavior of ordered intermetallic alloys such as nickel aluminides. Properties as diverse as yield strength, fracture strength, fracture mode, cyclic oxidation resistance, creep strength, and thermal and electrical diffusivity can change by orders of magnitude when a few percent or less of a ternary element is added. Yet our understanding of the resulting point defect structures and the simple site preferences of ternary alloying additions is poor because these are extremely difficult characteristics to determine. This disconnection between the understanding of the structure and properties in ordered alloys is at least in part responsible for the limited development and commercialization of these materials. Theoretical methods have provided useful but limited insight in this area, since most techniques suffer from constraints in the type of elements and the crystallographic structures that can be modeled. In an effort to overcome these limitations, the Bozzolo-Ferrante-Smith (BFS) method for alloys was designed. After a brief description of this approximate quantum mechanical approach, we use BFS to investigate the energetics of Si, Ti, V, Cr, Fe, Co, Cu, Zr, Nb, Mo, Ru, Hf, Ta and W additions to B2-ordered, stoichiometric NiAl. In addition to determining the site preference for these alloying additions over a range of compositions, we include results for the concentration dependence of the lattice parameter. In this introductory paper, we performed our analyses in the absence of constitutional and thermal vacancies for alloys of the form Ni50(Al,X)50. Where data exist, a comparison between experimental, theoretical, and BFS results is also included.

  14. Effect of Temperature and Moisture on the Physical Stability of Binary and Ternary Amorphous Solid Dispersions of Celecoxib.

    PubMed

    Xie, Tian; Taylor, Lynne S

    2017-01-01

    The effectiveness of different polymers, alone or in combination, in inhibiting the crystallization of celecoxib (CEX) from amorphous solid dispersions (ASDs) exposed to different temperatures and relative humidities was evaluated. It was found that polyvinylpyrrolidone (PVP) and PVP-vinyl acetate formed stronger or more extensive hydrogen bonding with CEX than cellulose-based polymers. This, combined with their better effectiveness in raising the glass transition temperature (Tg) of the dispersions, provided better physical stabilization of amorphous CEX against crystallization in the absence of moisture when compared with dispersions formed with cellulose derivatives. In ternary dispersions containing 2 polymers, the physical stability was minimally impaired by the presence of a cellulose-based polymer when the major polymer present was PVP. On exposure to moisture, stability of the CEX ASDs was strongly affected by both the dispersion hygroscopicity and the strength of the intermolecular interactions. Binary and ternary ASDs containing PVP appeared to undergo partial amorphous-amorphous phase separation when exposed 94% relative humidity, followed by crystallization, whereas other binary ASDs crystallized directly without amorphous-amorphous phase separation.

  15. Intermediate-range order in binary and ternary glasses

    SciTech Connect

    Price, D.L.; Susman, S.; Volin, K.J.; Dejus, R.J.

    1988-07-01

    Intermediate-range order in binary and ternary chalcogenide glasses is discussed, with special reference to GeSe/sub 2/ and Ag/sub 4/Ge/sub 3/Se/sub 9/. A signature of this order is provided by the first sharp diffraction peak, which occurs in these glasses at Q /approximately/ 1 /sup /angstrom/A//sup /minus/1/ and shows anomalous behavior in several ways. It is strongly depressed by the addition of Ag to the GeSe/sub 2/ glass. The addition of Ag also leads to a softening of the vibrational spectrum. 11 refs., 4 figs.

  16. Plutonium microstructures. Part 2. Binary and ternary alloys

    SciTech Connect

    Cramer, E.M.; Bergin, J.B.

    1983-12-01

    This report is the second of three parts that exhibit illustrations of inclusions in plutonium metal from inherent and tramp impurities, of intermetallic and nonmetallic constituents from alloy additions, and of the effects of thermal and mechanical treatments. This part includes illustrations of the microstructures in binary cast alloys and a few selected ternary alloys that result from measured additions of diluent elements, and of the microconstituents that are characteristic of phase fields in extended alloy systems. Microhardness data are given and the etchant used in the preparation of each sample is described.

  17. Self-consistent determination of plasmonic resonances in ternary nanocomposites

    NASA Astrophysics Data System (ADS)

    Garcia, Hernando; Trice, Justin; Kalyanaraman, Ramki; Sureshkumar, Radhakrishna

    2007-01-01

    We have developed a self-consistent technique to predict the behavior of plasmon resonances in multicomponent systems as a function of wavelength. This approach, based on the tight lower bounds of the Bergman-Milton formulation, is able to predict optical data, including the positions, shifts, and shapes of plasmonic peaks in ternary nanocomposites without using any fitting parameters. We obtained excellent predictions of the experimental data for mixtures of Ag:Cu:SiO2 and alloys of Au-Cu:SiO2 and Ag-Au:H2O . The essential physics of plasmonic behavior is captured by this approach.

  18. Density functional for ternary non-additive hard sphere mixtures.

    PubMed

    Schmidt, Matthias

    2011-10-19

    Based on fundamental measure theory, a Helmholtz free energy density functional for three-component mixtures of hard spheres with general, non-additive interaction distances is constructed. The functional constitutes a generalization of the previously given theory for binary non-additive mixtures. The diagrammatic structure of the spatial integrals in both functionals is of star-like (or tree-like) topology. The ternary diagrams possess a higher degree of complexity than the binary diagrams. Results for partial pair correlation functions, obtained via the Ornstein-Zernike route from the second functional derivatives of the excess free energy functional, agree well with Monte Carlo simulation data. © 2011 IOP Publishing Ltd

  19. Shape Deformation of Ternary Vesicles Coupled with Phase Separation

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Miho; Imai, Masayuki; Taniguchi, Takashi

    2008-04-01

    We report an experimental study on shape deformations of ternary vesicles undergoing phase separation under an osmotic pressure difference. The phase separation on various shape vesicles causes unique shape-deformation branches. In the domain coarsening stage, prolate, discocyte, and starfish vesicles show a shape convergence to discocytes, whereas a pearling instability is observed in tube vesicles. In late stages, the domains start to bud towards the inside or outside of the vesicle depending on the excess area. We discuss the deformation branches based on the membrane elasticity model.

  20. Site Occupancy of Ternary Additions to B2 Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo H.; Noebe, Ronald D.; Amador, Carlos

    2002-01-01

    In this broad-based survey study, the substitutional site preference of ternary alloying additions to B2 compounds (stable at room temperature and 50/50 composition) is determined using the Bozzolo-Ferrante-Smith (BFS) method for alloys. The method is applied to Ni, Al, Ti, Cr, Cu, Co, Fe, Ta, Hf, Mo, Nb, W, V and Ru additions to NiAl, FeAl, CoAl, CoFe, CoHf, CoTi, FeTi, RuAl, RuSi, RuHf, RuTi, and RuZr. The results are compared, when available, to experimental data and other theoretical results.

  1. A Ternary Phase Diagram for a Less Hazardous System

    NASA Astrophysics Data System (ADS)

    Udale, Barbara A.; Wells, John D.

    1995-12-01

    The ternary phase diagram for the partially miscible liquid system n-propanol-n-heptane-water can be determined readily in an undergraduate laboratory experiment. The coexistence curve is obtained from titration results. Tie lines are then estimated from the compositions of pairs of phases in equilibrium, the propanol concentrations being determined by gas chromatography. The reagents are less hazardous than those of the classic acetic acid-chloroform-water system, and the gas chromatographic analysis has more interest for students than the acid-base titrations of the older experiment.

  2. A novel method based on selective laser sintering for preparing high-performance carbon fibres/polyamide12/epoxy ternary composites

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Yan, Chunze; Shi, Yunsong; Wen, Shifeng; Liu, Jie; Wei, Qingsong; Shi, Yusheng

    2016-09-01

    A novel method based on selective laser sintering (SLS) process is proposed for the first time to prepare complex and high-performance carbon fibres/polyamide12/epoxy (CF/PA12/EP) ternary composites. The procedures are briefly described as follows: prepare polyamide12 (PA12) coated carbon fibre (CF) composite powder; build porous green parts by SLS; infiltrate the green parts with high-performance thermosetting epoxy (EP) resin; and finally cure the resin at high temperature. The obtained composites are a ternary composite system consisting of the matrix of novolac EP resin, the reinforcement of CFs and the transition thin layer of PA12 with a thickness of 595 nm. The SEM images and micro-CT analysis prove that the ternary system is a three-dimensional co-continuous structure and the reinforcement of CFs are well dispersed in the matrix of EP with the volume fraction of 31%. Mechanical tests show that the composites fabricated by this method yield an ultimate tensile strength of 101.03 MPa and a flexural strength of 153.43 MPa, which are higher than those of most of the previously reported SLS materials. Therefore, the process proposed in this paper shows great potential for manufacturing complex, lightweight and high-performance CF reinforced composite components in aerospace, automotive industries and other areas.

  3. A novel method based on selective laser sintering for preparing high-performance carbon fibres/polyamide12/epoxy ternary composites.

    PubMed

    Zhu, Wei; Yan, Chunze; Shi, Yunsong; Wen, Shifeng; Liu, Jie; Wei, Qingsong; Shi, Yusheng

    2016-09-21

    A novel method based on selective laser sintering (SLS) process is proposed for the first time to prepare complex and high-performance carbon fibres/polyamide12/epoxy (CF/PA12/EP) ternary composites. The procedures are briefly described as follows: prepare polyamide12 (PA12) coated carbon fibre (CF) composite powder; build porous green parts by SLS; infiltrate the green parts with high-performance thermosetting epoxy (EP) resin; and finally cure the resin at high temperature. The obtained composites are a ternary composite system consisting of the matrix of novolac EP resin, the reinforcement of CFs and the transition thin layer of PA12 with a thickness of 595 nm. The SEM images and micro-CT analysis prove that the ternary system is a three-dimensional co-continuous structure and the reinforcement of CFs are well dispersed in the matrix of EP with the volume fraction of 31%. Mechanical tests show that the composites fabricated by this method yield an ultimate tensile strength of 101.03 MPa and a flexural strength of 153.43 MPa, which are higher than those of most of the previously reported SLS materials. Therefore, the process proposed in this paper shows great potential for manufacturing complex, lightweight and high-performance CF reinforced composite components in aerospace, automotive industries and other areas.

  4. Preparation and photoluminescence of a novel β-diketone ligand containing electro-transporting group and its europium(III) ternary complex

    NASA Astrophysics Data System (ADS)

    Xiang, Neng-Jun; Leung, Louis M.; So, Shu-Kong; Gong, Meng-Lian

    2006-11-01

    A novel β-diketone with an electro-transporting oxadiazole group, 1-(4'-(5-(4-methylphenyl)-1,3,4-oxadiazol-2-yl)biphenyl-4-yl)-4,4,4-trifluorobutane-1,3-dione (MPBDTFA), was prepared with high yield. With this synthesized ligand as the first ligand and 1,10-phenanthroline (Phen) as the secondary ligand, a new europium(III) ternary complex, Eu(MPBDTFA) 3Phen, was synthesized. The new β-diketone and its europium(III) ternary complex were characteristized by elemental analysis, thermo-gravimetric analysis, IR and UV-visible spectroscopies. Photoluminescence measurements indicated that the energy absorbed by the organic ligands was efficiently transfered to the central Eu 3+ ions, and the complex showed intensely and characteristically red emissions due to the 5D0 → 7Fj transitions of the central Eu 3+ ions. With an electro-transporting group in molecule and highly thermal stability, the synthesized Eu(III) ternary complex is expected as a red-emitting candidate material for fabrication of organic light-emitting diodes (OLEDs).

  5. Preparation and photoluminescence of a novel beta-diketone ligand containing electro-transporting group and its europium(III) ternary complex.

    PubMed

    Xiang, Neng-Jun; Leung, Louis M; So, Shu-Kong; Gong, Meng-Lian

    2006-11-01

    A novel beta-diketone with an electro-transporting oxadiazole group, 1-(4'-(5-(4-methylphenyl)-1,3,4-oxadiazol-2-yl)biphenyl-4-yl)-4,4,4-trifluorobutane-1,3-dione (MPBDTFA), was prepared with high yield. With this synthesized ligand as the first ligand and 1,10-phenanthroline (Phen) as the secondary ligand, a new europium(III) ternary complex, Eu(MPBDTFA)(3)Phen, was synthesized. The new beta-diketone and its europium(III) ternary complex were characteristized by elemental analysis, thermo-gravimetric analysis, IR and UV-visible spectroscopies. Photoluminescence measurements indicated that the energy absorbed by the organic ligands was efficiently transfered to the central Eu(3+) ions, and the complex showed intensely and characteristically red emissions due to the (5)D(0)-->(7)F(j) transitions of the central Eu(3+) ions. With an electro-transporting group in molecule and highly thermal stability, the synthesized Eu(III) ternary complex is expected as a red-emitting candidate material for fabrication of organic light-emitting diodes (OLEDs).

  6. A novel method based on selective laser sintering for preparing high-performance carbon fibres/polyamide12/epoxy ternary composites

    PubMed Central

    Zhu, Wei; Yan, Chunze; Shi, Yunsong; Wen, Shifeng; Liu, Jie; Wei, Qingsong; Shi, Yusheng

    2016-01-01

    A novel method based on selective laser sintering (SLS) process is proposed for the first time to prepare complex and high-performance carbon fibres/polyamide12/epoxy (CF/PA12/EP) ternary composites. The procedures are briefly described as follows: prepare polyamide12 (PA12) coated carbon fibre (CF) composite powder; build porous green parts by SLS; infiltrate the green parts with high-performance thermosetting epoxy (EP) resin; and finally cure the resin at high temperature. The obtained composites are a ternary composite system consisting of the matrix of novolac EP resin, the reinforcement of CFs and the transition thin layer of PA12 with a thickness of 595 nm. The SEM images and micro-CT analysis prove that the ternary system is a three-dimensional co-continuous structure and the reinforcement of CFs are well dispersed in the matrix of EP with the volume fraction of 31%. Mechanical tests show that the composites fabricated by this method yield an ultimate tensile strength of 101.03 MPa and a flexural strength of 153.43 MPa, which are higher than those of most of the previously reported SLS materials. Therefore, the process proposed in this paper shows great potential for manufacturing complex, lightweight and high-performance CF reinforced composite components in aerospace, automotive industries and other areas. PMID:27650254

  7. Using a Ternary Diagram to Display a System's Evolving Energy Distribution

    ERIC Educational Resources Information Center

    Brazzle, Bob; Tapp, Anne

    2016-01-01

    A ternary diagram is a graphical representation used for systems with three components. They are familiar to mineralogists (who typically use them to categorize varieties of solid solution minerals such as feldspar) but are not yet widely used in the physics community. Last year the lead author began using ternary diagrams in his introductory…

  8. Using a Ternary Diagram to Display a System's Evolving Energy Distribution

    ERIC Educational Resources Information Center

    Brazzle, Bob; Tapp, Anne

    2016-01-01

    A ternary diagram is a graphical representation used for systems with three components. They are familiar to mineralogists (who typically use them to categorize varieties of solid solution minerals such as feldspar) but are not yet widely used in the physics community. Last year the lead author began using ternary diagrams in his introductory…

  9. Novel Ternary Graphite Intercalation Compounds of Alkali Metal Cations and Amines

    NASA Astrophysics Data System (ADS)

    Maluangnont, Tosapol

    Novel ternary graphite intercalation compounds (GICs) of alkali metal cations and a wide variety of amines have been synthesized by one-pot chemical syntheses. Alkali metals studied includes Li, Na and K. The families of amines employed are nalkylamines, branched alkylamines, and different structural isomers of diamines and polyamines. Intragallery structures of the amine co-intercalates residing between the graphene sheets are proposed based on powder X-ray diffraction (PXRD), supplemented by compositional analyses, thermal analyses, and structure optimization when appropriate. A homologous series of M-n-alkylamine-GICs (M = Na, Li) is reported for the first time, with the n-alkylamines of 3-14 carbon atoms (nC3-nC14). The following new GICs with indicated stages and intercalate arrangements are obtained: stage 1, di~ 0.70 nm, monolayer (nC3, nC4); stage 1, di ~ 1.10 nm, bilayer (nC6, nC8); and stage 2, di ~ 1.10 nm, bilayer (nC12, nC14). Here di is the gallery height. Two features new to donor-type GICs found are (i) an intercalate bilayer arrangement with guest alkyl chains parallel to encasing graphene layers, and (ii) the transition from an intercalate bilayer to monolayer arrangement upon evacuation for nC6. GICs containing branched alkylamines co-intercalates are prepared and their intragallery structures compared to those of selected n-alkylamines. A notable difference is observed for amines with 4 carbon atoms. While the linear n-butylamine forms parallel monolayers (di ~ 0.70 nm), the branched analogs (iso-butylamine and sec-butylamine) instead form bilayers with di ~ 1.30 nm. This result contrasts with the general observation that more sterically-hindered intercalates tend to intercalate at lower concentrations. This structural difference is not observed, however, between npropylamine and iso-propylamine (di ~ 0.70 and 0.76 nm respectively). A rare example of a ternary GIC exhibiting cation-directed orientation of the diamine co-intercalate (1

  10. Electronic Structure and Phase Equilibria in Ternary Substitutional Alloys: a Tight-Binding Approach

    NASA Astrophysics Data System (ADS)

    Traiber, Ariel Javier Sebastian

    1995-01-01

    The goal of this thesis is to develop and apply alloy theory methods to transition metals and alloys (particularly ternary systems) based on the tight-binding (TB) model of atomic cohesion in studies of stability and phase equilibria. At least two factors make this kind of formalism desirable: it can bring a clear understanding of the underlying physical mechanisms that many times get obscured in first-principles calculations, and it is easily adapted to complex problems and multicomponent solutions, at low computational cost. The original physical insight given by the TB method is demonstrated by the study of the relation between the atomic local environment and the relative stability of simple phases, through the calculation of the moments of the electronic density of states. We show that the relative stability of phases related to the Bain transformation is mainly controlled by the moment of order five, and we have identified the main contributions to this moment. We present a model for cohesive energy based on the assumption that it can be written as the sum of a band -structure contribution and a repulsive short-range contribution. We have calculated the band contribution using a TB Hamiltonian with d states and applied the linearized Green's function method based on the recursion technique. For the repulsive part of the energy we employ a Born-Mayer potential. The model was used to study total energies for Mo. We show that a six-moment approximation to the band energy is sufficient to reproduce more accurate results, using the standard recursion method, for the energetics of this transition metal. We describe a reliable and consistent scheme to study phase equilibria in ternary substitutional alloys based on the TB approximation. The TB electronic parameters are obtained from linear muffin-tin orbital calculations. The transfer integrals are scaled in distance with an orbital -dependent exponential decay parametrization, while the on-site energies are scaled

  11. Design of CNTFET-based 2-bit ternary ALU for nanoelectronics

    NASA Astrophysics Data System (ADS)

    Lata Murotiya, Sneh; Gupta, Anu

    2014-09-01

    This article presents a hardware-efficient design of 2-bit ternary arithmetic logic unit (ALU) using carbon nanotube field-effect transistors (CNTFETs) for nanoelectronics. The proposed structure introduces a ternary adder-subtractor functional module to optimise ALU architecture. The full adder-subtractor (FAS) cell uses nearly 72% less transistors than conventional architecture, which contains separate ternary cells for addition as well as subtraction. The presented ALU also minimises ternary function expressions with utilisation of binary gates for optimisation at the circuit level, thus attaining a simple design. Hspice simulations results demonstrate that the ALU ternary circuits achieve great improvement in terms of power delay product with respect to their CMOS counterpart at 32 nm.

  12. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes

    SciTech Connect

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-06-04

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increased hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.

  13. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes

    DOE PAGES

    Lu, Luyao; Chen, Wei; Xu, Tao; ...

    2015-06-04

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increasedmore » hole extraction, efficient energy transfer and better morphology. As a result, the working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.« less

  14. Release of DNA binary complexes from the ternary complexes by carboxymethyl poly(L-histidine).

    PubMed

    Asayama, Shoichiro; Sudo, Miyuki; Kawakami, Hiroyoshi

    2009-01-01

    The DNA ternary complexes with carboxymethyl poly(L-histidine) (CM-PLH) and poly(ethylenimine) (PEI) have released the DNA binary complexes with PEI by the protonation of CM-PLH at endosomal/lysosomal pH. The dissociation of the CM-PLH from the CM-PLH/PEI/DNA ternary complexes is proved by the fluorescence resonance energy transfer (FRET) analysis between the CM-PLH and PEI. The resulting PEI/DNA binary complexes easily released DNA, as compared with the CM-PLH/PEI/DNA ternary complexes, which was examined by competitive exchange with dextran sulfate. The release of the DNA binary complexes from the ternary complexes is promising mechanism for higher transfection activity by the CM-PLH/PEI/DNA ternary complexes.

  15. Factoring with qutrits: Shor's algorithm on ternary and metaplectic quantum architectures

    NASA Astrophysics Data System (ADS)

    Bocharov, Alex; Roetteler, Martin; Svore, Krysta M.

    2017-07-01

    We determine the cost of performing Shor's algorithm for integer factorization on a ternary quantum computer, using two natural models of universal fault-tolerant computing: (i) a model based on magic state distillation that assumes the availability of the ternary Clifford gates, projective measurements, classical control as its natural instrumentation set; (ii) a model based on a metaplectic topological quantum computer (MTQC). A natural choice to implement Shor's algorithm on a ternary quantum computer is to translate the entire arithmetic into a ternary form. However, it is also possible to emulate the standard binary version of the algorithm by encoding each qubit in a three-level system. We compare the two approaches and analyze the complexity of implementing Shor's period-finding function in the two models. We also highlight the fact that the cost of achieving universality through magic states in MTQC architecture is asymptotically lower than in generic ternary case.

  16. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes

    PubMed Central

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-01-01

    The integration of multiple materials with complementary absorptions into a single junction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, because of increased complexity with one more component, only limited high-performance ternary systems have been demonstrated previously. Here we report an efficient ternary blend OSC with a PCE of 9.2%. We show that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap-assisted recombination, enhanced light absorption, increased hole extraction, efficient energy transfer and better morphology. The working mechanism and high device performance demonstrate new insights and design guidelines for high-performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs. PMID:26041586

  17. Binary halide, ternary perovskite-like, and perovskite-derivative nanostructures: hot injection synthesis and optical and photocatalytic properties.

    PubMed

    Lim, Suh-Ciuan; Lin, Hsuan-Peng; Tsai, Wei-Lun; Lin, Hao-Wu; Hsu, Yao-Tsung; Tuan, Hsing-Yu

    2017-03-17

    A variety of crystalline colloid binary halide, ternary perovskite-like and ternary perovskite-derivative nanostructures with well-defined morphologies were synthesized, thus expanding materials chemistry to the new category of nanomaterials. The optical and photocatalytic properties of ternary nanostructures were investigated.

  18. Effects of hydrogen on acceptor activation in ternary nitride semiconductors

    DOE PAGES

    Fioretti, Angela N.; Stokes, Adam; Young, Matthew R.; ...

    2017-02-09

    Doping control is necessary to unlock the scientific and technological potential of many materials, including ternary II-IV-nitride semiconductors, which are closely related to binary GaN. In particular, ZnSnN2 has been reported to have degenerate doping density, despite bandgap energies that are well suited for solar energy conversion. Here, we show that annealing Zn-rich Zn1+xSn1-xN2 grown with added hydrogen reduces its free electron density by orders of magnitude, down to 4 x 1016 cm-3. This experimental observation can be explained by hydrogen passivation of acceptors in Zn1+xSn1-xN2 during growth, lowering the driving force for unintentional donor formation. Lastly, these results indicatemore » that the doping control principles used in GaN can be translated to ZnSnN2, suggesting that other strategies used in binary III-Vs can be applied to accelerate the technological development of ternary II-IV-N2 materials.« less

  19. Thermoelectric materials: ternary penta telluride and selenide compounds

    DOEpatents

    Sharp, Jeffrey W.

    2002-06-04

    Ternary tellurium compounds and ternary selenium compounds may be used in fabricating thermoelectric devices with a thermoelectric figure of merit (ZT) of 1.5 or greater. Examples of such compounds include Tl.sub.2 SnTe.sub.5, Tl.sub.2 GeTe.sub.5, K.sub.2 SnTe.sub.5 and Rb.sub.2 SnTe.sub.5. These compounds have similar types of crystal lattice structures which include a first substructure with a (Sn, Ge) Te.sub.5 composition and a second substructure with chains of selected cation atoms. The second substructure includes selected cation atoms which interact with selected anion atoms to maintain a desired separation between the chains of the first substructure. The cation atoms which maintain the desired separation between the chains occupy relatively large electropositive sites in the resulting crystal lattice structure which results in a relatively low value for the lattice component of thermal conductivity (.kappa..sub.g). The first substructure of anion chains indicates significant anisotropy in the thermoelectric characteristics of the resulting semiconductor materials.

  20. Thermoelectric materials ternary penta telluride and selenide compounds

    DOEpatents

    Sharp, Jeffrey W.

    2001-01-01

    Ternary tellurium compounds and ternary selenium compounds may be used in fabricating thermoelectric devices with a thermoelectric figure of merit (ZT) of 1.5 or greater. Examples of such compounds include Tl.sub.2 SnTe.sub.5, Tl.sub.2 GeTe.sub.5, K.sub.2 SnTe.sub.5 and Rb.sub.2 SnTe.sub.5. These compounds have similar types of crystal lattice structures which include a first substructure with a (Sn, Ge) Te.sub.5 composition and a second substructure with chains of selected cation atoms. The second substructure includes selected cation atoms which interact with selected anion atoms to maintain a desired separation between the chains of the first substructure. The cation atoms which maintain the desired separation between the chains occupy relatively large electropositive sites in the resulting crystal lattice structure which results in a relatively low value for the lattice component of thermal conductivity (.kappa..sub.g). The first substructure of anion chains indicates significant anisotropy in the thermoelectric characteristics of the resulting semiconductor materials.

  1. Breast mass classification on mammograms using radial local ternary patterns.

    PubMed

    Muramatsu, Chisako; Hara, Takeshi; Endo, Tokiko; Fujita, Hiroshi

    2016-05-01

    Textural features can be useful in differentiating between benign and malignant breast lesions on mammograms. Unlike previous computerized schemes, which relied largely on shape and margin features based on manual contours of masses, textural features can be determined from regions of interest (ROIs) without precise lesion segmentation. In this study, therefore, we investigated an ROI-based feature, namely, radial local ternary patterns (RLTP), which takes into account the direction of edge patterns with respect to the center of masses for classification of ROIs for benign and malignant masses. Using an artificial neural network (ANN), support vector machine (SVM) and random forest (RF) classifiers, the classification abilities of RLTP were compared with those of the regular local ternary patterns (LTP), rotation invariant uniform (RIU2) LTP, texture features based on the gray level co-occurrence matrix (GLCM), and wavelet features. The performance was evaluated with 376 ROIs including 181 malignant and 195 benign masses. The highest areas under the receiver operating characteristic curves among three classifiers were 0.90, 0.77, 0.78, 0.86, and 0.83 for RLTP, LTP, RIU2-LTP, GLCM, and wavelet features, respectively. The results indicate the usefulness of the proposed texture features for distinguishing between benign and malignant lesions and the superiority of the radial patterns compared with the conventional rotation invariant patterns.

  2. Compositional Heterogeneity in Ternary Models for the Cell Membrane

    NASA Astrophysics Data System (ADS)

    Smith, Robin; Heberle, Frederick; Wu, Jing; Feigenson, Gerald

    2010-03-01

    Ternary models for the cell membrane comprised of cholesterol (Chol) plus high and low melting temperature lipids exhibit rich phase behavior as a function of temperature and composition. Of particular interest is a region of coexisting disordered and ordered fluid phases that is thought to indicate how lipids organize to promote protein function in the cell membrane. We have used fluorescence resonance energy transfer to investigate the ternary mixtures DOPC(1,2-dioleoyl-sn-glycero-3-phosphocholine)/bSM (porcine brainsphingomyelin)/Chol and POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine)/bSM/Chol at high compositional resolution. We confirmed liquid coexistence for DOPC/bSM/Chol at 15 and 25C that melts by 35C, but in contrast to previous studies we detected no fluid-phase compositional heterogeneity for POPC/bSM/Chol from 5-35C. If domains exist, they must be smaller than the approximately 5 nm sensitivity provided by the fluorescent lipid analogs employed. We propose electron spin resonance and x-ray scattering for measuring whether liquid-phase compositional heterogeneity occurs for POPC/bSM/Chol. Understanding POPC/bSM/Chol phase behavior will provide a framework for investigating peptide/lipid interactions in a biologically relevant lipid mixture.

  3. Multi-texture local ternary pattern for face recognition

    NASA Astrophysics Data System (ADS)

    Essa, Almabrok; Asari, Vijayan

    2017-05-01

    In imagery and pattern analysis domain a variety of descriptors have been proposed and employed for different computer vision applications like face detection and recognition. Many of them are affected under different conditions during the image acquisition process such as variations in illumination and presence of noise, because they totally rely on the image intensity values to encode the image information. To overcome these problems, a novel technique named Multi-Texture Local Ternary Pattern (MTLTP) is proposed in this paper. MTLTP combines the edges and corners based on the local ternary pattern strategy to extract the local texture features of the input image. Then returns a spatial histogram feature vector which is the descriptor for each image that we use to recognize a human being. Experimental results using a k-nearest neighbors classifier (k-NN) on two publicly available datasets justify our algorithm for efficient face recognition in the presence of extreme variations of illumination/lighting environments and slight variation of pose conditions.

  4. Ternary fission of 260No in collinear configuration

    NASA Astrophysics Data System (ADS)

    Ismail, M.; Seif, W. M.; Hashem, A. S.; Botros, M. M.; Abdul-Magead, I. A. M.

    2016-09-01

    We investigate the collinear ternary fission of the 260No isotope. The calculations are performed in the framework of the three cluster model for all possible accompanied light particles of even mass numbers A = 4 - 52. The folding nuclear and Coulomb interaction potentials are used, based on the M3Y-Reid nucleon-nucleon force for the nuclear part. The deformation of the involved fragments and their relative orientations with respect to each other inside the fissioning nuclei are considered. Among all possible fragmentation channels, the suggested most probable channels are indicated as the ones showing a peak in the Q-value and a local minimum in the fragmentation potential, with respect to the mass and charge asymmetries. The indicated favored fragmentation channels from the approximate spherical calculations and those obtained after considering the deformations of the produced fragments are discussed in detail. In addition to the preferred heavy fragments of closed shells, favored prolate ones of high deformations appear when the nuclear deformations are taken into account. Among indicated fifty six favored channels, a collinear ternary fission of the 260No isotope is indicated to be most favored through the fragmentation channels of 15058Ce+410Be+40100Zr,60152Nd+412Be+3896Sr,58150Ce+614C+3896Sr,58148Ce+616C+3896Sr,54140Xe+822O+4098Zr,42106Mo+1848Ar+42106Mo and 41104Nb+2052Ca+41104Nb.

