Sample records for equilibration elliptic flow

  1. Chemically non-equilibrated QGP and thermal photon elliptic flow

    NASA Astrophysics Data System (ADS)

    Monnai, Akihiko

    2016-07-01

    It has been discovered in recent heavy-ion experiments that elliptic and triangular flow of direct photons are underpredicted by most hydrodynamic models. I discuss possible enhancement mechanisms based on late chemical equilibration of the QGP and in-medium modification of parton distributions. Numerical hydrodynamic analyses indicate that they suppress early photon emission and visibly enhance thermal photon elliptic flow.

  2. Flow in Au+Au collisions at RHIC

    NASA Astrophysics Data System (ADS)

    Belt Tonjes, Marguerite; the PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2004-08-01

    The study of flow can provide information on the initial state dynamics and the degree of equilibration attained in heavy-ion collisions. This contribution presents results for both elliptic and directed flow as determined from data recorded by the PHOBOS experiment in Au+Au runs at RHIC at \\sqrt{sNN} = 19.6, 130 and 200 GeV. The PHOBOS detector provides a unique coverage in pseudorapidity for measuring flow at RHIC. The systematic dependence of flow on pseudorapidity, transverse momentum, centrality and energy is discussed.

  3. Flow in Au+Au collisions at RHIC

    NASA Astrophysics Data System (ADS)

    Belt Tonjes, Marguerite; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A. H.; Wyslouch, B.

    2004-08-01

    The study of flow can provide information on the initial state dynamics and the degree of equilibration attained in heavy-ion collisions. This contribution presents results for both elliptic and directed flow as determined from data recorded by the PHOBOS experiment in Au+Au runs at RHIC at \\sqrt{s_{{\\rm NN}}} = 19.6, 130 and 200 GeV. The PHOBOS detector provides a unique coverage in pseudorapidity for measuring flow at RHIC. The systematic dependence of flow on pseudorapidity, transverse momentum, centrality and energy is discussed.

  4. Elliptic Flow, Initial Eccentricity and Elliptic Flow Fluctuations in Heavy Ion Collisions at RHIC

    NASA Astrophysics Data System (ADS)

    Nouicer, Rachid; Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holzman, B.; Iordanova, A.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.

    2008-12-01

    We present measurements of elliptic flow and event-by-event fluctuations established by the PHOBOS experiment. Elliptic flow scaled by participant eccentricity is found to be similar for both systems when collisions with the same number of participants or the same particle area density are compared. The agreement of elliptic flow between Au+Au and Cu+Cu collisions provides evidence that the matter is created in the initial stage of relativistic heavy ion collisions with transverse granularity similar to that of the participant nucleons. The event-by-event fluctuation results reveal that the initial collision geometry is translated into the final state azimuthal particle distribution, leading to an event-by-event proportionality between the observed elliptic flow and initial eccentricity.

  5. The development of a three-dimensional partially elliptic flow computer program for combustor research

    NASA Technical Reports Server (NTRS)

    Pan, Y. S.

    1978-01-01

    A three dimensional, partially elliptic, computer program was developed. Without requiring three dimensional computer storage locations for all flow variables, the partially elliptic program is capable of predicting three dimensional combustor flow fields with large downstream effects. The program requires only slight increase of computer storage over the parabolic flow program from which it was developed. A finite difference formulation for a three dimensional, fully elliptic, turbulent, reacting, flow field was derived. Because of the negligible diffusion effects in the main flow direction in a supersonic combustor, the set of finite-difference equations can be reduced to a partially elliptic form. Only the pressure field was governed by an elliptic equation and requires three dimensional storage; all other dependent variables are governed by parabolic equations. A numerical procedure which combines a marching integration scheme with an iterative scheme for solving the elliptic pressure was adopted.

  6. Elliptic Flow in Au+Au Collisions at √sNN = 130 GeV

    NASA Astrophysics Data System (ADS)

    Ackermann, K. H.; Adams, N.; Adler, C.; Ahammed, Z.; Ahmad, S.; Allgower, C.; Amsbaugh, J.; Anderson, M.; Anderssen, E.; Arnesen, H.; Arnold, L.; Averichev, G. S.; Baldwin, A.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Beddo, M.; Bekele, S.; Belaga, V. V.; Bellwied, R.; Bennett, S.; Bercovitz, J.; Berger, J.; Betts, W.; Bichsel, H.; Bieser, F.; Bland, L. C.; Bloomer, M.; Blyth, C. O.; Boehm, J.; Bonner, B. E.; Bonnet, D.; Bossingham, R.; Botlo, M.; Boucham, A.; Bouillo, N.; Bouvier, S.; Bradley, K.; Brady, F. P.; Braithwaite, E. S.; Braithwaite, W.; Brandin, A.; Brown, R. L.; Brugalette, G.; Byrd, C.; Caines, H.; Calderón de La Barca Sánchez, M.; Cardenas, A.; Carr, L.; Carroll, J.; Castillo, J.; Caylor, B.; Cebra, D.; Chatopadhyay, S.; Chen, M. L.; Chen, W.; Chen, Y.; Chernenko, S. P.; Cherney, M.; Chikanian, A.; Choi, B.; Chrin, J.; Christie, W.; Coffin, J. P.; Conin, L.; Consiglio, C.; Cormier, T. M.; Cramer, J. G.; Crawford, H. J.; Danilov, V. I.; Dayton, D.; Demello, M.; Deng, W. S.; Derevschikov, A. A.; Dialinas, M.; Diaz, H.; Deyoung, P. A.; Didenko, L.; Dimassimo, D.; Dioguardi, J.; Dominik, W.; Drancourt, C.; Draper, J. E.; Dunin, V. B.; Dunlop, J. C.; Eckardt, V.; Edwards, W. R.; Efimov, L. G.; Eggert, T.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Etkin, A.; Fachini, P.; Feliciano, C.; Ferenc, D.; Ferguson, M. I.; Fessler, H.; Finch, E.; Fine, V.; Fisyak, Y.; Flierl, D.; Flores, I.; Foley, K. J.; Fritz, D.; Gagunashvili, N.; Gans, J.; Gazdzicki, M.; Germain, M.; Geurts, F.; Ghazikhanian, V.; Gojak, C.; Grabski, J.; Grachov, O.; Grau, M.; Greiner, D.; Greiner, L.; Grigoriev, V.; Grosnick, D.; Gross, J.; Guilloux, G.; Gushin, E.; Hall, J.; Hallman, T. J.; Hardtke, D.; Harper, G.; Harris, J. W.; He, P.; Heffner, M.; Heppelmann, S.; Herston, T.; Hill, D.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G. W.; Horsley, M.; Howe, M.; Huang, H. Z.; Humanic, T. J.; Hümmler, H.; Hunt, W.; Hunter, J.; Igo, G. J.; Ishihara, A.; Ivanshin, Yu. I.; Jacobs, P.; Jacobs, W. W.; Jacobson, S.; Jared, R.; Jensen, P.; Johnson, I.; Jones, P. G.; Judd, E.; Kaneta, M.; Kaplan, M.; Keane, D.; Kenney, V. P.; Khodinov, A.; Klay, J.; Klein, S. R.; Klyachko, A.; Koehler, G.; Konstantinov, A. S.; Kormilitsyne, V.; Kotchenda, L.; Kotov, I.; Kovalenko, A. D.; Kramer, M.; Kravtsov, P.; Krueger, K.; Krupien, T.; Kuczewski, P.; Kuhn, C.; Kunde, G. J.; Kunz, C. L.; Kutuev, R. Kh.; Kuznetsov, A. A.; Lakehal-Ayat, L.; Lamas-Valverde, J.; Lamont, M. A.; Landgraf, J. M.; Lange, S.; Lansdell, C. P.; Lasiuk, B.; Laue, F.; Lebedev, A.; Lecompte, T.; Leonhardt, W. J.; Leontiev, V. M.; Leszczynski, P.; Levine, M. J.; Li, Q.; Li, Q.; Li, Z.; Liaw, C.-J.; Lin, J.; Lindenbaum, S. J.; Lindenstruth, V.; Lindstrom, P. J.; Lisa, M. A.; Liu, H.; Ljubicic, T.; Llope, W. J.; Locurto, G.; Long, H.; Longacre, R. S.; Lopez-Noriega, M.; Lopiano, D.; Love, W. A.; Lutz, J. R.; Lynn, D.; Madansky, L.; Maier, R.; Majka, R.; Maliszewski, A.; Margetis, S.; Marks, K.; Marstaller, R.; Martin, L.; Marx, J.; Matis, H. S.; Matulenko, Yu. A.; Matyushevski, E. A.; McParland, C.; McShane, T. S.; Meier, J.; Melnick, Yu.; Meschanin, A.; Middlekamp, P.; Mikhalin, N.; Miller, B.; Milosevich, Z.; Minaev, N. G.; Minor, B.; Mitchell, J.; Mogavero, E.; Moiseenko, V. A.; Moltz, D.; Moore, C. F.; Morozov, V.; Morse, R.; de Moura, M. M.; Munhoz, M. G.; Mutchler, G. S.; Nelson, J. M.; Nevski, P.; Ngo, T.; Nguyen, M.; Nguyen, T.; Nikitin, V. A.; Nogach, L. V.; Noggle, T.; Norman, B.; Nurushev, S. B.; Nussbaum, T.; Nystrand, J.; Odyniec, G.; Ogawa, A.; Ogilvie, C. A.; Olchanski, K.; Oldenburg, M.; Olson, D.; Ososkov, G. A.; Ott, G.; Padrazo, D.; Paic, G.; Pandey, S. U.; Panebratsev, Y.; Panitkin, S. Y.; Pavlinov, A. I.; Pawlak, T.; Pentia, M.; Perevotchikov, V.; Peryt, W.; Petrov, V. A.; Pinganaud, W.; Pirogov, S.; Platner, E.; Pluta, J.; Polk, I.; Porile, N.; Porter, J.; Poskanzer, A. M.; Potrebenikova, E.; Prindle, D.; Pruneau, C.; Puskar-Pasewicz, J.; Rai, G.; Rasson, J.; Ravel, O.; Ray, R. L.; Razin, S. V.; Reichhold, D.; Reid, J.; Renfordt, R. E.; Retiere, F.; Ridiger, A.; Riso, J.; Ritter, H. G.; Roberts, J. B.; Roehrich, D.; Rogachevski, O. V.; Romero, J. L.; Roy, C.; Russ, D.; Rykov, V.; Sakrejda, I.; Sanchez, R.; Sandler, Z.; Sandweiss, J.; Sappenfield, P.; Saulys, A. C.; Savin, I.; Schambach, J.; Scharenberg, R. P.; Scheblien, J.; Scheetz, R.; Schlueter, R.; Schmitz, N.; Schroeder, L. S.; Schulz, M.; Schüttauf, A.; Sedlmeir, J.; Seger, J.; Seliverstov, D.; Seyboth, J.; Seyboth, P.; Seymour, R.; Shakaliev, E. I.; Shestermanov, K. E.; Shi, Y.; Shimanskii, S. S.; Shuman, D.; Shvetcov, V. S.; Skoro, G.; Smirnov, N.; Smykov, L. P.; Snellings, R.; Solberg, K.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stephenson, E. J.; Stock, R.; Stolpovsky, A.; Stone, N.; Stone, R.; Strikhanov, M.; Stringfellow, B.; Stroebele, H.; Struck, C.; Suaide, A. A.; Sugarbaker, E.; Suire, C.; Symons, T. J.; Takahashi, J.; Tang, A. H.; Tarchini, A.; Tarzian, J.; Thomas, J. H.; Tikhomirov, V.; Szanto de Toledo, A.; Tonse, S.; Trainor, T.; Trentalange, S.; Tokarev, M.; Tonjes, M. B.; Trofimov, V.; Tsai, O.; Turner, K.; Ullrich, T.; Underwood, D. G.; Vakula, I.; van Buren, G.; Vandermolen, A. M.; Vanyashin, A.; Vasilevski, I. M.; Vasiliev, A. N.; Vigdor, S. E.; Visser, G.; Voloshin, S. A.; Vu, C.; Wang, F.; Ward, H.; Weerasundara, D.; Weidenbach, R.; Wells, R.; Wells, R.; Wenaus, T.; Westfall, G. D.; Whitfield, J. P.; Whitten, C.; Wieman, H.; Willson, R.; Wilson, K.; Wirth, J.; Wisdom, J.; Wissink, S. W.; Witt, R.; Wolf, J.; Wood, L.; Xu, N.; Xu, Z.; Yakutin, A. E.; Yamamoto, E.; Yang, J.; Yepes, P.; Yokosawa, A.; Yurevich, V. I.; Zanevski, Y. V.; Zhang, J.; Zhang, W. M.; Zhu, J.; Zimmerman, D.; Zoulkarneev, R.; Zubarev, A. N.

    2001-01-01

    Elliptic flow from nuclear collisions is a hadronic observable sensitive to the early stages of system evolution. We report first results on elliptic flow of charged particles at midrapidity in Au+Au collisions at sNN = 130 GeV using the STAR Time Projection Chamber at the Relativistic Heavy Ion Collider. The elliptic flow signal, v2, averaged over transverse momentum, reaches values of about 6% for relatively peripheral collisions and decreases for the more central collisions. This can be interpreted as the observation of a higher degree of thermalization than at lower collision energies. Pseudorapidity and transverse momentum dependence of elliptic flow are also presented.

  7. A randomized prospective study of desflurane versus isoflurane in minimal flow anesthesia using “equilibration time” as the change-over point to minimal flow

    PubMed Central

    Mallik, Tanuja; Aneja, S; Tope, R; Muralidhar, V

    2012-01-01

    Background: In the administration of minimal flow anesthesia, traditionally a fixed time period of high flow has been used before changing over to minimal flow. However, newer studies have used “equilibration time” of a volatile anesthetic agent as the change-over point. Materials and Methods: A randomized prospective study was conducted on 60 patients, who were divided into two groups of 30 patients each. Two volatile inhalational anesthetic agents were compared. Group I received desflurane (n = 30) and group II isoflurane (n = 30). Both the groups received an initial high flow till equilibration between inspired (Fi) and expired (Fe) agent concentration were achieved, which was defined as Fe/Fi = 0.8. The mean (SD) equilibration time was obtained for both the agent. Then, a drift in end-tidal agent concentration during the minimal flow anesthesia and recovery profile was noted. Results: The mean equilibration time obtained for desflurane and isoflurane were 4.96 ± 1.60 and 16.96 ± 9.64 min (P < 0.001). The drift in end-tidal agent concentration over time was minimal in the desflurane group (P = 0.065). Recovery time was 5.70 ± 2.78 min in the desflurane group and 8.06 ± 31 min in the isoflurane group (P = 0.004). Conclusion: Use of equilibration time of the volatile anesthetic agent as a change-over point, from high flow to minimal flow, can help us use minimal flow anesthesia, in a more efficient way. PMID:23225926

  8. Forward-backward elliptic anisotropy correlations in parton cascades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, L. X.; Graduate School of the Chinese Academy of Sciences, Beijing 100080; Ma, G. L.

    2011-04-15

    A potential experimental probe, the forward-backward elliptic anisotropy correlation (C{sub FB}), has been proposed by Liao and Koch to distinguish the jet and true elliptic flow contribution to the measured elliptic flow (v{sub 2}) in relativistic heavy-ion collisions. The jet and flow fluctuation contribution to elliptic flow is investigated within the framework of a multiphase transport model using the C{sub FB} probe. We find that the C{sub FB} correlation is remarkably different from, and about two times that, proposed by Liao and Koch. It originates from the correlation between fluctuation of forward and that of backward elliptic flow at amore » low transverse momentum, which is mainly caused by the initial correlation between fluctuation of forward and that of backward eccentricity. This results in an amendment of the C{sub FB} by a term related to the correlation between fluctuation of forward and that of backward elliptic flow. Our results suggest that a suitable rapidity gap for C{sub FB} correlation studies is about {+-}3.5.« less

  9. Modeling the movement and equilibrium of water in the body of ruminants in relation to estimating body composition by deuterium oxide dilution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, R.N.

    1986-01-01

    Deuterium oxide (D/sub 2/O) dilution was evaluated for use in estimating body composition of ruminants. Empty body composition of cattle could not be accurately estimated by two- or three-compartment models when solved on the basis of clearance of D/sub 2/O from blood. A 29-compartment blood-flow model was developed from measured blood flow rates and water volumes of tissues of sheep. The rates of equilibration of water in tissues that were simulated by the blood-flow model were much faster than actual rates measured in sheep and cattle. The incorporation of diffusion hindrances for movement of water into tissues enabled the bloodmore » flow model to simulate the measured equilibration rates in tissues, but the values of the diffusion coefficients were different for each tissue. The D/sub 2/O-disappearance curve for blood simulated by the blood-flow model with diffusion limitations was comprised for four exponential components. The tissues and gastrointestinal tract contents were placed into five groups based upon the rate of equilibration. Water in the organs of the body equilibrated with water in blood within 3 min. Water in visceral fat, head, and some of the gastrointestinal tract tissues equilibrated within 8 to 16 min. Water in skeletal muscle, fat, and bone and the contents of some segments of the gastrointestinal tract equilibrated within 30 to 36 min. Water in the tissues and contents of the cecum and upper-large intestine equilibrated within 160 to 200 min. Water in ruminal tissue and contents equilibrated within 480 min.« less

  10. A New Differential Pressure Flow Meter for Measurement of Human Breath Flow: Simulation and Experimental Investigation

    PubMed Central

    Bridgeman, Devon; Tsow, Francis; Xian, Xiaojun; Forzani, Erica

    2016-01-01

    The development and performance characterization of a new differential pressure-based flow meter for human breath measurements is presented in this article. The device, called a “Confined Pitot Tube,” is comprised of a pipe with an elliptically shaped expansion cavity located in the pipe center, and an elliptical disk inside the expansion cavity. The elliptical disk, named Pitot Tube, is exchangeable, and has different diameters, which are smaller than the diameter of the elliptical cavity. The gap between the disk and the cavity allows the flow of human breath to pass through. The disk causes an obstruction in the flow inside the pipe, but the elliptical cavity provides an expansion for the flow to circulate around the disk, decreasing the overall flow resistance. We characterize the new sensor flow experimentally and theoretically, using Comsol Multiphysics® software with laminar and turbulent models. We also validate the sensor, using inhalation and exhalation tests and a reference method. PMID:27818521

  11. Temperature uniformity of the bulk medium produced in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Ray, Lanny

    2006-10-01

    The success of hydrodynamic models of elliptic flow in relativistic heavy ion collisions is often touted as evidence for rapid thermal equilibration. However, large momentum scale two-particle correlations indicate that a significant fraction of the final-state hadrons retain jet-like correlation structure associated with early stage, non-equilibrated low-Q^2 partons [1]. In addition, correlations on transverse momentum (pt1xpt2) suggest that low-Q^2 parton momentum is partially dissipated causing fluctuations in the effective temperature (thermal and/or collective motion) of the bulk medium[2]. We first show that both global and local temperature fluctuation models describe the available (pt1xpt2) correlation data equally well. Results of an analytical model are then presented which tests the sensitivity of (pt1xpt2) correlations to the first few lower-order cumulants of the two-point temperature distribution for the event ensemble. Unique signatures in the predicted (pt1xpt2) correlations are observed for each cumulant term studied. The prospects for direct measurement of the absolute temperature distribution in the bulk medium produced in relativistic heavy-ion collisions using (pt1xpt2) and other correlation measures are discussed. [1] J. Adams et al., Phys. Rev. C 73, 064907 (2006); J. Phys.G. 32, L37 (2006). [2]J. Adams et al., nucl-ex/0408012.

  12. Flow and Thermal Performance of a Water-Cooled Periodic Transversal Elliptical Microchannel Heat Sink for Chip Cooling.

    PubMed

    Wei, Bo; Yang, Mo; Wang, Zhiyun; Xu, Hongtao; Zhang, Yuwen

    2015-04-01

    Flow and thermal performance of transversal elliptical microchannels were investigated as a passive scheme to enhance the heat transfer performance of laminar fluid flow. The periodic transversal elliptical micro-channel is designed and its pressure drop and heat transfer characteristics in laminar flow are numerically investigated. Based on the comparison with a conventional straight micro- channel having rectangular cross section, it is found that periodic transversal elliptical microchannel not only has great potential to reduce pressure drop but also dramatically enhances heat transfer performance. In addition, when the Reynolds number equals to 192, the pressure drop of the transversal elliptical channel is 36.5% lower than that of the straight channel, while the average Nusselt number is 72.8% higher; this indicates that the overall thermal performance of the periodic transversal elliptical microchannel is superior to the conventional straight microchannel. It is suggested that such transversal elliptical microchannel are attractive candidates for cooling future electronic chips effectively with much lower pressure drop.

  13. Negative elliptic flow of J/ψ's: A qualitative signature for charm collectivity at RHIC

    NASA Astrophysics Data System (ADS)

    Krieg, D.; Bleicher, M.

    2009-01-01

    We discuss one of the most prominent features of the very recent preliminary elliptic flow data of J/ψ-mesons from the PHENIX Collaboration (PHENIX Collaboration (C. Silvestre), arXiv:0806.0475 [nucl-ex]). Even within the rather large error bars of the measured data a negative elliptic flow parameter (v2) for J/ψ in the range of p T = 0.5-2.5 GeV/ c is visible. We argue that this negative elliptic flow at intermediate pT is a clear and qualitative signature for the collectivity of charm quarks produced in nucleus-nucleus reactions at RHIC. Within a parton recombination approach we show that a negative elliptic flow puts a lower limit on the collective transverse velocity of heavy quarks. The numerical value of the transverse flow velocity βT^{} for charm quarks that is necessary to reproduce the data is βT^{}( charm) ˜ 0.55-0.6 c and therefore compatible with the flow of light quarks.

  14. Direct-photon spectrum and elliptic flow produced from Pb+Pb collisions at √{sN N}=2.76 TeV at the CERN Large Hadron Collider within an integrated hydrokinetic model

    NASA Astrophysics Data System (ADS)

    Naboka, V. Yu.; Sinyukov, Yu. M.; Zinovjev, G. M.

    2018-05-01

    The photon transverse momentum spectrum and its anisotropy from Pb+Pb collisions at the CERN Large Hadron Collider energy √{sN N}=2.76 TeV are investigated within the integrated hydrokinetic model (iHKM). Photon production is accumulated from the different processes at the various stages of relativistic heavy ion collisions: from the primary hard photons of very early stage of parton collisions to the thermal photons from equilibrated quark-gluon and hadron gas stages. Along the way a hadronic medium evolution is treated in two distinct, in a sense opposite, approaches: chemically equilibrated and chemically frozen system expansion. Studying the centrality dependence of the results obtained allows us to conclude that a relatively strong transverse momentum anisotropy of thermal radiation is suppressed by prompt photon emission which is an isotropic. We find out that this effect is getting stronger as centrality increases because of the simultaneous increase in the relative contribution of prompt photons in the soft part of the spectra. The substantial results obtained in iHKM with nonzero viscosity (η /s =0.08 ) for photon spectra and v2 coefficients are mostly within the error bars of experimental data, but there is some systematic underestimation of both observables for the near central events. We claim that a situation could be significantly improved if an additional photon radiation that accompanies the presence of a deconfined environment is included. Since a matter of a space-time layer where hadronization takes place is actively involved in anisotropic transverse flow, both positive contributions to the spectra and v2 are considerable, albeit such an argument needs further research and elaboration.

  15. Eccentricity fluctuations are not the only source of elliptic flow fluctuations in a multiphase transport model

    NASA Astrophysics Data System (ADS)

    Xiao, Kai; Liu, Feng; Wang, Fu-Qiang

    2017-09-01

    Sources of event-by-event elliptic flow fluctuations in relativistic heavy-ion collisions are investigated in a multiphase parton transport model (AMPT). Besides the well-known initial eccentricity fluctuations, several other sources of elliptic flow dynamical fluctuations are identified. One is fluctuations in initial parton configurations at a given eccentricity. Configuration fluctuations are found to be as important as eccentricity fluctuations in elliptic flow development. A second is quantum fluctuations in parton-parton interactions during system evolution. A third is fluctuations caused by hadronization and final-state hadronic scatterings. The magnitudes of these fluctuations are investigated relative to the eccentricity fluctuations and the average elliptic flow magnitude. The fluctuations from the latter two sources are found to be negative. The results may have important implications for the interpretation of elliptic flow data. Supported by MOST, China, under 973 Grant 2015CB856901, National Natural Science Foundation of China (11521064, 11547143, 11228513), U.S. Department of Energy (DE-FG02-88ER40412), Fundamental Research Funds for the Central Universities, South-Central University for Nationalities (CZQ15001) and Excellent Doctorial Dissertation Cultivation Grant from Central China Normal University (2013YBZD18)

  16. Non-flow correlations and elliptic flow fluctuations in Au+Au collisions at sNN=200 GeV

    NASA Astrophysics Data System (ADS)

    Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.

    2010-03-01

    This article presents results on event-by-event elliptic flow fluctuations in Au+Au collisions at sNN= 200 GeV, where the contribution from non-flow correlations has been subtracted. An analysis method is introduced to measure non-flow correlations, relying on the assumption that non-flow correlations are most prominent at short ranges (|Δη|<2). Assuming that non-flow correlations are of the order that is observed in p+p collisions for long-range correlations (|Δη|>2), relative elliptic flow fluctuations of approximately 30-40% are observed. These results are consistent with predictions based on spatial fluctuations of the participating nucleons in the initial nuclear overlap region. It is found that the long-range non-flow correlations in Au+Au collisions would have to be more than an order of magnitude stronger compared to the p+p data to lead to the observed azimuthal anisotropy fluctuations with no intrinsic elliptic flow fluctuations.

  17. Event-shape engineering for inclusive spectra and elliptic flow in Pb-Pb collisions at √{sNN}=2.76 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Chunhui, Z.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; D'Erasmo, G.; di Bari, D.; di Mauro, A.; di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Eschweiler, D.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hansen, A.; Harris, J. W.; Hartmann, H.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hilden, T. E.; Hillemanns, H.; Hippolyte, B.; Hosokawa, R.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacobs, P. M.; Jadlovska, S.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Khan, K. H.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobayashi, T.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kravčáková, A.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Legrand, I.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Luz, P. H. F. N. D.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Masui, H.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; McDonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moreira de Godoy, D. A.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pajares, C.; Pal, S. K.; Pan, J.; Pandey, A. K.; Pant, D.; Papcun, P.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Peitzmann, T.; Pereira da Costa, H.; Pereira de Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sanchez Castro, X.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Steinpreis, M.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Sultanov, R.; Šumbera, M.; Symons, T. J. M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Vala, M.; Valencia Palomo, L.; Vallero, S.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Wang, Y.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yang, H.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.; Alice Collaboration

    2016-03-01

    We report on results obtained with the event-shape engineering technique applied to Pb-Pb collisions at √{sNN}=2.76 TeV. By selecting events in the same centrality interval, but with very different average flow, different initial-state conditions can be studied. We find the effect of the event-shape selection on the elliptic flow coefficient v2 to be almost independent of transverse momentum pT, which is as expected if this effect is attributable to fluctuations in the initial geometry of the system. Charged-hadron, -pion, -kaon, and -proton transverse momentum distributions are found to be harder in events with higher-than-average elliptic flow, indicating an interplay between radial and elliptic flow.

  18. Self-regulated cooling flows in elliptical galaxies and in cluster cores - Is exclusively low mass star formation really necessary?

    NASA Technical Reports Server (NTRS)

    Silk, J.; Djorgovski, S.; Wyse, R. F. G.; Bruzual A., G.

    1986-01-01

    A self-consistent treatment of the heating by supernovae associated with star formation in a spherically symmetric cooling flow in a cluster core or elliptical galaxy is presented. An initial stellar mass function similar to that in the solar neighborhood is adopted. Inferred star-formation rates, within the cooling region - typically the inner 100 kpc around dominant galaxies at the centers of cooling flows in XD clusters - are reduced by about a factor of 2, relative to rates inferred when the heat input from star formation is ignored. Truncated initial mass functions (IMFs) are also considered, in which massive star formation is suppressed in accordance with previous treatments, and colors are predicted for star formation in cooling flows associated with central dominant elliptical galaxies and with isolated elliptical galaxies surrounded by gaseous coronae. The low inferred cooling-flow rates around isolated elliptical galaxies are found to be insensitive to the upper mass cutoff in the IMF, provided that the upper mass cutoff exceeds 2 M solar mass. Comparison with observed colors favors a cutoff in the IMF above 1 M solar mass in at least two well-studied cluster cooling flows, but a normal IMF cannot be excluded definitively. Models for NGC 1275 support a young (less than about 3 Gyr) cooling flow. As for the isolated elliptical galaxies, the spread in colors is consistent with a normal IMF. A definitive test of the IMF arising via star formation in cooling flows requires either UV spectral data or supernova searches in the cooling-flow-centered galaxies.

  19. Event-shape engineering for inclusive spectra and elliptic flow in Pb-Pb collisions at s NN = 2.76 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, J.; Adamová, D.; Aggarwal, M. M.

    Here, we report on results obtained with the event-shape engineering technique applied to Pb-Pb collisions at root √s NN = 2.76 TeV. By selecting events in the same centrality interval, but with very different average flow, different initial-state conditions can be studied. We find the effect of the event-shape selection on the elliptic flow coefficient v 2 to be almost independent of transverse momentum p T, which is as expected if this effect is attributable to fluctuations in the initial geometry of the system. Charged-hadron, -pion, -kaon, and -proton transverse momentum distributions are found to be harder in events withmore » higher-than-average elliptic flow, indicating an interplay between radial and elliptic flow.« less

  20. Event-shape engineering for inclusive spectra and elliptic flow in Pb-Pb collisions at s NN = 2.76 TeV

    DOE PAGES

    Adam, J.; Adamová, D.; Aggarwal, M. M.; ...

    2016-03-31

    Here, we report on results obtained with the event-shape engineering technique applied to Pb-Pb collisions at root √s NN = 2.76 TeV. By selecting events in the same centrality interval, but with very different average flow, different initial-state conditions can be studied. We find the effect of the event-shape selection on the elliptic flow coefficient v 2 to be almost independent of transverse momentum p T, which is as expected if this effect is attributable to fluctuations in the initial geometry of the system. Charged-hadron, -pion, -kaon, and -proton transverse momentum distributions are found to be harder in events withmore » higher-than-average elliptic flow, indicating an interplay between radial and elliptic flow.« less

  1. Event-by-event elliptic flow fluctuations from PHOBOS

    DOE PAGES

    Wosiek, Barbara; Alver, B.; Back, B. B.; ...

    2009-04-01

    Recently PHOBOS has focused on the study of fluctuations and correlations in particle production in heavy-ion collisions at the highest energies delivered by the Relativistic Heavy Ion Collider (RHIC). In this report, we present results on event-by-event elliptic flow fluctuations in Au + Au collisions at √s NN =200 GeV. A data-driven method was used to estimate the dominant contribution from non-flow correlations. Over the broad range of collision centralities, the observed large elliptic flow fluctuations are in agreement with the fluctuations in the initial source eccentricity.

  2. Event-by-Event Elliptic Flow Fluctuations from PHOBOS

    NASA Astrophysics Data System (ADS)

    Wosiek, B.; Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Harnarine, I.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Richardson, E.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Woźniak, K.; Wyngaardt, S.; Wysłouch, B.

    2009-04-01

    Recently PHOBOS has focused on the study of fluctuations and correlations in particle production in heavy-ion collisions at the highest energies delivered by the Relativistic Heavy Ion Collider (RHIC). In this report, we present results on event-by-event elliptic flow fluctuations in (Au+Au) collisions at sqrt {sNN}=200 GeV. A data-driven method was used to estimate the dominant contribution from non-flow correlations. Over the broad range of collision centralities, the observed large elliptic flow fluctuations are in agreement with the fluctuations in the initial source eccentricity.

  3. System Size, Energy, Pseudorapidity, and Centrality Dependence of Elliptic Flow

    NASA Astrophysics Data System (ADS)

    Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Harnarine, I.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Richardson, E.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wyngaardt, S.; Wysłouch, B.

    2007-06-01

    This Letter presents measurements of the elliptic flow of charged particles as a function of pseudorapidity and centrality from Cu-Cu collisions at 62.4 and 200 GeV using the PHOBOS detector at the Relativistic Heavy Ion Collider. The elliptic flow in Cu-Cu collisions is found to be significant even for the most central events. For comparison with the Au-Au results, it is found that the detailed way in which the collision geometry (eccentricity) is estimated is of critical importance when scaling out system-size effects. A new form of eccentricity, called the participant eccentricity, is introduced which yields a scaled elliptic flow in the Cu-Cu system that has the same relative magnitude and qualitative features as that in the Au-Au system.

  4. A study of thin liquid sheet flows

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Calfo, Frederick D.; Mcconley, Marc W.; Mcmaster, Matthew S.; Afjeh, Abdollah A.

    1993-01-01

    This study was a theoretical and experimental investigation of thin liquid sheet flows in vacuum. A sheet flow created by a narrow slit of width, W, coalesces to a point at a distance, L, as a result of surface tension forces acting at the sheet edges. As the flow coalesces, the fluid accumulates in the sheet edges. The observed triangular shape of the sheet agrees with the calculated triangular result. Experimental results for L/W as a function of Weber number, We, agree with the calculated result, L/W = the sq. root of 8We. The edge cross sectional shape is found to oscillate from elliptic to 'cigar' like to 'peanut' like and then back to elliptic in the flow direction. A theoretical one-dimensional model was developed that yielded only elliptic solutions for the edge cross section. At the points where the elliptic shapes occur, there is agreement between theory and experiment.

  5. Elliptic flow in Au+Au collisions at RHIC

    NASA Astrophysics Data System (ADS)

    Vale, Carla M.; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Ngyuen, M.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A. H.; Wyslouch, B.

    2005-04-01

    Elliptic flow is an interesting probe of the dynamical evolution of the dense system formed in the ultrarelativistic heavy ion collisions at the relativistic heavy ion collider (RHIC). The elliptic flow dependences on transverse momentum, centrality and pseudorapidity were measured using data collected by the PHOBOS detector, which offers a unique opportunity to study the azimuthal anisotropies of charged particles over a wide range of pseudorapidity. These measurements are presented, together with an overview of the analysis methods and a discussion of the results.

  6. Weak and strong coupling equilibration in nonabelian gauge theories

    NASA Astrophysics Data System (ADS)

    Keegan, Liam; Kurkela, Aleksi; Romatschke, Paul; van der Schee, Wilke; Zhu, Yan

    2016-04-01

    We present a direct comparison studying equilibration through kinetic theory at weak coupling and through holography at strong coupling in the same set-up. The set-up starts with a homogeneous thermal state, which then smoothly transitions through an out-of-equilibrium phase to an expanding system undergoing boost-invariant flow. This first apples-to-apples comparison of equilibration provides a benchmark for similar equilibration processes in heavy-ion collisions, where the equilibration mechanism is still under debate. We find that results at weak and strong coupling can be smoothly connected by simple, empirical power-laws for the viscosity, equilibration time and entropy production of the system.

  7. To flow or not to flow : a study of elliptic flow and nonflow in proton-proton collisions in ALICE

    NASA Astrophysics Data System (ADS)

    van der Kolk, N.

    2012-01-01

    The standard model of particle physics describes all known elementary particles and the forces between them. The strong force, which binds quarks inside hadrons and nucleons inside nuclei, is described by the theory of Quantum Chromodynamics. This theory predicts a new state of matter at extreme temperatures and densities: the Quark Gluon plasma. The ALICE experiment at the Large Hadron Collider near Geneva was build to study this QGP by looking at collisions of the most heavy stable ions: lead (Pb) ions. In such collisions one hopes to achieve sufficient energy density for the creation of a QGP. One of the signatures of QGP formation in high energy heavy ion collisions is the presence of collective behaviour in the system formed during the collision. This collectivity manifests itself in a common velocity in all produced particles: a collective flow. The most dominant contribution to collective flow is elliptic flow, which originates from the anisotropic overlap region of the two nuclei in non-central collisions and is visible in the azimuthal distribution of the produced particles. Elliptic flow is related to the equation of state of the system and its degree of thermalisation. The analysis of elliptic flow is complicated by the presence of correlations between particles from other sources, summarised in the term nonflow. Several analysis methods have become available over the years and have been implemented for elliptic flow analysis within the ALICE computing framework. These methods have different sensitivities to these nonflow correlations. Because the centre of mass energy at the LHC is so high, predictions have been made of collective behaviour even in proton-proton collisions. These predictions are very divers and give values between 0 and 0.2 for elliptic flow using different models. To constrain these predictions proton-proton data, recorded with the ALICE experiment at the LHC in the 2010 7 TeV proton-proton run, was studied. In proton-proton collisions large nonflow correlations are certainly present and might mask the elliptic flow correlation. The nonflow correlations have to be suppressed sufficiently such that the elliptic flow signal becomes detectable. Therefor an analysis method was choosen that can suppress nonflow correlations by increasing the separation in pseudorapidity of two subevents. This method is called the scalar product method. How much nonflow is suppressed is shown to depend on the pseudorapidity range of the nonflow. The dependence on the pseudorapidity gap size between the subevents, in 7 TeV proton-proton collisions, points to a strong nonflow component, because the signal decreases with increasing gap size. The corresponding Monte Carlo data set shows the same dependence, while it only includes nonflow correlations. This enforces the conclusion that nonflow is the dominant or the only correlation in 7 TeV proton-proton data at the LHC. The conclusion from this analysis is that elliptic flow in 7 TeV proton-proton collisions with at least 10 particles is less than 0.05. Predictions of a higher elliptic flow for these events can be excluded. To exclude or confirm lower predicted values the nonflow contribution has to be further reduced.

  8. Lateral Migration and Rotational Motion of Elliptic Particles in Planar Poiseuille Flow

    NASA Technical Reports Server (NTRS)

    Qi, Dewei; Luo, Li-Shi; Aravamuthan, Raja; Strieder, William; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Simulations of elliptic particulate suspensions in the planar Poiseuille flow are performed by using the lattice Boltzmann equation. Effects of the multi-particle on the lateral migration and rotational motion of both neutrally and non-neutrally buoyant elliptic particles are investigated. Low and intermediate total particle volume fraction f(sub a) = 13%, 15%, and 40% are considered in this work.

  9. Enhancement of elliptic flow can signal a first-order phase transition in high-energy heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Nara, Yasushi; Niemi, Harri; Ohnishi, Akira; Steinheimer, Jan; Luo, Xiaofeng; Stöcker, Horst

    2018-02-01

    The beam energy dependence of the elliptic flow, v2, is studied in mid-central Au+Au collisions in the energy range of 3≤ √{s_{NN}} ≤ 30 GeV within the microscopic transport model JAM. The results of three different modes of JAM are compared; cascade-, hadronic mean field-, and a new mode with modified equations of state, with a first-order phase transition and with a crossover transition. The standard hadronic mean field suppresses the elliptic flow v2, while the inclusion of the effects of a first-order phase transition (and also of a crossover transition) does enhance the elliptic flow at √{s_{NN}} < 30 GeV. This is due to the high sensitivity of v2 on the early, compression stage, pressure gradients of the systems created in high-energy heavy-ion collisions. The enhancement or suppression of the scaled energy flow, dubbed "elliptic flow", v2= <(px2-py2)/pT2 >, is understood as being due to out-of-plane flow, py > px, i.e. v2 < 0, dubbed out of plane - "squeeze-out", which occurs predominantly in the early, compression stage. Subsequently, the in-plane flow dominates, px > py, in the expansion stage, v2 > 0. The directed flow, v1(y) = < px(y)/pT(y)>, dubbed "bounce-off", is an independent measure of the pressure, which quickly builds up the transverse momentum transfer in the reaction plane. When the spectator matter leaves the participant fireball region, where the highest compression occurs, a hard expansion leads to larger v2. A combined analysis of the three transverse flow coefficients, radial v0 ˜ v_{\\perp}-, directed v1- and elliptic v2- flow of nucleons, in the beam energy range 3≤√{s_{NN}} ≤ 10 GeV, distinguishes the different compression and expansion scenarios: a characteristic dependence on the early stage equation of state is observed. The enhancement of both the elliptic and the transverse radial flow and the simultaneous collapse of the directed flow of nucleons offers a clear signature if a first-order phase transition is realized at the highest baryon densities created in high-energy heavy-ion collisions.

  10. Pressure algorithm for elliptic flow calculations with the PDF method

    NASA Technical Reports Server (NTRS)

    Anand, M. S.; Pope, S. B.; Mongia, H. C.

    1991-01-01

    An algorithm to determine the mean pressure field for elliptic flow calculations with the probability density function (PDF) method is developed and applied. The PDF method is a most promising approach for the computation of turbulent reacting flows. Previous computations of elliptic flows with the method were in conjunction with conventional finite volume based calculations that provided the mean pressure field. The algorithm developed and described here permits the mean pressure field to be determined within the PDF calculations. The PDF method incorporating the pressure algorithm is applied to the flow past a backward-facing step. The results are in good agreement with data for the reattachment length, mean velocities, and turbulence quantities including triple correlations.

  11. Weak and strong coupling equilibration in nonabelian gauge theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keegan, Liam; Kurkela, Aleksi; Romatschke, Paul

    2016-04-06

    In this study, we present a direct comparison studying equilibration through kinetic theory at weak coupling and through holography at strong coupling in the same set-up. The set-up starts with a homogeneous thermal state, which then smoothly transitions through an out-of-equilibrium phase to an expanding system undergoing boost-invariant flow. This first apples-to-apples comparison of equilibration provides a benchmark for similar equilibration processes in heavy-ion collisions, where the equilibration mechanism is still under debate. We find that results at weak and strong coupling can be smoothly connected by simple, empirical power-laws for the viscosity, equilibration time and entropy production of themore » system.« less

  12. Transverse radius dependence for transverse velocity and elliptic flow in intermediate energy HIC

    NASA Astrophysics Data System (ADS)

    Yan, Ting-Zhi; Li, Shan

    2011-05-01

    The mean transverse velocity and elliptic flow of light fragments (A <= 2) as a function of transverse radius are studied for 25 MeV/nucleon 64Cu+64Cu collisions with impact parameters 3-5 fm by the isospin-dependent quantum molecular dynamics model. By comparison between the in-plane and the out-of-plane transverse velocities, the elliptic flow dependence on the transverse radius can be understood qualitatively, and variation of the direction of the resultant force on the fragments can be investigated qualitatively.

  13. Non-Gaussian elliptic-flow fluctuations in PbPb collisions at $$\\sqrt{\\smash[b]{s_{_\\text{NN}}}} = 5.02$$ TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    Event-by-event fluctuations in the elliptic-flow coefficientmore » $$v_2$$ are studied in PbPb collisions at $$\\sqrt{s_{_\\text{NN}}} = 5.02$$ TeV using the CMS detector at the CERN LHC. Elliptic-flow probability distributions $${p}(v_2)$$ for charged particles with transverse momentum 0.3$$< p_\\mathrm{T} <$$3.0 GeV and pseudorapidity $$| \\eta | <$$ 1.0 are determined for different collision centrality classes. The moments of the $${p}(v_2)$$ distributions are used to calculate the $$v_{2}$$ coefficients based on cumulant orders 2, 4, 6, and 8. A rank ordering of the higher-order cumulant results and nonzero standardized skewness values obtained for the $${p}(v_2)$$ distributions indicate non-Gaussian initial-state fluctuation behavior. Bessel-Gaussian and elliptic power fits to the flow distributions are studied to characterize the initial-state spatial anisotropy.« less

  14. Effects of initial-state nucleon shadowing on the elliptic flow of thermal photons

    NASA Astrophysics Data System (ADS)

    Dasgupta, Pingal; Chatterjee, Rupa; Singh, Sushant K.; Alam, Jan-e.

    2018-03-01

    Recently the effect of nucleon shadowing on the Monte Carlo-Glauber initial condition was studied and its role on the centrality dependence of elliptic flow (v2) and fluctuations in initial eccentricity for different colliding nuclei were explored. It was found that the results with shadowing effects are closer to the QCD-based dynamical model as well as to the experimental data. Inspired by this outcome, in this work we study the transverse momentum (pT) spectra and elliptic flow of thermal photons for Au +Au collisions at the BNL Relativisitic Heavy Ion Collider and Pb +Pb collisions at the CERN Large Hadron Collider by incorporating the shadowing effects in deducing the initial energy density profile required to solve the relativistic hydrodynamical equations. We find that the thermal photon spectra remain almost unaltered; however, the elliptic flow of photons is found to be enhanced significantly due to shadowing effects.

  15. Influence of the nuclear symmetry energy on the collective flows of charged pions

    NASA Astrophysics Data System (ADS)

    Gao, Yuan; Yong, Gao-Chan; Zhang, Lei; Zuo, Wei

    2018-01-01

    Based on the isospin-dependent Boltzmann-Uehling-Uhlenbeck (IBUU) transport model, we studied charged pion transverse and elliptic flows in semicentral 197Au+197Au collisions at 600 MeV/nucleon. It is found that π+-π- differential transverse flow and the difference of π+ and π- transverse flows almost show no effects of the symmetry energy. Their corresponding elliptic flows are largely affected by the symmetry energy, especially at high transverse momenta. The isospin-dependent pion elliptic flow at high transverse momenta thus provides a promising way to probe the high-density behavior of the symmetry energy in heavy-ion collisions at the Facility for Antiproton and Ion Research (FAIR) at GSI, Darmstadt or at the Cooling Storage Ring (CSR) at HIRFL, Lanzhou.

  16. Elliptical instability in stably stratified fluid interiors

    NASA Astrophysics Data System (ADS)

    Vidal, J.; Hollerbach, R.; Schaeffer, N.; Cebron, D.

    2016-12-01

    Self-sustained magnetic fields in celestial bodies (planets, moons, stars) are due to flows in internal electrically conducting fluids. These fluid motions are often attributed to convection, as it is the case for the Earth's liquid core and the Sun. However some past or present liquid cores may be stably stratified. Alternative mechanisms may thus be needed to understand the dynamo process in these celestial objects. Turbulent flows driven by mechanical forcings, such as tides or precession, seem very promising since they are dynamo capable. However the effect of density stratification is not clear, because it can stabilize or destabilize mechanically-driven flows.To mimic an elliptical distortion due to tidal forcing in spherical geometry (full sphere and shell), we consider a theoretical base flow with elliptical streamlines and an associated density profile. It allows to keep the numerical efficiency of spectral methods in this geometry. The flow satisfies the stress-free boundary condition. We perform the stability analysis of the base state using three-dimensional simulations to study both the linear and nonlinear regimes. Stable and unstable density profiles are considered. A complementary local stability analysis (WKB) is also performed. We show that elliptical instability can still grow upon a stable stratification. We also study the mixing of the stratification by the elliptical instability. Finally we look at the dynamo capability of these flows.

  17. Computer program for calculating supersonic flow about circular, elliptic, and bielliptic cones by the method of lines

    NASA Technical Reports Server (NTRS)

    Klunker, E. B.; South, J. C., Jr.; Davis, R. M.

    1972-01-01

    A user's manual for a computer program which calculates the supersonic flow about circular, elliptic, and bielliptic cones at incidence and elliptic cones at yaw by the method of lines is presented. The program is automated to compute a case from known or easily calculated solution by changing the parameters through a sequence of steps. It provides information including the shock shape, flow field, isentropic surface properties, entropy layer, and force coefficients. A description of the program operation, sample computations, and a FORTRAN 4 listing are presented.

  18. Elliptic flow of electrons from beauty-hadron decays extracted from Pb-Pb collision data at √{s_NN} = 2.76 TeV

    NASA Astrophysics Data System (ADS)

    Moreira de Godoy, D.; Herrmann, F.; Klasen, M.; Klein-Bösing, C.; Suaide, A. A. P.

    2018-05-01

    We present a calculation of the elliptic flow of electrons from beauty-hadron decays in semi-central Pb-Pb collisions at centre-of-mass energy per colliding nucleon pair, represented as √{s_NN}, of 2.76 TeV. The result is obtained by the subtraction of the charm-quark contribution in the elliptic flow of electrons from heavy-flavour hadron decays in semi-central Pb-Pb collisions at √{s_NN} = 2.76 TeV recently made publicly available by the ALICE collaboration.

  19. Azimuthal correlations between directed and elliptic flow in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Wu, Feng-Juan; Shan, Lian-Qiang; Zhang, Jing-Bo; Tang, Gui-Xin; Huo, Lei

    2008-12-01

    A method for investigating the azimuthal correlations between directed and elliptic flow in heavy ion collisions is described. The transverse anisotropy of particle emission at AGS energies is investigated within the RQMD model. It is found that the azimuthal correlations between directed and elliptic flow are sensitive to the incident energy and impact parameter. The fluctuations in the initial stage and dynamical evolution of heavy ion collisions are not negligible. Supported by Natural Science Foundation of Heilongjiang Province (A0208) and Science Foundation of Harbin Institute of Technology (HIT.2002.47, HIT.2003.33)

  20. Centrality and pseudorapidity dependence of elliptic flow for charged hadrons in Au+Au collisions at √(sNN)=200 GeV

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N. K.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nguyen, M.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steinberg, P.; Stephans, G. S.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C. M.; Nieuwenhuizen, G. J.; Verdier, R.; Veres, G. I.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2005-11-01

    This Rapid Communication describes the measurement of elliptic flow for charged particles in Au+Au collisions at √(sNN)=200 GeV using the PHOBOS detector at the Relativistic Heavy Ion Collider. The measured azimuthal anisotropy is presented over a wide range of pseudorapidity for three broad collision centrality classes for the first time at this energy. Two distinct methods of extracting the flow signal were used to reduce systematic uncertainties. The elliptic flow falls sharply with increasing |η| at 200 GeV for all the centralities studied, as observed for minimum-bias collisions at √(sNN)=130 GeV.

  1. Supersonic Elliptical Ramp Inlet

    NASA Technical Reports Server (NTRS)

    Adamson, Eric E. (Inventor); Fink, Lawrence E. (Inventor); Fugal, Spencer R. (Inventor)

    2016-01-01

    A supersonic inlet includes a supersonic section including a cowl which is at least partially elliptical, a ramp disposed within the cowl, and a flow inlet disposed between the cowl and the ramp. The ramp may also be at least partially elliptical.

  2. Achieving swift equilibration of a Brownian particle using flow-fields

    NASA Astrophysics Data System (ADS)

    Patra, Ayoti; Jarzynski, Christopher

    Can a system be driven to a targeted equilibrium state on a timescale that is much shorter than its natural equilibration time? In a recent experiment, the swift equilibration of an overdamped Brownian particle was achieved by use of an appropriately designed, time-dependent optical trap potential. Motivated by these results, we develop a general theoretical approach for guiding an ensemble of Brownian particles to track the instantaneous equilibrium distribution of a desired potential U (q , t) . In our approach, we use flow-fields associated with the parametric evolution of the targeted equilibrium state to construct an auxiliary potential U (q , t) , such that dynamics under the composite potential U (t) + U (t) achieves the desired evolution. Our results establish a close connection between the swift equilibration of Brownian particles, quantum shortcuts to adiabaticity, and the dissipationless driving of a classical, Hamiltonian system.

  3. Elliptic flow from Coulomb interaction and low density elastic scattering

    NASA Astrophysics Data System (ADS)

    Sun, Yuliang; Li, Qingfeng; Wang, Fuqiang

    2018-04-01

    In high energy heavy ion collisions and interacting cold atom systems, large elliptic flow anisotropies have been observed. For the large opacity (ρ σ L ˜103 ) of the latter hydrodynamics is a natural consequence, but for the small opacity (ρ σ L ˜1 ) of the former the hydrodynamic description is questionable. To shed light onto the situation, we simulate the expansion of a low density argon ion (or atom) system, initially trapped in an elliptical region, under the Coulomb interaction (or elastic scattering). Significant elliptic anisotropy is found in both cases, and the anisotropy depends on the initial spatial eccentricity and the density of the system. The results may provide insights into the physics of anisotropic flow in high energy heavy ion collisions and its role in the study of quantum chromodynamics.

  4. Isochoric Burn, an Internally Consistent Method for the Reactant to Product Transformation in Reactive Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reaugh, J E; Lee, E L

    2002-07-01

    Mixture rules for partially reacted explosives differ amongst various models. For instance, JWL++ uses a partial pressure addition to compute an average zonal pressure, Ignition and Growth requires pressure equilibration and thermal equilibration of temperature dependent JWL EOSs, CHEETAH In Line RF also assumes temperature and pressure equilibration. It has been suggested in the past that a more realistic equilibration scheme should comprise isentropic pressure equilibration of the separate reacted and unreacted phases. This turns out not to be a proper path for equilibration. Rather, we find that the only internally consistent method is the evaluation of the equilibrium pressuremore » that satisfies the particular conditions of reactant and product resulting from deflagration in a fixed volume.« less

  5. Effect of an anisotropic escape mechanism on elliptic flow in relativistic heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Jaiswal, Amaresh; Bhaduri, Partha Pratim

    2018-04-01

    We study the effect of an anisotropic escape mechanism on elliptic flow in relativistic heavy-ion collisions. We use the Glauber model to generate initial conditions and ignore hydrodynamic expansion in the transverse direction. We employ the Beer-Lambert law to allow for the transmittance of produced hadrons in the medium and calculate the anisotropy generated due to the suppression of particles traversing through the medium. To separate non-flow contribution due to surface bias effects, we ignore hydrodynamic expansion in the transverse direction and consider purely longitudinal boost-invariant expansion. We calculate the transverse momentum dependence of elliptic flow, generated from an anisotropic escape mechanism due to surface bias effects, for various centralities in √{sN N}=200 GeV Au +Au collisions at the Relativistic Heavy Ion Collider and √{sN N}=2.76 TeV Pb +Pb collisions at the Large Hadron Collider. We find that the surface bias effects make a sizable contribution to the total elliptic flow observed in heavy-ion collisions, indicating that the viscosity of the QCD matter extracted from hydrodynamic simulations may be underestimated.

  6. Hydrodynamic Flow Fluctuations in √sNN = 5:02 TeV PbPbCollisions

    NASA Astrophysics Data System (ADS)

    Castle, James R.

    The collective, anisotropic expansion of the medium created in ultrarelativistic heavy-ion collisions, known as flow, is characterized through a Fourier expansion of the final-state azimuthal particle density. In the Fourier expansion, flow harmonic coefficients vn correspond to shape components in the final-state particle density, which are a consequence of similar spatial anisotropies in the initial-state transverse energy density of a collision. Flow harmonic fluctuations are studied for PbPb collisions at √sNN = 5.02 TeV using the CMS detector at the CERN LHC. Flow harmonic probability distributions p( vn) are obtained using particles with 0.3 < pT < 3.0 GeV/c and ∥eta∥ < 1.0 by removing finite-multiplicity resolution effects from the observed azimuthal particle density through an unfolding procedure. Cumulant elliptic flow harmonics (n = 2) are determined from the moments of the unfolded p(v2) distributions and used to construct observables in 5% wide centrality bins up to 60% that relate to the initial-state spatial anisotropy. Hydrodynamic models predict that fluctuations in the initial-state transverse energy density will lead to a non-Gaussian component in the elliptic flow probability distributions that manifests as a negative skewness. A statistically significant negative skewness is observed for all centrality bins as evidenced by a splitting between the higher-order cumulant elliptic flow harmonics. The unfolded p (v2) distributions are transformed assuming a linear relationship between the initial-state spatial anisotropy and final-state flow and are fitted with elliptic power law and Bessel Gaussian parametrizations to infer information on the nature of initial-state fluctuations. The elliptic power law parametrization is found to provide a more accurate description of the fluctuations than the Bessel-Gaussian parametrization. In addition, the event-shape engineering technique, where events are further divided into classes based on an observed ellipticity, is used to study fluctuation-driven differences in the initial-state spatial anisotropy for a given collision centrality that would otherwise be destroyed by event-averaging techniques. Correlations between the first and second moments of p( vn) distributions and event ellipticity are measured for harmonic orders n = 2 - 4 by coupling event-shape engineering to the unfolding technique.

  7. Dense matter at RHIC: Anisotropic flow

    DOE PAGES

    Voloshin, S. A.

    2005-02-01

    In this talk I discuss recent results on elliptic flow in Au+Au collisions at RHIC and how these results help us to understand the properties and evolution dynamics of the system created in such collisions. In particular, I discuss if and how the elliptic flow results obtained at RHIC indicate the system thermalization, deconfinement, and how much it tells us about the hadronization process.

  8. Electron-ion temperature equilibration in warm dense tantalum

    DOE PAGES

    Doppner, T; LePape, S.; Ma, T.; ...

    2014-11-05

    We present measurements of electron-ion temperature equilibration in proton-heated tantalum, under warm dense matter conditions. Our results agree with theoretical predictions for metals calculated using input data from ab initio simulations. Furthermore, the fast relaxation observed in the experiment contrasts with much longer equilibration times found in proton heated carbon, indicating that the energy flow pathways in warm dense matter are far from being fully understood.

  9. Elliptic flow due to charged hadrons for Au+Au collisions at RHIC energy 62.4 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Somani Ajit, E-mail: ajit.somani@gmail.com; Sudhir, Bhardwaj; Ashish, Agnihotri

    Elliptic flow is an important observable in search of Quark Gluon Plasma. The elliptic flow parameter dependence on centrality due to charged hadrons were studied using events generated by event generator AMPT at center of mass energy of 62.4 GeV per nucleon pair for Au+Au collisions. This study performed for pseudorapidity range from −0.35 to 0.35 and transverse momentum bins p{sub t} = 0.2 to 1 GeV/c and 1 to 2 GeV/c. We compared the results obtained from simulated data and RHIC-PHENIX data.

  10. Eccentricity Fluctuations Make Flow Measurable in High Multiplicity p-p Collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casalderrey-Solana, Jorge; Wiedemann, Urs Achim

    2010-03-12

    Elliptic flow is a hallmark of collectivity in hadronic collisions. Its measurement relies on analysis techniques which require high event multiplicity and so far can only be applied to heavy ion collisions. Here, we delineate the conditions under which elliptic flow becomes measurable in the samples of high-multiplicity (dN{sub ch}/dy>=50) p-p collisions, which will soon be collected at the LHC. We observe that fluctuations in the p-p interaction region can result in a sizable spatial eccentricity even for the most central p-p collisions. Under relatively mild assumptions on the nature of such fluctuations and on the eccentricity scaling of ellipticmore » flow, we find that the resulting elliptic flow signal in high-multiplicity p-p collisions at the LHC becomes measurable with standard techniques.« less

  11. Slow equilibration of reversed-phase columns for the separation of ionized solutes.

    PubMed

    Marchand, D H; Williams, L A; Dolan, J W; Snyder, L R

    2003-10-10

    Reversed-phase columns that have been stored in buffer-free solvents can exhibit pronounced retention-time drift when buffered, low-pH mobile phases are used with ionized solutes. Whereas non-ionized compounds exhibit constant retention times within 20 min of the beginning of mobile phase flow, the retention of ionized compounds can continue to change (by 20% or more) for several hours. If mobile phase pH is changed from low to high and back again, an even longer time may be required before the column reaches equilibration at low pH. The speed of column equilibration for ionized solutes can vary significantly among different reversed-phase columns and is not affected by flow rate.

  12. Initial eccentricity and constituent quark number scaling of elliptic flow in ideal and viscous dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhuri, A. K.

    2010-04-15

    In the Israel-Stewart theory of dissipative hydrodynamics, the scaling properties of elliptic flow in Au+Au collisions are studied. The initial energy density of the fluid was fixed to reproduce STAR data on phi-meson multiplicity in 0-5% Au+Au collisions such that, irrespective of fluid viscosity, entropy at the freeze-out is similar in ideal or in viscous evolution. The initial eccentricity or constituent quark number scaling is only approximate in ideal or minimally viscous (eta/s=1/4pi) fluid. Eccentricity scaling becomes nearly exact in more viscous fluid (eta/s>=0.12). However, in more viscous fluid, constituent quark number scaled elliptic flow for mesons and baryons splitsmore » into separate scaling functions. Simulated flows also do not exhibit 'universal scaling'; that is, elliptic flow scaled by the constituent quark number and charged particles v{sub 2} is not a single function of transverse kinetic energy scaled by the quark number. From a study of the violation of universal scaling, we obtain an estimate of quark-gluon plasma viscosity, eta/s=0.12+-0.03. The error is statistical only. The systematic error in eta/s could be as large.« less

  13. High-beta analytic equilibria in circular, elliptical, and D-shaped large aspect ratio axisymmetric configurations with poloidal and toroidal flows

    NASA Astrophysics Data System (ADS)

    López, O. E.; Guazzotto, L.

    2017-03-01

    The Grad-Shafranov-Bernoulli system of equations is a single fluid magnetohydrodynamical description of axisymmetric equilibria with mass flows. Using a variational perturbative approach [E. Hameiri, Phys. Plasmas 20, 024504 (2013)], analytic approximations for high-beta equilibria in circular, elliptical, and D-shaped cross sections in the high aspect ratio approximation are found, which include finite toroidal and poloidal flows. Assuming a polynomial dependence of the free functions on the poloidal flux, the equilibrium problem is reduced to an inhomogeneous Helmholtz partial differential equation (PDE) subject to homogeneous Dirichlet conditions. An application of the Green's function method leads to a closed form for the circular solution and to a series solution in terms of Mathieu functions for the elliptical case, which is valid for arbitrary elongations. To extend the elliptical solution to a D-shaped domain, a boundary perturbation in terms of the triangularity is used. A comparison with the code FLOW [L. Guazzotto et al., Phys. Plasmas 11(2), 604-614 (2004)] is presented for relevant scenarios.

  14. The Radial Flow Speed of the Neutral Hydrogen in the Oval Distortion of NGC 4736

    NASA Astrophysics Data System (ADS)

    Speights, Jason; Benton, Allen; Reimer, Rebecca; Lemaire, Robert; Godwin, Caleb

    2017-01-01

    Radial flows are difficult to measure in the presence of elliptical flows. This is because the model describing the observed velocity field when both kinds of flows are present is degenerate in the unknown parameters. In this poster we show that the degeneracy can be overcome if the pattern speed and position angle of the elliptical flows are known. The method is demonstrated for NGC 4736 using 3.6 micrometer and neutral hydrogen data. We find a mean inward radial flow speed of 5.6 +/- 1.7 km/s in the region of the oval distortion.

  15. Elliptic flow of charged pions, protons and strange particles emitted in Pb + Au collisions at top SPS energy

    NASA Astrophysics Data System (ADS)

    Adamová, D.; Agakichiev, G.; Andronic, A.; Antończyk, D.; Appelshäuser, H.; Belaga, V.; Bielčíková, J.; Braun-Munzinger, P.; Busch, O.; Cherlin, A.; Damjanović, S.; Dietel, T.; Dietrich, L.; Drees, A.; Dubitzky, W.; Esumi, S. I.; Filimonov, K.; Fomenko, K.; Fraenkel, Z.; Garabatos, C.; Glässel, P.; Hering, G.; Holeczek, J.; Kalisky, M.; Krobath, G.; Kushpil, V.; Maas, A.; Marín, A.; Milošević, J.; Miśkowiec, D.; Panebrattsev, Y.; Petchenova, O.; Petráček, V.; Radomski, S.; Rak, J.; Ravinovich, I.; Rehak, P.; Sako, H.; Schmitz, W.; Schuchmann, S.; Sedykh, S.; Shimansky, S.; Stachel, J.; Šumbera, M.; Tilsner, H.; Tserruya, I.; Tsiledakis, G.; Wessels, J. P.; Wienold, T.; Wurm, J. P.; Yurevich, S.; Yurevich, V.; Ceres Collaboration

    Differential elliptic flow spectra v2(pT) of π-, KS0, p, Λ have been measured at √{sNN}=17.3 GeV around midrapidity by the CERN-CERES/NA45 experiment in mid-central Pb + Au collisions (10% of σgeo). The pT range extends from about 0.1 GeV/c (0.55 GeV/c for Λ) to more than 2 GeV/c. Protons below 0.4 GeV/c are directly identified by dE/dx. At higher pT, proton elliptic flow is derived as a constituent, besides π+ and K+, of the elliptic flow of positive pion candidates. This retrieval requires additional inputs: (i) of the particle composition, and (ii) of v2(pT) of positive pions. For (i), particle ratios obtained by NA49 are adapted to CERES conditions; for (ii), the measured v2(pT) of negative pions is substituted, assuming π+ and π- elliptic flow magnitudes to be sufficiently close. The v2(pT) spectra are compared to ideal-hydrodynamics calculations. In synopsis of the series π--KS0-p-Λ, flow magnitudes are seen to fall with decreasing pT progressively even below hydro calculations with early kinetic freeze-out (Tf=160 MeV) leaving not much time for hadronic evolution. The proton v2(pT) data show a downward swing towards low pT with excursions into negative v2 values. The pion-flow isospin asymmetry observed recently by STAR at RHIC, invalidating in principle our working assumption, is found in its impact on proton flow bracketed from above by the direct proton flow data, and not to alter any of our conclusions. Results are discussed in perspective of recent viscous hydrodynamics studies which focus on late hadronic stages.

  16. Elliptic flow in small systems due to elliptic gluon distributions?

    DOE PAGES

    Hagiwara, Yoshikazu; Hatta, Yoshitaka; Xiao, Bo-Wen; ...

    2017-05-31

    We investigate the contributions from the so-called elliptic gluon Wigner distributions to the rapidity and azimuthal correlations of particles produced in high energy pp and pA collisions by applying the double parton scattering mechanism. We compute the ‘elliptic flow’ parameter v 2 as a function of the transverse momentum and rapidity, and find qualitative agreement with experimental observations. This shall encourage further developments with more rigorous studies of the elliptic gluon distributions and their applications in hard scattering processes in pp and pA collisions.

  17. Elliptic flow in small systems due to elliptic gluon distributions?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagiwara, Yoshikazu; Hatta, Yoshitaka; Xiao, Bo-Wen

    We investigate the contributions from the so-called elliptic gluon Wigner distributions to the rapidity and azimuthal correlations of particles produced in high energy pp and pA collisions by applying the double parton scattering mechanism. We compute the ‘elliptic flow’ parameter v 2 as a function of the transverse momentum and rapidity, and find qualitative agreement with experimental observations. This shall encourage further developments with more rigorous studies of the elliptic gluon distributions and their applications in hard scattering processes in pp and pA collisions.

  18. Parameterization and study of elliptic flow coefficient for Au+Au and Cu+Cu collisions at RHIC energy 200 GeV/A

    NASA Astrophysics Data System (ADS)

    Kumar, Somani Ajit; Bright, Keswani; Sudhir, Bhardwaj; Ashish, Agnihotri

    2018-05-01

    Elliptic flow coefficient is important observable in search of Quark Gluon Plasma. The variation of elliptic flow coefficient with centrality were studied using events generated by AMPT (Default) for Au+Au and Cu+Cu collisions at center of mass energy of 200 GeV/A. We compared the simulated data results with RHIC-PHENIX experimental results and found close agreement between them. The study of the variation of the v2 for Au+Au and Cu+Cu was parameterized by fitting. We proposed a new formula to predict the expected value of v2 at particular centrality for Au+Au or Cu+Cu at 200 GeV/A.

  19. Measurement of the pseudorapidity and transverse momentum dependence of the elliptic flow of charged particles in lead-lead collisions at √{sNN} = 2.76 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andari, N.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, D.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H. S.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Behar Harpaz, S.; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bona, M.; Bondarenko, V. G.; Boonekamp, M.; Boorman, G.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchanan, N. J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Buira-Clark, D.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Byatt, T.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Chavez Barajas, C. A.; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciba, K.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clifft, R. W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuciuc, C.-M.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Cuneo, S.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czirr, H.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; da Silva, P. V. M.; da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Daum, C.; Dauvergne, J. P.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, E.; Davies, M.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Dawson, J. W.; Daya, R. K.; de, K.; de Asmundis, R.; de Castro, S.; de Castro Faria Salgado, P. E.; de Cecco, S.; de Graat, J.; de Groot, N.; de Jong, P.; de La Taille, C.; de la Torre, H.; de Lotto, B.; de Mora, L.; de Nooij, L.; de Oliveira Branco, M.; de Pedis, D.; de Saintignon, P.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vivie de Regie, J. B.; Dean, S.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Deile, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; Dewilde, B.; Dhaliwal, S.; Dhullipudi, R.; di Ciaccio, A.; di Ciaccio, L.; di Girolamo, A.; di Girolamo, B.; di Luise, S.; di Mattia, A.; di Micco, B.; di Nardo, R.; di Simone, A.; di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doxiadis, A. D.; Doyle, A. T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Dubbert, J.; Dubbs, T.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Duran Yildiz, H.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Fakhrutdinov, R. M.; Falciano, S.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M. J.; Fisher, S. M.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T.; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; García, C.; García Navarro, J. E.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Golling, T.; Golovnia, S. N.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino da Costa, J.; Gonella, L.; Gonidec, A.; Gonzalez, S.; González de La Hoz, S.; Gonzalez Silva, M. L.; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gouanère, M.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafström, P.; Grah, C.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenfield, D.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Grishkevich, Y. V.; Grivaz, J.-F.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guest, D.; Guicheney, C.; Guida, A.; Guillemin, T.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gupta, A.; Gusakov, Y.; Gushchin, V. N.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamal, P.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B. M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayden, D.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henß, T.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg, R.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hill, N.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmes, A.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Hong, T. M.; Hooft van Huysduynen, L.; Horazdovsky, T.; Horn, C.; Horner, S.; Horton, K.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howarth, J.; Howell, D. F.; Hristova, I.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Imbault, D.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Ionescu, G.; Irles Quiles, A.; Ishii, K.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joram, C.; Jorge, P. M.; Joseph, J.; Ju, X.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazanin, V. A.; Kazarinov, M. Y.; Keates, J. R.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenney, C. J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Ketterer, C.; Keung, J.; Khakzad, M.; Khalil-Zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Kholodenko, A. G.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiver, A. M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Kneringer, E.; Knobloch, J.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kollefrath, M.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S. V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasel, O.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumshteyn, Z. V.; Kruth, A.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuze, M.; Kuzhir, P.; Kvasnicka, O.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Lane, J. L.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Lebel, C.; Lecompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Leger, A.; Legeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewandowska, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Lilley, J. N.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lo Sterzo, F.; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lupi, A.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Machado Miguens, J.; Macina, D.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magnoni, L.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marin, A.; Marino, C. P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti-Garcia, S.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph.; Martin, T. A.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Maß, M.; Massa, I.; Massaro, G.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J. M.; Maxfield, S. J.; Maximov, D. A.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzoni, E.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; McFayden, J. A.; McGlone, H.; McHedlidze, G.; McLaren, R. A.; McLaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meinhardt, J.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meuser, S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Miele, P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misiejuk, A.; Mitrevski, J.; Mitrofanov, G. Y.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Miyazaki, K.; Mjörnmark, J. U.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohapatra, S.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morii, M.; Morin, J.; Morita, Y.; Morley, A. K.; Mornacchi, G.; Morone, M.-C.; Morozov, S. V.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muijs, A.; Muir, A.; Munwes, Y.; Murakami, K.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakano, I.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nebot, E.; Nechaeva, P. Yu.; Negri, A.; Negri, G.; Nektarijevic, S.; Nelson, A.; Nelson, S.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Nesterov, S. Y.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Norton, P. R.; Novakova, J.; Nozaki, M.; Nožička, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nyman, T.; O'Brien, B. J.; O'Neale, S. W.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohska, T. K.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Oliveira Damazio, D.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Osuna, C.; Otero Y Garzon, G.; Ottersbach, J. P.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Øye, O. K.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Pengo, R.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Cavalcanti, T.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Peshekhonov, V. D.; Peters, O.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A. W.; Phillips, P. W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Pickford, A.; Piec, S. M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Pleskach, A. V.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Porter, R.; Posch, C.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Price, M. J.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, Z.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Ramstedt, M.; Randrianarivony, K.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renaud, A.; Renkel, P.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Roda Dos Santos, D.; Rodier, S.; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, A.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rossi, L.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubinskiy, I.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rurikova, Z.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Rzaeva, S.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchez, A.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Savva, P.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaepe, S.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, M.; Schöning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schuh, S.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shichi, H.; Shimizu, S.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloan, T. J.; Sloper, J.; Smakhtin, V.; Smirnov, S. Yu.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Sondericker, J.; Soni, N.; Sopko, V.; Sopko, B.; Sorbi, M.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Stahl, T.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G. A.; Stillings, J. A.; Stockmanns, T.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Soh, D. A.; Su, D.; Subramania, H. S.; Succurro, A.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Sviridov, Yu. M.; Swedish, S.; Sykora, I.; Sykora, T.; Szeless, B.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tani, K.; Tannoury, N.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomson, E.; Thomson, M.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Traynor, D.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Tyrvainen, H.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van der Graaf, H.; van der Kraaij, E.; van der Leeuw, R.; van der Poel, E.; van der Ster, D.; van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wakabayashi, J.; Walbersloh, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, J. C.; Wang, R.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, J.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Weydert, C.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wunstorf, R.; Wynne, B. M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Yabsley, B.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ybeles Smit, G. V.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zalite, Yo. K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, A. V.; Zenin, O.; Ženiš, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi Della Porta, G.; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; Zur Nedden, M.; Zutshi, V.; Zwalinski, L.; Atlas Collaboration

    2012-02-01

    This Letter describes the measurement of elliptic flow of charged particles in lead-lead collisions at √{sNN} = 2.76 TeV using the ATLAS detector at the Large Hadron Collider (LHC). The results are based on an integrated luminosity of approximately 7 μb-1. Elliptic flow is measured over a wide region in pseudorapidity, | η | < 2.5, and over a broad range in transverse momentum, 0.5

  20. Measurement of the Width and Skewness of Elliptic Flow Fluctuations in PbPb Collisions at 5.02 TeV with CMS

    NASA Astrophysics Data System (ADS)

    Castle, James R.; CMS Collaboration

    2017-11-01

    Flow harmonic fluctuations are studied for PbPb collisions at √{sNN} = 5.02 TeV using the CMS detector at the LHC. Flow harmonic probability distributions p(v2) are obtained by unfolding smearing effects from observed azimuthal anisotropy distributions using particles of 0.3

  1. Event-by-Event Fluctuations of Azimuthal Particle Anisotropy in Au+Au Collisions at sNN=200GeV

    NASA Astrophysics Data System (ADS)

    Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.

    2010-04-01

    This Letter presents the first measurement of event-by-event fluctuations of the elliptic flow parameter v2 in Au+Au collisions at sNN=200GeV as a function of collision centrality. The relative nonstatistical fluctuations of the v2 parameter are found to be approximately 40%. The results, including contributions from event-by-event elliptic flow fluctuations and from azimuthal correlations that are unrelated to the reaction plane (nonflow correlations), establish an upper limit on the magnitude of underlying elliptic flow fluctuations. This limit is consistent with predictions based on spatial fluctuations of the participating nucleons in the initial nuclear overlap region. These results provide important constraints on models of the initial state and hydrodynamic evolution of relativistic heavy ion collisions.

  2. On the three-dimensional instability of strained vortices

    NASA Technical Reports Server (NTRS)

    Waleffe, Fabian

    1990-01-01

    The three-dimensional (3-D) instability of a two-dimensional (2-D) flow with elliptical streamlines has been proposed as a generic mechanism for the breakdown of many 2-D flows. A physical interpretation for the mechanism is presented together with an analytical treatment of the problem. It is shown that the stability of an elliptical flow is governed by an Ince equation. An analytical representation for a localized solution is given and establishes a direct link with previous computations and experiments.

  3. Group II Xenoliths from Lunar Crater Volcanic Field, Central Nevada: Evidence for a Kinked Geotherm

    NASA Astrophysics Data System (ADS)

    Roden, M.; Mosely, J.; Norris, J.

    2015-12-01

    Group II xenoliths associated with the 140 Ka Easy Chair Crater, Lunar Crater volcanic field, NV, consist of amphibole rich-inclusions including amphibolites, pyroxenites, and gabbros. Abundant minerals in these inclusions are kaersutite, aluminous (7.3-9.7 wt% Al2O3), calcic clinopyroxene, primarily diopside, and olivine (Mg# 69-73) with accessory spinel, sulfide and apatite. Although most apatites are fluor-hydroxyapatite solid solutions, one xenolith contains Cl- and OH-rich apatite suggesting that Cl may have been an important constituent in the parent magma(s) . The xenoliths show abundant evidence for equilibration at relatively low temperatures including amphibole and orthopyroxene exsolution in clinopyroxene, and granules of magnetite in hercynite hosts. If latter texture is due to exsolution, then this particular Group II xenolith equilibrated at temperatures near or below 500oC or at a depth of about 15 km along a conductive geotherm. It may be that all the Group II xenoliths equilibrated at low temperatures given the abundant exsolution textures although Fe-Mg exchange relations suggest equilibration at temperatures in excess of 800oC. Low equilibration temperatures are in conflict with the unusually high equilibration temperatures, >1200oC (Smith, 2000) displayed by Group I xenoliths from this same volcanic field. Taken at face value, the geothermometric results indicate unusually high temperatures in the upper mantle, normal temperatures in the crust and the possibility of a kinked geotherm in the region. Curiously the LCVF lies in an area of "normal" heat flow, south of the Battle Mountain area of high heat flow but the number of heat flow measurements in the Lunar Crater area is very low (Humphreys et al., 2003; Sass, 2005). References: Humphreys et al., 2003, Int. Geol. Rev. 45: 575; Sass et al., 2005, http://pubs.usgs.gov/of/2005/1207/; Smith, 2000, JGR 105: 16769.

  4. Effects of the pion-nucleon potential in 197Au+197Au collisions at 1.5 GeV/nucleon

    NASA Astrophysics Data System (ADS)

    Xie, Wen-Jie; Su, Jun; Zhu, Long; Zhang, Feng-Shou

    2018-06-01

    The influence of the pion-nucleon potential on the pion dynamics in 197Au+197Au collisions at 1.5 GeV/nucleon for different centrality intervals is investigated in the framework of the isospin-dependent quantum molecular dynamics model. It is found that the observables related to pions, such as the rapidity distributions, the rapidity dependencies of the directed flow and the elliptic flow, the centrality dependencies of the directed flow and the elliptic flow, and the transverse momentum distribution of the strength function of the azimuthal anisotropy are sensitive to the pion-nucleon potential. The pion multiplicity and the polar-angle distributions of pions are less affected by the pion-nucleon potential. The comparisons to the experimental data, in particular to the rapidity distributions of the directed flow and the elliptic flow, favor the stronger pion-nucleon potential derived from the phenomenological ansatz proposed by Gale and Kapusta [C. Gale and J. Kapusta, Phys. Rev. C 35, 2107 (1987), 10.1103/PhysRevC.35.2107].

  5. Two-dimensional subsonic compressible flow past elliptic cylinders

    NASA Technical Reports Server (NTRS)

    Kaplan, Carl

    1938-01-01

    The method of Poggi is used to calculate, for perfect fluids, the effect of compressibility upon the flow on the surface of an elliptic cylinder at zero angle of attack and with no circulation. The result is expressed in a closed form and represents a rigorous determination of the velocity of the fluid at the surface of the obstacle insofar as the second approximation is concerned. Comparison is made with Hooker's treatment of the same problem according to the method of Janzen and Rayleight and it is found that, for thick elliptic cylinders, the two methods agree very well. The labor of computation is considerably reduced by the present solution.

  6. Feasibility of constraining the curvature parameter of the symmetry energy using elliptic flow data

    NASA Astrophysics Data System (ADS)

    Cozma, M. D.

    2018-03-01

    A QMD transport model that employs a modified momentum dependent interaction (MDI2) potential, supplemented by a phase-space coalescence model fitted to FOPI experimental multiplicities of free nucleons and light clusters is used to study the density dependence of the symmetry energy above the saturation point by a comparison with experimental elliptic flow ratios measured by the FOPI-LAND and ASYEOS Collaborations in 197Au + 197Au collisions at 400 MeV/nucleon impact energy. A previous calculation using the same model has proven that neutron-to-proton and neutron-to-charged-particles elliptic flow ratios probe on average different densities allowing in principle the extraction of both the slope L and curvature K_{sym} parameters of the symmetry energy. To make use of this result a Gogny interaction inspired potential is modified by the addition of a density dependent, momentum independent term, while enforcing a close description of the empirical nucleon optical potential, allowing independent modifications of L and Ksym. Comparing theoretical predictions with experimental data for neutron-to-proton and neutron-to-charged-particles elliptic flow ratios the following constraint is extracted: L = 85 ± 22(exp) ± 20(th) ± 12(sys) MeV and K_{sym} = 96 ± 315(exp) ± 170(th) ± 166(sys) MeV. Theoretical errors include effects due to uncertainties in the isoscalar part of the equation of state, value of the isovector neutron-proton effective mass splitting, in-medium effects on the elastic nucleon-nucleon cross-sections, Pauli blocking algorithm variants and scenario considered for the conservation of the total energy of the system. Systematical uncertainties are generated by the inability of the transport model to reproduce experimental light-cluster-to-proton multiplicity ratios. A value for L free of systematical theoretical uncertainties can be extracted from the neutron-to-proton elliptic flow ratio alone: L = 84 ± 30(exp) ± 19(th) MeV. It is demonstrated that elliptic flow ratios reach a maximum sensitivity on the K_{sym} parameter in heavy-ion collisions of about 250 MeV/nucleon impact energy, allowing a reduction of its experimental component of uncertainty to about 150 MeV.