  5. Binding Energy Calculations for Novel Ternary Ionic Lattices

    NASA Astrophysics Data System (ADS)

    Rodríguez-Mijangos, Ricardo; Vazquez-Polo, Gustavo

    2002-03-01

    Theoretical calculations for the binding energy between metalic ions and negative ions on a novel ternary ionic lattice is carried out for several solid solutions prepared with different concentrations and characterized recently (1). The ternary lattices that reach a good miscibility are: KCl(x)KBr(y)RbCl(z) in three different concentrations: (x=y=z=0.33), (x=0.5, y=0.25, z=0.25) and (x=0.33, y=0.07, z=0.60). The binding energy for these novel structures is calculated from the lattice constants obtained by X ray diffractometry analysis performed on the samples and the Vegard law (2). For the repulsive force exponent m, an average of the m values was considered. The energy values obtained by the Born´expression are compared with corresponding energy values from the lattice with more complex expressions, such as the Born Mayer, Born-Van der Walls. There is a good aggreement between all these calculations. (1)R. R. Mijangos, A. Cordero-Borboa, E. Alvarez, M. Cervantes, Physics Letters A 282 (2001) 195-200. (2) G. Vazquez-Polo, R. R. Mijangos et al. Revista Mexicana de Fisica, 47, Diciembre 2001. In Press.

  6. Thermodynamic Modeling of the Al-Cr-Mn Ternary System

    NASA Astrophysics Data System (ADS)

    Cui, Senlin; Jung, In-Ho

    2017-03-01

    The phase diagram information available in the literature on the Al-Cr-Mn system was comprehensively evaluated and optimized for the first time to obtain a set of Gibbs energies of all the solid and liquid phases in the Al-Cr-Mn system. The Modified Quasi-chemical Model (MQM) was utilized to describe the Gibbs energy of the liquid phase of the Al-Cr-Mn system. The Compound Energy Formalism (CEF) was used to model the solid solution phases. A revision of the Al-Mn system was simultaneously conducted to consider the γ_H (Al8Mn5) phase. The liquid Cr-Mn phase was also remodeled using the Modified Quasi-chemical Model (MQM) to obtain a consistent description of the ternary Al-Cr-Mn liquid phase. Accurate description of the phase diagram of the entire Al-Cr-Mn system was obtained from the thermodynamic models with optimized parameters in the present study, and the model parameters can be used to predict the thermodynamic properties of the ternary system.

  7. Stability of ternary oxygen compounds of molybdenum in liquid sodium

    NASA Astrophysics Data System (ADS)

    Gnanasekaran, T.; Mahendran, K. H.; Periaswami, G.; Mathews, C. K.; Borgstedt, H. U.

    1987-10-01

    The ternary system Na-Mo-O is of interest in sodium loops such as in the heat transport systems of LMFBRs. This paper reports the results of our investigations with a view to identifying the phases which could co-exist with liquid sodium and molybdenum. The limited number of studies reported in literature are first critically reviewed and shown to be inconsistent. Experiments involving in-sodium equilibrations, solid state reactions and pseudo-isopiestic equilibrations were carried out to understand the phase relations in the Na-Mo-O system. In addition to the above, oxygen potentials were measured in sodium to which molybdates of sodium were added, using a galvanic cell. From these results it could be deduced that Na 2O(s) coexists with molybdenum and liquid sodium metal up to 681.1 K. Above this temperature the ternary oxygen compound, Na 4MoO 5(s) appears as the coexisting phase with the two metals. From the oxygen potential data, the Gibbs energy of formation of Na 4MoO 5(s) could be deduced.

  8. Cubic phases of ternary amphiphile-water systems.

    PubMed

    Fraser, Scott; Separovic, Frances; Polyzos, Anastasios

    2009-12-01

    The reversed cubic phases (Q(II)) are a class of self-assembled amphiphile-water structures that are rich in diversity and structural complexity. These nanostructured liquid crystalline materials are generating much interest owing to their unique surface morphology, biological relevance and potential technological and medical applications. The structure of Q(II) phases in binary amphiphile-water systems is affected by the molecular structure of surfactant, water content, temperature and pressure. The presence of additives also plays an important role. The structure and phase behaviour of ternary Q(II) phases, which are comprised of two miscible amphiphiles and water, significantly differ from the binary system alone. The modulation of the phase behaviour through the addition of a second amphiphile offers an opportunity to control the size and shape of the nanostructures using a 'bottom-up' approach. In this mini-review, we discuss the structure of reversed cubic phases of amphiphile-water systems and highlight the modulation of cubic-phase structure in ternary-phase systems. We also extend this review to bulk cubic phases and the corresponding nanoscale dispersions, cubic-phase nanoparticles.

  9. Thermodiffusion in binary and ternary nonpolar hydrocarbon + alcohol mixtures

    NASA Astrophysics Data System (ADS)

    Eslamian, Morteza; Saghir, M. Ziad

    2012-12-01

    Thermodiffusion in complex mixtures, such as associating, molten metal, and polymer mixtures is difficult to model usually owing to the occurrence of a sign change in the thermodiffusion coefficient when the mixture concentration and temperature change. A mixture comprised of a nonpolar hydrocarbon and an alcohol is a complex and highly non-ideal mixture. In this paper an existing binary non-equilibrium thermodynamics model (Eslamian and Saghir, Physical Review E 80, 061201, 2009) developed for aqueous mixtures of alcohols is examined against the experimental data of binary nonpolar hydrocarbon and alcohol mixtures. For ternary mixtures, non-equilibrium thermodynamic expressions developed by the authors for aqueous mixtures of alcohols (Eslamian and Saghir, Canadian Journal of Chemical Engineering, DOI 10.1002/cjce.20581) is used to predict thermodiffusion coefficients of ternary nonpolar hydrocarbon and alcohol mixtures. The rationale behind the sign change is elucidated and attributed to an anomalous change in the molecular structure and therefore viscosity of such mixtures. Model predictions of thermodiffusion coefficients of binary mixtures predict a sign change consistent with the experimental data although the model is still too primitive to capture all structural complexities. For instance, in the methanol-benzene mixture where the model predictions are poorest, the viscosity data show that when concentration varies, the mixture's molecular structure experiences a severe change twice, the first major change leading to a maximum in the thermodiffusion coefficient, whereas the second change causes a sign change.

  10. A tunable amorphous p-type ternary oxide system: The highly mismatched alloy of copper tin oxide

    SciTech Connect

    Isherwood, Patrick J. M. Walls, John M.; Butler, Keith T.; Walsh, Aron

    2015-09-14

    The approach of combining two mismatched materials to form an amorphous alloy was used to synthesise ternary oxides of CuO and SnO{sub 2}. These materials were analysed across a range of compositions, and the electronic structure was modelled using density functional theory. In contrast to the gradual reduction in optical band gap, the films show a sharp reduction in both transparency and electrical resistivity with copper contents greater than 50%. Simulations indicate that this change is caused by a transition from a dominant Sn 5s to Cu 3d contribution to the upper valence band. A corresponding decrease in energetic disorder results in increased charge percolation pathways: a “compositional mobility edge.” Contributions from Cu(II) sub band-gap states are responsible for the reduction in optical transparency.

  11. Liquid-liquid phase separation of freely falling undercooled ternary Fe-Cu-Sn alloy

    PubMed Central

    Wang, W .L.; Wu, Y. H.; Li, L. H.; Zhai, W.; Zhang, X. M.; Wei, B.

    2015-01-01

    The active modulation and control of the liquid phase separation for high-temperature metallic systems are still challenging the development of advanced immiscible alloys. Here we present an attempt to manipulate the dynamic process of liquid-liquid phase separation for ternary Fe47.5Cu47.5Sn5 alloy. It was firstly dispersed into numerous droplets with 66 ~ 810 μm diameters and then highly undercooled and rapidly solidified under the containerless microgravity condition inside drop tube. 3-D phase field simulation was performed to explore the kinetic evolution of liquid phase separation. Through regulating the combined effects of undercooling level, phase separation time and Marangoni migration, three types of separation patterns were yielded: monotectic cell, core shell and dispersive structures. The two-layer core-shell morphology proved to be the most stable separation configuration owing to its lowest chemical potential. Whereas the monotectic cell and dispersive microstructures were both thermodynamically metastable transition states because of their highly active energy. The Sn solute partition profiles of Fe-rich core and Cu-rich shell in core-shell structures varied only slightly with cooling rate. PMID:26552711

  12. Spontaneous Formation of Eutectic Crystal Structures in Binary and Ternary Charged Colloids due to Depletion Attraction

    NASA Astrophysics Data System (ADS)

    Toyotama, Akiko; Okuzono, Tohru; Yamanaka, Junpei

    2016-03-01

    Crystallization of colloids has extensively been studied for past few decades as models to study phase transition in general. Recently, complex crystal structures in multi-component colloids, including alloy and eutectic structures, have attracted considerable attention. However, the fabrication of 2D area-filling colloidal eutectics has not been reported till date. Here, we report formation of eutectic structures in binary and ternary aqueous colloids due to depletion attraction. We used charged particles + linear polyelectrolyte systems, in which the interparticle interaction could be represented as a sum of the electrostatic, depletion, and van der Waals forces. The interaction was tunable at a lengthscale accessible to direct observation by optical microscopy. The eutectic structures were formed because of interplay of crystallization of constituent components and accompanying fractionation. An observed binary phase diagram, defined by a mixing ratio and inverse area fraction of the particles, was analogous to that for atomic and molecular eutectic systems. This new method also allows the adjustment of both the number and wavelengths of Bragg diffraction peaks. Furthermore, these eutectic structures could be immobilized in polymer gel to produce self-standing materials. The present findings will be useful in the design of the optical properties of colloidal crystals.

  13. Ternary metal fluorides as high-energy cathodes with low cycling hysteresis

    SciTech Connect

    Wang, Feng; Kim, Sung -Wook; Seo, Dong -Hwa; Kang, Kisuk; Wang, Liping; Su, Dong; Vajo, John J.; Wang, John; Gratez, Jason

    2015-03-26

    In this study, transition metal fluorides are an appealing alternative to conventional intercalation compounds for use as cathodes in next-generation lithium batteries due to their extremely high capacity (3–4 times greater than the current state-of-the-art). However, issues related to reversibility, energy efficiency and kinetics prevent their practical application. Here we report on the synthesis, structural and electrochemical properties of ternary metal fluorides (M1yM21-yFx: M1, M2 = Fe, Cu), which may overcome these issues. By substituting Cu into the Fe lattice, forming the solid–solution CuyFe1-yF2, reversible Cu and Fe redox reactions are achieved with surprisingly small hysteresis (<150 mV). This finding indicates that cation substitution may provide a new avenue for tailoring key electrochemical properties of conversion electrodes. In conclusion, although the reversible capacity of Cu conversion fades rapidly, likely due to Cu+ dissolution, the low hysteresis and high energy suggest that a Cu-based fluoride cathode remains an intriguing candidate for rechargeable lithium batteries.

  14. Novel Iron-based ternary amorphous oxide semiconductor with very high transparency, electronic conductivity, and mobility

    DOE PAGES

    Malasi, A.; Taz, H.; Farah, A.; ...

    2015-12-16

    We report that ternary metal oxides of type (Me)2O3 with the primary metal (Me) constituent being Fe (66 atomic (at.) %) along with the two Lanthanide elements Tb (10 at.%) and Dy (24 at.%) can show excellent semiconducting transport properties. Thin films prepared by pulsed laser deposition at room temperature followed by ambient oxidation showed very high electronic conductivity (>5 × 104 S/m) and Hall mobility (>30 cm2/V-s). These films had an amorphous microstructure which was stable to at least 500 °C and large optical transparency with a direct band gap of 2.85 ± 0.14 eV. This material shows emergentmore » semiconducting behavior with significantly higher conductivity and mobility than the constituent insulating oxides. In conclusion, since these results demonstrate a new way to modify the behaviors of transition metal oxides made from unfilled d- and/or f-subshells, a new class of functional transparent conducting oxide materials could be envisioned.« less

  15. Spontaneous Formation of Eutectic Crystal Structures in Binary and Ternary Charged Colloids due to Depletion Attraction

    PubMed Central

    Toyotama, Akiko; Okuzono, Tohru; Yamanaka, Junpei

    2016-01-01

    Crystallization of colloids has extensively been studied for past few decades as models to study phase transition in general. Recently, complex crystal structures in multi-component colloids, including alloy and eutectic structures, have attracted considerable attention. However, the fabrication of 2D area-filling colloidal eutectics has not been reported till date. Here, we report formation of eutectic structures in binary and ternary aqueous colloids due to depletion attraction. We used charged particles + linear polyelectrolyte systems, in which the interparticle interaction could be represented as a sum of the electrostatic, depletion, and van der Waals forces. The interaction was tunable at a lengthscale accessible to direct observation by optical microscopy. The eutectic structures were formed because of interplay of crystallization of constituent components and accompanying fractionation. An observed binary phase diagram, defined by a mixing ratio and inverse area fraction of the particles, was analogous to that for atomic and molecular eutectic systems. This new method also allows the adjustment of both the number and wavelengths of Bragg diffraction peaks. Furthermore, these eutectic structures could be immobilized in polymer gel to produce self-standing materials. The present findings will be useful in the design of the optical properties of colloidal crystals. PMID:26984298

  16. Spontaneous Formation of Eutectic Crystal Structures in Binary and Ternary Charged Colloids due to Depletion Attraction.

    PubMed

    Toyotama, Akiko; Okuzono, Tohru; Yamanaka, Junpei

    2016-03-17

    Crystallization of colloids has extensively been studied for past few decades as models to study phase transition in general. Recently, complex crystal structures in multi-component colloids, including alloy and eutectic structures, have attracted considerable attention. However, the fabrication of 2D area-filling colloidal eutectics has not been reported till date. Here, we report formation of eutectic structures in binary and ternary aqueous colloids due to depletion attraction. We used charged particles + linear polyelectrolyte systems, in which the interparticle interaction could be represented as a sum of the electrostatic, depletion, and van der Waals forces. The interaction was tunable at a lengthscale accessible to direct observation by optical microscopy. The eutectic structures were formed because of interplay of crystallization of constituent components and accompanying fractionation. An observed binary phase diagram, defined by a mixing ratio and inverse area fraction of the particles, was analogous to that for atomic and molecular eutectic systems. This new method also allows the adjustment of both the number and wavelengths of Bragg diffraction peaks. Furthermore, these eutectic structures could be immobilized in polymer gel to produce self-standing materials. The present findings will be useful in the design of the optical properties of colloidal crystals.

  17. Novel Iron-based ternary amorphous oxide semiconductor with very high transparency, electronic conductivity, and mobility

    PubMed Central

    Malasi, A.; Taz, H.; Farah, A.; Patel, M.; Lawrie, B.; Pooser, R.; Baddorf, A.; Duscher, G.; Kalyanaraman, R.

    2015-01-01

    Here we report that ternary metal oxides of type (Me)2O3 with the primary metal (Me) constituent being Fe (66 atomic (at.) %) along with the two Lanthanide elements Tb (10 at.%) and Dy (24 at.%) can show excellent semiconducting transport properties. Thin films prepared by pulsed laser deposition at room temperature followed by ambient oxidation showed very high electronic conductivity (>5 × 104 S/m) and Hall mobility (>30 cm2/V-s). These films had an amorphous microstructure which was stable to at least 500 °C and large optical transparency with a direct band gap of 2.85 ± 0.14 eV. This material shows emergent semiconducting behavior with significantly higher conductivity and mobility than the constituent insulating oxides. Since these results demonstrate a new way to modify the behaviors of transition metal oxides made from unfilled d- and/or f-subshells, a new class of functional transparent conducting oxide materials could be envisioned. PMID:26670421

  18. Liquid immiscibility and core-shell morphology formation in ternary Al–Bi–Sn alloys

    SciTech Connect

    Dai, R.; Zhang, J.F.; Zhang, S.G. Li, J.G.

    2013-07-15

    The effects of composition on liquid immiscibility, macroscopic morphology, microstructure and phase transformation in ternary Al–Bi–Sn alloys were investigated. Three types of morphology, the core-shell type, the stochastic droplet type and uniform dispersion type, of Al–Bi–Sn particles prepared by a jet breakup process were distinguished, and the relationships between which were discussed. The phase transformation behaviors of the Al–Bi–Sn alloys were studied by thermal analysis, in agreement with the microstructural observation and microanalysis. The liquid immiscibility and formation of the core-shell morphology in Al–Bi–Sn alloys are easily achieved when the composition lies in the liquid miscibility gap. The particles exhibit a high melting point Al-rich core with a low melting point Sn–Bi-rich solder shell, showing promise for application as high-density electronic packaging materials. - Highlights: • The liquid demixing, morphology and microstructure in Al–Bi–Sn alloys were studied. • Three types of morphology were classified and discussed. • The conditions for formation of the core-shell morphology were obtained. • The phase transition behaviors agree with the microstructure characterization. • The Al/Sn–Bi core-shell particles show promise for use in electronic packaging.

  19. Liquid-liquid phase separation of freely falling undercooled ternary Fe-Cu-Sn alloy.

    PubMed

    Wang, W L; Wu, Y H; Li, L H; Zhai, W; Zhang, X M; Wei, B

    2015-11-10

    The active modulation and control of the liquid phase separation for high-temperature metallic systems are still challenging the development of advanced immiscible alloys. Here we present an attempt to manipulate the dynamic process of liquid-liquid phase separation for ternary Fe47.5Cu47.5Sn5 alloy. It was firstly dispersed into numerous droplets with 66 ~ 810 μm diameters and then highly undercooled and rapidly solidified under the containerless microgravity condition inside drop tube. 3-D phase field simulation was performed to explore the kinetic evolution of liquid phase separation. Through regulating the combined effects of undercooling level, phase separation time and Marangoni migration, three types of separation patterns were yielded: monotectic cell, core shell and dispersive structures. The two-layer core-shell morphology proved to be the most stable separation configuration owing to its lowest chemical potential. Whereas the monotectic cell and dispersive microstructures were both thermodynamically metastable transition states because of their highly active energy. The Sn solute partition profiles of Fe-rich core and Cu-rich shell in core-shell structures varied only slightly with cooling rate.

  20. Type-II Superconductivity in Ternary Zirconium Pnictide Chalcogenide Single Crystals

    NASA Astrophysics Data System (ADS)

    Baenitz, M.; Lüders, K.; Kniep, R.; Steglich, F.; Schmidt, M.

    Layered Pnictides are proven to be a great reservoir for superconductors in the past and ternary zirconium pnictide chalcogenides of ZrXY-type (X = P, As; Y = S, Se) might be a platform for new superconductors. The superconducting properties of carefully grown (chemical transport reaction) single crystals of ZrP1.54S0.46 with a transition temperature of Tc = 3.5 K are investigated. This compound (PbFCl structure type) contains square planar nets: One of the nets is completely occupied (no vacancies) by P, the other one characterized by a random distribution of P and S (full occupation: no vacancies). Besides zero-field-cooling (zfc), field-cooling (fc), and remanent moment (rem) measurements, especially magnetization and ac susceptibility measurements are performed. A nearly ideal type-II behavior with a Ginzburg-Landau parameter κ = 24 is found. The magnetization curves between Bc1 and Bc2 for increasing field are in excellent agreement with theoretical calculations performed by E. H. Brandt based on the Ginzburg-Landau theory. The decreasing branches of the magnetization curves are asymmetric about the field axis indicating weak pinning and also large diamagnetic behavior.

  1. Ternary Synaptic Plasticity Arising from Memdiode Behavior of TiOx Single Nanowire

    NASA Astrophysics Data System (ADS)

    Hong, Deshun; Chen, Yuansha; Sun, Jirong; Shen, Baogen; Group 3 of Magnetism Laboratory, Beijing National LaboratoryCondensed Matter Physics Team

    Electric field-induced resistive switching (RS) effect has been widely explored as a novel nonvolatile memory over the past few years. Recently, the RS behavior with continuous transition has received considerable attention for its promising prospect in neuromorphic simulation. Here, the switching characteristics of a planar-structured TiOx single nanowire device were systematically investigated. It exhibited a strong electrical history-dependent rectifying behavior that was defined as a ''memdiode''. We further demonstrated that a ternary synaptic plasticity could be realized in such a TiOx nanowire device, characterized by the resistance and photocurrent responses. For a given state of the memdiode, a conjugated memristive characteristic and a distinct photocurrent can be simulaneously obtained, resulting in a synchronous implementation of various Hebbian plasticities with the same temporal order of spikes. These intriguing properties of TiOx memdiode provide a feasible way toward the designing of multifunctional electronic synapses as well as programmable artificial neural network This work has been partially supported by the National Basic Research of China (2013CB921700), the ``Strategic Priority Research Program (B)'' of the Chinese Academy of Sciences (XDB07030200) and the National Natural Science Foundation of China (11374339).

  2. Critical review of carbon monoxide pressure measurements in the uranium carbon oxygen ternary system

    NASA Astrophysics Data System (ADS)

    Gossé, S.; Guéneau, C.; Chatillon, C.; Chatain, S.

    2006-06-01

    For high temperature reactors (HTR), the high level of fuel operating temperature in normal and accidental conditions requires to predict the possible chemical interactions between the fuel components. Among the concerns of the TRISO fuel particle thermomechanical behavior, it is necessary to better understand the carbon monoxide formation due to chemical interactions at the UO2 kernel and graphite buffer's interface. In a first step, the thermodynamic properties of the U-C-O system have to be assessed. The experimental data from literature on the equilibrium CO gas pressure measurements in the UO2-UC2-C ternary section of the U-C-O system are critically reviewed. Discrepancies between the different determinations can be explained - (i) by the different gaseous flow regimes in the experiments and - (ii) by the location of the measuring pressure gauge away from the reaction site. Experimental values are corrected - (i) from the gaseous flow type (molecular, transition or viscous) defined by the Knudsen number and - (ii) from the thermomolecular effect due to the temperature gradient inside the experimental vessels. Taking account of the selected and corrected values improves greatly the consistency of the original set of measurements.

  3. Novel Iron-based ternary amorphous oxide semiconductor with very high transparency, electronic conductivity, and mobility

    NASA Astrophysics Data System (ADS)

    Malasi, A.; Taz, H.; Farah, A.; Patel, M.; Lawrie, B.; Pooser, R.; Baddorf, A.; Duscher, G.; Kalyanaraman, R.

    2015-12-01

    Here we report that ternary metal oxides of type (Me)2O3 with the primary metal (Me) constituent being Fe (66 atomic (at.) %) along with the two Lanthanide elements Tb (10 at.%) and Dy (24 at.%) can show excellent semiconducting transport properties. Thin films prepared by pulsed laser deposition at room temperature followed by ambient oxidation showed very high electronic conductivity (>5 × 104 S/m) and Hall mobility (>30 cm2/V-s). These films had an amorphous microstructure which was stable to at least 500 °C and large optical transparency with a direct band gap of 2.85 ± 0.14 eV. This material shows emergent semiconducting behavior with significantly higher conductivity and mobility than the constituent insulating oxides. Since these results demonstrate a new way to modify the behaviors of transition metal oxides made from unfilled d- and/or f-subshells, a new class of functional transparent conducting oxide materials could be envisioned.

  4. Microstructure and Corrosion Behavior of the Cu-Pd-X Ternary Alloys for Hydrogen Separation Membranes

    SciTech Connect

    O.N. Dogan; M.C. Gao; B.H. Howard

    2012-02-26

    CuPd alloys are among the most promising candidate materials for hydrogen separation membranes and membrane reactor applications due to their high hydrogen permeability and better sulfur resistance. In order to reduce the Pd content and, therefore, the cost of the membrane materials, efforts have been initiated to develop CuPdM ternary alloys having a bcc structure. The advantages of having Pd as a hydrogen separation membrane are: (1) high hydrogen selectivity; and (2) high hydrogen permeability. The disadvantages are: (1) high cost; (2) hydrogen embrittlement ({alpha} {yields} {beta} Pd hydride); and (3) sulfur poisoning. Experiments (XRD, SEM/EDS) verified that Mg, Al, La, Y and Ti are promising alloying elements to expand the B2 phase region in Cu-Pd binary system. HT-XRD showed that the B2 to FCC transition temperatures for Cu-Pd-X (X = Mg, Al, La, Y and Ti) are higher than that of Cu-Pd binary alloys. While the Cu-50Pd alloy had the highest corrosion resistance to the H2S containing syngas, the Cu-Pd-Mg alloy had a comparable resistance.

  5. Superconductivity in the Ni based ternary carbide LaNiC 2

    NASA Astrophysics Data System (ADS)

    Lee, W. H.; Zeng, H. K.; Yao, Y. D.; Chen, Y. Y.

    1996-02-01

    Electrical-resistivity, magnetic-susceptibility and specific-heat data reveal that the bulk phase transition at 2.63 ∼ 2.86 K (10 ∼ 90% values) in LaNiC 2 is to a superconducting ground state. The normal-state specific-heat data can be fitted to the expression Cn = γT+ βT3 (3 K< T<7 K) by a least-quares analysis, where γ = 7.83 mJ/mol K 2 and β = 0.0635 mJ/mol K 4, resulting in Debye temperature θD = 496 K. A special emphasis is on the specific heat in the superconducting state below 1.6 K; Cs is not exponential but has a power-law form: Cs ≈ 3.5( γTc)( T/ Tc) 3. According to the observed specific-heat data, we suggest that LaNiC 2 belongs to a nonconventional BCS superconductor. In addition, LaNiC 2 is the first nickel-based ternary-carbide superconductor.

  6. Ternary metal fluorides as high-energy cathodes with low cycling hysteresis

    DOE PAGES

    Wang, Feng; Kim, Sung -Wook; Seo, Dong -Hwa; ...

    2015-03-26

    In this study, transition metal fluorides are an appealing alternative to conventional intercalation compounds for use as cathodes in next-generation lithium batteries due to their extremely high capacity (3–4 times greater than the current state-of-the-art). However, issues related to reversibility, energy efficiency and kinetics prevent their practical application. Here we report on the synthesis, structural and electrochemical properties of ternary metal fluorides (M1yM21-yFx: M1, M2 = Fe, Cu), which may overcome these issues. By substituting Cu into the Fe lattice, forming the solid–solution CuyFe1-yF2, reversible Cu and Fe redox reactions are achieved with surprisingly small hysteresis (<150 mV). This findingmore » indicates that cation substitution may provide a new avenue for tailoring key electrochemical properties of conversion electrodes. In conclusion, although the reversible capacity of Cu conversion fades rapidly, likely due to Cu+ dissolution, the low hysteresis and high energy suggest that a Cu-based fluoride cathode remains an intriguing candidate for rechargeable lithium batteries.« less

  7. The Ternary Gallide CeNiGa: Polymorphism and Hydrogen Absorption

    NASA Astrophysics Data System (ADS)

    Chevalier, B.; Bobet, J.-L.; Gaudin, E.; Pasturel, M.; Etourneau, J.

    2002-10-01

    The ternary gallide CeNiGa presents a crystallographic transformation with temperature. The crystal structure of the high-temperature form (HTF), determined for the first time by X-ray diffraction on a single crystal, is orthorhombic TiNiSi-type, whereas the low-temperature form (LTF) adopts the hexagonal ZrNiAl-type. Electrical resistivity and magnetization measurements reveal that both (LTF) and (HTF) CeNiGa are classified as intermediate valence compounds, but their Kondo temperatures TK are strongly different; TK≫300 K and TK≅95(5) K for (LTF) and (HTF), respectively. Both forms react with hydrogen at room temperature and form the hydride CeNiGaH 1.1(1) which crystallizes in the hexagonal AlB 2-type with lattice parameters a=4.239(4) Å and c=4.258(5) Å. Hydrogenation also induces a valence transition for cerium from the intermediate valence state (CeNiGa) to a purely trivalent state (CeNiGaH 1.1(1)). This behavior is correlated to an increase of the unit cell volume after hydrogenation and is compared to that observed previously for CeNiAlH 1.93.

  8. Novel Iron-based ternary amorphous oxide semiconductor with very high transparency, electronic conductivity, and mobility

    SciTech Connect

    Malasi, A.; Taz, H.; Farah, A.; Patel, M.; Lawrie, Benjamin; Pooser, R.; Baddorf, A.; Duscher, G.; Kalyanaraman, R.

    2015-12-16

    We report that ternary metal oxides of type (Me)2O3 with the primary metal (Me) constituent being Fe (66 atomic (at.) %) along with the two Lanthanide elements Tb (10 at.%) and Dy (24 at.%) can show excellent semiconducting transport properties. Thin films prepared by pulsed laser deposition at room temperature followed by ambient oxidation showed very high electronic conductivity (>5 × 104 S/m) and Hall mobility (>30 cm2/V-s). These films had an amorphous microstructure which was stable to at least 500 °C and large optical transparency with a direct band gap of 2.85 ± 0.14 eV. This material shows emergent semiconducting behavior with significantly higher conductivity and mobility than the constituent insulating oxides. In conclusion, since these results demonstrate a new way to modify the behaviors of transition metal oxides made from unfilled d- and/or f-subshells, a new class of functional transparent conducting oxide materials could be envisioned.

  9. Structure-forming components in crystals of ternary and quaternary 3d-metal complex fluorides.

    PubMed

    Peresypkina, E V; Blatov, V A

    2003-06-01

    Crystallochemical analysis and classification were performed for 139 ternary and quaternary complex fluorides with the general formula M1(n)M2(m)M3F(6), belonging to 33 structure types. Using coordination sequences and the uniformity criterion the structure-forming ionic sublattices or their combinations were found, which are responsible for the formation of stable periodic frameworks. Analysis of structure-forming motifs allows the interpretation of the crystal structures of complex fluorides as close packings of F ions with M1, M2 and M3 cations, partially occupying tetrahedral and octahedral voids, or as the packings of [M3F(6)] complex ions with M1 and M2 countercations in the voids. Cationic sublattices are noted to play an essential role, while forming crystal structures of complex fluorides. Relationships between the composition of structure-forming sublattices, the composition of compounds, and the size and charge of ions belonging to the sublattices were analysed under normal conditions, with thermal and high-pressure polymorphic transitions. Rules were formulated to predict the crystal structures of complex fluorides with a given chemical composition.

  10. Ternary metal fluorides as high-energy cathodes with low cycling hysteresis

    PubMed Central

    Wang, Feng; Kim, Sung-Wook; Seo, Dong-Hwa; Kang, Kisuk; Wang, Liping; Su, Dong; Vajo, John J.; Wang, John; Graetz, Jason

    2015-01-01

    Transition metal fluorides are an appealing alternative to conventional intercalation compounds for use as cathodes in next-generation lithium batteries due to their extremely high capacity (3–4 times greater than the current state-of-the-art). However, issues related to reversibility, energy efficiency and kinetics prevent their practical application. Here we report on the synthesis, structural and electrochemical properties of ternary metal fluorides (M1yM21-yFx: M1, M2=Fe, Cu), which may overcome these issues. By substituting Cu into the Fe lattice, forming the solid–solution CuyFe1-yF2, reversible Cu and Fe redox reactions are achieved with surprisingly small hysteresis (<150 mV). This finding indicates that cation substitution may provide a new avenue for tailoring key electrochemical properties of conversion electrodes. Although the reversible capacity of Cu conversion fades rapidly, likely due to Cu+ dissolution, the low hysteresis and high energy suggest that a Cu-based fluoride cathode remains an intriguing candidate for rechargeable lithium batteries. PMID:25808876

  11. Development and application of a Ni-Ti interatomic potential with high predictive accuracy of the martensitic phase transition

    NASA Astrophysics Data System (ADS)

    Ko, Won-Seok; Grabowski, Blazej; Neugebauer, Jörg

    2015-10-01

    Phase transitions in nickel-titanium shape-memory alloys are investigated by means of atomistic simulations. A second nearest-neighbor modified embedded-atom method interatomic potential for the binary nickel-titanium system is determined by improving the unary descriptions of pure nickel and pure titanium, especially regarding the physical properties at finite temperatures. The resulting potential reproduces accurately the hexagonal-close-packed to body-centered-cubic phase transition in Ti and the martensitic B 2 -B 19' transformation in equiatomic NiTi. Subsequent large-scale molecular-dynamics simulations validate that the developed potential can be successfully applied for studies on temperature- and stress-induced martensitic phase transitions related to core applications of shape-memory alloys. A simulation of the temperature-induced phase transition provides insights into the effect of sizes and constraints on the formation of nanotwinned martensite structures with multiple domains. A simulation of the stress-induced phase transition of a nanosized pillar indicates a full recovery of the initial structure after the loading and unloading processes, illustrating a superelastic behavior of the target system.

  12. Transition Planning

    ERIC Educational Resources Information Center

    Statfeld, Jenna L.

    2011-01-01

    Post-school transition is the movement of a child with disabilities from school to activities that occur after the completion of school. This paper provides information about: (1) post-school transition; (2) transition plan; (3) transition services; (4) transition planning; (5) vocational rehabilitation services; (6) services that are available…

  13. Effect of phosphate on U(VI) sorption to montmorillonite: Ternary complexation and precipitation barriers

    NASA Astrophysics Data System (ADS)

    Troyer, Lyndsay D.; Maillot, Fabien; Wang, Zheming; Wang, Zimeng; Mehta, Vrajesh S.; Giammar, Daniel E.; Catalano, Jeffrey G.

    2016-02-01

    Phosphate addition is a potential treatment method to lower the solubility of U(VI) in soil and groundwater systems by causing U(VI) phosphate precipitation as well as enhancing adsorption. Previous work has shown that iron oxide surfaces may facilitate the nucleation of U(VI) phosphate minerals and, that under weakly acidic conditions, phosphate also enhances U(VI) adsorption to such phases. Like iron oxides, clays are important reactive phases in the subsurface but little is known about the interaction of U(VI) and phosphate with these minerals. The effect of aqueous phosphate on U(VI) binding to Wyoming montmorillonite (SWy-2) in air-equilibrated systems was investigated. Equilibrium U(VI) uptake to montmorillonite was determined at pH 4, 6 and 8 at discrete initial phosphate concentrations between 0 and 100 μM. The observed behavior of U(VI) indicates a transition from adsorption to precipitation with increasing total uranium and phosphate concentrations at all pH values. At the highest phosphate concentration examined at each pH value, a barrier to U(VI) phosphate nucleation is observed. At lower concentrations, phosphate has no effect on macroscopic U(VI) adsorption. To assess the mechanisms of U(VI)-phosphate interactions on smectite surfaces, U(VI) speciation was investigated under selected conditions using laser-induced fluorescence spectroscopy (LIFS) and extended X-ray absorption fine-structure (EXAFS) spectroscopy. Samples above the precipitation threshold display EXAFS and LIFS spectral signatures consistent with the autunite family of U(VI) phosphate minerals. However, at lower U(VI) concentrations, changes in LIFS spectra upon phosphate addition suggest that U(VI)-phosphate ternary surface complexes form on the montmorillonite surface at pH 4 and 6 despite the lack of a macroscopic effect on adsorption. The speciation of solid-associated U(VI) below the precipitation threshold at pH 8 is dominated by U(VI)-carbonate surface complexes. This work

  14. Identification of Phase Boundaries and Electrical Properties in Ternary Potassium-Sodium Niobate-Based Ceramics.

    PubMed

    Lv, Xiang; Wu, Jiagang; Yang, Shuang; Xiao, Dingquan; Zhu, Jianguo

    2016-07-27

    A large piezoelectric constant (d33) of ∼480 pC/N was attained in new ternary (1-x-y)K0.5Na0.5Nb0.96Sb0.04O3-xBaSnO3-yBi0.5Na0.5ZrO3 ceramics by forming rhombohedral-orthorhombic-tetragonal (R-O-T) phase boundary using the variations of x and y, and such a phase boundary was successfully confirmed by the convergent beam electron diffraction (CBED) patterns. For (1-x)K0.5Na0.5Nb0.96Sb0.04O3-xBaSnO3, the orthorhombic (O) phase is well-maintained for 0 ≤ x ≤ 0.015, and both the R and T phases can be introduced to (0.99-y)K0.5Na0.5Nb0.96Sb0.04O3-0.01BaSnO3-yBi0.5Na0.5ZrO3 with y = 0.025-0.04 by simultaneously tailoring their compositions (x and y); then, R-O-T multiphases can be well-established. The CBED patterns strongly support the existence of R-O-T multiphases in the ceramics with y = 0.035. When the phase transitions endure from O to R-O-T, their piezoelectric activity endures a leapfrog development from ∼165 to ∼480 pC/N. In the region of the R-O-T phase boundary, a large d33 of ∼480 pC/N was attained in the ceramics with x = 0.01 and y = 0.035. In addition, the ceramics with x = 0.01 and y = 0.04 possess a high strain of ∼0.274% due to the multiphases coexistence. According to the variations of dielectric and ferroelectric properties, the enhancement in εr and Pr plays a part in the improved d33 except for the R-O-T phase boundary. We believe that the (K, Na)NbO3 ternary systems can be used to promote piezoelectric activity by forming new phase boundaries.

  15. Effect of Phosphate on U(VI) Sorption to Montmorillonite: Ternary Complexation and Precipitation Barriers

    SciTech Connect

    Troyer, Lyndsay D.; Maillot, Fabien; Wang, Zheming; Wang, Zimeng; Mehta, Vrajesh; Giammar, Daniel; Catalano, Jeffrey G.

    2016-02-15

    Phosphate addition is a potential treatment method to lower the solubility of U(VI) in soil and groundwater systems by causing U(VI) phosphate precipitation as well as enhancing adsorption. Previous work has shown that iron oxide surfaces may facilitate the nucleation of U(VI) phosphate minerals and, that under weakly acidic conditions, phosphate also enhances U(VI) adsorption to such phases. Like iron oxides, clays are important reactive phases in the subsurface but little is known about the interaction of U(VI) and phosphate with these minerals. The effect of aqueous phosphate on U(VI) binding to Wyoming montmorillonite (SWy-2) in air-equilibrated systems was investigated. Equilibrium U(VI) uptake to montmorillonite was determined at pH 4, 6 and 8 at discrete initial phosphate concentrations between 0 and 100 μM. The observed behavior of U(VI) indicates a transition from adsorption to precipitation with increasing total uranium and phosphate concentrations at all pH values. At the highest phosphate concentration examined at each pH value, a barrier to U(VI) phosphate nucleation is observed. At lower concentrations, phosphate has no effect on macroscopic U(VI) adsorption. To assess the mechanisms of U(VI)-phosphate interactions on smectite surfaces, U(VI) speciation was investigated under selected conditions using laser-induced fluorescence spectroscopy (LIFS) and extended X-ray absorption fine-structure (EXAFS) spectroscopy. Samples above the precipitation threshold display EXAFS and LIFS spectral signatures consistent with the autunite family of U(VI) phosphate minerals. However, at lower U(VI) concentrations, changes in LIFS spectra upon phosphate addition suggest that U(VI)-phosphate ternary surface complexes form on the montmorillonite surface at pH 4 and 6 despite the lack of a macroscopic effect on adsorption. The speciation of solid-associated U(VI) below the precipitation threshold at pH 8 is dominated by U(VI)-carbonate surface complexes. This work

  16. Magnetic properties of the ternary aluminide TbFe2Al10

    NASA Astrophysics Data System (ADS)

    Khandelwal, Ashish; Sharma, V. K.; Sharath Chandra, L. S.; Singh, M. N.; Sinha, A. K.; Chattopadhyay, M. K.

    2013-09-01

    The magnetic properties of the ternary aluminide TbFe2Al10 have been studied with the help of magnetization measurements. From the temperature and field dependence of magnetization, a detailed magnetic phase diagram of TbFe2Al10 has been constructed. While the high- and low-temperature phases (in low fields) of TbFe2Al10 are paramagnetic and antiferromagnetic respectively, the signature of a field-induced ferromagnetic phase is obtained in the magnetization results in the intermediate temperature regime. While it was already known that TbFe2Al10 has a ferrimagnetic phase in between the low-field antiferromagnetic and the high-field ferromagnetic phases, the present results indicate the presence of a second intermediate-field-induced ferrimagnetic phase in the compound, in between the first ferrimagnetic and the high-field ferromagnetic phases. The possible magnetic structure for this second ferrimagnetic phase is proposed on the basis of existing neutron diffraction results. The successive field-induced or metamagnetic transitions in TbFe2Al10 are found to be induced by temperature as well, when the applied magnetic field is appropriate. The present magnetization results also indicate the presence of short-range magnetic correlations in TbFe2Al10 well inside the paramagnetic regime. Owing to the presence of successive temperature and field-induced magnetic phase transitions, TbFe2Al10 is found to exhibit a moderate magneto-caloric effect with a maximum of 7.86 J kg-1K-1 at 18.5 K. The magneto-caloric effect is found to persist well inside the paramagnetic regime because of the presence of short-range magnetic correlations at these temperatures. This leads to a substantial refrigerant capacity in the material, which could be useful information for future technology.

  17. Sequential character of low-energy ternary and quaternary nuclear fission

    SciTech Connect

    Kadmensky, S. G. Bulychev, A. O.

    2016-09-15

    An analysis of low-energy true ternary (quaternary) nuclear fission leads to the conclusion that these fission modes have a sequential two-step (three-step) character such that the emission of a third particle (third and fourth particles) and the separation of fission fragments occur at distinctly different instants, in contrast to the simultaneous emergence of all fission products in the case of onestep ternary (quaternary) fission. This conclusion relies on the following arguments. First, the emission of a third particle (third and fourth particles) from a fissile nucleus is due to a nonevaporative mechanism associated with a nonadiabatic character of the collective deformation motion of this nucleus at the stages preceding its scission. Second, the axial symmetry of the deformed fissile compound nucleus and the direction of its symmetry axis both remain unchanged at all stages of ternary (quaternary) fission. This circumstancemakes it possible to explain themechanism of the appearance of observed anisotropies and T — odd asymmeries in the angular distributions of products of ternary (quaternary) nuclear fission. Third, the T —odd asymmetry discovered experimentally in ternary nuclear fission induced by cold polarized neutrons obeys the T —invariance condition only in the case of a sequential two-step (three-step) character of true ternary (quaternary) nuclear fission. At the same time, this asymmetry is not a T —invariant quantity in the case of the simultaneous emission of products of true ternary (quaternary) nuclear fission from the fissile compound nucleus.

  18. Formulation and evaluation of fast dissolving tablet containing domperidone ternary solid dispersion

    PubMed Central

    Patel, Dasharath M.; Patel, Sweeti P.; Patel, Chhagan N.

    2014-01-01

    Introduction: Fast dissolving tablet containing domperidone ternary solid dispersion was developed to improve the dissolution of drug and stability of solid dispersion. Materials and Methods: Binary and ternary solid dispersions were prepared by fusion method. They were characterized by solubility study, in vitro dissolution, dissolution efficiency, and stability study. The solid state properties of solid dispersions were characterized by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). Ternary solid dispersion was successfully incorporated into fast dissolving tablet by direct compression method. Tablets were characterized for pre-compression parameters, post-compression parameters, and stability study. Results: Optimized ternary solid dispersion containing ratio 1:2:1.5 of drug: Gelucire 50/13: Poloxamer 188 gave maximum dissolution. The FTIR, DSC, and XRD studies of solid dispersions were confirmed the formation of solid dispersion. Ternary solid dispersion was more stable compared to binary solid dispersion at accelerated environment conditions for one month as confirmed by DSC study. Crospovidone as a superdisintegrant (4%) showed good result with disintegration time of 19 s and dissolution near to 100% in 0.1N HCL at 30 min. Conclusion: The studies indicated that the dissolution of drug and stability of solid dispersion was improved in the presence of ternary agent (surfactant) as compared to binary solid dispersion. It was concluded that fast dissolving tablet containing ternary solid dispersion was stable at accelerated environmental conditions for 1 month. PMID:25426438

  19. Formulation and evaluation of fast dissolving tablet containing domperidone ternary solid dispersion.

    PubMed

    Patel, Dasharath M; Patel, Sweeti P; Patel, Chhagan N

    2014-10-01

    Fast dissolving tablet containing domperidone ternary solid dispersion was developed to improve the dissolution of drug and stability of solid dispersion. Binary and ternary solid dispersions were prepared by fusion method. They were characterized by solubility study, in vitro dissolution, dissolution efficiency, and stability study. The solid state properties of solid dispersions were characterized by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). Ternary solid dispersion was successfully incorporated into fast dissolving tablet by direct compression method. Tablets were characterized for pre-compression parameters, post-compression parameters, and stability study. Optimized ternary solid dispersion containing ratio 1:2:1.5 of drug: Gelucire 50/13: Poloxamer 188 gave maximum dissolution. The FTIR, DSC, and XRD studies of solid dispersions were confirmed the formation of solid dispersion. Ternary solid dispersion was more stable compared to binary solid dispersion at accelerated environment conditions for one month as confirmed by DSC study. Crospovidone as a superdisintegrant (4%) showed good result with disintegration time of 19 s and dissolution near to 100% in 0.1N HCL at 30 min. The studies indicated that the dissolution of drug and stability of solid dispersion was improved in the presence of ternary agent (surfactant) as compared to binary solid dispersion. It was concluded that fast dissolving tablet containing ternary solid dispersion was stable at accelerated environmental conditions for 1 month.

  20. A Computationally Efficient Equation of State for Ternary Gas Hydrate Systems

    NASA Astrophysics Data System (ADS)

    White, M. D.

    2012-12-01

    the production of geologic accumulations of gas hydrates have historically suffered from relatively slow execution times, compared with other multifluid, porous media systems, due to strong nonlinearities and phase transitions. The phase equilibria for the ternary gas hydrate system within the gas hydrate stability range of composition, temperature and pressure, includes regions where the gas hydrate is in equilibrium with gas, nonaqueous liquid, or mixtures of gas and nonaqeuous liquid near the CO2-CH4-N2 mixture critical point. In these regions, solutions to cubic equations of state can be nonconvergent without accurate initial guesses. A hybrid tabular-cubic equation of state is described which avoids convergence issues, but conserves the characteristics and advantages of the cubic equation of state approaches to phase equilibria calculations. The application of interest will be the production of a natural gas hydrate deposit from a geologic formation, using the guest molecule exchange process; where, a mixture of CO2 and N2 are injected into the formation. During the guest-molecule exchange, CO2 and N2 will predominately replace CH4 in the large and small cages of the sI structure, respectively.

  1. Normal freezing of ideal ternary systems of the pseudobinary type

    NASA Technical Reports Server (NTRS)

    Li, C. H.

    1972-01-01

    Perfect liquid mixing but no solid diffusion is assumed in normal freezing. In addition, the molar compositions of the freezing solid and remaining liquid, respectively, follow the solidus and liquidus curves of the constitutional diagram. For the linear case, in which both the liquidus and solidus are perfectly straight lines, the normal freezing equation giving the fraction solidified at each melt temperature and the solute concentration profile in the frozen solid was determined as early as 1902, and has since been repeatedly published. Corresponding equations for quadratic, cubic or higher-degree liquidus and solidus lines have also been obtained. The equation of normal freezing for ideal ternary liquid solutions solidified into ideal solid solutions of the pseudobinary type is given. Sample computations with the use of this new equation were made and are given for the Ga-Al-As system.

  2. Site occupancies in ternary C15 ordered Laves phases

    SciTech Connect

    Kotula, P.G.; Chu, F.; Thoma, D.J.; Mitchell, T.E.; Anderson, I.M.; Bentley, J.

    1996-12-31

    Site occupancies in three C15-structured AB{sub 2}(X) Laves phases have been determined by Atom Location by CHanneling Enhanced MIcroanalysis (ALCHEMI). In NbCr{sub 2}(V), the results were consistent with exclusive site occupancies of Nb for the A sublattice and Cr and V for the B sublattice. The B-site occupancy of V is not expected from atom size effects alone. In NbCr{sub 2}(Ti), the results were consistent with Ti partitioning mostly to the A sites with some anti-site defects likely. In HfV{sub 2}(Nb), the results were consistent with Nb partitioning between the A and B sites. The results of the ALCHEMI analyses of these ternary C15 Laves phase materials will be discussed with respect to previously determined phase diagrams and first-principles total energy and electronic structure calculations.

  3. Ternary semitransparent organic solar cells with a laminated top electrode

    PubMed Central

    Makha, Mohammed; Testa, Paolo; Anantharaman, Surendra Babu; Heier, Jakob; Jenatsch, Sandra; Leclaire, Nicolas; Tisserant, Jean-Nicolas; Véron, Anna C.; Wang, Lei; Nüesch, Frank; Hany, Roland

    2017-01-01

    Abstract Tinted and colour-neutral semitransparent organic photovoltaic elements are of interest for building-integrated applications in windows, on glass roofs or on facades. We demonstrate a semitransparent organic photovoltaic cell with a dry-laminated top electrode that achieves a uniform average visible transmittance of 51% and a power conversion efficiency of 3%. The photo-active material is based on a majority blend composed of a visibly absorbing donor polymer and a fullerene acceptor, to which a selective near-infrared absorbing cyanine dye is added as a minority component. Our results show that organic ternary blends are attractive for the fabrication of semitransparent solar cells in general, because a guest component with a complementary absorption can compensate for the inevitably reduced current generation capability of a high-performing binary blend when applied as a thin, semitransparent film. PMID:28179960

  4. Si-Ge-metal ternary phase diagram calculations

    NASA Technical Reports Server (NTRS)

    Fleurial, J. P.; Borshchevsky, A.

    1990-01-01

    Solution crystal growth and doping conditions of Si-Ge alloys used for high-temperature thermoelectric generation are determined here. Liquid-phase epitaxy (LPE) has been successfully employed recently to obtain single-crystalline homogeneous layers of Si-Ge solid solutions from a liquid metal solvent. Knowledge of Si-Ge-metallic solvent ternary phase diagrams is essential for further single-crystal growth development. Consequently, a thermodynamic equilibrium model was used to calculate the phase diagrams of the Si-Ge-M systems, including solid solubilities, where M is Al, Ga, In, Sn, Pb, Sb, or Bi. Good agreement between calculated liquidus and solidus data and experimental DTA and microprobe results was obtained. The results are used to compare the suitability of the different systems for crystal growth (by LPE-type process).

  5. Pattern formation in a sandpile of ternary granular mixtures

    NASA Astrophysics Data System (ADS)

    Shimokawa, Michiko; Suetsugu, Yuki; Hiroshige, Ryoma; Hirano, Takeru; Sakaguchi, Hidetsugu

    2015-06-01

    Pattern formation in a sandpile is investigated by pouring a ternary mixture of grains into a vertical narrow cell. Size segregation in avalanches causes the formation of patterns. Four kinds of patterns emerge: stratification, segregation, upper stratification-lower segregation, and upper segregation-lower stratification. A phase diagram is constructed in a parameter space of θ11/θ33 and θ22/θ33 , where θ11,θ22 , and θ33 are the repose angles of small, intermediate, and large grains, respectively. To qualitatively understand pattern formation, a phenomenological model based on a roll-or-stay rule is proposed. A similar pattern formation is found in a numerical simulation of the phenomenological model. These results suggest that the ratios of the repose angles of three kinds of grains are important for pattern formation in a sandpile.

  6. Ternary oxide nanostructures and methods of making same

    DOEpatents

    Wong, Stanislaus S [Stony Brook, NY; Park, Tae-Jin [Port Jefferson, NY

    2009-09-08

    A single crystalline ternary nanostructure having the formula A.sub.xB.sub.yO.sub.z, wherein x ranges from 0.25 to 24, and y ranges from 1.5 to 40, and wherein A and B are independently selected from the group consisting of Ag, Al, As, Au, B, Ba, Br, Ca, Cd, Ce, Cl, Cm, Co, Cr, Cs, Cu, Dy, Er, Eu, F, Fe, Ga, Gd, Ge, Hf, Ho, I, In, Ir, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, P, Pb, Pd, Pr, Pt, Rb, Re, Rh, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Tc, Te, Ti, Tl, Tm, U, V, W, Y, Yb, and Zn, wherein the nanostructure is at least 95% free of defects and/or dislocations.

  7. Ternary ceramic alloys of ZR-CE-HF oxides

    DOEpatents

    Becher, Paul F.; Funkenbusch, Eric F.

    1990-01-01

    A ternary ceramic alloy which produces toughening of zirconia and zirconia composites through the stress transformation from tetragonal phase to monoclinic phase. This alloy, having the general formula Ce.sub.x Hf.sub.y Zn.sub.1-x-y O.sub.2, is produced through the addition of appropriate amounts of ceria and hafnia to the zirconia. Typically, improved toughness is achieved with about 5 to about 15 mol % ceria and up to about 40 mol % hafnia. The preparation of alloys of these compositions are given together with data as to the densities, tetragonal phase content, hardness and fracture toughness. The alloys are useful in preparing zirconia bodies as well as reinforcing ceramic composites.

  8. Ternary ceramic alloys of Zr-Ce-Hf oxides

    DOEpatents

    Becher, P.F.; Funkenbusch, E.F.

    1990-11-20

    A ternary ceramic alloy is described which produces toughening of zirconia and zirconia composites through the stress transformation from tetragonal phase to monoclinic phase. This alloy, having the general formula Ce[sub x]Hf[sub y]Zr[sub 1[minus]x[minus]y]O[sub 2], is produced through the addition of appropriate amounts of ceria and hafnia to the zirconia. Typically, improved toughness is achieved with about 5 to about 15 mol % ceria and up to about 40 mol % hafnia. The preparation of alloys of these compositions are given together with data as to the densities, tetragonal phase content, hardness and fracture toughness. The alloys are useful in preparing zirconia bodies as well as reinforcing ceramic composites. 1 fig.

  9. Design of Ternary Correlation Filters to Reduce Probability of Error

    NASA Technical Reports Server (NTRS)

    Downie, John D.

    1994-01-01

    The problem of designing ternary phase and amplitude filters (TPAF's) that reduce the probability of image misclassification for a two-class image set is studied. The Fisher ratio is used as a measure of the correct classification rate, and an attempt is made to maximize this quantity in the filter designs. Given the nonanalytical nature of the design problem, a simulated annealing optimization technique is employed. Computer simulation results are presented for several cases including single in-class and out-of-class image sets and multiple image sets corresponding to the design of synthetic discriminant function filters. Significant improvements are found in expected rates of correct classification in comparison to binary phase-only filters and other TPAF designs. Approaches to accelerate the filter design process are also discussed.

  10. Magnetic properties of ternary W 5Si 3-type compounds

    NASA Astrophysics Data System (ADS)

    Tkachuk, A.; Gorelenko, Yu.; Padlyak, B.; Jankowska-Frydel, A.; Stadnyk, Yu.

    2002-04-01

    The magnetic susceptibility and electron paramagnetic resonance (EPR) of the Ti 5Mn 0.45Sb 2.45 and Ti 5CrSb 2 compounds were investigated. The Ti 5Mn 0.45Sb 2.45 and Ti 5CrSb 2 ternary compounds crystallize in W 5Si 3 structure type (I4/mcm space group). Particularly, the crystal structure of new Ti 5CrSb 2 compound has been refined and their magnetic properties were measured in the 4.2-500 K temperature ranges. The peculiarities of observed magnetic properties of the Ti 5Mn 0.45Sb 2.55 and Ti 5CrSb 2 compounds and valence state of chromium in the Ti 5CrSb 2 lattice are discussed.

  11. Ternary metal-rich sulfide with a layered structure

    DOEpatents

    Franzen, Hugo F.; Yao, Xiaoqiang

    1993-08-17

    A ternary Nb-Ta-S compound is provided having the atomic formula, Nb.sub.1.72 Ta.sub.3.28 S.sub.2, and exhibiting a layered structure in the sequence S-M3-M2-M1-M2-M3-S wherein S represents sulfur layers and M1, M2, and M3 represent Nb/Ta mixed metal layers. This sequence generates seven sheets stacked along the [001] direction of an approximate body centered cubic crystal structure with relatively weak sulfur-to-sulfur van der Waals type interactions between adjacent sulfur sheets and metal-to-metal bonding within and between adjacent mixed metal sheets.

  12. Ternary system Er-Ni-In at T=870 K

    SciTech Connect

    Dzevenko, M.; Tyvanchuk, Yu.; Bratash, L.; Zaremba, V.; Havela, L.; Kalychak, Ya.

    2011-10-15

    Isothermal section of the Er-Ni-In system at T=870 K was constructed by means of X-ray powder diffraction and EDX-analyses. Nine ternary compounds, namely ErNi{sub 9}In{sub 2} (YNi{sub 9}In{sub 2}-type), Er{sub 1-1.22}Ni{sub 4}In{sub 1-0.78} (MgCu{sub 4}Sn-type), Er{sub 10}Ni{sub 9.07}In{sub 20} (Ho{sub 10}Ni{sub 9}In{sub 20}-type), ErNi{sub 1-0.60}In{sub 1-1.40} (ZrNiAl-type), Er{sub 2}Ni{sub 2}In (Mn{sub 2}AlB{sub 2}-type), Er{sub 2}Ni{sub 1.78}In (Mo{sub 2}FeB{sub 2}-type), Er{sub 5}Ni{sub 2}In{sub 4} (Lu{sub 5}Ni{sub 2}In{sub 4}-type), Er{sub 5}Ni{sub 2}In (Mo{sub 5}SiB{sub 2}-type), and Er{sub 13.53}Ni{sub 3.14}In{sub 3.33} (Lu{sub 14}Co{sub 2}In{sub 3}-type), exist in the Er-Ni-In system at this temperature. The substitution of Ni for In was observed for ErNi{sub 1-0.60}In{sub 1-1.40} and In for Er in the case of related compounds ErNi{sub 2} and ErNi{sub 4}In. Er can enter NiIn (CoSn-type) leading to including-substitution type of compound Er{sub 0-0.12}NiIn{sub 1-0.89}. Basic magnetic properties of the Er{sub 0.04}NiIn{sub 0.97}, ErNi{sub 2}, Er{sub 0.9}Ni{sub 2}In{sub 0.1}, and ErNi{sub 4}In phases were inspected. Electrical-resistivity studies were performed on the ErNiIn, ErNi{sub 0.9}In{sub 1.1}, and ErNi{sub 4}In phases. - Graphical Abstract: Phase relations in the ternary system Er-Ni-In have been established for the isothermal section at T=870 K based on X-ray phase and EDX-analyses. Nine ternary compounds were observed. Highlights: > Isothermal section of Er-Ni-In system at T=870 K was constructed. > Nine ternary compounds were detected. > Basic magnetic properties of Er{sub 0.04}NiIn{sub 0.97} and ErNi{sub 4}In phases were inspected.

  13. Structural and Thermoelectric Properties of Ternary Full-Heusler Alloys

    NASA Astrophysics Data System (ADS)

    Hayashi, K.; Eguchi, M.; Miyazaki, Y.

    2016-09-01

    The thermoelectric properties of ternary full-Heusler alloys, Co2 YZ, which are in a ferromagnetic state up to high temperature above 300 K, were measured and are discussed in terms of the crystal structure and electronic states. Among the full-Heusler alloys studied, the Co2MnSi sample exhibited the highest absolute value of Seebeck coefficient and also the highest electrical conductivity in the temperature range from 300 K to 1023 K. The highest power factor of 2.9 × 10-3 W/m-K2 was obtained for the Co2MnSi sample at 550 K, demonstrating the potential of half-metallic full-Heusler alloys as thermoelectric materials.

  14. Selective synthesis of ternary copper-antimony sulfide nanocrystals.

    PubMed

    Xu, Dongying; Shen, Shuling; Zhang, Yejun; Gu, Hongwei; Wang, Qiangbin

    2013-11-18

    Ternary copper-antimony sulfide nanocrystals (CAS NCs) have attracted increasing attention in photovoltaics and photoelectric nanodevices due to their tunable band gaps in the near-IR regime. Although much progress in the synthesis of CAS NCs has been achieved, the selective synthesis of CAS NCs with controllable morphologies and compositions is preliminary: in particular, a facile method is still in demand. In this work, we have successfully selectively synthesized high-quality CAS NCs with diverse morphologies, compositions, and band gaps, including rectangular CuSbS2 nanosheets (NSs), trigonal-pyramidal Cu12Sb4S13 NCs, and rhombic Cu3SbS3 NSs, by cothermodecomposition of copper diethyldithiocarbamate trihydrate (Cu(Ddtc)2) and antimony diethyldithiocarbamate trihydrate (Sb(Ddtc)3). The direct and indirect band gaps of the obtained CAS NCs were systematically studied by performing Kubelka-Munk transformations of their solid-state diffuse reflectance spectra.

  15. Solvatochromic study on chlortetracycline in binary and ternary solutions

    NASA Astrophysics Data System (ADS)

    Oanca, G.; Nadejde, C.; Fifere, N.; Todirascu, A. Gritco; Creanga, D.; Dorohoi, D.; Stare, Jernej

    2016-12-01

    Molecular modeling of chlortetracycline was performed based on DFT approach implemented in Gaussian software. The differences between simulated electronic spectra and those recorded experimentally were analyzed. Experimental investigations were carried out using electronic absorption spectra as well as fluorescence ones. Spectral shift to the changing of solvent polarity was measured in various solvents (binary solutions) and graphical correlations were evidenced between the electronic band wavenumbers and some theoretical functions on solvent electro-optical macroscopic parameters (refractive index and dielectric constant); interpretation was done based on the solvatochromic theory dedicated to universal interaction forces. Fluorescence spectra, studied in mixture of solvents (ternary solutions), evidenced also specific interactions in water-alcohols not considered in the classical solvatochromic approach.