  7. Use of Inert Gases to Study the Interaction of Blood Flow and Diffusion during Passive Absorption from the Gastrointestinal Tract of the Rat

    PubMed Central

    Levitt, Michael D.; Levitt, David G.

    1973-01-01

    Measurement of the relative absorption rates of inert gases (H2, He, CH4, SF6, and 133Xe) was used to investigate the interaction between diffusion and blood flow during passive absorption from the stomach, small bowel, and colon of the rat. If uptake is blood flow limited, the gases should be absorbed in proportion to their solubilities in blood, but if diffusion limited, uptake should be proportional to the diffusion rate of the gases in mucosal tissues. The observed absorption data were fitted to a series of models of interaction between perfusion and diffusion. A simple model accurately predicted the absorption rates of the gases from all segments of bowel. In this model, gas is absorbed into two distinct blood flows: one which flows in proximity to the lumen and completely equilibrates with the lumen, and a second which is sufficiently rapid and distant from the lumen that its gas uptake is entirely diffusion limited. The fraction of the total absorption attributable to the equilibrating flow can be readily calculated and equalled 93%, 77%, and 33% for the small bowel, colon, and stomach, respectively. Thus the rate of passive absorption of gases from the small bowel is limited almost entirely by the blood flow to the mucosa, and absorption from the stomach is largely limited by the diffusion rate of the gases. The flow which equilibrates with the lumen can be quantitated, and this flow may provide a useful measure of “effective” mucosal blood flow. Images PMID:4719667

  8. Pre-equilibrium dynamics and heavy-ion observables

    NASA Astrophysics Data System (ADS)

    Heinz, Ulrich; Liu, Jia

    2016-12-01

    To bracket the importance of the pre-equilibrium stage on relativistic heavy-ion collision observables, we compare simulations where it is modeled by either free-streaming partons or fluid dynamics. These cases implement the assumptions of extremely weak vs. extremely strong coupling in the initial collision stage. Accounting for flow generated in the pre-equilibrium stage, we study the sensitivity of radial, elliptic and triangular flow on the switching time when the hydrodynamic description becomes valid. Using the hybrid code iEBE-VISHNU [C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass and U. Heinz, Comput. Phys. Commun. 199 (2016) 61] we perform a multi-parameter search, constrained by particle ratios, integrated elliptic and triangular charged hadron flow, the mean transverse momenta of pions, kaons and protons, and the second moment < pT2 > of the proton transverse momentum spectrum, to identify optimized values for the switching time τs from pre-equilibrium to hydrodynamics, the specific shear viscosity η / s, the normalization factor of the temperature-dependent specific bulk viscosity (ζ / s) (T), and the switching temperature Tsw from viscous hydrodynamics to the hadron cascade UrQMD. With the optimized parameters, we predict and compare with experiment the pT-distributions of π, K, p, Λ, Ξ and Ω yields and their elliptic flow coefficients, focusing specifically on the mass-ordering of the elliptic flow for protons and Lambda hyperons which is incorrectly described by VISHNU without pre-equilibrium flow.

  9. Multistrange Baryon elliptic flow in Au+Au collisions at square root of sNN=200 GeV.

    PubMed

    Adams, J; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Arkhipkin, D; Averichev, G S; Badyal, S K; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellingeri-Laurikainen, A; Bellwied, R; Berger, J; Bezverkhny, B I; Bharadwaj, S; Bhasin, A; Bhati, A K; Bhatia, V S; Bichsel, H; Bielcik, J; Bielcikova, J; Billmeier, A; Bland, L C; Blyth, C O; Blyth, S L; Bonner, B E; Botje, M; Boucham, A; Bouchet, J; Brandin, A V; Bravar, A; Bystersky, M; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Castillo, J; Catu, O; Cebra, D; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, Y; Cheng, J; Cherney, M; Chikanian, A; Christie, W; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Das, S; Daugherity, M; de Moura, M M; Dedovich, T G; DePhillips, M; Derevschikov, A A; Didenko, L; Dietel, T; Dogra, S M; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Mazumdar, M R; Eckardt, V; Edwards, W R; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faivre, J; Fatemi, R; Fedorisin, J; Filimonov, K; Filip, P; Finch, E; Fine, V; Fisyak, Y; Fornazier, K S F; Fu, J; Gagliardi, C A; Gaillard, L; Gans, J; Ganti, M S; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Gos, H; Grachov, O; Grebenyuk, O; Grosnick, D; Guertin, S M; Guo, Y; Gupta, A; Gupta, N; Gutierrez, T D; Hallman, T J; Hamed, A; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Hepplemann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horner, M J; Huang, H Z; Huang, S L; Hughes, E W; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Jedynak, M; Jiang, H; Jones, P G; Judd, E G; Kabana, S; Kang, K; Kaplan, M; Keane, D; Kechechyan, A; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Kislov, E M; Klay, J; Klein, S R; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kowalik, K L; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Laue, F; Lauret, J; Lebedev, A; Lednicky, R; Lehocka, S; LeVine, M J; Li, C; Li, Q; Li, Y; Lin, G; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Liu, Q J; Liu, Z; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, J G; Ma, Y G; Magestro, D; Mahajan, S; Mahapatra, D P; Majka, R; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J N; Matis, H S; Matulenko, Yu A; McClain, C J; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Miller, M L; Minaev, N G; Mironov, C; Mischke, A; Mishra, D K; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Morozov, D A; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Netrakanti, P K; Nikitin, V A; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Reinnarth, J; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Sarsour, M; Savin, I; Sazhin, P S; Schambach, J; Scharenberg, R P; Schmitz, N; Schweda, K; Seger, J; Seyboth, P; Shahaliev, E; Shao, M; Shao, W; Sharma, M; Shen, W Q; Shestermanov, K E; Shimanskiy, S S; Sichtermann, E; Simon, F; Singaraju, R N; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Speltz, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Swanger, M; Symons, T J M; Szanto de Toledo, A; Tai, A; Takahashi, J; Tang, A H; Tarnowsky, T; Thein, D; Thomas, J H; Timmins, A R; Timoshenko, S; Tokarev, M; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van der Kolk, N; van Leeuwen, M; Vander Molen, A M; Varma, R; Vasilevski, I M; Vasiliev, A N; Vernet, R; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Waggoner, W T; Wang, F; Wang, G; Wang, G; Wang, X L; Wang, Y; Wang, Y; Wang, Z M; Ward, H; Watson, J W; Webb, J C; Westfall, G D; Wetzler, A; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zborovsky, I; Zhang, H; Zhang, W M; Zhang, Y; Zhang, Z P; Zhong, C; Zoulkarneev, R; Zoulkarneeva, Y; Zubarev, A N; Zuo, J X

    2005-09-16

    We report on the first measurement of elliptic flow v2(pT) of multistrange baryons Xi- +Xi+ and Omega- + Omega+ in heavy-ion collisions. In minimum-bias Au+Au collisions at square root of s(NN)=200 GeV, a significant amount of elliptic flow, comparable to other nonstrange baryons, is observed for multistrange baryons which are expected to be particularly sensitive to the dynamics of the partonic stage of heavy-ion collisions. The pT dependence of v2 of the multistrange baryons confirms the number of constituent quark scaling previously observed for lighter hadrons. These results support the idea that a substantial fraction of the observed collective motion is developed at the early partonic stage in ultrarelativistic nuclear collisions at the Relativistic Heavy Ion Collider.

  10. Semihard scattering unraveled from collective dynamics by two-pion azimuthal correlations in 158A GeV/c Pb+Au collisions.

    PubMed

    Agakichiev, G; Appelshäuser, H; Baur, R; Bielcikova, J; Braun-Munzinger, P; Cherlin, A; Drees, A; Esumi, S I; Filimonov, K; Fraenkel, Z; Fuchs, Ch; Glässel, P; Hering, G; Huovinen, P; Lenkeit, B; Marín, A; Messer, F; Messer, M; Milosevic, J; Miśkowiec, D; Nix, O; Panebrattsev, Yu; Petrácek, V; Pfeiffer, A; Rak, J; Ravinovich, I; Razin, S; Rehak, P; Sako, H; Saveljic, N; Schmitz, W; Shimansky, S; Socol, E; Specht, H J; Stachel, J; Tilsner, H; Tserruya, I; Voigt, C; Voloshin, S; Weber, C; Wessels, J P; Wurm, J P; Yurevich, V

    2004-01-23

    Elliptic flow and two-particle azimuthal correlations of charged hadrons and high-p(T) pions (p(T)>1 GeV/c) have been measured close to midrapidity in 158A GeV/c Pb+Au collisions by the CERES experiment. Elliptic flow (v(2)) rises linearly with p(T) to a value of about 10% at 2 GeV/c. Beyond p(T) approximately 1.5 GeV/c, the slope decreases considerably, possibly indicating a saturation of v(2) at high p(T). Two-pion azimuthal anisotropies for p(T)>1.2 GeV/c exceed the elliptic flow values by about 60% in midcentral collisions. These nonflow contributions are attributed to nearside and back-to-back jetlike correlations, the latter exhibiting centrality dependent broadening.

  11. J /ψ Elliptic Flow in Pb-Pb Collisions at √{sN N}=5.02 TeV

    NASA Astrophysics Data System (ADS)

    Acharya, S.; Adamová, D.; Adolfsson, J.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Al-Turany, M.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Ali, Y.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altenkamper, L.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andreou, D.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartsch, E.; Bastid, N.; Basu, S.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Bazo Alba, J. L.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhattacharjee, B.; Bhom, J.; Bianchi, A.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Bratrud, L.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Chandra, S.; Chang, B.; Chang, W.; Chapeland, S.; Chartier, M.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Chowdhury, T.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Concas, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; di Bari, D.; di Mauro, A.; di Nezza, P.; di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Ding, Y.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Doremalen, L. V. R.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dudi, S.; Duggal, A. K.; Dukhishyam, M.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, J.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Haque, M. R.; Harris, J. W.; Harton, A.; Hassan, H.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Hernandez, E. G.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hills, C.; Hippolyte, B.; Hohlweger, B.; Horak, D.; Hornung, S.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Iga Buitron, S. A.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Islam, M. S.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jaelani, S.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karczmarczyk, P.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Ketzer, B.; Khabanova, Z.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, B.; Kim, D.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Köhler, M. K.; Kollegger, T.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Konyushikhin, M.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Kreis, L.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lai, Y. S.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, X.; Lien, J.; Lietava, R.; Lim, B.; Lindal, S.; Lindenstruth, V.; Lindsay, S. W.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Luhder, J. R.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Masciocchi, S.; Masera, M.; Masoni, A.; Masson, E.; Mastroserio, A.; Mathis, A. M.; Matuoka, P. F. T.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D. L.; Mikhaylov, K.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, A. P.; Mohanty, B.; Mohisin Khan, M.; Montes, E.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Myrcha, J. W.; Nag, D.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Narayan, A.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Negrao de Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Paić, G.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pareek, P.; Park, J.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pliquett, F.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Punin, V.; Putschke, J.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reshetin, A.; Reygers, K.; Riabov, V.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Rosas, E. D.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rueda, O. V.; Rui, R.; Rumyantsev, B.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Schaefer, B.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schmidt, N. V.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shahoyan, R.; Shaikh, W.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shirinkin, S.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silaeva, S.; Silvermyr, D.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Sputowska, I.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stocco, D.; Storetvedt, M. M.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, S.; Thomas, D.; Thoresen, F.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Toppi, M.; Torres, S. R.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Tropp, L.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wenzel, S. C.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Willsher, E.; Windelband, B.; Witt, W. E.; Xu, R.; Yalcin, S.; Yamakawa, K.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yun, E.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, Y.; Zichichi, A.; Zimmermann, M. B.; Zinovjev, G.; Zmeskal, J.; Zou, S.; Alice Collaboration

    2017-12-01

    We report a precise measurement of the J /ψ elliptic flow in Pb-Pb collisions at √{sN N}=5.02 TeV with the ALICE detector at the LHC. The J /ψ mesons are reconstructed at midrapidity (|y |<0.9 ) in the dielectron decay channel and at forward rapidity (2.5

  12. J / ψ Elliptic Flow in Pb-Pb Collisions at s N N = 5.02 TeV

    DOE PAGES

    Acharya, S.; Adamová, D.; Adolfsson, J.; ...

    2017-12-15

    Here, we report a precise measurement of the J/ψ elliptic flow in Pb-Pb collisions atmore » $$\\sqrt{s}$$$_ {NN}$$=5.02 TeV with the ALICE detector at the LHC. The J/ψ mesons are reconstructed at midrapidity (|y| < 0.9) in the dielectron decay channel and at forward rapidity (2.5 < y < 4.0) in the dimuon channel, both down to zero transverse momentum. At forward rapidity, the elliptic flow v 2 of the J/ψ is studied as a function of the transverse momentum and centrality. A positive v 2 is observed in the transverse momentum range 2 < p T < 8 GeV/c in the three centrality classes studied and confirms with higher statistics our earlier results at $$\\sqrt{s}$$$_ {NN}$$=2.76 TeV in semicentral collisions. At midrapidity, the J/ψ v 2 is investigated as a function of the transverse momentum in semicentral collisions and found to be in agreement with the measurements at forward rapidity. These results are compared to transport model calculations. The comparison supports the idea that at low p T the elliptic flow of the J/ψ originates from the thermalization of charm quarks in the deconfined medium but suggests that additional mechanisms might be missing in the models.« less

  13. J / ψ Elliptic Flow in Pb-Pb Collisions at s N N = 5.02 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acharya, S.; Adamová, D.; Adolfsson, J.

    Here, we report a precise measurement of the J/ψ elliptic flow in Pb-Pb collisions atmore » $$\\sqrt{s}$$$_ {NN}$$=5.02 TeV with the ALICE detector at the LHC. The J/ψ mesons are reconstructed at midrapidity (|y| < 0.9) in the dielectron decay channel and at forward rapidity (2.5 < y < 4.0) in the dimuon channel, both down to zero transverse momentum. At forward rapidity, the elliptic flow v 2 of the J/ψ is studied as a function of the transverse momentum and centrality. A positive v 2 is observed in the transverse momentum range 2 < p T < 8 GeV/c in the three centrality classes studied and confirms with higher statistics our earlier results at $$\\sqrt{s}$$$_ {NN}$$=2.76 TeV in semicentral collisions. At midrapidity, the J/ψ v 2 is investigated as a function of the transverse momentum in semicentral collisions and found to be in agreement with the measurements at forward rapidity. These results are compared to transport model calculations. The comparison supports the idea that at low p T the elliptic flow of the J/ψ originates from the thermalization of charm quarks in the deconfined medium but suggests that additional mechanisms might be missing in the models.« less

  14. Inertial Wave Turbulence Driven by Elliptical Instability.

    PubMed

    Le Reun, Thomas; Favier, Benjamin; Barker, Adrian J; Le Bars, Michael

    2017-07-21

    The combination of elliptical deformation of streamlines and vorticity can lead to the destabilization of any rotating flow via the elliptical instability. Such a mechanism has been invoked as a possible source of turbulence in planetary cores subject to tidal deformations. The saturation of the elliptical instability has been shown to generate turbulence composed of nonlinearly interacting waves and strong columnar vortices with varying respective amplitudes, depending on the control parameters and geometry. In this Letter, we present a suite of numerical simulations to investigate the saturation and the transition from vortex-dominated to wave-dominated regimes. This is achieved by simulating the growth and saturation of the elliptical instability in an idealized triply periodic domain, adding a frictional damping to the geostrophic component only, to mimic its interaction with boundaries. We reproduce several experimental observations within one idealized local model and complement them by reaching more extreme flow parameters. In particular, a wave-dominated regime that exhibits many signatures of inertial wave turbulence is characterized for the first time. This regime is expected in planetary interiors.

  15. Inertial Wave Turbulence Driven by Elliptical Instability

    NASA Astrophysics Data System (ADS)

    Le Reun, Thomas; Favier, Benjamin; Barker, Adrian J.; Le Bars, Michael

    2017-07-01

    The combination of elliptical deformation of streamlines and vorticity can lead to the destabilization of any rotating flow via the elliptical instability. Such a mechanism has been invoked as a possible source of turbulence in planetary cores subject to tidal deformations. The saturation of the elliptical instability has been shown to generate turbulence composed of nonlinearly interacting waves and strong columnar vortices with varying respective amplitudes, depending on the control parameters and geometry. In this Letter, we present a suite of numerical simulations to investigate the saturation and the transition from vortex-dominated to wave-dominated regimes. This is achieved by simulating the growth and saturation of the elliptical instability in an idealized triply periodic domain, adding a frictional damping to the geostrophic component only, to mimic its interaction with boundaries. We reproduce several experimental observations within one idealized local model and complement them by reaching more extreme flow parameters. In particular, a wave-dominated regime that exhibits many signatures of inertial wave turbulence is characterized for the first time. This regime is expected in planetary interiors.

  16. Canonical forms of multidimensional steady inviscid flows

    NASA Technical Reports Server (NTRS)

    Taasan, Shlomo

    1993-01-01

    Canonical forms and canonical variables for inviscid flow problems are derived. In these forms the components of the system governed by different types of operators (elliptic and hyperbolic) are separated. Both the incompressible and compressible cases are analyzed, and their similarities and differences are discussed. The canonical forms obtained are block upper triangular operator form in which the elliptic and non-elliptic parts reside in different blocks. The full nonlinear equations are treated without using any linearization process. This form enables a better analysis of the equations as well as better numerical treatment. These forms are the analog of the decomposition of the one dimensional Euler equations into characteristic directions and Riemann invariants.

  17. Elliptical, parabolic, and hyperbolic exchanges of energy in drag reducing plane Couette flows

    NASA Astrophysics Data System (ADS)

    Pereira, Anselmo S.; Mompean, Gilmar; Thompson, Roney L.; Soares, Edson J.

    2017-11-01

    In the present paper, we investigate the polymer-turbulence interaction by discriminating between the mechanical responses of this system to three different subdomains: elliptical, parabolic, and hyperbolic, corresponding to regions where the magnitude of vorticity is greater than, equal to, or less than the magnitude of the rate of strain, respectively, in accordance with the Q-criterion. Recently, it was recognized that hyperbolic structures play a crucial role in the drag reduction phenomenon of viscoelastic turbulent flows, thanks to the observation that hyperbolic structures, as well as vortical ones, are weakened by the action of polymers in turbulent flows in a process that can be referred to as flow parabolization. We employ direct numerical simulations of a viscoelastic finite extensible nonlinear elastic model with the Peterlin approximation to examine the transient evolution and statistically steady regimes of a plane Couette flow that has been perturbed from a laminar flow at an initial time and developed a turbulent regime as a result of this perturbation. We have found that even more activity is located within the confines of the hyperbolic structures than in the elliptical ones, which highlights the importance of considering the role of hyperbolic structures in the drag reduction mechanism.

  18. A Comparison of Three Navier-Stokes Solvers for Exhaust Nozzle Flowfields

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nicholas J.; Yoder, Dennis A.; Debonis, James R.

    1999-01-01

    A comparison of the NPARC, PAB, and WIND (previously known as NASTD) Navier-Stokes solvers is made for two flow cases with turbulent mixing as the dominant flow characteristic, a two-dimensional ejector nozzle and a Mach 1.5 elliptic jet. The objective of the work is to determine if comparable predictions of nozzle flows can be obtained from different Navier-Stokes codes employed in a multiple site research program. A single computational grid was constructed for each of the two flows and used for all of the Navier-Stokes solvers. In addition, similar k-e based turbulence models were employed in each code, and boundary conditions were specified as similarly as possible across the codes. Comparisons of mass flow rates, velocity profiles, and turbulence model quantities are made between the computations and experimental data. The computational cost of obtaining converged solutions with each of the codes is also documented. Results indicate that all of the codes provided similar predictions for the two nozzle flows. Agreement of the Navier-Stokes calculations with experimental data was good for the ejector nozzle. However, for the Mach 1.5 elliptic jet, the calculations were unable to accurately capture the development of the three dimensional elliptic mixing layer.

  19. Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions

    DOE PAGES

    Adamczyk, L.

    2015-06-26

    We present measurements of π⁻ and π⁺ elliptic flow, v₂, at midrapidity in Au+Au collisions at √s NN = 200, 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV, as a function of event-by-event charge asymmetry, A ch, based on data from the STAR experiment at RHIC. We find that π⁻ (π⁺) elliptic flow linearly increases (decreases) with charge asymmetry for most centrality bins at √s NN = 27 GeV and higher. At √s NN = 200 GeV, the slope of the difference of v₂ between π⁻ and π⁺ as a function of A ch exhibits a centrality dependence, which ismore » qualitatively similar to calculations that incorporate a chiral magnetic wave effect. In addition, similar centrality dependence is also observed at lower energies.« less

  20. A new approach to flow through a region bounded by two ellipses of the same ellipticity

    NASA Astrophysics Data System (ADS)

    Lal, K.; Chorlton, F.

    1981-05-01

    A new approach is presented to calculate steady flow of a laminar viscous incompressible fluid through a channel whose cross section is bounded by two ellipses with the same ellipticity. The Milne-Thomas approach avoids the stream function and is similar to the Rayleigh-Ritz approximation process of the calculus of variations in its first satisfying boundary conditions and then adjusting constants or multiplying functions to fit the differential equation.

  1. Effects of mean-field and softening of equation of state on elliptic flow in Au+Au collisions at \\sqrt{{s}_{\\rm{NN}}}=5\\,{GeV} from the JAM model

    NASA Astrophysics Data System (ADS)

    Chen, Jiamin; Luo, Xiaofeng; Liu, Feng; Nara, Yasushi

    2018-01-01

    We perform a systematic study of elliptic flow (v 2) in Au+Au collisions at \\sqrt{{s}NN}}=5 {GeV} by using a microscopic transport model, JAM. The centrality, pseudorapidity, transverse momentum and beam energy dependence of v 2 for charged as well as identified hadrons are studied. We investigate the effects of both the hadronic mean-field and the softening of equation of state (EoS) on elliptic flow. The softening of the EoS is realized by imposing attractive orbits in two body scattering, which can reduce the pressure of the system. We found that the softening of the EoS leads to the enhancement of v 2, while the hadronic mean-field suppresses v 2 relative to the cascade mode. It indicates that elliptic flow at high baryon density regions is highly sensitive to the EoS and the enhancement of v 2 may probe the signature of a first-order phase transition in heavy-ion collisions at beam energies of a strong baryon stopping region. Supported by the MoST of China 973-Project (2015CB856901), NSFC (11575069, 11221504). Y. N. is supported by the Grants-in-Aid for Scientific Research from JSPS (15K05079, 15K05098)

  2. J/ψ Elliptic Flow in Pb-Pb Collisions at sqrt[s_{NN}]=5.02  TeV.

    PubMed

    Acharya, S; Adamová, D; Adolfsson, J; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agrawal, N; Ahammed, Z; Ahn, S U; Aiola, S; Akindinov, A; Al-Turany, M; Alam, S N; Albuquerque, D S D; Aleksandrov, D; Alessandro, B; Alfaro Molina, R; Ali, Y; Alici, A; Alkin, A; Alme, J; Alt, T; Altenkamper, L; Altsybeev, I; Alves Garcia Prado, C; Andrei, C; Andreou, D; Andrews, H A; Andronic, A; Anguelov, V; Anson, C; Antičić, T; Antinori, F; Antonioli, P; Anwar, R; Aphecetche, L; Appelshäuser, H; Arcelli, S; Arnaldi, R; Arnold, O W; Arsene, I C; Arslandok, M; Audurier, B; Augustinus, A; Averbeck, R; Azmi, M D; Badalà, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bala, R; Baldisseri, A; Ball, M; Baral, R C; Barbano, A M; Barbera, R; Barile, F; Barioglio, L; Barnaföldi, G G; Barnby, L S; Barret, V; Bartalini, P; Barth, K; Bartsch, E; Bastid, N; Basu, S; Batigne, G; Batyunya, B; Batzing, P C; Bazo Alba, J L; Bearden, I G; Beck, H; Bedda, C; Behera, N K; Belikov, I; Bellini, F; Bello Martinez, H; Bellwied, R; Beltran, L G E; Belyaev, V; Bencedi, G; Beole, S; Bercuci, A; Berdnikov, Y; Berenyi, D; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhat, I R; Bhattacharjee, B; Bhom, J; Bianchi, A; Bianchi, L; Bianchi, N; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Biro, G; Biswas, R; Biswas, S; Blair, J T; Blau, D; Blume, C; Boca, G; Bock, F; Bogdanov, A; Boldizsár, L; Bombara, M; Bonomi, G; Bonora, M; Book, J; Borel, H; Borissov, A; Borri, M; Botta, E; Bourjau, C; Bratrud, L; Braun-Munzinger, P; Bregant, M; Broker, T A; Broz, M; Brucken, E J; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buhler, P; Buncic, P; Busch, O; Buthelezi, Z; Butt, J B; Buxton, J T; Cabala, J; Caffarri, D; Caines, H; Caliva, A; Calvo Villar, E; Camerini, P; Capon, A A; Carena, F; Carena, W; Carnesecchi, F; Castillo Castellanos, J; Castro, A J; Casula, E A R; Ceballos Sanchez, C; Chandra, S; Chang, B; Chang, W; Chapeland, S; Chartier, M; Chattopadhyay, S; Chattopadhyay, S; Chauvin, A; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Cho, S; Chochula, P; Chojnacki, M; Choudhury, S; Chowdhury, T; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Colocci, M; Concas, M; Conesa Balbastre, G; Conesa Del Valle, Z; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortés Maldonado, I; Cortese, P; Cosentino, M R; Costa, F; Costanza, S; Crkovská, J; Crochet, P; Cuautle, E; Cunqueiro, L; Dahms, T; Dainese, A; Danisch, M C; Danu, A; Das, D; Das, I; Das, S; Dash, A; Dash, S; De, S; De Caro, A; de Cataldo, G; de Conti, C; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; De Souza, R D; Degenhardt, H F; Deisting, A; Deloff, A; Deplano, C; Dhankher, P; Di Bari, D; Di Mauro, A; Di Nezza, P; Di Ruzza, B; Diaz Corchero, M A; Dietel, T; Dillenseger, P; Ding, Y; Divià, R; Djuvsland, Ø; Dobrin, A; Domenicis Gimenez, D; Dönigus, B; Dordic, O; Doremalen, L V R; Dubey, A K; Dubla, A; Ducroux, L; Dudi, S; Duggal, A K; Dukhishyam, M; Dupieux, P; Ehlers, R J; Elia, D; Endress, E; Engel, H; Epple, E; Erazmus, B; Erhardt, F; Espagnon, B; Eulisse, G; Eum, J; Evans, D; Evdokimov, S; Fabbietti, L; Faivre, J; Fantoni, A; Fasel, M; Feldkamp, L; Feliciello, A; Feofilov, G; Fernández Téllez, A; Ferreiro, E G; Ferretti, A; Festanti, A; Feuillard, V J G; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Francisco, A; Frankenfeld, U; Fronze, G G; Fuchs, U; Furget, C; Furs, A; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A M; Gajdosova, K; Gallio, M; Galvan, C D; Ganoti, P; Garabatos, C; Garcia-Solis, E; Garg, K; Gargiulo, C; Gasik, P; Gauger, E F; Gay Ducati, M B; Germain, M; Ghosh, J; Ghosh, P; Ghosh, S K; Gianotti, P; Giubellino, P; Giubilato, P; Gladysz-Dziadus, E; Glässel, P; Goméz Coral, D M; Gomez Ramirez, A; Gonzalez, A S; Gonzalez, V; González-Zamora, P; Gorbunov, S; Görlich, L; Gotovac, S; Grabski, V; Graczykowski, L K; Graham, K L; Greiner, L; Grelli, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Gronefeld, J M; Grosa, F; Grosse-Oetringhaus, J F; Grosso, R; Guber, F; Guernane, R; Guerzoni, B; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Guzman, I B; Haake, R; Hadjidakis, C; Hamagaki, H; Hamar, G; Hamon, J C; Haque, M R; Harris, J W; Harton, A; Hassan, H; Hatzifotiadou, D; Hayashi, S; Heckel, S T; Hellbär, E; Helstrup, H; Herghelegiu, A; Hernandez, E G; Herrera Corral, G; Herrmann, F; Hess, B A; Hetland, K F; Hillemanns, H; Hills, C; Hippolyte, B; Hohlweger, B; Horak, D; Hornung, S; Hosokawa, R; Hristov, P; Hughes, C; Humanic, T J; Hussain, N; Hussain, T; Hutter, D; Hwang, D S; Iga Buitron, S A; Ilkaev, R; Inaba, M; Ippolitov, M; Islam, M S; Ivanov, M; Ivanov, V; Izucheev, V; Jacak, B; Jacazio, N; Jacobs, P M; Jadhav, M B; Jadlovska, S; Jadlovsky, J; Jaelani, S; Jahnke, C; Jakubowska, M J; Janik, M A; Jayarathna, P H S Y; Jena, C; Jercic, M; Jimenez Bustamante, R T; Jones, P G; Jusko, A; Kalinak, P; Kalweit, A; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karayan, L; Karczmarczyk, P; Karpechev, E; Kebschull, U; Keidel, R; Keijdener, D L D; Keil, M; Ketzer, B; Khabanova, Z; Khan, P; Khan, S A; Khanzadeev, A; Kharlov, Y; Khatun, A; Khuntia, A; Kielbowicz, M M; Kileng, B; Kim, B; Kim, D; Kim, D J; Kim, H; Kim, J S; Kim, J; Kim, M; Kim, S; Kim, T; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Kiss, G; Klay, J L; Klein, C; Klein, J; Klein-Bösing, C; Klewin, S; Kluge, A; Knichel, M L; Knospe, A G; Kobdaj, C; Kofarago, M; Köhler, M K; Kollegger, T; Kondratiev, V; Kondratyeva, N; Kondratyuk, E; Konevskikh, A; Konyushikhin, M; Kopcik, M; Kour, M; Kouzinopoulos, C; Kovalenko, O; Kovalenko, V; Kowalski, M; Koyithatta Meethaleveedu, G; Králik, I; Kravčáková, A; Kreis, L; Krivda, M; Krizek, F; Kryshen, E; Krzewicki, M; Kubera, A M; Kučera, V; Kuhn, C; Kuijer, P G; Kumar, A; Kumar, J; Kumar, L; Kumar, S; Kundu, S; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kushpil, S; Kweon, M J; Kwon, Y; La Pointe, S L; La Rocca, P; Lagana Fernandes, C; Lai, Y S; Lakomov, I; Langoy, R; Lapidus, K; Lara, C; Lardeux, A; Lattuca, A; Laudi, E; Lavicka, R; Lea, R; Leardini, L; Lee, S; Lehas, F; Lehner, S; Lehrbach, J; Lemmon, R C; Leogrande, E; León Monzón, I; Lévai, P; Li, X; Lien, J; Lietava, R; Lim, B; Lindal, S; Lindenstruth, V; Lindsay, S W; Lippmann, C; Lisa, M A; Litichevskyi, V; Llope, W J; Lodato, D F; Loenne, P I; Loginov, V; Loizides, C; Loncar, P; Lopez, X; López Torres, E; Lowe, A; Luettig, P; Luhder, J R; Lunardon, M; Luparello, G; Lupi, M; Lutz, T H; Maevskaya, A; Mager, M; Mahmood, S M; Maire, A; Majka, R D; Malaev, M; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manko, V; Manso, F; Manzari, V; Mao, Y; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Margutti, J; Marín, A; Markert, C; Marquard, M; Martin, N A; Martinengo, P; Martinez, J A L; Martínez, M I; Martínez García, G; Martinez Pedreira, M; Masciocchi, S; Masera, M; Masoni, A; Masson, E; Mastroserio, A; Mathis, A M; Matuoka, P F T; Matyja, A; Mayer, C; Mazer, J; Mazzilli, M; Mazzoni, M A; Meddi, F; Melikyan, Y; Menchaca-Rocha, A; Meninno, E; Mercado Pérez, J; Meres, M; Mhlanga, S; Miake, Y; Mieskolainen, M M; Mihaylov, D L; Mikhaylov, K; Mischke, A; Mishra, A N; Miśkowiec, D; Mitra, J; Mitu, C M; Mohammadi, N; Mohanty, A P; Mohanty, B; Mohisin Khan, M; Montes, E; Moreira De Godoy, D A; Moreno, L A P; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Mühlheim, D; Muhuri, S; Mukherjee, M; Mulligan, J D; Munhoz, M G; Münning, K; Munzer, R H; Murakami, H; Murray, S; Musa, L; Musinsky, J; Myers, C J; Myrcha, J W; Nag, D; Naik, B; Nair, R; Nandi, B K; Nania, R; Nappi, E; Narayan, A; Naru, M U; Natal da Luz, H; Nattrass, C; Navarro, S R; Nayak, K; Nayak, R; Nayak, T K; Nazarenko, S; Negrao De Oliveira, R A; Nellen, L; Nesbo, S V; Ng, F; Nicassio, M; Niculescu, M; Niedziela, J; Nielsen, B S; Nikolaev, S; Nikulin, S; Nikulin, V; Noferini, F; Nomokonov, P; Nooren, G; Noris, J C C; Norman, J; Nyanin, A; Nystrand, J; Oeschler, H; Ohlson, A; Okubo, T; Olah, L; Oleniacz, J; Oliveira Da Silva, A C; Oliver, M H; Onderwaater, J; Oppedisano, C; Orava, R; Oravec, M; Ortiz Velasquez, A; Oskarsson, A; Otwinowski, J; Oyama, K; Pachmayer, Y; Pacik, V; Pagano, D; Paić, G; Palni, P; Pan, J; Pandey, A K; Panebianco, S; Papikyan, V; Pareek, P; Park, J; Parmar, S; Passfeld, A; Pathak, S P; Patra, R N; Paul, B; Pei, H; Peitzmann, T; Peng, X; Pereira, L G; Pereira Da Costa, H; Peresunko, D; Perez Lezama, E; Peskov, V; Pestov, Y; Petráček, V; Petrov, V; Petrovici, M; Petta, C; Pezzi, R P; Piano, S; Pikna, M; Pillot, P; Pimentel, L O D L; Pinazza, O; Pinsky, L; Piyarathna, D B; Płoskoń, M; Planinic, M; Pliquett, F; Pluta, J; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polichtchouk, B; Poljak, N; Poonsawat, W; Pop, A; Poppenborg, H; Porteboeuf-Houssais, S; Pozdniakov, V; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puccio, M; Punin, V; Putschke, J; Raha, S; Rajput, S; Rak, J; Rakotozafindrabe, A; Ramello, L; Rami, F; Rana, D B; Raniwala, R; Raniwala, S; Räsänen, S S; Rascanu, B T; Rathee, D; Ratza, V; Ravasenga, I; Read, K F; Redlich, K; Rehman, A; Reichelt, P; Reidt, F; Ren, X; Renfordt, R; Reshetin, A; Reygers, K; Riabov, V; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Ristea, C; Rodríguez Cahuantzi, M; Røed, K; Rogochaya, E; Rohr, D; Röhrich, D; Rokita, P S; Ronchetti, F; Rosas, E D; Rosnet, P; Rossi, A; Rotondi, A; Roukoutakis, F; Roy, C; Roy, P; Rubio Montero, A J; Rueda, O V; Rui, R; Rumyantsev, B; Rustamov, A; Ryabinkin, E; Ryabov, Y; Rybicki, A; Saarinen, S; Sadhu, S; Sadovsky, S; Šafařík, K; Saha, S K; Sahlmuller, B; Sahoo, B; Sahoo, P; Sahoo, R; Sahoo, S; Sahu, P K; Saini, J; Sakai, S; Saleh, M A; Salzwedel, J; Sambyal, S; Samsonov, V; Sandoval, A; Sarkar, A; Sarkar, D; Sarkar, N; Sarma, P; Sas, M H P; Scapparone, E; Scarlassara, F; Schaefer, B; Scheid, H S; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schmidt, M O; Schmidt, M; Schmidt, N V; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Šefčík, M; Seger, J E; Sekiguchi, Y; Sekihata, D; Selyuzhenkov, I; Senosi, K; Senyukov, S; Serradilla, E; Sett, P; Sevcenco, A; Shabanov, A; Shabetai, A; Shahoyan, R; Shaikh, W; Shangaraev, A; Sharma, A; Sharma, A; Sharma, M; Sharma, M; Sharma, N; Sheikh, A I; Shigaki, K; Shirinkin, S; Shou, Q; Shtejer, K; Sibiriak, Y; Siddhanta, S; Sielewicz, K M; Siemiarczuk, T; Silaeva, S; Silvermyr, D; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singhal, V; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Slupecki, M; Smirnov, N; Snellings, R J M; Snellman, T W; Song, J; Song, M; Soramel, F; Sorensen, S; Sozzi, F; Sputowska, I; Stachel, J; Stan, I; Stankus, P; Stenlund, E; Stocco, D; Storetvedt, M M; Strmen, P; Suaide, A A P; Sugitate, T; Suire, C; Suleymanov, M; Suljic, M; Sultanov, R; Šumbera, M; Sumowidagdo, S; Suzuki, K; Swain, S; Szabo, A; Szarka, I; Tabassam, U; Takahashi, J; Tambave, G J; Tanaka, N; Tarhini, M; Tariq, M; Tarzila, M G; Tauro, A; Tejeda Muñoz, G; Telesca, A; Terasaki, K; Terrevoli, C; Teyssier, B; Thakur, D; Thakur, S; Thomas, D; Thoresen, F; Tieulent, R; Tikhonov, A; Timmins, A R; Toia, A; Toppi, M; Torres, S R; Tripathy, S; Trogolo, S; Trombetta, G; Tropp, L; Trubnikov, V; Trzaska, W H; Trzeciak, B A; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ullaland, K; Umaka, E N; Uras, A; Usai, G L; Utrobicic, A; Vala, M; Van Der Maarel, J; Van Hoorne, J W; van Leeuwen, M; Vanat, T; Vande Vyvre, P; Varga, D; Vargas, A; Vargyas, M; Varma, R; Vasileiou, M; Vasiliev, A; Vauthier, A; Vázquez Doce, O; Vechernin, V; Veen, A M; Velure, A; Vercellin, E; Vergara Limón, S; Vernet, R; Vértesi, R; Vickovic, L; Vigolo, S; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Villatoro Tello, A; Vinogradov, A; Vinogradov, L; Virgili, T; Vislavicius, V; Vodopyanov, A; Völkl, M A; Voloshin, K; Voloshin, S A; Volpe, G; von Haller, B; Vorobyev, I; Voscek, D; Vranic, D; Vrláková, J; Wagner, B; Wang, H; Wang, M; Watanabe, D; Watanabe, Y; Weber, M; Weber, S G; Weiser, D F; Wenzel, S C; Wessels, J P; Westerhoff, U; Whitehead, A M; Wiechula, J; Wikne, J; Wilk, G; Wilkinson, J; Willems, G A; Williams, M C S; Willsher, E; Windelband, B; Witt, W E; Xu, R; Yalcin, S; Yamakawa, K; Yang, P; Yano, S; Yin, Z; Yokoyama, H; Yoo, I-K; Yoon, J H; Yun, E; Yurchenko, V; Zaccolo, V; Zaman, A; Zampolli, C; Zanoli, H J C; Zardoshti, N; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zhalov, M; Zhang, H; Zhang, X; Zhang, Y; Zhang, C; Zhang, Z; Zhao, C; Zhigareva, N; Zhou, D; Zhou, Y; Zhou, Z; Zhu, H; Zhu, J; Zhu, Y; Zichichi, A; Zimmermann, M B; Zinovjev, G; Zmeskal, J; Zou, S

    2017-12-15

    We report a precise measurement of the J/ψ elliptic flow in Pb-Pb collisions at sqrt[s_{NN}]=5.02  TeV with the ALICE detector at the LHC. The J/ψ mesons are reconstructed at midrapidity (|y|<0.9) in the dielectron decay channel and at forward rapidity (2.5

  3. Fast gradient separation by very high pressure liquid chromatography: reproducibility of analytical data and influence of delay between successive runs.

    PubMed

    Stankovicha, Joseph J; Gritti, Fabrice; Beaver, Lois Ann; Stevensona, Paul G; Guiochon, Georges

    2013-11-29

    Five methods were used to implement fast gradient separations: constant flow rate, constant column-wall temperature, constant inlet pressure at moderate and high pressures (controlled by a pressure controller),and programmed flow constant pressure. For programmed flow constant pressure, the flow rates and gradient compositions are controlled using input into the method instead of the pressure controller. Minor fluctuations in the inlet pressure do not affect the mobile phase flow rate in programmed flow. There producibilities of the retention times, the response factors, and the eluted band width of six successive separations of the same sample (9 components) were measured with different equilibration times between 0 and 15 min. The influence of the length of the equilibration time on these reproducibilities is discussed. The results show that the average column temperature may increase from one separation to the next and that this contributes to fluctuation of the results.

  4. Nonlinear dynamics of an elliptic vortex embedded in an oscillatory shear flow.

    PubMed

    Ryzhov, Eugene A

    2017-11-01

    The nonlinear dynamics of an elliptic vortex subjected to a time-periodic linear external shear flow is studied numerically. Making use of the ideas from the theory of nonlinear resonance overlaps, the study focuses on the appearance of chaotic regimes in the ellipse dynamics. When the superimposed flow is stationary, two general types of the steady-state phase portrait are considered: one that features a homoclinic separatrix delineating bounded and unbounded phase trajectories and one without a separatrix (all the phase trajectories are bounded in a periodic domain). When the external flow is time-periodic, the ensuing nonlinear dynamics differs significantly in both cases. For the case with a separatrix and two distinct types of phase trajectories: bounded and unbounded, the effect of the most influential nonlinear resonance with the winding number of 1:1 is analyzed in detail. Namely, the process of occupying the central stability region associated with the steady-state elliptic critical point by the stability region associated with the nonlinear resonance of 1:1 as the perturbation frequency gradually varies is investigated. A stark increase in the persistence of the central regular dynamics region against perturbation when the resonance of 1:1 associated stability region occupies the region associated with the steady-state elliptic critical point is observed. An analogous persistence of the regular motion occurs for higher perturbation frequencies when the corresponding stability islands reach the central stability region associated with the steady-state elliptic point. An analysis for the case with the resonance of 1:2 is presented. For the second case with only bounded phase trajectories and, therefore, no separatrix, the appearance of much bigger stability islands associated with nonlinear resonances compared with the case with a separatrix is reported.

  5. A Model for Displacements Between Parallel Plates That Shows Change of Type from Hyperbolic to Elliptic

    NASA Astrophysics Data System (ADS)

    Shariati, Maryam; Yortsos, Yannis; Talon, Laurent; Martin, Jerome; Rakotomalala, Nicole; Salin, Dominique

    2003-11-01

    We consider miscible displacement between parallel plates, where the viscosity is a function of the concentration. By selecting a piece-wise representation, the problem can be considered as ``three-phase'' flow. Assuming a lubrication-type approximation, the mathematical description is in terms of two quasi-linear hyperbolic equations. When the mobility of the middle phase is smaller than its neighbors, the system is genuinely hyperbolic and can be solved analytically. However, when it is larger, an elliptic region develops. This change-of-type behavior is for the first time proved here based on sound physical principles. Numerical solutions with a small diffusion are presented. Good agreement is obtained outside the elliptic region, but not inside, where the numerical results show unstable behavior. We conjecture that for the solution of the real problem in the mixed-type case, the full higher-dimensionality problem must be considered inside the elliptic region, in which the lubrication (parallel-flow) approximation is no longer appropriate. This is discussed in a companion presentation.

  6. Aerodynamic Comparison of Hyper-Elliptic Cambered Span (HECS) Wings with Conventional Configurations

    NASA Technical Reports Server (NTRS)

    Lazos, Barry S.; Visser, Kenneth D.

    2006-01-01

    An experimental study was conducted to examine the aerodynamic and flow field characteristics of hyper-elliptic cambered span (HECS) wings and compare results with more conventional configurations used for induced drag reduction. Previous preliminary studies, indicating improved L/D characteristics when compared to an elliptical planform prompted this more detailed experimental investigation. Balance data were acquired on a series of swept and un-swept HECS wings, a baseline elliptic planform, two winglet designs and a raked tip configuration. Seven-hole probe wake surveys were also conducted downstream of a number of the configurations. Wind tunnel results indicated aerodynamic performance levels of all but one of the HECS wings exceeded that of the other configurations. The flow field data surveys indicate the HECS configurations displaced the tip vortex farther outboard of the wing than the Baseline configuration. Minimum drag was observed on the raked tip configuration and it was noted that the winglet wake lacked the cohesive vortex structure present in the wakes of the other configurations.

  7. Dissipation and momentum anisotropy in heavy-ion collisions at RHIC

    NASA Astrophysics Data System (ADS)

    Molnar, Denes; Pasi, Huovinen

    2004-04-01

    Dissipation and momentum anisotropy in heavy-ion collisions at RHIC Recent data from RHIC for Au+Au reactions at E_cm ˜ 130-200 GeV / nucleon show a large anisotropy of particle production in the transverse plane, characterized by the elliptic flow coefficient v2(pT). The anisotropy can be reproduced from ideal hydrodynamics[1], providing a strong argument for rapid thermalization in these reactions. On the other hand, parton kinetic theory[2] can also reproduce the data, if the system is an order of magnitude more opaque than a perturbative parton plasma. A common belief is that the kinetic theory calculation demonstrated the kinetic equilibration of the dense parton plasma. I show that this is not the case because dissipative effects are large even at such extreme opacities. Nevertheless both theories could reproduce the data because of differences in their sets of assumptions. [1] P. Huovinen et al., PLB 503, 58 (2001); P.F. Kolb, J. Sollfrank and U.W. Heinz, PRC 62, 054909 (2000); D. Teaney, J. Lauret and E.V. Shuryak, nucl-th/0110037. [2] D. Molnar and M. Gyulassy, NPA697, 495 (2002); A703, 893(E) (2002); B. Zhang, M. Gyulassy and C.M. Ko, PLB 455, 45 (1999).

  8. Discretization of three-dimensional free surface flows and moving boundary problems via elliptic grid methods based on variational principles

    NASA Astrophysics Data System (ADS)

    Fraggedakis, D.; Papaioannou, J.; Dimakopoulos, Y.; Tsamopoulos, J.

    2017-09-01

    A new boundary-fitted technique to describe free surface and moving boundary problems is presented. We have extended the 2D elliptic grid generator developed by Dimakopoulos and Tsamopoulos (2003) [19] and further advanced by Chatzidai et al. (2009) [18] to 3D geometries. The set of equations arises from the fulfillment of the variational principles established by Brackbill and Saltzman (1982) [21], and refined by Christodoulou and Scriven (1992) [22]. These account for both smoothness and orthogonality of the grid lines of tessellated physical domains. The elliptic-grid equations are accompanied by new boundary constraints and conditions which are based either on the equidistribution of the nodes on boundary surfaces or on the existing 2D quasi-elliptic grid methodologies. The capabilities of the proposed algorithm are first demonstrated in tests with analytically described complex surfaces. The sequence in which these tests are presented is chosen to help the reader build up experience on the best choice of the elliptic grid parameters. Subsequently, the mesh equations are coupled with the Navier-Stokes equations, in order to reveal the full potential of the proposed methodology in free surface flows. More specifically, the problem of gas assisted injection in ducts of circular and square cross-sections is examined, where the fluid domain experiences extreme deformations. Finally, the flow-mesh solver is used to calculate the equilibrium shapes of static menisci in capillary tubes.

  9. The Multigrid-Mask Numerical Method for Solution of Incompressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Ku, Hwar-Ching; Popel, Aleksander S.

    1996-01-01

    A multigrid-mask method for solution of incompressible Navier-Stokes equations in primitive variable form has been developed. The main objective is to apply this method in conjunction with the pseudospectral element method solving flow past multiple objects. There are two key steps involved in calculating flow past multiple objects. The first step utilizes only Cartesian grid points. This homogeneous or mask method step permits flow into the interior rectangular elements contained in objects, but with the restriction that the velocity for those Cartesian elements within and on the surface of an object should be small or zero. This step easily produces an approximate flow field on Cartesian grid points covering the entire flow field. The second or heterogeneous step corrects the approximate flow field to account for the actual shape of the objects by solving the flow field based on the local coordinates surrounding each object and adapted to it. The noise occurring in data communication between the global (low frequency) coordinates and the local (high frequency) coordinates is eliminated by the multigrid method when the Schwarz Alternating Procedure (SAP) is implemented. Two dimensional flow past circular and elliptic cylinders will be presented to demonstrate the versatility of the proposed method. An interesting phenomenon is found that when the second elliptic cylinder is placed in the wake of the first elliptic cylinder a traction force results in a negative drag coefficient.

  10. Fluid flow in deforming media: interpreting stable isotope signatures of marbles

    NASA Astrophysics Data System (ADS)

    Bond, C. E.

    2016-12-01

    Fluid flow in the crust is controlled by permeable networks. These networks can be created and destroyed dynamically during rock deformation. Rock deformation is therefore critical in controlling fluid pathways in the crust and hence the location of mineral and other resources. Here, evidence for deformation-enhanced fluid infiltration shows that a range of deformation mechanisms control fluid flow and chemical and isotopic equilibration. The results attest to localised fluid infiltration within a single metamorphic terrain (12km) over a range of metamorphic grades; ecologite- blueschist to greenschist. For fluid infiltrating marbles during ductile deformation, chemical and isotopic signatures are now homogenous; whilst fluid infiltration associated with brittle deformation results in chemical and isotopic heterogeneity at a microscale. The findings demonstrate how ductile deformation enhances equilibration of δ18O at a grain scale whilst brittle deformation does not. The control of deformation mechanisms in equilibrating isotopic and chemical heterogeneities have implications for the understanding of fluid-rock interaction in the crust. Interpretation of bulk stable isotope data, particularly in the use of isotope profiles to determine fluid fluxes into relatively impermeable units that have been deformed need to be used with care when trying to determine fluid fluxes and infiltration mechanisms.

  11. Flow around a helically twisted elliptic cylinder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Woojin; Lee, Jungil; Choi, Haecheon, E-mail: choi@snu.ac.kr

    In the present study, we conduct unsteady three-dimensional simulations of flows around a helically twisted elliptic (HTE) cylinder at the Reynolds numbers of 100 and 3900, based on the free-stream velocity and square root of the product of the lengths of its major and minor axes. A parametric study is conducted for Re = 100 by varying the aspect ratio (AR) of the elliptic cross section and the helical spanwise wavelength (λ). Depending on the values of AR and λ, the flow in the wake contains the characteristic wavelengths of λ, 2λ, 6λ, or even longer than 60λ, showing amore » wide diversity of flows in the wake due to the shape change. The drag on the optimal (i.e., having lowest drag) HTE cylinder (AR = 1.3 and λ = 3.5d) is lower by 18% than that of the circular cylinder, and its lift fluctuations are zero owing to complete suppression of vortex shedding in the wake. This optimal HTE configuration reduces the drag by 23% for Re = 3900 where the wake is turbulent, showing that the HTE cylinder reduces the mean drag and lift fluctuations for both laminar and turbulent flows.« less

  12. Direct photon elliptic flow at energies available at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Kim, Young-Min; Lee, Chang-Hwan; Teaney, Derek; Zahed, Ismail

    2017-07-01

    We use an event-by-event hydrodynamical description of the heavy-ion collision process with Glauber initial conditions to calculate the thermal emission of photons. The photon rates in the hadronic phase follow from a spectral function approach and a density expansion, while in the partonic phase they follow from the Arnold-Moore-Yaffe (AMY) perturbative rates. The calculated photon elliptic flows are lower than those reported recently by both the ALICE and PHENIX collaborations.

  13. Life and Times of the X-Ray Gas in Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Renzini, Alvio

    2000-09-01

    The global gas flows in elliptical galaxies are initiated by stellar mass loss and their diagnostics rely on X-ray observations. The flows are controlled by a number of factors, including supernova heating, the depth and shape of the potential well as determined by the amount and distribution of bright and dark matter, AGN fueling and its feedback effects, interaction with the intracluster medium, and star formation. As a result no steady-state solution can satisfactorily describe the complex, evolutionary behavior of the gas flows, which can experience supersonic wind, subsonic outflow, and inflow phases, and transitions between one such flow regime to another. Having identified heating by Type Ia SN's as one of the key factors controlling the flows, constraints on its evolution with cosmological time are derived by considering the total amount of iron contained in whole clusters of galaxies, while the iron abundance in individual galaxy flows can set constraints on the present rate of SNIa's in ellipticals. The central issue of the problem remains the fate of the gas. It is argued that in one way or another, via SN-driven winds, ram pressure stripping, or AGN violent ejection, most of the gas is ultimately expelled from galaxies thus joining the intracluster medium.

  14. A numerical study of hypersonic stagnation heat transfer predictions at a coordinate singularity

    NASA Technical Reports Server (NTRS)

    Grasso, Francesco; Gnoffo, Peter A.

    1990-01-01

    The problem of grid induced errors associated with a coordinate singularity on heating predictions in the stagnation region of a three-dimensional body in hypersonic flow is examined. The test problem is for Mach 10 flow over an Aeroassist Flight Experiment configuration. This configuration is composed of an elliptic nose, a raked elliptic cone, and a circular shoulder. Irregularities in the heating predictions in the vicinity of the coordinate singularity, located at the axis of the elliptic nose near the stagnation point, are examined with respect to grid refinement and grid restructuring. The algorithm is derived using a finite-volume formulation. An upwind-biased total-variation diminishing scheme is employed for the inviscid flux contribution, and central differences are used for the viscous terms.

  15. Local parametric instability near elliptic points in vortex flows under shear deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koshel, Konstantin V., E-mail: kvkoshel@poi.dvo.ru; Institute of Applied Mathematics, FEB RAS, 7, Radio Street, Vladivostok 690022; Far Eastern Federal University, 8, Sukhanova Street, Vladivostok 690950

    The dynamics of two point vortices embedded in an oscillatory external flow consisted of shear and rotational components is addressed. The region associated with steady-state elliptic points of the vortex motion is established to experience local parametric instability. The instability forces the point vortices with initial positions corresponding to the steady-state elliptic points to move in spiral-like divergent trajectories. This divergent motion continues until the nonlinear effects suppress their motion near the region associated with the steady-state separatrices. The local parametric instability is then demonstrated not to contribute considerably to enhancing the size of the chaotic motion regions. Instead, themore » size of the chaotic motion region mostly depends on overlaps of the nonlinear resonances emerging in the perturbed system.« less

  16. Particle Deposition in Human Lungs due to Varying Cross-Sectional Ellipticity of Left and Right Main Bronchi

    NASA Astrophysics Data System (ADS)

    Roth, Steven; Oakes, Jessica; Shadden, Shawn

    2015-11-01

    Particle deposition in the human lungs can occur with every breathe. Airbourne particles can range from toxic constituents (e.g. tobacco smoke and air pollution) to aerosolized particles designed for drug treatment (e.g. insulin to treat diabetes). The effect of various realistic airway geometries on complex flow structures, and thus particle deposition sites, has yet to be extensively investigated using computational fluid dynamics (CFD). In this work, we created an image-based geometric airway model of the human lung and performed CFD simulations by employing multi-domain methods. Following the flow simulations, Lagrangian particle tracking was used to study the effect of cross-sectional shape on deposition sites in the conducting airways. From a single human lung model, the cross-sectional ellipticity (the ratio of major and minor diameters) of the left and right main bronchi was varied systematically from 2:1 to 1:1. The influence of the airway ellipticity on the surrounding flow field and particle deposition was determined.

  17. Imaging of supersonic flow over a double elliptic surface

    NASA Astrophysics Data System (ADS)

    Zhang, Qing-Hu; Yi, Shi-He; He, Lin; Zhu, Yang-Zhu; Chen, Zhi

    2013-11-01

    The coherent structures of flow over a double elliptic surface are experimentally investigated in a supersonic low-noise wind tunnel at Mach number 3 using nano-tracer planar laser scattering (NPLS) and particle image velocimetry (PIV) techniques. High spatiotemporal resolution images and velocity fields of both laminar and turbulent inflows over the test model are captured. Based on the time-correlation images, the spatial and temporal evolutionary characteristics of the coherent structures are investigated. The flow structures in the NPLS images are in good agreement with the velocity fluctuation fields by PIV. From statistically significant ensembles, spatial correlation analysis of both cases is performed to quantify the mean size and the orientation of coherent structures. The results indicate that the mean structure is elliptical in shape and the structural angles in the separated region of laminar inflow are slightly smaller than that of turbulent inflow. Moreover, the structural angles of both cases increase with their distance away from the wall.

  18. Biomechanical Simulation to Compare the Blood Hemodynamics and Cerebral Aneurysm Rupture Risk in Patients with Different Aneurysm Necks

    NASA Astrophysics Data System (ADS)

    Hajirayat, K.; Gholampour, S.; Sharifi, I.; Bizari, D.

    2017-11-01

    In this study, one normal subject and two patients suffering from a cerebral aneurysm with circular and elliptical necks are analyzed by using the fluid-structure interaction (FSI) method. Although the blood hemodynamics parameters increase after the occurrence of the disease, the largest increase is in the wall shear stress (by a factor of 4.1-6.5) as compared to the normal subject. The increase in these parameters for patients with a circular neck is more pronounced than that with an elliptical neck. The blood flow becomes slightly more turbulent after the occurrence of the cerebral aneurysm, though it still remains in the range of the laminar flow and the pulsatility of the blood flow in patients is 28-45% greater than that of the normal subject. Finally, the results show that the risk of vessel rupture in the cerebral aneurysm with a circular neck is 40.8% higher than that in the case of the cerebral aneurysm with an elliptical neck.

  19. High angle-of-attack aerodynamic characteristics of crescent and elliptic wings

    NASA Technical Reports Server (NTRS)

    Vandam, C. P.

    1989-01-01

    Static longitudinal and lateral-directional forces and moments were measured for elliptic- and crescent-wing models at high angles-of-attack in the NASA Langley 14 by 22-Ft Subsonic Tunnel. The forces and moments were obtained for an angle-of-attack range including stall and post-stall conditions at a Reynolds number based on the average wing chord of about 1.8 million. Flow-visualization photographs using a mixture of oil and titanium-dioxide were also taken for several incidence angles. The force and moment data and the flow-visualization results indicated that the crescent wing model with its highly swept tips produced much better high angle-of-attack aerodynamic characteristics than the elliptic model. Leading-edge separation-induced vortex flow over the highly swept tips of the crescent wing is thought to produce this improved behavior at high angles-of-attack. The unique planform design could result in safer and more efficient low-speed airplanes.

  20. Swinging motion of active deformable particles in Poiseuille flow

    NASA Astrophysics Data System (ADS)

    Tarama, Mitsusuke

    2017-08-01

    Dynamics of active deformable particles in an external Poiseuille flow is investigated. To make the analysis general, we employ time-evolution equations derived from symmetry considerations that take into account an elliptical shape deformation. First, we clarify the relation of our model to that of rigid active particles. Then, we study the dynamical modes that active deformable particles exhibit by changing the strength of the external flow. We emphasize the difference between the active particles that tend to self-propel parallel to the elliptical shape deformation and those self-propelling perpendicularly. In particular, a swinging motion around the centerline far from the channel walls is discussed in detail.

  1. Spectra and elliptic flow of thermal photons from full-overlap U+U collisions at energies available at the BNL Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Dasgupta, Pingal; Chatterjee, Rupa; Srivastava, Dinesh K.

    2017-06-01

    We calculate pT spectra and elliptic flow for tip-tip and body-body configurations of full-overlap uranium-uranium (U+U ) collisions by using a hydrodynamic model with smooth initial density distribution and compare the results with those obtained from Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC). Production of thermal photons is seen to be significantly larger for tip-tip collisions compared with body-body collisions of uranium nuclei in the region pT>1 GeV. The difference in the results for the two configurations of U+U collisions depends on the initial energy deposition which is yet to be constrained precisely from hadronic measurements. The thermal photon spectrum from body-body collisions is found to be close to the spectrum from most-central Au+Au collisions at RHIC. The elliptic-flow parameter calculated for body-body collisions is found to be large and comparable to the v2(pT) for mid-central collisions of Au nuclei. On the other hand, as expected, v2(pT) is close to zero for tip-tip collisions. The qualitative nature of the photon spectra and elliptic flow for the two different orientations of uranium nuclei is found to be independent of the initial parameters of the model calculation. We show that the photon results from fully overlapping U+U collisions are complementary to the results from Au+Au collisions at RHIC.

  2. Effect of compressibility at high subsonic velocities on the lifting force acting on an elliptic cylinder

    NASA Technical Reports Server (NTRS)

    Kaplan, Carl

    1946-01-01

    An extended form of the Ackeret iteration method, applicable to arbitrary profiles, is utilized to calculate the compressible flow at high subsonic velocities past an elliptic cylinder. The angle of attack to the direction of the undisturbed stream is small and the circulation is fixed by the Kutta condition at the trailing end of the major axis. The expression for the lifting force on the elliptic cylinder is derived and shows a first-step improvement of the Prandtl-Glauert rule. It is further shown that the expression for the lifting force, although derived specifically for an elliptic cylinder, may be extended to arbitrary symmetrical profiles.

  3. Aerodynamic interaction between vortical wakes and lifting two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.

    1989-01-01

    Unsteady rotor wake interactions with the empennage, tail boom, and other aerodynamic surfaces of a helicopter have a significant influence on its aerodynamic performance, the ride quality, and vibration. A numerical method for computing the aerodynamic interaction between an interacting vortex wake and the viscous flow about arbitrary two-dimensional bodies was developed to address this helicopter problem. The method solves for the flow field velocities on a body-fitted computational mesh using finite-difference techniques. The interacting vortex wake is represented by an array of discrete vortices which, in turn, are represented by a finite-core model. The evolution of the interacting vortex wake is calculated by Lagrangian techniques. The viscous flow field of the two-dimensional body is calculated on an Eulerian grid. The flow around circular and elliptic cylinders in the absence of an interacting vortex wake was calculated. These results compare very well with other numerical results and with results obtained from experiment and thereby demonstrate the accuracy of the viscous solution. The interaction of a rotor wake with the flow about a 4 to 1 elliptic cylinder at 45 degree incidence was calculated for a Reynolds number of 3000. The results demonstrate the significant variations in the lift and drag on the elliptic cylinder in the presence of the interacting rotor wake.

  4. Numerical simulation of transverse fuel injection

    NASA Technical Reports Server (NTRS)

    Mao, Marlon; Riggins, David W.; Mcclinton, Charles R.

    1991-01-01

    A review of recent work at NASA Langley Research Center to compare the predictions of transverse fuel injector flow fields and mixing performance with experimental results is presented. Various cold (non-reactive) mixing studies were selected for code calibration which include the effects of boundary layer thickness and injection angle for sonic hydrogen injection into supersonic air. Angled injection of helium is also included. This study was performed using both the three-dimensional elliptic and the parabolized Navier-Stokes (PNS) versions of SPARK. Axial solution planes were passed from PNS to elliptic and elliptic to PNS in order to efficiently generate solutions. The PNS version is used both upstream and far downstream of the injector where the flow can be considered parabolic in nature. The comparisons are used to identify experimental deficiencies and computational procedures to improve agreement.

  5. Collective Flows of 16O+16O Collisions with α-Clustering Configurations

    NASA Astrophysics Data System (ADS)

    Guo, Chen-Chen; He, Wan-Bing; Ma, Yu-Gang

    2017-08-01

    The main purpose of the present paper is to discuss whether or not the collective flows in heavy-ion collision at Fermi energy can be taken as a tool to investigate the cluster configuration in light nuclei. In practice, within an Extended Quantum Molecular Dynamics model, four $\\alpha$-clustering (linear chain, kite, square, and tetrahedron) configurations of $^{16}$O are employed in the initialization, $^{16}$O+$^{16}$O around Fermi energy (40 - 60 MeV$/$nucleon) with impact parameter 1 - 3 fm are simulated, the directed and elliptic flows are analyzed. It is found that collective flows are influenced by the different $\\alpha$-clustering configurations, and the directed flow of free protons is more sensitive to the initial cluster configuration than the elliptic flow. Nuclear reaction at Fermi energy can be taken a useful way to study cluster configuration in light nuclei.

  6. A finite difference method for the solution of the transonic flow around harmonically oscillating wings

    NASA Technical Reports Server (NTRS)

    Ehlers, E. F.

    1974-01-01

    A finite difference method for the solution of the transonic flow about a harmonically oscillating wing is presented. The partial differential equation for the unsteady transonic flow was linearized by dividing the flow into separate steady and unsteady perturbation velocity potentials and by assuming small amplitudes of harmonic oscillation. The resulting linear differential equation is of mixed type, being elliptic or hyperbolic whereever the steady flow equation is elliptic or hyperbolic. Central differences were used for all derivatives except at supersonic points where backward differencing was used for the streamwise direction. Detailed formulas and procedures are described in sufficient detail for programming on high speed computers. To test the method, the problem of the oscillating flap on a NACA 64A006 airfoil was programmed. The numerical procedure was found to be stable and convergent even in regions of local supersonic flow with shocks.

  7. Event-by-Event Hydrodynamics+Jet Energy Loss: A Solution to the R_{AA}⊗v_{2} Puzzle.

    PubMed

    Noronha-Hostler, Jacquelyn; Betz, Barbara; Noronha, Jorge; Gyulassy, Miklos

    2016-06-24

    High p_{T}>10  GeV elliptic flow, which is experimentally measured via the correlation between soft and hard hadrons, receives competing contributions from event-by-event fluctuations of the low-p_{T} elliptic flow and event-plane angle fluctuations in the soft sector. In this Letter, a proper account of these event-by-event fluctuations in the soft sector, modeled via viscous hydrodynamics, is combined with a jet-energy-loss model to reveal that the positive contribution from low-p_{T} v_{2} fluctuations overwhelms the negative contributions from event-plane fluctuations. This leads to an enhancement of high-p_{T}>10  GeV elliptic flow in comparison to previous calculations and provides a natural solution to the decade-long high-p_{T} R_{AA}⊗v_{2} puzzle. We also present the first theoretical calculation of high-p_{T} v_{3}, which is shown to be compatible with current LHC data. Furthermore, we discuss how short-wavelength jet-medium physics can be deconvoluted from the physics of soft, bulk event-by-event flow observables using event-shape engineering techniques.

  8. Directed and Elliptic Flow of Charged Hadrons in 62.4 GeV Au+Au Collisions

    NASA Astrophysics Data System (ADS)

    Oldenburg, Markus

    2004-10-01

    The measurement of the azimuthal momentum distribution of particles produced in heavy-ion collisions reveals insight into the early stage of the system's evolution [1]. It is quantified by the Fourier coefficients vn of the distribution of particle momentum azimuth angle [2]. Theoretical models predict the first Fourier coefficient v1 ("directed flow") to be sensitive to a possible phase transition of normal nuclear matter to a quark-gluon plasma [3]. The second Fourier component v2 ("elliptic flow") is believed to be a signal of early thermalization of the created system of hot and dense nuclear matter [4]. We present results of directed and elliptic flow at √s_NN = 62.4 GeV, as measured by the STAR experiment at RHIC. Comparisons to model predictions and different analysis techniques will be made. [1] P.F. Kolb, J. Sollfrank, and U. Heinz, Phys. Rev. C 62, 054909 (2000). [2] S.A. Voloshin and Y. Zhang, Z. Phys. C 70, 665 (1996). [3] L.P. Csernai and D. Röhrich, Phys. Lett. B 458, 454 (1999). [4] D. Teaney, J. Lauret and E. Shuryak, Phys. Rev. Lett. 86, 4783 (2001).

  9. The Compressible Potential Flow Past Elliptic Symmetrical Cylinders at Zero Angle of Attack and with No Circulation

    NASA Technical Reports Server (NTRS)

    Hantzsche, W.; Wendt, H.

    1942-01-01

    For the tunnel corrections of compressible flows those profiles are of interest for which at least the second approximation of the Janzen-Rayleigh method can be applied in closed form. One such case is presented by certain elliptical symmetrical cylinders located in the center of a tunnel with fixed walls and whose maximum velocity, incompressible, is twice the velocity of flow. In the numerical solution the maximum velocity at the profile and the tunnel wall as well as the entry of sonic velocity is computed. The velocity distribution past the contour and in the minimum cross section at various Mach numbers is illustrated on a worked out-example.

  10. A Study of Two-Equation Turbulence Models on the Elliptic Streamline Flow

    NASA Technical Reports Server (NTRS)

    Blaisdell, Gregory A.; Qin, Jim H.; Shariff, Karim; Rai, Man Mohan (Technical Monitor)

    1995-01-01

    Several two-equation turbulence models are compared to data from direct numerical simulations (DNS) of the homogeneous elliptic streamline flow, which combines rotation and strain. The models considered include standard two-equation models and models with corrections for rotational effects. Most of the rotational corrections modify the dissipation rate equation to account for the reduced dissipation rate in rotating turbulent flows, however, the DNS data shows that the production term in the turbulent kinetic energy equation is not modeled correctly by these models. Nonlinear relations for the Reynolds stresses are considered as a means of modifying the production term. Implications for the modeling of turbulent vortices will be discussed.

  11. Continuous high-frequency dissolved O2/Ar measurements by equilibrator inlet mass spectrometry.

    PubMed

    Cassar, Nicolas; Barnett, Bruce A; Bender, Michael L; Kaiser, Jan; Hamme, Roberta C; Tilbrook, Bronte

    2009-03-01

    The oxygen (O(2)) concentration in the surface ocean is influenced by biological and physical processes. With concurrent measurements of argon (Ar), which has similar solubility properties as oxygen, we can remove the physical contribution to O(2) supersaturation and determine the biological oxygen supersaturation. Biological O(2) supersaturation in the surface ocean reflects the net metabolic balance between photosynthesis and respiration, i.e., the net community productivity (NCP). We present a new method for continuous shipboard measurements of O(2)/Ar by equilibrator inlet mass spectrometry (EIMS). From these measurements and an appropriate gas exchange parametrization, NCP can be estimated at high spatial and temporal resolution. In the EIMS configuration, seawater from the ship's continuous intake flows through a cartridge enclosing a gas-permeable microporous membrane contactor. Gases in the headspace of the cartridge equilibrate with dissolved gases in the flowing seawater. A fused-silica capillary continuously samples headspace gases, and the O(2)/Ar ratio is measured by mass spectrometry. The ion current measurements on the mass spectrometer reflect the partial pressures of dissolved gases in the water flowing through the equilibrator. Calibration of the O(2)/Ar ion current ratio (32/40) is performed automatically every 2 h by sampling ambient air through a second capillary. A conceptual model demonstrates that the ratio of gases reaching the mass spectrometer is dependent on several parameters, such as the differences in molecular diffusivities and solubilities of the gases. Laboratory experiments and field observations performed by EIMS are discussed. We also present preliminary evidence that other gas measurements, such as N(2)/Ar and pCO(2) measurements, may potentially be performed with EIMS. Finally, we compare the characteristics of the EIMS with the previously described membrane inlet mass spectrometry (MIMS) approach.

  12. Systematic parameter study of hadron spectra and elliptic flow from viscous hydrodynamic simulations of Au+Au collisions at sNN=200 GeV

    NASA Astrophysics Data System (ADS)

    Shen, Chun; Heinz, Ulrich; Huovinen, Pasi; Song, Huichao

    2010-11-01

    Using the (2+1)-dimensional viscous hydrodynamic code vish2+1 [H. Song and U. Heinz, Phys. Lett. BPYLBAJ0370-269310.1016/j.physletb.2007.11.019 658, 279 (2008); H. Song and U. Heinz, Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.77.064901 77, 064901 (2008); H. Song, Ph. D. thesis, The Ohio State University, 2009], we present systematic studies of the dependence of pion and proton transverse-momentum spectra and their elliptic flow in 200A GeV Au+Au collisions on the parameters of the hydrodynamic model (thermalization time, initial entropy density distribution, decoupling temperature, equation of state, and specific shear viscosity η/s). We identify a tension between the slope of the proton spectra, which (within hydrodynamic simulations that assume a constant shear viscosity to entropy density ratio) prefer larger η/s values, and the slope of the pT dependence of charged hadron elliptic flow, which prefers smaller values of η/s. Changing other model parameters does not appear to permit dissolution of this tension.

  13. Systematic parameter study of hadron spectra and elliptic flow from viscous hydrodynamic simulations of Au+Au collisions at {radical}(s{sub NN})=200 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen Chun; Heinz, Ulrich; Huovinen, Pasi

    2010-11-15

    Using the (2+1)-dimensional viscous hydrodynamic code vish2+1[H. Song and U. Heinz, Phys. Lett. B 658, 279 (2008); H. Song and U. Heinz, Phys. Rev. C 77, 064901 (2008); H. Song, Ph. D. thesis, The Ohio State University, 2009], we present systematic studies of the dependence of pion and proton transverse-momentum spectra and their elliptic flow in 200A GeV Au+Au collisions on the parameters of the hydrodynamic model (thermalization time, initial entropy density distribution, decoupling temperature, equation of state, and specific shear viscosity {eta}/s). We identify a tension between the slope of the proton spectra, which (within hydrodynamic simulations that assumemore » a constant shear viscosity to entropy density ratio) prefer larger {eta}/s values, and the slope of the p{sub T} dependence of charged hadron elliptic flow, which prefers smaller values of {eta}/s. Changing other model parameters does not appear to permit dissolution of this tension.« less

  14. On the Transition from Two-Dimensional to Three-Dimensional MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Thess, A.; Zikanov, Oleg

    2004-01-01

    We report a theoretical investigation of the robustness of two-dimensional inviscid MHD flows at low magnetic Reynolds numbers with respect to three-dimensional perturbations. We analyze three model problems, namely flow in the interior of a triaxial ellipsoid, an unbounded vortex with elliptical streamlines, and a vortex sheet parallel to the magnetic field. We demonstrate that motion perpendicular to the magnetic field with elliptical streamlines becomes unstable with respect to the elliptical instability once the velocity has reached a critical magnitude whose value tends to zero as the eccentricity of the streamlines becomes large. Furthermore, vortex sheets parallel to the magnetic field, which are unstable for any velocity and any magnetic field, are found to emit eddies with vorticity perpendicular to the magnetic field and with an aspect ratio proportional to N(sup 1/2). The results suggest that purely two-dimensional motion without Joule energy dissipation is a singular type of flow which does not represent the asymptotic behaviour of three-dimensional MHD turbulence in the limit of infinitely strong magnetic fields.

  15. A Gas-Kinetic Method for Hyperbolic-Elliptic Equations and Its Application in Two-Phase Fluid Flow

    NASA Technical Reports Server (NTRS)

    Xu, Kun

    1999-01-01

    A gas-kinetic method for the hyperbolic-elliptic equations is presented in this paper. In the mixed type system, the co-existence and the phase transition between liquid and gas are described by the van der Waals-type equation of state (EOS). Due to the unstable mechanism for a fluid in the elliptic region, interface between the liquid and gas can be kept sharp through the condensation and evaporation process to remove the "averaged" numerical fluid away from the elliptic region, and the interface thickness depends on the numerical diffusion and stiffness of the phase change. A few examples are presented in this paper for both phase transition and multifluid interface problems.

  16. Collective flows of pions in Au+Au collisions at energies 1.0 and 1.5 GeV/nucleon

    NASA Astrophysics Data System (ADS)

    Liu, Yangyang; Wang, Yongjia; Li, Qingfeng; Liu, Ling

    2018-03-01

    Based on the newly updated version of the ultrarelativistic quantum molecular dynamics (UrQMD) model, the pion potentials obtained from the in-medium dispersion relation of the Δ -hole model and from the modified phenomenological approach are further introduced. Both the rapidity y0 and transverse-velocity ut 0 dependence of directed v1 and elliptic v2 flows of π+ and π- charged mesons produced from Au+Au collisions at two beam energies of 1.0 and 1.5 GeV/nucleon and within a large centrality region of 0

  17. Grid generation by elliptic partial differential equations for a tri-element Augmentor-Wing airfoil

    NASA Technical Reports Server (NTRS)

    Sorenson, R. L.

    1982-01-01

    Two efforts to numerically simulate the flow about the Augmentor-Wing airfoil in the cruise configuration using the GRAPE elliptic partial differential equation grid generator algorithm are discussed. The Augmentor-Wing consists of a main airfoil with a slotted trailing edge for blowing and two smaller airfoils shrouding the blowing jet. The airfoil and the algorithm are described, and the application of GRAPE to an unsteady viscous flow simulation and a transonic full-potential approach is considered. The procedure involves dividing a complicated flow region into an arbitrary number of zones and ensuring continuity of grid lines, their slopes, and their point distributions across the zonal boundaries. The method for distributing the body-surface grid points is discussed.

  18. An autonomous dynamical system captures all LCSs in three-dimensional unsteady flows.

    PubMed

    Oettinger, David; Haller, George

    2016-10-01

    Lagrangian coherent structures (LCSs) are material surfaces that shape the finite-time tracer patterns in flows with arbitrary time dependence. Depending on their deformation properties, elliptic and hyperbolic LCSs have been identified from different variational principles, solving different equations. Here we observe that, in three dimensions, initial positions of all variational LCSs are invariant manifolds of the same autonomous dynamical system, generated by the intermediate eigenvector field, ξ 2 (x 0 ), of the Cauchy-Green strain tensor. This ξ 2 -system allows for the detection of LCSs in any unsteady flow by classical methods, such as Poincaré maps, developed for autonomous dynamical systems. As examples, we consider both steady and time-aperiodic flows, and use their dual ξ 2 -system to uncover both hyperbolic and elliptic LCSs from a single computation.

  19. Elliptical flux vortices in YBa2Cu3O7

    NASA Technical Reports Server (NTRS)

    Hickman, H.; Dekker, A. J.; Chen, T. M.

    1991-01-01

    The most energetically favorable vortex in YBa2Cu3O7 forms perpendicular to an anisotropic plane. This vortex is elliptical in shape and is distinguished by an effective interchange of London penetration depths from one axis of the ellipse to another. By generalizing qualitatively from the isotropic to the anisotropic case, we suggest that the flux flow resistivity for the vortex that forms perpendicular to an anistropic plane should have a preferred direction. Similar reasoning indicates that the Kosterlitz-Thouless transition temperature for a vortex mediated transition should be lower if the vortex is elliptical in shape.

  20. Elliptic jets, part 2. Dynamics of coherent structures: Pairing

    NASA Technical Reports Server (NTRS)

    Husain, Hyder S.; Hussain, Fazle

    1992-01-01

    The dynamics of the jet column mode of vortex pairing in the near field of an elliptic jet was investigated. Hot-wire measurements and flow visualization were used to examine the details of the pairing mechanism of nonplanar vortical elliptic structures and its effect on such turbulence measures as coherent velocities, incoherent turbulence intensities, incoherent and coherent Reynolds, stresses, turbulence production, and mass entrainment. It was found that pairing of elliptic vortices in the jet column does not occur uniformly around the entire perimeter, unlike in a circular jet. Merger occurs only in the initial major-axis plane. In the initial minor-axis plane, the trailing vortex rushes through the leading vortex without pairing and then breaks down violently, producing considerably greater entrainment and mixing than in circular or plane jets.

  1. Ideal hydrodynamics and elliptic flow at CERN Super Proton Synchrotron (SPS) energies: Importance of the initial conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, Hannah; Institut fuer Theoretische Physik, Johann Wolfgang Goethe-Universitaet, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main; Bleicher, Marcus

    2009-05-15

    The elliptic flow excitation function calculated in a full (3+1) dimensional hybrid Boltzmann approach with an intermediate hydrodynamic stage for heavy ion reactions from GSI Schwerionen Synchrotron to the highest CERN Super Proton Synchrotron (SPS) energies is discussed in the context of the experimental data. In this study, we employ a hadron gas equation of state to investigate the differences in the dynamics and viscosity effects. The specific event-by-event setup with initial conditions and freeze-out from a nonequilibrium transport model allows for a direct comparison between ideal fluid dynamics and transport simulations. At higher SPS energies, where the pure transportmore » calculation cannot account for the high elliptic flow values, the smaller mean free path in the hydrodynamic evolution leads to higher elliptic flow values. In contrast to previous studies within pure hydrodynamics, the more realistic initial conditions employed here and the inclusion of a sequential final state hadronic decoupling provides results that are in line with the experimental data almost over the whole energy range from E{sub lab}=2-160A GeV. Thus, this new approach leads to a substantially different shape of the v{sub 2}/{epsilon} scaling curve as a function of (1/SdN{sub ch}/dy) in line with the experimental data compared to previous ideal hydrodynamic calculations. This hints at a strong influence of the initial conditions for the hydrodynamic evolution on the finally observed v{sub 2} values, thus questioning the standard interpretation that the hydrodynamic limit is only reached at BNL Relativistic Heavy Ion Collider energies.« less

  2. Spherical accretion in giant elliptical galaxies: multi-transonicity, shocks, and implications on AGN feedback

    NASA Astrophysics Data System (ADS)

    Raychaudhuri, Sananda; Ghosh, Shubhrangshu; Joarder, Partha S.