  16. A high-throughput search for new ternary superalloys

    NASA Astrophysics Data System (ADS)

    Nyshadham, Chandramouli; Hansen, Jacob; Oses, Corey; Curtarolo, Stefano; Hart, Gus

    In 2006 an unexpected new superalloy, Co3[Al,W], was discovered. This new alloy is cobalt-based, in contrast to conventional superalloys, which are nickel-based. Inspired by this new discovery, we performed first-principles calculations, searching through 2224 ternary metallic systems of the form A3[B0.5C0.5], where A = Ni/Co/Fe and [B, C] = all binary combinations of 40 different elements chosen from the periodic table. We found 175 new systems that are better than the Co3[Al, W] superalloy. 75 of these systems are brand new--they have never been reported in experimental literature. These 75 new potential superalloys are good candidates for further experiments. Our calculations are consistent with current experimental literature where data exists. Work supported under: ONR (MURI N00014-13-1-0635).

  17. Characteristics of CVD ternary refractory nitride diffusion barriers

    SciTech Connect

    Fleming, J.G.; Smith, P.M.; Custer, J.S.

    1996-11-01

    A range of different ternary refractory nitride compositions have been deposited by CVD (chemical vapor deposition) for the systems TiSiN, WBN, and WSiN. The precursors used are readily available. The structure, electrical, and barrier properties of the films produced by CVD are similar to those observed for films with similar compositions deposited by PVD (physical vapor deposition). The step coverage of the CVD processes developed is good and in some cases, exceptional. A combination of desirable resistivity, step coverage, and barrier properties exists simultaneously over a reasonable range of compositions for each system. Initial attempts to integrate WSiN films into a standard 0.5 micrometer CMOS process flow in place of a sputtered Ti/TiN stack were successful.

  18. Zinc oxysulfide ternary alloy nanocrystals: A bandgap modulated photocatalyst

    SciTech Connect

    Pandey, Shiv K.; Pandey, Shipra; Pandey, Avinash C.; Mehrotra, G. K.

    2013-06-10

    Herein, we report a green economic route for the synthesis of a series of Zinc Oxysulfide (ZOS) (ZnO{sub 1-x}S{sub x}; 0 {<=} x {>=} 1; x = Sulfur) alloys nanoparticles. The crystallographic features of ZnO, ZOS, and ZnS confirmed by X-Ray Diffraction and validated by Transmission Electron Microscopy reveal the variation of lattice spacing in binary and ternary compositions with homogenous elemental distribution. The photocatalytic analysis of ZOS (0.4) is performed and compared with Degussa P25 to ascertain its photocatalytic activity against methyl orange under irradiation of 365 nm UV-Vis light. A bandgap of 2.7 eV for ZOS (0.4) aptly establishes its prospects for sunlight driven photocatalysis.

  19. Ternary semitransparent organic solar cells with a laminated top electrode.

    PubMed

    Makha, Mohammed; Testa, Paolo; Anantharaman, Surendra Babu; Heier, Jakob; Jenatsch, Sandra; Leclaire, Nicolas; Tisserant, Jean-Nicolas; Véron, Anna C; Wang, Lei; Nüesch, Frank; Hany, Roland

    2017-01-01

    Tinted and colour-neutral semitransparent organic photovoltaic elements are of interest for building-integrated applications in windows, on glass roofs or on facades. We demonstrate a semitransparent organic photovoltaic cell with a dry-laminated top electrode that achieves a uniform average visible transmittance of 51% and a power conversion efficiency of 3%. The photo-active material is based on a majority blend composed of a visibly absorbing donor polymer and a fullerene acceptor, to which a selective near-infrared absorbing cyanine dye is added as a minority component. Our results show that organic ternary blends are attractive for the fabrication of semitransparent solar cells in general, because a guest component with a complementary absorption can compensate for the inevitably reduced current generation capability of a high-performing binary blend when applied as a thin, semitransparent film.

  20. Hardness and Microstructure of Binary and Ternary Nitinol Compounds

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.

    2016-01-01

    The hardness and microstructure of twenty-six binary and ternary Nitinol (nickel titanium, nickel titanium hafnium, nickel titanium zirconium and nickel titanium tantalum) compounds were studied. A small (50g) ingot of each compound was produced by vacuum arc remelting. Each ingot was homogenized in vacuum for 48 hr followed by furnace cooling. Specimens from the ingots were then heat treated at 800, 900, 1000 or 1100 degree C for 2 hr followed by water quenching. The hardness and microstructure of each specimen was compared to the baseline material (55-Nitinol, 55 at.% nickel - 45 at.% titanium, after heat treatment at 900 degC). The results show that eleven of the studied compounds had higher hardness values than the baseline material. Moreover, twelve of the studied compounds had measured hardness values greater 600HV at heat treatments from 800 to 900 degree C.

  1. Binary and ternary complexes of some inner transition metal ions with amino acids and acetyl acetone

    NASA Astrophysics Data System (ADS)

    Abu-Eittah, R. H.; Abdou, M. M.; Salem, M. B.

    1998-05-01

    The stability constants of the 1:1 and 1:2 (whenever possible) complexes formed between La3+, Ce3+, Th4+ and the amino acid anions L-alaninate, L-phenylalaninate and L-histidinate were determined by potentiometric titration in aqueous solution (25± 1 ^circC, I = 0.1 M KCl) and compared together with the constants previously determined. The various formation degree of the resulting M(L) and M(L)2 were determined. In order to relate the formation degree of M(L) and M(L)2 with the basicity of the amino acid anion (L^-), the acidity constants of the protonated amino acids, H2L^+, were also measured. The main results of this work prove that Th4+ ion forms the strongest complex with the studied amino acids. It is the only ion which forms a 1:2 complex. The heterocyclic ring of histidine plays a significant role in complexing with the studied metal ions as is clearly seen from the distribution of the degree of formation of the different complexes. The stability constants of the 1:1:1, 1:2:1 and 1:1:2 complexes formed between La3+, Ce3+, Th4+ and the anions L-alaninate, L-phenylalaninate and L-histidinate together with the acetyl acetonate ion were also determined following the same experimental set up used in the study of the simple complexes. The mixed-ligand complexes turned out to be very much stronger than the simple ligand complexes. Formation of a mixed ligand complex can be considered as a type of senergism. Les constantes de stabilité des complexes 1:1 et 2:2 (lorsque cela est possible) formés entre La3+, Ce3+, Th4+ et les anions aminoacides L-alaninate, L-phénylalaninate et L-histidinate ont été déterminées par dosage potentiométrique en solution aqueuse (25± 1 ^circC, I = 0,1 M KCl), et comparées à celles de la littérature. Les différents degrés de formation de M(L) et M(L)2 ont été quantifiés. Pour mettre en évidence la relation entre le degré de formation de M(L) et M(L)2 et la basicité des anions aminoacides (L^-), les constantes d'acidité des aminoacides protonés, H2L+ ont été également mesurées. Les principaux résultats de ce travail montrent que l'ion Th4+ forme le complexe le plus stable avec les aminoacides étudiés. C'est le seul ion qui donne naissance à un complexe 1:2. L'anneau hétérocyclique de l'histidine joue un rôle significatif dans la complexation des ions métalliques étudiés, comme le démontre clairement la distribution des degrés de formation des différents complexes. Les constantes de stabilité des complexes 1:1:1, 1:2:1 et 1:1:2 formés entre La3+, Ce3+, Th4+ et les anions acides L-alaninate, L-phénylalaninate et L-histidinate avec l'ion d'acétonate d'acétyle ont également été déterminées en suivant la même méthode expérimentale que celle utilisée pour l'étude des complexes simples. Les complexes de ligands mixtes s'avèrent d'être beaucoup plus stables que ceux de ligands simples. La formation d'un complexe de ligands mixtes peut être considérée comme un type de synergie.

  2. Packing Fraction and Relation to Glass Transition in Ternary Blends of Cyanate Ester Resins (PREPRINT)

    DTIC Science & Technology

    2010-10-21

    Blends of Cyanate Ester Resins 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Andrew J. Guenthner , Joseph M. Mabry (AFRL/RZSM...Resins Kevin R. Lamison’, Andrew J. Guenthner , Vandana Vij’, and Joseph M. Mabrl. ’ERG Incorporated, Edwards AFB, CA 93524 2Propu/sion Directorate...in Proc. SPE Conf. High Temp. Po/ym. Society of Plastics Engineers: Cleveland, OH, 1989; pp. 127-140. 6. Guenthner . A. J ,; Yandek, G. R.; Wright, M

  3. Composition Optimization of Lithium-Based Ternary Alloy Blankets for Fusion Reactors

    NASA Astrophysics Data System (ADS)

    Jolodosky, Alejandra

    The goal of this dissertation is to examine the neutronic properties of a novel type of fusion reactor blanket material in the form of lithium-based ternary alloys. Pure liquid lithium, first proposed as a blanket for fusion reactors, is utilized as both a tritium breeder and a coolant. It has many attractive features such as high heat transfer and low corrosion properties, but most importantly, it has a very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns including degradation of the concrete containment structure. The work of this thesis began as a collaboration with Lawrence Livermore National Laboratory in an effort to develop a lithium-based ternary alloy that can maintain the beneficial properties of lithium while reducing the reactivity concerns. The first studies down-selected alloys based on the analysis and performance of both neutronic and activation characteristics. First, 3-D Monte Carlo calculations were performed to evaluate two main neutronics performance parameters for the blanket: tritium breeding ratio (TBR), and energy multiplication factor (EMF). Alloys with adequate results based on TBR and EMF calculations were considered for activation analysis. Activation simulations were executed with 50 years of irradiation and 300 years of cooling. It was discovered that bismuth is a poor choice due to achieving the highest decay heat, contact dose rates, and accident doses. In addition, it does not meet the waste disposal ratings (WDR). The straightforward approach to obtain Monte Carlo TBR and EMF results required 231 simulations per alloy and became computationally expensive, time consuming, and inefficient. Consequently, alternate methods were pursued. A collision history-based methodology recently developed for the Monte Carlo code Serpent, calculates perturbation effects on practically

  4. Boron-Based Hydrogen Storage: Ternary Borides and Beyond

    SciTech Connect

    Vajo, John J.

    2016-04-28

    DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ≥11 wt% and ≥80 g/L that can deliver hydrogen and be recharged at moderate temperatures (≤100 °C) and pressures (≤100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron-based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slow rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement.

  5. Development of binary and ternary titanium alloys for dental implants.

    PubMed

    Cordeiro, Jairo M; Beline, Thamara; Ribeiro, Ana Lúcia R; Rangel, Elidiane C; da Cruz, Nilson C; Landers, Richard; Faverani, Leonardo P; Vaz, Luís Geraldo; Fais, Laiza M G; Vicente, Fabio B; Grandini, Carlos R; Mathew, Mathew T; Sukotjo, Cortino; Barão, Valentim A R

    2017-08-01

    The aim of this study was to develop binary and ternary titanium (Ti) alloys containing zirconium (Zr) and niobium (Nb) and to characterize them in terms of microstructural, mechanical, chemical, electrochemical, and biological properties. The experimental alloys - (in wt%) Ti-5Zr, Ti-10Zr, Ti-35Nb-5Zr, and Ti-35Nb-10Zr - were fabricated from pure metals. Commercially pure titanium (cpTi) and Ti-6Al-4V were used as controls. Microstructural analysis was performed by means of X-ray diffraction and scanning electron microscopy. Vickers microhardness, elastic modulus, dispersive energy spectroscopy, X-ray excited photoelectron spectroscopy, atomic force microscopy, surface roughness, and surface free energy were evaluated. The electrochemical behavior analysis was conducted in a body fluid solution (pH 7.4). The albumin adsorption was measured by the bicinchoninic acid method. Data were evaluated through one-way ANOVA and the Tukey test (α=0.05). The alloying elements proved to modify the alloy microstructure and to enhance the mechanical properties, improving the hardness and decreasing the elastic modulus of the binary and ternary alloys, respectively. Ti-Zr alloys displayed greater electrochemical stability relative to that of controls, presenting higher polarization resistance and lower capacitance. The experimental alloys were not detrimental to albumin adsorption. The experimental alloys are suitable options for dental implant manufacturing, particularly the binary system, which showed a better combination of mechanical and electrochemical properties without the presence of toxic elements. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  6. Evaluation of electrodeposited ternary Ni-alloys for thermal stability

    NASA Astrophysics Data System (ADS)

    Kim, Myong Jin; Kim, Joung Soo; Kim, Dong Jin; Kim, Hong Pyo

    2011-04-01

    Electroplating methods for ternary Ni-alloys, such as Ni-P-Fe and Ni-P-B, in a Ni sulfamate solution on the inner wall surfaces of Alloy 600 tubing have been developed in order to use them to repair steam generator tubes damaged by a variety of corrosion mechanisms, in particular, by stress corrosion cracking. In this study, the stability of their microstructures and mechanical properties were evaluated to check if they could be used for a long period of time at the operating temperature of a PWR (pressurized water reactor) in nuclear power plants. The specimens were heat treated at 325 °C and 400 °C for 10, 20 and 30 days, followed by observation of their microstructures and measurement of their microhardness and tensile property. According to the experiment results, there was no noticeable change in their microstructures or microhardness with the heat treatment temperature and time conditions used in this study. For a Ni-P-B deposit, the ultimate tensile strength (UTS) slightly increased with the heat treatment time, while their elongation decreased. In the case of a Ni-P-Fe deposit, however, its tensile property varied with the applied current density. For a Ni-P-Fe deposit plated at an applied current density of 50 mA/cm2, its UTS slightly decreased, but its elongation slightly increased with the heat treatment time. We concluded that the thermal stability of the ternary Ni-alloy deposits used in this study is good enough to be used with the materials of operating nuclear power plants.

  7. Microstructural Investigations On Ni-Ta-Al Ternary Alloys

    SciTech Connect

    Negache, M.; Souami, N.

    2010-01-05

    The Ni-Al-Ta ternary alloys in the Ni-rich part present complex microstructures. They are composed of multiple phases that are formed according to the nominal composition of the alloy, primary Ni(gamma), Ni{sub 3}Al(gamma'), Ni{sub 6}AlTa(tau{sub 3}), Ni{sub 3}Ta(delta) or in equilibrium: two solid phases (gamma'-tau{sub 3}), (tau{sub 3}-delta), (tau{sub 3}-gamma), (gamma-delta) or three solid phases (gamma'-tau{sub 3}-delta). The nature and the volume fraction of these phases give these alloys very interesting properties at high temperature, and this makes them attractive for specific applications. We have developed a series of ternary alloys in electric arc furnace, determining their solidification sequences using Differential Thermal Analysis (DTA), characterized by SEM-EDS, X-ray diffraction and by a microhardness tests. The follow-up results made it possible to make a correlation between the nature of the formed phases and their solidifying way into the Ni{sub 75}Al{sub x}Ta{sub y} (x+y = 25at.%) system, which are varied and complex. In addition to the solid solution Ni (gamma), the formed intermetallics compounds (gamma', tau{sub 3} and delta) has been identified and correlated with a complex balance between phases.We noticed that the hardness increases with the tantalum which has a hardening effect and though the compound Ni{sub 3}Ta(delta) is the hardest. The below results provide a better understanding of the complex microstructure of these alloys.

  8. Role of electron concentration in softening and hardening of ternary molybdenum alloys

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.; Witzke, W. R.

    1975-01-01

    Effects of various combinations of hafnium, tantalum, rhenium, osmium, iridium, and platinum in ternary molybdenum alloys on alloy softening and hardening were determined. Hardness tests were conducted at four test temperatures over the temperature range 77 to 411 K. Results showed that hardness data for ternary molybdenum alloys could be correlated with anticipated results from binary data based upon expressions involving the number of s and d electrons contributed by the solute elements. The correlation indicated that electron concentration plays a dominant role in controlling the hardness of ternary molybdenum alloys.

  9. Solid-Phase Equilibria for Metal-Silicon-Oxygen Ternary Systems. II. Sc, Y, and La

    DTIC Science & Technology

    1991-02-28

    Organization: Regents of the University of California TECHNICAL REPORT No. 9 SOLID- PHASE EQUILIBRIA FOR METAL-SILICON-OXYGEN TERNARY SYSTEMS: 11: Sc, Y, AND La...34’ SOLID- PHASE EQUILIBRIA FOR METAL-SILICON-OXYGEN TERNARY SYSTEMS: 11: Sc, Y, AND 1a 13 0911OtiA AUTHORCS) Haojie Yuan and R. Stanley Williams lI" TV...0660te tCLhSSWI=) Solid phase equilibria for metal-silicon-oxygen ternary systems I1: Sc, Y and La Haojie Yuan and R. Stanley Williams Department of

  10. Temperature resistance of the ternary gypsum-based binder with microsilica

    NASA Astrophysics Data System (ADS)

    Doleželová, Magdaléna; Krejsová, Jitka; Vimmrová, Alena

    2016-07-01

    The influence of high temperatures on the ternary gypsum materials with microsilica is described in the paper. The ternary samples, prepared from gypsum, lime and microsilica and samples without pozzolan admixture were exposed to temperatures from 50 °C to 1000 °C and their mechanical properties were investigated. The visual comparison and the comparison of mechanical properties of ternary samples and samples without microsilica were carried out. The mixtures with microsilica resisted better to the high temperatures than the samples without microsilica, although the resistance of both materials against the high temperature was not very good.

  11. New ternary rare-earth antimonides and germanides: Bonding, structures, and physical properties

    NASA Astrophysics Data System (ADS)

    Bie, Haiying

    This thesis focuses on the synthesis, structures, and physical properties of ternary rare-earth antimonides and germanides. These ternary compounds exhibit diverse polyanionic substructures with classical and non-classical Sb-Sb bonding, Ge-Ge bonding, or both. The Zintl-Klemm concept and band structure calculations were applied to understand their structures and bonding. Electrical resistivities and magnetic properties were measured for these compounds. The compounds RE2Ti7Sb12 (RE = La-Nd) and RE2Ti 11-xSb14+x (RE = Sm, Gd, Tb, Yb), which were synthesized by arc-melting, adopt different structures depending on the size of the RE atoms. Both consist of a complex arrangement of TiSb n polyhedra, linked to form a 3D framework with large cavities in which the RE atoms reside. Hypervalent Sb-Sb bonds are manifested in disordered Sb fragments in RE2Ti 7Sb12, and 1D linear chains, zig-zag chains, and pairs in RE2Ti11-xSb 14+x. A series of compounds, RECrGe3 ( RE = La-Nd, Sm), was synthesized by the Sn-flux method. They adopt a hexagonal perovskite structure type, in which chains of face-sharing Cr-centered octahedra are linked by triangular Ge3 clusters. These unusual single-bonded Ge3 substructures can be rationalized simply by the Zintl-Klemm concept. Electrical resistivity measurements show metallic behaviour with prominent transitions coincident with ferromagnetic transitions ( Tc ranging from 62 to 155 K) found in magnetic measurements. Band structure calculations show the presence of a narrow, partially filled band with high DOS at Ef, in agreement with the observation that LaCrSb3 is an itinerant ferromagnet. With a different number of d-electrons in the M site, the isostructural REVGe3 compounds exhibit antiferromagnetic behaviour. The doped quaternary compounds LaCr1-xV xGe3 and LaCr1-xMn xGe3 exhibit depressed Curie temperatures. The structures of RECrxGe 2 compounds (RE = Sm, Gd-Er) are built up by inserting transition-metal atoms into the square pyramidal

  12. Characterization of the Ternary Compound Pd5Pt3Ni2 for PEMFC Cathode Electrocatalysts

    SciTech Connect

    Jarvis, Karalee; Zhao, J; Allard Jr, Lawrence Frederick; Manthiram, A.; Ferreira, Prof Paulo

    2010-01-01

    Research on proton exchange membrane fuel cells (PEMFC) has increased over the last decade due to an increasing demand for alternative energy solutions. Most PEMFCs use Pt on carbon support as electrocatalysts for oxygen reduction reactions (ORR) [1]. Due to the high cost of Pt, there is a strong drive to develop less expensive catalysts that meet or exceed the performance of Pt. Binary and ternary Pt alloys with less expensive metals are a possible route [1]. In this work, a ternary alloy with composition Pd5Pt3Ni2 was studied as a potential cathode material. Preliminary results showed similar catalytic performance to pure Pt in single-cell tests. However, to enhance its performance, it is necessary to understand how this ternary catalyst behaves during fuel cell operation. Various electron microscopy techniques were used to characterize the ternary Pd5Pt3Ni2 catalysts within the membrane-electrode assembly (MEA) both before and after fuel cell operation.

  13. A novel, efficient CNTFET Galois design as a basic ternary-valued logic field.

    PubMed

    Keshavarzian, Peiman; Mirzaee, Mahla Mohammad

    2012-01-01

    This paper presents arithmetic operations, including addition and multiplication, in the ternary Galois field through carbon nanotube field-effect transistors (CNTFETs). Ternary logics have received considerable attention among all the multiple-valued logics. Multiple-valued logics are an alternative to common-practice binary logic, which mostly has been expanded from ternary (three-valued) logic. CNTFETs are used to improve Galois field circuit performance. In this study, a novel design technique for ternary logic gates based on CNTFETs was used to design novel, efficient Galois field circuits that will be compared with the existing resistive-load CNTFET circuit designs. In this paper, by using carbon nanotube technology and avoiding the use of resistors, we will reduce power consumption and delay, and will also achieve a better product. Simulation results using HSPICE illustrate substantial improvement in speed and power consumption.

  14. A novel, efficient CNTFET Galois design as a basic ternary-valued logic field

    PubMed Central

    Keshavarzian, Peiman; Mirzaee, Mahla Mohammad

    2012-01-01

    This paper presents arithmetic operations, including addition and multiplication, in the ternary Galois field through carbon nanotube field-effect transistors (CNTFETs). Ternary logics have received considerable attention among all the multiple-valued logics. Multiple-valued logics are an alternative to common-practice binary logic, which mostly has been expanded from ternary (three-valued) logic. CNTFETs are used to improve Galois field circuit performance. In this study, a novel design technique for ternary logic gates based on CNTFETs was used to design novel, efficient Galois field circuits that will be compared with the existing resistive-load CNTFET circuit designs. In this paper, by using carbon nanotube technology and avoiding the use of resistors, we will reduce power consumption and delay, and will also achieve a better product. Simulation results using HSPICE illustrate substantial improvement in speed and power consumption. PMID:24198492

  15. Kinetics of Au-containing ternary intermetallic redeposition at solder/UBM interface

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Hyun; Park, Jong-Hwan; Shin, Dong-Hyuk; Lee, Yong-Ho; Kim, Yong-Seog

    2001-09-01

    In this study, the effects of the under bump metallurgy (UBM) structure and Cu content in solders on the redeposition rate of Au-containing ternary intermetallics at the solder/UBM interface were investigated. A UBM structure with a Ni diffusion barrier, Au/Ni/Cu, appeared to promote the redeposition of ternary Au-containing intermetallics at the solder/UBM interface of the ternary during the solid-state aging treatment and the Au-embrittlement of the solder interconnections. Copper added to the eutectic Sn-Pb and Sn-Ag solders was observed to be very effective in retarding the redeposition by forming the ternary intermetallics in solder matrices and preventing the Au-embrittlement. These phenomena were discussed with the microstructures observed.

  16. Atomistic Simulations of Ternary Polymer Electrolytes Containing Ionic Liquids: Ion Transport and Viscoelastic Behavior

    NASA Astrophysics Data System (ADS)

    Mogurampelly, Santosh; Ganesan, Venkat

    Influence of the BMIMPF6 ionic liquid on ion transport and viscoelastic properties of ternary polymer electrolytes containing polyethylene oxide solvated with LiPF6 salt and the underlying mechanisms are investigated. By employing atomistic molecular dynamics and trajectory extended kinetic Monte Carlo simulation techniques, we observe enhanced ionic mobilities and conductivities of the PEOLiPF6-BMIMPF ternary electrolytes upon the addition ionic liquid into the PEOLiPF6 binary electrolyte. The dispersion of the BMIMPF6 ionic liquid into the PEOLiPF6 electrolyte is found to (a) promote dissociation of existing LiPF6 ion-pairs and (b) slightly accelerate the polymer segmental dynamics. Together, these effects are observed to collectively give rise to an increase in ionic mobilities and conductivities of the ternary polymer electrolyte. On the other hand, Rouse analysis reveals that the storage and loss modulus of the ternary polymer electrolytes are coupled to their ion conducting properties.

  17. Studies of Ternary Surface Complexes at Liquid-Solid Interfaces in Seawater

    PubMed

    Zhengbin; Wei; Liansheng; Youjun; Zhijian

    1997-06-01

    The E (%)-pH curves of the ternary surface complexes at liquid-solid interfaces in the simulated seawater system of alpha-FeOOH-Cu(II)-tryptophan were determined. The diffuse reflectance IR spectra of the species at the solid surfaces in the above ternary equilibration system were examined. The above two results were comparatively studied. It is shown that the coadsorption of Cu(II) and tryptophan on alpha-FeOOH surface results in the formation of the ternary surface complex. Cu(II) can promote the exchange adsorption of tryptophan on alpha-FeOOH surface. The diffuse reflectance IR spectra can give us some evidence for the structure of the ternary surface complex, and these results are in accordance with the results of the E (%)-pH curves.

  18. A novel ternary quantum-dot cell for solving majority voter gate problem

    NASA Astrophysics Data System (ADS)

    Tehrani, Mohammad A.; Bahrami, Safura; Navi, Keivan

    2014-03-01

    Since the complementary metal-oxide semiconductor (CMOS) technology has experienced many serious problems in fulfilling the need for more robust and efficient circuits, some emerging nanotechnologies have been introduced as the candidates for replacing CMOS. Quantum-dot cellular automata (QCA) is one of the promising nanotechnology candidates with majority function as its fundamental logic element. It has one implementation in binary QCA and several implantations in ternary QCA, but none of the ternary QCA implementations are as efficient as the binary one. In this paper, a new cell configuration for ternary QCA is proposed which works as well as previous cell configuration. Also, a new design for ternary QCA majority function is proposed which performs faster and occupies less area.

  19. Organic Solar Cells beyond One Pair of Donor-Acceptor: Ternary Blends and More.

    PubMed

    Yang, Liqiang; Yan, Liang; You, Wei

    2013-06-06

    Ternary solar cells enjoy both an increased light absorption width, and an easy fabrication process associated with their simple structures. Significant progress has been made for such solar cells with demonstrated efficiencies over 7%; however, their fundamental working principles are still under investigation. This Perspective is intended to offer our insights on the three major governing mechanisms in these intriguing ternary solar cells: charge transfer, energy transfer, and parallel-linkage. Through careful analysis of exemplary cases, we summarize the advantages and limitations of these three major mechanisms and suggest future research directions. For example, incorporating additional singlet fission or upconversion materials into the energy transfer dominant ternary solar cells has the potential to break the theoretical efficiency limit in single junction organic solar cells. Clearly, a feedback loop between fundamental understanding and materials selection is in urgent need to accelerate the efficiency improvement of these ternary solar cells.

  20. Electromotive Force Measurements in the Ternary System Bi-In-Zn

    NASA Astrophysics Data System (ADS)

    Knott, Sabine; Li, Zuoan; Wang, C.-H.; Mikula, Adolf

    2010-12-01

    The thermodynamic properties of the ternary Bi-In-Zn system were determined with the electromotive force (EMF) method using a liquid electrolyte. Four different cross sections with constant In/Bi ratios of 1:2, 1:1, 2:1, and 9:1 were applied to measure the thermodynamic properties of the ternary system in the temperature range between the liquidus temperature of the alloys and 973 K (700 °C). Zinc was added in steps of 5 at. pct from 5 to 90 pct. The partial free energies of Zn in liquid Bi-In-Zn alloys were determined as a function of concentration and temperature. The integral Gibbs free energy and the integral enthalpy of the ternary system at 873 K (600 °C) were calculated by Gibbs-Duhem integration. The ternary interaction parameters were evaluated using the Redlich-Kister-Muggianu polynomials.

  1. Classification of ternary extremal self-dual codes of length 28

    NASA Astrophysics Data System (ADS)

    Harada, Masaaki; Munemasa, Akihiro; Venkov, Boris

    2009-09-01

    All 28 -dimensional unimodular lattices with minimum norm 3 are known. Using this classification, we give a classification of ternary extremal self-dual codes of length 28 . Up to equivalence, there are 6,931 such codes.

  2. Binary and ternary adsorption of n-alkane mixtures on activated carbon

    SciTech Connect

    Kalies, G.; Braeuer, P.; Messow, U.

    1999-06-15

    The adsorption isotherms of the binary n-alkane mixtures n-hexane/n-octane, n-octane/n-tetradecane, and n-hexane/n-tetradecane on the activated carbon TA 95 are measured at 298 K and described with mathematical functions. About 40 experimental values of the adsorption excess of the ternary mixture n-hexane/n-octane/n-tetradecane on activated carbon TA 95 at 298 K are gas chromatographically measured inside the ternary triangle. The ternary data are represented in the three-dimensional space with the help of transformation of coordinates and by utilization of the conception of the quasi-two-component representation of the mole fractions. A consistency test for the specific wetting Gibbs energies calculated from the binary data is carried out. The possibilities for a mathematical prediction of ternary data from adsorption data for the constituent binary mixtures are proved.

  3. Thermal behaviour of cubic phases rich in 1-monooleoyl-rac-glycerol in the ternary system. 1-monooleoyl-rac-glycerol/n-octyl-beta-D-glucoside/water.

    PubMed

    Persson, Gerd; Edlund, Håkan; Lindblom, Göran

    2003-01-01

    Using synchrotron X-ray diffraction the thermal behaviour was studied of the cubic phases in the 1-monooleoyl-rac-glycerol (MO)/n-octyl-beta-d-glucopyranoside (OG)/2H2O system with 58 or 45 wt % MO concentration and varying OG/2H2O contents. These MO contents correspond to a Pn3m cubic single-phase or a Pn3m cubic phase in excess water on the binary MO/water axis of the ternary phase diagram. The cubic liquid crystalline phases are stable with small fractions of OG, while higher OG concentrations trigger a cubic-to-lamellar phase transition. Moreover, with increasing OG concentration the initial Pn3m structure is completely converted to an Ia3d structure prior to the Lalpha phase being formed. Upon heating this effect is reversed, resulting in an Ia3d-to-Pn3m phase transition. For some samples additional peaks were observed in the diffractograms upon heating, resulting from the metastability notoriously shown by bicontinuous cubic phases. This judgement is supported by the fact that upon cooling these peaks were absent. Remarkably, both the Ia3d and the Pn3m cubic structures could be in equilibrium with excess water in this ternary system. A comparison is made with previous results on n-dodecyl-beta-d-maltoside (DM), showing that cubic phases with OG have higher thermal and compositional stability than with DM.

  4. Structure of the novel ternary hydrides Li4Tt2D (Tt=Si and Ge).

    PubMed

    Wu, Hui; Hartman, Michael R; Udovic, Terrence J; Rush, John J; Zhou, Wei; Bowman, Robert C; Vajo, John J

    2007-02-01

    The crystal structures of newly discovered Li4Ge2D and Li4Si2D ternary phases were solved by direct methods using neutron powder diffraction data. Both structures can be described using a Cmmm orthorhombic cell with all hydrogen atoms occupying Li6-octahedral interstices. The overall crystal structure and the geometry of these interstices are compared with those of other related phases, and the stabilization of this novel class of ternary hydrides is discussed.

  5. Ternary Organic Solar Cells Based on Two Compatible Nonfullerene Acceptors with Power Conversion Efficiency >10.

    PubMed

    Liu, Tao; Guo, Yuan; Yi, Yuanping; Huo, Lijun; Xue, Xiaonan; Sun, Xiaobo; Fu, Huiting; Xiong, Wentao; Meng, Dong; Wang, Zhaohui; Liu, Feng; Russell, Thomas P; Sun, Yanming

    2016-12-01

    Two different nonfullerene acceptors and one copolymer are used to fabricate ternary organic solar cells (OSCs). The two acceptors show unique interactions that reduce crystallinity and form a homogeneous mixed phase in the blend film, leading to a high efficiency of ≈10.3%, the highest performance reported for nonfullerene ternary blends. This work provides a new approach to fabricate high-performance OSCs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Binary and ternary gas mixtures for use in glow discharge closing switches

    DOEpatents

    Hunter, Scott R.; Christophorou, Loucas G.

    1990-01-01

    Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue of the combined physio-electric properties of the mixture components.

  7. Moisture influence on compressive strength of ternary gypsum-based binders

    NASA Astrophysics Data System (ADS)

    Doleželová, Magdaléna; Vimmrová, Alena

    2017-07-01

    The environmental influence on the ternary gypsum-based binders is described in the paper. The ternary mixtures were composed from gypsum, lime and pozzolan. The crushed ceramic, microsilica and granulated blast slag were selected as representatives of pozzolan. Changes of compressive strength were investigated according to the method of storing and treatment before the test. Samples with microsilica have the best results of compressive strength from all tested mixtures when stored in the water and tested in moist state.

  8. Photovoltaic Devices Employing Ternary PbSxSe1-x Nanocrystals

    SciTech Connect

    Ma, Wanli; Luther, Joseph; Zheng, Haimei; Wu, Yue; Alivisatos, A. Paul

    2009-02-05

    We report solar cells based on highly confined nanocrystals of the ternary compound PbSxSe1-x. Crystalline, monodisperse alloyed nanocrystals are obtained using a one-pot, hot injection reaction. Rutherford back scattering and energy filtered transmission electron microscopy suggest that the S and Se anions are uniformly distributed in the alloy nanoparticles. Photovoltaic devices made using ternary nanoparticles are more efficient than either pure PbS or pure PbSe based nanocrystal devices.

  9. Surface tension isotherms of the dioxane-acetone-water and glycerol-ethanol-water ternary systems

    NASA Astrophysics Data System (ADS)

    Dzhambulatov, R. S.; Dadashev, R. Kh.; Elimkhanov, D. Z.; Dadashev, I. N.

    2016-10-01

    The results of the experimental and theoretical studies of the concentration dependence of surface tension of aqueous solutions of the 1,4-dioxane-acetone-water and glycerol-ethanol-water ternary systems were given. The studies were performed by the hanging-drop method on a DSA100 tensiometer. The maximum error of surface tension was 1%. The theoretical models for calculating the surface tension of the ternary systems of organic solutions were analyzed.

  10. Aluminum nitride, Scandium nitride, and Aluminum-Scandium-Nitride ternary alloys : Structural, optical, and electrical properties

    NASA Astrophysics Data System (ADS)

    Deng, Ruopeng

    reduction in direct bandgap Eg = 6.15-9.32x (eV) which itself has implication in III-V compound bandgap engineering. (3) All optical phonons mode frequencies measured from IR specular reflectance and Raman scattering red-shift as more Sc atoms are incorporated: ω[E2(H)] = 658 - 233x, ω[A1(TO)] = 612 - 159x, ω[E1(TO)] = 681 - 209x, ω[A1(LO)] = 868 - 306x (all units in cm-1). The phonon softening effect is understood as the increase in ionicity and weakening in covalent bond strength, which are believed to be the major factors leading to piezoelectric enhancement. Similarly, Sc1-xAlxN ternary alloy also exhibit changes in lattice structure and bandgaps as seen in samples expitaxially deposited on MgO(001) substrate at 950°C. Measured relaxed lattice constant assuming a Poisson ratio of 0.2 is shrinking nonlinearly with Al concentration x because rock-salt AlN has a smaller lattice constant than ScN. X point bandgap value and near-Gamma-point interband transition energy are greater with more Al incorporated: Eg(X) = 2.50+2.51 x (eV), and Eg(Gamma) = 3.80 + 1.45 x (eV), implying that band structure of this ternary alloy is possibly under the effect of rock-salt AlN indirect bandgap that is around 5 eV from simulation. Carrier weak localization is also observed at low temperature and becomes dominant as Al concentration increases, in which normal phonon scattering in ScN is over-taken by electron coherent back-scattering by Al atoms. Overall, structural, optical, and electrical characterization and analysis have been conducted on AlN, ScN, and Al-Sc-N ternary alloy materials, the results of which could help to improve existing processes and also to understand more fundamental properties.

  11. Ternary fission of a heavy nuclear system within a three-center shell model

    NASA Astrophysics Data System (ADS)

    Karpov, A. V.

    2016-12-01

    Background: Since more than 40 years of theoretical and experimental studies of true ternary fission, one is still quite far from its understanding. The true ternary fission channel, being strongly suppressed by the macroscopic properties of the potential energy, may, however, be present with a significant probability due to shell effects. Purpose: Development of a model for the multidimensional potential energy suitable for analysis of the nucleus-nucleus collisions with the possibility of ternary exit channel. Study of the potential possibility of fission of actinides into three heavy fragments. Method: The asymmetric three-center shell model of deformed nucleus is developed in this paper. The model can be applied for analysis of ternary as well as binary fission processes. Results: The potential energy surfaces for few ternary combinations in the fission channel are calculated for the 252Cf nucleus. Their properties are discussed. Conclusions: The potential energy structures are compared with the experimental observations. It was found that the potential energy has pronounced valleys favorable for ternary fission with formation of doubly magic tin as one of the fragments and two other lighter fragments. The positions of the found fission valleys are in a good agreement with the experimental data.

  12. Understanding the Impact of Hierarchical Nanostructure in Ternary Organic Solar Cells

    PubMed Central

    Fang, Jin; Wang, Zaiyu; Zhang, Yajie; Deng, Dan; Wang, Zhen; Lu, Kun

    2015-01-01

    Ternary organic solar cells (OSCs), which blend two donors and fullerene derivatives with different absorption ranges, are a promising potential strategy for high‐power conversion efficiencies (PCEs). In this study, inverted ternary OSCs are fabricated by blending a highly crystalline small molecule BDT‐3T‐CNCOO in a low band gap polymer PBDTTT‐C‐T:PC71BM. As the small molecule is introduced, the overall PCEs increase from 7.60% to 8.58%. The morphologies of ternary blends are studied by combining transmission electron microscopy and X‐ray scattering techniques at different length scales. Hierarchical phase separation is revealed in the ternary blend, which is composed of domains with sizes of ≈88, ≈50, and ≈20 nm, respectively. The hierarchical phase separation balances the charge separation and transport in ternary OSCs. As a result, the fill factors of the devices significantly improve from 58.4% to 71.6%. Thus, ternary blends show higher hole mobility and higher fill factor than binary blends, which demonstrates a facile strategy to increase the performance of OSCs. PMID:27722074

  13. Reactive magnetron cosputtering of hard and conductive ternary nitride thin films: Ti-Zr-N and Ti-Ta-N

    SciTech Connect

    Abadias, G.; Koutsokeras, L. E.; Dub, S. N.; Tolmachova, G. N.; Debelle, A.; Sauvage, T.; Villechaise, P.

    2010-07-15

    Ternary transition metal nitride thin films, with thickness up to 300 nm, were deposited by dc reactive magnetron cosputtering in Ar-N{sub 2} plasma discharges at 300 deg. C on Si substrates. Two systems were comparatively studied, Ti-Zr-N and Ti-Ta-N, as representative of isostructural and nonisostructural prototypes, with the aim of characterizing their structural, mechanical, and electrical properties. While phase-separated TiN-ZrN and TiN-TaN are the bulk equilibrium states, Ti{sub 1-x}Zr{sub x}N and Ti{sub 1-y}Ta{sub y}N solid solutions with the Na-Cl (B1-type) structure could be stabilized in a large compositional range (up to x=1 and y=0.75, respectively). Substituting Ti atoms by either Zr or Ta atoms led to significant changes in film texture, microstructure, grain size, and surface morphology, as evidenced by x-ray diffraction, x-ray reflectivity, and scanning electron and atomic force microscopies. The ternary Ti{sub 1-y}Ta{sub y}N films exhibited superior mechanical properties to Ti{sub 1-x}Zr{sub x}N films as well as binary compounds, with hardness as high as 42 GPa for y=0.69. All films were metallic, the lowest electrical resistivity {rho}{approx}65 {mu}{Omega} cm being obtained for pure ZrN, while for Ti{sub 1-y}Ta{sub y}N films a minimum was observed at y{approx}0.3. The evolution of the different film properties is discussed based on microstructrural investigations.

  14. Reduced ternary molybdenum and tungsten sulfides and hydroprocessing catalysis therewith

    DOEpatents

    Hilsenbeck, S.J.; McCarley, R.E.; Schrader, G.L.; Xie, X.B.

    1999-02-16

    New amorphous molybdenum/tungsten sulfides with the general formula M{sup n+}{sub 2x/n}(L{sub 6}S{sub 8})S{sub x}, where L is molybdenum or tungsten and M is a ternary metal, has been developed. Characterization of these amorphous materials by chemical and spectroscopic methods (IR, Raman, PES) shows that the (M{sub 6}S{sub 8}){sup 0} cluster units are present. Vacuum thermolysis of the amorphous Na{sub 2x}(Mo{sub 6}S{sub 8})S{sub x}{hor_ellipsis}yMeOH first produces poorly crystalline NaMo{sub 6}S{sub 8} by disproportionation at 800 C and well-crystallized NaMo{sub 6}S{sub 8} at {>=} 900 C. Ion-exchange of the sodium material in methanol with soluble M{sup 2+} and M{sup 3+} salts (M=Sn, Co, Ni, Pb, La, Ho) produces the M{sup n+}{sub 2x/n}(Mo{sub 6}S{sub 8})S{sub x}{hor_ellipsis}yMeOH compounds. Additionally, the new reduced ternary molybdenum sulfides with the general formula M{sup n+}{sub 2x/n}Mo{sub 6}S{sub 8+x}(MeOH){sub y}[MMOS] (M=Sn, Co, Ni) is an effective hydrodesulfurization (HDS) catalyst both as-prepared and after a variety of pretreatment conditions. Under specified pretreatment conditions with flowing hydrogen gas, the SnMoS type catalyst can be stabilized, and while still amorphous, can be considered as ``Chevrel phase-like`` in that both contain Mo{sub 6}S{sub 8} cluster units. Furthermore, the small cation NiMoS and CoMoS type pretreated catalyst is shown to be very active HDS catalysts with rates that exceeded the model unpromoted and cobalt-promoted MoS{sub 2} catalysts. 9 figs.

  15. Reduced ternary molybdenum and tungsten sulfides and hydroprocessing catalysis therewith

    DOEpatents

    Hilsenbeck, Shane J.; McCarley, Robert E.; Schrader, Glenn L.; Xie, Xiaobing

    1999-02-16

    New amorphous molybdenum/tungsten sulfides with the general formula M.sup.n+.sub.2x/n (L.sub.6 S.sub.8)S.sub.x, where L is molybdenum or tungsten and M is a ternary metal, has been developed. Characterization of these amorphous materials by chemical and spectroscopic methods (IR, Raman, PES) shows that the (M.sub.6 S.sub.8).sup.0 cluster units are present. Vacuum thermolysis of the amorphous Na.sub.2x (Mo.sub.6 S.sub.8)S.sub.x .multidot.yMeOH first produces poorly crystalline NaMo.sub.6 S.sub.8 by disproportionation at 800.degree. C. and well-crystallized NaMo.sub.6 S.sub.8 at .gtoreq. 900.degree. C. Ion-exchange of the sodium material in methanol with soluble M.sup.2+ and M.sup.3+ salts (M=Sn, Co, Ni, Pb, La, Ho) produces the M.sup.n+.sub.2x/n (Mo.sub.6 S.sub.8)S.sub.x .multidot.yMeOH compounds. Additionally, the new reduced ternary molybdenum sulfides with the general formula M.sup.n+.sub.2x/n Mo.sub.6 S.sub.8+x (MeOH).sub.y ›MMOS! (M=Sn, Co, Ni) is an effective hydrodesulfurization (HDS) catalyst both as-prepared and after a variety of pretreatment conditions. Under specified pretreatment conditions with flowing hydrogen gas, the SnMoS type catalyst can be stabilized, and while still amorphous, can be considered as "Chevrel phase-like" in that both contain Mo.sub.6 S.sub.8 cluster units. Furthermore, the small cation NiMoS and CoMoS type pretreated catalyst showed to be very active HDS catalysts with rates that exceeded the model unpromoted and cobalt-promoted MoS.sub.2 catalysts.

  16. Boron site preference in ternary Ta and Nb boron silicides

    SciTech Connect

    Khan, Atta U.; Nunes, Carlos A.; Coelho, Gilberto C.; Suzuki, Paulo A.; Grytsiv, Andriy; Bourree, Francoise; Rogl, Peter F.

    2012-06-15

    X-ray single crystal (XSC) and neutron powder diffraction data (NPD) were used to elucidate boron site preference for five ternary phases. Ta{sub 3}Si{sub 1-x}B{sub x} (x=0.112(4)) crystallizes with the Ti{sub 3}P-type (space group P4{sub 2}/n) with B-atoms sharing the 8g site with Si atoms. Ta{sub 5}Si{sub 3-x} (x=0.03(1); Cr{sub 5}B{sub 3}- type) crystallizes with space group I4/mcm, exhibiting a small amount of vacancies on the 4a site. Both, Ta{sub 5}(Si{sub 1-x}B{sub x}){sub 3}, x=0.568(3), and Nb{sub 5}(Si{sub 1-x}B{sub x}){sub 3}, x=0.59(2), are part of solid solutions of M{sub 5}Si{sub 3} with Cr{sub 5}B{sub 3}-type into the ternary M-Si-B systems (M=Nb or Ta) with B replacing Si on the 8h site. The D8{sub 8}-phase in the Nb-Si-B system crystallizes with the Ti{sub 5}Ga{sub 4}-type revealing the formula Nb{sub 5}Si{sub 3}B{sub 1-x} (x=0.292(3)) with B partially filling the voids in the 2b site of the Mn{sub 5}Si{sub 3} parent type. - Graphical abstract: The crystal structures of a series of compounds have been solved from X-ray single crystal diffractometry revealing details on the boron incorporation. Highlights: Black-Right-Pointing-Pointer Structure of a series of compounds have been solved by X-ray single crystal diffractometry. Black-Right-Pointing-Pointer Ta{sub 3}(Si{sub 1-x}B{sub x}) (x=0.112) crystallizes with the Ti{sub 3}P-type, B and Si atoms randomly share the 8g site. Black-Right-Pointing-Pointer Structure of Nb{sub 5}Si{sub 3}B{sub 1-x} (x=0.292; Ti{sub 5}Ga{sub 4}-type) was solved from NPD.

  17. Heat capacities, magnetic properties, and resistivities of ternary RPdBi alloys where R = La, Nd, Gd, Dy, Er, and Lu

    SciTech Connect

    Riedemann, T.M.

    1996-05-01

    Over the past four and a half decades research on the rare earths, their compounds, and their alloys has yielded significant insights into the nature of materials. The rare earths can be used to systematically study a series of alloys or compounds. Magnetic ordering, crystalline fields, spin fluctuations, the magnetocaloric effect, and magnetostriction are a small sample of phenomena studied that are exhibited by the rare earth family. A significant portion of research has been conducted on the abundant RM{sub 2} and RM phases, where R is the rare earth and M is a transition metal. The natural progression of science has led to the study of related RMX ternary phases, where X is either another transition metal or semimetal. There are now over 1,000 known RMX phases. The focus of this study is on RPdBi where R = La, Nd, Gd, Dy, Er, and Lu. Their heat capacities, magnetic properties, and resistivities are studied.

  18. Spray Drying Ternary Amorphous Solid Dispersions of Ibuprofen - An Investigation into Critical Formulation and Processing Parameters.

    PubMed

    Ziaee, Ahmad; Albadarin, Ahmad B; Padrela, Luis; Faucher, Alexandra; O'Reilly, Emmet; Walker, Gavin

    2017-08-16

    A design of experiment (DoE) approach was used to investigate the critical formulation and processing parameters in spray drying ternary amorphous solid dispersions (ASDs) of ibuprofen. A range of 16 formulations of ibuprofen, HPMCP-HP55 and Kollidon VA 64 were spray dried. Statistical analysis revealed the interrelation of various spray drying process conditions and formulation factors, namely solution feed rate, inlet temperature, Active Pharmaceutical Ingredient (API)/excipients ratio and dichloromethane (DCM) /methanol (MeOH) ratio. Powder X-Ray diffraction analysis (PXRD) showed that all the samples with the lowest API/excipient ratio (1:4) were amorphous, while others were crystalline. Moreover, differential scanning calorimetry (DSC) analysis was employed to investigate ASD formulation more in-depth. The glass transition temperatures (Tg) of all ASDs were in the range 70-79 °C, while crystalline formulations displayed an endothermic peak of melting of crystalline ibuprofen in the range of 50-80 °C. The high Tg of ASDs was an indication of highly stable ASD formulations as verified via PXRD at zero day and afterward at 1, 1.5, 3 and 6 month intervals. The intermolecular interactions between ibuprofen molecule and excipients were studied by Fourier transform infrared spectroscopy (FTIR) and solid-state nuclear magnetic resonance (ssNMR) spectroscopy. FTIR and Carbon-13 ssNMR analysis indicated that hydrogen bond formation involving the carboxyl group in ibuprofen within the ASDs is likely. More importantly, the solubility of ibuprofen in ASD formulations is improved compared to pure ibuprofen. This was due to both the amorphous structure of ibuprofen and of the existence of amphiphilic excipient, Kollidon VA64, in the formulation. Copyright © 2017. Published by Elsevier B.V.

  19. Staging properties of potassium-ammonia ternary graphite intercalation compounds at high ammonia pressure

    NASA Astrophysics Data System (ADS)

    Qian, X. W.; Solin, S. A.

    1989-04-01

    The pressure dependence of the (00l) x-ray diffraction patterns of the ternary graphite intercalation compound K(NH3)xC24 has been studied in the range 0.5-11 kbar (for which x~4.5) using a diamond anvil cell. A special apparatus for loading the cell with liquid ammonia at room temperature has been constructed and is briefly described. In these experiments, the pressure-transmitting fluid was also an intercalant, namely ammonia. Therefore, the chemical potential of this species was linearly coupled to the applied pressure in contrast to the usual case where the pressure-transmitting fluid is chemically passive. The pressure dependences of the basal spacings and of the relative intensities of key reflections have been measured, as have the compressibilities of the stage-1 and stage-2 components of the two-phase system. Basal-spacing anomalies and anomalies in the relative intensities occur at pressures of ~3.5 and 8.0 kbar and are tentatively attributed to in-plane coordination changes in the potassium-ammonia ratio. Using thermodynamic arguments and Le Chatelier's principle we show quantitatively that a staging phase transition from pure stage-1 phase to an admixture of stage-1 and stage-2 is expected with increased pressure above 10 bar in agreement with experiment. The saturation ammonia compositions (x values) of the admixed stages are found to be 4.5 and 5.4 for the stage-1 and -2 components, respectively. This result is interpreted as evidence that the composition is not sterically limited but is determined by the binding energy of ammonia for potassium and by the perturbation to this energy from the guest-host interaction.

  20. Growth of new ternary intermetallic phases from Ca/Zn eutectic flux

    SciTech Connect

    Stojanovic, Milorad Latturner, Susan E.

    2007-03-15

    The eutectic 7.3:2.7 molar ratio mixture of calcium and zinc metal melts at 394 deg. C and was explored as a solvent for the growth of new intermetallic phases for potential use as hydrogen storage materials. The reaction of nickel in this molten mixture produces two new phases-the CaCu{sub 5}-related structure CaNi{sub 2}Zn{sub 3} (P6/mmm, a=8.9814(5) A, c=4.0665(5) A) and a new cubic structure Ca{sub 21}Ni{sub 2}Zn{sub 36} (Fd-3m, a=21.5051(4) A). Palladium-containing reactions produced CaPd{sub 0.85}Zn{sub 1.15} with the orthorhombic TiNiSi structure type (Pnma, a=7.1728(9) A, b=4.3949(5) A, c=7.7430(9) A). Reactions of platinum in the Ca/Zn mixture produce Ca{sub 6}Pt{sub 3}Zn{sub 5}, with an orthorhombic structure related to that of W{sub 3}CoB{sub 3} (Pmmn, a=13.7339(9) A, b=4.3907(3) A, c=10.7894(7) A). - Graphical abstract: The calcium/zinc eutectic is a useful synthesis medium for the growth of new intermetallic phases. Addition of group 10 transition metals to this flux produces ternary phases CaNi{sub 2}Zn{sub 3}, Ca{sub 21}Ni{sub 2}Zn{sub 36}, CaPd{sub 0.85}Zn{sub 1.15}, and Ca{sub 6}Pt{sub 3}Zn{sub 5}. The nickel-centered zinc icosahedron surrounded by a pentagonal dodecahedron of calcium atoms is found in Ca{sub 21}Ni{sub 2}Zn{sub 36}.

  1. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Brebrick, Robert F.; Burger, Arnold; Dudley, Michael; Matyi, Richard J.; Ramachandran, Narayanan; Sha, Yi-Gao; Volz, Martin; Shih, Hung-Dah

    2000-01-01

    Interest in optical devices which can operate in the visible spectrum has motivated research interest in the II-VI wide band gap semiconductor materials. The recent challenge for semiconductor opto-electronics is the development of a laser which can operate at short visible wavelengths. In the past several years, major advances in thin film technology such as molecular beam epitaxy and metal organic chemical vapor deposition have demonstrated the applicability of II-VI materials to important devices such as light-emitting diodes, lasers, and ultraviolet detectors. With an energy gap of 2.7 eV at room temperature, and an efficient band- to-band transition, ZnSe has been studied extensively as the primary candidate for a blue light emitting diode for optical displays, high density recording, and military communications. By employing a ternary or quaternary system, the energy band gap of II-VI materials can be tuned to a specific range. While issues related to the compositional inhomogeneity and defect incorporation are still to be fully resolved, ZnSe bulk crystals and ZnSe-based heterostructures such as ZnSe/ZnSeS, ZnSe/ZnCdSe and ZnCdSe/ZnSeS have showed photopumped lasing capability in the blue-green region at a low threshold power and high temperatures. The demonstration of its optical bistable properties in bulk and thin film forms also make ZnSe a possible candidate material for the building blocks of a digital optical computer. Despite this, developments in the crystal growth of bulk H-VI semiconductor materials has not advanced far enough to provide the low price, high quality substrates needed for the thin film growth technology.

  2. Ternary fluorides BaMF4 (M = Zn, Mg and Mn) at low temperatures.

    PubMed

    Posse, Jose Maria; Grzechnik, Andrzej; Friese, Karen

    2009-10-01

    Ternary fluorides BaMF4 (M = Zn, Mg, Mn) have been studied in the temperature range from 300 to 10 K using synchrotron and laboratory powder and single-crystal diffraction. The first two compounds are stable down to 10 K, while the third one undergoes a phase transition to an incommensurately modulated structure at approximately 250 K. The modulated phase is stable down to 10 K. The magnetic anomalies at 45 and 27 K observed previously in BaMnF4 are exclusively reflected in the behavior of the gamma component of the q vector, which assumes an irrational value of approximately 0.395 A(-1) at the temperature corresponding to the onset of the magnetic ordering and then stays constant down to 10 K. Mn-Mn distances do not indicate any structural response to the magnetic ordering. The formation of the modulated phase can be explained on the basis of simple geometrical criteria. The incorporation of the large Mn cation in the octahedral sheets implies an increase of the cavity in which the Ba ion is incorporated. This leads to the formation of the modulated structure to adapt the coordination sphere around Ba in such a way that the bond-valence sums can be kept close to the ideal value of two. With further lowering of the temperature, the charge balance around the Ba ion requires an increasingly anharmonic character of the modulation function of Ba, until finally at 10 K a crenel-like shape is assumed for the modulation of this atom.

  3. Ion Beam Nanostructuring of HgCdTe Ternary Compound

    NASA Astrophysics Data System (ADS)

    Smirnov, Aleksey B.; Savkina, Rada K.; Udovytska, Ruslana S.; Gudymenko, Oleksandr I.; Kladko, Vasyl P.; Korchovyi, Andrii A.

    2017-05-01

    Systematic study of mercury cadmium telluride thin films subjected to the ion beam bombardment was carried out. The evolution of surface morphology of (111) Hg1 - x Cd x Te ( x 0.223) epilayers due to 100 keV B+ and Ag+ ion irradiation was studied by AFM and SEM methods. X-ray photoelectron spectroscopy and X-ray diffraction methods were used for the investigation of the chemical compound and structural properties of the surface and subsurface region. It was found that in the range of nanoscale, arrays of holes and mounds on Hg0.777Cd0.223Te (111) surface as well as the polycrystalline Hg1 - x Cd x Te cubic phase with alternative compound ( x 0.20) have been fabricated using 100 keV ion beam irradiation of the basic material. Charge transport investigation with non-stationary impedance spectroscopy method has shown that boron-implanted structures are characterized by capacity-type impedance whereas for silver-implanted structures, an inductive-type impedance (or "negative capacitance") is observed. A hybrid system, which integrates the nanostructured ternary compound (HgCdTe) with metal-oxide (Ag2O) inclusions, was fabricated by Ag+ ion bombardment. The sensitivity of such metal-oxide-semiconductor hybrid structure for sub-THz radiation was detected with NEP 4.5 × 10-8 W/Hz1/2at ν ≈ 140 GHz and 296 K without amplification.

  4. Ternary structure reveals mechanism of a membrane diacylglycerol kinase

    DOE PAGES

    Li, Dianfan; Stansfeld, Phillip J.; Sansom, Mark S. P.; ...

    2015-12-17

    Diacylglycerol kinase catalyses the ATP-dependent conversion of diacylglycerol to phosphatidic acid in the plasma membrane of Escherichia coli. The small size of this integral membrane trimer, which has 121 residues per subunit, means that available protein must be used economically to craft three catalytic and substrate-binding sites centred about the membrane/cytosol interface. How nature has accomplished this extraordinary feat is revealed here in a crystal structure of the kinase captured as a ternary complex with bound lipid substrate and an ATP analogue. Residues, identified as essential for activity by mutagenesis, decorate the active site and are rationalized by the ternarymore » structure. The γ-phosphate of the ATP analogue is positioned for direct transfer to the primary hydroxyl of the lipid whose acyl chain is in the membrane. A catalytic mechanism for this unique enzyme is proposed. As a result, the active site architecture shows clear evidence of having arisen by convergent evolution.« less

  5. The immiscibility of InAlN ternary alloy

    PubMed Central

    Zhao, Guijuan; Xu, Xiaoqing; Li, Huijie; Wei, Hongyuan; Han, Dongyue; Ji, Zesheng; Meng, Yulin; Wang, Lianshan; Yang, Shaoyan

    2016-01-01

    We have used two models based on the valence force field and the regular solution model to study the immiscibility of InAlN ternary alloy, and have got the spinodal and binodal curves of InAlN. Analyzing the spinodal decomposition curves, we obtain the appropriate concentration region for the epitaxial growth of the InN-AlN pseudobinary alloy. At a temperature most common for the epitaxial growth of InAlN (1000 K), the solubility of InN is about 10%. Then we introduce the mismatch strain item into the Gibbs free energy, and the effect of different substrates is taken into consideration. Considering Si, Al2O3, InN, GaN, AlN as a substrate respectively, it is found that all the five systems are stabilized with the upper critical solution temperature largely reduced. Finally, InN and GaN are potential substrates for In-rich InAlN, while AlN and GaN substrates are recommended in the Al-rich region. Si and Al2O3 may be ideal substrates for thin InAlN film. PMID:27221345

  6. Growth Mechanism of Nanowires: Binary and Ternary Chalcogenides

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Coriell, S. R.; Su, Ching-Hua; Hopkins, R. H.; Arnold, B.; Choa, Fow-Sen; Cullum, Brian

    2016-01-01

    Semiconductor nanowires exhibit very exciting optical and electrical properties including high transparency and a several order of magnitude better photocurrent than thin film and bulk materials. We present here the mechanism of nanowire growth from the melt-liquid-vapor medium. We describe preliminary results of binary and ternary selenide materials in light of recent theories. Experiments were performed with lead selenide and thallium arsenic selenide systems which are multifunctional material and have been used for detectors, acousto-optical, nonlinear and radiation detection applications. We observed that small units of nanocubes and elongated nanoparticles arrange and rearrange at moderate melt undercooling to form the building block of a nanowire. Since we avoided the catalyst, we observed self-nucleation and uncontrolled growth of wires from different places. Growth of lead selenide nanowires was performed by physical vapor transport method and thallium arsenic selenide nanowire by vapor-liquid-solid (VLS) method. In some cases very long wires (>mm) are formed. To achieve this goal experiments were performed to create situation where nanowires grew on the surface of solid thallium arsenic selenide itself.