    2018-06-01

    Isolated massive elliptical galaxies, or that are present at the center of cool-core clusters, are believed to be powered by hot gas accretion directly from their surrounding hot X-ray emitting gaseous medium. This leads to a giant Bondi-type spherical/quasi-spherical accretion flow onto their host SMBHs, with the accretion flow region extending well beyond the Bondi radius. In this work, we present a detailed study of Bondi-type spherical flow in the context of these massive ellipticals by incorporating the effect of entire gravitational potential of the host galaxy in the presence of cosmological constant Λ, considering a five-component galactic system (SMBH + stellar + dark matter + hot gas + Λ). The current work is an extension of Ghosh & Banik (2015), who studied only the cosmological aspect of the problem. The galactic contribution to the potential renders the (adiabatic) spherical flow to become multi-transonic in nature, with the flow topology and flow structure significantly deviating from that of classical Bondi solution. More notably, corresponding to moderate to higher values of galactic mass-to-light ratios, we obtain Rankine-Hugoniot shocks in spherical wind flows. Galactic potential enhances the Bondi accretion rate. Our study reveals that there is a strict lower limit of ambient temperature below which no Bondi accretion can be triggered; which is as high as ˜9 × 106 K for flows from hot ISM-phase, indicating that the hot phase tightly regulates the fueling of host nucleus. Our findings may have wider implications, particularly in the context of outflow/jet dynamics, and radio-AGN feedback, associated with these massive galaxies in the contemporary Universe.

  3. Anisotropic flow of thermal photons at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Chatterjee, Rupa; Dasgupta, Pingal; Srivastava, Dinesh K.

    2017-07-01

    We calculate elliptic and triangular flow parameters of thermal photons using an event-by-event hydrodynamic model with fluctuating initial conditions at 200 A GeV Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and at 2.76 A TeV Pb+Pb collisions at the Cern Large Hadron Collider (LHC) for three different centrality bins. The photon elliptic flow shows strong centrality dependence where v2(pT) increases towards peripheral collisions both at RHIC and at the LHC energies. However, the triangular flow parameter does not show significant dependence on the collision centrality. The elliptic as well as the triangular flow parameters found to underestimate the PHENIX data at RHIC by a large margin for all three centrality bins. We calculate pT spectrum and anisotropic flow of thermal photons from 200 A GeV Cu+Cu collisions at RHIC for a 0-20% centrality bin and compare with the results with those from Au+Au collisions. The production of thermal photons is found to decrease significantly for Cu+Cu collisions compared to Au+Au collisions. However, the effect of initial state fluctuation is found to be more pronounced for anisotropic flow, resulting in larger v2 and v3 for Cu+Cu collisions. We study the correlation between the anisotropic flow parameters and the corresponding initial spatial anisotropies from their event-by-event distributions at RHIC and at the LHC energies. The linear correlation between v2 and ɛ2 is found be stronger compared to the correlation between v3 and ɛ3. In addition, the correlation coefficient is found to be larger at LHC than at RHIC.

  4. Effects of an extension of the equilibration period up to 96 hours on the characteristics of cryopreserved bull semen.

    PubMed

    Fleisch, A; Malama, E; Witschi, U; Leiding, C; Siuda, M; Janett, F; Bollwein, H

    2017-02-01

    This study was designed to investigate the effects of an equilibration period up to 96 hours and three extenders (AndroMed, OPTIXcell, and Triladyl) on the quality of cryopreserved bull semen and to evaluate, whether an extension of the equilibration time to 72 hours does affect fertility in the field. One ejaculate of 17 bulls was collected and divided into three equal aliquots and diluted, respectively, with the three extenders. Each aliquot was again divided into five parts and equilibrated for 4, 24, 48, 72, and 96 hours before freezing in an automatic freezer. Sperm motility, plasma membrane and acrosome integrity (PMAI), and DNA fragmentation index (% DFI) were measured during equilibration. In addition to the parameters measured during equilibration, the percentage of viable sperm cells with high mitochondrial membrane potential (HMMP) was measured immediately after thawing, and after 3 hours of incubation at 37 °C. Sperm motility was assessed using CASA, and PMAI, HMMP, and % DFI were measured using flow cytometry. Equilibration time did affect all parameters before freezing (P < 0.01), and also the extender affected all parameters except HMMP (P < 0.05). After thawing, all parameters except HMMP immediately after thawing were influenced by the equilibration period (P < 0.001), whereas all parameters except % DFI immediately after thawing were influenced by the extender (P < 0.001). The changes of semen characteristics during 3 hours of incubation were also dependent on the equilibration time and the extender used in all parameters (P < 0.01). In the field study, semen of nine bulls was collected thrice weekly, processed using Triladyl egg yolk extender, and frozen in 0.25 mL straws with 15 × 10 6 spermatozoa per straw. In total, the nonreturn rates on Day 90 after insemination (NRR90) of 263,816 inseminations in two periods were evaluated. Whereas semen collected on Mondays and Wednesdays was equilibrated for 24 hours in both periods, semen collected on Fridays was equilibrated for 4 hours in period one and equilibrated for 72 hours in period 2. No differences in NRR90 could be found (P > 0.05). In conclusion, extension of the equilibration time from 4 hours to 24-72 hours can improve motility and viability of cryopreserved semen after thawing. The extent of improvement in semen quality is dependent on the extender used. Prolongation of the equilibration period from 4 hours to 72 hours had no effect on fertility in the field. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Energy Dependence of Elliptic Flow over a Large Pseudorapidity Range in Au+Au Collisions at the BNL Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2005-04-01

    This Letter describes the measurement of the energy dependence of elliptic flow for charged particles in Au+Au collisions using the PHOBOS detector at the Relativistic Heavy Ion Collider. Data taken at collision energies of √(sNN)=19.6, 62.4, 130, and 200 GeV are shown over a wide range in pseudorapidity. These results, when plotted as a function of η'=|η|-ybeam, scale with approximate linearity throughout η', implying no sharp changes in the dynamics of particle production as a function of pseudorapidity or increasing beam energy.

  6. Energy dependence of elliptic flow over a large pseudorapidity range in Au+Au collisions at the BNL relativistic heavy ion collider.

    PubMed

    Back, B B; Baker, M D; Ballintijn, M; Barton, D S; Betts, R R; Bickley, A A; Bindel, R; Budzanowski, A; Busza, W; Carroll, A; Chai, Z; Decowski, M P; García, E; Gburek, T; George, N; Gulbrandsen, K; Gushue, S; Halliwell, C; Hamblen, J; Hauer, M; Heintzelman, G A; Henderson, C; Hofman, D J; Hollis, R S; Hołyński, R; Holzman, B; Iordanova, A; Johnson, E; Kane, J L; Katzy, J; Khan, N; Kucewicz, W; Kulinich, P; Kuo, C M; Lin, W T; Manly, S; McLeod, D; Mignerey, A C; Nouicer, R; Olszewski, A; Pak, R; Park, I C; Pernegger, H; Reed, C; Remsberg, L P; Reuter, M; Roland, C; Roland, G; Rosenberg, L; Sagerer, J; Sarin, P; Sawicki, P; Seals, H; Sedykh, I; Skulski, W; Smith, C E; Stankiewicz, M A; Steinberg, P; Stephans, G S F; Sukhanov, A; Tang, J-L; Tonjes, M B; Trzupek, A; Vale, C; van Nieuwenhuizen, G J; Vaurynovich, S S; Verdier, R; Veres, G I; Wenger, E; Wolfs, F L H; Wosiek, B; Woźniak, K; Wuosmaa, A H; Wysłouch, B

    2005-04-01

    This Letter describes the measurement of the energy dependence of elliptic flow for charged particles in Au+Au collisions using the PHOBOS detector at the Relativistic Heavy Ion Collider. Data taken at collision energies of square root of s(NN)=19.6, 62.4, 130, and 200 GeV are shown over a wide range in pseudorapidity. These results, when plotted as a function of eta(')=|eta|-y(beam), scale with approximate linearity throughout eta('), implying no sharp changes in the dynamics of particle production as a function of pseudorapidity or increasing beam energy.

  7. Measurements of Elliptic and Triangular Flow in High-Multiplicity 3He+Au Collisions at √(s(NN))=200 GeV.

    PubMed

    Adare, A; Afanasiev, S; Aidala, C; Ajitanand, N N; Akiba, Y; Akimoto, R; Al-Bataineh, H; Alexander, J; Alfred, M; Al-Ta'ani, H; Andrews, K R; Angerami, A; Aoki, K; Apadula, N; Aphecetche, L; Appelt, E; Aramaki, Y; Armendariz, R; Aronson, S H; Asai, J; Asano, H; Aschenauer, E C; Atomssa, E T; Averbeck, R; Awes, T C; Azmoun, B; Babintsev, V; Bai, M; Baksay, G; Baksay, L; Baldisseri, A; Bandara, N S; Bannier, B; Barish, K N; Barnes, P D; Bassalleck, B; Basye, A T; Bathe, S; Batsouli, S; Baublis, V; Baumann, C; Bazilevsky, A; Beaumier, M; Beckman, S; Belikov, S; Belmont, R; Ben-Benjamin, J; Bennett, R; Berdnikov, A; Berdnikov, Y; Bhom, J H; Bickley, A A; Blau, D S; Boissevain, J G; Bok, J S; Borel, H; Boyle, K; Brooks, M L; Broxmeyer, D; Bryslawskyj, J; Buesching, H; Bumazhnov, V; Bunce, G; Butsyk, S; Camacho, C M; Campbell, S; Caringi, A; Castera, P; Chang, B S; Chang, W C; Charvet, J-L; Chen, C-H; Chernichenko, S; Chi, C Y; Chiba, J; Chiu, M; Choi, I J; Choi, J B; Choudhury, R K; Christiansen, P; Chujo, T; Chung, P; Churyn, A; Chvala, O; Cianciolo, V; Citron, Z; Cleven, C R; Cole, B A; Comets, M P; Conesa del Valle, Z; Connors, M; Constantin, P; Csanád, M; Csörgő, T; Dahms, T; Dairaku, S; Danchev, I; Danley, D; Das, K; Datta, A; Daugherity, M S; David, G; Dayananda, M K; Deaton, M B; DeBlasio, K; Dehmelt, K; Delagrange, H; Denisov, A; d'Enterria, D; Deshpande, A; Desmond, E J; Dharmawardane, K V; Dietzsch, O; Dion, A; Diss, P B; Do, J H; Donadelli, M; D'Orazio, L; Drapier, O; Drees, A; Drees, K A; Dubey, A K; Durham, J M; Durum, A; Dutta, D; Dzhordzhadze, V; Edwards, S; Efremenko, Y V; Egdemir, J; Ellinghaus, F; Emam, W S; Engelmore, T; Enokizono, A; En'yo, H; Esumi, S; Eyser, K O; Fadem, B; Feege, N; Fields, D E; Finger, M; Finger, M; Fleuret, F; Fokin, S L; Fraenkel, Z; Frantz, J E; Franz, A; Frawley, A D; Fujiwara, K; Fukao, Y; Fusayasu, T; Gadrat, S; Gal, C; Gallus, P; Garg, P; Garishvili, I; Ge, H; Giordano, F; Glenn, A; Gong, H; Gong, X; Gonin, M; Gosset, J; Goto, Y; Granier de Cassagnac, R; Grau, N; Greene, S V; Grim, G; Grosse Perdekamp, M; Gu, Y; Gunji, T; Guo, L; Gustafsson, H-Å; Hachiya, T; Hadj Henni, A; Haegemann, C; Haggerty, J S; Hahn, K I; Hamagaki, H; Hamblen, J; Hamilton, H F; Han, R; Han, S Y; Hanks, J; Harada, H; Harper, C; Hartouni, E P; Haruna, K; Hasegawa, S; Haseler, T O S; Hashimoto, K; Haslum, E; Hayano, R; He, X; Heffner, M; Hemmick, T K; Hester, T; Hiejima, H; Hill, J C; Hobbs, R; Hohlmann, M; Hollis, R S; Holzmann, W; Homma, K; Hong, B; Horaguchi, T; Hori, Y; Hornback, D; Hoshino, T; Hotvedt, N; Huang, J; Huang, S; Ichihara, T; Ichimiya, R; Iinuma, H; Ikeda, Y; Imai, K; Imrek, J; Inaba, M; Inoue, Y; Iordanova, A; Isenhower, D; Isenhower, L; Ishihara, M; Isobe, T; Issah, M; Isupov, A; Ivanishchev, D; Iwanaga, Y; Jacak, B V; Jezghani, M; Jia, J; Jiang, X; Jin, J; Jinnouchi, O; John, D; Johnson, B M; Jones, T; Joo, K S; Jouan, D; Jumper, D S; Kajihara, F; Kametani, S; Kamihara, N; Kamin, J; Kanda, S; Kaneta, M; Kaneti, S; Kang, B H; Kang, J H; Kang, J S; Kanou, H; Kapustinsky, J; Karatsu, K; Kasai, M; Kawall, D; Kawashima, M; Kazantsev, A V; Kempel, T; Key, J A; Khachatryan, V; Khanzadeev, A; Kijima, K M; Kikuchi, J; Kim, A; Kim, B I; Kim, C; Kim, D H; Kim, D J; Kim, E; Kim, E-J; Kim, G W; Kim, M; Kim, S H; Kim, Y-J; Kim, Y K; Kimelman, B; Kinney, E; Kiriluk, K; Kiss, Á; Kistenev, E; Kitamura, R; Kiyomichi, A; Klatsky, J; Klay, J; Klein-Boesing, C; Kleinjan, D; Kline, P; Koblesky, T; Kochenda, L; Kochetkov, V; Komkov, B; Konno, M; Koster, J; Kotchetkov, D; Kotov, D; Kozlov, A; Král, A; Kravitz, A; Kubart, J; Kunde, G J; Kurihara, N; Kurita, K; Kurosawa, M; Kweon, M J; Kwon, Y; Kyle, G S; Lacey, R; Lai, Y S; Lajoie, J G; Layton, D; Lebedev, A; Lee, D M; Lee, J; Lee, K B; Lee, K S; Lee, M K; Lee, S; Lee, S H; Lee, S R; Lee, T; Leitch, M J; Leite, M A L; Lenzi, B; Li, X; Lichtenwalner, P; Liebing, P; Lim, S H; Linden Levy, L A; Liška, T; Litvinenko, A; Liu, H; Liu, M X; Love, B; Lynch, D; Maguire, C F; Makdisi, Y I; Makek, M; Malakhov, A; Malik, M D; Manion, A; Manko, V I; Mannel, E; Mao, Y; Mašek, L; Masui, H; Matathias, F; McCumber, M; McGaughey, P L; McGlinchey, D; McKinney, C; Means, N; Meles, A; Mendoza, M; Meredith, B; Miake, Y; Mibe, T; Mignerey, A C; Mikeš, P; Miki, K; Miller, T E; Milov, A; Mioduszewski, S; Mishra, D K; Mishra, M; Mitchell, J T; Mitrovski, M; Miyachi, Y; Miyasaka, S; Mizuno, S; Mohanty, A K; Montuenga, P; Moon, H J; Moon, T; Morino, Y; Morreale, A; Morrison, D P; Motschwiller, S; Moukhanova, T V; Mukhopadhyay, D; Murakami, T; Murata, J; Mwai, A; Nagamiya, S; Nagashima, K; Nagata, Y; Nagle, J L; Naglis, M; Nagy, M I; Nakagawa, I; Nakagomi, H; Nakamiya, Y; Nakamura, K R; Nakamura, T; Nakano, K; Nam, S; Nattrass, C; Netrakanti, P K; Newby, J; Nguyen, M; Nihashi, M; Niida, T; Nishimura, S; Norman, B E; Nouicer, R; Novak, T; Novitzky, N; Nyanin, A S; Oakley, C; O'Brien, E; Oda, S X; Ogilvie, C A; Ohnishi, H; Oka, M; Okada, K; Omiwade, O O; Onuki, Y; Orjuela Koop, J D; Osborn, J D; Oskarsson, A; Ouchida, M; Ozawa, K; Pak, R; Pal, D; Palounek, A P T; Pantuev, V; Papavassiliou, V; Park, B H; Park, I H; Park, J; Park, J S; Park, S; Park, S K; Park, W J; Pate, S F; Patel, L; Patel, M; Pei, H; Peng, J-C; Pereira, H; Perepelitsa, D V; Perera, G D N; Peresedov, V; Peressounko, D Yu; Perry, J; Petti, R; Pinkenburg, C; Pinson, R; Pisani, R P; Proissl, M; Purschke, M L; Purwar, A K; Qu, H; Rak, J; Rakotozafindrabe, A; Ramson, B J; Ravinovich, I; Read, K F; Rembeczki, S; Reuter, M; Reygers, K; Reynolds, D; Riabov, V; Riabov, Y; Richardson, E; Rinn, T; Roach, D; Roche, G; Rolnick, S D; Romana, A; Rosati, M; Rosen, C A; Rosendahl, S S E; Rosnet, P; Rowan, Z; Rubin, J G; Rukoyatkin, P; Ružička, P; Rykov, V L; Sahlmueller, B; Saito, N; Sakaguchi, T; Sakai, S; Sakashita, K; Sakata, H; Sako, H; Samsonov, V; Sano, S; Sarsour, M; Sato, S; Sato, T; Savastio, M; Sawada, S; Schaefer, B; Schmoll, B K; Sedgwick, K; Seele, J; Seidl, R; Semenov, A Yu; Semenov, V; Sen, A; Seto, R; Sett, P; Sexton, A; Sharma, D; Shein, I; Shevel, A; Shibata, T-A; Shigaki, K; Shim, H H; Shimomura, M; Shoji, K; Shukla, P; Sickles, A; Silva, C L; Silvermyr, D; Silvestre, C; Sim, K S; Singh, B K; Singh, C P; Singh, V; Skutnik, S; Slunečka, M; Snowball, M; Sodre, T; Soldatov, A; Soltz, R A; Sondheim, W E; Sorensen, S P; Sourikova, I V; Staley, F; Stankus, P W; Stenlund, E; Stepanov, M; Ster, A; Stoll, S P; Sugitate, T; Suire, C; Sukhanov, A; Sumita, T; Sun, J; Sziklai, J; Tabaru, T; Takagi, S; Takagui, E M; Takahara, A; Taketani, A; Tanabe, R; Tanaka, Y; Taneja, S; Tanida, K; Tannenbaum, M J; Tarafdar, S; Taranenko, A; Tarján, P; Tennant, E; Themann, H; Thomas, D; Thomas, T L; Tieulent, R; Timilsina, A; Todoroki, T; Togawa, M; Toia, A; Tojo, J; Tomášek, L; Tomášek, M; Tomita, Y; Torii, H; Towell, C L; Towell, R; Towell, R S; Tram, V-N; Tserruya, I; Tsuchimoto, Y; Utsunomiya, K; Vale, C; Valle, H; van Hecke, H W; Vazquez-Zambrano, E; Veicht, A; Velkovska, J; Vértesi, R; Vinogradov, A A; Virius, M; Vossen, A; Vrba, V; Vznuzdaev, E; Wagner, M; Walker, D; Wang, X R; Watanabe, D; Watanabe, K; Watanabe, Y; Watanabe, Y S; Wei, F; Wei, R; Wessels, J; White, A S; White, S N; Winter, D; Woody, C L; Wright, R M; Wysocki, M; Xia, B; Xie, W; Xue, L; Yalcin, S; Yamaguchi, Y L; Yamaura, K; Yang, R; Yanovich, A; Yasin, Z; Ying, J; Yokkaichi, S; Yoo, J H; Yoo, J S; Yoon, I; You, Z; Young, G R; Younus, I; Yu, H; Yushmanov, I E; Zajc, W A; Zaudtke, O; Zelenski, A; Zhang, C; Zhou, S; Zimamyi, J; Zolin, L; Zou, L

    2015-10-02

    We present the first measurement of elliptic (v(2)) and triangular (v(3)) flow in high-multiplicity (3)He+Au collisions at √(s(NN))=200  GeV. Two-particle correlations, where the particles have a large separation in pseudorapidity, are compared in (3)He+Au and in p+p collisions and indicate that collective effects dominate the second and third Fourier components for the correlations observed in the (3)He+Au system. The collective behavior is quantified in terms of elliptic v(2) and triangular v(3) anisotropy coefficients measured with respect to their corresponding event planes. The v(2) values are comparable to those previously measured in d+Au collisions at the same nucleon-nucleon center-of-mass energy. Comparisons with various theoretical predictions are made, including to models where the hot spots created by the impact of the three (3)He nucleons on the Au nucleus expand hydrodynamically to generate the triangular flow. The agreement of these models with data may indicate the formation of low-viscosity quark-gluon plasma even in these small collision systems.

  8. Measurements of Elliptic and Triangular Flow in High-Multiplicity 3He +Au Collisions at √{sN N }=200 GeV

    NASA Astrophysics Data System (ADS)

    Adare, A.; Afanasiev, S.; Aidala, C.; Ajitanand, N. N.; Akiba, Y.; Akimoto, R.; Al-Bataineh, H.; Alexander, J.; Alfred, M.; Al-Ta'Ani, H.; Andrews, K. R.; Angerami, A.; Aoki, K.; Apadula, N.; Aphecetche, L.; Appelt, E.; Aramaki, Y.; Armendariz, R.; Aronson, S. H.; Asai, J.; Asano, H.; Aschenauer, E. C.; Atomssa, E. T.; Averbeck, R.; Awes, T. C.; Azmoun, B.; Babintsev, V.; Bai, M.; Baksay, G.; Baksay, L.; Baldisseri, A.; Bandara, N. S.; Bannier, B.; Barish, K. N.; Barnes, P. D.; Bassalleck, B.; Basye, A. T.; Bathe, S.; Batsouli, S.; Baublis, V.; Baumann, C.; Bazilevsky, A.; Beaumier, M.; Beckman, S.; Belikov, S.; Belmont, R.; Ben-Benjamin, J.; Bennett, R.; Berdnikov, A.; Berdnikov, Y.; Bhom, J. H.; Bickley, A. A.; Blau, D. S.; Boissevain, J. G.; Bok, J. S.; Borel, H.; Boyle, K.; Brooks, M. L.; Broxmeyer, D.; Bryslawskyj, J.; Buesching, H.; Bumazhnov, V.; Bunce, G.; Butsyk, S.; Camacho, C. M.; Campbell, S.; Caringi, A.; Castera, P.; Chang, B. S.; Chang, W. C.; Charvet, J.-L.; Chen, C.-H.; Chernichenko, S.; Chi, C. Y.; Chiba, J.; Chiu, M.; Choi, I. J.; Choi, J. B.; Choudhury, R. K.; Christiansen, P.; Chujo, T.; Chung, P.; Churyn, A.; Chvala, O.; Cianciolo, V.; Citron, Z.; Cleven, C. R.; Cole, B. A.; Comets, M. P.; Conesa Del Valle, Z.; Connors, M.; Constantin, P.; Csanád, M.; Csörgő, T.; Dahms, T.; Dairaku, S.; Danchev, I.; Danley, D.; Das, K.; Datta, A.; Daugherity, M. S.; David, G.; Dayananda, M. K.; Deaton, M. B.; Deblasio, K.; Dehmelt, K.; Delagrange, H.; Denisov, A.; D'Enterria, D.; Deshpande, A.; Desmond, E. J.; Dharmawardane, K. V.; Dietzsch, O.; Dion, A.; Diss, P. B.; Do, J. H.; Donadelli, M.; D'Orazio, L.; Drapier, O.; Drees, A.; Drees, K. A.; Dubey, A. K.; Durham, J. M.; Durum, A.; Dutta, D.; Dzhordzhadze, V.; Edwards, S.; Efremenko, Y. V.; Egdemir, J.; Ellinghaus, F.; Emam, W. S.; Engelmore, T.; Enokizono, A.; En'yo, H.; Esumi, S.; Eyser, K. O.; Fadem, B.; Feege, N.; Fields, D. E.; Finger, M.; Finger, M.; Fleuret, F.; Fokin, S. L.; Fraenkel, Z.; Frantz, J. E.; Franz, A.; Frawley, A. D.; Fujiwara, K.; Fukao, Y.; Fusayasu, T.; Gadrat, S.; Gal, C.; Gallus, P.; Garg, P.; Garishvili, I.; Ge, H.; Giordano, F.; Glenn, A.; Gong, H.; Gong, X.; Gonin, M.; Gosset, J.; Goto, Y.; Granier de Cassagnac, R.; Grau, N.; Greene, S. V.; Grim, G.; Grosse Perdekamp, M.; Gu, Y.; Gunji, T.; Guo, L.; Gustafsson, H.-Å.; Hachiya, T.; Hadj Henni, A.; Haegemann, C.; Haggerty, J. S.; Hahn, K. I.; Hamagaki, H.; Hamblen, J.; Hamilton, H. F.; Han, R.; Han, S. Y.; Hanks, J.; Harada, H.; Harper, C.; Hartouni, E. P.; Haruna, K.; Hasegawa, S.; Haseler, T. O. S.; Hashimoto, K.; Haslum, E.; Hayano, R.; He, X.; Heffner, M.; Hemmick, T. K.; Hester, T.; Hiejima, H.; Hill, J. C.; Hobbs, R.; Hohlmann, M.; Hollis, R. S.; Holzmann, W.; Homma, K.; Hong, B.; Horaguchi, T.; Hori, Y.; Hornback, D.; Hoshino, T.; Hotvedt, N.; Huang, J.; Huang, S.; Ichihara, T.; Ichimiya, R.; Iinuma, H.; Ikeda, Y.; Imai, K.; Imrek, J.; Inaba, M.; Inoue, Y.; Iordanova, A.; Isenhower, D.; Isenhower, L.; Ishihara, M.; Isobe, T.; Issah, M.; Isupov, A.; Ivanishchev, D.; Iwanaga, Y.; Jacak, B. V.; Jezghani, M.; Jia, J.; Jiang, X.; Jin, J.; Jinnouchi, O.; John, D.; Johnson, B. M.; Jones, T.; Joo, K. S.; Jouan, D.; Jumper, D. S.; Kajihara, F.; Kametani, S.; Kamihara, N.; Kamin, J.; Kanda, S.; Kaneta, M.; Kaneti, S.; Kang, B. H.; Kang, J. H.; Kang, J. S.; Kanou, H.; Kapustinsky, J.; Karatsu, K.; Kasai, M.; Kawall, D.; Kawashima, M.; Kazantsev, A. V.; Kempel, T.; Key, J. A.; Khachatryan, V.; Khanzadeev, A.; Kijima, K. M.; Kikuchi, J.; Kim, A.; Kim, B. I.; Kim, C.; Kim, D. H.; Kim, D. J.; Kim, E.; Kim, E.-J.; Kim, G. W.; Kim, M.; Kim, S. H.; Kim, Y.-J.; Kim, Y. K.; Kimelman, B.; Kinney, E.; Kiriluk, K.; Kiss, Á.; Kistenev, E.; Kitamura, R.; Kiyomichi, A.; Klatsky, J.; Klay, J.; Klein-Boesing, C.; Kleinjan, D.; Kline, P.; Koblesky, T.; Kochenda, L.; Kochetkov, V.; Komkov, B.; Konno, M.; Koster, J.; Kotchetkov, D.; Kotov, D.; Kozlov, A.; Král, A.; Kravitz, A.; Kubart, J.; Kunde, G. J.; Kurihara, N.; Kurita, K.; Kurosawa, M.; Kweon, M. J.; Kwon, Y.; Kyle, G. S.; Lacey, R.; Lai, Y. S.; Lajoie, J. G.; Layton, D.; Lebedev, A.; Lee, D. M.; Lee, J.; Lee, K. B.; Lee, K. S.; Lee, M. K.; Lee, S.; Lee, S. H.; Lee, S. R.; Lee, T.; Leitch, M. J.; Leite, M. A. L.; Lenzi, B.; Li, X.; Lichtenwalner, P.; Liebing, P.; Lim, S. H.; Linden Levy, L. A.; Liška, T.; Litvinenko, A.; Liu, H.; Liu, M. X.; Love, B.; Lynch, D.; Maguire, C. F.; Makdisi, Y. I.; Makek, M.; Malakhov, A.; Malik, M. D.; Manion, A.; Manko, V. I.; Mannel, E.; Mao, Y.; Mašek, L.; Masui, H.; Matathias, F.; McCumber, M.; McGaughey, P. L.; McGlinchey, D.; McKinney, C.; Means, N.; Meles, A.; Mendoza, M.; Meredith, B.; Miake, Y.; Mibe, T.; Mignerey, A. C.; Mikeš, P.; Miki, K.; Miller, T. E.; Milov, A.; Mioduszewski, S.; Mishra, D. K.; Mishra, M.; Mitchell, J. T.; Mitrovski, M.; Miyachi, Y.; Miyasaka, S.; Mizuno, S.; Mohanty, A. K.; Montuenga, P.; Moon, H. J.; Moon, T.; Morino, Y.; Morreale, A.; Morrison, D. P.; Motschwiller, S.; Moukhanova, T. V.; Mukhopadhyay, D.; Murakami, T.; Murata, J.; Mwai, A.; Nagamiya, S.; Nagashima, K.; Nagata, Y.; Nagle, J. L.; Naglis, M.; Nagy, M. I.; Nakagawa, I.; Nakagomi, H.; Nakamiya, Y.; Nakamura, K. R.; Nakamura, T.; Nakano, K.; Nam, S.; Nattrass, C.; Netrakanti, P. K.; Newby, J.; Nguyen, M.; Nihashi, M.; Niida, T.; Nishimura, S.; Norman, B. E.; Nouicer, R.; Novak, T.; Novitzky, N.; Nyanin, A. S.; Oakley, C.; O'Brien, E.; Oda, S. X.; Ogilvie, C. A.; Ohnishi, H.; Oka, M.; Okada, K.; Omiwade, O. O.; Onuki, Y.; Orjuela Koop, J. D.; Osborn, J. D.; Oskarsson, A.; Ouchida, M.; Ozawa, K.; Pak, R.; Pal, D.; Palounek, A. P. T.; Pantuev, V.; Papavassiliou, V.; Park, B. H.; Park, I. H.; Park, J.; Park, J. S.; Park, S.; Park, S. K.; Park, W. J.; Pate, S. F.; Patel, L.; Patel, M.; Pei, H.; Peng, J.-C.; Pereira, H.; Perepelitsa, D. V.; Perera, G. D. N.; Peresedov, V.; Peressounko, D. Yu.; Perry, J.; Petti, R.; Pinkenburg, C.; Pinson, R.; Pisani, R. P.; Proissl, M.; Purschke, M. L.; Purwar, A. K.; Qu, H.; Rak, J.; Rakotozafindrabe, A.; Ramson, B. J.; Ravinovich, I.; Read, K. F.; Rembeczki, S.; Reuter, M.; Reygers, K.; Reynolds, D.; Riabov, V.; Riabov, Y.; Richardson, E.; Rinn, T.; Roach, D.; Roche, G.; Rolnick, S. D.; Romana, A.; Rosati, M.; Rosen, C. A.; Rosendahl, S. S. E.; Rosnet, P.; Rowan, Z.; Rubin, J. G.; Rukoyatkin, P.; Ružička, P.; Rykov, V. L.; Sahlmueller, B.; Saito, N.; Sakaguchi, T.; Sakai, S.; Sakashita, K.; Sakata, H.; Sako, H.; Samsonov, V.; Sano, S.; Sarsour, M.; Sato, S.; Sato, T.; Savastio, M.; Sawada, S.; Schaefer, B.; Schmoll, B. K.; Sedgwick, K.; Seele, J.; Seidl, R.; Semenov, A. Yu.; Semenov, V.; Sen, A.; Seto, R.; Sett, P.; Sexton, A.; Sharma, D.; Shein, I.; Shevel, A.; Shibata, T.-A.; Shigaki, K.; Shim, H. H.; Shimomura, M.; Shoji, K.; Shukla, P.; Sickles, A.; Silva, C. L.; Silvermyr, D.; Silvestre, C.; Sim, K. S.; Singh, B. K.; Singh, C. P.; Singh, V.; Skutnik, S.; Slunečka, M.; Snowball, M.; Sodre, T.; Soldatov, A.; Soltz, R. A.; Sondheim, W. E.; Sorensen, S. P.; Sourikova, I. V.; Staley, F.; Stankus, P. W.; Stenlund, E.; Stepanov, M.; Ster, A.; Stoll, S. P.; Sugitate, T.; Suire, C.; Sukhanov, A.; Sumita, T.; Sun, J.; Sziklai, J.; Tabaru, T.; Takagi, S.; Takagui, E. M.; Takahara, A.; Taketani, A.; Tanabe, R.; Tanaka, Y.; Taneja, S.; Tanida, K.; Tannenbaum, M. J.; Tarafdar, S.; Taranenko, A.; Tarján, P.; Tennant, E.; Themann, H.; Thomas, D.; Thomas, T. L.; Tieulent, R.; Timilsina, A.; Todoroki, T.; Togawa, M.; Toia, A.; Tojo, J.; Tomášek, L.; Tomášek, M.; Tomita, Y.; Torii, H.; Towell, C. L.; Towell, R.; Towell, R. S.; Tram, V.-N.; Tserruya, I.; Tsuchimoto, Y.; Utsunomiya, K.; Vale, C.; Valle, H.; van Hecke, H. W.; Vazquez-Zambrano, E.; Veicht, A.; Velkovska, J.; Vértesi, R.; Vinogradov, A. A.; Virius, M.; Vossen, A.; Vrba, V.; Vznuzdaev, E.; Wagner, M.; Walker, D.; Wang, X. R.; Watanabe, D.; Watanabe, K.; Watanabe, Y.; Watanabe, Y. S.; Wei, F.; Wei, R.; Wessels, J.; White, A. S.; White, S. N.; Winter, D.; Woody, C. L.; Wright, R. M.; Wysocki, M.; Xia, B.; Xie, W.; Xue, L.; Yalcin, S.; Yamaguchi, Y. L.; Yamaura, K.; Yang, R.; Yanovich, A.; Yasin, Z.; Ying, J.; Yokkaichi, S.; Yoo, J. H.; Yoo, J. S.; Yoon, I.; You, Z.; Young, G. R.; Younus, I.; Yu, H.; Yushmanov, I. E.; Zajc, W. A.; Zaudtke, O.; Zelenski, A.; Zhang, C.; Zhou, S.; Zimamyi, J.; Zolin, L.; Zou, L.; Phenix Collaboration

    2015-10-01

    We present the first measurement of elliptic (v2) and triangular (v3) flow in high-multiplicity 3He +Au collisions at √{sN N }=200 GeV . Two-particle correlations, where the particles have a large separation in pseudorapidity, are compared in 3He +Au and in p +p collisions and indicate that collective effects dominate the second and third Fourier components for the correlations observed in the 3He +Au system. The collective behavior is quantified in terms of elliptic v2 and triangular v3 anisotropy coefficients measured with respect to their corresponding event planes. The v2 values are comparable to those previously measured in d +Au collisions at the same nucleon-nucleon center-of-mass energy. Comparisons with various theoretical predictions are made, including to models where the hot spots created by the impact of the three 3He nucleons on the Au nucleus expand hydrodynamically to generate the triangular flow. The agreement of these models with data may indicate the formation of low-viscosity quark-gluon plasma even in these small collision systems.

  9. Measurements of elliptic and triangular flow in high-multiplicity 3He+Au collisions at √s NN=200 GeV

    DOE PAGES

    Adare, A.

    2015-09-28

    We present the first measurement of elliptic (v 2) and triangular (v 3) flow in high-multiplicity 3He+Aucollisions at √s NN=200 GeV. Two-particle correlations, where the particles have a large separation in pseudorapidity, are compared in 3He+Au and in p+p collisions and indicate that collective effects dominate the second and third Fourier components for the correlations observed in the 3He+Ausystem. The collective behavior is quantified in terms of elliptic v 2 and triangular v 3 anisotropy coefficients measured with respect to their corresponding event planes. The v 2 values are comparable to those previously measured in d+Au collisions at the samemore » nucleon-nucleon center-of-mass energy. Comparisons with various theoretical predictions are made, including to models where the hot spots created by the impact of the three 3He nucleons on the Au nucleus expand hydrodynamically to generate the triangular flow. The agreement of these models with data may indicate the formation of low-viscosity quark-gluon plasma even in these small collision systems.« less

  10. Biomarkers of Exposure to Toxic Substances Volume 7: Identification of Potential Serum Protein Biomarkers Indicative of Low Level Kidney Degradation in Response to Toxin Exposures

    DTIC Science & Technology

    2009-05-01

    equilibrated for 4 min with Buffer A with a flow rate of 1 mL/min at room temperature. Once the HPLC lines and MARS column were flushed and equilibrated...ul 4 ) FT mouse control HPLC 10 ul 9) E mouse control Spin Column 10 ul 5) E mouse control HPLC 10 ul 10) Blue MW Standard The distinct...of Low Level Kidney Degradation in Response to Toxin Exposures Christopher L. Woolard Camilla A. Mauzy Biosciences and Protection

  11. 40 CFR 86.331-79 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plot of the difference between the span and zero response versus fuel flow will be similar to the one... least one-half hour after the oven has reached temperature for the system to equilibrate. (c) Initial... difference between the span-gas response and the zero-gas response. Incrementally adjust the fuel flow above...

  12. Numerical method for predicting flow characteristics and performance of nonaxisymmetric nozzles, theory

    NASA Technical Reports Server (NTRS)

    Thomas, P. D.

    1979-01-01

    The theoretical foundation and formulation of a numerical method for predicting the viscous flowfield in and about isolated three dimensional nozzles of geometrically complex configuration are presented. High Reynolds number turbulent flows are of primary interest for any combination of subsonic, transonic, and supersonic flow conditions inside or outside the nozzle. An alternating-direction implicit (ADI) numerical technique is employed to integrate the unsteady Navier-Stokes equations until an asymptotic steady-state solution is reached. Boundary conditions are computed with an implicit technique compatible with the ADI technique employed at interior points of the flow region. The equations are formulated and solved in a boundary-conforming curvilinear coordinate system. The curvilinear coordinate system and computational grid is generated numerically as the solution to an elliptic boundary value problem. A method is developed that automatically adjusts the elliptic system so that the interior grid spacing is controlled directly by the a priori selection of the grid spacing on the boundaries of the flow region.

  13. Evolution of finite-amplitude localized vortices in planar homogeneous shear flows

    NASA Astrophysics Data System (ADS)

    Karp, Michael; Shukhman, Ilia G.; Cohen, Jacob

    2017-02-01

    An analytical-based method is utilized to follow the evolution of localized initially Gaussian disturbances in flows with homogeneous shear, in which the base velocity components are at most linear functions of the coordinates, including hyperbolic, elliptic, and simple shear. Coherent structures, including counterrotating vortex pairs (CVPs) and hairpin vortices, are formed for the cases where the streamlines of the base flow are open (hyperbolic and simple shear). For hyperbolic base flows, the dominance of shear over rotation leads to elongation of the localized disturbance along the outlet asymptote and formation of CVPs. For simple shear CVPs are formed from linear and nonlinear disturbances, whereas hairpins are observed only for highly nonlinear disturbances. For elliptic base flows CVPs, hairpins and vortex loops form initially, however they do not last and break into various vortical structures that spread in the spanwise direction. The effect of the disturbance's initial amplitude and orientation is examined and the optimal orientation achieving maximal growth is identified.

  14. Flow Visualization and Pattern Formation in Vertically Falling Liquid Films

    NASA Astrophysics Data System (ADS)

    Balakotaiah, Vemuri; Malamataris, Nikolaos

    2008-11-01

    Analytical results of a low-dimensional two equation h-q model and results of a direct numerical simulation of the transient two-dimensional Navier Stokes equations are presented for vertically falling liquid films along a solid wall. The numerical study aims at the elucidation of the hydrodynamics of the falling film. The analytical study aims at the calculation of the parameter space where pattern formation occurs for this flow. It has been found that when the wave amplitude exceeds a certain magnitude, flow reversal occurs in the film underneath the minimum of the waves [1]. The instantaneous vortical structures possess two hyperbolic points on the vertical wall and an elliptic point in the film. As the wave amplitude increases further, the elliptic point reaches the free surface of the film and two more hyperbolic points are formed in the free surface that replace the elliptic point. Between the two hyperbolic points on the free surface, the streamwise component of velocity is negative and the film is divided into asymmetric patterns of up and down flows. Depending on the value of the Kapitza number, these patterns are either stationary or oscillatory. Physical reasons for the influence of the Kapitza number on pattern formation are given. Movies are shown where the pattern formation is demonstrated. [1] N.A.Malamataris and V.Balakotaiah (2008), AIChE J., 54(7), p. 1725-1740

  15. Lagrangian transport near perturbed periodic lines in three-dimensional unsteady flows

    NASA Astrophysics Data System (ADS)

    Speetjens, Michel

    2015-11-01

    Periodic lines formed by continuous strings of periodic points are key organizing entities in the Lagrangian flow topology of certain three-dimensional (3D) time-periodic flows. Such lines generically consist of elliptic and/or hyperbolic points and thus give rise to 3D flow topologies made up of families of concentric closed trajectories embedded in chaotic regions. Weak perturbation destroys the periodic lines and causes said trajectories to coalesce into families of concentric tubes. However, emergence of isolated periodic points near the disintegrating periodic lines and/or partitioning of the original lines into elliptic and hyperbolic segments interrupt the tube formation. This yields incomplete tubes that interact with the (chaotic) environment through their open ends, resulting in intricate and essentially 3D flow topologies These phenomena have been observed in various realistic flows yet the underlying mechanisms are to date only partially understood. This study deepens insight into the (perturbed) Lagrangian dynamics of these flows by way of a linearized representation of the equations of motion near the periodic lines. Predictions on the basis of this investigation are in full (qualitative) agreement with observed behavior in the actual flows

  16. Fluid displacement between two parallel plates: a non-empirical model displaying change of type from hyperbolic to elliptic equations

    NASA Astrophysics Data System (ADS)

    Shariati, M.; Talon, L.; Martin, J.; Rakotomalala, N.; Salin, D.; Yortsos, Y. C.

    2004-11-01

    We consider miscible displacement between parallel plates in the absence of diffusion, with a concentration-dependent viscosity. By selecting a piecewise viscosity function, this can also be considered as ‘three-fluid’ flow in the same geometry. Assuming symmetry across the gap and based on the lubrication (‘equilibrium’) approximation, a description in terms of two quasi-linear hyperbolic equations is obtained. We find that the system is hyperbolic and can be solved analytically, when the mobility profile is monotonic, or when the mobility of the middle phase is smaller than its neighbours. When the mobility of the middle phase is larger, a change of type is displayed, an elliptic region developing in the composition space. Numerical solutions of Riemann problems of the hyperbolic system spanning the elliptic region, with small diffusion added, show good agreement with the analytical outside, but an unstable behaviour inside the elliptic region. In these problems, the elliptic region arises precisely at the displacement front. Crossing the elliptic region requires the solution of essentially an eigenvalue problem of the full higher-dimensional model, obtained here using lattice BGK simulations. The hyperbolic-to-elliptic change-of-type reflects the failing of the lubrication approximation, underlying the quasi-linear hyperbolic formalism, to describe the problem uniformly. The obtained solution is analogous to non-classical shocks recently suggested in problems with change of type.

  17. Lagrangian statistics and flow topology in forced two-dimensional turbulence.

    PubMed

    Kadoch, B; Del-Castillo-Negrete, D; Bos, W J T; Schneider, K

    2011-03-01

    A study of the relationship between Lagrangian statistics and flow topology in fluid turbulence is presented. The topology is characterized using the Weiss criterion, which provides a conceptually simple tool to partition the flow into topologically different regions: elliptic (vortex dominated), hyperbolic (deformation dominated), and intermediate (turbulent background). The flow corresponds to forced two-dimensional Navier-Stokes turbulence in doubly periodic and circular bounded domains, the latter with no-slip boundary conditions. In the double periodic domain, the probability density function (pdf) of the Weiss field exhibits a negative skewness consistent with the fact that in periodic domains the flow is dominated by coherent vortex structures. On the other hand, in the circular domain, the elliptic and hyperbolic regions seem to be statistically similar. We follow a Lagrangian approach and obtain the statistics by tracking large ensembles of passively advected tracers. The pdfs of residence time in the topologically different regions are computed introducing the Lagrangian Weiss field, i.e., the Weiss field computed along the particles' trajectories. In elliptic and hyperbolic regions, the pdfs of the residence time have self-similar algebraic decaying tails. In contrast, in the intermediate regions the pdf has exponential decaying tails. The conditional pdfs (with respect to the flow topology) of the Lagrangian velocity exhibit Gaussian-like behavior in the periodic and in the bounded domains. In contrast to the freely decaying turbulence case, the conditional pdfs of the Lagrangian acceleration in forced turbulence show a comparable level of intermittency in both the periodic and the bounded domains. The conditional pdfs of the Lagrangian curvature are characterized, in all cases, by self-similar power-law behavior with a decay exponent of order -2.

  18. Temporal response of hydraulic head, temperature, and chloride concentrations to sea-level changes, Floridan aquifer system, USA

    NASA Astrophysics Data System (ADS)

    Hughes, J. D.; Vacher, H. L.; Sanford, Ward E.

    2009-06-01

    Three-dimensional density-dependent flow and transport modeling of the Floridan aquifer system, USA shows that current chloride concentrations are not in equilibrium with current sea level and, second, that the geometric configuration of the aquifer has a significant effect on system responses. The modeling shows that hydraulic head equilibrates first, followed by temperatures, and then by chloride concentrations. The model was constructed using a modified version of SUTRA capable of simulating multi-species heat and solute transport, and was compared to pre-development conditions using hydraulic heads, chloride concentrations, and temperatures from 315 observation wells. Three hypothetical, sinusoidal sea-level changes occurring over 100,000 years were used to evaluate how the simulated aquifer responds to sea-level changes. Model results show that hydraulic head responses lag behind sea-level changes only where the Miocene Hawthorn confining unit is thick and represents a significant restriction to flow. Temperatures equilibrate quickly except where the Hawthorn confining unit is thick and the duration of the sea-level event is long (exceeding 30,000 years). Response times for chloride concentrations to equilibrate are shortest near the coastline and where the aquifer is unconfined; in contrast, chloride concentrations do not change significantly over the 100,000-year simulation period where the Hawthorn confining unit is thick.

  19. Numerical study of hydrogen-air supersonic combustion by using elliptic and parabolized equations

    NASA Technical Reports Server (NTRS)

    Chitsomboon, T.; Tiwari, S. N.

    1986-01-01

    The two-dimensional Navier-Stokes and species continuity equations are used to investigate supersonic chemically reacting flow problems which are related to scramjet-engine configurations. A global two-step finite-rate chemistry model is employed to represent the hydrogen-air combustion in the flow. An algebraic turbulent model is adopted for turbulent flow calculations. The explicit unsplit MacCormack finite-difference algorithm is used to develop a computer program suitable for a vector processing computer. The computer program developed is then used to integrate the system of the governing equations in time until convergence is attained. The chemistry source terms in the species continuity equations are evaluated implicitly to alleviate stiffness associated with fast chemical reactions. The problems solved by the elliptic code are re-investigated by using a set of two-dimensional parabolized Navier-Stokes and species equations. A linearized fully-coupled fully-implicit finite difference algorithm is used to develop a second computer code which solves the governing equations by marching in spce rather than time, resulting in a considerable saving in computer resources. Results obtained by using the parabolized formulation are compared with the results obtained by using the fully-elliptic equations. The comparisons indicate fairly good agreement of the results of the two formulations.

  20. Elliptic Length Scales in Laminar, Two-Dimensional Supersonic Flows

    DTIC Science & Technology

    2015-06-01

    sophisticated computational fluid dynamics ( CFD ) methods. Additionally, for 3D interactions, the length scales would require determination in spanwise as well...Manna, M. “Experimental, Analytical, and Computational Methods Applied to Hypersonic Compression Ramp Flows,” AIAA Journal, Vol. 32, No. 2, Feb. 1994

  1. Measurement of D0 elliptic flow using the heavy flavor tracker detector in Au+Au collisions at √sNN = 200 GeV

    NASA Astrophysics Data System (ADS)

    Lipiec, Andrzej

    2017-08-01

    In heavy ion collisions at relativistic energies conducted at Relativistic Heavy Ion Collider (RHIC, Upton, USA) a new state of matter, Quark Gluon Plasma (QGP), is produced. QGP is a state of matter with partonic (i.e. gluons + quarks) degrees of freedom and is believed to be existing only during first moments after the Big Bang, and possibly inside of the heaviest neutron stars. One of the key QGP signatures is the elliptic flow (v2) - a coefficient that describes spatial assymetry of particle yield. It has been observed that v2 of particles composed of light quarks (i.e. up, down and strange) follow the same trends when scaled to the number of constituent quarks. Such observations implied that all light quarks gain the same flow in the heavy ion collision. On the other hand it was speculated that heavy quarks (charm and bottom) should have smaller v2 because of their in-medium energy losses. Due to their heavy mass, c quarks are produced mostly before QGP is formed, which makes them excellent probes to study this hot, dense and strongly interacting medium. The Solenoidal Tracker At RHIC (STAR) experiment took data with the newly installed Heavy Flavor Tracker (HFT) detector. Thanks to the state-of-the-art tracking resolution of the HFT it is possible to measure D0 mesons with unprecedented precision. This paper presents the STAR experiment measurement of D0 elliptic flow.

  2. Determination of the nuclear incompressibility from the rapidity-dependent elliptic flow in heavy-ion collisions at beam energies 0.4A-1.0A GeV

    NASA Astrophysics Data System (ADS)

    Wang, Yongjia; Guo, Chenchen; Li, Qingfeng; Le Fèvre, Arnaud; Leifels, Yvonne; Trautmann, Wolfgang

    2018-03-01

    Background: The nuclear incompressibility (K0) plays a crucial role in understanding diverse phenomena in nuclear structure and reactions, as well as in astrophysics. Heavy-ion-collision measurements in combination with transport model simulations serve as important tools for extracting the nuclear incompressibility. However, uncertainties in transport models (or model dependence) partly affect the reliability of the extracted result. Purpose: In the present work, by using the recently measured data of rapidity-dependent flows, we constrain the incompressibility of nuclear matter and analyze the impact of model uncertainties on the obtained value. Method: The method is based on the newly updated version of the ultrarelativistic quantum molecular dynamics (UrQMD) model in which the Skyrme potential energy-density functional is introduced. Three different Skyrme interactions which give different incompressibilities varying from K0 = 201 to 271 MeV are adopted. The incompressibility is deduced from the comparison of the UrQMD model simulations and the FOPI data for rapidity-dependent elliptic flow in Au + Au collisions at beam energies 0.4A-1.0A GeV. Results: The elliptic flow v2 as a function of rapidity y0 can be well described by a quadratic fit v2 =v20 +v22 ṡ y02 . It is found that the quantity v2n defined by v2n = |v20 | + |v22 | is quite sensitive to the incompressibility K0 and the in-medium nucleon-nucleon cross section, but not sensitive to the slope parameter L of the nuclear symmetry energy. Conclusions: With the FU3FP4 parametrization of the in-medium nucleon-nucleon cross section, an averaged K0 = 220 ± 40 MeV is extracted from the v2n of free protons and deuterons. However, remaining systematic uncertainties, partly related to the choice of in-medium nucleon-nucleon cross sections, are of the same magnitude (± 40 MeV). Overall, the rapidity dependent elliptic flow supports a soft symmetric-matter equation-of-state.

  3. Shock-free turbomachinery blade design

    NASA Technical Reports Server (NTRS)

    Beauchamp, P. P.; Seebass, A. R.

    1985-01-01

    A computational method for designing shock-free, quasi-three-dimensional, transonic, turbomachinery blades is described. Shock-free designs are found by implementing Sobieczky's fictitious gas principle in the analysis of a baseline shape, resulting in an elliptic solution that is incorrect in the supersonic domain. Shock-free designs are obtained by combining the subsonic portion of this solution with a characteristic calculation of the correct supersonic flow using the sonic line data from the fictitious elliptic solution. This provides a new, shock-free blade design. Examples presented include the removal of shocks from two blades in quasi-three-dimensional flow and the development of a series of shock-free two-dimensional stators. The new designs all include modifications to the upper surface of an experimental stator blade developed at NASA Lewis Research Center. While the designs presented here are for inviscid flow, the same concepts have been successfully applied to the shock-free design of airfoils and three-dimensional wings with viscous effects. The extension of the present method to viscous flows is straightforward given a suitable analysis algorithm for the flow.

  4. A numerical algorithm for MHD of free surface flows at low magnetic Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Du, Jian; Glimm, James; Xu, Zhiliang

    2007-10-01

    We have developed a numerical algorithm and computational software for the study of magnetohydrodynamics (MHD) of free surface flows at low magnetic Reynolds numbers. The governing system of equations is a coupled hyperbolic-elliptic system in moving and geometrically complex domains. The numerical algorithm employs the method of front tracking and the Riemann problem for material interfaces, second order Godunov-type hyperbolic solvers, and the embedded boundary method for the elliptic problem in complex domains. The numerical algorithm has been implemented as an MHD extension of FronTier, a hydrodynamic code with free interface support. The code is applicable for numerical simulations of free surface flows of conductive liquids or weakly ionized plasmas. The code has been validated through the comparison of numerical simulations of a liquid metal jet in a non-uniform magnetic field with experiments and theory. Simulations of the Muon Collider/Neutrino Factory target have also been discussed.

  5. Accelerated iteration schemes for transonic flow calculations using fast poisson solvers. [aerodynamics

    NASA Technical Reports Server (NTRS)

    Jameson, A.

    1975-01-01

    The use of a fast elliptic solver in combination with relaxation is presented as an effective way to accelerate the convergence of transonic flow calculations, particularly when a marching scheme can be used to treat the supersonic zone in the relaxation process.

  6. Characterizing Surface Transport Barriers in the South China Sea

    DTIC Science & Technology

    2015-09-30

    to a coral reef system flow, rigorously identifying hyperbolic and elliptic flow structures. 2 RESULTS The FTLE approach was found to be...included in real world applications (Allshouse et al. 2015). Figure 3: The impact of windage on a hypothetical tracer release event of Ningaloo Reef

  7. Eccentricity fluctuation effects on elliptic flow in relativistic heavy ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Tetsufumi; Nara, Yasushi

    2009-06-15

    We study effects of eccentricity fluctuations on the elliptic flow coefficient v{sub 2} at midrapidity in both Au+Au and Cu+Cu collisions at {radical}(s{sub NN})=200 GeV by using a hybrid model that combines ideal hydrodynamics for space-time evolution of the quark gluon plasma phase and a hadronic transport model for the hadronic matter. For initial conditions in hydrodynamic simulations, both the Glauber model and the color glass condensate model are employed to demonstrate the effect of initial eccentricity fluctuations originating from the nucleon position inside a colliding nucleus. The effect of eccentricity fluctuations is modest in semicentral Au+Au collisions, but significantlymore » enhances v{sub 2} in Cu+Cu collisions.« less

  8. Numerical solution of supersonic three-dimensional free-mixing flows using the parabolic-elliptic Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Hirsh, R. S.

    1976-01-01

    A numerical method is presented for solving the parabolic-elliptic Navier-Stokes equations. The solution procedure is applied to three-dimensional supersonic laminar jet flow issuing parallel with a supersonic free stream. A coordinate transformation is introduced which maps the boundaries at infinity into a finite computational domain in order to eliminate difficulties associated with the imposition of free-stream boundary conditions. Results are presented for an approximate circular jet, a square jet, varying aspect ratio rectangular jets, and interacting square jets. The solution behavior varies from axisymmetric to nearly two-dimensional in character. For cases where comparisons of the present results with those obtained from shear layer calculations could be made, agreement was good.

  9. Impact of holding and equilibration time on post-thaw quality of shipped boar semen.

    PubMed

    Schäfer, J; Waberski, D; Jung, M; Schulze, M

    2017-12-01

    Cryopreservation of boar semen is of growing interest for breeding companies. Overnight-shipping of pre-diluted ejaculates to specialized laboratories offers a practicable method, but requires fine-tuned protocols. In this study, the impact of holding post shipping at 17°C for 2 or 24h (n=10 samples) and of equilibration in lactose-egg yolk extender without glycerol at 5°C for 2, 4, 24 or 48h (n=11 samples) before freezing was investigated. Sperm-rich fractions of ejaculates from 21 mature Pietrain boars were collected at a single boar stud. After pre-dilution (1+1, v:v) with Beltsville thawing solution, samples were sent to the laboratory. Temperature profiles during transport and initial equilibration time were recorded. Semen quality post-thaw (PT) was evaluated using CASA and flow cytometry. Holding of 2h after shipping resulted in higher sperm motility (P=0.013) and beat cross frequency (BCF; P=0.047) compared to 24h. Differences between both groups vanished with prolonged incubation at 38°C PT. Equilibration at 5°C for 4h yielded the highest motility and BCF, whereas the equilibration for 48h impaired sperm motility. Membrane integrity, mitochondrial activity and DNA fragmentation index were not affected by any protocol modification. In conclusion, processing of pre-diluted boar semen shipped overnight within 2h after arrival at the laboratory is preferred to 24h of additional holding at 17°C. Extending the equilibration period in lactose-egg yolk extender without glycerol at 5°C from 2h to 4h before freezing is recommended. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Duct flow nonuniformities for Space Shuttle Main Engine (SSME)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Analytical capabilities for modeling hot gas flow on the fuel side of the Space Shuttle Main Engines are developed. Emphasis is placed on construction and documentation of a computational grid code for modeling an elliptical two-duct version of the fuel side hot gas manifold. Computational results for flow past a support strut in an annular channel are also presented.

  11. Surface Waves and Flow-Induced Oscillations along an Underground Elliptic Cylinder Filled with a Viscous Fluid

    NASA Astrophysics Data System (ADS)

    Sakuraba, A.

    2015-12-01

    I made a linear analysis of flow-induced oscillations along an underground cylindrical conduit with an elliptical cross section on the basis of the hypothesis that volcanic tremor is a result of magma movement through a conduit. As a first step to understand how the self oscillation occurs because of magma flow, I investigated surface wave propagation and attenuation along an infinitely long fluid-filled elliptic cylinder in an elastic medium. The boundary element method is used to obtain the two-dimensional wave field around the ellipse in the frequency-wavenumber domain. When the major axis is much greater than the minor axis of the ellipse, we obtain the analytic form of the dispersion relation of both the crack-wave mode (Korneev 2008, Lipovsky & Dunham 2015) and the Rayleigh-wave mode with flexural deformation. The crack-wave mode generally has a slower phase speed and a higher attenuation than the Rayleigh-wave mode. In the long-wavelength limit, the crack-wave mode disappears because of fluid viscosity, but the Rayleigh-wave mode exists with a constant Q-value that depends on viscosity. When the aspect ratio of the ellipse is finite, the surface waves can basically be understood as those propagating along a fluid pipe. The flexural mode does exist even when the wavelength is much longer than the major axis, but its phase speed coincides with that of the surrounding S-wave (Randall 1991). As its attenuation is zero in the long-wavelength limit, the flexural mode differs in nature from surface wave. I also obtain a result on linear stability of viscous flow through an elliptic cylinder. In this analysis, I made an assumption that the fluid inertia is so small that the Stokes equation can be used. As suggested by the author's previous study (Sakuraba & Yamauchi 2014), the flexural (Rayleigh-wave) mode is destabilized at a critical flow speed that decreases with the wavelength. However, when the wavelength is much greater than the major axis of the ellipse, the unstable solution does exist, but its linear growth rate in amplitude becomes almost zero. Therefore, the unstable solution effectively disappears in the long-wavelength limit, suggesting that the aspect ratio of the conduit is needed to be sufficiently large if the flow-induced oscillation caused by a moderate magma speed is an origin of volcanic tremor.

  12. Ultrafast Energy Flow and Equilibration Dynamics in Photosynthetic Light-Harvesting Complexes

    NASA Astrophysics Data System (ADS)

    Maiuri, Margherita; Lüer, Larry; Henry, Sarah; Carey, Anne-Marie; Cogdell, Richard J.; Cerullo, Giulio; Polli, Dario

    We disentangle various energy transfer pathways in the bacterio-chlorophyll excitation cascade from LH2 to LH1 in Chromatium vinosum grown under high-light or low-light illumination using tunable narrowband selective excitation and broadband infrared probing.

  13. Capillary instability of elliptic liquid jets

    NASA Astrophysics Data System (ADS)

    Amini, Ghobad; Dolatabadi, Ali

    2011-08-01

    Instability of a liquid jet issuing from an elliptic nozzle in Rayleigh mode is investigated and its behavior is compared with a circular jet. Mathematical solution of viscous free-surface flow for asymmetric geometry is complicated if 3-D analytical solutions are to be obtained. Hence, one-dimensional Cosserat (directed curve) equations are used which can be assumed as a low order form of Navier-Stokes equations for slender jets. Linear solution is performed using perturbation method. Temporal dispersion equation is derived to find the most unstable wavelength responsible for the jet breakup. The obtained results for a circular jet (i.e., an ellipse with an aspect ratio of one) are compared with the classical results of Rayleigh and Weber for inviscid and viscous cases, respectively. It is shown that in the Rayleigh regime, which is the subject of this research, symmetric perturbations are unstable while asymmetric perturbations are stable. Consequently, spatial analysis is performed and the variation of growth rate under the effect of perturbation frequencies for various jet velocities is demonstrated. Results reveal that in comparison with a circular jet, the elliptic jet is more unstable. Furthermore, among liquid jets with elliptical cross sections, those with larger ellipticities have a larger instability growth rate.

  14. Measurement of the D-meson nuclear modification factor and elliptic flow in Pb-Pb collisions at √SNN = 5.02 TeV with ALICE at the LHC

    NASA Astrophysics Data System (ADS)

    Grosa, Fabrizio

    2018-02-01

    Heavy-flavour hadrons are recognised as a powerful probe for the characterisation of the deconfined medium created in heavy-ion collisions, the Quark-Gluon Plasma (QGP). The ALICE Collaboration measured the production of D0, D+, D*+ and mesons in Pb-Pb collisions at = 5.02 TeV. The measurement of the nuclear modification factor (RAA) provides a strong evidence of the in-medium parton energy loss. The comparison between the and the non-strange D-meson RAA can help to study the hadronisation mechanism of the charm quark in the QGP. In mid-central collisions, the measurement of the D-meson elliptic flow v2 at low transverse momentum (pT) gives insight into the participation of the charm quark into the collective motion of the system, while at high pT it constrains the path-length dependence of the energy loss. The v2, measured for the first time at the LHC, is found to be compatible to that of non-strange D mesons and positive with a significance of about 2.6 σ. The coupling of the charm quark to the light quarks in the underlying medium is further investigated for the first time with the application of the Event-Shape Engineering (ESE) technique to D-meson elliptic flow.

  15. Elliptic flow in heavy-ion collisions at energies √{sN N}=2.7 - 39 GeV

    NASA Astrophysics Data System (ADS)

    Ivanov, Yu. B.; Soldatov, A. A.

    2015-02-01

    The transverse-momentum-integrated elliptic flow of charged particles at midrapidity, v2(charged), and that of identified hadrons from Au +Au collisions are computed in a wide range of incident energies 2.7 ≤√{sN N}≤ 39 GeV. The simulations are performed within a three-fluid model by employing three different equations of state (EoSs): a purely hadronic EoS and two versions of the EoS involving the deconfinement transition—a first-order phase transition and a smooth crossover one. The present simulations demonstrate low sensitivity of v2(charged) to the EoS. All considered scenarios equally well reproduce recent STAR data on v2(charged) for mid-central Au +Au collisions and properly describe its change of sign at the incident energy decrease below √{sN N}≈ 3.5 GeV. The predicted integrated elliptic flow of various species exhibits a stronger dependence on the EoS. A noticeable sensitivity to the EoS is found for antibaryons and, to a lesser extent, for K- mesons. In particular, the v2 excitation functions of antibaryons exhibit a nonmonotonicity within the deconfinement scenarios that was predicted by Kolb, Sollfrank, and Heinz. However, low multiplicities of antibaryons at √{sN N}≤ 10 GeV result in large fluctuations of their v2, which may wash out this nonmonotonicity.

  16. A unified view of energetic efficiency in active drag reduction, thrust generation and self-propulsion through a loss coefficient with some applications

    NASA Astrophysics Data System (ADS)

    Arakeri, Jaywant H.; Shukla, Ratnesh K.

    2013-08-01

    An analysis of the energy budget for the general case of a body translating in a stationary fluid under the action of an external force is used to define a power loss coefficient. This universal definition of power loss coefficient gives a measure of the energy lost in the wake of the translating body and, in general, is applicable to a variety of flow configurations including active drag reduction, self-propulsion and thrust generation. The utility of the power loss coefficient is demonstrated on a model bluff body flow problem concerning a two-dimensional elliptical cylinder in a uniform cross-flow. The upper and lower boundaries of the elliptic cylinder undergo continuous motion due to a prescribed reflectionally symmetric constant tangential surface velocity. It is shown that a decrease in drag resulting from an increase in the strength of tangential surface velocity leads to an initial reduction and eventual rise in the power loss coefficient. A maximum in energetic efficiency is attained for a drag reducing tangential surface velocity which minimizes the power loss coefficient. The effect of the tangential surface velocity on drag reduction and self-propulsion of both bluff and streamlined bodies is explored through a variation in the thickness ratio (ratio of the minor and major axes) of the elliptical cylinders.

  17. Dialysate Flow Rate and Delivered Kt/Vurea for Dialyzers with Enhanced Dialysate Flow Distribution

    PubMed Central

    Idoux, John W.; Hamdan, Hiba; Ouseph, Rosemary; Depner, Thomas A.; Golper, Thomas A.

    2011-01-01

    Summary Background and objectives Previous in vitro and clinical studies showed that the urea mass transfer-area coefficient (KoA) increased with increasing dialysate flow rate. This observation led to increased dialysate flow rates in an attempt to maximize the delivered dose of dialysis (Kt/Vurea). Recently, we showed that urea KoA was independent of dialysate flow rate in the range 500 to 800 ml/min for dialyzers incorporating features to enhance dialysate flow distribution, suggesting that increasing the dialysate flow rate with such dialyzers would not significantly increase delivered Kt/Vurea. Design, setting, participants, & measurements We performed a multi-center randomized clinical trial to compare delivered Kt/Vurea at dialysate flow rates of 600 and 800 ml/min in 42 patients. All other aspects of the dialysis prescription, including treatment time, blood flow rate, and dialyzer, were kept constant for a given patient. Delivered single-pool and equilibrated Kt/Vurea were calculated from pre- and postdialysis plasma urea concentrations, and ionic Kt/V was determined from serial measurements of ionic dialysance made throughout each treatment. Results Delivered Kt/Vurea differed between centers; however, the difference in Kt/Vurea between dialysate flow rates of 800 and 600 ml/min was NS by any measure (95% confidence intervals of −0.064 to 0.024 for single-pool Kt/Vurea, −0.051 to 0.023 for equilibrated Kt/Vurea, and −0.029 to 0.099 for ionic Kt/V). Conclusions These data suggest that increasing the dialysate flow rate beyond 600 ml/min for these dialyzers offers no benefit in terms of delivered Kt/Vurea. PMID:21799145

  18. Temporal response of hydraulic head, temperature, and chloride concentrations to sea-level changes, Floridan aquifer system, USA

    USGS Publications Warehouse

    Hughes, J.D.; Vacher, H. Leonard; Sanford, W.E.

    2009-01-01

    Three-dimensional density-dependent flow and transport modeling of the Floridan aquifer system, USA shows that current chloride concentrations are not in equilibrium with current sea level and, second, that the geometric configuration of the aquifer has a significant effect on system responses. The modeling shows that hydraulic head equilibrates first, followed by temperatures, and then by chloride concentrations. The model was constructed using a modified version of SUTRA capable of simulating multi-species heat and solute transport, and was compared to pre-development conditions using hydraulic heads, chloride concentrations, and temperatures from 315 observation wells. Three hypothetical, sinusoidal sea-level changes occurring over 100,000 years were used to evaluate how the simulated aquifer responds to sea-level changes. Model results show that hydraulic head responses lag behind sea-level changes only where the Miocene Hawthorn confining unit is thick and represents a significant restriction to flow. Temperatures equilibrate quickly except where the Hawthorn confining unit is thick and the duration of the sea-level event is long (exceeding 30,000 years). Response times for chloride concentrations to equilibrate are shortest near the coastline and where the aquifer is unconfined; in contrast, chloride concentrations do not change significantly over the 100,000-year simulation period where the Hawthorn confining unit is thick. ?? US Government 2008.

  19. Viscous flow computations for elliptical two-duct version of the SSME hot gas manifold

    NASA Technical Reports Server (NTRS)

    Roger, R. P.

    1986-01-01

    The objective of the effort was to numerically simulate viscous subsonic flow in a proposed elliptical two-duct version of the fuel side Hot Gas Manifold (HGM) for the Space Shuttle Main Engine (SSME). The numerical results were to complement both water flow and air flow experiments in the two-duct geometry performed at NASA-MSFC and Rocketdyne. The three-dimensional character of the HGM consists of two essentially different geometries. The first part of the construction is a concentric shell duct structure which channels the gases from a turbine exit into the second part comprised of two cylindrically shaped transfer ducts. The initial concentric shell portion can be further subdivided into a turnaround section and a bowl section. The turnaround duct (TAD) changes the direction of the mean flow by 180 degress from a smaller radius to a larger radius duct which discharges into the bowl. The cylindrical transfer ducts are attached to the bowl on one side thus providing a plane of symmetry midway between the two. Centerline flow distance from the TAD inlet to the transfer duct exit is approximately two feet. Details of the approach used to numerically simulate laminar or turbulent flow in the HGM geometry are presented. Computational results are presented and discussed.

  20. Feasibility of flow studies at NICA/MPD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geraksiev, N. S., E-mail: nikolay.geraksiev@gmail.com; Collaboration: MPD Collaboration

    In the light of recent developments in heavy ion physic, anisotropic flow measurements play a key role in a better understanding of the hot and dense barionic matter. In the presented article a short introduction to the proposed NICA/MPD project is given, as well as a brief description of the event-plane method used to estimate the elliptic flow of reconstructed and identified hadrons (p, π, Λ)

  1. Anomalous-hydrodynamic analysis of charge-dependent elliptic flow in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Hongo, Masaru; Hirono, Yuji; Hirano, Tetsufumi

    2017-12-01

    Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of ideal anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters (v2±) as a function of the net charge asymmetry A±, we find that the linear dependence of Δ v2± ≡ v2- - v2+ on the net charge asymmetry A± can come from a mechanism unrelated to anomalous transport effects. Instead, we find that a finite intercept Δ v2± (A± = 0) can come from anomalous effects.

  2. Dispersion of capillary waves in elliptical cylindrical jets

    NASA Astrophysics Data System (ADS)

    Amini, Ghobad; Dolatabadi, Ali

    2011-11-01

    In this work motion of a low speed liquid jet issuing from an elliptic orifice through the air is studied. Mathematical solution of viscous free-surface flow for this asymmetric geometry is simplified by using one-dimensional Cosserat (directed curve) equations which can be assumed as a low order form of Navier-Stokes equations for slender jets. Linear solution is performed and temporal and spatial dispersion equations are derived. Growth rate and phase speed of unstable and stable modes under various conditions are presented. The possibility of instability of asymmetric disturbances is studied too. With distance down the jet, major and minor axes are altered and finally jet breaks up due to capillary instability. The effect of jet velocity and viscosity and also orifice ellipticity on axis-switching and breakup is investigated.

  3. The shape and motion of gas bubbles in a liquid flowing through a thin annulus

    NASA Astrophysics Data System (ADS)

    Lei, Qinghua; Xie, Zhihua; Pavlidis, Dimitrios; Salinas, Pablo; Veltin, Jeremy; Muggeridge, Ann; Pain, Christopher C.; Matar, Omar K.; Jackson, Matthew; Arland, Kristine; Gyllensten, Atle

    2017-11-01

    We study the shape and motion of gas bubbles in a liquid flowing through a horizontal or slightly-inclined thin annulus. Experimental data show that in the horizontal annulus, bubbles develop a unique ``tadpole'' shape with an elliptical cap and a highly-stretched tail, due to the confinement between the closely-spaced channel walls. As the annulus is inclined, the bubble tail tends to decrease in length, while the geometry of the cap remains almost invariant. To model the bubble evolution, the thin annulus is conceptualised as a ``Hele-Shaw'' cell in a curvilinear space. The three-dimensional flow within the cell is represented by a gap-averaged, two-dimensional model constrained by the same dimensionless quantities. The complex bubble dynamics are solved using a mixed control-volume finite-element method combined with interface-capturing and mesh adaptation techniques. A close match to the experimental data is achieved, both qualitatively and quantitatively, by the numerical simulations. The mechanism for the elliptical cap formation is interpreted based on an analogous irrotational flow field around a circular cylinder. The shape regimes of bubbles flowing through the thin annulus are further explored based on the simulation results. Funding from STATOIL gratefully acknowledged.

  4. Experimental investigation of supersonic flow over elliptic surface

    NASA Astrophysics Data System (ADS)

    Zhang, Qinghu; Yi, Shihe; He, Lin; Zhu, Yangzhu; Chen, Zhi

    2013-11-01

    The coherent structures of flow over a compression elliptic surface are experimentally investigated in a supersonic low-noise wind tunnel at Mach Number 3 using nano-tracer planar laser scattering (NPLS) and particle image velocimetry (PIV) techniques. High spacial resolution images and the average velocity profiles of both laminar inflow and turbulent inflow over the testing model were captured. From statistically significant ensembles, spatial correlation analysis of both cases is performed to quantify the mean size and orientation of large structures. The results indicate that the mean structure is elliptical in shape and structure angles in separated region of laminar inflow are slightly smaller than that of turbulent inflow. Moreover, the structure angle of both cases increases with its distance away from from the wall. POD analysis of velocity and vorticity fields is performed for both cases. The energy portion of the first mode for the velocity data is much larger than that for the vorticity field. For vorticity decompositions, the contribution from the first mode for the laminar inflow is slightly larger than that for the turbulent inflow and the cumulative contributions for laminar inflow converges slightly faster than that for turbulent inflow

  5. A numerical approach to finding general stationary vacuum black holes

    NASA Astrophysics Data System (ADS)

    Adam, Alexander; Kitchen, Sam; Wiseman, Toby

    2012-08-01

    The Harmonic Einstein equation is the vacuum Einstein equation supplemented by a gauge fixing term which we take to be that of DeTurck. For static black holes analytically continued to Riemannian manifolds without boundary at the horizon, this equation has previously been shown to be elliptic, and Ricci flow and Newton’s method provide good numerical algorithms to solve it. Here we extend these techniques to the arbitrary cohomogeneity stationary case which must be treated in Lorentzian signature. For stationary spacetimes with globally timelike Killing vector the Harmonic Einstein equation is elliptic. In the presence of horizons and ergo-regions it is less obviously so. Motivated by the Rigidity theorem we study a class of stationary black hole spacetimes which is general enough to include many interesting higher dimensional solutions. We argue the Harmonic Einstein equation consistently truncates to this class of spacetimes giving an elliptic problem. The Killing horizons and axes of rotational symmetry are boundaries for this problem and we determine boundary conditions there. As a simple example we numerically construct 4D rotating black holes in a cavity using Anderson’s boundary conditions. We demonstrate both Newton’s method and Ricci flow to find these Lorentzian solutions.

  6. Refraction and Shielding of Noise in Non-Axisymmetric Jets

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas

    1996-01-01

    This paper examines the shielding effect of the mean flow and refraction of sound in non-axisymmetric jets. A general three-dimensional ray-acoustic approach is applied. The methodology is independent of the exit geometry and may account for jet spreading and transverse as well as streamwise flow gradients. We assume that noise is dominated by small-scale turbulence. The source correlation terms, as described by the acoustic analogy approach, are simplified and a model is proposed that relates the source strength to 7/2 power of turbulence kinetic energy. Local characteristics of the source such as its strength, time- or length-scale, convection velocity and characteristic frequency are inferred from the mean flow considerations. Compressible Navier Stokes equations are solved with a k-e turbulence model. Numerical predictions are presented for a Mach 1.5, aspect ratio 2:1 elliptic jet. The predicted sound pressure level directivity demonstrates favorable agreement with reported data, indicating a relative quiet zone on the side of the major axis of the elliptic jet.

  7. Laminar, Transitional, and Turbulent Heating on Mid Lift-to-Drag Ratio Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Hollingsworth, Kevin E.

    2013-01-01

    The boundary-layer transition characteristics and convective aeroheating levels on mid lift-to-drag ratio entry vehicle configurations have been studied through wind-tunnel testing. Several configurations were investigated, including elliptically blunted cylinders with both circular and elliptically flattened cross sections, biconic geometries based on launch vehicle dual-use shrouds, and parametrically optimized analytic geometries. Vehicles of this class have been proposed for high-mass Mars missions, such as sample return and crewed exploration, for which the conventional sphere-cone entry-vehicle geometries of previous Mars missions are insufficient. Testing was conducted at Mach 6 over a range of Reynolds numbers sufficient to generate laminar, transitional, and turbulent flow. Transition onset locations, both straight-line and cross-flow, and heating rates were obtained through global phosphor thermography. Supporting computations were performed to obtain heating rates for comparison with the data. Laminar data and predictions agreed to well within the experimental uncertainty. Fully turbulent data and predictions also agreed well. However, in transitional flow regions, greater differences were observed.

  8. Weighted interior penalty discretization of fully nonlinear and weakly dispersive free surface shallow water flows

    NASA Astrophysics Data System (ADS)

    Di Pietro, Daniele A.; Marche, Fabien

    2018-02-01

    In this paper, we further investigate the use of a fully discontinuous Finite Element discrete formulation for the study of shallow water free surface flows in the fully nonlinear and weakly dispersive flow regime. We consider a decoupling strategy in which we approximate the solutions of the classical shallow water equations supplemented with a source term globally accounting for the non-hydrostatic effects. This source term can be computed through the resolution of elliptic second-order linear sub-problems, which only involve second order partial derivatives in space. We then introduce an associated Symmetric Weighted Internal Penalty discrete bilinear form, allowing to deal with the discontinuous nature of the elliptic problem's coefficients in a stable and consistent way. Similar discrete formulations are also introduced for several recent optimized fully nonlinear and weakly dispersive models. These formulations are validated again several benchmarks involving h-convergence, p-convergence and comparisons with experimental data, showing optimal convergence properties.

  9. Elliptic Relaxation of a Tensor Representation for the Redistribution Terms in a Reynolds Stress Turbulence Model

    NASA Technical Reports Server (NTRS)

    Carlson, J. R.; Gatski, T. B.

    2002-01-01

    A formulation to include the effects of wall proximity in a second-moment closure model that utilizes a tensor representation for the redistribution terms in the Reynolds stress equations is presented. The wall-proximity effects are modeled through an elliptic relaxation process of the tensor expansion coefficients that properly accounts for both correlation length and time scales as the wall is approached. Direct numerical simulation data and Reynolds stress solutions using a full differential approach are compared for the case of fully developed channel flow.

  10. Studying Turbulence Using Numerical Simulation Databases. Part 6; Proceedings of the 1996 Summer Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Topics considered include: New approach to turbulence modeling; Second moment closure analysis of the backstep flow database; Prediction of the backflow and recovery regions in the backward facing step at various Reynolds numbers; Turbulent flame propagation in partially premixed flames; Ensemble averaged dynamic modeling. Also included a study of the turbulence structures of wall-bounded shear flows; Simulation and modeling of the elliptic streamline flow.

  11. Spatially Resolved Imaging at 350 Micrometers of Cold Dust in Nearby Elliptical Galaxies

    NASA Technical Reports Server (NTRS)

    Leeuw, Lerothodi L.; Davidson, Jacqueline; Dowell, C. Darren; Matthews, Henry E.

    2008-01-01

    Continuum observations at 350 micrometers of seven nearby elliptical galaxies for which CO gas disks have recently been resolved with interferometry mapping are presented. These SHARC II mapping results provide the first clearly resolved far-infrared (FIR)-to-submillimeter continuum emission from cold dust (with temperatures 31 K is approximately greater than T approximately greater than 23 K) of any elliptical galaxy at a distance greater than 40 Mpc. The measured FIR excess shows that the most likely and dominant heating source of this dust is not dilute stellar radiation or cooling flows, but rather star formation that could have been triggered by an accretion or merger event and fueled by dust-rich material that has settled in a dense region cospatial with the central CO gas disks. The dust is detected even in two cluster ellipticals that are deficient in H (sub I), showing that, unlike H (sub I), cold dust and CO in ellipticals can survive in the presence of hot X-ray gas, even in galaxy clusters. No dust cooler than 20 K, either distributed outside the CO disks or cospatial with and heated by the entire dilute stellar optical galaxy (or very extended H (sub I)), is currently evident.

  12. PSE-3D Instability Analysis and Application to Flow Over an Elliptic Cone

    DTIC Science & Technology

    2015-04-01

    Since the seminal experiments conducted by Crow and Champagne [1971], it is generally accepted that turbulent flows are organized by orderly quasi...2007. C. Crow and F.H. Champagne . Orderly structure in jet turbulence. J. Fluid Mech., 48:547–591, 1971. S.C. Crow. Stability theory for a pair of

  13. Dynamics and stability of a 2D ideal vortex under external strain

    NASA Astrophysics Data System (ADS)

    Hurst, N. C.; Danielson, J. R.; Dubin, D. H. E.; Surko, C. M.