  7. Internal oxidation of laminated ternary Ru-Ta-Zr coatings

    NASA Astrophysics Data System (ADS)

    Chen, Yung-I.; Lu, Tso-Shen

    2015-10-01

    Researchers have observed the internal oxidation phenomenon in binary alloy coatings when developing refractory alloy coatings for protective purposes by conducting annealing at high temperatures and in oxygen-containing atmospheres. The coatings were assembled using cyclical gradient concentration deposition during cosputtering by employing a substrate holder rotating at a slow speed. The internally oxidized zone demonstrated a laminated structure, comprising alternating oxygen-rich and oxygen-deficient layers stacked in a general orientation. In the current study, Ru-Ta-Zr coatings were prepared with various stacking sequences during cosputtering. The Ru-Ta-Zr coatings were annealed at 600 °C in an atmosphere continuously purged with 1% O2-99% Ar mixed gas for 30 min. A transmission electron microscope was used to examine the periods of the laminated layers and crystallinity of the annealed coatings. Depth profiles produced using an Auger electron spectroscope and X-ray photoelectron spectroscope were used to certify the periodic variation of the related constituents and chemical states of the elements, respectively. The results indicate that the internally oxidized ternary coatings are stacked of Ru-, Ta2O5-, and ZrO2-dominant sublayers and that the stacking sequences of the sublayers affect the crystalline structure of the coatings. Zr is oxidized preferentially in the Ru-Ta-Zr coatings, increasing the surface hardness of the oxidized coatings.

  8. Alloy multilayers and ternary nanostructures by direct-write approach

    NASA Astrophysics Data System (ADS)

    Porrati, F.; Sachser, R.; Gazzadi, G. C.; Frabboni, S.; Terfort, A.; Huth, M.

    2017-10-01

    The fabrication of nanopatterned multilayers, as used in optical and magnetic applications, is usually achieved by two independent steps, which consist in the preparation of multilayer films and in the successive patterning by means of lithography and etching processes. Here we show that multilayer nanostructures can be fabricated by using focused electron beam induced deposition (FEBID), which allows the direct writing of nanostructures of any desired shape with nanoscale resolution. In particular, {[{{{Co}}}2{{Fe}}/{{Si}}]}n multilayers are prepared by the alternating deposition from the metal carbonyl precursors, {{{HFeCo}}}3{({{CO}})}12 and {{Fe}}{({{CO}})}5, and neopentasilane, {{{Si}}}5{{{H}}}12. The ability to fabricate nanopatterned multilayers by FEBID is of interest for the realization of hyperbolic metamaterials and related nanodevices. In a second experiment, we treated the multilayers by low-energy electron irradiation in order to induce atomic species intermixing with the purpose to obtain ternary nanostructured compounds. Transmission electron microscopy and electrical transport measurements indicate that in thick multilayers, (n = 12), the intermixing is only partial, taking place mainly in the upper part of the structures. However, for thin multilayers, (n = 2), the intermixing is such that a transformation into the L21 phase of the Co2FeSi Heusler compound takes place over the whole sample volume.

  9. Single crystal ternary oxide ferroelectric integration with Silicon

    NASA Astrophysics Data System (ADS)

    Bakaul, Saidur; Serrao, Claudy; Youun, Long; Khan, Asif; Salahuddin, Sayeef

    2015-03-01

    Integrating single crystal, ternary oxide ferroelectric thin film with Silicon or other arbitrary substrates has been a holy grail for the researchers since the inception of microelectronics industry. The key motivation is that adding ferroelectric materials to existing electronic devices could bring into new functionality, physics and performance improvement such as non-volatility of information, negative capacitance effect and lowering sub-threshold swing of field effect transistor (FET) below 60 mV/decade in FET [Salahuddin, S, Datta, S. Nano Lett. 8, 405(2008)]. However, fabrication of single crystal ferroelectric thin film demands stringent conditions such as lattice matched single crystal substrate and high processing temperature which are incompatible with Silicon. Here we report on successful integration of PbZr0.2Ti0.8O3 in single crystal form with by using a layer transfer method. The lattice structure, surface morphology, piezoelectric coefficient d33, dielectric constant, ferroelectric domain switching and spontaneous and remnant polarization of the transferred PZT are as good as these characteristics of the best PZT films grown by pulsed laser deposition on lattice matched oxide substrates. We also demonstrate Si based, FE gate controlled FET devices.

  10. Diverse lattice dynamics in ternary Cu-Sb-Se compounds

    PubMed Central

    Qiu, Wujie; Wu, Lihua; Ke, Xuezhi; Yang, Jihui; Zhang, Wenqing

    2015-01-01

    Searching and designing materials with extremely low lattice thermal conductivity (LTC) has attracted considerable attention in material sciences. Here we systematically demonstrate the diverse lattice dynamics of the ternary Cu-Sb-Se compounds due to the different chemical-bond environments. For Cu3SbSe4 and CuSbSe2, the chemical bond strength is nearly equally distributed in crystalline bulk, and all the atoms are constrained to be around their equilibrium positions. Their thermal transport behaviors are well interpreted by the perturbative phonon-phonon interactions. While for Cu3SbSe3 with obvious chemical-bond hierarchy, one type of atoms is weakly bonded with surrounding atoms, which leads the structure to the part-crystalline state. The part-crystalline state makes a great contribution to the reduction of thermal conductivity that can only be effectively described by including a rattling-like scattering process in addition to the perturbative method. Current results may inspire new approaches to designing materials with low lattice thermal conductivities for high-performance thermoelectric conversion and thermal barrier coatings. PMID:26328765

  11. Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic

    NASA Astrophysics Data System (ADS)

    Kim, Wonjoo; Chattopadhyay, Anupam; Siemon, Anne; Linn, Eike; Waser, Rainer; Rana, Vikas

    2016-11-01

    Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced.

  12. Alloy multilayers and ternary nanostructures by direct-write approach.

    PubMed

    Porrati, F; Sachser, R; Gazzadi, G C; Frabboni, S; Terfort, A; Huth, M

    2017-10-13

    The fabrication of nanopatterned multilayers, as used in optical and magnetic applications, is usually achieved by two independent steps, which consist in the preparation of multilayer films and in the successive patterning by means of lithography and etching processes. Here we show that multilayer nanostructures can be fabricated by using focused electron beam induced deposition (FEBID), which allows the direct writing of nanostructures of any desired shape with nanoscale resolution. In particular, [Formula: see text] multilayers are prepared by the alternating deposition from the metal carbonyl precursors, [Formula: see text] and [Formula: see text], and neopentasilane, [Formula: see text]. The ability to fabricate nanopatterned multilayers by FEBID is of interest for the realization of hyperbolic metamaterials and related nanodevices. In a second experiment, we treated the multilayers by low-energy electron irradiation in order to induce atomic species intermixing with the purpose to obtain ternary nanostructured compounds. Transmission electron microscopy and electrical transport measurements indicate that in thick multilayers, (n = 12), the intermixing is only partial, taking place mainly in the upper part of the structures. However, for thin multilayers, (n = 2), the intermixing is such that a transformation into the L21 phase of the Co2FeSi Heusler compound takes place over the whole sample volume.

  13. Ternary Ni-Co-F Nanocrystals Based Supercapacitors.

    PubMed

    Li, Xudong; Ding, Rui; Shi, Wei; Xu, Qilei; Liu, Enhui

    2017-03-14

    The ternary nickel cobalt fluorides (Ni-Co-F) nanocrystals have been solvothermally constructed for supercapacitors' positive electrode materials. The optimal Ni-Co-F (Ni/Co=2:1) has showed lightly chemical shifts in the X-ray diffraction (XRD) and X-ray photoelectron spectra (XPS) compared with the bare Ni-F and Co-F. The Ni-Co-F (Ni/Co=2:1) has demonstrated typical square nanocrystal morphology together with mesoporous surface structure from transmission electron microscopy (TEM) observations and nitrogen sorption measurements. Due to the stronger synergistic effect of Ni and Co redox species originated from the richer Ni, Co surface electroactive sites, the Ni-Co-F (Ni/Co=2:1) has showed superior performances of specific capacitance, rate capability and charge transfer kinetics (564 F g-1 at 1 A g-1, 418 F g-1 at 16 A g-1, 449 Ω) than all the other Ni-Co-F candidates, moreover, the activated carbon (AC)//Ni-Co-F (Ni/Co=2:1) asymmetric capacitor designed through the charge-balance has delivered superior energy and power densities (18.4 Wh kg-1, 6.64 kW kg-1) together with longer cycle life (77% retention after 10,000 cycles at 4 A g-1).

  14. Control mechanism of double-rotator-structure ternary optical computer

    NASA Astrophysics Data System (ADS)

    Kai, SONG; Liping, YAN

    2017-03-01

    Double-rotator-structure ternary optical processor (DRSTOP) has two characteristics, namely, giant data-bits parallel computing and reconfigurable processor, which can handle thousands of data bits in parallel, and can run much faster than computers and other optical computer systems so far. In order to put DRSTOP into practical application, this paper established a series of methods, namely, task classification method, data-bits allocation method, control information generation method, control information formatting and sending method, and decoded results obtaining method and so on. These methods form the control mechanism of DRSTOP. This control mechanism makes DRSTOP become an automated computing platform. Compared with the traditional calculation tools, DRSTOP computing platform can ease the contradiction between high energy consumption and big data computing due to greatly reducing the cost of communications and I/O. Finally, the paper designed a set of experiments for DRSTOP control mechanism to verify its feasibility and correctness. Experimental results showed that the control mechanism is correct, feasible and efficient.

  15. Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic.

    PubMed

    Kim, Wonjoo; Chattopadhyay, Anupam; Siemon, Anne; Linn, Eike; Waser, Rainer; Rana, Vikas

    2016-11-11

    Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced.

  16. Electrotransport-induced unmixing and decomposition of ternary oxides

    SciTech Connect

    Chun, Jakyu; Yoo, Han-Ill; Martin, Manfred

    2015-03-28

    A general expectation is that in a uniform oxygen activity atmosphere, cation electrotransport induces a ternary or higher oxide, e.g., AB{sub 1+ξ}O{sub 3+δ}, to kinetically unmix unless the electrochemical mobilities of, say, A{sup 2+}and B{sup 4+} cations are identically equal, and eventually to decompose into the component oxides AO and BO{sub 2} once the extent of unmixing exceeds the stability range of its nonmolecularity ξ. It has, however, earlier been reported [Yoo et al., Appl. Phys. Lett. 92, 252103 (2008)] that even a massive cation electrotransport induces BaTiO{sub 3} to neither unmix nor decompose even at a voltage far exceeding the so-called decomposition voltage U{sub d}, a measure of the standard formation free energy of the oxide (|ΔG{sub f}{sup o}| = nFU{sub d}). Here, we report that as expected, NiTiO{sub 3} unmixes at any voltage and even decomposes if the voltage applied exceeds seemingly a threshold value larger than U{sub d}. We demonstrate experimentally that the electrochemical mobilities of Ni{sup 2+} and Ti{sup 4+} should be necessarily unequal for unmixing. Also, we show theoretically that equal cation mobilities appear to be a sufficiency for BaTiO{sub 3} only for a thermodynamic reason.

  17. Transmission properties of one-dimensional ternary plasma photonic crystals

    SciTech Connect

    Shiveshwari, Laxmi; Awasthi, S. K.

    2015-09-15

    Omnidirectional photonic band gaps (PBGs) are found in one-dimensional ternary plasma photonic crystals (PPC) composed of single negative metamaterials. The band characteristics and transmission properties are investigated through the transfer matrix method. We show that the proposed structure can trap light in three-dimensional space due to the elimination of Brewster's angle transmission resonance allowing the existence of complete PBG. The results are discussed in terms of incident angle, layer thickness, dielectric constant of the dielectric material, and number of unit cells (N) for TE and TM polarizations. It is seen that PBG characteristics is apparent even in an N ≥ 2 system, which is weakly sensitive to the incident angle and completely insensitive to the polarization. Finite PPC could be used for multichannel transmission filter without introducing any defect in the geometry. We show that the locations of the multichannel transmission peaks are in the allowed band of the infinite structure. The structure can work as a single or multichannel filter by varying the number of unit cells. Binary PPC can also work as a polarization sensitive tunable filter.

  18. Myeloperoxidase, paraoxonase-1, and HDL form a functional ternary complex

    PubMed Central

    Huang, Ying; Wu, Zhiping; Riwanto, Meliana; Gao, Shengqiang; Levison, Bruce S.; Gu, Xiaodong; Fu, Xiaoming; Wagner, Matthew A.; Besler, Christian; Gerstenecker, Gary; Zhang, Renliang; Li, Xin-Min; DiDonato, Anthony J.; Gogonea, Valentin; Tang, W.H. Wilson; Smith, Jonathan D.; Plow, Edward F.; Fox, Paul L.; Shih, Diana M.; Lusis, Aldons J.; Fisher, Edward A.; DiDonato, Joseph A.; Landmesser, Ulf; Hazen, Stanley L.

    2013-01-01

    Myeloperoxidase (MPO) and paraoxonase 1 (PON1) are high-density lipoprotein–associated (HDL-associated) proteins mechanistically linked to inflammation, oxidant stress, and atherosclerosis. MPO is a source of ROS during inflammation and can oxidize apolipoprotein A1 (APOA1) of HDL, impairing its atheroprotective functions. In contrast, PON1 fosters systemic antioxidant effects and promotes some of the atheroprotective properties attributed to HDL. Here, we demonstrate that MPO, PON1, and HDL bind to one another, forming a ternary complex, wherein PON1 partially inhibits MPO activity, while MPO inactivates PON1. MPO oxidizes PON1 on tyrosine 71 (Tyr71), a modified residue found in human atheroma that is critical for HDL binding and PON1 function. Acute inflammation model studies with transgenic and knockout mice for either PON1 or MPO confirmed that MPO and PON1 reciprocally modulate each other’s function in vivo. Further structure and function studies identified critical contact sites between APOA1 within HDL, PON1, and MPO, and proteomics studies of HDL recovered from acute coronary syndrome (ACS) subjects revealed enhanced chlorotyrosine content, site-specific PON1 methionine oxidation, and reduced PON1 activity. HDL thus serves as a scaffold upon which MPO and PON1 interact during inflammation, whereupon PON1 binding partially inhibits MPO activity, and MPO promotes site-specific oxidative modification and impairment of PON1 and APOA1 function. PMID:23908111

  19. Lattice-matched heteroepitaxy of wide gap ternary compound semiconductors

    NASA Technical Reports Server (NTRS)

    Bachmann, Klaus J.

    1993-01-01

    A variety of applications are identified for heteroepitaxial structures of wide gap I-III-VI(sub 2) and II-IV-V(sub 2) semiconductors, and are assessed in comparison with ternary III-V alloys and other wide gap materials. Non-linear optical applications of the I-III-VI(sub 2) and II-IV-V(sub 2) compound heterostructures are discussed, which require the growth of thick epitaxial layers imposing stringent requirements on the conditions of heteroepitaxy. In particular, recent results concerning the MOCVD growth of ZnSi(x)Ge(1-x)P2 alloys lattice matching Si or GaP substrates are reviewed. Also, heterostructures of Cu(z)Ag(1-z)GaS2 alloys that lattice-match Si, Ge, GaP, or GaAs substrates are considered in the context of optoelectronic devices operating in the blue wavelength regime. Since under the conditions of MOCVD, metastable alloys of the II-IV-V(sub 2) compounds and group IV elements are realized, II-IV-V(sub 2) alloys may also serve as interlayers in the integration of silicon and germanium with exactly lattice-matched tetrahedrally coordinated compound semiconductors, e.g. ZnSi(x)Ge(1-x)P2.

  20. Lattice-matched heteroepitaxy of wide gap ternary compound semiconductors

    NASA Technical Reports Server (NTRS)

    Bachmann, Klaus J.

    1992-01-01

    A variety of applications are identified for heteroepitaxial structures of wide gap I-III-VI2 and II-IV-V2 semiconductors, and are assessed in comparison with ternary III-V alloys and other wide gap materials. Non-linear optical applications of the I-III-VI2 and II-IV-V2 compound heterostructures are discussed, which require the growth of thick epitaxial layers imposing stringent requirements on the conditions of heteroepitaxy. In particular, recent results concerning the MOCVD growth of ZnSi(x)Ge(1-x)P2 alloys lattice-matching Si or GaP substrates are reviewed. Also, heterostructures of Cu(z)Ag(1-z)GaS2 alloys that lattice-match Si, Ge, GaP or GaAs substrates are considered in the context of optoelectronic devices operating in the blue wavelength regime. Since under the conditions of MOCVD, metastable alloys of the II-IV-V2 compounds and group IV elements are realized, II-IV-V2 alloys may also serve as interlayers in the integration of silicon and germanium with exactly lattice-matched tetrahedrally coordinated compound semiconductors, e.g. ZnSi(x)Ge(1-x)P2.

  1. Ternary Phase Diagrams that Relate to the Plutonium Immobilization Ceramic

    SciTech Connect

    Ebbinghaus, B b; Krikorian, O H; Vance, E R; Stewart, M W

    2001-01-01

    The plutonium immobilization ceramic consists primarily of a pyrochlore titanate phase of the approximate composition Ca{sub 0.97}Hf{sub 0.17}Pu{sub 0.22}U{sub 0.39}Gd{sub 0.24} Ti{sub 2}O{sub 7}. In this study, a series of ternary phase diagrams was constructed to evaluate the relationship of various titanate phases (e.g., brannerite, zirconolite-2M, zirconolite-4M, and perovskite) to pyrochlore titanates, usually in the presence of excess TiO{sub 2} (rutile), and at temperatures in the vicinity of 1350 C. To facilitate the studies, U, Th, and Ce were used as surrogates for Pu in a number of the phase diagrams in addition to the use of Pu itself. The effects of impurity oxides, Al{sub 2}O{sub 3} and MgO, were also studied on pyrochlore (Gd{sub 2}Ti{sub 2}O{sub 7}) and zirconolite (CaHfTi{sub 2}O{sub 7}) mixtures. Either electron microprobe (at Lawrence Livermore National Laboratory) or quantitative SEM-EDS (at Australian Nuclear Science and Technology Organization) were used to evaluate the compositions of the phases.

  2. Growth mechanism of nanowires: binary and ternary chalcogenides

    NASA Astrophysics Data System (ADS)

    Singh, N. B.; Coriell, S. R.; Su, Ching Hua; Hopkins, R. H.; Arnold, B.; Choa, Fow-Sen; Cullum, Brian

    2016-05-01

    Semiconductor nanowires exhibit very exciting optical and electrical properties including high transparency and a several order of magnitude better photocurrent than thin film and bulk materials. We present here the mechanism of nanowire growth from the melt-liquid-vapor medium. We describe preliminary results of binary and ternary selenide materials in light of recent theories. Experiments were performed with lead selenide and thallium arsenic selenide systems which are multifunctional material and have been used for detectors, acoustooptical, nonlinear and radiation detection applications. We observed that small units of nanocubes and elongated nanoparticles arrange and rearrange at moderate melt undercooling to form the building block of a nanowire. Since we avoided the catalyst, we observed self-nucleation and uncontrolled growth of wires from different places. Growth of lead selenide nanowires was performed by physical vapor transport method and thallium arsenic selenide nanowire by vapor-liquid-solid (VLS) method. In some cases very long wires (>mm) are formed. To achieve this goal experiments were performed to create situation where nanowires grew on the surface of solid thallium arsenic selenide itself.

  3. Myeloperoxidase, paraoxonase-1, and HDL form a functional ternary complex.

    PubMed

    Huang, Ying; Wu, Zhiping; Riwanto, Meliana; Gao, Shengqiang; Levison, Bruce S; Gu, Xiaodong; Fu, Xiaoming; Wagner, Matthew A; Besler, Christian; Gerstenecker, Gary; Zhang, Renliang; Li, Xin-Min; DiDonato, Anthony J; Gogonea, Valentin; Tang, W H Wilson; Smith, Jonathan D; Plow, Edward F; Fox, Paul L; Shih, Diana M; Lusis, Aldons J; Fisher, Edward A; DiDonato, Joseph A; Landmesser, Ulf; Hazen, Stanley L

    2013-09-01

    Myeloperoxidase (MPO) and paraoxonase 1 (PON1) are high-density lipoprotein-associated (HDL-associated) proteins mechanistically linked to inflammation, oxidant stress, and atherosclerosis. MPO is a source of ROS during inflammation and can oxidize apolipoprotein A1 (APOA1) of HDL, impairing its atheroprotective functions. In contrast, PON1 fosters systemic antioxidant effects and promotes some of the atheroprotective properties attributed to HDL. Here, we demonstrate that MPO, PON1, and HDL bind to one another, forming a ternary complex, wherein PON1 partially inhibits MPO activity, while MPO inactivates PON1. MPO oxidizes PON1 on tyrosine 71 (Tyr71), a modified residue found in human atheroma that is critical for HDL binding and PON1 function. Acute inflammation model studies with transgenic and knockout mice for either PON1 or MPO confirmed that MPO and PON1 reciprocally modulate each other's function in vivo. Further structure and function studies identified critical contact sites between APOA1 within HDL, PON1, and MPO, and proteomics studies of HDL recovered from acute coronary syndrome (ACS) subjects revealed enhanced chlorotyrosine content, site-specific PON1 methionine oxidation, and reduced PON1 activity. HDL thus serves as a scaffold upon which MPO and PON1 interact during inflammation, whereupon PON1 binding partially inhibits MPO activity, and MPO promotes site-specific oxidative modification and impairment of PON1 and APOA1 function.

  4. Heat capacity, enthalpy and entropy of ternary bismuth tantalum oxides

    NASA Astrophysics Data System (ADS)

    Leitner, J.; Jakeš, V.; Sofer, Z.; Sedmidubský, D.; Růžička, K.; Svoboda, P.

    2011-02-01

    Heat capacity and enthalpy increments of ternary bismuth tantalum oxides Bi 4Ta 2O 11, Bi 7Ta 3O 18 and Bi 3TaO 7 were measured by the relaxation time method (2-280 K), DSC (265-353 K) and drop calorimetry (622-1322 K). Temperature dependencies of the molar heat capacity in the form Cpm =445.8+0.005451 T-7.489×10 6/ T2 J K -1 mol -1, Cpm =699.0+0.05276 T-9.956×10 6/ T2 J K -1 mol -1 and Cpm =251.6+0.06705 T-3.237×10 6/ T2 J K -1 mol -1 for Bi 3TaO 7, Bi 4Ta 2O 11 and for Bi 7Ta 3O 18, respectively, were derived by the least-squares method from the experimental data. The molar entropies at 298.15 K, S° m(298.15 K)=449.6±2.3 J K -1 mol -1 for Bi 4Ta 2O 11, S° m(298.15 K)=743.0±3.8 J K -1 mol -1 for Bi 7Ta 3O 18 and S° m(298.15 K)=304.3±1.6 J K -1 mol -1 for Bi 3TaO 7, were evaluated from the low-temperature heat capacity measurements.

  5. Dynamical simulation of sputtering and reflection from a ternary alloy

    NASA Astrophysics Data System (ADS)

    Ishida, M.; Yamaguchi, Y.; Yoshinaga, H.; Yamamura, Y.

    The sputtering and the reflection from a Tb0.2Fe0.7Co0.1 alloy due to Ar+ ion bombardment have been investigated by the Monte Carlo simulation code ACAT-DIFFUSE which include the compositional change induced by ion influence. In the Tb-Fe-Co system, Fe atoms are preferentially sputtered. The atomic size of a Tb atom is the largest of these three atoms, and so Tb atoms trap preferentially in vacancies. The steady-state concentration of Tb atoms at the topmost layer is larger than the bulk concentration for the low energy ions due to radiation-induced segregation and preferential sputtering of Fe atoms. As the ion fluence increases, the atomic fractions of sputtered atoms calculated by the ACAT-DIFFUSE code become those of the bulk concentration. The depth profiles of each element at the steady state depend on the incident energy. The total sputtering yield and the reflection coefficient from a Tb-Fe-Co alloy calculated by the ACAT-DIFFUSE code are larger than those by the ACAT code at near-threshold energies, where the ACAT code does not include the ion-influence effect. The energy spectra of back-scattered Ar atoms from the present ternary alloy have very similar profiles to those from a monoatomic Tb target, especially for low-energy Ar+ ions.

  6. Diverse lattice dynamics in ternary Cu-Sb-Se compounds.

    PubMed

    Qiu, Wujie; Wu, Lihua; Ke, Xuezhi; Yang, Jihui; Zhang, Wenqing

    2015-09-02

    Searching and designing materials with extremely low lattice thermal conductivity (LTC) has attracted considerable attention in material sciences. Here we systematically demonstrate the diverse lattice dynamics of the ternary Cu-Sb-Se compounds due to the different chemical-bond environments. For Cu3SbSe4 and CuSbSe2, the chemical bond strength is nearly equally distributed in crystalline bulk, and all the atoms are constrained to be around their equilibrium positions. Their thermal transport behaviors are well interpreted by the perturbative phonon-phonon interactions. While for Cu3SbSe3 with obvious chemical-bond hierarchy, one type of atoms is weakly bonded with surrounding atoms, which leads the structure to the part-crystalline state. The part-crystalline state makes a great contribution to the reduction of thermal conductivity that can only be effectively described by including a rattling-like scattering process in addition to the perturbative method. Current results may inspire new approaches to designing materials with low lattice thermal conductivities for high-performance thermoelectric conversion and thermal barrier coatings.

  7. Texture-Aware Dense Image Matching Using Ternary Census Transform

    NASA Astrophysics Data System (ADS)

    Hu, Han; Chen, Chongtai; Wu, Bo; Yang, Xiaoxia; Zhu, Qing; Ding, Yulin

    2016-06-01

    Textureless and geometric discontinuities are major problems in state-of-the-art dense image matching methods, as they can cause visually significant noise and the loss of sharp features. Binary census transform is one of the best matching cost methods but in textureless areas, where the intensity values are similar, it suffers from small random noises. Global optimization for disparity computation is inherently sensitive to parameter tuning in complex urban scenes, and must compromise between smoothness and discontinuities. The aim of this study is to provide a method to overcome these issues in dense image matching, by extending the industry proven Semi-Global Matching through 1) developing a ternary census transform, which takes three outputs in a single order comparison and encodes the results in two bits rather than one, and also 2) by using texture-information to self-tune the parameters, which both preserves sharp edges and enforces smoothness when necessary. Experimental results using various datasets from different platforms have shown that the visual qualities of the triangulated point clouds in urban areas can be largely improved by these proposed methods.

  8. Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic

    PubMed Central

    Kim, Wonjoo; Chattopadhyay, Anupam; Siemon, Anne; Linn, Eike; Waser, Rainer; Rana, Vikas

    2016-01-01

    Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced. PMID:27834352

  9. Measurements on thermodiffusion in ternary hydrocarbon mixtures at high pressure.

    PubMed

    Srinivasan, S; Saghir, M Z

    2009-09-28

    Experimental investigations on thermodiffusion have been conducted for five different ternary mixtures of methane, n-butane, and n-dodecane at a high temperature and pressure. While the mole fraction of methane was fixed at 0.2 the mole fraction of n-dodecane was varied from 0.7 to 0.2. The experiments were performed in a microgravity environment on board the satellite FOTON-M3. It was found that in all mixtures, n-dodecane separated to the cold side whereas methane segregated to the hot side. n-butane, the species with an intermediate density, showed a change in sign as its mole fraction was increased. At low concentrations it collected on the cold side but moved in the opposite direction with an increase in its mole fraction. The role of the relative density coupled with the species concentrations has been used to explain the thermodiffusion factor in each mixture. Computational investigations showed a similar behavior. However, the theoretical model was not able to capture the sign change of n-butane accurately. The inadequate representation of the significance of the relative densities and the mole fraction of the species has been found as the reason for this.

  10. Measurements on thermodiffusion in ternary hydrocarbon mixtures at high pressure

    NASA Astrophysics Data System (ADS)

    Srinivasan, S.; Saghir, M. Z.

    2009-09-01

    Experimental investigations on thermodiffusion have been conducted for five different ternary mixtures of methane, n-butane, and n-dodecane at a high temperature and pressure. While the mole fraction of methane was fixed at 0.2 the mole fraction of n-dodecane was varied from 0.7 to 0.2. The experiments were performed in a microgravity environment on board the satellite FOTON-M3. It was found that in all mixtures, n-dodecane separated to the cold side whereas methane segregated to the hot side. n-butane, the species with an intermediate density, showed a change in sign as its mole fraction was increased. At low concentrations it collected on the cold side but moved in the opposite direction with an increase in its mole fraction. The role of the relative density coupled with the species concentrations has been used to explain the thermodiffusion factor in each mixture. Computational investigations showed a similar behavior. However, the theoretical model was not able to capture the sign change of n-butane accurately. The inadequate representation of the significance of the relative densities and the mole fraction of the species has been found as the reason for this.

  11. Ternary superlattice boosting interface-stabilized magnetic chirality

    SciTech Connect

    Chen, Gong; Schmid, Andreas K.; N'Diaye, Alpha T.; Wu, Yizheng

    2015-02-09

    In cobalt-nickel multilayers grown on iridium surfaces, magnetic homo-chirality can be stabilized by Dzyaloshinskii-Moriya interactions (DMI) at the interface with the substrate. When thickness of the multilayers is increased beyond threshold values, then non-chiral bulk properties exceed interface contributions and this type of chirality vanishes. Here, we use spin-polarized low energy electron microscopy to measure these thickness thresholds, and we determine estimates of the strength of the DMI from the measurements. Even though the same 5d heavy metal is used as a substrate, a remarkably large variation is found between the two 3d magnets: our results indicate that the strength of the DMI at Co/Ir interfaces is three times larger than at Ni/Ir interfaces. We show how this finding provides ways to extend interfacial-DMI stabilization of domain wall chirality to 3d/5d/3d ternary multilayers such as [Ni/Ir/Co]{sub n}. Such strategies may extend chirality-control to larger film thickness and a wider range of substrates, which may be useful for designing new spintronics devices.

  12. Electronic structure and phase equilibria in ternary substitutional alloys

    SciTech Connect

    Traiber, A.J.S.; Allen, S.M.; Turchi, P.E.A.; Waterstrat, R.M.

    1996-04-26

    A reliable, consistent scheme to study phase equilibria in ternary substitutional alloys based on the tight-binding approximation is presented. With electronic parameters from linear muffin-tin orbital calculations, the computed density of states and band structures compare well with those from more accurate {ital ab}{ital initio} calculations. Disordered alloys are studied within the tight-binding coherent-potential approximation extended to alloys; energetics of ordered systems are obtained through effective pair interactions computed with the general perturbation method; and partially ordered alloys are studied with a novel simplification of the molecular coherent-potential approximation combined with the general perturbation method. The formalism is applied to bcc-based Zr-Ru-Pd alloys which are promising candidates for medical implant devices. Using energetics obtained from the above scheme, we apply the cluster- variation method to study phase equilibria for particular pseudo- binary alloys and show that results are consistent with observed behavior of electronic specific heat coefficient with composition for Zr{sub 0.5}(Ru, Pd){sub 0.5}.