    2017-11-01

    The behavior of an initially axisymmetric 2D ideal vortex under an externally imposed strain flow is studied experimentally. The experiments are carried out using electron plasmas confined in a Penning-Malmberg trap; here, the dynamics of the plasma density transverse to the field are directly analogous to the dynamics of vorticity in a 2D ideal fluid. An external strain flow is applied using boundary conditions in a way that is consistent with 2D fluid dynamics. Data are compared to predictions from a theory assuming a piecewise constant elliptical vorticity distribution. Excellent agreement is found for quasi-flat profiles, whereas the dynamics of smooth profiles feature modified stability limits and inviscid damping of periodic elliptical distortions. This work supported by U.S. DOE Grants DE-SC0002451 and DE-SC0016532, and NSF Grant PHY-1414570.

  14. Numerical Simulations of Free Surface Magnetohydrodynamic Flows

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Glimm, James; Oh, Wonho; Prykarpatskyy, Yarema

    2003-11-01

    We have developed a numerical algorithm and performed simulations of magnetohydrodynamic (MHD) free surface flows. The corresponding system of MHD equations is a system of strongly coupled hyperbolic and parabolic/elliptic equations in moving and geometrically complex domains. The hyperbolic system is solved using the front tracking technique for the free fluid interface. Parallel algorithms for solving elliptic and parabolic equations are based on a finite element discretization on moving grids dynamically conforming to fluid interfaces. The method has been implemented as an MHD extension of the FronTier code. The code has been applied for modeling the behavior of lithium and mercury jets in magnetic fields, laser ablation plumes, and the Richtmyer-Meshkov instability of a liquid mercury jet interacting with a high energy proton pulse in a strong magnetic field. Such an instability occurs in the target for the Muon Collider.

  15. Adaptive EAGLE dynamic solution adaptation and grid quality enhancement

    NASA Technical Reports Server (NTRS)

    Luong, Phu Vinh; Thompson, J. F.; Gatlin, B.; Mastin, C. W.; Kim, H. J.

    1992-01-01

    In the effort described here, the elliptic grid generation procedure in the EAGLE grid code was separated from the main code into a subroutine, and a new subroutine which evaluates several grid quality measures at each grid point was added. The elliptic grid routine can now be called, either by a computational fluid dynamics (CFD) code to generate a new adaptive grid based on flow variables and quality measures through multiple adaptation, or by the EAGLE main code to generate a grid based on quality measure variables through static adaptation. Arrays of flow variables can be read into the EAGLE grid code for use in static adaptation as well. These major changes in the EAGLE adaptive grid system make it easier to convert any CFD code that operates on a block-structured grid (or single-block grid) into a multiple adaptive code.

  16. D meson elliptic flow in noncentral Pb-Pb collisions at sqrt[sNN]=2.76 Tev.

    PubMed

    Abelev, B; Adam, J; Adamová, D; Adare, A M; Aggarwal, M M; Aglieri Rinella, G; Agnello, M; Agocs, A G; Agostinelli, A; Ahammed, Z; Ahmad, N; Ahmad Masoodi, A; Ahmed, I; Ahn, S U; Ahn, S A; Aimo, I; Ajaz, M; Akindinov, A; Aleksandrov, D; Alessandro, B; Alexandre, D; Alici, A; Alkin, A; Alme, J; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Andrei, C; Andronic, A; Anguelov, V; Anielski, J; Anson, C; Antičić, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshäuser, H; Arbor, N; Arcelli, S; Arend, A; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Arslandok, M; Asryan, A; Augustinus, A; Averbeck, R; Awes, T C; Äystö, J; Azmi, M D; Bach, M; Badalà, A; Baek, Y W; Bailhache, R; Bala, R; Baldisseri, A; Baltasar Dos Santos Pedrosa, F; Bán, J; Baral, R C; Barbera, R; Barile, F; Barnaföldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastid, N; Basu, S; Bathen, B; Batigne, G; Batyunya, B; Batzing, P C; Baumann, C; Bearden, I G; Beck, H; Behera, N K; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Bencedi, G; Beole, S; Berceanu, I; Bercuci, A; Berdnikov, Y; Berenyi, D; Bergognon, A A E; Bertens, R A; Berzano, D; Betev, L; Bhasin, A; Bhati, A K; Bhom, J; Bianchi, N; Bianchi, L; Bianchin, C; Bielčík, J; Bielčíková, J; Bilandzic, A; Bjelogrlic, S; Blanco, F; Blanco, F; Blau, D; Blume, C; Boccioli, M; Böttger, S; Bogdanov, A; Bøggild, H; Bogolyubsky, M; Boldizsár, L; Bombara, M; Book, J; Borel, H; Borissov, A; Bossú, F; Botje, M; Botta, E; Braidot, E; Braun-Munzinger, P; Bregant, M; Breitner, T; Broker, T A; Browning, T A; Broz, M; Brun, R; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bufalino, S; Buncic, P; Busch, O; Buthelezi, Z; Caffarri, D; Cai, X; Caines, H; Caliva, A; Calvo Villar, E; Camerini, P; Canoa Roman, V; Cara Romeo, G; Carena, F; Carena, W; Carlin Filho, N; Carminati, F; Casanova Díaz, A; Castillo Castellanos, J; Castillo Hernandez, J F; Casula, E A R; Catanescu, V; Cavicchioli, C; Ceballos Sanchez, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Cherney, M; Cheshkov, C; Cheynis, B; Chibante Barroso, V; Chinellato, D D; Chochula, P; Chojnacki, M; Choudhury, S; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Chung, S U; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Colamaria, F; Colella, D; Collu, A; Conesa Balbastre, G; Conesa del Valle, Z; Connors, M E; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortese, P; Cortés Maldonado, I; Cosentino, M R; Costa, F; Cotallo, M E; Crescio, E; Crochet, P; Cruz Alaniz, E; Cruz Albino, R; Cuautle, E; Cunqueiro, L; Dainese, A; Dang, R; Danu, A; Das, S; Das, K; Das, I; Das, D; Dash, S; Dash, A; De, S; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; Delagrange, H; Deloff, A; De Marco, N; Dénes, E; De Pasquale, S; Deppman, A; D'Erasmo, G; de Rooij, R; Diaz Corchero, M A; Di Bari, D; Dietel, T; Di Giglio, C; Di Liberto, S; Di Mauro, A; Di Nezza, P; Divià, R; Djuvsland, Ø; Dobrin, A; Dobrowolski, T; Dönigus, B; Dordic, O; Dubey, A K; Dubla, A; Ducroux, L; Dupieux, P; Dutta Majumdar, A K; Elia, D; Elwood, B G; Emschermann, D; Engel, H; Erazmus, B; Erdal, H A; Eschweiler, D; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Evdokimov, S; Eyyubova, G; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fehlker, D; Feldkamp, L; Felea, D; Feliciello, A; Fenton-Olsen, B; Feofilov, G; Fernández Téllez, A; Ferretti, A; Festanti, A; Figiel, J; Figueredo, M A S; Filchagin, S; Finogeev, D; Fionda, F M; Fiore, E M; Floratos, E; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Francescon, A; Frankenfeld, U; Fuchs, U; Furget, C; Fusco Girard, M; Gaardhøje, J J; Gagliardi, M; Gago, A; Gallio, M; Gangadharan, D R; Ganoti, P; Garabatos, C; Garcia-Solis, E; Gargiulo, C; Garishvili, I; Gerhard, J; Germain, M; Geuna, C; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Gianotti, P; Giubellino, P; Gladysz-Dziadus, E; Glässel, P; Goerlich, L; Gomez, R; Ferreiro, E G; González-Zamora, P; Gorbunov, S; Goswami, A; Gotovac, S; Graczykowski, L K; Grajcarek, R; Grelli, A; Grigoras, C; Grigoras, A; Grigoriev, V; Grigoryan, S; Grigoryan, A; Grinyov, B; Grion, N; Gros, P; Grosse-Oetringhaus, J F; Grossiord, J-Y; Grosso, R; Guber, F; Guernane, R; Guerzoni, B; Guilbaud, M; Gulbrandsen, K; Gulkanyan, H; Gunji, T; Gupta, A; Gupta, R; Haake, R; Haaland, Ø; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Han, B H; Hanratty, L D; Hansen, A; Harris, J W; Harton, A; Hatzifotiadou, D; Hayashi, S; Hayrapetyan, A; Heckel, S T; Heide, M; Helstrup, H; Herghelegiu, A; Herrera Corral, G; Herrmann, N; Hess, B A; Hetland, K F; Hicks, B; Hippolyte, B; Hori, Y; Hristov, P; Hřivnáčová, I; Huang, M; Humanic, T J; Hwang, D S; Ichou, R; Ilkaev, R; Ilkiv, I; Inaba, M; Incani, E; Innocenti, P G; Innocenti, G M; Ionita, C; Ippolitov, M; Irfan, M; Ivan, C; Ivanov, A; Ivanov, M; Ivanov, V; Ivanytskyi, O; Jachołkowski, A; Jacobs, P M; Jahnke, C; Jang, H J; Janik, M A; Jayarathna, P H S Y; Jena, S; Jha, D M; Jimenez Bustamante, R T; Jones, P G; Jung, H; Jusko, A; Kaidalov, A B; Kalcher, S; Kaliňák, P; Kalliokoski, T; Kalweit, A; Kang, J H; Kaplin, V; Kar, S; Karasu Uysal, A; Karavichev, O; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Ketzer, B; Khan, S A; Khan, M M; Khan, K H; Khan, P; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, J H; Kim, D W; Kim, T; Kim, S; Kim, B; Kim, M; Kim, M; Kim, J S; Kim, D J; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Klay, J L; Klein, J; Klein-Bösing, C; Kliemant, M; Kluge, A; Knichel, M L; Knospe, A G; Köhler, M K; Kollegger, T; Kolojvari, A; Kompaniets, M; Kondratiev, V; Kondratyeva, N; Konevskikh, A; Kovalenko, V; Kowalski, M; Kox, S; Koyithatta Meethaleveedu, G; Kral, J; Králik, I; Kramer, F; Kravčáková, A; Krelina, M; Kretz, M; Krivda, M; Krizek, F; Krus, M; Kryshen, E; Krzewicki, M; Kucera, V; Kucheriaev, Y; Kugathasan, T; Kuhn, C; Kuijer, P G; Kulakov, I; Kumar, J; Kurashvili, P; Kurepin, A B; Kurepin, A; Kuryakin, A; Kushpil, S; Kushpil, V; Kvaerno, H; Kweon, M J; Kwon, Y; Ladrón de Guevara, P; Lagana Fernandes, C; Lakomov, I; Langoy, R; La Pointe, S L; Lara, C; Lardeux, A; La Rocca, P; Lea, R; Lechman, M; Lee, S C; Lee, G R; Legrand, I; Lehnert, J; Lemmon, R C; Lenhardt, M; Lenti, V; León, H; Leoncino, M; León Monzón, I; Lévai, P; Li, S; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Ljunggren, H M; Lodato, D F; Loenne, P I; Loggins, V R; Loginov, V; Lohner, D; Loizides, C; Loo, K K; Lopez, X; López Torres, E; Løvhøiden, G; Lu, X-G; Luettig, P; Lunardon, M; Luo, J; Luparello, G; Luzzi, C; Ma, R; Ma, K; Madagodahettige-Don, D M; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Malaev, M; Maldonado Cervantes, I; Malinina, L; Mal'Kevich, D; Malzacher, P; Mamonov, A; Manceau, L; Mangotra, L; Manko, V; Manso, F; Manzari, V; Marchisone, M; Mareš, J; Margagliotti, G V; Margotti, A; Marín, A; Markert, C; Marquard, M; Martashvili, I; Martin, N A; Martin Blanco, J; Martinengo, P; Martínez, M I; Martínez García, G; Martynov, Y; Mas, A; Masciocchi, S; Masera, M; Masoni, A; Massacrier, L; Mastroserio, A; Matyja, A; Mayer, C; Mazer, J; Mazumder, R; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mercado Pérez, J; Meres, M; Miake, Y; Mikhaylov, K; Milano, L; Milosevic, J; Mischke, A; Mishra, A N; Miśkowiec, D; Mitu, C; Mizuno, S; Mlynarz, J; Mohanty, B; Molnar, L; Montaño Zetina, L; Monteno, M; Montes, E; Moon, T; Morando, M; Moreira De Godoy, D A; Moretto, S; Morreale, A; Morsch, A; Muccifora, V; Mudnic, E; Muhuri, S; Mukherjee, M; Müller, H; Munhoz, M G; Murray, S; Musa, L; Musinsky, J; Nandi, B K; Nania, R; Nappi, E; Nattrass, C; Nayak, T K; Nazarenko, S; Nedosekin, A; Nicassio, M; Niculescu, M; Nielsen, B S; Niida, T; Nikolaev, S; Nikolic, V; Nikulin, S; Nikulin, V; Nilsen, B S; Nilsson, M S; Noferini, F; Nomokonov, P; Nooren, G; Nyanin, A; Nyatha, A; Nygaard, C; Nystrand, J; Ochirov, A; Oeschler, H; Oh, S K; Oh, S; Oleniacz, J; Oliveira Da Silva, A C; Onderwaater, J; Oppedisano, C; Ortiz Velasquez, A; Ortona, G; Oskarsson, A; Ostrowski, P; Otwinowski, J; Oyama, K; Ozawa, K; Pachmayer, Y; Pachr, M; Padilla, F; Pagano, P; Paić, G; Painke, F; Pajares, C; Pal, S K; Palaha, A; Palmeri, A; Papikyan, V; Pappalardo, G S; Park, W J; Passfeld, A; Patalakha, D I; Paticchio, V; Paul, B; Pavlinov, A; Pawlak, T; Peitzmann, T; Pereira Da Costa, H; Pereira De Oliveira Filho, E; Peresunko, D; Pérez Lara, C E; Perrino, D; Peryt, W; Pesci, A; Pestov, Y; Petráček, V; Petran, M; Petris, M; Petrov, P; Petrovici, M; Petta, C; Piano, S; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Pitz, N; Piyarathna, D B; Planinic, M; Płoskoń, M; Pluta, J; Pocheptsov, T; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polák, K; Polichtchouk, B; Poljak, N; Pop, A; Porteboeuf-Houssais, S; Pospíšil, V; Potukuchi, B; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puddu, G; Punin, V; Putschke, J; Qvigstad, H; Rachevski, A; Rademakers, A; Rak, J; Rakotozafindrabe, A; Ramello, L; Raniwala, S; Raniwala, R; Räsänen, S S; Rascanu, B T; Rathee, D; Rauch, W; Rauf, A W; Razazi, V; Read, K F; Real, J S; Redlich, K; Reed, R J; Rehman, A; Reichelt, P; Reicher, M; Reidt, F; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J-P; Reygers, K; Riccati, L; Ricci, R A; Richert, T; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rivetti, A; Rodríguez Cahuantzi, M; Rodriguez Manso, A; Røed, K; Rogochaya, E; Rohr, D; Röhrich, D; Romita, R; Ronchetti, F; Rosnet, P; Rossegger, S; Rossi, A; Roy, C; Roy, P; Rubio Montero, A J; Rui, R; Russo, R; Ryabinkin, E; Rybicki, A; Sadovsky, S; Šafařík, K; Sahoo, R; Sahu, P K; Saini, J; Sakaguchi, H; Sakai, S; Sakata, D; Salgado, C A; Salzwedel, J; Sambyal, S; Samsonov, V; Sanchez Castro, X; Šándor, L; Sandoval, A; Sano, M; Santagati, G; Santoro, R; Sarkar, D; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schuchmann, S; Schukraft, J; Schuster, T; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, R; Scott, P A; Segato, G; Selyuzhenkov, I; Senyukov, S; Seo, J; Serci, S; Serradilla, E; Sevcenco, A; Shabetai, A; Shabratova, G; Shahoyan, R; Sharma, S; Sharma, N; Rohni, S; Shigaki, K; Shtejer, K; Sibiriak, Y; Siddhanta, S; Siemiarczuk, T; Silvermyr, D; Silvestre, C; Simatovic, G; Simonetti, G; Singaraju, R; Singh, R; Singha, S; Singhal, V; Sinha, T; Sinha, B C; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R J M; Søgaard, C; Soltz, R; Song, M; Song, J; Soos, C; Soramel, F; Sputowska, I; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Stan, I; Stefanek, G; Steinpreis, M; Stenlund, E; Steyn, G; Stiller, J H; Stocco, D; Stolpovskiy, M; Strmen, P; Suaide, A A P; Subieta Vásquez, M A; Sugitate, T; Suire, C; Suleymanov, M; Sultanov, R; Šumbera, M; Susa, T; Symons, T J M; Szanto de Toledo, A; Szarka, I; Szczepankiewicz, A; Szymański, M; Takahashi, J; Tangaro, M A; Tapia Takaki, J D; Tarantola Peloni, A; Tarazona Martinez, A; Tauro, A; Tejeda Muñoz, G; Telesca, A; Ter Minasyan, A; Terrevoli, C; Thäder, J; Thomas, D; Tieulent, R; Timmins, A R; Tlusty, D; Toia, A; Torii, H; Toscano, L; Trubnikov, V; Truesdale, D; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Tveter, T S; Ulery, J; Ullaland, K; Ulrich, J; Uras, A; Urciuoli, G M; Usai, G L; Vajzer, M; Vala, M; Valencia Palomo, L; Vallero, S; Vande Vyvre, P; Van Hoorne, J W; van Leeuwen, M; Vannucci, L; Vargas, A; Varma, R; Vasileiou, M; Vasiliev, A; Vechernin, V; Veldhoen, M; Venaruzzo, M; Vercellin, E; Vergara, S; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Viinikainen, J; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, A; Vinogradov, Y; Vinogradov, L; Virgili, T; Viyogi, Y P; Vodopyanov, A; Völkl, M A; Voloshin, S; Voloshin, K; Volpe, G; von Haller, B; Vorobyev, I; Vranic, D; Vrláková, J; Vulpescu, B; Vyushin, A; Wagner, B; Wagner, V; Wang, Y; Wang, M; Wang, Y; Watanabe, K; Weber, M; Wessels, J P; Westerhoff, U; Wiechula, J; Wikne, J; Wilde, M; Wilk, G; Williams, M C S; Windelband, B; Winn, M; Yaldo, C G; Yamaguchi, Y; Yang, S; Yang, H; Yang, P; Yasnopolskiy, S; Yi, J; Yin, Z; Yoo, I-K; Yoon, J; Yuan, X; Yushmanov, I; Zaccolo, V; Zach, C; Zampolli, C; Zaporozhets, S; Zarochentsev, A; Závada, P; Zaviyalov, N; Zbroszczyk, H; Zelnicek, P; Zgura, I S; Zhalov, M; Zhang, Y; Zhang, H; Zhang, X; Zhou, D; Zhou, Y; Zhou, F; Zhu, H; Zhu, J; Zhu, X; Zhu, J; Zichichi, A; Zimmermann, A; Zinovjev, G; Zoccarato, Y; Zynovyev, M; Zyzak, M

    2013-09-06

    Azimuthally anisotropic distributions of D0, D+, and D*+ mesons were studied in the central rapidity region (|y|<0.8) in Pb-Pb collisions at a center-of-mass energy sqrt[sNN]=2.76  TeV per nucleon-nucleon collision, with the ALICE detector at the LHC. The second Fourier coefficient v2 (commonly denoted elliptic flow) was measured in the centrality class 30%-50% as a function of the D meson transverse momentum pT, in the range 2-16  GeV/c. The measured v2 of D mesons is comparable in magnitude to that of light-flavor hadrons. It is positive in the range 2

  17. Computational methods for internal flows with emphasis on turbomachinery

    NASA Technical Reports Server (NTRS)

    Mcnally, W. D.; Sockol, P. M.

    1981-01-01

    Current computational methods for analyzing flows in turbomachinery and other related internal propulsion components are presented. The methods are divided into two classes. The inviscid methods deal specifically with turbomachinery applications. Viscous methods, deal with generalized duct flows as well as flows in turbomachinery passages. Inviscid methods are categorized into the potential, stream function, and Euler aproaches. Viscous methods are treated in terms of parabolic, partially parabolic, and elliptic procedures. Various grids used in association with these procedures are also discussed.

  18. Global chaotization of fluid particle trajectories in a sheared two-layer two-vortex flow.

    PubMed

    Ryzhov, Evgeny A; Koshel, Konstantin V

    2015-10-01

    In a two-layer quasi-geostrophic approximation, we study the irregular dynamics of fluid particles arising due to two interacting point vortices embedded in a deformation flow consisting of shear and rotational components. The two vortices are arranged within the bottom layer, but an emphasis is on the upper-layer fluid particle motion. Vortices moving in one layer induce stirring of passive scalars in the other layer. This is of interest since point vortices induce singular velocity fields in the layer they belong to; however, in the other layer, they induce regular velocity fields that generally result in a change in passive particle stirring. If the vortices are located at stagnation points, there are three different types of the fluid flow. We examine how properties of each flow configuration are modified if the vortices are displaced from the stagnation points and thus circulate in the immediate vicinity of these points. To that end, an analysis of the steady-state configurations is presented with an emphasis on the frequencies of fluid particle oscillations about the elliptic stagnation points. Asymptotic relations for the vortex and fluid particle zero-oscillation frequencies are derived in the vicinity of the corresponding elliptic points. By comparing the frequencies of fluid particles with the ones of the vortices, relations between the parameters that lead to enhanced stirring of fluid particles are established. It is also demonstrated that, if the central critical point is elliptic, then the fluid particle trajectories in its immediate vicinity are mostly stable making it harder for the vortex perturbation to induce stirring. Change in the type of the central point to a hyperbolic one enhances drastically the size of the chaotic dynamics region. Conditions on the type of the central critical point also ensue from the derived asymptotic relations.

  19. A new fluorescent probe for the equilibrative inhibitor-sensitive nucleoside transporter. 5'-S-(2-aminoethyl)-N6-(4-nitrobenzyl)-5'-thioadenosine (SAENTA)-chi 2-fluorescein.

    PubMed

    Wiley, J S; Brocklebank, A M; Snook, M B; Jamieson, G P; Sawyer, W H; Craik, J D; Cass, C E; Robins, M J; McAdam, D P; Paterson, A R

    1991-02-01

    The N6-(4-nitrobenzyl) derivative of adenosine is a tight-binding inhibitor of the equilibrative inhibitor-sensitive nucleoside transporter of mammalian cells. A fluorescent ligand for this transporter has been synthesized by allowing an adenosine analogue. 5'-S-(2-aminoethyl)-N6-(4-nitrobenzyl)-5'-thioadenosine (SAENTA), to react with fluorescein isothiocyanate. The purified adduct had a SAENTA/fluorescein molar ratio of 0.92:1 calculated from its absorption spectrum. The intensity of fluorescent emission from the SAENTA-chi 2-fluorescein adduct was 30% that of fluorescein isothiocyanate (chi 2 is the number of atoms in the linkage between fluorescein and SAENTA). SAENTA-chi 2-fluorescein inhibited the influx of nucleosides into cultured leukaemic cells with an IC50 (total concentration of inhibitor producing 50% inhibition) of 40 nM. The adduct inhibited the binding of [3H]nitrobenzylthioinosine ([3H]NBMPR) with half-maximal inhibition at 50-100 nM. Mass Law analysis of the competitive-binding data suggested the presence of two classes of sites for [3H]NBMPR binding, only one of which was accessible to SAENTA-chi 2-fluorescein. Flow cytometry was used to analyse equilibrium binding of SAENTA-chi 2-fluorescein to leukaemic cells and a Kd of 6 nM was obtained. SAENTA-chi 2-fluorescein is a high-affinity ligand for the equilibrative inhibitor-sensitive nucleoside transporter which allows rapid assessment of transport capacity by flow cytometry.

  20. Computer program for calculating supersonic flow on the windward side conical delta wings by the method of lines

    NASA Technical Reports Server (NTRS)

    Klunker, E. B.; South, J. C., Jr.; Davis, R. M.

    1972-01-01

    A user's manual is presented for a program that calculates the supersonic flow on the windward side of conical delta wings with shock attached at the sharp leading edge by the method of lines. The program also has a limited capability for computing the flow about circular and elliptic cones at incidence. It provides information including the shock shape, flow field, isentropic surface-flow properties, and force coefficients. A description of the program operation, a sample computation, and a FORTRAN 4 program listing are included.

  1. A multiple-time-scale turbulence model based on variable partitioning of turbulent kinetic energy spectrum

    NASA Technical Reports Server (NTRS)

    Kim, S.-W.; Chen, C.-P.

    1988-01-01

    The paper presents a multiple-time-scale turbulence model of a single point closure and a simplified split-spectrum method. Consideration is given to a class of turbulent boundary layer flows and of separated and/or swirling elliptic turbulent flows. For the separated and/or swirling turbulent flows, the present turbulence model yielded significantly improved computational results over those obtained with the standard k-epsilon turbulence model.

  2. Effects of elliptical burner geometry on partially premixed gas jet flames in quiescent surroundings

    NASA Astrophysics Data System (ADS)

    Baird, Benjamin

    This study is the investigation of the effect of elliptical nozzle burner geometry and partial premixing, both 'passive control' methods, on a hydrogen/hydrocarbon flame. Both laminar and turbulent flames for circular, 3:1, and 4:1 aspect ratio (AR) elliptical burners are considered. The amount of air mixed with the fuel is varied from fuel-lean premixed flames to fuel-rich partially premixed flames. The work includes measurements of flame stability, global pollutant emissions, flame radiation, and flame structure for the differing burner types and fuel conditions. Special emphasis is placed on the near-burner region. Experimentally, both conventional (IR absorption, chemiluminecent, and polarographic emission analysis,) and advanced (laser induced fluorescence, planar laser induced fluorescence, Laser Doppler Velocimetry (LDV), Rayleigh scattering) diagnostic techniques are used. Numerically, simulations of 3-dimensional laminar and turbulent reacting flow are conducted. These simulations are run with reduced chemical kinetics and with a Reynolds Stress Model (RSM) for the turbulence modeling. It was found that the laminar flames were similar in appearance and overall flame length for the 3:1 AR elliptical and the circular burner. The laminar 4:1 AR elliptical burner flame split into two sub-flames along the burner major axis. This splitting had the effect of greatly shortening the 4:1 AR elliptical burner flame to have an overall flame length about half of that of the circular and 3:1 AR elliptical burner flames. The length of all three burners flames increased with increasing burner exit equivalence ratio. The blowout velocity for the three burners increased with increase in hydrogen mass fraction of the hydrogen/propane fuel mixture. For the rich premixed flames, the circular burner was the most stable, the 3:1 AR elliptical burner, was the least stable, and the 4:1 AR elliptical burner was intermediate to the two other burners. This order of stability was due to two reasons. The elliptical burners have enhanced turbulence generation that lowers their stability when compared to the circular burner. The 4:1 AR elliptical burner had greater stability due to a greater velocity decay rate and wider OH reaction zones particularly in the region between the two jets. The 3:1 AR elliptical and circular burners produced similar carbon monoxide and nitric oxide emission indexes over the range of equivalence ratios of 0.55 to 4.0, for laminar flames. (Abstract shortened by UMI.)

  3. The Initial Flow of Classical Gluon Fields in Heavy Ion Collisions

    NASA Astrophysics Data System (ADS)

    Fries, Rainer J.; Chen, Guangyao

    2015-03-01

    Using analytic solutions of the Yang-Mills equations we calculate the initial flow of energy of the classical gluon field created in collisions of large nuclei at high energies. We find radial and elliptic flow which follows gradients in the initial energy density, similar to a simple hydrodynamic behavior. In addition we find a rapidity-odd transverse flow field which implies the presence of angular momentum and should lead to directed flow in final particle spectra. We trace those energy flow terms to transverse fields from the non-abelian generalization of Gauss' Law and Ampere's and Faraday's Laws.

  4. Design considerations of a thermally stabilized continuous flow electrophoresis chamber 2

    NASA Technical Reports Server (NTRS)

    Jandebeur, T. S.

    1982-01-01

    The basic adjustable parameters of a Beckman Continouous Particle Electrophoresis (CPE) Apparatus are investigated to determine the optimum conditions for ground based operation for comparison with space experiments. The possible application of electrically insulated copper/aluminum chamber walls is evaluated as a means to thermally stabilize or equilibrate lateral temperature gradients which exist on the walls of conventional plastic chambers and which distort the rectilinear base flow of buffer through the chamber, significantly affecting sample resolution.

  5. Inferring shallow groundwater flow in saprolite and fractured rock using environmental tracers

    USGS Publications Warehouse

    Cook, P.G.; Solomon, D.K.; Sanford, W.E.; Busenberg, E.; Plummer, Niel; Poreda, R.J.

    1996-01-01

    The Ridge and Valley Province of eastern Tennessee is characterized by (1) substantial topographic relief, (2) folded and highly fractured rocks of various lithologies that have low primary permeability and porosity, and (3) a shallow residuum of medium permeability and high total porosity. Conceptual models of shallow groundwater flow and solute transport in this system have been developed but are difficult to evaluate using physical characterization or short‐term tracer methods due to extreme spatial variability in hydraulic properties. In this paper we describe how chlorofluorocarbon 12, 3H, and 3He were used to infer groundwater flow and solute transport in saprolite and fractured rock near Oak Ridge, Tennessee. In the shallow residuum, fracture spacings are <0.05 m, suggesting that concentrations of these tracers in fractures and in the matrix have time to diffusionally equilibrate. The relatively smooth nature of tracer concentrations with depth in the residuum is consistent with this model and quantitatively suggests recharge fluxes of 0.2 to 0.4 m yr−1. In contrast, groundwater flow within the unweathered rock appears to be controlled by fractures with spacings of the order of 2 to 5 m, and diffusional equilibration of fractures and matrix has not occurred. For this reason, vertical fluid fluxes in the unweathered rock cannot be estimated from the tracer data.

  6. Contraction rate, flow modification and bed layering impact on scour at the elliptical guide banks

    NASA Astrophysics Data System (ADS)

    Gjunsburgs, B.; Jaudzems, G.; Bizane, M.; Bulankina, V.

    2017-10-01

    Flow contraction by the bridge crossing structures, intakes, embankments, piers, abutments and guide banks leads to general scour and the local scour in the vicinity of the structures. Local scour is depending on flow, river bed and structures parameters and correct understanding of the impact of each parameter can reduce failure possibility of the structures. The paper explores hydraulic contraction, the discharge redistribution between channel and floodplain during the flood, local flow modification and river bed layering on depth, width and volume of scour hole near the elliptical guide banks on low-land rivers. Experiments in a flume, our method for scour calculation and computer modelling results confirm a considerable impact of the contraction rate of the flow, the discharge redistribution between channel and floodplain, the local velocity, backwater and river bed layering on the depth, width, and volume of scour hole in steady and unsteady flow, under clear water condition. With increase of the contraction rate of the flow, the discharge redistribution between channel and floodplain, the local velocity, backwater values, the scour depth increases. At the same contraction rate, but at a different Fr number, the scour depth is different: with increase in the Fr number, the local velocity, backwater, scour depth, width, and volume is increasing. Acceptance of the geometrical contraction of the flow, approach velocity and top sand layer of the river bed for scour depth calculation as accepted now, may be the reason of the structures failure and human life losses.

  7. Simultaneous PIV and PLIF measurement of passive scalar mixing in a confined planar jet

    NASA Astrophysics Data System (ADS)

    Feng, Hua

    2005-11-01

    Simultaneous velocity and concentration fields in a confined liquid-phase planar jet with a Reynolds number based on hydraulic diameter of 50,000 were obtained using combined particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF). Data at six downstream locations were analyzed for flow statistics such as mean velocity, Reynolds stresses, turbulent kinetic energy, concentration mean and variance, turbulent fluxes, turbulent viscosity and diffusivity, and turbulent Schmidt number. Spatial correlation fields of turbulent fluxes and concentration were then determined. The Ru'φ' correlation was elliptical in shape with a major axis tilted downward with respect to the streamwise axis, whereas the Rv'φ' correlation was a horizontally oriented ellipse. The Rφ'φ' correlation field was found to be an ellipse with the major axis inclined at about 45-degrees with respect to the streamwise direction. Linear stochastic estimation was used to determine conditional flow structures. Large-scale structures were observed in the conditional velocity fields that are elliptical in shape with a streamwise major axis. The size of the structure initially increased linearly with respect to downstream distance, but then grew more slowly as the flow evolved towards channel flow.

  8. Computational analysis of hypersonic flows past elliptic-cone waveriders

    NASA Technical Reports Server (NTRS)

    Yoon, Bok-Hyun; Rasmussen, Maurice L.

    1991-01-01

    A comprehensive study for the inviscid numerical calculation of the hypersonic flow past a class of elliptic-cone derived waveriders is presented. The theoretical background associated with hypersonic small-disturbance theory (HSDT) is reviewed. Several approximation formulas for the waverider compression surface are established. A CFD algorithm is used to calculate flow fields for the on-design case and a variety of off-design cases. The results are compared with HSDT, experiment, and other available CFD results. For the waverider shape used in previous investigations, the bow shock for the on-design condition stands off from the leading-edge tip of the waverider. It was found that this occurs because the tip was too thick according to the approximating shape formula that was used to describe the compression surface. When this was corrected, the bow shock became closer to attached as it should be. At Mach numbers greater than the design condition, a lambda-shock configuration develops near the tip of the compression surface. At negative angles of attack, other complicated shock patterns occur near the leading-edge tip. These heretofore unknown flow patterns show the power and utility of CFD for investigating novel hypersonic configurations such as waveriders.

  9. Simulation of 2-dimensional viscous flow through cascades using a semi-elliptic analysis and hybrid C-H grids

    NASA Technical Reports Server (NTRS)

    Ramamurti, R.; Ghia, U.; Ghia, K. N.

    1988-01-01

    A semi-elliptic formulation, termed the interacting parabolized Navier-Stokes (IPNS) formulation, is developed for the analysis of a class of subsonic viscous flows for which streamwise diffusion is neglible but which are significantly influenced by upstream interactions. The IPNS equations are obtained from the Navier-Stokes equations by dropping the streamwise viscous-diffusion terms but retaining upstream influence via the streamwise pressure-gradient. A two-step alternating-direction-explicit numerical scheme is developed to solve these equations. The quasi-linearization and discretization of the equations are carefully examined so that no artificial viscosity is added externally to the scheme. Also, solutions to compressible as well as nearly compressible flows are obtained without any modification either in the analysis or in the solution process. The procedure is applied to constricted channels and cascade passages formed by airfoils of various shapes. These geometries are represented using numerically generated curilinear boundary-oriented coordinates forming an H-grid. A hybrid C-H grid, more appropriate for cascade of airfoils with rounded leading edges, was also developed. Satisfactory results are obtained for flows through cascades of Joukowski airfoils.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pirrung, Georg; Madsen, Helge; Schreck, Scott

    Current fast aeroelastic wind turbine codes suitable for certification lack an induction model for standstill conditions. A trailed vorticity model previously used as addition to a blade element momentum theory based aerodynamic model in normal operation has been extended to allow computing the induced velocities in standstill. The model is validated against analytical results for an elliptical wing in constant inflow and against stand still measurements from the NREL/NASA Phase VI unsteady experiment. The extended model obtains good results in case of the elliptical wing, but underpredicts the steady loading for the Phase VI blade in attached flow. The predictionmore » of the dynamic force coefficient loops from the Phase VI experiment is improved by the trailed vorticity modeling in both attached flow and stall in most cases. The exception is the tangential force coefficient in stall, where the codes and measurements deviate and no clear improvement is visible.« less

  11. Trailed vorticity modeling for aeroelastic wind turbine simulations in stand still

    DOE PAGES

    Pirrung, Georg; Madsen, Helge; Schreck, Scott

    2016-10-03

    Current fast aeroelastic wind turbine codes suitable for certification lack an induction model for standstill conditions. A trailed vorticity model previously used as addition to a blade element momentum theory based aerodynamic model in normal operation has been extended to allow computing the induced velocities in standstill. The model is validated against analytical results for an elliptical wing in constant inflow and against stand still measurements from the NREL/NASA Phase VI unsteady experiment. The extended model obtains good results in case of the elliptical wing, but underpredicts the steady loading for the Phase VI blade in attached flow. The predictionmore » of the dynamic force coefficient loops from the Phase VI experiment is improved by the trailed vorticity modeling in both attached flow and stall in most cases. The exception is the tangential force coefficient in stall, where the codes and measurements deviate and no clear improvement is visible.« less

  12. Anomalous-hydrodynamic analysis of charge-dependent elliptic flow in heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hongo, Masaru; Hirono, Yuji; Hirano, Tetsufumi

    Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. This is the first attempt to perform fully non-linear numerical simulations of anomalous hydrodynamics. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters (vmore » $$±\\atop{2}$$) as a function of the net charge asymmetry A ±, we find that the linear dependence of Δv$$±\\atop{2}$$ ≡ v$$-\\atop{2}$$ - v$$+\\atop{2}$$ on the net charge asymmetry A ± cannot be regarded as a robust signal of anomalous transports, contrary to previous studies. We, however, find that the intercept Δv$$±\\atop{2}$$ (A ± = 0) is sensitive to anomalous transport effects.« less

  13. Anomalous-hydrodynamic analysis of charge-dependent elliptic flow in heavy-ion collisions

    DOE PAGES

    Hongo, Masaru; Hirono, Yuji; Hirano, Tetsufumi

    2017-12-10

    Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. This is the first attempt to perform fully non-linear numerical simulations of anomalous hydrodynamics. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters (vmore » $$±\\atop{2}$$) as a function of the net charge asymmetry A ±, we find that the linear dependence of Δv$$±\\atop{2}$$ ≡ v$$-\\atop{2}$$ - v$$+\\atop{2}$$ on the net charge asymmetry A ± cannot be regarded as a robust signal of anomalous transports, contrary to previous studies. We, however, find that the intercept Δv$$±\\atop{2}$$ (A ± = 0) is sensitive to anomalous transport effects.« less

  14. Magnetic flux studies in horizontally cooled elliptical superconducting cavities

    DOE PAGES

    Martinello, M.; Checchin, M.; Grassellino, A.; ...

    2015-07-29

    Previous studies on magnetic flux expulsion as a function of cooldown procedures for elliptical superconducting radio frequency (SRF) niobium cavities showed that when the cavity beam axis is placed parallel to the helium cooling flow and sufficiently large thermal gradients are achieved, all magnetic flux could be expelled and very low residual resistance could be achieved. In this paper, we investigate flux trapping for the case of resonators positioned perpendicularly to the helium cooling flow, which is more representative of how SRF cavities are cooled in accelerators and for different directions of the applied magnetic field surrounding the resonator. Wemore » show that different field components have a different impact on the surface resistance, and several parameters have to be considered to fully understand the flux dynamics. A newly discovered phenomenon of concentration of flux lines at the cavity top leading to temperature rise at the cavity equator is presented.« less

  15. An integrated structural and geochemical study of fracture aperture growth in the Campito Formation of eastern California

    NASA Astrophysics Data System (ADS)

    Doungkaew, N.; Eichhubl, P.

    2015-12-01

    Processes of fracture formation control flow of fluid in the subsurface and the mechanical properties of the brittle crust. Understanding of fundamental fracture growth mechanisms is essential for understanding fracture formation and cementation in chemically reactive systems with implications for seismic and aseismic fault and fracture processes, migration of hydrocarbons, long-term CO2 storage, and geothermal energy production. A recent study on crack-seal veins in deeply buried sandstone of east Texas provided evidence for non-linear fracture growth, which is indicated by non-elliptical kinematic fracture aperture profiles. We hypothesize that similar non-linear fracture growth also occurs in other geologic settings, including under higher temperature where solution-precipitation reactions are kinetically favored. To test this hypothesis, we investigate processes of fracture growth in quartzitic sandstone of the Campito Formation, eastern California, by combining field structural observations, thin section petrography, and fluid inclusion microthermometry. Fracture aperture profile measurements of cemented opening-mode fractures show both elliptical and non-elliptical kinematic aperture profiles. In general, fractures that contain fibrous crack-seal cement have elliptical aperture profiles. Fractures filled with blocky cement have linear aperture profiles. Elliptical fracture aperture profiles are consistent with linear-elastic or plastic fracture mechanics. Linear aperture profiles may reflect aperture growth controlled by solution-precipitation creep, with the aperture distribution controlled by solution-precipitation kinetics. We hypothesize that synkinematic crack-seal cement preserves the elliptical aperture profiles of elastic fracture opening increments. Blocky cement, on the other hand, may form postkinematically relative to fracture opening, with fracture opening accommodated by continuous solution-precipitation creep.

  16. Where is The Dark Matter: The Flow-field From 2MASS

    NASA Astrophysics Data System (ADS)

    Crook, Aidan; Huchra, J.; Macri, L.; Masters, K.; Jarrett, T.

    2009-01-01

    We present a map of the flow-field constructed from groups of galaxies in the 2MASS Redshift Survey. Previous efforts have suffered because the underlying surveys either did not penetrate to low galactic latitudes or were not sensitive to elliptical galaxies, thereby missing a significant fraction of the mass. The 2MASS Redshift Survey provides a uniform all-sky magnitude-limited sample in the J, H and Ks bands, 97% complete to Ks<11.75 and |b|>10°, sensitive to both ellipticals and spirals. We demonstrate how utilizing the properties of galaxy groups leads to improved predictions of peculiar velocities in the nearby Universe, and use dynamical mass estimates to construct a reliable flow-field to 12,000 km/s. We demonstrate its effectiveness in providing distance estimates, and discuss the advantages of this model over earlier work. With independent knowledge of the peculiar velocity of the Local Group, we discuss the implications for the matter density parameter and bias. This work is supported by a Whiteman Fellowship and NSF grant AST-0406906.

  17. Centrality and Transverse Momentum Dependence of Elliptic Flow of Multistrange Hadrons and ϕ Meson in Au +Au Collisions at √{sN N}=200 GeV

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Bairathi, V.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, X.; Huang, B.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, Z. M.; Li, W.; Li, X.; Li, X.; Li, C.; Li, Y.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, Y. G.; Ma, G. L.; Ma, L.; Ma, R.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Meehan, K.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Peterson, A.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Sharma, M. K.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, X.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, N.; Szelezniak, M. A.; Tang, A. H.; Tang, Z.; Tarnowsky, T.; Tawfik, A.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, Y.; Wang, G.; Wang, J. S.; Wang, H.; Wang, Y.; Wang, F.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xin, K.; Xu, N.; Xu, Z.; Xu, Q. H.; Xu, Y. F.; Xu, H.; Yang, Q.; Yang, Y.; Yang, Y.; Yang, S.; Yang, C.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, Y.; Zhang, J. B.; Zhang, J.; Zhang, S.; Zhang, J.; Zhang, X. P.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-02-01

    We present high precision measurements of elliptic flow near midrapidity (|y |<1.0 ) for multistrange hadrons and ϕ meson as a function of centrality and transverse momentum in Au +Au collisions at center of mass energy √{sN N}=200 GeV . We observe that the transverse momentum dependence of ϕ and Ω v2 is similar to that of π and p , respectively, which may indicate that the heavier strange quark flows as strongly as the lighter up and down quarks. This observation constitutes a clear piece of evidence for the development of partonic collectivity in heavy-ion collisions at the top RHIC energy. Number of constituent quark scaling is found to hold within statistical uncertainty for both 0%-30% and 30%-80% collision centrality. There is an indication of the breakdown of previously observed mass ordering between ϕ and proton v2 at low transverse momentum in the 0%-30% centrality range, possibly indicating late hadronic interactions affecting the proton v2.

  18. Laminar, Transitional, and Turbulent Heating on Mid Lift-to-Drag Ratio Entry Vehicles

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Hollingsworth, Kevin E.

    2012-01-01

    The boundary-layer transition characteristics and convective aeroheating levels on mid lift-to-drag ratio entry vehicle configurations have been studied through wind tunnel testing. Several configurations were investigated, including elliptically-blunted cylinders with both circular and elliptically-flattened cross sections, biconic geometries based on launch vehicle dual-use shrouds, and parametrically-optimized analytic geometries. Vehicles of this class have been proposed for high-mass Mars missions, such as sample return and crewed exploration, for which the conventional sphere-cone entry-vehicle geometries of previous Mars missions are insufficient. Testing was conducted at Mach 6 over a range of Reynolds numbers sufficient to generate laminar, transitional, and turbulent flow. Transition onset locations - both straight-line and cross-flow - and heating rates were obtained through global phosphor thermography. Supporting computations were performed to obtain heating rates for comparison with the data. Laminar data and predictions agreed to well within the experimental uncertainty. Fully-turbulent data and predictions also agreed well. However, in transitional flow regions, greater differences were observed. Additional aerodynamic performance data were also generated through Modified-Newtonian analyses of the geometries.

  19. Elliptic flow of electrons from heavy-flavour hadron decays at mid-rapidity in Pb-Pb collisions at √{{s}_{NN}}=2.76 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, S.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Balasubramanian, S.; Baldisseri, A.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Bourjau, C.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crkovska, J.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Souza, R. D.; Deisting, A.; Deloff, A.; Dénes, E.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Germain, M.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Grachov, O. A.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Gronefeld, J. M.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hippolyte, B.; Horak, D.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Inaba, M.; Incani, E.; Ippolitov, M.; Irfan, M.; Isakov, V.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovska, S.; Jadlovsky, J.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, D. W.; Kim, D. J.; Kim, D.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Ladron de Guevara, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; León Vargas, H.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Mastroserio, A.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; Mcdonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miskowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Moreira De Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao De Oliveira, R. A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, D.; Pagano, P.; Paić, G.; Pal, S. K.; Palni, P.; Pan, J.; Pandey, A. K.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira Da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Ploskon, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ravasenga, I.; Read, K. F.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Sarkar, N.; Sarma, P.; Scapparone, E.; Scarlassara, F.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Szabo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thakur, D.; Thomas, D.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trombetta, G.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Valencia Palomo, L.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vickovic, L.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yalcin, S.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.

    2016-09-01

    The elliptic flow of electrons from heavy-flavour hadron decays at mid-rapidity (| y| < 0.7) is measured in Pb-Pb collisions at √{s_{NN}}=2.76 TeV with ALICE at the LHC. The particle azimuthal distribution with respect to the reaction plane can be parametrized with a Fourier expansion, where the second coefficient ( v 2) represents the elliptic flow. The v 2 coefficient of inclusive electrons is measured in three centrality classes (0-10%, 10-20% and 20-40%) with the event plane and the scalar product methods in the transverse momentum ( p T) intervals 0.5-13 GeV/ c and 0.5-8 GeV/ c, respectively. After subtracting the background, mainly from photon conversions and Dalitz decays of neutral mesons, a positive v 2 of electrons from heavy-flavour hadron decays is observed in all centrality classes, with a maximum significance of 5.9 σ in the interval 2 < p T < 2.5 GeV/ c in semi-central collisions (20-40%). The value of v 2 decreases towards more central collisions at low and intermediate p T (0.5 < p T < 3 GeV/ c). The v 2 of electrons from heavy-flavour hadron decays at mid-rapidity is found to be similar to the one of muons from heavy-flavour hadron decays at forward rapidity (2.5 < y < 4). The results are described within uncertainties by model calculations including substantial elastic interactions of heavy quarks with an expanding strongly-interacting medium. [Figure not available: see fulltext.

  20. Heavy quark diffusion in strong magnetic fields at weak coupling and implications for elliptic flow

    DOE PAGES

    Fukushima, Kenji; Hattori, Koichi; Yee, Ho -Ung; ...

    2016-04-20

    In this paper, we compute the momentum diffusion coefficients of heavy quarks, κ ∥ and κ ⊥, in a strong magnetic field B along the directions parallel and perpendicular to B, respectively, at the leading order in QCD coupling constant α s. We consider a regime relevant for the relativistic heavy ion collisions, α seB << T 2 << eB, so that thermal excitations of light quarks are restricted to the lowest Landau level (LLL) states. In the vanishing light-quark mass limit, we find κ LO ⊥ ∝ α 2 sTeB in the leading order that arises from screened Coulombmore » scatterings with (1+1)-dimensional LLL quarks, while κ ∥ gets no contribution from the scatterings with LLL quarks due to kinematic restrictions. We show that the first nonzero leading order contributions to κ LO ∥ come from the two separate effects: 1) the screened Coulomb scatterings with thermal gluons, and 2) a finite light-quark mass m q. The former leads to κ LO,gluon ∥ ∝ α 2 sT 3 and the latter to κ LO,massive ∥ ∝ α s(α seB) 1/2m 2 q. Based on our results, we propose a new scenario for the large value of heavy-quark elliptic flow observed in RHIC and LHC. Namely, when κ ⊥ >> κ ∥, an anisotropy in drag forces gives rise to a sizable amount of the heavy-quark elliptic flow even if heavy quarks do not fully belong to an ellipsoidally expanding background fluid.« less

  1. Heavy quark diffusion in strong magnetic fields at weak coupling and implications for elliptic flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukushima, Kenji; Hattori, Koichi; Yee, Ho -Ung

    In this paper, we compute the momentum diffusion coefficients of heavy quarks, κ ∥ and κ ⊥, in a strong magnetic field B along the directions parallel and perpendicular to B, respectively, at the leading order in QCD coupling constant α s. We consider a regime relevant for the relativistic heavy ion collisions, α seB << T 2 << eB, so that thermal excitations of light quarks are restricted to the lowest Landau level (LLL) states. In the vanishing light-quark mass limit, we find κ LO ⊥ ∝ α 2 sTeB in the leading order that arises from screened Coulombmore » scatterings with (1+1)-dimensional LLL quarks, while κ ∥ gets no contribution from the scatterings with LLL quarks due to kinematic restrictions. We show that the first nonzero leading order contributions to κ LO ∥ come from the two separate effects: 1) the screened Coulomb scatterings with thermal gluons, and 2) a finite light-quark mass m q. The former leads to κ LO,gluon ∥ ∝ α 2 sT 3 and the latter to κ LO,massive ∥ ∝ α s(α seB) 1/2m 2 q. Based on our results, we propose a new scenario for the large value of heavy-quark elliptic flow observed in RHIC and LHC. Namely, when κ ⊥ >> κ ∥, an anisotropy in drag forces gives rise to a sizable amount of the heavy-quark elliptic flow even if heavy quarks do not fully belong to an ellipsoidally expanding background fluid.« less

  2. Elliptic flow of identified hadrons in Pb-Pb collisions at $$ \\sqrt{s_{\\mathrm{NN}}}=2.76 $$ TeV

    DOE PAGES

    Abelev, B.; Adam, J.; Adamová, D.; ...

    2015-06-29

    Here, the elliptic flow coefficient (v 2) of identified particles in Pb-Pb collisions at √s NN =2.76 TeV was measured with the ALICE detector at the Large Hadron Collider (LHC). The results were obtained with the Scalar Product method, a two-particle correlation technique, using a pseudo-rapidity gap of |Δη| > 0.9 between the identified hadron under study and the reference particles. The v 2 is reported for π ±, K ±, K S 0, p+p¯, Φ, Λ+Λ¯, Ξ –+Ξ¯+ and Ω –+Ω ¯+ in several collision centralities. In the low transverse momentum (p T) region, p T < 3 GeV/c,more » v 2(p T) exhibits a particle mass dependence consistent with elliptic flow accompanied by the transverse radial expansion of the system with a common velocity field. The experimental data for π± and the combined K ± and K S 0 results, are described fairly well by hydrodynamic calculations coupled to a hadronic cascade model (VISHNU) for central collisions. However, the same calculations fail to reproduce the v 2(p T) for p+p¯, Φ, Λ+Λ¯ and Ξ –+Ξ ¯+. For transverse momentum values larger than about 3 GeV/c, particles tend to group according to their type, i.e. mesons and baryons. The present measurements exhibit deviations from the number of constituent quark (NCQ) scaling at the level of ±20% for p T > 3 GeV/c.« less

  3. A numerical study of the 2- and 3-dimensional unsteady Navier-Stokes equations in velocity-vorticity variables using compact difference schemes

    NASA Technical Reports Server (NTRS)

    Gatski, T. B.; Grosch, C. E.

    1984-01-01

    A compact finite-difference approximation to the unsteady Navier-Stokes equations in velocity-vorticity variables is used to numerically simulate a number of flows. These include two-dimensional laminar flow of a vortex evolving over a flat plate with an embedded cavity, the unsteady flow over an elliptic cylinder, and aspects of the transient dynamics of the flow over a rearward facing step. The methodology required to extend the two-dimensional formulation to three-dimensions is presented.

  4. Classification of Thermal Patterns at Karst Springs and Cave Streams

    USGS Publications Warehouse

    Luhmann, A.J.; Covington, M.D.; Peters, Albert J.; Alexander, S.C.; Anger, C.T.; Green, J.A.; Runkel, Anthony C.; Alexander, E.C.

    2011-01-01

    Thermal patterns of karst springs and cave streams provide potentially useful information concerning aquifer geometry and recharge. Temperature monitoring at 25 springs and cave streams in southeastern Minnesota has shown four distinct thermal patterns. These patterns can be divided into two types: those produced by flow paths with ineffective heat exchange, such as conduits, and those produced by flow paths with effective heat exchange, such as small fractures and pore space. Thermally ineffective patterns result when water flows through the aquifer before it can equilibrate to the rock temperature. Thermally ineffective patterns can be either event-scale, as produced by rainfall or snowmelt events, or seasonal scale, as produced by input from a perennial surface stream. Thermally effective patterns result when water equilibrates to rock temperature, and the patterns displayed depend on whether the aquifer temperature is changing over time. Shallow aquifers with seasonally varying temperatures display a phase-shifted seasonal signal, whereas deeper aquifers with constant temperatures display a stable temperature pattern. An individual aquifer may display more than one of these patterns. Since karst aquifers typically contain both thermally effective and ineffective routes, we argue that the thermal response is strongly influenced by recharge mode. ?? 2010 The Author(s). Journal compilation ?? 2010 National Ground Water Association.

  5. 40 CFR 92.119 - Hydrocarbon analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... plot of the difference between the span and zero response versus fuel flow will be similar to the one... basic operating adjustment using the appropriate fuel (see § 92.112) and zero-grade air. (2) Optimize on.... Allow at least one-half hour after the oven has reached temperature for the system to equilibrate. (C...

  6. 40 CFR 799.6784 - TSCA water solubility: Column elution method; shake flask method.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....053 (3) The column should be connected to a recycling pump capable of controlling flows of... the carrier is not achieved due to partition effects on the surface of the carrier. (2) The loading of... this, the recycling pump is connected and the apparatus allowed to run until equilibration is...

  7. 40 CFR 799.6784 - TSCA water solubility: Column elution method; shake flask method.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....053 (3) The column should be connected to a recycling pump capable of controlling flows of... the carrier is not achieved due to partition effects on the surface of the carrier. (2) The loading of... this, the recycling pump is connected and the apparatus allowed to run until equilibration is...

  8. 40 CFR 799.6784 - TSCA water solubility: Column elution method; shake flask method.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....053 (3) The column should be connected to a recycling pump capable of controlling flows of... the carrier is not achieved due to partition effects on the surface of the carrier. (2) The loading of... this, the recycling pump is connected and the apparatus allowed to run until equilibration is...

  9. 40 CFR 799.6784 - TSCA water solubility: Column elution method; shake flask method.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....053 (3) The column should be connected to a recycling pump capable of controlling flows of... the carrier is not achieved due to partition effects on the surface of the carrier. (2) The loading of... this, the recycling pump is connected and the apparatus allowed to run until equilibration is...

  10. Increased heat transfer to elliptical leading edges due to spanwise variations in the freestream momentum: Numerical and experimental results

    NASA Technical Reports Server (NTRS)

    Rigby, D. L.; Vanfossen, G. J.

    1992-01-01

    A study of the effect of spanwise variation in momentum on leading edge heat transfer is discussed. Numerical and experimental results are presented for both a circular leading edge and a 3:1 elliptical leading edge. Reynolds numbers in the range of 10,000 to 240,000 based on leading edge diameter are investigated. The surface of the body is held at a constant uniform temperature. Numerical and experimental results with and without spanwise variations are presented. Direct comparison of the two-dimensional results, that is, with no spanwise variations, to the analytical results of Frossling is very good. The numerical calculation, which uses the PARC3D code, solves the three-dimensional Navier-Stokes equations, assuming steady laminar flow on the leading edge region. Experimentally, increases in the spanwise-averaged heat transfer coefficient as high as 50 percent above the two-dimensional value were observed. Numerically, the heat transfer coefficient was seen to increase by as much as 25 percent. In general, under the same flow conditions, the circular leading edge produced a higher heat transfer rate than the elliptical leading edge. As a percentage of the respective two-dimensional values, the circular and elliptical leading edges showed similar sensitivity to span wise variations in momentum. By equating the root mean square of the amplitude of the spanwise variation in momentum to the turbulence intensity, a qualitative comparison between the present work and turbulent results was possible. It is shown that increases in leading edge heat transfer due to spanwise variations in freestream momentum are comparable to those due to freestream turbulence.

  11. Difference Schemes and Applications

    DTIC Science & Technology

    2015-02-06

    was found. An analogous investigation with the same conclusions was performed for boundary layer flows and wall- jets . The authors came to the...Distribution A: Approved for public release; distribution is unlimited. 31 There are other phenomena, such as the flow of liquids containing small gas...obtained an asymptotic solution consisting of a damped cnoidal (a Jacobi elliptic cosine) wave matched to the solitary wave solution of the KdV

  12. Tolerance of brown bear spermatozoa to conditions of pre-freezing cooling rate and equilibration time.

    PubMed

    López-Urueña, E; Alvarez, M; Gomes-Alves, S; Martínez-Rodríguez, C; Borragan, S; Anel-López, L; de Paz, P; Anel, L

    2014-06-01

    Specific protocols for the cryopreservation of endangered Cantabrian brown bear spermatozoa are critical to create a genetic resource bank. The aim of this study was to assess the effect of cooling rates and equilibration time before freezing on post-thawed brown bear spermatozoa quality. Electroejaculates from 11 mature bears were extended to 100 × 10(6) spermatozoa/mL in a TES-Tris-Fructose-based extender, cryopreserved following performance of the respective cooling/equilibration protocol each sample was assigned to, and stored at -196 °C for further assessment. Before freezing, after thawing, and after 1 hour's incubation post-thawing at 37 °C (thermal stress test), the quality of the samples was assessed for motility by computer-assisted semen analysis, and for viability (SYBR-14/propidium iodide), acrosomal status (peanut agglutinin-fluorescein isothiocyanate /propidium iodide), and sperm chromatin stability (SCSA) by flow cytometry. In experiment 1, three cooling rates (0.25 °C/min, 1 °C/min, and 4 °C/min) to 5 °C were assessed. After thawing, total motility (%TM) was higher and percentage of damaged acrosomes (%dACR) was lower (P < 0.05) for 0.25 °C/min than for 4 °C/min. The thermal stress test data indicated equally poor quality (P < 0.05) for the 4 °C/min cooled samples in viability (%VIAB), %dACR, %TM, and progressive motility (%PM). In experiment 2, the effect of a pre-freezing equilibration period at 5 °C for 1 hour (cooling at 0.25 °C/min) was evaluated. Samples kept at 5 °C for 1 hour showed higher (P < 0.05) values than the nonequilibrated ones for both thawing (%dACR) and thermal stress test (%VIAB, %TM, and %PM). In experiment 3, samples stored without cooling and equilibration (direct freezing) were compared with the samples cooled at 0.25 °C/min and equilibrated for 1 hour (control freezing). Using thermal stress test, we observed that direct freezing causes damage in viability, acrosomal status, and motility of spermatozoa compared with the control group (P < 0.05). In conclusion, our results suggest that slow cooling rates to 5 °C and at least 1 hour equilibration time are necessary for the effective cryopreservation of brown bear sperm. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Energy behaviour of extraordinary waves in magnetized quantum plasmas

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin

    2018-05-01

    We study the storage and flow of energy in a homogeneous magnetized quantum electron plasma that occurs when an elliptically polarized extraordinary electromagnetic wave propagates in the system. Expressions for the stored energy, energy flow, and energy velocity of extraordinary electromagnetic waves are derived by means of the quantum magnetohydrodynamics theory in conjunction with the Maxwell equations. Numerical results show that the energy flow of the high-frequency mode of extraordinary wave is modified only due to the Bohm potential in the short wavelength limit.

  14. Density Relaxation of Liquid-Vapor Critical Fluids Examined in Earth's Gravity

    NASA Technical Reports Server (NTRS)

    Wilkinson, R. Allen

    2000-01-01

    This work shows quantitatively the pronounced differences between the density equilibration of very compressible dense fluids in Earth's gravity and those in microgravity. The work was performed onsite at the NASA Glenn Research Center at Lewis Field and is complete. Full details are given in references 1 and 2. Liquid-vapor critical fluids (e.g., water) at their critical temperature and pressure, are very compressible. They collapse under their own weight in Earth's gravity, allowing only a thin meniscus-like layer with the critical pressure to survive. This critical layer, however, greatly slows down the equilibration process of the entire sample. A complicating feature is the buoyancy-driven slow flows of layers of heavier and lighter fluid. This work highlights the incomplete understanding of the hydrodynamics involved in these fluids.

  15. Effect of micropolar fluids on the squeeze film elliptical plates

    NASA Astrophysics Data System (ADS)

    Rajashekhar Anagod, Roopa; Hanumagowda, B. N.; Santhosh Kumar, J.

    2018-04-01

    This paper elaborates on the theoretical analysis of squeeze film characteristics between elliptical plates lubricated with non-Newtonian micro-polar fluid on the basis of Eringen's micropolar fluid theory. The modified Reynold’s equations governing flow of micro-polar fluid is mathematically derived and the outcome reveals distribution of film pressure which determines the dynamic performance characteristics in terms of load and squeezing time for various values of coupling number and micro structure size parameter. Based on the results reported, The influence of non-Newtonian micropolar fluids is examined in enhancing the time of approach and load carrying capacity to the case of classical Newtonian lubricant.

  16. The calculation of rotor/fuselage interaction for two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.

    1990-01-01

    Unsteady rotor wake interactions with the empennage, tail boom, and other aerodynamic surfaces have a significant influence on the aerodynamic performance of the helicopter, ride quality, and vibration. A Computational Fluid Dynamic (CFD) method for computing the aerodynamic interaction between an interacting vortex wake and the viscous flow about arbitrary 2-D bodies was developed to address this helicopter problem. The vorticity and flow field velocities are calculated on a body-fitted computational mesh using an uncoupled iterative solution. The interacting vortex wake is represented by an array of discrete vortices which, in turn, are represented by a finite core model. The evolution of the interacting vortex wake is calculated by Lagrangian techniques. The flow around circular and elliptic cylinders in the absence of an interacting vortex wake was calculated. These results compare very well with other numerical results and with results obtained from experiment and thereby demonstrate the accuracy of the viscous solution. The interaction of a simulated rotor wake with the flow about 2-D bodies, representing cross sections of fuselage components, was calculated to address the vortex interaction problem. The vortex interaction was calculated for the flow about a circular and an elliptic cylinder at 45 and 90 degrees incidence. The results demonstrate the significant variation in lift and drag on the 2-D bodies during the vortex interaction.

  17. Space-time correlations of fluctuating velocities in turbulent shear flows

    NASA Astrophysics Data System (ADS)

    Zhao, Xin; He, Guo-Wei

    2009-04-01

    Space-time correlations or Eulerian two-point two-time correlations of fluctuating velocities are analytically and numerically investigated in turbulent shear flows. An elliptic model for the space-time correlations in the inertial range is developed from the similarity assumptions on the isocorrelation contours: they share a uniform preference direction and a constant aspect ratio. The similarity assumptions are justified using the Kolmogorov similarity hypotheses and verified using the direct numerical simulation (DNS) of turbulent channel flows. The model relates the space-time correlations to the space correlations via the convection and sweeping characteristic velocities. The analytical expressions for the convection and sweeping velocities are derived from the Navier-Stokes equations for homogeneous turbulent shear flows, where the convection velocity is represented by the mean velocity and the sweeping velocity is the sum of the random sweeping velocity and the shear-induced velocity. This suggests that unlike Taylor’s model where the convection velocity is dominating and Kraichnan and Tennekes’ model where the random sweeping velocity is dominating, the decorrelation time scales of the space-time correlations in turbulent shear flows are determined by the convection velocity, the random sweeping velocity, and the shear-induced velocity. This model predicts a universal form of the space-time correlations with the two characteristic velocities. The DNS of turbulent channel flows supports the prediction: the correlation functions exhibit a fair good collapse, when plotted against the normalized space and time separations defined by the elliptic model.

  18. Processes preventing nocturnal equilibration between leaf and soil water potential in tropical savanna woody species.

    Treesearch

    Sandra Bucci; Fabian G. Scholz; Guillermo Goldstein; Frederick C. Meinzer; Jose A. Hinojosa; William A. Hoffman; Augusto C. Franco

    2004-01-01

    The impact of nocturnal water loss and recharge of stem water storage on predawn disequilibrium between leaf (ΨL) and soil (Ψ S) water potentials was studied in three dominant tropical savanna woody species in central Brazil (Cerrado). Sap flow continued throughout the night during the dry season and...

  19. Modeling near wall effects in second moment closures by elliptic relaxation

    NASA Technical Reports Server (NTRS)

    Laurence, D.; Durbin, P.

    1994-01-01

    The elliptic relaxation model of Durbin (1993) for modeling near-wall turbulence using second moment closures (SMC) is compared to DNS data for a channel flow at Re(sub t) = 395. The agreement for second order statistics and even the terms in their balance equation is quite satisfactory, confirming that very little viscous effects (via Kolmogoroff scales) need to be added to the high Reynolds versions of SMC for near-wall-turbulence. The essential near-wall feature is thus the kinematic blocking effect that a solid wall exerts on the turbulence through the fluctuating pressure, which is best modeled by an elliptic operator. Above the transition layer, the effect of the original elliptic operator decays rapidly, and it is suggested that the log-layer is better reproduced by adding a non-homogeneous reduction of the return to isotropy, the gradient of the turbulent length scale being used as a measure of the inhomogeneity of the log-layer. The elliptic operator was quite easily applied to the non-linear Craft & Launder pressure-strain model yielding an improved distinction between the spanwise and wall normal stresses, although at higher Reynolds number (Re) and away from the wall, the streamwise component is severely underpredicted, as well as the transition in the mean velocity from the log to the wake profiles. In this area a significant change of behavior was observed in the DNS pressure-strain term, entirely ignored in the models.

  20. Modeling near wall effects in second moment closures by elliptic relaxation

    NASA Astrophysics Data System (ADS)

    Laurence, D.; Durbin, P.

    1994-12-01

    The elliptic relaxation model of Durbin (1993) for modeling near-wall turbulence using second moment closures (SMC) is compared to DNS data for a channel flow at Re(sub t) = 395. The agreement for second order statistics and even the terms in their balance equation is quite satisfactory, confirming that very little viscous effects (via Kolmogoroff scales) need to be added to the high Reynolds versions of SMC for near-wall-turbulence. The essential near-wall feature is thus the kinematic blocking effect that a solid wall exerts on the turbulence through the fluctuating pressure, which is best modeled by an elliptic operator. Above the transition layer, the effect of the original elliptic operator decays rapidly, and it is suggested that the log-layer is better reproduced by adding a non-homogeneous reduction of the return to isotropy, the gradient of the turbulent length scale being used as a measure of the inhomogeneity of the log-layer. The elliptic operator was quite easily applied to the non-linear Craft & Launder pressure-strain model yielding an improved distinction between the spanwise and wall normal stresses, although at higher Reynolds number (Re) and away from the wall, the streamwise component is severely underpredicted, as well as the transition in the mean velocity from the log to the wake profiles. In this area a significant change of behavior was observed in the DNS pressure-strain term, entirely ignored in the models.

  1. Sub-leading flow modes in PbPb collisions at from the HYDJET++ model

    NASA Astrophysics Data System (ADS)

    Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Stojanovic, M.

    2017-07-01

    Recent LHC results on the appearance of sub-leading flow modes in PbPb collisions at 2.76 TeV, related to initial-state fluctuations, are analyzed and interpreted within the HYDJET++ model. Using the newly introduced Principal Component Analysis (PCA) method applied to two-particle azimuthal correlations extracted from the model calculations, the leading and sub-leading flow modes are studied as a function of the transverse momentum (p T) over a wide centrality range. The leading modes of the elliptic and triangular flow calculated with the HYDJET++ model reproduce rather well the v 2{2} and v 3{2} coefficients measured experimentally using the two-particle correlations. Within the p T ⩽ 3 GeV/c range, where hydrodynamics dominates, the sub-leading flow effects are greatest at the highest p T of around 3 GeV/c. The sub-leading elliptic flow mode , which corresponds to the n = 2 harmonic, has a small non-zero value and slowly increases from central to peripheral collisions, while the sub-leading triangular flow mode , which corresponds to the n=3 harmonic, is even smaller and does not depend on centrality. For n= 2, the relative magnitude of the effect measured with respect to the leading flow mode shows a shallow minimum for semi-central collisions and increases for very central and for peripheral collisions. For the n= 3 case, there is no centrality dependence. The sub-leading flow mode results obtained from the HYDJET++ model are in rather good agreement with the experimental measurements of the CMS Collaboration. Supported by Ministry of Education, Science and Technological Development of the Republic of Serbia (171019)

  2. A viscous flow analysis for the tip vortex generation process

    NASA Technical Reports Server (NTRS)

    Shamroth, S. J.; Briley, W. R.

    1979-01-01

    A three dimensional, forward-marching, viscous flow analysis is applied to the tip vortex generation problem. The equations include a streamwise momentum equation, a streamwise vorticity equation, a continuity equation, and a secondary flow stream function equation. The numerical method used combines a consistently split linearized scheme for parabolic equations with a scalar iterative ADI scheme for elliptic equations. The analysis is used to identify the source of the tip vortex generation process, as well as to obtain detailed flow results for a rectangular planform wing immersed in a high Reynolds number free stream at 6 degree incidence.

  3. Measurement of deuteron spectra and elliptic flow in Pb-Pb collisions at √{s_{NN}} = 2.76 TeV at the LHC

    NASA Astrophysics Data System (ADS)

    Acharya, S.; Adamová, D.; Adolfsson, J.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Alba, J. L. B.; Albuquerque, D. S. D.; Aleksandrov, D.; Alessandro, B.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altenkamper, L.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andreou, D.; Andrews, H. A.; Andronic, A.; Anguelov, V.; Anson, C.; Antičić, T.; Antinori, F.; Antonioli, P.; Anwar, R.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Arnaldi, R.; Arnold, O. W.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Ball, M.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barioglio, L.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Beltran, L. G. E.; Belyaev, V.; Bencedi, G.; Beole, S.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biro, G.; Biswas, R.; Biswas, S.; Blair, J. T.; Blau, D.; Blume, C.; Boca, G.; Bock, F.; Bogdanov, A.; Boldizsár, L.; Bombara, M.; Bonomi, G.; Bonora, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Botta, E.; Bourjau, C.; Bratrud, L.; Braun-Munzinger, P.; Bregant, M.; Broker, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buhler, P.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Cabala, J.; Caffarri, D.; Caines, H.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Capon, A. A.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Ceballos Sanchez, C.; Cerello, P.; Chandra, S.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chauvin, A.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Cho, S.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Chowdhury, T.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Concas, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Costanza, S.; Crkovská, J.; Crochet, P.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danisch, M. C.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; De, S.; De Caro, A.; de Cataldo, G.; de Conti, C.; de Cuveland, J.; De Falco, A.; De Gruttola, D.; De Marco, N.; De Pasquale, S.; De Souza, R. D.; Degenhardt, H. F.; Deisting, A.; Deloff, A.; Deplano, C.; Dhankher, P.; Di Bari, D.; Di Mauro, A.; Di Nezza, P.; Di Ruzza, B.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Doremalen, L. V. V.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Duggal, A. K.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Endress, E.; Engel, H.; Epple, E.; Erazmus, B.; Erhardt, F.; Espagnon, B.; Esumi, S.; Eulisse, G.; Eum, J.; Evans, D.; Evdokimov, S.; Fabbietti, L.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Francisco, A.; Frankenfeld, U.; Fronze, G. G.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gajdosova, K.; Gallio, M.; Galvan, C. D.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Garg, K.; Gargiulo, C.; Gasik, P.; Gauger, E. F.; Gay Ducati, M. B.; Germain, M.; Ghosh, J.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; Gonzalez, A. S.; Gonzalez, V.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Greiner, L.; Grelli, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grion, N.; Gronefeld, J. M.; Grosa, F.; Grosse-Oetringhaus, J. F.; Grosso, R.; Gruber, L.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, R.; Guzman, I. B.; Haake, R.; Hadjidakis, C.; Hamagaki, H.; Hamar, G.; Hamon, J. C.; Haque, M. R.; Harris, J. W.; Harton, A.; Hassan, H.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Hellbär, E.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Herrmann, F.; Hess, B. A.; Hetland, K. F.; Hillemanns, H.; Hills, C.; Hippolyte, B.; Hladky, J.; Hohlweger, B.; Horak, D.; Hornung, S.; Hosokawa, R.; Hristov, P.; Hughes, C.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Iga Buitron, S. A.; Ilkaev, R.; Inaba, M.; Ippolitov, M.; Irfan, M.; Isakov, V.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacak, B.; Jacazio, N.; Jacobs, P. M.; Jadhav, M. B.; Jadlovsky, J.; Jaelani, S.; Jahnke, C.; Jakubowska, M. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jercic, M.; Jimenez Bustamante, R. T.; Jones, P. G.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karczmarczyk, P.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Ketzer, B.; Khabanova, Z.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Khatun, A.; Khuntia, A.; Kielbowicz, M. M.; Kileng, B.; Kim, B.; Kim, D.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, J.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Klewin, S.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Konyushikhin, M.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Králik, I.; Kravčáková, A.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kumar, S.; Kundu, S.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lai, Y. S.; Lakomov, I.; Langoy, R.; Lapidus, K.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lavicka, R.; Lazaridis, L.; Lea, R.; Leardini, L.; Lee, S.; Lehas, F.; Lehner, S.; Lehrbach, J.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lim, B.; Lindal, S.; Lindenstruth, V.; Lindsay, S. W.; Lippmann, C.; Lisa, M. A.; Litichevskyi, V.; Ljunggren, H. M.; Llope, W. J.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Loncar, P.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Lupi, M.; Lutz, T. H.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martinengo, P.; Martinez, J. A. L.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Masson, E.; Mastroserio, A.; Mathis, A. M.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzilli, M.; Mazzoni, M. A.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Mhlanga, S.; Miake, Y.; Mieskolainen, M. M.; Mihaylov, D.; Mihaylov, D. L.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Mohisin Khan, M.; Montes, E.; Moreira De Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Münning, K.; Munzer, R. H.; Murakami, H.; Murray, S.; Musa, L.; Musinsky, J.; Myers, C. J.; Myrcha, J. W.; Naik, B.; Nair, R.; Nandi, B. K.; Nania, R.; Nappi, E.; Narayan, A.; Naru, M. U.; Natal da Luz, H.; Nattrass, C.; Navarro, S. R.; Nayak, K.; Nayak, R.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Negrao De Oliveira, R. A.; Nellen, L.; Nesbo, S. V.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Nobuhiro, A.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Ohlson, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira Da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Oravec, M.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Pachmayer, Y.; Pacik, V.; Pagano, D.; Pagano, P.; Paić, G.; Palni, P.; Pan, J.; Pandey, A. K.; Panebianco, S.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, J.; Parmar, S.; Passfeld, A.; Pathak, S. P.; Paticchio, V.; Patra, R. N.; Paul, B.; Pei, H.; Peitzmann, T.; Peng, X.; Pereira, L. G.; Pereira Da Costa, H.; Peresunko, D.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Pezzi, R. P.; Piano, S.; Pikna, M.; Pillot, P.; Pimentel, L. O. D. L.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pliquett, F.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Poppenborg, H.; Porteboeuf-Houssais, S.; Porter, J.; Pozdniakov, V.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Rana, D. B.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Ratza, V.; Ravasenga, I.; Read, K. F.; Redlich, K.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rodríguez Cahuantzi, M.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Rokita, P. S.; Ronchetti, F.; Rosas, E. D.; Rosnet, P.; Rossi, A.; Rotondi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rueda, O. V.; Rui, R.; Rumyantsev, B.; Rustamov, A.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Saarinen, S.; Sadhu, S.; Sadovsky, S.; Šafařík, K.; Saha, S. K.; Sahlmuller, B.; Sahoo, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Sandoval, A.; Sarkar, D.; Sarkar, N.; Sarma, P.; Sas, M. H. P.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Scheid, H. S.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schmidt, M. O.; Schmidt, M.; Schmidt, N. V.; Schuchmann, S.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Šefčík, M.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Senyukov, S.; Serradilla, E.; Sett, P.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shahoyan, R.; Shaikh, W.; Shangaraev, A.; Sharma, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Sheikh, A. I.; Shigaki, K.; Shou, Q.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singhal, V.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Song, J.; Song, M.; Soramel, F.; Sorensen, S.; Sozzi, F.; Spiriti, E.; Sputowska, I.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stankus, P.; Stenlund, E.; Stocco, D.; Storetvedt, M. M.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Sumowidagdo, S.; Suzuki, K.; Swain, S.; Szabo, A.; Szarka, I.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thakur, D.; Thakur, S.; Thomas, D.; Thoresen, F.; Tieulent, R.; Tikhonov, A.; Timmins, A. R.; Toia, A.; Tripathy, S.; Trogolo, S.; Trombetta, G.; Tropp, L.; Trubnikov, V.; Trzaska, W. H.; Trzeciak, B. A.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Umaka, E. N.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vala, M.; Van Der Maarel, J.; Van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vázquez Doce, O.; Vechernin, V.; Veen, A. M.; Velure, A.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Vértesi, R.; Vickovic, L.; Vigolo, S.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Virgili, T.; Vislavicius, V.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Voscek, D.; Vranic, D.; Vrláková, J.; Wagner, B.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Weiser, D. F.; Wenzel, S. C.; Wessels, J. P.; Westerhoff, U.; Whitehead, A. M.; Wiechula, J.; Wikne, J.; Wilk, G.; Wilkinson, J.; Willems, G. A.; Williams, M. C. S.; Willsher, E.; Windelband, B.; Witt, W. E.; Yalcin, S.; Yamakawa, K.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yoon, J. H.; Yurchenko, V.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, C.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zhu, X.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zmeskal, J.; Zou, S.

    2017-10-01

    The transverse momentum (p_T ) spectra and elliptic flow coefficient (v2) of deuterons and anti-deuterons at mid-rapidity (|y|<0.5) are measured with the ALICE detector at the LHC in Pb-Pb collisions at √{s_{NN}} = 2.76 TeV. The measurement of the p_T spectra of (anti-)deuterons is done up to 8 GeV/c in 0-10% centrality class and up to 6 GeV/c in 10-20% and 20-40% centrality classes. The v2 is measured in the 0.8 < p_T < 5 GeV/c interval and in six different centrality intervals (0-5, 5-10, 10-20, 20-30, 30-40 and 40-50%) using the scalar product technique. Measured π ^{± }, K^{± } and p+\\overline{p} transverse-momentum spectra and v2 are used to predict the deuteron p_T spectra and v2 within the Blast-Wave model. The predictions are able to reproduce the v2 coefficient in the measured p_T range and the transverse-momentum spectra for p_T > 1.8 GeV/c within the experimental uncertainties. The measurement of the coalescence parameter B_2 is performed, showing a p_T dependence in contrast with the simplest coalescence model, which fails to reproduce also the measured v2 coefficient. In addition, the coalescence parameter B_2 and the elliptic flow coefficient in the 20-40% centrality interval are compared with the AMPT model which is able, in its version without string melting, to reproduce the measured v2(p_T ) and the B_2(p_T ) trend.

  4. Intergalactic HI in the NGC5018 group

    NASA Technical Reports Server (NTRS)

    Guhathakurta, P.; Knapp, G. R.; Vangorkom, Jacqueline H.; Kim, D.-W.

    1990-01-01

    The cold interstellar and intergalactic medium is in the small group of galaxies whose brightest member is the elliptical galaxy NGC5018. Researchers' attention was first drawn to this galaxy as possibly containing cold interstellar gas by the detection by the Infrared Astronomy Satellite (IRAS) of emission at lambda 60 microns and lambda 100 microns at an intensity of about 1 Jy (Knapp et al. 1989), which is relatively strong for an elliptical (Jura et al. 1987). These data showed that the temperature of the infrared emission is less than 30K and that its likely source is therefore interstellar dust. A preliminary search for neutral hydrogen (HI) emission from this galaxy using the Very Large Array (VLA) showed that there appears to be HI flowing between NGC5018 and the nearby Sc galaxy NGC5022 (Kim et al. 1988). Since NGC5018 has a well-developed system of optical shells (cf. Malin and Carter 1983; Schweizer 1987) this observation suggests that NGC5018 may be in the process of forming its shell system by the merger of a cold stellar system with the elliptical, as suggested by Quinn (1984). Researchers describe follow-up HI observations of improved sensitivity and spatial resolution, and confirm that HI is flowing between NCG5022 and NGC5018, and around NGC5018. The data show, however, that the HI bridge actually connects NGC5022 and another spiral in the group, MCG03-34-013, both spatially and in radial velocity, and that in doing so it flows through and around NGC5018, which lies between the spiral galaxies. This is shown by the total HI map, with the optical positions of the above three galaxies labelled.