  13. Work transitions.

    PubMed

    Fouad, Nadya A; Bynner, John

    2008-01-01

    Individuals make choices in, and adjust to, a world of work that is often a moving target. Because work is so central to human functioning, and transitions in and out of work can have major mental health repercussions, the authors argue that applied psychologists in health services need to understand those transitions. This article focuses on the different types of transition throughout a person's working life and the resources needed at different stages to ensure the success of these transitions. The authors start by examining the roles of capability and adaptability in supporting and facilitating adjustment to work transitions and their relation to identity development. They then examine the role of social and institutional contexts in shaping work transitions and their outcomes. The authors focus on voluntary versus involuntary transitions and then broaden the lens in discussing the policy implications of research on work transitions.

  14. Ternary-Blend Polymer Solar Cells Combining Fullerene and Nonfullerene Acceptors to Synergistically Boost the Photovoltaic Performance.

    PubMed

    Lu, Heng; Zhang, Jicheng; Chen, Jianya; Liu, Qian; Gong, Xue; Feng, Shiyu; Xu, Xinjun; Ma, Wei; Bo, Zhishan

    2016-11-01

    A ternary-blend strategy is presented to surmount the shortcomings of both fullerene derivatives and nonfullerene small molecules as acceptors for the first time. The optimal ternary device shows a high power conversion efficiency (PCE) of 10.4%. Moreover, a significant enhancement in PCE (≈35%) relative to both of the binary reference devices, which has never been achieved before in high-efficiency ternary devices, is demonstrated.

  15. Growth, characterization, and transport properties of ternary (Bi1-x Sb x )2Te3 topological insulator layers

    NASA Astrophysics Data System (ADS)

    Weyrich, C.; Drögeler, M.; Kampmeier, J.; Eschbach, M.; Mussler, G.; Merzenich, T.; Stoica, T.; Batov, I. E.; Schubert, J.; Plucinski, L.; Beschoten, B.; Schneider, C. M.; Stampfer, C.; Grützmacher, D.; Schäpers, Th

    2016-12-01

    Ternary (Bi1-x Sb x )2Te3 films with an Sb content between 0 and 100% were deposited on a Si(1 1 1) substrate by means of molecular beam epitaxy. X-ray diffraction measurements confirm single crystal growth in all cases. The Sb content is determined by x-ray photoelectron spectroscopy. Consistent values of the Sb content are obtained from Raman spectroscopy. Scanning Raman spectroscopy reveals that the (Bi1-x Sb x )2Te3 layers with an intermediate Sb content show spatial composition inhomogeneities. The observed spectra broadening in angular-resolved photoemission spectroscopy (ARPES) is also attributed to this phenomena. Upon increasing the Sb content from x  =  0 to 1 the ARPES measurements show a shift of the Fermi level from the conduction band to the valence band. This shift is also confirmed by corresponding magnetotransport measurements where the conductance changes from n- to p-type. In this transition region, an increase of the resistivity is found, indicating a location of the Fermi level within the band gap region. More detailed measurements in the transition region reveals that the transport takes place in two independent channels. By means of a gate electrode the transport can be changed from n- to p-type, thus allowing a tuning of the Fermi level within the topologically protected surface states.

  16. Growth, characterization, and transport properties of ternary (Bi1-x Sb x )2Te3 topological insulator layers.

    PubMed

    Weyrich, C; Drögeler, M; Kampmeier, J; Eschbach, M; Mussler, G; Merzenich, T; Stoica, T; Batov, I E; Schubert, J; Plucinski, L; Beschoten, B; Schneider, C M; Stampfer, C; Grützmacher, D; Schäpers, Th

    2016-12-14

    Ternary (Bi1-x Sb x )2Te3 films with an Sb content between 0 and 100% were deposited on a Si(1 1 1) substrate by means of molecular beam epitaxy. X-ray diffraction measurements confirm single crystal growth in all cases. The Sb content is determined by x-ray photoelectron spectroscopy. Consistent values of the Sb content are obtained from Raman spectroscopy. Scanning Raman spectroscopy reveals that the (Bi1-x Sb x )2Te3 layers with an intermediate Sb content show spatial composition inhomogeneities. The observed spectra broadening in angular-resolved photoemission spectroscopy (ARPES) is also attributed to this phenomena. Upon increasing the Sb content from x  =  0 to 1 the ARPES measurements show a shift of the Fermi level from the conduction band to the valence band. This shift is also confirmed by corresponding magnetotransport measurements where the conductance changes from n- to p-type. In this transition region, an increase of the resistivity is found, indicating a location of the Fermi level within the band gap region. More detailed measurements in the transition region reveals that the transport takes place in two independent channels. By means of a gate electrode the transport can be changed from n- to p-type, thus allowing a tuning of the Fermi level within the topologically protected surface states.

  17. Tunable Curie temperature around room temperature and magnetocaloric effect in ternary Ce-Fe-B amorphous ribbons

    NASA Astrophysics Data System (ADS)

    Li, Zhu-bai; Zhang, Le-le; Zhang, Xue-feng; Li, Yong-feng; Zhao, Qian; Zhao, Tong-yun; Shen, Bao-gen

    2017-01-01

    Ce13-x Fe81+x B6 (x  =  0, 0.5, 1, 1.5, and 2) amorphous magnets were prepared by melt-spinning method. These magnets are magnetically soft at low temperature, and undergo a second-order phase transition from ferromagnetic to paramagnetic state near room temperature with a broad temperature span. The phase-transition temperature is tunable by the variation of the Ce/Fe atomic ratio, which is mainly due to the change of the coordination number of Fe atoms in these ternary Ce-Fe-B amorphous magnets. Though the entropy change is low, the refrigeration capacities are in the ranges of 116-150 J kg-1 and 319-420 J kg-1, respectively, for the magnetic field changes of 0-2 T and 0-5 T, which is comparable with those of conventional magnetic materials for room-temperature refrigeration. Given the low cost of Fe and Ce, Ce-Fe-B amorphous magnets are attractive magnetic refrigerant candidates.

  18. Phase equilibria, formation, crystal and electronic structure of ternary compounds in Ti-Ni-Sn and Ti-Ni-Sb ternary systems

    NASA Astrophysics Data System (ADS)

    Romaka, V. V.; Rogl, P.; Romaka, L.; Stadnyk, Yu.; Melnychenko, N.; Grytsiv, A.; Falmbigl, M.; Skryabina, N.

    2013-01-01

    The phase equilibria of the Ti-Ni-Sn and Ti-Ni-Sb ternary systems have been studied in the whole concentration range by means of X-ray and EPM analyses at 1073 K and 873 K, respectively. Four ternary intermetallic compounds TiNiSn (MgAgAs-type), TiNi2-xSn (MnCu2Al-type), Ti2Ni2Sn (U2Pt2Sn-type), and Ti5NiSn3 (Hf5CuSn3-type) are formed in Ti-Ni-Sn system at 1073 K. The TiNi2Sn stannide is characterized by homogeneity in the range of 50-47 at% of Ni. The Ti-Ni-Sb ternary system at 873 K is characterized by formation of three ternary intermetallic compounds, Ti0.8NiSb (MgAgAs-type), Ti5Ni0.45Sb2.55 (W5Si3-type), and Ti5NiSb3 (Hf5CuSn3-type). The solubility of Ni in Ti0.8NiSb decreases number of vacancies in Ti site up to Ti0.91Ni1.1Sb composition.

  19. Ternary Blend Composed of Two Organic Donors and One Acceptor for Active Layer of High-Performance Organic Solar Cells.

    PubMed

    Lee, Jong Won; Choi, Yoon Suk; Ahn, Hyungju; Jo, Won Ho

    2016-05-04

    Ternary blends composed of two donor absorbers with complementary absorptions provide an opportunity to enhance the short-circuit current and thus the power conversion efficiency (PCE) of organic solar cells. In addition to complementary absorption of two donors, ternary blends may exhibit favorable morphology for high-performance solar cells when one chooses properly the donor pair. For this purpose, we develop a ternary blend with two donors (diketopyrrolopyrrole-based polymer (PTDPP2T) and small molecule ((TDPP)2Ph)) and one acceptor (PC71BM). The solar cell made of a ternary blend with 10 wt % (TDPP)2Ph exhibits higher PCE of 7.49% as compared with the solar cells with binary blends, PTDPP2T:PC71BM (6.58%) and (TDPP)2Ph:PC71BM (3.21%). The higher PCE of the ternary blend solar cell is attributed mainly to complementary absorption of two donors. However, a further increase in (TDPP)2Ph content in the ternary blend (>10 wt %) decreases the PCE. The ternary blend with 10 wt % (TDPP)2Ph exhibits well-developed morphology with narrow-sized fibrils while the blend with 15 wt % (TDPP)2Ph shows phase separation with large-sized domains, demonstrating that the phase morphology and compatibility of ternary blend are important factors to achieve a high-performance solar cell made of ternary blends.

  20. Cluster description of cold (neutronless) α ternary fission of 252Cf

    NASA Astrophysics Data System (ADS)

    Săndulescu, A.; Carstoiu, F.; Bulboacă, I.; Greiner, W.

    1999-10-01

    A coplanar three body cluster model (two deformed fragments and an α particle) similar to the model used for the description of cold binary fission was employed for the description of cold (neutronless) α accompanied fission of 252Cf. No preformation factors were considered. The three body potential was computed with the help of a double folding potential generated by the M3Y-NN effective interaction and realistic fragment ground state deformations. From the minimum action principle, the α particle trajectory equations, the corresponding ternary barriers, and an approximate WKB expression for the barrier penetrability are obtained. The relative cold ternary yields were calculated as the ratio of the penetrability of a given ternary fragmentation and the sum of the penetrabilities of all possible cold ternary fragmentations. Different scenarios were considered depending on the trajectories of the fragments. It was shown that two regions of cold fragmentation exist, a deformed one corresponding to large fragment deformations and a spherical one around 132Sn, similarly to the case of the cold binary fission of 252Cf. We have shown that for the scenario corresponding to the Lagrange point, where all forces acting on the α particle are in equilibrium, the cold α ternary yields of 252Cf are strongly correlated with the cold binary yields of the daughter nucleus 248Cm into the same heavy fragments. For all other scenarios only the spherical splittings are favored. We concluded that due to the present available experimental data on cold α ternary yields only the Lagrange scenario could describe the cold α ternary fission of 252Cf.

  1. Venus Transit

    NASA Image and Video Library

    2012-06-05

    It appeared that New Yorkers were not going to be able to see the transit of the planet Venus across the Sun, but just before the transit was over the sun broke through the clouds and Yvette Lee Kang was able to catch a glimpse of the transit on Tuesday, June 5, 2012 in New York. A transit of Venus occurs when the planet passes directly between the sun and earth. This alignment is rare, coming in pairs that are eight years apart but separated by over a century. The next Venus transit will be in December 2117. Photo Credit: (NASA/Bill Ingalls)

  2. Venus Transit

    NASA Image and Video Library

    2012-06-05

    It appeared that New Yorkers were not going to be able to see the transit of the planet Venus across the Sun, but just before the transit was over the sun broke through the clouds and Liz Heller and Andriel Mesznik were able to catch a glimpse of the transit on Tuesday, June 5, 2012 in New York. A transit of Venus occurs when the planet passes directly between the sun and earth. This alignment is rare, coming in pairs that are eight years apart but separated by over a century. The next Venus transit will be in December 2117. Photo Credit: (NASA/Bill Ingalls)

  3. TERNARY PHASE EQUILIBRIA IN TRANSITION METAL-BORON-CARBON-SILICON SYSTEMS. PART 4. THERMOCHEMICAL CALCULATIONS, VOLUME 3. COMPUTATIONAL APPROACH TO THE CALCULATION OF TERNARY PHASE DIAGRAMS

    DTIC Science & Technology

    The general conditional equations which govern the phase equilibria in three-component systems are presented. Using the general conditional equations...a general method has been developed to precalculate the phase equilibria in three-component systems from first principle using computer technique...The method developed has been applied to several model examples and the system Ta-Hf-C. The phase equilibria in three-component systems calculated

  4. Effect of Ternary Solutes on the Evolution of Structure and Gel Formation in Amphiphilic Copolymer Solutions

    NASA Astrophysics Data System (ADS)

    Meznarich, Norman Anthony Kang

    Aqueous solutions of polyoxyethylene-polyoxypropylene-polyoxyethylene (PEO-PPO-PEO) amphiphilic triblock copolymers (commercially known as Pluronic surfactants) undergo reversible and temperature-dependent micellization and arrangement into cubic ordered lattices known as "micelle gels". The macroscopic behavior of the ordering is a transition from a liquid to a gel. While the phase behavior and gel structure of pure Pluronic surfactant solutions have been well studied, less is known about the effects of added ternary solutes. In this dissertation, a comprehensive investigation into the effects of the added pharmaceutical methylparaben on solutions of F127 ranging from 10 to 30 wt% was conducted in order to better understand the behavior of F127 in multicomponent pharmaceutical formulations. The viscoelastic properties of F127 gel formation were studied using rheometry, where heating rates of 0.1, 1, and 10 degrees C/min were also used to probe the kinetics of the gel transition. In solutions containing methylparaben, F127 gelation occurred at up to 15 degrees C lower temperatures and was accelerated by a factor of three to four. Small angle x-ray scattering (SAXS) was used to characterize the structure of the ordered domains, and how they were affected by the presence of dissolved pharmaceuticals. It was found that ordered domain formation changed from heterogeneous nucleation and growth to possible homogeneous nucleation and growth. A roughly 2% reduction in the cubic lattice parameter was also observed for solutions containing methylparaben. Differential scanning calorimetry (DSC) experiments were performed on a series of different Pluronic surfactants in order to characterize the micellization behavior as a function of PPO center block length and PEO/PPO ratio. Added methylparaben suppressed the micellization endotherm, the degree of suppression depending linearly on the amount of added methylparaben, as well as the length of the PPO center block and PEO

  5. Synthesis and characterization of some binary and ternary zirconium iodides

    SciTech Connect

    Guthrie, D.H.

    1981-10-01

    Studies of binary ZrI/sub 4/-Zr and ternary CsI-Zr-ZrI/sub 4/ systems have produced several new compounds. The new binary compounds include two polymorphs of ZrI/sub 2/ (..cap alpha.. and ..beta..) as well as a phase described earlier as ZrI/sub 1/ /sub 8/. ..cap alpha..-ZrI/sub 2/ forms as black lath-like crystals by vapor phase transport reactions between Zr and ZrI/sub 4/ from 700 to 825/sup 0/C. Its structure is monoclinic space group P2/sub 1//m with a = 6.821(2), b = 3.741(1), c = 14.937(3) A and ..beta.. = 95.66(3)/sup 0/, Z = 4 (R = 0.064). ..beta..-ZrI/sub 2/ is formed as black gem-like crystals between 800 to 975/sup 0/C, crystallizing in the trigonal space group R anti 3 with hexagonal axes a = 14.502(2) and c = 9.996(2) A, Z = 18 (R = 0.109). This phase contains a Zr/sub 6/I/sub 12/ cluster. Guinier x-ray powder diffraction data previously reported for ZrI/sub 1/ /sub 8/ has now been found to arise from ..cap alpha..-ZrI/sub 2/ intergrown with an orthorhombic ZrI/sub 2/ phase (perhaps isostructural with WTe/sub 2/ plus an unknown phase. The ternary compounds include Cs/sub 2/ZrI/sub 6/, Cs/sub 3/Zr/sub 2/T/sub 9/ and CsZr/sub 6/I/sub 14/. The first is isostructural with K/sub 2/PtCl/sub 6/. Cs/sub 3/Zr/sub 2/I/sub 9/ is formed from the reaction of CsI, ZrI/sub 4/ and Zr between 700 to 900/sup 0/C as black gem-like crystals which crystallize in the space group P6/sub 3//mmc with a = 8.269(1) and c = 19.908(3) A, z = 2. This phase was found to have a Cs/sub 3/Cr/sub 2/Cl/sub 9/-type structure, d/sub Zr-Zr/ = 3.134(4) A (R = 0.087). CsZr/sub 6/I/sub 14/ forms both rod and gem crystals by the same reaction with more metal between 900 to 950/sup 0/C. It crystallizes in the orthorhombic space group Ccmb with a = 14.275(4), b = 15.880(4) and c = 12.953 (4) A (R = 0.062). This phase also contains a Zr/sub 6/I/sub 12/ cluster.

  6. [Flocculation of kaolin suspensions by chitosan grafted ternary polymerization flocculant].

    PubMed

    Hu, Yong-you; Li, Si-qing; Guo, Yan-ping; Cheng, Jian-hua

    2008-04-01

    Flocculation of kaolin suspensions using ternary polymerization flocculant (CAS) synthesized by chitosan (CTS), acrylamide and ethyl acrylate quaternary ammonium salt was investigated in lab-scale. It was found that CAS had more advantages such as higher flocculation efficiency, lesser dosage and wider pH flocculation range than CTS. CAS was insignificantly exposed to the properties of suspended particles, so preferable flocculation efficiency by it could be obtained both with distilled water and tap water kaolin suspensions. The optimal dosage for CAS was only one-tenth of that of CTS in neutral condition. Good flocculation performance was observed in the pH range of 2.0-11.0 at the dosage of 0.5 mg x L(-1) CAS, and the turbidity removal rates were about 95%. It was also shown that flocculation efficiency was very sensitive to the raw turbidity of kaolin suspensions. At less than 0.5 mg x L(-1) of CAS dose, the higher raw turbidity of the suspension contrarily yielded a lower removing rate. However, when the dosage of CAS was more than 0.5 mg x L(-1), the flocculation efficiency increased with increasing the raw turbidity of kaolin. When the dosage was more than 1.0 mg x L(-1), turbidity removal efficiencies exceeding 85% could be achieved in overall experimental turbidities from 10 to 160 NTU. iPDA-100 device was used to follow the particle aggregation process. And also zeta potential values of particles,floc sizes, shape analyses were presented. It is presumed that the flocculation induced by CAS is dominated by charge patch mechanism and bond bridging. The flocculation reactivity of kaolin suspensions exhibits a dynamic changing, which is simultaneously responsible for several kinds of driving forces.

  7. Ternary eutectic dendrites: Pattern formation and scaling properties.

    PubMed

    Rátkai, László; Szállás, Attila; Pusztai, Tamás; Mohri, Tetsuo; Gránásy, László

    2015-04-21

    Extending previous work [Pusztai et al., Phys. Rev. E 87, 032401 (2013)], we have studied the formation of eutectic dendrites in a model ternary system within the framework of the phase-field theory. We have mapped out the domain in which two-phase dendritic structures grow. With increasing pulling velocity, the following sequence of growth morphologies is observed: flat front lamellae → eutectic colonies → eutectic dendrites → dendrites with target pattern → partitionless dendrites → partitionless flat front. We confirm that the two-phase and one-phase dendrites have similar forms and display a similar scaling of the dendrite tip radius with the interface free energy. It is also found that the possible eutectic patterns include the target pattern, and single- and multiarm spirals, of which the thermal fluctuations choose. The most probable number of spiral arms increases with increasing tip radius and with decreasing kinetic anisotropy. Our numerical simulations confirm that in agreement with the assumptions of a recent analysis of two-phase dendrites [Akamatsu et al., Phys. Rev. Lett. 112, 105502 (2014)], the Jackson-Hunt scaling of the eutectic wavelength with pulling velocity is obeyed in the parameter domain explored, and that the natural eutectic wavelength is proportional to the tip radius of the two-phase dendrites. Finally, we find that it is very difficult/virtually impossible to form spiraling two-phase dendrites without anisotropy, an observation that seems to contradict the expectations of Akamatsu et al. Yet, it cannot be excluded that in isotropic systems, two-phase dendrites are rare events difficult to observe in simulations.

  8. A ternary model of decompression sickness in rats.

    PubMed

    Buzzacott, Peter; Lambrechts, Kate; Mazur, Aleksandra; Wang, Qiong; Papadopoulou, Virginie; Theron, Michael; Balestra, Costantino; Guerrero, François

    2014-12-01

    Decompression sickness (DCS) in rats is commonly modelled as a binary outcome. The present study aimed to develop a ternary model of predicting probability of DCS in rats, (as no-DCS, survivable-DCS or death), based upon the compression/decompression profile and physiological characteristics of each rat. A literature search identified dive profiles with outcomes no-DCS, survivable-DCS or death by DCS. Inclusion criteria were that at least one rat was represented in each DCS status, not treated with drugs or simulated ascent to altitude, that strain, sex, breathing gases and compression/decompression profile were described and that weight was reported. A dataset was compiled (n=1602 rats) from 15 studies using 22 dive profiles and two strains of both sexes. Inert gas pressures in five compartments were estimated. Using ordinal logistic regression, model-fit of the calibration dataset was optimised by maximum log likelihood. Two validation datasets assessed model robustness. In the interpolation dataset the model predicted 10/15 cases of nDCS, 3/3 sDCS and 2/2 dDCS, totalling 15/20 (75% accuracy) and 18.5/20 (92.5%) were within 95% confidence intervals. Mean weight in the extrapolation dataset was more than 2SD outside of the calibration dataset and the probability of each outcome was not predictable. This model is reliable for the prediction of DCS status providing the dive profile and rat characteristics are within the range of parameters used to optimise the model. The addition of data with a wider range of parameters should improve the applicability of the model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Review of Reactivity Experiments for Lithium Ternary Alloys

    SciTech Connect

    Jolodosky, A.; Bolind, A.; Fratoni, M.

    2015-09-28

    Lithium is often the preferred choice as breeder and coolant in fusion blankets as it offers high tritium breeding, excellent heat transfer and corrosion properties, and most importantly, it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and exacerbates plant safety concerns. Consequently, Lawrence Livermore National Laboratory (LLNL) is attempting to develop a lithium-based alloy—most likely a ternary alloy—which maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns for use in the blanket of an inertial fusion energy (IFE) power plant. The LLNL concept employs inertial confinement fusion (ICF) through the use of lasers aimed at an indirect-driven target composed of deuterium-tritium fuel. The fusion driver/target design implements the same physics currently experimented at the National Ignition Facility (NIF). The plant uses lithium in both the primary coolant and blanket; therefore, lithium related hazards are of primary concern. Reducing chemical reactivity is the primary motivation for the development of new lithium alloys, and it is therefore important to come up with proper ways to conduct experiments that can physically study this phenomenon. This paper will start to explore this area by outlining relevant past experiments conducted with lithium/air reactions and lithium/water reactions. Looking at what was done in the past will then give us a general idea of how we can setup our own experiments to test a variety of lithium alloys.

  10. Ternary Phases (Heusler) in the System Ti-Co-Sn

    NASA Astrophysics Data System (ADS)

    Kosinskiy, Andrey; Karlsen, Ole Bjørn; Sørby, Magnus H.; Prytz, Øystein

    2016-12-01

    Some of the Heusler-phases ( XY 2 Z and XYZ) are known to have large homogeneity ranges which can be useful for tuning material properties. In this work, we have revised the isothermal section of the Ti-Co-Sn system at 973 K (700 °C). A total of 29 ternary compositions, mostly in the regions TiCo2- x Sn for 0 ≤ x ≤ 1 and Ti1+ y Co2Sn1- y for 0 ≤ y ≤ 1, were prepared by arc-melting, then ball-milled and annealed. The resulting annealed powder samples were studied by applying the Rietveld method to X-ray and neutron powder diffraction data. Half-Heusler TiCoSn was not observed. The Heusler phase observed in TiCo2- x Sn has compositions ranging from TiCo1.52Sn to TiCo2Sn and has the half-Heusler structure where the excess of Co is located on the semi-filled tetrahedral site 4 d (¾, ¾, ¾) in the space group F-43 m. At 1273 K (1000 °C), this solid solubility is expanded from TiCo2Sn to TiCo with full solid solubility where Ti is gradually replacing Sn (Ti1+ y Co2Sn1- y for 0 ≤ y ≤ 1), while at 973 K (700 °C) there is a small solubility gap for 0.0 ≤ y ≤ 0.2.

  11. Ternary eutectic dendrites: Pattern formation and scaling properties

    SciTech Connect

    Rátkai, László; Szállás, Attila; Pusztai, Tamás; Mohri, Tetsuo; Gránásy, László

    2015-04-21

    Extending previous work [Pusztai et al., Phys. Rev. E 87, 032401 (2013)], we have studied the formation of eutectic dendrites in a model ternary system within the framework of the phase-field theory. We have mapped out the domain in which two-phase dendritic structures grow. With increasing pulling velocity, the following sequence of growth morphologies is observed: flat front lamellae → eutectic colonies → eutectic dendrites → dendrites with target pattern → partitionless dendrites → partitionless flat front. We confirm that the two-phase and one-phase dendrites have similar forms and display a similar scaling of the dendrite tip radius with the interface free energy. It is also found that the possible eutectic patterns include the target pattern, and single- and multiarm spirals, of which the thermal fluctuations choose. The most probable number of spiral arms increases with increasing tip radius and with decreasing kinetic anisotropy. Our numerical simulations confirm that in agreement with the assumptions of a recent analysis of two-phase dendrites [Akamatsu et al., Phys. Rev. Lett. 112, 105502 (2014)], the Jackson-Hunt scaling of the eutectic wavelength with pulling velocity is obeyed in the parameter domain explored, and that the natural eutectic wavelength is proportional to the tip radius of the two-phase dendrites. Finally, we find that it is very difficult/virtually impossible to form spiraling two-phase dendrites without anisotropy, an observation that seems to contradict the expectations of Akamatsu et al. Yet, it cannot be excluded that in isotropic systems, two-phase dendrites are rare events difficult to observe in simulations.

  12. Heteronanostructured Co@carbon nanotubes-graphene ternary hybrids: synthesis, electromagnetic and excellent microwave absorption properties

    PubMed Central

    Qi, Xiaosi; Hu, Qi; Cai, Hongbo; Xie, Ren; Bai, Zhongchen; Jiang, Yang; Qin, Shuijie; Zhong, Wei; Du, Youwei

    2016-01-01

    In order to explore high efficiency microwave absorption materials, heteronanostructured Co@carbon nanotubes-graphene (Co@CNTs-G) ternary hybrids were designed and produced through catalytic decomposition of acetylene at the designed temperature (400, 450, 500 and 550 °C) over Co3O4/reduced graphene oxide (Co3O4/RGO). By regulating the reaction temperatures, different CNT contents of Co@CNTs-G ternary hybrids could be synthesized. The investigations indicated that the as-prepared heteronanostructured Co@CNTs-G ternary hybrids exhibited excellent microwave absorption properties, and their electromagnetic and microwave absorption properties could be tuned by the CNT content. The minimum reflection loss (RL) value reached approximately −65.6, −58.1, −41.1 and −47.5 dB for the ternary hybrids synthesized at 400, 450, 500 and 550 °C, respectively. And RL values below −20 dB (99% of electromagnetic wave attenuation) could be obtained over the as-prepared Co@CNTs-G ternary hybrids in the large frequency range. Moreover, based on the obtained results, the possible enhanced microwave absorption mechanisms were discussed in details. Therefore, a simple approach was proposed to explore the high performance microwave absorbing materials as well as to expand the application field of graphene-based materials. PMID:27892515

  13. Assessment of ternary iron-cyclodextrin-2-naphthol complexes using NMR and fluorescence spectroscopies

    NASA Astrophysics Data System (ADS)

    Zheng, Weixi; Tarr, Matthew A.

    2006-12-01

    Recent research has indicated that ternary complexes can be formed among carboxymethyl-β-cyclodextrin, certain polycyclic aromatic hydrocarbons (PAHs) (e.g. anthracene and 2-naphthol), and Fe 2+ in aqueous solution. The formation of these ternary complexes has been suggested as the reason for improved reaction efficiency in iron catalyzed Fenton degradation (H 2O 2 + Fe 2+ → rad OH + OH - + Fe 3+) of PAHs and other pollutants. In the present work, several other cyclodextrins were examined to determine their ability to form similar ternary complexes with 2-naphthol and Fe 2+. Fluorescence and NMR techniques were employed in this study. Results showed that hydroxypropyl-β-cyclodextrin, β-cyclodextrin, and α-cyclodextrin were able to encapsulate 2-naphthol molecules, but their binding with Fe 2+ was weak. On the contrary, sulfated-β-cyclodextrin has significant binding with Fe 2+, but it showed little inclusion of 2-naphthol molecules. Consequently, none of these four cyclodextrins formed significant amounts of ternary complexes in aqueous solution. The techniques used in this study provide useful methods for assessing the ability of cyclodextrins to form ternary complexes with guest compounds and metal ions.

  14. Heteronanostructured Co@carbon nanotubes-graphene ternary hybrids: synthesis, electromagnetic and excellent microwave absorption properties

    NASA Astrophysics Data System (ADS)

    Qi, Xiaosi; Hu, Qi; Cai, Hongbo; Xie, Ren; Bai, Zhongchen; Jiang, Yang; Qin, Shuijie; Zhong, Wei; Du, Youwei

    2016-11-01

    In order to explore high efficiency microwave absorption materials, heteronanostructured Co@carbon nanotubes-graphene (Co@CNTs-G) ternary hybrids were designed and produced through catalytic decomposition of acetylene at the designed temperature (400, 450, 500 and 550 °C) over Co3O4/reduced graphene oxide (Co3O4/RGO). By regulating the reaction temperatures, different CNT contents of Co@CNTs-G ternary hybrids could be synthesized. The investigations indicated that the as-prepared heteronanostructured Co@CNTs-G ternary hybrids exhibited excellent microwave absorption properties, and their electromagnetic and microwave absorption properties could be tuned by the CNT content. The minimum reflection loss (RL) value reached approximately ‑65.6, ‑58.1, ‑41.1 and ‑47.5 dB for the ternary hybrids synthesized at 400, 450, 500 and 550 °C, respectively. And RL values below ‑20 dB (99% of electromagnetic wave attenuation) could be obtained over the as-prepared Co@CNTs-G ternary hybrids in the large frequency range. Moreover, based on the obtained results, the possible enhanced microwave absorption mechanisms were discussed in details. Therefore, a simple approach was proposed to explore the high performance microwave absorbing materials as well as to expand the application field of graphene-based materials.