  5. Numerical modelling of erosion and assimilation of sulfur-rich substrate by martian lava flows: Implications for the genesis of massive sulfide mineralization on Mars

    NASA Astrophysics Data System (ADS)

    Baumgartner, Raphael J.; Baratoux, David; Gaillard, Fabrice; Fiorentini, Marco L.

    2017-11-01

    Mantle-derived volcanic rocks on Mars display physical and chemical commonalities with mafic-ultramafic ferropicrite and komatiite volcanism on the Earth. Terrestrial komatiites are common hosts of massive sulfide mineralization enriched in siderophile-chalcophile precious metals (i.e., Ni, Cu, and the platinum-group elements). These deposits correspond to the batch segregation and accumulation of immiscible sulfide liquids as a consequence of mechanical/thermo-mechanical erosion and assimilation of sulfur-rich bedrock during the turbulent flow of high-temperature and low-viscosity komatiite lava flows. This study adopts this mineralization model and presents numerical simulations of erosion and assimilation of sulfide- and sulfate-rich sedimentary substrates during the dynamic emplacement of (channelled) mafic-ultramafic lava flows on Mars. For sedimentary substrates containing adequate sulfide proportions (e.g., 1 wt% S), our simulations suggest that sulfide supersaturation in low-temperature (< 1350 °C) flows could be attained at < 200 km distance, but may be postponed in high-temperature lavas flows (> 1400 °C). The precious-metals tenor in the derived immiscible sulfide liquids may be significantly upgraded as a result of their prolonged equilibration with large volumes of silicate melts along flow conduits. The influence of sulfate assimilation on sulfide supersaturation in martian lava flows is addressed by simulations of melt-gas equilibration in the Csbnd Hsbnd Osbnd S fluid system. However, prolonged sulfide segregation and deposit genesis by means of sulfate assimilation appears to be limited by lava oxidation and the release of sulfur-rich gas. The identification of massive sulfide endowments on Mars is not possible from remote sensing data. Yet the results of this study aid to define regions for the potential occurrence of such mineral systems, which may be the large canyon systems Noctis Labyrinthus and Valles Marineris, or the Hesperian channel systems of Mars' highlands (e.g., Kasei Valles), most of which have been periodically draped by mafic-ultramafic lavas.

  6. Recent Advances in Laplace Transform Analytic Element Method (LT-AEM) Theory and Application to Transient Groundwater Flow

    NASA Astrophysics Data System (ADS)

    Kuhlman, K. L.; Neuman, S. P.

    2006-12-01

    Furman and Neuman (2003) proposed a Laplace Transform Analytic Element Method (LT-AEM) for transient groundwater flow. LT-AEM applies the traditionally steady-state AEM to the Laplace transformed groundwater flow equation, and back-transforms the resulting solution to the time domain using a Fourier Series numerical inverse Laplace transform method (de Hoog, et.al., 1982). We have extended the method so it can compute hydraulic head and flow velocity distributions due to any two-dimensional combination and arrangement of point, line, circular and elliptical area sinks and sources, nested circular or elliptical regions having different hydraulic properties, and areas of specified head, flux or initial condition. The strengths of all sinks and sources, and the specified head and flux values, can all vary in both space and time in an independent and arbitrary fashion. Initial conditions may vary from one area element to another. A solution is obtained by matching heads and normal fluxes along the boundary of each element. The effect which each element has on the total flow is expressed in terms of generalized Fourier series which converge rapidly (<20 terms) in most cases. As there are more matching points than unknown Fourier terms, the matching is accomplished in Laplace space using least-squares. The method is illustrated by calculating the resulting transient head and flow velocities due to an arrangement of elements in both finite and infinite domains. The 2D LT-AEM elements already developed and implemented are currently being extended to solve the 3D groundwater flow equation.

  7. The stochastic thermodynamics of a rotating Brownian particle in a gradient flow

    PubMed Central

    Lan, Yueheng; Aurell, Erik

    2015-01-01

    We compute the entropy production engendered in the environment from a single Brownian particle which moves in a gradient flow, and show that it corresponds in expectation to classical near-equilibrium entropy production in the surrounding fluid with specific mesoscopic transport coefficients. With temperature gradient, extra terms are found which result from the nonlinear interaction between the particle and the non-equilibrated environment. The calculations are based on the fluctuation relations which relate entropy production to the probabilities of stochastic paths and carried out in a multi-time formalism. PMID:26194015

  8. Centrality dependence of identified particle elliptic flow in relativistic heavy ion collisions at √{sN N}=7.7 -62.4 GeV

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Bai, X.; Bairathi, V.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Cheng, J.; Cherney, M.; Chisman, O.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, H. Z.; Huang, B.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, Y.; Li, W.; Li, C.; Li, X.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, L.; Ma, Y. G.; Ma, G. L.; Ma, R.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Meehan, K.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Peterson, A.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, S.; Raniwala, R.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Sharma, M. K.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, X.; Sun, Z.; Sun, Y.; Sun, X. M.; Surrow, B.; Svirida, N.; Szelezniak, M. A.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, F.; Wang, Y.; Wang, G.; Wang, Y.; Wang, J. S.; Wang, H.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xin, K.; Xu, Z.; Xu, H.; Xu, Y. F.; Xu, Q. H.; Xu, N.; Yang, Y.; Yang, C.; Yang, S.; Yang, Y.; Yang, Q.; Ye, Z.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, Y.; Zhang, S.; Zhang, J.; Zhang, J.; Zhang, Z.; Zhang, X. P.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-01-01

    Elliptic flow (v2) values for identified particles at midrapidity in Au + Au collisions measured by the STAR experiment in the Beam Energy Scan at the Relativistic Heavy Ion Collider at √{sN N}= 7.7 -62.4 GeV are presented for three centrality classes. The centrality dependence and the data at √{sN N}= 14.5 GeV are new. Except at the lowest beam energies, we observe a similar relative v2 baryon-meson splitting for all centrality classes which is in agreement within 15% with the number-of-constituent quark scaling. The larger v2 for most particles relative to antiparticles, already observed for minimum bias collisions, shows a clear centrality dependence, with the largest difference for the most central collisions. Also, the results are compared with a multiphase transport (AMPT) model and fit with a blast wave model.

  9. Centrality dependence of identified particle elliptic flow in relativistic heavy ion collisions at s N N = 7.7 – 62.4 GeV

    DOE PAGES

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...

    2016-01-19

    Here, elliptic flow (v 2) values for identified particles at midrapidity in Au + Au collisions measured by the STAR experiment in the Beam Energy Scan at the Relativistic Heavy Ion Collider at √s NN = 7.7–62.4 GeV are presented for three centrality classes. The centrality dependence and the data at √s NN = 14.5 GeV are new. Except at the lowest beam energies, we observe a similar relative v 2 baryon-meson splitting for all centrality classes which is in agreement within 15% with the number-of-constituent quark scaling. The larger v 2 for most particles relative to antiparticles, already observedmore » for minimum bias collisions, shows a clear centrality dependence, with the largest difference for the most central collisions. Also, the results are compared with a multiphase transport (AMPT) model and fit with a blast wave model.« less

  10. An interactive grid generation procedure for axial and radial flow turbomachinery

    NASA Technical Reports Server (NTRS)

    Beach, Timothy A.

    1989-01-01

    A combination algebraic/elliptic technique is presented for the generation of three dimensional grids about turbo-machinery blade rows for both axial and radial flow machinery. The technique is built around use of an advanced engineering workstation to construct several two dimensional grids interactively on predetermined blade-to-blade surfaces. A three dimensional grid is generated by interpolating these surface grids onto an axisymmetric grid. On each blade-to-blade surface, a grid is created using algebraic techniques near the blade to control orthogonality within the boundary layer region and elliptic techniques in the mid-passage to achieve smoothness. The interactive definition of bezier curves as internal boundaries is the key to simple construction. This procedure lends itself well to zonal grid construction, an important example being the tip clearance region. Calculations done to date include a space shuttle main engine turbopump blade, a radial inflow turbine blade, and the first stator of the United Technologies Research Center large scale rotating rig. A finite Navier-Stokes solver was used in each case.

  11. Quarkonium production in Pb-Pb collisions at √SNN = 5.02 TeV with ALICE

    NASA Astrophysics Data System (ADS)

    Francisco, Audrey

    2018-02-01

    Ultra-relativistic heavy-ion collisions at the Large Hadron Collider provide a unique opportunity to study the properties of matter at extreme energy densities where a phase transition from the hadronic matter to a deconfined medium of quarks and gluons, the Quark-Gluon Plasma (QGP) is predicted. Among the prominent probes of the QGP, heavy quarks play a crucial role since they are created during the initial stages of the collision, before the QGP formation, and their number is conserved throughout the partonic and hadronic phases of the collision. The azimuthal anisotropy of charmonium production, quantified using the second harmonic Fourier coefficient (referred to as elliptic flow), provides important information on the magnitude and dynamics of charmonium production. Measurements of the quarkonium nuclear modification factor at forward rapidity and J/ψ elliptic flow in Pb-Pb collisions as a function of centrality, transverse momentum and rapidity will be presented and compared to different collision energy results and available theoretical calculations.

  12. Self-consistent conversion of a viscous fluid to particles

    NASA Astrophysics Data System (ADS)

    Molnar, Denes; Wolff, Zack

    2017-02-01

    Comparison of hydrodynamic and "hybrid" hydrodynamics+transport calculations with heavy-ion data inevitably requires the conversion of the fluid to particles. For dissipative fluids the conversion is ambiguous without additional theory input complementing hydrodynamics. We obtain self-consistent shear viscous phase-space corrections from linearized Boltzmann transport theory for a gas of hadrons. These corrections depend on the particle species, and incorporating them in Cooper-Frye freeze-out affects identified particle observables. For example, with additive quark model cross sections, proton elliptic flow is larger than pion elliptic flow at moderately high pT in Au+Au collisions at the BNL Relativistic Heavy Ion Collider. This is in contrast to Cooper-Frye freeze-out with the commonly used "democratic Grad" ansatz that assumes no species dependence. Various analytic and numerical results are also presented for massless and massive two-component mixtures to better elucidate how species dependence arises. For convenient inclusion in pure hydrodynamic and hybrid calculations, Appendix G contains self-consistent viscous corrections for each species both in tabulated and parametrized form.

  13. Mapping the filaments in NGC 1275

    NASA Astrophysics Data System (ADS)

    Cobos, Aracely Susan; Rich, Jeffrey; Great Observatories All-sky LIRG Survey (GOALS)

    2018-01-01

    The giant elliptical brightest cluster galaxies (BCGs) at the centers of many massive clusters are often surrounded by drawn-out forms of gaseous material. It is believed that this gaseous material is gas condensing from the intracluster medium (ICM) in a “cooling flow,” and it can directly impact the growth of the BCG. The galaxy NGC 1275 is one of the closest giant elliptical BCGs and lies at the center of the Perseus cluster. NGC 1275 has large filaments that are thought to be associated with a cooling flow, but they may also be affected by its AGN. To investigate the relationship between the AGN and the cooling flow we have mapped the filaments around NGC 1275 with the Cosmic Web Imager, an image-slicing integral field spectrograph at Palomar Observatories. We employ standard emission-line ratio diagnostics to determine the source of ionizing radiation. We use our analysis to investigate whether the formation of the extended filaments is a result of gas from the ICM collapsing onto the galaxy as it cools or if it is possible that the filaments are a result of the cluster’s interaction with the outflow driven by the AGN.

  14. Azimuthal flow of decay photons in relativistic nuclear collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Layek, Biswanath; Chatterjee, Rupa; Srivastava, Dinesh K.

    2006-10-15

    An overwhelming fraction of photons from relativistic heavy-ion collisions has its origin in the decay of {pi}{sup 0} and {eta} mesons. We calculate the azimuthal asymmetry of the decay photons for several azimuthally asymmetric pion distributions. We find that the k{sub T} dependence of the elliptic flow parameter v{sub 2} for the decay photons closely follows the elliptic flow parameter v{sub 2}{sup {pi}}{sup 0} evaluated at p{sub T}{approx_equal}k{sub T}+{delta}, where {delta}{approx_equal}0.1-0.2 GeV, for typical pion distributions measured in nucleus-nucleus collisions at relativistic energies. Similar results are obtained for photons from the 2-{gamma} decay of {eta} mesons. Assuming that the flowmore » of {pi}{sup 0} is similar to those for {pi}{sup +} and {pi}{sup -} for which independent measurements would be generally available, this ansatz can help in identifying additional sources for photons. Taken along with quark number scaling suggested by the recombination model, it may help to estimate v{sub 2} of the parton distributions in terms of azimuthal asymmetry of the decay photons at large k{sub T}.« less

  15. Disentangling flow and signals of Chiral Magnetic Effect in U+U, Au+Au and p+Au collisions

    NASA Astrophysics Data System (ADS)

    Tribedy, Prithwish; STAR Collaboration

    2017-11-01

    We present STAR measurements of the charge-dependent three-particle correlator γ a , b = 〈 cos ⁡ (ϕ1a + ϕ2b - 2ϕ3) 〉 /v2 { 2 } and elliptic flow v2 { 2 } in U+U, Au+Au and p+Au collisions at RHIC. The difference Δγ = γ (opposite-sign) - γ (same-sign) measures charge separation across the reaction plane, a predicted signal of the Chiral Magnetic Effect (CME). Although charge separation has been observed, it has been argued that the measured separation can also be explained by elliptic flow related backgrounds. In order to separate the two effects we perform measurements of the γ-correlator where background expectations differ from magnetic field driven effects. A differential measurement of γ with the relative pseudorapidity (Δη) between the first and second particles indicate that Δγ in peripheral A+A and p+A collisions are dominated by short-range correlations in Δη. However, a relatively wider component of the correlation in Δη tends to vanish the same way as projected magnetic field as predicted by MC-Glauber simulations.

  16. Experimental Aeroheating Study of Mid-L/D Entry Vehicle Geometries: NASA LaRC 20-Inch Mach 6 Air Tunnel Test 6966

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Hollingsworth, Kevin E.

    2014-01-01

    Aeroheating data on mid lift-to-drag ratio entry vehicle configurations has been obtained through hypersonic wind tunnel testing. Vehicles of this class have been proposed for high-mass Mars missions, such as sample return and crewed exploration, for which the conventional sphere-cone entry vehicle geometries of previous Mars missions are insufficient. Several configurations were investigated, including elliptically-blunted cylinders with both circular and elliptical cross sections, biconic geometries based on launch vehicle dual-use shrouds, and parametrically-optimized analytic geometries. Testing was conducted at Mach 6 over a range of Reynolds numbers sufficient to generate laminar, transitional, and turbulent flow. Global aeroheating data were obtained using phosphor thermography. Both stream-wise and cross-flow transition occured on different configurations. Comparisons were made with laminar and turbulent computational predictions generated with an algebraic turbulence model. Predictions were generally in good agreement in regions of laminar or fully-turbulent flow; however for transitional cases, the lack of a transition onset prediction capability produced less accurate comparisons. The data obtained in this study are intended to be used for prelimary mission design studies and the development and validation of computational methods.

  17. Numerical simulations of the charged-particle flow dynamics for sources with a curved emission surface

    NASA Astrophysics Data System (ADS)

    Altsybeyev, V. V.

    2016-12-01

    The implementation of numerical methods for studying the dynamics of particle flows produced by pulsed sources is discussed. A particle tracking method with so-called gun iteration for simulations of beam dynamics is used. For the space charge limited emission problem, we suggest a Gauss law emission model for precise current-density calculation in the case of a curvilinear emitter. The results of numerical simulations of particle-flow formation for cylindrical bipolar diode and for diode with elliptical emitter are presented.

  18. 1+1 Gaudin Model

    NASA Astrophysics Data System (ADS)

    Zotov, Andrei V.

    2011-07-01

    We study 1+1 field-generalizations of the rational and elliptic Gaudin models. For sl(N) case we introduce equations of motion and L-A pair with spectral parameter on the Riemann sphere and elliptic curve. In sl(2) case we study the equations in detail and find the corresponding Hamiltonian densities. The n-site model describes n interacting Landau-Lifshitz models of magnets. The interaction depends on position of the sites (marked points on the curve). We also analyze the 2-site case in its own right and describe its relation to the principal chiral model. We emphasize that 1+1 version impose a restriction on a choice of flows on the level of the corresponding 0+1 classical mechanics.

  19. Emergence and equilibration of jets in planetary turbulence

    NASA Astrophysics Data System (ADS)

    Constantinou, Navid; Ioannou, Petros; Farrell, Brian

    2013-04-01

    Spatially and temporally coherent large scale jets that are not forced directly at the jet scale are prominent feature of rotating turbulence. A familiar example is the midlatitude jet in the Earth's atmosphere and the banded winds of the giants planets. These jets arise and are supported by the systematic organisation of the turbulent Reynolds stresses. Understanding the mechanism producing the required eddy momentum flux convergence, and how the jets and associated eddy field mutually adjust to maintain a steady jet structure at finite amplitude, constitute fundamental theoretical problems. Stochastic Structural Stability Theory (SSST) gives an explanation for jet formation that is fundamentally based on the interaction between jets and their associated field of turbulent eddies. SSST combines the full dynamics of the zonal mean flow with the second order statistics of the turbulent field obtained from a stochastic turbulence model (STM). The quasi-linear (QL) approximation to the full nonlinear dynamics (NL) results when the perturbation-perturbation interactions are parameterized in the perturbation equations, while interaction between the perturbations and the zonal mean flow is retained in the zonal mean equation. SSST consists of an infinite ensemble of perturbations evolving under QL. Therefore, SSST provides a set of dynamical equations for the mean flow and the second order statistics of the second cummulant of the perturbation vorticity field, which are autonomous and fluctuation free and can facilitate analytic study of turbulent equilibria and their stability as a function of parameters. Thus, jet formation in homogeneous beta-turbulence can be identified with an SSST structural instability of a homogeneous (mean flow free) SSTT equilibrium. We investigate the emergence and equilibration of jets from homogeneous barotropic beta-plane turbulence in the absence of coherent external forcing. SSST predicts that infinitesimal perturbations with zonal jet form organise homogeneous turbulence to produce systematic upgradient fluxes, giving rise to exponential jet growth and eventually to the establishment of finite amplitude equilibrium jets. We compare these predictions with simulations of the NL equations and their QL approximation in order to examine further the mechanism of emergence and equilibration of jets from turbulence. We concentrate on the effects of perturbation-perturbation nonlinearity on jet bifurcation and equilibration, and on the influence of perturbations in exciting the manifold of SSST modes with jet structure. We find that the bifurcation structure predicted by SSST for the emergence of zonal jets from a homogeneous turbulent state is confirmed by both QL and NL simulations. Moreover, we show that the finite amplitude equilibrium jets found in NL and QL simulations are as predicted by the fixed point solutions of SSST. Obtaining this agreement between NL and both SSST and QL simulations required in some cases that the modification of the turbulent spectrum caused by the perturbation-perturbation nonlinearity in NL be accounted for in the specification of the stochastic forcing in QL and SSST. These results confirm that jet emergence in barotropic beta-plane turbulence can be traced to the cooperative mean flow/perturbation instability that is captured by SSST.

  20. Using Wirtinger calculus and holomorphic matching to obtain the discharge potential for an elliptical pond

    NASA Astrophysics Data System (ADS)

    Strack, O. D. L.

    2009-01-01

    We present in this paper a new method for deriving discharge potentials for groundwater flow. Discharge potentials are two-dimensional functions; the discharge potential to be presented represents steady groundwater flow with an elliptical pond of constant rate of extraction or infiltration. The method relies on Wirtinger calculus. We demonstrate that it is possible, in principle, to construct a holomorphic function Ω(z), defined so as to produce the same gradient vector in two dimensions as that obtained from an arbitrary function F(x, y) along any Jordan curve ?. We will call Ω(z) the holomorphic match of F(x, y) along ?. Let the line ? be a closed contour bounding a domain ?, and let F(x, y) be defined in ? and represent the discharge potential for some case of divergent groundwater flow. Holomorphic matching makes it possible to create a function Ω(z), valid outside ?, such that ?Ω equals F(x, y) and the gradient of ?Ω equals that of F(x, y) along ?. (Note that the technique applies also if ? is the domain outside ?.) We can use this technique to construct solutions for cases of flow where there is nonzero divergence (due to infiltration or leakage, for example) in ? but zero divergence outside ?. The special case that the divergence within ? is constant and is zero outside ? is chosen to illustrate the approach and to obtain a solution that, to the knowledge of the author, does not exist in the field of groundwater flow.

  1. Impact of a small ellipticity on the sustainability condition of developed turbulence in a precessing spheroid

    NASA Astrophysics Data System (ADS)

    Horimoto, Yasufumi; Simonet-Davin, Gabriel; Katayama, Atsushi; Goto, Susumu

    2018-04-01

    We experimentally investigate the flow transition to developed turbulence in a precessing spheroid with a small ellipticity. Fully developed turbulence appears through a subcritical transition when we fix the Reynolds number (the spin rate) and gradually increase the Poincaré number (the precession rate). In the transitional range of the Poincaré number, two qualitatively different turbulent states (i.e., fully developed turbulence and quiescent turbulence with a spin-driven global circulation) are stable and they are connected by a hysteresis loop. This discontinuous transition is in contrast to the continuous transition in a precessing sphere, for which neither bistable turbulent states nor hysteresis loops are observed. The small ellipticity of the container makes the global circulation of the confined fluid more stable, and it requires much stronger precession of the spheroid, than a sphere, for fully developed turbulence to be sustained. Nevertheless, once fully developed turbulence is sustained, its flow structures are almost identical in the spheroid and sphere. The argument [Lorenzani and Tilgner, J. Fluid Mech. 492, 363 (2003), 10.1017/S002211200300572X; Noir et al., Geophys. J. Int. 154, 407 (2003), 10.1046/j.1365-246X.2003.01934.x] on the basis of the analytical solution [Busse, J. Fluid Mech. 33, 739 (1968), 10.1017/S0022112068001655] of the steady global circulation in a weak precession range well describes the onset of the fully developed turbulence in the spheroid.

  2. Comparison of high-angle-of-attack slender-body theory and exact solutions for potential flow over an ellipsoid

    NASA Technical Reports Server (NTRS)

    Hemsch, Michael J.

    1990-01-01

    The accuracy of high-alpha slender-body theory (HASBT) for bodies with elliptical cross-sections is presently demonstrated by means of a comparison with exact solutions for incompressible potential flow over a wide range of ellipsoid geometries and angles of attack and sideslip. The addition of the appropriate trigonometric coefficients to the classical slender-body theory decomposition yields the formally correct HASBT, and results in accuracies previously considered unattainable.

  3. Capillary Flow Experiment in Node 2

    NASA Image and Video Library

    2013-06-15

    Astronaut Karen Nyberg,Expedition 36 flight engineer,works on the Capillary Flow Experiment (CFE) Vane Gap-1 (VG-1) setup in the Node 2/Harmony. The CFE-2 vessel is used to observe fluid interface and critical wetting behavior in a cylindrical chamber with elliptic cross-section and an adjustable central perforated vane. The primary objective of the Vane Gap experiments is to determine equilibrium interface configurations and critical wetting conditions for interfaces between interior corners separated by a gap.

  4. Microfluidic Mixing Technology for a Universal Health Sensor

    NASA Technical Reports Server (NTRS)

    Chan, Eugene Y.; Bae, Candice

    2009-01-01

    A highly efficient means of microfluidic mixing has been created for use with the rHEALTH sensor an elliptical mixer and passive curvilinear mixing patterns. The rHEALTH sensor provides rapid, handheld, complete blood count, cell differential counts, electrolyte measurements, and other lab tests based on a reusable, flow-based microfluidic platform. These geometries allow for cleaning in a reusable manner, and also allow for complete mixing of fluid streams. The microfluidic mixing is performed by flowing two streams of fluid into an elliptical or curvilinear design that allows the combination of the flows into one channel. The mixing is accomplished by either chaotic advection around micro - fluidic loops. All components of the microfluidic chip are flow-through, meaning that cleaning solution can be introduced into the chip to flush out cells, plasma proteins, and dye. Tests were performed on multiple chip geometries to show that cleaning is efficient in any flowthrough design. The conclusion from these experiments is that the chip can indeed be flushed out with microliter volumes of solution and biological samples are cleaned readily from the chip with minimal effort. The technology can be applied in real-time health monitoring at patient s bedside or in a doctor s office, and real-time clinical intervention in acute situations. It also can be used for daily measurement of hematocrit for patients on anticoagulant drugs, or to detect acute myocardial damage outside a hospital.

  5. Analysis of atmospheric flow over a surface protrusion using the turbulence kinetic energy equation

    NASA Technical Reports Server (NTRS)

    Frost, W.; Harper, W. L.; Fichtl, G. H.

    1975-01-01

    Atmospheric flow fields resulting from a semi-elliptical surface obstruction in an otherwise horizontally homogeneous statistically stationary flow are modelled with the boundary-layer/Boussinesq-approximation of the governing equation of fluid mechanics. The turbulence kinetic energy equation is used to determine the dissipative effects of turbulent shear on the mean flow. Mean-flow results are compared with those given in a previous paper where the same problem was attacked using a Prandtl mixing-length hypothesis. Iso-lines of turbulence kinetic energy and turbulence intensity are plotted in the plane of the flow. They highlight regions of high turbulence intensity in the stagnation zone and sharp gradients in intensity along the transition from adverse to favourable pressure gradient.

  6. Calculation of H2-He Flow with Nonequilibrium Ionization and Radiation: an Interim Report

    NASA Technical Reports Server (NTRS)

    Furudate, Michiko; Chang, Keun-Shik

    2005-01-01

    The nonequilibrium ionization process in hydrogen-helium mixture behind a strong shock wave is studied numerically using the detailed ionization rate model developed recently by Park which accounts for emission and absorption of Lyman lines. The study finds that, once the avalanche ionization is started, the Lyman line is self-absorbed. The intensity variation of the radiation at 5145 Angstroms found by Leibowitz in a shock tube experiment can be numerically reproduced by assuming that ionization behind the shock wave prior to the onset of avalanche ionization is 1.3%. Because 1.3% initial ionization is highly unlikely, Leibowitz s experimental data is deemed questionable. By varying the initial electron density value in the calculation, the calculated ionization equilibration time is shown to increase approximately as inverse square-root of the initial electron density value. The true ionization equilibration time is most likely much longer than the value found by Leibowitz.

  7. Theory of ion transport with fast acid-base equilibrations in bioelectrochemical systems.

    PubMed

    Dykstra, J E; Biesheuvel, P M; Bruning, H; Ter Heijne, A

    2014-07-01

    Bioelectrochemical systems recover valuable components and energy in the form of hydrogen or electricity from aqueous organic streams. We derive a one-dimensional steady-state model for ion transport in a bioelectrochemical system, with the ions subject to diffusional and electrical forces. Since most of the ionic species can undergo acid-base reactions, ion transport is combined in our model with infinitely fast ion acid-base equilibrations. The model describes the current-induced ammonia evaporation and recovery at the cathode side of a bioelectrochemical system that runs on an organic stream containing ammonium ions. We identify that the rate of ammonia evaporation depends not only on the current but also on the flow rate of gas in the cathode chamber, the diffusion of ammonia from the cathode back into the anode chamber, through the ion exchange membrane placed in between, and the membrane charge density.

  8. Thermo-Gas-Dynamic Model of Afterburning in Explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, A L; Ferguson, R E; Bell, J B

    2003-07-27

    A theoretical model of afterburning in explosions created by turbulent mixing of the detonation products from fuel-rich charges with air is described. It contains three key elements: (i) a thermodynamic-equilibrium description of the fluids (fuel, air, and products), (ii) a multi-component gas-dynamic treatment of the flow field, and (iii) a sub-grid model of molecular processes of mixing, combustion and equilibration.

  9. Inclined Bodies of Various Cross Sections at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Jorgensen, Leland H.

    1958-01-01

    To aid in assessing effects of cross-sectional shape on body aerodynamics, the forces and moments have been measured for bodies with circular, elliptic, square, and triangular cross sections at Mach numbers 1.98 and 3.88. Results for bodies with noncircular cross sections have been compared with results for bodies of revolution having the same axial distribution of cross-sectional area (and, thus, the same equivalent fineness ratio). Comparisons have been made for bodies of fineness ratios 6 and 10 at angles of attack from 0 deg to about 20 deg and for Reynolds numbers, based on body length, of 4.0 x 10(exp 6) and 6.7 x 10(exp 6). The results of this investigation show that distinct aerodynamic advantages can be obtained by using bodies with noncircular cross sections. At certain angles of bank, bodies with elliptic, square, and triangular cross sections develop considerably greater lift and lift-drag ratios than equivalent bodies of revolution. For bodies with elliptic cross sections, lift and pitching-moment coefficients can be correlated with corresponding coefficients for equivalent circular bodies. It has been found that the ratios of lift and pitching-moment coefficients for an elliptic body to those for an equivalent circular body are practically constant with change in both angle of attack and Mach number. These lift and moment ratios are given very accurately by slender-body theory. As a result of this agreement, the method of NACA Rep. 1048 for computing forces and moments for bodies of revolution has been simply extended to bodies with elliptic cross sections. For the cases considered (elliptic bodies of fineness ratios 6 and 10 having cross-sectional axis ratios of 1.5 and 2), agreement of theory with experiment is very good. As a supplement to the force and moment results, visual studies of the flow over bodies have been made by use of the vapor-screen, sublimation, and white-lead techniques. Photographs from these studies are included in the report.

  10. The receptivity of boundary layers on blunt bodies to oscillations in the free stream

    NASA Technical Reports Server (NTRS)

    Grosch, C. E.

    1982-01-01

    It is concluded that in the region of the nose of a symmetric, two dimensional blunt body at zero angle of attack, the steady plus oscillating flow is very similar for a wide class of body shapes. This conclusion was shown to be true for elliptic cylinders with a/b 25, and for the parabolic cylinder. In all cases, the flow field in the nose region of a two dimensional blunt body is generic to that of the flow in the neighborhood of the stagnation point on a plane wall.

  11. Energy Dependence of Directed Flow over a Wide Range of Pseudorapidity in Au+Au Collisions at the BNL Relativistic Heavy Ion Collider

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Hauer, M.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Seals, H.; Sedykh, I.; Skulski, W.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2006-07-01

    We report on measurements of directed flow as a function of pseudorapidity in Au+Au collisions at energies of sNN=19.6, 62.4, 130 and 200 GeV as measured by the PHOBOS detector at the BNL Relativistic Heavy Ion Collider. These results are particularly valuable because of the extensive, continuous pseudorapidity coverage of the PHOBOS detector. There is no significant indication of structure near midrapidity and the data surprisingly exhibit extended longitudinal scaling similar to that seen for elliptic flow and charged particle pseudorapidity density.

  12. Computation of steady nozzle flow by a time-dependent method

    NASA Technical Reports Server (NTRS)

    Cline, M. C.

    1974-01-01

    The equations of motion governing steady, inviscid flow are of a mixed type, that is, hyperbolic in the supersonic region and elliptic in the subsonic region. These mathematical difficulties may be removed by using the so-called time-dependent method, where the governing equations become hyperbolic everywhere. The steady-state solution may be obtained as the asymptotic solution for large time. The object of this research was to develop a production type computer program capable of solving converging, converging-diverging, and plug two-dimensional nozzle flows in computational times of 1 min or less on a CDC 6600 computer.

  13. Anisotropic Janus Si nanopillar arrays as a microfluidic one-way valve for gas-liquid separation

    NASA Astrophysics Data System (ADS)

    Wang, Tieqiang; Chen, Hongxu; Liu, Kun; Li, Yang; Xue, Peihong; Yu, Ye; Wang, Shuli; Zhang, Junhu; Kumacheva, Eugenia; Yang, Bai

    2014-03-01

    In this paper, we demonstrate a facile strategy for the fabrication of a one-way valve for microfluidic (MF) systems. The micro-valve was fabricated by embedding arrays of Janus Si elliptical pillars (Si-EPAs) with anisotropic wettability into a MF channel fabricated in poly(dimethylsiloxane) (PDMS). Two sides of the Janus pillar are functionalized with molecules with distinct surface energies. The ability of the Janus pillar array to act as a valve was proved by investigating the flow behaviour of water in a T-shaped microchannel at different flow rates and pressures. In addition, the one-way valve was used to achieve gas-liquid separation. We believe that the Janus Si-EPAs modified by specific surface functionalization provide a new strategy to control the flow and motion of fluids in MF channels.In this paper, we demonstrate a facile strategy for the fabrication of a one-way valve for microfluidic (MF) systems. The micro-valve was fabricated by embedding arrays of Janus Si elliptical pillars (Si-EPAs) with anisotropic wettability into a MF channel fabricated in poly(dimethylsiloxane) (PDMS). Two sides of the Janus pillar are functionalized with molecules with distinct surface energies. The ability of the Janus pillar array to act as a valve was proved by investigating the flow behaviour of water in a T-shaped microchannel at different flow rates and pressures. In addition, the one-way valve was used to achieve gas-liquid separation. We believe that the Janus Si-EPAs modified by specific surface functionalization provide a new strategy to control the flow and motion of fluids in MF channels. Electronic supplementary information (ESI) available: The XPS spectrum of the as-prepared Janus arrays after the MHA modification; the SEM images of the PFS-MHA Janus Si pillar arrays fabricated through oblique evaporation of gold along the short axis of the elliptical pillars; images of the cross-shaped MF channel and Rhodamine aqueous solution injecting in a cross-shaped MF channel taken at different times; the plot data of DPFS/DMHA against the flow rate of the aqueous solution; the plot data of failure pressure against the bottom size of the channel; optical microscopy images of the Janus pillar array with less density of pillars; optical microscopy images of the T junction with higher magnification; the video of Rhodamine solution running in the T-shaped microchannel integrated with the Janus Si-EPAs; the video of the entire gas-liquid separation process. See DOI: 10.1039/c3nr05865d

  14. Morphometric characteristics and chromatin integrity of spermatozoa in three Italian dog breeds.

    PubMed

    Lange-Consiglio, A; Antonucci, N; Manes, S; Corradetti, B; Cremonesi, F; Bizzaro, D

    2010-12-01

    Studies in many species indicate that variation of spermatozoan head morphology is a sensitive biomarker for abnormal chromatin structure and resultant clinical fertility. This preliminary study evaluated spermatozoan head morphometry in different dog breeds and assessed whether morphometric parameters could reflect spermatozoan DNA fragmentation in dogs. Spermatozoan morphometry and DNA quality (measured by TUNEL flow cytometry) were assessed in semen from 11 dogs of three Italian breeds (Cirneco dell'Etna, Piccolo Levriero Italiano and Segugio Maremmano). Morphometric data showed that Segugio dogs had significantly larger (33·67%) spermatozoa and that Piccolo Levrieros had a higher incidence of long (46·75%) and elliptical spermatozoan heads (11·5%) when compared with the samples from other breeds. Moreover, the predominance of elliptical spermatozoa in one dog (23%) was significantly related to the percentage of spermatozoa with fragmented DNA (12·6%), whereas in another dog, where no more than 1% of spermatozoa was elliptical, only 0·36% of spermatozoa had damaged DNA. It is noteworthy that the breeding record of the former dog in the previous 12 months showed poor fertility and fecundity. These data suggest that spermatozoan head morphometry could be breed related and that there is a significant correlation between DNA fragmentation and elliptical spermatozoa in individual animals. This finding, albeit limited in our study to a single case, is possibly related to clinical infertility. © 2010 British Small Animal Veterinary Association.

  15. Wind-tunnel investigation of aerodynamic efficiency of three planar elliptical wings with curvature of quarter-chord line

    NASA Technical Reports Server (NTRS)

    Mineck, Raymond E.; Vijgen, Paul M. H. W.

    1993-01-01

    Three planar, untwisted wings with the same elliptical chord distribution but with different curvatures of the quarter-chord line were tested in the Langley 8-Foot Transonic Pressure Tunnel (8-ft TPT) and the Langley 7- by 10-Foot High-Speed Tunnel (7 x 10 HST). A fourth wing with a rectangular planform and the same projected area and span was also tested. Force and moment measurements from the 8-ft TPT tests are presented for Mach numbers from 0.3 to 0.5 and angles of attack from -4 degrees to 7 degrees. Sketches of the oil-flow patterns on the upper surfaces of the wings and some force and moment measurements from the 7 x 10 HST tests are presented at a Mach number of 0.5. Increasing the curvature of the quarter-chord line makes the angle of zero lift more negative but has little effect on the drag coefficient at zero lift. The changes in lift-curve slope and in the Oswald efficiency factor with the change in curvature of the quarter-chord line (wingtip location) indicate that the elliptical wing with the unswept quarter-chord line has the lowest lifting efficiency and the elliptical wing with the unswept trailing edge has the highest lifting efficiency; the crescent-shaped planform wing has an efficiency in between.

  16. On hyperbolicity and Gevrey well-posedness. Part two: Scalar or degenerate transitions

    NASA Astrophysics Data System (ADS)

    Morisse, Baptiste

    2018-04-01

    For first-order quasi-linear systems of partial differential equations, we formulate an assumption of a transition from initial hyperbolicity to ellipticity. This assumption bears on the principal symbol of the first-order operator. Under such an assumption, we prove a strong Hadamard instability for the associated Cauchy problem, namely an instantaneous defect of Hölder continuity of the flow from Gσ to L2, with 0 < σ <σ0, the limiting Gevrey index σ0 depending on the nature of the transition. We restrict here to scalar transitions, and non-scalar transitions in which the boundary of the hyperbolic zone satisfies a flatness condition. As in our previous work for initially elliptic Cauchy problems [B. Morisse, On hyperbolicity and Gevrey well-posedness. Part one: the elliptic case, arxiv:arXiv:1611.07225], the instability follows from a long-time Cauchy-Kovalevskaya construction for highly oscillating solutions. This extends recent work of N. Lerner, T. Nguyen, and B. Texier [The onset of instability in first-order systems, to appear in J. Eur. Math. Soc.].

  17. Iterative spectral methods and spectral solutions to compressible flows

    NASA Technical Reports Server (NTRS)

    Hussaini, M. Y.; Zang, T. A.

    1982-01-01

    A spectral multigrid scheme is described which can solve pseudospectral discretizations of self-adjoint elliptic problems in O(N log N) operations. An iterative technique for efficiently implementing semi-implicit time-stepping for pseudospectral discretizations of Navier-Stokes equations is discussed. This approach can handle variable coefficient terms in an effective manner. Pseudospectral solutions of compressible flow problems are presented. These include one dimensional problems and two dimensional Euler solutions. Results are given both for shock-capturing approaches and for shock-fitting ones.

  18. Recent results from PHOBOS at RHIC

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Ballintijn, M.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Niewwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Robert PakThe Phobos Collaboration

    2003-06-01

    The PHOBOS experiment at RHIC has recorded measurements for AuAu collisions spanning nucleon-nucleon center-of-mass energies from √ SNN = 19.6 GeV to 200 GeV. Global observables such as elliptic flow and charged particle multiplicity provide important constraints on model predictions that characterize the state of matter produced in these collisions. The nearly 4π acceptance of the PHOBOS experiment provides excellent coverage for complete flow and multiplicity measurements. Results including beam energy and centrality dependencies are presented and compared to elementary systems.

  19. Measurements of Crossflow Instability Modes for HIFiRE 5 at Angle of Attack

    DTIC Science & Technology

    2017-11-15

    temperature sensitive paint (TSP) did not show any vortices in noisy flow, and only revealed vortices in quiet flow for a subset of the Reynolds numbers for...evidence of traveling crossflow waves with a noisy freestream, even though the spectra of the surface pressure signals showed an expected progression...cone ray describing the minor axis, and retains a 2:1 elliptical cross-section to the tip. Figure 1: Photograph of model The model is made of solid 15

  20. Three dimensional simulations of viscous folding in diverging microchannels

    NASA Astrophysics Data System (ADS)

    Xu, Bingrui; Chergui, Jalel; Shin, Seungwon; Juric, Damir

    2016-11-01

    Three dimensional simulations on the viscous folding in diverging microchannels reported by Cubaud and Mason are performed using the parallel code BLUE for multi-phase flows. The more viscous liquid L1 is injected into the channel from the center inlet, and the less viscous liquid L2 from two side inlets. Liquid L1 takes the form of a thin filament due to hydrodynamic focusing in the long channel that leads to the diverging region. The thread then becomes unstable to a folding instability, due to the longitudinal compressive stress applied to it by the diverging flow of liquid L2. We performed a parameter study in which the flow rate ratio, the viscosity ratio, the Reynolds number, and the shape of the channel were varied relative to a reference model. In our simulations, the cross section of the thread produced by focusing is elliptical rather than circular. The initial folding axis can be either parallel or perpendicular to the narrow dimension of the chamber. In the former case, the folding slowly transforms via twisting to perpendicular folding, or it may remain parallel. The direction of folding onset is determined by the velocity profile and the elliptical shape of the thread cross section in the channel that feeds the diverging part of the cell.

  1. Examination of the relevance of hydrodynamics for data measured at the BNL relativistic heavy ion collider

    NASA Astrophysics Data System (ADS)

    Trainor, Thomas A.

    2010-08-01

    Hydrodynamic (hydro) models applied to heavy ion data from the relativistic heavy ion collider (RHIC) suggest that a dense QCD medium nearly opaque to partons—a strongly coupled quark-gluon plasma—is formed in more-central Au-Au collisions and may have a small viscosity ('perfect liquid'). Claimed evidence for radial and elliptic flows and possible coalescence of 'constituent quarks' seems to support the conclusion. But other measurements provide contradictory evidence. Unbiased angular correlations indicate that most back-to-back jets from initial-state scattered partons with energies as low as 3 GeV survive as 'minijet' hadron correlations even in central Au-Au collisions, suggesting near transparency. Two-component analysis of single-particle spectra reveals a spectrum hard component (parton fragment distribution) which can be mistaken for 'radial flow' in some forms of analysis. Based on recent results, reinterpretation of 'elliptic flow' as a QCD quadrupole scattering process including fragmentation may be possible. In this paper we review conventional analysis methods in the context of two paradigms: a hydrodynamics/hard-probes paradigm and a quadrupole/minijets paradigm. Re-examination of fiducial data suggests that hydrodynamics may not be relevant to RHIC collisions. Collision evolution may be dominated by QCD scattering and fragmentation, albeit strongly modified in more-central A-A collisions.

  2. Vortex dynamics and wall shear stress behaviour associated with an elliptic jet impinging upon a flat plate

    NASA Astrophysics Data System (ADS)

    Long, J.; New, T. H.

    2016-07-01

    Vortical structures and dynamics of a Re h = 2100 elliptic jet impinging upon a flat plate were studied at H/ d h = 1, 2 and 4 jet-to-plate separation distances. Flow investigations were conducted along both its major and minor planes using laser-induced fluorescence and digital particle image velocimetry techniques. Results show that the impingement process along the major plane largely consists of primary jet ring-vortex and wall-separated secondary vortex formations, where they subsequently separate from the flat plate at smaller H/ d h = 1 and 2 separation distances. Key vortex formation locations occur closer to the impingement point as the separation distance increases. Interestingly, braid vortices and rib structures begin to take part in the impingement process at H/ d h = 4 and wave instabilities dominate the flow field. In contrast, significantly more coherent primary and secondary vortices with physically larger vortex core sizes and higher vortex strengths are observed along the minor plane, with no signs of braid vortices and rib structures. Lastly, influences of these different flow dynamics on the major and minor plane instantaneous and mean skin friction coefficient levels are investigated to shed light on the effects of separation distance on the wall shear stress distributions.

  3. Mineral chemistry of Pangidi basalt flows from Andhra Pradesh

    NASA Astrophysics Data System (ADS)

    Nageswara Rao, P. V.; Swaroop, P. C.; Karimulla, Syed

    2012-04-01

    This paper elucidates the compositional studies on clinopyroxene, plagioclase, titaniferous magnetite and ilmenite of basalts of Pangidi area to understand the geothermometry and oxybarometry conditions. Petrographic evidence and anorthite content (up to 85%) of plagioclase and temperature estimates of clinopyroxene indicate that the clinopyroxene is crystallized later than or together with plagioclase. The higher An content indicates that the parent magma is tholeiitic composition. The equilibration temperatures of clinopyroxene (1110-1190°C) and titaniferous magnetite and ilmenite coexisting mineral phases (1063-1103°C) are almost similar in lower basalt flow and it is higher for clinopyroxene (900-1110°C) when compared to titaniferous magnetite and ilmenite coexisting mineral phases (748-898°C) in middle and upper basalt flows. From this it can be inferred that the clinopyroxene is crystallized earlier than Fe-Ti oxide phases reequilibration, which indicates that the clinopyroxene temperature is the approximate eruption temperature of the present lava flows. The wide range of temperatures (900-1190°C) attained by clinopyroxene may point out that the equilibration of clinopyroxene crystals initiated from depth till closer to the surface before the melt erupted. Pangidi basalts follow the QFM buffer curve which indicates the more evolved tholeiitic composition. This suggests the parent tholeiitic magma suffered limited fractionation at high temperature under increasing oxygen fugacity in lower basalt flow and more fractionation at medium to lower temperatures under decreasing oxygen fugacity conditions during cooling of middle and upper basalt flows. The variation of oxygen fugacity indicates the oxidizing conditions for lower basalt flow (9.48-10.3) and extremely reducing conditions for middle (12.1-15.5) and upper basalt (12.4-15.54) flows prevailed at the time of cooling. Temperature vs. (FeO+Fe2O3)/(FeO+Fe2O3 +MgO) data plots for present basalts suggested the lower basaltic flow is formed at higher temperatures while the middle and upper basalt flows at medium to lower temperatures. The lower basalt flow is represented by higher temperatures which shows high modal values of opaques and glass whereas the medium to lower temperatures of middle and upper flow are caused by vesicular nature which contain larger content of gases and humid to semi-arid conditions during cooling.

  4. The Azimuth Structure of Nuclear Collisions — I

    NASA Astrophysics Data System (ADS)

    Trainor, Thomas A.; Kettler, David T.

    We describe azimuth structure commonly associated with elliptic and directed flow in the context of 2D angular autocorrelations for the purpose of precise separation of so-called nonflow (mainly minijets) from flow. We extend the Fourier-transform description of azimuth structure to include power spectra and autocorrelations related by the Wiener-Khintchine theorem. We analyze several examples of conventional flow analysis in that context and question the relevance of reaction plane estimation to flow analysis. We introduce the 2D angular autocorrelation with examples from data analysis and describe a simulation exercise which demonstrates precise separation of flow and nonflow using the 2D autocorrelation method. We show that an alternative correlation measure based on Pearson's normalized covariance provides a more intuitive measure of azimuth structure.

  5. Progress and supercomputing in computational fluid dynamics; Proceedings of U.S.-Israel Workshop, Jerusalem, Israel, December 1984

    NASA Technical Reports Server (NTRS)

    Murman, E. M. (Editor); Abarbanel, S. S. (Editor)

    1985-01-01

    Current developments and future trends in the application of supercomputers to computational fluid dynamics are discussed in reviews and reports. Topics examined include algorithm development for personal-size supercomputers, a multiblock three-dimensional Euler code for out-of-core and multiprocessor calculations, simulation of compressible inviscid and viscous flow, high-resolution solutions of the Euler equations for vortex flows, algorithms for the Navier-Stokes equations, and viscous-flow simulation by FEM and related techniques. Consideration is given to marching iterative methods for the parabolized and thin-layer Navier-Stokes equations, multigrid solutions to quasi-elliptic schemes, secondary instability of free shear flows, simulation of turbulent flow, and problems connected with weather prediction.

  6. Integrable Seven-Point Discrete Equations and Second-Order Evolution Chains

    NASA Astrophysics Data System (ADS)

    Adler, V. E.

    2018-04-01

    We consider differential-difference equations defining continuous symmetries for discrete equations on a triangular lattice. We show that a certain combination of continuous flows can be represented as a secondorder scalar evolution chain. We illustrate the general construction with a set of examples including an analogue of the elliptic Yamilov chain.

  7. Viscous Flow through Pipes of Various Cross-Sections

    ERIC Educational Resources Information Center

    Lekner, John

    2007-01-01

    An interesting variety of pipe cross-sectional shapes can be generated, for which the Navier-Stokes equations can be solved exactly. The simplest cases include the known solutions for elliptical and equilateral triangle cross-sections. Students can find pipe cross-sections from solutions of Laplace's equation in two dimensions, and then plot the…

  8. The Aerodynamic Performance of the Houck Configuration Flow Guides

    DTIC Science & Technology

    2007-06-01

    Vortices.............................................................................................13 2.5 Winglets ...associated with the Houck configuration. This includes winglets , biplanes, and joined-wing aircraft. After that the chapter will discuss the evolution...efficiency factor (e = 1 for elliptical wing). 2.5 Winglets A winglet is best described by Jean Chattot’s quote: “ Winglets are aerodynamic components

  9. A discontinuous Galerkin approach for conservative modeling of fully nonlinear and weakly dispersive wave transformations

    NASA Astrophysics Data System (ADS)

    Sharifian, Mohammad Kazem; Kesserwani, Georges; Hassanzadeh, Yousef

    2018-05-01

    This work extends a robust second-order Runge-Kutta Discontinuous Galerkin (RKDG2) method to solve the fully nonlinear and weakly dispersive flows, within a scope to simultaneously address accuracy, conservativeness, cost-efficiency and practical needs. The mathematical model governing such flows is based on a variant form of the Green-Naghdi (GN) equations decomposed as a hyperbolic shallow water system with an elliptic source term. Practical features of relevance (i.e. conservative modeling over irregular terrain with wetting and drying and local slope limiting) have been restored from an RKDG2 solver to the Nonlinear Shallow Water (NSW) equations, alongside new considerations to integrate elliptic source terms (i.e. via a fourth-order local discretization of the topography) and to enable local capturing of breaking waves (i.e. via adding a detector for switching off the dispersive terms). Numerical results are presented, demonstrating the overall capability of the proposed approach in achieving realistic prediction of nearshore wave processes involving both nonlinearity and dispersion effects within a single model.

  10. Higher and lowest order mixed finite element approximation of subsurface flow problems with solutions of low regularity

    NASA Astrophysics Data System (ADS)

    Bause, Markus

    2008-02-01

    In this work we study mixed finite element approximations of Richards' equation for simulating variably saturated subsurface flow and simultaneous reactive solute transport. Whereas higher order schemes have proved their ability to approximate reliably reactive solute transport (cf., e.g. [Bause M, Knabner P. Numerical simulation of contaminant biodegradation by higher order methods and adaptive time stepping. Comput Visual Sci 7;2004:61-78]), the Raviart- Thomas mixed finite element method ( RT0) with a first order accurate flux approximation is popular for computing the underlying water flow field (cf. [Bause M, Knabner P. Computation of variably saturated subsurface flow by adaptive mixed hybrid finite element methods. Adv Water Resour 27;2004:565-581, Farthing MW, Kees CE, Miller CT. Mixed finite element methods and higher order temporal approximations for variably saturated groundwater flow. Adv Water Resour 26;2003:373-394, Starke G. Least-squares mixed finite element solution of variably saturated subsurface flow problems. SIAM J Sci Comput 21;2000:1869-1885, Younes A, Mosé R, Ackerer P, Chavent G. A new formulation of the mixed finite element method for solving elliptic and parabolic PDE with triangular elements. J Comp Phys 149;1999:148-167, Woodward CS, Dawson CN. Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media. SIAM J Numer Anal 37;2000:701-724]). This combination might be non-optimal. Higher order techniques could increase the accuracy of the flow field calculation and thereby improve the prediction of the solute transport. Here, we analyse the application of the Brezzi- Douglas- Marini element ( BDM1) with a second order accurate flux approximation to elliptic, parabolic and degenerate problems whose solutions lack the regularity that is assumed in optimal order error analyses. For the flow field calculation a superiority of the BDM1 approach to the RT0 one is observed, which however is less significant for the accompanying solute transport.

  11. Calculation of linearized supersonic flow over slender cones of arbitrary cross section

    NASA Technical Reports Server (NTRS)

    Mascitti, V. R.

    1972-01-01

    Supersonic linearized conical-flow theory is used to determine the flow over slender pointed cones having horizontal and vertical planes of symmetry. The geometry of the cone cross sections and surface velocities are expanded in Fourier series. The symmetry condition permits the uncoupling of lifting and nonlifting solutions. The present method reduces to Ward's theory for flow over a cone of elliptic cross section. Results are also presented for other shapes. Results by this method diverge for cross-sectional shapes where the maximum thickness is large compared with the minimum thickness. However, even for these slender-body shapes, lower order solutions are good approximations to the complete solution.

  12. Using cosmic microwave background radiation analysis tools for flow anisotropies in relativistic heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Ananta P.; Mohapatra, Ranjita K.; Saumia, P. S.

    2010-03-15

    Recently we have shown that there are crucial similarities in the physics of cosmic microwave background radiation (CMBR) anisotropies and the flow anisotropies in relativistic heavy-ion collision experiments (RHICE). We also argued that, following CMBR anisotropy analysis, a plot of root-mean-square values of the flow coefficients, calculated in a laboratory-fixed frame for RHICE, can yield important information about the nature of initial state anisotropies and their evolution. Here we demonstrate the strength of this technique by showing that elliptic flow for noncentral collisions can be directly determined from such a plot without any need for the determination of the eventmore » plane.« less

  13. Gas flows in S-E binary systems of galaxies

    NASA Technical Reports Server (NTRS)

    Sotnikova, N. YA.

    1990-01-01

    Tidal interaction between the galaxies in binary systems leads to important consequences. Some peculiarities in galactic morphology as well as the transfer of matter from one galaxy to another may be due to this factor. In particular, gas flows in intergalactic space may be formed. Such flows enriching one component with gas from the other may play a substantial role in the evolution of mixed (S-E) pairs. One can mention several facts corroborating the possibility of the gas transfer from the spiral to the elliptical galaxy. High HI content (10(exp 7) to 10(exp 9) solar mass) is detected in nearly 40 E galaxies (Bottinelli and Gougenheim, 1979; Knapp et al., 1985). Such galaxies are often members of pairs or of multiple systems including an S galaxy, which may be the source of gas (Smirnov and Komberg, 1980). Moreover, the gas kinematics and its distribution also indicate an external origin for this gas (Knapp et al., 1985). In many cases there is an outer gaseous disk. The directions of the disk and of stellar rotation don't always coincide (van Gorkom et al., 1985; Varnas et al., 1987). The galaxy colors in S-E pairs are correlated (the Holmberg effect): bluer ellipticals have spiral components that are usually bluer (Demin et al., 1984). The fraction of E galaxies with emission lines (N sub em) in S-E pairs showing traces of tidal interaction is twice as large (N sub em approx. equals 0.24) as in pairs without interaction (N sub em approx. equals 0.12) (Sotnikova, 1988b). Since the presence of emission lines in a galaxy spectrum strongly depends on gas content, this fact also leads to the conclusion that ellipticals in interacting S-E pairs are enriched with gas. These facts may be considered as a serious indication of the existence of gas transfer. Hence, investigation of this process is of interest.

  14. Model's sparse representation based on reduced mixed GMsFE basis methods

    NASA Astrophysics Data System (ADS)

    Jiang, Lijian; Li, Qiuqi

    2017-06-01

    In this paper, we propose a model's sparse representation based on reduced mixed generalized multiscale finite element (GMsFE) basis methods for elliptic PDEs with random inputs. A typical application for the elliptic PDEs is the flow in heterogeneous random porous media. Mixed generalized multiscale finite element method (GMsFEM) is one of the accurate and efficient approaches to solve the flow problem in a coarse grid and obtain the velocity with local mass conservation. When the inputs of the PDEs are parameterized by the random variables, the GMsFE basis functions usually depend on the random parameters. This leads to a large number degree of freedoms for the mixed GMsFEM and substantially impacts on the computation efficiency. In order to overcome the difficulty, we develop reduced mixed GMsFE basis methods such that the multiscale basis functions are independent of the random parameters and span a low-dimensional space. To this end, a greedy algorithm is used to find a set of optimal samples from a training set scattered in the parameter space. Reduced mixed GMsFE basis functions are constructed based on the optimal samples using two optimal sampling strategies: basis-oriented cross-validation and proper orthogonal decomposition. Although the dimension of the space spanned by the reduced mixed GMsFE basis functions is much smaller than the dimension of the original full order model, the online computation still depends on the number of coarse degree of freedoms. To significantly improve the online computation, we integrate the reduced mixed GMsFE basis methods with sparse tensor approximation and obtain a sparse representation for the model's outputs. The sparse representation is very efficient for evaluating the model's outputs for many instances of parameters. To illustrate the efficacy of the proposed methods, we present a few numerical examples for elliptic PDEs with multiscale and random inputs. In particular, a two-phase flow model in random porous media is simulated by the proposed sparse representation method.

  15. Model's sparse representation based on reduced mixed GMsFE basis methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Lijian, E-mail: ljjiang@hnu.edu.cn; Li, Qiuqi, E-mail: qiuqili@hnu.edu.cn

    2017-06-01

    In this paper, we propose a model's sparse representation based on reduced mixed generalized multiscale finite element (GMsFE) basis methods for elliptic PDEs with random inputs. A typical application for the elliptic PDEs is the flow in heterogeneous random porous media. Mixed generalized multiscale finite element method (GMsFEM) is one of the accurate and efficient approaches to solve the flow problem in a coarse grid and obtain the velocity with local mass conservation. When the inputs of the PDEs are parameterized by the random variables, the GMsFE basis functions usually depend on the random parameters. This leads to a largemore » number degree of freedoms for the mixed GMsFEM and substantially impacts on the computation efficiency. In order to overcome the difficulty, we develop reduced mixed GMsFE basis methods such that the multiscale basis functions are independent of the random parameters and span a low-dimensional space. To this end, a greedy algorithm is used to find a set of optimal samples from a training set scattered in the parameter space. Reduced mixed GMsFE basis functions are constructed based on the optimal samples using two optimal sampling strategies: basis-oriented cross-validation and proper orthogonal decomposition. Although the dimension of the space spanned by the reduced mixed GMsFE basis functions is much smaller than the dimension of the original full order model, the online computation still depends on the number of coarse degree of freedoms. To significantly improve the online computation, we integrate the reduced mixed GMsFE basis methods with sparse tensor approximation and obtain a sparse representation for the model's outputs. The sparse representation is very efficient for evaluating the model's outputs for many instances of parameters. To illustrate the efficacy of the proposed methods, we present a few numerical examples for elliptic PDEs with multiscale and random inputs. In particular, a two-phase flow model in random porous media is simulated by the proposed sparse representation method.« less

  16. Pressure drop of He II flow through a porous media

    NASA Technical Reports Server (NTRS)

    Maddocks, J. R.; Van Sciver, S. W.

    1990-01-01

    The paper reports on measurements of He II pressure drop across two porous SiO2 ceramic filter materials. These materials vary only in porosity, having values of 0.94 and 0.96. The average fiber diameter in both cases is approximately 5 microns. The experiment consists of a glass tube containing a piece of this sponge in one end. The tube is rapidly displaced downward in a bath of helium and the liquid levels are allowed to equilibrate over time producing variable velocities up to 10 cm/sec. The results are compared with those previously obtained using fine mesh screens. Good qualitative agreement is observed for turbulent flow; however, the behavior in the laminar flow regime is not fully understood.

  17. Numerical simulation of steady three-dimensional flows in axial turbomachinery bladerows

    NASA Astrophysics Data System (ADS)

    Basson, Anton Herman

    The formulation for and application of a numerical model for low Mach number steady three-dimensional flows in axial turbomachinery blade rows is presented. The formulation considered here includes an efficient grid generation scheme (particularly suited to computational grids for the analysis of turbulent turbomachinery flows) and a semi-implicit, pressure-based computational fluid dynamics scheme that directly includes artificial dissipation, applicable to viscous and inviscid flows. The grid generation technique uses a combination of algebraic and elliptic methods, in conjunction with the Minimal Residual Method, to economically generate smooth structured grids. For typical H-grids in turbomachinery bladerows, when compared to a purely elliptic grid generation scheme, the presented grid generation scheme produces grids with much improved smoothness near the leading and trailing edges, allows the use of small near wall grid spacing required by low Reynolds number turbulence models, and maintains orthogonality of the grid near the solid boundaries even for high flow angle cascades. A specialized embedded H-grid for application particularly to tip clearance flows is presented. This topology smoothly discretizes the domain without modifying the tip shape, while requiring only minor modifications to H-grid flow solvers. Better quantitative modeling of the tip clearance vortex structure than that obtained with a pinched tip approximation is demonstrated. The formulation of artificial dissipation terms for a semi-implicit, pressure-based (SIMPLE type) flow solver, is presented. It is applied to both the Euler and the Navier-Stokes equations, expressed in generalized coordinates using a non-staggered grid. This formulation is compared to some SIMPLE and time marching formulations, revealing the artificial dissipation inherent in some commonly used semi-implicit formulations. The effect of the amount of dissipation on the accuracy of the solution and the convergence rate is quantitatively demonstrated for a number of flow cases. The ability of the formulation to model complex steady turbomachinery flows is demonstrated, e.g. for pressure driven secondary flows, turbine nozzle wakes, turbulent boundary layers. The formulation's modeling of blade surface heat transfer is assessed. The numerical model is used to investigate the structure of phenomena associated with tip clearance flows in a turbine nozzle.

  18. Pulsating strings with mixed three-form flux

    NASA Astrophysics Data System (ADS)

    Hernández, Rafael; Nieto, Juan Miguel; Ruiz, Roberto

    2018-04-01

    Circular strings pulsating in AdS 3 × S 3 × T 4 with mixed R-R and NS-NS three-form fluxes can be described by an integrable deformation of the one-dimensional Neumann-Rosochatius mechanical model. In this article we find a general class of pulsating solutions to this integrable system that can be expressed in terms of elliptic functions. In the limit of strings moving in AdS 3 with pure NS-NS three-form flux, where the action reduces to the SL(2, ℝ) WZW model, we find agreement with the analysis of the classical solutions of the system performed using spectral flow by Maldacena and Ooguri. We use our elliptic solutions in AdS 3 to extend the dispersion relation beyond the limit of pure NS-NS flux.

  19. Shock-free configurations in two-and three-dimensional transonic flow

    NASA Technical Reports Server (NTRS)

    Seebass, A. R.

    1981-01-01

    Efforts to replace Sobieczky's complicated analog computations of solutions to the hodograph equations by a fast elliptic solver in order to generate shock-free airfoil designs more effectively are described. The indirect design of airfoil and wing shapes that are free from shock waves even though the local flow velocity exceeds the speed of sound is described. The problem of finding an airfoil in two dimensional, irrotational flow that has a prescribed pressure distribution is as addressed. Sobieczky's suggestion to use a fictitious gas for finding shock-free airfoils directly in the physical plane was the basis for a more efficient procedure for achieving the same end.

  20. Numerical Computation of Flame Spread over a Thin Solid in Forced Concurrent Flow with Gas-phase Radiation

    NASA Technical Reports Server (NTRS)

    Jiang, Ching-Biau; T'ien, James S.

    1994-01-01

    Excerpts from a paper describing the numerical examination of concurrent-flow flame spread over a thin solid in purely forced flow with gas-phase radiation are presented. The computational model solves the two-dimensional, elliptic, steady, and laminar conservation equations for mass, momentum, energy, and chemical species. Gas-phase combustion is modeled via a one-step, second order finite rate Arrhenius reaction. Gas-phase radiation considering gray non-scattering medium is solved by a S-N discrete ordinates method. A simplified solid phase treatment assumes a zeroth order pyrolysis relation and includes radiative interaction between the surface and the gas phase.

  1. Energy dependence of directed flow over a wide range of pseudorapidity in Au + Au collisions at the BNL Relativistic Heavy Ion Collider.

    PubMed

    Back, B B; Baker, M D; Ballintijn, M; Barton, D S; Betts, R R; Bickley, A A; Bindel, R; Budzanowski, A; Busza, W; Carroll, A; Chai, Z; Decowski, M P; García, E; Gburek, T; George, N; Gulbrandsen, K; Gushue, S; Halliwell, C; Hamblen, J; Hauer, M; Heintzelman, G A; Henderson, C; Hofman, D J; Hollis, R S; Hołyński, R; Holzman, B; Iordanova, A; Johnson, E; Kane, J L; Katzy, J; Khan, N; Kucewicz, W; Kulinich, P; Kuo, C M; Lin, W T; Manly, S; McLeod, D; Mignerey, A C; Nouicer, R; Olszewski, A; Pak, R; Park, I C; Pernegger, H; Reed, C; Remsberg, L P; Reuter, M; Roland, C; Roland, G; Rosenberg, L; Sagerer, J; Sarin, P; Sawicki, P; Seals, H; Sedykh, I; Skulski, W; Smith, C E; Stankiewicz, M A; Steinberg, P; Stephans, G S F; Sukhanov, A; Tang, J-L; Tonjes, M B; Trzupek, A; Vale, C; van Nieuwenhuizen, G J; Vaurynovich, S S; Verdier, R; Veres, G I; Wenger, E; Wolfs, F L H; Wosiek, B; Woźniak, K; Wuosmaa, A H; Wysłouch, B

    2006-07-07

    We report on measurements of directed flow as a function of pseudorapidity in Au + Au collisions at energies of square root of SNN = 19.6, 62.4, 130 and 200 GeV as measured by the PHOBOS detector at the BNL Relativistic Heavy Ion Collider. These results are particularly valuable because of the extensive, continuous pseudorapidity coverage of the PHOBOS detector. There is no significant indication of structure near midrapidity and the data surprisingly exhibit extended longitudinal scaling similar to that seen for elliptic flow and charged particle pseudorapidity density.

  2. Anisotropic flow of identified particles in Pb-Pb collisions at √SNN = 5.02 TeV

    NASA Astrophysics Data System (ADS)

    Bertens, Redmer Alexander

    2018-02-01

    Anisotropic flow is sensitive to the shear (η/s) and bulk (ζ/s) viscosity of the quark-gluon plasma created in heavy-ion collisions, as well as the initial state of such collisions and hadronization mechanisms. In these proceedings, elliptic (υ2) and higher harmonic (υ3, υ4) flow coefficients of π±, K±, p(p) and the ϕ-meson, are presented for Pb—Pb collisions at the highest-ever center-of-mass energy of = 5.02 TeV. Comparisons to hydrodynamic calculations (IP-Glasma, MUSIC, UrQMD) are shown to constrain the initial conditions and viscosity of the medium.

  3. Aerodynamic interaction between vortical wakes and lifting two-dimensional bodies

    NASA Technical Reports Server (NTRS)

    Stremel, Paul M.

    1987-01-01

    Unsteady rotor wake interactions with the empenage, tail boom, and other aerodynamic surfaces of a helicopter have a significant influence on its aerodynamic performance, the ride quality, and amount of vibration. A numerical method for computing the aerodynamic interaction between an interacting vortex wake and the viscous flow about arbitrary two-dimensional bodies has been developed to address this helicopter problem. The method solves for the flow field velocities on a body-fitted computational mesh using finite-difference techniques. The interaction of a rotor wake with the flow about a 4:1 elliptic cylinder at 45-deg incidence was calculated for a Reynolds number of 3000.

  4. Analysis of thermo-chemical nonequilibrium models for carbon dioxide flows

    NASA Technical Reports Server (NTRS)

    Rock, Stacey G.; Candler, Graham V.; Hornung, Hans G.

    1992-01-01

    The aerothermodynamics of thermochemical nonequilibrium carbon dioxide flows is studied. The chemical kinetics models of McKenzie and Park are implemented in separate three-dimensional computational fluid dynamics codes. The codes incorporate a five-species gas model characterized by a translational-rotational and a vibrational temperature. Solutions are obtained for flow over finite length elliptical and circular cylinders. The computed flowfields are then employed to calculate Mach-Zehnder interferograms for comparison with experimental data. The accuracy of the chemical kinetics models is determined through this comparison. Also, the methodology of the three-dimensional thermochemical nonequilibrium code is verified by the reproduction of the experiments.

  5. Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid-structure interaction, and free surface flow: Part I

    NASA Astrophysics Data System (ADS)

    Saye, Robert

    2017-09-01

    In this two-part paper, a high-order accurate implicit mesh discontinuous Galerkin (dG) framework is developed for fluid interface dynamics, facilitating precise computation of interfacial fluid flow in evolving geometries. The framework uses implicitly defined meshes-wherein a reference quadtree or octree grid is combined with an implicit representation of evolving interfaces and moving domain boundaries-and allows physically prescribed interfacial jump conditions to be imposed or captured with high-order accuracy. Part one discusses the design of the framework, including: (i) high-order quadrature for implicitly defined elements and faces; (ii) high-order accurate discretisation of scalar and vector-valued elliptic partial differential equations with interfacial jumps in ellipticity coefficient, leading to optimal-order accuracy in the maximum norm and discrete linear systems that are symmetric positive (semi)definite; (iii) the design of incompressible fluid flow projection operators, which except for the influence of small penalty parameters, are discretely idempotent; and (iv) the design of geometric multigrid methods for elliptic interface problems on implicitly defined meshes and their use as preconditioners for the conjugate gradient method. Also discussed is a variety of aspects relating to moving interfaces, including: (v) dG discretisations of the level set method on implicitly defined meshes; (vi) transferring state between evolving implicit meshes; (vii) preserving mesh topology to accurately compute temporal derivatives; (viii) high-order accurate reinitialisation of level set functions; and (ix) the integration of adaptive mesh refinement. In part two, several applications of the implicit mesh dG framework in two and three dimensions are presented, including examples of single phase flow in nontrivial geometry, surface tension-driven two phase flow with phase-dependent fluid density and viscosity, rigid body fluid-structure interaction, and free surface flow. A class of techniques known as interfacial gauge methods is adopted to solve the corresponding incompressible Navier-Stokes equations, which, compared to archetypical projection methods, have a weaker coupling between fluid velocity, pressure, and interface position, and allow high-order accurate numerical methods to be developed more easily. Convergence analyses conducted throughout the work demonstrate high-order accuracy in the maximum norm for all of the applications considered; for example, fourth-order spatial accuracy in fluid velocity, pressure, and interface location is demonstrated for surface tension-driven two phase flow in 2D and 3D. Specific application examples include: vortex shedding in nontrivial geometry, capillary wave dynamics revealing fine-scale flow features, falling rigid bodies tumbling in unsteady flow, and free surface flow over a submersed obstacle, as well as high Reynolds number soap bubble oscillation dynamics and vortex shedding induced by a type of Plateau-Rayleigh instability in water ripple free surface flow. These last two examples compare numerical results with experimental data and serve as an additional means of validation; they also reveal physical phenomena not visible in the experiments, highlight how small-scale interfacial features develop and affect macroscopic dynamics, and demonstrate the wide range of spatial scales often at play in interfacial fluid flow.

  6. Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid-structure interaction, and free surface flow: Part II

    NASA Astrophysics Data System (ADS)

    Saye, Robert

    2017-09-01

    In this two-part paper, a high-order accurate implicit mesh discontinuous Galerkin (dG) framework is developed for fluid interface dynamics, facilitating precise computation of interfacial fluid flow in evolving geometries. The framework uses implicitly defined meshes-wherein a reference quadtree or octree grid is combined with an implicit representation of evolving interfaces and moving domain boundaries-and allows physically prescribed interfacial jump conditions to be imposed or captured with high-order accuracy. Part one discusses the design of the framework, including: (i) high-order quadrature for implicitly defined elements and faces; (ii) high-order accurate discretisation of scalar and vector-valued elliptic partial differential equations with interfacial jumps in ellipticity coefficient, leading to optimal-order accuracy in the maximum norm and discrete linear systems that are symmetric positive (semi)definite; (iii) the design of incompressible fluid flow projection operators, which except for the influence of small penalty parameters, are discretely idempotent; and (iv) the design of geometric multigrid methods for elliptic interface problems on implicitly defined meshes and their use as preconditioners for the conjugate gradient method. Also discussed is a variety of aspects relating to moving interfaces, including: (v) dG discretisations of the level set method on implicitly defined meshes; (vi) transferring state between evolving implicit meshes; (vii) preserving mesh topology to accurately compute temporal derivatives; (viii) high-order accurate reinitialisation of level set functions; and (ix) the integration of adaptive mesh refinement. In part two, several applications of the implicit mesh dG framework in two and three dimensions are presented, including examples of single phase flow in nontrivial geometry, surface tension-driven two phase flow with phase-dependent fluid density and viscosity, rigid body fluid-structure interaction, and free surface flow. A class of techniques known as interfacial gauge methods is adopted to solve the corresponding incompressible Navier-Stokes equations, which, compared to archetypical projection methods, have a weaker coupling between fluid velocity, pressure, and interface position, and allow high-order accurate numerical methods to be developed more easily. Convergence analyses conducted throughout the work demonstrate high-order accuracy in the maximum norm for all of the applications considered; for example, fourth-order spatial accuracy in fluid velocity, pressure, and interface location is demonstrated for surface tension-driven two phase flow in 2D and 3D. Specific application examples include: vortex shedding in nontrivial geometry, capillary wave dynamics revealing fine-scale flow features, falling rigid bodies tumbling in unsteady flow, and free surface flow over a submersed obstacle, as well as high Reynolds number soap bubble oscillation dynamics and vortex shedding induced by a type of Plateau-Rayleigh instability in water ripple free surface flow. These last two examples compare numerical results with experimental data and serve as an additional means of validation; they also reveal physical phenomena not visible in the experiments, highlight how small-scale interfacial features develop and affect macroscopic dynamics, and demonstrate the wide range of spatial scales often at play in interfacial fluid flow.

  7. Coherent vertical structures in numerical simulations of buoyant plumes from wildland fires

    Treesearch

    Philip Cunningham; Scott L. Goodrick; M. Yousuff Hussaini; Rodman R. Linn

    2005-01-01

    The structure and dynamics of buoyant plumes arising from surface-based heat sources in a vertically sheared ambient atmospheric flow are examined via simulations of a three-dimensional, compressible numerical model. Simple circular heat sources and asymmetric elliptical ring heat sources that are representative of wildland fires of moderate intensity are considered....

  8. Evaluation of soil water stable isotope analysis by H2O(liquid)-H2O(vapor) equilibration method

    NASA Astrophysics Data System (ADS)

    Gralher, Benjamin; Stumpp, Christine

    2014-05-01

    Environmental tracers like stable isotopes of water (δ18O, δ2H) have proven to be valuable tools to study water flow and transport processes in soils. Recently, a new technique for soil water isotope analysis has been developed that employs a vapor phase being in isothermal equilibrium with the liquid phase of interest. This has increased the potential application of water stable isotopes in unsaturated zone studies as it supersedes laborious extraction of soil water. However, uncertainties of analysis and influencing factors need to be considered. Therefore, the objective of this study was to evaluate different methodologies of analysing stable isotopes in soil water in order to reduce measurement uncertainty. The methodologies included different preparation procedures of soil cores for equilibration of vapor and soil water as well as raw data correction. Two different inflatable sample containers (freezer bags, bags containing a metal layer) and equilibration atmospheres (N2, dry air) were tested. The results showed that uncertainties for δ18O were higher compared to δ2H that cannot be attributed to any specific detail of the processing routine. Particularly, soil samples with high contents of organic matter showed an apparent isotope enrichment which is indicative for fractionation due to evaporation. However, comparison of water samples obtained from suction cups with the local meteoric water line indicated negligible fractionation processes in the investigated soils. Therefore, a method was developed to correct the raw data reducing the uncertainties of the analysis.. We conclude that the evaluated method is advantageous over traditional methods regarding simplicity, resource requirements and sample throughput but careful consideration needs to be made regarding sample handling and data processing. Thus, stable isotopes of water are still a good tool to determine water flow and transport processes in the unsaturated zone.

  9. An In-Depth Study of the Abundance Pattern in the Hot Interstellar Medium in NGC 4649

    NASA Technical Reports Server (NTRS)

    Loewenstein, Michael; Davis, David S.

    2012-01-01

    We present our X-ray imaging spectroscopic analysis of data from deep Suzaku and XMM-Newton Observatory exposures of the Virgo Cluster elliptical galaxy NGC 4649 (M60), focusing on the abundance pattern in the hot interstellar medium (ISM). All measured elements show a radial decline in abundance, with the possible exception of Oxygen. We construct steady state solutions to the chemical evolution equations that include infall in addition to stellar mass return and Type Ia supernovae (SNIa) enrichment, and consider recently published SNIa yields. By adjusting a single model parameter to obtain a match to the global abundance pattern in NGC 4649 we infer that introduction of subsolar metallicity external gas has reduced the overall ISM metallicity and diluted the effectiveness of SNIa to skew the pattern towards low alpha/Fe ratios, and estimate the combination of SNIa rate and level of dilution. Evidently, newly-introduced gas is heated as it is integrated into, and interacts with, the hot gas that is already present. These results indicate a complex flow and enrichment history for NGC 4649, reflecting the continual evolution of elliptical galaxies beyond the formation epoch. The heating and circulation of accreted gas may help reconcile this dynamic history with the mostly passive evolution of elliptical stellar populations. In an appendix we examine the effects of the recent updated atomic database AtomDB in spectral fitting of thermal plasmas with hot ISM temperatures in the elliptical galaxy range.

  10. An In-Depth Study of the Abundance Pattern in the Hot Interstellar Medium in NGC 4649

    NASA Technical Reports Server (NTRS)

    Lowenstein, Michael; Davis, David S.

    2012-01-01

    We present our X-ray imaging spectroscopic analysis of data from deep Suzuku and XMM-Newton Observatory exposures of the Virgo Cluster elliptical galaxy NGC 4649 (M60), focusing on the abundance pattern in the hot interstellar medium (ISM). All measured elements show a radial decline in abundance, with the possible exception of O. We construct steady state solutions to the chemical evolution equations that include infall in addition to stellar mass return and SNIa enrichment, and consider recently published SNIa yields. By adjusting a single model parameter to obtain a match to the global abundance pattern in NGC 4649 we infer that accretion of subsolar metallicity external gas has reduced the overall ISM metallicity and diluted the effectiveness of SNIa to skew the pattern towards low alpha/Fe ratios, and estimate the combination of SNIa rate and level of dilution. Evidently, newly-introduced gas is heated as it is integrated into. and interacts with, the hot gas that is already present. These results indicate a complex flow and enrichment history for NGC 4649, reflecting the continual evolution of elliptical galaxies beyond the formation epoch. The heating and circulation of accreted gas may help reconcile this dynamic history with the mostly passive evolution of elliptical stellar populations. In an appendix we examine the effects of the recent updated atomic database AtomDB in spectral fitting of thermal plasmas with hot ISM temperatures in the elliptical galaxy range.

  11. TDIGG - TWO-DIMENSIONAL, INTERACTIVE GRID GENERATION CODE

    NASA Technical Reports Server (NTRS)

    Vu, B. T.

    1994-01-01

    TDIGG is a fast and versatile program for generating two-dimensional computational grids for use with finite-difference flow-solvers. Both algebraic and elliptic grid generation systems are included. The method for grid generation by algebraic transformation is based on an interpolation algorithm and the elliptic grid generation is established by solving the partial differential equation (PDE). Non-uniform grid distributions are carried out using a hyperbolic tangent stretching function. For algebraic grid systems, interpolations in one direction (univariate) and two directions (bivariate) are considered. These interpolations are associated with linear or cubic Lagrangian/Hermite/Bezier polynomial functions. The algebraic grids can subsequently be smoothed using an elliptic solver. For elliptic grid systems, the PDE can be in the form of Laplace (zero forcing function) or Poisson. The forcing functions in the Poisson equation come from the boundary or the entire domain of the initial algebraic grids. A graphics interface procedure using the Silicon Graphics (GL) Library is included to allow users to visualize the grid variations at each iteration. This will allow users to interactively modify the grid to match their applications. TDIGG is written in FORTRAN 77 for Silicon Graphics IRIS series computers running IRIX. This package requires either MIT's X Window System, Version 11 Revision 4 or SGI (Motif) Window System. A sample executable is provided on the distribution medium. It requires 148K of RAM for execution. The standard distribution medium is a .25 inch streaming magnetic IRIX tape cartridge in UNIX tar format. This program was developed in 1992.