  15. Pyrazole binding in crystalline binary and ternary complexes with liver alcohol dehydrogenase.

    PubMed

    Eklund, H; Samama, J P; Wallén, L

    1982-09-28

    Pyrazole is a strong inhibitor of liver alcohol dehydrogenase in combination with oxidized coenzyme NAD+. We have studied three different complexes of the inhibitor with the enzyme by using crystallographic methods: (1) the binary complex with pyrazole to 3.2-A resolution, (2) the ternary ternary complex with NAD+-4-iodopyrazole to 2.9-A resolution. Crystals of the binary complex are isomorphous to the apoenzyme, and pyrazole binds to the active-site zinc atom in a way analogous to imidazole. Crystals of the two ternary complexes are isomorphous with the ternary alcohol dehydrogenase-NADH-dimethyl sulfoxide complex. One of the nitrogen atoms of the pyrazole ring is directly bound to the active-site zinc atom with a Zn-N bond distance of 2.1A. The other nitrogen atom is 2 A from the C4 atom of the nicotinamide ring of the coenzyme. The iodine atom in 4-iodopyrazole is located in the hydrophobic substrate cleft. The effect of substitutions on the pyrazole ring are discussed in relation to the structure of the active site and substrate pocket. Pyrazole derivatives with long alkyl chains bound in the 4 position are outstanding inhibitors, and this property is related to the topography of the hydrophobic substrate cleft. The conformation of the oxidized coenzyme in the ternary complexes is essentially the same as that of the reduced coenzyme NADH in the NADH-dimethyl sulfoxide complex.

  16. Solubility and release modulation effect of sulfamerazine ternary complexes with cyclodextrins and meglumine.

    PubMed

    Aloisio, Carolina; de Oliveira, Anselmo Gomes; Longhi, Marcela

    2014-11-01

    This study investigated the effect on solubility and release of ternary complexes of sulfamerazine (SMR) with β-(βCD), methyl-(MβCD) and hydroxypropyl-β-cyclodextrin (HPβCD) using meglumine (MEG) as the ternary component. The combination of MEG with MβCD resulted the best approach, with an increased effect (29-fold) of the aqueous solubility of SMR. The mode of inclusion was supported by 2D NMR, which indicated that real ternary complexes were formed between SMR, MEG and MβCD or HPβCD. Solid state analysis was performed using Fourier-transform infrared spectroscopy (FT IR), differential scanning calorimetry (DSC) and powder X-ray diffraction (XRD), which demonstrated that different interactions occurred among SMR, MEG and MβCD or HPβCD in the ternary lyophilized systems. The ternary complexes with βCD and MβCD produced an additional retention effect on the release of SMR compared to the corresponding binary complexes, implying that they were clearly superior in terms of solubility and release modulation. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Crystallization, data collection and processing of the chymotrypsin–BTCI–trypsin ternary complex

    SciTech Connect

    Esteves, Gisele Ferreira; Teles, Rozeni Chagas Lima; Cavalcante, Nayara Silva; Neves, David; Ventura, Manuel Mateus; Barbosa, João Alexandre Ribeiro Gonçalves; Freitas, Sonia Maria de

    2007-12-01

    A ternary complex of the proteinase inhibitor (BTCI) with trypsin and chymotrypsin was crystallized and its crystal structure was solved by molecular replacement. A ternary complex of the black-eyed pea trypsin and chymotrypsin inhibitor (BTCI) with trypsin and chymotrypsin was crystallized by the sitting-drop vapour-diffusion method with 0.1 M HEPES pH 7.5, 10%(w/v) polyethylene glycol 6000 and 5%(v/v) 2-methyl-2,4-pentanediol as precipitant. BTCI is a small protein with 83 amino-acid residues isolated from Vigna unguiculata seeds and is able to inhibit trypsin and chymotrypsin simultaneously by forming a stable ternary complex. X-ray data were collected from a single crystal of the trypsin–BTCI–chymotrypsin ternary complex to 2.7 Å resolution under cryogenic conditions. The structure of the ternary complex was solved by molecular replacement using the crystal structures of the BTCI–trypsin binary complex (PDB code) and chymotrypsin (PDB code) as search models.

  18. Mechanical properties, anisotropy and hardness of group IVA ternary spinel nitrides

    NASA Astrophysics Data System (ADS)

    Ding, Ying-Chun; Chen, Min

    2013-10-01

    In this work, new ternary cubic spinel structures are designed by the substitutional method. The structures, elasticity properties, intrinsic hardness and Debye temperature of the cubic ternary spinel nitrides are studied by first principles based on the density-functional theory. The results show that γ-CSn2N4, γ-SiC2N4, γ-GeC2N4 and γ-SnC2N4 are not mechanically stable. The elastic constants Cij of these cubic spinel structures are obtained using the stress-strain method. Derived elastic constants, such as bulk modulus, shear modulus, Young's modulus, Poisson coefficient and brittle/ductile behaviour are estimated using Voigt-Reuss-Hill theories. The B/G value, the Poisson's ratio and anisotropic factor are calculated for eight ternary stable crystals. Based on the microscopic hardness model, we further estimate the Vickers hardness of all the stable crystals. From the calculated hardness of the stable group IVA ternary spinel nitrides by Gao's and Jiang's methods, it is observed that the stable group IVA ternary spinel nitrides are not superhard materials except for γ-CSi2N4. Furthermore, the Debye temperature for the eight stable crystals is also estimated.

  19. Using a Ternary Diagram to Display a System's Evolving Energy Distribution

    NASA Astrophysics Data System (ADS)

    Brazzle, Bob; Tapp, Anne

    2016-04-01

    A ternary diagram is a graphical representation used for systems with three components. They are familiar to mineralogists (who typically use them to categorize varieties of solid solution minerals such as feldspar) but are not yet widely used in the physics community. Last year the lead author began using ternary diagrams in his introductory (calculus-based) physics course in a novel context—tracking the distribution of energy in a system as it transforms among three categories (e.g., gravitational, kinetic, and thermal) or transfers among three objects (e.g., inductor, capacitor, and resistor). The ternary diagram has some significant advantages over other graphical representations of energy distributions: an entire scenario can appear in a single plot, even when using very small time steps. This also means that the plot can be used to compare relative rates of energy change during various processes. Our goal for this paper is to introduce the ternary diagram and discuss these advantages in hopes that this will stimulate broader use of ternary diagrams and further research into their educational utility.

  20. Theoretical investigation on electronic and mechanical properties of ternary actinide (U, Np, Pu) nitrides

    NASA Astrophysics Data System (ADS)

    Zhang, Yu-Juan; Zhou, Zhang-Jian; Lan, Jian-Hui; Bo, Tao; Ge, Chang-Chun; Chai, Zhi-Fang; Shi, Wei-Qun

    2017-09-01

    Actinide mononitrides as a promising advanced nuclear fuel have recently earned much attention. We herein studied the electronic and mechanical properties of the ternary actinide mixed mononitrides A0.5B0.5 N (A, B = U, Np, and Pu) using the density functional theory +U method. It is found that in the studied ternary mixed mononitrides, the 5f electronic states of all actinide atoms maintain the local electronic character and do not overlap with each other. Compared with their corresponding binary mononitrides, the U-N bond becomes more ionic, where the Np-N and Pu-N bonds become more covalent in ternary actinide mixed mononitrides. The mechanical properties (such as bulk and shear moduli, Young's modulus, and Poisson's ratio) of three ternary actinide (U-Pu) mononitrides are found to be similar to that of their corresponding binary actinide mononitrides and thus are expected not to misbehave with actinide mononitrides in respect of mechanics. In addition, all the three ternary actinide mononitrides have no imaginary frequencies in their vibration curves and correspondingly satisfy the stability criteria for elastic constants of tetragonal structures.

  1. Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys

    DOE PAGES

    Tamm, Artur; Aabloo, Alvo; Klintenberg, Mattias; ...

    2015-08-26

    The aim of our study is to characterize some atomic-scale properties of Ni-based FCC multicomponent alloys. For this purpose, we use Monte Carlo method combined with density functional theory calculations to study short-range order (SRO), atomic displacements, electronic density of states, and magnetic moments in equimolar ternary NiCrCo, and quaternary NiCrCoFe alloys. The salient features for the ternary alloy are a negative SRO parameter between Ni Cr and a positive between Cr Cr pairs as well as a weakly magnetic state. For the quaternary alloy we predict negative SRO parameter for Ni Cr and Ni Fe pairs and positive formore » Cr Cr and Fe Fe pairs. Atomic displacements for both ternary and quaternary alloys are negligible. In contrast to the ternary, the quaternary alloy shows a complex magnetic structure. The electronic structure of the ternary and quaternary alloys shows differences near the Fermi energy between a random solid solution and the predicted structure with SRO. Despite that, the calculated EXAFS spectra does not show enough contrast to discriminate between random and ordered structures. Finally, the predicted SRO has an impact on point-defect energetics, electron phonon coupling and thermodynamic functions and thus, SRO should not be neglected when studying properties of these two alloys.« less

  2. Investigation of itraconazole ternary amorphous solid dispersions based on povidone and Carbopol.

    PubMed

    Meng, Fan; Meckel, Jordan; Zhang, Feng

    2017-08-30

    We investigate a ternary system that consists of itraconazole (ITZ) and two polymers: povidone K12 and Carbopol 907. The interactions between these two polymers and their effects on the properties of ternary ITZ amorphous solid dispersions (ASDs) are studied. These two polymers can form a water-insoluble complex in acidic aqueous media. The critical pH is determined to be 4.17. The weight percentage of Carbopol 907 in the interpolymer complex range from 59 to 70%, depending on the initial ratios between these two polymers in the starting solutions. This complexation is driven by a negative enthalpy change from the H-bonding between the two polymers and a positive entropy change from the freed water molecules. Due to the slow precipitation of the interpolymer complex in aqueous media, the attempt to prepare ternary ASD using solvent-controlled coprecipitation is not successful. Melt extrusion is identified to be the only viable method to prepare this ternary ASD. We find that interpolymer complex-based ASDs are physically less stable and demonstrate the poorest drug-release properties when compared to individual polymer-based binary ASDs. This study illustrates that the too strong interaction between polymers in ternary ASDs is detrimental to their performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Topological and metrical property characterization of radical subunits for ternary hard sphere crystals

    NASA Astrophysics Data System (ADS)

    Wang, Lin; An, Xizhong; Wang, Defeng; Qian, Quan

    2016-01-01

    Quantitative characterization on the topological and metrical properties of radical subunits (polyhedra) for two new ternary hard sphere crystals was studied. These two ideal crystalline structures are numerically constructed by filling small and medium spheres into interstices (corresponding to regular tetrahedral and octahedral pores) of perfect face centered cubic (FCC) and hexagonal close packed (HCP) crystals formed by the packing of large spheres. Topological properties such as face number, edge number, vertex number of each radical polyhedron (RP), edge number of each RP face and metrical properties such as volume, surface area, total perimeter and pore volume of each RP, area and perimeter of each RP face were analyzed and compared. The results show that even though the overall packing densities for FCC and HCP ternary crystals are the same, different characteristics of radical polyhedra for corresponding spheres in these two crystals can be identified. That is, in the former structure RPs are more symmetric than those in the latter; the orientations of corresponding RP in the latter are twice as many as that in the former. Moreover, RP topological and metrical properties in the HCP ternary crystal are much more complicated than those in the FCC ternary crystal. These differences imply the structure and property differences of these two ternary crystals. Analyses of RPs provide intensive understanding of pores in the structure.

  4. Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys

    SciTech Connect

    Tamm, Artur; Aabloo, Alvo; Klintenberg, Mattias; Stocks, Malcolm; Caro, Alfredo

    2015-08-26

    The aim of our study is to characterize some atomic-scale properties of Ni-based FCC multicomponent alloys. For this purpose, we use Monte Carlo method combined with density functional theory calculations to study short-range order (SRO), atomic displacements, electronic density of states, and magnetic moments in equimolar ternary NiCrCo, and quaternary NiCrCoFe alloys. The salient features for the ternary alloy are a negative SRO parameter between Ni Cr and a positive between Cr Cr pairs as well as a weakly magnetic state. For the quaternary alloy we predict negative SRO parameter for Ni Cr and Ni Fe pairs and positive for Cr Cr and Fe Fe pairs. Atomic displacements for both ternary and quaternary alloys are negligible. In contrast to the ternary, the quaternary alloy shows a complex magnetic structure. The electronic structure of the ternary and quaternary alloys shows differences near the Fermi energy between a random solid solution and the predicted structure with SRO. Despite that, the calculated EXAFS spectra does not show enough contrast to discriminate between random and ordered structures. Finally, the predicted SRO has an impact on point-defect energetics, electron phonon coupling and thermodynamic functions and thus, SRO should not be neglected when studying properties of these two alloys.

  5. Metal coordination geometry of ternary complex between cobalt-bovine carbonic anhydrase and multidentate ligands.

    PubMed

    Hirose, J; Kidani, Y

    1980-03-26

    Interaction of cobalt(II) bovine carbonic anhydrase with 3- and 4-pyridinecarboxylates, 2-pyridinecarboxylate, and 2,6-pyridinedicarboxylate has been investigated by the spectrophotometric method. The apparent formation constant of the ternary complex (ligand : cobalt ion : apoenzyme = 1 : 1 : 1) was determined from spectral data. The spectroscopic data of the ternary complex indicate that the 3- or 4-pyridinecarboxylate adduct has a five-coordination geometry through three donor atoms of the protein part of the enzyme, the carboxyl group of 3- or 4-pyridinecarboxylate, and a water molecule. 3- or 4-Pyridinecarboxylate behaves as a monodentate ligand. The spectrum of the ternary complex of 2-pyridinecarboxylate was very different from that of 3- or 4-pyridinecarboxylate. The spectra data indicate that 2-pyridinecarboxylate adduct has a five-coordination geometry and that it behaves as a bidentate ligand. The ternary complex of 2,6-pyridinedicarboxylate was so unstable that the spectrum of the ternary complex was determined by the indirect method. The spectrum of 2,6-pyridinedicarboxylate adduct shows lower molar absorption than that of 2-pyridinecarboxylate adduct. This result indicates that 2,6-pyridine dicarboxylate behaves possibly as a tridentate ligand.

  6. Single Crystal Fibers of Yttria-Stabilized Cubic Zirconia with Ternary Oxide Additions

    NASA Technical Reports Server (NTRS)

    Ritzert, F. J.; Yun, H. M.; Miner, R. V.

    1997-01-01

    Single crystal fibers of yttria (Y2O3)-stabilized cubic zirconia, (ZrO2) with ternary oxide additions were grown using the laser float zone fiber processing technique. Ternary additions to the ZrO2-Y2O3 binary system were studied aimed at increasing strength while maintaining the high coefficient of thermal expansion of the binary system. Statistical methods aided in identifying the most promising ternary oxide candidate (Ta2O5, Sc2O3, and HfO2) and optimum composition. The yttria, range investigated was 14 to 24 mol % and the ternary oxide component ranged from 1 to 5 mol %. Hafnium oxide was the most promising ternary oxide component based on 816 C tensile strength results and ease of fabrication. The optimum composition for development was 81 ZrO2-14 Y203-5 HfO2 based upon the same elevated temperature strength tests. Preliminary results indicate process improvements could improve the fiber performance. We also investigated the effect of crystal orientation on strength.

  7. Composition dependent behavior in the ternary mixed magnetic insulator Co1-xMnyNix-yCl2·2H2O

    NASA Astrophysics Data System (ADS)

    DeFotis, G. C.; Hampton, A. S.; Wallin, T. J.; Trowell, K. T.; Pothen, J. M.; Welshhans, E. A.; Havas, K. C.

    2016-05-01

    The properties of ternary mixed magnetic Co1-xMnyNix-yCl2·2H2O are examined by dc magnetization and susceptibility measurements, from 1.8 to 300 K as a function of composition. This is only the second ternary magnetic insulator so studied. The three transition metal chloride dihydrate components are known to differ in the degree of spin anisotropy and in the distribution of ferromagnetic and antiferromagnetic exchange interactions within and between strongly coupled chemical and structural chains. The Curie and Weiss constants, in χM=C/(T-θ) fits to high temperature susceptibilities, are compared with weighted averages of pure component values. The observed Weiss constant is almost uniformly less negative than calculated. Maxima in low temperature susceptibilities vary widely in presence and location with composition. Some compositions exhibit no susceptibility maximum, many exhibit one maximum, and three exhibit two maxima. A T(x,y) diagram is constructed. Magnetization vs field isotherms exhibit different shapes as a function of composition, with hysteresis markedly composition dependent. For three mixtures hysteresis loops are studied as a function of temperature. An activation process model does not describe the temperature dependence well.

  8. Phase equilibria, formation, crystal and electronic structure of ternary compounds in Ti-Ni-Sn and Ti-Ni-Sb ternary systems

    SciTech Connect

    Romaka, V.V.; Rogl, P.; Romaka, L.; Stadnyk, Yu.; Melnychenko, N.; Grytsiv, A.; Falmbigl, M.; Skryabina, N.

    2013-01-15

    The phase equilibria of the Ti-Ni-Sn and Ti-Ni-Sb ternary systems have been studied in the whole concentration range by means of X-ray and EPM analyses at 1073 K and 873 K, respectively. Four ternary intermetallic compounds TiNiSn (MgAgAs-type), TiNi{sub 2-x}Sn (MnCu{sub 2}Al-type), Ti{sub 2}Ni{sub 2}Sn (U{sub 2}Pt{sub 2}Sn-type), and Ti{sub 5}NiSn{sub 3} (Hf{sub 5}CuSn{sub 3}-type) are formed in Ti-Ni-Sn system at 1073 K. The TiNi{sub 2}Sn stannide is characterized by homogeneity in the range of 50-47 at% of Ni. The Ti-Ni-Sb ternary system at 873 K is characterized by formation of three ternary intermetallic compounds, Ti{sub 0.8}NiSb (MgAgAs-type), Ti{sub 5}Ni{sub 0.45}Sb{sub 2.55} (W{sub 5}Si{sub 3}-type), and Ti{sub 5}NiSb{sub 3} (Hf{sub 5}CuSn{sub 3}-type). The solubility of Ni in Ti{sub 0.8}NiSb decreases number of vacancies in Ti site up to Ti{sub 0.91}Ni{sub 1.1}Sb composition. - Graphical abstract: Isothermal section of the Ti-Ni-Sn phase diagram and DOS distribution in hypothetical TiNi{sub 1+x}Sn solid solution. Highlights: Black-Right-Pointing-Pointer Ti-Ni-Sn phase diagram was constructed at 1073 K. Black-Right-Pointing-Pointer Four ternary compounds are formed: TiNiSn, TiNi{sub 2-x}Sn, Ti{sub 2}Ni{sub 2}Sn, and Ti{sub 5}NiSn{sub 3}. Black-Right-Pointing-Pointer Three ternary compounds exist in Ti-Ni-Sb system at 873 K. Black-Right-Pointing-Pointer The TiNi{sub 2}Sb compound is absent.

  9. Synthesis, structural and magnetic characterization of soft magnetic nanocrystalline ternary FeNiCo particles

    NASA Astrophysics Data System (ADS)

    Toparli, Cigdem; Ebin, Burçak; Gürmen, Sebahattin

    2017-02-01

    The present study focuses on the synthesis, microstructural and magnetic properties of ternary FeNiCo nanoparticles. Nanocrystalline ternary FeNiCo particles were synthesized via hydrogen reduction assisted ultrasonic spray pyrolysis method in single step. The effect of precursor concentration on the morphology and the size of particles was investigated. The syntheses were performed at 800 °C. Structure, morphology and magnetic properties of the as-prepared products were characterized through X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) studies. Scherer calculation revealed that crystallite size of the ternary particles ranged between 36 and 60 nm. SEM and TEM investigations showed that the particle size was strongly influenced by the precursor concentration and Fe, Ni, Co elemental composition of individual particles was homogeneous. Finally, the soft magnetic properties of the particles were observed to be a function of their size.

  10. Preparation of Pt-Ru-Ni ternary nanoparticles by microemulsion and electrocatalytic activity for methanol oxidation

    SciTech Connect

    Zhang Xin . E-mail: xzhang@stu.edu.cn; Zhang Feng; Guan Renfeng; Chan, K.-Y.

    2007-02-15

    Ternary platinum-ruthenium-nickel nanoparticles are prepared by water-in-oil reverse microemulsions of water/Triton X-100/propanol-2/cyclohexane. Nanoparticles formed in the microemulsions are characterized by transmission electron microscopy (TEM), electron diffraction (ED), X-ray diffractometry (XRD), energy dispersive X-ray analysis (EDX). These resulting materials showed a homogenous alloy structure, the mono-dispersion and an average diameter of 2.6 {+-} 0.3 nm with a narrow particle size distribution. The composition and particle size of ternary Pt-Ru-Ni nanoparticles can be controlled by adjusting the initial metal salt solution and preparation conditions. Pt-Ru-Ni ternary metallic nanoparticles showed an enhanced catalytic activity towards methanol oxidation compared to Pt-Ru bimetallic nanoparticles.

  11. PMGA and its application in area and power optimization for ternary FPRM circuit

    NASA Astrophysics Data System (ADS)

    Pengjun, Wang; Kangping, Li; Huihong, Zhang

    2016-01-01

    Based on the research of population migration algorithms (PMAs), a population migration genetic algorithm (PMGA) is proposed, combining a PMA with a genetic algorithm. A scheme of area and power optimization for a ternary FPRM circuit is proposed by using the PMGA. Firstly, according to the ternary FPRM logic function expression, area and power estimation models are established. Secondly, the PMGA is used to search for the best area and power polarity. Finally, 10 MCNC Benchmark circuits are used to verify the effectiveness of the proposed method. The results show that the ternary FPRM circuits optimized by the PMGA saved 13.33% area and 20.00% power on average than the corresponding FPRM circuits optimized by a whole annealing genetic algorithm. Project supported by the Natural Science Foundation of Zhejiang Province (No. LY13F040003), the National Natural Science Foundation of China (Nos. 61234002, 61306041), and the K. C. Wong Magna Fund in Ningbo University.

  12. Binary and ternary cocrystals of sulfa drug acetazolamide with pyridine carboxamides and cyclic amides.

    PubMed

    Bolla, Geetha; Nangia, Ashwini

    2016-03-01

    A novel design strategy for cocrystals of a sulfonamide drug with pyridine carboxamides and cyclic amides is developed based on synthon identification as well as size and shape match of coformers. Binary adducts of acetazolamide (ACZ) with lactams (valerolactam and caprolactam, VLM, CPR), cyclic amides (2-pyridone, labeled as 2HP and its derivatives MeHP, OMeHP) and pyridine amides (nicotinamide and picolinamide, NAM, PAM) were obtained by manual grinding, and their single crystals by solution crystallization. The heterosynthons in the binary cocrystals of ACZ with these coformers suggested a ternary combination for ACZ with pyridone and nicotinamide. Novel supramolecular synthons of ACZ with lactams and pyridine carboxamides are reported together with binary and ternary cocrystals for a sulfonamide drug. This crystal engineering study resulted in the first ternary cocrystal of acetazolamide with amide coformers, ACZ-NAM-2HP (1:1:1).

  13. Ternary Composite of Hemin, Gold Nanoparticles and Graphene for Highly Efficient Decomposition of Hydrogen Peroxide

    NASA Astrophysics Data System (ADS)

    Lv, Xincong; Weng, Jian

    2013-11-01

    A ternary composite of hemin, gold nanoparticles and graphene is prepared by a two-step process. Firstly, graphene-hemin composite is synthesized through π-π interaction and then hydrogen tetracholoroauric acid is reduced in situ by ascorbic acid. This ternary composite shows a higher catalytic activity for decomposition of hydrogen peroxide than that of three components alone or the mixture of three components. The Michaelis constant of this composite is 5.82 times lower and the maximal reaction velocity is 1.81 times higher than those of horseradish peroxidase, respectively. This composite also shows lower apparent activation energy than that of other catalysts. The excellently catalytic performance could be attributed to the fast electron transfer on the surface of graphene and the synergistic interaction of three components, which is further confirmed by electrochemical characterization. The ternary composite has been used to determine hydrogen peroxide in three real water samples with satisfactory results.

  14. Ternary composite of hemin, gold nanoparticles and graphene for highly efficient decomposition of hydrogen peroxide.

    PubMed

    Lv, Xincong; Weng, Jian

    2013-11-21

    A ternary composite of hemin, gold nanoparticles and graphene is prepared by a two-step process. Firstly, graphene-hemin composite is synthesized through π-π interaction and then hydrogen tetracholoroauric acid is reduced in situ by ascorbic acid. This ternary composite shows a higher catalytic activity for decomposition of hydrogen peroxide than that of three components alone or the mixture of three components. The Michaelis constant of this composite is 5.82 times lower and the maximal reaction velocity is 1.81 times higher than those of horseradish peroxidase, respectively. This composite also shows lower apparent activation energy than that of other catalysts. The excellently catalytic performance could be attributed to the fast electron transfer on the surface of graphene and the synergistic interaction of three components, which is further confirmed by electrochemical characterization. The ternary composite has been used to determine hydrogen peroxide in three real water samples with satisfactory results.

  15. Solid-State Phase Equilibria and Intermetallic Compounds of the Si-V-Zr Ternary System

    NASA Astrophysics Data System (ADS)

    Pan, Yanfang; Ye, Haimei; Chen, Xiaoxian; Jiang, Wenping; Yang, Wenchao; Zhan, Yongzhong

    2016-12-01

    Phase relations in the Si-V-Zr ternary system at 973 K (700 °C) were experimentally investigated using X-ray powder diffraction and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. The isothermal section at 973 K (700 °C) is governed by seventeen three-phase regions, thirty-two two-phase regions, and sixteen single-phase regions. Ten binary compounds and one ternary compound (SiVZr) were confirmed. There are two new ternary compounds found in this work for the first time. One of them (Si4V3Zr2) was found in the stoichiometric composition around V 38 pct, Si 50 pct, and Zr 12 pct. The existence of another one (V17Si12Zr3) was observed while analyzing the XRD results of large quantities of equilibrated samples in the region around 54 at. pct V, 33 at. pct Si, and 13 at. pct Zr.

  16. Synergistic toughening of graphene oxide-molybdenum disulfide-thermoplastic polyurethane ternary artificial nacre.

    PubMed

    Wan, Sijie; Li, Yuchen; Peng, Jingsong; Hu, Han; Cheng, Qunfeng; Jiang, Lei

    2015-01-27

    Inspired by the ternary structure of natural nacre, robust ternary artificial nacre is constructed through synergistic toughening of graphene oxide (GO) and molybdenum disulfide (MoS2) nanosheets via a vacuum-assisted filtration self-assembly process. The synergistic toughening effect from high mechanical properties of GO and lubrication of MoS2 nanosheets is successfully demonstrated. Meanwhile, the artificial nacre shows high electrical conductivity. This approach for constructing robust artificial nacre by synergistic effect from GO and MoS2 provides a creative opportunity for designing and fabricating integrated artificial nacre in the near future, and this kind of ternary artificial nacre has great potential applications in aerospace, flexible supercapacitor electrodes, artificial muscle, and tissue engineering.

  17. Unipolar infrared detectors based on InGaAs/InAsSb ternary superlattices

    NASA Astrophysics Data System (ADS)

    Ariyawansa, Gamini; Reyner, Charles J.; Duran, Joshua M.; Reding, Joshua D.; Scheihing, John E.; Steenbergen, Elizabeth H.

    2016-07-01

    Growth and characteristics of mid-wave infrared (MWIR) InGaAs/InAsSb strained layer superlattice (SLS) detectors are reported. InGaAs/InAsSb SLSs, identified as ternary SLSs, not only provide an extra degree of freedom for superlattice strain compensation but also show enhanced absorption properties compared to InAs/InAsSb SLSs. Utilizing In1-yGayAs/InAs0.65Sb0.35 ternary SLSs (y = 0, 5, 10, and 20%) designed to have the same bandgap, a set of four unipolar detectors are investigated. These demonstrate an enhancement in the detector quantum efficiency due to the increased absorption coefficient. The detectors exhibit dark current performance within a factor of 10 of Rule 07 at temperatures above 120 K, and external quantum efficiencies in the 15%-25% range. This work demonstrates ternary SLSs are a potential absorber material for future high performance MWIR detectors.

  18. Novel spectrophotometric method for selective determination of compounds in ternary mixtures (dual wavelength in ratio spectra).

    PubMed

    Saad, Ahmed S

    2015-08-05

    A simple selective spectrophotometric method for determination of compounds in ternary mixture was developed by combining the resolution power of two well-known methods that are commonly used for binary mixtures; namely ratio difference method and dual wavelength. The new method (dual wavelength in ratio spectra) was successfully applied for the determination of a ternary mixture of betamethasone dipropionate (BM), clotrimazole (CT) and benzyl alcohol (BA) in pure powder form and in their pharmaceutical preparation. The difference in amplitudes (ΔP) in the ratio spectra at 252.0 and 258.0 nm (ΔP(252.0-258.0 nm)) corresponds to BM, while ΔP(266.8-255.4 nm) and ΔP(254.2-243.5 nm) corresponds to CT and BA, respectively. The method was validated as per the USP 2005 guidelines. The developed method can be used in quality control laboratories for routine analysis of compounds in ternary mixtures.

  19. Binary and ternary cocrystals of sulfa drug acetazolamide with pyridine carboxamides and cyclic amides

    PubMed Central

    Bolla, Geetha; Nangia, Ashwini

    2016-01-01

    A novel design strategy for cocrystals of a sulfonamide drug with pyridine carboxamides and cyclic amides is developed based on synthon identification as well as size and shape match of coformers. Binary adducts of acetazolamide (ACZ) with lactams (valerolactam and caprolactam, VLM, CPR), cyclic amides (2-pyridone, labeled as 2HP and its derivatives MeHP, OMeHP) and pyridine amides (nicotinamide and picolinamide, NAM, PAM) were obtained by manual grinding, and their single crystals by solution crystallization. The heterosynthons in the binary cocrystals of ACZ with these coformers suggested a ternary combination for ACZ with pyridone and nicotinamide. Novel supramolecular synthons of ACZ with lactams and pyridine carboxamides are reported together with binary and ternary cocrystals for a sulfonamide drug. This crystal engineering study resulted in the first ternary cocrystal of acetazolamide with amide coformers, ACZ–NAM–2HP (1:1:1). PMID:27006778

  20. Synthesis of ternary metal nitride nanoparticles using mesoporous carbon nitride as reactive template.

    PubMed

    Fischer, Anna; Müller, Jens Oliver; Antonietti, Markus; Thomas, Arne

    2008-12-23

    Mesoporous graphitic carbon nitride was used as both a nanoreactor and a reactant for the synthesis of ternary metal nitride nanoparticles. By infiltration of a mixture of two metal precursors into mesoporous carbon nitride, the pores act first as a nanoconfinement, generating amorphous mixed oxide nanoparticles. During heating and decomposition, the carbon nitride second acts as reactant or, more precisely, as a nitrogen source, which converts the preformed mixed oxide nanoparticles into the corresponding nitride (reactive templating). Using this approach, ternary metal nitride particles with diameters smaller 10 nm composed of aluminum gallium nitride (Al-Ga-N) and titanium vanadium nitride (Ti-V-N) were synthesized. Due to the confinement effect of the carbon nitride matrix, the composition of the resulting metal nitride can be easily adjusted by changing the concentration of the preceding precursor solution. Thus, ternary metal nitride nanoparticles with continuously adjustable metal composition can be produced.