  12. Electrical tuning of the polarization state of light using graphene-integrated anisotropic metasurfaces

    NASA Astrophysics Data System (ADS)

    Dutta-Gupta, Shourya; Dabidian, Nima; Kholmanov, Iskandar; Belkin, Mikhail A.; Shvets, Gennady

    2017-03-01

    Plasmonic metasurfaces have been employed for moulding the flow of transmitted and reflected light, thereby enabling numerous applications that benefit from their ultra-thin sub-wavelength format. Their appeal is further enhanced by the incorporation of active electro-optic elements, paving the way for dynamic control of light's properties. In this paper, we realize a dynamic polarization state generator using a graphene-integrated anisotropic metasurface (GIAM) that converts the linear polarization of the incident light into an elliptical one. This is accomplished by using an anisotropic metasurface with two principal polarization axes, one of which possesses a Fano-type resonance. A gate-controlled single-layer graphene integrated with the metasurface was employed as an electro-optic element controlling the phase and intensity of light polarized along the resonant axis of the GIAM. When the incident light is polarized at an angle to the resonant axis of the metasurface, the ellipticity of the reflected light can be dynamically controlled by the application of a gate voltage. Thus accomplished dynamic polarization control is experimentally demonstrated and characterized by measuring the Stokes polarization parameters. Large changes of the ellipticity and the tilt angle of the polarization ellipse are observed. Our measurements show that the tilt angle can be changed from positive values through zero to negative values while keeping the ellipticity constant, potentially paving the way to rapid ellipsometry and other characterization techniques requiring fast polarization shifting. This article is part of the themed issue 'New horizons for nanophotonics'.

  13. Use of Inert Gases and Carbon Monoxide to Study the Possible Influence of Countercurrent Exchange on Passive Absorption from the Small Bowel

    PubMed Central

    Bond, John H.; Levitt, David G.; Levitt, Michael D.

    1974-01-01

    The purpose of the present study was to quantitate the influence of countercurrent exchange on passive absorption of highly diffusible substances from the small intestine of the rabbit. The absorption of carbon monoxide, which is tightly bound to hemoglobin and therefore cannot exchange, was compared to the absorption of four unbound gases (H2, He, CH4, and 133Xe), which should exchange freely. The degree to which the observed absorption of the unbound gases falls below that predicted from CO absorption should provide a quantitative measure of countercurrent exchange. CO uptake at high luminal Pco is flow-limited and, assuming that villus and central hemoglobin concentrations are equal, the flow that equilibrates with CO (Fco) was calculated to equal 7.24 ml/min/100 g. The observed absorption rate of the unbound gases was from two to four times greater than would have been predicted had their entire uptake been accounted for by equilibration with Fco. This is the opposite of what would occur if countercurrent exchange retarded absorption of the unbound gases. The unbound gases have both flow- and diffusion-limited components, and Fco should account for only the fraction of absorption that is flow limited. A simple model of perfusion and diffusion made it possible to calculate the fraction of the total uptake of unbound gases that was flow limited. This fraction of the total observed absorption rate was still about 1.8 times greater than predicted by CO absorption. A possible explanation for this discrepancy is that plasma skimming reduces the hemoglobin of villus blood to about 60% of that of central blood. Thus, Fco is actually about 1.7 times greater than initially calculated, and with this correction, there is close agreement between the predicted and observed rates of absorption of each of the unbound gases. We conclude that countercurrent exchange does not influence passive absorption under the conditions of this study. PMID:4436431

  14. Two-dimensional dynamics of a trapped active Brownian particle in a shear flow

    NASA Astrophysics Data System (ADS)

    Li, Yunyun; Marchesoni, Fabio; Debnath, Tanwi; Ghosh, Pulak K.

    2017-12-01

    We model the two-dimensional dynamics of a pointlike artificial microswimmer diffusing in a harmonic trap subject to the shear flow of a highly viscous medium. The particle is driven simultaneously by the linear restoring force of the trap, the drag force exerted by the flow, and the torque due to the shear gradient. For a Couette flow, elliptical orbits in the noiseless regime, and the correlation functions between the particle's displacements parallel and orthogonal to the flow are computed analytically. The effects of thermal fluctuations (translational) and self-propulsion fluctuations (angular) are treated separately. Finally, we discuss how to extend our approach to the diffusion of a microswimmer in a Poiseuille flow. These results provide an accurate reference solution to investigate, both numerically and experimentally, hydrodynamics corrections to the diffusion of active matter in confined geometries.

  15. Collective Flow and Mach Cones with transport

    NASA Astrophysics Data System (ADS)

    Bouras, I.; El, A.; Fochler, O.; Reining, F.; Uphoff, J.; Wesp, C.; Xu, Z.; Greiner, C.

    2011-04-01

    Fast thermalization and a strong build up of elliptic flow of QCD matter were investigated within the pQCD based 3+1 dimensional parton transport model BAMPS including bremsstrahlung 2 ↔ 3 processes. Within the same framework quenching of gluonic jets in Au+Au collisions at RHIC can be understood. The development of conical structure by gluonic jets is investigated in a static box for the regimes of small and large dissipation. Furthermore we demonstrate two different approaches to extract the shear viscosity coefficient η from a microscopical picture.

  16. The 1980-81 AFOSR (Air Force Office of Scientific Research)-HTTM (Heat Transfer and Turbulence Mechanics)-Stanford Conference on Complex Turbulent Flows: Comparison of Computation and Experiment. Volume 3. Comparison of Computation with Experiment, and Computors’ Summary Report.

    DTIC Science & Technology

    1981-09-01

    organized the paperwork system , including finances, travel, k, , f iling, and programs in a highly independent and responsible fashion. Thanks are also due...three-dimensional transformation procedure for arbitrary non-orthogonal coordinate systems , for the purpose of the three-dimensional turbulent...transformation procedure for arbitrary non-orthogonal coordinate systems so as to acquire the generality in the application for elliptic flows (for the square

  17. Effective distributions of quasiparticles for thermal photons

    NASA Astrophysics Data System (ADS)

    Monnai, Akihiko

    2015-07-01

    It has been found in recent heavy-ion experiments that the second and the third flow harmonics of direct photons are larger than most theoretical predictions. In this study, I construct effective parton phase-space distributions with in-medium interaction using quasiparticle models so that they are consistent with a lattice QCD equation of state. Then I investigate their effects on thermal photons using a hydrodynamic model. Numerical results indicate that elliptic flow and transverse momentum spectra are modified by the corrections to Fermi-Dirac and Bose-Einstein distributions.

  18. Multiscale modeling of sickle anemia blood blow by Dissipative Partice Dynamics

    NASA Astrophysics Data System (ADS)

    Lei, Huan; Caswell, Bruce; Karniadakis, George

    2011-11-01

    A multi-scale model for sickle red blood cell is developed based on Dissipative Particle Dynamics (DPD). Different cell morphologies (sickle, granular, elongated shapes) typically observed in in vitro and in vivo are constructed and the deviations from the biconcave shape is quantified by the Asphericity and Elliptical shape factors. The rheology of sickle blood is studied in both shear and pipe flow systems. The flow resistance obtained from both systems exhibits a larger value than the healthy blood flow due to the abnormal cell properties. However, the vaso-occulusion phenomenon, reported in a recent microfluid experiment, is not observed in the pipe flow system unless the adhesive interactions between sickle blood cells and endothelium properly introduced into the model.

  19. Exact Solutions to Several Nonlinear Cases of Generalized Grad-Shafranov Equation for Ideal Magnetohydrodynamic Flows in Axisymmetric Domain

    NASA Astrophysics Data System (ADS)

    Adem, Abdullahi Rashid; Moawad, Salah M.

    2018-05-01

    In this paper, the steady-state equations of ideal magnetohydrodynamic incompressible flows in axisymmetric domains are investigated. These flows are governed by a second-order elliptic partial differential equation as a type of generalized Grad-Shafranov equation. The problem of finding exact equilibria to the full governing equations in the presence of incompressible mass flows is considered. Two different types of constraints on position variables are presented to construct exact solution classes for several nonlinear cases of the governing equations. Some of the obtained results are checked for their applications to magnetic confinement plasma. Besides, they cover many previous configurations and include new considerations about the nonlinearity of magnetic flux stream variables.

  20. The 3-D CFD modeling of gas turbine combustor-integral bleed flow interaction

    NASA Technical Reports Server (NTRS)

    Chen, D. Y.; Reynolds, R. S.

    1993-01-01

    An advanced 3-D Computational Fluid Dynamics (CFD) model was developed to analyze the flow interaction between a gas turbine combustor and an integral bleed plenum. In this model, the elliptic governing equations of continuity, momentum and the k-e turbulence model were solved on a boundary-fitted, curvilinear, orthogonal grid system. The model was first validated against test data from public literature and then applied to a gas turbine combustor with integral bleed. The model predictions agreed well with data from combustor rig testing. The model predictions also indicated strong flow interaction between the combustor and the integral bleed. Integral bleed flow distribution was found to have a great effect on the pressure distribution around the gas turbine combustor.

  1. Enhanced Elliptic Grid Generation

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.

    2007-01-01

    An enhanced method of elliptic grid generation has been invented. Whereas prior methods require user input of certain grid parameters, this method provides for these parameters to be determined automatically. "Elliptic grid generation" signifies generation of generalized curvilinear coordinate grids through solution of elliptic partial differential equations (PDEs). Usually, such grids are fitted to bounding bodies and used in numerical solution of other PDEs like those of fluid flow, heat flow, and electromagnetics. Such a grid is smooth and has continuous first and second derivatives (and possibly also continuous higher-order derivatives), grid lines are appropriately stretched or clustered, and grid lines are orthogonal or nearly so over most of the grid domain. The source terms in the grid-generating PDEs (hereafter called "defining" PDEs) make it possible for the grid to satisfy requirements for clustering and orthogonality properties in the vicinity of specific surfaces in three dimensions or in the vicinity of specific lines in two dimensions. The grid parameters in question are decay parameters that appear in the source terms of the inhomogeneous defining PDEs. The decay parameters are characteristic lengths in exponential- decay factors that express how the influences of the boundaries decrease with distance from the boundaries. These terms govern the rates at which distance between adjacent grid lines change with distance from nearby boundaries. Heretofore, users have arbitrarily specified decay parameters. However, the characteristic lengths are coupled with the strengths of the source terms, such that arbitrary specification could lead to conflicts among parameter values. Moreover, the manual insertion of decay parameters is cumbersome for static grids and infeasible for dynamically changing grids. In the present method, manual insertion and user specification of decay parameters are neither required nor allowed. Instead, the decay parameters are determined automatically as part of the solution of the defining PDEs. Depending on the shape of the boundary segments and the physical nature of the problem to be solved on the grid, the solution of the defining PDEs may provide for rates of decay to vary along and among the boundary segments and may lend itself to interpretation in terms of one or more physical quantities associated with the problem.

  2. Comparison of Mixing Calculations for Reacting and Non-Reacting Flows in a Cylindrical Duct

    NASA Technical Reports Server (NTRS)

    Oechsle, V. L.; Mongia, H. C.; Holdeman, J. D.

    1994-01-01

    A production 3-D elliptic flow code has been used to calculate non-reacting and reacting flow fields in an experimental mixing section relevant to a rich burn/quick mix/lean burn (RQL) combustion system. A number of test cases have been run to assess the effects of the variation in the number of orifices, mass flow ratio, and rich-zone equivalence ratio on the flow field and mixing rates. The calculated normalized temperature profiles for the non-reacting flow field agree qualitatively well with the normalized conserved variable isopleths for the reacting flow field indicating that non-reacting mixing experiments are appropriate for screening and ranking potential rapid mixing concepts. For a given set of jet momentum-flux ratio, mass flow ratio, and density ratio (J, MR, and DR), the reacting flow calculations show a reduced level of mixing compared to the non-reacting cases. In addition, the rich-zone equivalence ratio has noticeable effect on the mixing flow characteristics for reacting flows.

  3. Flow separation of currents in shallow water

    USGS Publications Warehouse

    Signell, Richard P.

    1989-01-01

    Flow separation of currents in shallow coastal areas is investigated using a boundary layer model for two-dimensional (depth-averaged) tidal flow past an elliptic headland. If the shoaling region near the coast is narrow compared to the scale of the headland, bottom friction causes the flow to separate just downstream of the point where the pressure gradient switches from favoring to adverse. As long as the shoaling region at the coast is well resolved, the inclusion of eddy viscosity and a no-slip boundary condition have no effect on this result. An approximate analytic solution for the pressure gradient along the boundary is obtained by assuming the flow away from the immediate vicinity of the boundary is irrotational. On the basis of the pressure gradient obtained from the irrotational flow solution, flow separation is a strong function of the headland aspect ratio, an equivalent Reynolds number, and a Keulegan-Carpenter number.

  4. PNS predictions for supersonic/hypersonic flows over finned missile configurations

    NASA Technical Reports Server (NTRS)

    Bhutta, Bilal A.; Lewis, Clark H.

    1992-01-01

    Finned missile design entails accurate and computationally fast numerical techniques for predicting viscous flows over complex lifting configurations at small to moderate angles of attack and over Mach 3 to 15; these flows are often characterized by strong embedded shocks, so that numerical algorithms are also required to capture embedded shocks. The recent real-gas Flux Vector Splitting technique is here extended to investigate the Mach 3 flow over a typical finned missile configuration with/without side fin deflections. Elliptic grid-generation techniques for Mach 15 flows are shown to be inadequate for Mach 3 flows over finned configurations and need to be modified. Fin-deflection studies indicate that even small amounts of missile fin deflection can substantially modify vehicle aerodynamics. This 3D parabolized Navier-Stokes scheme is also extended into an efficient embedded algorithm for studying small axially separated flow regions due to strong fin and control surface deflections.

  5. Mean velocities and Reynolds stresses in a juncture flow

    NASA Technical Reports Server (NTRS)

    Mcmahon, H.; Hubbartt, J.; Kubendran, L.

    1982-01-01

    Values of three mean velocity components and six turbulence stresses measured in a juncture flow are presented and discussed. The juncture flow is generated by a constant thickness body, having an elliptical leading edge, which is mounted perpendicular to a large flat plate along which a turbulent boundary layer is growing. The measurements were carried out at two streamwise stations in the juncture and were made using two single sensor hot-wire probes. The secondary flow in the juncture results in a considerable distortion in the mean velocity profiles. The secondary flow also transports turbulence in the juncture flow and has a large effect on the turbulence stresses. From visual inspection of the results, there is considerable evidence of similarity between the turbulent shear stresses and the mean flow strain rates. There is some evidence of similarity between the variations in the turbulent stress components.

  6. Heat transfer enhancement of PCM melting in 2D horizontal elliptical tube using metallic porous matrix

    NASA Astrophysics Data System (ADS)

    Jourabian, Mahmoud; Farhadi, Mousa; Rabienataj Darzi, Ahmad Ali

    2016-12-01

    In this study, the melting process of ice as a phase-change material (PCM) saturated with a nickel-steel porous matrix inside a horizontal elliptical tube is investigated. Due to the low thermal conductivity of the PCM, it is motivated to augment the heat transfer performance of the system simultaneously by finding an optimum value of the aspect ratio and impregnating a metallic porous matrix into the base PCM. The lattice Boltzmann method with a double distribution function formulated based on the enthalpy method, is applied at the representative elementary volume scale under the local thermal equilibrium assumption between the PCM and porous matrix in the composite. While reducing or increasing the aspect ratio of the circular tubes leads to the expedited melting, the 90° inclination of each elliptical tube in the case of the pure PCM melting does not affect the melting rate. With the reduction in the porosity, the effective thermal conductivity and melting rate in all tubes promoted. Although the natural convection is fully suppressed due to the significant flow blockage in the porous structure, the melting rates are generally increased in all cases.

  7. Effect of Dihedral Angle and Porosity on Percolating-Sealing Capacity of Texturally Equilibrated Rock Salt

    NASA Astrophysics Data System (ADS)

    Ghanbarzadeh, S.; Hesse, M. A.; Prodanovic, M.; Gardner, J. E.

    2013-12-01

    Salt deposits in sedimentary basins have long been considered to be a seal against fluid penetration. However, experimental, theoretical and field evidence suggests brine (and oil) can wet salt crystal surfaces at higher pressures and temperatures, which can form a percolating network. This network may act as flow conduits even at low porosities. The aim of this work is to investigate the effects of dihedral angle and porosity on the formation of percolating paths in different salt network lattices. However, previous studies considered only simple homogeneous and isotropic geometries. This work extends the analysis to realistic salt textures by presenting a novel numerical method to describe the texturally equilibrated pore shapes in polycrystalline rock salt and brine systems. First, a theoretical interfacial topology was formulated to minimize the interfacial surface between brine and salt. Then, the resulting nonlinear system of ordinary differential equations was solved using the Newton-Raphson method. Results show that the formation of connected fluid channels is more probable in lower dihedral angles and at higher porosities. The connectivity of the pore network is hysteretic, because the connection and disconnection at the pore throats for processes with increasing or decreasing porosities occur at different porosities. In porous media with anisotropic solids, pores initially connect in the direction of the shorter crystal axis and only at much higher porosities in the other directions. Consequently, even an infinitesimal elongation of the crystal shape can give rise to very strong anisotropy in permeability of the pore network. Also, fluid flow was simulated in the resulting pore network to calculate permeability, capillary entry pressure and velocity field. This work enabled us to investigate the opening of pore space and sealing capacity of rock salts. The obtained pore geometries determine a wide range of petrophysical properties such as permeability and capillary entry pressure. This expanded knowledge of the salt textural behavior vs. depth could also improve drilling operations in salt. Second, a series of experiments in different P-T conditions was carried out to investigate the actual shape of equilibrated channels in salt. The synthetic salt samples were scanned at the High Resolution X-ray CT Facility at the Department of Geological Science, the University of Texas at Austin with resolution in 1-6 micron range. The experimental results show both equilibrated (tubular pores) and non-equilibrated (planar features) in salt structure. Image processing was carried out by two open source software programs: ImageJ, which is a public domain Java image processing program, and 3DMA-Rock, which is a software package for quantitative analyzing of the pore space in three-dimensional X-ray computed microtomographic images of rock. We obtain medial axis and medial surface of the pore space, as well as find and characterize the corresponding pore-throat network. We also report permeability of the pore space computed using Palabos software.

  8. Gas chemistry and thermometry of the Cerro Prieto, Mexico, geothermal field

    USGS Publications Warehouse

    Nehring, N.L.; D'Amore, F.

    1984-01-01

    Gas compositions of Cerro Prieto wells in 1977 reflected strong boiling in the reservoir around wells M-20 and M-25. This boiling zone appeared to be collapsing in 1982 when a number of wells in this area of the field were shut-in. In 1977 and 1982, gas compositions also showed boiling zones corresponding to faults H and L postulated by Halfman et al. (1982). Four gas geothermometers were applied, based on reservoir equilibria and calculated fugacities. The Fisher - Tropsch reaction predicted high temperatures and appeared to re-equilibrate slowly, whereas the H2S reaction predicted low temperatures and appeared to re-equilibrate rapidly. Hydrogen and NH3 reactions were intermediate. Like gas compositions, the geothermometers reflected reservoir processes, such as boiling. Surface gas compositions are related to well compositions, but contain large concentrations of N2 originating from air dissolved in groundwater. The groundwater appears to originate in the east and flow over the production field before mixing with reservoir gases near the surface. ?? 1984.

  9. Micro-scale dynamic simulation of erythrocyte-platelet interaction in blood flow.

    PubMed

    AlMomani, T; Udaykumar, H S; Marshall, J S; Chandran, K B

    2008-06-01

    Platelet activation, adhesion, and aggregation on the blood vessel and implants result in the formation of mural thrombi. Platelet dynamics in blood flow is influenced by the far more numerous erythrocytes (RBCs). This is particularly the case in the smaller blood vessels (arterioles) and in constricted regions of blood flow (such as in valve leakage and hinge regions) where the dimensions of formed elements of blood become comparable with that of the flow geometry. In such regions, models to predict platelet motion, activation, aggregation and adhesion must account for platelet-RBC interactions. This paper studies platelet-RBC interactions in shear flows by performing simulations of micro-scale dynamics using a computational fluid dynamics (CFD) model. A level-set sharp-interface immersed boundary method is employed in the computations in which RBC and platelet boundaries are tracked on a two-dimensional Cartesian grid. The RBCs are assumed to have an elliptical shape and to deform elastically under fluid forces while the platelets are assumed to behave as rigid particles of circular shape. Forces and torques between colliding blood cells are modeled using an extension of the soft-sphere model for elliptical particles. RBCs and platelets are transported under the forces and torques induced by fluid flow and cell-cell and cell-platelet collisions. The simulations show that platelet migration toward the wall is enhanced with increasing hematocrit, in agreement with past experimental observations. This margination is seen to occur due to hydrodynamic forces rather than collisional forces or volumetric exclusion effects. The effect of fluid shear forces on the platelets increases exponentially as a function of hematocrit for the range of parameters covered in this study. The micro-scale analysis can be potentially employed to obtain a deterministic relationship between fluid forces and platelet activation and aggregation in blood flow past cardiovascular implants.

  10. Effect of load transients on SOFC operation—current reversal on loss of load

    NASA Astrophysics Data System (ADS)

    Gemmen, Randall S.; Johnson, Christopher D.

    The dynamics of solid oxide fuel cell (SOFC) operation have been considered previously, but mainly through the use of one-dimensional codes applied to co-flow fuel cell systems. In this paper several geometries are considered, including cross-flow, co-flow, and counter-flow. The details of the model are provided, and the model is compared with some initial experimental data. For parameters typical of SOFC operation, a variety of transient cases are investigated, including representative load increase and decrease and system shutdown. Of particular note for large load decrease conditions (e.g., shutdown) is the occurrence of reverse current over significant portions of the cell, starting from the moment of load loss up to the point where equilibrated conditions again provide positive current. Consideration is given as to when such reverse current conditions might most significantly impact the reliability of the cell.

  11. Congenital left ventricular outpouchings: a systematic review of 839 cases and introduction of a novel classification after two centuries.

    PubMed

    Malakan Rad, Elaheh; Awad, Sawsan; Hijazi, Ziyad M

    2014-01-01

    Congenital left ventricular outpouchings (LVOs) are reported under five overlapping and poorly defined terms including left ventricular accessory chamber, left ventricular aneurysm (LVA), left ventricular diverticulum (LVD), double-chambered LV, and accessory left ventricle. Diagnostic criteria are frequently mixed and not mutually exclusive. They convey no information regarding treatment strategy and prognosis. The aim of this systematic review is to provide a clear and inclusive classification, with therapeutic and prognostic implications, for congenital LVOs. We performed three separate sets of search on three subjects including "congenital left ventricular outpouchings," "important and simply measurable markers of left ventricular function," and "relationship of mechanics of intraventricular blood flow and optimal vortex formation in left ventricle and elliptical geometry of LV." We enrolled case series, review articles, and case reports with literature review. All types of acquired LVO's were excluded. We studied the abstracts of all searched articles. We focused on diagnostic criteria and patients' outcome. To examine the validity and reliability of the novel classification, fifteen previous studies were revisited using the novel classification. A total of 20 papers from 11 countries fulfilled our inclusion criteria. The age of patients ranged from prenatal age to geriatric age range. Diagnostic criteria were clearly stated only for two of the above five terms (i.e., congenital LVA and congenital LVD). Cases with mixed diagnostic criteria were frequent.Elliptical geometry of left ventricle was found to have significant impact on effective blood flow mechanics in LV. A simple inclusive classification for congenital LVOs, with therapeutic and prognostic implications, was introduced. The cornerstone of this classification is elliptical LV geometry. Large-type IIc LVO have dismal prognosis, if left untreated. LVO type I and small LVO type IIa have the best prognosis. © 2014 Wiley Periodicals, Inc.

  12. A model for 3-D sonic/supersonic transverse fuel injection into a supersonic air stream

    NASA Technical Reports Server (NTRS)

    Bussing, Thomas R. A.; Lidstone, Gary L.

    1989-01-01

    A model for sonic/supersonic transverse fuel injection into a supersonic airstream is proposed. The model replaces the hydrogen jet up to the Mach disk plane and the elliptic parts of the air flow field around the jet by an equivalent body. The main features of the model were validated on the basis of experimental data.

  13. Galaxy distances and deviations from universal expansion; Proceedings of the NATO Advanced Research Workshop, Kona, HI, Jan. 13-17, 1986

    NASA Astrophysics Data System (ADS)

    Madore, Barry F.; Tully, R. Brent

    A collection of papers on galaxy distances and deviations from universal expansion is presented. Individual topics addressed include: new results on the distance scale and the Hubble constant, Magellanic Clouds and the distance scale, CCD observations of Cepheids in nearby galaxies, distances using A supergiant stars, infrared calibration of the Cepheid distance scale, two stepping stones to the Hubble constant, physical models of supernovae and the distance scale, 21 cm line widths and distances of spiral galaxies, infrared color-luminosity relations for field galaxies, minimizing the scatter in the Tully-Fisher relation, photometry of galaxies and the local peculiar motion, elliptical galaxies and nonuniformities in the Hubble flow, and large-scale anisotropy in the Hubble flow. Also discussed are: improved distance indicator for elliptical galaxies, anisotropy of galaxies detected by IRAS, the local gravitational field, measurements of the CBR, measure of cosmological times, ages from nuclear cosmochronology, extragalactic gas at high redshift, supercluster infall models, Virgo infall and the mass density of the universe, dynamics of superclusters and Omega(0), distribution of galaxies versus dark matter, peculiar velocities and galaxy formation, cosmological shells and blast waves.

  14. Linear instability in the wake of an elliptic wing

    NASA Astrophysics Data System (ADS)

    He, Wei; Tendero, Juan Ángel; Paredes, Pedro; Theofilis, Vassilis

    2017-12-01

    Linear global instability analysis has been performed in the wake of a low aspect ratio three-dimensional wing of elliptic cross section, constructed with appropriately scaled Eppler E387 airfoils. The flow field over the airfoil and in its wake has been computed by full three-dimensional direct numerical simulation at a chord Reynolds number of Rec=1750 and two angles of attack, {AoA}=0° and 5°. Point-vortex methods have been employed to predict the inviscid counterpart of this flow. The spatial BiGlobal eigenvalue problem governing linear small-amplitude perturbations superposed upon the viscous three-dimensional wake has been solved at several axial locations, and results were used to initialize linear PSE-3D analyses without any simplifying assumptions regarding the form of the trailing vortex system, other than weak dependence of all flow quantities on the axial spatial direction. Two classes of linearly unstable perturbations were identified, namely stronger-amplified symmetric modes and weaker-amplified antisymmetric disturbances, both peaking at the vortex sheet which connects the trailing vortices. The amplitude functions of both classes of modes were documented, and their characteristics were compared with those delivered by local linear stability analysis in the wake near the symmetry plane and in the vicinity of the vortex core. While all linear instability analysis approaches employed have delivered qualitatively consistent predictions, only PSE-3D is free from assumptions regarding the underlying base flow and should thus be employed to obtain quantitative information on amplification rates and amplitude functions in this class of configurations.

  15. Characterizing NZ equilibration in dynamically deformed system at 15, 25, 35 and 45 MeV/nucleon

    NASA Astrophysics Data System (ADS)

    Jedele, Andrea

    2017-09-01

    Neutron-proton equilibration is sensitive to the asymmetry energy in the nuclear equation of state. The process is governed by the contact time between the colliding nuclei and the gradient of the potential driving the equilibration. Recent work has shown NZ equilibration between the two largest fragments originating from the excited projectile-like fragment (PLF*) follows first-order kinetics in 70Zn, 64Zn and 64Ni symmetric reaction systems at 35 MeV/nucleon. The rate constant extracted was 3 zs-1, corresponding to a mean equilibration lifetime of 0.3 zs. An experiment has been proposed to examine the characteristics of NZ equilibration in 40Ca+ 64 , 70Zn at 15, 25, 35 and 45 MeV/nucleon with the NIMROD array.

  16. A cooling flow in a high-redshift, X-ray-selected cluster of galaxies

    NASA Astrophysics Data System (ADS)

    Nesci, Roberto; Gioia, Isabella M.; Maccacaro, Tommaso; Morris, Simon L.; Perola, Giuseppe C.; Schild, Rudolph E.; Wolter, Anna

    1989-09-01

    The X-ray cluster of galaxies IE 0839.9 + 2938 was serendipitously discovered with the Einstein Observatory. CCD imaging at R and V wavelengths show that the color of the dominant elliptical galaxy of this cluster is significantly bluer than the colors of the next brightest cluster galaxies. Strong emission lines, typical of cD galaxies with cooling flows, are present in the spectrum of the dominant galaxy, from which a redshift of 0.193 is derived. The emitting line region is spatially resolved with an extension of about 13 kpc. All the collected data suggest that this cluster is one of the most distant cooling flow clusters known to date.

  17. A cooling flow in a high-redshift, X-ray-selected cluster of galaxies

    NASA Technical Reports Server (NTRS)

    Nesci, Roberto; Perola, Giuseppe C.; Gioia, Isabella M.; Maccacaro, Tommaso; Morris, Simon L.

    1989-01-01

    The X-ray cluster of galaxies IE 0839.9 + 2938 was serendipitously discovered with the Einstein Observatory. CCD imaging at R and V wavelengths show that the color of the dominant elliptical galaxy of this cluster is significantly bluer than the colors of the next brightest cluster galaxies. Strong emission lines, typical of cD galaxies with cooling flows, are present in the spectrum of the dominant galaxy, from which a redshift of 0.193 is derived. The emitting line region is spatially resolved with an extension of about 13 kpc. All the collected data suggest that this cluster is one of the most distant cooling flow clusters known to date.

  18. Multibunch solutions of the differential-difference equation for traffic flow

    PubMed

    Nakanishi

    2000-09-01

    The Newell-Whitham type of car-following model, with a hyperbolic tangent as the optimal velocity function, has a finite number of exact steady traveling wave solutions that can be expressed in terms of elliptic theta functions. Each such solution describes a density wave with a definite number of car bunches on a circuit. In our numerical simulations, we observe a transition process from uniform flow to congested flow described by a one-bunch analytic solution, which appears to be an attractor of the system. In this process, the system exhibits a series of transitions through which it comes to assume configurations closely approximating multibunch solutions with successively fewer bunches.

  19. Turbulent flow around a wing-fuselage type juncture

    NASA Technical Reports Server (NTRS)

    Kubendran, L. R.; Mcmahon, H. M.; Hubbartt, J. E.

    1985-01-01

    The flow over a 58-mm-thick uniform-thickness winglike body having a 1.5:1 elliptical leading edge and joined to a large flat plate (representing an aircraft fuselage) is characterized experimentally at freestream velocity 15 m/s, corresponding to Reynolds number 940,000/m, using hot-wire anemometry. The results are presented graphically, and it is found that the horseshoe vortex formed by the separation of the fuselage boundary layer ahead of the wing leading edge is effective in transporting turbulence and modifying the mean-flow characteristics and the turbulent-stress distribution. It is suggested that the slenderness ratio of the leading edge is the dominant factor affecting the strength and location of the vortex.

  20. Finite elements and finite differences for transonic flow calculations

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Murman, E. M.; Wellford, L. C.

    1978-01-01

    The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.

  1. Potential flow about elongated bodies of revolution

    NASA Technical Reports Server (NTRS)

    Kaplan, Carl

    1936-01-01

    This report presents a method of solving the problem of axial and transverse potential flows around arbitrary elongated bodies of revolution. The solutions of Laplace's equation for the velocity potentials of the axial and transverse flows, the system of coordinates being an elliptic one in a meridian plane, are given. The theory is applied to a body of revolution obtained from a symmetrical Joukowsky profile, a shape resembling an airship hull. The pressure distribution and the transverse-force distribution are calculated and serve as examples of the procedure to be followed in the case of an actual airship. A section on the determination of inertia coefficients is also included in which the validity of some earlier work is questioned.

  2. A model of oscillatory transport in granular soils, with application to barometric pumping and earth tides.

    PubMed

    Neeper, D A

    2001-04-01

    A simple algebraic model is proposed to estimate the transport of a volatile or soluble chemical caused by oscillatory flow of fluid in a porous medium. The model is applied to the barometric pumping of vapors in the vadose zone, and to the transport of dissolved species by earth tides in an aquifer. In the model, the fluid moves sinusoidally with time in the porosity of the soil. The chemical concentration in the mobile fluid is considered to equilibrate with the concentration in the surrounding matrix according to a characteristic time governed by diffusion, sorption, or other rate processes. The model provides a closed form solution, to which barometric pressure data are applied in an example of pore gas motion in the vadose zone. The model predicts that the additional diffusivity due barometric pumping in an unfractured vadose zone would be comparable to the diffusivity in stagnant pore gas if the equilibration time is 1 day or longer. Water motion due to the M2 lunar tide is examined as an example of oscillatory transport in an aquifer. It is shown that the tidal motion of the water in an aquifer might significantly increase the vertical diffusivity of dissolved species when compared to diffusion in an absolutely stagnant aquifer, but the hydrodynamic dispersivity due to tidal motion or gravitational flow would probably exceed the diffusivity due to oscillatory advection.

  3. Longitudinal hydrodynamics from event-by-event Landau initial conditions

    DOE PAGES

    Sen, Abhisek; Gerhard, Jochen; Torrieri, Giorgio; ...

    2015-02-02

    Here we investigate three-dimensional ideal hydrodynamic evolution, with Landau initial conditions, incorporating event-by-event variation with many events and transverse density inhomogeneities. We show that the transition to boost-invariant flow occurs too late for realistic setups, with corrections of θ (20%-30%) expected at freeze-out for most scenarios. Moreover, the deviation from boost invariance is correlated with both transverse flow and elliptic flow, with the more highly transversely flowing regions also showing the most violation of boost invariance. Therefore, if longitudinal flow is not fully developed at the early stages of heavy ion collisions, hydrodynamics where boost invariance holds at midrapidity ismore » inadequate to extract transport coefficients of the quark-gluon plasma. We conclude by arguing that developing experimental probes of boost invariance is necessary, and suggest some promising directions in this regard.« less

  4. Azimuthal correlation and collective behavior in nucleus-nucleus collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mali, P.; Mukhopadhyay, A., E-mail: amitabha-62@rediffmail.com; Sarkar, S.

    2015-03-15

    Various flow effects of nuclear and hadronic origin are investigated in nucleus-nucleus collisions. Nuclear emulsion data collected from {sup 84}Kr + Ag/Br interaction at an incident energy of 1.52 GeV per nucleon and from {sup 28}Si + Ag/Br interaction at an incident energy of 14.5 GeV per nucleon are used in the investigation. The transverse momentum distribution and the flow angle analysis show that collective behavior, like a bounce-off effect of the projectile spectators and a sidesplash effect of the target spectators, are present in our event samples. From an azimuthal angle analysis of the data we also see amore » direct flow of the projectile fragments and of the produced charged particles. On the other hand, for both data samples the target fragments exhibit a reverse flow, while the projectile fragments exhibit an elliptic flow. Relevant flow parameters are measured.« less

  5. Interaction of two-dimensional transverse jet with a supersonic mainstream

    NASA Technical Reports Server (NTRS)

    Kraemer, G. O.; Tiwari, S. N.

    1983-01-01

    The interaction of a two dimensional sonic jet injected transversely into a confined main flow was studied. The main flow consisted of air at a Mach number of 2.9. The effects of varying the jet parameters on the flow field were examined using surface pressure and composition data. Also, the downstream flow field was examined using static pressure, pitot pressure, and composition profile data. The jet parameters varied were gapwidth, jet static pressure, and injectant species of either helium or nitrogen. The values of the jet parameters used were 0.039, 0.056, and 0.109 cm for the gapwidth and 5, 10, and 20 for the jet to mainstream static pressure ratios. The features of the flow field produced by the mixing and interaction of the jet with the mainstream were related to the jet momentum. The data were used to demonstrate the validity of an existing two dimensional elliptic flow code.

  6. A model of concurrent flow flame spread over a thin solid fuel

    NASA Technical Reports Server (NTRS)

    Ferkul, Paul V.

    1993-01-01

    A numerical model is developed to examine laminar flame spread and extinction over a thin solid fuel in lowspeed concurrent flows. The model provides a more precise fluid-mechanical description of the flame by incorporating an elliptic treatment of the upstream flame stabilization zone near the fuel burnout point. Parabolic equations are used to treat the downstream flame, which has a higher flow Reynolds number. The parabolic and elliptic regions are coupled smoothly by an appropriate matching of boundary conditions. The solid phase consists of an energy equation with surface radiative loss and a surface pyrolysis relation. Steady spread with constant flame and pyrolysis lengths is found possible for thin fuels and this facilitates the adoption of a moving coordinate system attached to the flame with the flame spread rate being an eigen value. Calculations are performed in purely forced flow in a range of velocities which are lower than those induced in a normal gravity buoyant environment. Both quenching and blowoff extinction are observed. The results show that as flow velocity or oxygen percentage is reduced, the flame spread rate, the pyrolysis length, and the flame length all decrease, as expected. The flame standoff distance from the solid and the reaction zone thickness, however, first increase with decreasing flow velocity, but eventually decrease very near the quenching extinction limit. The short, diffuse flames observed at low flow velocities and oxygen levels are consistent with available experimental data. The maximum flame temperature decreases slowly at first as flow velocity is reduced, then falls more steeply close to the quenching extinction limit. Low velocity quenching occurs as a result of heat loss. At low velocities, surface radiative loss becomes a significant fraction of the total combustion heat release. In addition, the shorter flame length causes an increase in the fraction of conduction downstream compared to conduction to the fuel. These heat losses lead to lower flame temperatures, and ultimately, extinction. This extinction mechanism differs from that of blowoff, where the flame is unable to be stabilized due to the high flow velocity.

  7. Analytic Methods for Predicting Significant Multi-Quanta Effects in Collisional Molecular Energy Transfer

    NASA Technical Reports Server (NTRS)

    Bieniek, Ronald J.

    1996-01-01

    Collision-induced transitions can significantly affect molecular vibrational-rotational populations and energy transfer in atmospheres and gaseous systems. This, in turn. can strongly influence convective heat transfer through dissociation and recombination of diatomics. and radiative heat transfer due to strong vibrational coupling. It is necessary to know state-to-state rates to predict engine performance and aerothermodynamic behavior of hypersonic flows, to analyze diagnostic radiative data obtained from experimental test facilities, and to design heat shields and other thermal protective systems. Furthermore, transfer rates between vibrational and translational modes can strongly influence energy flow in various 'disturbed' environments, particularly where the vibrational and translational temperatures are not equilibrated.

  8. Rayleigh Wave Ellipticity Modeling and Inversion for Shallow Structure at the Proposed InSight Landing Site in Elysium Planitia, Mars

    NASA Astrophysics Data System (ADS)

    Knapmeyer-Endrun, Brigitte; Golombek, Matthew P.; Ohrnberger, Matthias

    2017-10-01

    The SEIS (Seismic Experiment for Interior Structure) instrument onboard the InSight mission will be the first seismometer directly deployed on the surface of Mars. From studies on the Earth and the Moon, it is well known that site amplification in low-velocity sediments on top of more competent rocks has a strong influence on seismic signals, but can also be used to constrain the subsurface structure. Here we simulate ambient vibration wavefields in a model of the shallow sub-surface at the InSight landing site in Elysium Planitia and demonstrate how the high-frequency Rayleigh wave ellipticity can be extracted from these data and inverted for shallow structure. We find that, depending on model parameters, higher mode ellipticity information can be extracted from single-station data, which significantly reduces uncertainties in inversion. Though the data are most sensitive to properties of the upper-most layer and show a strong trade-off between layer depth and velocity, it is possible to estimate the velocity and thickness of the sub-regolith layer by using reasonable constraints on regolith properties. Model parameters are best constrained if either higher mode data can be used or additional constraints on regolith properties from seismic analysis of the hammer strokes of InSight's heat flow probe HP3 are available. In addition, the Rayleigh wave ellipticity can distinguish between models with a constant regolith velocity and models with a velocity increase in the regolith, information which is difficult to obtain otherwise.

  9. Vortex dynamics in the wake of a pivoted cylinder undergoing vortex-induced vibrations with elliptic trajectories

    NASA Astrophysics Data System (ADS)

    Marble, Erik; Morton, Christopher; Yarusevych, Serhiy

    2018-05-01

    Vortex-induced vibrations of a pivoted cylinder are investigated experimentally at a fixed Reynolds number of 3100, a mass ratio of 10.8, and a range of reduced velocities, 4.42 ≤ U^* ≤ 9.05. For these conditions, the cylinder traces elliptic trajectories, with the experimental conditions producing three out of four possible combinations of orbiting direction and primary axis alignment relative to the incoming flow. The study focuses on the quantitative analysis of wake topology and its relation to this type of structural response. Velocity fields were measured using time-resolved, two-component particle image velocimetry (TR-PIV). These results show that phase-averaged wake topology generally agrees with the Morse and Williamson (J Fluids Struct 25(4):697-712, 2009) shedding map for one-degree-of-freedom vortex-induced vibrations, with 2S, 2{P}o, and 2P shedding patterns observed within the range of reduced velocities studied here. Vortex tracking and vortex strength quantification are used to analyze the vortex shedding process and how it relates to cylinder response. In the case of 2S vortex shedding, vortices are shed when the cylinder is approaching the maximum transverse displacement and reaches the streamwise equilibrium. 2P vortices are shed approximately half a period earlier in the cylinder's elliptic trajectory. Leading vortices shed immediately after the peak in transverse oscillation and trailing vortices shed near the equilibrium of transverse oscillation. The orientation and direction of the cylinder's elliptic trajectory are shown to influence the timing of vortex shedding, inducing changes in the 2P wake topology.

  10. Non-linear tides in a homogeneous rotating planet or star: global modes and elliptical instability

    NASA Astrophysics Data System (ADS)

    Barker, Adrian J.; Braviner, Harry J.; Ogilvie, Gordon I.

    2016-06-01

    We revisit the global modes and instabilities of homogeneous rotating ellipsoidal fluid masses, which are the simplest global models of rotationally and tidally deformed gaseous planets or stars. The tidal flow in a short-period planet may be unstable to the elliptical instability, a hydrodynamic instability that can drive tidal evolution. We perform a global (and local WKB) analysis to study this instability using the elegant formalism of Lebovitz & Lifschitz. We survey the parameter space of global instabilities with harmonic orders ℓ ≤ 5, for planets with spins that are purely aligned (prograde) or anti-aligned (retrograde) with their orbits. In general, the instability has a much larger growth rate if the planetary spin and orbit are anti-aligned rather than aligned. We have identified a violent instability for anti-aligned spins outside of the usual frequency range for the elliptical instability (when n/Ω ≲ -1, where n and Ω are the orbital and spin angular frequencies, respectively) if the tidal amplitude is sufficiently large. We also explore the instability in a rigid ellipsoidal container, which is found to be quantitatively similar to that with a realistic free surface. Finally, we study the effect of rotation and tidal deformation on mode frequencies. We find that larger rotation rates and larger tidal deformations both decrease the frequencies of the prograde sectoral surface gravity modes. This increases the prospect of their tidal excitation, potentially enhancing the tidal response over expectations from linear theory. In a companion paper, we use our results to interpret global simulations of the elliptical instability.

  11. Intracellular Pressure Dynamics in Blebbing Cells

    PubMed Central

    Strychalski, Wanda; Guy, Robert D.

    2016-01-01

    Blebs are pressure-driven protrusions that play an important role in cell migration, particularly in three-dimensional environments. A bleb is initiated when the cytoskeleton detaches from the cell membrane, resulting in the pressure-driven flow of cytosol toward the area of detachment and local expansion of the cell membrane. Recent experiments involving blebbing cells have led to conflicting hypotheses regarding the timescale of intracellular pressure propagation. The interpretation of one set of experiments supports a poroelastic model of the cytoplasm that leads to slow pressure equilibration when compared to the timescale of bleb expansion. A different study concludes that pressure equilibrates faster than the timescale of bleb expansion. To address this discrepancy, a dynamic computational model of the cell was developed that includes mechanics of and the interactions among the cytoplasm, the actin cortex, the cell membrane, and the cytoskeleton. The model results quantify the relationship among cytoplasmic rheology, pressure, and bleb expansion dynamics, and provide a more detailed picture of intracellular pressure dynamics. This study shows the elastic response of the cytoplasm relieves pressure and limits bleb size, and that both permeability and elasticity of the cytoplasm determine bleb expansion time. Our model with a poroelastic cytoplasm shows that pressure disturbances from bleb initiation propagate faster than the timescale of bleb expansion and that pressure equilibrates slower than the timescale of bleb expansion. The multiple timescales in intracellular pressure dynamics explain the apparent discrepancy in the interpretation of experimental results. PMID:26958893

  12. Flowfield visualization for SSME hot gas manifold

    NASA Technical Reports Server (NTRS)

    Roger, Robert P.

    1988-01-01

    The objective of this research, as defined by NASA-Marshall Space Flight Center, was two-fold: (1) to numerically simulate viscous subsonic flow in a proposed elliptical two-duct version of the fuel side Hot Gas Manifold (HGM) for the Space Shuttle Main Engine (SSME), and (2) to provide analytical support for SSME related numerical computational experiments, being performed by the Computational Fluid Dynamics staff in the Aerophysics Division of the Structures and Dynamics Laboratory at NASA-MSFC. Numerical results of HGM were calculations to complement both water flow visualization experiments and air flow visualization experiments and air experiments in two-duct geometries performed at NASA-MSFC and Rocketdyne. In addition, code modification and improvement efforts were to strengthen the CFD capabilities of NASA-MSFC for producing reliable predictions of flow environments within the SSME.

  13. The Rhic Azimuth Quadrupole:. "perfect Liquid" or Gluonic Radiation?

    NASA Astrophysics Data System (ADS)

    Trainor, Thomas A.

    Large elliptic flow at RHIC seems to indicate that ideal hydrodynamics provides a good description of Au-Au collisions, at least at the maximum RHIC energy. The medium formed has been interpreted as a nearly perfect (low-viscosity) liquid, and connections have been made to gravitation through string theory. Recently, claimed observations of large flow fluctuations comparable to participant eccentricity fluctuations seem to confirm the ideal hydro scenario. However, determination of the azimuth quadrupole with 2D angular autocorrelations, which accurately distinguish "flow" (quadrupole) from "nonflow" (minijets), contradicts conventional interpretations. Centrality trends may depend only on the initial parton geometry, and methods used to isolate flow fluctuations are sensitive instead mainly to minijet correlations. The results presented in this paper suggest that the azimuth quadrupole may be a manifestation of gluonic multipole radiation.

  14. Elliptic and higher order flow measured in a large phase space in √sNN = 2.76 TeV lead-lead collisions

    NASA Astrophysics Data System (ADS)

    Mohapatra, Soumya; Atlas Collaboration

    2012-09-01

    The measurements of flow harmonics ν2-ν6 using the event plane method and two particle correlations in broad pT, η and centrality ranges using the ATLAS detector at the LHC are presented. ATLAS recorded 9μb-1 lead-lead data in the 2010 heavy ion run. The full azimuthal acceptance of the ATLAS detector in ±2.5 units of pseudorapidity for charged hadrons and the large amount of data allows for a detailed study of the flow harmonics. It is shown that the ridge as well as the so called "mach-cone" seen in two particle correlations are entirely accounted for by the collective flow. Some scaling relations between the νn are also discussed.

  15. Finite numbers of sources, particle correlations and the Color Glass Condensate

    DOE PAGES

    McLerran, Larry; Skokov, Vladimir V.

    2015-12-23

    Here, we show that for a finite number of emitting sources, the Color Glass Condensate produces substantial elliptic azimuthal anisotropy, characterized by v 2, for two and four particle correlations for momentum greater than or of the order of the saturation momentum. The flow produced has the correct semi-quantitative features to describe flow seen in the LHC experiments with p–Pb and pp collisions. This flow is induced by quantum mechanical interference between the waves of produced particles, and the flow itself is coupled to fluctuations in the positions of emitting sources. We shortly discuss generalizing these results to odd vmore » n, to correlations involving larger number of particles, and to transverse momentum scales ΛQCD << p T << Q sat.« less

  16. Radiative interactions in chemically reacting compressible nozzle flows using Monte Carlo simulations

    NASA Technical Reports Server (NTRS)

    Liu, J.; Tiwari, Surendra N.

    1994-01-01

    The two-dimensional spatially elliptic Navier-Stokes equations have been used to investigate the radiative interactions in chemically reacting compressible flows of premixed hydrogen and air in an expanding nozzle. The radiative heat transfer term in the energy equation is simulated using the Monte Carlo method (MCM). The nongray model employed is based on the statistical narrow band model with an exponential-tailed inverse intensity distribution. The spectral correlation has been considered in the Monte Carlo formulations. Results obtained demonstrate that the effect of radiation on the flow field is minimal but its effect on the wall heat transfer is significant. Extensive parametric studies are conducted to investigate the effects of equivalence ratio, wall temperature, inlet flow temperature, and the nozzle size on the radiative and conductive wall fluxes.

  17. A model for the plastic flow of landslides

    USGS Publications Warehouse

    Savage, William Z.; Smith, William K.

    1986-01-01

    To further the understanding of the mechanics of landslide flow, we present a model that predicts many of the observed attributes of landslides. The model is based on an integration of the hyperbolic differential equations for stress and velocity fields in a two-dimensional, inclined, semi-infinite half-space of Coulomb plastic material under elevated pore pressure and gravity. Our landslide model predicts commonly observed features. For example, compressive (passive), plug, or extending (active) flow will occur under appropriate longitudinal strain rates. Also, the model predicts that longitudinal stresses increase elliptically with depth to the basal slide plane, and that stress and velocity characteristics, surfaces along which discontinuities in stress and velocity are propagated, are coincident. Finally, the model shows how thrust and normal faults develop at the landslide surface in compressive and extending flow.

  18. Equilibrator-based measurements of dissolved nitrous oxide in the surface ocean using an integrated cavity output laser absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Grefe, I.; Kaiser, J.

    2014-06-01

    Dissolved nitrous oxide (N2O) concentrations are usually determined by gas chromatography (GC). Here we present laboratory tests and initial field measurements using a novel setup comprising a commercially available laser-based analyser for N2O, carbon monoxide and water vapour coupled to a glass-bed equilibrator. This approach is less labour-intensive and provides higher temporal and spatial resolution than the conventional GC technique. The standard deviation of continuous equilibrator or atmospheric air measurements was 0.2 nmol mol-1 (averaged over 5 min). The short-term repeatability for reference gas measurements within 1 h of each other was 0.2 nmol mol-1 or better. Another indicator of the long-term stability of the analyser is the standard deviation of the calibrated N2O mole fraction in marine air, which was between 0.5 and 0.7 nmol mol-1. The equilibrator measurements were compared with purge-and-trap gas chromatography-mass spectrometry (GC-MS) analyses of N2O concentrations in discrete samples from the Southern Ocean and showed agreement to within the 2% measurement uncertainty of the GC-MS method. The equilibrator response time to concentration changes in water was from 142 to 203 s, depending on the headspace flow rate. The system was tested at sea during a north-to-south transect of the Atlantic Ocean. While the subtropical gyres were slightly undersaturated, the equatorial region was a source of nitrous oxide to the atmosphere, confirming previous findings (Forster et al., 2009). The ability to measure at high temporal and spatial resolution revealed submesoscale variability in dissolved N2O concentrations. Mean sea-to-air fluxes in the tropical and subtropical Atlantic ranged between -1.6 and 0.11 μmol m-2 d-1 and confirm that the subtropical Atlantic is not an important source region for N2O to the atmosphere, compared to global average fluxes of 0.6-2.4 μmol m-2 d-1. The system can be easily modified for autonomous operation on voluntary observing ships (VOS). Future work should include an interlaboratory comparison exercise with other methods of dissolved N2O analyses.

  19. Miniaturized compact water-cooled pitot-pressure probe for flow-field surveys in hypersonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Ashby, George C.

    1988-01-01

    An experimental investigation of the design of pitot probes for flowfield surveys in hypersonic wind tunnels is reported. The results show that a pitot-pressure probe can be miniaturized for minimum interference effects by locating the transducer in the probe support body and water-cooling it so that the pressure-settling time and transducer temperature are compatible with hypersonic tunnel operation and flow conditions. Flowfield surveys around a two-to-one elliptical cone model in a 20-inch Mach 6 wind tunnel using such a probe show that probe interference effects are essentially eliminated.

  20. Signatures for strongly coupled Quark-Gluon Plasma

    NASA Astrophysics Data System (ADS)

    Shuryak, Edward

    2006-11-01

    Dramatic changes had occurred with our understanding of Quark-Gluon Plasma, which is now believed to be rather strongly coupled, sQGP for short. Hydrodynamical behavior is seen experimentally, even for rather small systems (rather peripheral collisions). From elliptic flow the interest is shifting to even more sophysticated observable, the conical flow, created by quenched jets. The exact structure of sQGP remains unknown, at the moment the best picture seem to be a liquid made partly of binary bound states. As we discuss at the end, those can be possibly seen in the dilepton spectra, as "new vector mesons" above Tc.

  1. Colloidal Microworms Propelling via a Cooperative Hydrodynamic Conveyor Belt.

    PubMed

    Martinez-Pedrero, Fernando; Ortiz-Ambriz, Antonio; Pagonabarraga, Ignacio; Tierno, Pietro

    2015-09-25

    We study propulsion arising from microscopic colloidal rotors dynamically assembled and driven in a viscous fluid upon application of an elliptically polarized rotating magnetic field. Close to a confining plate, the motion of this self-assembled microscopic worm results from the cooperative flow generated by the spinning particles which act as a hydrodynamic "conveyor belt." Chains of rotors propel faster than individual ones, until reaching a saturation speed at distances where induced-flow additivity vanishes. By combining experiments and theoretical arguments, we elucidate the mechanism of motion and fully characterize the propulsion speed in terms of the field parameters.

  2. Strongly-Interacting Fermi Gases in Reduced Dimensions

    DTIC Science & Technology

    2009-05-29

    effective theories of the strong interactions), astrophysics (compact stellar objects), the physics of quark -gluon plasmas (elliptic flow), and most...strong interactions: Superconductors, neutron stars and quark -gluon plasmas on a desktop," Seminar on Modern Optics and Spectroscopy, M. I. T...interface of quark -gluon plasma physics and cold-atom physics," (Trento, Italy, March 19-23, 2007). Talk given by Andrey Turlapov. 17) J. E. Thomas

  3. On Steady-State Tropical Cyclones

    DTIC Science & Technology

    2014-01-01

    components of the velocity vector, specific humidity, suspended liquid water, perturbation Exner function and perturbation density potential...vorticity and spin-up function, respectively. If the flow is symmetrically stable, the partial differential equation (10) is elliptic with a forcing term...Upper-level inflow jets A prominent feature of the radial velocity component shown in Figure 2(c) is the layered structure of inflow and outflow in the

  4. Elliptic net and its cryptographic application

    NASA Astrophysics Data System (ADS)

    Muslim, Norliana; Said, Mohamad Rushdan Md

    2017-11-01

    Elliptic net is a generalization of elliptic divisibility sequence and in cryptography field, most cryptographic pairings that are based on elliptic curve such as Tate pairing can be improved by applying elliptic nets algorithm. The elliptic net is constructed by using n dimensional array of values in rational number satisfying nonlinear recurrence relations that arise from elliptic divisibility sequences. The two main properties hold in the recurrence relations are for all positive integers m>n, hm +nhm -n=hm +1hm -1hn2-hn +1hn -1hm2 and hn divides hm whenever n divides m. In this research, we discuss elliptic divisibility sequence associated with elliptic nets based on cryptographic perspective and its possible research direction.

  5. Elliptic biquaternion algebra

    NASA Astrophysics Data System (ADS)

    Özen, Kahraman Esen; Tosun, Murat

    2018-01-01

    In this study, we define the elliptic biquaternions and construct the algebra of elliptic biquaternions over the elliptic number field. Also we give basic properties of elliptic biquaternions. An elliptic biquaternion is in the form A0 + A1i + A2j + A3k which is a linear combination of {1, i, j, k} where the four components A0, A1, A2 and A3 are elliptic numbers. Here, 1, i, j, k are the quaternion basis of the elliptic biquaternion algebra and satisfy the same multiplication rules which are satisfied in both real quaternion algebra and complex quaternion algebra. In addition, we discuss the terms; conjugate, inner product, semi-norm, modulus and inverse for elliptic biquaternions.

  6. Oxidation mode of pyranose 2-oxidase is controlled by pH.

    PubMed

    Prongjit, Methinee; Sucharitakul, Jeerus; Palfey, Bruce A; Chaiyen, Pimchai

    2013-02-26

    Pyranose 2-oxidase (P2O) from Trametes multicolor is a flavoenzyme that catalyzes the oxidation of d-glucose and other aldopyranose sugars at the C2 position by using O₂ as an electron acceptor to form the corresponding 2-keto-sugars and H₂O₂. In this study, the effects of pH on the oxidative half-reaction of P2O were investigated using stopped-flow spectrophotometry. The results showed that flavin oxidation occurred via different pathways depending on the pH of the environment. At pH values lower than 8.0, reduced P2O reacts with O₂ to form a C4a-hydroperoxyflavin intermediate, leading to elimination of H₂O₂. At pH 8.0 and higher, the majority of the reduced P2O reacts with O₂ via a pathway that does not allow detection of the C4a-hydroperoxyflavin, and flavin oxidation occurs with decreased rate constants upon the rise in pH. The switching between the two modes of P2O oxidation is controlled by protonation of a group which has a pK(a) of 7.6 ± 0.1. Oxidation reactions of reduced P2O under rapid pH change as performed by stopped-flow mixing were different from the same reactions performed with enzyme pre-equilibrated at the same specified pH values, implying that the protonation of the group which controls the mode of flavin oxidation cannot be rapidly equilibrated with outside solvent. Using a double-mixing stopped-flow experiment, a rate constant for proton dissociation from the reaction site was determined to be 21.0 ± 0.4 s⁻¹.

  7. The oxidation mode of pyranose 2-oxidase is controlled by pH

    PubMed Central

    Prongjit, Methinee; Sucharitakul, Jeerus; Palfey, Bruce A.; Chaiyen, Pimchai

    2013-01-01

    Pyranose 2-oxidase (P2O) from Trametes multicolor is a flavoenzyme that catalyzes the oxidation of D-glucose and other aldopyranose sugars at the C2 position by using O2 as an electron acceptor to form the corresponding 2-keto-sugars and H2O2. In this study, the effects of pH on the oxidative half-reaction of P2O were investigated using stopped-flow spectrophotometry. The results showed that flavin oxidation occurred via different pathways depending on the pH of the environment. At pH values lower than 8.0, reduced P2O reacts with O2 to form a C4a-hydroperoxy-flavin intermediate, leading to elimination of H2O2. At pH 8.0 and higher, the majority of the reduced P2O reacts with O2 via a pathway which does not allow detection of the C4a-hydroperoxy-flavin, and flavin oxidation occurs with decreased rate constants upon the rise in pH. The switching between the two modes of P2O oxidation is controlled by protonation of a group which has a pKa of 7.6 ± 0.1. Oxidation reactions of reduced P2O under rapid pH change as performed by stopped-flow mixing were different from the same reactions performed with enzyme pre-equilibrated at the same specified pH values, implying that the protonation of the group which controls the mode of flavin oxidation cannot be rapidly equilibrated with outside solvent. Using a double-mixing stopped-flow experiment, a rate constant for proton dissociation from the reaction site was determined to be 21.0 ± 0.4 s-1. PMID:23356577

  8. Postphloem, Nonvascular Transfer in Citrus

    PubMed Central

    Koch, Karen E.; Avigne, Wayne T.

    1990-01-01

    Postphloem, nonvascular assimilate transport occurs over an unusually long area in citrus fruit and thus facilitates investigation of this process relative to sugar entry into many sink structures. Labeled photosynthates moving into juice tissues of grapefruit (Citrus paradisi Macf.) slowed dramatically after entering the postphloem transport path (parenchyma cells, narrow portions of segment epidermis, and hair-like, parenchymatous stalks of juice sacs). Kinetic, metabolic, and compositional data indicated that transfer through the nonvascular area was delayed many hours by temporary storage and/or equilibration with sugars in compartments along the postphloem path. Labeled assimilates were generally recovered as sucrose throughout the path, and extent of hexose formation enroute bore no apparent relationship to the assimilate transfer process. Even after 24 hours, radiolabel was restricted to discrete, highly localized areas directly between vascular bundles and juice sacs. Postphloem transfer occurred against an ascending sucrose concentration gradient in young fruit, whereas a descending gradient (favoring diffusion/cytoplasmic streaming) developed only later in maturation. Involvement of a postphloem bulk flow is complicated in the present instance by the extremely limited water loss from juice sacs either via transpiration or fluid backflow. Nonetheless, tissue expansion can account for a collective water inflow of at least 1.0 milliliter per day throughout the majority of juice sac development, thus providing a modest, but potentially important means of nonvascular solution flow. Overall, data indicate postphloem transfer (a) can follow highly localized paths through sizable nonvascular areas (up to 3.0 centimeters total), (b) appears to involve temporary storage and/or equilibration with compartmentalized sugars enroute, (c) can occur either against an overall up-hill sugar gradient (young tissues) or along a descending gradient (near full expansion), and (d) appears to involve at least some contribution by nonvascular mass flow accommodated by tissue expansion. Images Figure 1 Figure 4 PMID:16667632

  9. Importance of equilibration time in the partitioning and toxicity of zinc in spiked sediment bioassays

    USGS Publications Warehouse

    Lee, J.-S.; Lee, B.-G.; Luoma, S.N.; Yoo, H.

    2004-01-01

    The influences of spiked Zn concentrations (1-40 ??mol/g) and equilibration time (???95 d) on the partitioning of Zn between pore water (PW) and sediment were evaluated with estuarine sediments containing two levels (5 and 15 ??mol/g) of acid volatile sulfides (AVS). Their influence on Zn bioavailability was also evaluated by a parallel, 10-d amphipod (Leptocheirus plumulosus) mortality test at 5, 20, and 85 d of equilibration. During the equilibration, AVS increased (up to twofold) with spiked Zn concentration ([Zn]), whereas Zn-simultaneously extracted metals ([SEM]; Zn with AVS) remained relatively constant. Concentrations of Zn in PW decreased most rapidly during the initial 30 d and by 11- to 23-fold during the whole 95-d equilibration period. The apparent partitioning coefficient (Kpw, ratio of [Zn] in SEM to PW) increased by 10- to 20-fold with time and decreased with spiked [Zn] in sediments. The decrease of PW [Zn] could be explained by a combination of changes in AVS and redistribution of Zn into more insoluble phases as the sediment aged. Amphipod mortality decreased significantly with the equilibration time, consistent with decrease in dissolved [Zn]. The median lethal concentration (LC50) value (33 ??M) in the second bioassay, conducted after 20 d of equilibration, was twofold the LC50 in the initial bioassay at 5 d of equilibration, probably because of the change of dissolved Zn speciation. Sediment bioassay protocols employing a short equilibration time and high spiked metal concentrations could accentuate partitioning of metals to the dissolved phase and shift the pathway for metal exposure toward the dissolved phase.

  10. Viscous free-surface flows on rotating elliptical cylinders

    NASA Astrophysics Data System (ADS)

    Li, Weihua; Carvalho, Marcio S.; Kumar, Satish

    2017-09-01

    The flow of liquid films on rotating discrete objects having complicated cross sections is encountered in coating processes for a broad variety of products. To advance fundamental understanding of this problem, we study viscous free-surface flows on rotating elliptical cylinders by solving the governing equations in a rotating reference frame using the Galerkin finite-element method. Results of our simulations agree well with Hunt's maximum-load condition [Hunt, Numer. Methods Partial Differ. Eqs. 24, 1094 (2008), 10.1002/num.20307], which was obtained in the absence of surface tension and inertia. The simulations are also used to track the transient behavior of the free surface. For O (1 ) cylinder aspect ratios, cylinder rotation results in a droplike liquid bulge hanging on the upward-moving side of the cylinder. This bulge shrinks in size due to surface tension provided that the liquid load is smaller than a critical value, leaving a relatively smooth coating on the cylinder. A decrease in cylinder aspect ratio leads to larger gradients in film thickness, but enhances the rate of bulge shrinkage and thus shortens the time required to obtain a smooth coating. Moreover, with a suitably chosen time-dependent rotation rate, more liquid can be supported by the cylinder relative to the constant-rotation-rate case. For cylinders with even smaller aspect ratios, film rupture and liquid shedding may occur over the cylinder tips, so simultaneous drying and rotation along with the introduction of Marangoni stresses will likely be especially important for obtaining a smooth coating.

  11. Passive control of a falling sphere by elliptic-shaped appendages

    NASA Astrophysics Data System (ADS)

    Lācis, Uǧis; Olivieri, Stefano; Mazzino, Andrea; Bagheri, Shervin

    2017-03-01

    The majority of investigations characterizing the motion of single or multiple particles in fluid flows consider canonical body shapes, such as spheres, cylinders, discs, etc. However, protrusions on bodies—either surface imperfections or appendages that serve a function—are ubiquitous in both nature and applications. In this work, we characterize how the dynamics of a sphere with an axis-symmetric wake is modified in the presence of thin three-dimensional elliptic-shaped protrusions. By investigating a wide range of three-dimensional appendages with different aspect ratios and lengths, we clearly show that the sphere with an appendage may robustly undergo an inverted-pendulum-like (IPL) instability. This means that the position of the appendage placed behind the sphere and aligned with the free-stream direction is unstable, similar to how an inverted pendulum is unstable under gravity. Due to this instability, nontrivial forces are generated on the body, leading to turn and drift, if the body is free to fall under gravity. Moreover, we identify the aspect ratio and length of the appendage that induces the largest side force on the sphere, and therefore also the largest drift for a freely falling body. Finally, we explain the physical mechanisms behind these observations in the context of the IPL instability, i.e., the balance between surface area of the appendage exposed to reversed flow in the wake and the surface area of the appendage exposed to fast free-stream flow.

  12. Venus and Mars Obstacles in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Luhmann, J. G.; Mitchell, D. L.; Acuna, M. H.; Russell, C. T.; Brecht, S. H.; Lyon, J. G.

    2000-10-01

    Comparisons of the magnetosheaths of Venus and Mars contrast the relative simplicity of the Venus solar wind interaction and the ``Jekyll and Hyde" nature of the Mars interaction. Magnetometer observations from Mars Global Surveyor during the elliptical science phasing orbits and Pioneer Venus Orbiter in its normally elliptical orbit are compared, with various models used to compensate for the different near-polar periapsis of MGS and near-equator periapsis of PVO. Gasdynamic or MHD fluid models of flow around a conducting sphere provide a remarkably good desciption of the Venus case, and the Mars case when the strong Martian crustal magnetic anomalies are in the flow wake. In the case of Venus, large magnetosheath field fluctuations can be reliably tied to occurrence of a subsolar quasiparallel bow shock resulting from a small interplanetary field cone angle (angle between flow and field) upstream. At Mars one must also contend with such large fluctuations from the bow shock, but also from unstable solar wind proton distributions due to finite ion gyroradius effects, and from the complicated obstacle presented to the solar wind when the crustal magnetic anomalies are on the ram face or terminator. We attempt to distinguish between these factors at Mars, which are important for interpretation of the upcoming NOZOMI and Mars Express mission measurements. The results also provide more insights into a uniquely complex type of solar system solar wind interaction involving crustal fields akin to the Moon's, combined with a Venus-like ionospheric obstacle.

  13. Peak-Seeking Optimization of Spanwise Lift Distribution for Wings in Formation Flight

    NASA Technical Reports Server (NTRS)

    Hanson, Curtis E.; Ryan, Jack

    2012-01-01

    A method is presented for the in-flight optimization of the lift distribution across the wing for minimum drag of an aircraft in formation flight. The usual elliptical distribution that is optimal for a given wing with a given span is no longer optimal for the trailing wing in a formation due to the asymmetric nature of the encountered flow field. Control surfaces along the trailing edge of the wing can be configured to obtain a non-elliptical profile that is more optimal in terms of minimum combined induced and profile drag. Due to the difficult-to-predict nature of formation flight aerodynamics, a Newton-Raphson peak-seeking controller is used to identify in real time the best aileron and flap deployment scheme for minimum total drag. Simulation results show that the peak-seeking controller correctly identifies an optimal trim configuration that provides additional drag savings above those achieved with conventional anti-symmetric aileron trim.

  14. Secular motion around synchronously orbiting planetary satellites.

    PubMed

    Lara, Martin; San-Juan, Juan F; Ferrer, Sebastián

    2005-12-01

    We investigate the secular motion of a spacecraft around the natural satellite of a planet. The satellite rotates synchronously with its mean motion around the planet. Our model takes into account the gravitational potential of the satellite up to the second order, and the third-body perturbation in Hill's approximation. Close to the satellite, the ratio of rotation rate of the satellite to mean motion of the orbiter is small. When considering this ratio as a small parameter, the Coriolis effect is a first-order perturbation, while the third-body tidal attraction, the ellipticity effect, and the oblateness perturbation remain at higher orders. Then, we apply perturbation theory and find that a third-order approach is enough to show the influence of the satellite's ellipticity in the pericenter dynamics. Finally, we discuss the averaged system in the three-dimensional parametric space, and provide a global description of the flow.

  15. Reynolds stress closure in jet flows using wave models

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.

    1990-01-01

    A collection of papers is presented. The outline of this report is as follows. Chapter three contains a description of a weakly nonlinear turbulence model that was developed. An essential part of the application of such a closure scheme to general geometry jets is the solution of the local hydrodynamic stability equation for a given jet cross-section. Chapter four describes the conformal mapping schemes used to map such geometries onto a simple computational domain. Chapter five describes a solution of a stability problem for circular, elliptic, and rectangular geometries. In chapter six linear models for the shock shell structure in non-circular jets is given. The appendices contain reprints of papers also published during this study including the following topics: (1) instability of elliptic jets; (2) a technique for predicting the shock cell structure in non-circular jets using a vortex sheet model; and (3) the resonant interaction between twin supersonic jets.

  16. Elliptic flow of charm and strange hadrons in high-multiplicity pPb collisions at $$\\sqrt{s_{_\\mathrm{NN}}} =$$ 8.16 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    The elliptic azimuthal anisotropy coefficient (more » $$v_2$$) is measured for charm (D$^0$) and strange (K$$_\\mathrm{S}^0$$, $$\\Lambda$$, $$\\Xi^-$$, and $$\\Omega^-$$) hadrons, using a data sample of pPb collisions collected by the CMS experiment, at a nucleon-nucleon center-of-mass energy $$\\sqrt{s_{_\\mathrm{NN}}} =$$ 8.16 TeV. A significant positive $$v_2$$ signal from long-range azimuthal correlations is observed for all particle species in high-multiplicity pPb collisions. The measurement represents the first observation of possible long-range collectivity for open heavy flavor hadrons in small systems. The results suggest that charm quarks have a smaller $$v_2$$ than the lighter quarks, probably reflecting a weaker collective behavior. This effect is not seen in the larger PbPb collision system at $$\\sqrt{s_{_\\mathrm{NN}}} =$$ 5.02 TeV, also presented.« less

  17. Mixing Characteristics of Elliptical Jet Control with Crosswire

    NASA Astrophysics Data System (ADS)

    Manigandan, S.; Vijayaraja, K.

    2018-02-01

    The aerodynamic mixing efficiency of elliptical sonic jet flow with the effect of crosswire is studied computationally and experimentally at different range of nozzle pressure ratio with different orientation along the minor axis of the exit. The cross wire of different orientation is found to reduce the strength of the shock wave formation. Due to the presence of crosswire the pitot pressure oscillation is reduced fast, which weakens the shock cell structure. When the cross wire is placed at center position we see high mixing along the major axis. Similarly, when the cross wire is placed at ¼ and ¾ position we see high mixing promotion along minor axis. It also proves, as the position of the cross wire decreased along minor axis there will be increase in the mixing ratio. In addition to that we also found that, jet spread is high in major axis compared to minor axis due to bifurcation of jet along upstream

  18. Elliptic and triangular flow in p-Pb and peripheral Pb-Pb collisions from parton scatterings

    DOE PAGES

    Bzdak, Adam; Ma, Guo-Liang

    2014-12-15

    Using a multiphase transport model (AMPT) we calculate the elliptic v₂ and triangular v₃ Fourier coefficients of the two-particle azimuthal correlation function in proton-nucleus (p-Pb) and peripheral nucleus-nucleus (Pb-Pb) collisions. Our results for v₃ are in a good agreement with the CMS data collected at the Large Hadron Collider. The v₂ coefficient is very well described in p-Pb collisions and is underestimated for higher transverse momenta in Pb-Pb interactions. The characteristic mass ordering of v₂ in p-Pb is reproduced, whereas for v₃, this effect is not observed. We further predict the pseudorapidity dependence of v₂ and v₃ in p-Pb andmore » observe that both are increasing when going from a proton side to a Pb-nucleus side. Predictions for the higher-order Fourier coefficients, v₄ and v₅, in p-Pb are also presented.« less

  19. Marching iterative methods for the parabolized and thin layer Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Israeli, M.

    1985-01-01

    Downstream marching iterative schemes for the solution of the Parabolized or Thin Layer (PNS or TL) Navier-Stokes equations are described. Modifications of the primitive equation global relaxation sweep procedure result in efficient second-order marching schemes. These schemes take full account of the reduced order of the approximate equations as they behave like the SLOR for a single elliptic equation. The improved smoothing properties permit the introduction of Multi-Grid acceleration. The proposed algorithm is essentially Reynolds number independent and therefore can be applied to the solution of the subsonic Euler equations. The convergence rates are similar to those obtained by the Multi-Grid solution of a single elliptic equation; the storage is also comparable as only the pressure has to be stored on all levels. Extensions to three-dimensional and compressible subsonic flows are discussed. Numerical results are presented.

  20. Equilibration in finite Bose systems

    NASA Astrophysics Data System (ADS)

    Wolschin, Georg

    2018-06-01

    The equilibration of a finite Bose system is modeled using a gradient expansion of the collision integral that leads to a nonlinear transport equation. For constant transport coefficients, it is solved in closed form through a nonlinear transformation. Using schematic initial conditions, the exact solution and the equilibration time are derived and compared to the corresponding case for fermions. Applications to the fast equilibration of the gluon system created initially in relativistic heavy-ion collisions, and to cold quantum gases are envisaged.

  1. Elliptic flow computation by low Reynolds number two-equation turbulence models

    NASA Technical Reports Server (NTRS)

    Michelassi, V.; Shih, T.-H.

    1991-01-01

    A detailed comparison of ten low-Reynolds-number k-epsilon models is carried out. The flow solver, based on an implicit approximate factorization method, is designed for incompressible, steady two-dimensional flows. The conservation of mass is enforced by the artificial compressibility approach and the computational domain is discretized using centered finite differences. The turbulence model predictions of the flow past a hill are compared with experiments at Re = 10 exp 6. The effects of the grid spacing together with the numerical efficiency of the various formulations are investigated. The results show that the models provide a satisfactory prediction of the flow field in the presence of a favorable pressure gradient, while the accuracy rapidly deteriorates when a strong adverse pressure gradient is encountered. A newly proposed model form that does not explicitly depend on the wall distance seems promising for application to complex geometries.

  2. PDF modeling of near-wall turbulent flows

    NASA Astrophysics Data System (ADS)

    Dreeben, Thomas David

    1997-06-01

    Pdf methods are extended to include modeling of wall- bounded turbulent flows. For flows in which resolution of the viscous sublayer is desired, a Pdf near-wall model is developed in which the Generalized Langevin model is combined with an exact model for viscous transport. Durbin's method of elliptic relaxation is used to incorporate the wall effects into the governing equations without the use of wall functions or damping functions. Close to the wall, the Generalized Langevin model provides an analogy to the effect of the fluctuating continuity equation. This enables accurate modeling of the near-wall turbulent statistics. Demonstrated accuracy for fully-developed channel flow is achieved with a Pdf/Monte Carlo simulation, and with its related Reynolds-stress closure. For flows in which the details of the viscous sublayer are not important, a Pdf wall- function method is developed with the Simplified Langevin model.

  3. Equilibration of experimentally determined protein structures for molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Walton, Emily B.; Vanvliet, Krystyn J.

    2006-12-01

    Preceding molecular dynamics simulations of biomolecular interactions, the molecule of interest is often equilibrated with respect to an initial configuration. This so-called equilibration stage is required because the input structure is typically not within the equilibrium phase space of the simulation conditions, particularly in systems as complex as proteins, which can lead to artifactual trajectories of protein dynamics. The time at which nonequilibrium effects from the initial configuration are minimized—what we will call the equilibration time—marks the beginning of equilibrium phase-space exploration. Note that the identification of this time does not imply exploration of the entire equilibrium phase space. We have found that current equilibration methodologies contain ambiguities that lead to uncertainty in determining the end of the equilibration stage of the trajectory. This results in equilibration times that are either too long, resulting in wasted computational resources, or too short, resulting in the simulation of molecular trajectories that do not accurately represent the physical system. We outline and demonstrate a protocol for identifying the equilibration time that is based on the physical model of Normal Mode Analysis. We attain the computational efficiency required of large-protein simulations via a stretched exponential approximation that enables an analytically tractable and physically meaningful form of the root-mean-square deviation of atoms comprising the protein. We find that the fitting parameters (which correspond to physical properties of the protein) fluctuate initially but then stabilize for increased simulation time, independently of the simulation duration or sampling frequency. We define the end of the equilibration stage—and thus the equilibration time—as the point in the simulation when these parameters attain constant values. Compared to existing methods, our approach provides the objective identification of the time at which the simulated biomolecule has entered an energetic basin. For the representative protein considered, bovine pancreatic trypsin inhibitor, existing methods indicate a range of 0.2-10ns of simulation until a local minimum is attained. Our approach identifies a substantially narrower range of 4.5-5.5ns , which will lead to a much more objective choice of equilibration time.

  4. A conceptual geochemical model of the geothermal system at Surprise Valley, CA

    NASA Astrophysics Data System (ADS)

    Fowler, Andrew P. G.; Ferguson, Colin; Cantwell, Carolyn A.; Zierenberg, Robert A.; McClain, James; Spycher, Nicolas; Dobson, Patrick

    2018-03-01

    Characterizing the geothermal system at Surprise Valley (SV), northeastern California, is important for determining the sustainability of the energy resource, and mitigating hazards associated with hydrothermal eruptions that last occurred in 1951. Previous geochemical studies of the area attempted to reconcile different hot spring compositions on the western and eastern sides of the valley using scenarios of dilution, equilibration at low temperatures, surface evaporation, and differences in rock type along flow paths. These models were primarily supported using classical geothermometry methods, and generally assumed that fluids in the Lake City mud volcano area on the western side of the valley best reflect the composition of a deep geothermal fluid. In this contribution, we address controls on hot spring compositions using a different suite of geochemical tools, including optimized multicomponent geochemistry (GeoT) models, hot spring fluid major and trace element measurements, mineralogical observations, and stable isotope measurements of hot spring fluids and precipitated carbonates. We synthesize the results into a conceptual geochemical model of the Surprise Valley geothermal system, and show that high-temperature (quartz, Na/K, Na/K/Ca) classical geothermometers fail to predict maximum subsurface temperatures because fluids re-equilibrated at progressively lower temperatures during outflow, including in the Lake City area. We propose a model where hot spring fluids originate as a mixture between a deep thermal brine and modern meteoric fluids, with a seasonally variable mixing ratio. The deep brine has deuterium values at least 3 to 4‰ lighter than any known groundwater or high-elevation snow previously measured in and adjacent to SV, suggesting it was recharged during the Pleistocene when meteoric fluids had lower deuterium values. The deuterium values and compositional characteristics of the deep brine have only been identified in thermal springs and groundwater samples collected in proximity to structures that transmit thermal fluids, suggesting the brine may be thermal in nature. On the western side of the valley at the Lake City mud volcano, the deep brine-meteoric water mixture subsequently boils in the shallow subsurface, precipitates calcite, and re-equilibrates at about 130 °C. On the eastern side of the valley, meteoric fluid mixes to a greater extent with the deep brine, cools conductively without boiling, and the composition is modified as dissolved elements are sequestered by secondary minerals that form along the cooling and outflow path at temperatures <130 °C. Re-equilibration of geothermal fluids at lower temperatures during outflow explains why subsurface temperature estimates based on classical geothermometry methods are highly variable, and fail to agree with temperature estimates based on dissolved sulfate-oxygen isotopes and results of classical and multicomponent geothermometry applied to reconstructed deep well fluids. The proposed model is compatible with the idea suggested by others that thermal fluids on the western and eastern side of the valley have a common source, and supports the hypothesis that low temperature re-equilibration during west to east flow is the major control on hot spring fluid compositions, rather than dilution, evaporation, or differences in rock type.

  5. Flow generation by the corona ciliata in Chaetognatha - quantification and implications for current functional hypotheses.

    PubMed

    Bleich, Steffen; Müller, Carsten H G; Graf, Gerhard; Hanke, Wolf

    2017-12-01

    The corona ciliata of Chaetognatha (arrow worms) is a circular or elliptical groove lined by a rim from which multiple lines of cilia emanate, located dorsally on the head and/or trunk. Mechanoreception, chemosensation, excretion, respiration, and support of reproduction have been suggested to be its main functions. Here we provide the first experimental evidence that the cilia produce significant water flow, and the first visualisation and quantification of this flow. In Spadella cephaloptera, water is accelerated toward the corona ciliata from dorsal and anterior of the body in a funnel-shaped pattern, and expelled laterally and caudally from the corona, with part of the water being recirculated. Maximal flow speeds were approximately 140μms -1 in adult specimens. Volumetric flow rate was Q=0.0026μls -1 . The funnel-shaped directional flow can possibly enable directional chemosensation. The flow measurements demonstrate that the corona ciliata is well suited as a multifunctional organ. Copyright © 2017 Elsevier GmbH. All rights reserved.

  6. Noble gas loss may indicate groundwater flow across flow barriers in southern Nevada

    USGS Publications Warehouse

    Thomas, J.M.; Bryant, Hudson G.; Stute, M.; Clark, J.F.

    2003-01-01

    Average calculated noble gas temperatures increase from 10 to 22oC in groundwater from recharge to discharge areas in carbonate-rock aquifers of southern Nevada. Loss of noble gases from groundwater in these regional flow systems at flow barriers is the likely process that produces an increase in recharge noble gas temperatures. Emplacement of low permeability rock into high permeability aquifer rock and the presence of low permeability shear zones reduce aquifer thickness from thousands to tens of meters. At these flow barriers, which are more than 1,000 m lower than the average recharge altitude, noble gases exsolve from the groundwater by inclusion in gas bubbles formed near the barriers because of greatly reduced hydrostatic pressure. However, re-equilibration of noble gases in the groundwater with atmospheric air at the low altitude spring discharge area, at the terminus of the regional flow system, cannot be ruled out. Molecular diffusion is not an important process for removing noble gases from groundwater in the carbonate-rock aquifers because concentration gradients are small.

  7. A cooling flow in a high-redshift, X-ray-selected cluster of galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nesci, R.; Perola, G.C.; Gioia, I.M.

    The X-ray cluster of galaxies IE 0839.9 + 2938 was serendipitously discovered with the Einstein Observatory. CCD imaging at R and V wavelengths show that the color of the dominant elliptical galaxy of this cluster is significantly bluer than the colors of the next brightest cluster galaxies. Strong emission lines, typical of cD galaxies with cooling flows, are present in the spectrum of the dominant galaxy, from which a redshift of 0.193 is derived. The emitting line region is spatially resolved with an extension of about 13 kpc. All the collected data suggest that this cluster is one of themore » most distant cooling flow clusters known to date. 28 refs.« less

  8. Application of local linearization and the transonic equivalence rule to the flow about slender analytic bodies at Mach numbers near 1.0

    NASA Technical Reports Server (NTRS)

    Tyson, R. W.; Muraca, R. J.

    1975-01-01

    The local linearization method for axisymmetric flow is combined with the transonic equivalence rule to calculate pressure distribution on slender bodies at free-stream Mach numbers from .8 to 1.2. This is an approximate solution to the transonic flow problem which yields results applicable during the preliminary design stages of a configuration development. The method can be used to determine the aerodynamic loads on parabolic arc bodies having either circular or elliptical cross sections. It is particularly useful in predicting pressure distributions and normal force distributions along the body at small angles of attack. The equations discussed may be extended to include wing-body combinations.

  9. HYDJET++ for ultra-relativistic HIC’s: A hot cocktail of hydrodynamics, resonances and jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bravina, L. V.; Johansson, B. H. Brusheim; Crkovska, J.

    An ultra-relativistic heavy-ion collision at LHC energies is a mixture of soft and hard processes. For comparison with data we employ the HYDJET++ model, which combines the description of soft processes with the treatment of hard partons propagating hot and dense nuclear medium. Importance of the interplay of ideal hydrodynamics, final state interactions and jets for the description of harmonics of the anisotropic flow is discussed. Jets are found to be the main source of violation of the number-of-constituent-quark (NCQ) scaling at LHC energies. Many features of higher flow harmonics and dihadron angular correlations, including ridge, can be described bymore » the interference of elliptic and triangular flows.« less

  10. Textbook Multigrid Efficiency for the Steady Euler Equations

    NASA Technical Reports Server (NTRS)

    Roberts, Thomas W.; Sidilkover, David; Swanson, R. C.

    2004-01-01

    A fast multigrid solver for the steady incompressible Euler equations is presented. Unlike time-marching schemes, this approach uses relaxation of the steady equations. Application of this method results in a discretization that correctly distinguishes between the advection and elliptic parts of the operator, allowing efficient smoothers to be constructed. Solvers for both unstructured triangular grids and structured quadrilateral grids have been written. Computations for channel flow and flow over a nonlifting airfoil have computed. Using Gauss-Seidel relaxation ordered in the flow direction, textbook multigrid convergence rates of nearly one order-of-magnitude residual reduction per multigrid cycle are achieved, independent of the grid spacing. This approach also may be applied to the compressible Euler equations and the incompressible Navier-Stokes equations.

  11. A Reynolds stress model for near-wall turbulence

    NASA Technical Reports Server (NTRS)

    Durbin, P. A.

    1993-01-01

    The paper formulates a tensorially consistent near-wall second-order closure model. Redistributive terms in the Reynolds stress equations are modeled by an elliptic relaxation equation in order to represent strongly nonhomogeneous effects produced by the presence of walls; this replaces the quasi-homogeneous algebraic models that are usually employed, and avoids the need for ad hoc damping functions. The model is solved for channel flow and boundary layers with zero and adverse pressure gradients. Good predictions of Reynolds stress components, mean flow, skin friction, and displacement thickness are obtained in various comparisons to experimental and direct numerical simulation data. The model is also applied to a boundary layer flowing along a wall with a 90-deg, constant-radius, convex bend.

  12. Highly Variable Cycle Exhaust Model Test (HVC10)

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Wernet, Mark; Podboy, Gary; Bozak, Rick

    2010-01-01

    Results from acoustic and flow-field studies using the Highly Variable Cycle Exhaust (HVC) model were presented. The model consisted of a lobed mixer on the core stream, an elliptic nozzle on the fan stream, and an ejector. For baseline comparisons, the fan nozzle was replaced with a round nozzle and the ejector doors were removed from the model. Acoustic studies showed far-field noise levels were higher for the HVC model with the ejector than for the baseline configuration. Results from Particle Image Velocimetry (PIV) studies indicated that large flow separation regions occurred along the ejector doors, thus restricting flow through the ejector. Phased array measurements showed noise sources located near the ejector doors for operating conditions where tones were present in the acoustic spectra.

  13. Potential and field produced by a uniform or non-uniform elliptical beam inside a confocal elliptic vacuum chamber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regenstreif, E.

    The potential produced by an isolated beam of elliptic cross-section seems to have been considered first by L.C. Teng. Image effects of line charges in elliptic vacuum chambers were introduced into accelerator theory by L. J. Laslett. Various approximate solutions for elliptic beams of finite cross-section coasting inside an elliptic vacuum chamber were subsequently proposed by P. Lapostolle and C. Bovet. A rigorous expression is derived for the potential produced by an elliptic beam inside an elliptic vacuum chamber, provided the beam envelope and the vacuum chamber can be assimilated to confocal ellipses.

  14. The effect of Lorentz-like force on collective flows of K + in Au+Au collisions at 1.5 GeV/nucleon

    NASA Astrophysics Data System (ADS)

    Du, YuShan; Wang, YongJia; Li, QingFeng; Liu, Ling

    2018-06-01

    Producing kaon mesons in heavy-ion collisions at beam energies below their threshold energy is an important way to investigate the properties of dense nuclear matter. In this study, based on the newly updated version of the ultrarelativistic quantum molecular dynamics model, we introduce the kaon-nucleon (KN) potential, including both the scalar and vector (also dubbed Lorentz-like) aspects. We revisit the influence of the KN potential on the collective flow of K + mesons produced in Au+Au collisions at E lab = 1.5 GeV/nucleon and find that the contribution of the newly included Lorentz-like force is very important, particulary for describing the directed flow of K +. Finally, the corresponding KaoS data of both directed and elliptic flows can be simultaneously reproduced well.

  15. Effect of storage temperature and equilibration time on polymethyl methacrylate (PMMA) bone cement polymerization in joint replacement surgery.

    PubMed

    Koh, Bryan T H; Tan, J H; Ramruttun, Amit Kumarsing; Wang, Wilson

    2015-11-17

    In cemented joint arthroplasty, the handling characteristics (doughing, working, and setting times) of polymethyl methacrylate (PMMA) bone cement is important as it determines the amount of time surgeons have to optimally position an implant. Storage conditions (temperature and humidity) and the time given for PMMA cement to equilibrate to ambient operating theater (OT) temperatures are often unregulated and may lead to inconsistencies in its handling characteristics. This has not been previously studied. Hence, the purpose of this study was to investigate the effect of storage temperatures on the handling characteristics of PMMA cement and the duration of equilibration time needed at each storage temperature to produce consistent and reproducible doughing, setting, and working times. SmartSet® HV cement was stored at three different controlled temperatures: 20 °C (control), 24 °C, and 28 °C for at least 24 h prior to mixing. The cement components were then brought into a room kept at 20 °C and 50 % humidity. Samples were allowed to equilibrate to ambient conditions for 15, 30, 45, and 60 min. The cement components were mixed and the dough time, temperature-versus-time curve (Lutron TM-947SD, Lutron Electronics, Inc., Coopersburg, PA), and setting time were recorded. Analysis was performed using the two-way ANOVA test (IBM SPSS Statistics V.22). At 20 °C (control) storage temperature, the mean setting time was 534 ± 17 s. At 24 °C storage temperature, the mean setting time was 414 ± 6 s (p < 0.001*) with 15 min of equilibration, 446 ± 11 s (p < 0.001*) with 30 min of equilibration, 501 ± 12 s (p < 0.001*) with 45 min of equilibration, and 528 ± 15 (p > 0.05) with 60 min of equilibration. At 28 °C storage temperature, the mean setting time was 381 ± 8 s (p < 0.001*) with 15 min of equilibration, 432 ± 30 s (p < 0.001*) with 30 min of equilibration, 487 ± 9 (p < 0.001*) with 45 min of equilibration, and 520 ± 16 s (p > 0.05) with 60 min of equilibration. This study reflects the extent to which storage temperatures and equilibration times can potentially affect the handling characteristics of PMMA cement. We recommend institutions to have a well-regulated temperature and humidity-controlled facility for storage of bone cements and a protocol to standardize the equilibration time of cements prior to use in the OT to improve consistency and reproducibility of the handling characteristics of PMMA cement.

  16. Effect of equilibration on primitive path analyses of entangled polymers.

    PubMed

    Hoy, Robert S; Robbins, Mark O

    2005-12-01

    We use recently developed primitive path analysis (PPA) methods to study the effect of equilibration on entanglement density in model polymeric systems. Values of Ne for two commonly used equilibration methods differ by a factor of 2-4 even though the methods produce similar large-scale chain statistics. We find that local chain stretching in poorly equilibrated samples increases entanglement density. The evolution of Ne with time shows that many entanglements are lost through fast processes such as chain retraction as the local stretching relaxes. Quenching a melt state into a glass has little effect on Ne. Equilibration-dependent differences in short-scale structure affect the craze extension ratio much less than expected from the differences in PPA values of Ne.

  17. Fluid absorption solar energy receiver

    NASA Technical Reports Server (NTRS)

    Bair, Edward J.

    1993-01-01

    A conventional solar dynamic system transmits solar energy to the flowing fluid of a thermodynamic cycle through structures which contain the gas and thermal energy storage material. Such a heat transfer mechanism dictates that the structure operate at a higher temperature than the fluid. This investigation reports on a fluid absorption receiver where only a part of the solar energy is transmitted to the structure. The other part is absorbed directly by the fluid. By proportioning these two heat transfer paths the energy to the structure can preheat the fluid, while the energy absorbed directly by the fluid raises the fluid to its final working temperature. The surface temperatures need not exceed the output temperature of the fluid. This makes the output temperature of the gas the maximum temperature in the system. The gas can have local maximum temperatures higher than the output working temperature. However local high temperatures are quickly equilibrated, and since the gas does not emit radiation, local high temperatures do not result in a radiative heat loss. Thermal radiation, thermal conductivity, and heat exchange with the gas all help equilibrate the surface temperature.

  18. Termination of a Magnetized Plasma on a Neutral Gas: The End of the Plasma

    NASA Astrophysics Data System (ADS)

    Cooper, C. M.; Gekelman, W.

    2013-06-01

    Experiments are performed at the Enormous Toroidal Plasma Device at UCLA to study the neutral boundary layer (NBL) between a magnetized plasma and a neutral gas along the direction of a confining magnetic field. This is the first experiment to measure plasma termination within a neutral gas without the presence of a wall or obstacle. A magnetized, current-free helium plasma created by a lanthanum hexaboride (LaB6) cathode terminates entirely within a neutral helium gas. The plasma is weakly ionized (ne/nn˜1%) and collisional λn≪Lplasma. The NBL occurs where the plasma pressure equilibrates with the neutral gas pressure, consistent with a pressure balance model. It is characterized by a field-aligned ambipolar electric field, developing self-consistently to maintain a current-free termination of the plasma on the neutral gas. Probes are inserted into the plasma to measure the plasma density, flow, temperature, current, and potential. These measurements confirm the presence of the ambipolar field and the pressure equilibration model of the NBL.

  19. Spectrometric Analysis for Pulse Jet Mixer Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZEIGLER, KRISTINE

    2004-07-12

    The Analytical Development Section (ADS) was tasked with providing support for a Hanford River Protection Program-Waste Treatment Program (RPP-WTP) project test involving absorption analysis for non-Newtonian pulse jet mixer testing for small scale (PJM) and prototype (CRV) tanks with sparging. Tanks filled with clay were mixed with various amounts of powdered dye as a tracer. The objective of the entire project was to determine the best mixing protocol (nozzle velocity, number of spargers used, total air flow, etc.) by determining the percent mixed volume through the use of an ultraviolet-visible (UV-Vis) spectrometer. The dye concentration within the sample could bemore » correlated to the volume fraction mixed in the tank. Samples were received in vials, a series of dilutions were generated from the clay, allowed to equilibrate, then centrifuged and siphoned for the supernate liquid to analyze by absorption spectroscopy. Equilibration of the samples and thorough mixing of the samples were a continuous issue with dilution curves being difficult to obtain. Despite these technical issues, useful data was obtained for evaluation of various mix conditions.« less

  20. A remark on the sign change of the four-particle azimuthal cumulant in small systems

    NASA Astrophysics Data System (ADS)

    Bzdak, Adam; Ma, Guo-Liang

    2018-06-01

    The azimuthal cumulants, c2 { 2 } and c2 { 4 }, originating from the global conservation of transverse momentum in the presence of hydro-like elliptic flow are calculated. We observe the sign change of c2 { 4 } for small number of produced particles. This is in a qualitative agreement with the recent ATLAS measurement of multi-particle azimuthal correlations with the subevent cumulant method.

  1. Pinching Solutions of Slender Cylindrical Jets

    DTIC Science & Technology

    1993-06-01

    NASA Langley Research Center, Hampton, VA 23681.2This research was supported in part by Fondo Nacional de Desarrollo Cientifico y Tecnologico (FONDE...concentrate on inviscid irrotational flows of liquid jets. A review article has been written by Bogy [2]. Of relevance is also the work of Chandrasekhar...equations become elliptic and allow the possibility of admissible pinching solutions described in this article . It is interesting to find that for jets

  2. Adaptive Grid Generation Using Elliptic Generating Equations with Precise Coordinate Controls

    DTIC Science & Technology

    1986-07-08

    nonhomogeneous terms, which are strong eration that are of critical importance in choosing a and typically greatly slow the iterative convergence grid...computational mechan- calcuiauons. particulary three-dimensionai turbuient studies. ics in October 1989. 1 do not : hink that the overall cost of -te...flow in gas turbine diffusers, and from the National Science Foundation (Mathematics Division) on "Robust and Fast Numerical Grid Generation". The

  3. Acoustics and dynamics of coaxial interacting vortex rings

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Leonard, Anthony; Zabusky, Norman J.; Ferziger, Joel H.

    1988-01-01

    Using a contour dynamics method for inviscid axisymmetric flow we examine the effects of core deformation on the dynamics and acoustic signatures of coaxial interacting vortex rings. Both 'passage' and 'collision' (head-on) interactions are studied for initially identical vortices. Good correspondence with experiments is obtained. A simple model which retains only the elliptic degree of freedom in the core shape is used to explain some of the calculated features.

  4. Elliptic flow of electrons from heavy-flavor hadron decays in Au + Au collisions at √{sN N}=200 , 62.4, and 39 GeV

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, H. Z.; Huang, X.; Huang, B.; Huang, T.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, Y.; Li, W.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, P.; Liu, Y.; Liu, F.; Liu, H.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Luo, S.; Ma, Y. G.; Ma, L.; Ma, R.; Ma, G. L.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, M. K.; Sharma, A.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, W.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.; STAR Collaboration

    2017-03-01

    We present measurements of elliptic flow (v2) of electrons from the decays of heavy-flavor hadrons (eHF) by the STAR experiment. For Au+Au collisions at √{sN N}=200 GeV we report v2, for transverse momentum (pT) between 0.2 and 7 GeV /c , using three methods: the event plane method (v2{EP } ), two-particle correlations (v2{2 } ), and four-particle correlations (v2{4 } ). For Au+Au collisions at √{sN N}=62.4 and 39 GeV we report v2{2 } for pT<2 GeV /c . v2{2 } and v2{4 } are nonzero at low and intermediate pT at 200 GeV, and v2{2 } is consistent with zero at low pT at other energies. The v2{2 } at the two lower beam energies is systematically lower than at √{sN N}=200 GeV for pT<1 GeV /c . This difference may suggest that charm quarks interact less strongly with the surrounding nuclear matter at those two lower energies compared to √{sN N}=200 GeV.

  5. Black hole meiosis

    NASA Astrophysics Data System (ADS)

    van Herck, Walter; Wyder, Thomas

    2010-04-01

    The enumeration of BPS bound states in string theory needs refinement. Studying partition functions of particles made from D-branes wrapped on algebraic Calabi-Yau 3-folds, and classifying states using split attractor flow trees, we extend the method for computing a refined BPS index, [1]. For certain D-particles, a finite number of microstates, namely polar states, exclusively realized as bound states, determine an entire partition function (elliptic genus). This underlines their crucial importance: one might call them the ‘chromosomes’ of a D-particle or a black hole. As polar states also can be affected by our refinement, previous predictions on elliptic genera are modified. This can be metaphorically interpreted as ‘crossing-over in the meiosis of a D-particle’. Our results improve on [2], provide non-trivial evidence for a strong split attractor flow tree conjecture, and thus suggest that we indeed exhaust the BPS spectrum. In the D-brane description of a bound state, the necessity for refinement results from the fact that tachyonic strings split up constituent states into ‘generic’ and ‘special’ states. These are enumerated separately by topological invariants, which turn out to be partitions of Donaldson-Thomas invariants. As modular predictions provide a check on many of our results, we have compelling evidence that our computations are correct.

  6. Elliptic flow of electrons from heavy-flavor hadron decays in Au + Au collisions at s N N = 200 , 62.4, and 39 GeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.

    Here, we present measurements of elliptic flow (v 2) of electrons from the decays of heavy-flavor hadrons (e HF) by the STAR experiment. For Au+Au collisions atmore » $$\\sqrt{s}$$$_ {NN}$$=200 GeV we report v 2, for transverse momentum (p T) between 0.2 and 7 GeV/c, using three methods: the event plane method (v 2{EP}), two-particle correlations (v 2{2}), and four-particle correlations (v 2{4}). For Au+Au collisions at $$\\sqrt{s}$$$_ {NN}$$=62.4 and 39 GeV we report v 2{2} for p T <2GeV/c. v 2{2} and v 2{4} are nonzero at low and intermediate p T at 200 GeV, and v 2{2} is consistent with zero at low p T at other energies. The v 2{2} at the two lower beam energies is systematically lower than at $$\\sqrt{s}$$$_ {NN}$$=200 GeV for p T <1GeV/c. This difference may suggest that charm quarks interact less strongly with the surrounding nuclear matter at those two lower energies compared to $$\\sqrt{s}$$$_ {NN}$$=200 GeV.« less

  7. Propagation of heavy baryons in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Das, Santosh K.; Torres-Rincon, Juan M.; Tolos, Laura; Minissale, Vincenzo; Scardina, Francesco; Greco, Vincenzo

    2016-12-01

    The drag and diffusion coefficients of heavy baryons (Λc and Λb ) in the hadronic phase created in the latter stage of the heavy-ion collisions at RHIC and LHC energies have been evaluated recently. In this work we compute some experimental observables, such as the nuclear suppression factor RA A and the elliptic flow v2 of heavy baryons at RHIC and LHC energies, highlighting the role of the hadronic phase contribution to these observables, which are going to be measured at Run 3 of LHC. For the time evolution of the heavy quarks in the quark and gluon plasma (QGP) and heavy baryons in the hadronic phase, we use the Langevin dynamics. For the hadronization of the heavy quarks to heavy baryons we employ Peterson fragmentation functions. We observe a strong suppression of both the Λc and Λb . We find that the hadronic medium has a sizable impact on the heavy-baryon elliptic flow whereas the impact of hadronic medium rescattering is almost unnoticeable on the nuclear suppression factor. We evaluate the Λc/D ratio at RHIC and LHC. We find that the Λc/D ratio remains unaffected due to the hadronic phase rescattering which enables it as a nobel probe of QGP phase dynamics along with its hadronization.

  8. Elliptic flow of electrons from heavy-flavor hadron decays in Au + Au collisions at s N N = 200 , 62.4, and 39 GeV

    DOE PAGES

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; ...

    2017-03-13

    Here, we present measurements of elliptic flow (v 2) of electrons from the decays of heavy-flavor hadrons (e HF) by the STAR experiment. For Au+Au collisions atmore » $$\\sqrt{s}$$$_ {NN}$$=200 GeV we report v 2, for transverse momentum (p T) between 0.2 and 7 GeV/c, using three methods: the event plane method (v 2{EP}), two-particle correlations (v 2{2}), and four-particle correlations (v 2{4}). For Au+Au collisions at $$\\sqrt{s}$$$_ {NN}$$=62.4 and 39 GeV we report v 2{2} for p T <2GeV/c. v 2{2} and v 2{4} are nonzero at low and intermediate p T at 200 GeV, and v 2{2} is consistent with zero at low p T at other energies. The v 2{2} at the two lower beam energies is systematically lower than at $$\\sqrt{s}$$$_ {NN}$$=200 GeV for p T <1GeV/c. This difference may suggest that charm quarks interact less strongly with the surrounding nuclear matter at those two lower energies compared to $$\\sqrt{s}$$$_ {NN}$$=200 GeV.« less

  9. Genesis of recent silicic magmatism in the Medicine Lake Highland, California - Evidence from cognate inclusions found at Little Glass Mountain

    NASA Technical Reports Server (NTRS)

    Mertzman, S. A.; Williams, R. J.

    1981-01-01

    Sparse, granular inclusions of early-formed minerals found within the Little Glass Mountain rhyolite flows in northern California are shown to provide a means of characterizing the physical conditions, at depth, beneath the Medicine Lake Highland during the latest phase of volcanic activity. Mineral compositions, in combination with thermodynamic calculations and experiments, suggest crystalization at a pressure of 5,200 bars within a 966-836 C temperature range; implying that mineral segregation and equilibration occurred at a depth of 15-18 km beneath the surface. In addition, mass balance calculations indicate that the Medicine Lake flow is a close approximation to the parental magma for the latest silicic lavas.

  10. Petrogenesis of melt rocks, Manicouagan impact structure, Quebec

    NASA Technical Reports Server (NTRS)

    Simonds, C. H.; Floran, R. J.; Mcgee, P. E.; Phinney, W. C.; Warner, J. L.

    1978-01-01

    It is suggested, on the basis of previous theoretical studies of shock waves, that the Manicouagan melt formed in 1 or 2 s in a 5-km-radius hemisphere near the point of impact. The melt and the less shocked debris surrounding it flowed downward and outward for a few minutes until the melt formed a lining of a 5- to 8-km deep, 15- to 22-km-radius cavity. Extremely turbulent flow thoroughly homogenized the melt and promoted the incorporation and progressive digestion of debris that had been finely fragmented (but not melted) to grain sizes of less than one mm by the passage of the shock waves. The equilibration of clasts and melt, plagioclase nucleation, and readjustment of the crater floor are discussed.

  11. A prediction model of compressor with variable-geometry diffuser based on elliptic equation and partial least squares

    PubMed Central

    Yang, Chuanlei; Wang, Yinyan; Wang, Hechun

    2018-01-01

    To achieve a much more extensive intake air flow range of the diesel engine, a variable-geometry compressor (VGC) is introduced into a turbocharged diesel engine. However, due to the variable diffuser vane angle (DVA), the prediction for the performance of the VGC becomes more difficult than for a normal compressor. In the present study, a prediction model comprising an elliptical equation and a PLS (partial least-squares) model was proposed to predict the performance of the VGC. The speed lines of the pressure ratio map and the efficiency map were fitted with the elliptical equation, and the coefficients of the elliptical equation were introduced into the PLS model to build the polynomial relationship between the coefficients and the relative speed, the DVA. Further, the maximal order of the polynomial was investigated in detail to reduce the number of sub-coefficients and achieve acceptable fit accuracy simultaneously. The prediction model was validated with sample data and in order to present the superiority of compressor performance prediction, the prediction results of this model were compared with those of the look-up table and back-propagation neural networks (BPNNs). The validation and comparison results show that the prediction accuracy of the new developed model is acceptable, and this model is much more suitable than the look-up table and the BPNN methods under the same condition in VGC performance prediction. Moreover, the new developed prediction model provides a novel and effective prediction solution for the VGC and can be used to improve the accuracy of the thermodynamic model for turbocharged diesel engines in the future. PMID:29410849

  12. A prediction model of compressor with variable-geometry diffuser based on elliptic equation and partial least squares.

    PubMed

    Li, Xu; Yang, Chuanlei; Wang, Yinyan; Wang, Hechun

    2018-01-01

    To achieve a much more extensive intake air flow range of the diesel engine, a variable-geometry compressor (VGC) is introduced into a turbocharged diesel engine. However, due to the variable diffuser vane angle (DVA), the prediction for the performance of the VGC becomes more difficult than for a normal compressor. In the present study, a prediction model comprising an elliptical equation and a PLS (partial least-squares) model was proposed to predict the performance of the VGC. The speed lines of the pressure ratio map and the efficiency map were fitted with the elliptical equation, and the coefficients of the elliptical equation were introduced into the PLS model to build the polynomial relationship between the coefficients and the relative speed, the DVA. Further, the maximal order of the polynomial was investigated in detail to reduce the number of sub-coefficients and achieve acceptable fit accuracy simultaneously. The prediction model was validated with sample data and in order to present the superiority of compressor performance prediction, the prediction results of this model were compared with those of the look-up table and back-propagation neural networks (BPNNs). The validation and comparison results show that the prediction accuracy of the new developed model is acceptable, and this model is much more suitable than the look-up table and the BPNN methods under the same condition in VGC performance prediction. Moreover, the new developed prediction model provides a novel and effective prediction solution for the VGC and can be used to improve the accuracy of the thermodynamic model for turbocharged diesel engines in the future.

  13. Characteristics of transonic spherical symmetric accretion flow in Schwarzschild-de Sitter and Schwarzschild anti-de Sitter backgrounds, in pseudo-general relativistic paradigm

    NASA Astrophysics Data System (ADS)

    Ghosh, Shubhrangshu; Banik, Prabir

    2015-07-01

    In this paper, we present a complete work on steady state spherically symmetric Bondi type accretion flow in the presence of cosmological constant (Λ) in both Schwarzschild-de Sitter (SDS) and Schwarzschild anti-de Sitter (SADS) backgrounds considering an isolated supermassive black hole (SMBH), with the inclusion of a simple radiative transfer scheme, in the pseudo-general relativistic paradigm. We do an extensive analysis on the transonic behavior of the Bondi type accretion flow onto the cosmological BHs including a complete analysis of the global parameter space and the stability of flow, and do a complete study of the global family of solutions for a generic polytropic flow. Bondi type accretion flow in SADS background renders multiplicity in its transonic behavior with inner "saddle" type and outer "center" type sonic points, with the transonic solutions forming closed loops or contours. There is always a limiting value for ∣Λ∣ up to which we obtain valid stationary transonic solutions, which correspond to both SDS and SADS geometries; this limiting value moderately increases with the increasing radiative efficiency of the flow, especially correspond to Bondi type accretion flow in SADS background. Repulsive Λ suppresses the Bondi accretion rate by an order of magnitude for relativistic Bondi type accretion flow for a certain range in temperature, and with a marginal increase in the Bondi accretion rate if the corresponding accretion flow occurs in SADS background. However, for a strongly radiative Bondi type accretion flow with high mass accretion rate, the presence of cosmological constant do not much influence the corresponding Bondi accretion rate of the flow. Our analysis show that the relic cosmological constant has a substantial effect on Bondi type accretion flow onto isolated SMBHs and their transonic solutions beyond length-scale of kiloparsecs, especially if the Bondi type accretion occurs onto the host supergiant ellipticals or central dominant (CD) galaxies directly from ambient intercluster medium (ICM). However, for high mass accretion rate, the influence of cosmological constant on Bondi accretion dynamics, generically, diminishes. As active galactic nuclei (AGN)/ICM feedback can be advertently linked to Bondi type spherical accretion, any proper modeling of AGN feedback or megaparsecs-scale jet dynamics or accretion flow from ICM onto the central regions of host galaxies should take into account the relevant information of repulsive Λ, especially in context to supergiant elliptical galaxies or CD galaxies present in rich galaxy clusters. This could also explore the feasibility to limit the value of Λ, from the kinematics in local galactic-scales.

  14. Water Saturation Relations and Their Diffusion-Limited Equilibration in Gas Shale: Implications for Gas Flow in Unconventional Reservoirs

    NASA Astrophysics Data System (ADS)

    Tokunaga, Tetsu K.; Shen, Weijun; Wan, Jiamin; Kim, Yongman; Cihan, Abdullah; Zhang, Yingqi; Finsterle, Stefan

    2017-11-01

    Large volumes of water are used for hydraulic fracturing of low permeability shale reservoirs to stimulate gas production, with most of the water remaining unrecovered and distributed in a poorly understood manner within stimulated regions. Because water partitioning into shale pores controls gas release, we measured the water saturation dependence on relative humidity (rh) and capillary pressure (Pc) for imbibition (adsorption) as well as drainage (desorption) on samples of Woodford Shale. Experiments and modeling of water vapor adsorption into shale laminae at rh = 0.31 demonstrated that long times are needed to characterize equilibrium in larger (5 mm thick) pieces of shales, and yielded effective diffusion coefficients from 9 × 10-9 to 3 × 10-8 m2 s-1, similar in magnitude to the literature values for typical low porosity and low permeability rocks. Most of the experiments, conducted at 50°C on crushed shale grains in order to facilitate rapid equilibration, showed significant saturation hysteresis, and that very large Pc (˜1 MPa) are required to drain the shales. These results quantify the severity of the water blocking problem, and suggest that gas production from unconventional reservoirs is largely associated with stimulated regions that have had little or no exposure to injected water. Gravity drainage of water from fractures residing above horizontal wells reconciles gas production in the presence of largely unrecovered injected water, and is discussed in the broader context of unsaturated flow in fractures.

  15. Nitrite transport into pig erythrocytes and its potential biological role.

    PubMed

    Jensen, F B

    2005-07-01

    To study nitrite transport and its oxygenation dependency in pig erythrocytes, as this is fundamental to the possible participation of nitrite in blood flow regulation via its reduction to nitric oxide by deoxygenated haemoglobin (Hb). Pig red blood cells (RBCs) were tonometer-equilibrated to physiological pCO2 in oxygenated and deoxygenated states. Nitrite was added and the kinetics of NO2- influx and methaemoglobin (metHb) formation were assessed at variable temperature and haematocrit. Nitrite quickly permeated and equilibrated across the membrane, and then continued to enter RBCs as a consequence of its intracellular removal (via reactions with Hb to form nitrate and metHb in oxygenated cells, and NO and metHb in deoxygenated cells). The membrane permeation as such showed little oxygenation dependency, but as metHb formation was significantly higher in oxygenated than deoxygenated RBCs, nitrite transport tended to be largest into oxygenated RBCs. This contrasts with a preferential permeation of deoxygenated RBCs in some fish species. Nitrite transport showed low temperature sensitivity but was speeded up at low haematocrit via more rapid intracellular nitrite removal (metHb formation). Nitrite influx was not affected by inhibitors of facilitated diffusion (DIDS, phloretin and PCMB) and may occur via conductive transport. Extracellular pH was stable during nitrite transport. Nitrite extensively permeates both oxygenated and deoxygenated pig RBCs, which may enable a dual function of nitrite entry: viz. conversion to NO at low pO2 to promote blood flow and detoxification to non-toxic nitrate at inappropriate high nitrite levels.

  16. How long does it take to equilibrate the unfolded state of a protein?

    PubMed Central

    Levy, Ronald M; Dai, Wei; Deng, Nan-Jie; Makarov, Dmitrii E

    2013-01-01

    How long does it take to equilibrate the unfolded state of a protein? The answer to this question has important implications for our understanding of why many small proteins fold with two state kinetics. When the equilibration within the unfolded state U is much faster than the folding, the folding kinetics will be two state even if there are many folding pathways with different barriers. Yet the mean first passage times (MFPTs) between different regions of the unfolded state can be much longer than the folding time. This seems to imply that the equilibration within U is much slower than the folding. In this communication we resolve this paradox. We present a formula for estimating the time to equilibrate the unfolded state of a protein. We also present a formula for the MFPT to any state within U, which is proportional to the average lifetime of that state divided by the state population. This relation is valid when the equilibration within U is very fast as compared with folding as it often is for small proteins. To illustrate the concepts, we apply the formulas to estimate the time to equilibrate the unfolded state of Trp-cage and MFPTs within the unfolded state based on a Markov State Model using an ultra-long 208 microsecond trajectory of the miniprotein to parameterize the model. The time to equilibrate the unfolded state of Trp-cage is ∼100 ns while the typical MFPTs within U are tens of microseconds or longer. PMID:23963761

  17. What can the Hf–W System tell Us About the Mechanism and Timing of Earth's Core Formation?

    NASA Astrophysics Data System (ADS)

    Fischer, R. A.; Nimmo, F.; O'Brien, D. P.

    2018-05-01

    Strong tradeoff between effects of depth and extent of metal-silicate equilibration and formation timescale on the Hf-W system. Whole mantle equilibration requires k = 0.4. Later formation times require less equilibration to match Earth's anomaly.

  18. Nozzle Flow with Vibrational Nonequilibrium. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Landry, John Gary

    1995-01-01

    Flow of nitrogen gas through a converging-diverging nozzle is simulated. The flow is modeled using the Navier-Stokes equations that have been modified for vibrational nonequilibrium. The energy equation is replaced by two equations. One equation accounts for energy effects due to the translational and rotational degrees of freedom, and the other accounts for the affects due to the vibrational degree of freedom. The energy equations are coupled by a relaxation time which measures the time required for the vibrational energy component to equilibrate with the translational and rotational energy components. An improved relaxation time is used in this thesis. The equations are solved numerically using the Steger-Warming flux vector splitting method and the Implicit MacCormack method. The results show that uniform flow is produced outside of the boundary layer. Nonequilibrium exists in both the converging and diverging nozzle sections. The boundary layer region is characterized by a marked increase in translational-rotational temperature. The vibrational temperature remains frozen downstream of the nozzle, except in the boundary layer.

  19. Test of a new heat-flow equation for dense-fluid shock waves.

    PubMed

    Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon

    2010-09-21

    Using a recently proposed equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, we model shockwave propagation in the dense Lennard-Jones fluid. Disequilibrium among the three components of temperature, namely, the difference between the kinetic temperature in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, gives rise to a new transport (equilibration) mechanism not seen in usual one-dimensional heat-flow situations. The modification of the heat-flow equation was tested earlier for the case of strong shock waves in the ideal gas, which had been studied in the past and compared to Navier-Stokes-Fourier solutions. Now, the Lennard-Jones fluid, whose equation of state and transport properties have been determined from independent calculations, allows us to study the case where potential, as well as kinetic contributions are important. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations under strong shock wave conditions, compared to Navier-Stokes.

  20. Fast "hyperlayer" separation development in sedimentation field flow fractionation.

    PubMed

    Kassab, James R; Cardot, Philippe J P; Zahoransky, Richard A; Battu, Serge

    2005-11-05

    Specific prototypes of sedimentation field flow fractionation devices (SdFFF) have been developed with relative success for cell sorting. However, no data are available to compare these apparatus with commercial ones. In order to compare with other devices mainly used for non-biological species, biocompatible systems were used for standard particle (latex: 3-10 microm of different size dispersities) separation development. In order to enhance size dependent separations, channels of reduced thickness were used (80 and 100 microm) and channel/carrier-phase equilibration procedures were necessary. For sample injection, the use of inlet tubing linked to the FFF accumulation wall, common for cell sorting, can be extended to latex species when they are eluted in the Steric Hyperlayer elution mode. It avoids any primary relaxation steps (stop flow injection procedure) simplifying series of elution processing. Mixtures composed of four different monodispersed latex beads can be eluted in 6 min with 100 microm channel thickness.

  1. Elliptic supersymmetric integrable model and multivariable elliptic functions

    NASA Astrophysics Data System (ADS)

    Motegi, Kohei

    2017-12-01

    We investigate the elliptic integrable model introduced by Deguchi and Martin [Int. J. Mod. Phys. A 7, Suppl. 1A, 165 (1992)], which is an elliptic extension of the Perk-Schultz model. We introduce and study a class of partition functions of the elliptic model by using the Izergin-Korepin analysis. We show that the partition functions are expressed as a product of elliptic factors and elliptic Schur-type symmetric functions. This result resembles recent work by number theorists in which the correspondence between the partition functions of trigonometric models and the product of the deformed Vandermonde determinant and Schur functions were established.

  2. Optics ellipticity performance of an unobscured off-axis space telescope.

    PubMed

    Zeng, Fei; Zhang, Xin; Zhang, Jianping; Shi, Guangwei; Wu, Hongbo

    2014-10-20

    With the development of astronomy, more and more attention is paid to the survey of dark matter. Dark matter cannot be seen directly but can be detected by weak gravitational lensing measurement. Ellipticity is an important parameter used to define the shape of a galaxy. Galaxy ellipticity changes with weak gravitational lensing and nonideal optics. With our design of an unobscured off-axis telescope, we implement the simulation and calculation of optics ellipticity. With an accurate model of optics PSF, the characteristic of ellipticity is modeled and analyzed. It is shown that with good optical design, the full field ellipticity can be quite small. The spatial ellipticity change can be modeled by cubic interpolation with very high accuracy. We also modeled the ellipticity variance with time and analyzed the tolerance. It is shown that the unobscured off-axis telescope has good ellipticity performance and fulfills the requirement of dark matter survey.

  3. Leading-edge singularities in thin-airfoil theory

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1976-01-01

    If the thin airfoil theory is applied to an airfoil having a rounded leading edge, a certain error will arise in the determination of the pressure distribution around the nose. It is shown that the evaluation of the drag of such a blunt nosed airfoil by the thin airfoil theory requires the addition of a leading edge force, analogous to the leading edge thrust of the lifting airfoil. The method of calculation is illustrated by application to: (1) The Joukowski airfoil in subsonic flow; and (2) the thin elliptic cone in supersonic flow. A general formula for the edge force is provided which is applicable to a variety of wing forms.

  4. Finite elements: Theory and application

    NASA Technical Reports Server (NTRS)

    Dwoyer, D. L. (Editor); Hussaini, M. Y. (Editor); Voigt, R. G. (Editor)

    1988-01-01

    Recent advances in FEM techniques and applications are discussed in reviews and reports presented at the ICASE/LaRC workshop held in Hampton, VA in July 1986. Topics addressed include FEM approaches for partial differential equations, mixed FEMs, singular FEMs, FEMs for hyperbolic systems, iterative methods for elliptic finite-element equations on general meshes, mathematical aspects of FEMS for incompressible viscous flows, and gradient weighted moving finite elements in two dimensions. Consideration is given to adaptive flux-corrected FEM transport techniques for CFD, mixed and singular finite elements and the field BEM, p and h-p versions of the FEM, transient analysis methods in computational dynamics, and FEMs for integrated flow/thermal/structural analysis.

  5. Three dimensional steady subsonic Euler flows in bounded nozzles

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Xie, Chunjing

    The existence and uniqueness of three dimensional steady subsonic Euler flows in rectangular nozzles were obtained when prescribing normal component of momentum at both the entrance and exit. If, in addition, the normal component of the voriticity and the variation of Bernoulli's function at the entrance are both zero, then there exists a unique subsonic potential flow when the magnitude of the normal component of the momentum is less than a critical number. As the magnitude of the normal component of the momentum approaches the critical number, the associated flows converge to a subsonic-sonic flow. Furthermore, when the normal component of vorticity and the variation of Bernoulli function are both small, the existence and uniqueness of subsonic Euler flows with non-zero vorticity are established. The proof of these results is based on a new formulation for the Euler system, a priori estimate for nonlinear elliptic equations with nonlinear boundary conditions, detailed study for a linear div-curl system, and delicate estimate for the transport equations.

  6. Analysis of atmospheric flow over a surface protrusion using the turbulence kinetic energy equation with reference to aeronautical operating systems

    NASA Technical Reports Server (NTRS)

    Frost, W.; Harper, W. L.

    1975-01-01

    Flow over surface obstructions can produce significantly large wind shears such that adverse flying conditions can occur for aeronautical systems (helicopters, STOL vehicles, etc.). Atmospheric flow fields resulting from a semi-elliptical surface obstruction in an otherwise horizontally homogeneous statistically stationary flow are modelled with the boundary-layer/Boussinesq-approximation of the governing equation of fluid mechanics. The turbulence kinetic energy equation is used to determine the dissipative effects of turbulent shear on the mean flow. Iso-lines of turbulence kinetic energy and turbulence intensity are plotted in the plane of the flow and highlight regions of high turbulence intensity in the stagnation zone and sharp gradients in intensity along the transition from adverse to favourable pressure gradient. Discussion of the effects of the disturbed wind field in CTOL and STOL aircraft flight path and obstruction clearance standards is given. The results indicate that closer inspection of these presently recommended standards as influenced by wind over irregular terrains is required.

  7. Numerical simulation of steady and unsteady asymmetric vortical flow

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.; Wong, Tin-Chee; Liu, C. H.

    1992-01-01

    The unsteady, compressible, thin-layer, Navier-Stokes (NS) equations are solved to simulate steady and unsteady, asymmetric, vortical laminar flow around cones at high incidences and supersonic Mach numbers. The equations are solved by using an implicit, upwind, flux-difference splitting (FDS), finite-volume scheme. The locally conical flow assumption is used and the solutions are obtained by forcing the conserved components of the flowfield vector to be equal at two axial stations located at 0.95 and 1.0. Computational examples cover steady and unsteady asymmetric flows around a circular cone and its control using side strakes. The unsteady asymmetric flow solution around the circular cone has also been validated using the upwind, flux-vector splitting (FVS) scheme with the thin-layer NS equations and the upwind FDS with the full NS equations. The results are in excellent agreement with each other. Unsteady asymmetric flows are also presented for elliptic- and diamond-section cones, which model asymmetric vortex shedding around round- and sharp-edged delta winds.

  8. Equilibration: Developing the Hard Core of the Piagetian Research Program.

    ERIC Educational Resources Information Center

    Rowell, J.A.

    1983-01-01

    Argues that the status of the concept of equilibration is classified by considering Piagetian theory as a research program in the sense elaborated in 1974 by Lakatos. A pilot study was made to examine the precision and testability of equilibration in Piaget's 1977 model.(Author/RH)

  9. Rapid spatial equilibration of a particle in a box.

    PubMed

    Malabarba, Artur S L; Linden, Noah; Short, Anthony J

    2015-12-01

    We study the equilibration behavior of a quantum particle in a one-dimensional box, with respect to a coarse-grained position measurement (whether it lies in a certain spatial window or not). We show that equilibration in this context indeed takes place and does so very rapidly, in a time comparable to the time for the initial wave packet to reach the edges of the box. We also show that, for this situation, the equilibration behavior is relatively insensitive to the precise choice of position measurements or initial condition.

  10. Short communication: Serum composition of milk subjected to re-equilibration by dialysis at different temperatures, after pH adjustments.

    PubMed

    Zhao, Zhengtao; Corredig, Milena

    2016-04-01

    The objective of this work was to investigate the properties of casein micelles after pH adjustment and their re-equilibration to the original pH and serum composition. Re-equilibration was carried out by dialyzing against skim milk at 2 different temperatures (4 or 22 °C). Turbidity, the average radius of the casein micelles, and the composition of the soluble phase were measured at different pH values, ranging between 5.5 and 8. Acidification led to the solubilization of colloidal calcium phosphate and decrease of the average radius of the micelles. With re-equilibration, casein dissociation occurred. In milk with pH values greater than 6.0, the average radius was recovered after re-equilibration. At pH values greater than neutral, an increase of the radius of casein micelles and increased dissociation of the casein were found. After re-equilibration, the radius of micelles and soluble protein in the serum decreased. The results were not affected by the temperature of re-equilibration. The changes to the calcium phosphate equilibrium and the dissociation of the micelles will have important consequences to the functionality of casein micelles. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Elliptic flow of ϕ mesons at intermediate pT: Influence of mass versus quark number

    NASA Astrophysics Data System (ADS)

    Choudhury, Subikash; Sarkar, Debojit; Chattopadhyay, Subhasis

    2017-02-01

    We have studied elliptic flow (v2) of ϕ mesons in the framework of a multiphase transport (AMPT) model at CERN Large Hadron Collider (LHC) energy. In the realms of AMPT model we observe that ϕ mesons at intermediate transverse momentum (pT) deviate from the previously observed [at the BNL Relativistic Heavy Ion Collider (RHIC)] particle type grouping of v2 according to the number of quark content, i.e, baryons and mesons. Recent results from the ALICE Collaboration have shown that ϕ meson and proton v2 has a similar trend, possibly indicating that particle type grouping might be due to the mass of the particles and not the quark content. A stronger radial boost at LHC compared to RHIC seems to offer a consistent explanation to such observation. However, recalling that ϕ mesons decouple from the hadronic medium before additional radial flow is built up in the hadronic phase, a similar pattern in ϕ meson and proton v2 may not be due to radial flow alone. Our study reveals that models incorporating ϕ -meson production from K K ¯ fusion in the hadronic rescattering phase also predict a comparable magnitude of ϕ meson and proton v2 particularly in the intermediate region of pT. Whereas, v2 of ϕ mesons created in the partonic phase is in agreement with quark-coalescence motivated baryon-meson grouping of hadron v2. This observation seems to provide a plausible alternative interpretation for the apparent mass-like behavior of ϕ -meson v2. We have also observed a violation of hydrodynamical mass ordering between proton and ϕ meson v2 further supporting that ϕ mesons are negligibly affected by the collective radial flow in the hadronic phase due to the small in-medium hadronic interaction cross sections.

  12. The Physics of Traffic

    NASA Astrophysics Data System (ADS)

    Davis, L. Craig

    2006-03-01

    Congestion in freeway traffic is an example of self-organization in the language of complexity theory. Nonequilibrium, first-order phase transitions from free flow cause complex spatiotemporal patterns. Two distinct phases of congestion are observed in empirical traffic data--wide moving jams and synchronous flow. Wide moving jams are characterized by stopped or slowly moving vehicles within the jammed region, which widens and moves upstream at 15-20 km/h. Above a critical density of vehicles, a sudden decrease in the velocity of a lead vehicle can initiate a transition from metastable states to this phase. Human behaviors, especially delayed reactions, are implicated in the formation of jams. The synchronous flow phase results from a bottleneck such as an on-ramp. Thus, in contrast to a jam, the downstream front is pinned at a fixed location. The name of the phase comes from the equilibration (or synchronization) of speed and flow rate across all lanes caused by frequent vehicle lane changes. Synchronous flow occurs when the mainline flow and the rate of merging from an on-ramp are sufficiently large. Large-scale simulations using car-following models reproduce the physical phenomena occurring in traffic and suggest methods to improve flow and mediate congestion.

  13. Simulation of ground-water flow in the Cedar River alluvial aquifer flow system, Cedar Rapids, Iowa

    USGS Publications Warehouse

    Turco, Michael J.; Buchmiller, Robert C.

    2004-01-01

    Model results indicate that the primary sources of inflow to the modeled area are infiltration from the Cedar River (53.0 percent) and regional flow in the glacial and bedrock materials (34.1 percent). The primary sources of outflow from the modeled area are discharge to the Cedar River (45.4 percent) and pumpage (44.8 percent). Current steady-state pumping rates have increased the flow of water from the Cedar River to the alluvial aquifer by 43.8 cubic feet per second. Steady-state and transient hypothetical pumpage scenarios were used to show the relation between changes in pumpage and changes in infiltration of water from the Cedar River. Results indicate that more than 99 percent of the water discharging from municipal wells infiltrates from the Cedar River, that the time required for induced river recharge to equilibrate with municipal pumpage may be 150 days or more, and that ground-water availability in the Cedar Rapids area will not be significantly affected by doubling current pumpage as long as there is sufficient flow in the Cedar River to provide recharge.

  14. Ellipticities of Elliptical Galaxies in Different Environments

    NASA Astrophysics Data System (ADS)

    Chen, Cheng-Yu; Hwang, Chorng-Yuan; Ko, Chung-Ming

    2016-10-01

    We studied the ellipticity distributions of elliptical galaxies in different environments. From the ninth data release of the Sloan Digital Sky Survey, we selected galaxies with absolute {r}\\prime -band magnitudes between -21 and -22. We used the volume number densities of galaxies as the criterion for selecting the environments of the galaxies. Our samples were divided into three groups with different volume number densities. The ellipticity distributions of the elliptical galaxies differed considerably in these three groups of different density regions. We deprojected the observed 2D ellipticity distributions into intrinsic 3D shape distributions, and the result showed that the shapes of the elliptical galaxies were relatively spherically symmetric in the high density region (HDR) and that relatively more flat galaxies were present in the low density region (LDR). This suggests that the ellipticals in the HDRs and LDRs have different origins or that different mechanisms might be involved. The elliptical galaxies in the LDR are likely to have evolved from mergers in relatively anisotropic structures, such as filaments and webs, and might contain information on the anisotropic spatial distribution of their parent mergers. By contrast, elliptical galaxies in the HDR might be formed in more isotropic structures, such as galaxy clusters, or they might encounter more torqueing effects compared with galaxies in LDRs, thereby becoming rounder.

  15. Reproducibility of up-flow column percolation tests for contaminated soils

    PubMed Central

    Naka, Angelica; Sakanakura, Hirofumi; Kurosawa, Akihiko; Inui, Toru; Takeo, Miyuki; Inoba, Seiji; Watanabe, Yasutaka; Fujikawa, Takuro; Miura, Toshihiko; Miyaguchi, Shinji; Nakajou, Kunihide; Sumikura, Mitsuhiro; Ito, Kenichi; Tamoto, Shuichi; Tatsuhara, Takeshi; Chida, Tomoyuki; Hirata, Kei; Ohori, Ken; Someya, Masayuki; Katoh, Masahiko; Umino, Madoka; Negishi, Masanori; Ito, Keijiro; Kojima, Junichi; Ogawa, Shohei

    2017-01-01

    Up-flow column percolation tests are used at laboratory scale to assess the leaching behavior of hazardous substance from contaminated soils in a specific condition as a function of time. Monitoring the quality of these test results inter or within laboratory is crucial, especially if used for Environment-related legal policy or for routine testing purposes. We tested three different sandy loam type soils (Soils I, II and III) to determine the reproducibility (variability inter laboratory) of test results and to evaluate the difference in the test results within laboratory. Up-flow column percolation tests were performed following the procedure described in the ISO/TS 21268–3. This procedure consists of percolating solution (calcium chloride 1 mM) from bottom to top at a flow rate of 12 mL/h through softly compacted soil contained in a column of 5 cm diameter and 30 ± 5 cm height. Eluate samples were collected at liquid-to-solid ratio of 0.1, 0.2, 0.5, 1, 2, 5 and 10 L/kg and analyzed for quantification of the target elements (Cu, As, Se, Cl, Ca, F, Mg, DOC and B in this research). For Soil I, 17 institutions in Japan joined this validation test. The up-flow column experiments were conducted in duplicate, after 48 h of equilibration time and at a flow rate of 12 mL/h. Column percolation test results from Soils II and III were used to evaluate the difference in test results from the experiments conducted in duplicate in a single laboratory, after 16 h of equilibration time and at a flow rate of 36 mL/h. Overall results showed good reproducibility (expressed in terms of the coefficient of variation, CV, calculated by dividing the standard deviation by the mean), as the CV was lower than 30% in more than 90% of the test results associated with Soil I. Moreover, low variability (expressed in terms of difference between the two test results divided by the mean) was observed in the test results related to Soils II and III, with a variability lower than 30% in more than 88% of the cases for Soil II and in more than 96% of the cases for Soil III. We also discussed the possible factors that affect the reproducibility and variability in the test results from the up-flow column percolation tests. The low variability inter and within laboratory obtained in this research indicates that the ISO/TS 21268–3 can be successfully upgraded to a fully validated ISO standard. PMID:28582458

  16. Shocks and finite-time singularities in Hele-Shaw flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teodorescu, Razvan; Wiegmann, P; Lee, S-y

    Hele-Shaw flow at vanishing surface tension is ill-defined. In finite time, the flow develops cusplike singularities. We show that the ill-defined problem admits a weak dispersive solution when singularities give rise to a graph of shock waves propagating in the viscous fluid. The graph of shocks grows and branches. Velocity and pressure jump across the shock. We formulate a few simple physical principles which single out the dispersive solution and interpret shocks as lines of decompressed fluid. We also formulate the dispersive solution in algebro-geometrical terms as an evolution of Krichever-Boutroux complex curve. We study in details the most genericmore » (2,3) cusp singularity which gives rise to an elementary branching event. This solution is self-similar and expressed in terms of elliptic functions.« less

  17. An Approximate Axisymmetric Viscous Shock Layer Aeroheating Method for Three-Dimensional Bodies

    NASA Technical Reports Server (NTRS)

    Brykina, Irina G.; Scott, Carl D.

    1998-01-01

    A technique is implemented for computing hypersonic aeroheating, shear stress, and other flow properties on the windward side of a three-dimensional (3D) blunt body. The technique uses a 2D/axisymmetric flow solver modified by scale factors for a, corresponding equivalent axisymmetric body. Examples are given in which a 2D solver is used to calculate the flow at selected meridional planes on elliptic paraboloids in reentry flight. The report describes the equations and the codes used to convert the body surface parameters into input used to scale the 2D viscous shock layer equations in the axisymmetric viscous shock layer code. Very good agreement is obtained with solutions to finite rate chemistry 3D thin viscous shock layer equations for a finite rate catalytic body.

  18. Potential flow about arbitrary biplane wing sections

    NASA Technical Reports Server (NTRS)

    Garrick, I E

    1937-01-01

    A rigorous treatment is given of the problem of determining the two-dimensional potential flow around arbitrary biplane cellules. The analysis involves the use of elliptic functions and is sufficiently general to include the effects of such elements as the section shapes, the chord ratio, gap, stagger, and decalage, which elements may be specified arbitrarily. The flow problem is resolved by making use of the methods of conformal representation. Thus the solution of the problem of transforming conformally two arbitrary contours into two circles is expressed by a pair of simultaneous integral equations, for which a method of numerical solution is outlined. As an example of the numerical process, the pressure distribution over certain arrangements of the NACA 4412 airfoil in biplane combinations is presented and compared with the monoplane pressure distribution.

  19. Investigation of chemically reacting and radiating supersonic internal flows

    NASA Technical Reports Server (NTRS)

    Mani, M.; Tiwari, S. N.

    1986-01-01

    The two-dimensional spatially elliptic Navier-Stokes equations are used to investigate the chemically reacting and radiating supersonic flow of the hydrogen-air system between two parallel plates and in a channel with a ten degree compression-expansion ramp at the lower boundary. The explicit unsplit finite-difference technique of MacCormack is used to advance the governing equations in time until convergence is achieved. The chemistry source term in the species equation is treated implicitly to alleviate the stiffness associated with fast reactions. The tangent slab approximation is employed in the radiative flux formation. Both pseudo-gray and nongray models are used to represent the absorption characteristics of the participating species. Results obtained for specific conditions indicate that the radiative interaction can have a significant influence on the flow field.

  20. Linear and nonlinear stability criteria for compressible MHD flows in a gravitational field

    NASA Astrophysics Data System (ADS)

    Moawad, S. M.; Moawad

    2013-10-01

    The equilibrium and stability properties of ideal magnetohydrodynamics (MHD) of compressible flow in a gravitational field with a translational symmetry are investigated. Variational principles for the steady-state equations are formulated. The MHD equilibrium equations are obtained as critical points of a conserved Lyapunov functional. This functional consists of the sum of the total energy, the mass, the circulation along field lines (cross helicity), the momentum, and the magnetic helicity. In the unperturbed case, the equilibrium states satisfy a nonlinear second-order partial differential equation (PDE) associated with hydrodynamic Bernoulli law. The PDE can be an elliptic or a parabolic equation depending on increasing the poloidal flow speed. Linear and nonlinear Lyapunov stability conditions under translational symmetric perturbations are established for the equilibrium states.

  1. Equilibrator: Modeling Chemical Equilibria with Excel

    ERIC Educational Resources Information Center

    Vander Griend, Douglas A.

    2011-01-01

    Equilibrator is a Microsoft Excel program for learning about chemical equilibria through modeling, similar in function to EQS4WIN, which is no longer supported and does not work well with newer Windows operating systems. Similar to EQS4WIN, Equilibrator allows the user to define a system with temperature, initial moles, and then either total…

  2. Multi-point estimation of total energy expenditure: a comparison between zinc-reduction and platinum-equilibration methodologies.

    PubMed

    Sonko, Bakary J; Miller, Leland V; Jones, Richard H; Donnelly, Joseph E; Jacobsen, Dennis J; Hill, James O; Fennessey, Paul V

    2003-12-15

    Reducing water to hydrogen gas by zinc or uranium metal for determining D/H ratio is both tedious and time consuming. This has forced most energy metabolism investigators to use the "two-point" technique instead of the "Multi-point" technique for estimating total energy expenditure (TEE). Recently, we purchased a new platinum (Pt)-equilibration system that significantly reduces both time and labor required for D/H ratio determination. In this study, we compared TEE obtained from nine overweight but healthy subjects, estimated using the traditional Zn-reduction method to that obtained from the new Pt-equilibration system. Rate constants, pool spaces, and CO2 production rates obtained from use of the two methodologies were not significantly different. Correlation analysis demonstrated that TEEs estimated using the two methods were significantly correlated (r=0.925, p=0.0001). Sample equilibration time was reduced by 66% compared to those of similar methods. The data demonstrated that the Zn-reduction method could be replaced by the Pt-equilibration method when TEE was estimated using the "Multi-Point" technique. Furthermore, D equilibration time was significantly reduced.

  3. Solution of a few nonlinear problems in aerodynamics by the finite elements and functional least squares methods. Ph.D. Thesis - Paris Univ.; [mathematical models of transonic flow using nonlinear equations

    NASA Technical Reports Server (NTRS)

    Periaux, J.

    1979-01-01

    The numerical simulation of the transonic flows of idealized fluids and of incompressible viscous fluids, by the nonlinear least squares methods is presented. The nonlinear equations, the boundary conditions, and the various constraints controlling the two types of flow are described. The standard iterative methods for solving a quasi elliptical nonlinear equation with partial derivatives are reviewed with emphasis placed on two examples: the fixed point method applied to the Gelder functional in the case of compressible subsonic flows and the Newton method used in the technique of decomposition of the lifting potential. The new abstract least squares method is discussed. It consists of substituting the nonlinear equation by a problem of minimization in a H to the minus 1 type Sobolev functional space.

  4. From cat's eyes to disjoint multicellular natural convection flow in tall tilted cavities

    NASA Astrophysics Data System (ADS)

    Nicolás, Alfredo; Báez, Elsa; Bermúdez, Blanca

    2011-07-01

    Numerical results of two-dimensional natural convection problems, in air-filled tall cavities, are reported to study the change of the cat's eyes flow as some parameters vary, the aspect ratio A and the angle of inclination ϕ of the cavity, with the Rayleigh number Ra mostly fixed; explicitly, the range of the variation is given by 12⩽A⩽20 and 0°⩽ϕ⩽270°; about Ra=1.1×10. A novelty contribution of this work is the transition from the cat's eyes changes, as A varies, to a disjoint multicellular flow, as ϕ varies. These flows may be modeled by the unsteady Boussinesq approximation in stream function and vorticity variables which is solved with a fixed point iterative process applied to the nonlinear elliptic system that results after time discretization. The validation of the results relies on mesh size and time-step independence studies.

  5. Characterization of flow in a scroll duct

    NASA Technical Reports Server (NTRS)

    Begg, E. K.; Bennett, J. C.

    1985-01-01

    A quantitative, flow visualization study was made of a partially elliptic cross section, inward curving duct (scroll duct), with an axial outflow through a vaneless annular cutlet. The working fluid was water, with a Re(d) of 40,000 at the inlet to the scroll duct, this Reynolds number being representative of the conditions in an actual gas turbine scroll. Both still and high speed moving pictures of fluorescein dye injected into the flow and illuminated by an argon ion laser were used to document the flow. Strong secondary flow, similar to the secondary flow in a pipe bend, was found in the bottom half of the scroll within the first 180 degs of turning. The pressure field set up by the turning duct was strong enough to affect the inlet flow condition. At 90 degs downstream, the large scale secondary flow was found to be oscillatory in nature. The exit flow was nonuniform in the annular exit. By 270 degs downstream, the flow appeared unorganized with no distinctive secondary flow pattern. Large scale structures from the upstream core region appeared by 90 degs and continued through the duct to reenter at the inlet section.

  6. Fully dynamical simulation of central nuclear collisions.

    PubMed

    van der Schee, Wilke; Romatschke, Paul; Pratt, Scott

    2013-11-27

    We present a fully dynamical simulation of central nuclear collisions around midrapidity at LHC energies. Unlike previous treatments, we simulate all phases of the collision, including the equilibration of the system. For the simulation, we use numerical relativity solutions to anti-de Sitter space/conformal field theory for the preequilibrium stage, viscous hydrodynamics for the plasma equilibrium stage, and kinetic theory for the low-density hadronic stage. Our preequilibrium stage provides initial conditions for hydrodynamics, resulting in sizable radial flow. The resulting light particle spectra reproduce the measurements from the ALICE experiment at all transverse momenta.

  7. Discovery and Synthesis of GS-5734, a Phosphoramidate Prodrug of a Pyrrolo[2,1 f][triazin-4-amino] Adenine C-Nucleoside for the Treatment of Ebola and Emerging Viruses

    DTIC Science & Technology

    2017-01-26

    high- performance liquid chromatography (HPLC) and were greater than 95% unless otherwise noted. HPLC conditions to assess purity were as follows...cell culture plates using a μFlow liquid dispenser and cultured for 4 days at 37 °C. After incubation, the cells were allowed to equilibrate to 25...t1/2) was determined assuming first-order kinetics. LC/MS/MS Instrumentation Liquid chromatography was performed using an Agilent 1200-series

  8. Application of Silicon Micromachining to Thermal Dissipation Issues in Wafer Scale Integrated Circuits

    DTIC Science & Technology

    1991-12-01

    the cartesian coordinate system, ( hkl ) is the general mathematical representation for a crystal plane. The planar densities of a crystal and the...furnace’s temperature was pre-equilibrated to the pre- set oxidation temperature of 1075 °C. Oxygen was bubbled through DIW at 95 °C to promote the growth...to the pre-set oxidation temperature of 1075 °C. An oxygen flow was initiated at 1 liter per minute to realize a high quality, dry SiO 2 thin-film on

  9. Effect of shortening the prefreezing equilibration time with glycerol on the quality of chamois (Rupicapra pyrenaica), ibex (Capra pyrenaica), mouflon (Ovis musimon) and aoudad (Ammotragus lervia) ejaculates.

    PubMed

    Pradiee, J; O'Brien, E; Esteso, M C; Castaño, C; Toledano-Díaz, A; Lopez-Sebastián, A; Marcos-Beltrán, J L; Vega, R S; Guillamón, F G; Martínez-Nevado, E; Guerra, R; Santiago-Moreno, J

    2016-08-01

    The present study reports the effect of shortening the prefreezing equilibration time with glycerol on the quality of frozen-thawed ejaculated sperm from four Mediterranean mountain ungulates: Cantabrian chamois (Rupicapra pyrenaica), Iberian ibex (Capra pyrenaica), mouflon (Ovis musimon) and aoudad (Ammotragus lervia). Ejaculated sperm from these species were divided into two aliquots. One was diluted with either a Tris-citric acid-glucose based medium (TCG-glycerol; for chamois and ibex sperm) or a Tris-TES-glucose-based medium (TTG-glycerol; for mouflon and aoudad sperm), and maintained at 5°C for 3h prior to freezing. The other aliquot was diluted with either TCG (chamois and ibex sperm) or TTG (mouflon and aoudad sperm) and maintained at 5°C for 1h before adding glycerol (final concentration 5%). After a 15min equilibration period in the presence of glycerol, the samples were frozen. For the ibex, there was enhanced (P<0.05) sperm viability and acrosome integrity after the 3h as compared with the 15min equilibration time. For the chamois, subjective sperm motility and cell membrane functional integrity were less (P<0.05) following 15min of equilibration. In the mouflon, progressive sperm motility and acrosome integrity was less (P<0.05) when the equilibration time was reduced to 15min. For the aoudad, the majority of sperm variables measured were more desirable after the 3h equilibration time. The freezing-thawing processes reduced the sperm head size in all the species studied; however, the equilibration time further affected the frozen-thawed sperm head variables in a species-dependent fashion. While the equilibration time for chamois sperm might be shortened, this appears not to be the case for all ungulates. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Elliptic genus of singular algebraic varieties and quotients

    NASA Astrophysics Data System (ADS)

    Libgober, Anatoly

    2018-02-01

    This paper discusses the basic properties of various versions of the two-variable elliptic genus with special attention to the equivariant elliptic genus. The main applications are to the elliptic genera attached to non-compact GITs, including the theories regarding the elliptic genera of phases on N  =  2 introduced in Witten (1993 Nucl. Phys. B 403 159-222).

  11. Kinetics of bacterial potentiometric titrations: the effect of equilibration time on buffering capacity of Pantoea agglomerans suspensions.

    PubMed

    Kapetas, Leon; Ngwenya, Bryne T; Macdonald, Alan M; Elphick, Stephen C

    2011-07-15

    Several recent studies have made use of continuous acid-base titration data to describe the surface chemistry of bacterial cells as a basis for accurately modelling metal adsorption to bacteria and other biomaterials of potential industrial importance. These studies do not share a common protocol; rather they titrate in different pH ranges and they use different stability criteria to define equilibration time during titration. In the present study we investigate the kinetics of bacterial titrations and test the effect they have on the derivation of functional group concentrations and acidity constants. We titrated suspensions of Pantoea agglomerans by varying the equilibration time between successive titrant additions until stability of 0.1 or 0.001 mV s(-1) was attained. We show that under longer equilibration times, titration results are less reproducible and suspensions exhibit marginally higher buffering. Fluorescence images suggest that cell lysis is not responsible for these effects. Rather, high DOC values and titration reversibility hysterisis after long equilibration times suggest that variability in buffering is due to the presence of bacterial exudates, as demonstrated by titrating supernatants separated from suspensions of different equilibration times. It is recommended that an optimal equilibration time is always determined with variable stability control and preliminary reversibility titration experiments. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Ellipticity dependence of the near-threshold harmonics of H2 in an elliptical strong laser field.

    PubMed

    Yang, Hua; Liu, Peng; Li, Ruxin; Xu, Zhizhan

    2013-11-18

    We study the ellipticity dependence of the near-threshold (NT) harmonics of pre-aligned H2 molecules using the time-dependent density functional theory. The anomalous maximum appearing at a non-zero ellipticity for the generated NT harmonics can be attributed to multiphoton effects of the orthogonally polarized component of the elliptical driving laser field. Our calculation also shows that the structure of the bound-state, such as molecular alignment and bond length, can be sensitively reflected on the ellipticity dependence of the near-threshold harmonics.

  13. Using a Classical Gluon Cascade to study the Equilibration of a Gluon-Plasma

    NASA Astrophysics Data System (ADS)

    McConnell, Lucas

    2015-10-01

    Using a classical gluon cascade, we study the thermalisation of a gluon-plasma in a homogeneous box by considering the time evolution of the entropy, and in particular how the thermalisation time depends on the strong coupling αs. We then partition the volume into cells with a linearly increasing temperature gradient in one direction, and homogeneous/isotropic in the the other two directions. We allow the gluons to stream in one direction in order to study how they then evolve spatially. We examine cases with and without collisions. We study the entropy as well as the flow-velocity in the z-direction and find that the system initially has a flow which dissipates over time as the gluons become distributed homogeneously throughout the box.

  14. Applications of Quantum Theory of Atomic and Molecular Scattering to Problems in Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    Malik, F. Bary

    1995-01-01

    The general status of a grant to investigate the applications of quantum theory in atomic and molecular scattering problems in hypersonic flow is summarized. Abstracts of five articles and eleven full-length articles published or submitted for publication are included as attachments. The following topics are addressed in these articles: fragmentation of heavy ions (HZE particles); parameterization of absorption cross sections; light ion transport; emission of light fragments as an indicator of equilibrated populations; quantum mechanical, optical model methods for calculating cross sections for particle fragmentation by hydrogen; evaluation of NUCFRG2, the semi-empirical nuclear fragmentation database; investigation of the single- and double-ionization of He by proton and anti-proton collisions; Bose-Einstein condensation of nuclei; and a liquid drop model in HZE particle fragmentation by hydrogen.

  15. F-theory models on K3 surfaces with various Mordell-Weil ranks — constructions that use quadratic base change of rational elliptic surfaces

    NASA Astrophysics Data System (ADS)

    Kimura, Yusuke

    2018-05-01

    We constructed several families of elliptic K3 surfaces with Mordell-Weil groups of ranks from 1 to 4. We studied F-theory compactifications on these elliptic K3 surfaces times a K3 surface. Gluing pairs of identical rational elliptic surfaces with nonzero Mordell-Weil ranks yields elliptic K3 surfaces, the Mordell-Weil groups of which have nonzero ranks. The sum of the ranks of the singularity type and the Mordell-Weil group of any rational elliptic surface with a global section is 8. By utilizing this property, families of rational elliptic surfaces with various nonzero Mordell-Weil ranks can be obtained by choosing appropriate singularity types. Gluing pairs of these rational elliptic surfaces yields families of elliptic K3 surfaces with various nonzero Mordell-Weil ranks. We also determined the global structures of the gauge groups that arise in F-theory compactifications on the resulting K3 surfaces times a K3 surface. U(1) gauge fields arise in these compactifications.

  16. Numerical solution of periodic vortical flows about a thin airfoil

    NASA Technical Reports Server (NTRS)

    Scott, James R.; Atassi, Hafiz M.

    1989-01-01

    A numerical method is developed for computing periodic, three-dimensional, vortical flows around isolated airfoils. The unsteady velocity is split into a vortical component which is a known function of the upstream flow conditions and the Lagrangian coordinates of the mean flow, and an irrotational field whose potential satisfies a nonconstant-coefficient, inhomogeneous, convective wave equation. Solutions for thin airfoils at zero degrees incidence to the mean flow are presented in this paper. Using an elliptic coordinate transformation, the computational domain is transformed into a rectangle. The Sommerfeld radiation condition is applied to the unsteady pressure on the grid line corresponding to the far field boundary. The results are compared with a Possio solver, and it is shown that for maximum accuracy the grid should depend on both the Mach number and reduced frequency. Finally, in order to assess the range of validity of the classical thin airfoil approximation, results for airfoils with zero thickness are compared with results for airfoils with small thickness.

  17. Universal single level implicit algorithm for gasdynamics

    NASA Technical Reports Server (NTRS)

    Lombard, C. K.; Venkatapthy, E.

    1984-01-01

    A single level effectively explicit implicit algorithm for gasdynamics is presented. The method meets all the requirements for unconditionally stable global iteration over flows with mixed supersonic and supersonic zones including blunt body flow and boundary layer flows with strong interaction and streamwise separation. For hyperbolic (supersonic flow) regions the method is automatically equivalent to contemporary space marching methods. For elliptic (subsonic flow) regions, rapid convergence is facilitated by alternating direction solution sweeps which bring both sets of eigenvectors and the influence of both boundaries of a coordinate line equally into play. Point by point updating of the data with local iteration on the solution procedure at each spatial step as the sweeps progress not only renders the method single level in storage but, also, improves nonlinear accuracy to accelerate convergence by an order of magnitude over related two level linearized implicit methods. The method derives robust stability from the combination of an eigenvector split upwind difference method (CSCM) with diagonally dominant ADI(DDADI) approximate factorization and computed characteristic boundary approximations.

  18. On the Maas problem of seawater intrusion combated by infiltration

    NASA Astrophysics Data System (ADS)

    Kacimov, A. R.

    2008-09-01

    SummaryThe problem of Maas [Maas, K. 2007. Influence of climate change on a Ghijben-Herzberg lens. J. Hydrol. 347, 223-228] for infiltration inflow into a porous flat-roofed fresh water lens floating on the interface of an ascending Darcian saline water flow is shown to be in exact match with the Polubarinova-Kochina [Polubarinova-Kochina, P.Ya., 1977. Theory of Ground Water Movement. Nauka, Moscow (in Russian)] problem for flow in a lens capped by a cambered phreatic surface with a uniform accretion. The Maas complex potential in the domain of a heavy saline water seeping beneath the lens corresponds to one of an ideal fluid flow past an elliptical cylinder that makes possible conversion of this potential into ascending-descending seepage flows with floating (but stagnant) DNAPL-LNAPL volumes. Similar matching is possible for the velocity potential of an axisymmetric flow past an ellipsoid and hydrostatic pressure of a stagnant NAPL body stored in a semi-ellipsoidal pond.

  19. A numerical method for computing unsteady 2-D boundary layer flows

    NASA Technical Reports Server (NTRS)

    Krainer, Andreas

    1988-01-01

    A numerical method for computing unsteady two-dimensional boundary layers in incompressible laminar and turbulent flows is described and applied to a single airfoil changing its incidence angle in time. The solution procedure adopts a first order panel method with a simple wake model to solve for the inviscid part of the flow, and an implicit finite difference method for the viscous part of the flow. Both procedures integrate in time in a step-by-step fashion, in the course of which each step involves the solution of the elliptic Laplace equation and the solution of the parabolic boundary layer equations. The Reynolds shear stress term of the boundary layer equations is modeled by an algebraic eddy viscosity closure. The location of transition is predicted by an empirical data correlation originating from Michel. Since transition and turbulence modeling are key factors in the prediction of viscous flows, their accuracy will be of dominant influence to the overall results.

  20. Galaxy Formation from the Primordial Black Holes

    NASA Astrophysics Data System (ADS)

    Morikawa, Masahiro

    2017-12-01

    Supermassive black hole (SMBH) of size MBH = 106-10M⊙ is common in the Universe and it defines the center of the galaxy. A galaxy and the SMBH are generally thought to have co-evolved. However, the SMBH cannot evolve so fast as commonly observed even at redshift z > 6. Therefore, we explore a natural hypothesis that the SMBH has been already formed mature at z ⪆ 10 before stars and galaxies. The SMBH forms energetic jets and out-flows which trigger massive star formation in the ambient gas. They eventually construct globular clusters and classical bulge as well as the body of elliptical galaxies. We propose simple models which implement these processes. We point out that the globular clusters and classical bulges have a common origin but are in different phases. The same is true for the elliptical and spiral galaxies. Physics behind these phase division is the runaway star formation process with strong feedback to SMBH. This is similar to the forest-fire model that displays self-organized criticality.

  1. Wingtip Devices for Marine Applications

    NASA Astrophysics Data System (ADS)

    Nedyalkov, Ivaylo; Barrett, Timothy; Wojtowicz, Aleksandra; Wosnik, Martin

    2016-11-01

    Wingtip devices are widely used in aeronautics, and have been gaining popularity in wind and marine turbine applications. Although the principles of operation of the devices in air and water are similar, one major difference in the marine environment is the presence of cavitation. In an integrated numerical and experimental study, three wingtip devices were attached to an elliptical foil and compared to a reference case (no wingtip). Lift, drag, and cavitation characteristics were obtained both numerically (in OpenFOAM) and experimentally (in the University of New Hampshire High-Speed Cavitation Tunnel). As expected, with the addition of wingtip devices, the maximum lift/drag ratio increases and tip vortex cavitation is suppressed. The next step in the study is to develop a theoretical relationship between tip-vortex cavitation inception and flow parameters for foils with non-elliptical load distribution, such as foils with wingtips. The authors would like to acknowledge Ian Gagnon, Benjamin Mitchell, and Alexander Larson for their help in conducting experiments.

  2. Propagation of elliptic-Gaussian beams in strongly nonlocal nonlinear media

    NASA Astrophysics Data System (ADS)

    Deng, Dongmei; Guo, Qi

    2011-10-01

    The propagation of the elliptic-Gaussian beams is studied in strongly nonlocal nonlinear media. The elliptic-Gaussian beams and elliptic-Gaussian vortex beams are obtained analytically and numerically. The patterns of the elegant Ince-Gaussian and the generalized Ince-Gaussian beams are varied periodically when the input power is equal to the critical power. The stability is verified by perturbing the initial beam by noise. By simulating the propagation of the elliptic-Gaussian beams in liquid crystal, we find that when the mode order is not big enough, there exists the quasi-elliptic-Gaussian soliton states.

  3. Multiscale approach for the construction of equilibrated all-atom models of a poly(ethylene glycol)-based hydrogel

    PubMed Central

    Li, Xianfeng; Murthy, N. Sanjeeva; Becker, Matthew L.; Latour, Robert A.

    2016-01-01

    A multiscale modeling approach is presented for the efficient construction of an equilibrated all-atom model of a cross-linked poly(ethylene glycol) (PEG)-based hydrogel using the all-atom polymer consistent force field (PCFF). The final equilibrated all-atom model was built with a systematic simulation toolset consisting of three consecutive parts: (1) building a global cross-linked PEG-chain network at experimentally determined cross-link density using an on-lattice Monte Carlo method based on the bond fluctuation model, (2) recovering the local molecular structure of the network by transitioning from the lattice model to an off-lattice coarse-grained (CG) model parameterized from PCFF, followed by equilibration using high performance molecular dynamics methods, and (3) recovering the atomistic structure of the network by reverse mapping from the equilibrated CG structure, hydrating the structure with explicitly represented water, followed by final equilibration using PCFF parameterization. The developed three-stage modeling approach has application to a wide range of other complex macromolecular hydrogel systems, including the integration of peptide, protein, and/or drug molecules as side-chains within the hydrogel network for the incorporation of bioactivity for tissue engineering, regenerative medicine, and drug delivery applications. PMID:27013229

  4. Azimuthal anisotropy at the relativistic heavy ion collider: the first and fourth harmonics.

    PubMed

    Adams, J; Adler, C; Aggarwal, M M; Ahammed, Z; Amonett, J; Anderson, B D; Anderson, M; Arkhipkin, D; Averichev, G S; Badyal, S K; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bezverkhny, B I; Bhardwaj, S; Bhaskar, P; Bhati, A K; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Botje, M; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Das, D; Das, S; Derevschikov, A A; Didenko, L; Dietel, T; Dong, W J; Dong, X; Draper, J E; Du, F; Dubey, A K; Dunin, V B; Dunlop, J C; Dutta Majumdar, M R; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Fachini, P; Faine, V; Faivre, J; Fatemi, R; Filimonov, K; Filip, P; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Ganti, M S; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Ghosh, P; Gonzalez, J E; Grachov, O; Grigoriev, V; Gronstal, S; Grosnick, D; Guedon, M; Guertin, S M; Gupta, A; Gushin, E; Gutierrez, T D; Hallman, T J; Hardtke, D; Harris, J W; Heinz, M; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Huang, S L; Humanic, T J; Igo, G; Ishihara, A; Jacobs, P; Jacobs, W W; Janik, M; Jiang, H; Johnson, I; Jones, P G; Judd, E G; Kabana, S; Kaneta, M; Kaplan, M; Keane, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Koetke, D D; Kollegger, T; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Kravtsov, V I; Krueger, K; Kuhn, C; Kulikov, A I; Kumar, A; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; LeVine, M J; Li, C; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Ma, Y G; Magestro, D; Mahajan, S; Mangotra, L K; Mahapatra, D P; Majka, R; Manweiler, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mironov, C; Mishra, D; Mitchell, J; Mohanty, B; Molnar, L; Moore, C F; Mora-Corral, M J; Morozov, D A; Morozov, V; de Moura, M M; Munhoz, M G; Nandi, B K; Nayak, S K; Nayak, T K; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Pal, S K; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Perkins, C; Peryt, W; Petrov, V A; Phatak, S C; Picha, R; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potekhin, M; Potrebenikova, E; Potukuchi, B V K S; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Raniwala, R; Raniwala, S; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Ruan, L J; Sahoo, R; Sakrejda, I; Salur, S; Sandweiss, J; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shao, M; Sharma, M; Shestermanov, K E; Shimanskii, S S; Singaraju, R N; Simon, F; Skoro, G; Smirnov, N; Snellings, R; Sood, G; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stanislaus, S; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; de Toledo, A Szanto; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thein, D; Thomas, J H; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trivedi, M D; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vasiliev, A N; Vasiliev, M; Vigdor, S E; Viyogi, Y P; Voloshin, S A; Waggoner, W; Wang, F; Wang, G; Wang, X L; Wang, Z M; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Wu, J; Xu, N; Xu, Z; Xu, Z Z; Yamamoto, E; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zhang, Z P; Zołnierczuk, P A; Zoulkarneev, R; Zoulkarneeva, J; Zubarev, A N

    2004-02-13

    We report the first observations of the first harmonic (directed flow, v(1)) and the fourth harmonic (v(4)), in the azimuthal distribution of particles with respect to the reaction plane in Au+Au collisions at the BNL Relativistic Heavy Ion Collider (RHIC). Both measurements were done taking advantage of the large elliptic flow (v(2)) generated at RHIC. From the correlation of v(2) with v(1) it is determined that v(2) is positive, or in-plane. The integrated v(4) is about a factor of 10 smaller than v(2). For the sixth (v(6)) and eighth (v(8)) harmonics upper limits on the magnitudes are reported.

  5. Azimuthal anisotropy and correlations in the hard scattering regime at RHIC.

    PubMed

    Adler, C; Ahammed, Z; Allgower, C; Amonett, J; Anderson, B D; Anderson, M; Averichev, G S; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bichsel, H; Billmeier, A; Bland, L C; Blyth, C O; Bonner, B E; Boucham, A; Brandin, A; Bravar, A; Cadman, R V; Caines, H; Calderón De La Barca Sánchez, M; Cardenas, A; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chaloupka, P; Chattopadhyay, S; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Cormier, T M; Cramer, J G; Crawford, H J; Deng, W S; Derevschikov, A A; Didenko, L; Dietel, T; Draper, J E; Dunin, V B; Dunlop, J C; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Faine, V; Faivre, J; Filimonov, K; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Fu, J; Gagliardi, C A; Gagunashvili, N; Gans, J; Gaudichet, L; Germain, M; Geurts, F; Ghazikhanian, V; Grachov, O; Grigoriev, V; Guedon, M; Gushin, E; Hallman, T J; Hardtke, D; Harris, J W; Henry, T W; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Humanic, T J; Igo, G; Ishihara, A; Ivanshin, Yu I; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E G; Kaneta, M; Kaplan, M; Keane, D; Kiryluk, J; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Konstantinov, A S; Kopytine, M; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kunde, G J; Kunz, C L; Kutuev, R Kh; Kuznetsov, A A; Lakehal-Ayat, L; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lauret, J; Lebedev, A; Lednický, R; Leontiev, V M; LeVine, M J; Li, Q; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, L; Liu, Z; Liu, Q J; Ljubicic, T; Llope, W J; LoCurto, G; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Ludlam, T; Lynn, D; Ma, J; Majka, R; Margetis, S; Markert, C; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Meissner, F; Melnick, Yu; Meschanin, A; Messer, M; Miller, M L; Milosevich, Z; Minaev, N G; Mitchell, J; Moiseenko, V A; Moore, C F; Morozov, V; De Moura, M M; Munhoz, M G; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Odyniec, G; Ogawa, A; Okorokov, V; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Planinic, M; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potrebenikova, E; Prindle, D; Pruneau, C; Putschke, J; Rai, G; Rakness, G; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J G; Renault, G; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Romero, J L; Rose, A; Roy, C; Rykov, V; Sakrejda, I; Salur, S; Sandweiss, J; Saulys, A C; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schüttauf, A; Schweda, K; Seger, J; Seliverstov, D; Seyboth, P; Shahaliev, E; Shestermanov, K E; Shimanskii, S S; Shvetcov, V S; Skoro, G; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stephenson, E J; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Struck, C; Suaide, A A P; Sugarbaker, E; Suire, C; Sumbera, M; Surrow, B; Symons, T J M; Szanto De Toledo, A; Szarwas, P; Tai, A; Takahashi, J; Tang, A H; Thomas, J H; Thompson, M; Tikhomirov, V; Tokarev, M; Tonjes, M B; Trainor, T A; Trentalange, S; Tribble, R E; Trofimov, V; Tsai, O; Ullrich, T; Underwood, D G; Buren, G Van; VanderMolen, A M; Vasilevski, I M; Vasiliev, A N; Vigdor, S E; Voloshin, S A; Wang, F; Ward, H; Watson, J W; Wells, R; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Wood, J; Xu, N; Xu, Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yurevich, V I; Zanevski, Y V; Zborovský, I; Zhang, H; Zhang, W M; Zoulkarneev, R; Zubarev, A N

    2003-01-24

    Azimuthal anisotropy (v(2)) and two-particle angular correlations of high p(T) charged hadrons have been measured in Au+Au collisions at sqrt[s(NN)]=130 GeV for transverse momenta up to 6 GeV/c, where hard processes are expected to contribute significantly. The two-particle angular correlations exhibit elliptic flow and a structure suggestive of fragmentation of high p(T) partons. The monotonic rise of v(2)(p(T)) for p(T)<2 GeV/c is consistent with collective hydrodynamical flow calculations. At p(T)>3 GeV/c, a saturation of v(2) is observed which persists up to p(T)=6 GeV/c.

  6. Azimuthal angle dependence of the charge imbalance from charge conservation effects

    NASA Astrophysics Data System (ADS)

    BoŻek, Piotr

    2018-03-01

    The experimental search for the chiral magnetic effect in heavy-ion collisions is based on charge-dependent correlations between emitted particles. Recently, a sensitive observable comparing event-by-event distributions of the charge splitting projected on the directions along and perpendicular to the direction of the elliptic flow has been proposed. The results of a (3 + 1)-dimensional hydrodynamic model show that the preliminary experimental data of the STAR Collaboration can be explained as due to background effects, such as resonance decays and local charge conservation in the particle production. A related observable based on the third-order harmonic flow is proposed to further investigate such background effects in charge-dependent correlations.

  7. Statistical Moments in Variable Density Incompressible Mixing Flows

    DTIC Science & Technology

    2015-08-28

    front tracking method: Verification and application to simulation of the primary breakup of a liquid jet . SIAM J. Sci. Comput., 33:1505–1524, 2011. [15... elliptic problem. In case of failure, Generalized Minimal Residual (GMRES) method [78] is used instead. Then update face velocities as follows: u n+1...of the ACM Solid and Physical Modeling Symposium, pages 159–170, 2008. [51] D. D. Joseph. Fluid dynamics of two miscible liquids with diffusion and

  8. Modulated mass-transfer model for superhumps in SU Ursae Majoris stars

    NASA Technical Reports Server (NTRS)

    Mineshige, Shin

    1988-01-01

    The response of a circular accretion disk to rapid modulation of the mass-transfer rate into the disk is explored in order to model superhumps in SU UMa stars. It is proposed that periodically enhanced flow may disrupt or heat up the outer disk and produce the dips noted just before the superhump peaks. The elliptical accretion-disk model with extended vertical disk structure can account for the observed characteristics of superhumps in these stars.

  9. Effects of nozzle exit geometry and pressure ratio on plume shape for nozzles exhausting into quiescent air

    NASA Technical Reports Server (NTRS)

    Scallion, William I.

    1991-01-01

    The effects of varying the exit geometry on the plume shapes of supersonic nozzles exhausting into quiescent air at several exit-to-ambient pressure ratios are given. Four nozzles having circular throat sections and circular, elliptical and oval exit cross sections were tested and the exit plume shapes are compared at the same exit-to-ambient pressure ratios. The resulting mass flows were calculated and are also presented.

  10. Effects of Hot Streak Shape on Rotor Heating in a High-Subsonic Single-Stage Turbine

    NASA Technical Reports Server (NTRS)

    Dorney, Daniel J.; Gundy-Burlet, Karen L.; Norvig, Peter (Technical Monitor)

    1999-01-01

    Experimental data have shown that combustor temperature non-uniformities can lead to the excessive heating of first-stage rotor blades in turbines. This heating of the rotor blades can lead to thermal fatigue and degrade turbine performance. The results of recent studies have shown that variations in the circumferential location (clocking) of the hot streak relative to the first-stage vane airfoils can be used to minimize the adverse effects of the hot streak. The effects of the hot streak/airfoil count ratio on the heating patterns of turbine airfoils have also been evaluated. In the present investigation, three-dimensional unsteady Navier-Stokes simulations have been performed for a single-stage high-pressure turbine operating in high subsonic flow. In addition to a simulation of the baseline turbine, simulations have been performed for circular and elliptical hot streaks of varying sizes in an effort to represent different combustor designs. The predicted results for the baseline simulation show good agreement with the available experimental data. The results of the hot streak simulations indicate: that a) elliptical hot streaks mix more rapidly than circular hot streaks, b) for small hot streak surface area the average rotor temperature is not a strong function of hot streak temperature ratio or shape, and c) hot streaks with larger surface area interact with the secondary flows at the rotor hub endwall, generating an additional high temperature region.

  11. Elliptic flow of muons from heavy-flavour hadron decays at forward rapidity in Pb–Pb collisions at s NN = 2.76   TeV

    DOE PAGES

    Adam, J.; Adamová, D.; Aggarwal, M. M.; ...

    2015-12-02

    We measured the elliptic flow, v 2, of muons from heavy-flavour hadron decays at forward rapidity (2.5 < y < 4) in Pb-Pb collisions at √s NN= 2.76TeVwith the ALICE detector at the LHC. The scalar product, two- and four-particle Q cumulants and Lee-Yang zeros methods are used. The dependence of the v 2 of muons from heavy-flavour hadron decays on the collision centrality, in the range 0-40%, and on transverse momentum, p T, is studied in the interval 3 < p T< 10 GeV/c. We also observe a positive v 2 with the scalar product and two-particle Q cumulantsmore » in semi-central collisions (10-20% and 20-40% centrality classes) for the p T interval from 3 to about 5GeV/c with a significance larger than 3 sigma, based on the combination of statistical and systematic uncertainties. The v 2 magnitude tends to decrease towards more central collisions and with increasing p T. It becomes compatible with zero in the interval 6 < p T< 10 GeV/c. Our results are compared to models describing the interaction of heavy quarks and open heavy-flavour hadrons with the high-density medium formed in high-energy heavy-ion collisions.« less

  12. Accuracy of State-of-the-Art Actuator-Line Modeling for Wind Turbine Wakes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jha, Pankaj; Churchfield, Matthew; Moriarty, Patrick

    The current actuator line method (ALM) within an OpenFOAM computational fluid dynamics (CFD) solver was used to perform simulations of the NREL Phase VI rotor under rotating and parked conditions, two fixed-wing designs both with an elliptic spanwise loading, and the NREL 5-MW turbine. The objective of this work is to assess and improve the accuracy of the state-of-the-art ALM in predicting rotor blade loads, particularly by focusing on the method used to project the actuator forces onto the flow field as body forces. Results obtained for sectional normal and tangential force coefficients were compared to available experimental data andmore » to the in-house performance code XTurb-PSU. It was observed that the ALM results agree well with measured data and results obtained from XTurb-PSU except in the root and tip regions if a three-dimensional Gaussian of width, ε, constant along the blade span is used to project the actuator force onto the flow field. A new method is proposed where the Gaussian width, ε, varies along the blade span following an elliptic distribution. A general criterion is derived that applies to any planform shape. It is found that the new criterion for ε leads to improved prediction of blade tip loads for a variety of blade planforms and rotor conditions considered.« less

  13. Elliptic flow of muons from heavy-flavour hadron decays at forward rapidity in Pb-Pb collisions at √{sNN} = 2.76 TeV

    NASA Astrophysics Data System (ADS)

    Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agrawal, N.; Ahammed, Z.; Ahn, S. U.; Aiola, S.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alfaro Molina, R.; Alici, A.; Alkin, A.; Almaraz, J. R. M.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Antičić, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Arsene, I. C.; Arslandok, M.; Audurier, B.; Augustinus, A.; Averbeck, R.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbano, A. M.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartalini, P.; Barth, K.; Bartke, J.; Bartsch, E.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bello Martinez, H.; Bellwied, R.; Belmont, R.; Belmont-Moreno, E.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Bielčík, J.; Bielčíková, J.; Bilandzic, A.; Biswas, R.; Biswas, S.; Bjelogrlic, S.; Blair, J. T.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Borri, M.; Bossú, F.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Brucken, E. J.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Butt, J. B.; Buxton, J. T.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Carnesecchi, F.; Castillo Castellanos, J.; Castro, A. J.; Casula, E. A. R.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Cerkala, J.; Chang, B.; Chapeland, S.; Chartier, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Choi, K.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Chunhui, Z.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortés Maldonado, I.; Cortese, P.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dahms, T.; Dainese, A.; Danu, A.; Das, D.; Das, I.; Das, S.; Dash, A.; Dash, S.; de, S.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; Deisting, A.; Deloff, A.; Dénes, E.; D'Erasmo, G.; di Bari, D.; di Mauro, A.; di Nezza, P.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Drozhzhova, T.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Ehlers, R. J.; Elia, D.; Engel, H.; Epple, E.; Erazmus, B.; Erdemir, I.; Erhardt, F.; Espagnon, B.; Estienne, M.; Esumi, S.; Eum, J.; Evans, D.; Evdokimov, S.; Eyyubova, G.; Fabbietti, L.; Fabris, D.; Faivre, J.; Fantoni, A.; Fasel, M.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Feuillard, V. J. G.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Fleck, M. G.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Gao, C.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Gasik, P.; Germain, M.; Gheata, A.; Gheata, M.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Giubilato, P.; Gladysz-Dziadus, E.; Glässel, P.; Goméz Coral, D. M.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Grabski, V.; Graczykowski, L. K.; Graham, K. L.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Gulbrandsen, K.; Gulkanyan, H.; Gunji, T.; Gupta, A.; Gupta, R.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.; Harris, J. W.; Harton, A.; Hatzifotiadou, D.; Hayashi, S.; Heckel, S. T.; Heide, M.; Helstrup, H.; Herghelegiu, A.; Herrera Corral, G.; Hess, B. A.; Hetland, K. F.; Hilden, T. E.; Hillemanns, H.; Hippolyte, B.; Hosokawa, R.; Hristov, P.; Huang, M.; Humanic, T. J.; Hussain, N.; Hussain, T.; Hutter, D.; Hwang, D. S.; Ilkaev, R.; Ilkiv, I.; Inaba, M.; Ippolitov, M.; Irfan, M.; Ivanov, M.; Ivanov, V.; Izucheev, V.; Jacobs, P. M.; Jadlovska, S.; Jahnke, C.; Jang, H. J.; Janik, M. A.; Jayarathna, P. H. S. Y.; Jena, C.; Jena, S.; Jimenez Bustamante, R. T.; Jones, P. G.; Jung, H.; Jusko, A.; Kalinak, P.; Kalweit, A.; Kamin, J.; Kang, J. H.; Kaplin, V.; Kar, S.; Karasu Uysal, A.; Karavichev, O.; Karavicheva, T.; Karayan, L.; Karpechev, E.; Kebschull, U.; Keidel, R.; Keijdener, D. L. D.; Keil, M.; Mohisin Khan, M.; Khan, P.; Khan, S. A.; Khanzadeev, A.; Kharlov, Y.; Kileng, B.; Kim, B.; Kim, D. W.; Kim, D. J.; Kim, H.; Kim, J. S.; Kim, M.; Kim, M.; Kim, S.; Kim, T.; Kirsch, S.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, G.; Klay, J. L.; Klein, C.; Klein, J.; Klein-Bösing, C.; Kluge, A.; Knichel, M. L.; Knospe, A. G.; Kobayashi, T.; Kobdaj, C.; Kofarago, M.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kondratyeva, N.; Kondratyuk, E.; Konevskikh, A.; Kopcik, M.; Kour, M.; Kouzinopoulos, C.; Kovalenko, O.; Kovalenko, V.; Kowalski, M.; Koyithatta Meethaleveedu, G.; Kral, J.; Králik, I.; Kravčáková, A.; Kretz, M.; Krivda, M.; Krizek, F.; Kryshen, E.; Krzewicki, M.; Kubera, A. M.; Kučera, V.; Kugathasan, T.; Kuhn, C.; Kuijer, P. G.; Kumar, A.; Kumar, J.; Kumar, L.; Kurashvili, P.; Kurepin, A.; Kurepin, A. B.; Kuryakin, A.; Kushpil, S.; Kweon, M. J.; Kwon, Y.; La Pointe, S. L.; La Rocca, P.; Lagana Fernandes, C.; Lakomov, I.; Langoy, R.; Lara, C.; Lardeux, A.; Lattuca, A.; Laudi, E.; Lea, R.; Leardini, L.; Lee, G. R.; Lee, S.; Legrand, I.; Lehas, F.; Lemmon, R. C.; Lenti, V.; Leogrande, E.; León Monzón, I.; Leoncino, M.; Lévai, P.; Li, S.; Li, X.; Lien, J.; Lietava, R.; Lindal, S.; Lindenstruth, V.; Lippmann, C.; Lisa, M. A.; Ljunggren, H. M.; Lodato, D. F.; Loenne, P. I.; Loginov, V.; Loizides, C.; Lopez, X.; López Torres, E.; Lowe, A.; Luettig, P.; Lunardon, M.; Luparello, G.; Luz, P. H. F. N. D.; Maevskaya, A.; Mager, M.; Mahajan, S.; Mahmood, S. M.; Maire, A.; Majka, R. D.; Malaev, M.; Maldonado Cervantes, I.; Malinina, L.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manko, V.; Manso, F.; Manzari, V.; Marchisone, M.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Margutti, J.; Marín, A.; Markert, C.; Marquard, M.; Martin, N. A.; Martin Blanco, J.; Martinengo, P.; Martínez, M. I.; Martínez García, G.; Martinez Pedreira, M.; Martynov, Y.; Mas, A.; Masciocchi, S.; Masera, M.; Masoni, A.; Massacrier, L.; Mastroserio, A.; Masui, H.; Matyja, A.; Mayer, C.; Mazer, J.; Mazzoni, M. A.; McDonald, D.; Meddi, F.; Melikyan, Y.; Menchaca-Rocha, A.; Meninno, E.; Mercado Pérez, J.; Meres, M.; Miake, Y.; Mieskolainen, M. M.; Mikhaylov, K.; Milano, L.; Milosevic, J.; Minervini, L. M.; Mischke, A.; Mishra, A. N.; Miśkowiec, D.; Mitra, J.; Mitu, C. M.; Mohammadi, N.; Mohanty, B.; Molnar, L.; Montaño Zetina, L.; Montes, E.; Morando, M.; Moreira de Godoy, D. A.; Moreno, L. A. P.; Moretto, S.; Morreale, A.; Morsch, A.; Muccifora, V.; Mudnic, E.; Mühlheim, D.; Muhuri, S.; Mukherjee, M.; Mulligan, J. D.; Munhoz, M. G.; Munzer, R. H.; Murray, S.; Musa, L.; Musinsky, J.; Nandi, B. K.; Nania, R.; Nappi, E.; Naru, M. U.; Nattrass, C.; Nayak, K.; Nayak, T. K.; Nazarenko, S.; Nedosekin, A.; Nellen, L.; Ng, F.; Nicassio, M.; Niculescu, M.; Niedziela, J.; Nielsen, B. S.; Nikolaev, S.; Nikulin, S.; Nikulin, V.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noris, J. C. C.; Norman, J.; Nyanin, A.; Nystrand, J.; Oeschler, H.; Oh, S.; Oh, S. K.; Ohlson, A.; Okatan, A.; Okubo, T.; Olah, L.; Oleniacz, J.; Oliveira da Silva, A. C.; Oliver, M. H.; Onderwaater, J.; Oppedisano, C.; Orava, R.; Ortiz Velasquez, A.; Oskarsson, A.; Otwinowski, J.; Oyama, K.; Ozdemir, M.; Pachmayer, Y.; Pagano, P.; Paić, G.; Pajares, C.; Pal, S. K.; Pan, J.; Pandey, A. K.; Pant, D.; Papcun, P.; Papikyan, V.; Pappalardo, G. S.; Pareek, P.; Park, W. J.; Parmar, S.; Passfeld, A.; Paticchio, V.; Patra, R. N.; Paul, B.; Peitzmann, T.; Pereira da Costa, H.; Pereira de Oliveira Filho, E.; Peresunko, D.; Pérez Lara, C. E.; Perez Lezama, E.; Peskov, V.; Pestov, Y.; Petráček, V.; Petrov, V.; Petrovici, M.; Petta, C.; Piano, S.; Pikna, M.; Pillot, P.; Pinazza, O.; Pinsky, L.; Piyarathna, D. B.; Płoskoń, M.; Planinic, M.; Pluta, J.; Pochybova, S.; Podesta-Lerma, P. L. M.; Poghosyan, M. G.; Polichtchouk, B.; Poljak, N.; Poonsawat, W.; Pop, A.; Porteboeuf-Houssais, S.; Porter, J.; Pospisil, J.; Prasad, S. K.; Preghenella, R.; Prino, F.; Pruneau, C. A.; Pshenichnov, I.; Puccio, M.; Puddu, G.; Pujahari, P.; Punin, V.; Putschke, J.; Qvigstad, H.; Rachevski, A.; Raha, S.; Rajput, S.; Rak, J.; Rakotozafindrabe, A.; Ramello, L.; Rami, F.; Raniwala, R.; Raniwala, S.; Räsänen, S. S.; Rascanu, B. T.; Rathee, D.; Read, K. F.; Real, J. S.; Redlich, K.; Reed, R. J.; Rehman, A.; Reichelt, P.; Reidt, F.; Ren, X.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Rettig, F.; Revol, J.-P.; Reygers, K.; Riabov, V.; Ricci, R. A.; Richert, T.; Richter, M.; Riedler, P.; Riegler, W.; Riggi, F.; Ristea, C.; Rivetti, A.; Rocco, E.; Rodríguez Cahuantzi, M.; Rodriguez Manso, A.; Røed, K.; Rogochaya, E.; Rohr, D.; Röhrich, D.; Romita, R.; Ronchetti, F.; Ronflette, L.; Rosnet, P.; Rossi, A.; Roukoutakis, F.; Roy, A.; Roy, C.; Roy, P.; Rubio Montero, A. J.; Rui, R.; Russo, R.; Ryabinkin, E.; Ryabov, Y.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahlmuller, B.; Sahoo, P.; Sahoo, R.; Sahoo, S.; Sahu, P. K.; Saini, J.; Sakai, S.; Saleh, M. A.; Salgado, C. A.; Salzwedel, J.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sano, M.; Sarkar, D.; Scapparone, E.; Scarlassara, F.; Scharenberg, R. P.; Schiaua, C.; Schicker, R.; Schmidt, C.; Schmidt, H. R.; Schuchmann, S.; Schukraft, J.; Schulc, M.; Schuster, T.; Schutz, Y.; Schwarz, K.; Schweda, K.; Scioli, G.; Scomparin, E.; Scott, R.; Seger, J. E.; Sekiguchi, Y.; Sekihata, D.; Selyuzhenkov, I.; Senosi, K.; Seo, J.; Serradilla, E.; Sevcenco, A.; Shabanov, A.; Shabetai, A.; Shadura, O.; Shahoyan, R.; Shangaraev, A.; Sharma, A.; Sharma, M.; Sharma, M.; Sharma, N.; Shigaki, K.; Shtejer, K.; Sibiriak, Y.; Siddhanta, S.; Sielewicz, K. M.; Siemiarczuk, T.; Silvermyr, D.; Silvestre, C.; Simatovic, G.; Simonetti, G.; Singaraju, R.; Singh, R.; Singha, S.; Singhal, V.; Sinha, B. C.; Sinha, T.; Sitar, B.; Sitta, M.; Skaali, T. B.; Slupecki, M.; Smirnov, N.; Snellings, R. J. M.; Snellman, T. W.; Søgaard, C.; Soltz, R.; Song, J.; Song, M.; Song, Z.; Soramel, F.; Sorensen, S.; Spacek, M.; Spiriti, E.; Sputowska, I.; Spyropoulou-Stassinaki, M.; Srivastava, B. K.; Stachel, J.; Stan, I.; Stefanek, G.; Stenlund, E.; Steyn, G.; Stiller, J. H.; Stocco, D.; Strmen, P.; Suaide, A. A. P.; Sugitate, T.; Suire, C.; Suleymanov, M.; Suljic, M.; Sultanov, R.; Šumbera, M.; Symons, T. J. M.; Szabo, A.; Szanto de Toledo, A.; Szarka, I.; Szczepankiewicz, A.; Szymanski, M.; Tabassam, U.; Takahashi, J.; Tambave, G. J.; Tanaka, N.; Tangaro, M. A.; Tapia Takaki, J. D.; Tarantola Peloni, A.; Tarhini, M.; Tariq, M.; Tarzila, M. G.; Tauro, A.; Tejeda Muñoz, G.; Telesca, A.; Terasaki, K.; Terrevoli, C.; Teyssier, B.; Thäder, J.; Thomas, D.; Tieulent, R.; Timmins, A. R.; Toia, A.; Trogolo, S.; Trubnikov, V.; Trzaska, W. H.; Tsuji, T.; Tumkin, A.; Turrisi, R.; Tveter, T. S.; Ullaland, K.; Uras, A.; Usai, G. L.; Utrobicic, A.; Vajzer, M.; Valencia Palomo, L.; Vallero, S.; van der Maarel, J.; van Hoorne, J. W.; van Leeuwen, M.; Vanat, T.; Vande Vyvre, P.; Varga, D.; Vargas, A.; Vargyas, M.; Varma, R.; Vasileiou, M.; Vasiliev, A.; Vauthier, A.; Vechernin, V.; Veen, A. M.; Veldhoen, M.; Velure, A.; Venaruzzo, M.; Vercellin, E.; Vergara Limón, S.; Vernet, R.; Verweij, M.; Vickovic, L.; Viesti, G.; Viinikainen, J.; Vilakazi, Z.; Villalobos Baillie, O.; Villatoro Tello, A.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Vislavicius, V.; Viyogi, Y. P.; Vodopyanov, A.; Völkl, M. A.; Voloshin, K.; Voloshin, S. A.; Volpe, G.; von Haller, B.; Vorobyev, I.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Vyushin, A.; Wagner, B.; Wagner, J.; Wang, H.; Wang, M.; Watanabe, D.; Watanabe, Y.; Weber, M.; Weber, S. G.; Wessels, J. P.; Westerhoff, U.; Wiechula, J.; Wikne, J.; Wilde, M.; Wilk, G.; Wilkinson, J.; Williams, M. C. S.; Windelband, B.; Winn, M.; Yaldo, C. G.; Yang, H.; Yang, P.; Yano, S.; Yin, Z.; Yokoyama, H.; Yoo, I.-K.; Yurchenko, V.; Yushmanov, I.; Zaborowska, A.; Zaccolo, V.; Zaman, A.; Zampolli, C.; Zanoli, H. J. C.; Zaporozhets, S.; Zardoshti, N.; Zarochentsev, A.; Závada, P.; Zaviyalov, N.; Zbroszczyk, H.; Zgura, I. S.; Zhalov, M.; Zhang, H.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, C.; Zhigareva, N.; Zhou, D.; Zhou, Y.; Zhou, Z.; Zhu, H.; Zhu, J.; Zichichi, A.; Zimmermann, A.; Zimmermann, M. B.; Zinovjev, G.; Zyzak, M.; Alice Collaboration

    2016-02-01

    The elliptic flow, v2, of muons from heavy-flavour hadron decays at forward rapidity (2.5 < y < 4) is measured in Pb-Pb collisions at √{sNN} = 2.76 TeV with the ALICE detector at the LHC. The scalar product, two- and four-particle Q cumulants and Lee-Yang zeros methods are used. The dependence of the v2 of muons from heavy-flavour hadron decays on the collision centrality, in the range 0-40%, and on transverse momentum, pT, is studied in the interval 3

  14. Water Saturation Relations and Their Diffusion-Limited Equilibration in Gas Shale: Implications for Gas Flow in Unconventional Reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokunaga, Tetsu K.; Shen, Weijun; Wan, Jiamin

    Large volumes of water are used for hydraulic fracturing of low permeability shale reservoirs to stimulate gas production, with most of the water remaining unrecovered and distributed in a poorly understood manner within stimulated regions. Because water partitioning into shale pores controls gas release, we measured the water saturation dependence on relative humidity (rh) and capillary pressure (P c) for imbibition (adsorption) as well as drainage (desorption) on samples of Woodford Shale. Experiments and modeling of water vapor adsorption into shale laminae at rh = 0.31 demonstrated that long times are needed to characterize equilibrium in larger (5 mm thick)more » pieces of shales, and yielded effective diffusion coefficients from 9 × 10 -9 to 3 × 10 -8 m 2 s -1, similar in magnitude to the literature values for typical low porosity and low permeability rocks. Most of the experiments, conducted at 50°C on crushed shale grains in order to facilitate rapid equilibration, showed significant saturation hysteresis, and that very large P c (~1 MPa) are required to drain the shales. These results quantify the severity of the water blocking problem, and suggest that gas production from unconventional reservoirs is largely associated with stimulated regions that have had little or no exposure to injected water. Finally, gravity drainage of water from fractures residing above horizontal wells reconciles gas production in the presence of largely unrecovered injected water, and is discussed in the broader context of unsaturated flow in fractures.« less

  15. Water Saturation Relations and Their Diffusion-Limited Equilibration in Gas Shale: Implications for Gas Flow in Unconventional Reservoirs

    DOE PAGES

    Tokunaga, Tetsu K.; Shen, Weijun; Wan, Jiamin; ...

    2017-11-15

    Large volumes of water are used for hydraulic fracturing of low permeability shale reservoirs to stimulate gas production, with most of the water remaining unrecovered and distributed in a poorly understood manner within stimulated regions. Because water partitioning into shale pores controls gas release, we measured the water saturation dependence on relative humidity (rh) and capillary pressure (P c) for imbibition (adsorption) as well as drainage (desorption) on samples of Woodford Shale. Experiments and modeling of water vapor adsorption into shale laminae at rh = 0.31 demonstrated that long times are needed to characterize equilibrium in larger (5 mm thick)more » pieces of shales, and yielded effective diffusion coefficients from 9 × 10 -9 to 3 × 10 -8 m 2 s -1, similar in magnitude to the literature values for typical low porosity and low permeability rocks. Most of the experiments, conducted at 50°C on crushed shale grains in order to facilitate rapid equilibration, showed significant saturation hysteresis, and that very large P c (~1 MPa) are required to drain the shales. These results quantify the severity of the water blocking problem, and suggest that gas production from unconventional reservoirs is largely associated with stimulated regions that have had little or no exposure to injected water. Finally, gravity drainage of water from fractures residing above horizontal wells reconciles gas production in the presence of largely unrecovered injected water, and is discussed in the broader context of unsaturated flow in fractures.« less

  16. Fast analysis of curcuminoids from turmeric (Curcuma longa L.) by high-performance liquid chromatography using a fused-core column.

    PubMed

    Osorio-Tobón, J Felipe; Carvalho, Pedro I N; Barbero, Gerardo Fernández; Nogueira, Gislaine Chrystina; Rostagno, Mauricio Ariel; Meireles, Maria Angela de Almeida

    2016-06-01

    The recent development of fused-core technology in HPLC columns is enabling faster and highly efficient separations. This technology was evaluated for the development of a fast method for the analysis of main curcuminoids (curcumin, demethoxycurcumin and bisdemethoxycurcumin) present in extracts of turmeric (Curcuma longa L.). A step-by-step strategy was used to optimize temperature (40-55 °C), flow rate (1.0-2.5 mL min(-1)), mobile phase composition and equilibration time (1-5 min). A gradient method was developed using acidified water and acetonitrile combined with high column temperature (55 °C) and flow rate (2.5 mL min(-1)). Optimized conditions provided a method for the separation of these three curcuminoids in approximately 1.3 min with a total analysis time (sample-to-sample) of 7 min, including the clean-up and the re-equilibration of the column. Evaluation of chromatographic performance revealed excellent intraday and interday reproducibility (>99%), resolution (>2.23), selectivity (>1.12), peak symmetry (1.24-1.42) while presenting low limits of detection (<0.40 mg L(-1)) and quantification (<1.34 mg L(-1)). The robustness of the method was calculated according to the concentration/dilution of the sample and the injection volume. Several combinations of methanol and ethanol with water as sample solvents were evaluated and the best chromatographic results and extraction rate were obtained using 100% methanol. Finally, the developed method was validated with different extracts of turmeric rhizome and products that use turmeric in their formulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Collective flow measurements with HADES in Au+Au collisions at 1.23A GeV

    NASA Astrophysics Data System (ADS)

    Kardan, Behruz; Hades Collaboration

    2017-11-01

    HADES has a large acceptance combined with a good mass-resolution and therefore allows the study of dielectron and hadron production in heavy-ion collisions with unprecedented precision. With the statistics of seven billion Au-Au collisions at 1.23A GeV recorded in 2012, the investigation of higher-order flow harmonics is possible. At the BEVALAC and SIS18 directed and elliptic flow has been measured for pions, charged kaons, protons, neutrons and fragments, but higher-order harmonics have not yet been studied. They provide additional important information on the properties of the dense hadronic medium produced in heavy-ion collisions. We present here a high-statistics, multidifferential measurement of v1 and v2 for protons in Au+Au collisions at 1.23A GeV.

  18. Flow performance in MPD at NICA

    NASA Astrophysics Data System (ADS)

    Svintsov, I. A.; Parfenov, P. E.; Selyuzhenkov, I. V.; Taranenko, A. V.

    2017-01-01

    The Nuclotron-based Ion Collider facility (NICA) in Dubna, Russia is currently under construction at the Joint Institute for Nuclear Research (JINR). A Multi Purpose Detector (MPD) at NICA is designed to study properties of baryonic dense matter in the range of center of mass collision energy from 4 to 11 GeV. We present a performance study for anisotropic transverse flow measurement in Au+Au collisions using the UrQMD event generator and Geant4 simulation of the MPD response. The collision symmetry plane is estimated from event-by-event transverse energy distribution in Forward Hadron Calorimeters (FHCal’s). Performance of the MPD for a measurement of the directed (v 1) and elliptic (v 2) flow of identified charged hadrons is evaluated based on comparison between reconstructed v 1 and v 2 values and the input one from the UrQMD model.

  19. Anisotropic Janus Si nanopillar arrays as a microfluidic one-way valve for gas-liquid separation.

    PubMed

    Wang, Tieqiang; Chen, Hongxu; Liu, Kun; Li, Yang; Xue, Peihong; Yu, Ye; Wang, Shuli; Zhang, Junhu; Kumacheva, Eugenia; Yang, Bai

    2014-04-07

    In this paper, we demonstrate a facile strategy for the fabrication of a one-way valve for microfluidic (MF) systems. The micro-valve was fabricated by embedding arrays of Janus Si elliptical pillars (Si-EPAs) with anisotropic wettability into a MF channel fabricated in poly(dimethylsiloxane) (PDMS). Two sides of the Janus pillar are functionalized with molecules with distinct surface energies. The ability of the Janus pillar array to act as a valve was proved by investigating the flow behaviour of water in a T-shaped microchannel at different flow rates and pressures. In addition, the one-way valve was used to achieve gas-liquid separation. We believe that the Janus Si-EPAs modified by specific surface functionalization provide a new strategy to control the flow and motion of fluids in MF channels.

  20. Exchange of organic solvents between the atmosphere and grass--the use of open top chambers.

    PubMed

    Binnie, J; Cape, J N; Mackie, N; Leith, I D

    2002-02-21

    Volatile organic compounds (VOC) are of increasing environmental significance as a result of continually increasing volumes of traffic on European roads. An open-top chamber fumigation system has been devised to investigate how these contaminants transfer between the atmosphere and the ground, and how they partition between and within air-plant-soil systems. Variation in chamber temperature, solar radiation in the chamber and chamber flow rate were identified as factors that affected final air concentrations. These were assessed and quantified for all individual chambers used--effectively characterising each chamber. The real-life VOC concentrations generated were stable and readily reproducible. Grass exposed to benzene, toluene, 1,1,1-trichloroethane and tetrachloroethene, respectively, equilibrated in response to a change in air concentration within hours. The rate of equilibration in exposed grass in all cases was independent of air temperature. 1,1,1-Trichloroethane and tetrachloroethene appear to be biologically inert demonstrating a simple physico-chemical approach to equilibrium, however, benzene and toluene do not appear independent of plant metabolic activity. Aqueous solubility can account for all of the toluene and benzene in the fumigated plant material.

  1. Anisotropic flow and flow fluctuations for Au + Au at √sNN =200 GeV in a multiphase transport model

    NASA Astrophysics Data System (ADS)

    Ma, L.; Ma, G. L.; Ma, Y. G.

    2014-04-01

    Anisotropic flow coefficients and their fluctuations are investigated for Au + Au collisions at center-of-mass energy √sNN = 200 GeV by using a multiphase transport model with string melting scenario. Experimental results of azimuthal anisotropies by means of the two- and four-particle cumulants are generally well reproduced by the model including both parton cascade and hadronic rescatterings. Event-by-event treatments of the harmonic flow coefficients vn (for n =2, 3, and 4) are performed, in which event distributions of vn for different orders are consistent with Gaussian shapes over all centrality bins. Systematic studies on centrality, transverse momentum (pT), and pseudorapidity (η) dependencies of anisotropic flows and quantitative estimations of the flow fluctuations are presented. The pT and η dependencies of absolute fluctuations for both v2 and v3 follow trends similar to their flow coefficients. Relative fluctuation of triangular flow v3 is slightly centrality dependent, which is quite different from that of elliptic flow v2. It is observed that parton cascade has a large effect on the flow fluctuations, but hadronic scatterings make little contribution to the flow fluctuations, which indicates flow fluctuations are mainly modified during partonic evolution stage.

  2. Investigating the Density of Isolated Field Elliptical Galaxies

    NASA Astrophysics Data System (ADS)

    Ulgen, E. Kaan

    2016-02-01

    In this thesis, 215.590 elliptical galaxies with M(r) ≤ -21 in the CFHTLS-W1 field which is covering 72 sq. deg on the sky are examined . Criterion given by Smith et al. (2004) has been used to determine isolated elliptical galaxies. 118 isolated elliptical galaxies have been determined in total. By using g, r and i photometric bands, the true-colour images of candidates are produced and visually inspected. In order to have a clean list of IfEs some candidates are excluded from the final sample after visual inspection. The final sample consists of 60 IfEs which corresponds to the 0.027 per cent of the whole sample. In other words, IfE density in the W1 is 0.8 IfE / sq.deg. Since the formation of the ellipticals in the isolated regions is not known clearly, it is crucial to determine IfEs and compare their photometric and morphological properties to the normal or cluster ellipticals. When the (g-i) distributions of three different elliptical galaxy class are compared, it is found that they have almost the same colours. When the redshift distributions of the galaxies are considered, it can be seen that IfEs formed later than the cluster and normal ellipticals. The average redshift of IfEs is determined as zphot=0.284, while for normal and cluster ellipticals, it is, respectively, 0.410 and 0.732. In addition, when the effective radii of the three elliptical systems are considered, it is found that the IfEs are bigger than the other two elliptical classes.

  3. Consistency of flow quantifications in tridirectional phase-contrast MRI

    NASA Astrophysics Data System (ADS)

    Unterhinninghofen, R.; Ley, S.; Dillmann, R.

    2009-02-01

    Tridirectionally encoded phase-contrast MRI is a technique to non-invasively acquire time-resolved velocity vector fields of blood flow. These may not only be used to analyze pathological flow patterns, but also to quantify flow at arbitrary positions within the acquired volume. In this paper we examine the validity of this approach by analyzing the consistency of related quantifications instead of comparing it with an external reference measurement. Datasets of the thoracic aorta were acquired from 6 pigs, 1 healthy volunteer and 3 patients with artificial aortic valves. Using in-house software an elliptical flow quantification plane was placed manually at 6 positions along the descending aorta where it was rotated to 5 different angles. For each configuration flow was computed based on the original data and data that had been corrected for phase offsets. Results reveal that quantifications are more dependent on changes in position than on changes in angle. Phase offset correction considerably reduces this dependency. Overall consistency is good with a maximum variation coefficient of 9.9% and a mean variation coefficient of 7.2%.

  4. Surface flow visualization of separated flows on the forebody of an F-18 aircraft and wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Richwine, David M.; Banks, Daniel W.

    1988-01-01

    A method of in-flight surface flow visualization similar to wind-tunnel-model oil flows is described for cases where photo-chase planes or onboard photography are not practical. This method, used on an F-18 aircraft in flight at high angles of attack, clearly showed surface flow streamlines in the fuselage forebody. Vortex separation and reattachment lines were identified with this method and documented using postflight photography. Surface flow angles measured at the 90 and 270 degrees meridians show excellent agreement with the wind tunnel data for a pointed tangent ogive with an aspect ratio of 3.5. The separation and reattachment line locations were qualitatively similar to the F-18 wind-tunnel-model oil flows but neither the laminar separation bubble nor the boundary-layer transition on the wind tunnel model were evident in the flight surface flows. The separation and reattachment line locations were in fair agreement with the wind tunnel data for the 3.5 ogive. The elliptical forebody shape of the F-18 caused the primary separation lines to move toward the leeward meridian. Little effect of angle of attack on the separation locations was noted for the range reported.

  5. A computational study on the influence of insect wing geometry on bee flight mechanics

    PubMed Central

    Feaster, Jeffrey; Bayandor, Javid

    2017-01-01

    ABSTRACT Two-dimensional computational fluid dynamics (CFD) is applied to better understand the effects of wing cross-sectional morphology on flow field and force production. This study investigates the influence of wing cross-section on insect scale flapping flight performance, for the first time, using a morphologically representative model of a bee (Bombus pensylvanicus) wing. The bee wing cross-section was determined using a micro-computed tomography scanner. The results of the bee wing are compared with flat and elliptical cross-sections, representative of those used in modern literature, to determine the impact of profile variation on aerodynamic performance. The flow field surrounding each cross-section and the resulting forces are resolved using CFD for a flight speed range of 1 to 5 m/s. A significant variation in vortex formation is found when comparing the ellipse and flat plate with the true bee wing. During the upstroke, the bee and approximate wing cross-sections have a much shorter wake structure than the flat plate or ellipse. During the downstroke, the flat plate and elliptical cross-sections generate a single leading edge vortex, while the approximate and bee wings generate numerous, smaller structures that are shed throughout the stroke. Comparing the instantaneous aerodynamic forces on the wing, the ellipse and flat plate sections deviate progressively with velocity from the true bee wing. Based on the present findings, a simplified cross-section of an insect wing can misrepresent the flow field and force production. We present the first aerodynamic study using a true insect wing cross-section and show that the wing corrugation increases the leading edge vortex formation frequency for a given set of kinematics. PMID:29061734

  6. A computational study on the influence of insect wing geometry on bee flight mechanics.

    PubMed

    Feaster, Jeffrey; Battaglia, Francine; Bayandor, Javid

    2017-12-15

    Two-dimensional computational fluid dynamics (CFD) is applied to better understand the effects of wing cross-sectional morphology on flow field and force production. This study investigates the influence of wing cross-section on insect scale flapping flight performance, for the first time, using a morphologically representative model of a bee ( Bombus pensylvanicus ) wing. The bee wing cross-section was determined using a micro-computed tomography scanner. The results of the bee wing are compared with flat and elliptical cross-sections, representative of those used in modern literature, to determine the impact of profile variation on aerodynamic performance. The flow field surrounding each cross-section and the resulting forces are resolved using CFD for a flight speed range of 1 to 5 m/s. A significant variation in vortex formation is found when comparing the ellipse and flat plate with the true bee wing. During the upstroke, the bee and approximate wing cross-sections have a much shorter wake structure than the flat plate or ellipse. During the downstroke, the flat plate and elliptical cross-sections generate a single leading edge vortex, while the approximate and bee wings generate numerous, smaller structures that are shed throughout the stroke. Comparing the instantaneous aerodynamic forces on the wing, the ellipse and flat plate sections deviate progressively with velocity from the true bee wing. Based on the present findings, a simplified cross-section of an insect wing can misrepresent the flow field and force production. We present the first aerodynamic study using a true insect wing cross-section and show that the wing corrugation increases the leading edge vortex formation frequency for a given set of kinematics. © 2017. Published by The Company of Biologists Ltd.

  7. Cooling Flow Spectra in Ginga Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    White, Raymond E., III

    1997-01-01

    The primary focus of this research project has been a joint analysis of Ginga LAC and Einstein SSS X-ray spectra of the hot gas in galaxy clusters with cooling flows is reported. We studied four clusters (A496, A1795, A2142 & A2199) and found their central temperatures to be cooler than in the exterior, which is expected from their having cooling flows. More interestingly, we found central metal abundance enhancements in two of the clusters, A496 and A2142. We have been assessing whether the abundance gradients (or lack thereof) in intracluster gas is correlated with galaxy morphological gradients in the host clusters. In rich, dense galaxy clusters, elliptical and SO galaxies are generally found in the cluster cores, while spiral galaxies are found in the outskirts. If the metals observed in clusters came from proto-ellipticals and proto-S0s blowing winds, then the metal distribution in intracluster gas may still reflect the distribution of their former host galaxies. In a research project which was inspired by the success of the Ginga LAC/Einstein SSS work, we analyzed X-ray spectra from the HEAO-A2 MED and the Einstein SSS to look for temperature gradients in cluster gas. The HEAO-A2 MED was also a non-imaging detector with a large field of view compared to the SSS, so we used the differing fields of view of the two instruments to extract spatial information. We found some evidence of cool gas in the outskirts of clusters, which may indicate that the nominally isothermal mass density distributions in these clusters are steepening in the outer parts of these clusters.

  8. Measurement of the correlation between flow harmonics of different order in lead-lead collisions at √s NN = 2.76 TeV with the ATLAS detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aad, G.

    2015-09-14

    Correlations between the elliptic or triangular flow coefficients v m (m=2 or 3) and other flow harmonics v n (n=2 to 5) are measured using √s NN=2.76 TeV Pb+Pb collision data collected in 2010 by the ATLAS experiment at the LHC, corresponding to an integrated luminosity of 7 μb -1. The v m-v n correlations are measured in midrapidity as a function of centrality, and, for events within the same centrality interval, as a function of event ellipticity or triangularity defined in a forward rapidity region. For events within the same centrality interval, v 3 is found to be anticorrelatedmore » with v 2 and this anticorrelation is consistent with similar anticorrelations between the corresponding eccentricities, ε 2 and ε 3. However, it is observed that v 4 increases strongly with v 2, and v 5 increases strongly with both v 2 and v 3. The trend and strength of the vm-vn correlations for n=4 and 5 are found to disagree with ε m-ε n correlations predicted by initial-geometry models. Instead, these correlations are found to be consistent with the combined effects of a linear contribution to vn and a nonlinear term that is a function of v 2 2 or of v 2v 3, as predicted by hydrodynamic models. A simple two-component fit is used to separate these two contributions. The extracted linear and nonlinear contributions to v 4 and v 5 are found to be consistent with previously measured event-plane correlations.« less

  9. An Iron-Rain Model for Core Formation on Asteroid 4 Vesta

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter S.; Mittlefehldt, David W.

    2016-01-01

    Asteroid 4 Vesta is differentiated into a crust, mantle, and core, as demonstrated by studies of the eucrite and diogenite meteorites and by data from NASA's Dawn spacecraft. Most models for the differentiation and thermal evolution of Vesta assume that the metal phase completely melts within 20 degrees of the eutectic temperature, well before the onset of silicate melting. In such a model, core formation initially happens by Darcy flow, but this is an inefficient process for liquid metal and solid silicate. However, the likely chemical composition of Vesta, similar to H chondrites with perhaps some CM or CV chondrite, has 13-16 weight percent S. For such compositions, metal-sulfide melting will not be complete until a temperature of at least 1350 degrees Centigrade. The silicate solidus for Vesta's composition is between 1100 and 1150 degrees Centigrade, and thus metal and silicate melting must have substantially overlapped in time on Vesta. In this chemically and physically more likely view of Vesta's evolution, metal sulfide drops will sink by Stokes flow through the partially molten silicate magma ocean in a process that can be envisioned as "iron rain". Measurements of eucrites show that moderately siderophile elements such as Ni, Mo, and W reached chemical equilibrium between the metal and silicate phases, which is an important test for any Vesta differentiation model. The equilibration time is a function of the initial metal grain size, which we take to be 25-45 microns based on recent measurements of H6 chondrites. For these sizes and reasonable silicate magma viscosities, equilibration occurs after a fall distance of just a few meters through the magma ocean. Although metal drops may grow in size by merger with other drops, which increases their settling velocities and decreases the total core formation time, the short equilibration distance ensures that the moderately siderophile elements will reach chemical equilibrium between metal and silicate before metal drop merger becomes important. In this model, there must be at least 30 percent melting of the silicate phase when metal melting is complete, corresponding to a crust thickness of at least 30 kilometers on Vesta, consistent with Dawn gravity observations. Greater degrees of silicate melting and a correspondingly thicker crust are possible if Vesta accreted sufficiently rapidly.

  10. 42 CFR Appendix - Tables to Subpart L of Part 84

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... respiratory protection against more than one gas of a type, as for use in chlorine and sulfur dioxide, the... Ammonia Equilibrated NH3 1000 32 4 50 50 Chlorine As received Cl2 500 64 3 5 35 Chlorine Equilibrated Cl2... Sulfur dioxide As received SO2 500 64 3 5 30 Sulfur dioxide Equilibrated SO2 500 32 4 5 30 1 Minimum life...

  11. Effect of increasing equilibration time of diluted bull semen up to 72 h prior to freezing on sperm quality parameters and calving rate following artificial insemination.

    PubMed

    Murphy, E M; Eivers, B; O'Meara, C M; Lonergan, P; Fair, S

    2018-03-01

    An equilibration period of approximately 3-4 h prior to semen cryopreservation is standard practice for maintaining membrane integrity and motility of bull sperm. However, a number of studies indicate that an overnight equilibration period prior to freezing results in improved post-thaw semen quality thus optimising pregnancy rates. The aim of this study was to assess the effect of increasing the equilibration time of bull semen up to 72 h before freezing on sperm quality parameters and calving rate (CR) following artificial insemination (AI) with frozen-thawed semen. The effect of holding semen at 4 °C for 6, 24, 48 or 72 h post dilution before freezing on subsequent post-thaw total and progressive motility (Experiment 1) and field fertility (n = 1640 inseminations, Experiment 2) of frozen-thawed semen was assessed. Equilibration time did not affect post-thaw total and progressive motility (P > 0.05). In addition, there was no effect (P > 0.05) of equilibration time on field fertility with a CR of 53.3, 50.5, 51.3 and 47.3 for the 6, 24, 48 and 72 h treatments, respectively. In conclusion, increasing the equilibration time of diluted bull semen from 6 to 72 h had no significant effect on CR, within the expected range of fertility outcomes, thus providing semen processing centres with flexibility in the time which semen can be held prior to freezing. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Design and analysis of a new high frequency double-servo direct drive rotary valve

    NASA Astrophysics Data System (ADS)

    Zhu, Muzhi; Zhao, Shengdun; Li, Jingxiang

    2016-12-01

    Researchers have investigated direct drive valve for many years to solve problems, such as fluid force imbalance and switching frequency. The structure of the rotary valve has received considerable research interest because of its favorable dynamic properties and simple structure. This paper studied the high frequency doubleservo direct drive rotary valve (DDRV), and proposed a novel structure and drive method satisfying high reversing frequency and adequate quantity of flow. Servo motors are integrated into the valve by the innovative structure, which is designed to equilibrate the unbalanced radial fluid force with the symmetric distributed oil ports. Aside from the fast reversing function of the valve, the DDRV presented high performance in linearity of the flow quantity and valve opening as a result of the fan-shaped flow ports. In addition, a computational fluid dynamics (CFD) method based on Fluent was conducted to verify the flux regulation effect of the height change of the adjustable boss.

  13. Impurity ion flow and temperature measured in a detached divertor with externally applied non-axisymmetric fields on DIII-D

    DOE PAGES

    Briesemeister, A. R.; Isler, R. C.; Allen, S. L.; ...

    2014-11-15

    In this study, externally applied non-axisymmetric magnetic fields are shown to have little effect on the impurity ion flow velocity and temperature as measured by the multichord divertor spectrometer in the DIII-D divertor for both attached and detached conditions. These experiments were performed in H-mode plasmas with the grad-B drift toward the target plates, with and without n = 3 resonant magnetic perturbations (RMPs). The flow velocity in the divertor is shown to change by as much as 30% when deuterium gas puffing is used to create detachment of the divertor plasma. No measurable changes in the C III flowmore » were observed in response to the RMP fields for the conditions used in this work. Images of the C III emission are used along with divertor Thomson scattering to show that the local electron and C III temperatures are equilibrated for the conditions shown.« less

  14. Equilibrating high-molecular-weight symmetric and miscible polymer blends with hierarchical back-mapping.

    PubMed

    Ohkuma, Takahiro; Kremer, Kurt; Daoulas, Kostas

    2018-05-02

    Understanding properties of polymer alloys with computer simulations frequently requires equilibration of samples comprised of microscopically described long molecules. We present the extension of an efficient hierarchical backmapping strategy, initially developed for homopolymer melts, to equilibrate high-molecular-weight binary blends. These mixtures present significant interest for practical applications and fundamental polymer physics. In our approach, the blend is coarse-grained into models representing polymers as chains of soft blobs. Each blob stands for a subchain with N b microscopic monomers. A hierarchy of blob-based models with different resolution is obtained by varying N b . First the model with the largest N b is used to obtain an equilibrated blend. This configuration is sequentially fine-grained, reinserting at each step the degrees of freedom of the next in the hierarchy blob-based model. Once the blob-based description is sufficiently detailed, the microscopic monomers are reinserted. The hard excluded volume is recovered through a push-off procedure and the sample is re-equilibrated with molecular dynamics (MD), requiring relaxation on the order of the entanglement time. For the initial method development we focus on miscible blends described on microscopic level through a generic bead-spring model, which reproduces hard excluded volume, strong covalent bonds, and realistic liquid density. The blended homopolymers are symmetric with respect to molecular architecture and liquid structure. To parameterize the blob-based models and validate equilibration of backmapped samples, we obtain reference data from independent hybrid simulations combining MD and identity exchange Monte Carlo moves, taking advantage of the symmetry of the blends. The potential of the backmapping strategy is demonstrated by equilibrating blend samples with different degree of miscibility, containing 500 chains with 1000 monomers each. Equilibration is verified by comparing chain conformations and liquid structure in backmapped blends with the reference data. Possible directions for further methodological developments are discussed.

  15. Equilibrating high-molecular-weight symmetric and miscible polymer blends with hierarchical back-mapping

    NASA Astrophysics Data System (ADS)

    Ohkuma, Takahiro; Kremer, Kurt; Daoulas, Kostas

    2018-05-01

    Understanding properties of polymer alloys with computer simulations frequently requires equilibration of samples comprised of microscopically described long molecules. We present the extension of an efficient hierarchical backmapping strategy, initially developed for homopolymer melts, to equilibrate high-molecular-weight binary blends. These mixtures present significant interest for practical applications and fundamental polymer physics. In our approach, the blend is coarse-grained into models representing polymers as chains of soft blobs. Each blob stands for a subchain with N b microscopic monomers. A hierarchy of blob-based models with different resolution is obtained by varying N b. First the model with the largest N b is used to obtain an equilibrated blend. This configuration is sequentially fine-grained, reinserting at each step the degrees of freedom of the next in the hierarchy blob-based model. Once the blob-based description is sufficiently detailed, the microscopic monomers are reinserted. The hard excluded volume is recovered through a push-off procedure and the sample is re-equilibrated with molecular dynamics (MD), requiring relaxation on the order of the entanglement time. For the initial method development we focus on miscible blends described on microscopic level through a generic bead-spring model, which reproduces hard excluded volume, strong covalent bonds, and realistic liquid density. The blended homopolymers are symmetric with respect to molecular architecture and liquid structure. To parameterize the blob-based models and validate equilibration of backmapped samples, we obtain reference data from independent hybrid simulations combining MD and identity exchange Monte Carlo moves, taking advantage of the symmetry of the blends. The potential of the backmapping strategy is demonstrated by equilibrating blend samples with different degree of miscibility, containing 500 chains with 1000 monomers each. Equilibration is verified by comparing chain conformations and liquid structure in backmapped blends with the reference data. Possible directions for further methodological developments are discussed.

  16. Shallow structure of the InSight 2018 landing site in Elysium Planitia, Mars, from ambient vibration Rayleigh wave ellipticity: A modeling study

    NASA Astrophysics Data System (ADS)

    Knapmeyer-Endrun, B.; Golombek, M.; Ohrnberger, M. M.

    2016-12-01

    The SEIS (Seismic Experiment for Interior Structure) instrument onboard NASA's InSight mission, scheduled to land in November 2018, will be the first seismometer directly deployed on the surface of Mars. From studies on both the Earth and the Moon, it is well known that site amplification in low-velocity sediments, e.g. regolith, on top of more competent rocks has a strong influence on seismic signals, but can also be used to constrain the subsurface structure. Based on orbital data, lab measurements and terrestrial analogues, we construct a model of the shallow sub-surface at the landing site in western Elysium Planitia and simulate the ambient vibration wavefield. We show how Rayleigh wave ellipticity can be extracted from these data and inverted for shallow structure. Using reasonable variations in regolith properties, we do not expect any influence of site resonances on teleseismic quakes recorded by InSight, but recordings of local events will likely be affected. We find that higher mode ellipticity information might be extracted from the data, significantly reducing uncertainties in the inversion. Though the data are most sensitive to properties of the upper-most layer and show a strong trade-off between layer depth and velocity, it is possible to estimate the velocity and thickness of the sub-regolith layer and distinguish between different models by using reasonable constraints on regolith properties. Model parameters are best constrained if either higher mode data can be used or additional constraints on regolith properties, e.g. from analysis of hammer strokes of the HP3 heat flow probe or orbital mapping of regolith thickness from the onset diameter of rocky ejecta craters, are available. In addition, Rayleigh wave ellipticity can differentiate between models with a constant regolith velocity and models with increasing velocity with depth. We also discuss the influence of lander and leveling system mechanical noise on the identification of site resonances.

  17. Blue ellipticals in compact groups

    NASA Technical Reports Server (NTRS)

    Zepf, Stephen E.; Whitmore, Bradley C.

    1990-01-01

    By studying galaxies in compact groups, the authors examine the hypothesis that mergers of spiral galaxies make elliptical galaxies. The authors combine dynamical models of the merger-rich compact group environment with stellar evolution models and predict that roughly 15 percent of compact group ellipticals should be 0.15 mag bluer in B - R color than normal ellipticals. The published colors of these galaxies suggest the existence of this predicted blue population, but a normal distribution with large random errors can not be ruled out based on these data alone. However, the authors have new ultraviolet blue visual data which confirm the blue color of the two ellipticals with blue B - R colors for which they have their own colors. This confirmation of a population of blue ellipticals indicates that interactions are occurring in compact groups, but a blue color in one index alone does not require that these ellipticals are recent products of the merger of two spirals. The authors demonstrate how optical spectroscopy in the blue may distinguish between a true spiral + spiral merger and the swallowing of a gas-rich system by an already formed elliptical. The authors also show that the sum of the luminosity of the galaxies in each group is consistent with the hypothesis that the final stage in the evolution of compact group is an elliptical galaxy.

  18. Critical opacity: a possible explanation of the fast thermalization times seen in BNL RHIC experiments.

    PubMed

    Gastineau, F; Blanquier, E; Aichelin, J

    2005-07-29

    The Nambu-Jona-Lasinio Lagrangian offers an explication of the seemingly contradictory observations that (a) the energy loss in the entrance channel of heavy ion reactions is not sufficient to thermalize the system and that (b) the observed hadron cross sections are in almost perfect agreement with hydrodynamical calculations. According to this scenario, a critical opacity develops close to the chiral phase transition which equilibrates and hadronizes the expanding system very effectively. It creates as well radial flow and, if the system is not isotropic, finite upsilon2 values.

  19. Heterogeneous photocatalytic oxidation of atmospheric trace contaminants

    NASA Technical Reports Server (NTRS)

    Ollis, David F.; Peral, Jose

    1991-01-01

    The following subject areas are covered: (1) design and construction of continuous flow photoreactor for study of oxidation of trace atmospheric contaminants; (2) establishment of kinetics of acetone oxidation including adsorption equilibration, variation of oxidation rate with acetone concentration and water (inhibitor), and variation of rate and apparent quantum yield with light intensity; (3) exploration of kinetics of butanol oxidation, including rate variation with concentration of butanol, and lack of inhibition by water; and (4) exploration of kinetics of catalyst deactivation during oxidation of butanol, including deactivation rate, influence of dark conditions, and establishment of photocatalytic regeneration of activity in alcohol-free air.

  20. A new solution-adaptive grid generation method for transonic airfoil flow calculations

    NASA Technical Reports Server (NTRS)

    Nakamura, S.; Holst, T. L.

    1981-01-01

    The clustering algorithm is controlled by a second-order, ordinary differential equation which uses the airfoil surface density gradient as a forcing function. The solution to this differential equation produces a surface grid distribution which is automatically clustered in regions with large gradients. The interior grid points are established from this surface distribution by using an interpolation scheme which is fast and retains the desirable properties of the original grid generated from the standard elliptic equation approach.

  1. Shooting string holography of jet quenching at RHIC and LHC

    DOE PAGES

    Ficnar, Andrej; Gubser, Steven S.; Gyulassy, Miklos

    2014-10-13

    We derive a new formula for jet energy loss using finite endpoint momentum shooting strings initial conditions in SYM plasmas to overcome the difficulties of previous falling string holographic scenarios. We apply the new formula to compute the nuclear modification factor R AA and the elliptic flow parameter v 2 of light hadrons at RHIC and LHC. We show furthermore that Gauss–Bonnet quadratic curvature corrections to the AdS 5 geometry improve the agreement with the recent data.

  2. Shooting string holography of jet quenching at RHIC and LHC

    NASA Astrophysics Data System (ADS)

    Ficnar, Andrej; Gubser, Steven S.; Gyulassy, Miklos

    2014-11-01

    We derive a new formula for jet energy loss using finite endpoint momentum shooting strings initial conditions in SYM plasmas to overcome the difficulties of previous falling string holographic scenarios. We apply the new formula to compute the nuclear modification factor RAA and the elliptic flow parameter v2 of light hadrons at RHIC and LHC. We show furthermore that Gauss-Bonnet quadratic curvature corrections to the AdS5 geometry improve the agreement with the recent data.

  3. Bodies with noncircular cross sections and bank-to-turn missiles

    NASA Technical Reports Server (NTRS)

    Jackson, C. M., Jr.; Sawyer, W. C.

    1986-01-01

    An evaluation is made of prospective missile applications for noncircular cross section bodies, and of recent developments in bank-to-turn missile configuration aerodynamics. The discussion encompasses cross-flow analysis techniques, as well as study results obtained for bodies with elliptical and square cross sections and with variable cross sections. Attention is given to both the performance advantages and the stability and control problems of bank-to-turn missile configurations; the aerodynamic data presented for monoplanar configurations extend to those incorporating airbreathing propulsion systems.

  4. A combined PHREEQC-2/parallel fracture model for the simulation of laminar/non-laminar flow and contaminant transport with reactions

    NASA Astrophysics Data System (ADS)

    Masciopinto, Costantino; Volpe, Angela; Palmiotta, Domenico; Cherubini, Claudia

    2010-09-01

    A combination of a parallel fracture model with the PHREEQC-2 geochemical model was developed to simulate sequential flow and chemical transport with reactions in fractured media where both laminar and turbulent flows occur. The integration of non-laminar flow resistances in one model produced relevant effects on water flow velocities, thus improving model prediction capabilities on contaminant transport. The proposed conceptual model consists of 3D rock-blocks, separated by horizontal bedding plane fractures with variable apertures. Particle tracking solved the transport equations for conservative compounds and provided input for PHREEQC-2. For each cluster of contaminant pathways, PHREEQC-2 determined the concentration for mass-transfer, sorption/desorption, ion exchange, mineral dissolution/precipitation and biodegradation, under kinetically controlled reactive processes of equilibrated chemical species. Field tests have been performed for the code verification. As an example, the combined model has been applied to a contaminated fractured aquifer of southern Italy in order to simulate the phenol transport. The code correctly fitted the field available data and also predicted a possible rapid depletion of phenols as a result of an increased biodegradation rate induced by a simulated artificial injection of nitrates, upgradient to the sources.

  5. Stress-intensity factor equations for cracks in three-dimensional finite bodies

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Raju, I. S.

    1981-01-01

    Empirical stress intensity factor equations are presented for embedded elliptical cracks, semi-elliptical surface cracks, quarter-elliptical corner cracks, semi-elliptical surface cracks at a hole, and quarter-elliptical corner cracks at a hole in finite plates. The plates were subjected to remote tensile loading. Equations give stress intensity factors as a function of parametric angle, crack depth, crack length, plate thickness, and where applicable, hole radius. The stress intensity factors used to develop the equations were obtained from three dimensional finite element analyses of these crack configurations.

  6. On the Behavior of Eisenstein Series Through Elliptic Degeneration

    NASA Astrophysics Data System (ADS)

    Garbin, D.; Pippich, A.-M. V.

    2009-12-01

    Let Γ be a Fuchsian group of the first kind acting on the hyperbolic upper half plane {mathbb{H}}, and let {M = Γbackslash mathbb{H}} be the associated finite volume hyperbolic Riemann surface. If γ is a primitive parabolic, hyperbolic, resp. elliptic element of Γ, there is an associated parabolic, hyperbolic, resp. elliptic Eisenstein series. In this article, we study the limiting behavior of these Eisenstein series on an elliptically degenerating family of finite volume hyperbolic Riemann surfaces. In particular, we prove the following result. The elliptic Eisenstein series associated to a degenerating elliptic element converges up to a factor to the parabolic Eisenstein series associated to the parabolic element which fixes the newly developed cusp on the limit surface.

  7. Flow and Jamming of Granular Materials in a Two-dimensional Hopper

    NASA Astrophysics Data System (ADS)

    Tang, Junyao

    Flow in a hopper is both a fertile testing ground for understanding fundamental granular flow rheology and industrially highly relevant. Despite increasing research efforts in this area, a comprehensive physical theory is still lacking for both jamming and flow of granular materials in a hopper. In this work, I have designed a two dimensional (2D) hopper experiment using photoelastic particles (particles' shape: disk or ellipse), with the goal to build a bridge between macroscopic phenomenon of hopper flow and microscopic particle-scale dynamics. Through synchronized data of particle tracking and stress distributions in particles, I have shown differences between my data of the time-averaged velocity/stress profile of 2D hopper flow with previous theoretical predictions. I have also demonstrated the importance of a mechanical stable arch near the opening on controlling hopper flow rheology and suggested a heuristic phase diagram for the hopper flow/jamming transition. Another part of this thesis work is focused on studying the impact of particle shape of particles on hopper flow. By comparing particle-tracking and photoelastic data for ellipses and disks at the appropriate length scale, I have demonstrated an important role for the rotational freedom of elliptical particles in controlling flow rheology through particle tracking and stress analysis. This work has been supported by International Fine Particle Research Institute (IFPRI) .

  8. Higher order turbulence closure models

    NASA Technical Reports Server (NTRS)

    Amano, Ryoichi S.; Chai, John C.; Chen, Jau-Der

    1988-01-01

    Theoretical models are developed and numerical studies conducted on various types of flows including both elliptic and parabolic. The purpose of this study is to find better higher order closure models for the computations of complex flows. This report summarizes three new achievements: (1) completion of the Reynolds-stress closure by developing a new pressure-strain correlation; (2) development of a parabolic code to compute jets and wakes; and, (3) application to a flow through a 180 deg turnaround duct by adopting a boundary fitted coordinate system. In the above mentioned models near-wall models are developed for pressure-strain correlation and third-moment, and incorporated into the transport equations. This addition improved the results considerably and is recommended for future computations. A new parabolic code to solve shear flows without coordinate tranformations is developed and incorporated in this study. This code uses the structure of the finite volume method to solve the governing equations implicitly. The code was validated with the experimental results available in the literature.

  9. An approximate method for calculating three-dimensional inviscid hypersonic flow fields

    NASA Technical Reports Server (NTRS)

    Riley, Christopher J.; Dejarnette, Fred R.

    1990-01-01

    An approximate solution technique was developed for 3-D inviscid, hypersonic flows. The method employs Maslen's explicit pressure equation in addition to the assumption of approximate stream surfaces in the shock layer. This approximation represents a simplification to Maslen's asymmetric method. The present method presents a tractable procedure for computing the inviscid flow over 3-D surfaces at angle of attack. The solution procedure involves iteratively changing the shock shape in the subsonic-transonic region until the correct body shape is obtained. Beyond this region, the shock surface is determined using a marching procedure. Results are presented for a spherically blunted cone, paraboloid, and elliptic cone at angle of attack. The calculated surface pressures are compared with experimental data and finite difference solutions of the Euler equations. Shock shapes and profiles of pressure are also examined. Comparisons indicate the method adequately predicts shock layer properties on blunt bodies in hypersonic flow. The speed of the calculations makes the procedure attractive for engineering design applications.

  10. Azimuthal anisotropy distributions in high-energy collisions

    NASA Astrophysics Data System (ADS)

    Yan, Li; Ollitrault, Jean-Yves; Poskanzer, Arthur M.

    2015-03-01

    Elliptic flow in ultrarelativistic heavy-ion collisions results from the hydrodynamic response to the spatial anisotropy of the initial density profile. A long-standing problem in the interpretation of flow data is that uncertainties in the initial anisotropy are mingled with uncertainties in the response. We argue that the non-Gaussianity of flow fluctuations in small systems with large fluctuations can be used to disentangle the initial state from the response. We apply this method to recent measurements of anisotropic flow in Pb+Pb and p+Pb collisions at the LHC, assuming linear response to the initial anisotropy. The response coefficient is found to decrease as the system becomes smaller and is consistent with a low value of the ratio of viscosity over entropy of η / s ≃ 0.19. Deviations from linear response are studied. While they significantly change the value of the response coefficient they do not change the rate of decrease with centrality. Thus, we argue that the estimate of η / s is robust against non-linear effects.

  11. Multigrid calculation of internal flows in complex geometries

    NASA Technical Reports Server (NTRS)

    Smith, K. M.; Vanka, S. P.

    1992-01-01

    The development, validation, and application of a general purpose multigrid solution algorithm and computer program for the computation of elliptic flows in complex geometries is presented. This computer program combines several desirable features including a curvilinear coordinate system, collocated arrangement of the variables, and Full Multi-Grid/Full Approximation Scheme (FMG/FAS). Provisions are made for the inclusion of embedded obstacles and baffles inside the flow domain. The momentum and continuity equations are solved in a decoupled manner and a pressure corrective equation is used to update the pressures such that the fluxes at the cell faces satisfy local mass continuity. Despite the computational overhead required in the restriction and prolongation phases of the multigrid cycling, the superior convergence results in reduced overall CPU time. The numerical scheme and selected results of several validation flows are presented. Finally, the procedure is applied to study the flowfield in a side-inlet dump combustor and twin jet impingement from a simulated aircraft fuselage.

  12. RIACS

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph

    1997-01-01

    Topics considered include: high-performance computing; cognitive and perceptual prostheses (computational aids designed to leverage human abilities); autonomous systems. Also included: development of a 3D unstructured grid code based on a finite volume formulation and applied to the Navier-stokes equations; Cartesian grid methods for complex geometry; multigrid methods for solving elliptic problems on unstructured grids; algebraic non-overlapping domain decomposition methods for compressible fluid flow problems on unstructured meshes; numerical methods for the compressible navier-stokes equations with application to aerodynamic flows; research in aerodynamic shape optimization; S-HARP: a parallel dynamic spectral partitioner; numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains; application of high-order shock capturing schemes to direct simulation of turbulence; multicast technology; network testbeds; supercomputer consolidation project.

  13. Observation of scale invariance and conformal symmetry breaking in expanding Fermi gases

    NASA Astrophysics Data System (ADS)

    Elliott, Ethan; Joseph, James; Thomas, John

    2014-05-01

    We precisely test scale invariance and examine local thermal equilibrium in the hydrodynamic expansion of a Fermi gas of atoms as a function of interaction strength. After release from an anisotropic optical trap, we observe that a resonantly interacting gas obeys scale-invariant hydrodynamics, where the mean square cloud size = expands ballistically (like a noninteracting gas) and the energy-averaged bulk viscosity is consistent with zero, 0 . 00 (0 . 04) ℏ n , with n the density. In contrast, the aspect ratios of the cloud exhibit anisotropic ``elliptic'' flow with an energy-dependent shear viscosity. Tuning away from resonance, we observe conformal symmetry breaking, where deviates from ballistic flow. NSF, DOE, ARO, AFO.

  14. Anisotropic flow of inclusive and identified particles in Pb-Pb collisions at √{sNN} = 5.02 TeV with ALICE

    NASA Astrophysics Data System (ADS)

    Bertens, R. A.; Alice Collaboration

    2017-11-01

    Elliptic (v2) and higher harmonic (v3,v4) flow coefficients of π±, K±, p (p ‾), and the ϕ-meson, measured in Pb-Pb collisions at the highest-ever center-of-mass energy of √{sNN} = 5.02 TeV, are presented. The results were obtained with the scalar product method, correlating hadrons with reference particles from a different η region. The vn exhibit a clear mass ordering for pT ≲ 2 GeV/c and only approximate particle type scaling for pT ≳ 2 GeV/c. Reasonable agreement with hydrodynamic calculations (IP-Glasma+MUSIC+UrQMD) is seen at pT ≲ 1 GeV/c.

  15. Rapidity dependence in holographic heavy ion collisions

    DOE PAGES

    Wilke van der Schee; Schenke, Bjorn

    2015-12-11

    We present an attempt to closely mimic the initial stage of heavy ion collisions within holography, assuming a decoupling of longitudinal and transverse dynamics in the very early stage. We subsequently evolve the obtained initial state using state-of-the-art hydrodynamic simulations and compare results with experimental data. We present results for charged hadron pseudorapidity spectra and directed and elliptic flow as functions of pseudorapidity for √s NN = 200GeV Au-Au and 2.76TeV Pb-Pb collisions. As a result, the directed flow interestingly turns out to be quite sensitive to the viscosity. The results can explain qualitative features of the collisions, but themore » rapidity spectra in our current model is narrower than the experimental data.« less

  16. Laminar Horse Shoe Vortex for a Triangular Cylinder Flat Plate Juncture

    NASA Astrophysics Data System (ADS)

    Younis, Muhammad Yamin; Zhang, H.; Hu, B.; Sohail, Muhammad Amjad; Muhammad, Zaka

    2011-09-01

    Juncture Flows are 3-D flows which occur when fluid, flowing on a flat surface encounters an obstacle on its way. The flow separates from the surface due to the adverse pressure gradient produced by the obstacle and rolls up to form a vortical structure known as "Horse Shoe Vortex". Studies and research is underway to completely identify and understand different hidden features of the horse shoe vortex. In the present study the structure of horse shoe vortex for a Triangular cylinder flat plate juncture is visualized using particle image velocimetry (PIV). The diameter Reynolds number experimented is within the range of 2 000 ≤ ReA ≤ 8 000. The flow characteristics are studied for the horse shoe vortex and the flow is categorized into different flow regimes. (1) Steady or static vortex system, (2) periodic amalgamating vortex system, and (3) periodic break away vortex system. The range for different vortex systems is also calculated with shedding frequency for the periodic unsteady vortex system. Most importantly the range of Reynolds number for which the above mentioned vortex systems exist is much higher for Sharp leading edge cylinder than for blunt (circular and Elliptical) and flat (Square) leading edge cylinders studied earlier.

  17. Electromagnetic fields and Green's functions in elliptical vacuum chambers

    NASA Astrophysics Data System (ADS)

    Persichelli, S.; Biancacci, N.; Migliorati, M.; Palumbo, L.; Vaccaro, V. G.

    2017-10-01

    In this paper, we discuss the electromagnetic interaction between a point charge travelling inside a waveguide of elliptical cross section, and the waveguide itself. By using a convenient expansion of the Mathieu functions, useful in particular for treating a variety of problems in applied mathematics and physics with elliptic geometry, we first obtain the longitudinal electromagnetic field of a point charge (Green's function) in free space in terms of elliptical coordinates. This expression allows, then, to calculate the scattered field due to the boundary conditions in our geometry. By summing the contribution of the direct or primary field and the indirect field scattered by the boundary, after a careful choice of some expansion expressions, we derive a novel formula of the longitudinal electric field, in any transverse position of the elliptical cross section, generated by the charge moving along the longitudinal axis of the waveguide. The obtained expression is represented in a closed form, it can be differentiated and integrated, it can be used to fully describe the radiation process of a particle beam travelling inside a waveguide of elliptical cross section, and it is valid for any elliptic geometry. The equations are used to evaluate the coupling impedance due to indirect space charge in case of elliptical geometry. In addition, they are useful as preliminary studies for the determination of the coupling impedance in different cases involving elliptic vacuum chambers, as, for example, the effect of the finite conductivity of the beam pipe wall or the geometrical variation of the vacuum chamber due to elliptic step transitions existing in some accelerators.

  18. Electromagnetic fields and Green’s functions in elliptical vacuum chambers

    DOE PAGES

    Persichelli, S.; Biancacci, N.; Migliorati, M.; ...

    2017-10-23

    In this paper, we discuss the electromagnetic interaction between a point charge travelling inside a waveguide of elliptical cross section, and the waveguide itself. By using a convenient expansion of the Mathieu functions, useful in particular for treating a variety of problems in applied mathematics and physics with elliptic geometry, we first obtain the longitudinal electromagnetic field of a point charge (Green's function) in free space in terms of elliptical coordinates. This expression allows, then, to calculate the scattered field due to the boundary conditions in our geometry. By summing the contribution of the direct or primary field and themore » indirect field scattered by the boundary, after a careful choice of some expansion expressions, we derive a novel formula of the longitudinal electric field, in any transverse position of the elliptical cross section, generated by the charge moving along the longitudinal axis of the waveguide. The obtained expression is represented in a closed form, it can be differentiated and integrated, it can be used to fully describe the radiation process of a particle beam travelling inside a waveguide of elliptical cross section, and it is valid for any elliptic geometry. The equations are used to evaluate the coupling impedance due to indirect space charge in case of elliptical geometry. In addition, they are useful as preliminary studies for the determination of the coupling impedance in different cases involving elliptic vacuum chambers, as, for example, the effect of the finite conductivity of the beam pipe wall or the geometrical variation of the vacuum chamber due to elliptic step transitions existing in some accelerators.« less

  19. Electromagnetic fields and Green’s functions in elliptical vacuum chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Persichelli, S.; Biancacci, N.; Migliorati, M.

    In this paper, we discuss the electromagnetic interaction between a point charge travelling inside a waveguide of elliptical cross section, and the waveguide itself. By using a convenient expansion of the Mathieu functions, useful in particular for treating a variety of problems in applied mathematics and physics with elliptic geometry, we first obtain the longitudinal electromagnetic field of a point charge (Green's function) in free space in terms of elliptical coordinates. This expression allows, then, to calculate the scattered field due to the boundary conditions in our geometry. By summing the contribution of the direct or primary field and themore » indirect field scattered by the boundary, after a careful choice of some expansion expressions, we derive a novel formula of the longitudinal electric field, in any transverse position of the elliptical cross section, generated by the charge moving along the longitudinal axis of the waveguide. The obtained expression is represented in a closed form, it can be differentiated and integrated, it can be used to fully describe the radiation process of a particle beam travelling inside a waveguide of elliptical cross section, and it is valid for any elliptic geometry. The equations are used to evaluate the coupling impedance due to indirect space charge in case of elliptical geometry. In addition, they are useful as preliminary studies for the determination of the coupling impedance in different cases involving elliptic vacuum chambers, as, for example, the effect of the finite conductivity of the beam pipe wall or the geometrical variation of the vacuum chamber due to elliptic step transitions existing in some accelerators.« less

  20. Three-dimensional elliptic grid generation for an F-16

    NASA Technical Reports Server (NTRS)

    Sorenson, Reese L.

    1988-01-01

    A case history depicting the effort to generate a computational grid for the simulation of transonic flow about an F-16 aircraft at realistic flight conditions is presented. The flow solver for which this grid is designed is a zonal one, using the Reynolds averaged Navier-Stokes equations near the surface of the aircraft, and the Euler equations in regions removed from the aircraft. A body conforming global grid, suitable for the Euler equation, is first generated using 3-D Poisson equations having inhomogeneous terms modeled after the 2-D GRAPE code. Regions of the global grid are then designated for zonal refinement as appropriate to accurately model the flow physics. Grid spacing suitable for solution of the Navier-Stokes equations is generated in the refinement zones by simple subdivision of the given coarse grid intervals. That grid generation project is described, with particular emphasis on the global coarse grid.

Top